Securing your Network and Services

The Secure Shell

The Definitive Guide

Daniel J. Barrett,
O’ RE"_L\(® Richard E. Silverman & Robert G. Byrnes

Security/Networking

O’REILLY*
SSH, The Secure Shell: The Definitive Guide

Secure your computer network with SSH! With transparent, strong encryption, reliable
= public-key authentication, and a highly configurable client/server architecture, SSH

_-3- (Secure Shell) is a popular, robust, TCP/IP-based solution to many network security and
privacy concerns. It supports secure remote logins, secure file transfer between computers,
and a unique “tunneling” capability that adds encryption to otherwise insecure network applications.
Best of all, SSH is free, with feature-filled commercial versions available as well.

SSH, The Secure Shell: The Definitive Guide, Second Edition, covers the Secure Shell in detail for

both system administrators and end users. This new edition adds over 100 new features and options

from the latest versions of OpenSSH and SSH Tectia (formerly known as SSH2 from ssh.com).

It focuses on the SSH-2 protocol, its internals, and its most popular implementations, including

thorough coverage of:

e OpenSSH and SSH Tectia for Unix, Linux, Mac OS X, and Windows: the basics, the internals,
and complex applications

* Configuring SSH servers and clients, both systemwide and per user, with recommended
setlings o maximize security

* Key management using agents, agent forwarding, and forced commands

e Forwarding (tunneling) of TCP and X11 applications in depth, even in the presence of firewalls
and network address translation (NAT)

e Integrating SSH with Kerberos, OpenPGP, PAM, and other security-related software

e Scalable authentication techniques for large installations, including X.509 certificates

e Installing and maintaining SSH systems

e Troubleshooting a variety of common and not-so-common problems

Whether you're communicating on a small LAN or across the Internet, SSH can ship your data from

“here” to “there” efficiently and securely. The number of computer intrusions on the Internet continues

to rise. Now, more than ever, you need to practice safe computing using SSH. This book shows you

how 1o make your network a secure place to live and work.

www.oreilly.com
US $39.95 CAN $55.95

ISBN: 978-0-596-00895-6 —
53995 Safarl inciudes
O OKE ORLINE FREE 45-Da
VIMMRRERN v

9

SSH, the Secure Shell

The Definitive Guide

Other computer security resources from 0'Reilly

Related titles

Security Books
Resource Center

gﬁf REILLY

Conferences

O’REILLY NETWORK
Safari
Bookshelf.

802.11 Security Network Security with
Digital Identity OpenSSL

Firewall Warrior nmap: The Definitive Guide
Internet Forensics Managing Security with Snort

and IDS Tools
PGP: Pretty Good Privacy
Snort Cookbook

Network Security Assessment

security.oreilly.com is a complete catalog of O’Reilly’s books on
security and related technologies, including sample chapters
and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.

SECOND EDITION

SSH, the Secure Shell

The Definitive Guide

Daniel J. Barrett, Richard E. Silverman,
and Robert G. Byrnes

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

SSH, the Secure Shell: The Definitive Guide™
by Daniel J. Barrett, Richard E. Silverman, and Robert G. Byrnes

Copyright © 2005, 2001 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/insti-
tutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Mary Brady
Cover Designer: Ellie Volckhausen

Interior Designer: David Futato

Printing History:

February 2001: First Edition.
May 2005: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. SSH, the Secure Shell: The Definitive Guide, the image of a land snail, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

R%K% This book uses RepKover', a durable and flexible lay-flat binding.

ISBN: 0-596-00895-3
ISBN13: 978-0-596-00895-6
(M] [1/07]

Table of Contents

Preface Xi
1. IntroductiontoSSH 1
1.1 What Is SSH? 1

1.2 What SSH Is Not 3

1.3 The SSH Protocol 3

1.4 Overview of SSH Features 5

1.5 History of SSH 9

1.6 Related Technologies 10

1.7 Summary 15

2. BasicClientUse 16
2.1 A Running Example 16

2.2 Remote Terminal Sessions with ssh 16

2.3 Adding Complexity to the Example 18

2.4 Authentication by Cryptographic Key 21

2.5 The SSH Agent 28

2.6 Connecting Without a Password or Passphrase 32

2.7 Miscellaneous Clients 33

2.8 Summary 34

3. InsideSSH ... o 36
3.1 Overview of Features 36

3.2 A Cryptography Primer 39

3.3 The Architecture of an SSH System 43

3.4 Inside SSH-2 45

3.5 Inside SSH-1 68

3.6 Implementation Issues 69

3.7 SSH and File Transfers (scp and sftp) 81
3.8 Algorithms Used by SSH 84
3.9 Threats SSH Can Counter 91
3.10 Threats SSH Doesn’t Prevent 93
3.11 Threats Caused by SSH 97
3.12 Summary 98
4. Installation and Compile-Time Configuration 99
4.1. Overview 99
4.2 Installing OpenSSH 106
4.3 Installing Tectia 111
4.4 Software Inventory 124
4.5 Replacing r-Commands with SSH 125
4.6 Summary 127
5. Serverwide Configuration 128
5.1 Running the Server 129
5.2 Server Configuration: An Overview 132
5.3 Getting Ready: Initial Setup 141
5.4 Authentication: Verifying Identities 171
5.5 Access Control: Letting People In 184
5.6 User Logins and Accounts 198
5.7 Forwarding 201
5.8 Subsystems 206
5.9 Logging and Debugging 209
5.10 Compeatibility Between SSH-1 and SSH-2 Servers 223
5.11 Summary 226
6. KeyManagementandAgents 227
6.1 What Is an Identity? 227
6.2 Creating an Identity 233
6.3 SSH Agents 242
6.4 Multiple Identities 260
6.5 PGP Authentication in Tectia 262
6.6 Tectia External Keys 264
6.7 Summary 265

vi | Tableof Contents

7. Advanced ClientUse

7.1
7.2
7.3
7.4
7.5
7.6
7.7

How to Configure Clients
Precedence

Introduction to Verbose Mode
Client Configuration in Depth
Secure Copy with scp

Secure, Interactive Copy with sftp

Summary

8. Per-Account Server Configuration

8.1
8.2
8.3
8.4
8.5

Limits of This Technique
Public-Key-Based Configuration
Hostbased Access Control

The User rc File

Summary

9. PortForwardingandXForwarding

9.1
9.2
9.3
9.4
9.5
9.6

What Is Forwarding?

Port Forwarding

Dynamic Port Forwarding

X Forwarding

Forwarding Security: TCP-wrappers and libwrap

Summary

10. ARecommendedSetup...........

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

The Basics

Compile-Time Configuration
Serverwide Configuration
Per-Account Configuration

Key Management

Client Configuration

Remote Home Directories (NFS, AFS)
Summary

11, Q@seStudies

11.1
11.2
11.3
11.4

Unattended SSH: Batch or cron Jobs
FTP and SSH

Pine, IMAP, and SSH

Connecting Through a Gateway Host

266
276
277
278
313
323
325

326
328
346
348
348

350
351
373
377
389
395

396
397
397
403
404
404
404
407

408
415
436
444

Table of Contents

vii

11.5 Scalable Authentication for SSH
11.6 Tectia Extensions to Server Configuration Files
11.7 Tectia Plugins

12. TroubleshootingandFAQ

12.1 Debug Messages: Your First Line of Defense
12.2 Problems and Solutions
12.3 Other SSH Resources

13. Overview of Other Implementations

13.1 Common Features
13.2 Covered Products
13.3 Other SSH Products

14. OpenSSHforWindows

14.1 Installation

14.2 Using the SSH Clients
14.3 Setting Up the SSH Server
14.4 Public-Key Authentication
14.5 Troubleshooting

14.6 Summary

15. OpenSSHforMacintosh

15.1 Using the SSH Clients
15.2 Using the OpenSSH Server

16. TectiaforWindows

16.1 Obtaining and Installing
16.2 Basic Client Use
16.3 Key Management
16.4 Accession Lite
16.5 Advanced Client Use
16.6 Port Forwarding
16.7 Connector
16.8 File Transfers
16.9 Command-Line Programs
16.10 Troubleshooting
16.11 Server

452
468
479

495
497
513

515
516
516

521
522
522
524
525
525

526
526

532
533
534
536
539
542
543
551
552
554
555

viii | Table of Contents

17. SecureCRT and SecureFX for Windows 563

17.1 Obtaining and Installing 563

17.2 Basic Client Use 564

17.3 Key Management 564

17.4 Advanced Client Use 568

17.5 Forwarding 570

17.6 Command-Line Client Programs 572

17.7 File Transfer 572

17.8 Troubleshooting 574

17.9 VShell 574
17.10 Summary 575

18. PuTTYforWindows 576
18.1 Obtaining and Installing 576

18.2 Basic Client Use 576

18.3 File Transfer 578

18.4 Key Management 580

18.5 Advanced Client Use 583

18.6 Forwarding 587

18.7 Summary 589

A. OpenSSH4.0New Features 591
B. Tectia Manpageforsshregex 595
C. Tectia Module Names for Debugging 604
D. SSH-1Featuresof OpenSSHandTectia............................... 609
E. SSHQuickReference 612
Indexo 629

Table of Contents | ix

Preface

Welcome to the second edition of our book on SSH, one of the world’s most popu-
lar approaches to computer network security. Here’s a sampling of what’s new in
this edition:

Over 100 new features, options, and configuration keywords from the latest ver-
sions of OpenSSH and SSH Tectia (formerly known as SSH Secure Shell or SSH2
from ssh.com)

Expanded material on the SSH-2 protocol and its internals, including a step-by-
step tour through the transport, authentication, and connection phases

Running OpenSSH on Microsoft Windows and Macintosh OS X
All-new chapters on Windows software such as Tectia, SecureCRT, and PuTTY

Scalable authentication techniques for large installations, including X.509 certifi-
cates

Single sign-on between Linux and Windows via Kerberos/GSSAPI
Logging and debugging in greater depth

Tectia’s metaconfiguration, subconfiguration, and plugins, with examples

...and much more! You might be surprised at how much is changed, but in the past
four years, SSH has significantly evolved:

SSH-2 protocol triumphant

Back in 2001, only a handful of SSH products supported the relatively new SSH-
2 protocol, and the primary implementation was commercial. Today, the old
SSH-1 protocol is dying out and all modern SSH products, free and commercial,
use the more secure and flexible SSH-2 protocol. We now recommend that
everyone avoid SSH-1.

The rise of OpenSSH

This little upstart from the OpenBSD world has become the dominant imple-
mentation of SSH on the Internet, snatching the crown from the original, SSH
Secure Shell (now called SSH Tectia, which we abbreviate as Tectia). Tectia is

Xi

still more powerful than OpenSSH in important ways; but as OpenSSH is now
included as standard with Linux, Solaris, Mac OS X, and beyond, it dominates
in pure numbers.

The death of telnet and the r-tools
The insecure programs telnet, rsh, rcp, and rlogin—long the standards for com-
munication between computers—are effectively extinct.” FTP is also on the way
out, except when operated behind firewalls or over private lines.

An explosion of Windows products
In 2001, there were a handful of SSH implementations for Windows; now there
are dozens of GUI clients and several robust servers, not to mention a full port of
the free OpenSSH.

Increased attacks
The Internet has experienced a sharp rise in computer intrusions. Now more
than ever, your servers and firewalls should be configured to block all remote
accesses except via SSH (or other secure protocols).

Protect Your Network with SSH

Let’s start with the basics. SSH, the Secure Shell, is a reliable, reasonably easy to use,
inexpensive security product for computer networks and the people who use them.
It’s available for most of today’s operating systems.

Privacy is a basic human right, but on today’s computer networks, privacy isn’t
guaranteed. Much of the data that travels on the Internet or local networks is
transmitted as plain text, and may be captured and viewed by anybody with a lit-
tle technical know-how. The email you send, the files you transmit between com-
puters, even the passwords you type may be readable by others. Imagine the
damage that can be done if an untrusted third party—a competitor, the CIA, your
in-laws— intercepted your most sensitive communications in transit.

SSH is a small, unassuming, yet powerful and robust solution to many of these
issues. It keeps prying eyes away from the data on your network. It doesn’t solve
every privacy and security problem, but it eliminates several of them effectively. Its
major features are:

* A secure, client/server protocol for encrypting and transmitting data over a net-
work

* Authentication (recognition) of users by password, host, or public key, plus
optional integration with other popular authentication systems, such as PAM,
Kerberos, SecurID, and PGP

* Not counting secure versions of these tools, e.g., when enhanced with Kerberos support. [1.6.3]

xi | Preface

* The ability to add security to insecure network applications such as Telnet,
NNTP, VNC, and many other TCP/IP-based programs and protocols

* Almost complete transparency to the end user

* Implementations for most operating systems

Intended Audience

We've written this book for system administrators and technically minded users.
Some chapters are suitable for a wide audience, while others are thoroughly techni-
cal and intended for computer and networking professionals.

End-User Audience

Do you have two or more computer accounts on different machines? SSH lets you
connect one to another with a high degree of security. You can remotely log into one
account from the other, execute remote commands, and copy files between
accounts, all with the confidence that nobody can intercept your username, pass-
word, or data in transit.

Do you connect from a personal computer to an Internet service provider (ISP)? In
particular, do you connect to a Unix shell account at your ISP? If so, SSH can make
this connection significantly more secure. An increasing number of ISPs are running
SSH servers for their users. In case your ISP doesn’t, we’ll show you how to run a
server yourself.

Do you develop software? Are you creating distributed applications that must com-
municate over a network securely? Then don’t reinvent the wheel: use SSH to
encrypt the connections. It’s a solid technology that may reduce your development
time.

Even if you have only a single computer account, as long as it’s connected to a net-
work, SSH can still be useful. For example, if you’ve ever wanted to let other people
use your account, such as family members or employees, but didn’t want to give
them unlimited use, SSH can provide a carefully controlled, limited-access channel
into your account.

Prerequisites

We assume you are familiar with computers and networking as found in any mod-
ern business office or home system with an Internet connection. Ideally, you are
familiar with network applications like Telnet and FTP. If you are a Unix user, you
should be familiar with standard network applications (e.g., ftp) and the basics of
writing shell scripts and Perl scripts.

Preface | xiii

System-Administrator Audience

If you’re a Unix or Macintosh OS X system administrator, you probably know
about SSH already. It’s less well known in the Windows world, where secure log-
ins are usually accomplished with radmin (Remote Administrator) and other
remote desktop applications, and network file transfers are done using network
shares. In contrast, SSH is more focused on the command line and is therefore
more scriptable than the usual Windows techniques. SSH also can increase the
security of other TCP/IP-based applications on your network by transparently
“tunneling” them through SSH-encrypted connections. You will love SSH.

Prerequisites

In addition to the end-user prerequisites in the previous section, you should be famil-
iar with user accounts and groups, networking concepts such as TCP/IP and pack-
ets, and basic encryption techniques.

Reading This Book

This book is divided roughly into three parts. The first three chapters are a general
introduction to SSH, first at a high level for all readers (Chapters 1 and 2), and then
in detail for technical readers (Chapter 3).

The next nine chapters cover SSH for Unix and similar operating systems (OpenBSD,
Linux, Solaris, etc.). The first two (Chapters 4 and 5) cover SSH installation and serv-
erwide configuration for system administrators. The next four (Chapters 6-9) cover
advanced topics for end users, including key management, client configuration, per-
account server configuration, and forwarding. We complete the Unix sequence with
our recommended setup (Chapter 10), some detailed case studies (Chapter 11), and
troubleshooting tips (Chapter 12). The remaining chapters cover SSH products for
Windows and the Macintosh, plus brief overviews of implementations for other
platforms.

Each section in the book is numbered, and we provide cross-references throughout
the text. If further details are found in Section 7.1.2.2, we use the notation [7.1.2.2]
to indicate it.

Our Approach

This book is organized by concept rather than syntax. We begin with an overview
and progressively lead you deeper into the functionality of SSH. So, we might intro-
duce a topic in Chapter 1, show its basic use in Chapter 2, and reveal advanced uses
in Chapter 7. If you prefer the whole story at once, Appendix E presents all com-
mands and configuration options in one location.

xiv | Preface

We focus strongly on three levels of server configuration, which we call compile-
time, serverwide, and per-account configuration. Compile-time configuration
(Chapter 4) means selecting appropriate options when you build the SSH clients and
servers. Serverwide configuration (Chapter 5) applies when the SSH server is run and
is generally done by system administrators, while per-account configuration
(Chapter 8) can be done anytime by end users. It’s vitally important for system
administrators to understand the relationships and differences among these three lev-
els. Otherwise, SSH may seem like a morass of random behaviors.

Although the bulk of material focuses on Unix implementations of SSH, you don’t
have to be a Unix user to understand it. Fans of Windows and the Macintosh may
stick to the later chapters devoted to their platforms, but a lot of the meaty details
are in the Unix chapters, so we recommend reading them, at least for reference.

Which Chapters Are for You?

We propose several “tracks” for readers with different interests and skills:

System administrators
Chapters 3—5 and 10 are the most important for understanding SSH and how to
build and configure servers. However, as the administrator of a security prod-
uct, you should read the whole book.

Unix users (not system administrators)
Chapters 1 and 2 provide an overview, and Chapters 6-9 discuss SSH clients in

depth.

Windows end users
Read Chapters 1, 2, 13, 14, and 16—18 for starters, and then others as your inter-
ests guide you.

Macintosh end users
Read Chapters 1, 2, 13, and 15 for starters, and then others as your interests
guide you.

Users of other computer platforms
Read Chapters 1, 2, and 13 for starters, and then others as your interests guide
you.

Even if you are experienced with SSH, you’ll likely find value in Chapters 3—12. We
cover significant details the Unix manpages leave unclear or unmentioned, including
major concepts, compile-time flags, server configuration, and forwarding.

Preface | xv

Supported Platforms

This book covers Unix, Windows, and Macintosh implementations of SSH.

R
s

When we say “Unix” in this book, we mean the whole family of Unix-
like operating systems such as Linux, OpenBSD, and Solaris.

N

15

qs
[

SSH products are also available for the Amiga, BeOs, Java, OS/2, Palm Pilot, VMS,
and Windows CE, and although we don’t cover them, their principles are the same.

This book is current for the following Unix SSH versions:

OpenSSH 3.9
SSH Tectia 42

a See Appendix A for a preview of new features in OpenSSH 4.0.

Version information for non-Unix products is found in their respective chapters.

Disclaimers

We identify some program features as “undocumented.” This means the feature isn’t
mentioned in the official documentation but works in the current release and/or is
clear from the program source code. Undocumented features might not be officially
supported by the software authors and can disappear in later releases.

Conventions Used in This Book

The following typographical conventions are used in this book:

Constant width
For configuration files, things that can be found in configuration files (such as
keywords and configuration file options), source code, and interactive terminal
sessions.

Constant width italic
For replaceable parameters on command lines or within configuration files.

Italic
For filenames, URLs, hostnames, command names, command-line options, and
new terms where they are defined.

Ak
In figures, the object labeled A has been secured using a cryptographic key
labeled K. “Secured” means encrypted, signed, or some more complex relation-
ship, depending on the context. If A is secured using multiple keys (say, K and
L), they are listed in the subscript, separated by commas: A ¢ .

xi | Preface

This icon indicates a tip, suggestion, or general note.

*i‘
(152

This icon indicates a warning or caution.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/sshtdg2/
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see the O’Reilly web site at:

http:/fwww.oreilly.com

Safari Enabled

= When you see a Safari® Enabled icon on the cover of your favorite tech-
sa'a" nology book, it means the book is available online through the O’Reilly

e Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top technology books, cut and paste code samples, down-
load chapters, and find quick answers when you need the most accurate, current
information. Try it for free at http://safari.oreilly.com.

Preface | xvii

Acknowledgments

Our biggest thanks go to the two parties who made this second edition a reality: the
many readers who purchased the first edition, and our editor Mike Loukides. We
couldn’t have done this without you!

We thank the O’Reilly “tools” team for Frame typesetting advice, and Rob Romano
for turning our hasty sketches into polished illustrations. Special thanks to the
O’Reilly production team, Keith Fahlgren, John Bickelhaupt, Audrey Doyle, and
Mary Brady, for their hard work creating the final package.

We thank our excellent technical reviewers for their thorough reading and insightful
comments: Markus Friedl and Damien Miller of the OpenSSH team, Paul Lussier,
Drew Simonis, and Mike Smith. Big thanks also to several vendors of SSH products
who provided us with free copies of their software, reviewed the manuscript, and
answered our questions. From SSH Communications Security, maker of SSH Tectia,
we thank Nicolas Gabriel-Robez, Tommi Lampila, Sami J. Lehtinen, Timo J. Rinne,
Janne Saarikko, Petri Sakkinen, Vesa Vatka, and Timo Westerberg. From VanDyke
Software, maker of SecureCRT, SecureFX, and VShell, we thank Jill Christian, Mau-
reen Jett, Marc Orchant, and Tracy West. SSH Communications Security also kindly
gave us permission to include the sshregex manpage (Appendix B) and the sshdebug.h
error codes (Appendix C).

Dan Barrett thanks Lisa and Sophie for bearing the late-night writing and hacking
sessions required for this book. He also thanks Alex Schowtka and Robert Dulaney
of VistaPrint, his employer, for their kind permission to work on this project. Bob
Byrnes thanks Alison and Rebecca for all of their help and understanding through-
out the many nights and weekends when he was glued to his keyboard. Richard Sil-
verman thanks his coauthors for their unfailing good humor and patience—even
when a sudden decision to change jobs and move out of state threw his book sched-
ule into chaos. He also thanks his various friends, especially Bob Stepno, for listen-
ing to his endless chatter about The Book. It’s truly a wonder they still speak to him
at all.

xvii | Preface

CHAPTER 1
Introduction to SSH

Many people today have multiple computer accounts. If you’re a reasonably savvy
user, you might have a personal account with an Internet service provider (ISP), a
work account on your employer’s local network, and a few computers at home. You
might also have permission to use other accounts owned by family members or
friends.

If you have multiple accounts, it’s natural to want to make connections between
them. For instance, you might want to copy files between computers over a network,
log into one account remotely from another, or transmit commands to a remote com-
puter for execution. Various programs exist for these purposes, such as ftp for file
transfers, telnet for remote logins, and rsh for remote execution of commands.

Unfortunately, many of these network-related programs have a fundamental prob-
lem: they lack security. If you transmit a sensitive file via the Internet, an intruder can
potentially intercept and read the data. Even worse, if you log onto another com-
puter remotely using a program such as telnet, your username and password can be
intercepted as they travel over the network. Yikes!

How can these serious problems be prevented? You can use an encryption program to
scramble your data into a secret code nobody else can read. You can install a fire-
wall, a device that shields portions of a computer network from intruders, and keep
all your communications behind it. Or you can use a wide range of other solutions,
alone or combined, with varying complexity and cost.

1.1 What Is SSH?

SSH, the Secure Shell, is a popular, powerful, software-based approach to network
security.” Whenever data is sent by a computer to the network, SSH automatically
encrypts (scrambles) it. Then, when the data reaches its intended recipient, SSH

* “SSH” is pronounced by spelling it aloud: S-S-H.

automatically decrypts (unscrambles) it. The result is transparent encryption: users
can work normally, unaware that their communications are safely encrypted on the
network. In addition, SSH uses modern, secure encryption algorithms and is effec-
tive enough to be found within mission-critical applications at major corporations.

SSH has a client/server architecture, as shown in Figure 1-1. An SSH server program,
typically installed and run by a system administrator, accepts or rejects incoming
connections to its host computer. Users then run SSH client programs, typically on
other computers, to make requests of the SSH server, such as “Please log me in,”
“Please send me a file,” or “Please execute this command.” All communications
between clients and servers are securely encrypted and protected from modification.

Computer
SH
lient Log me in
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, S
Child
Process

Log me in . Child ‘HH . Child Send file X
—— Process l [Process

Hereis file X

Denied @ [S I N
[\ Child 3 5 5

Process

Run this command Computer

Computer

Figure 1-1. SSH architecture

2 | Chapter1: Introduction to SSH

Our description is simplified but should give you a general idea of what SSH does.
We'll go into depth later. For now, just remember that SSH clients communicate
with SSH servers over encrypted network connections.

SSH software is very common today. It comes with most Linux distributions, Macin-
tosh OS X, Sun Solaris, OpenBSD, and virtually all other Unix-inspired operating
systems. Microsoft Windows has plenty of SSH clients and servers, both free and
commercial. You can even find it for PalmOS, Commodore Amiga, and most other
platforms. [13.3]

Many SSH clients are inspired by old Unix programs called the “r-commands:” rsh
(remote shell), rlogin (remote login), and rcp (remote copy). In fact, for many pur-
poses the SSH clients are drop-in replacements for the r-commands, so if you're still
using them, switch to SSH immediately! The old r-commands are notoriously inse-
cure, and the SSH learning curve is small.

1.2 What SSH Is Not

Although SSH stands for Secure Shell, it is not a true shell in the sense of the Unix
Bourne shell and C shell. It is not a command interpreter, nor does it provide wild-
card expansion, command history, and so forth. Rather, SSH creates a channel for
running a shell on a remote computer, with end-to-end encryption between the two
systems.

SSH is also not a complete security solution—but then, nothing is. It won’t protect
computers from active break-in attempts or denial-of-service attacks, and it won’t
eliminate other hazards such as viruses, Trojan horses, and coffee spills. It does,
however, provide robust and user-friendly encryption and authentication.

1.3 The SSH Protocol

SSH is a protocol, not a product. It is a specification of how to conduct secure com-
munication over a network.”

The SSH protocol covers authentication, encryption, and the integrity of data trans-
mitted over a network, as shown in Figure 1-2. Let’s define these terms:

Authentication
Reliably determines someone’s identity. If you try to log into an account on a
remote computer, SSH asks for digital proof of your identity. If you pass the test,
you may log in; otherwise, SSH rejects the connection.

* Although we say “the SSH protocol,” there are actually two incompatible versions of the protocols in com-
mon use: SSH-1 (a.k.a. SSH-1.5) and SSH-2. We distinguish these protocols later.

1.3 TheSSHProtocol | 3

Encryption
Scrambles data so that it is unintelligible except to the intended recipients. This
protects your data as it passes over the network.

Integrity
Guarantees the data traveling over the network arrives unaltered. If a third party
captures and modifies your data in transit, SSH detects this fact.

Authentication
< lam me
SH : ;
Clieng lam me too —
- R S .
—y .))
\$ \\\51 like %o, Encryption o é
More | WO ¥ 00 Turgp, N
W G stass7 > e, X
8 Jyoud

y lntegrity

Figure 1-2. Authentication, encryption, and integrity

In short, SSH makes network connections between computers, with strong guarantees
that the parties on both ends of the connection are genuine. It also ensures that any
data passing over these connections arrives unmodified and unread by eavesdroppers.

1.3.1 Protocols, Products, Clients, and Confusion

The first SSH product, created by Tatu Ylonen for Unix, was simply called “SSH.”
This caused confusion because SSH was also the name of the protocol. In this book,
we use more precise terminology to refer to protocols, products, and programs, sum-
marized in the sidebar “Terminology: SSH Protocols and Products.” In short:

¢ Protocols are denoted with dashes: SSH-1, SSH-2.

* Products are denoted in mixed case, without dashes: OpenSSH, Tectia, PuTTY,
etc.

* Client programs are in lowercase: ssh, scp, putty, etc.

4 | Chapter1: Introduction to SSH

Terminology: SSH Protocols and Products

SSH
A generic term referring to SSH protocols and software products.

SSH-1
The SSH protocol, Version 1. This is the original protocol, and it has serious lim-
itations, so we do not recommend its use anymore.

SSH-2
The SSH protocol, Version 2, the most common and secure SSH protocol used
today. It is defined by draft standards documents of the IETF SECSH working
group. [3.4]

SSH1
The granddaddy of it all: the original SSH product created by Tatu Ylonen. It
implemented (and defined) the SSH-1 protocol and is now obsolete.

SSH2
The original SSH-2 product, created by Tatu Ylénen and his company, SSH Com-
munications Security (http://www.ssh.com).

ssh (all lowercase letters)
A client program run on the command line and included in many SSH products,
for running secure terminal sessions and remote commands. On some systems it
might be named ssh1 or ssh2.

OpenSSH
The product OpenSSH from the OpenBSD project, http://www.openssh.com.

Tectia
The successor to SSH2, this refers to the product suite “SSH Tectia” from SSH
Communications Security. We abbreviate the name as simply “Tectia.” Since Tec-
tia is available for both Unix and Windows, when we write “Tectia” we generally
mean the Unix version unless we say otherwise.

1.4 Overview of SSH Features

So, what can SSH do? Let’s run through some examples that demonstrate the major
features of SSH, such as secure remote logins, secure file copying, and secure invoca-
tion of remote commands.

1.4.1 Secure Remote Logins

Suppose you have login accounts on several computers on the Internet. Common
programs like telnet let you log into one computer from another, say, from your
home PC to your web hosting provider, or from one office computer to another.
Unfortunately, telnet and similar programs transmit your username and password in

1.4 Overview of SSH Features | 5

plain text over the Internet, where a malicious third party can intercept them.” Addi-
tionally, your entire telnet session is readable by a network snooper.

Terminology: Networking

Local computer (local host, local machine)
A computer on which you are logged in and, typically, running an SSH client.
Remote computer (remote host, remote machine)
A second computer you connect to via your local computer. Typically, the remote
computer is running an SSH server and is accessed via an SSH client. As a degen-
erate case, the local and remote computers can be the same machine.

Local user
A user logged into a local computer.

Remote user
A user logged into a remote computer.

Server
An SSH server program.

Server machine
A computer running an SSH server program. We sometimes simply write “server”
for the server machine when the context makes clear (or irrelevant) the distinction
between the running SSH server program and its host machine.

Client
An SSH client program.

Client machine
A computer running an SSH client. As with the server terminology, we simply
write “client” when the context makes the meaning clear.

~or $SHOME
A user’s home directory on a Unix machine, particularly when used in a file path
such as ~/filename. Most shells recognize ~ as a user’s home directory, with the
notable exception of the Bourne shell. SHOME is recognized by all shells.

SSH completely avoids these problems. Rather than running the insecure telnet pro-
gram, you run the SSH client program ssh. To log into an account with the user-
name smith on the remote computer host.example.com, use this command:

$ ssh -1 smith host.example.com

The client authenticates you to the remote computer’s SSH server using an encrypted
connection, meaning that your username and password are encrypted before they
leave the local machine. The SSH server then logs you in, and your entire login

* This is true of standard Telnet, but some implementations add security features.

6 | Chapter1: Introduction to SSH

session is encrypted as it travels between client and server. Because the encryption is
transparent, you won’t notice any differences between telnet and the telnet-like SSH
client.

1.4.2 Secure File Transfer

Suppose you have accounts on two Internet computers, me@firstaccount.com and
metoo@secondaccount.com, and you want to transfer a file from the first to the sec-
ond account. The file contains trade secrets about your business, however, that must
be kept from prying eyes. A traditional file-transfer program, such as ftp, doesn’t pro-
vide a secure solution. A third party can intercept and read the packets as they travel
over the network. To get around this problem, you can encrypt the file on
firstaccount.com with a program such as Pretty Good Privacy (PGP), transfer it via
traditional means, and decrypt the file on secondaccount.com, but such a process is
tedious and nontransparent to the user.

Using SSH, the file can be transferred securely between machines with a single secure
copy command. If the file were named myfile, the command executed on
firstaccount.com might be:

$ scp myfile metoo@secondaccount.com:

When transmitted by scp, the file is automatically encrypted as it leaves firstaccount.
com and decrypted as it arrives on secondaccount.com.

1.4.3 Secure Remote Command Execution

Suppose you are a system administrator who needs to run the same command on
many computers. You’d like to view the active processes for each user on four differ-
ent computers—grape, lemon, kiwi, and melon—on a local area network using the
Unix command /usr/bin/w. Many SSH clients can run a single remote command if
you provide it at the end of the command line. This short shell script does the trick:

#!/bin/sh

for machine in grape lemon kiwi melon

do

ssh $machine /usr/bin/w Execute remote command by ssh

done
Each w command and its results are encrypted as they travel across the network, and
strong authentication techniques may be used when connecting to the remote
machines.

1.4.4 Keys and Agents

Suppose you have accounts on many computers on a network. For security reasons,
you prefer different passwords on all accounts; but remembering so many pass-
words is difficult. It’s also a security problem in itself. The more often you type a

1.4 Overview of SSH Features | 7

password, the more likely you’ll mistakenly type it in the wrong place. (Have you
ever accidentally typed your password instead of your username, visible to the
world? Ouch! And on many systems, such mistakes are recorded in a system log file,
revealing your password in plain text.) Wouldn’t it be great to identify yourself only
once and get secure access to all the accounts without continually typing passwords?

SSH has various authentication mechanisms, and the most secure is based on keys
rather than passwords. Keys are discussed in great detail in Chapter 6, but for now
we define a key as a small blob of bits that uniquely identifies an SSH user. For secu-
rity, a key is kept encrypted; it may be used only after entering a secret passphrase to
decrypt it.

Using keys, together with a program called an authentication agent, SSH can authen-
ticate you to all your computer accounts securely without requiring you to memo-
rize many passwords or enter them repeatedly. It works like this:

1. In advance (and only once), place special, nonsecure files called public key files
into your remote computer accounts. These enable your SSH clients (ssh, scp) to
access your remote accounts.

2. On your local machine, invoke the ssh-agent program, which runs in the
background.

3. Choose the key (or keys) you will need during your login session.

4. Load the keys into the agent with the ssh-add program. This requires knowledge
of each key’s secret passphrase.

At this point, you have an ssh-agent program running on your local machine, hold-
ing your secret keys in memory. You’re now done. You have passwordless access to
all your remote accounts that contain your public key files. Say goodbye to the
tedium of retyping passwords! The setup lasts until you log out from the local
machine or terminate ssh-agent.

1.4.5 Access Control

Suppose you want to permit another person to use your computer account, but only
for certain purposes. For example, while you’re out of town you’d like your secretary
to read your email but not to do anything else in your account. With SSH, you can
give your secretary access to your account without revealing or changing your pass-
word, and with only the ability to run the email program. No system-administrator
privileges are required to set up this restricted access. (This topic is the focus of
Chapter 8.)

1.4.6 Port Forwarding

SSH can increase the security of other TCP/IP-based applications such as telnet, fip,
and the X Window System. A technique called port forwarding or tunneling reroutes

8 | Chapter1: Introduction to SSH

a TCP/IP connection to pass through an SSH connection, transparently encrypting it
end to end. Port forwarding can also pass such applications through network fire-
walls that otherwise prevent their use.

Suppose you are logged into a machine away from work and want to access the inter-
nal news server at your office, news.yoyodyne.com. The Yoyodyne network is con-
nected to the Internet, but a network firewall blocks incoming connections to most
ports, particularly port 119, the news port. The firewall does allow incoming SSH
connections, however, since the SSH protocol is secure enough that even Yoyo-
dyne’s rabidly paranoid system administrators trust it. SSH can establish a secure
tunnel on an arbitrary local TCP port—say, port 3002—to the news port on the
remote host. The command might look a bit cryptic at this early stage, but here it is:

$ ssh -L 3002:1localhost:119 news.yoyodyne.com

This says “ssh, please establish a secure connection from TCP port 3002 on my local
machine to TCP port 119, the news port, on news.yoyodyne.com.” So, in order to
read news securely, configure your news-reading program to connect to port 3002 on
your local machine. The secure tunnel created by ssh automatically communicates
with the news server on news.yoyodyne.com, and the news traffic passing through the
tunnel is protected by encryption. [9.1]

1.5 History of SSH

SSH1 and the SSH-1 protocol were developed in 1995 by Tatu Ylonen, a researcher
at the Helsinki University of Technology in Finland. After his university network was
the victim of a password-sniffing attack earlier that year, Ylonen whipped up SSH1
for himself. When beta versions started gaining attention, however, he realized his
security product could be put to wider use.

In July 1995, SSH1 was released to the public as free software with source code, per-
mitting people to copy and use the program without cost. By the end of the year, an
estimated 20,000 users in 50 countries had adopted SSH1, and Ylénen was fending
off 150 email messages per day requesting support. In response, Ylonen founded
SSH Communications Security Corp., (SCS, http://www.ssh.com/) in December of
1995 to maintain, commercialize, and continue development of SSH. Today he is a
board member and technical advisor to the company.

Also in 1995, Ylonen documented the SSH-1 protocol as an Internet Engineering
Task Force (IETF) Internet Draft, which essentially described the operation of the
SSH1 software after the fact. It was a somewhat ad hoc protocol with a number of
problems and limitations discovered as the software grew in popularity. These prob-
lems couldn’t be fixed without losing backward compatibility, so in 1996, SCS intro-
duced a new, major version of the protocol, SSH 2.0 or SSH-2, that incorporates new
algorithms and is incompatible with SSH-1. In response, the IETF formed a working

1.5 Historyof SSH | 9

group called Secure Shell (SECSH) to standardize the protocol and guide its develop-
ment in the public interest. The SECSH working group submitted the first Internet
Draft for the SSH-2.0 protocol in February 1997.

In 1998, SCS released the software product SSH Secure Shell (SSH2), based on the
superior SSH-2 protocol. However, SSH2 didn’t replace SSH1 in the field: it was
missing some features of SSH1 and had a more restrictive license, so many users felt
little reason to switch, even though SSH-2 is a better and more secure protocol.

This situation changed with the appearance of OpenSSH (http://www.openssh.com/),
a free implementation of the SSH-2 protocol from the OpenBSD project (http://www.
openbsd.org/). It was based on the last free release of the original SSH, 1.2.12, but
developed rapidly into one of the reigning SSH implementations in the world.
Though many people have contributed to it, OpenSSH is largely the work of soft-
ware developer Markus Friedl. It has been ported successfully to Linux, Solaris, AIX,
Mac OS X, and other operating systems, in tight synchronization with the OpenBSD
releases.

SCS has continued to improve its SSH products, in some cases beyond what
OpenSSH supports. Its product line now carries the name Tectia. And nowadays
there are dozens of SSH implementations, both free and commercial, for virtually all
platforms. Millions of people use it worldwide to secure their communications.

1.6 Related Technologies

SSH is popular and convenient, but we certainly don’t claim it is the ultimate secu-
rity solution for all networks. Authentication, encryption, and network security origi-
nated long before SSH and have been incorporated into many other systems. Let’s
survey a few representative systems.

1.6.1 rsh Suite (r-Commands)

The Unix programs rsh, rlogin, and rcp—collectively known as the r-commands—are
the direct ancestors of the SSH clients ssh, slogin, and scp. The user interfaces and
visible functionality are nearly identical to their SSH counterparts, except that SSH
clients are secure. The r-commands, in contrast, don’t encrypt their connections and
have a weak, easily subverted authentication model.

An r-command server relies on two mechanisms for security: a network naming ser-
vice and the notion of “privileged” TCP ports. Upon receiving a connection from a
client, the server obtains the network address of the originating host and translates it
into a hostname. This hostname must be present in a configuration file on the server,
typically /etc/hosts.equiv, for the server to permit access. The server also checks that
the source TCP port number is in the range 1-1023, since these port numbers can be
used only by the Unix superuser (or root uid). If the connection passes both checks,

10 | Chapter1: Introduction toSSH

the server believes it is talking to a trusted program on a trusted host and logs in the
client as whatever user it requests!

These two security checks are easily subverted. The translation of a network address
to a hostname is done by a naming service such as Sun’s Network Information Ser-
vice (NIS) or the Internet Domain Name System (DNS). Most implementations and/
or deployments of NIS and DNS services have security holes, presenting opportuni-
ties to trick the server into trusting a host it shouldn’t. Then, a remote user can log
into someone else’s account on the server simply by having the same username.

Likewise, blind trust in privileged TCP ports represents a serious security risk. A
cracker who gains root privilege on a trusted machine can simply run a tailored ver-
sion of the rsh client and log in as any user on the server host. Overall, reliance on these
port numbers is no longer trustworthy in a world of desktop computers whose users
have administrative access as a matter of course, or whose operating systems don’t sup-
port multiple users or privileges (such as Windows 9x and Macintosh OS 9).

If user databases on trusted hosts were always synchronized with the server, instal-
lation of privileged programs (setuid root) strictly monitored, root privileges guar-
anteed to be held by trusted people, and the physical network protected, the r-
commands would be reasonably secure. These assumptions made sense in the early
days of networking, when hosts were few, expensive, and overseen by a small and
trusted group of administrators, but they have far outlived their usefulness.

Given SSH’s superior security features and that ssh is backward-compatible with rsh
(and scp with rcp), we see no compelling reason to run the r-commands anymore.
Install SSH and be happy.

1.6.2 Pretty Good Privacy (PGP) and GNU Privacy Guard
(GnuPG)

PGP is a popular encryption program available for many computing platforms, cre-
ated by Phil Zimmerman. It can authenticate users and encrypt data files and email
messages. GnuPG is a more powerful successor to PGP with less-restrictive licensing.

SSH incorporates some of the same encryption algorithms as PGP and GnuPG, but
applied in a different way. PGP is file-based, typically encrypting one file or email
message at a time on a single computer. SSH, in contrast, encrypts an ongoing ses-
sion between networked computers. The difference between PGP and SSH is like
that between a batch job and an interactive process.

N
o PGP and SSH are related in another way as well: Tectia can optionally
:.,“ use PGP keys for authentication. [5.4.5]

More PGP and GnuPG information is available at http://www.pgp.com/ and http://
www.gnupg.org/, respectively.

1.6 Related Technologies | 11

1.6.3 Kerberos

Kerberos is a secure authentication system for environments where networks may be
monitored, and computers aren’t under central control. It was developed as part of
Project Athena, a wide-ranging research and development effort at the Massachu-
setts Institute of Technology (MIT). Kerberos authenticates users by way of tickets,
small sequences of bytes with limited lifetimes, while user passwords remain secure
on a central machine.

Kerberos and SSH solve similar problems but are quite different in scope. SSH is
lightweight and easily deployed, designed to work on existing systems with minimal
changes. To enable secure access from one machine to another, simply install an SSH
client on the first and a server on the second, and start the server. Kerberos, in con-
trast, requires significant infrastructure to be established before use, such as adminis-
trative user accounts, a heavily secured central host, and software for networkwide
clock synchronization. In return for this added complexity, Kerberos ensures that
users’ passwords travel on the network as little as possible and are stored only on the
central host. SSH sends passwords across the network (over encrypted connections,
of course) on each login and stores keys on each host from which SSH is used. Ker-
beros also serves other purposes beyond the scope of SSH, including a centralized
user account database, access control lists, and a hierarchical model of trust.

Another difference between SSH and Kerberos is the approach to securing client
applications. SSH can easily secure most TCP/IP-based programs via a technique
called port-forwarding. Kerberos, on the other hand, contains a set of programming
libraries for adding authentication and encryption to other applications. Developers
can integrate applications with Kerberos by modifying their source code to make
calls to the Kerberos libraries. The MIT Kerberos distribution comes with a set of
common services that have been “kerberized,” including secure versions of telnet, ftp,
and rsh.

If the features of both Kerberos and SSH sound good, you’re in luck: they’ve been
integrated. [11.4] More information on Kerberos can be found at http://web.mit.edu/
kerberos/www/.

1.6.4 IPSEC and Virtual Private Networks

Internet Protocol Security (IPSEC) is an Internet standard for network security.
Developed by an IETF working group, IPSEC comprises authentication and encryp-
tion implemented at the IP level. This is a lower level of the network stack than SSH
addresses. It is entirely transparent to end users, who don’t need to use a particular
program such as SSH to gain security; rather, their existing insecure network traffic is
protected automatically by the underlying system. IPSEC can securely connect a sin-
gle machine to a remote network through an intervening untrusted network (such as

12 | Chapter1: Introduction toSSH

the Internet), or it can connect entire networks (this is the idea of the Virtual Private
Network, or VPN).

SSH is often quicker and easier to deploy as a solution than IPSEC, since SSH is a
simple application program, whereas IPSEC requires additions to the host operating
systems on both sides if they don’t already come with it, and possibly to network
equipment such as routers, depending on the scenario. SSH also provides user
authentication, whereas IPSEC deals only with individual hosts. On the other hand,
IPSEC is more basic protection and can do things SSH can’t. For instance, in
Chapter 11 we discuss the difficulties of trying to protect the FTP protocol using
SSH. If you need to secure an existing insecure protocol such as FTP, which isn’t
amenable to treatment with SSH, IPSEC is a way to do it.

IPSEC can provide authentication alone, through a means called the Authentication
Header (AH), or both authentication and encryption, using a protocol called Encap-
sulated Security Payload (ESP). Detailed information on IPSEC can be found at http://
www.ietf.org/html.charters/ipsec-charter.html.

1.6.5 Secure Remote Password (SRP)

The Secure Remote Password (SRP) protocol, created at Stanford University, is a
security protocol very different in scope from SSH. It is specifically an authentication
protocol, whereas SSH comprises authentication, encryption, integrity, session man-
agement, etc., as an integrated whole. SRP isn’t a complete security solution in itself,
but rather, a technology that can be a part of a security system.

The design goal of SRP is to improve on the security properties of password-style
authentication, while retaining its considerable practical advantages. Using SSH pub-
lic-key authentication is difficult if you’re traveling, especially if you’re not carrying
your own computer, but instead are using other people’s machines. You have to
carry your private key on a portable storage device and hope that you can get the key
into whatever machine you need to use.

Carrying your encrypted private key with you is also a weakness, because if someone
steals it, they can subject it to a dictionary attack in which they try to find your pass-
phrase and recover the key. Then you’re back to the age-old problem with pass-
words: to be useful they must be short and memorable, whereas to be secure, they
must be long and random.

SRP provides strong two-party mutual authentication, with the client needing only to
remember a short password which need not be so strongly random. With traditional
password schemes, the server maintains a sensitive database that must be protected,
such as the passwords themselves, or hashed versions of them (as in the Unix /etc/
passwd and /etc/shadow files). That data must be kept secret, since disclosure allows
an attacker to impersonate users or discover their passwords through a dictionary

1.6 Related Technologies | 13

attack. The design of SRP avoids such a database and allows passwords to be less
random (and therefore more memorable and useful), since it prevents dictionary
attacks. The server still has sensitive data that should be protected, but the conse-
quences of its disclosure are less severe.

SRP is also intentionally designed to avoid using encryption algorithms in its opera-
tion. Thus it avoids running afoul of cryptographic export laws, which prohibits cer-
tain encryption technologies from being shared with foreign countries.

SRP is an interesting technology we hope gains wider acceptance; it is an excellent
candidate for an additional authentication method in SSH. The current SRP imple-
mentation includes secure clients and servers for the Telnet and FTP protocols for
Unix and Windows. More SRP information can be found at http://srp.stanford.edu/.

1.6.6 Secure Socket Layer (SSL) Protocol

The Secure Socket Layer (SSL) protocol is an authentication and encryption tech-
nique providing security services to TCP clients by way of a Berkeley sockets-style
API. It was initially developed by Netscape Communications Corporation to secure
the HTTP protocol between web clients and servers, and that is still its primary use,
though nothing about it is specific to HTTP. It is on the IETF standards track as
RFC-2246, under the name “TLS” for Transport Layer Security.

An SSL participant proves its identity by a digital certificate, a set of cryptographic
data. A certificate indicates that a trusted third party has verified the binding
between an identity and a given cryptographic key. Web browsers automatically
check the certificate provided by a web server when they connect by SSL, ensuring
that the server is the one the user intended to contact. Thereafter, transmissions
between the browser and the web server are encrypted.

SSL is used most often for web applications, but it can also “tunnel” other protocols.
It is secure only if a “trusted third party” exists. Organizations known as certificate
authorities (CAs) serve this function. If a company wants a certificate from the CA,
the company must prove its identity to the CA through other means, such as legal
documents. Once the proof is sufficient, the CA issues the certificate.

For more information, visit the OpenSSL project at http://www.openssl.org/.

1.6.7 SSL-Enhanced Telnet and FTP

Numerous TCP-based communication programs have been enhanced with SSL,
including telnet (e.g., SSLtelnet, SRA telnet, SSLTel, STel) and ftp (SSLftp), provid-
ing some of the functionality of SSH. Though useful, these tools are fairly single-
purpose and typically are patched or hacked versions of programs not originally writ-
ten for secure communication. The major SSH implementations, on the other hand,

14 | Chapter1: Introduction to SSH

are more like integrated toolsets with diverse uses, written from the ground up for
security.

1.6.8 stunnel

stunnel is an SSL tool created by Micha Trojnara of Poland. It adds SSL protection to
existing TCP-based services in a Unix environment, such as POP or IMAP servers,
without requiring changes to the server source code. It can be invoked from inetd as
a wrapper for any number of service daemons or run standalone, accepting network
connections itself for a particular service. stunnel performs authentication and autho-
rization of incoming connections via SSL; if the connection is allowed, it runs the
server and implements an SSL-protected session between the client and server
programs.

This is especially useful because certain popular applications have the option of run-
ning some client/server protocols over SSL. For instance, email clients like Microsoft
Outlook and Mozilla Mail can connect to POP, IMAP, and SMTP servers using SSL.
For more stunnel information, see http://www.stunnel.org/.

1.6.9 Firewalls

A firewall is a hardware device or software program that prevents certain data from
entering or exiting a network. For example, a firewall placed between a web site and
the Internet might permit only HTTP and HTTPS traffic to reach the site. As another
example, a firewall can reject all TCP/IP packets unless they originate from a desig-
nated set of network addresses.

Firewalls aren’t a replacement for SSH or other authentication and encryption
approaches, but they do address similar problems. The techniques may be used
together.

1.7 Summary

SSH is a powerful, convenient approach to protecting communications on a com-
puter network. Through secure authentication and encryption technologies, SSH
supports secure remote logins, secure remote command execution, secure file trans-
fers, access control, TCP/IP port forwarding, and other important features.

1.7 Summary | 15

CHAPTER 2
Basic Client Use

SSH is a simple idea but it has many parts, some of them complex. This chapter is
designed to get you started with SSH quickly. We cover the basics of SSH’s most
immediately useful features:

* Logging into a remote computer over a secure connection

* Transferring files between computers over a secure connection

We also introduce authentication with cryptographic keys, a more secure alternative
to ordinary passwords. Advanced uses of client programs, such as multiple keys, cli-
ent configuration files, and TCP port forwarding, are covered in later chapters. Our
examples in this chapter work with OpenSSH and Tectia on Linux and other Unix-
inspired operating systems.

2.1 ARunning Example

Suppose you’re out of town on a business trip and want to access your files, which
sit on a Unix machine belonging to your ISP, shell.isp.com. A friend at a nearby uni-
versity agrees to let you log into her Linux account on the machine local.university.
edu, and then remotely log into yours. For the remote login you could use the telnet
program, but as we’ve seen, this connection between the machines is insecure. (No
doubt some subversive college student would grab your password and turn your
account into a renegade web server for pirated software and death metal MP3s.) For-
tunately, both your friend’s machine and your ISP’s have an SSH product installed.

In the example running through the chapter, we represent the shell prompt of the local
machine, local.university.edu, as a dollar sign ($) and the prompt on shell.isp.com as
shell.isp.com>.

2.2 Remote Terminal Sessions with ssh

Suppose your remote username on shell.isp.com is pat. To connect to your remote
account from your friend’s account on local.university.edu, you type:

16

$ ssh -1 pat shell.isp.com

pat's password: ¥k

Last login: Mon Aug 16 19:32:51 2004 from quondam.nefertiti.org
You have new mail.

shell.isp.com>

This leads to the situation shown in Figure 2-1. The ssh command runs a client that
contacts the SSH server on shell.isp.com over the Internet, asking to be logged into
the remote account with username pat.” You can also provide user@host syntax
instead of the - option to accomplish the same thing:

$ ssh pat@shell.isp.com

University Network ISP Network
Internet
SSH secure SSH protocol
(llent
local.university.edu shell.isp.com

Figure 2-1. Our example scenario

On first contact, SSH establishes a secure channel between the client and the server
so that all transmissions between them are encrypted. The client then prompts for
your password, which it supplies to the server over the secure channel. The server
authenticates you by checking that the password is correct and permits the login. All
subsequent client/server exchanges are protected by that secure channel, including
everything you type into the SSH application and everything it displays to you from
shell.isp.com.

It’s important to remember that the secure channel exists only between the SSH cli-
ent and server machines. After logging into shell.isp.com via ssh, if you then telnet or
ftp to a third machine, insecure.isp.com, the connection between shell.isp.com and
insecure.isp.com is not secure. However, you can run another ssh client from shell.isp.
com to insecure.isp.com, creating another secure channel, which keeps the chain of
connections secure.

We've covered only the simplest use of ssh. Chapter 7 goes into far greater depth
about its many features and options.

2.2.1 File Transfer with scp

Continuing the story, suppose that while browsing your files, you encounter a PDF
file you’d like to print. In order to send the file to a local printer at the university, you

* If the local and remote usernames are identical, you can omit the —I option (I pat) and just type ssh shell.
isp.com.

2.2 Remote Terminal Sessions withssh | 17

must first transfer the file to local.university.edu. Once again, you reject as insecure
the traditional file-transfer programs, such as ftp. Instead, you use another SSH cli-
ent program, scp, to copy the file across the network via a secure channel.

First, you write the attachment to a file in your home directory on shell.isp.com using
your mail client, naming the file printme.pdf. When you’ve finished reading your other
email messages, log out of shell.isp.com, ending the SSH session and returning to the
shell prompt on local.university.edu. You’re now ready to copy the file securely.

The scp program has syntax much like the traditional Unix ¢p program for copying
files." It is roughly:

scp name-of-source name-of-destination

In this example, scp copies the file printme.pdf on shell.isp.com over the network to a
local file in your friend’s account on local.university.edu, also called printme.pdf:

$ scp pat@shell.isp.com:printme.pdf printme.pdf

The file is transferred over an SSH-secured connection. The source and destination
files may be specified not only by filename, but also by username (“pat” in our exam-
ple) and hostname (shell.isp.com), indicating the location of the file on the network.
Depending on your needs, various parts of the source or destination name can be
omitted, and default values used. For example, omitting the username and the at
sign (pat@) makes scp assume that the remote username is the same as the local one.

Like ssh, scp prompts for your remote password and passes it to the SSH server for
verification. If successful, scp logs into the pat account on shell.isp.com, copies your
remote file printme.pdf to the local file printme.pdf, and logs out of shell.isp.com. The
local file printme.pdf may now be sent to a printer.

The destination filename need not be the same as the remote one. For example, if
you’re feeling French, you could call the local file imprime-moi.pdf:
$ scp pat@shell.isp.com:printme.pdf imprime-moi.pdf

The full syntax of scp can represent local and remote files in powerful ways, and the
program also has numerous command-line options. [7.5]

2.3 Adding Complexity to the Example

The preceding example session provided a quick introduction to the most often-used
client programs—ssh and scp—in a format to follow while sitting at your computer.
Now that you have the basics, let’s continue the example but include situations and
complications glossed over the first time. These include the “known hosts” security
feature and the SSH escape character.

* Actually it’s modeled after the old rcp program for copying files insecurely between machines.

18 | Chapter2: BasicClient Use

If you’re following at the computer as you read, your SSH clients
might behave unexpectedly or differently from ours. As you will see
throughout the book, SSH implementations are highly customizable,
by both yourself and the system administrator, on either side of the
secure connection. Although this chapter describes common behav-
iors of SSH programs based on their installation defaults, your system
might be set up differently.

If commands don’t work as you expect, try adding the —v (“verbose”)
command-line option, for example:

$ ssh -v shell.isp.com

This causes the client to print lots of information about its progress,
often revealing the source of the discrepancy.

2.3.1 Known Hosts

The first time an SSH client encounters a new remote machine, it may report that it’s
never seen the machine before, printing a message like the following:

$ ssh -1 pat shell.isp.com

The authenticity of host 'shell.isp.com (192.168.0.2)"' can't be established.

RSA key fingerprint is 77:a5:69:81:9b:eb:40:76:7b:13:04:29:6c:f4:9c:5d.

Are you sure you want to continue connecting (yes/no)?

Assuming you respond yes (the most common response), the client continues:

Warning: Permanently added 'shell.isp.com,192.168.0.2"' (RSA) to the list of known
hosts.
This message appears only the first time you contact a particular remote host. The
message is a security feature related to SSH’s concept of known hosts."

Suppose an adversary wants to obtain your password. He knows you are using SSH,
and so he can’t monitor your connection by eavesdropping on the network. Instead,
he subverts the naming service used by your local host so that the name of your
intended remote host, shell.isp.com, translates falsely to the IP address of a computer
run by him! He then installs an altered SSH server on the phony remote host and
waits. When you log in via your trusty SSH client, the altered SSH server records
your password for the adversary’s later use (or misuse, more likely). The bogus server
can then disconnect with a preplanned error message such as “System down for
maintenance—please try again after 4:00 p.m.” Even worse, it can fool you com-
pletely by using your password to log into the real shell.isp.com and transparently
pass information back and forth between you and the server, monitoring your entire
session. This hostile strategy is called a man-in-the-middle attack. [3.9.4] Unless you

* Depending on your client configuration, ssh might print a different message and automatically accept or
reject the connection. [7.4.3.1]

2.3 Adding Complexity to the Example | 19

think to check the originating IP address of your session on the server, you might
never notice the deception.

The SSH known-host mechanism prevents such attacks. When an SSH client and
server make a connection, each of them proves its identity to the other. Yes, not only
does the server authenticate the client, as we saw earlier when the server checked
Pat’s password, but the client also authenticates the server by public-key cryptogra-
phy. [3.4.3.6] In short, each SSH server has a secret, unique ID, called a host key, to
identify itself to clients. The first time you connect to a remote host, a public coun-
terpart of the host key gets copied and stored in your local account (assuming you
responded “yes” to the client’s prompt about host keys, earlier). Each time you
reconnect to that remote host, the SSH client checks the remote host’s identity using
this public key.

Of course, it’s better to have recorded the server’s public host key before connecting
to it the first time, since otherwise you are technically open to a man-in-the-middle
attack that first time. Administrators can maintain systemwide known-hosts lists for
given sets of hosts, but this doesn’t do much good for connecting to random new
hosts around the world. Until a reliable, widely deployed method of verifying such
keys securely exists (such as secure DNS, or X.509-based public-key infrastructure),
this record-on-first-use mechanism is an acceptable compromise.

If authentication of the server fails, various things may happen depending on the rea-
son for failure and the SSH configuration. Typically a warning appears on the screen,
ranging from a repeat of the known-hosts message:

Host key not found from the list of known hosts.
Are you sure you want to continue connecting (yes/no)?

to more dire words:

(EEEEEECEREERERECACACEEREEEEACECERECEECACEREERERECARERRERER

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
(PEEPECPECEEREEREECECRACCACCACCACRACRECEECRECACCACRACRECREE@

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA host key has just been changed.

The fingerprint for the RSA key sent by the remote host is
77:a5:69:81:9b:eb:40:76:7b:13:04:a9:6c:f4:9c:5d.

Please contact your system administrator.

Add correct host key in /home/smith/.ssh/known_hosts to get rid of this message.
Offending key in /home/smith/.ssh/known_hosts:36

If you answer yes, ssh allows the connection, but disables various features as a secu-
rity precaution and doesn’t update your personal known-hosts database with the
new key; you must do that yourself to make this message go away.

As the text of the message says, if you see this warning, you aren’t necessarily being
hacked: for example, the remote host key may have legitimately changed for some

20 | Chapter2: BasicClientUse

reason. In some cases, even after reading this book, you won’t know the cause of these
messages. If you need assistance, contact your system administrator or a knowledge-
able friend, rather than take a chance and possibly compromise your password. We’ll
cover these issues further when we discuss personal known hosts databases and how
to alter the behavior of SSH clients with respect to host keys. [7.4.3]

2.3.2 The Escape Character

Let us return to the shell.isp.com example, just after you’d discovered the attachment
in your remote email message and saved it to the remote file printme.pdf. In our origi-
nal example, you then logged out of shell.isp.com and ran scp to transfer the file. But
what if you don’t want to log out? If you’re using a workstation running a window
system, you can open a new window and run scp. But if you’re using a lowly text ter-
minal, or you’re not familiar with the window system running on your friend’s com-
puter, there is an alternative. You can temporarily interrupt the SSH connection,
transfer the file (and run any other local commands you desire), and then resume the
connection.

ssh supports an escape character, a designated character that gets the attention of the
SSH client. Normally, ssh sends every character you type to the server, but the escape
character is caught by the client, alerting it that special commands may follow. By
default, the escape character is the tilde (~), but you can change it. To reduce the
chances of sending the escape character unintentionally, that character must be the
first character on the command line, i.e., following a newline (Control-J) or return
(Control-M) character. If not, the client treats it literally, not as an escape character.

After the escape character gets the client’s attention, the next character entered deter-
mines the effect of the escape. For example, the escape character followed by a
Control-Z suspends ssh like any other shell job, returning control to the local shell.
Such a pair of characters is called an escape sequence. We cover these in detail in a
later chapter. [7.4.6.8]

To change the ssh escape character, use the —e command-line option. For example,
type the following to make the percent sign (%) the escape character when connect-
ing to shell.isp.com as user pat:

$ ssh -e "%" -1 pat shell.isp.com

2.4 Authentication by Cryptographic Key

In our running example, the user pat is authenticated by the SSH server via login
password. Passwords, however, have serious drawbacks:

* In order for a password to be secure, it should be long and random, but such
passwords are hard to memorize.

2.4 Authentication by CryptographicKey | 21

* A password sent across the network, even protected by an SSH secure channel,
can be captured when it arrives on the remote host if that host has been compro-
mised.

* Most operating systems support only a single password per account. For shared
accounts (e.g., a superuser account), this presents difficulties:

— Password changes are inconvenient because the new password must be com-
municated to all people with access to the account.

— Tracking usage of the account becomes difficult because the operating sys-
tem doesn’t distinguish between the different users of the account.

To address these problems, SSH supports public-key authentication: instead of rely-
ing on the password scheme of the host operating system, SSH may use crypto-
graphic keys. [3.2.2] Keys are more secure than passwords in general and address all
the weaknesses mentioned earlier.

2.4.1 ABrief Introduction to Keys

A key is a digital identity. It’s a unique string of binary data that means “This is me,
honestly, I swear.” And with a little cryptographic magic, your SSH client can prove
to a server that its key is genuine, and you are really you.

An SSH identity uses a pair of keys, one private and one public. The private key is a
closely guarded secret only you have. Your SSH clients use it to prove your identity
to servers. The public key is, like the name says, public. You place it freely into your
accounts on SSH server machines. During authentication, the SSH client and server
have a little conversation about your private and public key. If they match (accord-
ing to a cryptographic test), your identity is proven, and authentication succeeds.

The following sequence demonstrates the conversation between client and server. [3.
4.2.4] (It occurs behind the scenes, so you don’t need to memorize it or anything; we
just thought you might be interested.)

1. Your client says, “Hey server, I'd like to connect by SSH to an account on your
system, specifically, the account owned by user smith.”

2. The server says, “Well, maybe. First, I challenge you to prove your identity!”
And the server sends some data, known as a challenge, to the client.

3. Your client says, “I accept your challenge. Here is proof of my identity. I made it
myself by mathematically using your challenge and my private key.” This
response to the server is called an authenticator.

4. The server says, “Thanks for the authenticator. I will now examine the smith
account to see if you may enter.” Specifically, the server checks smith’s public
keys to see if the authenticator “matches” any of them. (The “match” is another
cryptographic operation.) If so, the server says, “OK, come on in!” Otherwise,
the authentication fails.

22 | Chapter2: BasicClientUse

Before you can use public-key authentication, some setup is required:

* You need a private key and a public key, known collectively as a key pair. You
also need a secret passphrase to protect your private key. [2.4.2]

* You need to install your public key on an SSH server machine. [2.4.3]

2.4.2 Generating Key Pairs with ssh-keygen

To use cryptographic authentication, you must first generate a key pair for yourself,
consisting of a private key (your digital identity that sits on the client machine) and a
public key (that sits on the server machine). To do this, use the ssh-keygen program
to produce either a DSA or RSA key. The OpenSSH version of ssh-keygen requires
you to specify the key type with the —¢ option (there is no default):

$ ssh-keygen -t dsa
Generating public/private dsa key pair.
Enter file in which to save the key (/home/dbarrett/.ssh/id dsa): press ENTER
Enter passphrase (empty for no passphrase): ¥¥i¥iskick
Enter same passphrase again: ¥¥dokokkx
Your identification has been saved in /home/pat/.ssh/id dsa.
Your public key has been saved in /home/pat/.ssh/id_dsa.pub.
The key fingerprint is:
14:ba:06:98:a8:98:ad:27:b5:ce:55:85:ec:64:37:19 pat@shell.isp.com
On Tectia systems, ssh-keygen produces a DSA key by default, and also accepts the —¢
option:
$ ssh-keygen
Generating 2048-bit dsa key pair
1 ..000.000.00
2 0.000.000.00
3 0.000.000.00
The program displays a “ripple” pattern to indicate progress; the characters are actually
overwritten on a single line
28 0.000.000.00

Key generated.

2048-bit dsa, pat@shell.isp.com, Wed Jan 12 2005 20:22:21 -0500
Passphrase o ORksksokokskskokokskokokok

Again 2 Rkskokokoksokokskokokokk

Private key saved to /home/pat/.ssh2/id _dsa 2048 a

Public key saved to /home/pat/.ssh2/id dsa 2048 a.pub
Normally, ssh-keygen performs all necessary mathematics to generate a key, but on
some operating systems you might be asked to assist it. Key generation requires some
random numbers, and if your operating system doesn’t supply a random-number
generator, you may be asked to type some random text or wiggle your mouse
around. ssh-keygen uses the timings of your keystrokes to initialize its internal
random-number generator. On a 3.2 GHz Pentium 4 system running Linux, a 1024-
bit RSA key generates in less than one second; if your hardware is slower or heavily
loaded, generation could take minutes. It can also take longer if the process runs out
of random bits and ssh-keygen waits to collect more.

