




SSH, the Secure Shell
The Definitive Guide



Other computer security resources from O’Reilly

Related titles 802.11 Security

Digital Identity

Firewall Warrior

Internet Forensics

Network Security Assessment

Network Security with
OpenSSL

nmap: The Definitive Guide

Managing Security with Snort
and IDS Tools

PGP: Pretty Good Privacy

Snort Cookbook

Security Books
Resource Center

security.oreilly.com is a complete catalog of O’Reilly’s books on
security and related technologies, including sample chapters
and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.



SSH, the Secure Shell
The Definitive Guide

SECOND EDITION

Daniel J. Barrett, Richard E. Silverman,
and Robert G. Byrnes

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo



SSH, the Secure Shell: The Definitive Guide™

by Daniel J. Barrett, Richard E. Silverman, and Robert G. Byrnes

Copyright © 2005, 2001 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/insti-
tutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides

Production Editor: Mary Brady

Cover Designer: Ellie Volckhausen

Interior Designer: David Futato

Printing History:

February 2001: First Edition.

May 2005: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. SSH, the Secure Shell: The Definitive Guide, the image of a land snail, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™,  a durable and flexible lay-flat binding.

ISBN:  0-596-00895-3

ISBN13: 978-0-596-00895-6

[M] [1/07]



v

Table of Contents

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1. Introduction to SSH  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 What Is SSH? 1

1.2 What SSH Is Not 3

1.3 The SSH Protocol 3

1.4 Overview of SSH Features 5

1.5 History of SSH 9

1.6 Related Technologies 10

1.7 Summary 15

2. Basic Client Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1 A Running Example 16

2.2 Remote Terminal Sessions with ssh 16

2.3 Adding Complexity to the Example 18

2.4 Authentication by Cryptographic Key 21

2.5 The SSH Agent 28

2.6 Connecting Without a Password or Passphrase 32

2.7 Miscellaneous Clients 33

2.8 Summary 34

3. Inside SSH  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1 Overview of Features 36

3.2 A Cryptography Primer 39

3.3 The Architecture of an SSH System 43

3.4 Inside SSH-2 45

3.5 Inside SSH-1 68



vi | Table of Contents

3.6 Implementation Issues 69

3.7 SSH and File Transfers (scp and sftp) 81

3.8 Algorithms Used by SSH 84

3.9 Threats SSH Can Counter 91

3.10 Threats SSH Doesn’t Prevent 93

3.11 Threats Caused by SSH 97

3.12 Summary 98

4. Installation and Compile-Time Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . 99
   4.1. Overview 99

4.2 Installing OpenSSH 106

4.3 Installing Tectia 111

4.4 Software Inventory 124

4.5 Replacing r-Commands with SSH 125

4.6 Summary 127

5. Serverwide Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.1 Running the Server 129

5.2 Server Configuration: An Overview 132

5.3 Getting Ready: Initial Setup 141

5.4 Authentication: Verifying Identities 171

5.5 Access Control: Letting People In 184

5.6 User Logins and Accounts 198

5.7 Forwarding 201

5.8 Subsystems 206

5.9 Logging and Debugging 209

5.10 Compatibility Between SSH-1 and SSH-2 Servers 223

5.11 Summary 226

6. Key Management and Agents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
6.1 What Is an Identity? 227

6.2 Creating an Identity 233

6.3 SSH Agents 242

6.4 Multiple Identities 260

6.5 PGP Authentication in Tectia 262

6.6 Tectia External Keys 264

6.7 Summary 265



Table of Contents | vii

7. Advanced Client Use  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
7.1 How to Configure Clients 266

7.2 Precedence 276

7.3 Introduction to Verbose Mode 277

7.4 Client Configuration in Depth 278

7.5 Secure Copy with scp 313

7.6 Secure, Interactive Copy with sftp 323

7.7 Summary 325

8. Per-Account Server Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
8.1 Limits of This Technique 326

8.2 Public-Key-Based Configuration 328

8.3 Hostbased Access Control 346

8.4 The User rc File 348

8.5 Summary 348

9. Port Forwarding and X Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
9.1 What Is Forwarding? 350

9.2 Port Forwarding 351

9.3 Dynamic Port Forwarding 373

9.4 X Forwarding 377

9.5 Forwarding Security: TCP-wrappers and libwrap 389

9.6 Summary 395

10. A Recommended Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
10.1 The Basics 396

10.2 Compile-Time Configuration 397

10.3 Serverwide Configuration 397

10.4 Per-Account Configuration 403

10.5 Key Management 404

10.6 Client Configuration 404

10.7 Remote Home Directories (NFS, AFS) 404

10.8 Summary 407

11. Case Studies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
11.1 Unattended SSH: Batch or cron Jobs 408

11.2 FTP and SSH 415

11.3 Pine, IMAP, and SSH 436

11.4 Connecting Through a Gateway Host 444



viii | Table of Contents

11.5 Scalable Authentication for SSH 452

11.6 Tectia Extensions to Server Configuration Files 468

11.7 Tectia Plugins 479

12. Troubleshooting and FAQ  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
12.1 Debug Messages: Your First Line of Defense 495