2.4 Authentication by Cryptographickey | 23

ssh-keygen then creates your local SSH directory (~/.ssh for OpenSSH or ~/.ssh2 for
Tectia) if it doesn’t already exist, and stores the private and public components of
the generated key in two files there. By default, their names are id_dsa and id_dsa.pub
(OpenSSH) or id_dsa_2048_a and id_dsa_2048_a.pub (Tectia). SSH clients consider
these to be your default identity for authentication purposes.

Never reveal your private key and passphrase to anyone. They are just
as sensitive as your login password. Anyone possessing them can
impersonate you!

When created, the identity file is readable only by your account, and its contents are
further protected by encrypting them with the passphrase you supplied during gener-
ation. We say “passphrase” instead of “password” both to differentiate it from a
login password, and to stress that spaces and punctuation are allowed and encour-
aged. We recommend a passphrase at least 10—15 characters long and not a gram-
matical sentence.

ssh-keygen has numerous options for managing keys: changing the passphrase,
choosing a different name for the key file, and so forth. [6.2]

2.4.3 Installing a Public Key on an SSH Server Machine

When passwords are used for authentication, the host operating system maintains
the association between the username and the password. For cryptographic keys,
you must set up a similar association manually. After creating the key pair on the
local host, you must install your public key in your account on the remote host. A
remote account may have many public keys installed for accessing it in various ways.

Returning to our running example, you must install a public key into the pat account
on shell.isp.com. This is done by editing a file in the SSH configuration directory: ~/.ssh/
authorized_keys for OpenSSH or ~/.ssh2/authorization for Tectia.

2.43.1 Instructions for OpenSSH

Create or edit the remote file ~/.ssh/authorized_keys and append your public key—i.e.,
the contents of the id_dsa.pub file you generated on the local machine. A typical
authorized_keys file contains a list of public-key data, one key per line. The example
contains only two public keys, each on its own line of the file, but they are too long to
fit on this page. The line breaks inside the long numbers are printing artifacts; if they
were actually in the file, it would be incorrectly formatted and wouldn’t work:

ssh-dss AAAAB3NzaC1kc3MAAACBAMCiL15WET+0dFIZ9InMShaPAZ3eF07YIBFZ6ybl71d+8072/

JnXGghYVuvKbHANIRYWidhdFWtDW315v8Ce7nyYhcQU7x+j4JeUf7gmmQx1uov+05r1g7L5U2RuN94yt1BG]
+xk7vzLwOhKHE/+YFVz525FNazoYXqPnm1pRPRAAAAFQDGjroMj+ML= jones@client2.com

24 | Chapter2: BasicClientUse

ssh-rsa
AAAAB3NZaC1yc2EAAAABIWAAATEAVPBAL1UbAGEbhUGHL ig7ams fywDafqSZq2ikACIUBN3GyRPfeF931/
weQh7020XbDydZAKMcDvBIqRhUotQUwqV6HIxqoqPD1PGUUYo8RDIKLUIPRYyqypZxmK9aCXokFiHoGCXFQ91
mUP/w/jfqboByDtG97tUIF6nFMP5WZhM= smith@client.net

The first entry is a DSA key and the second is RSA. [8.2.1]

2.4.3.2 Instructions for Tectia

For Tectia you need to edit two files, one on the client machine and one on the server
machine. On the client machine, create or edit the file ~/.ssh2/identification and insert
a line to identify your private-key file:

IdKey id dsa 2048 a

On the server machine, create or edit the file ~/.ssh2/authorization, which contains
information about public keys, one per line. But unlike OpenSSH’s authorized_keys
file, which contains copies of the public keys, the authorization file lists only the file-
name of the key:

Key id_dsa_2048_a.pub

Finally, copy id_dsa_2048_a.pub from your local machine to the remote Tectia server
machine, placing it in ~/.ssh2.

Regardless of which SSH implementation you use, make sure your remote SSH direc-
tory and associated files are writable only by your account:”

OpenSSH
$ chmod 755 ~/.ssh
$ chmod 644 ~/.ssh/authorized keys

Tectia

$ chmod 755 ~/.ssh2

$ chmod 644 ~/.ssh2/id_dsa_2048 a.pub
$ chmod 644 ~/.ssh2/authorization

The SSH server is picky about file and directory permissions and may refuse

authentication if the remote account’s SSH configuration files have insecure per-
missions. [5.3.2.1]

You are now ready to use your new key to access the pat account:

$ ssh -1 pat shell.isp.com

Enter passphrase for key '/home/you/.ssh/id dsa': #k¥xikdidotx
Last login: Mon Aug 16 19:44:21 2004 from quincunx.nefertiti.org
You have new mail.

shell.isp.com>

If all goes well, you are logged into the remote account. Figure 2-2 shows the entire
process.

* We make files world-readable and directories world-searchable, to avoid NFS problems. |

10.7.2] But if
StrictModes is enabled in the server, you’ll need to make these permissions more restrictive. [5.3

2.1]

2.4 Authentication by Cryptographickey | 25

Installing OpenSSH Keys with ssh-copy-id

OpenSSH includes a program, ssh-copy-id, that installs a public key automatically on

a remote server with a single command, placing it into ~/.ssh/authorized_keys:
ssh-copy-id -i key file [user@]server name

For example, to install the key mykey in the dulaney account on server.example.com:
$ ssh-copy-id -i mykey dulaney@server.example.com

You don’t need to list the .pub extension of the key file; or more specifically, you can
provide either the private or public-key file, and the public key is copied to the remote
server.

In order for the copy to take place, you’ll need an account on the remote machine, of
course, and you’ll need to authenticate somehow. If you’ve never set up public-key
authentication on server.example.com before, you’ll be prompted for your login pass-
word.

ssh-copy-id is convenient, but it has some subtle issues:

 If you have no authorized_keys file on the remote machine, ssh-copy-id creates
one containing your new key; otherwise, it appends the new key.

* If you do already have a remote authorized_keys file, and it does not end with a
newline character, ssh-copy-id blindly appends your new key onto the last pub-
lic key in the file, with no newline between them. This effectively corrupts the
last two keys in authorized_keys. Moral: always make sure authorized_keys ends
with a newline. (This is easy to overlook, especially when running OpenSSH on
Windows. [14.4])

* The syntax of ssh-copy-id is similar to that of scp, the secure copy program, but
there’s an important difference: scp follows the hostname of the remote machine
with a colon. Don’t use a colon with ssh-copy-id or you’ll get an error message,
“Name or service not known,” as the hostname lookup fails.

Before you use ssh-copy-id to simplify or hide the details of public-key authentication,
we recommend that you understand how to set it up manually. This point is often true
of security-related software: you should know how and why it works.

Note the similarity to the earlier example with password authentication. [2.2] On the
surface, the only difference is that you provide the passphrase to your private key,
instead of providing your login password. Underneath, however, something quite
different is happening. In password authentication, the password is transmitted to
the remote host. With cryptographic authentication, the passphrase serves only to
decrypt the private key to create an authenticator. [2.4.1]

Public-key authentication is more secure than password authentication because:

26 | Chapter2: BasicClientUse

local.university.edu shell.isp.com

SSH
sy oin
Clieny :1"'buthenticaloru."‘1.
i Tk
identity file H

H@v\ U veriy a(;/t(l)t‘:ilelgzic:tor & Pat’s SSH authorization file
private .0
i

encrypted

Figure 2-2. Public-key authentication

* It requires two secret components—the identity file on disk, and the passphrase
in your head—so both must be captured in order for an adversary to access your
account. Password authentication requires only one component, the password,
which might be easier to steal.

* Neither the passphrase nor the key is sent to the remote host, just the authenti-
cator discussed earlier. Therefore, no secret information is transmitted off the
client machine.

* Machine-generated cryptographic keys are infeasible to guess. Human-gener-
ated passwords are routinely cracked by a password-guessing technique called a
dictionary attack. A dictionary attack may be mounted on the passphrase as well,
but this requires stealing the private-key file first.

A host’s security can be greatly increased by disabling password authentication alto-
gether and permitting only SSH connections by key.

2.4.4 IfYou Change Your Key

Suppose you have generated a key pair, id_dsa and id_dsa.pub, and copied id_dsa.pub
to a bunch of SSH server machines. All is well. Then one day, you decide to change
your identity, so you run ssh-keygen a second time, overwriting id_dsa and id_dsa.
pub. Guess what? Your previous public-key file is now invalid, and you must copy
the new public key to all those SSH server machines again. This is a maintenance
headache, so think carefully before changing (destroying!) a key pair. Some caveats:

* You are not limited to one key pair. You can generate as many as you like, stored
in different files, and use them for diverse purposes. [6.4]

* If you just want to change your passphrase, you don’t have to generate a new
key pair. ssh-keygen has command-line options for replacing the passphrase of
an existing key: —p for OpenSSH [6.2.1] and —e for Tectia [6.2.2]. In this case
your public key remains valid since the private key hasn’t changed, just the pass-
phrase for decrypting it.

2.4 Authentication by CryptographicKey | 27

2.5 The SSH Agent

Each time you run ssh or scp with public-key authentication, you have to retype your
passphrase. The first few times you might not mind, but eventually this retyping gets
annoying. Wouldn’t it be nicer to identify yourself just once and have ssh and scp
remember your identity until further notice (for example, until you log out), not
prompting for your passphrase? In fact, this is just what an SSH agent does for you.

An agent is a program that keeps private keys in memory and provides authentica-
tion services to SSH clients. If you preload an agent with private keys at the begin-
ning of a login session, your SSH clients won’t prompt for passphrases. Instead, they
communicate with the agent as needed. The effects of the agent last until you termi-
nate the agent, usually just before logging out. The agent program for both OpenSSH
and Tectia is called ssh-agent.

Generally, you run a single ssh-agent in your local login session, before running any
SSH clients. You can run the agent by hand, but people usually edit their login files
(for example, ~/.login or ~/.xsession) to run the agent automatically. SSH clients com-
municate with the agent via a local socket or named pipe whose filename is stored in
an environment variable, so all clients (and all other processes) within your login ses-
sion have access to the agent. [6.3.4] To try the agent, type:

$ ssh-agent $SHELL

where SHELL is the environment variable containing the name of your login shell.
Alternatively, you could supply the name of any other shell, such as sh, bash, csh,
tcsh, or ksh. The agent runs and then invokes the given shell as a child process. The
visual effect is simply that another shell prompt appears, but this shell has access to
the agent.

Once the agent is running, it’s time to load private keys into it using the ssh-add pro-
gram. By default, ssh-add loads the key from your default identity file:

$ ssh-add

Enter passphrase for /home/you/.ssh/id_dsa: ¥¥¥¥ikxk

Identity added: /home/you/.ssh/id dsa (/home/you/.ssh/id_dsa)
Now ssh and scp can connect to remote hosts without prompting for your pass-
phrase. Figure 2-3 shows the process.

ssh-add reads the passphrase from your terminal by default or, optionally, from stan-
dard input noninteractively. Otherwise, if you are running the X Window System
with the DISPLAY environment variable set, and standard input isn’t a terminal, ssh-
add reads your passphrase using a graphical X program, ssh-askpass. This behavior is
useful when calling ssh-add from X session setup scripts.

R

To force ssh-add to use X to read the passphrase, type ssh-add < /dev/
null at a command line.

28 | Chapter2: BasicClientUse

............................. + lencrypted —— 1 | plain-text key!

identity file ssh-agent
decrypts private key and %
; stores in agent
private P .
""""""""""""""""" ‘assphrase A
please sign
AwithkeylU A,
* SSH
ssh quthenticator A,
1

Figure 2-3. How the SSH agent works

ssh-add has further capabilities and can operate with multiple identity files. [6.3.3]
For now, here are a few useful commands. To load a key other than your default
identity into the agent, provide the filename as an argument to ssh-add:

$ ssh-add my-other-key-file
You can also list the keys the agent currently holds:
$ ssh-add -1
delete a key from the agent in memory:
$ ssh-add -d name-of-key-file
or delete all keys from the agent in memory:
$ ssh-add -D

When running an SSH agent, don’t leave your terminal unattended
while logged in. While your private keys are loaded in an agent, any-
one may use your terminal to connect to any remote acCounts accessi-
ble via those keys, without needing your passphrase! Even worse, a
sophisticated intruder can extract your keys from the running agent
and steal them.

If you use an agent, make sure to lock your terminal if you leave it while
logged in. You can also use ssh-add -D to clear your loaded keys and
reload them when you return. In addition, ssh-agent can be “locked” by
ssh-add, to protect the agent from unauthorized users. [6.3.3]

2.5.1 Agents and Automation

Suppose you have a batch script that runs ssh to launch remote processes. If the
script runs ssh many times, it prompts for your passphrase repeatedly, which is
inconvenient for automation (not to mention annoying and error-prone). If you run
an agent, however, your script can run without a single passphrase prompt. [11.1]

2.5 TheSSHAgent | 29

2.5.2 A More Complex Passphrase Problem

In our running example, we copied a file from the remote to the local host:
$ scp pat@shell.isp.com:printme.pdf imprime-moi.pdf

In fact, scp can copy a file from the remote host shell.isp.com directly to a third host
running SSH on which you have an account named, say, “psmith”:

$ scp pat@shell.isp.com:printme.pdf psmith@other.host.net:imprime-moi.pdf

Rather than copying the file first to the local host and then back out again to the final
destination, this command has shell.isp.com send it directly to other.host.net. How-
ever, if you try this, you run into the following problem:

$ scp pat@shell.isp.com:printme.pdf psmith@other.host.net:imprime-moi.pdf

Enter passphrase for RSA key 'Your Name <you@local.orgy': *iktiioktiokx

You have no controlling tty and no DISPLAY. Cannot read passphrase.

lost connection
What happened? When you run scp on your local machine, it contacts shell.isp.com
and internally invokes a second scp command to do the copy. Unfortunately, the sec-
ond scp command also needs the passphrase for your private key. Since there is no
terminal session to prompt for the passphrase, the second scp fails, causing the origi-
nal scp to fail. The SSH agent solves this problem: the second scp command simply
queries your local SSH agent, so no passphrase prompting is needed.

The SSH agent also solves another, more subtle, problem in this example. Without
the agent, the second scp (on shell.isp.com) needs access to your private-key file, but
the file is on your local machine. So, you have to copy your private key file to shell.
isp.com. This isn’t ideal; what if shell.isp.com isn’t a secure machine? Also, the solu-
tion doesn’t scale: if you have a dozen different accounts, it is a maintenance head-
ache to keep your private key file on all of them. Fortunately, the SSH agent comes to
the rescue once again. The remote scp process simply contacts your local SSH agent
and authenticates, and the secure copy proceeds successfully, through a process
called agent forwarding.

2.5.3 Agent Forwarding

In the preceding example, the remote instance of scp has no direct access to your pri-
vate key, since the agent is running on the local host, not the remote host. SSH pro-
vides agent forwarding [6.3.5] to address this problem.

When agent forwarding is turned on,” the remote SSH server masquerades as a sec-
ond ssh-agent, as shown in Figure 2-4. It takes authentication requests from your
SSH client processes there, passes them back over the SSH connection to the local

* It is on by default in Tectia, but off in OpenSSH.

30 | Chapter2: BasicClientUse

agent for handling, and relays the results back to the remote clients. In short, remote
clients transparently get access to the local ssh-agent. Since any programs executed
via ssh on the remote side are children of the server, they all have access to the local
agent just as if they were running on the local host.

forwarded
T request
SSH
cllent forwarded ---.,
4 result
res:u/t *
forwarded i request
request forwarded
* H result
Ty V
keys ;
SH
Agent Cligng
Machine X Machine Y

Figure 2-4. How agent forwarding works

In our double-remote scp example, here is what happens when agent forwarding
comes into play (see Figure 2-5):

1.

You run the command on your local machine:

$ scp pat@shell.isp.com:printme.pdf psmith@other.host.net:imprime-moi.pdf

2. This scp process contacts your local agent and authenticates you to shell.isp.com.

. A second scp command is automatically launched on shell.isp.com to carry out

the copy to other.host.net.

. Since agent forwarding is turned on, the SSH server on shell.isp.com poses as an

agent.

. The second scp process tries to authenticate you to other.host.net by contacting

the “agent” that is really the SSH server on shell.isp.com.

. Behind the scenes, the SSH server on shell.isp.com communicates with your local

agent, which constructs an authenticator proving your identity and passes it
back to the server.

. The server verifies your identity to the second scp process, and authentication

succeeds on other.host.net.

. The file copying occurs.

2.5 TheSSHAgent | 31

other.host.net

q 5
Imprime-mol

f scp -timprime-moi

i sshd
ssh shell.isp.com
local.university.edu connect to account
psmit

3 ¢p print-me psmith@other.host.net:imprime-moi

- connect to account pat : ;

"scp pat@shell.isp.com:print-me psmith@other.host.net:imprime-moi"

Figure 2-5. Third-party scp with agent forwarding

Agent forwarding works over multiple connections in a series, allowing you to ssh
from one machine to another, and then to another, with the agent connection fol-
lowing along the whole way. These machines may be progressively less secure, but
agent forwarding doesn’t send your private key to the remote host: it just relays
authentication requests back to the first host for processing. Therefore, you don’t
have to copy your private key to other machines.

2.6 Connecting Without a Password
or Passphrase

One of the most frequently asked questions about SSH is: “How can I connect to a
remote machine without having to type a password or passphrase?” As you’ve seen,
an SSH agent can make this possible, but there are other methods as well, each with
different trade-offs. Here we list the available methods with pointers to the sections
discussing each one.

To use SSH clients for interactive sessions without a password or passphrase, you
have several options:

32 | Chapter2: BasicClientUse

* Public-key authentication with an agent [2.5] [6.3]
e Hostbased authentication [3.4.3.6]

¢ Kerberos authentication [11.4]

Another way to achieve passwordless logins is to use an unencrypted
private key with no passphrase. Although this technique can be appro-
priate for automation purposes, never do this for interactive use.
Instead, use the SSH agent, which provides the same benefits with
much greater security. Don’t use unencrypted keys for interactive SSH!

On the other hand, noninteractive, unattended programs such as cron jobs or batch
scripts may also benefit from not having a password or passphrase. In this case, the
different techniques raise some complex issues, and we discuss their relative merits
and security issues later. [11.1]

2.7 Miscellaneous Clients

Several other clients are included in addition to ssh and scp:
* sftp, an fip-like client

* slogin, a link to ssh, analogous to the rlogin program

2.7.1 sftp

The scp command is convenient and useful, but many users are already familiar with
FTP (File Transfer Protocol), a more widely used technique for transferring files on
the Internet.” sftp is a separate file-transfer tool layered on top of SSH. The OpenSSH
sftp can run over either SSH-1 or SSH-2, whereas the Tectia version runs over SSH-2
only due to implementation details.

sftp has several advantages:

* It is secure, using an SSH-protected channel for data transfer.

* Multiple commands for file copying and manipulation can be invoked within a
single sftp session, whereas scp opens a new session each time it is invoked.

* It can be scripted using the familiar ftp command language.

* In other software applications that run an FTP client in the background, you can
try substituting sftp, thus securing the file transfers of that application. You
might need to run an agent, however, since programs that normally invoke fip
might not recognize the sftp passphrase prompt, or they might expect you to
have suppressed FTP’s password prompt (using a .netrc file, for example).

* Due to the nature of the FTP protocol, FTP clients are difficult to secure using SSH port forwarding. It is
possible, however. [11.2]

2.7 Miscellaneous Clients | 33

Anyone familiar with FTP will feel right at home with sftp, but sftp has some addi-
tional features of note:

* Command-line editing using GNU Emacs-like keystrokes (Control-B for back-
ward character, Control-E for end of line, and so forth)."

* Wildcards for matching filenames. OpenSSH uses the same “globbing” syntax
that is supported by most common shells, while Tectia uses an extended regular
expression syntax described in Appendix B.

* Several useful command-line options:

-b filename (OpenSSH)
-B filename (Tectia)
Read commands from the given file instead of the terminal.
=S path
Locate the ssh program using the given path.
-V
Print verbose messages as the program runs.
-V (OpenSSH)
Print the program version number and exit.

In addition, many of the command-line options for ssh can also be used for sftp.

The OpenSSH version of sftp supports only the binary transfer mode of standard
FTP, in which files are transferred without modification. Tectia’s sftp also supports
ASCII transfer mode, which translates end-of-line characters between systems that
might use different conventions, e.g., carriage return plus newline for Windows,
newline (only) for Unix, or carriage return (only) for Macintosh.

2.7.2 slogin

slogin is an alternative name for ssh, just as rlogin is a synonym for rsh. On Linux sys-
tems, slogin is simply a symbolic link to ssh. Note that the slogin link is found in
OpenSSH but not Tectia. We recommend using just ssh for consistency: it’s found in
all these implementations and is shorter to type.

2.8 Summary

From the user’s point of view, SSH consists of several client programs and some con-
figuration files. The most commonly used clients are ssh for remote login, and scp
and sftp for file transfer. Authentication to the remote host can be accomplished

* OpenSSH 4.0 and higher.

34 | Chapter2: BasicClient Use

using existing login passwords or with public-key cryptographic techniques.
Passwords are more immediately and easily used, but public-key authentication is
more flexible and secure. The ssh-keygen, ssh-agent, and ssh-add programs generate
and manage SSH keys.

2.8 Summary | 35

CHAPTER 3
Inside SSH

SSH secures your data while it passes over a network, but how exactly does it work?
In this chapter, we move firmly onto technical ground and explain the inner work-
ings of SSH. Let’s roll up our sleeves and dive into the bits and bytes.

This chapter is written for system administrators, network administrators, and secu-
rity professionals. Our goal is to teach you enough about SSH to make an intelligent,
technically sound decision about using it. Mostly, we deal with SSH-2 as the current
and recommended SSH protocol; our treatment of the old and deprecated SSH-1 is
limited to a summary of its differences and limitations. When we refer to “the SSH
protocol,” we mean SSH-2.

Of course, the ultimate references on SSH are the protocol standards and the source
code of an implementation. We don’t completely analyze the protocols or recapitu-
late every step taken by the software. Rather, we summarize them to provide a solid,
technical overview of their operation. If you need more specifics, you should refer to
the standards documents. The SSH Version 2 protocol is in draft status on the IETF
standards track; it is available at:

http://www.ietf.org/

The older SSH-1 protocol is called Version 1.5 and is documented in a file named
RFC included in the source package of the now-obsolete SSH1.

3.1 Overview of Features

The major features and guarantees of the SSH protocol are:
* Privacy of your data, via strong encryption
* [Integrity of communications, guaranteeing they haven’t been altered
* Authentication, i.e., proof of identity of senders and receivers
* Authorization, i.e., access control to accounts

* Forwarding or tunneling to encrypt other TCP/IP-based sessions

36

3.1.1 Privacy (Encryption)

Privacy means protecting data from disclosure. Typical computer networks don’t
guarantee privacy; anyone with access to the network hardware, or to hosts con-
nected to the network, may be able to read (or sniff) all data passing over the net-
work. Although modern switched networks have reduced this problem in local area
networks, it is still a serious issue; passwords are easily stolen by such sniffing
attacks.

SSH provides privacy by encrypting data that passes over the network. This end-to-
end encryption is based on random keys that are securely negotiated for that session
and then destroyed when the session is over. SSH supports a variety of encryption
algorithms for session data, including such standard ciphers as AES, ARCFOUR,
Blowfish, Twofish, IDEA, DES, and triple-DES (3DES).

3.1.2 Integrity

Integrity means assuring that data transmitted from one end of a network connec-
tion arrives unaltered on the other end. The underlying transport of SSH, TCP/IP,
does have integrity checking to detect alteration due to network problems (electrical
noise, lost packets due to excessive traffic, etc.). Nevertheless, these methods are
ineffective against deliberate tampering and can be fooled by a clever attacker. Even
though SSH encrypts the data stream so that an attacker can’t easily change selected
parts to achieve a specific result, TCP/IP’s integrity checking alone can’t prevent, say,
an attacker’s deliberate injection of garbage into your session.

A more complex example is a replay attack. Imagine that Attila the Attacker is moni-
toring your SSH session and also simultaneously watching over your shoulder (either
physically, or by monitoring your keystrokes at your terminal). In the course of your
work, Attila sees you type the command rm -rf * within a small directory. He can’t
read the encrypted SSH session data, of course, but he could correlate a burst of
activity on that connection with your typing the command, and capture the packets
containing the encrypted version of your command. Later, when you’re working in
your home directory, Attila inserts the captured bits into your SSH session, and your
terminal mysteriously erases all your files!

Attila’s replay attack succeeds because the packets he inserted are valid; he could not
have produced them himself (due to the encryption), but he can copy and replay them
later. TCP/IP’s integrity check is performed only on a per-packet basis, so it can’t
detect Attila’s attack. Clearly, the integrity check must apply to the data stream as a
whole, ensuring that the bits arrive as they were sent: in order and with no duplication.

The SSH protocol uses cryptographic integrity checking, which verifies both that
transmitted data hasn’t been altered and that it truly comes from the other end of the
connection. It uses keyed hash algorithms based on MD5 and SHA-1 for this pur-
pose: well-known, widely trusted algorithms.

3.1 Overview of Features | 37

3.1.3 Authentication

Authentication means verifying someone’s identity. Suppose I claim to be Richard
Silverman, and you want to authenticate that claim. If not much is at stake, you
might just take my word for it. If you’re a little concerned, you might ask for my
driver’s license or other photo ID. If you’re a bank officer deciding whether to open a
safe-deposit box for me, you might also require that I possess a physical key, and so
on. It all depends on how sure you want to be. The arsenal of high-tech authentica-
tion techniques is growing constantly and includes DNA-testing microchips, retina
and hand scanners, and voice-print analyzers.

Every SSH connection involves two authentications: the client verifies the identity of
the SSH server (server authentication), and the server verifies the identity of the user
requesting access (user authentication). Server authentication ensures that the SSH
server is genuine, not an impostor, guarding against an attacker’s redirecting your
network connection to a different machine. Server authentication also protects
against man-in-the-middle attacks, wherein the attacker sits invisibly between you
and the server, pretending to be the client on one side and the server on the other,
fooling both sides and reading all your traffic in the process!

User authentication is traditionally done with passwords, which unfortunately are a
weak authentication scheme. To prove your identity you have to reveal the pass-
word, exposing it to possible theft. Additionally, in order to remember a password,
people are likely to keep it short and meaningful, which makes the password easier
for third parties to guess. For longer passwords, some people choose words or sen-
tences in their native languages, and these passwords are likely to be crackable. From
the standpoint of information theory, grammatical sentences contain little real infor-
mation (technically known as entropy): generally less than two bits per character in
English text, far less than the 8—16 bits per character found in computer encodings.

SSH supports authentication by password, encrypting the password as it travels over
the network. This is a vast improvement over other common remote-access proto-
cols (Telnet, FTP) which generally send your password in the clear (i.e., unen-
crypted) over the network, where anyone with sufficient network access can steal it!
Nevertheless, it’s still only simple password authentication, so SSH provides other
stronger and more manageable mechanisms: per-user public-key signatures, and an
improved rlogin-style authentication with host identity verified by public key. In
addition, various SSH implementations support some other systems, including Ker-
beros, RSA Security’s SecurlD tokens, S/Key one-time passwords, and the Pluggable
Authentication Modules (PAM) system. An SSH client and server negotiate to deter-
mine which authentication mechanism to use, based on their configurations, and a
server can even require multiple forms of authentication.

38 | Chapter3: InsideSSH

3.1.4 Authorization

Authorization means deciding what someone may or may not do. It occurs after
authentication, since you can’t grant someone privileges until you know who she is.
SSH servers have various ways of restricting clients’ actions. Access to interactive
login sessions, TCP port and X Window forwarding, key agent forwarding, etc., can
all be controlled, though not all these features are available in all SSH implementa-
tions, and they aren’t always as general or flexible as you might want. Authorization
may be controlled at a serverwide level (e.g., the /etc/ssh/sshd_config file for
OpenSSH), or per account, depending on the authentication method used (e.g., each
user’s files ~/.ssh/authorized_keys, ~/.ssh2/authorization, ~/.shosts, ~/.k5login, etc.).

3.1.5 Forwarding (Tunneling)

Forwarding or tunneling means encapsulating another TCP-based service, such as
Telnet or IMAP, within an SSH session. This brings the security benefits of SSH (pri-
vacy, integrity, authentication, authorization) to other TCP-based services. For
example, an ordinary Telnet connection transmits your username, password, and the
rest of your login session in the clear. By forwarding telnet through SSH, all of this
data is automatically encrypted and integrity-checked, and you may authenticate
using SSH credentials.

SSH supports three types of forwarding:

TCP port forwarding

Secures any TCP-based service [9.2]
X forwarding

Secures the X11 protocol (i.e., X Windows) [9.4]
Agent forwarding

Permits SSH clients to use SSH private keys held on remote machines [6.3.5]

From these basic facilities, some SSH products build more complex services, such as
SOCKS proxies and special-purpose forwarders that can handle difficult protocols
like FTP.

3.2 ACryptography Primer

We’ve covered the basic properties of SSH. Now we focus on cryptography, intro-
ducing important terms and ideas regarding the technology in general. There are
many good references on cryptographic theory and practice, and we make no
attempt here to be comprehensive. (For more detailed information, check out Bruce
Schneier’s excellent book, Applied Cryptography, published by John Wiley & Sons.)
We introduce encryption and decryption, plaintext and ciphertext, keys, secret-key
and public-key cryptography, and hash functions, both in general and as they apply
to SSH.

3.2 ACryptography Primer | 39

Encryption is the process of scrambling data so that it can’t be read by unauthorized
parties. An encryption algorithm (or cipher) is a particular method of performing the
scrambling; examples of currently popular encryption algorithms are RSA, AES,
DSA, and Blowfish. The original, readable data is called the plaintext, or data “in the
clear,” while the encrypted version is called the corresponding ciphertext.

The goal of an encryption algorithm is to convert plaintext to ciphertext. To do this,
you pass two inputs to the encryption algorithm: the plaintext itself, and a key, a
string that is typically a secret known only to you. From these inputs, the algorithm
produces the ciphertext. An encryption algorithm is considered secure if it is infeasi-
ble for anyone to read (or decrypt) the encrypted ciphertext without the key. An
attempt to decrypt data without its key is called cryptanalysis.

3.2.1 How Secure Is Secure?

It’s important to understand the word “infeasible” in the previous paragraph.
Today’s most popular and secure ciphers are vulnerable to brute-force attacks: if you
try every possible key, you eventually succeed in decryption. However, when the
number of possible keys is large, a brute-force search requires a great deal of time
and computing power. Based on the state of the art in computer hardware and algo-
rithms, it is possible to pick sufficiently large key sizes to render brute-force key-
search unreasonable for your adversary. What counts as infeasible, though, depend-
ing on how valuable the data is, how long it must stay secure, and how motivated
and well-funded your adversary is. Keeping something secret from your rival startup
for a few days is one thing; keeping it secret from a major world government for 10
years is quite another.

Of course, for all this to make sense, you must be convinced that brute force is the
only way to attack your cipher. Encryption algorithms have structure and are suscep-
tible to mathematical analysis. Over the years, many ciphers previously thought
secure have fallen to advances in cryptanalysis. It isn’t currently possible to prove a
practical cipher secure. Rather, a cipher acquires respectability through intensive
study by mathematicians and cryptographers. If a new cipher exhibits good design
principles, and well-known researchers study it for some time and fail to find a prac-
tical, faster method of breaking it than brute force, then people will consider it
secure.

* In his pioneering works on information theory and encryption, the mathematician Claude Shannon defined
a model for cipher security and showed there is a cipher that is perfectly secure under that model: the so-
called one-time pad. It is perfectly secure: the encrypted data gives an attacker no information whatsoever
about the possible plaintext. The ciphertext literally can decrypt to any plaintext at all with equal likelihood.
The problem with the one-time pad is that it is cumbersome and fragile. It requires that keys be as large as
the messages they protect, be generated perfectly randomly, and never be reused. If any of these require-
ments are violated, the one-time pad becomes extremely insecure. The ciphers in common use today aren’t
perfectly secure in Shannon’s sense, but for the best of them, brute-force attacks are infeasible.

40 | Chapter3: InsideSSH

3.2.2 Public- and Secret-Key Cryptography

Encryption algorithms as described so far are called symmetric or secret-key ciphers;
the same key is used for encrypting and decrypting. Examples are Blowfish, AES,
3DES, and RC4. Such a cipher immediately introduces the key-distribution prob-
lem: how do you get the key to your intended recipient? If you can meet in person
every once in a while and exchange a list of keys, that’s all well and good, but for
dynamic communication over computer networks, this doesn’t work.

Public-key, or asymmetric, cryptography replaces the single key with a pair of related
keys: public and private. They are related in a mathematically clever way: data
encrypted with one key may be decrypted only with the other member of the pair,
and it is infeasible to derive the private key from the public one. You keep your pri-
vate key, well, private, and give the public key to anyone who wants it, without wor-
rying about disclosure. Ideally, you publish it in a directory next to your name, like a
telephone book. When someone wants to send you a secret message, they encrypt it
with your public key. Other people may have your public key, but that won’t allow
them to decrypt the message; only you can do that with the corresponding private
key. Public-key cryptography goes a long way toward solving the key-distribution
problem.”

R

Public-key methods are also the basis for digital signatures: extra infor-
mation attached to a digital document to provide evidence that a par-
ticular person has seen and agreed to it, much as a pen-and-ink
signature does with a paper document. Any asymmetric cipher (RSA,
ElGamal, Elliptic Curve, etc.) may be used for digital signatures,
though the reverse isn’t true. For instance, the DSA algorithm is a sig-
nature-only public-key scheme and is not intended to be used for
encryption. (That’s the idea, anyway, although it’s easy to use a gen-
eral DSA implementation for both RSA and ElGamal encryption. That
was not the intent, however.)

Secret- and public-key encryption algorithms differ in another way: performance. All
common public-key algorithms are enormously slower than secret-key ciphers—by
orders of magnitude. It is simply infeasible to encrypt large quantities of data using a
public-key cipher. For this reason, modern data encryption uses both methods
together. Suppose you want to send some data securely to your friend Bob Bitflip-
per. Here’s what a modern encryption program does:

1. Generate a random key, called the bulk key, for a fast, secret-key algorithm like
3DES (a.k.a. the bulk cipher).

2. Encrypt the plaintext with the bulk key.

* There is still the issue of reliably determining whose public key is whose; but that gets into public-key infra-
structure, or PKI systems, and is a broader topic.

3.2 ACryptography Primer | 41

3. Secure the bulk key by encrypting it with Bob Bitflipper’s public key, so only
Bob can decrypt it. Since secret keys are small (a few hundred bits long at most),
the speed of the public-key algorithm isn’t an issue.

To reverse the operation, Bob’s decryption program first decrypts the bulk key, and
then uses it to decrypt the ciphertext. This method yields the advantages of both
kinds of encryption technology, and in fact, SSH uses this technique. User data
crossing an SSH connection is encrypted using a fast secret-key cipher, the key for
which is shared between the client and server using public-key methods.

3.2.3 Hash Functions

In cryptography (and elsewhere in computing and network technology), it is often
useful to know if some collection of data has changed. Of course, one can just send
along (or keep around) the original data for comparison, but that can be prohibi-
tively expensive both in time and storage. The common tool addressing this need is
called a hash function. Hash functions are used by SSH-1 for integrity checking (and
have various other uses in cryptography we won’t discuss here).

A hash function is simply a mapping from a larger set of data values to a smaller set.
For instance, a hash function H might take an input bit string of any length up to
50,000 bits, and uniformly produce a 128-bit output. The idea is that when sending a
message m to Alice, I also send along the hash value H(m). Alice computes H(m)
independently and compares it to the H(m) value I sent; if they differ, she concludes
that the message was modified in transit.

This simple technique can’t be completely effective. Since the range of the hash func-
tion is strictly smaller than its domain, many different messages have the same hash
value. To be useful, H must have the property that the kinds of alterations expected
to happen to the messages in transit, must be overwhelmingly likely to cause a
change in the message hash. Put another way: given a message m and a typical
changed message m’, it must be extremely unlikely that H(m) = H(m).

Thus, a hash function must be tailored to its intended use. One common use is in
networking: datagrams transmitted over a network frequently include a message
hash that detects transmission errors due to hardware failure or software bugs.
Another use is in cryptography, to implement digital signatures. Signing a large
amount of data is prohibitively expensive, since it involves slow public-key opera-
tions as well as shipping along a complete encrypted copy of the data. What is actu-
ally done is to first hash the document, producing a small hash value, and then sign
that, sending the signed hash along instead. A verifier independently computes the
hash, then decrypts the signature using the appropriate public key, and compares
them. If they are the same, he concludes (with high probability) that the signature is
valid, and that the data hasn’t changed since the private-key holder signed it.

42 | Chapter3: Inside SSH

These two uses, however, have different requirements, and a hash function suitable
for detecting transmission errors due to line noise might be ineffective at detecting
deliberate alterations introduced by a human attacker! A cryptographic hash func-
tion must make it computationally infeasible to find two different messages having
the same hash or to find a message having a particular fixed hash. Such a function is
said to be collision-resistant (or collision-proof, though that’s a bit misleading), and
pre-image-resistant. The Cyclic Redundancy Check (CRC) hash commonly used to
detect accidental data changes (e.g., in Ethernet frame transmissions) is an example
of a noncollision-resistant hash. It is easy to find CRC-32 hash collisions, and a well-
known attack on SSH-1 is based on this fact. [3.5] Examples of cryptographically
strong hash functions are MD5 and SHA-1.

3.3 The Architecture of an SSH System

SSH has about a dozen distinct, interacting components that produce the features
we've covered. [3.1] Figure 3-1 illustrates the major components and their relation-
ships to one another.

Client Server
known-hosts
host key
<~ 0"
@C; . private
SSH connection :

rF Y channel:interactive session Y
£ session key ™, £ session key ",

channel:fowarded TCP port

E [l channel:remote key agent |'I

User Account Target Account
user key userkey
. S
identity file or agent authorization file

Figure 3-1. SSH architecture

By “component” we don’t necessarily mean “program”: SSH also has keys, sessions,
and other fun things. In this section we provide a brief overview of all the compo-
nents, so you can begin to get the big picture of SSH:

Server
A program that allows incoming SSH connections to a machine, handling
authentication, authorization, and so forth. In most Unix SSH implementations,
the server is sshd.

3.3 The Architecture of an SSH System | 43

Client
A program that connects to SSH servers and makes requests, such as “log me in”
or “copy this file.” In OpenSSH and Tectia, the major clients are ssh, scp, and

sftp.

Session
An ongoing connection between a client and a server. It begins after the client
successfully authenticates to a server and ends when the connection terminates.

Key

Sessions may be interactive or batch.

A relatively small amount of data, generally from tens of to 1,000 or 2,000 bits,
used as a parameter to cryptographic algorithms such as encryption or message
authentication. The key binds the algorithm operation in some way to the key
holder: in encryption, it ensures that only someone else holding that key (or a
related one) can decrypt the message; in authentication, it allows you to verify
later that the key holder actually signed the message. There are two kinds of
keys: symmetric or secret key, and asymmetric or public key. [3.2.2] An asym-
metric key has two parts: the public and private components. SSH has several

types of keys, as summarized in Table 3-1.

Table 3-1. Keys, keys, keys

Name Lifetime Created by Type Purpose

User key Persistent User Public Identify a user to the server

Host key Persistent Administrator Public Identify a server/machine

Session key One session Client (and server) Secret Protect communications
User key

A persistent, asymmetric key used by clients as proof of a user’s identity. (A

single user may have many keys/identities.)
Host key

A persistent, asymmetric key used by a server as proof of its identity, as well
as by a client when proving its host’s identity as part of hostbased authenti-
cation. [3.4.3.6] If a machine runs a single SSH server, the host key also
uniquely identifies the machine. (If a machine is running multiple SSH serv-
ers, each may have a different host key, or they may share.)

Session key

A randomly generated, symmetric key for encrypting the communication
between an SSH client and server. It is shared by the two parties in a secure
manner during the SSH connection setup so that an eavesdropper can’t dis-
cover it. Both sides then have the session key, which they use to encrypt
their communications. When the SSH session ends, the key is destroyed.

44

Chapter3: Inside SSH

An SSH connection has several session keys: each direction (server to
client, and client to server) has keys for encryption and others for
tit integrity checking. In our discussions we treat all the session keys as a
" unit and speak of “the session key” for convenience; they are all
derived from a single master secret, anyway. If the context requires it,
we identify the individual key we mean.

Key generator
A program that creates persistent keys (user keys and host keys) for SSH.
OpenSSH and Tectia have the program ssh-keygen.

Known-hosts database
A collection of host keys. Clients and servers refer to this database to authenti-
cate one another.

Agent
A program that caches user keys in memory, so users needn’t keep retyping their
passphrases. The agent responds to requests for key-related operations, such as
signing an authenticator, but it doesn’t disclose the keys themselves. It is a con-
venience feature. OpenSSH and Tectia have the agent ssh-agent, and the pro-
gram ssh-add loads and unloads the key cache.

Signer
A program that signs hostbased authentication packets. We explain this in our
discussion of hostbased authentication. [3.4.3.6]

Random seed
A pool of random data used by SSH components to initialize software pseudo-
random number generators.

Configuration file
A collection of settings to tailor the behavior of an SSH client or server.

Not all these components are required in an implementation of SSH. Certainly serv-
ers, clients, and keys are mandatory, but many implementations don’t have an agent,
and some don’t even include a key generator.

3.4 Inside SSH-2

The SSH protocol has two major, incompatible versions, called Version 1* and Ver-
sion 2. [1.5] We refer to these as SSH-1 and SSH-2. The SSH-1 protocol is now a relic;
it is less flexible than SSH-2, has unfixable security weaknesses, and has been depre-
cated for years. Its implementations see no real development aside from bug fixes, and
the default protocol for most SSH software has been SSH-2 for some time now. In this
chapter, as we describe “the SSH protocol,” we are talking about SSH-2. We limit our

* SSH Version 1 went through several revisions, the most popular known as Versions 1.3 and 1.5.

3.4 InsideSSH-2 | 45

treatment of SSH-1 to a summary of its design, its differences with SSH-2, and its
weaknesses.

The SSH protocol is actually divided into four major pieces, formally described as
four separate protocols in different IETF documents, and in principle independent of
one another. In practice, they are layered together to provide the set of services most
users associate with SSH as a whole. These are:

* SSH Transport Layer Protocol (SSH-TRANS)
¢ SSH Authentication Protocol (SSH-AUTH)

¢ SSH Connection Protocol (SSH-CONN)

e SSH File Transfer Protocol (SSH-SFTP)

There are other documents that describe other aspects of, or extensions to, the pro-
tocols, but the preceding ones represent the core of SSH. As of this writing, these
documents are still “Internet-Drafts,” but after much effort by the IETF SECSH
working group, they have been submitted to the IESG for consideration as proposed
standards and may soon be published as Internet RFCs.

Figure 3-2 outlines the division of labor between these protocols, and how they relate
to each other, application programs, and the network. Elements in italics are proto-
col extensions defined in separate Internet-Draft documents, which have attained
fairly widespread use.

application software (e.g., ssh, sshd, scp, sftp, sftp-server)

SSH Authentication Protocol [SSH-AUTH] | SSH Connection Protocol [SSH-CONN] SSH File Transfer Protocol [SSH-SFTP]

client authentication channel multiplexing remote filesystem access
publickey pseudo-terminals file transfer
hostbased flow control
password signal propagation
gssapi remote program execution
gssapi-with-mic authentication agent forwarding
external-keyx TCP port and X forwarding
keyboard-interactive terminal handling
subsystems

SSH Transport Protocol [SSH-TRANS]

algorithm negotiation
session key exchange

session 1D

server authentication

privacy

integrity

data compression

TCP (or other transparent, reliable, duplex byte-oriented connection)

Figure 3-2. SSH-2 protocol family

46 | Chapter3: InsideSSH

SSH is designed to be modular and extensible. All of the core protocols define
abstract services they provide and requirements they must meet, but allow multiple
mechanisms for doing so, as well as a way of easily adding new mechanisms. All the
critical parameters of an SSH connection are negotiable, including the methods and
algorithms used in:

* Session key exchange

* Server authentication

* Data privacy and integrity
* User authentication

* Data compression

Client and server negotiate the use of a common set of methods, allowing broad
interoperability among different implementations. In most categories, the protocol
defines at least one required method, to further promote interoperability. Note that
this only means a conforming implementation is required to support the method in
its code; any particular method may in fact be turned off by the administrator in a
particular environment. So, the fact that public-key authentication is required by
SSH-AUTH doesn’t mean it’s always available to clients from any particular running
SSH server; it merely means it must be available and could be turned on, if need be.

3.4.1 Protocol Summary

SSH-TRANS is the fundamental building block, providing the initial connection,
record protocol, server authentication, and basic encryption and integrity services.
After establishing an SSH-TRANS connection, the client has a single, secure, full-
duplex byte stream to an authenticated peer.

Next, the client can use SSH-AUTH over the SSH-TRANS connection to authenti-
cate itself to the server. SSH-AUTH defines a framework within which multiple
authentication mechanisms may be used, fixing such things as the format and order
of authentication requests, conditions for success or failure, and how a client learns
the available methods. There may be any number of actual methods implemented,
and the protocol allows arbitrary exchanges as part of any particular mechanism so
that protocol extensions are easily defined to incorporate any desired authentication
method in the future. SSH-AUTH requires only one method: public key with the DSS
algorithm. It further defines two more methods: password and hostbased. A number
of other methods have been defined in various Internet-Drafts, and some of them
have gained wide acceptance.

After authentication, SSH clients invoke the SSH-CONN protocol, which provides a
variety of richer services over the single pipe provided by SSH-TRANS. This includes
everything needed to support multiple interactive and noninteractive sessions: multi-
plexing several streams (or channels) over the underlying connection; managing X,

3.4 InsideSSH-2 | 47

TCP, and agent forwarding; propagating signals across the connection (such as SIG-
INT, when a user types ~C to interrupt a process); terminal handling; data compres-
sion; and remote program execution.

Finally, an application may use SSH-SFTP over an SSH-CONN channel to provide
file-transfer and remote filesystem manipulation functions.

It’s important to understand that the arrangement, layering, and sequencing of these
protocols is a matter of convention or need, not design; although they are typically
used in a particular order, other arrangements are possible. For instance, note that
SSH-CONN is not layered on top of SSH-AUTH; they are both at the same level
above SSH-TRANS. Typically, an SSH server requires authentication via SSH-AUTH
before allowing the client to invoke SSH-CONN—and also typically, clients want to
use SSH-CONN in order to obtain the usual SSH services (remote terminal, agent
forwarding, etc.). However, this need not be the case. A specialized SSH server for a
particular, limited purpose might not require authentication, and hence could allow
a client to invoke an application service (SSH-CONN, or perhaps some other locally
defined service) immediately after establishing an SSH-TRANS connection. An anon-
ymous SFTP server might be implemented this way, for example. However, such
nonstandard protocol arrangements are probably seen only in a closed environment
with custom client/server software. Since most SFTP clients in the world expect to
do SSH-AUTH, they probably won’t interoperate with such a server. An anonymous
SFTP server for general use would use SSH-AUTH in the usual fashion and simply
report immediate success for any attempted client authentication.

That said, these protocols were conceived as a group and rely on each other in prac-
tice. For instance, SSH-SFTP on its own provides no security whatsoever; it is merely
a language for conducting remote-filing operations. It’s assumed to be run over a
secure transport if security is needed, such as an SSH session. However, using the
sftp -S option of OpenSSH and Tectia, for example, you could connect the sftp client
to an sftp-server running on another host using some other method: over a serial line,
or some other secure network protocol...or rsh if you want to be perverse. Similarly,
SSH-AUTH mechanisms rely on a secure underlying transport to varying degrees.
The most obvious is the “password” mechanism, which simply sends the password
in plaintext over the transport as part of an authentication request. Obviously, that
mechanism would be disastrous over an insecure transport.

Another important point is that the SSH protocol deals only with communication
“on-the-wire”—that is, its formats and conventions apply only to data being
exchanged dynamically between the SSH client and server. It says nothing at all, for
instance, about:

48 | Chapter3: InsideSSH

* Formats for storing keys on disk
* User authorization (e.g., ~/.ssh/authorized_keys)

* Key agents or agent forwarding

...and many other things that people typically think of as part of SSH. These facets are
implementation-dependent: they are not specified by the standard, and hence may be
done differently depending on what software you’re using. And in fact they do differ:
OpenSSH and Tectia use different file formats for keys. Even if you convert one to the
other, you’ll find that OpenSSH keys belong in ~/.ssh/authorized_keys, whereas each
Tectia key goes in its own file, listed by reference in yet another file, ~/.ssh2/
authorization. And although both products sport a private-key agent—with the same
name even, ssh-agent—they are incompatible.

Now that we have an overview of the major components of SSH, let’s dive in and
examine each of these protocols in detail. To give structure and concreteness to an
otherwise abstract description of the protocols, we frame our discussion by follow-
ing a particular SSH connection from beginning to end. We follow the thread of
debugging messages produced by ssh -vv, explaining the significance of the various
messages and turning aside now and then to describe the protocol phases occurring
at that point.

Since this —vv level of verbosity produces quite a few messages not relevant to our
protocol discussion, we omit some for the sake of clarity.

3.4.2 SSH Transport Layer Protocol (SSH-TRANS)

3.4.2.1 Connection

We begin by running an SSH client in verbose mode, requesting a connection to
host.foo.net:

$ ssh -vv host.foo.net

OpenSSH_3.6.1p1+CAN-2003-0693, SSH protocols 1.5/2.0, OpenSSL 0x0090702F
debugl: Reading configuration data /Users/res/.ssh/config

debug1: Applying options for com

debugl: Applying options for *

debugl: Reading configuration data /etc/ssh/ssh_config

debug1: Connecting to host.foo.net [10.1.1.1] port 22.

debugl: Connection established.

The client is a version of OpenSSH running on a Macintosh. It reads its configura-
tion files, then makes a TCP connection to the remote side, which succeeds.

3.4 InsideSSH-2 | 49

3.4.2.2 Protocol version selection

As soon as the server accepts the connection, the SSH protocol begins. The server
announces its protocol version using a text string:
debugl: Remote protocol version 2.0, remote software version 4.1.0.34 SSH Secure
Shell
You can see this string yourself by simply connecting to the server socket, e.g., with
telnet:
$ telnet host.foo.net 22

Trying 10.1.1.1...
Connected to host.foo.net

Escape character is '*]'.
SSH-2.0-4.1.0.34 SSH Secure Shell
n

]
telnet> quit
Connection closed.

The format of the announcement is:
SSH-<protocol version>-<comment>

In this case, the server implements the SSH-2 protocol, and the software version is
4.1.0.34 of SSH Secure Shell from SSH Communications Security. Although the
comment field can contain anything at all, SSH servers commonly put their product
name and version there. This is useful, as clients often recognize specific servers in
order to work around known bugs or incompatibilities. Some people don’t like this
practice on security grounds, and try to remove or change the comment. Be aware
that if you do, you may cause more trouble than it’s worth, since previously work-
ing SSH sessions may suddenly start failing if they had relied on such workarounds.

The protocol version number “1.99” has special significance: it means the server sup-
ports both SSH-1 and SSH-2, and the client may choose either one.

Next, OpenSSH parses the comment:

debugl: no match: 4.1.0.34 SSH Secure Shell

debugl: Enabling compatibility mode for protocol 2.0

debugl: Local version string SSH-2.0-OpenSSH 3.6.1p1+CAN-2003-0693
but does not find a match in its list of known problems to work around. It elects to
proceed with SSH-2 (the only choice in this case), and sends its own version string to
the server, in the same format. If the client and server agree that their versions are
compatible, the connection process continues; otherwise, either party may decide to
terminate the connection.

At this point, if the connection proceeds, both sides switch to a nontextual, record-
oriented protocol for further communication, which is the basis of SSH transport.
This is often referred to as the SSH binary packet protocol, and is defined in SSH-
TRANS.

50 | Chapter3: InsideSSH

3.4.2.3 Parameter negotiation

Having established a connection and agreed on a protocol version, the first real func-
tion of SSH-TRANS is to arrange for the basic security properties of SSH:

* Privacy (encryption)
* Integrity (nonmodifiability and origin assurance)
* Server authentication (man-in-the-middle and spoofing resistance)

* Compression (not a security property per se, but included in this negotiation)

But first, the two sides must agree on session parameters, including the methods to
achieve these properties. The whole process happens in the protocol phase called the
key exchange, even though the first part also negotiates some parameters unrelated to
the key exchange per se.

debug1: SSH2_MSG_KEXINIT sent
debugl: SSH2 MSG KEXINIT received

The client sends its KEXINIT (“key exchange initialization”) message, and receives
one from the server. Here are the choices it gives to the server:
debug2: kex_parse_kexinit: gss-groupi-shail-toWM5Slw5Ew8Mgkay+al2g==,
gss-groupl-shal-A/vx1jAEUS4gt9a48EiANQ==,
diffie-hellman-group-exchange-shai,
diffie-hellman-group1-shai

These are the key exchange algorithms the client supports, which are:

diffie-hellman-group1-shal
This algorithm is defined and required by SSH-TRANS; this specifies the well-
known Diffie-Hellman procedure for key agreement, together with specific
parameters (Oakley Group 2 [RFC-2409] and the SHA-1 hash algorithm).

diffie-hellman-group-exchange-shal
Similar, but allows the client to choose from a list of group parameters, address-
ing concerns about possible attacks based on a fixed group; defined in the IETF
draft document “secsh-dh-group-exchange.”

gss-group1-shal-toWMS5SIwSEw8Mgqkay+al2g==
gss-groupl-shal-A/vxl[jJAEUS54gt9a48 EiAN Q==
These odd-looking names are partially encoded in Base64—they represent two
variants of a Kerberos-authenticated Diffie-Hellman exchange as defined in IETF
draft “secsh-gsskeyex.” These are useful where a Kerberos infrastructure is avail-
able, providing automatic and flexible server authentication without maintain-
ing separate SSH host keys and known-hosts files. The Kerberos authentication

* A group is a mathematical abstraction relevant to the Diffie-Hellman procedure; see a reference on group the-
ory, number theory, or abstract algebra if you’re curious.

3.4 InsideSSH-2 | 51

proceeds by way of GSSAPI, and the name suffixes are the Base64 encoding of
the MD5 hash of the ASN.1 DER encoding of the underlying GSSAPI mecha-
nism’s OID. Say that five times fast.

In terms of abstract requirements, an SSH key exchange algorithm has two outputs:

* A shared secret, K

* An “exchange hash,” H

K is the master secret for the session: SSH-TRANS defines a method for deriving from
secret K the various keys and other cryptographic parameters needed for specific
encryption and integrity algorithms used in the SSH connection. The exchange hash
H does not have to be secret, although it should not be divulged unnecessarily. It
should be unique to each session, and computed in such a way that neither side can
force a particular value of hash H. We’ll see the significance of that later.

The key exchange should also perform server authentication, in order to guard
against spoofing and man-in-the-middle (MITM) attacks. There is an inherent asym-
metry in the SSH client/server relationship: the server accepts connections from as-
yet unknown parties, whereas a client always has a particular server as the target of
its connection. The server may demand secret information as part of user authentica-
tion (e.g., password). The client is the first party to rely on the identity of the other
side, and hence server authentication comes first. Without server authentication, an
attacker might redirect the client’s TCP connection to a host of his choice (perhaps
by subverting the DNS or network routing) and trick the user into logging into the
wrong host; this is called spoofing. Or, he might interpose himself between the client
and the (legitimate) server, executing the SSH protocol as server on one side and cli-
ent on the other, passing messages back and forth and reading all the traffic! This is a
man-in-the-middle attack.

The key exchange phase of SSH-TRANS may be repeated later in a connection, in
order to replace an aging master secret or re-authenticate the server. In fact, the draft
recommends that a connection be re-keyed after each gigabyte of transmitted data or
after each hour of connection time, whichever comes sooner. However, the hash out-
put H of the very first key exchange is used as the “session identifier” for this SSH
connection; we’ll see its use later.

Next, the client offers a choice of SSH host key types it can accept:
debug2: kex parse kexinit: ssh-rsa,ssh-dss,null

In this case, it offers RSA, DSA, and “null,” for no key at all. It includes “null”
because of its support of Kerberos for host authentication; if a Kerberos key
exchange is used, no SSH-specific host key is needed for server authentication.

After that, the client lists the bulk data encryption ciphers it supports:

debug2: kex_parse kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,arcfour,
aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se

52 | Chapter3: InsideSSH

The selected cipher is used for privacy of data flowing over the connection. Bulk data
is never enciphered directly with public-key methods such as RSA or DSA because
they are far too slow. Instead, we use a symmetric cipher such as those listed, pro-
tecting the session key for that cipher with public-key methods if appropriate. The
names here indicate particular algorithms and associated cryptographic parameters;
for instance, aes128-cbc refers to the Advanced Encryption Standard algorithm, with
a 128-bit key in cipher-block-chaining mode.

Note the use of a private algorithm name as well: rijndael-cbc@lysator.liu.se. This
email-address-like syntax is defined in the SSH Architecture draft (“secsh-
architecture”), and allows any individuals or organizations to define and use their
own algorithms or other SSH protocol identifiers without going through the IETF to
have them approved. Identifiers that don’t contain an @ sign are global and must be
centrally registered.

The draft also defines the “none” cipher, meaning no encryption is to be applied.
While there are legitimate reasons for wanting such a connection (including debug-
ging!), some SSH implementations do not support it, at least in their default configu-
ration. Often, recompiling the software from source with different flags, or hacking
the code itself, is needed to turn on support for “none” encryption.” The reason is
that it’s deemed just too dangerous. If a user can easily turn off encryption, so can an
attacker who gains access to a user’s account, even briefly. Imagine surreptitiously
adding this to an OpenSSH user’s client configuration file, ~/.ssh/config:

OpenSSH

Host *

Ciphers none
or simply replacing the ssh program on a compromised machine with one that uses
the “none” cipher, and issues no warnings about it. Bingo! All the user’s SSH ses-
sions become transparent, until he notices the change (if ever). If the client doesn’t
support “none,” then this simple config file hack won’t work; if the server doesn’t,
then the client-side Trojan horse won’t work, either.

Next, the client presents its list of available integrity algorithms:

debug2: kex_parse kexinit: hmac-mds5,hmac-shal,hmac-ripemd160,
hmac-ripemd160@openssh.com,hmac-sha1-96,hmac-md5-96
The integrity algorithm is applied to each message sent by the SSH record protocol,
together with a sequence number and session key, to produce a message authentica-
tion code (MAC) appended to each message. The receiver can use the MAC and its
own copy of the session key to verify that the message has not been altered in transit,

* OpenSSH has no support for the “none” cipher; it can’t even be enabled at compile time. In contrast, Tectia
fully supports the “none” cipher, but it is not enabled by default; it needs to be explicitly included using the
Ciphers keyword. [5.3.5]

3.4 InsideSSH-2 | 53

is not a replay, and came from the other holder of the session key; these are the mes-
sage integrity properties.

SSH-TRANS defines several MAC algorithms, and requires support for one: “hmac-
shal,” a 160-bit hash using the standard keyed HMAC construction with SHA-1 (see
RFC-2104, “HMAC: Keyed-Hashing for Message Authentication”).

Finally, the client indicates which data-compression techniques it supports:
debug2: kex_parse kexinit: none,zlib

The draft does not require any compression to be available (i.e., “none” is the
required type). It does define “zlib”: LZ77 compression as described in RFC-1950
and in RFC-1951. Although it does not appear here, SSH speakers also at this point
also can negotiate a language tag for the session (as described in RFC-3066), e.g., to
allow a server to provide error messages in a language appropriate to the user.

Having sent its negotiation message, the client also receives one from the server, list-
ing the various parameters it supports in the same categories:
debug2: kex parse kexinit: diffie-hellman-groupi-shal
debug2: kex_parse_kexinit: ssh-dss,x509v3-sign-rsa
debug2: kex_parse kexinit: aes128-cbc,3des-cbc,twofish128-cbc,cast128-cbc,
twofish-cbc, blowfish-cbc,aes192-cbc,aes256-cbc,
twofish192-cbc, twofish256-cbc,arcfour
debug2: kex_parse kexinit: hmac-shal,hmac-sha1-96,hmac-mds,hmac-md5-96
debug2: kex parse kexinit: none,zlib
Note that this server supports a much smaller set of key exchange algorithms: only
the required one, in fact. It has two host key types to offer: plain DSS, and RSA with
X.509 public-key certificate attached. It does not support a null host key since its sin-
gle key exchange algorithm requires one.

Next, each side chooses a cipher/integrity/compression combination from the other
side’s set of supported algorithms:

debugl: kex: server->client aes128-cbc hmac-md5 none

debugl: kex: client->server aes128-cbc hmac-md5 none
In this case, the choices in both directions are the same; however, they need not be.
The choice of these mechanisms is entirely independent, and they are independently
keyed, as well. Data flowing in one direction might be encrypted with AES and com-
pressed, while the return stream could be encrypted with 3DES without compression.

3.4.2.4 Key exchange and server authentication
At this point, we are ready to engage in the actual key exchange:

debug2: dh gen key: priv key bits set: 131/256
debug2: bits set: 510/1024
debugl: sending SSH2_MSG_KEXDH_INIT

54 | Chapter3: InsideSSH

The client chooses an exchange algorithm from the server’s advertised set; in this
case, the server offers only one, and we go with it. We generate an ephemeral key as
part of the Diffie-Hellman algorithm, and send the initial message of the diffie-
hellman-groupl-shal exchange, simultaneously letting the server know which
method we’re using, and actually starting it.

Next the client expects, and the server sends, its reply to our KEXDH_INIT message:

debugl: expecting SSH2_MSG_KEXDH_REPLY

debugl: Host "host.foo.net' is known and matches the DSA host key.

debugl: Found key in /Users/res/.ssh/known_hosts:169

debug2: bits set: 526/1024

debugl: ssh_dss_verify: signature correct
Contained in the reply is the server’s SSH public host key, of a type we said we’d
accept in the earlier parameter negotiation (DSA), along with a signature proving it
holds the corresponding private key. The signature is verified, of course, but that by
itself is meaningless; for all we know, the server just generated this key. The crucial
step here is to check that the public key identifies the server we wanted to contact. In
this case, the client finds a record associating the name foo.host.net with the key sup-
plied by the server, at line 169 in the user’s OpenSSH known_hosts file.

Note that the approach used to verify the host key is entirely unspecified by the SSH
protocol; it’s completely implementation-dependent. Most SSH products provide
some version of the known-hosts file method used here: simple, but limiting and
cumbersome for large numbers of hosts, users, or different SSH implementations. A
client could do anything that makes sense to verify the host key, perhaps taking
advantage of some existing secure infrastructure, for example; look it up in a trusted
LDAP directory.

Of course, the problem of verifying the owner of a public key is hardly a new one;
that’s what Public Key Infrastructure (PKI) systems are for, such as the X.509 stan-
dard for public-key certificates. SSH-2 supports PKI, defining a number of key types
which include attached certificates:

ssh-rsa Plain RSA key
ssh-dss Plain DSS key
x509v3-sign-1sa X.509 certificates (RSA key)
x509v3-sign-dss X.509 certificates (DSS key)

spki-sign-rsa SPKI certificates (RSA key)
spki-sign-dss SPKI certificates (DSS key)
pgp-sign-1sa OpenPGP certificates (RSA key)
pgp-sign-dss OpenPGP certificates (DSS key)

Many SSH products handle only plain DSS/RSA keys, but some (such as Tectia) offer
PKI support as well. Recall that earlier, the server offered a key type of x509v3-sign-
rsa along with plain DSS. Our OpenSSH client does not support certificates, and so
selected the DSS key. However, with PKI support, the client could verify the host key

3.4 InsideSSH-2 | 55

by its accompanying certificate. New hosts could be added and existing keys
changed, without having to push out new known-hosts files to all clients every
time—often a practical impossibility anyway, when you consider laptops, many dif-
ferent SSH clients with different ways of storing host keys, etc. Instead, clients only
need a single key; that of the authority issuing your host key certificates. We’ll cover
PKI in more detail in a case study. [11.5]

3.4.2.5 Server authentication and antispoofing: some gory details

As noted earlier, we’re avoiding diving too deeply into protocol details, instead
attempting a technical overview that covers the issues SSH administrators most need
to understand to deploy effective systems. However, it’s worth going a little deeper
here regarding the actual mechanism of server authentication, since our description
begs the question. Simply saying that the server “provides a signature” to prove its
identity doesn’t cut it. Here’s a naive protocol:

1. Client sends a challenge.
2. Server returns challenge signed with its host key.

3. Client verifies the signature and the server/key binding and takes this as proof of
the server’s identity.

We're being at least moderately clever here; by using a random challenge, we assure
that the response can’t be replayed by an attacker, i.e., is not a reply from an earlier
session. Not bad, but no cigar: this simple procedure does not prevent MITM
attacks! An MITM attacker can simply pass along the challenge to the server, get the
signature, and pass it back to the client. All this protocol really proves to the client is
that the entity at the other end of its connection can talk to the real server, when
what the client wants to verify is that entity actually is the real server. So, here’s how
it’s done: instead of a random challenge, the server signs the SSH session identifier,
which we described earlier. Recall that the identifier is unique to each session, and
that neither side can force a particular value for it. In order to do MITM, our attacker
has to execute the SSH protocol independently on two sides: once with the client,
and again with the server. The identifiers for those two connections are guaranteed
to be different, no matter what the attacker does. He needs to produce the client-side
identifier signed by the server in order to fool the client, but all he can get is the
server-side identifier; he can’t force the server to sign the wrong identifier.

Cryptographers are devious people. We like them.

3.4.2.6 Wonder security powers, activate!

Back to our debug trace example: we’ve sent and received a single key-exchange mes-
sage on each side now, and this key-exchange method in fact only requires the two
messages. Other exchange mechanisms could take any number and form of
messages, but ours is now complete. Based on the contents of these messages, both

56 | Chapter3: InsideSSH

sides compute the needed shared master secret K and exchange hash H, in such a way
that an observer can’t feasibly discover them (we leave the mathematical details to
your perusal of the actual draft document, if you’re that curious). Having authenti-
cated the exchange using the server’s host key, we are convinced that we have shared
keys with the server we really wanted to talk to, and now everything is in place to
turn on security in the form of encryption and integrity checking.

Using a procedure defined in the draft, the client derives appropriate encryption and
integrity keys from the master secret; the server does the same to produce matching
keys:

debug2: kex_derive_keys

debug2: set newkeys: mode 1

debugl: SSH2 MSG NEWKEYS sent

debug1: expecting SSH2_MSG_NEWKEYS

debug2: set newkeys: mode 0

debugl: SSH2 MSG NEWKEYS received

Both sides then send the NEWKEYS message, each which marks taking the new keys
into effect in its own direction; all messages after NEWKEYS are protected using the
new set of keys just negotiated. With a functioning SSH-TRANS session at hand, the
client now requests the first service it wants access over the connection: user
authentication.

debugl: SSH2 _MSG SERVICE REQUEST sent

debug2: service accept: ssh-userauth
debugl: SSH2 MSG SERVICE ACCEPT received

3.4.3 SSH Authentication Protocol (SSH-AUTH)

Compared to SSH-TRANS, SSH-AUTH is a relatively simple affair, defined in a mere
12 pages as opposed to the 28 of the SSH-TRANS document (and that’s not count-
ing various extensions!). As with SSH-TRANS and key-exchange methods, the
authentication protocol defines a framework within which arbitrary authentication
exchanges may take place. It then defines a small number of actual authentication
mechanisms, and allows for easy extension to define others. The three defined meth-
ods are password, public-key, and host-based authentication, of which only public-
key is required.

3.4.3.1 The authentication request

The authentication process is driven by the client, framed by client requests and
server responses. A request contains the following parts:

Username U
The authorization identity the client is claiming. For most SSH systems, this
means a user account in the usual sense: for instance, in Unix, granting the right
to create processes with a particular uid. However, it might have some other
meaning in other contexts; its interpretation is not defined by the protocol.

3.4 InsideSSH-2 | 57

Service name S

The facility to which the client is requesting access, and hence implicitly the pro-
tocol to be started over the SSH-TRANS connection after authentication suc-
ceeds. There might be several authenticated services available, but typically there
is only one: “ssh-connection,” requesting access to the various services provided
via the SSH-CONN protocol: interactive login, remote command execution, file
transfer, port forwarding, and all the other things users actually want to do with
SSH.

Method name M, and method-specific data D
The particular authentication method being used in this request—say, “pass-
word” or “publickey”—and the method-specific data convey whatever is needed
to start this particular authentication exchange, e.g., an actual password to be
verified by the server. As with key-exchange names in SSH-TRANS, names with
“@domain” syntax may be used by anyone to implement local methods, while
names without @-signs must be globally registered SSH authentication methods.

Once a particular authentication method starts, it may include any number of other
message types specific to its needs. Or in the simplest case, the data carried by the
initial request is enough, and the server can respond right away. In any case, after the
request and some number of subsequent method-specific messages back and forth,
the server issues an authentication response.

Note that, strictly speaking, calling this an “authentication request” is not quite
accurate; this request actually mixes authentication and authorization. It requests
verifying an authentication identity via some method, and simultaneously asks the
server to check that identity’s right to access a particular account: an authorization
decision. If the attempt fails, the client doesn’t know whether this was because
authentication failed (e.g., it supplied the wrong password), or authentication suc-
ceeded but authorization failed (e.g., the password was right but the account was
disabled). A human-readable error message might make that clear, but the situations
are indistinguishable as far as the protocol is concerned (in general, but individual
methods may provide more information, as we will see later with the public-key

method).

3.43.2 The authentication response

An SSH-AUTH authentication response comes in two flavors: SUCCESS and FAIL-
URE (an early version of the protocol had chocolate, too, which was unfortunately
abandoned). A SUCCESS message carries no other data; it simply means that
authentication was successful, and the requested service has been started; further
SSH-TRANS messages sent by the client should be defined within that service’s pro-
tocol, and the SSH-AUTH run is over.

58 | Chapter3: InsideSSH

A FAILURE message has more structure:

¢ A list of authentication methods that can continue

* A “Partial success” flag

The name “failure” is actually a bit misleading here. If the partial success flag is false,
then this message does mean the preceding authentication method has failed for
some reason (e.g., a supplied password was incorrect, a mismatched public key pro-
duced an incorrect signature, the requested account is locked out, etc.). If the flag is
true, however, the message means that the method succeeded; however, the server
requires that additional methods also succeed before granting access. Thus, the pro-
tocol allows an SSH server to require multiple authentication methods—although
not all implementations provide the feature; Tectia does, for instance, while
OpenSSH currently does not.”

In either case, the message also supplies the list of authentication methods the server
is willing to accept next. This allows for much flexibility; if it wants, the server can
completely control the authentication process by only allowing one method at any
time. But it can also specify multiple methods, allowing the client to choose them in
an order which makes sense for the user. For instance, given a choice, a SSH client
usually first tries methods that allow automatic authentication, such as Kerberos or
public key with an agent, before those that require user intervention, such as enter-
ing a password or key passphrase.

3.4.3.3 Getting started: the “none” request

One thing is missing from all this: if the client drives the authentication process by
making requests, but the list of available authentication methods is contained in
server responses, then how does the client pick a first method to try? Of course, it
could always just try any method and see what happens; the worst that could hap-
pen is that it fails or isn’t available, and the client gets a correct list to pick from. But
that’s messy, and there’s a standard way to do it: the “none” method. The protocol
reserves the method name “none,” and gives it a special meaning: if authentication is
required at all, then this method must always fail. A client typically starts SSH-
AUTH by sending a “none” request, expecting failure and getting back the list of
available non-“none” methods to try. Of course, if the account in question does not
require authentication, the server may respond with SUCCESS, immediately grant-
ing access.

Here, the client, having already sent the “none” request to start with, now receives its
initial list of methods to try:

debugl: Authentications that can continue: publickey,password

* The OpenSSH team is working on multiple authentication support.

3.4 InsideSSH-2 | 59

If you're debugging on the server side, you see something like this (with the
OpenSSH server):

debugl: userauth-request for user res service ssh-connection method none

debugl: attempt 0 failures o

Failed none for res from 10.1.1.1 port 50459 ssh2
This message is confusing if you’re debugging some other problem, as it appears to
show some mysterious failure.

The client continues, choosing public-key authentication to try first, with a DSS key
stored in the SSH agent:

debugl: Next authentication method: publickey
debugl: Offering agent key: res-dsa
debug2: we sent a publickey packet, wait for reply

3.4.3.4 Public-key authentication

A public-key authentication request carries the method name “publickey” and may
have different forms depending on a flag setting. One form has this method-specific
payload:

e Flag = FALSE

* Algorithm name

* Key data
The usable public-key algorithms are the same set defined in SSH-TRANS, and the

format key data depends on the type; e.g., for “ssh-dss” it contains just the key,
whereas for x509v3-sign-rsa it contains an X.509 public-key certificate.

With the flag set to FALSE, this message is merely an authorization test: it asks the
server to check whether this key is authorized to access the desired account, without
actually performing authentication. If it is, a special response message comes back;
this is an example of the possible method-specific SSH-AUTH messages we men-
tioned earlier. If the key is not authorized, the response is simply FAILURE.

The second form is:
* Flag=TRUE
* Algorithm name
* Key data - signature

This actually requests authentication; the signature is computed over a set of
request-specific data which includes the session ID, which binds the request to this
SSH session and gives the public-key method its own measure of MITM resistance,
similar to that described earlier for key exchange.

60 | Chapter3: InsideSSH

The reason for providing both forms of request is that computing and verifying
public-key signatures are compute-intensive tasks, which might also require interac-
tion with the user (e.g., typing in a key passphrase). Hence, it makes sense to test a
key first, to see whether it’s worth going to the trouble of using it.

The way a server actually authorizes a key for access to an account is outside the
scope of the protocol, and can be anything at all. The usual way is to list or refer to
the key in some file in the account, as with the OpenSSH ~/.ssh/authorized_keys file.
However, the server might access any type of service to do this; again, checking an
entry in an LDAP directory comes to mind. Or again, certificates might be used: just
as with host authentication, the key here might include a certificate, and any of the
certificate’s data might be used to make the authorization decision.

Coming back to our debug trace, we see that the server accepts the offered key:
debugl: Server accepts key: pkalg ssh-dss blen 435 lastkey 0x309a40 hint -1
debug2: input_userauth_pk ok: fp 63:24:90:03:cb:78:85:€6:59:71:49:26:55:81:15:70
debugl: Authentication succeeded (publickey).

Then it logs the key’s fingerprint and returns the final SUCCESS message, indicating

that access is granted and the SSH-AUTH session is finished.

Before moving on to the final protocol phase, let’s examine two other methods
defined in SSH-AUTH: password and hostbased authentication.

3.4.3.5 Password authentication

The password method is very simple: its name is “password,” and the data is, sur-
prise, the password. The server simply returns success or failure messages as appro-
priate. The method it uses to verify the password is implementation-dependent, and
varies a great deal: PAM, Unix password files, LDAP, Kerberos, NTLM,; all these are
available in various products.

The password is passed in plaintext, at least as far as SSH-AUTH is concerned;
hence, it is critical that this method be used over an encrypted connection (as is usu-
ally the case with SSH). Furthermore, since this method reveals the password to the
server, it is crucial that the server not be an impostor. Even if an SSH product may
warn of, but allow, a connection to an unauthenticated server in SSH-TRANS, it usu-
ally disallows password authentication in SSH-AUTH for this reason. Compare this
with the public-key method, which doesn’t reveal the user’s key in the authentica-
tion process.

It should be mentioned that “password authentication” is a pretty broad term, and
might be construed as encompassing other, better methods. If you think of it as
describing any mechanisms that rely on secrets that can be easily memorized and
typed by a human, then there are “password” methods with much better security
properties than the trivial one described here; the Secure Remote Password protocol

3.4 InsideSSH-2 | 61

(SRP, http://srp.stanford.edu/) is one. [1.6.5] In this book, however, when we talk
about “password” authentication, we mean as defined in SSH-AUTH.

SSH-AUTH also has a set of messages for password changing—for example, allow-
ing a user whose password has expired to set a new one before logging in.

3.4.3.6 Hostbased authentication

Hostbased authentication is fundamentally different from its public-key and pass-
word cousins, in that the server actually delegates responsibility for user authentica-
tion to the client host. In short, hostbased authentication establishes trust
relationships between machines. Rather than directly verifying the user’s identity, the
SSH server verifies the identity of the client host—and then believes the host when it
says the user has already authenticated on the client side. Therefore, you needn’t
prove your identity to every host that you visit. If you are logged in as user andrew
on machine A, and you connect by SSH to account bob on machine B using host-
based authentication, the SSH server on machine B doesn’t check your identity
directly. Instead, it checks the identity of host A, making sure that A is a trusted host.
It further checks that the connection is coming from a trusted program on A, one
installed by the system administrator that won’t lie about andrew’s identity. If the
connection passes these two tests, the server takes A’s word that you have been
authenticated as andrew and proceeds to make an authorization check that
andrew@A is allowed to access the account bob@B.

This sort of authentication makes sense only in a tightly administrated environment
with less stringent security requirements, or when deployed for very specific and lim-
ited purposes, such as batch jobs. It demands that all participating hosts be centrally
administered, making sure that usernames are globally selected and coordinated. If
not, you could get access to someone else’s account just by adding an account with
the same name to your own machine! Also, there’s the problem of transitive compro-
mise: once one host is broken, the attacker automatically gets access to all accounts
accessible via hostbased authentication from there, without any further work.

Nevertheless, hostbased authentication has advantages. For one, it is simple: you
don’t have to type passwords or passphrases, or generate, distribute, and maintain
keys. It also provides ease of automation. Unattended processes such as cron jobs
may have difficulty using SSH if they need a key, passphrase, or password coded into
a script, placed in a protected file, or stored in memory. This isn’t only a potential
security risk but also a maintenance nightmare. If the authenticator ever changes,
you must hunt down and change these hardcoded copies, a situation just begging for
things to break mysteriously later on. Hostbased authentication gets around this
problem neatly.

The “hostbased” request looks like:

* Host key algorithm
* Client host key

62 | Chapter3: InsideSSH

e Client hostname
¢ Client-side username, C

* Signature

Note that this request has two usernames: the requested server-side account name U
present in every SSH-AUTH request, and the client-side username C specific to the
hostbased request. The interpretation is that user C on the client is requesting access to
account U on the server, and the client’s authentication as C is vouched for by the signa-
ture of the client host key. The mapping of which client usernames may access which
accounts on the server is up to the implementation. Unix products tend to use seman-
tics similar to the historical rhosts syntax, in the files /etc/shosts.equiv and ~/.shosts.
These can implement global identity mappings, allowing matching usernames auto-
matic access, as well as more complicated or limited access patterns.

In order to perform this authentication, the server must verify the client host iden-
tity—that is, it must check that the supplied key matches the claimed client host-
name (e.g., with a known-hosts file). Having checked that and verified the signature,
it then uses that same hostname in the authorization check (e.g., in /etc/shosts.equiv),
to see if the requested client/server name pair is allowed access from this client host.
Some implementations also check that the client’s network address actually maps to
the given hostname via the local naming service (DNS, NIS, etc.), but this is not
really necessary; the meat of the authorization is in the association of the verified
hostname supplied in the request, and the authorization rules. In fact, the address
check may cause more trouble than it’s worth, in the presence of poorly maintained
DNS, network complications such as NAT, firewalls, proxying, etc.

Of course, for this whole scenario to make any sense at all, there are yet more admin-
istrative burdens to be met. The signature, after all, is supplied by the client; and yet
it is interpreted here as a trusted third party—the client host as a separate entity—
vouching for the user’s identity. But the user is behind the SSH client; how does this
work? The answer is that the client host and SSH software must be arranged so that
the user is not fully in control of what’s going on. The private client host key must
not be accessible to the user; rather, there must be a trusted service whereby the user
can obtain the needed signature for the hostbased authentication request, and such
signatures are only issued as appropriate. In a Unix context, usually the private host
key file is readable only by the root account, and some part of SSH is installed with
special privileges by the sysadmin (“setuid root”; typically this is a separate program
called ssh-signer, which serves only this purpose). This trusted program checks the
uid of the user running it, and issues signatures only for the corresponding user-
name. This effectively translates the local authentication that allowed the person to
log in to begin with, into an SSH certificate which can be transmitted and trusted as
part of hostbased authentication. This description makes it even more clear how the
whole arrangement is predicated on a very centrally controlled and consistently
administrated system. One should evaluate very carefully whether hostbased authen-
tication is the right choice.

3.4 InsideSSH-2 | 63

3.4.4 SSH Connection Protocol (SSH-CONN)

In its final, successful authentication request, the client specified a service name of
“ssh-connection”; this is not visible in the OpenSSH client debug trace but shows up
on the server as:

debugl: userauth-request for user res service ssh-connection method publickey

Since it authenticated the client, the server now starts that service, and we move on
to the SSH Connection Protocol. This layer actually provides the capabilities that
users want to employ directly and that define SSH for most people: remote login and
command execution, agent forwarding, file transfer, TCP port forwarding, X for-
warding, etc.

There is a lot of detail in the connection protocol, but much of it is too low-level for
our present discussion; we give a fairly high-level description here, sufficient to inter-
pret most debugging messages and to understand how an SSH product provides its
services using SSH-CONN. Unlike the earlier protocols, a really detailed understand-
ing of SSH-CONN is not usually needed for debugging everyday SSH problems.

3.4.4.1 Channels

The basic service SSH-CONN provides is multiplexing. SSH-CONN takes the single,
secure, duplex byte-stream provided by SSH-TRANS, and allows its clients to create
dynamically any number of logical SSH-CONN channels over it. Channels are identi-
fied by channel numbers, and may be created or destroyed by either side. Channels
are individually flow-controlled, and each channel has a channel type which defines
its use. Types and other items in SSH-CONN are named in the same extensible man-
ner as other SSH namespaces (key exchanges, key algorithm and authenticated
method names, etc.). The defined types are:

session
The remote execution of a program.

Merely opening a session channel does not start a program; that is done using
subsequent requests on the channel. An SSH-CONN session may have multiple
session channels open at once, simultaneously supporting several terminal, file-
transfer, or program executions at once. Various Windows-based SSH products
have used this ability for some time now; it has only recently appeared in
OpenSSH with the ControlMaster/ControlPath feature. [7.4.4.2]
x11
An X11 client connection.

One of these is opened from server to client, for each X11 program using X for-
warding as established by an x11-req on a session channel (discussed later).

forwarded-tcpip
An inbound connection to a remotely forwarded port.

When a connection arrives on a remotely forwarded TCP port, the server opens
this channel back to the client to carry the connection.

64 | Chapter3: InsideSSH

direct-tcpip

An outbound TCP connection.

This directs the peer to open a TCP connection to a given socket, and attach the
channel to that connection. The socket may be specified using a domain name or
IP address, allowing a name to be resolved on the remote side in a possibly dif-
ferent namespace than the client. These channels are used to implement local
TCP forwarding (ssh -L). Preparing for local forwarding is purely a client-side
affair: the client simply starts listening on the requested port.” The server first
hears of it when a connection actually arrives on the port, whereupon the client
opens a direct-tcpip channel with the appropriate target socket. This means that
if certain local forwardings are disallowed by the server, this isn’t noticed on
connection setup, but only when a connection is actually attempted

Channel semantics are richer than a traditional Unix file handle; the data they carry
can be typed, and this facility is used to distinguish between stdout and stderr out-
put from a program on a single channel.

3.44.2 Requests

In addition to an array of channel operations—open, close, send data, send urgent
data, etc.—SSH-CONN defines a set of requests, with global or channel scope. A glo-
bal request affects the state of the connection as a whole, whereas a channel request
is tied to a particular open channel. The global requests are:

tepip-forward
Request a remote TCP port forwarding.
If the user requests a TCP port be forwarded on the remote side back to the local
side (as with “ssh -R”), the SSH client issues this global request. In response, the
server starts listening on the indicated port and starts a “forwarded-tcpip” chan-
nel back to the client for each connection.

This request actually contains the full socket to be bound on the remote: an
(address,port) pair and not just a port number. This allows the client to be selec-
tive in remote-forwarding remote ports on a multihomed server, or to imple-
ment local-only remote forwardings by binding only the loopback address (127.
0.0.1), on a per-request basis. Not all implementations take advantage of this
feature, however; Tectia does, but OpenSSH currently does not.t

cancel-tcpip-forward
Cancel an existing remote forwarding.

* Unlike remote forwarding, no initial setup is required on the remote side.

1 The OpenSSH team is working on adding this feature.

3.4 InsideSSH-2 | 65

Now let’s summarize the channel requests; except as indicated, most operations refer
to the remote side of a session channel:

pty-req
Allocate a pty, including window size and terminal modes.
This creates a pseudo-terminal for the channel, generally required for interactive
applications; the pseudo-terminal is a virtual device which makes it appear that
the remote program is directly connected to a terminal.

x11-req
Set up X11 forwarding.

Do the preparation necessary for X11 forwarding on the remote; usually involves
listening on a socket (TCP or otherwise) for X11 connections, setting the DIS-
PLAY variable to point to that socket, and setting up proxy X11 authentication.

env
Set an environment variable.

Although useful, this feature is also a potential security problem. It has not been
widely supported by SSH implementations until recently and is generally care-
fully controlled.

shell, exec, subsystem
Run the default account shell, an arbitrary program, or an abstract service,
respectively.

These requests start a program running on the remote side, and connect the
channel to the program’s standard input/output/error streams. The “sub-
system” request allows a remote program to be named abstractly, rather than
being depended on by a particular remote filename. For instance, an SFTP file
transfer is usually started by sending a subsystem request with the name “sftp.”
The SSH server is configured to execute the correct server program in response
to the request; this way, the location of the SFTP server program can change
without affecting clients. Or indeed, SFTP could be implemented internal to the
SSH server itself, rather than being a separate program, and this, too, would be
transparent to clients; this is an option with Tectia.

window-change
Change terminal window size.
xon-xoff
Use client-side S/ Q flow control.
signal
Send a specified signal to a remote process (as in the Unix kill command).
exit-status
Return the program’s exit status to the initiator.
exit-signal
Return the signal that terminated the program (e.g., if a remote program dies by
signal, as from a segmentation fault or manual kill -9 command).

66 | Chapter3: InsideSSH

Theoretically, all these requests are symmetric; that is, the protocol allows the server
to open a session channel to the client and request a program to be started on it, for
example. However, in most SSH implementations as a remote-login tool, this simply
doesn’t make sense, and is an obvious security risk to boot! So, such requests are
usually not honored by clients (and the SSH-CONN draft recommends as much).

3.4.4.3 The finish line

With all this behind us, we can easily make sense of the remainder of the connection
setup. The client opens a session channel with id 0:

debugl: channel 0: new [client-session]

debug2: channel 0: send open

debugl: Entering interactive session.
This session is a terminal login, so next we request a pseudo-terminal on the session
channel:

debugl: channel 0: request pty-req

X forwarding is turned on, so the client first gets the local X11 display key by run-
ning the xauth program on this side, then requests X forwarding on the remote by
sending an x11-req global request:

debug2: x11_get proto: /usr/X11R6/bin/xauth list :0 2>/dev/null

debugl: Requesting X11 forwarding with authentication spoofing.
debugl: channel 0: request x11-req

Agent forwarding is also turned on, so we open a channel for that as well:

debugl: Requesting authentication agent forwarding.

debugl: channel 0: request auth-agent-req@openssh.com
But wait... we didn’t mention agent forwarding anywhere in SSH-CONN, nor the
channel type that appears here, auth-agent-req@openssh.com. Indeed, that’s because
it’s not there; key agents are an implementation detail outside the purview of the
protocol. This channel type is an example of the naming extension syntax; it is par-
ticular to the OpenSSH implementation. An OpenSSH server accepts such a channel
request and sets up an agent-forwarding socket on the remote end (whose details are
specific to the OpenSSH program suite). A non-OpenSSH server would refuse the
unrecognized request, and agent forwarding would not be available.

Finally, the client issues a “shell” request on the session channel:
debug1: channel 0: request shell
directing the remote account’s default command be started. And at long last...

debugl: channel 0: open confirm rwindow 100000 rmax 1638
Last login: Mon Aug 30 2004 18:04:10 -0400 from foo.host.net
$

...we're logged in!

3.4 InsideSSH-2 | 67

3.5 Inside SSH-1

With a solid understanding of the current SSH protocol behind us, we now quickly
summarize SSH-1 in terms of its differences, weaknesses, and shortcomings in com-
parison with SSH-2:

Non-modular
SSH-1 is defined as a single monolithic protocol, rather than the modular
approach taken with the SSH-2 suite.

Less negotiation
SSH-1 has more fixed parameters; in fact, only the bulk cipher is negotiated. The
integrity algorithm, host key type, key-exchange methods, etc., are all fixed.

Ad hoc naming
SSH-1 lacks the well-defined naming syntax for SSH-2 entities which allows for
smooth, implementation-specific extensions.

Single authentication
SSH-1’s user authentication process allows only one method to succeed; the
server can’t require multiple methods.

RhostsRSA authentication
SSH-1’s RhostsRSA authentication, analogous to hostbased, is in principle lim-
ited to using a network address as the client host identifier. This limits its useful-
ness in the face of network issues such as NAT, proxying, mobile clients, etc.

Less flexible remote forwarding
SSH-1 remote forwarding specifies only a port, not a full socket, so can’t be
bound to different addresses on multihomed servers, and the gatewayhosts
option must be set globally for all remote forwardings rather than per port.

Weaker integrity checking
SSH-1 uses a weak integrity check, the CRC-32 algorithm. CRC-32 is not crypto-
graphically strong, and its weakness is the basis of the Futoransky/Kargieman
“insertion attack”; see http://seclists.org/lists/firewall-wizards/1998/Jun/0095. html.

Server keys

The fixed key exchange of SSH-1 employs an extra asymmetric key called the
server key, not to be confused with a host key. [3.6.1] The server key is an
ephemeral public/private key pair, regenerated once per hour and used to pro-
vide forward secrecy for the session key. Forward secrecy means that even if
long-term secrets such as user or host private keys are compromised later, these
can’t be used to decrypt SSH sessions recorded earlier; the use of an extra key
which is never written to disk assures this. The Diffie-Hellman algorithm which
is the basis of all the SSH-2 key exchanges provides forward secrecy by itself, and
so an extra “server key” is not needed.

68 | Chapter3: InsideSSH

Weak key exchange
The SSH-1 key exchange is weak in that the client alone determines the session
key, and simply sends it to the server. A Trojaned client can easily use weak keys
to compromise all its sessions undetectably.

3.6 Implementation Issues

There are many differences among the current crop of SSH implementations: fea-
tures that aren’t dictated by the protocols, but are simply inclusions or omissions by
the software authors. Here we discuss a few implementation-dependent features of
various products:

* Host keys

* Authorization in hostbased authentication
* SSH-1 backward compatibility

* Randomness

* Privilege separation

3.6.1 Host Keys

SSH host keys are long-term asymmetric keys that distinguish and identify hosts run-
ning SSH, or instances of the SSH server, depending on the SSH implementation.
This happens in two places in the SSH protocol:

* Server authentication verifying the server host’s identity to connecting clients.
This process occurs for every SSH connection.”

* Authentication of a client host to the server; used only during RhostsRSA or
hostbased user authentication.

Unfortunately, the term “host key” is confusing. It implies that only one such key
may belong to a given host. This is true for client authentication but not for server
authentication, because multiple SSH servers may run on a single machine, each with
a different identifying key.t This so-called “host key” actually identifies a running
instance of the SSH server program, not a machine.

OpenSSH maintains a single database serving both server authentication and client
authentication. It is the union of the system’s known_hosts file (/etc/ssh/ssh_known_
hosts), together with the user’s ~/.ssh/known_hosts file on either the source machine
(for server authentication) or the target machine (for client authentication). The

*

In SSH-1, the host key also encrypts the session key for transmission to the server. However, this use is actu-
ally for server authentication, rather than for data protection per se; the server later proves its identity by
showing that it correctly decrypted the session key. Protection of the session key is obtained by encrypting
it a second time with the ephemeral server key.

t Or sharing the same key, if you wish, assuming the servers are compatible with one another.

3.6 Implementation Issues | 69

database maps a hostname or address to a set of keys acceptable for authenticating a
host with that name or address. One name may be associated with multiple keys
(more on this shortly).

Tectia, on the other hand, maintains two separate maps for these purposes:

* The hostkeys map for authentication of the server host by the client
* The knownhosts map for authentication of the client host by the server
Hooray, more confusing terminology. Here, the term “known hosts” is reused with

slightly different formatting (“knownhosts” versus “known_hosts”) for an overlap-
ping but not identical purpose.

While OpenSSH keeps host keys in a file with multiple entries, Tectia stores them in
a filesystem directory, one key per file, indexed by filename. For instance, a
knownhosts directory looks like this:

$ 1s -1 /etc/ssh2/knownhosts/

total 2
-r--r--1-- 1 root root 697 Jun 5 22:22 wynken.sleepy.net.ssh-dss.pub
-r--r--r-- 1 root root 697 Jul 21 1999 blynken.sleepy.net.ssh-dss.pub

Note that the filename is of the form <hostname>.<key type>.pub.

The other map, hostkeys, is keyed not just on name/address, but also on the
server’s TCP listening port; that is to say, it is keyed on TCP sockets. This allows
for multiple keys per host in a more specific manner than before. Here, the file-
names are of the form key_<port number>_<hostname>.pub. The following exam-
ple shows the public keys for one SSH server running on blynken, port 22, and two
running on wynken, ports 22 and 220. Furthermore, we’ve created a symbolic link
to make “nod” another name for the server at wynken:22. End users may add to
these maps by placing keys (either manually or automatically by client) into the
directories ~/.ssh2/knownhosts and ~/.ssh2/hostkeys.

$ 1s -1 /etc/ssh2/hostkeys/

total 5

-IW-r--r-- 1 root root 757 May 31 14:52 key 22 blynken.sleepy.net.pub
-IW-r--r-- 1 root root 743 May 31 14:52 key 22 _wynken.sleepy.net.pub
-IW-r--r-- 1 root root 755 May 31 14:52 key 220 wynken.sleepy.net.pub
lrwxrwxrwx 1 root root 28 May 31 14:57 key 22 nod.pub -> key 22 wynken.

sleepy.net.pub

Even though it allows for multiple keys per host, Tectia is missing one useful feature
of OpenSSH: multiple keys per name. This sounds like the same thing, but there’s a
subtle difference: names can refer to more than one host. A common example is a set
of load-sharing login servers hidden behind a single hostname. A university might
have a set of three machines intended for general login access, each with its own
name and address:

loginl.foo.edu — 10.0.0.1
login2.foo.edu — 10.0.0.2
login3.foo.edu — 10.0.0.3

70 | Chapter3: Inside SSH

In addition, there is a single generic name that carries all three addresses:
login.foo.edu — {10.0.0.1, 10.0.0.2, 10.0.0.3}

The university computing center tells people to connect only to login.foo.edu, and
the university’s naming service hands out the three addresses in round-robin order
(e.g., using round-robin DNS) to share the load among the three machines. SSH has
problems with this setup by default. Each time you connect to login.foo.edu, you
have a two-thirds chance of reaching a different machine than you reached last time,
with a different host key. SSH repeatedly complains that the host key of login.foo.
com has changed and issues a warning about a possible attack against your client.
This soon gets annoying. With OpenSSH, you can edit the known_hosts file to asso-
ciate the generic name with each of the individual host keys, changing this:
logini.foo.edu 1024 35 1519086808544755383. ..

login2.foo.edu 1024 35 1508058310547044394. ..
login3.foo.edu 1024 35 1087309429906462914. ..

to this:

logini.foo.edu,login.foo.edu 1024 35 1519086808544755383. ..
login2.foo.edu,login.foo.edu 1024 35 1508058310547044394. ..
login3.foo.edu,login.foo.edu 1024 35 1087309429906462914. ..

With Tectia, however, there’s no general way to do this; since the database is
indexed by entries in a directory, with one key per file, it can’t have more than one
key per name.

It might seem that you’re losing some security by doing this, but we don’t think so. All
that’s really happening is the recognition that a particular name may refer to different
hosts at different times, and thus you tell SSH to trust a connection to that name if it’s
authenticated by any of a given set of keys. Most of the time, that set happens to have
size 1, and you’re telling SSH, “When I connect to this name, I want to make sure 'm
connecting to this particular host.” With multiple keys per name, you can also say,
“When I connect to this name, [want to make sure that I get one of the following set of
hosts.” That’s a perfectly valid and useful thing to do.

Another way to solve this problem is for the system administrators of login.foo.com
to install the same host key on all three machines. But this defeats the ability of SSH
to distinguish between these hosts, even if you want it to. We prefer the former
approach.

3.6.2 Authorization in Hostbased Authentication

The most complicated aspect of hostbased authentication is not the method itself,
but the implementation details of configuring it, particularly authorization. We’ll
discuss:

* Hostbased access files
¢ Control file details

* Netgroups as wildcards

3.6 Implementation Issues | 71

3.6.2.1 Hostbased access files

Two pairs of files on the SSH server machine provide access control for hostbased
authentication, in both its weak and strong forms:

* Jetc/hosts.equiv and ~/.rhosts (weak)
* Jetc/shosts.equiv and ~/.shosts (strong)

The files in /etc have machine-global scope, while those in the target account’s home
directory are specific to that account. The hosts.equiv and shosts.equiv files have the
same syntax, as do the .rhosts and .shosts files, and by default they are all checked.

If any of the four access files allows access for a particular connection,
it’s allowed, even if another of the files forbids it.

The /etc/hosts.equiv and ~/.rhosts files originated with the insecure r-commands. For
backward compatibility, SSH can also use these files for making its hostbased
authentication decisions. If you’re using both the r-commands and SSH, however,
you might not want the two systems to have the same configuration. Also, because of
their poor security, it’s common to disable the r-commands, by turning off the serv-
ers in your inetd.conf files and/or removing the software. In that case, you may not
want to have any traditional control files lying around, as a defensive measure in case
an attacker managed to get one of these services turned on again.

To separate itself from the r-commands, SSH reads two additional files, /etc/shosts.
equiv and ~/.shosts, which have the same syntax and meaning as /etc/hosts.equiv and
~/.rhosts, but are specific to SSH. If you use only the SSH-specific files, you can have
SSH hostbased authentication without leaving any files the r-commands would look

*

at.

All four files have the same syntax, and SSH interprets them very similarly—Dbut not
identically—to the way the r-commands do. Read the following sections carefully to
make sure you understand this behavior.

3.6.2.2 Control file details

Here is the common format of all four hostbased control files. Each entry is a single
line, containing either one or two tokens separated by tabs and/or spaces. Com-
ments begin with #, continue to the end of the line, and may be placed anywhere;
empty and comment-only lines are allowed.

example control file entry
[+-1[@]hostspec [+-][@]userspec # comment

* Unfortunately, you can’t configure the server to look at one set but not the other. If it looks at ~/.shosts, then
it also considers ~/.rhosts, and both global files are always considered.

72 | Chapter3: Inside SSH

The two tokens indicate host(s) and user(s), respectively; the userspec may be omit-
ted. If the at sign (@) is present, then the token is interpreted as a netgroup (see the
sidebar “Netgroups”) and is looked up using the innetgr() library call, and the
resulting list of user or hostnames is substituted. Otherwise, the token is interpreted
as a single host or username. Hostnames must be canonical as reported by
gethostbyaddr() on the server host; other names won’t work.

If either or both tokens are preceded by a minus sign (-), the whole entry is consid-
ered negated. It doesn’t matter which token has the minus sign; the effect is the
same. Let’s see some examples before explaining the rules.

The following hostspec allows anyone from fred.flintstone.gov to log in if the remote
and local usernames are the same:

/etc/shosts.equiv

fred.flintstone.gov
The following hostspecs allow anyone from any host in the netgroup “hostbasedus-
ers” to log in, if the remote and local usernames are the same, but not from evil.
empire.org, even if it is in the hostbasedusers netgroup:

/etc/shosts.equiv

-evil.empire.org

@hostbasedusers
This next entry (hostspec and userspec) allows mark@way.too.trusted to log into any
local account! Even if a user has -way.too.trusted mark in ~/.shosts, it won’t prevent
access since the global file is consulted first. You probably never want to do this.

/etc/shosts.equiv

way.too.trusted mark Don't do this!!
On the other hand, the following entries allow anyone from sister.host.org to con-
nect under the same account name, except mark, who can’t access any local account:

/etc/shosts.equiv

sister.host.org -mark

sister.host.org
Remember, however, that a target account can override this restriction by placing
sister.host.org mark in ~/.shosts. Note also, as shown earlier, that the negated line
must come first; in the other order, it’s ineffective.

This next hostspec allows user wilma on fred.flintstone.gov to log into the local wilma
account:

~wilma/.shosts
fred.flintstone.gov

This entry allows user fred on fred.flintstone.gov to log into the local wilma account,
but no one else—not even wilma@fred.flintstone.gov:

~wilma/.shosts
fred.flintstone.gov fred

3.6 Implementation Issues | 73

Netgroups

A netgroup defines a list of (host, user, domain) triples. Netgroups are used to define
lists of users, machines, or accounts, usually for access-control purposes; for instance,
one can usually use a netgroup to specify what hosts are allowed to mount an NFS file-
system (e.g., in the Solaris share command or BSD exportfs).
Different flavors of Unix vary in how they implement netgroups, though you must
always be the system administrator to define a netgroup. Possible sources for netgroup
definitions include:

* A plain file, e.g., /etc/netgroup

* A database file in various formats, e.g., /etc/netgroup.db

¢ An information service, such as Sun’s YP/NIS
On many modern Unix flavors, the source of netgroup information is configurable
with the Network Service Switch facility; see the file /etc/nsswitch.conf. Be aware that
in some versions of SunOS and Solaris, netgroups may be defined only in NIS; it
doesn’t complain if you specify “files” as the source in nsswitch.conf, but it doesn’t
work either. Recent Linux systems support /etc/netgroup, though C libraries before
glibc 2.1 support netgroups only over NIS.
Some typical netgroup definitions might look like this:

defines a group consisting of two hosts: hostnames "printi" and
"print2", in the (probably NIS) domains one.foo.com and two.foo.com.

print-servers (print1,,one.foo.com) (print2,,two.foo.com)
a list of three login servers
login-servers (login1,,foo.com) (login2,,foo.com) (logini,,foo.com)

Use two existing netgroups to define a list of all hosts, throwing in
another.foo.com as well.

all-hosts print-servers login-servers (another,,foo.com)

A list of users for some access-control purpose. Mary is allowed from
anywhere in the foo.com domain, but Peter only from one host. Alice

is allowed from anywhere at all.

allowed-users (,mary,foo.com) (logini,peter,foo.com) (,alice,)

When deciding membership in a netgroup, the thing being matched is always con-
strued as an appropriate triple. A triple (x, y,) matches a netgroup N if there exists a
triple (a, b, ¢) in N which matches (x, y, z). In turn, you define that these two triples
match if and only if the following conditions are met:

—continued—

74

| Chapter3: Inside SSH

x =aor x is null or a is null
and:

y =boryisnull or b is null
and:

z =cor zis null or ¢ is null

This means that a null field in a triple acts as a wildcard. By “null,” we mean missing;
that is, in the triple (, user, domain), the host part is null. This isn’t the same as the
empty string: (“”, user, domain). In this triple, the host part isn’t null. It is the empty
string, and the triple can match only another whose host part is also the empty string.

When SSH matches a username U against a netgroup, it matches the triple (, U ,);
similarly, when matching a hostname H, it matches (H, ,). You might expect it to
use (, U, D) and (H, , D) where D is the host’s domain, but it doesn’t.

These entries allow both fred and wilma on fred.flintstone.gov to log into the local
wilma account:

~wilma/.shosts

fred.flintstone.gov fred

fred.flintstone.gov
Now that we’ve covered some examples, let’s discuss the precise rules. Suppose the
client username is C, and the target account of the SSH command is T. Then:

1. A hostspec entry with no userspec permits access from all hostspec hosts when
T=C.

2. In a per-account file (~/rhosts or ~/.shosts), a hostspec userspec entry permits
access to the containing account from hostspec hosts when C is any one of the
userspec usernames.

3. In a global file (fetc/hosts.equiv or /etc/shosts.equiv), a hostspec userspec entry per-
mits access to any local target account from any hostspec host, when C is any one
of the userspec usernames.

4. For negated entries, replace “permits” with “denies” in the preceding rules.

Note Rule #3 carefully. You never, ever want to open your machine to such a secu-
rity hole. The only reasonable use for such a rule is if it is negated, thus disallowing
access to any local account for a particular remote account. We present some exam-
ples shortly.

The files are checked in the following order (a missing file is simply skipped, with no
effect on the authorization decision):

1. Jetc/hosts.equiv
2. /Jetc/shosts.equiv

3.6 Implementation Issues | 75

3. ~/.shosts
4. ~/.rhosts

SSH makes a special exception when the target user is root: it doesn’t check the global
files. Access to the root account can be granted only via the root account’s /.rhosts and
/.shosts files. If you block the use of those files with the IgnoreRootRhosts server direc-
tive, this effectively prevents access to the root account via hostbased authentication.

When checking these files, there are two rules to keep in mind. The first rule is: the
first accepting line wins. That is, if you have two netgroups:

set (one,,) (two,,) (three,,)
subset (one,,) (two,,)

the following /etc/shosts.equiv file permits access only from host three:

-@subset
@set

But this next one allows access from all three:

@set

-@subset
The second line has no effect, because all its hosts have already been accepted by a
previous line.

The second rule is: if any file accepts the connection, it’s allowed. That is, if /etc/
shosts.equiv forbids a connection but the target user’s ~/.shosts file accepts it, then it
is accepted. Therefore, the sysadmin cannot rely on the global file to block connec-
tions. Similarly, if your per-account file forbids a connection, it can be overridden by
a global file that accepts it. Keep these facts carefully in mind when using hostbased
authentication.”

3.6.2.3 Netgroups as wildcards

You may have noticed the rule syntax has no wildcards; this omission is deliberate.
The r-commands recognize bare + and — characters as positive and negative wild-
cards, respectively, and a number of attacks are based on surreptitiously adding a
“+” to someone’s .rhosts file, immediately allowing anyone to rlogin as that user. So,
SSH deliberately ignores these wildcards. You’ll see messages to that effect in the
server’s debugging output if it encounters such a wildcard:

Remote: Ignoring wild host/user names in /etc/shosts.equiv

However, there’s still a way to get the effect of a wildcard: using the wildcards avail-
able in netgroups. An empty netgroup:

empty # nothing here

* By setting the server’s IgnoreRhosts keyword to yes, you can cause the server to ignore the per-account files
completely and consult the global files exclusively instead. [5.4.4]

76 | Chapter3: Inside SSH

matches nothing at all. However, this netgroup:
wild (,,)

matches everything. In fact, a netgroup containing (,,) anywhere matches every-
thing, regardless of what else is in the netgroup. So, this entry:

~/.shosts

@wild
allows access from any host at all,” as long as the remote and local usernames match.
This one:

~/.shosts
way.too.trusted @wild

allows any user on way.too.trusted to log into this account, while this entry:

~/.shosts
@wild @wild

allows any user access from anywhere.

Given this wildcard behavior, it’s important to pay careful attention to netgroup defi-
nitions. It’s easier to create a wildcard netgroup than you might think. Including the
null triple (,,) is the obvious approach. However, remember that the order of ele-
ments in a netgroup triple is (host,user,domain). Suppose you define a group “oops”

like this:
oops (fred,,) (wilma,,) (barney,,)

You intend for this to be a group of usernames, but you’ve placed the usernames in
the host slots, and the username fields are left null. If you use this group as the user-
spec of a rule, it acts as a wildcard. Thus, this entry:

~/.shosts

home.flintstones.gov @oops
allows anyone on home.flintstones.gov, not just your three friends, to log into your
account. Beware!

3.6.2.4 Summary

Hostbased authentication is convenient for users and administrators, because it can
set up automatic authentication between hosts based on username correspondence
and interhost trust relationships. This removes the burden of typing passwords or
dealing with key management. However, it is heavily dependent on the correct
administration and security of the hosts involved; compromising one trusted host
can give an attacker automatic access to all accounts on other hosts. Also, the rules
for the access control files are complicated, fragile, and easy to get wrong in ways

* If strong hostbased authentication is in use, this means any host verified by public key against the server’s
known hosts database.

3.6 Implementation Issues | 77

that compromise security. In an environment more concerned with eavesdropping
and disclosure than active attacks, it may be acceptable to deploy hostbased authen-
tication for general user authentication. In a more security-conscious scenario, how-
ever, it is probably inappropriate, though it may be acceptable for limited use in
special-purpose accounts, such as for unattended batch jobs. [11.1.3]

3.6.3 SSH-1Backward Compatibility

The Tectia server can provide backward compatibility for the SSH-1 protocol, as
long as another package supporting SSH-1 (such as OpenSSH) is also installed on the
same machine. When the Tectia server encounters a client requesting an SSH-1 con-
nection, it simply runs the SSH-1 server.” This is rather cumbersome. It’s also waste-
ful and slow, since each new sshdl needs to generate its own server key, which
otherwise the single master server regenerates only once an hour. This wastes ran-
dom bits, sometimes a precious commodity, and can cause noticeable delays in the
startup of SSH-1 connections to a Tectia server. Further, it is an administrative head-
ache and a security problem, since one must maintain two separate SSH server con-
figurations and try to make sure all desired restrictions are adequately covered in

both.

OpenSSH, on the other hand, supports both SSH-1 and SSH-2 in a single set of pro-
grams, an approach we prefer.

3.6.4 Randomness

Cryptographic algorithms and protocols require a good source of random bits. Ran-
domness is used in various ways:

* To generate data-encryption keys

* As plaintext padding and initialization vectors in encryption algorithms, to help
foil cryptanalysis

* For check-bytes or cookies in protocol exchanges, as a measure against packet-
spoofing attacks

Randomness is harder to achieve than you might think; in fact, even defining ran-
domness is difficult (or picking the right definition for a given situation). For exam-
ple, “random” numbers that are perfectly good for statistical modeling might be
terrible for cryptography. Each of these applications requires certain properties of its
random input, such as an even distribution. Cryptography, in particular, demands
unpredictability, so an attacker reading our data can’t guess our keys.

* Or it can use an internal SSH-1 compatibility mode.

78 | Chapter3: Inside SSH

True randomness—in the sense of complete unpredictability—can’t be produced by
a computer program. Any sequence of bits produced as the output of a program
eventually repeats itself. For true randomness, you have to turn to physical pro-
cesses, such as fluid turbulence or the quantum dice of radioactive decay. Even there,
you must take great care that measurement artifacts don’t introduce unwanted
structure.

There are algorithms, however, that produce long sequences of practically unpredict-
able output, with good statistical randomness properties. These are good enough for
many cryptographic applications, and such algorithms are called pseudo-random
number generators, or PRNGs. A PRNG requires a small random input, called the
seed, so it doesn’t always produce the same output. From the seed, the PRNG pro-
duces a much larger string of acceptably random output; essentially, it is a random-
ness “stretcher.” So, a program using a PRNG still needs to find some good random
bits, just fewer of them, but they had better be quite unpredictable.

Since various programs require random bits, some operating systems have built-in
facilities for providing them. Some Unix variants (including Linux and OpenBSD)
have a device driver, accessed through /dev/random and /dev/urandom, that provides
random bits when opened and read as a file. These bits are derived by all sorts of
methods, some quite clever. Correctly filtered timing measurements of disk accesses,
for example, can represent the fluctuations due to air turbulence around the drive
heads. Another technique is to look at the least significant bits of noise coming from
an unused microphone port. And of course, they can track fluctuating events such as
network packet arrival times, keyboard events, interrupts, etc.

SSH implementations make use of randomness, but the process is largely invisible to
the end user. Here’s what happens under the hood. OpenSSH and Tectia, for exam-
ple, use a kernel-based randomness source if it is available, along with their own
sampling of (one hopes) fluctuating system parameters, gleaned by running such
programs as ps or netstat. It uses these sources to seed its PRNG, as well as to “stir
in” more randomness every once in a while. Since it can be expensive to gather ran-
domness, SSH stores its pool of random bits in a file between invocations of the pro-
gram, as shown in the following table:

OpenSSH Tectia
Server /etc/ssh/ssh_random_seed /etc/ssh2/random_seed
Client ~/.ssh/random_seed ~/.ssh2/random_seed

These files should be kept protected, since they contain sensitive information that
can weaken SSH’s security if disclosed to an attacker, although SSH takes steps to
reduce that possibility. The seed information is always mixed with some new ran-
dom bits before being used, and only half the pool is ever saved to disk, to reduce its
predictive value if stolen.

3.6 Implementation Issues | 79

In OpenSSH and Tectia, all this happens automatically and invisibly. OpenSSH links
against the OpenSSL library and uses its randomness source, a kernel source if avail-
able. When building OpenSSH on a platform without /dev/random, you have a
choice. If you have installed an add-on randomness source, such as the Entropy
Gathering Daemon (EGD, http://www.lothar.com/tech/crypto/), you can compile
OpenSSH to use it with the --with-egd-pool compile-time configuration option. Or
you can use the OpenSSH entropy-gathering mechanism. You can tailor which pro-
grams are run to gather entropy and “how random” they’re considered to be, by edit-
ing the file /etc/ssh/ssh_prng_cmds. Also, note that the OpenSSH random seed is kept
in the ~/.ssh/prng_seed file, even the daemon’s, which is just the root user’s seed file.
Earlier versions of OpenSSH use this method internally and automatically if there is
no /dev/random and no pool specified. OpenSSH 3.8 and later have the random gen-
erator factored into a separate program, ssh-rand-helper, selected with the --with-
rand-helper compile-time configuration option.

3.6.5 Privilege Separation in OpenSSH

A persistent problem in the world of Unix security is the lack of fine-grained permis-
sions when it comes to process capabilities. Basically, either you’re God (that is,
“root”) or you're not. The “Church” of Unix is missing the hosts of angels, archan-
gels, cherubim, etc., that fill other pantheons and smooth the relationship between
mere mortals and the divine, embodied for us in the mystical uid 0. This means that
in order to accomplish some common tasks, such as listening on port 22 or creating
processes under other uid’s, the SSH server must also take on all the other powers of
the root account. This flies in the face of a basic rule of security engineering: the Prin-
ciple of Least Privilege, which says that a process should have only the privileges it
needs, only when it needs them, and no more. If a serious vulnerability is found in
the code of a server running as root, you can kiss your system goodbye, because
when an attacker gets in, he has complete control.

In order to address this general problem, OpenSSH has a feature called privilege sep-
aration. The developers have factored out those server functions which require root
privilege, and placed them in a separate process. The main server does not run as
root; it gives up that privilege as soon as possible after startup, leaving a separate
privileged “monitor” process with which it can communicate. The monitor opens
the server listening socket which the main server inherits, but then closes its copy so
that it does not communicate directly with clients (i.e., potential attackers). It com-
municates only by a private pipe to the main server and obeys a strict protocol, per-
forming only those privileged operations necessary from time to time for the
operation of the main server, and nothing else. This design mitigates the problem by
restoring the Principle of Least Privilege, at least as much as is possible given the lim-
itations of Unix.

80 | Chapter3: InsideSSH

Privilege separation is a complicated feature to implement, however, due to many
small differences among Unix platforms with regard to the exact behavior of rele-
vant system calls such as setuid, seteuid, setgid, etc., as well as difficulties with
related software such as PAM. The early implementations of privilege separation in
OpenSSH were notorious for causing mysterious errors in the operation of the server.
Things have improved a great deal, but if you run into odd problems you can’t
explain—especially having to do with a privilege or access violation on the part of
the server—you could do worse than to disable privilege separation and see what
happens.

For more information on privilege separation, see:

* http://www.citi.umich.edu/u/provos/ssh/privsep.html

* “Preventing Privilege Escalation,” Niels Provos, Markus Friedl, and Peter Honey-
man, 12th USENIX Security Symposium, Washington, D.C., August 2003, http:/
www.citi.umich.edu/u/provos/papers/privsep.pdyf.

3.7 SSH and File Transfers (scp and sftp)

The first thing to understand about SSH and file transfers is this: SSH doesn’t really
do file transfers. That is, the core SSH protocol as implemented by a program such as
ssh (SSH-TRANS, SSH-AUTH, and SSH-CONN) has no file-transfer capability at all.
Following good modular design, file transfer is simply one of many services that
might be run over an SSH connection channel. In fact, the file-transfer programs
bundled with most Unix-based SSH products, scp and sftp, typically don’t even
implement SSH in themselves; they simply run ssh in a subprocess to connect to the
remote host, start the remote file-transfer agent, and talk to it.

Historically, the first file-transfer mechanism implemented with SSH was the pro-
gram scp, included with the original SSH1 product. scp is simply an “ssh-ification” of
the venerable Unix rcp program; just as rcp runs the rsh program to contact the
remote host, scp runs ssh instead. If existing rsh software had supported a switch to
select a different program than the default rsh (like scp -S), scp might never have been
written; there would have been no need.

The rcp protocol used by scp is very limited. In a single session it can only transfer a
set of whole files in one direction; there’s no directory browsing, partial transfer,
resumption of interrupted transfers, multiple transfer directions—in other words, it’s
nothing like FTP. When SSH Communications Security (SCS) defined the first ver-
sion of the SSH-2 protocol and delivered its implementation, it wanted to include a
much better file-transfer utility. To that end, it defined a completely new remote-
filing protocol, designed to work easily over a single, reliable, secure, duplex byte-
stream connection—that is, over SSH. The utility was called sftp. As with SSH-2, this
initially undocumented and proprietary protocol was eventually moved onto the
standards track of the IETF SECSH working group, as the “SSH File Transfer Proto-
col” (SSH-SFTP). Once that happened it began to appear in other implementations

3.7 SSHand File Transfers (scpand sftp) | 81

as well—for example, the sftp program in OpenSSH—first as a client only for com-
patibility with SCS servers, with sftp-server following later.

The name “SFTP” is unfortunate in two respects. First, it suggests that SFTP has
something to do with the FTP protocol as defined in RFC-959 et al. It doesn’t: they
are completely different. Indeed, that’s largely the point; as with rcp: were FTP ame-
nable to use over SSH, SFTP might never have been written. But SSH and FTP are
not a good match [11.2], so SFTP was born. It is a common mistake to think you can
somehow use an sftp program to connect securely to an FTP server—a reasonable
enough supposition, given the name—but you can’t; they’re entirely incompatible.

The name “SFTP” is also misleading in that it suggests security; many assume it
stands for “Secure FTP.” This isn’t so. The SFTP protocol has no security features at
all; implementations derive their security by speaking the protocol over an SSH
connection.

3.7.1 What’sina Name?

So far, this isn’t too bad. There are two file-transfer protocols commonly used over
SSH—RCP and SFTP, usually implemented on the client side by the programs scp
and sftp. The situation is a bit more complicated, though, because of the way the
Tectia software operates. Although Tectia includes a program named scp2, it does
not use the RCP protocol; instead, it uses SFTP. The Tectia programs scp2 and sftp2
are simply two different frontends for the SFTP protocol. They merely provide differ-
ent user interfaces: scp2 acts like rep/scp, and sftp2 is deliberately similar to an FTP
client.

None of this confusing terminology is made any easier by the fact that when
installed, Tectia makes symbolic links allowing you to use the plain names scp, ssh,
etc., instead of scp2 or ssh2. Even more bizarrely, scp2 has a -1 option that causes it
to run a program named scpl for backward compatibility (of a sort). The upshot is
that typing “scp” may get you either of two entirely different protocols, depending
on what software is installed, and how it was installed. In our discussion, we ignore
this complication; when we refer to scp, we mean an OpenSSH-style scp which uses
the RCP protocol.

3.7.2 scp Details

When you run scp to copy a file from client to server, it invokes ssh with various
options, like so:

/usr/bin/ssh -x -o ForwardAgent=no -o ClearAllForwardings=yes server-host scp ...

82 | Chapter3: InsideSSH

Earlier versions of scp actually searched your PATH for the ssh program
oy rather than specifying it completely. This was a problem if multiple
& M

112, SSH software packages were installed, since it could run mismatched
pieces of software together.

This runs another copy of scp on the remote host. That copy is invoked with the
undocumented switches —t and —f (for “to” and “from”), putting it into SCP server
mode. This next table shows some examples; Figure 3-3 shows the details.

This client scp command: Runs this remote command:
scp foo server:bar scp -t bar
scp server:bar foo scp -f bar
scp *.txt server:dir scp -d -t dir
Client Server

I)

scp file.txt server:renamed.txt renamed. txt
file.txt
run "ssh -x -a...server scp -t renamed.txt" run "scp -t renamed.txt"

Figure 3-3. scp operation

If you run scp to copy a file between two remote hosts, it simply executes another scp
client on the source host to copy the file to the target. For example, this command:

scp source:music.au target:playme
runs this in the background:
ssh -x -o ClearAllForwardings=yes -n source scp music.au target:playme

Note that the options are changed appropriately: agent forwarding is not turned off,
as that may be needed by the remote scp client in order to contact the target host.

3.7 SSHand File Transfers (scpandsftp) | 83

3.7.3 scp2/sftp Details

When you run scp2 or sftp under Unix, it also runs an ssh program behind the
scenes, as with scp.” The exact details vary depend on which software is in use;
remember that sftp comes with both OpenSSH and Tectia. However, they both look
like:

ssh [options] server-host -s sftp

Instead of a remote command, this uses an SSH-2 subsystem request to start the sfip
server on the remote host. This insulates the client from the details of how SFTP is
implemented on the server, rather than embed the sftp-server pathname in the com-
mand (which might change), or relaying on the remote PATH setting to find it (which
might not work). Unlike scp, here the command line doesn’t specify the files to be
transferred; that information is carried inside the SFTP protocol.

Using a subsystem means that the SSH server must be specifically configured to han-
dle SFTP. For OpenSSH:

sshd_config
subsystem sftp /usr/libexec/sftp-server

Tectia can either execute an external SFTP server in the same way:

sshd2_config
subsystem-sftp /usr/libexec/sftp-server2

or run the SFTP protocol within the SSH server process itself:

sshd2_config
subsystem-sftp internal://sftp-server

Figure 3-4 shows more details of how sftp operates.

3.8 Algorithms Used by SSH

We now summarize each of the algorithms we have mentioned. Don’t treat these
summaries as complete analyses, however. You can’t necessarily extrapolate from
characteristics of individual algorithms (positive or negative) to whole systems with-
out considering the other parts. Security is complicated that way.

3.8.1 Public-Key Algorithms

3.8.1.1 Rivest-Shamir-Adleman (RSA)

The Rivest-Shamir-Adleman (RSA) public-key algorithm is the most widely used
asymmetric cipher. It derives its security from the difficulty of factoring large integers

* Tectia for Windows simply integrates SSH into these programs.

84 | Chapter3: InsideSSH

Client Server

W‘ % scp2 file.txt server:renamed.txt
t"_\/ or

% sftp server d.txt
sftp> put file.txt renamed.txt renamed. tx

sftp
scp2/sftp server

file.txt

run "ssh2 -x -a...server -s sftp" run "sftp server"

sftp protocol

Figure 3-4. scp2/sftp operation

that are the product of two large primes of roughly equal size. Factoring is widely
believed to be intractable (i.e., infeasible, admitting no efficient, polynomial-time
solution), although this isn’t proven. RSA can be used for both encryption and
signatures.

Until September 2000, RSA was claimed to be patented in the U.S. states by Public
Key Partners, Inc., a company in which RSA Security, Inc. is a partner. (The algo-
rithm is now in the public domain.) While the patent was in force, PKP claimed that
it controlled the use of the RSA algorithm in the U.S., and that the use of unautho-
rized implementations was illegal. Until the mid-1990s, RSA Security provided a
freely available reference implementation, RSAref, with a license allowing educa-
tional and broad commercial use (as long as the software itself was not sold for
profit). Since RSA is now in the public domain, RSAref has disappeared.

The SSH-1 protocol specified use of RSA explicitly. SSH-2 can use multiple public-
key algorithms, but originally defined only DSA. [3.8.1.2] The SECSH working
group added the RSA algorithm to SSH-2 shortly after the patent expired.

3.8.1.2 Digital Signature Algorithm (DSA)

The Digital Signature Algorithm (DSA) was developed by the U.S. National Security
Agency (NSA), and promulgated by the U.S. National Institute of Standards and
Technology (NIST) as part of the Digital Signature Standard (DSS). The DSS was
issued as a Federal Information Processing Standard, FIPS-186, in May 1994. It is a
public-key algorithm, based on the Schnorr and ElGamal methods, and relies on the
difficulty of computing discrete logarithms in a finite field. It is designed as a signa-
ture-only scheme that can’t be used for encryption, although a fully general imple-
mentation may easily perform both RSA and ElGamal encryption.

3.8 Algorithms Used by SSH | 85

DSA has also been surrounded by a swirl of controversy since its inception. The
NIST first claimed that it had designed DSA, then eventually revealed that the NSA
had done so. Many question the motives and ethics of the NSA, with ample histori-
cal reason to do so.” Researcher Gus Simmons discovered a subliminal channel in
DSA that allows an implementor to leak information—for instance, secret key bits—
with every signature.t Since the algorithm was to be made available as a closed hard-
ware implementation in smart cards as part of the government’s Capstone program,
many people considered this property highly suspicious. Finally, the NIST intended
DSA to be available royalty-free to all users. To that end it was patented by David
Kravitz (patent #5,231,668), then an employee of the NSA, who assigned the patent
to the U.S. government. There have been claims, however, that DSA infringes exist-
ing cryptographic patents, including the Schnorr patent. To our knowledge, this
issue has yet to be settled in court.

The SSH-2 protocol uses DSA as its required (and currently, only defined) public-key
algorithm for host identification.

3.8.1.3 Diffie-Hellman key agreement

The Diffie-Hellman key agreement algorithm was the first public-key system pub-
lished in the open literature, invented by Whitfield Diffie, Martin Hellman, and
Ralph Merkle in 1976. It was patented by them in 1977 (issued in 1980, patent
#4,200,770); that patent has now expired, and the algorithm is in the public
domain. Like DSA, it is based on the discrete logarithm problem, and it allows two
parties to derive a shared secret key securely over an open channel. That is, the par-
ties engage in an exchange of messages, at the end of which they share a secret key. It
isn’t feasible for an eavesdropper to determine the shared secret merely from observ-
ing the exchanged messages.

SSH-2 uses the Diffie-Hellman algorithm as its required (and currently, its only
defined) key-exchange method.

3.8.2 Secret-Key Algorithms

3.8.2.1 International Data Encryption Algorithm (IDEA)

The International Data Encryption Algorithm (IDEA) was designed in 1990 by Xuejia
Lai and James Massey,¥ and went through several revisions, improvements, and
renamings before reaching its current form. Although relatively new, it is considered

* See James Bamford’s book, The Puzzle Palace (Penguin), for an investigative history of the NSA.

1 G.J. Simmons, “The Subliminal Channels in the U.S. Digital Signature Algorithm (DSA).” Proceedings of the
Third Symposium on: State and Progress of Research in Cryptography, Rome: Fondazione Ugo Bordoni, 1993,
pp- 35-54.

1 X. Lai and J. Massey, “A Proposal for a New Block Encryption Standard,” Advances in Cryptology—EURO-
CRYPT °92 Proceedings, Springer-Verlag, 1992, pp. 389-404.

86 | Chapter3: InsideSSH

secure; the well-known cryptographer Bruce Schneier in 1996 pronounced it “the best
and most secure block algorithm available to the public at this time.”

IDEA is patented in Europe and the U.S. by the Swiss company Ascom-Tech AG."
The name “IDEA” is a trademark of Ascom-Tech. The attitude of Ascom-Tech
toward this patent and the use of IDEA in the U.S. has changed over time, especially
with regard to its inclusion in PGP. It is free for noncommercial use. Government or
commercial use may require a royalty, where “commercial use” includes use of the
algorithm internal to a commercial organization, not just directly selling an imple-
mentation or offering its use for profit. Here are two sites for more information:

* http://vmsbox.cjb.net/idea.html
* http://home.ecn.ab.ca/~jsavard/crypto/co040302.htm

3.8.2.2 Advanced Encryption Standard (AES)

In 1997, the NIST began a program to develop a replacement for the existing govern-
ment-standard symmetric encryption algorithm, DES, which was beginning to show
its age. The process involved soliciting designs from the worldwide cryptographic
community, and pitting them against one another in a design contest of sorts. After a
five-year process, the winner was finally selected. The algorithm designed by Joan
Daemen and Vincent Rijmen and originally known as Rijndael became the Advanced
Encryption Standard, codified in FIPS-197. AES is a symmetric block cipher with key
sizes of either 128, 192, or 256 bits. You can find more information at the following
site:

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

3.8.2.3 Data Encryption Standard (DES)

The Data Encryption Standard (DES) is the old workhorse of symmetric encryption
algorithms, now finally put out to pasture, replaced by AES. Designed by research-
ers at IBM in the early 1970s under the name Lucifer, the U.S. government adopted
DES as a standard on November 23, 1976 (FIPS-46). It was patented by IBM, but
IBM granted free worldwide rights to its use. It has been used extensively in the pub-
lic and private sectors ever since. DES has stood up well to cryptanalysis over the
years and is increasingly viewed as outdated only because its 56-bit key size is too
small relative to modern computing power. A number of well-publicized designs for
special-purpose “DES-cracking” machines have been put forward, and their putative
prices are falling more and more into the realm of plausibility for governments and
large companies. It seems sure that at least the NSA has such devices.

* U.S. patent #5,214,703, 25 May 1993; international patent PCT/CH91/00117, 28 November 1991; Euro-
pean patent EP 0 482 154 B1.

3.8 Algorithms Used by SSH | 87

3.8.2.4 Triple-DES

Triple-DES, or 3DES, is a variant of DES intended to increase its security by increas-
ing the key length. It has been proven that the DES function can increase its security
by encrypting multiple times with independent keys.” 3DES encrypts the plaintext
with three iterations of the DES algorithm, using three separate keys. The effective
key length of 3DES is 112 bits, a vast improvement over the 56-bit key of plain DES.

3.8.2.5 ARCFOUR (RC4)

Ron Rivest designed the RC4 cipher in 1987 for RSA Data Security, Inc. (RSADSI); the
name is variously claimed to stand for “Rivest Cipher” or “Ron’s Code.” It was an
unpatented trade secret of RSADS], used in quite a number of commercial products by
RSADSI licensees. In 1994, though, source code claiming to implement RC4 appeared
anonymously on the Internet. Experimentation quickly confirmed that the posted code
was indeed compatible with RC4, and the cat was out of the bag. Since it had never
been patented, RC4 effectively entered the public domain. This doesn’t mean that
RSADSI won’t sue someone who tries to use it in a commercial product, so it is less
expensive to settle and license than to fight. We aren’t aware of any test cases of this
issue. Since the name “RC4” is trademarked by RSADS], the name “ARCFOUR” has
been coined to refer to the publicly revealed version of the algorithm.

ARCFOUR s very fast but less studied than many other algorithms. It uses a vari-
able-size key; SSH-1 employs independent 128-bit keys for each direction of the SSH
session. The use of independent keys for each direction is an exception in SSH-1, and
crucial: ARCFOUR is essentially a pad using the output of a pseudo-random num-
ber generator. As such, it is important never to reuse a key because to do so makes
cryptanalysis trivially easy. If this caveat is observed, ARCFOUR is considered secure
by many, despite the dearth of public cryptanalytic results.