12.2 Problems and Solutions 497

12.3 Other SSH Resources 513

13. Overview of Other Implementations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
13.1 Common Features 515

13.2 Covered Products 516

13.3 Other SSH Products 516

14. OpenSSH for Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
14.1 Installation 521

14.2 Using the SSH Clients 522

14.3 Setting Up the SSH Server 522

14.4 Public-Key Authentication 524

14.5 Troubleshooting 525

14.6 Summary 525

15. OpenSSH for Macintosh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
15.1 Using the SSH Clients 526

15.2 Using the OpenSSH Server 526

16. Tectia for Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
16.1 Obtaining and Installing 532

16.2 Basic Client Use 533

16.3 Key Management 534

16.4 Accession Lite 536

16.5 Advanced Client Use 539

16.6 Port Forwarding 542

16.7 Connector 543

16.8 File Transfers 551

16.9 Command-Line Programs 552

16.10 Troubleshooting 554

16.11 Server 555



Table of Contents | ix

17. SecureCRT and SecureFX for Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
17.1 Obtaining and Installing 563

17.2 Basic Client Use 564

17.3 Key Management 564

17.4 Advanced Client Use 568

17.5 Forwarding 570

17.6 Command-Line Client Programs 572

17.7 File Transfer 572

17.8 Troubleshooting 574

17.9 VShell 574

17.10 Summary 575

18. PuTTY for Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
18.1 Obtaining and Installing 576

18.2 Basic Client Use 576

18.3 File Transfer 578

18.4 Key Management 580

18.5 Advanced Client Use 583

18.6 Forwarding 587

18.7 Summary 589

A. OpenSSH 4.0 New Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

B. Tectia Manpage for sshregex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595

C. Tectia Module Names for Debugging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604

D. SSH-1 Features of OpenSSH and Tectia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609

E. SSH Quick Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629





This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xi

Preface

Welcome to the second edition of our book on SSH, one of the world’s most popu-
lar approaches to computer network security. Here’s a sampling of what’s new in
this edition:

• Over 100 new features, options, and configuration keywords from the latest ver-
sions of OpenSSH and SSH Tectia (formerly known as SSH Secure Shell or SSH2
from ssh.com)

• Expanded material on the SSH-2 protocol and its internals, including a step-by-
step tour through the transport, authentication, and connection phases

• Running OpenSSH on Microsoft Windows and Macintosh OS X

• All-new chapters on Windows software such as Tectia, SecureCRT, and PuTTY

• Scalable authentication techniques for large installations, including X.509 certifi-
cates

• Single sign-on between Linux and Windows via Kerberos/GSSAPI

• Logging and debugging in greater depth

• Tectia’s metaconfiguration, subconfiguration, and plugins, with examples

...and much more! You might be surprised at how much is changed, but in the past
four years, SSH has significantly evolved:

SSH-2 protocol triumphant
Back in 2001, only a handful of SSH products supported the relatively new SSH-
2 protocol, and the primary implementation was commercial. Today, the old
SSH-1 protocol is dying out and all modern SSH products, free and commercial,
use the more secure and flexible SSH-2 protocol. We now recommend that
everyone avoid SSH-1.

The rise of OpenSSH
This little upstart from the OpenBSD world has become the dominant imple-
mentation of SSH on the Internet, snatching the crown from the original, SSH
Secure Shell (now called SSH Tectia, which we abbreviate as Tectia). Tectia is



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xii | Preface

still more powerful than OpenSSH in important ways; but as OpenSSH is now
included as standard with Linux, Solaris, Mac OS X, and beyond, it dominates
in pure numbers.

The death of telnet and the r-tools
The insecure programs telnet, rsh, rcp, and rlogin—long the standards for com-
munication between computers—are effectively extinct.* FTP is also on the way
out, except when operated behind firewalls or over private lines.