3.8.2.6 Blowfish

Blowfish was designed by Bruce Schneier in 1993, as a step toward replacing the
aging DES. It is much faster than DES and IDEA, though not as fast as ARCFOUR,
and is unpatented and free for all uses. It is intended specifically for implementation
on large, modern, general-purpose microprocessors and for situations with relatively
few key changes. It isn’t particularly suited to low-end environments such as smart
cards. It employs a variable-size key of 32 to 448 bits; SSH-2 uses 128-bit keys. Blow-
fish has received a fair amount of cryptanalytic scrutiny and has proved impervious
to attack so far. Information is available from Counterpane, Schneier’s security con-
sulting company, at:

http://www.schneier.com/blowfish.html

* Because it doesn’t form a group over its keys. See W. Campbell and M. J. Wiener, “DES Is Not a Group,”
Advances in Cryptology—CRYPTO °92 Proceedings, Springer-Verlag, pp. 512-520.

88 | Chapter3: InsideSSH

3.8.2.7 Twofish

Twofish is another design by Bruce Schneier, together with J. Kelsey, D. Whiting, D.
Wagner, C. Hall, and N. Ferguson. It was submitted in 1998 to the NIST as a candi-
date for the Advanced Encryption Standard, to replace DES as the U.S. govern-
ment’s symmetric data encryption standard. It was one of the five finalists in the AES
selection process, out of 15 initial submissions, but eventually lost to Rijndael. Like
Blowfish, it is unpatented and free for all uses, and Counterpane has provided unco-
pyrighted reference implementations, also freely usable.

Twofish admits keys of lengths 128, 192, or 256 bits; SSH-2 specifies 256-bit keys.
Twofish is designed to be more flexible than Blowfish, allowing good implementa-
tion in a larger variety of computing environments (e.g., slower processors, small
memory, in-hardware). It is very fast, its design is conservative, and it is likely to be
quite strong. You can read more about Twofish at:

http://www.schneier.com/twofish.html
You can read more about the NIST AES program at:

http://www.nist.gov/aes/

3.8.2.8 CAST

CAST was designed in the early 1990s by Carlisle Adams and Stafford Tavares.
Tavares is on the faculty of Queen’s University at Kingston in Canada, while Adams
is an employee of Entrust Technologies of Texas. CAST is patented, and the rights
are held by Entrust, which has made two versions of the algorithm available on a
worldwide royalty-free basis for all uses. These versions are CAST-128 and CAST-
256, described in RFC-2144 and RFC-2612, respectively. SSH-2 uses CAST-128,
which is named for its 128-bit key length.

3.8.3 Hash Functions

3.8.3.1 (R(C-32

The 32-bit Cyclic Redundancy Check (CRC-32), defined in ISO 3309, is a noncryp-
tographic hash function for detecting accidental changes to data. The SSH-1 proto-
col uses CRC-32 (with the polynomial 0OXEDB88320) for integrity checking, and this
weakness admits the “insertion attack” discussed elsewhere. [3.5] The SSH-2 proto-
col employs cryptographically strong hash functions for integrity checking, obviat-
ing this attack.

* International Organization for Standardization, ISO Information Processing Systems—Data Communication
High-Level Data Link Control Procedure—Frame Structure, 1ISO 3309, October 1984, 3rd Edition.

3.8 Algorithms Used by SSH | 89

3.8.3.2 MD5

MD5 (“Message Digest algorithm number 5”) is a cryptographically strong, 128-bit
hash algorithm designed by Ron Rivest in 1991, one of a series he designed for RSADSI
(MD2 through MD5). MDS5 is unpatented, placed in the public domain by RSADSI,
and documented in RFC-1321. It has been a standard hash algorithm for several years,
used in many cryptographic products and standards. A successful collision attack
against the MD5 compression function by den Boer and Bosselaers in 1993 caused
some concern, and though the attack hasn’t resulted in any practical weaknesses, there
is an expectation that it will, and people are beginning to avoid MD5 in favor of newer
algorithms. RSADSI recommends moving away from MD35 in favor of SHA-1 or RIP-
EMD-160 for future applications demanding collision-resistance.”

3.8.3.3 SHA-1

SHA-1 (Secure Hash Algorithm) was designed by the NSA and the NIST for use with
the U.S. government Digital Signature Standard. Like MD3, it was designed as an
improvement on MD4, but takes a different approach. It produces 160-bit hashes.
There are no known attacks against SHA-1, and, if secure, it is stronger than MD35 sim-
ply for its longer hash value. It has replaced MD5 in some applications; for example,
SSH-2 uses SHA-1 as its required MAC hash function, as opposed to MD5 in SSH-1.1

3.8.3.4 RIPEMD-160

Yet another 160-bit MD4 variant, RIPEMD-160, was developed by Hans Dobbertin,
Antoon Bosselaers, and Bart Preneel as part of the European Community RIPE
project. RIPE stands for RACE Integrity Primitives Evaluation;¥ RACE, in turn, was
the program for Research and Development in Advanced Communications Technol-
ogies in Europe, an EC-sponsored program which ran from June 1987 to December
1995. RIPE was part of the RACE effort, devoted to studying and developing data
integrity techniques. Hence, RIPEMD-160 should be read as “the RIPE Message
Digest (160 bits).” In particular, it has nothing to do with RIPEM, an old Privacy-
Enhanced Mail (PEM) implementation by Mark Riordan.

RIPEMD-160 isn’t defined in the SSH protocol, but it is used for an implementation-
specific MAC algorithm in OpenSSH, under the name hmac-ripemd160@openssh.com.
RIPEMD-160 is unpatented and free for all uses. You can read more about it at:

http://www.esat.kuleuven.ac.be/~bosselae/ripemd160.html

* RSA Laboratories Bulletin #4, 12 November 1996, ftp://ftp.rsasecurity.com/pub/pdfs/bulletn4.pdf.

T As this book went to press, the NIST announced plans to phase out SHA-1 by the year 2010, in favor of stron-
ger algorithms like SHA-256 and SHA-512.

1 Not to be confused with another “RIPE,” Réseaux IP Européens (“European IP Networks”), a technical and
coordinating association of entities operating wide area IP networks in Europe and elsewhere (http://www.
ripe.net).

90 | Chapter3: InsideSSH

3.8.4 Compression Algorithms: zlib

zlib is currently the only compression algorithm defined for SSH. In the SSH proto-
col documents, the term “zlib” refers to the “deflate” lossless compression algorithm
as first implemented in the popular gzip compression utility, and later documented
in RFC-1951. It is available as a software library called ZLIB at:

http://www.zlib.net/

3.9 Threats SSH Can Counter

Like any security tool, SSH has particular threats against which it is effective and oth-
ers that it doesn’t address. We’ll discuss the former first.

3.9.1 Eavesdropping

An eavesdropper is a network snooper who reads network traffic without affecting it
in any way. SSH’s encryption prevents eavesdropping. The contents of an SSH ses-
sion, even if intercepted, can’t be decrypted by a snooper.

3.9.2 Name Service and IP Spoofing

If an attacker subverts your naming service (DNS, NIS, etc.), network-related pro-
grams may be coerced to connect to the wrong machine. Similarly, an attacker can
impersonate a host by stealing use of its IP address(es). In either case, you’re in trou-
ble: your client program can connect to a false server that steals your password when
you supply it. SSH guards against this attack by cryptographically verifying the server
host identity. When setting up a session, the SSH client validates the server’s host
key against a local list associating server names and addresses with their keys. If the
supplied host key doesn’t match the one on the list, SSH complains. This feature
may be disabled in less security-conscious settings if the warning messages get
annoying. [7.4.3.1]

The SSH-2 protocol allows for including PKI certificates along with keys. In the
future, we hope that implementation of this feature in SSH products along with more
common deployment of PKI will ease the burden of key management and reduce the
need for this particular security trade-off.

3.9.3 Connection Hijacking

An “active attacker”—one who not only can listen to network traffic, but also can
inject his own—can hijack a TCP connection, literally stealing it away from one of its
legitimate endpoints. This is obviously disastrous: no matter how good your authen-
tication method is, the attacker can simply wait until you’ve logged in, then steal

3.9 Threats SSH Can Counter | 91

your connection and insert his own nefarious commands into your session. SSH
can’t prevent hijacking, since this is a weakness in TCP, which operates below SSH.
However, SSH renders it ineffective (except as a denial-of-service attack). SSH’s
integrity checking detects if a session is modified in transit, and shuts down the con-
nection immediately without using any of the corrupted data.

3.9.4 Man-in-the-Middle Attacks

A man-in-the-middle attack is a particularly subtle type of active attack and is illus-
trated in Figure 3-5. An adversary sits between you and your real peer (i.e., between
the SSH client and server), intercepting all traffic and altering or deleting messages at
will. Imagine that you try to connect to an SSH server, but Malicious Mary inter-
cepts your connection. She behaves just like an SSH server, though, so you don’t
notice, and she ends up sharing a session key with you. Simultaneously, she also ini-
tiates her own connection to your intended server, obtaining a separate session key
with the server. She can log in as you because you used password authentication and
thus conveniently handed her your password. You and the server both think you
have a connection to each other, when in fact you both have connections to Mary
instead. Then she just sits in the middle, passing data back and forth between you
and the server (decrypting on one side with one key and re-encrypting with the other
for retransmission). Of course, she can read everything that goes by and undetect-
ably modify it if she chooses.

true client machine true server machine

&1 =

SSH encrypted connections

unencrypted data exposed!

attackers machine

Figure 3-5. Man-in-the-middle attack

SSH counters this attack in two ways. The first is server host authentication. Unless
Mary has broken into the server host, she is unable to effect her impersonation,
because she doesn’t have the server’s private host key. Note that for this protection
to work, it is crucial that the client actually check the server-supplied public host key

92 | Chapter3: InsideSSH

against its known hosts list; otherwise, there is no guarantee that the server is genu-
ine. If you connect for the first time to a new server and let ssh accept the host key,
you are actually open to a man-in-the-middle attack. However, assuming you aren’t
spoofed that one time, future connections to this server are safe as long as the server
host key isn’t stolen.

The second protection SSH affords is via certain user authentication methods. The
password method is obviously vulnerable, but publickey and hostbased authentica-
tion resist MITM attacks. Mary can’t discover the session key simply by observing
the key exchange; she must perform an active attack in which she carries out sepa-
rate exchanges with each side, obtaining separate keys of her own with the client and
server. In both SSH-1 and SSH-2, the key exchange is designed so that if she does
this, the session identifiers for each side are different. When a client provides a digi-
tal signature for either public-key or hostbased authentication, it includes the ses-
sion identifier in the data signed. Thus, Mary can’t just pass on the client-supplied
authenticator to the server, nor does she have any way of coercing the client into
signing the other session ID."

If you don’t verify the server name/key correspondence, Mary can still perform the
man-in-the-middle attack, even though she can’t log in as you on the server side. Per-
haps she can log into her own account or another she has cracked. With some clever-
ness, she might still deceive you long enough to do damage.

3.10 Threats SSH Doesn’t Prevent

SSH isn’t a total security solution. We’ll now present some examples of attacks that
SSH wasn’t designed to prevent.

3.10.1 Password Cracking

SSH dramatically improves password security by encrypting your password as it
passes over the network. Nevertheless, a password is still a weak form of authentica-
tion, and you must take care with it. You must choose a good password, memorable
to you but not obvious to anyone else, and not easily guessable. You must also avoid
having your password stolen, since possession alone is sufficient to grant access to
your account. So, watch out: the guy at the next terminal might be surreptitiously
“shoulder surfing” (watching as you type). That computer kiosk you’re about to use
may have been tricked up to log all keystrokes to Cracker Central Command. And
the nice-sounding fellow who calls from Corporate IT and asks for your password to
“fix your account” might not be who he claims.

* This is not true of the older SSH-1 protocol, however.

3.10 Threats SSH Doesn’t Prevent | 93

Consider public-key authentication instead, since it is two-factor: a stolen pass-
phrase is useless without the private-key file, so an attacker needs to steal both. Of
course, the SSH client on the computer you’re borrowing can be rigged to squirrel
away your key after you blithely supply your passphrase to decrypt it. If you’re that
worried, you shouldn’t use strange computers. In the future, one hopes, crypto-
graphic smartcards and readers will be ubiquitous and supported by SSH so that you
can carry your keys conveniently and use them in other computers without fear of
disclosure.

If you must use password authentication because of its convenience, consider using a
one-time password scheme such as S/Key to reduce risk. [5.4.5]

3.10.2 IP and TCP Attacks

SSH operates on top of TCP, so it is vulnerable to some attacks against weaknesses
in TCP and IP. The privacy, integrity, and authentication guarantees of SSH limit
this vulnerability to denial-of-service attacks.

TCP/IP is resistant to network problems such as congestion and link failure. If the
enemy blows up a router, IP can route around it. It wasn’t designed to resist an
adversary injecting bogus packets into the network, however. The origin of TCP or
IP control messages isn’t authenticated. As a result, TCP/IP has a number of inher-
ent exploitable weaknesses, such as:

SYN flood
SYN stands for “synchronize,” and is a TCP packet attribute. In this case, it
refers to the initial packet sent to start the setup of a TCP connection. This
packet often causes the receiver to expend resources preparing for the coming
connection. If an attacker sends large numbers of these packets, the receiving
TCP stack may run out of space and be unable to accept legitimate connections.

TCP RST, bogus ICMP
Another TCP packet type is RST, for “reset.” Either side of a TCP connection
can send an RST packet at any time, which causes immediate teardown of the
connection. RST packets may be injected easily into a network, immediately dis-
connecting any target TCP connection.

Similarly, there is ICMP, the Internet Control Message Protocol. ICMP allows IP
hosts and routers to communicate information about network conditions and
host reachability. But again, there is no authentication, so injecting bogus ICMP
packets can have drastic effects. For instance, there are ICMP messages that say
a particular host or TCP port is unreachable; forging such packets can cause
connections to be torn down. There are also ICMP messages that communicate
routing information (redirects and router discovery); forging such messages can
cause sensitive data to be routed through unintended and possibly compro-
mised systems.

94 | Chapter3: InsideSSH

TCP desynchronization and hijacking
By clever manipulation of the TCP protocol, an attacker can desynchronize two
sides of a TCP connection with respect to data byte sequence numbers. In this
state, it is possible to inject packets that are accepted as a legitimate part of the
connection, allowing the attacker to insert arbitrary information into the TCP
data stream.

SSH provides no protection against attacks that break or prevent setup of TCP con-
nections. On the other hand, SSH’s encryption and host authentication are effective
against attacks that involve inappropriate routing that would otherwise permit read-
ing of sensitive traffic or redirect a connection to a compromised server. Likewise,
attacks that hijack or alter TCP data will fail, because SSH detects them, but they also
break the SSH connection, because SSH responds to such problems by termination.

Because these threats focus on problems with TCP/IP, they can be effectively coun-
tered only by lower, network-level techniques, such as hardware link encryption or
IPSEC. [1.6.4] IPSEC is the IP Security protocol that is part of the next-generation IP
protocol, IPv6, and available as an add-on to the current IP standard, IPv4. It pro-
vides encryption, integrity, and data origin-authentication services at the IP packet
level.

3.10.3 Traffic Analysis

Even if an attacker can’t read your network traffic, he can glean a great deal of use-
ful information by simply watching it—noting the amount of data, the source and
destination addresses, and timing. A sudden increase in traffic with another com-
pany might tip him off that an impending business deal is in the works. Traffic pat-
terns can also indicate backup schedules or times of day most vulnerable to denial-
of-service attacks. Prolonged silence on an SSH connection from a sysadmin’s
desktop might indicate that she’s stepped out, and that now is a good time to
break in, electronically or physically.

SSH doesn’t address traffic-analysis attacks. SSH connections are easily identifiable
as they generally go to a well-known port, and the SSH protocol makes no attempt to
obfuscate traffic analysis. An SSH implementation could conceivably send random,
no-op traffic over a connection when it’s otherwise idle, to frustrate activity correla-
tion. OpenSSH, in fact, sends no-op packets in response to keystrokes when a pro-
gram turns off tty echo (e.g., the su program prompting for a password). This makes
it harder for an attacker to identify the keystrokes of value in a session.

A s
S Although the SSH protocol doesn’t specifically deal with traffic analy-
.‘s\ sis, some implementations take steps against it. OpenSSH, for exam-
9 ple, hides the fact that terminal echoing has been turned off by

* sending fake echo packets, making it harder to recognize signatures of
non-echoing commands, such as typing the root password after an su
prompt.

3.10 Threats SSH Doesn’t Prevent | 95

A more serious concern regarding traffic analysis arises from recent work by U.C.
Berkeley researchers Dawn Song, David Wagner, and Xuging Tian. At the 10th
Usenix Security Symposium (Washington D.C., August 2001), they presented a
paper titled “Timing Analysis of Keystrokes and Timing Attacks on SSH”:

http://www.usenix.org/publications/library/proceedings/sec01/song.html

The paper applies traffic-analysis techniques to interactive SSH connections to infer
information about the encrypted contents. The authors conclude that the keystroke
timing data observable from existing SSH implementations reveals a dangerously sig-
nificant amount of information about user terminal sessions—enough to locate
typed passwords in the session data stream and reduce the computational work
involved in guessing those passwords by a factor of 50. While this work describes a
very sophisticated attack which has yet to yield any practical exploits (that we know
of!), this area bears watching.

3.10.4 Covert Channels

A covert channel is a means of signaling information in an unanticipated and unno-
ticed fashion. Suppose that one day, Sysadmin Sally decides her users are having too
much fun, and she turns off email and instant messaging so that they can’t chat. To
get around this, you and your friend agree to put messages to each other into world-
readable files in your home directories, which you’ll check every once in a while for
new messages. This unanticipated communication mechanism is a covert channel.

Covert channels are hard to eliminate. If Sysadmin Sally discovers your file-based
technique, she can make all home directories unreadable and unsearchable by any-
one but their owners, and prevent the owners from changing this restriction. While
she’s at it, she can also make sure you can’t create files anywhere else, like /tmp.
(Most of your programs don’t work now, but that doesn’t matter to Sally.) Even so,
you and your friend can still list each other’s home directory nodes themselves,
which reveals the directory modification date and number of files, so you devise a
secret code based on these visible parameters and communicate by modifying them.
This is a more complex covert channel, and you can imagine even more outlandish
ones in the face of further restrictions from Sally.

SSH doesn’t attempt to eliminate covert channels. Their analysis and control are gen-
erally part of highly secure computer systems, such as those designed to handle infor-
mation safely at various security classification levels within the same system.
Incidentally, the SSH data stream itself can be used perfectly well as a covert chan-
nel: the encrypted contents of your SSH session might be a recipe for chocolate chip
cookies, while a secret message about an impending corporate merger is represented
in Morse code using even/odd packet lengths for dashes and dots.

96 | Chapter3: InsideSSH

3.10.5 Carelessness

Mit der Dummbheit kampfen Goétter selbst vergebens.
(Against stupidity, even the Gods struggle in vain.)
—Friedrich von Schiller

Security tools don’t secure anything; they only help people to do so. It’s almost a cli-
ché, but so important that it bears any amount of repeating. The best cryptography
or most secure protocols in the world won’t help if users pick bad passwords, or
write their passphrases on Post-it notes stuck to the undersides of their keyboards.
They also won’t help sysadmins who neglect other aspects of host security, allowing
host-key theft or wiretapping of terminal sessions.

As Bruce Schneier is fond of saying, “Security is a process, not a product.” SSH is a
good tool, but it must be part of an overall and ongoing process of security aware-
ness. Other aspects of host integrity must still be attended to; security advisories for
relevant software and operating systems monitored, appropriate patches or
workarounds applied promptly, and people educated and kept aware of their security
responsibilities. Don’t just install SSH and think that you’re now secure; you’re not.

3.11 Threats Caused by SSH

We can hear the chorus now...“What? I'm using SSH to improve security; what do
you mean it causes threats!?” Calm down, we’re just being complete here. There are
no new threats that SSH causes per se, but there are existing issues that it perhaps
exacerbates.

To employ SSH, your users must be able to make outbound TCP connections: and
really, that gives them the power to do just about anything. Think you can restrict
which Internet hosts they can contact? Think again: all they need is a proxy on a host
they can reach to redirect their traffic. Think they can only use TCP because that’s all
the firewall lets through? Not at all: there are freely available tools that can operate a
full-blown VPN over a TCP (e.g., OpenVPN). Think you’re safe from inbound
attacks because you allow only outbound connections? Don’t be naive: that “out-
bound” connection is a two-way street once established and can be connected to
anything at all.

The only things that keep people from violating your security policy with this access,
aside from respecting the policy itself, are ignorance and inconvenience. Your users
might not know how to play any of the preceding tricks, or it might be too much
trouble if they do. SSH, however, makes some of these things very easy: tunneling
outbound connections to “forbidden” TCP ports, reverse forwarding to tunnel back
through your firewall and circumvent it, etc...and everything nicely encrypted so that
you can’t see what’s happening!

3.11 Threats CausedbySSH | 97

The important lesson here is not that SSH is dangerous, but that truly limiting net-
work access is a very difficult proposition: usually impossible, in fact, with any kind
of reasonable effort (and if you want to get any other work done). When there are
convenient tools like SSH lying around tempting people to get around annoying limi-
tations, you can no longer rely on ignorance and inconvenience to enforce your secu-
rity policy. Ultimately, you must gain the trust and cooperation of your users to have
an effective security policy.

3.12 Summary

The SSH protocol uses openly published, strong cryptographic tools to provide net-
work connections with privacy, integrity, and mutual authentication. The original
SSH-1 protocol (a.k.a. SSH 1.5) was wildly popular, despite being somewhat ad hoc:
essentially a documentation of SSH1’s program behavior. It had a number of short-
comings and flaws, of which the weak integrity check and resulting Futoransky/Kar-
gieman insertion attack is perhaps the most egregious example. The current protocol
version, SSH-2, is far superior, but was slow to take off due to the dearth of imple-
mentations, licensing restrictions, and the continued availability of the free SSH1
software for many commercial purposes. Thankfully, the tide has now turned, due
primarily to the gargantuan and mostly unpaid efforts of the OpenSSH team in
bringing forth a free implementation of the SSH-2 protocol.

SSH counters many network-related security threats, but not all. In particular, it is
vulnerable to denial-of-service attacks based on weaknesses in TCP/IP, its underly-
ing transport...though now that IPSec is widespread, these weaknesses can be
addressed if need be. SSH also doesn’t address attacks such as traffic analysis and
covert channels, which may be of concern depending on the environment.

98 | Chapter3: InsideSSH

CHAPTER 4

Installation and Compile-Time
Configuration

Now that you know what SSH is and how it works, where do you get it and how do
you install it? This chapter surveys several popular and robust implementations of
SSH and explains how to obtain, compile, and install them:

OpenSSH
A free implementation, originally part of OpenBSD, and available for many other
operating systems including Linux, Solaris, Mac OS X, and Windows.

Tectia
A suite of commercial products from SSH Communications Security Corp., that
run on a variety of platforms including Linux, Solaris, HP-UX, AIX, and Win-
dows. Formerly known as SSH2 and SSH Secure Shell.

Non-Unix implementations of SSH are covered in Chapters 13—18.

4.1. Overview

The first question to consider when installing any implementation of SSH is whether
to use a binary or source distribution.

Binary distributions are already configured and compiled, and are therefore easy to
use. They are available for popular SSH implementations like OpenSSH and Tectia
on a variety of common platforms. The packaging technology and installation
instructions vary according to the target system—consult the documentation pro-
vided by your vendor for details. For example, on Linux systems, binary distribu-
tions are usually shipped as RPM packages, and can be installed using a single
command like:

$ rpm -Uhv openssh-3.9p1-1.1386.rpm

Installation on Unix systems typically requires root access, to install files in system
directories, and to update the databases that keep track of installed packages.

99

Binary distributions are often cryptographically signed, to ensure that no one has
tampered with the files. Signatures can be provided as separate files, or (depending
on the package format) embedded within the binary distribution files, and the tech-
nique to verify the signature depends on how the files were signed. For example, on
RPM-based Linux systems, first import the vendor’s public key, which is distributed
by keyservers or the vendor’s web site:

$ rpm --import http://www.redhat.com/security/db42a60e.txt
Then use the public key to check the signature:

$ rpm --checksig -v openssh-3.9p1-1.1386.1pm

Always check the signatures of binary distributions before installing.
Imagine the havoc that could be caused if a maliciously hacked ver-
sion of SSH was unwittingly used on your system.

Source distributions require more work to install, but allow many more configuration
options. They can also be used on platforms for which no binary distributions are
available.

To install from sources, perform the following general steps; we’ll cover specific
details for OpenSSH and Tectia in subsequent sections.

4.1.1 Install the Prerequisites

Some SSH implementations rely on other software packages; these must be obtained
and installed first. The precise requirements sometimes depend on the configuration
options chosen: e.g., support for hardware authentication devices (smartcards) might
require special libraries.

4.1.2 Obtain the Sources

Source code for open source SSH implementations can be downloaded from each
project’s web site, and often a large number of mirror sites. Sources for commercial
products are sometimes provided on the distribution media, or are available on ven-
dors’ password-protected web sites.

4.1.3 Verify the Signature

Sources should be distributed with a signature file that guarantees the distribution is
genuine and has not been modified. [1.6.2] The precise steps used to verify the signa-
ture depend on how the source file was signed.

Always check the signature before installing sources. Otherwise, you can be fooled
by a hacked version created by an untrusted third party. If you blindly install a

100 | Chapter4: Installation and Compile-Time Configuration

source without checking the signature, you can seriously compromise your system’s
security.

4.1.4 Extract the Source Files

Source distributions are almost invariably packaged in compressed tar format.” File-
names ending in .tar.gz (or sometimes .tgz) are compressed using gzip, and can be
extracted using a command like:

$ tar xzvf openssh-3.9pi1.tar.gz

If your version of tar does not support the z option for running gunzip automati-
cally, try:

$ gunzip < openssh-3.9pl.tar.gz | tar xvf -
gzip (and gunzip) can be obtained, if you don’t already have them, from http://
www.ggzip.org/.
Similarly, filenames ending in .tar.bz2 are compressed using bzip2, and can be
extracted using a command like:

$ tar xjvf openssh-3.9p1.tar.bz2

If your version of tar does not support the j option for running bunzip2 automati-
cally, try:

$ bunzip2 < openssh-3.9p1.tar.bz2 | tar xvf -
bzip2 (and bunzip2) can be obtained from http://sources.redhat.com/bzip2.

In all cases, the result is a new subdirectory containing all files in the distribution.
The name of the source directory is usually the same as the tar file, e.g., openssh-3.
Ipl.

To list the contents of the tar file, without extracting, use the ¢t option instead of x;
for example:

$ tar tzvf openssh-3.9pi1.tar.gz

4.1.5 Perform Compile-Time Configuration

Most SSH implementations have dozens of configuration options you can set at com-
pile time. It’s a good idea to carefully consider each one, instead of blindly accepting
the defaults. In fact, the flexibility provided by this compile-time configuration pro-
cess is a primary motivation for installing from source distributions.

* Often called a “tarball.”

4. Overview | 101

Compile-time configuration is performed by running a script named configure that is
usually found in the top-level source directory.” Roughly speaking, the configure
script accomplishes two tasks:

* It examines the local system, setting various platform-specific and operating-
system-specific options. For example, configure notices which header files and
libraries are available and whether your C compiler is ANSI or not. It does this
by compiling and running a series of carefully constructed, small test programs,
examining system files, etc. This happens automatically in most cases, so you
can just sit back and watch the script announce what it discovers as it runs.

¢ It includes or excludes certain features found in the SSH source code. For exam-
ple, configure can keep or remove support for Kerberos authentication.

We'll discuss only the second task, since it’s SSH-specific, and cover only the config-
uration options that are directly related to SSH or security. For example, we won’t
cover options that relate to the compiler (e.g., whether warnings should be printed or
suppressed) or operating system (e.g., whether particular Unix library functions
should be used). To see the full set of configure options, use the command:

$ configure --help

Also, read the installation documentation, which is often found in files named
README and INSTALL in the source directory.

The behavior of SSH servers can be controlled at three levels. The first is compile-
time configuration as discussed in this chapter. In addition, serverwide configuration
(Chapter 5) controls global settings for a running SSH server, and per-account config-
uration (Chapter 8) controls settings for each user account accepting SSH connec-
tions. Figure 4-1 illustrates where compile-time configuration fits into the whole
spectrum. We'll remind you of this picture each time we introduce a new type of
configuration.

Compile-time configuration affects both the SSH server and client programs. Chang-
ing the configuration requires recompiling and reinstalling, which is neither easy nor
convenient, so for most aspects of server and client operation, it’s more appropriate
to edit configuration files after installation. Nevertheless, there are some good rea-
sons to use compile-time configuration:

* Some configuration options can only be set at compile time.

* Features that are disabled at compile time can’t be accidentally enabled by erro-
neous configuration files. Inflexibility can be an asset.

* The configure script is generated by a Free Software Foundation package called autoconf. You don’t need to
know this to compile SSH, but if you’re interested in learning more about autoconf, visit the GNU web site
at http://'www.gnu.org/software/autoconf.

102 | Chapter4: Installation and Compile-Time Configuration

Configuration types Configuration types

Command-line __ Command-line
options options
Environment Custom session
variables startup
3SH
(l'ent Server-side
configuration file
Server-side
authorization ﬂIesI
flags - flags I
Key-related
files | Targetaccount's
authorization files

User’s client
configuration file

Global client
configuration file

Known hosts
databases TCP-wrappers
files
Kerberos
configuration files

o

Figure 4-1. SSH compile-time configuration (highlighted parts)

* Removing code for unused features improves security—you can’t be burned by
security holes in code that you don’t compile!

* Similarly, code removal sometimes yields a performance advantage, since less
memory and disk space is used.

The configure script accepts command-line flags, each beginning with a double dash
(--), to control its actions. Flags are of two types:

With/without flags
Include a package during compilation. These flags begin with --with or
--without. For example, support for the X Window System can be included
using the flag --with-x and omitted using --without-x.

Enable/disable flags
Set the default behavior of SSH. These flags begin with --enable or --disable.
For example, the X forwarding feature in Tectia is enabled by the flag --enable-
X11-forwarding or disabled with --disable-X11-forwarding. Some of these
defaults can be overridden later by serverwide or per-account configuration.

41. Overview | 103

Flags beginning with --with or --enable may optionally be followed by an equals
sign and a string value, such as:

--with-etcdir=/usr/local/etc
--enable-X11-forwarding=no

Various string values are used, but the most common are yes and no. For a given
package P, the flags --with-P and --with-P=yes are equivalent. The following table
illustrates the relationship:

If you write: It's equivalent to:
--with-pP=yes --with-p
--with-P=no --without-p

This next table shows the relationships for a given feature F:

If you write: It's equivalent to:
--enable-F=yes --enable-r
--enable-F=no --disable-F

In the sections that follow, we show many examples of configure with different
command-line flags. Most examples demonstrate only one flag at a time, but keep in
mind that other flags might be present on the command line. The proper way to run
configure is just once, before compilation, with all desired flags on the same com-
mand line.

The configure script uses directory information from its own location to embed path-
names into the Makefiles, header files, etc., that it creates. Relying on the PATH envi-
ronment variable to find the configure script is therefore a bad practice. If you choose
to compile within the source directory, specify the current directory explicitly when
you run configure:

$./configure ...options...

Alternately, you can compile in a different directory, which is convenient if the
source directory is used for multiple platforms. To do this, create a separate, empty
build directory, and run configure there, specifying the source directory for the con-
figure pathname:

$ mkdir -p /elsewhere/build/ssh

$ cd /elsewhere/build/ssh

$ /somewhere/src/ssh/configure ...
In our examples, we’ll omit the directory components from the configure pathname,
but remember that they should be included when you run the script.

104 | Chapter4: Installation and Compile-Time Configuration

Specifying Options for the configure Script

Be careful when specifying configure options, or you might waste a lot of time. The con-
figure script is not very smart, performing little or no sanity checking on its input. For
example, if you provide an invalid value, configure can naively run for several minutes,
handling 100 other configuration options, before finally reaching the bad value and
dying. Now you have to run the script all over again.

Unrecognized command-line options are silently ignored, which makes typos espe-
cially dangerous. Be sure to check the messages produced by configure as it runs, and
especially the configuration summary printed at the end to verify that your options
were understood as you intended.

Don’t depend on default values, since they might differ among SSH implementations.
For maximum security and control, explicitly specify all the options you care about
when running configure.

The --no-create option causes the configure script to perform all of its checks, but not
to create any output files in the build directory. This can be useful if you need to debug
an unexpected interpretation of the other options.

4,1.6 Compile Everything

This is simple—just type:

$ make

Compiling can take a while, depending on the speed of your system.

If make fails when you attempt to use a separate build directory (i.e.,
different from the source directory), then you might need to upgrade
Wk your version of the make program. A good choice is GNU make, avail-
* able from http://www.gnu.org/software/make/.

4.1.7 Install the Programs and Configuration Files

$ su
Password: *¥ddkikx
make install

The make command should be run in the same directory where the configure script
ran.

You need root privileges to install files in system directories, which is the usual
location:

4.1, Overview |

105

4.2 Installing OpenSSH

OpenSSH is a free implementation of the SSH-1 and SSH-2 protocols, obtained from
the OpenSSH web site:

http://www.openssh.com/
OpenSSH is a very complete implementation and includes:
* Client programs for remote logins, remote command execution, and secure file
copying across a network, all with many runtime options
* A highly configurable SSH server

* Command-line interfaces for all programs, facilitating scripting with standard
Unix tools (shells, Perl, etc.)

* Numerous, selectable encryption algorithms and authentication mechanisms
* An SSH agent, which caches keys for ease of use

* Support for SOCKS proxies

* Support for TCP port forwarding and X11 forwarding

* History and logging features to aid in debugging

* Example configuration files /etc/ssh/ssh_config and /etc/ssh/sshd_config

Since it is developed by the OpenBSD Project, the main version of OpenSSH is spe-
cifically for the OpenBSD Unix operating system, and is in fact included in the base
OpenBSD installation. As a separate but related effort, another team maintains a
“portable” version that compiles on a variety of Unix flavors and tracks the main
development effort. The supported platforms include Linux, Solaris AIX, IRIX, HP/
UX, FreeBSD, NetBSD, and Windows via the Cygwin compatibility library. The por-

table version carries a “p” suffix. For example, 3.9p1 is the first release of the porta-
ble version of OpenSSH 3.9.

4.2.1 Prerequisites

OpenSSH depends on two other software packages: OpenSSL and zlib. OpenSSL is a
cryptographic library available at http://www.openssl.org/; all the cryptography used
in OpenSSH is pulled from OpenSSL. zlib is a library of data-compression routines,
available at http://lwww.gzip.org/zlib/. These packages must be on your system before
you build OpenSSH.

4.2.2 Downloading and Extracting the Files

Distributions are packaged in gzipped tar format and are extracted with the tar com-
mand in the usual way. [4.1.4] The results are stored in a directory with a name like
openssh-3.9p1.

106 | Chapter4: Installation and Compile-Time Configuration

4.2.2.1 \Verifying with GnuPG

Along with each OpenSSH distribution is a GnuPG (Gnu Privacy Guard) signature.
The file openssh-3.9p1.tar.gz, for example, is accompanied by openssh-3.9p1.tar.gz.
sig containing the GnuPG signature. To verify the file is genuine, you need GnuPG
installed (http://www.gnupg.org/). Then:

1. If you have not done so previously, obtain the GnuPG public key for the distri-
bution, available from various keyservers on the Internet, such as:

http://www.keyserver.net
http://pgp.mit.edu

Add the key to your GnuPG key ring by running:
$ gpg --keyserver keyserver --search-keys openssh
and following the instructions.

2. Download both the distribution file (e.g., openssh-3.9p1.tar.gz) and the signa-
ture file (e.g., openssh-3.9p1.tar.gz.sig).

3. Verify the signature with the command:
$ gpg --verify openssh-3.9pi.tar.gz.sig openssh-3.9pi1.tar.gz
If no warning messages are produced, the distribution file is genuine.

Always check the GnuPG signatures.

4.2.3 Building and Installing

Building and installing OpenSSH follows the familiar pattern for Unix open source
software: configure, make, and make install. [4.1.6] Read the file INSTALL in the
top-level source directory for full instructions.

4.2.4 Configuration Options

OpenSSH’s configure script understands a wide range of options to customize its
operation. We cover the most significant ones.

4.2.4.1 Filelocations

--prefix Determine where to install the software

The make install command installs OpenSSH in the /usr/local hierarchy by default,
placing ssh into /usr/local/bin, sshd into /usr/local/sbin, configuration files into /usr/
localletc, and so forth. You can specify a different installation hierarchy, such as /usr,
with:

$ configure --prefix=/usr

4.2 Installing OpenSSH | 107

Other options offer more fine-grained control over installation directories, such as
--bindir for the executables normally placed in a bin directory, --sbindir for the
sbin files, --sysconfdir for the etc files, --mandir for manpages, and so on: run con-
figure --help for the full list.

--with-default-path=PATH Default server PATH
--with-superuser-path=PATH Superuser’s server PATH

You can set the default command search path for OpenSSH when attempting to run
a subprogram, and an alternative path for the superuser.

--with-ssl-dir=PATH Set path to OpenSSL installation

If OpenSSL isn’t installed in the usual place, /usr/local/ssl, use this option to indicate
its location.

--with-xauth=PATH Set path to xauth program

In OpenSSH, the default location of the xauth program for X authentication is a
compile-time parameter.

--with-pid-dir=PATH Specify location of ssh.pid file

The location of the OpenSSH pid file, where it stores the pid of the currently run-
ning daemon, can be changed via the --with-pid-dir option. The default is /var/run/

sshd.pid.

4.2.4.2 Random number generation

--with-random=FILE Read random bits from given file, normally /dev/urandom
--with-rand-helper Use external program to generate randomness

OpenSSH normally relies on the OpenSSL library to provide a stream of random bits
for its cryptographic needs. The OpenSSL pseudo-random number generator
(PRNG) needs to be “seeded” to start with, and then periodically, with an initial seg-
ment of unpredictable bits (as truly random as is available). If the operating system
supplies random bits, OpenSSL uses this to seed itself; for example, many Unix vari-
ants provide random bits via a device driver accessible through /dev/random or /dev/
urandom.

If your platform doesn’t provide any randomness source, you need to build
OpenSSH with:

configure --with-rand-helper

OpenSSH then runs the external program ssh-rand-helper to seed the PRNG.

--with-pmgd-port=PORT Read entropy from PRNGD/EGD TCP localhost:PORT
--with-pmgd-socket=FILE Read entropy from PRNGD/EGD socket FILE (default=
fvarfrun/egd-pool)

108 | Chapter4: Installation and Compile-Time Configuration

If your system is running the Entropy Gathering Daemon (EGD) package (http:/
www.lothar.com/tech/crypto/), you can use it with the --with-prngd-port and --with-
prngd-socket options.

The ssh-rand-helper program uses a configurable set of commands that monitor
changing aspects of system operation, mixing their output together to produce its
random bits. You can control which commands are used and how, with the file /etc/
ssh/ssh_prng_cmds.

--with-egd-pool=FILE Read randomness from EGD pool FILE (default none)

If you install EGD as described earlier, use the --with-egd-pool option to have
OpenSSH use EGD as its randomness source.

4.2.43 Networking
--with-ipaddr-display Use IP address instead of hostname in $DISPLAY

In X forwarding, use DISPLAY values of the form 192.168.10.1:10.0 instead of
hostname:10.0. This option works around certain buggy X libraries that do weird
things with the hostname version, using some sort of IPC mechanism for talking to
the X server rather than TCP.

--with-ipv4-default Use IPv4 unless “-6” is given
--with-4in6 Check for and convert IPv4 in IPv6 mapped addresses

OpenSSH supports IPv6, the next-generation TCP/IP protocol suite that is still in the
development and very early deployment stages on the Internet (the current version of
IP is IPv4). The default configuration of OpenSSH attempts to use [Pv6 where possi-
ble, and sometimes this results in problems. If you encounter errors mentioning
“af=10" or “address family 10,” that’s IPv6, and you should try the -4 runtime
option, or compiling --with-ipv4-default.

4.2.4.4 Authentication

--with-pam Enable PAM support
--without-pam Disable PAM support

PAM, the Pluggable Authentication Modules system, is a generic framework for
authentication, authorization, and accounting (AAA). The idea is that programs call
PAM to perform AAA functions, rather than implementing these functions them-
selves. This allows the sysadmin to configure individual programs to use various
kinds of authentication, apply account restrictions, do logging, etc., via dynamically
loaded libraries. PAM-aware services can be configured to do almost anything in the
way of AAA, in a consistent manner and without having to change the services them-
selves. See the manpage for pam or visit http://www.kernel.org/pub/linux/libs/pam/ for
more information on PAM.

4.2 Installing OpenSSH | 109

In order for OpenSSH to use PAM, the support must be compiled in. PAM is very
common these days, so most OpenSSH binary packages include support; if your’s
doesn’t, use the --with-pam option. Actually, configure detects PAM if you have it, so
the option is often not necessary.

In addition, you must set the UsePAM configuration keyword in the SSH server:

sshd_config
UsePAM yes

(This is off by default.) Setting UsePAM causes sshd to do three separate things:

* Enable the PAM “device” for keyboard-interactive authentication [5.4.6]
* Verify password authentication using PAM

* Execute all system PAM modules configured for ssh (usually found in /etc/pam.d/
ssh)

Note that the execution action is a very powerful feature; you can customize sshd’s
behavior in many ways with PAM modules. Look on your system for the PAM mod-
ules available and their documentation, e.g., /lib/security and /usr/share/doc/libpam-doc.

Generally, if a program uses PAM, some host configuration is necessary to describe
how PAM should behave for that program. The PAM configuration files are usually
in the directory /etc/pam.d, or in the single file /etc/pam.conf. Most OpenSSH pack-
ages automatically add the requisite PAM configuration for sshd; otherwise, you’ll
need to do it, usually by copying the appropriate sshd.pam file from the contrib direc-
tory to /etc/pam.d/sshd. Samples for various operating systems are included in the
contrib directory of the OpenSSH source. Note that you don’t need to restart sshd if
you change its PAM configuration; the configuration files are checked on every use of
PAM.

--with-md5-passwords Enable use of MDS5 passwords
--without-shadow Disable shadow password support

These options control OpenSSH’s treatment of the Unix account database (a.k.a.
passwd map). They are relevant only if OpenSSH isn’t using PAM, since otherwise
PAM deals with reading the account information, not the OpenSSH code proper.

Enable --with-md5-passwords if your system uses MDS5 instead of the traditional
crypt function to hash passwords, and you are not using PAM.

“Shadow passwords” refers to the practice of keeping the hashed password in a
restricted file, /etc/shadow (/etc/passwd must be world-readable). Use --without-
shadow to suppress reading of the /etc/shadow file, should it be necessary.

--with-kerberos5=PATH Enable Kerberos-5 support
--with-skey Enable S/Key support

110 | Chapter4: Installation and Compile-Time Configuration

The --with-kerberos5 option installs Kerberos support [11.4], and the --with-skey
option enables support for the S/Key one-time password system for password
authentication. [5.4.5]

4.2.4.5 Access control

--with-tcp-wrappers Include TCP-wrappers support
--without-tcp-wrappers Remove TCP-wrappers support

These options include support for TCP-wrappers, providing the path to the wrapper
library, libwrap.a. If the library and header file for TCP-wrappers are not installed in
the standard locations, you can provide a pathname as an argument. The pathname
can either be a build directory that contains both the library and header file:

$ configure --with-tcp-wrappers=/var/tmp/build/tcp-wrappers
or it can be an installation directory with lib and include subdirectories:
$ configure --with-tcp-wrappers=/usr/local/tcp-wrappers

If your Unix installation doesn’t include the TCP-wrappers library, you can retrieve
and compile it yourself from ftp:/ftp.porcupine.org/pub/security/index.html. For more
information on TCP-wrappers, read the manpages for tcpd and hosts_access.

4.3 Installing Tectia

Tectia is a commercial implementation of the SSH-2 protocol, with some limited
support for compatibility with the older (and deprecated) SSH-1 protocol. Binary
distributions can be downloaded for evaluation (with a limited license that is valid
for 30 days) from the SSH Communications Security web site:

http://www.ssh.com/

Fully licensed Tectia products, with distribution media and documentation, can be
purchased from the same web site.

Tectia is designed for deployment across large corporate networks, and offers tre-
mendous flexibility, power, and reliability. The products include:

* Client programs for remote logins, remote command execution, and secure file
copying across a network, all with many runtime options
* A highly configurable SSH server

* Command-line interfaces for all programs, facilitating scripting with standard
Unix tools (shells, Perl, etc.)

* Numerous, selectable encryption algorithms and authentication mechanisms

* An SSH agent, which caches keys for ease of use

43 Installing Tectia | 111

* Support for SOCKS proxies
* Support for TCP port forwarding and X11 forwarding
* History and logging features to aid in debugging

FIPS 140-2 certification for U.S. government applications

43.1 Prerequisites

Tectia is fully self contained, and requires no other packages if installed on one of the
supported platforms. Some configuration options require you to install other soft-
ware packages, however; these are discussed below.

4.3.2 Obtaining and Extracting the Files

Binary distributions are packaged according to the target platform, and can be
installed according to the documentation provided for each system.

Source distributions are packaged in gzipped tar format. For Version 4.1 and earlier,
the sources are included with the distribution media for the Tectia Server for Unix
product. Starting with Version 4.2, the sources are available only for commercial
licenses and only upon request, via a protected area of the SSH Communications
Security web site. No sources are provided for the Windows products.

To extract the files, use the tar command in the usual way. [4.1.4] The results are
stored in a directory with a name like ssh-4.2.1.1-commercial.

43.3 Verifying with md5sum

Binary and source distribution files are protected from tampering by MD5 message
digests. Each file is accompanied by a separate file with an extra .md5 suffix contain-
ing the digest.

To verify the integrity of the files, use the md5sum command to compute the digest,
and compare the result to the contents of the corresponding .md5 file:

$ md5sum ssh-4.1.0.34-commercial.tar.gz
0c7be85eb79e80e893d4c258d8443f0 ssh-4.1.0.34-commercial.tar.gz
$ cat ssh-4.1.0.34-commercial.tar.gz.md5
0c7be85eb79e80e893d4c258df8443f0

Here’s a brash one-liner for verification in a single step:
$ md5sum ssh-4.1.0.34-1.1386.rpm | cut -c 1-32 | cmp - ssh-4.1.0.34-1.1386.rpm.md5
If the command succeeds silently, the message digests are equal.

Unfortunately, Tectia doesn’t sign installers for binary package formats (like RPM)
that support embedded signatures. MD5 message digests are provided for these
installers, however.

112 | Chapter4: Installation and Compile-Time Configuration

43.4 Building and Installing

To build and install Tectia, use the standard steps that we have described previ-
ously: configure, make, and make install. [4.1.6] The following files are installed:

* The server program sshd2, and a link to it called sshd.

* The secure FTP server program sftp-server2, and a link to it called sftp-server.

* The clients ssh2, scp2, and sftp2, and links to them called ssh, scp, and sftp,
respectively.

* Support programs ssh-add2, ssh-agent2, ssh-askpass2, ssh-keygen2, ssh-probe2,
and ssh-signer2, and links to them called ssh-add, ssh-agent, ssh-askpass, ssh-key-
gen, ssh-probe, and ssh-signer, respectively.

* The additional support programs sshd-check-conf and ssh-dummy-shell.

* The standard crypto library libsshcrypto-std and the FIPS-compliant library
libsshcrypto-fips if supported for the target system. The library filenames will
have a platform-dependent suffix, e.g., libsshcrypto.a or libsshcrypto.so.

* The ssh-crypto-library-chooser script used to switch between standard and FIPS
mode. [5.3.5]

* The password change plugin ssh-passwd-plugin [5.4.2.3] and (if configured) the
SecurlD plugins ssh-securidv4-plugin and ssh-securidv5-plugin. [5.4.5.2]

* A newly generated host key pair, created by ssh-keygen2 and placed by default
into /etc/ssh2/hostkey (private key) and /etc/ssh2/hostkey.pub (public key).

* The server configuration file, /etc/ssh2/sshd2_config by default [5.2.1], plus sam-
ple subconfiguration files in /etc/ssh2/subconfig.

* The client configuration file, /etc/ssh2/ssh2_config by default. [7.1.2]
* The password plugin configuration file, /etc/ssh2/plugin/passwd_config. [5.4.2.3]

* Manpages for the various programs.

43.5 Configuration Options

Tectia’s configure script understands a wide variety of options to customize its opera-
tion. We cover the most significant ones.

4.3.5.1 File locations and permission

--prefix Determine where to install the software

The make install command installs Tectia in the /usr/local directory by default. Pro-
grams that are normally run by users (e.g., ssh) are installed in the bin subdirectory,
programs run by sysadmins (e.g., sshd) in the sbin subdirectory, manpages in the

43 Installing Tectia | 113

man subdirectory, etc. Use the --prefix option to specify a different parent direc-
tory, such as /usr/local/tectia:

$ configure --prefix=/usr/local/tectia

If your system uses an unusual layout for specific subdirectories, options such as
--bindir, --sbindir, and --mandir allow more precise control over the location of
individual components. The configure --help command lists all of the options for the
subdirectories.

--with-foreign-etcdir Specify directory for system configuration files
--with-etcdir Specify directory for Tectia configuration files

By default, Tectia assumes that the standard location for system configuration files is
the /etc directory, and installs its own configuration files in a subdirectory, /etc/ssh2.
To change the system configuration directory (continuing to use an ssh2 subdirec-
tory for Tectia’s files by default), use the --with-foreign-etcdir option:

$ configure --with-foreign-etcdir=/usr/local/etc

To independently change Tectia’s configuration directory, use the --with-etcdir
option:

$ configure --with-etcdir=/usr/local/etc/ssh2
--with-piddir Specify directory for pid files

The Tectia server stores its process ID (pid) in a file to facilitate sending signals.
[5.3.1.3] By default, the pid file is created in the /var/run directory. Use the --with-
piddir option to change this directory:

$ configure --with-piddir=/var/local/pid

R
s

o0 The --with-foreign-etcdir, --with-etcdir, and --with-piddir options
!.s’.\ are unusual because there are no corresponding “--without” options.
T
--enable-suid-ssh-signer Install ssh-signer setuid root

--disable-suid-ssh-signer Install ssh-signer unprivileged

Tectia uses a separate ssh-signer program to sign authentication packets for trusted-
host authentication. Normally this program is installed with setuid root permissions
so it can read the local host key file, which is readable only by the superuser.

You can install the program without setuid root permissions to eliminate possible
security holes, but then hostbased authentication fails. [3.4.3.6]

4.3.5.2 Random number generation

--with-ansi-rng Use ANSI X9.62 random number generator
--without-ansi-rng Use SSH random number generator

114 | Chapter4: Installation and Compile-Time Configuration

Tectia uses its own random number generator by default. The --with-ansi-rng
option configures Tectia to use the ANSI X9.62 random number generator (a.k.a. the
Elliptic Curve Digital Signature Algorithm, or ECDSA) instead. This might be
required for FIPS-standard compliance in some deployments.

4.3.5.3 Networking

--with-ipvé Include IPv6 support
--without-ipv6 Remove IPv6 support

Tectia supports IPv6, the next generation of IP protocols, in addition to IPv4, the
current standard. You can remove IPv6 support if you don’t need it or if you experi-
ence problems with it on your operating system.

--enable-tcp-nodelay Enable Nagle Algorithm
--disable-tcp-nodelay Disable Nagle Algorithm

If you plan to operate Tectia over a wide-area network as opposed to a speedy Ether-
net connection, you might consider disabling TCP/IP’s NODELAY feature, a.k.a. the
Nagle Algorithm, for SSH connections. The Nagle Algorithm reduces the number of
TCP segments sent with very small amounts of data, such as the small byte sequences
of a terminal session. You can disable it at compile time with the --disable-tcp-
nodelay flag. Alternatively, you can enable or disable it during serverwide configura-
tion using the NoDelay configuration keyword. [5.3.3.9]

--with-libwrap Include TCP-wrappers support
--without-libwrap Remove TCP-wrappers support

TCP-wrappers is a security feature for applying access control to incoming TCP con-
nections based on their source address. [9.5] For example, TCP-wrappers can verify
the identity of a connecting host by performing DNS lookups, or it can reject connec-
tions from given addresses, address ranges, or DNS domains. Although Tectia
already includes some of this kind of control with features such as AllowHosts,
DenyHosts, etc., TCP-wrappers is more complete. It allows some controls not cur-
rently implemented in any SSH version, such as restricting the source of forwarded X
connections.

Tectia includes support for TCP-wrappers if the flag --with-1libwrap is given at com-
pile time. If the TCP-wrappers library and header file were not installed in the stan-
dard locations, provide a pathname as an argument. The pathname can refer to the
library in a build directory:

$ configure --with-libwrap=/var/tmp/build/tcp-wrappers/libwrap.a

in which case the tcpd.h header file is assumed to be located in the same directory.
Alternately, the pathname can refer to the directory where the library was installed:

$ configure --with-libwrap=/usr/local/lib

43 Installing Tectia | 115

in which case the tcpd.h header file is assumed to be in a directory with its last com-
ponent replaced by “include” (for the previous command, /usr/local/include).

If your Unix installation doesn’t include the TCP-wrappers library, you can retrieve
and compile it yourself from:

ftp://ftp.porcupine.org/publ/security/index.html

For more information on TCP-wrappers, read the manpages for tcpd and hosts_
access.

--with-ssh-connection-limit Specify maximum number of simultaneous
connections

You can instruct Tectia to limit the maximum number of simultaneous connections
it supports. By default, it accepts an unlimited number of connections, but if you
want to conserve resources on the server machine, you can set a limit. The appropri-

ate flag is --with-ssh-connection-limit with a nonnegative integer argument; for
example:

$ configure --with-ssh-connection-1limit=50

You can override this value at runtime with the serverwide configuration keyword
MaxConnections. [5.3.3.7]

4.3.5.4 XWindow System

--with-x Include X Window System support
--without-x Remove X Window System support

If you plan to use SSH to communicate between hosts running the X Window Sys-
tem, make sure to include support for X at compile time. (By default, it is included.)
Conversely, if you never have anything to do with X, you can leave out the support,
thereby saving some memory and disk space. Few people have a strong need to elim-
inate X support.

--enable-X11-forwarding Enable X forwarding
--disable-X11-forwarding Disable X forwarding

These options enable or disable support for X forwarding, which allows X applica-
tions opened on the SSH server machine to appear on the SSH client machine’s dis-
play. [9.4] These flags set Tectia’s default behavior only. X forwarding can be further
enabled or disabled through serverwide configuration using the ForwardX11 configu-
ration keyword. [9.4.3]

--with-x11-security Use the X SECURITY extension
--without-x11-security Don’t use the X SECURITY extension

By default, Tectia uses the X SECURITY extension (if supported by your X installa-
tion) to control the level of display access granted to X clients through forwarded

116 | Chapter4: Installation and Compile-Time Configuration

connections. The --without-x11-security option causes Tectia to treat all X clients
as trusted, which grants full access to the display. Trusted X clients can use their dis-
play access to capture information from other clients, so you should carefully con-
sider the ramifications of disabling the X SECURITY extension.

4.3.5.5 TCP port forwarding

--enable-tcp-port-forwarding Enable port-forwarding support
--disable-tcp-port-forwarding Disable port-forwarding support

Port forwarding enables Tectia to encrypt the data passing through any TCP/IP-
based program. [9.2] This feature can be disabled at compile time if desired. X Win-
dow forwarding isn’t affected by these general port-forwarding flags.

4.3.5.6 Encryption

--with-rsa Include support for RSA encryption
--without-rsa Remove support for RSA encryption

By default, Tectia includes an implementation of the RSA encryption algorithm for
public-key authentication. [3.8.1.1] You can remove support for RSA if you’ll never
need it. The option was formerly used to avoid infringing a patent that expired in
2000. Now that the algorithm is in the public domain, it is rarely desirable to remove
RSA support.

4.3.5.7 Authentication

--with-passwd-plugin Include support for password-change plugins
--without-passwd-plugin Remove support for password-change plugins

Tectia can run a separate password-change plug-in program to manage the process
of changing expired passwords during authentication. [5.4.2.3] The configuration
option --with-passwd-plugin includes support for this mechanism in the server, and
also builds a generic plugin named ssh-passwd-plugin. The option --without-passwd-
plugin can be used to remove these features if they are not needed.

--enable-server-kbd-interactive Include support for keyboard-interactive
authentication in the server

--disable-server-kbd-interactive Remove support for keyboard-interactive
authentication from the server

--enable-client-kbd-interactive Include support for keyboard-interactive
authentication in the client

--disable-client-kbd-interactive Remove support for keyboard-interactive
authentication from the client

Keyboard-interactive authentication is an extensible, general-purpose mechanism for
implementing a variety of authentication techniques that require interaction with the

43 Installing Tectia | 117

remote user. Support for keyboard-interactive authentication is included by default,
but it can be removed from the Tectia server and client using separate configure
options.

Note that other authentication techniques such as SecurID and PAM are based on
keyboard-interactive authentication, so if you remove support for it, these tech-
niques will not work.

--with-serversecurid Include support for SecurID authentication

SecurID is an authentication mechanism in which users carry electronic cards,
approximately the size of a credit card, that display randomly changing integers.
During authentication, the user is prompted to type whatever number appears on the
card at the time, in addition to a username and password.

To compile Tectia with SecurID support, use the flag --with-serversecurid, provid-
ing the path to the directory containing SecurID’s header files and libraries:

$ configure --with-serversecurid=/usr/local/ace
SecurlDv5 is the most recent version at press time.

--enable-serversecurid-submethod Include SecurID support in the server
--disable-serversecurid-submethod Use an external plugin for SecurID support

By default, SecurID support is built into the Tectia server, and is used as a keyboard-
interactive submethod. Alternately, SecurID can be supported by an external pro-
gram, ssh-securidv5-plugin. [5.4.5.2]

--with-serversecuridv4 Include support for SecurIDv4 plugin
authentication

Support for the older SecurIDv4 can be included by specifying the --with-
serversecuridv4 option. The SecurIDv4 installation directory must be provided as
an argument:

$ configure --with-serversecuridv4=/usr/local/ace4
--enable-legacy-securid Include support for old SecurID clients

Very old SecurID clients can be supported by a legacy securid-1@ssh.com keyboard-
interactive submethod.

--with-daemonpam Include support for PAM authentication in
the server

--without-daemonpam Remove support for PAM authentication
from the server

--with-clientpam Include support for PAM authentication in
the client

--without-clientpam Remove support for PAM authentication

from the client

118 | Chapter4: Installation and Compile-Time Configuration

Normally PAM support is included for both the SSH server and client if it is pro-
vided by the target system. This support can be removed using separate options for
the server or client, but it is rarely desirable to do so.

--with-daemon-pam-service-name Specify PAM service name

By default, Tectia uses “sshd2” as the PAM service name: this refers to Tectia in the
PAM configuration files. You can change the name by providing it as an argument
for the --with-daemon-pam-service-name option:

$ configure --with-daemon-pam-service-name=tectia

--with-pgp Include support for PGP authentication
--without-pgp Remove support for PGP authentication

Pretty Good Privacy, or PGP, is a popular encryption and authentication program
available for many computing platforms. [1.6.2] Tectia optionally authenticates users
based on their PGP keys, so long as those keys comply with the OpenPGP standard
(RFC-2440, “OpenPGP Message Format”; some PGP versions, especially older ones,
might not be OpenPGP-compliant). PGP support is included by default. [6.5]

--with-kerbeross Include support for Kerberos-5 authentication
--without-kerbeross Remove support for Kerberos-5 authentication

Kerberos is an authentication mechanism that passes around tickets, small sequences
of bytes with limited lifetimes, in place of user passwords. [11.5.2.2] The configura-
tion flags --with-kerberos5 and --without-kerbeross control whether Kerberos sup-
port is included or excluded during the build. Tectia’s Kerberos-5 support is
experimental, and is not included by default.

If Kerberos was installed in a nonstandard location, the installation directory can be
provided as an argument:

$ configure --with-kerberos5=/usr/local/kerberos5

--with-gssapi Include support for GSSAPI authentication
--without-gssapi Remove support for GSSAPI authentication

GSS (Generic Security Services) is an emerging standard that facilitates negotiation of
security parameters among a wide variety of platforms. [11.5.2.2] Tectia can be com-
piled to use GSSAPI libraries and header files to support this standard. If the GSSAPI
installation is in a nonstandard location, specify the directory (with lib and include
subdirectories) as an argument for the --with-gssapi option:

$ configure --with-gssapi=/usr/local/gssapi

--enable-gssapi-dynamic Enable dynamic loading of GSSAPI libraries
--disable-gssapi-dynamic Force static linking of GSSAPI libraries

43 Installing Tectia | 119

By default, GSSAPI libraries are linked statically into the SSH server and client. The
libraries can optionally be loaded dynamically at runtime: this allows new security
mechanisms to be added by replacing the libraries, without recompiling Tectia.

4.3.5.8 SOCKS proxies
--with-socks-server Specify default SOCKS server

SOCKS is a network protocol for proxies. A proxy is a software component that mas-
querades as another component to hide or protect it. For example, suppose a com-
pany permits its employees to surf the Web but doesn’t want the hostnames of its
internal machines to be exposed outside the company. A proxy server can be inserted
between the internal network and the Internet so that all web requests appear to be
coming from the proxy. In addition, a proxy can prevent unwanted transmissions
from entering the internal network, acting as a firewall.

Tectia supports both Versions 4 and 5 of the SOCKS protocol,” and no external
library or special configuration options are needed. The SOCKS feature is controlled
by the SocksServer client configuration keyword. [7.4.7] In addition to the usual
methods of setting this in a configuration file or on the command line with -0, you
can also set it using the SSH_SOCKS_SERVER environment variable.

SocksServer has an empty default value, causing Tectia to assume there’s no SOCKS
server. The configuration flag --with-socks-server gives nonempty default value to
this parameter, allowing you to set up a Tectia installation that assumes the pres-
ence of a SOCKS server. Note that this isn’t the same as using the SocksServer key-
word in the global client configuration file, because the keyword overrides the
environment variable. If you use the compilation option, users can specify an alter-
nate SOCKS server with SSH SOCKS SERVER; if you use the global file, they can’t
(although they can still override using their own SocksServer directive).

See http://www.socks.permeo.com/ for more information on SOCKS. [7.4.7]

43.5.9 Debugging

--enable-debug Enable light debugging
--disable-debug Disable light debugging
--enable-debug-heavy Enable heavy debugging
--disable-debug-heavy Disable heavy debugging

Tectia programs (both the server and client) produce detailed debugging output on
demand. [5.9] If desired, Tectia can be compiled with or without two levels of
debugging output. Without the debugging code, the programs might experience a

* Except for SOCKSS5 authentication methods.

120 | Chapter4: Installation and Compile-Time Configuration

slight increase in performance, but with it, the programs are easier to maintain. We
recommend including at least some debugging code, because you never know when
you’ll need to diagnose a problem.

“Light” and “heavy” debugging are two levels of debugging that you can specify in the
source code. Light debugging output is controlled by the configure flags --enable-
debug and --disable-debug (the default). Heavy debugging output is controlled by the
configure flags --enable-debug-heavy and --disable-debug-heavy (the default). Heavy
debugging automatically enables light debugging. We recommend turning on heavy
debugging or else the messages will contain too little information to be useful.

--enable-efence Use the Electric Fence memory allocation
debugger

Tectia’s memory allocations can be tracked by Electric Fence, a freely distributable

memory allocation debugger created by Bruce Perens. You must have Electric Fence
installed on the server machine in order for this to work.

The --enable-efenceflag causes Tectia’s programs to be linked with the Electric Fence
library, libefence.a, which provides instrumented versions of malloc(), free(), and
other memory-related functions. Electric Fence is available from http://www.perens.
com/FreeSoftwarel.

--with-purify Use Rational Purify to track memory accesses

Rational Purify is a commercial product that supports tracking of memory accesses at
runtime. It is able to detect memory leaks and corruption due to buffer overruns, etc.

The --with-purify flag includes support for Rational Purify. When the Tectia pro-
grams run, they produce a report about memory activity that can be analyzed after
each program exits.

Rational Purify is available from hitp://www.ibm.com/software/awdtools/purify/.

4.3.5.10 SSH-1 protocol compatibility

--with-internal-sshi-compat Include SSH-1 protocol support in the client
--without-internal-sshi-compat Remove SSH-1 protocol support from the client

The Tectia SSH client can support the older (and deprecated) SSH-1 protocol by run-
ning a separate client program named ssh1, which must be installed separately. [5.10]
By default, the Tectia SSH client also supports SSH-1 directly using its own imple-
mentation. If you don’t use the SSH-1 protocol, use the --without-internal-sshi-
compat option to remove the internal SSH-1 support and save some space in the client.

--with-ssh-agent1-compat Include SSH-1 protocol support in the agent
--without-ssh-agent1-compat Remove SSH-1 protocol support from the agent

43 Installing Tectia | 121

SSH agents [2.5] that use the protocols SSH-1 and SSH-2 are normally not compati-
ble. That is, each version of the agent can’t store keys or forward connections from
the other. However, the Tectia agent has an optional feature to serve SSH-1 protocol
applications, if it is run with the option -1 (that’s a one, not a lowercase L).

SSH-1 protocol support is included in the Tectia agent by default, but you can use
the --without-ssh-agent1-compat option to remove it if you never plan to use SSH-1
clients.

RSA support must be included (either by default, or using the --with-rsa configure
option) for the agent to support the SSH-1 protocol.

43.6 SSH-1 Compatibility Support for Tectia

The Tectia server only supports the SSH-2 protocol, but it can be configured to run a
separate SSH-1 server to support clients that are still using the older protocol. [5.10]
The Tectia client can similarly run a separate SSH-1 client program, or it can use its
own internal SSH-1 implementation.

If separate SSH-1 programs are used, they must be obtained and installed. OpenSSH
is a good choice for SSH-1 client support, but for SSH-1 server support, only ver-
sions earlier than 3.7 can be used.

An alternative is the latest SSH1 implementation, which is quite old and (even worse)
is no longer being actively maintained, but at least is designed to be integrated seam-
lessly with Tectia.

To install SSH1, download the tar file and associated signature file from ftp:/ftp.ssh.
com/pub/ssh/. At press time, these were ssh-1.2.33.tar.gz and ssh-1.2.33.tar.gz.sig,
respectively.

To verify the signature, you also need to download the key, in the file SSHI-
DISTRIBUTION-KEY-RSA.asc. Import the key into your key ring:

$ gpg --import SSH1-DISTRIBUTION-KEY-RSA.asc
Then check the integrity of the tar file:
$ gpg --verify ssh-1.2.33.tar.gz.sig

Extract the files from the tar file in the usual way to create a source directory named
ssh-1.2.33. [4.1.4]

Run the configure script. We won’t go over its options because they are obsolete for
the most part, and because fancy features are presumably not needed (or even desir-
able) if SSH1 is only going to be employed as part of a transition strategy until older
SSH-1 clients can be upgraded to use SSH-2. You can, however, remove unneeded
features to prevent them from being exploited if any security holes are lurking in the
code (which becomes increasingly likely as the software continues to age). As usual,
see the output from configure --help for details.

122 | Chapter4: Installation and Compile-Time Configuration

You can install SSH1 in the same directory as Tectia using the same configure --prefix
option for each. [4.1.5] Finally, compile everything with make, and install (typically as
root) with make install. [4.1.6] The following files are installed:

* The server program, sshdl, and a link to it called sshd
* The clients ssh1 and scp1, and respective links called ssh and scp

* The symbolic link sloginl, pointing to ssh1, and likewise a link called slogin
pointing to sloginl

* Support programs ssh-addl, ssh-agent1, ssh-askpass1, and ssh-keygenl, and links
to them called ssh-add, ssh-agent, ssh-askpass, and ssh-keygen, respectively

* The support program make-ssh-known-hosts

* A newly generated host key pair, created by ssh-keygenl and placed by default
into /etc/ssh/ssh_host_key (private key) and /etc/ssh/ssh_host_key.pub (public key)

* The server configuration file, /etc/ssh/sshd_config by default [5.2.1]
* The client configuration file, /etc/ssh/ssh_config by default [7.1.2]

* Manpages for the various programs

Notice that SSH1 and Tectia create some files with the same names, such as the link
sshd. What happens if you install both SSH1 and Tectia on the same machine? Hap-
pily, everything works out, even if you install the two products into the same bin and
etc directories, provided you install the most recent versions. Each of their Makefiles is
constructed to check for the existence of the other version and respond appropriately.”

Specifically, both SSH1 and Tectia create symbolic links called sshd, ssh, scp, ssh-add,
ssh-agent, ssh-askpass, and ssh-keygen. If you install SSH1 and then Tectia, the Tec-
tia Makefile renames these files by appending the suffix .old and then creates new
symbolic links pointing to its own Tectia programs. For instance, ssh originally
points to sshl; after installing Tectia, ssh points to ssh2, and ssh.old points to sshl.
This is appropriate since Tectia is considered a later version than SSH1.

On the other hand, if you install Tectia and then SSH1, the SSH1 Makefile leaves
Tectia’s links untouched. As a result, ssh remains pointing to ssh2, and no link points
to ssh1. This is consistent with the practice of installing SSH1 to allow Tectia to pro-
vide fallback SSH1 support.

You need to set up the SSH1 configuration files in addition to the Tectia configura-
tion files, and then keep them synchronized. [5.10.1]

* Installers for Tectia binary distributions behave the same way when integrating with SSH1 installations.

43 Installing Tectia | 123

4.4 Software Inventory

Table 4-1 provides a reference to the many files and programs installed with SSH.

Table 4-1. Software inventory

Component
Server config
Global client config
Host private key
Host public key
Client host keys

Remote host keys
libwrap control files

Authorization for login via public key

Authorization for login via trusted host

Default key pair for public-key
authentication

Random seed

Commands for generating randomness

Terminal client

Secure file copy client
Signer program
sftp2/scp2 server
Authentication agent
Key generator

Key add/remove

OpenSSH
/etc/ssh/sshd_config
/etc/ssh/ssh_config

/etc/ssh/ssh_host_dsa_key
/etc/ssh/ssh_host_dsa_key.pub

/etc/ssh/ssh_known_hosts
~/.ssh/known_hosts
~/.ssh/known_hosts
/etc/hosts.allow
/etc/hosts.deny
~/.ssh/authorized_keys

/etc/hosts.equiv
/etc/shosts.equiv
~/.shosts

~/.rhosts
SSH-2/RSA:
~/.ssh/id_rsaf.pub}
SSH-2/DSA:
~/.ssh/id_dsa{.pub}
~/.ssh/prng_seeda

/Jetc/ssh/ssh_prng_cmds
ssh

slogin link to ssh

sp

ssh-keysign

sftp-server

ssh-agent

ssh-keygen

ssh-add

Tectia
/etc/ssh2/sshd2_config
/etc/ssh2/ssh2_config
/etc/ssh2/hostkey
/etc/ssh2/hostkey.pub
/etc/ssh2/hostkeys
~/.ssh2/hostkeys/*
~/.ssh2/knownhosts/*
/etc/hosts.allow
/etc/hosts.deny
~/.ssh2/authorization

/etc/hosts.equiv
/etc/shosts.equiv
~/.shosts
~/.rhosts

(No default)

~/.ssh2/random_seed
/etc/ssh2/random_seed

ssh2b

scp2b
ssh-signer2b
sftp-server2b
ssh-agent2b
ssh-keygen2b
ssh-add2b

124 | Chapter4: Installation and Compile-Time Configuration

Table 4-1. Software inventory (continued)

Component OpenSSH Tectia
Find SSH servers ssh-keyscan ssh-probe2b
Get passphrase via terminal or X ssh-askpass ssh-askpass2b

x11-ssh-askpass

Server program sshd sshd2b

a Present only if using OpenSSH’s internal entropy-gathering mechanism (i.e., no /dev/random or equivalent on system).
b A symbolic link without the “2” suffix is also installed.

4.5 Replacing r-Commands with SSH

SSH and the r-commands (rsh, rcp, rlogin) can coexist peacefully on the same
machine. Since the r-commands are insecure, however, system administrators should
replace them by their SSH counterparts (ssh, scp, slogin). This replacement has two
parts:

* Installing SSH and removing rsh, rcp, and rlogin; requires some user retraining
* Modifying other programs or scripts that invoke the r-commands
The r-commands are so similar to their analogous SSH commands, you might be

tempted to rename the SSH commands as the r-commands (e.g., rename ssh as rsh,
etc.). After all, common commands like these are practically identical in syntax:

$ rsh -1 jones remote.example.com
$ ssh -1 jones remote.example.com

$ rcp myfile remote.example.com:

$ scp myfile remote.example.com:
Why not just rename? Well, the two sets of programs are incompatible in some
ways. For example, some old versions of rcp use a different syntax for specifying
remote filenames.

In the following sections, we discuss some common Unix programs that invoke the r-
commands and how to adapt them to use SSH instead.

4.5.1 Concurrent Versions System (CVS)

CVS is a version-control system. It maintains a history of changes to sets of files, and
helps coordinate the work of multiple people on the same files. It can use rsh to con-
nect to repositories on remote hosts. For example, when you check in a new version
of a file:

$ cvs commit myfile

if the repository is located on a remote machine, CVS can invoke rsh to access the
remote repository. For a more secure solution, CVS can run ssh instead of rsh. Of

4.5 Replacing r-Commands withSSH | 125

course, the remote machine must be running an SSH server, and if you use public-
key authentication, your remote account must contain your key in the appropriate
place.”

To make CVS use ssh, simply set the environment variable CVS RSH to contain the
path to your ssh client:

Bourne shell family

Put in ~/.profile to make permanent.
CVS_RSH=/usr/bin/ssh

export CVS_RSH

C shell family
Put in ~/.login to make permanent.
setenv CVS_RSH /usr/bin/ssh

This approach has one problem: each time you check in a file, the logger’s name is
the remote account owner, which might not be your own. The problem is solved by
manually setting the remote LOGNAME variable using the environment option in your
remote authorized_keys file. [8.2.5.1]

4.5.2 GNUEmacs

The Emacs variable remote-shell-program contains the path to any desired program
for invoking a remote shell. Simply redefine it to be the full path to your ssh execut-
able. Also, the rlogin package, rlogin.el, defines a variable rlogin-program you can
redefine to use slogin.

4.5.3 Pine

The Pine mail reader uses rsh to invoke mail-server software on remote machines.
For example, it might invoke the IMAP daemon, imapd, on a remote mail server.
Another program can be substituted for rsh by changing the value of a Pine configu-
ration variable, rsh-path. This variable holds the name of the program for opening
remote shell connections, normally /usr/bin/rsh. A new value can be assigned in an
individual user’s Pine configuration file, ~/.pinerc, or in the systemwide Pine configu-
ration file, typically /usr/local/lib/pine.conf. For example:

Set in a Pine configuration file
rsh-path=/usr/local/bin/ssh

A second variable, rsh-command, constructs the actual command string to be exe-
cuted for the remote mail server. The value is a pattern in the style of the C function
printf(). Most likely, you won’t need to change the value because both rsh and ssh
fit the default pattern, which is:

"%s %s -1 %s exec /etc/rksd"

* CVS also has a remote-access method involving its own server, called pserver. This mechanism can be
secured using SSH port forwarding instead; read Chapter 9 for the general technique.

126 | Chapter4: Installation and Compile-Time Configuration

The first three “%s” pattern substitutions refer to the rsh-path value, the remote
hostname, and the remote username. (The fourth forms the remote mail daemon
name, which doesn’t concern us.) So, by default, if your username is alice and the
remote mail server is mail.example.com, rsh-command evaluates to:

/usr/bin/rsh mail.example.com -1 alice ...
By changing the rsh-path, it becomes instead:
/usr/local/bin/ssh mail.example.com -1 alice ...

As we said, you probably don’t need to do anything with rsh-command, but just in
case, we’ve included it for reference. We present a detailed case study of integrating
Pine and SSH later. [11.3]

4.5.4 rsync, rdist

rsync and rdist are software tools for synchronizing sets of files between different
directories on the same machine or on two different hosts. Both can call rsh to con-
nect to a remote host, and both can easily use SSH instead: simply set the RSYNC_RSH
environment variable or use the —e command-line option for rsync, and use the —P
option with rdist. rsync with SSH is a particularly simple and effective method to
securely maintain remote mirrors of whole directory trees.

4.6 Summary

OpenSSH and Tectia can be tailored in various ways by compile-time configuration
with the configure script. We’ve covered the SSH-specific flags, but remember that
other operating-system-specific flags might also apply to your installation, so be sure
to read the installation notes supplied with the software.

Once installed, SSH software can replace the insecure r-commands on your Unix sys-
tem, not only when run directly, but also within other programs that invoke rsh,
such as Emacs and Pine.

4.6 Summary | 127

CHAPTER 5
Serverwide Configuration

After installing an SSH server (sshd),” it’s time to make informed decisions about
your server’s operation. Which authentication techniques should be permitted? How
many bits should the server key contain? Should idle connections be dropped after a
time limit or left connected indefinitely? These and other questions must be consid-
ered carefully. sshd has reasonable defaults, but don’t accept them blindly. Your
server should conform to a carefully planned security policy. Fortunately, sshd is
highly configurable, so you can make it do all kinds of interesting tricks.

This chapter covers serverwide configuration, in which a system administrator con-
trols the global runtime behavior of the SSH server. This includes a large, rich set
of features, such as TCP/IP settings, encryption, authentication, access control,
and error logging. Some features are controlled by modifying a serverwide configu-
ration file, and others by command-line options passed to the server at invocation.

Serverwide configuration is just one of three levels for controlling the behavior of
SSH servers. The other two levels are compile-time configuration (Chapter 4), in
which the server is compiled with or without certain functionality; and per-account
configuration (Chapter 8), in which the server’s behavior is modified by end users for
their accounts only. We'll discuss the distinction between the three levels in more
detail later. [5.2]

This chapter covers only the OpenSSH and Tectia servers, focusing on the Unix
implementations (including Unix variants such as Linux and OpenBSD). We’ve tried
to indicate which features are present or absent in each flavor of sshd, but these will
certainly change as new versions appear, so read each product’s documentation for
the latest information.

* Tectia’s server might also be named sshd2, with sshd being a symbolic link to sshd2. See the upcoming side-
bar “Tectia’s File-Naming Conventions.”

128

5.1 Running the Server

Ordinarily, an SSH server is invoked when the host computer is booted, and it is left
running as a daemon. This works fine for most purposes. Alternatively, you can
invoke the server manually. This is helpful when you’re debugging a server, experi-
menting with server options, or running a server as a nonsuperuser. Manual invoca-
tion requires a bit more work and forethought but might be the only alternative for
some situations.

Most commonly, a computer has just one SSH server running on it. It handles multi-
ple connections by spawning child processes, one per connection.” You can run mul-
tiple servers if you like: for example, two copies of sshd listening on different TCP
ports, or even several versions of sshd at once.

5.1.1 Running sshd as the Superuser

The SSH server is invoked by simply typing its name:
$ sshd

The server automatically runs in the background, so no ampersand is required at the
end of the line.

To invoke the server when the host computer boots, add appropriate lines to an
appropriate startup file on your system, such as /etc/rc.local on Linux. For example:

Specify the path to sshd.

SSHD=/usr/local/sbin/sshd

If sshd exists and is executable, run it and echo success to the system console.

if [-x "$SSHD"]

then

$SSHD && echo 'Starting sshd'

fi
Both OpenSSH and Tectia come with a startup or boot script (i.e., a System-V-style
init control script) found in the appropriate directory for each Unix variant. For
Linux, for example, the scripts are /etc/init.d/sshd for OpenSSH and /etc/init.d/sshd2
for Tectia.t

5.1.2 Running sshd as an Ordinary User
Any user can run sshd if several steps are completed beforehand:

1. Get permission from your system administrator.

2. Generate a host key.

* Or sshd can be invoked by inetd, creating one sshd process per connection. [5.3.3.2]
1 OpenSSH also includes /usr/sbin/rcsshd, a symbolic link to the startup script in /etc/init.d.

5.1 Running the Server | 129

Tectia’s File-Naming Conventions

At first glance, Tectia’s filenames might seem rather inconsistent, but actually they fol-
low conventions designed for flexibility and ease of use:

* Most filenames contain a “2” suffix, e.g., sshd2. These filenames distinguish the
SSH-2 protocol implementation provided by Tectia from other implementations
(e.g., OpenSSH). As a result, you could install SSH-1 protocol programs (not
provided by Tectia) with filenames containing a “1” suffix, even in the same
directories used by Tectia, without conflicts.

* Tectia installs symbolic links so that you can omit the “2” suffix when referring
to programs, manpages, etc. For example, there’s a symbolic link sshd pointing
to sshd2. You can set up search paths so that Tectia is the preferred implementa-
tion, hiding other implementations that might be installed in other directories.

* On platforms like Microsoft Windows that don’t support symbolic links, the
program names all have the “2” suffix.

There are a few exceptions:

* Configuration files that live (at least by default) in fixed locations use only file-
names with the “2” suffix, e.g., /etc/ssh2 or ~/.ssh2, with no corresponding sym-
bolic links. This avoids confusing other SSH implementations that refer to
similar locations without the “2” suffix (e.g., /etc/ssh or ~/.ssh).

* Files unique to Tectia have only filenames that omit the “2” suffix. Strictly
speaking, the “2” suffix is unnecessary in this case, but the convention is unfor-
tunate, because it sometimes leads to unexpected filename comparisons. For
example, the Tectia program for verifying sshd2 configuration files is called sshd-
check-conf, even though the default files it checks are named /etc/ssh2/sshd2_
config and ~/.ssh2/sshd2_config. [5.2.2]

3. Select a port number.

4. Create a server configuration file (optional but strongly recommended).

Before starting, ask your system administrator if you may run an SSH server. While
this isn’t necessary from a technical standpoint, it is a wise idea. An administrator
might not appreciate your creating a new avenue for logins behind his back. Like-
wise, if the administrator has disabled SSH or certain SSH features, there’s probably
a good security reason and you shouldn’t just work around it!

Next, generate your own host key. Any other existing host key is probably readable
only by the superuser. Host keys are generated with the program ssh-keygen. [6.2]
For now, to create a 1024-bit DSA host key and store it in the file ~/myserver/hostkey,
type the following for OpenSSH:

OpenSSH: Note the -N value is two single quotes, not a double-quote
$ ssh-keygen -N '' -b 1024 -t dsa -f ~/myserver/hostkey

130 | Chapter5: Serverwide Configuration

This command generates the files hostkey and hostkey.pub in the directory ~/myserver
(so make sure the directory exists). Here’s the analogous command for Tectia:

Tectia

$ ssh-keygen -P -b 1024 -t dsa ~/myserver/hostkey
The —N (OpenSSH) and —P (Tectia) options cause the generated key to be left unen-
crypted because sshd expects to read it without a passphrase.

Third, select a port number on which the SSH server listens for connections. The
port number is set with the —-p command-line option of sshd or the Port keyword in
the configuration file, as we discuss later. Your server can’t listen on port 22, the
default, because only the superuser may run processes to listen on that port. Your
port number must be greater than or equal to 1024, as lower port numbers are
reserved by the operating system for use by privileged programs. [3.4.3.6] The port
number also must not conflict with those in use by other programs on the server
computer; if it does, you get an error message when you try to start the server:

error: bind: Address already in use

If you receive this error, try another integer in the free range (above 1024). Avoid
numbers mentioned in the computer’s services map (usually /etc/services or the Net-
work Information Service [NIS] “services” map, which you can view with the Unix
command ypcat —k services). These numbers have been designated by the system
administrator for use with particular programs or protocols, so you might cause trou-
ble if you steal one. The command netstat -a lists all ports in use; add the —n option to
see numeric values for the ports instead of service names.

Finally, create your own SSH server configuration file. Otherwise, your server will
use built-in defaults or a systemwide configuration file (if one exists) and might not
operate as you intend.

Assuming you have generated a host key in ~/myserver/hostkey, selected the port
number 2345, and created a configuration file in ~/myserver/config, the server is
invoked with the command:

$ sshd -h ~/myserver/hostkey -p 2345 -f ~/myserver/config
A server run by an ordinary user has some disadvantages:

* It runs under the uid of the ordinary user, not root, so it can connect only to that
user’s account.

* It is invoked manually, rather than automatically when the computer boots. As a
result, to run the server, you must connect once without SSH to the computer.
And each time the computer is rebooted, the server dies, and you need to redo
this step. Conceivably you can set up a cron job to keep it running automatically.

* While setting up a server, consider running it in debug mode and reading the
diagnostic messages it prints, in case something isn’t working right. By default,
your server’s log messages are written to the system log files, which you don’t

5.1 Running the Server | 131

own and possibly can’t access. This is because sshd does its logging via the sys-
log service; ordinary users can’t control where the log messages are sent, usually
/varladm/messages, /var/log/messages, or someplace else depending on how sys-
logd is set up, and you need appropriate permissions to read these files. Running
the server in debug mode gets around this annoyance. Messages will appear on
your terminal (as well as in the system logs). [5.9] This way, you can more easily
see error messages until you get the server working.

Nevertheless, for many users, the advantages of SSH outweigh these inconveniences.
Assuming your system administrator approves, you can secure your logins with sshd
even if you aren’t a superuser.

5.2 Server Configuration: An Overview

As mentioned at the beginning of the chapter, the behavior of the server, sshd, may
be controlled at three levels:

Compile-time configuration (Chapter 4) is accomplished when sshd is built. For
example, a server may be compiled with or without support for rhosts authenti-
cation.

Serverwide configuration, the subject of this chapter, is performed by a system
administrator and applies to a running instance of the server. For instance, an
administrator may deny SSH access by all hosts in a given domain or make the
server listen on a particular port.

Serverwide configuration may depend on compile-time configuration. For exam-
ple, a server’s hostbased authentication options work only if the server is com-
piled with hostbased authentication support included. Otherwise, the options
have no effect. We identify such dependencies throughout the book. Figure 5-1
highlights the serverwide configuration tasks.

Per-account configuration (Chapter 8) is performed by the end user, specifically,
the owner of the account to which an SSH connection has been requested. For
example, users may permit or deny access to their own accounts from particular
hosts, overriding the serverwide configuration.

Suppose user deborah on the machine client.unc.edu invokes an SSH client. The cli-
ent’s behavior is determined by several factors:

The compile-time options selected when the software was built
The machinewide client configuration file on client.unc.edu
User deborah’s own client configuration file

The command-line options used by deborah when invoking the client

An SSH server running on server.unc.edu accepts deborah’s connection to the account
charlie. The server’s behavior is determined by the compile-time options used when

132

| Chapter5: Serverwide Configuration

Configuration types Configuration types

Command-line Bl Command-line
options options
C

Environment ustom session
variables startup
: SSH
User’s client

configuration file

(lient S ide
configuration file

Server-side
authorization files

Global client
configuration file

Compile-time Compile-time
flags] flags
Key-related
files | Targetaccount’s
authorization files

Known hosts
databases TCP-wrappers
files

Kerberos
configuration files

PAM files I

Figure 5-1. Serverwide configuration (highlighted parts)

sshd was built, the machinewide server configuration file on server.unc.edu, the com-
mand-line options used when the SSH server was run, and charlie’s personal server
configuration file (e.g., an authorized_keys file), plus several files that set environment
variables for the successful login session.

With three levels of server configuration, and multiple entry points for modifying the
behavior at each level, things can get complicated. In particular, different options
may work together or cancel each other. For example, user charlie can configure his
account on server.unc.edu to accept connections from client.unc.edu, while the sys-
tem administrator of server.unc.edu can configure the SSH server to reject them. (In
this case, Charlie loses.) Administrators must understand not only how to configure
the server themselves, but also how their choices interact with compile-time and per-
account settings.

5.2.1 Server Configuration Files

Serverwide configuration is accomplished in two ways: through a server configura-
tion file, or through command-line options. In a server configuration file, numerous

5.2 Server Configuration: An Overview | 133

configuration variables, called keywords, may have their values set. For example, to
set the TCP port on which the server will listen, a configuration file can contain the
line:

Port 1022

You may also separate the keyword and value by an equals sign (with optional
whitespace):

Port = 1022

The configuration file is typically /etc/ssh/sshd_config for OpenSSH or /fetc/ssh2/
sshd2_config for Tectia.” The file contains keywords and their values, as in the Port
example, with one pair (keyword and value) per line. Keywords are case-insensitive:
Port, port, and PoRt are all treated identically. Comments may appear in the file as
well: any line beginning with a hash sign (#) is a comment:

This is a comment

Comments cannot be appended to keyword lines. For example, the following does
not work:

Port 1022 # This comment is not allowed here, so don't do this
Empty lines (or lines containing only whitespace) are also ignored as comments.

To use a configuration file other than the default, invoke sshd with the —f command-
line option, providing the alternative filename as an argument:

$ sshd -f /usr/local/ssh/my_config

Tectia supports some extensions to configuration files that we cover in a detailed
case study: [11.6]

Metaconfiguration information
Structured comments at the top of the server configuration file that define syn-
tax rules for the rest of the file. For example, the REGEX-SYNTAX metaconfigura-
tion statement selects one of several different regular expression standards: grep
style (egrep), filename globbing (zsh_fileglob), and others.

Subconfiguration files

Alternative configuration files specific to particular local accounts or remote
hosts. The keywords UserSpecificConfig and HostSpecificConfig define the
associations between subconfiguration files and the affected accounts and hosts,
respectively. For example, the line:

Tectia

UserSpecificConfig smith /usr/local/ssh/smith.config
states that all connection attempts to the smith account must adhere to the con-
figuration in file /usr/local/ssh/smith.config.

* On Windows, Tectia’s configuration files are located in the SSH Tectia Server installation folder.

134 | Chapter5: Serverwide Configuration

Quoted values
Tectia has unusual rules for quoted strings, namely, that quotes are largely
ignored. The following sshd2_config lines are equivalent:

Tectia
Port 1022
Port "1022"
Port "10"22

5.2.2 Checking Configuration Files

After you’ve changed a server configuration file (or constructed an initial version of
the file), how do you know it’s going to work and have the effects you intend? Later,
when you upgrade the server to a more recent version, how can you detect incompat-
ible changes in the meaning of keywords that you’ve been using?

The most thorough way to verify the server configuration, of course, is to run the
server exactly as you plan to deploy it, and test all of the functionality that you
expect to use. This kind of testing can be time-consuming, however, and you might
not be able to afford interrupting service on a busy production machine.

Alternately, you could use some other test machine, or run the server on a different
port [5.3.3.1] while the old configuration is still being used on the original machine.
These approaches are almost as good, but they can be complicated if the server con-
figuration refers to network characteristics of the machine where it will be deployed,
or by firewalls that block access to nonstandard ports.

Both OpenSSH and Tectia have test features to help with these situations, or to just
provide a quick check of the server configuration before more rigorous testing.

5.2.2.1 Checking OpenSSH configuration files

If the OpenSSH server is started with the —t (test) option, it starts up, checks the
validity of its host keys and the server configuration file, and then immediately exits
without performing any other actions. When no problems are found, the server
silently returns a zero exit status to indicate successful operation. Otherwise, error
messages are printed to the standard error and the server exits with a nonzero status:
OpenSSH
$ sshd -t
/etc/ssh/sshd_config: line 33: Bad configuration option: BlurflPox
/etc/ssh/sshd_config: Bad yes/no argument: maybe
The server must be run by a user (typically root) who has read access to the host key
files and the server configuration file. Any other server options can be used in con-
junction with —t, such as —h options [5.3.1.1] to specify new host key files, the —f
option [5.2.1] to specify a new configuration file, or —d options [5.9] for more
detailed debugging output (even if no errors are detected).

5.2 Server Configuration: An Overview | 135

5.2.2.2 Checking Tectia configuration files

Tectia provides a separate program, sshd-check-conf, to check server configuration
files.” Supply a hypothetical user and remote host, and sshd-check-conf will describe
its access control decisions for them:
Tectia
$ sshd-check-conf rebecca@client.friendly.org
Verifying rebecca@client.friendly.org[10.1.2.3]...
Logins from client.friendly.org[10.1.2.3] allowed.
Hostbased can be used from client.friendly.org[10.1.2.3].
Login by user rebecca allowed.
User rebecca will not be chrooted.
TCP forwarding by user rebecca allowed.

sshd-check-conf is especially helpful for verifying policies described by complicated
patterns and subconfiguration files. [11.6.2] It uses the same code as sshd to parse the
server configuration files and understands metaconfiguration information. [11.6.1]

If any errors are detected, sshd-check-conf prints messages to the standard error, as

sshd would:

Tectia

$ sshd-check-conf rebecca@client.friendly.org

Warning: Unrecognized configuration parameter 'BlurflPox’.

Warning: Illegal IdleTimeout value 'never'.

Warning: Failed to parse some variables from config file '/etc/ssh2/sshd2_config'.
FATAL: Failed to read config file "/etc/ssh2/sshd2_config"

It is not necessary to run sshd-check-config as root, as long as the server configura-
tion files can be read. By default, /etc/ssh2/sshd2_config is used if the program is run
by the superuser, or SHOME/.ssh2/sshd2_config otherwise. As for sshd, the —f option
specifies a different configuration file:
Tectia
$ sshd-check-conf -f /tmp/sshd2_config new rebecca@client.friendly.org
The hypothetical SSH sessions are described by one or more [user@]host arguments
on the command line. A numerical user ID can be used in place of a username, or the
username can be omitted entirely to check only the remote host. In this case, sshd-
check-conf substitutes UNKNOWN for the username when it analyzes the access controls:
Tectia
$ sshd-check-conf client.friendly.org
Verifying UNKNOWN@client.friendly.org[10.1.2.3]...
Logins from client.friendly.org[10.1.2.3] allowed.
Hostbased can be used from client.friendly.org[10.1.2.3].
Login by user UNKNOWN denied.
An IP address can be used instead of a hostname: both the hostname and IP address
are checked.

*

sshd-check-conf doesn’t read or verify host keys.

136 | Chapter5: Serverwide Configuration

If a hostname resolves to multiple IP addresses, then only the first IP
address is used, and a warning is printed by sshd-check-conf.

*i‘
(152

Here’s a brash one-liner to check the access controls for all local users:

Tectia
$ sed -e "s/:.*/@ hostname™/" /etc/passwd | xargs sshd-check-conf

You can also run sshd-check-conf interactively: just don’t supply any [user@]host
arguments on the command line. The program prompts for [user@]host strings, per-
mits Emacs-style editing of the strings as you enter them (using the GNU readline
library), and maintains a history of previously entered values.

In addition, sshd-check-conf recognizes a dump command to print keywords and val-
ues for the server configuration:

Tectia
$ sshd-check-conf

ssh-check-conf> dump

General

Port = 22

ProtocolVersionString = 4.1.3.2 SSH Secure Shell
MaxConnections = 0

Authentication and authorization
AllowedAuthentications = publickey,password
IgnoreRhosts = no

Forwardings
ForwardX11 = yes
ForwardAgent = yes

Miscellaneous user setup
UserConfigDirectory = %D/.ssh2
PrintMOTD = yes

sshd-check-conf> quit

Tectia’s sshd-check-conf dump command prints most configuration
keywords and values, but not all of them.

To exit from interactive mode, use the quit command, or type the end-of-file charac-
ter (usually ~D), or just kill the program (typically with ~C). The quit and dump com-
mands are case-insensitive.

5.2 Server Configuration: An Overview | 137

Because sshd-check-conf matches patterns for subconfiguration files
[11.6.2], it reads the main configuration file only when a [user@]host
1kt string has been given. Therefore, the dump command can’t be used
" before then:

Tectia

$ sshd-check-conf

sshd-check-conf> dump

No config data to dump; input <user@host> first.

The sshd-check-conf program accepts the debug options —d and —v [5.9] to print
more detailed debugging information as it reads the configuration files and analyzes
access control decisions.

5.2.3 Command-Line Options

Additionally, when invoking the server, you may supply command-line options. For
example, the port value may be specified on the command line with the —p option:
$ sshd -p 1022

Command-line options override settings in the configuration file. Thus, if the config-
uration file says port 1022 but the server is invoked with -p 2468, the port used will
be 2468.

Most command-line options duplicate the features found in the configuration file,
for convenience, while a few provide unique functionality. For instance, the —f option
instructs sshd to use a different configuration file, a feature that’s useless to put in a
configuration file.

On the other hand, most keywords don’t have command-line equivalents. However,
the —o option lets you specify any keyword and its value on the command line; for
example, to set the TCP port number by this method:

$ sshd -o "Port 1022"

The argument for the —o option should be a keyword and value, exactly as specified
in the configuration file." An equals sign (with optional whitespace) can also be used:

$ sshd -o "Port = 1022"

You can omit the quotes if you avoid characters special to the shell (including the
whitespace around the equals sign):

$ sshd -o Port=1022

You can repeat the -0 option to set values for multiple keywords on the same com-
mand line.

* Except for comments, which will not work, e.g., sshd -0 "# Your message here". But this would be silly.

138 | Chapter5: Serverwide Configuration

Tectia servers always use the default egrep syntax for regular expres-
sions on the command line. Unlike configuration files, command-line
14+ options have no way to change this via metaconfiguration, e.g., for -o
" options.

Command-line options can be repeated, but the effects of such repetition vary and
even differ depending on the server implementation. In almost all cases, only the last
repeated option is used, and all earlier instances of the same option are (silently)
ignored. For example, an attempt to read two configuration files:

$ sshd -f /usr/local/ssh/main.conf -f /usr/local/ssh/alt.conf
Beware! Does not read both files!

will actually read only alt.conf and ignore main.conf.
The “last option wins” rule can be handy for scripting. Suppose you launch the
server from a shell script called launch-sshd:

launch-sshd:
sshd -f /usr/local/ssh/main.conf "$@"

Since the $@ is replaced by options from the command line, you can substitute a dif-
ferent configuration file when using the script:

$ launch-sshd -f /usr/local/ssh/alt.conf

We have seen that the —o option is an exception: it can be repeated to set values for
as many keywords as needed. There are only a few other exceptions, all for
OpenSSH. The —p option can be repeated to listen on multiple ports: [5.3.3.1]

OpenSSH
$ sshd -p 2222 -p 3333

The —h option can be used multiple times to specify different types of host keys in
separate files: [5.3.1.1]

OpenSSH
$ sshd -h /usr/local/ssh/my_dsa_key -h /usr/local/ssh/my_rsa_key -h /usr/local/ssh/
my old sshi key

Repeating the —d option increases the level of verbosity for debugging: [5.9]

OpenSSH
$ sshd -d -d -d

Tectia is more consistent than OpenSSH: it always uses the last instance of each
option on the command line.

5.24 (hanging the Configuration

sshd reads its configuration file at startup. Therefore, if you modify the file while the
server is running, the changes don’t affect the server. You must force the server to

5.2 Server Configuration: An Overview | 139

reread the file in order to accept the changes. This is done by sending a SIGHUP
signal to the server process. The pid of the server is found in a file, usually /var/run/
sshd.pid for OpenSSH or /var/run/sshd2_22.pid for Tectia. [5.3.1.3]

Suppose the pid file is /var/run/sshd.pid, the default for OpenSSH. To send the
SIGHUP signal, run the Unix kill command:

$ cat /etc/sshd.pid
19384
$ kill -HUP 19384

or more succinctly, with backquotes:
$ kill -HUP “cat /etc/sshd.pid’
or on systems with the pidof command, which prints pids of given, named processes:
$ kill -HUP ~pidof sshd™
Linux systems (and others) have boot scripts that can signal the SSH server. For
example, instead of explicitly sending SIGHUP to sshd, you can run:
$ /etc/init.d/sshd reload

Regardless of how it’s sent, the SIGHUP signal restarts sshd (with a different pid) but
doesn’t terminate existing SSH connections, so you can send it safely while clients
are connected. The new sshd process reads and conforms to the new configuration.

The SIGHUP technique affects settings defined in the configuration file, not com-
mand-line options. To change those, you must kill and restart the server with the
new options. For example:

$ kill 19384

$ sshd new_options
Command-line options are often specified in boot scripts that are used to start sshd.
For example, some Linux systems read an OPTIONS variable assignment from the file
letc/sysconfig/sshd (if it exists). You may need to edit such options files if you want
to permanently change the command-line options used to start the SSH server at
boot time. After doing this, you can use the boot script to restart the server with the
new command-line options:

$ /etc/init.d/sshd restart

Boot scripts can perform other useful functions. To determine whether the SSH
server is running, use:

$ /etc/init.d/sshd status
To start or stop the server, use:

$ /etc/init.d/sshd start
$ /etc/init.d/sshd stop

140 | Chapter5: Serverwide Configuration

Some configuration keywords refer to external files. If the contents of

those files change, you might wonder if it is necessary to signal the

%% SSH server. In almost all cases, the answer is no: only the filenames are

" recorded when the configuration file is read, and the external file’s
contents are reread each time they are needed. The host key file is an
important exception, because it is normally read only when the server
starts. [5.3.1.1]

5.2.5 ATricky Reconfiguration Example

Because command-line options override their configuration file equivalents, some
interesting situations can arise. Suppose the configuration file sets the TCP port
number to be 2222:

Port 2222
but the server is invoked with the —-p command-line option, overriding this value
with 3333:

$ sshd -p 3333
The server uses TCP port 3333. Now, suppose you restart sshd with SIGHUP:

$ kill -HUP “pidof sshd’
forcing sshd to reread the configuration file. What do you think happens to the port
number? Does the server use port 2222 after rereading the configuration file, or does
the command-line option remain in effect for port 3333? In fact, the command-line

option takes precedence again, so port 3333 is reused. sshd saves its argument vec-
tor” and reapplies it on restart.

5.3 Getting Ready: Initial Setup

We now embark on a detailed discussion of SSH server configuration, using both
keywords and command-line options. Please keep in mind that modern SSH prod-
ucts are actively developed and their features may change. Be sure to read their docu-
mentation for the latest information.

We begin with initial setup decisions, such as: where should important files be
kept? What should their permissions be? What TCP/IP settings should be used?
Which encryption algorithms should be supported?

*

argv, to C programmers.

5.3 Getting Ready: Initial Setup | 141

5.3.1 File Locations

sshd expects certain files to exist, containing the server’s host key, the random seed,
and other data. The server looks for these files in default locations, or you may over-
ride them with keywords and command-line options as described later.

Although you may place these files anywhere you like, we strongly recommend keep-
ing them on a local disk on your server machine, not on a remotely mounted disk (e.g.,
via NFS). This is for security reasons, as NFS will gleefully transmit your sensitive files
unencrypted across the network. This would be especially disastrous for the unen-
crypted private host key!

As a running example, we use an invented directory, /usr/local/ssh, as our preferred
(nondefault) location for the SSH server’s files.

5.3.1.1 Host key files

The host key of sshd uniquely identifies a server to SSH clients. The host key is
stored in a pair of files, one containing the private key and the other the public key.
OpenSSH has distinct host keys in DSA (fetc/ssh/ssh_host_dsa_key) and RSA (/etc/
ssh/ssh_host_rsa_key) formats, as well as a legacy SSH-1 protocol key, /etc/ssh/ssh_
host_key. These private keys are readable only by privileged programs such as the
SSH server and clients. Their locations may be changed with the HostKey keyword:"

OpenSSH

HostKey /usr/local/ssh/my_dsa_key

HostKey /usr/local/ssh/my_rsa_key

HostKey /usr/local/ssh/my old_sshi_key
Each private key has a corresponding public key, stored in a second file with the
same name but with .pub appended. So, in the above example, the public keys would
be /fusr/local/ssh/my_dsa_key.pub, fusr/local/ssh/my_rsa_key.pub, and fusr/local/ssh/
my_old_ssh1_key.pub.

For Tectia, the default private key file is /etc/ssh2/hostkey if the server is run by the
superuser or ~/.ssh2/hostkey if run by any other user. To specify a different private
key file, use the HostKeyFile keyword:

Tectia

HostKeyFile /usr/local/ssh/key
The server’s public key file, normally /etc/ssh2/hostkey.pub for superusers or ~/.ssh2/
hostkey.pub for others, may be changed independently with the PublicHostKeyFile
keyword:

Tectia
PublicHostKeyFile /usr/local/ssh/pubkey

* HostKey has the aliases HostRsaKey and HostDsaKey, but they are deprecated and might be removed in a future
version of OpenSSH.

142 | Chapter5: Serverwide Configuration

If you prefer command-line options, sshd supports the —h command-line option to
specify the private key file:

$ sshd -h /usr/local/ssh/key

Once again, the public key filename is derived by appending .pub to the private key
filename, in this case, /usr/local/ssh/key.pub.

OpenSSH allows each type of host key to be specified with a separate —h option (and
detects the type of each key automatically):
OpenSSH
$ sshd -h /usr/local/ssh/my_dsa_key -h /usr/local/ssh/my_rsa_key -h /usr/local/ssh/
my old sshi key
For Tectia, if the -h option is repeated, only the last file is used and all earlier —h
options are ignored. This is consistent with its usual behavior with command-line
options. [5.2.3]

5.3.1.2 Random seed file

The SSH server generates pseudo-random numbers for cryptographic operations.
[3.6.4] It maintains a pool of random data for this purpose, derived either from the
operating system if provided (e.g., /dev/random on Linux) or from various bits of
changing machine state (e.g., clock time, statistics on resource use by processes,
etc.). This pool is called the random seed.

If running on a system with a random-bit source, such as /dev/urandom, OpenSSH
doesn’t create a random seed file. Tectia stores a random seed in /etc/ssh2/random_
seed, and the location may be overridden with the RandomSeedFile keyword:

Tectia
RandomSeedFile /usr/local/ssh/seed2

5.3.1.3 Process ID file

The OpenSSH server’s pid is stored in /var/run/sshd.pid, and you can override this
location with the PidFile keyword:

OpenSSH
PidFile /usr/local/ssh/pid

OpenSSH doesn’t record the process ID when it runs in debug mode. [5.9]

There is no corresponding keyword for Tectia. Its pid file is always named /var/run/
sshd2_N.pid, or if there is no /var/run directory, /etc/ssh2/sshd2_N.pid, where N is the
TCP port number of the server.” Since the default port is 22, the default pid file is
sshd2_22.pid. If multiple sshd2 processes are run simultaneously on different ports of

* More precisely, N is the value for the Port keyword, even if ListenAddress keywords cause the server to use
different ports. [5.3.3.1]

5.3 Getting Ready: Initial Setup | 143

the same machine, their pid files can be distinguished by this naming convention.
The directory used to store pid files can be changed by the configure option --with-
piddir. [4.3.5.1]

5.3.1.4 Server configuration file

The server configuration file is normally /etc/ssh/sshd_config for OpenSSH and /etc/
ssh2/sshd2_config for Tectia. An alternative configuration file can be specified with
the —f command-line option:

$ sshd -f /usr/local/ssh/config

This is useful when testing a new server configuration: create a new file and instruct
sshd to read it. It is also necessary if you are running multiple sshds on the same
machine and want them to operate with different configurations.

Only a single configuration file is read. If you provide multiple —f options, the last
one is used and all others are ignored.

5.3.1.5 User SSH directory

Tectia’s sshd expects a user’s SSH-related files to be in the directory ~/.ssh2 by
default, but this can be changed with the UserConfigDirectory keyword. (OpenSSH
has no such capability.) The directory name may be literal, as in:

Tectia
UserConfigDirectory /usr/local/ssh/my_dir

or it may be specified with printf-like patterns, as in:

Tectia
UserConfigDirectory %D/.my-ssh

The %D pattern expands to the user’s home directory. So, the preceding example
expands to ~/.my-ssh. The following table shows the available patterns:

Pattern Meaning

%D User's home directory
%U User's login name

%IU User's uid (Unix user ID)
%1G User's gid (Unix group ID)

If the % character is followed by any other characters, it is left unchanged.”

For the system administrator, the UserConfigDirectory keyword provides a quick
way to override all users” Tectia preferences. Specifically, you can cause sshd to

* You need not double the percent sign (%%) to get a literal percent character, i.e., as required for the C function
printf.

144 | Chapter5: Serverwide Configuration

ignore everybody’s ~/.ssh2 directories, substituting your own instead. For instance,
the line:

Tectia

UserConfigDirectory /usr/sneaky/ssh/%U
tells sshd to seek the preferences for each user in /usr/sneaky/ssh/<username> instead
of ~/.ssh2. This powerful feature can also be misused if your machine is compro-
mised. If an intruder inserted the following line into sshd2_config:

Tectia

UserConfigDirectory /tmp/hack
and uploaded his own public key file into /tmp/hack, he would gain SSH access to
every user’s account.

5.3.1.6 Per-account authorization files

The OpenSSH server expects to find a user’s public-key authorization file in ~/.ssh/
authorized_keys. This location can be changed with the AuthorizedKeysFile key-
word, followed by the new location:

OpenSSH

AuthorizedKeysFile .ssh/permitted keys
Filenames can be absolute or are relative to the user’s home directory. Additionally,
the location can contain a few special symbols: %h to mean the user’s home direc-
tory, %u for the username, or %% for a percent sign. So, when user smith authenti-
cated on a server machine with this line in /etc/ssh/sshd_config:

OpenSSH
AuthorizedKeysFile /usr/local/access/%u

the authorization filename would expand to /usr/local/access/smith.

The Tectia server uses a different key file layout than OpenSSH. [6.1.2] Its authoriza-
tion file, normally ~/.ssh2/authorization, contains names of separate public key files,
rather than the keys themselves. sshd can be instructed to find the authorization file
elsewhere via the keyword AuthorizationFile:

Tectia

AuthorizationFile my_public_keys
Filenames can be absolute or are relative to each user’s Tectia configuration (.ssh2)
directory. The preceding example specifies the file ~/.ssh2/my_public_keys.

5.3.1.7 utmp file structure

The utmp file (e.g., /var/run/utmp) contains information about users currently logged
in, such as their username, tty, and most notably for us, the hostname from which
they’ve logged in (for remote logins). OpenSSH’s sshd can limit the length of host-
name information written to the utmp file. (It’s inspired by a similar feature in the
telnet daemon telnetd.)

5.3 Getting Ready: Initial Setup | 145

OpenSSH

$ sshd -u 25 Limit hostnames to 25 characters or less
If a remote hostname is longer than this limit, the host’s IP address will be written
instead. Why is this useful? For two reasons:

* Hostnames longer than the default length—which may vary on different sys-
tems—will normally be truncated in the utmp file. While you cannot increase
the utmp length with the —u option, you can notify sshd of the length limitation
so that IP addresses get used in place of long hostnames. This way, you’ll accu-
rately record the host’s identity. See /usr/include/utmp.h to learn the length limit
for your system.

* If you specify -u0, IP addresses will always be used in place of hostnames. This
has the side effect of forcing sshd not to make DNS requests for these hostname
lookups. (It will not entirely suppress DNS, however, since it might be needed
for authentication.)

5.3.2 File Permissions

As security products, OpenSSH and Tectia require certain files and directories on the
server machine to be protected from unwanted access. Imagine if your authorized_
keys or .rhosts file were world-writable; anyone on that host could modify them and
gain convenient access to your account. sshd has several configuration keywords for
reducing this risk.

5.3.2.1 Acceptable permissions for user files

Users aren’t always careful to protect important files and directories in their
accounts, such as their .rhosts file or personal SSH directory. Such lapses can lead to
security holes and compromised accounts. To combat this, you can configure sshd to
reject connections to any user account that has unacceptable permissions.

The StrictModes keyword, with a value of yes (the default), causes sshd to check the
permissions of important files and directories. They must be owned by the account
owner or by root, and group and world write permission must be disabled. For
OpenSSH, StrictModes checks:

* The user’s home directory

* The user’s ~/.rhosts and ~/.shosts file

* The user’s SSH configuration directory, ~/.ssh

* The user’s SSH ~/.ssh/authorized_keys file

* The user and system “known hosts” files

For Tectia, the list is smaller and is checked only for hostbased authentication:
[3.4.3.6]

146 | Chapter5: Serverwide Configuration

* The user’s home directory

e The user’s ~/.rhosts and ~/.shosts file

If any check fails, the server rejects SSH connection attempts to the account. If
StrictModes is given the value no, these checks aren’t performed:

StrictModes no
However, we strongly suggest you leave these checks enabled.

Tectia recognizes an undocumented keyword, StrictModes.UserDirMaskBits, to con-
trol the checks more precisely. The value is an octal number representing the file per-
mission bits that must be disabled. For example, to require that files grant no group
or world access (read, write, or execute):

Tectia
StrictModes.UserDirMaskBits 077

The default value is 022, indicating that group and world write permission must be

disabled.

Even if StrictModes is enabled, it can be defeated by using POSIX access control lists
(ACLs), which are supported in Solaris and some other flavors of Unix, to set file
permissions with greater precision. sshd doesn’t check ACLs, so one could argue that
StrictModes is an incomplete test.

Boolean Values in Configuration Files

Many keywords, such as StrictModes, require Boolean values. OpenSSH and Tectia
have different standards for these values.

OpenSSH recognizes either yes or true to enable the behavior described by a keyword,
as well as the opposite values no or false to disable. These values cannot be abbrevi-
ated, and must be lowercase.

Tectia is much more lenient: it recognizes any word starting with the letters y (yes), t
(true), or k (kylld: Finnish for “yes”) in lowercase or uppercase to enable, and anything
else to disable.

We use yes and no in our examples because they are accepted by both products, and
we recommend you do the same.

5.3.3 TCP/IP Settings

Since the SSH protocol operates over TCP/IP, sshd permits control over various
parameters related to TCP/IP.

5.3 Getting Ready: Initial Setup | 147

5.3.3.1 Port number and network interface

By default, sshd listens on TCP port 22. The port number may be changed with the
Port keyword:

Port 9876
or the —p command-line option:
$ sshd -p 9876

If you repeat the Port keyword or —p option, OpenSSH listens on all of the specified
ports:

OpenSSH

$ sshd -p 22 -p 9876
Tectia, on the other hand, allows only a single port setting: if multiple Port key-
words or —p options are specified, the server uses only the last one and ignores all
earlier instances.”

You may also configure sshd to bind its listening port on a particular network inter-
face. By default, the port is bound on all active network interfaces on the host. The
ListenAddress keyword limits sshd to listen only on specific interfaces; the default
value is 0.0.0.0.

For example, suppose a computer has two Ethernet cards and is attached to two dif-
ferent networks. One interface has the address 192.168.10.23, and the other, 192.
168.11.17. By default, sshd listens on both interfaces; therefore, you can reach the
server by connecting to port 22 at either address. However, this may not always be
what you want; perhaps you want to provide SSH service only to hosts on one net-
work and not the other:

ListenAddress 192.168.10.23

Of course, this represents a real restriction only if the two networks aren’t otherwise
connected together (say, by a router) so that port 22 on 192.168.10.23 is not reach-
able from the network 192.168.11.24.

To listen on multiple, specific interfaces, repeat the ListenAddress keyword:

ListenAddress 192.168.10.23
ListenAddress 192.168.11.17

For even more precise control, you can also specify the port for listening on a given
interface. The syntax differs for OpenSSH and Tectia:

OpenSSH

ListenAddress 192.168.11.17:12345 Port 12345. Notice the colon between the address and the port.

Tectia
ListenAddress 192.168.11.17 12345 Port 12345. Notice the space between the address and the port.

* The port setting (either explicit or the default value, 22) is used in the name of the process ID file. [5.3.1.3]
Tectia servers can listen on multiple ports, but this requires use of the ListenAddress keyword.

148 | Chapter5: Serverwide Configuration

Numeric Values in Configuration Files

OpenSSH accepts numeric values in decimal, octal, or hexadecimal, using standard C
language notation. If a value begins with 0x, it is treated as hexadecimal. If it begins
with a leading zero, it is considered octal. Any other numeric value is read as decimal.

Tectia, in contrast, requires all numbers to be given in decimal, except for StrictModes.
UserDirMaskBits, which uses an octal value.

The address 0.0.0.0 means to listen on all interfaces:
ListenAddress 0.0.0.0
optionally qualified by a port number:

OpenSSH
ListenAddress 0.0.0.0:9876

Tectia
ListenAddress 0.0.0.0 9876

OpenSSH servers allow the address to be omitted (meaning all interfaces) if the port
is specified:

OpenSSH
ListenAddress :9876

R

3y

For OpenSSH, a ListenAddress of 0.0.0.0:2222 will listen on port
2222 only on IPv4 interfaces, whereas :2222 means to listen on both
* 9kir IPv4 and IPv6 addresses. Additionally, you can specify IPv6 addresses
* with colons, but to avoid ambiguity between the address and the port
specification, enclose the IPv6 part in square brackets, e.g.,
ListenAddress [::1]:2222.

Tectia servers recognize the address any for all interfaces, with or without a port:

Tectia
ListenAddress any
ListenAddress any 9876

Since Tectia uses only a single Port value, the only way to configure the server to lis-
ten on multiple ports is to use multiple ListenAddress keywords.

OpenSSH also permits hostnames in place of numeric addresses:
ListenAddress server.example.com

If the hostname lookup yields multiple addresses, then they are all used.

5.3 Getting Ready: Initial Setup | 149

W w

If a ListenAddress value has no port specified, then the value (or possi-

.",‘ bly multiple values, for OpenSSH) of the Port keyword is used for that

" Q8 address. In such a case, the Port keyword(s) must precede that
ListenAddress keyword.

Additionally, the —p command-line option overrides all Port and
ListenAddress keywords in the configuration file. The server listens on
all interfaces if any —p options are used. Use one or several —o options
with the ListenAddress keyword to indicate specific interfaces on the
command line.

5.3.3.2 Invocation by inetd or xinetd

sshd normally runs as a daemon, listening for incoming connection requests, and
forking whenever it accepts a connection from a client. This spawns a separate child
process (a copy of the parent sshd process) to handle each session. The child process
exits when the session ends.

Alternatively, the server may be invoked by inetd or xinetd, like many other network
daemons. In this case, the general-purpose network daemon listens for and accepts
the SSH connections. It then starts a new instance of sshd for each session with the
already-connected socket attached to the standard input, output, and error streams
of sshd. Each sshd invocation is responsible for a single session.

If you prefer this behavior, place an appropriate line in the inetd or xinetd configura-
tion file to describe the SSH service, invoking sshd with the —i command-line option.
For inetd, add a single line to /etc/inetd.conf:

ssh stream tcp nowait root /usr/local/sbin/sshd sshd -1
Or if you’re using xinetd, create a new file /etc/xinetd.d/ssh containing:

service ssh

{
socket type = stream
protocol = tep
wait = no
user = root
server = /usr/local/sbin/sshd
server_args = -i
disable = no
}

You will also need an entry for SSH in the server machine’s TCP/IP services data-
base, usually /etc/services (or sometimes /etc/inet/services), such as:

ssh 22/tcp # SSH Remote Login Protocol
The —i option causes sshd to:

* Ignore all Port and ListenAddress keywords and the —p command-line option,
because inetd or xinetd itself is responsible for listening

* (OpenSSH only) Ignore all MaxStartups keywords

150 | Chapter5: Serverwide Configuration

* (OpenSSH only) Direct debug output to syslog [5.9] instead of the standard
error stream, since stderr is attached to the SSH socket by inetd or xinetd, and
debug output would confuse the SSH client at the other end of the connection

The inetd/xinetd approach has advantages and disadvantages. On the up side, it
allows a wrapper program to invoke sshd, should that be needed, and xinetd particu-
larly supports many options that can complement the SSH server configuration.
Also, inetd and xinetd provide a single, centralized point of control for all types of
network connections, which simplifies maintenance. If you want to forbid all types
of TCP/IP connections, for example, you can simply disable inetd/xinetd instead of
running around killing other daemons. On systems where SSH connections are rare,
using inetd/xinetd for the SSH service saves resources (memory and a process slot)
otherwise consumed by the SSH server as it listens for incoming connections. Finally,
starting a new sshd instance for each connection can make attacks more difficult by
introducing additional randomness. On the down side, inetd/xinetd-based SSH con-
nections may be slower to start up.”

5.3.3.3 Restarting the SSH server for each connection

SSH servers use randomness extensively for cryptographic algorithms and protocols,
typically relying on the operating system (or other external state) to provide a source
of random bits. [3.6.4] Some operating systems also support Address Space Layout
Randomization (ASLR), which protects against certain kinds of attacks that require
knowledge of predictable memory locations. ASLR causes random offsets to be used
when program segments or shared libraries are loaded, memory regions are dynami-
cally allocated, etc.

Most of the randomness introduced by ASLR occurs when a program is initially
loaded and starts running. Even on systems without ASLR, dynamic memory alloca-
tions that primarily occur in the early stages of program execution can be affected by
the global state of the system’s virtual memory, which is hard to predict. In contrast,
when a long-running program merely forks to create many child processes, all of the
children inherit the memory layout (and even contents) from the parent process.
Restarting the child processes after each fork mitigates the risks associated with
attacks that are based on guessing memory locations.

By default, the OpenSSH server restarts itself after it accepts each connection from a
client, and forks to create a separate child process to handle the session.t Relative
pathnames can’t be used for server restarts, since sshd changes its working directory
shortly after it begins running:

OpenSSH

$./sshd
sshd re-exec requires execution with an absolute path

* Only if you use the SSH-1 protocol, where sshd generates a new server key each time it’s invoked. But you’re
not using SSH-1, are you?

T This feature is new in OpenSSH 3.9.

5.3 Getting Ready: Initial Setup | 151

We'll continue to use the relative pathname “sshd” for our examples
s as an abbreviation, since the full, absolute pathname usually isn’t rele-
% vant to our discussions about the sshd command line. Nevertheless, an
absolute pathname is recommended in practice, and newer versions of
OpenSSH now enforce this, as shown in the preceding example.

If the server restart fails for some other reason (e.g., the executable file used origi-
nally to start sshd was renamed or removed), then the child process continues to run
after forking, but produces a warning (which is usually sent to syslog):

error: rexec of /usr/sbin/sshd failed: No such file or directory

Before it restarts, the child process adds the undocumented —R option at the end of
its command line: this is used by the new process to detect that it has been restarted,
and should therefore use the already connected socket that it inherits from its parent
for communication with the client.” The parent process (i.e., the one that listens for
incoming connections) sends a copy of its configuration and the SSH-1 server key (if
one is used) via another socket to the restarted child process, which knows to read
the data because of the same —R option. The child process then proceeds to handle
the session normally.

If OpenSSH is started by inetd or xinetd, then there is no need to restart the SSH
server, because a new instance of sshd is started by inetd/xinetd for each connection.
[5.3.3.2] In fact, the function of the restarted child process is so similar to the opera-
tion of the server with inetd/xinetd that the —R option enables the same side effects as
the —i option: notably, debug output is forced to syslog instead of the standard error.

The restart mechanism can be disabled by the undocumented, lowercase —r option:

OpenSSH

$ sshd -r
This is useful in conjunction with server debugging features, since restarts are an
inconvenient complication, and the side effect of sending debug output to syslog
after the child process restarts is undesirable. [5.9] The —r option can also be used to
avoid the slight performance cost for server restarts, especially on systems without
ASLR, where such restarts provide little or no additional randomness. There is no
configuration option to disable the server restart feature at build time.

5.3.3.4 Keepalive messages

The keepalive feature (TCPKeepAlive in OpenSSH, KeepAlive in Tectia) is concerned
with recognizing when a connection has failed. Suppose a client establishes an SSH
connection, and sometime later, the client host crashes abruptly. If the SSH server

* Never use the —R option to start sshd; it’s really part of the protocol for communication between the parent
and the (restarted) child server processes.

152 | Chapter5: Serverwide Configuration

has no reason to send unsolicited messages to the client, it may never notice the half-
dead TCP connection to its partner, and the sshd remains around indefinitely, using
up system resources such as memory and a process slot (and making the sysadmin’s
ps output messy).

The TCPKeepAlive or KeepAlive keyword instructs sshd how to proceed if a connec-
tion problem occurs, such as a prolonged network outage or a client machine crash:

OpenSSH

TCPKeepAlive yes

Tectia

KeepAlive yes
The value yes (the default) tells the server to set the TCP keepalive option on its con-
nection to the client. This causes TCP to transmit and expect periodic keepalive mes-
sages. If it doesn’t receive responses to these messages for a while, it returns an error
to sshd, which then shuts down the connection.

The value no means not to use keepalive messages. Note that SSH clients can also
enable keepalive messages from their side of the connections, so it’s important to dis-
able those too if you want to avoid keepalive traffic completely. [7.4.5.4]

The TCP keepalive feature is intended to prevent half-dead connections from build-
ing up over time. The keepalive message interval and timeout period reflect this: they
are quite long, typically on the order of hours. This is to minimize the network load
imposed by the keepalive messages and also to prevent connections from being
unnecessarily torn down because of transient problems, such as a temporary net-
work outage or routing flap. These timers aren’t set in SSH; they are properties of the
host’s TCP stack. They shouldn’t be altered lightly, since they affect every TCP con-
nection using keepalives on that host.

This feature isn’t intended to prevent lost connections due to firewall, proxying,
NAT, or IP masquerading timeouts. For instance, when your SSH connection is
going across a firewall but has been idle for a while, the firewall can decide to tear
down the connection. Since this is done to conserve shared resources (such as a lim-
ited pool of external, routable IP addresses), these timeouts are typically quite short,
perhaps a few minutes to an hour or so. The name “keepalive” suggests that it might
be the right thing to use, since that’s what you want to do—keep your connection
alive. But really, “keepalive” is the wrong name for it; it would be better named
“detect dead” (but that sounds like a second-level cleric spell to avoid being eaten by
zombies). To deal with this problem, you’d have to shorten the TCP keepalive inter-
val dramatically on the SSH host. This is contrary to its purpose and unwise because
it affects not only SSH connections, but also every other TCP connection using keep-
alives, even those that don’t need it. Doing this on the server side is an especially bad
idea as a general principle, since a busy server may be using lots of TCP connections,
and enabling keepalives on many of them since it’s supposed to be an inexpensive

5.3 Getting Ready: Initial Setup | 153

feature. This can impose an unnecessary and damaging additional network load,
especially if it becomes a widespread practice.

It’s good to remember that the timeout annoying you so much is there for a reason.
You might like to leave an unused SSH connection up for a long time, but if it’s
occupying one of a limited number of simultaneous outbound Internet TCP connec-
tions for your company, perhaps it’s better if you just suck it up for the common
good. Typing ssh again once in a while is really not that hard; use your shell’s alias
feature if you find the number of keystrokes onerous. If you genuinely think the
timeout is inappropriate or unnecessary, argue the case with the network administra-
tor, and try to get it changed.

For the occasions when it’s really necessary, the right way to accomplish this sort of
keepalive behavior is with an application-level mechanism implemented in SSH—
having it periodically send SSH protocol messages over the connection to make it
appear nonidle. This is exactly what OpenSSH does with its ClientAliveInterval
and ClientAliveCountMax keywords. ClientAliveInterval controls how the server
sends client-alive messages.” Its argument is a length of time in seconds:

OpenSSH
ClientAliveInterval 300 Send client-alive every 300 seconds, or five minutes

or a time value with optional units:

OpenSSH

ClientAliveInterval 5m Send client-alive every five minutes
If your server hasn’t heard from the client within the given amount of time, the server
will send a client-alive message to the client. It will continue sending these messages
at the given interval (in this case, every five minutes) until it receives a response or
gives up. You control how it gives up with the third keyword, ClientAliveCountMax,
representing the maximum number of consecutive client-alive messages the server
will send:

OpenSSH

ClientAliveCountMax 8 Try eight times, then give up. The default is three times.
Once this maximum is reached, the server considers the SSH connection inactive and
terminates it. If you don’t want the server to send client-alive messages, set
ClientAliveInterval to zero.

If your SSH implementation has no similar feature (Tectia doesn’t), we recommend
simply sending characters over your connection once in a while. Run Emacs with a
clock in its mode line. Run a program in the background that prints “Boo!” to your
terminal if it’s been idle for 20 minutes. You get the idea.

* OpenSSH clients have analogous ServerAliveInterval and ServerAliveCountMax keywords. [7.4.5.4]

154 | Chapter5: Serverwide Configuration

Time Values in Configuration Files

Some keywords specify intervals of time. By default, the values are numbers of seconds,
but both OpenSSH and Tectia recognize single-character suffixes for units, in either
lowercase or uppercase: s for seconds, m for minutes, h for hours, d for days, and w for
weeks. For example, one day could be represented as 1d or 24H or 1440m.

OpenSSH adds sequences of time values, so a 90-minute interval can be specified as
1h3om. Tectia allows only a single time-unit suffix.

OpenSSH recognizes time values with units for the keywords ClientAlivelInterval,
LoginGraceTime, and KeyRegenerationTime.

Unfortunately, Tectia handles time values rather inconsistently. Units are recognized
only for the keywords IdleTimeout, HostkeyEKTimeOut, and ExternalMapperTimeout.
Other keywords that specify intervals accept only numbers of seconds, without units:
LoginGraceTime, AuthInteractiveFailureTimeout, and RekeyIntervalSeconds (which is
especially unusual, since the time unit “seconds” is in the keyword name).

5.3.3.5 Idle connections

Keepalive messages are concerned with recognizing that a connection has failed. A
related feature is recognizing when a healthy connection is unused and should be ter-
minated. Tectia supports the IdleTimeout keyword for this purpose. If an SSH con-
nection is established between a server and a client, but no data passes over the
connection for a long time, what should the server do: keep the connection, or termi-
nate it?

The IdleTimeout keyword tells the server what to do if a connection is idle, i.e., if the
user doesn’t transmit any data in a given period. If IdleTimeout is zero (the default),
the server does nothing, leaving idle connections intact:

Tectia

IdleTimeout 0
Otherwise, the server terminates the connection after a specified interval of idleness.
The time value can specify units, e.g., three hours:

Tectia
IdleTimeout 3H

See the sidebar “Time Values in Configuration Files” for more syntax details.

The idle timeout can also be set for a given key in a user’s authorized_keys file using
the idle-timeout option. [8.2.7] Notably, this option overrides the server’s
IdleTimeout value but only for that key. This is a rare instance of a per-account
option overriding a serverwide option; however, the server will only allow a client to
decrease the timeout.

5.3 Getting Ready: Initial Setup | 155

5.3.3.6 Failed logins

Suppose a user attempts to log in via SSH but fails to authenticate. What should the
server do? The keywords LoginGraceTime, MaxAuthTries (OpenSSH), and
PasswordGuesses (Tectia) control the server’s response.

Users are given a limited time to authenticate successfully. The default is 120 sec-
onds (2 minutes) for OpenSSH or 600 seconds (10 minutes) for Tectia. This time-
out is controlled by the LoginGraceTime keyword, given a value in seconds:

LoginGraceTime 60
or the —g command-line option:
$ sshd -g 60

OpenSSH allows time units to be used in the configuration file or on the command
line:

OpenSSH
LoginGraceTime 5m

OpenSSH
$ sshd -g 5m

To disable this feature, provide a LoginGraceTime value of zero:
LoginGraceTime 0
or by command-line option:

$ sshd -g 0

R

OpenSSH ignores LoginGraceTime in debug mode. [5.9]

OpenSSH limits the number of times (six by default) that a user can attempt to
authenticate in a single SSH connection:

OpenSSH

MaxAuthTries 4 Permit four attempts, and log the third and fourth failures if they occur
If authentication fails half the number of times specified (in this example, two times,
half of four), then failures are logged by sshd. In other words, sshd gives you the ben-
efit of the doubt at first, then considers you suspicious. By default, you have six
chances to authenticate in one connection.

If password authentication is used for a connection request, Tectia’s sshd permits a
client three tries to authenticate before dropping the connection. This restriction
may be modified with the PasswordGuesses keyword for Tectia:

Tectia
PasswordGuesses 5

156 | Chapter5: Serverwide Configuration

There are two sorts of requests a client can make in this regard: a query whether a
particular public key is authorized to log into the target account, and an actual
authentication attempt including a signature by the corresponding private key. As
Tectia does not limit the number of public-key authentication requests, there’s no
issue with it. The OpenSSH MaxAuthTries setting, however, limits the number of
failed authentication requests overall, of any type, and OpenSSH counts a “no”
answer to a public-key query as a failure. A common side effect is an unexpected
limit to the number of keys you can usefully have in an agent! If you have five keys in
your agent, and it happens to be the fifth one that would let you in, you’re out of
luck: the server will disconnect you after the client tries the fourth key. And that’s
assuming the client didn’t try and fail some other methods first, e.g., GSSAPI or host-
based; then even fewer keys could be tried. (See [7.4.2.1] for a workaround.)

There are various security arguments to made here, of course. The server can’t distin-
guish between a legitimate user trying keys and an attacker knocking on the door, so
it measures all attempts against the repeated-authentication limit. In fact, one can
argue that the server shouldn’t honor public-key queries because they reveal informa-
tion to an attacker: which key to try to steal, or whether an account can be accessed
at all. These are all trade-offs of convenience versus security, and different server
implementations take different approaches.

You can work around this issue by listing your most relevant keys in your client con-
figuration file, ~/.ssh/config, with the IdentityFile keyword. [7.4.2] Keys that are in
both the agent and the configuration file are tried first by the client. Therefore, you
can associate particular keys with a particular host so that they’re tried first for
authentication.

5.3.3.7 Limiting simultaneous connections

sshd can handle an arbitrary number of simultaneous connections by default. Both
OpenSSH and Tectia provide keywords to limit the maximum number, if you want
to conserve resources on your server machine or reduce the risk of denial-of-service
attacks. For OpenSSH it is MaxStartups, and for Tectia it is MaxConnections:

OpenSSH
MaxStartups 32

Tectia
MaxConnections 32
To specify an unlimited number of connections, provide a value of zero:
OpenSSH
MaxStartups 0

Tectia
MaxConnections 0

5.3 Getting Ready: Initial Setup | 157

Of course, the number of connections is also limited by available memory or other
operating system resources. These keywords have no effect on these other factors.
(Sorry, you can’t increase your CPU speed by setting a keyword!)

OpenSSH’s MaxStartups keyword has one additional bit of functionality. If you pro-
vide a triple of integers separated by colons, of the form A:8:C, this tells the server to
refuse connections based on probabilities. Specifically, if the number of connections
is A or greater, sshd will begin rejecting connections. When there are A connections,
the probability of rejection is B%. When there are C connections, the probability of
rejection is 100% (every attempt is rejected). Between A and C connections, the prob-
ability increases linearly from 8% to 100%. So, for example, if you have:

OpenSSH

MaxStartups 10:50:20
then at a load of 10 connections, the probably of rejection is 50%; at 15 connections
(halfway between 10 and 20) it’s 75% (halfway between 50% and 100%), and at 20
connections it’s 100%.

Tectia’s behavior is simpler. After the maximum number of connections have been
accepted, new connection attempts are rejected, and the server sends a “Too many
connections” error message back to the client before it disconnects. Tectia can also
limit the number of connections at compile time via the --with-ssh-connection-
limit option. [4.3.5.3]

If sshd is launched by xinetd, then you can control server resources much more pre-
cisely: the rate of incoming connections, server memory, and more. [5.3.3.2]

5.3.3.8 Reverse IP mappings

The SSH server optionally does a reverse DNS lookup on a client’s IP address. That
is, it looks up the name associated with the address, then looks up the addresses for
that name and makes sure that the client’s address is among them. If this check fails,
the server refuses the connection. This feature uses standard system services like
gethostbyname() and gethostbyaddr() to perform these mappings, so the databases
that are consulted depend on the host operating system configuration. It might use
the DNS, the Network Information Service (NIS or YP), static files on a server
machine, or some combination.

To enable this check for OpenSSH, provide the UseDNS keyword with a value of yes
or no:’

OpenSSH
UseDNS yes

* Tectia has a similar-sounding keyword, RequireReverseMapping, but it applies only to the AllowHosts and
DenyHosts features. [5.5.3]

158 | Chapter5: Serverwide Configuration

This feature is a bit of security-oriented consistency checking. SSH uses crypto-
graphic signatures to determine a peer’s identity, but the list of peer public keys (the
known hosts database) is often indexed by hostname, so SSH must translate the
address to a name in order to check the peer’s identity. Reverse mapping tries to
ensure that someone isn’t playing games with the naming service in a cracking
attempt. There is a trade-off, however, since in today’s Internet, the DNS reverse-
address mappings aren’t always kept up to date. The SSH server might reject legiti-
mate connection attempts because of poorly maintained reverse-address mappings
over which you have no control. In general, we recommend turning off this feature; it
isn’t usually worth the hassle, and you avoid long reverse-lookup delays at times
when DNS is down.

5.3.3.9 Controlling the Nagle Algorithm

TCP/IP has a feature called the Nagle Algorithm, which is designed to reduce the
number of TCP segments sent with very small amounts of data (e.g., one byte), usu-
ally as part of an interactive terminal session. Over fast links such as Ethernet, the
Nagle Algorithm generally isn’t needed. Over a wide-area network, however, it can
cause noticeable delays in the responsiveness of X clients and character terminal dis-
plays, as multibyte terminal control sequences may be transmitted inconveniently by
the algorithm. In such cases, you should turn off the Nagle Algorithm using the
NoDelay keyword:

Tectia

NoDelay yes
NoDelay disables the Nagle Algorithm by toggling the TCP_NODELAY bit when
requesting a TCP connection from the Unix kernel. Legal values are yes (to disable)
and no (to enable; the default).

NoDelay can be enabled or disabled by the Tectia client, rather than serverwide, using
the client configuration keyword NoDelay. [7.4.5.5] It usually makes more sense to
use NoDelay for a single client connection than to control the Nagle Algorithm glo-
bally for all connections on the server side.

5.3.3.10 Discovering other servers

Tectia can seek out and discover other Tectia servers automatically. The keyword
MaxBroadcastsPerSecond, when given an integer value greater than zero, causes a Tec-
tia server to respond to UDP broadcasts sent to port 22:

Tectia

MaxBroadcastsPerSecond 10
The server responds to only this many queries per second; any excess broadcasts are
silently ignored. All UDP broadcasts received on port 22 apply to this limit, includ-
ing unrecognized or malformed packets. The rate limiting prevents a denial-of-
service attack that floods the server with queries, causing it to spend all its time
replying to them.

5.3 Getting Ready: Initial Setup | 159

By default, Tectia servers do not respond to UDP broadcasts. This behavior can be
specified explicitly by setting MaxBroadcastsPerSecond to zero:

Tectia
MaxBroadcastsPerSecond 0

No mechanism is provided to use a UDP port other than 22, and the UDP port is
completely independent of the TCP port(s) used for ordinary SSH connections.

A program supplied with Tectia, ssh-probe, sends queries to one or more specified
broadcast addresses. It listens for replies, and prints the locations (IP addresses and
ports) along with the versions of any Tectia servers that it finds:

Tectia

$ ssh-probe 10.1.2.255
10.1.2.3:22:SSH Tectia Server 4.1.3.2

10.1.2.5:22:SSH Tectia Server 4.1.3.2
10.1.2.5:2222:SSH Tectia Server 4.1.3.2
10.1.2.5:3333:SSH Tectia Server 4.1.3.2
10.1.2.9:22:SSH Tectia Server 4.1.3.2

Directed broadcasts (i.e., those on different networks) can be used if intervening
gateways are willing to forward them. IP addresses of specific hosts (but not host-
names) can also be used.

UDP datagrams received on non-broadcast addresses are usually deliv-
\ ered only to a single process, so if several Tectia servers are running on

1+ a target host, then only one will respond. Use broadcast addresses to
" detect multiple servers.

ssh-probe does not use the ProtocolVersionString to determine the version: this
string is part of the initial negotiation between SSH servers and clients for TCP con-
nections. [5.3.7] Tectia servers always supply their actual version string in response
to UDP queries by ssh-probe.

The default output format is intended to be parsed easily by programs. The —r option
prints results in a more human-readable format:

Tectia

$ ssh-probe -r 10.1.2.255

Server address = "10.1.2.3"

Server port = "22"
Server version = "SSH Tectia Server 4.1.3.2"

12 servers detected.

The —s option causes ssh-probe to operate silently, returning only an exit value of 0 to
indicate that at least one server was found, 1 if no replies were received, or -1 if some
other error occurred:

160 | Chapter5: Serverwide Configuration

Tectia
$ ssh-probe -s 10.1.2.255
$ case $? in

> 0) echo "Tectia found.";;

> 1) echo "Tectia missing.";;

> *) echo "Something bad happened to ssh-probe!";;
> esac

Tectia found.

By default, ssh-probe waits one second for replies. The —t option specifies a longer
timeout, e.g., for slow or distant servers:

Tectia

$ ssh-probe -t 5 10.1.2.255
ssh-probe supports the —d option for debug output. [5.9] The program uses the mod-
ule names SshProbe and SshServerProbe.

Port-scanning programs such as nmap provide a more general way to locate SSH
servers, including other implementations like OpenSSH, even though port scans typi-
cally don’t provide version information as ssh-probe does for Tectia servers. For
example, to use nmap to scan a range of network addresses for any kinds of SSH
servers listening on (TCP) port 22:

$ nmap -v -p 22 10.1.2.0/24

The ScanSSH program” scans ranges of network addresses, identifying SSH servers
(along with open proxies and other interesting servers, such as HTTP and SMTP). It
attempts to determine the version for each. For example, to scan the same network
address range:

$ scanssh -s ssh 10.1.2.0/24

MaxBroadcastsPerSecond and ssh-probe are a rather ad hoc solution for locating Tec-
tia servers, and port scans are questionable, since authorized users typically know the
identity of specific servers to which they have been granted access. Probes often
don’t work across firewalls, and they might be mistaken for attacks by people and
programs that monitor network activity.

Better techniques are available to enumerate servers for administrative tasks, e.g.,
maintaining a list of servers in a netgroup or other database. Dynamic DNS and SRV
records are alternatives, although this nameserver functionality is still not widely
used.

5.3.4 Key Regeneration

All SSH servers maintain a persistent host key. It is generated by the system administra-
tor when installing SSH and identifies the host for authentication purposes. [5.3.1.1]

* http://www.monkey.org/~provos/scanssh/

5.3 Getting Ready: Initial Setup | 161

Additionally, SSH-2 clients and servers exchange keys for data encryption and integ-
rity. By default, the Tectia client and server perform this key exchange every hour
(3600 seconds) but you can set this with the RekeyIntervalSeconds keyword. A value
of zero disables rekeying.

Tectia
RekeyIntervalSeconds 7200

This keyword only controls the automatic, periodic session rekeying that is initiated
by the server. An SSH client can still request session rekeying at any time.

You can make the ssh client force rekeying with the escape sequence ~R (OpenSSH)
or ~r (for Tectia). [7.4.6.8]

5.3.5 Encryption Algorithms

The SSH server can use a number of data-encryption algorithms for its secure con-
nection; the client chooses a cipher from the list the server allows. The Ciphers key-
word describes the subset of allowable ciphers, selected from those the server
software supports. Its value is a comma-separated list of algorithm names (strings),
case-sensitive,” indicating which algorithms are permissible. For example:

Ciphers 3des-cbc

Ciphers 3des-cbc,blowfish-cbc,arcfour
The order of the values is not significant, since the client drives the choice of the
cipher.

If multiple Ciphers keywords are specified, the values are not accumulated into a sin-
gle list. Instead, OpenSSH uses the list for the first Ciphers keyword, and Tectia uses
the last.

OpenSSH treats unrecognized cipher names as fatal errors, but Tectia
silently ignores them, which makes typos hard to detect. For trouble-
shooting, use the sshd -d command-line option [5.9] with the
SshConfigParse module and a high debug level:

Tectia

sshd -d SshConfigParse=9

Look for “ssh_config_set_param_algs” in the output to see the actual
list of cipher names that were used.

The Ciphers keyword is useful for quickly disabling individual encryption algo-
rithms—say, if a security hole is discovered in one of them. Just omit that algorithm
from the Ciphers list and restart the server.

* Older versions of OpenSSH treat the algorithm names as case-insensitive.

162 | Chapter5: Serverwide Configuration

Both OpenSSH and Tectia support the following standard ciphers that are defined by
the IETF SECSH draft:

3des-cbc
aes128-cbc
aes192-cbc
aes256-cbc
arcfour
blowfish-cbc
cast128-cbc

In addition, Tectia implements the following standard ciphers:”

none
twofish-cbc

twofish128-cbc
twofish192-cbc
twofish256-cbc

The “none” cipher means that no encryption is used. This is unsuitable for produc-
tion use, but it might occasionally be convenient for testing, e.g., if you are watching
SSH traffic using a network sniffer for diagnostic purposes. Subconfiguration files
can restrict insecure ciphers like “none” to specific hosts or users. [11.6.2]

OpenSSH also implements a number of nonstandard ciphers:

acss@openssh.org®
aes128-ctr

aes192-ctr

aes256-ctr
rijndael-cbc@lysator.liu.se

By default, all ciphers supported by the OpenSSH server (both standard and non-
standard) are allowed.

Tectia supports a different set of recommended, nonstandard ciphers:

cast128-12-cbc@ssh.com
des-cbc@ssh.com
rc2-cbc@ssh.com
rc2-128-cbc@ssh.com
rijndael-cbc@ssh.com

Tectia also recognizes special values for the Cipher keyword indicating sets of
algorithms:

* A few standard ciphers aren’t supported by either OpenSSH or Tectia: idea-cbc, serpentl128-cbc,
serpent192-cbe, and serpent256-cbc. These are all considered optional by the IETF SECSH draft.

T Cipher acss@openssh.org is not allowed by default; it must be explicitly enabled.

5.3 Getting Ready: Initial Setup | 163

Tectia FIPS Mode

The FIPS 140-2 standard defines strict requirements for performing cryptographic
operations, including allowable ciphers. Tectia servers can use a special cryptographic
library that is certified to be FIPS 140-2 compliant. In FIPS mode, the server supports
only the following ciphers:

3des-cbc

aes128-cbc

aes192-cbc

aes256-cbc

des-cbc@ssh.com

To enable FIPS mode, run the ssh-crypto-library-chooser command:

Tectia
$ ssh-crypto-library-chooser fips

To use the standard cryptographic library that supports all of the ciphers:

Tectia
$ ssh-crypto-library-chooser std

With no command-line argument, the ssh-crypto-library-chooser command just prints
the currently used library.

The server must be restarted whenever the library is changed.

AnyStd
Any standard algorithm implemented by Tectia, including none
AnyStdCipher
Same as AnyStd, but excluding none
Any
Any standard or recommended, nonstandard algorithm implemented by Tectia,
including none
AnyCipher
Same as Any, but excluding none

These special values are case-insensitive, in contrast to the other values for cipher
names. We recommend using the capitalization shown earlier, but you may see low-
ercase values in older Tectia configuration files or documentation.

An important and unfortunate restriction is that the special values for cipher sets
cannot be mixed with other cipher names:

Tectia: This is ILLEGAL
Ciphers 3des-cbc,AnyStd

The default for Tectia is AnyStdCipher.

164 | Chapter5: Serverwide Configuration

Cipher Naming Conventions

Ciphers use a conventional naming scheme that encodes the algorithm and any vari-
able parameters. We illustrate the conventions by dissecting a sample cipher name:
cast128-12-cbc@ssh.com. Here is the meaning of each part:

cast
The name of the algorithm in lowercase. [3.8]

128
Many algorithms can use different key lengths. For these, the number of bits in the
key immediately follows the algorithm name. If the algorithm name ends in a digit,
then a hyphen is added between the name and the key size (e.g., rc2-128 for the
RC2 algorithm using 128-bit keys).
-12
A few algorithms are defined in terms of other parameters. If needed, these are
specified next, each with a leading hyphen. For example, the CAST algorithm can
use different numbers of rounds of encryption instead of the default 16.
-cbc
Block cipher algorithms can be run in a variety of modes of operation:
ECB
Electronic code book
CBC
Cipher block chaining
CFB
Cipher feedback
OFB
Output feedback
CTR
Counter
The mode is appended to the cipher name, again translated to lowercase, with a
hyphen.
@ssh.com:
Finally, the IETF SECSH draft specifies that nonstandard ciphers must have a suf-
fix with a leading @ character indicating the domain that defined the cipher.

Tectia’s extensive but poorly documented cryptographic library actually supports a
much wider range of ciphers, including:

3des-ecb@ssh.com
3des-cfb@ssh.com
3des-ofb@ssh.com
aes-ecb@ssh.com
aes-cbc@ssh.com

5.3 Getting Ready: Initial Setup | 165

aes-cfb@ssh.com
aes-ofb@ssh.com
aes-ctr@ssh.com
blowfish-ecb@ssh.com
blowfish-cfb@ssh.com
blowfish-ofb@ssh.com
cast128-ecb@ssh.com
cast128-cfb@ssh.com
cast128-ofb@ssh.com
cast128-12-ecb@ssh.com
cast128-12-cfb@ssh.com
cast128-12-ofb@ssh.com
des-ecb@ssh.com
des-ctb@ssh.com
des-ofb@ssh.com
rc2-ecb@ssh.com
rc2-cfb@ssh.com
rc2-ofb@ssh.com
rc2-128-ecb@ssh.com
rc2-128-cfb@ssh.com
rc2-128-ofb@ssh.com
rijndael-ecb@ssh.com
rijndael-ctb@ssh.com
rijndael-ofb@ssh.com
rijndael-ctr@ssh.com
twofish-ecb@ssh.com
twofish-ctb@ssh.com
twofish-ofb@ssh.com

These are not included in the sets for Any or AnyCipher. In some cases, this is because
the ciphers are considered experimental or inferior. For example, DES is usually not
recommended because of its short key length, and block ciphers in ECB mode are
considered vulnerable to replay attacks. Other modes such as CFB, OFB, and CTR
are plausible alternatives to the default CBC, however.

Finally, Tectia recognizes a small number of convenient aliases for sets of ciphers:

Value Meaning

aes-chc aes128-chc, aes192-chc aes256-chc

cast cast128-chc

twofish twofish-cbc, twofish128-chc, twofish192-che, twofish256-cbc

166 | Chapter5: Serverwide Configuration

In most cases, the names of block ciphers in CBC mode are also recog-
nized by Tectia without “-cbc”, since CBC is considered the default
mode. There are exceptions, however, that don’t follow any obvious
pattern:

* aes-cbc@ssh.com
e cast128-cbc
e cast128-12-cbc@ssh.com
e rc2-cbc@ssh.com
* rc2-128-cbc@ssh.com
* twofish-cbc
We therefore recommend explicitly specifying -cbc in cipher names.

Tectia is rather forgiving (or sloppy, depending on your point of view)
about the @ssh.com suffix for cipher names, which is supposed to be
used consistently for nonstandard ciphers.

Most standard cipher names are also recognized with this suffix. The
exceptions are:

* aes128-cbc
* aes192-cbe
* aes256-cbe
* twofish128-cbc
e twofish192-cbc
e twofish256-cbc

Similarly, the suffix can be omitted from most nonstandard cipher
names. The lone exception is aes-cbc@ssh.com, because the name
without the suffix is used as an alias for all AES ciphers in CBC mode
with any key length, as described earlier.

Misusing the @ssh.com suffix in this way is inadvisable, because it
violates the IETF SECSH draft.

5.3.6 Integrity-Checking (MAC) Algorithms

The MACs keyword selects the allowable integrity-checking algorithms, known as the
message authentication code (MAC), used by sshd. [3.4.2.3] Except as described
below, the MACs keyword behaves exactly like the Ciphers keyword. [5.3.5] Here are
some examples:

MACs hmac-sha1
MACs hmac-shal,hmac-md5

5.3 Getting Ready: Initial Setup | 167

Both OpenSSH and Tectia support the following standard MAC algorithms defined
by the IETF SECSH draft:

hmac-shal
hmac-shal-96
hmac-md5
hmac-md5-96

In addition, Tectia implements the standard “none” MAC, meaning that no integrity
checking is performed. This is intended only for testing.

A x
o In Tectia’s FIPS mode, only the hmac-shal MAC is supported.
W 4.
v A

OpenSSH also implements a nonstandard MAC algorithm, hmac-
ripemd160@openssh.com. The name hmac-ripemd160 is also recognized without
the @openssh.com suffix, but this is deprecated, since all nonstandard names are
supposed to use a domain suffix. Tectia also supports some nonstandard MAC
algorithms:

hmac-ripemd160@ssh.com
hmac-ripemd160-96@ssh.com
hmac-sha256@ssh.com
hmac-sha256-96@ssh.com
hmac-tiger128@ssh.com
hmac-tiger128-96@ssh.com
hmac-tiger160@ssh.com
hmac-tiger160-96@ssh.com
hmac-tiger192@ssh.com
hmac-tiger192-96@ssh.com
ssI3-md5@ssh.com
ssl3-shal@ssh.com

Tectia recognizes special values for the Macs keyword to describe sets of algorithms:
AnyStd
Any standard algorithm implemented by Tectia, including none
AnyStdMac
Same as AnyStd, but excluding none
Any
Any standard or nonstandard algorithm implemented by Tectia, including none

AnyMac
Same as Any, but excluding none

168 | Chapter5: Serverwide Configuration

Algorithm Naming Conventions

MAC names encode the algorithm and parameters, as for cipher names. To demon-
strate, let’s decode a sample name: hmac-ripemd160-96@ssh.com:

hmac-
Algorithms are prefixed by the name of the scheme that is used to combine a
shared secret key with the contents of each packet. The most common is HMAC,
the keyed hashing technique described by RFC-2104. Tectia also supports an early
HMAC variant used by SSL Version 3, denoted by the prefix “ssl3-”.

ripemd160
The name of MAC hash algorithm is next, which often contains digits that indi-
cate either a version (e.g., shal and md5) or the number of bits produced by the
hash. [3.8.3] The names are translated to lowercase, and any hyphens are
removed.

-96
Some MAC algorithms have variants that truncate a larger message digest to a
smaller number of bits. These are appended to the name, preceded by a hyphen.

(@ssh.com
A suffix is required by the IETF SECSH draft for nonstandard ciphers, describing
the domain that defined the MAC algorithm, preceded by an @ character.

By default, Tectia allows algorithms in the AnyStdMac set. (The Any value includes all
supported MAC algorithms, unlike the Ciphers keyword.) OpenSSH allows all its
available MACs by default.

N
5 Tectia also recognizes standard MAC names with the @ssh.com suf-
:‘,‘ fix. The suffix cannot be omitted for nonstandard MAC names, how-
. * . .
112, ever, in contrast to the Ciphers keyword.

It’s best to use the suffix consistently according to the IETF SECSH
draft, only for nonstandard names.

5.3.7 SSH Protocol Settings

OpenSSH lets you limit its protocol support to SSH-1, SSH-2, or both, using the
Protocol keyword. Permissible values are 1 (for SSH-1), 2 (for SSH-2), or both 1 and
2 separated by a comma (the default):

OpenSSH

Protocol 2,1
If you specify both protocols, the order doesn’t matter since the client, not the server,
drives the authentication process. And as we’ve said before, the SSH-1 protocol is
less secure and we recommend avoiding it. [3.5]

5.3 Getting Ready: Initial Setup | 169

5.3.7.1 Protocol version string

SSH servers and clients exchange protocol version information as part of their initial
negotiations, to agree on a protocol. [3.4.4.2] You can see the protocol version string
used by the server by connecting to the SSH port:

$ telnet localhost 22

Trying 127.0.0.1...
Connected to localhost.

Escape character is '*]'.
SSH-2.0-4.1.3.2 SSH Secure Shell

By default, Tectia servers use a string like “4.1.3.2 SSH Secure Shell” for the com-
ment part (after the second hyphen) of the protocol version. This can be changed
using the undocumented ProtocolVersionString keyword:

Tectia
ProtocolVersionString Generic SSH Implementation

Port-scanning tools that connect to the SSH port and observe the protocol version
string will not see the detailed information about the specific installed version of Tec-
tia if the string is changed:

$ telnet localhost 22
Trying 127.0.0.1...
Connected to localhost.

Escape character is '*]'.
SSH-2.0-Generic SSH Implementation

R

3y

ProtocolVersionString changes only the comment part of the version
string. The initial parts (e.g., SSH-2.0) always specify the protocol(s)
* e that the server is willing to use, according to the SSH protocol
standard.

Although an obscured ProtocolVersionString might thwart very simplistic port-
scanning tools, in practice it doesn’t help much, since many attacks try to exploit
bugs regardless of the version string, and determined attackers can probably figure
out the implementation by noticing specific behavioral quirks of the server anyway.
If the Tectia server is configured to respond to UDP queries by ssh-probe [5.3.3.10],
then it always will respond to such queries with the actual version information, not
the changed ProtocolVersionString. Furthermore, changing ProtocolVersionString
might prevent workarounds by clients for known server incompatibilities or bugs.

The OpenSSH server always uses a string like “OpenSSH_3.9p1” for its protocol ver-
sion string. This cannot be changed except by modifying the source code.

5.3.8 Compression

The data flowing between the SSH client and server may optionally be compressed to
save bandwidth. Often this option is set by the client [7.4.14], but OpenSSH gives

170 | Chapter5: Serverwide Configuration

the server the ultimate authority on whether data compression is permitted, using
the Compression keyword:

OpenSSH
Compression no

The default value is yes.

5.4 Authentication: Verifying Identities

A large part of the SSH server’s job is to grant or deny connection requests from cli-
ents. This is done at two levels: authentication and access control (a.k.a. authoriza-
tion). We discuss the former here and the latter in the section “Access Control:
Letting People In.” [5.5] Authentication, as we’ve seen, means verifying the identity
of the user requesting a connection.

5.4.1 Authentication Syntax

sshd supports several different techniques for authentication that may be enabled or
disabled. [3.1.3] [3.4.3] For example, if you don’t trust password authentication, you
can turn it off serverwide but still permit public-key authentication.

As SSH has evolved, the syntax for configuring authentication has changed several
times, and OpenSSH and Tectia use entirely different syntaxes. In OpenSSH, differ-
ent authentication techniques are turned on and off with keywords of the form:

<Name_Of Technique>Authentication

For example, password authentication is controlled by the keyword
PasswordAuthentication, public-key authentication by PubKeyAuthentication, and so
forth, one keyword per technique. Values may be yes or no, as in:

OpenSSH
PubKeyAuthentication yes

Table 5-1 lists all the authentication techniques supported by OpenSSH, and each is
described in detail later.

Table 5-1. OpenSSH authentication keywords

Keyword Meaning

ChallengeResponseAuthentication One-time passwords.

GSSAPIAuthentication Typically used for Kerberos.

HostbasedAuthentication Host-based authentication.

PasswordAuthentication Password authentication. Exactly what this means is determined by the

UsePAMand KerberosAuthentication keywords.
PubKeyAuthentication Public-key authentication.

5.4 Authentication: Verifying Identities | 171

Table 5-1. OpenSSH authentication keywords (continued)

Keyword

RhostsRSAAuthentication

RSAAuthentication

Meaning
SSH-1 protocol only: avoid.
SSH-1 protocol only: avoid.

Tectia has a more extensible syntax. Instead of creating a new keyword for each tech-
nique, you wuse only two keywords, AllowedAuthentications and
RequiredAuthentications. Each is followed by the names of one or more authentica-
tion techniques, separated by commas. For example:

Tectia

AllowedAuthentications password,hostbased,publickey
AllowedAuthentications means that any of the given techniques can be used. In con-
trast, RequiredAuthentications means that all of the listed techniques must be used.
If both keywords are present, then RequiredAuthentications is used, and
AllowedAuthentications is ignored.” Table 5-2 lists the supported values for these
keywords. The first four techniques are specified by the IETF SECSH draft, while the
ones with the @ssh.com suffix are nonstandard. It doesn’t matter in what order you
list the values because the SSH client, not the server, drives the authentication pro-
cess. By default, Tectia’s sshd allows only password and public-key authentication.

Table 5-2. Tectia authentication techniques for AllowedAuthentications and
RequiredAuthentications

Value Meaning

password Password authentication.
publickey Public-key authentication.
hostbased Host-based authentication.

keyboard-interactive
gssapi-with-mic
gssapi
kerberos-2@ssh.com

kerberos-tgt-2@ssh.com

pam-1@ssh.com

securid-1@ssh.com

Extensible, general-purpose, interactive authentication.

GSSAPI authentication with Message Integrity Code (MIC).

GSSAPI authentication (deprecated in favor of gssapi-with-mic).

Kerberos. Unsupported. Not available by default: requires recompilation.

Kerberos authentication with TGT (passed to server). Unsupported.

Not available by default: requires recompilation.

Mostly obsolete: replaced by keyboard-interactive. Used only for old clients.

Mostly obsolete: replaced by keyboard-interactive. Used only for old clients.

*

This behavior, with RequiredAuthentications overriding AllowedAuthentications, began in Version 3.1.0 of
Tectia’s sshd. In previous versions, the two keywords were used together, but in practice this forced the two
lists of techniques to be identical: a required technique must also be allowed, and an allowed technique that
is not required is pointless, since it would be insufficient for authentication.

172 | Chapter5: Serverwide Configuration

We now describe how to enable and disable each type of authentication except the
deprecated SSH-1 keywords, which are in Appendix D.

5.4.2 Password Authentication

Password authentication accepts your login password as proof of identity. [3.4.3.5]
OpenSSH allows or disallows password authentication with the
PasswordAuthentication keyword, given the value yes (the default) or no:

OpenSSH

PasswordAuthentication yes
Normally, OpenSSH password authentication requires your ordinary login pass-
word. However, this may be changed via PAM [5.4.8], Kerberos [5.4.7], or other fea-
tures.

For Tectia, you can allow or require password authentication by adding the value
password to the lists for AllowedAuthentications or RequiredAuthentications,
respectively:

Tectia
AllowedAuthentications password

5.4.2.1 Failed password attempts

Tectia servers wait two seconds by default after each failed password authentication
attempt, to thwart brute-force password-guessing attacks. The AuthInteractive-
FailureTimeout keyword controls this delay:

Tectia
AuthInteractiveFailureTimeout 5

5.4.2.2 Empty passwords

If an account has an empty password, both the OpenSSH and Tectia servers may
refuse access to the account. This feature is controlled by the keyword
PermitEmptyPasswords with a value of yes (the default) or no. If enabled:

PermitEmptyPasswords yes

empty passwords are permissible; otherwise, they are not.

5.4.2.3 Expired passwords

Some operating systems support expiration dates for passwords. For those that do,
OpenSSH and Tectia allow expired passwords to be changed during authentication.

If the OpenSSH server detects an expired password, it runs the system passwd com-
mand to change it once the user has logged in. It then closes the connection so that
the user must log in again:

$ ssh -oPubKeyAuthentication=no -1 smith server.example.com
smith@server.example.com's password:

5.4 Authentication: Verifying Identities | 173

Last login: Sat Jan 22 17:07:27 2005 from client.example.com
WARNING: Your password has expired.

You must change your password now and login again!

Changing local password for smith.

0ld password:

New password:

Retype new password:

Connection to server.example.com closed.

For Tectia, by default, after the server verifies the user’s password, if the password is
found to be expired, then the system’s password-change program (e.g., passwd) is
run as a forced command. [8.2.3] An alternate password-change program (e.g., one
that enforces policies for choosing good passwords) can be specified by the
PasswdPath keyword:

Tectia
PasswdPath /usr/local/bin/goodpasswd

The password-change program runs with the privileges of the user, not those of the
server (typically root). Here’s an example of a password change during authentica-
tion, from the client’s perspective:

$ ssh server.example.com

rebecca's password: < ... old, expired password ... >

Authentication successful.

< ... the following output is from running the passwd forced command ... >

Changing password for user rebecca.

Changing password for rebecca

(current) UNIX password: < ... old, expired password, again ... >

New password: < ... new password ... >

Retype new password: < ... new password, again ... >

passwd: all authentication tokens updated successfully.

Connection to server.example.com closed.

We discuss more powerful alternatives to this technique in a later case study. [11.7.1]

5.4.3 Public-Key Authentication

Public-key authentication verifies a user’s identity by cryptographic key. [2.4] In
OpenSSH, public-key authentication is permitted or forbidden with the
PubKeyAuthentication keyword which may have the value yes (the default) or no:”

OpenSSH

PubKeyAuthentication yes
For Tectia, you allow or require public-key authentication by adding the value
publickey to the lists for AllowedAuthentications or RequiredAuthentications,
respectively:

Tectia
AllowedAuthentications publickey

* For SSH-1 protocol connections in OpenSSH, use the keyword RSAAuthentication instead.

174 | Chapter5: Serverwide Configuration

Tectia provides keywords that restrict the minimum and maximum sizes for public
keys:

Tectia

AuthPublicKey.MinSize 1024

AuthPublicKey.MaxSize 2048
You might want to require a minimum key size for improved security, but reject
huge keys because they slow down authentication. A value of zero (the default) dis-
ables the key-size checks.

Public-key authentication is marvelously configurable for most SSH implementa-
tions. See Chapter 8 for details on tailoring authentication for individual accounts.

5.4.4 Hostbased Authentication

Hostbased authentication verifies an SSH client’s identity by checking the remote
hostname and username associated with it. [3.4.3.6] This mimics the behavior of the
insecure Berkeley r-commands (rsh, rlogin, rcp) which check the server files /etc/
hosts.equiv and ~/.rhosts for permission to authenticate. SSH’s hostbased authentica-
tion is more secure, however: instead of relying on a potentially compromised net-
work naming service (e.g., DNS, NIS) and a privileged TCP source port, the SSH
server uses secure, cryptographic tests of host keys to verify the client host’s identity.

OpenSSH has the keyword HostbasedAuthentication (surprise!) to enable or disable
this type of authentication:*

OpenSSH

HostbasedAuthentication yes
For Tectia, you allow or require hostbased authentication by adding the value
hostbased to the lists for AllowedAuthentications or RequiredAuthentications,
respectively:

Tectia
AllowedAuthentications hostbased

Hostbased authentication is useful but unfortunately also enables connections via
the insecure r-commands, since it obeys the same permission files. To eliminate this
potential security risk, use the SSH-specific files /etc/shosts.equiv and ~/.shosts instead
of /etc/hosts.equiv and ~/.rhosts. In fact, we recommend you delete /etc/hosts.equiv
and forbid your users to create ~/.rhosts files. (An even better approach is to disable
the services for insecure protocols like the r-commands; these services are usually
started by inetd or xinetd.)

You can also tell the SSH server to ignore all users’ .rhosts and .shosts files with the key-
word IgnoreRhosts. (This keyword does not impact the system files /etc/shosts.equiv

* OpenSSH has another keyword, RhostsRSAAuthentication, that applies only to SSH-1 protocol connections.

5.4 Authentication: Verifying Identities | 175

and /etc/hosts.equiv, however.) Permissible values are yes (to ignore them) or no (the

default):
IgnoreRhosts yes

Ignoring users’ files might be appropriate in an environment of centralized control,
where only sysadmins are authorized to decide which hosts are trusted for
authentication.

Tectia permits separate control over hostbased authentication for root. The keyword
IgnoreRootRhosts permits or prevents use of the superuser’s .rhosts and .shosts files,
overriding IgnoreRhosts:

Tectia

IgnoreRootRhosts yes
Values of yes (ignore the files) and no (don’t ignore) are permitted. If not specified,
the value of IgnoreRootRhosts defaults to that of IgnoreRhosts. For example, you can
permit all .rhosts and .shosts files except root’s:

Tectia

IgnoreRhosts no
IgnoreRootRhosts yes

or ignore all .rhosts files except root’s:

Tectia

IgnoreRhosts yes

IgnoreRootRhosts no
Again, IgnoreRootRhosts doesn’t stop the server from considering /etc/hosts.equiv and
Jetc/shosts.equiv. For stronger security, it’s best to disable hostbased access entirely.

The SSH server needs the public keys of all hosts from which it accepts connections
via hostbased authentication. These keys are kept in a single file, /etc/ssh/ssh_known_
hosts (for OpenSSH), or in separate files in the directory /etc/ssh2/knownhosts (for
Tectia). A host’s public key is fetched from these locations whenever that host
requests a connection. Optionally, the server also searches the file ~/.ssh/known_
hosts (for OpenSSH) or separate files in the directory ~/.ssh2/knownhosts in the tar-
get user’s account.

This optional feature (which is enabled by default) can be controlled with the key-
words IgnoreUserkKnownHosts (for OpenSSH):

OpenSSH
IgnoreUserKnownHosts yes

or UserKnownHosts (for Tectia):

Tectia

UserKnownHosts no
Having sshd consult the user’s known hosts database might be unacceptable in a
security-conscious environment. Since hostbased authentication relies on the integ-
rity and correct administration of the client host, the system administrator usually

176 | Chapter5: Serverwide Configuration

grants hostbased authentication privileges to only a limited set of audited hosts. If
the user’s file is respected, however, a user can extend this trust to a possibly inse-
cure remote host. An attacker can then:

* Compromise the insecure, remote host
* Impersonate the user on the remote host

* Access the user’s local account via SSH, without needing a key passphrase or the
local account password

Hostbased authentication can be complicated by other aspects of your server
machine’s environment, such as DNS, NIS, and the ordering of entries in static host
files. It may also open new avenues for attack on a system. [3.4.3.6]

Tectia servers can require that the hostname provided by the client must match the
one found in DNS, using the keyword HostbasedAuthForceClientHostnameDNSMatch:

Tectia

HostbasedAuthForceClientHostnameDNSMatch yes
By default, no such check is performed, and in practice, this feature provides only a

moderate level of protection against spoofing, since the DNS server(s) can still be
attacked. [3.6.2]

5.4.5 Keyboard-Interactive Authentication

Keyboard-interactive authentication is an extensible, general-purpose mechanism for
implementing a variety of authentication techniques that require interaction with the
remote user, such as one-time passwords and challenge-response schemes. Clients
must implement the keyboard-interactive protocol (described in an IETF SECSH
draft, and tunneled securely over the SSH transport layer) but need no other modifi-
cations as new authentication techniques are added.

An example of a keyboard-interactive authentication technique is one-time pass-
words, found in systems like Bellcore’s S/Key. “One-time” means that each time you
authenticate, you provide a different password, helping to guard against attacks,
since a captured password will likely be useless. Here’s how it works:

1. When you connect to a remote service, it provides you with an integer and a
string, called the sequence number and the key, respectively.

2. You enter the sequence number and key into an S/Key calculator program on
your local machine.

3. You also enter a secret passphrase into the calculator, known only to yourself.
This passphrase isn’t transmitted over the network, only into the calculator on
your local machine, so security is maintained.

4. Based on the three inputs you provided, the calculator produces your one-time
password.

5. You enter the password to authenticate to the remote service.

5.4 Authentication: Verifying Identities | 177

More information on one-time passwords is available at:

http://www.ietf.org/html.charters/otp-charter.html

5.4.5.1 OpenSSH keyboard-interactive authentication

In OpenSSH, you enable keyboard-interactive authentication with the keyword
ChallengeResponseAuthentication:

sshd_config
ChallengeResponseAuthentication yes

OpenSSH supports three challenge/response methods, called “devices,” listed in
Table 5-3. Since these methods are dependent on external software, you have to con-
figure OpenSSH at compile time to support them.

Table 5-3. OpenSSH keyboard-interactive (challenge/response) authentication methods

Method Device name Compilation option
BSD authentication bsdauth --with-bsd-auth
PAM pam --with-pam
S/Key skey --with-skey

PAM is widely available and hence often included in compiled OpenSSH packages.
Just make sure the server configuration keyword UsePAM is set: [5.4.8]

OpenSSH

UsePAM yes
BSD authentication will likely be available only if running on a BSD platform (e.g.,
OpenBSD); see the manpage for login.conf for details on its operation. If you want
S/Key support, you have two options: obtain a PAM library that supports it, such as
libpam_opie or libpam_skey, or build OpenSSH yourself to get direct S/Key sup-
port. We recommend the PAM library approach.

In conducting keyboard-interactive authentication, the client by default specifies no
device, which means the server will try all. There’s an undocumented client-side
option, KbdInteractiveDevices, however, whose value is the list of devices to try:

OpenSSH
KbdInteractiveDevices pam,skey,bsdauth

5.4.5.2 Tectia’s keyboard-interactive authentication

For Tectia, you can allow or require keyboard-interactive authentication by adding
the value keyboard-interactive to the lists for AllowedAuthentications or
RequiredAuthentications, respectively:

Tectia
AllowedAuthentications keyboard-interactive

178 | (Chapter5: Serverwide Configuration

Tectia servers support the following keyboard-interactive authentication techniques:

password
Standard password authentication [5.4.2]

pam
Pluggable Authentication Modules [5.4.8]
securid
SecurID hardware-based authentication
plugin
Programmatic authentication [11.7.2]
Keyboard-interactive authentication techniques can be either optional or required (or
both), and are specified using the keywords AuthKbdInt.Optional or AuthKbdInt.
Required. Multiple authentication techniques are separated by commas:
Tectia
AuthKbdInt.Optional pam,securid,password
AuthKbdInt.Required plugin,password
The order of the authentication techniques is not significant for either keyword,
since the client drives the authentication process.

Beware of typographic errors in the values of AuthkbdInt.Optional and
AuthKbdInt.Required: they are not checked when the server reads them
from configuration files. Invalid or unrecognized techniques are
detected only when keyboard-interactive authentication is attempted,
which can be long after the server starts.

Authentication succeeds if all of the required authentication techniques succeed, as
well as a number of optional authentication techniques specified by the AuthkbdInt.
NumOptional keyword:

Tectia

AuthKbdInt.NumOptional 2
The default for AuthKbdInt.NumOptional is zero if there are any required authentica-
tion techniques, or one otherwise.

The AuthKbdInt.Retries keyword determines how many attempts are allowed for
keyboard-interactive authentication:

Tectia
AuthKbdInt.Retries 5

By default, three retries are allowed.

The Tectia server waits after each failed keyword-interactive authentication attempt,
as for password authentication; the AuthInteractiveFailureTimeout keyword applies
to this delay. [5.4.2.1]

5.4 Authentication: Verifying Identities | 179

The keyboard-interactive password authentication technique is functionally identi-
cal to standard password authentication. [5.4.2]

PAM authentication is supported by binary distributions of Tectia on systems that
provide PAM (e.g., Linux, Solaris). On other systems, support for PAM requires
recompiling the SSH server with the appropriate PAM headers and libraries. [5.4.8]

SecurlD from Security Dynamics is a hardware-based authentication technique.
Users need a physical card, called a SecurID card, in order to authenticate. The card
contains a microchip that displays (on a little LCD) an integer that changes at regu-
lar intervals. To authenticate, provide this integer along with your password. Some
versions of the SecurID card also have a keypad that supports entering a password,
for two-factor authentication. Users must provide the current integer from their card
in order to authenticate.

By default, Tectia allows three attempts to enter the SecurlD password. This can be
changed with the SecurIdGuesses keyword:

Tectia

SecurIdGuesses 5
SecurlID support is included in binary distributions of Tectia. The securid keyboard-
interactive authentication technique mentioned previously refers to code incorpo-
rated into the server. Alternately, separate plugins called ssh-securidv5-plugin and
ssh-securidv4-plugin are provided for different RSA ACE versions on some platforms.”
In either case, recompiling the server or plugins requires special SecurID headers and
libraries. SecurID must also be configured by setting the environment variable VAR
ACE to the pathname of the ACE data directory before the server is started: consult
the SecurID documentation for details.

New authentication techniques can be added using keyboard-interactive plugins. If
plugin is specified as either an optional or required keyboard-interactive authentica-
tion technique, then the AuthKbdInt.Plugin keyword must be used to identify a pro-
gram that controls the interactive authentication steps:t

Tectia

AuthKbdInt.Plugin /usr/local/sbin/ssh-keyboard-interactive-plugin
The server communicates with the plugin program using the Tectia plugin protocol,
which we’ll describe in a later case study. [11.7.2]

* If SecurID plugins are used, specify plugin instead of securid as the value of AuthKbdInt.Optional or
AuthKbdInt.Required, and set AuthkbdInt.Plugin to the pathname for the appropriate plugin.

T If no plugin program is specified, or the specified program cannot be run, then keyboard-interactive plugin
authentication will always fail.

180 | Chapter5: Serverwide Configuration

5.4.6 PGP Authentication

Tectia can authenticate users via the PGP key. We cover this topic in Chapter 6. [6.5]

5.4.7 Kerberos Authentication

Kerberos, the well-known secure authentication system, can be used by OpenSSH
and Tectia. We summarize the Kerberos-related configuration keywords here and
defer a more detailed treatment of the topic. [11.4]

5.4.7.1 Kerberos and OpenSSH

Kerberos authentication is supported only if enabled at compile time by the configu-
ration option --with-kerbeross. Assuming the SSH server was built in this manner,
Kerberos authentication can be used in two ways: directly, and as a verifier for pass-
word authentication.

Direct Kerberos authentication is enabled by the GSSAPTAuthentication keyword:

OpenSSH

GSSAPTAuthentication yes
This allows normal, ticket-based Kerberos user authentication: it requires that the
usual service principal host/server@REALM be added to the Kerberos KDC, and that
principal’s key added to the server host keytab, usually /etc/krb5.keytab. By default,
the Kerberos principal foo@REALM will be allowed access to server account “foo”;
you can allow others by adding them to ~foo/.kSlogin (along with foo@REALM
itself, which would otherwise lose access!). There is also the default:

OpenSSH

GSSAPICleanupCredentials yes
which means sshd will delete a user’s forwarded Kerberos credentials on logout; this
is usually a good idea and should be left on. [11.5.2]

The second method, password verification, is indirect. It does not require any Ker-
beros support on the client at all: it simply means that for regular SSH password
authentication, sshd will verify a user’s password against Kerberos. This mode is
enabled or disabled by the keyword KerberosAuthentication with the value yes or no:
OpenSSH
KerberosAuthentication yes
Instead of checking against the local login password, sshd requests a Kerberos ticket-
granting ticket (TGT) for the user and allows login if the ticket matches the pass-
word.” It also stores that TGT in the user’s credentials cache, eliminating the need to
do a separate kinit. Note that for technical reasons, the server also requires a service

* Tt also requires a successful granting of a host ticket for the local host as an antispoofing measure.

5.4 Authentication: Verifying Identities | 181

principal in this case, even though it might not seem necessary: there’s an extra step
involved that protects against a KDC spoofing attack.

If Kerberos fails to validate a password, the server optionally validates the same pass-
word by ordinary password authentication. This is convenient in an environment
where not everyone uses Kerberos. To enable this option, use the keyword
KerberosOrlLocalPasswd with a value of yes; the default is no:

OpenSSH

KerberosOrLocalPasswd yes
Finally, since password authentication via Kerberos may also result in stored Ker-
beros user credentials, there’s a KerberosTicketCleanup keyword:

OpenSSH

KerberosTicketCleanup yes
Similar to GSSAPICleanupCredentials, this has the server delete such credentials upon
logout.

OpenSSH also used to support Kerberos TGT passing via the KerberosTgtPassing
keyword, but at press time the support has been removed.

5.4.7.2 Kerberos and Tectia

Kerberos is used with Tectia via GSSAPI authentication. You can allow or require
GSSAPI authentication by adding the value gssapi to the lists for
AllowedAuthentications or RequiredAuthentications, respectively:

Tectia
AllowedAuthentications gssapi

R

GSSAPI authentication was added in Tectia Version 4.2. The older
kerberos-2@ssh.com and kerberos-tgt-2@ssh.com authentication
1+ methods are still available if they were enabled when Tectia was con-
" figured, but they are unsupported.

The GSSAPI.AllowedMethods keyword specifies a list of allowed GSSAPI methods.
Currently, only kerberos is supported:

Tectia

GSSAPI.AllowedMethods kerberos
The kerberos GSSAPI method is allowed by default, so there is currently no reason to
use the GSSAPI.AllowedMethods keyword, unless you want to be explicit.

Tectia’s GSSAPI authentication attempts to use the MIC. If the keyword GSSAPI.
AllowOldMethodWhichIsInsecure is enabled, then Tectia is willing to fall back to using
GSSAPI without MIC:

Tectia
GSSAPI.AllowOldMethodWhichIsInsecure yes

182 | Chapter5: Serverwide Configuration

The default is yes, since GSSAPI with MIC is not yet widely supported. If the value
no is used, then GSSAPI authentication requires MIC: another way to specify this is
to use gssapi-with-mic instead of gssapi as the authentication method.

The GSSAPI.D11s keyword identifies the location of the GSSAPI libraries, as a comma-
separated list of full pathnames:

Tectia
GSSAPI.DI11s /usr/local/gssapi/lib/libgssapi.so

By default, Tectia searches a list of common locations for the libraries, including:

* Jusr/lib/libgssapi_krb5.so

* Jusr/lib/libkrb5.s0

* /Jusr/lib/libgss.so

* Jusr/locallgss/gl/mech_krb5.so

* Just/local/lib/libgssapi_krb5.so

* Jusr/local/lib/libkrb5.so

* Jusr/kerberos/lib/libgssapi_krb5.so
* Jusr/kerberos/lib/libkrb5.so

* Jusr/lib/gss/libgssapi_krb5.so

The .so suffix varies for different Unix platforms.

5.4.8 PAM Authentication

The Pluggable Authentication Modules system (PAM) by Sun Microsystems is an
infrastructure for supporting multiple authentication methods; it’s found on Solaris
and most Linux systems. Ordinarily when a new authentication mechanism comes
along, programs need to be rewritten to accommodate it. PAM eliminates this has-
sle. Programs are written to support PAM, and new authentication mechanisms may
be plugged in at runtime without further source-code modification. More PAM infor-
mation is found at:

http://www.sun.com/software/solaris/pam/

OpenSSH includes support for PAM, enabled with the UsePAM keyword, which
defaults to no:

OpenSSH
UsePAM yes

Tectia supports PAM as a keyboard-interactive authentication technique. [5.4.5]

5.4 Authentication: Verifying Identities | 183

5.4.9 Privilege Separation

OpenSSH supports privilege separation, a security feature that isolates the code that
requires root privileges. [3.6.5] You can enable and disable it with the keyword
UsePrivilegeSeparation with the value yes (the default) or no.

OpenSSH
UsePrivilegeSeparation yes

5.4.10 Selecting a Login Program

Most Unix systems have a program called login for setting up a new user login pro-
cess. It can be called by the getty process, for instance, when processing logins on a
terminal line, or by a Telnet server. By default, OpenSSH does not use the system’s
login program. You can make it do so with the UseLogin keyword:

OpenSSH

Uselogin yes
You might need to do this if your system has a login program that performs some
specialized processing missing from OpenSSH. However, there are drawbacks to
Uselogin yes:

* X forwarding is turned off, since sshd loses the chance to specially handle its
xauth cookies for X authentication.

* Privilege separation is turned off after user authentication, in order to allow login
to function correctly.

The behavior of a login program versus a login shell is entirely implementation- and
operating-system-specific, so we won’t cover the intricacies. If you need to muck
about with Uselogin, you first need to understand the features of your operating sys-
tem and your login program in detail.

5.5 Access Control: Letting People In

Serverwide access control permits or denies connections from particular hosts or
Internet domains, or to specific user accounts on the server machine. It’s applied sep-
arately from authentication: for example, even if a user’s identity is legitimate, you
might still want to reject connections from her computer. Similarly, if a particular
computer or Internet domain has poor security policies, you might want to reject all
SSH connection attempts from that domain.

SSH access control is scantily documented and has many subtleties and “gotchas.”
The configuration keywords look obvious in meaning, but they aren’t. Our primary
goal in this section is to illuminate the murky corners so that you can develop a cor-
rect and effective access-control configuration.

184 | Chapter5: Serverwide Configuration

Keep in mind that SSH access to an account is permitted only if both the server and
the account are configured to allow it. If a server accepts SSH connections to all
accounts it serves, individual users may still deny connections to their accounts. [8.2]
Likewise, if an account is configured to permit SSH access, the SSH server on its host
can nonetheless forbid access. This two-level system applies to all SSH access con-
trol, so we won’t state it repeatedly. Figure 5-2 summarizes the two-level access con-
trol system.”

sy connection request ~ ©- Access
Gt > % % granted

serverwide per-account
access control access control SSH Server

Figure 5-2. Access control levels

5.5.1 Account Access Control

Ordinarily, any account may receive SSH connections as long as it is set up cor-
rectly. This access may be overridden by the server keywords AllowUsers and
DenyUsers. AllowUsers specifies that only a limited set of local accounts may receive
SSH connections. For example, the line:

AllowUsers smith

permits the local smith account, and only the smith account, to receive SSH connec-
tions. The configuration file may have multiple AllowUsers lines:
AllowUsers smith

AllowUsers jones
AllowUsers oreilly

in which case the results are cumulative: the local accounts smith, jones, and oreilly,
and only those accounts, may receive SSH connections. The SSH server maintains a
list of all AllowUsers values, and when a connection request arrives, it does a string

comparison (really a pattern match, as we’ll see in a moment) against the list. If a
match occurs, the connection is permitted; otherwise, it’s rejected.

A single AllowUsers keyword in the configuration file cuts off SSH
access for all other accounts not mentioned. If the configuration file
has no AllowUsers keywords, the server’s AllowUsers list is empty, and
connections are permissible to all accounts.

* This concept is true for the configuration keywords discussed in this section but not for hostbased control
files, e.g., ~/.rhosts and /etc/hosts.equiv. Each of these may in fact override the other. [3.4.3.6

5.5 Access Control: Letting PeopleIn | 185

DenyUsers is the opposite of AllowUsers: it shuts off SSH access to particular
accounts. For example:

DenyUsers smith

states that the smith account may not receive SSH connections. DenyUsers keywords
may appear multiple times, just like AllowUsers, and the effects are again cumula-
tive. As for AllowUsers, the server maintains a list of all DenyUsers values and com-
pares incoming connection requests against them.

Tectia recognizes numerical user IDs in place of account names (but OpenSSH does
not):

Tectia

AllowUsers 123

DenyUsers 456
Both AllowUsers and DenyUsers accept more complicated values than simple account
names. An interesting but potentially confusing syntax is to specify both an account
name and a hostname (or numeric IP address), separated by an @ symbol:

AllowUsers jones@example.com

Despite its appearance, this string isn’t an email address, and it doesn’t mean “the
user jones on the machine example.com.” Rather, it describes a relationship between
a local account, jones, and a remote client machine, example.com. The meaning is:
“clients on example.com may connect to the server’s jones account.” Although this
meaning is surprising, it would be even stranger if jones were a remote account, since
the SSH server has no way to verify account names on remote client machines
(except when using hostbased authentication).

For OpenSSH, wildcard characters are acceptable in AllowUsers and DenyUsers argu-
ments. The ? symbol represents any single character except @, and the * represents
any sequence of characters, again not including @. For Tectia, the patterns use the
regular-expression syntax that is specified by the REGEX-SYNTAX metaconfiguration
parameter; see Appendix B."

« »

The default egrep regex syntax used by Tectia treats “.” as a wildcard
that matches any character, so a hostname pattern like example.com
will also match unqualified hostnames like examplexcom. If you are
using the egrep regex syntax, be sure to escape literal “.” characters in
hostnames, IP addresses, etc., with a backslash character:

Tectia (egrep regex syntax)
AllowUsers jones@example\.com

Alternatively, use the zsh_fileglob or traditional regex syntax, which

treats “.” characters literally. See Appendix B for more detailed infor-
mation about the different regex syntaxes supported by Tectia.

* Our general discussion of metaconfiguration might also be of help. [11.6.1]

186 | Chapter5: Serverwide Configuration

Here are some examples. SSH connections are permitted only to accounts with five-
character names ending in “mith”:

OpenSSH, and Tectia with zsh_fileglob or traditional regex syntax
AllowUsers ?mith

Tectia with egrep regex syntax
AllowUsers .mith

SSH connections are permitted only to accounts with names beginning with the let-

»,

ter “s”, coming from hosts whose names end in “.edu”:

OpenSSH, and Tectia with zsh fileglob or traditional regex syntax
AllowUsers s*@*.edu

Tectia with egrep regex syntax

AllowUsers s.*@.*\.edu
Tectia connections are permitted only to account names of the form “testN” where N
is a number, e.g., “test123”.

Tectia with zsh fileglob or traditional regex syntax
AllowUsers test[[:digit:]]##

Tectia with egrep regex syntax
AllowUsers test[[:digit:]]+

Tectia connections are permitted only to accounts with numerical user IDs in the
range 3000-6999:

Tectia with zsh fileglob or traditional regex syntax
AllowUsers [3-6][[:digit:]][[:digit:]][[:digit:]]

Tectia with egrep regex syntax
AllowUsers [3-6][[:digit:]]{3}

IP addresses can be used instead of hostnames. For example, to allow access to any
user from the network 10.1.1.0/24:"

OpenSSH, and Tectia with zsh_fileglob or traditional regex syntax
AllowUsers *@10.1.1.%

Tectia with egrep regex syntax

AllowUsers .*@10\.1\.1\..*

Tectia also recognizes netmasks preceded by the \m prefix:

Tectia with zsh_fileglob or traditional regex syntax
AllowUsers *@\m10.1.1.0/28

Tectia with egrep regex syntax
AllowUsers .*@\m10.1.1.0/28

* In this notation, the mask specifies the number of 1 bits in the most-significant portion of the netmask. You
might be more familiar with the older, equivalent notation giving the entire netmask, e.g., 10.1.1.0/255.255.
255.0.

5.5 Access Control: Letting Peopleln | 187

Wildcards and regular-expression metacharacters are not used in net-
masks, so netmasks are independent of the regex syntax, and “.” char-
acters are not escaped with backslashes as usual for the egrep regex
syntax. Netmasks are always interpreted IP address ranges, without
hostname lookups, so \mexample.com/28 does not work.

Netmasks are often more concise than other patterns for expressing IP address
ranges, especially those that don’t coincide with an octet boundary. For example,
10.1.1.0/28 is equivalent to the range of addresses 10.1.1.0 through 10.1.1.15,
which is expressed as:

Tectia with zsh_fileglob or traditional regex syntax
AllowUsers *@10.1.1.([[:digit:]]|1[0-5])

Tectia with egrep regex syntax

AllowUsers .*@10\.1\.1\.([[:digit:]]|1[0-5])
The specification of address ranges is even more of a struggle using OpenSSH’s lim-
ited wildcards, and it is frequently necessary to enumerate individual addresses:

OpenSSH

AllowUsers *@10.1.1.?

AllowUsers *@10.1.1.10 *@10.1.1.11 *@10.1.1.12 *@10.1.1.13 *@10.1.1.14 *@10.1.1.15
By default, a reverse lookup is first attempted to convert the client’s IP address to a
canonical hostname, and if the lookup succeeds, then the hostname is used for pat-
tern matches. Next, the IP address is checked using the same patterns.

Access control using IP addresses can avoid some attacks on hostname lookup mecha-
nisms, such as compromised nameservers, but we need to be careful. For example, our
previous example that intended to limit access to the network 10.1.1.0/24 would actu-
ally also allow connections from a machine on some remote network named 10.1.1.
evil.org!

Tectia provides several ways to fix this. We can use a more precise pattern that
matches only digits, to reject arbitrary domains like evil.org.

Tectia with zsh_fileglob or traditional regex syntax
AllowUsers *@10.1.1.[[:digit:]]##

Tectia with egrep regex syntax

AllowUsers .*@10\.1\.1\.[[:digit:]]+
An even better approach is to add the \i prefix to force the pattern to be interpreted
only as an IP address. This avoids the hostname lookup entirely, and allows us to use
simpler patterns safely:

Tectia with zsh fileglob or traditional regex syntax
AllowUsers *@\i10.1.1.*

Tectia with egrep regex syntax
AllowUsers .*@\i10\.1\.1\..*

188 | Chapter5: Serverwide Configuration

Even this isn’t foolproof: source IP addresses can be easily spoofed. Address-based
access controls are most appropriate for trusted internal networks protected by an
external firewall.

Tectia allows some control of the hostname lookups performed for all of the access
control patterns. To disable hostname lookups completely, use the Resolve-
ClientHostName keyword:

Tectia
ResolveClientHostName no

This is appropriate if only IP address matching is desired. It can also be useful if host-
name lookups would cause unnecessary delays, e.g., if some nameservers aren’t
available.

Conversely, to insist that hostname lookups must succeed, rejecting connections
instead of resorting to IP address matching whenever the hostname lookups fail, use
the RequireReverseMapping keyword:

Tectia

RequireReverseMapping yes
This is appropriate if only hostname address matching is desired. It also provides
some limited protection against connections from unrecognized machines.

Of course, hostname lookups should not be disabled by ResolveClientHostName if
they are forced by RequireReverseMapping.

Keep in mind that hostname-based access controls are even more inherently weak
restrictions than address-based controls, and both should be used only as an adjunct
to other strong authentication methods.

Multiple strings may appear on a single AllowUsers line, but the syntax differs for
OpenSSH and Tectia. OpenSSH separates strings with whitespace:

OpenSSH
AllowUsers smith jones

and Tectia separates them with commas:

Tectia
AllowUsers smith,jones
AllowUsers rebecca, katie, sarah Whitespace after commas is undocumented but works

A w
y

Commas must be escaped with backslashes within regular expres-

sions, to prevent misinterpretation as list separators. For example, to
= : . « 167

112 allow access by usernames that begin with “elf” and are followed by

one to three digits, plus elvis:

Tectia with egrep regex syntax
AllowUsers elf[[:digit:]]{1\,3},elvis

5.5 Access Control: Letting Peopleln | 189

AllowUsers and DenyUsers may be combined effectively. Suppose you’re teaching a
course and want your students to be the only users with SSH access to your server. It
happens that only student usernames begin with “stu”, so you specify:

OpenSSH, and Tectia with zsh _fileglob or traditional regex syntax
AllowUsers stu*

Tectia with egrep regex syntax

AllowUsers stu.*
Later, one of your students, stu563, drops the course, so you want to disable her SSH
access. Simply add the following to the configuration:

DenyUsers stu563

Hmm...this seems strange. The AllowUsers and DenyUsers lines appear to conflict
because the first permits stu563 but the second rejects it. The server handles this in
the following way: if any line prevents access to an account, the account can’t be
accessed. So, in the preceding example, stu563 is denied access by the second line.

Consider another example with this AllowUsers line:

OpenSSH, Tectia
AllowUsers smith

followed by a DenyUsers line (appropriate to your SSH implementation):

OpenSSH, Tectia with zsh_fileglob or traditional regex syntax
DenyUsers s*

Tectia with egrep regex syntax

DenyUsers s.*
The pair of lines permits SSH connections to the smith account but denies connec-
tions to any account beginning with “s”. What does the server do with this clear con-
tradiction? It rejects connections to the smith account, following the same rule: if any
restriction prevents access, such as the DenyUsers line shown, access is denied. Access
is granted only if there are no restrictions against it.

Finally, here is a useful configuration example:

OpenSSH
AllowUsers walrus@* carpenter@* *@*.beach.net

Tectia with zsh fileglob or traditional regex syntax
AllowUsers walrus@*,carpenter@*,*@*.beach.net

Tectia with egrep regex syntax
AllowUsers walrus@.*,carpenter@.*,.*@.*\.beach\.net

This restricts access for most accounts to connections originating inside the domain
beach.net—except for the accounts walrus and carpenter, which may be accessed
from anywhere. The hostname qualifiers following walrus and carpenter aren’t
strictly necessary but help make clear the intent of the line.

190 | Chapter5: Serverwide Configuration

5.5.1.1 Restricting all logins

AllowUsers and DenyUsers operate on individual accounts, but you can also deny
access to all users in a pinch. If the file /etc/nologin exists, sshd allows only root to log
in; no other accounts are allowed access. Thus, touch /etc/nologin is a quick way to
restrict access to the system administrator only, without having to reconfigure or
shut down SSH.

Tectia also checks /etc/nologin_<hostnames, where <hostnames> should match the out-
put from the hostname command. This is useful if the /etc directory is shared among
several machines in a cluster.

5.5.2 Group Access Control

sshd may permit or deny SSH access to all accounts in a Unix group on the server
machine. The keywords AllowGroups and DenyGroups serve this purpose:

AllowGroups faculty

DenyGroups students
These keywords operate much like AllowUsers and DenyUsers. OpenSSH accepts the
wildcards * and ? within group names, and separates multiple groups with
whitespace. Tectia accepts patterns according to the regular-expression syntax deter-
mined by the metaconfiguration information [11.6.1], and separates groups with
commas:

OpenSSH

AllowGroups good* better
DenyGroups bad* worse

Tectia with zsh fileglob or traditional regex syntax
AllowGroups good*,better
DenyGroups bad*, worse

Tectia with egrep regex syntax
AllowGroups good.*,better
DenyGroups bad.*, worse

Tectia recognizes numerical group IDs as well (but OpenSSH does not):

Tectia

AllowGroups 513

DenyGroups 781
By default, access is allowed to all groups. If any AllowGroups keyword appears,
access is permitted only to the groups specified (and may be further restricted with
DenyGroups).

These directives apply to both the primary group (typically listed in /etc/passwd or
the corresponding NIS map) and all supplementary groups (in /etc/group or an NIS
map). If a user is a member of any group that matches a pattern listed by AllowGroups
or DenyGroups, then access is restricted accordingly.

5.5 Access Control: Letting PeopleIn | 191

Group access control is often more convenient than restricting specific users, since
group memberships can be changed without updating the configuration of the SSH
server.

AllowGroups and DenyGroups do not accept hostname qualifiers, however, in contrast
to AllowUsers and DenyUsers. This is a surprising and unfortunate inconsistency: if
hostname (or IP address) restrictions are useful for controlling access by specific
users, then those same restrictions could be even more useful for controling access
for entire groups.

As was the case for AllowUsers and DenyUsers, conflicts are resolved in the most
restrictive way. If any AllowGroups or DenyGroups line prevents access to a given
group, access is denied to that group even if another line appears to permit it.

5.5.3 Hostname Access Control

We've described previously how to use hostname qualifiers with AllowUsers and
DenyUsers. [5.5.1] For the common case when you don’t need to restrict username,
Tectia provides the keywords AllowHosts and DenyHosts to restrict access by host-
name (or IP address) more concisely, without wildcards to match usernames:”

Tectia with zsh_fileglob or traditional regex syntax

AllowHosts good.example.com,\110.1.2.3
DenyHosts bad.example.com, \m10.1.1.0/24

Tectia with egrep regex syntax
AllowHosts good\.example\.com,\110\.1\.2\.3
DenyHosts bad\.example\.com, \m10.1.1.0/24

As with AllowUsers and DenyUsers:
* Patterns are interpreted according to the regular-expression syntax determined
by the metaconfiguration information (Appendix B).

* Values may contain multiple strings separated by commas, plus optional
whitespace.

* Keywords may appear multiple times in the configuration file, and the results are
cumulative.

* Hostnames or IP addresses may be used, with optional \i or \m prefixes.

* By default, access is allowed to all hosts, and if any AllowHosts keyword appears,
access is permitted only to the hosts specified (and may be further restricted with
DenyHosts).

)

* Finer-grained control is provided by the from option in authorized_keys. [8.2.4] Each public key may be
tagged with a list of acceptable hosts that may connect via that key.

192 | Chapter5: Serverwide Configuration

You can also make AllowHosts and DenyHosts do reverse DNS lookups (or not) with
the RequireReverseMapping keyword, providing a value of yes or no:

Tectia
RequireReverseMapping yes

5.5.4 shosts Access Control

AllowHosts and DenyHosts offer total hostname-based access control, regardless of the
type of authentication requested. A similar but less restrictive access control is spe-
cific to hostbased authentication. The Tectia server can deny access to hosts that are
named in .rhosts, .shosts, /etc/hosts.equiv, and /etc/shosts.equiv files. This is accom-
plished with the keywords AllowSHosts and DenySHosts:"

For example, the line:

Tectia with zsh fileglob or traditional regex syntax
DenySHosts *.badguy.com

Tectia with egrep regex syntax

DenySHosts .*\.badguy\.com
forbids access by connections from hosts in the badguy.com domain, but only when
hostbased authentication is being attempted. Likewise, AllowSHosts permits access
only to given hosts when hostbased authentication is used. Values follow the same
syntax as for AllowHosts and DenyHosts. As a result, system administrators can over-
ride values in users’ .rhosts and .shosts files (which is good, because this can’t be
done via the /etc/hosts.equiv or /etc/shosts.equiv files).

AllowSHosts and DenySHosts have caveats similar to those of AllowHosts and
DenyHosts:

* Patterns are interpreted according to the regular-expression syntax determined
by the metaconfiguration information (Appendix B).

* Values may contain multiple patterns separated by commas, plus optional
whitespace.

* Keywords may appear multiple times in the configuration file, and the results are
cumulative.

* Hostnames or IP addresses may be used, with optional \i or \m prefixes.

* By default, access is allowed to all hosts, and if any AllowSHosts keyword
appears, access is permitted only to the hosts specified (and may be further
restricted with DenySHosts).

* Even though the keywords have “SHosts” in their names, they apply also to .rhosts and /etc/hosts.equiv files.

5.5 Access Control: Letting Peopleln | 193

5.5.5 Root Access Control

sshd has a separate access-control mechanism for the superuser. The keyword
PermitRootLogin allows or denies access to the root account by SSH:

PermitRootlogin no

Permissible values for this keyword are yes (the default) to allow access to the root
account by SSH; no to deny all such access; and without-password (OpenSSH) or
nopwd (Tectia) to allow access except by password authentication.

In addition, OpenSSH recognizes the value forced-commands-only to allow access only
for forced commands specified in authorized_keys [8.2.3]; Tectia always allows such
access for all values of PermitRootLogin. OpenSSH’s level of control is useful, for
example, if root’s authorized_keys file contains a line beginning with:

command="/bin/dump"

Then the root account may be accessed by SSH to run the dump command. This
capability lets remote clients run superuser processes, such as backups or filesystem
checks, but not unrestricted login sessions.

The server checks PermitRootlLogin after authentication is complete. In other words,
if PermitRootLogin is no, a client is offered the opportunity to authenticate (e.g., is
prompted for a password or passphrase) but is shut down afterward regardless.

We’ve previously seen a similar keyword, IgnoreRootRhosts, that controls access to the
root account by hostbased authentication. [5.4.4] It prevents entries in ~root/.rhosts
and ~root/.shosts from being used to authenticate root. Because sshd checks
PermitRootlogin after authentication is complete, it overrides any value of
IgnoreRootRhosts. Table 5-4 illustrates the interaction of these two keywords.

Table 5-4. Can root log in?

IgnoreRootRhosts yes IgnoreRootRhosts no
PermitRootLogin yes Yes, except by hostbased Yes
PermitRootLogin no No No
PermitRootLogin without-password Yes, except by hostbased or password Yes, except by password

(OpenSSH) ;
PermitRootLogin nopwd (Tectia)

5.5.6 External Access Control

Tectia allows access control (authorization) decisions to be made by an external pro-
gram, which is identified by the ExternalAuthorizationProgram keyword:"

Tectia
ExternalAuthorizationProgram /usr/local/sbin/ssh-external-authorization-program

* If the specified program cannot be run, then access is denied.

194 | Chapter5: Serverwide Configuration

The program can be used to implement arbitrary access control logic, extending the
mechanisms that are supported directly by the Tectia server.” The server communi-
cates with the program using the Tectia plugin protocol, and we’ll go into more
detail in a later case study. [11.7.3]

N
The external authorization program can only veto access controls
as applied by other keywords in the server’s configuration. This follows

N . . .
* ok the same policy that we have seen earlier: conflicts are always resolved
using the most restrictive interpretation.

5.5.7 Restricting Directory Access with chroot

The Unix system call chroot causes a process (and any subprocesses) to treat a given
directory as the root directory. After chroot, absolute filenames beginning with “/”
actually refer to subdirectories of the given directory. Access is effectively restricted
to the given directory, because it is impossible to name files outside. This is useful for
restricting a user or process to a subset of a filesystem for security reasons.

Tectia provides two keywords for imposing this restriction on incoming SSH clients.
ChRootUsers specifies that SSH clients, when accessing a given account, are restricted
to the account’s home directory and its subdirectories:

Tectia
ChRootUsers guest

Values for ChRootUsers use the same syntax as for AllowUsers: [5.5.1]

Tectia with zsh_fileglob or traditional regex syntax
ChRootUsers guest*,backup,300[[:digit:]],visitor@*.friendly.org

Tectia with egrep regex syntax

ChRootUsers guest.*,backup,300[[:digit:]],visitor@.*\.friendly\.org
The other keyword, ChRootGroups, works similarly but applies to all accounts that
belong to a group that matches any of the specified patterns:

Tectia
ChRootGroups guest[a-z],ops,999[[:digit:]]

Values for ChRootGroups use the same syntax as for AllowGroups. [5.5.2]

ChRootUsers and ChRootGroups can be specified multiple times in configuration files;
the values are accumulated into a single list for each keyword. Each account that
matches a pattern from either ChRootUsers or ChRootGroups is individually restricted
when accessed via Tectia.

* The external authorization program is similar in function to a keyboard-interactive plugin that is used for
authentication, except that access control does not need interaction with the remote user, because the user
has already authenticated successfully before the program is run.

5.5 Access Control: Letting Peopleln | 195

Files Used by the Tectia Server After chroot

After chroot, the Tectia server needs only minimal access to files. All its configuration
files (and subconfiguration files, if any) have already been read, and all authentication
and authorization steps completed, before chroot is done. The server therefore needn’t
access devices, shared libraries, system configuration files, etc., used during these ear-
lier operations. The only files accessed after chroot are related to starting a user session:
* Setting up the environment: [5.6.2]
letc/environment
$HOME/.ssh2/environment
* The user rc file(s) [5.6.3], plus any programs and files used by the scripts:
$SHOME/.ssh2/rc
fetc/ssh2/sshrc (if SHOME/.ssh2/rc doesn’t exist)
* X authentication, if no user rc files are found [9.4.5.2], plus any shared libraries,
files, etc., used by xauth:
lusr/X11R6/bin/xauth (or a similar location, possibly determined by
XauthPath)
* Suppressing login messages: [5.6.1]
$HOME/.hushlogin
* Message of the day: [5.6.1]
letc/motd
* Checking for mail: [5.6.1]
fvar/spool/mail/$USER (or a similar location)
In most cases, accounts using chroot are heavily restricted and wouldn’t use these fea-
tures anyway, so this is rarely a problem.
Sometimes the Tectia server uses the original pathname from the passwd database for
$HOME after chroot, even though it really should use “/” instead. This can be fixed by
a symbolic link in the user’s home directory (after any necessary parent directories are
created):
$ mkdir -p "$HOME$HOME"
$ rmdir "$HOME$HOME"
$ In -s / "$HOME$HOME"
If, for example, $HOME is /home/elvis according to the passwd database, then this sets up
a symbolic link:
/home/elvis/home/elvis -> /
After chroot("/home/elvis"), the symbolic link will cause the original /home/elvis path-
name to be equivalent to the new root directory, as it should be. Crude but effective!

To make chroot functionality work, all system files used by any programs run via the
Tectia server must be copied into the home directory for each restricted account.

196 | Chapter5: Serverwide Configuration

Such files can include special device files like /dev/null or /dev/zero, shared libraries
from /lib or /usr/lib, configuration files like /etc/termcap, etc.

The permissions for the copied system files (and the directories in which they live)
need to be carefully controlled. Typically they should not be writable by the owner of
the restricted account.

Discovering all of the system files needed for all of the programs used by an account
can be challenging, and may require considerable experimentation and debugging:
tools that monitor filesystem usage (like Isof, strace, and ldd) can help.” Dependen-
cies on shared libraries can be eliminated by statically linking the programs.

Maintenance costs for restricted accounts are minimized if the accounts are further
restricted to run only a very limited set of carefully controlled commands. The login
shell is typically set to a special-purpose program, or access is allowed only to a col-
lection of forced commands. [8.2.3]

5.5.8 Summary of Authentication and Access Control

SSH provides several ways to permit or restrict connections to particular accounts or
from particular hosts. Tables 5-5 and 5-6 summarize the available options.

Table 5-5. OpenSSH summary of authentication and access control

Ifyouare... And you want to allow or restrict... Then use...
User Connections to your account by public- authorized_keys [8.2.1]
key authentication
Administrator Connections to an account AllowUsers, DenyUsers
User Connections by a host from option in authorized_keys [8.2.4.1]
Administrator Connections by a host AllowUsers,DenyUsers
User Connections to your account by host- .shosts
based authentication
Administrator Hostbased authentication HostbasedAuthentication, IgnoreRhosts
Administrator Root logins PermitRootlLogin

Table 5-6. Tectia summary of authentication and access control

Ifyouare... And you want to allow or restrict... Then use...
User Connections to your account by public-key authorization file [8.2.2]
authentication
Administrator Connections to an account AllowUsers, DenyUsers
User Connections by a host allow-from, deny-from optionsin the

authorization file [8.2.4.2]

* We discuss this in more detail in our other O’Reilly book, Linux Security Cookbook.

5.5 Access Control: Letting Peopleln | 197

Table 5-6. Tectia summary of authentication and access control (continued)

Ifyou are... And you want to allow or restrict... Then use...

Administrator Connections by a host AllowHosts, DenyHosts (or AllowUsers,
DenyUsers)

User Connections to your account by hostbased .shosts

authentication

Administrator Hostbased authentication AllowedAuthentications,
AllowSHosts, DenySHosts,
IgnoreRhosts

Administrator Root logins PermitRootLogin, IgnoreRootRhosts

5.6 User Logins and Accounts

When a login occurs, the SSH server can take special actions. Here, we discuss:

* Printing welcome messages for the user
* Setting environment variables

 Taking arbitrary actions with initialization scripts

5.6.1 Welcome Messages for the User

sshd can display custom messages for the user before and after authentication. Before
authentication, the SSH server can optionally display the contents of any file you
select with the Banner keyword (OpenSSH) or BannerMessageFile keyword (Tectia):

OpenSSH
Banner /usr/local/etc/warning.txt

Tectia

BannerMessageFile /usr/local/etc/warning.txt
By default, OpenSSH displays no banner message, whereas Tectia displays the con-
tents of /etc/ssh2/ssh_banner_message if the file exists.” The banner message is often
used for legal statements that forbid unauthorized access. Since the file is sent before
authentication, be careful that it doesn’t reveal sensitive information.

After authentication, both OpenSSH’s and Tectia’s sshd optionally prints the stan-
dard Unix “message of the day” file (/etc/motd). This output may be turned on and
off with the PrintMotd keyword with the value yes (the default) or no:

PrintMotd no

Since most Unix shells print /etc/motd on login, this SSH feature is often redundant
and turned off.

* SSH clients are not required (by the SSH-2 protocol) to display the message.

198 | Chapter5: Serverwide Configuration

For Tectia, a message about email (e.g., “You have mail”) is printed on login if the
CheckMail keyword has the value of yes (the default), or the message is skipped if the
value is no:

Tectia

CheckMail yes
In OpenSSH, the last login time is also printed if the PrintLastLog keyword has the
value of yes (the default), or the message is skipped if the value is no:

OpenSSH

Printlastlog yes
Tectia has no separate keyword to control printing the last login time—it’s always
printed, if available.

The SSH server also obeys the Unix hushlogin convention, which allows each user to
control whether these welcome messages are printed. If the file ~/.hushlogin exists,
then the message of the day, the mail notification message (for Tectia), and the last
login time are all omitted.

5.6.2 Setting Environment Variables

As we’ll see later, SSH clients have several ways to set environment variables in the
server before the login shell is invoked,” such as the environment file [7.1.3], the
SendEnv (OpenSSH) or SetRemoteEnv (Tectia) configuration keywords [7.4.4.3], and
the environment option in the authorized_keys (OpenSSH) or authorization (Tectia)
file [8.2.5]. However, these changes happen only with the server’s permission; other-
wise, SSH clients could circumvent server security policies.

The OpenSSH server grants or denies permission for clients to modify the environ-
ment in this manner, using the PermitUserEnvironment and AcceptEnv keywords.
PermitUserEnvironment controls whether the server pays attention to the user’s ~/.ssh/
environment file and authorized_keys files, with a value of yes or no (the default):

OpenSSH

PermitUserEnvironment yes
AcceptEnv controls how the server accepts or rejects environment variables that are
sent from the SSH client according to the SendEnv (OpenSSH) or SetRemoteEnv (Tec-
tia) keywords. Normally the SSH server pays no attention to such environment vari-
ables, but you can use the AcceptEnv keyword to allow specific variables to be copied,
with their values, into SSH sessions on the server machine.

The AcceptEnv keyword lists the environment variables that are accepted, either sepa-
rated by whitespace or specified by multiple keywords. Wildcard characters * and ?
will match classes of environment variables.

* And also before the user rc script, ~/.ssh/rc (OpenSSH) or ~/.ssh2/rc (Tectia). [5.6.3]

5.6 UserLoginsand Accounts | 199

OpenSSH
AcceptEnv LANG LC *
AcceptEnv PATH TERM TZ

Likewise, the Tectia SSH server permits or denies permission for clients to modify
the environment prior to login. Its SettableEnvironmentVars keyword lists environ-
ment variables that can be set by any of the methods, separated by commas (and
optional whitespace), or specified by multiple keywords. The environment variables
are matched against patterns. [11.6.1]

Tectia

SettableEnvironmentVars LANG,LC (ALL|COLLATE|CTYPE|MONETARY |NUMERIC|TIME)
SettableEnvironmentVars PATH, TERM, TZ

The SettableEnvironmentVars keyword applies only to user-configurable environ-
ment variables. Files like /etc/environment controlled by the server administrator are
not affected.

In all these cases, users are still free to set any environment variables after their login
shells are invoked. The restrictions apply only to the mechanisms for initializing the
environment of the login shell.

5.6.3 Initialization Scripts

When a user logs in, her Unix shell runs one or more initialization scripts, such as /etc/
profile. In addition, sshd runs the script /etc/ssh/sshrc (OpenSSH) or /etc/ssh2/sshrc
(Tectia) for each SSH-based login. This feature lets the system administrator run spe-
cial commands for SSH logins that don’t occur for ordinary logins. For example, you
can do some additional logging of SSH connections, print welcome messages for SSH
users only, etc.

The /etc/sshisshrc or fetc/ssh2/sshrc script is always processed by the Bourne shell (/bin/
sh), rather than the user’s shell, so it can run reliably for all accounts regardless of their
various shells. It is run for logins (e.g., ssh my-host) and remote commands (ssh my-
host /binfwho), just before the user’s shell or command is invoked but after environ-
ment variables are initialized. The script runs in a separate shell, which exits after the
script finishes, so it cannot initialize environment variables for the session. The script
runs under the target account’s uid, so it can’t take privileged actions. If the script exits
due to an error (say, a syntax error), the SSH session continues normally.

Note that this file is run as input to the Bourne shell: sshd runs /bin/sh /etc/ssh/sshrc, not
/bin/sh —c fetc/ssh/sshrc. This means that it can’t be an arbitrary program; it must be a
file containing Bourne-shell commands (and it doesn’t need the execute mode bit set).

letc/sshisshrc or fetc/ssh2/sshrc operates machinewide: it is run for every incoming
SSH connection. For more fine-grained control, users may create the script ~/.ssh/
rc (OpenSSH) or ~/.ssh2/rc (Tectia) to be run instead of the machinewide script
letc/sshisshrc or Jetc/ssh2/sshrc, respectively. [8.4] The machinewide script isn’t
executed if the user-specific script exists in the target account, but a user script can
run the machinewide script directly. OpenSSH always runs ~/.ssh/rc using the

200 | Chapter5: Serverwide Configuration

Bourne shell (like /etc/ssh/sshrc), but Tectia runs ~/.ssh2/rc using each user’s shell
(in contrast to /etc/ssh2/sshrc). OpenSSH ignores user scripts if a subsystem is used,
but Tectia does not. [5.8]

Note that SSH rc files interact with X authentication. [9.4.5.2]

5.7 Forwarding

Forwarding (or tunneling) is the use of SSH to protect another network service. We
discuss it in detail in Chapter 9, but here we describe the available serverwide config-
uration options.

5.7.1 Port Forwarding

SSH’s forwarding (or tunneling) features protect other TCP/IP-based applications by
encrypting their connections. We cover forwarding in great detail in Chapter 9, but
we introduce here the serverwide configuration keywords for controlling it.

TCP port forwarding can be enabled or disabled by the keyword AllowTcpForwarding,
with the value yes (the default) or no:

AllowTcpForwarding no

Tectia can specify this more selectively for particular users or Unix groups, with the
keywords AllowTcpForwardingForUsers, AllowTcpForwardingForGroups, DenyTcp-
ForwardingForUsers, and DenyTcpForwardingForGroups:

Tectia

AllowTcpForwardingForUsers smith

AllowTcpForwardingForGroups students

DenyTcpForwardingForUsers evildoer

DenyTcpForwardingForGroups badguys
The values for these keywords use the same syntax as for AllowUsers, AllowGroups,
DenyUsers, and DenyGroups, respectively: [5.5.1] [5.5.2]

Tectia with zsh_fileglob or traditional regex syntax

AllowTcpForwardingForUsers good*@*.friendly.org,*@\i10.1.2.%,12[[:digit:]]
DenyTcpForwardingForGroups bad*,33[[:digit:]]

Tectia with egrep regex syntax

AllowTcpForwardingForUsers good.*@.*\.friendly\.org, . *@\i10\.1\.2\.*,12[[:digit:]]

DenyTcpForwardingForGroups bad.*,33[[:digit:]]
Tectia’s ForwardACL keyword provides the most precise access control for specific for-
wardings.” Its use is complicated but it provides great flexibility. It uses multiple val-
ues (separated by whitespace), with the general format:

Tectia
ForwardACL access direction client forward [originator]

* ACL stands for “access control list.”

5.7 Forwarding | 201

The values stand for:

access
Either allow or deny, indicating the type of control to be applied.

direction
Either local or remote, specifying the kind of forwarding being controlled.’

client
A pattern describing the SSH client, with the same syntax as the
UserSpecificConfig keyword, with the components user[%group][@chost]:
[11.6.2]

user
Matches the username requested by the client

group
(Optional) Matches any of the groups that claim the user as a member

chost
(Optional) Matches the machine from which the SSH connection origi-
nates, i.e., where the SSH client program runs

forward
For local forwardings, a pattern that matches the forwarding target, where the
application server runs, as shown in Figure 5-3, which illustrates the result of
running the command:t
chost$ ssh -L[faddr:]fport:thost:tport shost

The local forward value has the form thost[%tport], where the thost compo-
nent uses the same syntax as the AllowHost keyword, and matches either the
hostname provided by the SSH client, or the address resulting from the host-
name lookup that is performed by the SSH server for the forwarding. The
optional tport is a pattern matching the numeric value of the port on which the
application server is listening, and to which the SSH server connects for the for-
warding. If the port is not specified, then the access control applies to all ports.

For remote forwardings, the forward value matches the address and (optionally)
the port on which the SSH server listens for forwarded connections, as shown in
Figure 5-4, which illustrates the result of running the command:

chost$ ssh -R[faddr:]fport:thost:tport shost

The remote forward value uses the same syntax as for local forwardings, with the
components faddr[% fport].

* These keywords are case-insensitive, but the documentation mentions only lowercase, so we recommend it.

1 Only Tectia SSH clients allow the listening address faddr to be specified with the forwarding command-line
options -L and -R.

202 | Chapter5: Serverwide Configuration

originator
(Optional) A pattern that matches the source address used by the application cli-
ent to connect to the forwarded port, labeled ohost in Figures 5-3 and 5-4. This
is most useful for remote forwarding, since the source address can be directly
determined by the SSH server when it accepts the forwarded connection.

application application
client server

tport

application ! application
server i client

Figure 5-4. Remote forwarding with the Tectia ForwardACL keyword

For local forwarding, the SSH server must rely on the SSH client to provide the
source address, and a malicious client might forge the address, so it really can’t
be trusted as a basis for granting access. In addition, the source address reported
by the SSH client might belong to private address space that is not meaningful to
the SSH server, e.g., if network address translation (NAT) is used.

The ForwardACL keyword is one of the most complex keywords available for con-
figuring Tectia, because so many parameters are needed to describe forwarded
connections fully. The reward for conquering this complexity is precision. For

5.7 Forwarding | 203

example, to allow any user in the trusted group to use local forwarding when initi-
ating SSH connections from any machine in the friendly.org domain, but only to
forward IMAP connections (port 143) to the internal server mail.example.com, use:

Tectia with zsh_fileglob or traditional regex syntax
ForwardACL allow local *%trusted@*.friendly.org mail.example.com%143

Tectia with egrep regex syntax
ForwardACL allow local .*%trusted@.*\.friendly\.org mail\.example\.com%143

A trusted user could then run her SSH client on somewhere.friendly.org as:
$ ssh -L2001:mail.example.com:143 ssh.example.com

where ssh.example.com is the host that runs the SSH server. Note that no restrictions
are imposed on the listening port for local forwardings (2001 in this case); the SSH
server has no reason to care about that, and no way to verify it anyway.

To allow guest users (i.e., those whose usernames start with “guest”) initiating SSH
connections from a range of addresses described by the netmask 10.1.2.0/24 to use
remote forwarding, but only listening on the localhost interface and accepting for-
warded connections on a range of ports 7000-7009:

Tectia with zsh fileglob or traditional regex syntax
ForwardACL allow remote guest*@\m10.1.2.0/24 localhost:700[[:digit:]]

Tectia with egrep regex syntax
ForwardACL allow remote guest.*@\m10.1.2.0/24 localhost:700[[:digit:]]

The user guest33 could then run his SSH client on a host with address 10.1.2.3 as:

Tectia
$ ssh -Rlocalhost:7005:server.elsewhere.net:8080 ssh.example.com

Note that there are no restrictions on the target for the forwarding (port 8080 on
server.elsewhere.net); the SSH server again neither knows nor cares about the for-
warded connection on the SSH client side.

To relax this access control, allowing the SSH server to accept connections on any
listening address, but only from application clients originating forwarded connec-
tions from hosts in the outbound.example.com domain, replace the localhost compo-
nent in the previous forward pattern with a “match anything” wildcard, and add a
fifth originator pattern:

Tectia with zsh_fileglob or traditional regex syntax
ForwardACL allow remote guest*@\m10.1.2.0/24 *:700[[:digit:]] *.outbound.example.com

Tectia with egrep regex syntax
ForwardACL allow remote guest.*@\m10.1.2.0/24 .*:700[[:digit:]] .*\.outbound\.
example\.com

ForwardACL restrictions for local and remote forwardings are completely indepen-
dent. If any ForwardACL keywords allow specific, limited access for either kind of for-
warding, then all other access for that kind of forwarding will be denied.

204 | Chapter5: Serverwide Configuration

Tectia uses the most restrictive interpretation for forwarding access control: if multi-
ple ForwardACL keywords match a requested forwarding, and any of them deny
access, then the forwarding is rejected. This can be useful for creating exceptions.
For example, to allow local forwarding to any port on any target host in the example.
com domain, but not to any port on the database server db.example.com, or to http
servers (port 80) on any example.com hosts:

Tectia with zsh fileglob or traditional regex syntax

ForwardACL allow local * *.example.com

ForwardACL deny local * db.example.com
ForwardACL deny local * *.example.com%80

Tectia with egrep regex syntax

ForwardACL allow local .* .*\.example\.com

ForwardACL deny local .* db\.example\.com

ForwardACL deny local .* .*\.example\.com%80
Furthermore, ForwardACL keywords cannot override restrictions imposed by the other
forwarding access control keywords (AllowTcpForwardingForUsers, AllowTcp-
ForwardingForGroups, DenyTcpForwardingForUsers, DenyTcpForwardingForGroups, or
AllowTcpForwarding): if any of these applicable keywords deny access for a requested
forwarding, then the forwarding is forbidden.

5.7.2 XForwarding

Forwarding for X, the popular Window System, can be separately enabled or dis-
abled with the keyword X11Forwarding:”

X11Forwarding no
OpenSSH automatically disables X11Forwarding if UseLogin is enabled. [5.4.10]

Administrators may wish to disable forwarding for users who are not trusted to have
forwarding securely configured on the client side. For example, it is usually desirable
to avoid SSH clients that indiscriminately accept connections from anywhere, and
then forward them across SSH tunnels to trusted servers. Similarly, misconfigured X
servers (which run on the SSH client side) can expose X client programs running on
the SSH server side to attack, if the X server access is overly permissive.

Disabling forwarding isn’t effective for users who are granted shell access to run arbi-
trary commands, because such users can use their own programs to set up equiva-
lent forwarding functionality. For better control, set up special-purpose accounts
that use carefully written, restricted programs instead of standard shells, and con-
sider using subsystems. [5.8]

* Tectia supports the keywords ForwardX11 and AllowX11Forwarding as synonyms for X11Forwarding.

5.7 Forwarding | 205

5.7.3 Agent Forwarding

Agent forwarding permits a series of SSH connections (from one machine to another
to another, ...) to operate seamlessly using a single agent. [6.3.5] Agent forwarding
may be enabled or disabled in the Tectia server using the keyword
AllowAgentForwarding with a value of yes (the default) or no:”

Tectia
AllowAgentForwarding no

It may also be enabled or disabled by OpenSSH and Tectia clients. [6.3.5.3]

Agent forwarding is convenient, but in a security-sensitive environment, it might be
appropriate to disable this feature. Because forwarded agent connections are imple-
mented as Unix domain sockets, an attacker can conceivably gain access to them.
These sockets are just nodes in the filesystem, protected only by file permissions that
can be compromised.

For example, suppose you maintain a network of exposed, untrusted machines that
you access from a more secure network using SSH. You might consider disabling
agent forwarding on the untrusted machines. Otherwise, an attacker can compro-
mise an untrusted machine; take control of a forwarded agent from a legitimate,
incoming SSH connection; and use the agent’s loaded keys to gain access to the
secure network via SSH. (The attacker can’t retrieve the keys themselves in this way,
however.)

5.8 Subsystems

Subsystems are a layer of abstraction for defining and running remote commands via
SSH.T Normally remote commands are specified ad hoc on the client command line.
For example, the following command runs a script to perform tape backups:

$ ssh server.example.com /usr/local/sbin/tape-backups

Subsystems are a set of remote commands predefined on the server machine, with
simple names so that they can be executed conveniently.
The syntax to define subsystems in the server configuration file is slightly different
for OpenSSH and Tectia. A subsystem for the preceding backup command is:

OpenSSH

Subsystem backups /usr/local/sbin/tape-backups

Tectia
Subsystem-backups ~ /usr/local/sbin/tape-backups

* The keyword ForwardAgent is also supported as a synonym for backward compatibility.
T Subsystems are supported only by the SSH-2 protocol.

206 | Chapter5: Serverwide Configuration

Note that OpenSSH uses the keyword Subsystem with a separate value for the sub-
system name, whereas Tectia uses a keyword of the form Subsystem-name. This Tec-
tia syntax is quite odd and unlike anything else in its configuration language; we
don’t know how it ended up that way.

To run this tape backup script on the server machine, use the ssh -s option:
$ ssh server.example.com -s backups

This command behaves identically to the previous one in which the script was speci-
fied explicitly.

Subsystems are mainly a convenience feature to predefine commands for SSH clients
to invoke easily. The additional level of abstraction is useful for system administra-
tors, who can hide (and therefore easily change) details for the subsystem com-
mands. For example, the backups subsystem could be changed to use a completely
different script, without any changes in the ssh client command that operators run to
perform tape backups.

System administrators can also define and advertise more generally useful sub-
systems. Suppose your users run the Pine email reader to connect to your IMAP server
to secure the connection. [11.3] Instead of telling everyone to use the command:

$ ssh server.example.com /usr/sbin/imapd

and revealing the path to the IMAP daemon, imapd, you can define an imap sub-
system to hide the path in case it changes in the future:

OpenSSH
Subsystem imap /usr/sbin/imapd
Tectia
Subsystem-imap /usr/sbin/imapd
Now users can run the command:
$ ssh server.example.com -s imap
to establish secure IMAP connections via the subsystem.
Subsystems are especially useful for tunneling other protocols. If clients refer only to

a subsystem, the corresponding server implementation can be changed without mod-
ifying (and redeploying) the clients, which might be numerous and widely scattered.

The best example is the sftp subsystem, which provides secure file transfers. [2.7.1]
The sftp client runs ssh -s sftp to launch an sftp-server program and set up a secure
tunnel for communication between the client and server.” The default server configu-
ration file for both OpenSSH and Tectia contains a definition of the sftp subsystem,
with the correct, absolute pathname for sftp-server. Tectia also provides an internal

* Tectia’s scp client also uses the sftp subsystem.

5.8 Subsystems | 207

implementation of the sftp subsystem that is built into the SSH server itself. This can
be selected by using a special syntax for the command:

Tectia

Subsystem-sftp internal://sftp-server

The internal sftp subsystem is much more convenient than the default (external)
sftp-server command for accounts that are subject to chroot restrictions. [5.5.7]

Subsystem commands are executed by each user’s shell, and they can be affected by
environment variables set by the user (if permitted by the server [5.6.2]), shell start-
up scripts, etc. OpenSSH avoids running the ~/.ssh/rc script for subsystems, but Tec-
tia always runs ~/.ssh2/rc. If a subsystem server command uses a special token to
mark the start of its output, clients can ignore unexpected output from user scripts.
Of course, the token must be defined as part of the protocol that’s understood and
used by the client and server.

OpenSSH requires that subsystem commands use absolute filenames, since no PATH
search is performed. If a relative filename is used, e.g.:

OpenSSH: this does not work

Subsystem backups tape-backups
then no error occurs when the server configuration file is read, but on subsequent
attempts to use the subsystem, clients fail silently, and the server emits syslog
warnings:

Dec 20 14:14:47 server.example.com sshd[1554]: error: subsystem: cannot stat tape-

backups: No such file or directory
Furthermore, OpenSSH doesn’t permit command-line arguments for subsystem
commands:

OpenSSH: this does not work
Subsystem backups /usr/local/sbin/tape-backups --full --filesystem=/home

This restriction is enforced when the server configuration file is read:
/etc/ssh/sshd_config line 99: garbage at end of line; "--full".

Tectia is more permissive. The server searches for simple commands (i.e., relative
filenames and no command-line arguments) in the libexec and bin subdirectories of
the Tectia install directory, and then searches each directory in the PATH. Absolute
filenames are still recommended, however, since the PATH can be redefined or modi-
fied by each user, and (if not set explicitly) defaults to the value inherited when the
server was started.

Tectia also allows extra arguments or even shell metacharacters in subsystem
commands:

Tectia
Subsystem-backups /usr/local/sbin/tape-backups --full 2>&1 | tee /var/log/backups

208 | Chapter5: Serverwide Configuration

This is usually a bad idea, because various shells for individual users differ in their
interpretation of metacharacters (e.g., the 2>81 notation in the previous example is
understood only by Bourne-style shells). The SSH server configuration file is the
wrong place for this complexity: a better approach is to wrap the details in a sepa-
rate script, and use the name of that script as the subsystem command.

Subsystem keywords can be repeated to define multiple, independent subsystems.
OpenSSH can define a maximum of 256 subsystems; there is no limit for Tectia.
OpenSSH refuses to allow subsystem names to be reused:

/etc/ssh/sshd_config line 98: Subsystem 'backups' already defined.

Tectia uses later subsystem definitions with the same name to override the com-
mands from earlier definitions. This can be useful in conjunction with subconfigura-
tion files. [11.6.2]

OpenSSH subsystem names are case-sensitive. In contrast, Tectia maps subsystem
names to lowercase when the configuration file is read, but then uses case-sensitive
comparisons to look up the subsystems specified by clients. This unfortunate and
confusing behavior effectively restricts Tectia subsystem names to be all lowercase.”

The TETF SECSH draft only defines the “sftp” subsystem name and mandates that
other, nonstandard names use an @ suffix to identify the domain that defined the
subsystem:

OpenSSH
Subsystem smail@example.com /usr/local/sbin/secure-mail-server
Tectia
Subsystem-smail@example.com /usr/local/sbin/secure-mail-server

This convention should be followed to avoid name clashes for software that is widely
used, but the domain suffix is commonly omitted for subsystems that are used only
within a single organization, and the convention is not enforced.

5.9 Logging and Debugging

As an SSH server runs, it optionally produces log messages to describe what it’s
doing. Log messages aid the system administrator in tracking the server’s behavior
and detecting and diagnosing problems. For example, if a server is mysteriously
rejecting connections, one of the first places to look is the server’s log output.

* We suspect this is a consequence of Tectia’s peculiar syntax for the Subsystem keyword in server configura-
tion files. Keywords are case-insensitive, and it’s therefore consistent to ignore the case of the subsystem
name when the name is appended to the keyword.

5.9 Logging and Debugging | 209

By default, the SSH server writes log messages to syslog, the standard Unix logging
service (see the sidebar, “The Syslog Logging Service”). For example, an SSH server
typically announces its startup with log messages like:"

Server listening on 0.0.0.0 port 22.
Generating 768 bit RSA key.
RSA key generation complete.

and a connection from a client is recorded with log messages like:

session opened for user rebecca by (uid=9005)
Accepted publickey for rebecca from 10.1.2.3 port 1265
ssh2 session closed for user rebecca

The SyslogFacility keyword specifies how the SSH server tags log messages:
SyslogFacility LOCAL3

The value is one of the (case-insensitive) syslog facility codes, and the default is AUTH.

The Syslog Logging Service

Syslog is the standard Unix logging service. Programs send their log messages to the
syslog daemon, syslogd, which forwards them to other destinations such as files, the
system console, or even other machines. Destinations are specified in the syslog con-
figuration file, /etc/syslog.conf.

Messages received by syslogd are processed according to their facility, which indicates
their origin. Standard syslog facilities include AUTH (security and authorization),
AUTHPRIV (similar, but for sensitive information), DAEMON (system daemons), LOCALO
through LOCAL7 (reserved for local use), and USER (user processes).

Log messages are also assigned a priority level, which indicates their importance. The
standard syslog priorities are, in order from most to least important, EMERG, ALERT, CRIT,
ERR, WARNING, NOTICE, INFO, and DEBUG.

See the manpages for syslog, syslogd, and syslog.conf for more information about this
logging service.

Tectia confusingly interprets AUTH to actually mean AUTHPRIV (this also
applies to the default behavior), and does not recognize AUTHPRIV as a
syslog facility code. On systems that do not support a separate
AUTHPRIV facility, Tectia resorts to AUTH. Otherwise, Tectia provides no
way to specify the AUTH facility explicitly.

* The system logger adds other information to each log message, such as a timestamp, the name of the
machine, and the process ID of the SSH server, so lines in the log files will actually look like:

Aug 30 17:41:47 graceland sshd[731]: Illegal user elvis from 10.11.12.13

210 | Chapter5: Serverwide Configuration

For Tectia, a separate syslog facility code is used for the sftp subsystem. [5.8] This is
specified by the SftpSysLogFacility keyword:

Tectia
SftpSysLogFacility LOCAL7

By default, no logging is performed for sftp.

A
S If the sftp subsystem is implemented by an external program, then the
.‘s\ Tectia server passes the sfip syslog facility code via the environment
T 9kée variable SSH2 SFTP_LOG_FACILITY. Otherwise, if the internal sftp sub-

* system that is built into the server is used, then the value for the
SftpSysLogFacility keyword is consulted directly.

SSH servers use a range of syslog priority levels, depending on the types of log mes-
sages that are sent. These priority levels aren’t directly controllable, but the syslog
configuration determines where and how they are recorded (or discarded).

The amount of detail provided by log messages can be specified in a variety of ways,
however. OpenSSH uses the keyword LoglLevel to control the verbosity level:

OpenSSH
LoglLevel VERBOSE

The permitted values (in order of increasing verbosity) are QUIET, FATAL, ERROR, INFO,
VERBOSE, DEBUG, and DEBUG1 through DEBUG3.”

The QUIET level sends nothing whatsoever to the system log (although some mes-
sages resulting from OpenSSH activity may still be recorded by other programs and
libraries, such as PAM). Tectia uses a separate keyword, QuietMode, to suppress all
log messages (except fatal errors), with the values yes or no (the default):

Tectia
QuietMode yes

The —q command-line option also selects quiet operation:
$ sshd -q

5.9.1 OpenSSH Logging and Debugging

For OpenSSH, the LogLevel values DEBUG1 through DEBUG3 produce voluminous infor-
mation useful only for diagnostic purposes.t These levels are sufficiently verbose to
reveal sensitive personal information that should not normally be recorded, so avoid
them for routine operation. Debugging output is usually requested on the command
line:

OpenSSH

$ sshd -o "LoglLevel DEBUG2"

* These names are not syslog priority levels, although some of the names are similar.
t DEBUG is a synonym for DEBUG1.

5.9 Loggingand Debugging | 21

More concisely, the —d command-line option can be specified one to three times, to
set the LoglLevel to DEBUG1 through DEBUG3, respectively:

OpenSSH

$ sshd -d -d DEBUG?2 level
The —t (test) option causes the OpenSSH server to start up, check the validity of its
host keys and the server configuration file, and exit. [5.2.2] Combine it with —d to see
more details about successful operation:

OpenSSH

$ sshd -d -t

debugl: sshd version OpenSSH 3.9p1

debugl: read PEM private key done: type RSA

debugl: private host key: #0 type 1 RSA

debugl: read PEM private key done: type DSA

debugl: private host key: #1 type 2 DSA
For OpenSSH, the —d command-line option also causes the server to run in “debug
mode,” which alters its behavior to support debugging. The LogLevel keyword does
not enable debug mode—it only sets the verbosity level.

In debug mode, the OpenSSH server runs in the foreground, without forking, instead
of running detached as a daemon. Normally, the server forks again after it accepts
each connection from a client, and continues further work for the session in a sepa-
rate child process, while the parent process resumes listening for more connection
requests. In debug mode, however, the OpenSSH server handles only a single con-
nection, again without forking, and then exits. This is usually convenient for debug-
ging, when forking and multiple processes are unwelcome complications; it’s often
easier to determine what’s happening if all actions are performed by a single process.

OpenSSH doesn’t bother to record its process ID in the PidFile [5.3.1.3] when it
runs in debug mode, since no forking occurs, and it’s easy to determine the process
ID if the server needs to be signaled.

OpenSSH can also be prevented from running as a daemon by using the -D
command-line option:

OpenSSH

$ sshd -D
The —D option does not change the LogLevel or enable any of the other side effects of
debug mode. The OpenSSH server still forks to handle multiple client connections,
even when —D is specified.

The —D option is handy in special circumstances when some other process needs to
monitor the OpenSSH server, and would incorrectly conclude that sshd had exited if
it forked and ran in the background. For example, the Cygwin program cygrunsrv
uses sshd -D to launch OpenSSH as a Windows service. [14.1]

212 | Chapter5: Serverwide Configuration

In debug mode, the OpenSSH server prints log messages to the standard error,
instead of sending them to syslog. For example, we can use the —p option to test the
server without disturbing normal operation on the standard port: [5.3.3.1]

OpenSSH

$ sshd -d -p 2222

debugl: sshd version OpenSSH 3.5p1

debugl: private host key: #0 type 0 RSA1
debugl: read PEM private key done: type RSA
debugl: private host key: #1 type 1 RSA
debugl: read PEM private key done: type DSA
debugl: private host key: #2 type 2 DSA

debugl: rexec argv[0]='/usr/sbin/sshd'
debugl: rexec_argv[1]="-d’

debug1: rexec_argv[2]="-p'

debugl: rexec_argv[3]='2222'

debugl: Bind to port 2222 on 0.0.0.0.

Server listening on 0.0.0.0 port 2222.

Generating 768 bit RSA key.

RSA key generation complete.

... The server waits for an incoming connection request, and then ...
debugl: Server will not fork when running in debugging mode.
debugl: rexec start in 4 out 4 newsock 4 pipe -1 sock 7

... Further debug output is sent to syslog: see below ...

Log messages that would have been sent to syslog are printed directly. Extra debug
messages are printed with the debugl prefix (or debug2 or debug3 if more verbose
debugging log levels are used). Lots of sample output from sshd -d can be found in
Chapter 3.

The —e option causes the OpenSSH server to independently redirect syslog output to
the standard error, without all of the other side effects of debug mode. For example:

OpenSSH

$ sshd -D -e -p 2222

Server listening on 0.0.0.0 port 2222.

Accepted publickey for rebecca from 10.1.2.3 port 32788 ssh2

When debugging OpenSSH, it’s usually a good idea to disable server restarts with
the undocumented —r option, again to confine all activity to a single process for sim-
plicity, and to prevent debug output from being diverted from stderr to syslog after
the restart. [5.3.3.3] In the previous example for sshd -d, debug output lines that
mention rexec refer to server restarts, and debug output sent to stderr abruptly ends
after the rexec start line. If we repeat the example with the —r option, we see much

more debugging information sent to stderr, without any of the rexec clutter:

OpenSSH

$ sshd -d -r -p 2222

debugl: sshd version OpenSSH 3.9p1

debugl: private host key: #0 type 0 RSA1
debugl: read PEM private key done: type RSA
debugl: private host key: #1 type 1 RSA

5.9 Loggingand Debugging | 213

debugl: read PEM private key done: type DSA

debugl: private host key: #2 type 2 DSA

debugl: Bind to port 2222 on 0.0.0.0.

Server listening on 0.0.0.0 port 2222.

Generating 768 bit RSA key.

RSA key generation complete.

.. The server waits for an incoming connection request, and then ...
debugl: Server will not fork when running in debugging mode.
Connection from 10.1.2.3 port 32777

debugl: Client protocol version 2.0; client software version OpenSSH_3.9p1
debugl: match: OpenSSH_3.9p1 pat OpenSSH*

debugl: Enabling compatibility mode for protocol 2.0

debugl: Local version string SSH-1.99-OpenSSH_3.9p1

.. Lots more output follows ...

Alternately, if the restart mechanism itself is being debugged, the —e option can be
used to prevent the diversion of debug output from syslog to stderr after the server
restarts:

OpenSSH

$ sshd -d -e -p 2222

debugl: sshd version OpenSSH 3.9p1

debugl: private host key: #0 type 0 RSA1
debugl: read PEM private key done: type RSA
debugl: private host key: #1 type 1 RSA
debugl: read PEM private key done: type DSA
debug1: private host key #2 type 2 DSA

debugl: rexec_argv[0]= /usr/sbln/sshd‘
debugl: rexec argv[i]=

debugl: rexec_argv[2]='

debug1: rexec_argv[3]=‘-

debugl: rexec_argv[4]='2222'

debug1: Bind to port 2222 on 0.0.0.0.

Server listening on 0.0.0.0 port 2222.

Generating 768 bit RSA key.

RSA key generation complete.

.. The server waits for an incoming connection request, and then ...

debugl: Server will not fork when running in debugging mode.
debugl: rexec start in 4 out 4 newsock 4 pipe -1 sock 7

.. The restarted process rereads the host keys as it repeats all of the initializations ...
debugl: sshd version OpenSSH 3.9p1

debugl: private host key: #0 type 0 RSA1

debugl: read PEM private key done: type RSA

debugl: private host key: #1 type 1 RSA

debugl: read PEM private key done: type DSA

debugl: private host key: #2 type 2 DSA

.. The restarted process uses the SSH socket accepted by the original process ...
debugl: inetd sockets after dupping: 3, 3

.. Finally, the server continues to handle the session, as before ...

Connection from 10.1.2.3 port 32778

debug1: Client protocol version 2.0; client software version OpenSSH_3.9p1
debugl: match: OpenSSH 3.9p1 pat OpenSSH*

debugl: Enabling compatibility mode for protocol 2.0

debug1: Local version string SSH-1.99-OpenSSH_3.9p1

.. Lots more output follows ...

214 | Chapter5: Serverwide Configuration

When the OpenSSH server is running in debug mode, extra information is also sent
to (and displayed by) the client, such as environment variables, initialization scripts,
xauth actions, etc., which aid in debugging connection problems.

For example, a connection to the server on the alternate port shown earlier produces
diagnostic output like this:

$ ssh -p 2222 server.example.com
Environment:

USER=elvis

LOGNAME=elvis

HOME=/u/elvis
PATH=/usr/local/bin:/bin:/usr/bin
MAIL=/var/mail/elvis

SHELL=/bin/tcsh

SSH_CLIENT=10.1.2.3 1059 2222
SSH_CONNECTION=10.1.2.3 1059 10.4.5.6 2222
SSH_TTY=/dev/pts/2

TERM=xterm

DISPLAY=localhost:10.0
SSH_AUTH_SOCK=/tmp/ssh-XXgocfvG/agent.1989
Running /bin/tcsh -c '/bin/sh .ssh/rc’

.. 0T ..

Running /bin/sh /etc/ssh/sshrc

... OF ...

Running /usr/X11R6/bin/xauth remove unix:13.0
/usr/X11R6/bin/xauth add unix:13.0 MIT-MAGIC-COOKIE-1
007ab9e94cf72f081390f46ab0od92f1f

The OpenSSH server ignores the LoginGraceTime keyword [5.3.3.6] when it runs in
debug mode, since debugging sessions often last much longer!

5.9.2 Tectia Logging and Debugging

Debug mode for Tectia is also controlled by the —d command-line option,” but the
option requires an argument indicating the debug level.

A
S We strongly recommend compiling Tectia with heavy debugging turned
.‘s\ on, using the --enable-debug-heavy configure option. [4.3.5.9] The
9 resulting log messages are far more detailed than those printed by

default.

Debug levels may be indicated in a variety of ways. The simplest is a nonnegative
integer:

Tectia
$ sshd -d 2

* The —d option has no corresponding keyword.

5.9 Logging and Debugging | 215

Specitying a debug level means that messages for all lower levels will be printed as
well. Higher numbers indicate increased verbosity. The approximate meanings of the
integer debug levels are:

Level Approximate meaning

0-2 Software malfunctions

3 Non-fatal, high-level errors caused by data received from the
network

4 Successful, high-level operations

5 Start of high-level operations

6 Uncommon situations that might indicate bugs

7 Successful, mid-level operations

8 Data block dumps

9 Protocol packet dumps

10 Successful, low-level operations

1-15 Miscellaneous, extremely low-level operations

The —v command line option is equivalent to -d 2:

Tectia

$ sshd -v
Alternatively, the VerboseMode keyword (or the abbreviated synonym Verbose) is
equivalent to the —v option:

Tectia

VerboseMode yes
Since debug logging isn’t recommended for normal operation, the VerboseMode key-
word is useful primarily in alternate configuration files that are specified with the —f
command-line option [5.2.1], or in subconfiguration files. [11.6.2]

The integer debug levels affect all aspects of Tectia’s operation. Debug levels can also
be set differently for each module in the Tectia source distribution. This permits
much finer-grained control over logging.

To use module-based debugging effectively, you should have some understanding of
C programming, and consult the source code (especially the header file lib/sshutil/
sshcore/sshdebug.h). Each source file is considered to be a “module” for debugging
purposes, as determined by the definition of SSH DEBUG MODULE within the file. For
example, the file apps/ssh/authspasswd.c has the module name Ssh2AuthPasswdServer
because it contains the line:

#define SSH DEBUG_MODULE "Ssh2AuthPasswdServer"

216 | Chapter5: Serverwide Configuration

The complete set of module names for Tectia at press time is found in Appendix C.
To extract the current set of module names from the source code, search for SSH_
DEBUG_MODULE definitions in all source files from within the Tectia distribution:

$ find . -type f -print | xargs grep "define.*SSH DEBUG_MODULE"

Module names are case-sensitive. Once you have identified the name of your desired
module, run the server in debug mode, providing the module’s name and debug
level. For example, to cause the Ssh2AuthPasswdServer module to log at debug level 2:

Tectia
$ sshd -d "Ssh2AuthPasswdServer=2"

If the debug level is omitted (i.e., only the module name is specified), then the debug
level is taken to be zero, so either of the following forms can be used:

Tectia

$ sshd -d "Ssh2AuthPasswdServer”

$ sshd -d "Ssh2AuthPasswdServer=0"
The special module name global refers to all modules, and is equivalent to specify-
ing an integer debug level. For example, the following two commands function iden-
tically:

Tectia

$ sshd -d "global=2"
$ sshd -d 2

The default global debug level is zero.
Multiple modules may be specified, separated by commas, each set to individual
debug levels:

Tectia
$ sshd -d "Ssh2AuthPasswdServer=2,SshAdd=3,SshSftpServer=5"

Add whitespace to improve readability:

Tectia
$ sshd -d "Ssh2AuthPasswdServer = 2, SshAdd = 3, SshSftpServer = 5"

If the —d option is repeated, the debug levels are concatenated. This is an alternative
to comma-separated lists:

Tectia
$ sshd -d "Ssh2AuthPasswdServer=2" -d "SshAdd=3" -d "SshSftpServer=5"

More generally, module names are patterns that can contain the wildcards * and ? to
match multiple modules:

Tectia
$ sshd -d "Ssh2Auth*=3"

These two wildcards have the same meaning as for zsh_fileglob or
traditional regex syntax, but debug module patterns are not full regu-
lar expressions: no other wildcards or regex syntax is recognized.

5.9 Loggingand Debugging | 217

Remember to enclose wildcards for the patterns in quotes to prevent their expansion
by the Unix shell.

Wildcards cannot match the special global module name, so the following does not
work:

Tectia: does not work

$ sshd -d "glo*=2"
Setting the global debug level (using either a simple integer or the special global
module name) causes all earlier module debug level assignments to be ignored, so
global assignments should always be specified first:

Tectia

$ sshd -d 1 -d "Ssh2AuthPasswdServer=2,SshAdd=3,SshSftpServer=5"
$ sshd -d "global=1, Ssh2AuthPasswdServer=2,SshAdd=3,SshSftpServer=5"

The global debug level is used as the default for all modules; otherwise, the debug
level for a specific module is determined by the last match in the list. This rule, when
combined with wildcards, can be used to conveniently set debug levels for entire cat-
egories of modules, by overriding earlier, more general assignments with a sequence
of increasingly specific patterns. For example:

Tectia
$ sshd -d "global = 1, Ssh2* = 2, Ssh2Auth* = 3, Ssh2AuthPasswd* = 4"

The “match anything” pattern * functions similarly to the global debug level:

Tectia
$ sshd -d "* = 1, Ssh2* = 2, Ssh2Auth* = 3, Ssh2AuthPasswd* = 4"

Debug output lines always start with the word “debug,” followed by the process ID
in square brackets. Messages for specific modules mention the module name, and
provide the name of the source file (with a line number) in which the code is found,
plus the name of the function in which they occur. For example:

Tectia
$ sshd -d "Ssh2AuthPasswdServer=2"

debug[2665]: Ssh2AuthPasswdServer/auths-passwd.c:136/ssh_server_ auth_passwd: password
auth.

debug[2665]: Ssh2AuthPasswdServer/auths-passwd.c:138/ssh_server auth passwd: op = 0
user = elvis

debug[2665]: Ssh2AuthPasswdServer/auths-passwd.c:250/ssh_server auth passwd: ssh_
server auth passwd: accepted by local passwd

Some debug output isn’t associated with any module, and is printed for all debug
levels. In addition, some modules produce output even for debug level 0:

Tectia

$ sshd -d o

debug[3320]: Host key pair is not specified, trying to use default 'hostkey'.
debug[3320]: Becoming server.

218 | Chapter5: Serverwide Configuration

debug[3320]: Creating listener(s)

debug[3320]: Listeners created
debug[3320]: no udp listener created.

debug[3320]: Running event loop

debug[3320]: Ssh2Common/sshcommon.c:510/ssh_common_wrap: local ip = 10.1.2.3, local
port = 22

debug[3320]: Ssh2Common/sshcommon.c:512/ssh_common wrap: remote ip = 10.1.2.3, remote
port = 32793

debug[3320]: Sshd2/sshd2.c:334/server_disconnect: locally generated = TRUE

Just because a source code file has a debugging module name associ-
ated with it doesn’t mean it actually logs any information that way.
You may find that turning on debugging for specific modules doesn’t
produce any extra debugging output.

The sshd-check-conf program [5.2.2] also accepts the debug options —d and —v. Use
the module names SshdCheckConf, SshConfigParse, or SshConfig to see more details
about parsing of configuration files:

Tectia

$ sshd-check-conf -d "SshConfigParse=9"

debug: SshConfigParse/sshconfig parse.c:224/ssh_parse_config ext: Got metaconfig line
“## REGEX-SYNTAX egrep'.

debug: SshConfigParse/sshconfig_parse.c:246/ssh_parse_config_ext: Metaconfig
specifies regex style '"EGREP'.

debug: SshConfigParse/sshconfig_parse.c:252/ssh_parse_config_ext: Metaconfig parsing
stopped at line 3.

debug: SshConfigParse/sshconfig parse.c:464/ssh_config parse line: n_var = "Port', n_
val = "22'

debug: SshConfigParse/sshconfig_parse.c:464/ssh_config parse line: n_var =
“SettableEnvironmentVars', n val = “LANG,LC

(ALL | COLLATE | CTYPE |MONETARY | NUMERIC| TIME) , PATH, TERM, TZ"

debug: SshConfigParse/sshconfig_parse.c:464/ssh_config parse line: n_var =
“subsystem-sftp', n val = “sftp-server’

As for OpenSSH, the —d command-line option causes the Tectia server to run in the
foreground, processing a single connection, and then exiting.

R
s

Although the VerboseMode keyword is equivalent to the —v option,
which in turn means the same as -d 2, the keyword cannot prevent
o forking if it is used in a subconfiguration file [11.6.2], because forking
" will have already occurred when the subconfiguration file is read.
Therefore, VerboseMode in a subconfiguration file only determines the
debug level. In the main configuration file, the keyword controls fork-
ing too.

5.9 Logging and Debugging | 219

To continue listening for more connections, use the —D option instead of —d:

Tectia

$ sshd -D "Ssh*TCP*=8"
When the Tectia server is started with the —D option, it runs in the foreground, but
subsequently forks to spawn a separate child process to handle the session for each
client connection. In all other respects, the =D and —d options function identically.

Tectia doesn’t provide any means to run the server in the foreground without
enabling debug mode. However, debug output can be minimized by using the —D
option with a debug level of zero, and the relatively small amount of unneeded
debug information can be discarded:

Tectia
$ sshd -D 0 2> /dev/null

If you need this quieter mode of operation frequently, consider rebuilding the server
without debugging support. [4.3.5.9]
A w
When specifying debug options (-d, —D, or —v) on the sshd command
line, list them first so that debugging output starts as early as possible.
tke This is especially important if you are investigating the parsing of com-
" mand-line options or configuration files.

Tectia always sends debug output to the standard error, distinct from the messages
sent to syslog. In debug mode, messages continue to be sent to syslog as they are for
normal operation, but these messages are also copied to the standard error, and
intermingled with the debug output. The copied syslog messages are annotated with
the name of the Tectia server program (usually “sshd2”) instead of “debug,” and
they are unaffected by the debug level:

Tectia

$ sshd -d 0

sshd2[3320]: Listener created on *** SSH_IPADDR_ANY ***:22.

sshd2[3320]: Daemon is running.

sshd2[3320]: connection from "10.1.2.3" (listen iface: *** SSH IPADDR_ANY ***:22)
sshd2[3320]: Destroying session channel 0

sshd2[3320]: Local disconnected: Connection closed.

sshd2[3320]: connection lost: 'Connection closed.'

sshd2[3320]: Logout for user elvis.

If syslog output is not desired when debugging Tectia, it can be directed to some sys-
log facility that is discarded by syslogd:

Tectia

$ sshd -d 0 -o "SyslogFacility LOCAL3"
The Tectia server catches the signal SIGUSR1 after it accepts a connection from a client,
and finishes authentication and authorization. When SIGUSR1 is received, the server
prints detailed information about the connection to its standard error stream. This is

220 | Chapter5: Serverwide Configuration

useful only when the server is running in the foreground (i.e., with the —d or =D
options), since output to stderr is discarded when sshd is running in the background, as
a daemon.

If the —d option is used, no forking occurs, and SIGUSR1 can be sent to the single
server process anytime after the single session starts. For the -D option, however, a
separate child process is used for each connection, and SIGUSR1 must be sent to chil-
dren, not the original parent process that continues to listen for connections:”

Tectia
$ sshd -D 0 -p 2222

debug[1234]: Becoming server.

debug[1234]: Creating listener(s)

sshd2[1234]: Listener created on *** SSH IPADDR ANY **¥:2222.

debug[1234]: Listeners created

debug[1234]: no udp listener created.

sshd2[1234]: Daemon is running.

sshd2[5678]: Public key authentication for user elvis accepted.

sshd2[5678]: User elvis (uid 501), coming from client.friendly.org, authenticated.
sshd2[5678]: Received a channel open request, type session, channel id 0
sshd2[5678]: Received a session channel extension request of type x11-req for channel
number 0

sshd2[5678]: Received a session channel extension request of type exec for channel
number O

Here the parent process that is listening for connections is 1234, while the child that
accepted the connection is 5678. If we send SIGUSR1 to the latter:

$ kill -USR1 5678
then the server responds with the requested information:

*¥** Config Data ***
Server Protocol Version String: 4.1.0.34 SSH Secure Shell

#* Connection Data *

Server on host: client.friendly.org (10.1.2.3)
Server listening on port: 2222

Connection from 10.1.2.3

Client hostname: client.friendly.org

*¥** Algorithm Data ***
Chosen Hostkey Algorithm: ssh-dss

Client to Server Algorithms:
Chosen Cipher: aes128-cbc
Chosen MAC: hmac-sha1
Chosen Compression: none

* If SIGUSR1 is sent to the parent, it will die, since it has not arranged to catch the signal.

5.9 Logging and Debugging | 221

Server to Client Algorithms:
Chosen Cipher: aes128-cbc
Chosen MAC: hmac-sha1
Chosen Compression: none

*** Channel Data ***

Number of Channels: 1

Channel 0 (session):
Sent bytes: 0
Received bytes: 0

Incoming window size: 100000
Incoming window left: 100000
Outgoing window left: 99249

*¥% Connection Statistics ***
compressed bytes in: 3918
uncompressed bytes in: 3918
compressed bytes out: 5418
uncompressed bytes out: 5418
packets in: 22

packets out: 22

rekeys: 0

*Hk User Data ***

Username: elvis

User's uid: 501

User belongs to the following groups:
Group: memphis, gid: 501

User's home directory: /u/elvis
User's shell: /bin/tcsh

¥ | ocal/Remote Tunnel Data ***
No active local forwards.
No active remote forwards.

In debug mode, the Tectia server sends extra information to the client. The content
and format are similar to information sent by the OpenSSH server, except for Tec-
tia’s annotations identifying debug and (copied) syslog messages, with the process ID
of the server after it forks to launch the user’s shell:

Tectia
$ ssh -p 2222 server.example.com

debug[2045]: /etc/nologin_server.example.com does not exist.
sshd2[2045]: Now running on elvis's privileges.

debug[2045]: Environment:

debug[2045]: HOME=/u/elvis

debug[2045]: USER=elvis

debug[2045]: LOGNAME=elvis

debug[2045]: PATH=/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin
debug[2045]: MAIL=/var/spool/mail/elvis

debug[2045]: SHELL=/bin/tcsh

debug[2045]: SSH2_CLIENT=10.1.2.3 32781 10.1.2.3 2222
debug[2045]: DISPLAY=server.example.com:10.0

222 | Chapter5: Serverwide Configuration

debug[2045]: SSH2 SFTP_LOG FACILITY=-1

debug[2045]: Running /bin/tcsh /u/elvis/.ssh2/xc

o OF ...

debug[2045]: Running /bin/sh /etc/ssh2/sshrc

.. Or ...

debug[2045]: Running /usr/X11R6/bin/xauth add server.example.com:10.0 MIT-MAGIC-
COOKIE-1 81e51d2ccefat62b288e9f772cdaaz1d

debug[2045]: Running /usr/X11R6/bin/xauth add 10.1.2.3:10.0 MIT-MAGIC-COOKIE-1
81e51d2ccefaf62b288e9f772cdaa21d

5.9.3 Debugging Under inetd or xinetd

If you run the SSH server from inetd or xinetd using the —i command-line option [5.
3.3.2], debugging can be tricky. It is necessary for sshd to avoid sending any extra
debugging output to the standard error, since it would be relayed by inetd or xinetd
to the SSH client along with the normal SSH protocol conversation, messing it up
and causing the connection to fail.

OpenSSH forces all debug output to be sent to syslog if the —i option is used, which
neatly solves the problem. For Tectia, however, the easiest approach is to redirect the
debug output from the standard error to a file. Because many versions of inetd or
xinetd do not support shell metacharacters in their configuration files, it’s best to use
a short shell script to invoke sshd with the redirected output:

#!1/bin/sh

redirect Tectia sshd standard error to a file

exec /usr/local/sbin/sshd -d 2 -i 2> /tmp/sshd2.debug
Simply specify this shell script in place of sshd in the inetd or xinetd configuration
files.

Alternately, you can send debug output to syslog using the logger program:

#!/bin/sh
send Tectia sshd debug output to syslog
exec /usr/local/sbin/sshd -d 2 -i 2>&1 | grep "~debug" | logger -p local3.debug

grep selects only the debug output, discarding the duplicate syslog messages that are
also sent to the standard error in debug mode.

5.10 Compatibility Between SSH-1
and SSH-2 Servers

OpenSSH supports both the SSH-1 and SSH-2 protocols within a single daemon
accepting both types of connections. The Protocol keyword can be used to limit the
support to either protocol exclusively. [5.3.7]

For Tectia, however, the story is more complicated. The Tectia server itself only sup-
ports the SSH-2 protocol, but it can accept connections from clients that request the

5.10 Compatibility Between SSH-1and SSH-2 Servers | 223

older SSH-1 protocol. This backward compatibility is achieved by having the Tectia
server run some other server program for the SSH-1 protocol instead, whenever an
SSH-1 connection is requested. This feature is enabled and disabled with the Tectia
Ssh1Compatibility keyword, given a value of yes or no (the default):

Tectia

SshiCompatibility yes
When SshiCompatibility is enabled, and an SSH-1 client connects to the Tectia
server, the two programs exchange strings indicating their versions. [3.6.3] sshd
(also known as sshd2, see the sidebar “Tectia’s File-Naming Conventions” [5.1])
then locates the sshdl executable by examining the value of the SshdiPath key-
word:

Tectia

Sshd1Path /usr/local/sbin/sshd1
and invokes sshdl. The Tectia server adds the —i option [5.3.3.2] to the sshdl com-
mand line to indicate that the client connection has already been accepted by Tectia,
and sshdl should expect the socket to be attached to its standard input, output, and
error streams. In addition, the Tectia server passes the client’s version string using
the (mostly undocumented) -V command-line option:

Tectia, invoked automatically by sshd
/usr/local/sbin/sshd1l -i -V "client version string" <other arguments>

N
< Although sshd2 can accept and reroute SSH-1 client connections, the
.'s reverse isn’t true: sshdl can’t accept SSH-2 connections.
' o«
15N

The -V command-line option is supported by sshdl implementations for internal use
only by sshd2. It is necessary because when sshdl starts this way, the client has
already sent its initial version announcement, which sshdl needs to get somehow.
We can’t think of any practical reason to use this option manually, but we mention it
here for completeness.

The OpenSSH server also implements the —V option, so you could use OpenSSH to
handle SSH-1 protocol connections that are delegated from Tectia in its backward-
compatibility mode. Be sure to set OpenSSH’s Protocol keyword value to 1 to force
protocol SSH-1.

Unfortunately, Tectia’s SSH-1 compatibility mode is scarcely sup-
ported by other SSH implementations. Only OpenSSH versions earlier
than 3.7 understand the -V option. An alternative is to use the latest
implementation of SSH1—the original SSH product—which is still
available from ftp:/ftp.ssh.com/pub/ssh/, but it is ancient and no longer
actively maintained.

224 | Chapter5: Serverwide Configuration

Most other command-line options are passed on from sshd2 to sshdl without modifi-
cation. Specifically, the Tectia server leaves the following options untouched: -b, —g,
—h, =k, —p, —q, and —i. The —d option [5.9] is passed to sshdl, but the debug level
argument is removed, since it is Tectia-specific. Similarly, the argument for the —f
option is unsuitable for sshdl, since it specifies an alternate configuration file, and
the syntax for sshd2 and sshdl configuration files isn’t compatible. Therefore, if an
sshd2 -f option is specified, then Tectia uses the SshdiConfigFile keyword to modify
the argument for the —f option that is used for the sshdl invocation:

Tectia
Sshd1ConfigFile /usr/local/etc/sshd1_config

The SshdiConfigFile is only used if sshd2 was invoked with an explicit -f command-
line option. Otherwise, no —f option is passed on the sshdl, and sshdl uses its own
default configuration file, just like sshd2.

All other sshd2 options are removed from the command line that is passed to sshdl.

Other command-line options besides —f can cause compatibility prob-
lems when they are passed on from sshd2 to sshdl. Some sshd2
options are not supported by all sshdl implementations, and (even
worse) some options with the same names have different interpreta-
tions. Be sure to carefully compare the sshd2 and sshdl documenta-
tion for any options that are used. It is usually best to use keywords in
different configuration files for sshd2 and sshdl instead of command-
line options in SSH-1 compatibility mode.

If SSH-1 compatibility mode is used, only the Tectia server should be started at boot
time. sshdl is then launched by sshd2 only when needed for SSH-1 connections.

5.10.1 Security Issues with Tectia’s
SSH-1 Compatibility Mode

There’s one vital thing to keep in mind if you’re using the SSH-1 compatibility fea-
ture in Tectia: you must maintain two separate SSH server configurations. When
sshd2 starts sshdl, it is an entirely new process, with its own SSH-1 server configura-
tion file. No restrictions set in your sshd2 server configuration apply to it. Even
restrictions that could apply, such as AllowHosts, don’t, because sshd2 invokes sshdl
before performing such checks.

This means you must keep the two configurations synchronized with respect to your
security intent. Otherwise, an attacker can circumvent your carefully crafted sshd2
configuration simply by connecting with an SSH-1 client.

A good strategy for automating the synchronization of sshd2 and sshdl configura-
tions is to derive the configuration files from a common template file, using a
general-purpose macro preprocessor like m4. The following list describes the basic
idea.

5.10 Compatibility Between SSH-1and SSH-2 Servers | 225

. Invent symbols like TECTIA and OPENSSH to label the implementations for the

sshd2 and sshdl configurations.

. Construct the template file using m4 preprocessor conditionals like ifdef to han-

dle incompatibilities between sshd2 and sshd1, such as syntax differences:
ifdef(TECTIA, 'DenyGroups bad.*, worse')
ifdef(OPENSSH, 'DenyGroups bad* worse')
The template file helps to maintain the configurations because similar con-
structs are kept together, and duplicate information is minimized. Any common
keywords and values can be specified in the template file without conditionals.

. Generate the sshd2 and sshdl configurations from the template by defining the

appropriate implementation symbols on the command line using the m4
preprocessor:

m4 -DTECTIA sshd_config template > sshd2_config
m4 -DOPENSSH sshd_config_template > sshd1l_config

. For even more automation, set up a Makefile containing targets for the sshd2 and

sshdl configuration files, with m4 preprocessor commands for each:

all: sshd2_config sshdi_config

sshd2_config: sshd_config template
m4 -DTECTIA $< > $@

sshd1l config: sshd config template
m4 -DOPENSSH $< > $@

. To ensure that the real sshd2 and sshdl configuration files are up to date when-

ever the template file changes, regenerating the configuration files if necessary,
simply use the command make. This can be done at boot time before the Tectia

server is started, or subsequently when the configuration file is reread using
SIGHUP. [5.2.4]

5.11 Summary

As you can see, SSH servers have a tremendous number of configuration options,
and in some cases, multiple ways to achieve the same results. All this power comes at
a price, however. When setting up a secure system, it is vital to consider each option
carefully and select appropriate values. Don’t skimp on understanding: the security
of your systems may depend on it. Chapter 10 lists configurations for OpenSSH and
Tectia. In addition, all the keywords and options in this chapter appear in
Appendix E.

Remember that serverwide configuration is only one avenue for affecting server
behavior. We discuss compile-time configuration in Chapter 4 and per-account con-
figuration in Chapter 8.

226

| Chapter5: Serverwide Configuration

CHAPTER 6
Key Management and Agents

Your SSH private key is a precious thing. When you use public-key authentication,
your key proves your identity to SSH servers. We’ve encountered several programs
related to keys:

ssh-keygen
Creates key pairs

ssh-agent
Holds private keys in memory, saving you from typing your passphrase repeat-
edly

ssh-add
Loads private keys into the agent

However, we haven’t gone into much depth, covering only the most basic opera-
tions with keys. Now it’s time to examine these concepts and programs in detail.

We begin with an overview of SSH identities and the keys that represent them. After
that, we thoroughly cover SSH agents and their many features. Finally, we extol the
virtues of having multiple SSH identities. If you’ve been getting by with a single key
and only light agent use, we have a lot of cool stuff in store for you. Figure 6-1 sum-
marizes the role of key management in the overall configuration process.

This chapter is the first in a sequence on advanced SSH for end users, as opposed to
system administrators. Once you’ve covered key management in this chapter, we’ll
take you through client configuration, server configuration, and forwarding in Chap-
ters 7-9.

6.1 WhatIs an Identity?

An SSH identity is a sequence of bits that says, “I am really me.” It is a mathematical
construct that permits an SSH client to prove itself to an SSH server, so the SSH
server says, “Ah, I see, it’s really you. You are hereby authenticated. Come in.”

227

Configuration types Configuration types

Command-line __ Command-line
options options
Environment Custom session
variables startup
SSH

Cligng Server-side
configuration file

Server-side
authorization files

Compile-time Compile-time
flags] flags
Key-related
files Target account’s

"~ authorization files

User’s client
configuration file

Global client
configuration file

Known hosts
databases TCP-wrappers
files

Kerberos
configuration files

PAM files I

Figure 6-1. SSH user key and agent configuration (highlighted parts)

An identity consists of two parts, called the private key and the public key. Together,
they are known as a key pair.

The private key represents your identity for outgoing SSH connections. When you
run an SSH client in your account, such as ssh or scp, and it requests a connection
with an SSH server, the client uses this private key to prove your identity to the
server.

Private keys must be kept secret. An intruder with your private key can
access your account as easily as you can.

The public key represents your identity for incoming connections to your account.
When an SSH client requests access to your account, using a private key as proof of
identity, the SSH server examines the corresponding public key. If the keys “match”
(according to a cryptographic test), authentication succeeds and the connection pro-
ceeds. Public keys don’t need to be secret; they can’t be used to break into an
account.

228 | Chapter6: KeyManagementand Agents

A key pair is typically stored in a pair of files with related names. In SSH, the public-
key filename is the same as the private one, but with the suffix .pub added. For exam-
ple, if the file mykey holds a private key, its corresponding public key is found in
mykey.pub.

You may have as many SSH identities as you like. Most SSH implementations let you
specity a default identity clients use unless told otherwise. To use an alternative iden-
tity, you must change a setting by command-line argument, configuration file, or
some other configuration tool.

The structure of identity files differs for OpenSSH and Tectia, so we explain them
separately. Their locations in the filesystem are shown in Figures 6-2 (private keys)
and 6-3 (public keys).

$HOME
|
.ssh .ssh2
I 1
identity id dsa identification
* * IDkey ONE ssesspassssnarans > %
private key private key
IDkey WO sesssirennnnn : file one
: L @.
SSH-1 SSH-2 file two
OpenSSH Tectia :

Figure 6-2. SSH identity files (private keys) and the programs that use them

6.1.1 OpenSSH Identities

An OpenSSH identity is stored in two files. By default, the private key is stored in the
file id_dsa, and the public key in id_dsa.pub.” This key pair, which is kept in your ~/.ssh
directory, is your default identity that clients use unless told otherwise. The private key
looks something like this:

----- BEGIN DSA PRIVATE KEY----- Or “BEGIN RSA” for RSA keys

Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,89C3AE51BC5876FD

MXZJgnkYE+1+eff3yt9]j/aCCABz75eghGIfAbWrseiuok3DimgTeu20b1Xjdv4U9
I111hVYOkgQYuhdJbzr LMpJOW1+N5ujI8akI6jOESeGTwIbhGyst71Y3A2+wamliv

* If your default key is an RSA key, the filenames are id_rsa and id_rsa.pub.

6.1 Whatlsanldentity? | 229

$HOME

.ssh . séhz
| 1
authorized_keys authorization
Key ONE ssessdennssannes » <>:
public key #1 public key #1 file one
@Cp @; (IR — > C 'i|
public key #2 public key #2
. . . file two
SSH-1 SSH-2
SSH1 OpenSSH Tectia

Figure 6-3. SSH authorization files (public keys) and the programs that use them

... lines omitted ...
gMtQSdL26V1+EmGiPfio8Q==
----- END DSA PRIVATE KEY-----

and the public key file contains a long, single line:
ssh-dss AAAAB3NzaC1kc3MAAACBAM4a2KKBE6zhPBgR ...more... smith@example.com
The file format for these keys is known as “OpenSSH format.”

The .pub file containing your public key has no function by itself. Before it can be
used for authentication, this public key must be copied into an authorization file on
an SSH server machine, ~/.ssh/authorized_keys. Thereafter, when an SSH client
requests a connection to your server account using a private key as proof of identity,
the OpenSSH server consults your authorized_keys file to find the matching public
key.

6.1.2 Tectia ldentities

A Tectia key pair is also stored in two files with related names (i.e., the private-key
filename plus .pub yields the public-key filename). Tectia key files are often named
based on the key’s cryptographic properties. For example, a 2048-bit, DSA-
encrypted key is generated by default in the Tectia files id_dsa_2048_a and id_dsa_
2048_a.pub. These files are in a format known as “SECSH public-key file format”
and sometimes “SSH2 format.” The encrypted private key looks like this:

---- BEGIN SSH2 ENCRYPTED PRIVATE KEY ----

Subject: smith
Comment: "2048-bit dsa, smith@example.com, Sat Feb 12 2005 15:17:53 -0200"

230 | Chapter6: KeyManagementand Agents

Converting SSH-1 Keys to SSH-2 with ssh-keyconverter

OpenSSH includes the program ssh-keyconverter, which converts old SSH-1 RSA keys
into a format suitable for SSH-2 authentication. If you used SSH-1 in the early days but
are just getting around to upgrading, ssh-keyconverter might save you the time of gen-
erating and installing new keys. There are two uses:

Converting key files
Run ssh-keyconverter with the —k option to convert a single SSH-1 RSA key file to
SSH-2 format. If your private key file is mykey, run:

$ ssh-keyconverter -k -o newfile mykey
Creates newfile and newfile.pub

Converting your entire authorized_keys file
Run ssh-keyconverter with the —a option to convert all SSH-1 RSA keys in your
authorized_keys file to SSH-2 format:
$ cd ~/.ssh
$ ssh-keyconverter -a -o newfile authorized keys
...Check that file newfile looks correct, and then...
$ mv newfile authorized keys
$ chmod 600 authorized keys

Existing SSH-2 format keys are ignored.

See the manpage for ssh-keyconverter for more details.

P2/56wAAA40AAAAMZGwtbWOkcHtzaWdue2RzYS1uaXN5LXNOYTF9LGRoe3BsYWlufX0AAA
AIM2R1cy1]jYmMAAANIEYKNTUySnPZ1YsNh151kVfzRk6dPx4XYcXe+4f45XHIxwqcUo2Cd
... lines omitted ...

RFIORQXDhgWS/SX1FF

---- END SSH2 ENCRYPTED PRIVATE KEY ----

and the public key like this:

---- BEGIN SSH2 PUBLIC KEY ----

Subject: smith
AAAAB3NzaC1kc3MAAAEBAP30fkjOBm1+aPgEUG39j5va13CRrPSedFYtv/52VqIgrBzRVE
Es1KHPIwmB1FONn5ej02FATNGtaR/fg6K4DVolWscIHGZk950jLgAz+IeBq71xYwQOEzpsTQ
... lines omitted ...

mQ1et1r4WrofjoF/2tXf+071P2HfNwIM6IOB/54eI=

---- END SSH2 PUBLIC KEY ----

Unlike OpenSSH, however, a Tectia identity is not a single key but a collection

of

keys. When a Tectia client tries to authenticate, it may use all keys in the collection.
If the first key fails to authenticate, the Tectia client automatically tries the second,

and so forth, until it succeeds or fails completely.

6.1 Whatlsan Identity? |

231

To create an identity in Tectia, private keys must be listed in a file called an identifi-
cation file. Your default identity file is ~/.ssh2/identification.” Inside the file, private
keys are listed one per line. For public-key authentication, a line begins with the key-
word IdKey, followed by the name of the private-key file:

Tectia identification file

The following names are relative to ~/.ssh2

IdKey id dsa 2048 a

IdKey my-other-tectia-key

This key uses an absolute path

IdKey /usr/local/etc/third-key

The identification file may also contain PGP-related keywords: [6.5]

Tectia identification file
PgpSecretKeyFile my-file.pgp
IdPgpKeyName my-key-name

Like OpenSSH, Tectia has an authorization file for incoming connections, but with a
difference. Instead of containing copies of the public keys, the Tectia authorization
file merely lists the public-key filenames using the Key keyword:

Tectia authorization file

Key id dsa 2048 a.pub

Key something-else.pub
Notice you have only one copy of each public key. This is slightly easier to maintain
than OpenSSH’s system, which has separate copies in the .pub file and authorized_
keys file. [8.2.1]
A

Tectia’s identification file can group multiple keys as a single identity.
as You can approximate this behavior in OpenSSH with the IdentityFile
N o+ P ,
ok keyword. [7.4.2] To set up a default “identity” with multiple keys, add
" the following section to the end of your ~/.ssh/config file:
Host *

IdentityFile key1

IdentityFile key2

IdentityFile key3

Now this multiple-key “identity” is available for all SSH connections.
Similarly, you can place multiple IdentityFile values in any other sec-
tion of the configuration file to associate a multikey identity with a
particular host or set of hosts.

* This default may be changed with the IdentityFile keyword. [7.4.2]

232 | Chapter6: KeyManagementand Agents

6.2 Creating an Identity

Most SSH implementations include a program for creating key pairs. We cover ssh-
keygen from OpenSSH and Tectia.

6.2.1 Generating Keys for OpenSSH

OpenSSH uses the program ssh-keygen to create key pairs. [2.4.2] Let’s go into more
detail about this program for creating new keys or modifying existing keys.

6.2.1.1 Creating OpenSSH keys
When creating a new key, you must indicate the key type (DSA or RSA) using the —t
flag:

$ ssh-keygen -t dsa

You may also specify these options for creating keys:

* The number of bits in the key, using —b; the default is 1024 bits:
$ ssh-keygen -t dsa -b 2048

* The name of the private-key file to be generated, using —f. The name is relative to
your current directory. Recall that the public-key file is named after the private
one with .pub appended.

$ ssh-keygen -t dsa -f mykey Creates mykey and mykey.pub
If you omit the —f option, you are prompted for the information:
$ ssh-keygen -t dsa

éﬁ%er file in which to save the key (/home/barrett/.ssh/id_dsa): mykey
The default filename for DSA keys is ~/.ssh/id_dsa, and for RSA keys it’s ~/.ssh/
id_rsa.
* The passphrase to decode the key, using —N:
$ ssh-keygen -t dsa -N secretword
If you omit this option, you’ll be prompted for the information:
$ ssh-keygen -t dsa
I.Er.&er passphrase: [nothing is echoed]
Enter the same passphrase again: [nothingis echoed]

* A textual comment associated with the key, using —C. If you omit this option,
the comment is username@host, where username is your username and host is the
local hostname:

$ ssh-keygen ... -C "my favorite key"

6.2 Creatinganldentity | 233

Before using any option that places your passphrase on the shell com-
mand line, such as the —N or —P options of ssh-keygen, carefully con-
sider the security implications. Because the passphrase appears on
your screen, it may be visible to onlookers, and while running, it may
be visible to other users viewing the machine’s process list via the ps
command. In addition, if your shell creates history files of the com-
mands you type, the passphrase is inserted into a history file where it
can be read by a third party.

Also, if you think you have a good reason just to type Return and give
your key no passphrase, think again. That is essentially equivalent to
putting your password in a file in your home directory named MY-
PASSWORD.PLEASE-STEAL-ME. If you don’t want to have to type a
passphrase, the right thing to do is to use ssh-agent, hostbased authen-
tication, or Kerberos. There are very limited circumstances having to
do with unattended usage (e.g., cron jobs) where a plaintext, pass-
phrase-less client key might be acceptable. [11.1]

If you use both —f (specify output file) and —N (specify passphrase), ssh-keygen issues
no prompts. Therefore, you can automate key generation using these options (and
perhaps redirecting output to /dev/null):

$ ssh-keygen -f mykey -N secretword

You might use this technique to automate generation of a large number of keys for
some purpose. Use it carefully, though, and always on a secure machine. The pass-
word on the command line is probably visible to other users on the same machine
via ps or similar programs; and if you’re scripting with this technique, obviously the
passphrases shouldn’t be kept in files for long.

6.2.1.2 Working with OpenSSH keys

In addition to creating keys, ssh-keygen can manipulate existing keys in the follow-
ing ways:

* Changing the passphrase of an existing key, using -p. You can specify the file-
name with —f and the old and new passphrases with —P and —N, respectively:

$ ssh-keygen -t dsa -p -f mykey -P secretword -N newword
Your identification has been saved with the new passphrase.
But if you omit them, you are prompted:
$ ssh-keygen -t dsa -p
Enter file in which the key is (/home/barrett/.ssh/id rsa): mykey
Enter old passphrase: [nothing is echoed]
Key has comment 'my favorite key'
Enter new passphrase (empty for no passphrase): [nothing is echoed]
Enter the same passphrase again:
Your identification has been saved with the new passphrase.

Note that this changes the passphrase but doesn’t change the key, it just re-
encrypts the key with the new passphrase. So, the corresponding public-key file
on remote machines doesn’t change or need to be replaced.

234 | Chapter6: KeyManagementand Agents

* Printing the fingerprint of a given key file, with —I. See the sidebar “Key Finger-
prints” for more information. The fingerprint can be calculated from the public
key:

$ ssh-keygen -1 -f stevekey.pub

1024 5c:f6:€2:15:39:14:1a:8b:4c:93:44:57:6b:c6:f4:17 steve@snailbook.com
$ ssh-keygen -B -f stevekey.pub

1024 xitot-larit-gumet-fyfim-sozev-vyned-cigeb-sariv-tekuk-badus-bexax
Steve@snailbook.com

* Printing a DNS resource record with —r, and using DNS resource record format
with —g. These options produce key fingerprints in a format suitable for a BIND
nameserver, for the purposes of verifying SSH host keys via the DNS. [7.4.3.2]

* Converting between SECSH (Tectia) and OpenSSH key-storage formats, with —e,

—i, and —y.
Option Extract/convert from... To...
-e OpenSSH private-key file (“export”) SECSH public key (Tectia format)
-i SECSH public-key file (“import”) OpenSSH public key
-y OpenSSH private-key file OpenSSH public key

An OpenSSH “private” key file actually contains both the public and private keys
of a pair, so the —e and —y options simply extract the public key and print it out in
the desired format. Use —e to convert an OpenSSH public key for your ~/.ssh2/
authorization file on a Tectia server host, and -i to do the opposite. The —y
option is useful if you accidentally delete your OpenSSH public-key file and need
to restore it. Tectia keys are in a format called SECSH Public Key File Format or
SSH2 format, also used by other SSH implementations whose keys you may
import and export.

A function that’s missing is converting the private keys as well. This is useful if
you have an OpenSSH server host on which you also want to run Tectia, and
you want the two SSH servers to share a host key.

When you make changes to a key, such as its passphrase or comment, the changes are
applied to the key file only. If you have keys loaded in an SSH agent, the copies in the
agent don’t get changed. For instance, if you list the keys in the agent with ssh-add -I
(lowercase L) after changing the comment, you still see the old comment in the agent.
To make the changes take effect in the agent, unload and reload the affected keys.

6.2.2 Generating Keys for Tectia

Tectia also uses a program named ssh-keygen to create key pairs and manipulate
existing keys.

6.2 Creatinganldentity | 235

Key Fingerprints

Fingerprints are a common cryptographic feature for checking that two keys in differ-
ent places are the same, when comparing them literally—bit by bit—is infeasible.
OpenSSH and Tectia can compute fingerprints.

Suppose Steve wants SSH access to Judy’s account. He sends his public key to Judy by
email, and she installs it in her SSH authorization file. While this key exchange seems
straightforward, it is insecure: a hostile third party could intercept Steve’s key and sub-
stitute his own, gaining access to Judy’s account.

To prevent this risk, Judy needs some way to verify that the key she receives is Steve’s.
She can call Steve on the telephone and check, but reading a 500-byte encrypted public
key over the phone is annoying and error-prone. This is why fingerprints exist.

A fingerprint is a short value computed from a key. It’s analogous to a checksum, ver-
ifying that a string of data is unaltered—in our case, a key. To check the validity of a
key using fingerprints, Steve and Judy could do the following:

1. Judy receives a public key that is supposed to be Steve’s, storing it in the file
stevekey.pub.
2. Separately, Judy and Steve view the fingerprint of the key:
OpenSSH
$ ssh-keygen -1 -f stevekey.pub
1024 5c:f6:€2:15:39:14:1a:8b:4c:93:44:57:6b:c6:f4:17 Steve@snailbook.com
$ ssh-keygen -B -f stevekey.pub
1024 xitot-larit-gumet-fyfim-sozev-vyned-cigeb-sariv-tekuk-badus-bexax
Steve@snailbook.com

Tectia

$ ssh-keygen -F stevekey.pub

Fingerprint for key:

xitot-larit-gumet-fyfim-sozev-vyned-cigeb-sariv-tekuk-badus-bexax

3. Judy calls Steve on the telephone and asks him to read the fingerprint over the

phone. Judy verifies that it matches the fingerprint of the key she received. Fin-
gerprints are not unique, but for any two keys, the probability that their finger-
prints are identical is extremely small. Therefore, fingerprints are a quick and
convenient method for checking that a key is unaltered.

As you can see, OpenSSH and Tectia use different output formats for fingerprints.
OpenSSH supports both a numeric format which is more traditional and should be
familiar to users of PGP, and a textual format called “Bubble Babble” which is claimed
to be easier to read and remember. Tectia supports only Bubble Babble fingerprints.

Fingerprints also surface when you connect to an SSH server whose host key has
changed. In this case, OpenSSH prints a warning message and the fingerprint of the
new key, which may be conveniently compared with the fingerprint of the real host
key, should you have it.

236

| Chapter6: Key Management and Agents

6.2.2.1 (Creating Tectia keys
When creating a new key, you may choose the name of the private-key file to be gen-
erated, by specifying the name at the end of the command line:

$ ssh-keygen mykey creates mykey and mykey.pub

The name is relative to your current directory, and as usual, the public key file is
named after the private one with .pub appended. The key is saved in the directory
~/.ssh2 in a file whose name indicates the key type and number of bits. An exam-
ple is id_dsa_2048_a, which was generated by the DSA algorithm with 2048 bits.

You also may indicate the following with command-line options:

* The number of bits in the key, using —b; the default is 2048 bits:
$ ssh-keygen -b 4096
* The key type, such as DSA or RSA, using —:
$ ssh-keygen -t dsa
* A textual comment associated with the key, using —c:
$ ssh-keygen -c "my favorite Tectia key"
If you omit this option, the generated comment describes how and by whom the
key was generated. For example:
"2048-bit dsa, barrett@server.example.com, Tue Feb 22 2000 02:03:36"
* The passphrase to decode the key, using —p. If you omit this option, you are
prompted after generation.
$ ssh-keygen -p secretword
You can also designate an empty password using —P. This shouldn’t be done in
general but is appropriate in some special cases: [11.1.2.2]
$ ssh-keygen -P
* Whether or not to overwrite the key file, if it already exists, with --overwrite
and the value yes (the default) or no:

$ ssh-keygen --overwrite no mykeyfile

6.2.2.2 Working with Tectia keys

In addition to creating keys, ssh-keygen can operate on keys in the following ways:

* By changing the passphrase and comment of an existing key, using —e. This
option causes ssh-keygen to become interactive, prompting for the new informa-
tion. This interactive mode is primitive and annoying, requiring nearly 10 user
responses to change the passphrase and comment, but it does the job:

$ ssh-keygen -e mykey

Passphrase needed for key "my favorite Tectia key"

Passphrase : [nothing is echoed]

Do you want to edit key "my favorite Tectia key" (yes or no)? yes
Your key comment is "my favorite Tectia key".

Do you want to edit it (yes or no)? yes

6.2 (Creatinganldentity | 237

New key comment: this is tedious

Do you want to edit passphrase (yes or no)? yes

New passphrase : [nothing is echoed]

Again : [nothing is echoed]

Do you want to continue editing key "this is tedious" (yes or no)? god no
(yes or no)? no

Do you want to save key "this is tedious" to file mykey (yes or no)? yes

Changes are applied to the key files but not propagated to any copies currently
loaded in an agent. (So, if you run ssh-add -l to list the keys in your agent, for
example, you still see the old comment.)

* By converting between various key-storage formats, with the following options:

Option Extract/convert from... To...

-1 SSH1 key SECSH key

--import-public-key OpenSSH public key SECSH public key

--import-private-key OpenSSH private key, unencrypted only SECSH private key

--import-sshi- An OpenSSH or SSH1 authorized_keysfile Tectia authorization file, plus an

authorized-keys individual file for each referenced
public key

-D SECSH private key SECSH public keya

X X.509 private key SECSH private key

-k PKCS 12file SECSH certificate and private key

-7 PKCS 7 file Certificates from that file

a Handy if you ever lose your public-key file.

ssh-keygen also gives you some control over input, output, and diagnostics:

* By printing the fingerprint of a given key file, with —F. See the sidebar “Key Fin-
gerprints” for more information. [6.2] The fingerprint is calculated from the
public key:

$ ssh-keygen -F stevekey.pub
Fingerprint for key:
xitot-larit-gumet-fyfim-sozev-vyned-cigeb-sariv-tekuk-badus-bexax

* By printing cryptographic information about a key, with —i:

$ ssh-keygen -i stevekey.pub
DSA Public Key
[Strength estimation as of July, 2000 considering NFS and Pollard rho: Attack
requires 0(2"80) steps, which is roughly equivalent to 6.7 * 10”7 years of effort
with 1GHz machine.]

p = [Large prime, characteristic of the finite field]
18257155510680634708091813901445079313554557329637337413272033369505053693222548
32994959179095338002184212706407725165597654255005411958024968996544803955496850.

238

Chapter6: Key Management and Agents

You can display this information in different bases with —B; the default is base 10:
$ ssh-keygen -i -B 16 stevekey.pub Base 16, hexadecimal

0x909fe130f9fa7192dc2a28591a53¢c0687. ..
* By printing the program version number, with -V:
$ ssh-keygen -V
ssh-keygen: SSH Tectia Server 4.2.1 on 1686-pc-linux-gnu
Build: 1
Crypto library version: SSH Cryptographic Library, version 1.2.4
* By printing a help message, with —h or —?; most Unix shells require you to escape
the question mark to prevent the shell from interpreting it as a wildcard:
$ ssh-keygen -h
$ ssh-keygen -\? escaping the question mark
* By printing debug information, with —d, as for Tectia’s sshd. [5.9]

* By suppressing the progress indicator, using —q. The progress indicator is a
sequence of O’s and periods that displays while ssh-keygen runs, like this: .00o.
000.000.000:

$ ssh-keygen
Generating 2048-bit dsa key pair

.000.000.000.000
Key generated.

$ ssh-keygen -q
Generating 2048-bit dsa key pair
Key generated.

Finally, ssh-keygen has one guru-level advanced option, —r, for affecting the random
numbers used for key generation. It causes ssh-keygen to modify ~/.ssh2/random_seed
using data you enter on standard input. [3.6.4] The Tectia manpages call this “stir-
ring data into the random pool.” Note that the program doesn’t prompt you to enter
data, it just sits there looking like it’s hung. When this occurs, type as much data as
you like and press the EOF character (Control-D in most shells):

$ ssh-keygen -r

I am stirring the random pool.

blah blah blah

)

Stirred in 46 bytes.

See Table 6-1 for a description of ssh-keygen options.

Table 6-1. ssh-keygen options

ssh-keygen feature OpenSSH Tectia

Set number of bits -bbits -bbits

Set output file —ffile final argument of the command
Overwrite output file if present --overwrite [yes|no]

6.2 (Creatinganldentity | 239

Table 6-1. ssh-keygen options (continued)

ssh-keygen feature

Set comment string

Change comment string

Set (new) passphrase

Set empty passphrase

Specify current passphrase

Change passphrase

Set encryption algorithm

Change encryption algorithm
Derive public key from private
Quieter output

Describe key

Set numeric base for printing key information
Print version number

Print help message

Print debugging information

Use data from stdin for randomness
Print a key’s fingerprint

Convert from SSH-1 to SSH-2 format

Convert OpenSSH private to Tectia public
Convert OpenSSH private to Tectia private
Convert Tectia public to OpenSSH public
Extract OpenSSH private to public

Convert authorized_keys to authorization file

Convert X.509 key to SECSH format¢
Convert PKCS 12 file to SECSH format
Convert PKCS 7 file to SECSH format

OpenSSH
—Ccomment
—C

-Nphrase
_N"

-pP

—p
—talgorithm

—u

-q

—ha

—lor-B

Tectia
—Ccomment
-efile
—-pphrase
-P

-efile
—talgorithm

-Dfile

—q

-ifile
-Bbase

-V

—h,-7b

—d debug_spec
-r

-Ffile
-1file

--import-private-key

--import-public-key

--import-sshi-authorized-
keys

-Xfile
—kfile
—7file

a Anyillegal argument, such as —h, causes a help message to print.
b You might need to escape the question mark in your shell, e.g., -\?.

¢ The key file format used by SSH Tectia and several other implementations, but not OpenSSH.

6.2.3

Selecting a Passphrase

Choose your passphrases carefully. Make them at least 10 characters long, contain-
ing a mix of uppercase and lowercase letters, digits, and nonalphanumeric symbols.
At the same time, you want the passphrase to be easy to remember, but hard for oth-
ers to guess. Don’t use your name, username, phone number, or other easily guessed

240 | Chapter6: KeyManagementand Agents

information in the passphrase. Coming up with an effective passphrase can be a
chore, but the added security is worth it.

If you forget a passphrase, you are out of luck: the corresponding SSH private key
becomes unusable because you can’t decrypt it. The same encryption that makes
SSH so secure also makes passphrases impossible to recover. You have to abandon
your SSH key, generate a new one, and choose a new passphrase for it. You must
also install the new public key on every machine that holds the original one.

Smartcard Support in OpenSSH

OpenSSH includes experimental support for hardware devices (smartcards) that can
hold private user keys. This includes:
ssh-keygen
The —D (download) and —U (upload) options
ssh-add
The —s (add key) and —e (remove key) options
ssh
The -1 option and the SmartCardDevice configuration keyword, to choose a smart-
card device
At press time, smartcard support in OpenSSH is still experimental, so we don’t cover
it. We mention it only for completeness.

6.2.4 Generating New Groups for Diffie-Hellman
Key Exchange

As we saw in Chapter 3, the SSH Transport Protocol uses the Diffie-Hellman key-
agreement algorithm to generate cryptographic session keys for the SSH connection.
[3.8.1.3] One parameter to this algorithm is a mathematical structure from algebra
known as a “group”; specifically, a finite integer group with respect to multiplica-
tion modulo a prime. In the initial SSH protocol, a single fixed group was used for
the key exchange. Due to concern over possible future attacks against this fixed
parameter, an extension was created to allow the group to be negotiated, and this
extension is now widely implemented.

The OpenSSH server selects the groups to be offered the client from the file /etc/
moduli. OpenSSH comes with a moduli file defining a set of suitable groups, and for
most people this is sufficient; there is no pressing need to regenerate them. On par-
ticularly slow systems, you might edit this file to select groups with a smaller prime
modulus, to speed up the key exchange.

6.2 Creatinganldentity | 241

If you like, you can generate your own set of key-exchange groups using ssh-keygen -G.
This usage is quite technical and infrequently used, so we won’t delve further into it
here; refer to the ssh-keygen manpage, in the section “MODULI GENERATION,” for
details. You can also see an example in OpenBSD’s usr/src/etc/Makefile for OpenSSH,

e.g.:
http://'www.openbsd.org/cgi-bin/cvsweb/src/etc/Makefile?
rev=1.215&content-type=text/x-cvsweb-markup

6.3 SSH Agents

An SSH agent is a program that caches private keys and responds to authentication-
related queries from SSH clients. [2.5] They are terrific labor-saving devices, han-
dling all key-related operations and eliminating the need to retype your passphrase.

The programs related to agents are ssh-agent and ssh-add. ssh-agent runs an agent,
and ssh-add inserts and removes keys from the agent’s key cache. A typical use might

look like this:

Start the agent

$ ssh-agent $SHELL

Load your default identity

$ ssh-add

Need passphrase for /home/barrett/.ssh/identity (barrett@example.com).

Enter passphrase: ¥k
By typing your passphrase a single time, you decrypt the private key which is then
stored in memory by the agent. From now on, until you terminate the agent or log
out, SSH clients automatically contact the agent for all key-related operations. You
needn’t type your passphrase again.

We now briefly discuss how agents work. After that we get practical and illustrate
different ways to start an agent, various configuration options, and several tech-
niques for automatically loading your keys into the agent. Finally, we cover agent
security and agent forwarding.

6.3.1 Agents Do Not Expose Keys
Agents perform two tasks:

* Store your private keys in memory

* Answer questions (from SSH clients) about those keys

Agents don’t, however, send your private keys anywhere. This is important to under-
stand. Once loaded, private keys remain within an agent, unseen by SSH clients. To
access a key, a client says, “Hey agent! I need your help. Please perform a key-related
operation for me.” The agent obeys and sends the results to the client, as in
Figure 6-4.

242 | Chapter6: KeyManagementand Agents

Agent for user bob

bobs private keys, unencrypted

S_S|-| request for a key related computation
o ol
Boby result %

Figure 6-4. How an SSH agent works with its clients

For example, if ssh needs to sign an authenticator, it sends the agent a signing
request containing the authenticator data and an indication of which key to use. The
agent performs the cryptographic operation itself and returns the signature.

In this manner, SSH clients use the agent without seeing its private keys. This tech-
nique is more secure than handing out keys to clients. The fewer places that private
keys get stored or sent, the harder it is to steal them.”

6.3.2 Starting an Agent
There are two ways to invoke an agent in your login account:

* The single-shell method that uses your current login shell

e The subshell method that forks a subshell to facilitate the inheritance of some
environment variables

Don’t invoke an agent with the “obvious” but wrong command:
$ ssh-agent

Although the agent runs without complaint, SSH clients can’t contact
it, and the termination command (ssh-agent -k) doesn’t kill it, because
some environment variables aren’t properly set.

6.3.2.1 Single-shell method

The single-shell method runs an agent in your current login shell. This is most conve-
nient if you’re running a login shell on a single terminal, as opposed to a Unix Win-
dow system such as X. Type:

$ eval “ssh-agent’

* This design also fits well with token-based key storage, in which your keys are kept on a smart card carried
with you. Like agents, smart cards respond to key-related requests but don’t give out keys, so integration
with SSH would be straightforward. Though adoption of tokens has been slow, we believe it will be com-
monplace in the future.

6.3 SSHAgents | 243

and an ssh-agent process is forked in the background. The process detaches itself
from your terminal, returning a prompt to you, so you needn’t run it in the back-
ground manually (i.e., with an ampersand on the end). Note that the quotes around
ssh-agent are backquotes, not apostrophes.

What purpose does eval serve? Well, when ssh-agent runs, it not only forks itself in
the background, but it also outputs some shell commands to set several environ-
ment variables necessary for using the agent. The variables are SSH_AUTH_SOCK and
SSH_AGENT_PID for OpenSSH, or SSH2_AUTH_SOCK and SSH2_AGENT PID for Tectia. The
eval command causes the current shell to interpret the commands output by ssh-
agent, setting the environment variables. If you omit the eval, the following com-
mands are printed on standard output as ssh-agent is invoked. For example:

OpenSSH

$ ssh-agent

SSH_AUTH_SOCK=/tmp/ssh-barrett/ssh-22841-agent; export SSH_AUTH_ SOCK;

SSH_AGENT PID=22842; export SSH_AGENT PID;
echo Agent pid 22842;

Tectia
SSH2_AUTH_SOCK=/tmp/ssh-barrett/ssh2-22842-agent; export SSH2_ AUTH_SOCK;
SSH2_AGENT_PID=22842; export SSH2_AGENT_PID;
echo Agent pid 22842;
Now you’ve got an agent running, but inaccessible to the shell. You can either kill it
using the pid printed in the previous output:

$ kill 22842
or point your shell manually to the agent by setting the environment variables exactly
as given:’

OpenSSH
$ SSH_AUTH_SOCK=/tmp/ssh-barrett/ssh-22841-agent; export SSH_AUTH_SOCK
$ SSH_AGENT_PID=22842; export SSH_AGENT_PID

Tectia
$ SSH2_AUTH_SOCK=/tmp/ssh-barrett/ssh2-22842-agent; export SSH2_ AUTH_SOCK
$ SSH2_AGENT_PID=22842; export SSH2_AGENT_PID

Nevertheless, it’s easier to use eval, so everything is set up for you.t
To terminate the agent, kill its pid:

$ kill 22842
and unset the environment variables:

OpenSSH
$ unset SSH_AUTH_SOCK

* This is Bourne shell syntax. If your shell is csh or tcsh, use the appropriate syntax. [6.3.2.3]

T Why can’t ssh-agent set its environment variables without all this trickery? Because under Unix, a program
can’t set environment variables in its parent shell.

244 | Chapter6: KeyManagementand Agents

$ unset SSH_AGENT_PID

Tectia
$ unset SSH2 AUTH_ SOCK
$ unset SSH2 AGENT PID

Or for OpenSSH, use the more convenient —k command-line option:

OpenSSH

$ eval “ssh-agent -k’
This prints termination commands on standard output so that eval can invoke them.
If you forget eval, the agent is still killed, but your environment variables don’t get
unset automatically:

OpenSSH

$ ssh-agent -k

unset SSH_AUTH_SOCK; # This won't get unset,
unset SSH AGENT PID # and neither will this,

echo Agent pid 22848 killed # but the agent gets killed

Running an agent in a single shell, as opposed to the method we cover next (spawn-
ing a subshell), has one problem. When your login session ends, the ssh-agent pro-
cess doesn’t die. After several logins, you see many agents running, serving no
purpose:’

$ ps uax | grep ssh-agent
barrett 7833 0.4 0.4 828 608 pts/1 S 21:06:10 0:00 grep agent

barrett 4189 0.0 0.6 1460 844 ? S Feb 21 0:06 ssh-agent
barrett 6134 0.0 0.6 1448 828 ? S 23:11:41 0:00 ssh-agent
barrett 6167 0.0 0.6 1448 828 ? S 23:24:19 0:00 ssh-agent
barrett 7719 0.0 0.6 1456 840 ? S 20:42:25 0:02 ssh-agent

You can get around this problem by running ssh-agent -k automatically when you log
out. In Bourne-style shells (sh, ksh, bash), this may be done with a trap of Unix sig-
nal 0 at the top of ~/.profile:
~/.profile
trap '
test -n "$SSH_AGENT_PID" && eval “ssh-agent -k ;

test -n "$SSH2 AGENT PID" 8& kill $SSH2 AGENT PID
"0

For C shells and for tcsh, terminate the agent in your ~/.logout file:

~/.logout

if ("$SSH_AGENT PID" != "") then
eval “ssh-agent -k’

endif

if ("$SSH2 AGENT PID" != "") then
kill $SSH2 AGENT PID

endif

* Actually, you can reconnect to an agent launched in a previous login, by modifying your SSH_AUTH_SOCK vari-
able to point to the old socket.

6.3 SSHAgents | 245

Once this trap is set, your ssh-agent process is killed automatically when you log out,
printing a message like:

Agent pid 8090 killed

6.3.2.2 Subshell method

The second way to invoke an agent spawns a subshell. You provide an argument to
ssh-agent, which is a path to a shell or shell script. Examples are:

$ ssh-agent /bin/sh

$ ssh-agent /bin/csh

$ ssh-agent $SHELL

$ ssh-agent my-shell-script # Run a shell script instead of a shell
This time, instead of forking a background process, ssh-agent runs in the fore-
ground, spawning a subshell and setting the aforementioned environment variables
automatically. The rest of your login session runs within this subshell, and when you
terminate it, ssh-agent terminates as well. This method, as you will see later, is most
convenient if you run a Window System such as X and invoke the agent in your ini-
tialization file (e.g., ~/.xsession).” However, the method is also perfectly reasonable
for single-terminal logins.

When using the subshell method, invoke it at an appropriate time. We recommend
the last line of your login initialization file (e.g., ~/.profile or ~/login) or the first
typed command after you log in. Otherwise, if you first run some background pro-
cesses in your shell and then invoke the agent, those initial background processes
become inaccessible until you terminate the agent’s subshell. For example, if you run
the vi editor, suspend it, and then run the agent, you lose access to the editor session
until you terminate the agent:

$ vi myfile # Run your editor.

~Z # Suspend it.

$ jobs # View your background processes.

[1] + Stopped (SIGTSTP) vi

$ ssh-agent $SHELL # Run a subshell.

$ jobs # No jobs here! They're in the parent shell.
$ exit # Terminate the agent’s subshell.

$ jobs # Now we can see our processes again.

[1] + Stopped (SIGTSTP) vi

The advantages and disadvantages of the two methods are shown in Table 6-2.

* In fact, many Linux distributions set this up for you, automatically launching ssh-agent when you log in via
KDE or GNOME. Red Hat Linux and SUSE Linux are two examples. After logging in, run a ps command
and grep for “agent” to see this in action.

246 | Chapter6: KeyManagementand Agents

Table 6-2. Pros and cons of invoking an agent

Method Pros Cons

eval “ssh-agent’ Simple, intuitive. Must be terminated manually.

ssh-agent $SHELL Agent’senvironmentvariablesare propagated Your login shell becomes dependent on the
automatically; terminates on logout. Conve- agent's health; if the agent dies, your login
niently set up by many Linux distributions. shell may die.

6.3.2.3 Format of environment variable commands

As we’ve said, ssh-agent prints a sequence of shell commands to set several environ-
ment variables. The syntax of these commands differs depending on which shell is
being used. You can force the commands to use Bourne-style or C-shell-style syntax
with the —s and —c options, respectively:

Bourne-shell style commands

$ ssh-agent -s

SSH_AUTH_SOCK=/tmp/ssh-barrett/ssh-3654-agent; export SSH AUTH SOCK;

SSH_AGENT_PID=3655; export SSH_AGENT_PID;
echo Agent pid 3655;

C-shell style commands

$ ssh-agent -c

setenv SSH_AUTH SOCK /tmp/ssh-barrett/ssh-3654-agent;

setenv SSH_AGENT_PID 3655;

echo Agent pid 3655;
Normally ssh-agent detects your login shell and prints the appropriate lines, so you
don’t need —c or —s. One situation where you need these options is if you invoke ssh-
agent within a shell script, but the script’s shell is not the same type as your login
shell. For example, if your login shell is /bin/csh, and you invoke this script:

#!/bin/sh
“ssh-agent”

ssh-agent outputs C-shell-style commands, which fails. So, you should use:

#!/bin/sh

“ssh-agent -s°
This is particularly important if you run an agent under X, and your ~/.xsession file
(or other startup file) is executed by a shell different from your login shell.

6.3.3 Loading Keys with ssh-add

The program ssh-add is your personal communication channel to an ssh-agent pro-
cess. When you first invoke an SSH agent, it contains no keys. ssh-add, as you might
guess from its name, can add private keys to an SSH agent. But the name is mislead-
ing because ssh-add also controls the agent in other ways, such as listing keys, delet-
ing keys, and locking the agent from accepting further keys.

6.3 SSHAgents | 247

If you invoke ssh-add with no arguments, your default SSH keys are loaded into the
agent, once you have typed their passphrases.” For example:

Output shown for OpenSSH

$ ssh-add

Enter passphrase for /home/smith/.ssh/id_dsa: *¥¥xikkx

Identity added: /home/smith/.ssh/id_dsa
Normally, ssh-add reads the passphrase from the user’s terminal. If the standard input
isn’t a terminal, however, and the DISPLAY environment variable is set, ssh-add instead
invokes an X Window graphical program called ssh-askpass or x11-ssh-askpass that
pops up a window to read your passphrase. This is especially convenient in xdm
startup scripts.t

A

If you don’t like ssh-askpass, set your environment variable SSH_
ASKPASS to the full path to an alternative program (say, /usr/local/bin/
Wit my-ask-pass). Then this other program, rahter than ssh-askpass, runs
" automatically to gather your passphrase. (OpenSSH only.)

ssh-add supports the following command-line options for listing and deleting keys,
and for reading the passphrase:

* List all identities loaded in the agent. OpenSSH lists the key fingerprints with -1
(see the earlier sidebar “Key Fingerprints” for more detail):

OpenSSH

$ ssh-add -1

1024 €9:39:50:f0:b4:65:ba:b9:d7:d3:69:10:d0:23:a7:88 a (DSA)
1024 7C:91:07:29:46:28:61:b4:7c:95:69:fc:47:1e:3c:ff b (RSA)

To print the public keys held in the OpenSSH agent, use —L:

OpenSSH

$ ssh-add -L

ssh-dss AAAAB3NzaC1kc3MAAACBAKS5ATDaZyPXa51z... and so forth
ssh-rsa AAAAB3NzaC1yc2EAAAABIWAAAIEAtIgHblLp1i... and so forth

Tectia lists brief information about the loaded keys with —I:
Tectia
$ ssh-add -1
Listing identities.
The authorization agent has two keys:
id dsa 2048 a: my main key
id_dsa_2048 b: another key

* Delete an identity from the agent, with —d:

$ ssh-add -d ~/.ssh/second_id
Identity removed: /home/smith/.ssh/second_id (second_id.pub)

* OpenSSH’s ssh-add tries to reuse a passphrase to load subsequent keys.

1 X has its own security problems, of course. If someone can connect to your X server, they can monitor all
your keystrokes, including your passphrase. Whether this is an issue in using ssh-askpass depends on your
system and security needs.

248 | Chapter6: KeyManagementand Agents

If you don’t specify a key file, ssh-add deletes your default identity from the
agent:

$ ssh-add -d

Identity removed: /home/smith/.ssh/id dsa (/home/smith/.ssh/id_dsa.pub)
Delete all identities from the agent, with —D; this unloads every currently loaded
key but leaves the agent running:

OpenSSH
$ ssh-add -D
All identities removed.

Tectia

$ ssh-add -D

Deleting all identities.
Set a timeout for a key, with —¢. Normally when you add a key, it remains loaded
in the agent indefinitely, until the agent terminates or you unload the key manu-
ally. The —t option assigns a lifetime to a key, measured in seconds (OpenSSH)
or minutes (Tectia). After this time has passed, the agent automatically unloads
the key:

$ ssh-add -t 30 mykey

OpenSSH has a richer syntax for specifying times that may also be used here; see
the sidebar “Time Values in Configuration Files” in Chapter 5:

OpenSSH
$ ssh-add -t 3W mykey Set a key lifetime of three weeks
You can also specify the maximum lifetime for all keys in the agent:
OpenSSH
$ eval 'ssh-agent -t 3W' All keys in the agent have a lifetime of three weeks or less

Lock and unlock the agent with a password, using —x and —X (OpenSSH) or —L
and -U (Tectia). A locked agent refuses all ssh-add operations except an unlock
request. If you try to modify the state of the agent (adding or deleting keys, etc.),
the operation is rejected, and if you try to list the agent’s keys, you are told the
agent has no keys.

To lock:

OpenSSH

$ ssh-add -x

Enter lock password: *¥**
Again: *¥¥x

Agent locked

Tectia

$ ssh-add -L

Enter lock password: *¥**
Again: *¥¥x

and to unlock:

OpenSSH
ssh-add -X

6.3 SSHAgents | 249

Enter lock password: *¥¥*
Agent unlocked

Tectia

$ ssh-add -U

Enter lock password: *¥**
Locking is a convenient way to protect the agent if you step away from your
computer but leave yourself logged in. You can instead unload all your keys with
ssh-add -D, but then you have to reload them again when you return. If you have
only one key there’s no difference, but if you use several it’s a pain. Unfortu-
nately, both OpenSSH and Tectia’s locking mechanism aren’t tremendously
secure. ssh-agent simply stores the lock password in memory, refusing to honor
any more requests until it receives an unlock message containing the same pass-
word. The locked agent is still vulnerable to attack: if an intruder gains access to
your account (or the root account), he can dump the agent’s process address
space and extract your keys. The lock feature certainly deters casual misuse, but
the potential for an attack is real. If you’re seriously concerned about key disclo-
sure, think twice before relying on locking. We prefer to see this feature imple-
mented by encrypting all the agent’s loaded keys with the lock password. This
gives the same user convenience and provides better protection.

OpenSSH’s ssh-add program can also be forced to confirm identities via ssh-askpass
before using them, with —c. [6.3.3]

Tectia’s ssh-add program has additional features controlled by command-line
options:

Place limits on agent forwarding with —f and —F. (Agent forwarding, which we’ll
cover soon, transmits agent requests between hosts.) The —f option lets you
limit, for a given key, the distance that requests for this key may traverse. If a
request is made from too far away, measured in hops from machine to machine,
the request fails. A hop count of zero disables forwarding for this key alone.

Tectia
$ ssh-add -f 0 mykey Load a key that may be used only locally
$ ssh-add -f 3 mykey Load a key and accept requests from up to three hops

away

The —F option lets you limit the set of hosts that may make requests relating to
this key. It takes as an argument a set of hostnames, domains, and IP addresses
that may make or forward requests. The argument is a comma-separated list of
wildcard patterns, as for the serverwide configuration keywords AllowHosts and
DenyHosts. [5.5.3]
Tectia
$ ssh-add -F "*.example.com' mykey Permit forwarding only in the example.com domain
$ ssh-add -F 'server.example.com,*.harvard.edu' mykey Permit forwarding from server
example.com and the harvard.edu domain
$ ssh-add -F 'server.example.com,*.harvard.edu' -f 2 mykey Same as the preceding
command, but limit forwarding to two hops

250

| Chapter6: Key Management and Agents

* Reading your passphrase from standard input, with —p, to provide it by a pipe or
similar means. So, if you had a program passphraser that produces the pass-
phrase, you could feed the passphrase to ssh-add:

Tectia
$ passphraser | ssh-add

* Read keys from a URL rather than a file, with —u:

Tectia
$ ssh-add -u http://server.example.com/mykey

* Prohibit keys from being used for SSH-1 protocol connections, with -1:
Tectia
$ ssh-add -1 my-ssh2-only-key
* Perform PGP key operations. Tectia’s ssh-add2 manpage documents the options
-R, =N, —P, and -I for OpenPGP keyring operations, but they aren’t officially
supported.

* Print the program version number, with -V:

Tectia

$ ssh-add -V

ssh-add2 SSH Tectia Server 4.2.1 on 1686-pc-linux-gnu
Build: 1

Released 2004-11-30 (YYYY-MM-DD).

6.3.3.1 Automatic agent loading (single-shell method)

It’s a pain to invoke ssh-agent and/or ssh-add manually each time you log in. With
some clever lines in your login initialization file, you can automatically invoke an
agent and load your default identity. We’ll demonstrate this with both methods of
agent invocation, single-shell and subshell.

With the single-shell method, here are the major steps:

1. Make sure you’re not already running an agent, by testing the environment vari-
able SSH_AUTH_SOCK or SSH2_ AUTH_SOCK.

2. Run ssh-agent using eval.

3. If your shell is attached to a tty, load your default identity with ssh-add.

For the Bourne shell and its derivatives (ksh, bash), the following lines can be placed
into ~/.profile:

Make sure ssh-agent dies on logout
trap '
test -n "$SSH_AGENT PID" && eval “ssh-agent -k ;
test -n "$SSH2 AGENT PID" 8& kill $SSH2 AGENT PID
"0

If no agent is running and we have a terminal, run ssh-agent and ssh-add.
(For Tectia, change this to use SSH2 AUTH SOCK.)

if ["$SSH_AUTH SOCK" = ""]

then

6.3 SSHAgents | 251

eval “ssh-agent”
/usr/bin/tty > /dev/null && ssh-add
fi

For the C shell and tcsh, the following lines can be placed into ~/.login:

Use SSH2 AUTH SOCK instead for Tectia
if (! $?SSH_AUTH_SOCK) then

eval “ssh-agent”

/usr/bin/tty > /dev/null && ssh-add
endif

and termination code in ~/.logout:

~/.logout
if ("$SSH_AGENT PID" != "") eval “ssh-agent -k°
if ("$SSH2 AGENT PID" I= "") kill $SSH2_AGENT PID

A w
y

Another single-shell technique to make your clients aware of the agent
is to use OpenSSH’s ssh-agent -a option. (This does not work with
* 9 Tectia’s agent.) With this approach, you choose your own socket in
" advance—say, ~/.ssh/mysocket—and make decisions based on its
existence. For example, in your ~/.profile you could have:

#!/bin/bash

SOCKETFILE=~/.ssh/mysocket

if [1 -S "$SOCKETFILE"]

then

eval “ssh-agent -a $SOCKETFILE®

fi
Since you know the socket path, you can direct SSH clients to it by set-
ting SSH_AUTH_SOCK=~/.ssh/mysocket as needed. When you termi-

nate the OpenSSH agent with ssh-agent -k, the socket file is deleted
automatically.

6.3.3.2 Automaticagent loading (subshell method)

The second way to load an agent on login uses the subshell method to invoke the
agent, and is described in the following list. This time, you add lines to both your login
initialization file (~/.profile or ~/.login), an optional second file of your choice, and your
shell initialization file (~/.cshrc, ~/.bashrc, etc.). This method doesn’t work for the
Bourne shell, which has no shell initialization file.

1. In your login initialization file, make sure you’re not already running an agent,
by testing the environment variable SSH_AUTH_SOCK or SSH2_AUTH_SOCK.

2. As the last line of your login initialization file, exec ssh-agent, which spawns a
subshell. Optionally run a second initialization file to configure aspects of the
subshell.

3. In your shell initialization file, check whether the shell is attached to a tty and the
agent has no identities loaded yet. If so, load your default identity with ssh-add.

252 | Chapter6: KeyManagementand Agents

Now let’s see how to do this with Bourne-shell and C-shell families. For derivatives
of the Bourne shell (ksh, bash), put the following line at the end of ~/.profile:

test -n "$SSH AUTH SOCK" &3 exec ssh-agent $SHELL

This runs the agent, spawning a subshell. If you want to tailor the environment of
the subshell, create a script (say, ~/.profile2) to do so, and use this instead:

test -n "$SSH_AUTH_SOCK" &3 exec ssh-agent $SHELL $HOME/.profile2

Next, in your shell initialization file ($ENV for ksh, or ~/.bashrc for bash), place the
following lines to load your default identity only if it’s not loaded already:
Make sure we are attached to a tty
if /usr/bin/tty > /dev/null
then
Check the output of "ssh-add -1" for identities.
ssh-add -1 | grep 'no identities' > /dev/null
if [$? -eq 0]
then
Load your default identity.
ssh-add
fi
fi

6.3.3.3 Automaticagent loading (X Window System)

If you’re using X and want to run an agent and load your default identity automati-
cally, it’s simple. Just use the single-shell method. For example, in your X startup
file, usually ~/.xsession, you can use these two lines:

eval “ssh-agent®
ssh-add

However, first check if your window environment (e.g., GNOME or KDE) is already
running an SSH agent for you, in which case you needn’t do it yourself. This setup is
commonly found in Linux distributions.

6.3.4 Agents and Security

As we mentioned earlier, agents don’t expose private keys to SSH clients. Instead,
they answer requests from clients using the keys. This approach is more secure than
passing keys around, but it still has security concerns. It is important to understand
these concerns before completely trusting the agent model:

* Agents rely on external access control mechanisms.

» Agents can be cracked.

6.3.4.1 Access control

When your agent is loaded with private keys, a potential security issue arises. How
does your agent distinguish between legitimate requests from your SSH clients and

6.3 SSHAgents | 253

illegitimate requests from unauthorized sources? Since the agent speaks only to other
processes on the same host, it uses the host’s existing security mechanisms. These
vary from one operating system to another, but the four main mechanisms are:

* File permissions

* Client identification

* Protected memory

* Prompt-on-use

File permissions. Under Unix, the agent communicates with users via a named pipe
(Unix-domain socket) in the filesystem, so the first line of defense is the file permis-
sions on the socket. OpenSSH and Tectia keep agent sockets in a protected direc-
tory. OpenSSH’s socket is named /tmp/ssh-STRING/agent.N, where STRING is random
text based on the agent’s process ID, and N is a number:

OpenSSH

$ 1s -la /tmp/ssh-alHMKX4537

drwx------ 2 smith smith 4096 Feb 4 13:40 .
drwxrwxrwt 7 root root 4096 Feb 4 13:40 ..
STWXI-XI-X 1 smith smith 0 Feb 4 13:40 agent.4537

while Tectia’s is named /tmp/ssh-USERNAME /ssh2 -N-agent, where USERNAME is your user-
name and N is again a number:

Tectia

$ 1s -la /tmp/ssh-smith/

drwx------ 2 smith smith 4096 Feb 4 13:40 .

drwxrwxrwt 7 root root 4096 Feb 4 13:40 ..
STW------- 1 smith smith 0 Feb 4 13:40 ssh2-4537-agent

The number N is usually one less than the process ID (pid) of the agent itself. This is
because ssh-agent first creates the socket using its pid, then later starts another pro-
cess that actually persists as the agent. In these examples, user smith has a socket for
an agent which probably has PID 4536. The containing directory itself has mode
0700.

This organization of a user’s sockets into a single directory is not only for neatness
but also for security and portability, because different operating systems treat socket
permissions in different ways. For example, Solaris appears to ignore them com-
pletely; even a socket with permission 000 (no access for anyone) accepts all connec-
tions. Linux respects socket permissions, but a write-only socket permits both
reading and writing. To deal with such diverse implementations, SSH keeps your
sockets in a directory owned by you, with directory permissions that forbid anyone
else to access the sockets inside.

Using a subdirectory of /tmp, rather than /tmp itself, also prevents a class of attacks
called temp races. A temp-race attack takes advantage of race conditions inherent in
the common setting of the “sticky” mode bit on the Unix /tmp directory, allowing

254 | Chapter6: KeyManagementand Agents

anyone to create a file there, but only allowing deletion of files owned by the same
uid as the deleting process.

If you want to move the socket out of the default /tmp directory, use the —a option:
(6.3.3.1]

OpenSSH

ssh-agent -a /private/ssh/mysocket

SSH_AUTH_SOCK=/private/ssh/mysocket; export SSH AUTH SOCK;
echo Agent pid 28320;

Client identification. Some flavors of Unix allow one process to find out who’s on the
other end of a named pipe: the peer’s process ID, user ID, etc. If this feature is avail-
able, an agent can verify that the client’s user ID matches its own.

Protected memory. The ssh-agent process won’t reveal keys via the agent protocol, but
those keys are in its memory. A privileged user might be able to attach to the agent
process and read the keys from its memory space, bypassing the usual Unix process
separation. Some Unixes allow a process to limit or prevent this kind of external
interference, so some agents make use of this feature.

Prompt-on-use. Some agents can query the user for permission each time a request
comes in over the agent socket (e.g., OpenSSH ssh-add -¢). If you use this feature and
a window pops up unexpectedly asking about your agent, something’s wrong!

6.3.4.2 Cracking an agent

If the machine running your agent is compromised, an attacker can easily gain access
to the IPC channel and thus to your agent. This permits the interloper to make
requests of the agent, at least for a time. Once you log out or unload your keys from
the agent, the security hole is closed. Therefore, you should run agents only on
trusted machines, perhaps unloading your keys (ssh-agent -D) if you’re away from
the computer for an extended time, such as overnight.

Since agents don’t give out keys, your keys seem safe from theft if the machine is
compromised. Alas, that’s not the case. An enterprising cracker, once logged into the
machine, has other means for getting your keys, such as:

* Stealing your private-key file and attempting to guess your passphrase

* Tracing processes that you’re running, and catching your passphrase while you
type it

* Trojan horse attacks: installing modified versions of system programs, such as

the login program, shells, or the SSH implementation itself, that steal your pass-
phrase

* Obtaining a copy of the memory space of your running agent and picking the
keys out of it directly (this is a bit harder than the others)

6.3 SSHAgents | 255

The bottom line is this: run agents only on trusted machines. SSH does not excuse
you from securing other aspects of your system.

6.3.5 Agent Forwarding

So far, our SSH clients have conversed with an SSH agent on the same machine.
Using a feature called agent forwarding, clients can also communicate with agents on
remote machines. This is both a convenience feature—permitting your clients on
multiple machines to work with a single agent—and a means for avoiding some
firewall-related problems.

6.3.5.1 Afirewall example

Suppose you want to connect from your home computer, H, to a computer at work,
W. Like many corporate computers, W is behind a network firewall and not directly
accessible from the Internet, so you can’t create an SSH connection from H to W.
Hmm...what can you do? You call technical support and for once, they have good
news. They say that your company maintains a gateway or “bastion” host, B, that is
accessible from the Internet and runs an SSH server. This means you should be able
to reach W by opening an SSH connection from H to B, and then from B to W, since
the firewall permits SSH traffic. Tech support gives you an account on the bastion
host B, and the problem seems to be solved...or is it?

For security reasons, the company permits access to its computers only by public-key
authentication. So, using your private key on home machine H, you successfully con-
nect to bastion host B. And now you run into a roadblock: also for security reasons,
the company prohibits users from storing SSH keys on the exposed bastion host B,
since they can be stolen if B is hacked. That’s bad news, since the SSH client on B
needs a key to connect to your work account on W. Your key is at home on H.
(Figure 6-5 illustrates the problem.) What now? Use SSH agent forwarding.

H B w
Internet w w
no SSH keys permitted
Corporate Network

Figure 6-5. Bastion host scenario

256 | Chapter6: KeyManagementand Agents

SSH agent forwarding allows a program running on a remote host, such as B, to
access your ssh-agent on H transparently, as if the agent were running on B. Thus, a
remote SSH client running on B can now sign and decrypt data using your key on H,
as shown in Figure 6-6. As a result, you can invoke an SSH session from B to your
work machine W, solving the problem.

H Corporate Network

ssh

ssh Sshd | g W
h | agent

Internet

-
i SsH w

ssh-agent user keys

Figure 6-6. Solution with SSH agent forwarding

6.3.5.2 How agent forwarding works

Agent forwarding, like all SSH forwarding (Chapter 9), works “behind the scenes.”
In this case, the key-related requests of an SSH client are forwarded across a sepa-
rate, previously established SSH session to an agent holding the needed keys, shown
in Figure 6-7. Let’s examine in detail the steps that occur.

1.

Suppose you're logged onto machine X, and you invoke ssh to establish a remote
terminal session on machine Y.

On machine X:
$ ssh Y

. Assuming that agent forwarding is turned on, the client says to the SSH server, “I

would like to request agent forwarding, please,” when establishing the connec-
tion.

. sshd on machine Y checks its configuration to see if it permits agent forwarding.

Let’s assume that it’s enabled.

. sshd on machine Y sets up an interprocess communication (IPC) channel local to

Y by creating some Unix domain sockets and setting some environment vari-
ables. [6.3.2.1] The resulting IPC mechanism is just like the one ssh-agent sets
up. As a result, sshd is now prepared to pose as an SSH agent.

. Your SSH session is now established between X and Y.

6.3 SSHAgents | 257

forwarded
T request
SSH
cllent forwarded -+,
é result
res:u/t i
forwarded request
request forwarded
* H result
oy v
keys «
SH
Agent Client
Machine X Machine Y

Figure 6-7. Agent forwarding

6.

10.

Next, from machine Y, you run another ssh command to establish an SSH ses-
sion with a third machine, Z:

On machine Y:
$ ssh Z

. This new ssh client now needs a key to make the connection to Z. It believes

there’s an agent running on machine Y, because sshd on Y is posing as one. So,
the client makes an authentication request over the agent IPC channel.

. sshd intercepts the request, masquerading as an agent, and says, “Hello, I'm the

agent. What would you like to do?” The process is transparent: the client
believes it’s talking to an agent.