An explosion of Windows products
In 2001, there were a handful of SSH implementations for Windows; now there
are dozens of GUI clients and several robust servers, not to mention a full port of
the free OpenSSH.

Increased attacks
The Internet has experienced a sharp rise in computer intrusions. Now more
than ever, your servers and firewalls should be configured to block all remote
accesses except via SSH (or other secure protocols).

Protect Your Network with SSH
Let’s start with the basics. SSH, the Secure Shell, is a reliable, reasonably easy to use,
inexpensive security product for computer networks and the people who use them.
It’s available for most of today’s operating systems.

Privacy is a basic human right, but on today’s computer networks, privacy isn’t
guaranteed. Much of the data that travels on the Internet or local networks is
transmitted as plain text, and may be captured and viewed by anybody with a lit-
tle technical know-how. The email you send, the files you transmit between com-
puters, even the passwords you type may be readable by others. Imagine the
damage that can be done if an untrusted third party—a competitor, the CIA, your
in-laws— intercepted your most sensitive communications in transit.

SSH is a small, unassuming, yet powerful and robust solution to many of these
issues. It keeps prying eyes away from the data on your network. It doesn’t solve
every privacy and security problem, but it eliminates several of them effectively. Its
major features are:

• A secure, client/server protocol for encrypting and transmitting data over a net-
work

• Authentication (recognition) of users by password, host, or public key, plus
optional integration with other popular authentication systems, such as PAM,
Kerberos, SecurID, and PGP

* Not counting secure versions of these tools, e.g., when enhanced with Kerberos support. [1.6.3]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xiii

• The ability to add security to insecure network applications such as Telnet,
NNTP, VNC, and many other TCP/IP-based programs and protocols

• Almost complete transparency to the end user

• Implementations for most operating systems

Intended Audience
We’ve written this book for system administrators and technically minded users.
Some chapters are suitable for a wide audience, while others are thoroughly techni-
cal and intended for computer and networking professionals.

End-User Audience
Do you have two or more computer accounts on different machines? SSH lets you
connect one to another with a high degree of security. You can remotely log into one
account from the other, execute remote commands, and copy files between
accounts, all with the confidence that nobody can intercept your username, pass-
word, or data in transit.

Do you connect from a personal computer to an Internet service provider (ISP)? In
particular, do you connect to a Unix shell account at your ISP? If so, SSH can make
this connection significantly more secure. An increasing number of ISPs are running
SSH servers for their users. In case your ISP doesn’t, we’ll show you how to run a
server yourself.

Do you develop software? Are you creating distributed applications that must com-
municate over a network securely? Then don’t reinvent the wheel: use SSH to
encrypt the connections. It’s a solid technology that may reduce your development
time.

Even if you have only a single computer account, as long as it’s connected to a net-
work, SSH can still be useful. For example, if you’ve ever wanted to let other people
use your account, such as family members or employees, but didn’t want to give
them unlimited use, SSH can provide a carefully controlled, limited-access channel
into your account.

Prerequisites

We assume you are familiar with computers and networking as found in any mod-
ern business office or home system with an Internet connection. Ideally, you are
familiar with network applications like Telnet and FTP. If you are a Unix user, you
should be familiar with standard network applications (e.g., ftp) and the basics of
writing shell scripts and Perl scripts.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xiv | Preface

System-Administrator Audience
If you’re a Unix or Macintosh OS X system administrator, you probably know
about SSH already. It’s less well known in the Windows world, where secure log-
ins are usually accomplished with radmin (Remote Administrator) and other
remote desktop applications, and network file transfers are done using network
shares. In contrast, SSH is more focused on the command line and is therefore
more scriptable than the usual Windows techniques. SSH also can increase the
security of other TCP/IP-based applications on your network by transparently
“tunneling” them through SSH-encrypted connections. You will love SSH.

Prerequisites

In addition to the end-user prerequisites in the previous section, you should be famil-
iar with user accounts and groups, networking concepts such as TCP/IP and pack-
ets, and basic encryption techniques.

Reading This Book
This book is divided roughly into three parts. The first three chapters are a general
introduction to SSH, first at a high level for all readers (Chapters 1 and 2), and then
in detail for technical readers (Chapter 3).

The next nine chapters cover SSH for Unix and similar operating systems (OpenBSD,
Linux, Solaris, etc.). The first two (Chapters 4 and 5) cover SSH installation and serv-
erwide configuration for system administrators. The next four (Chapters 6–9) cover
advanced topics for end users, including key management, client configuration, per-
account server configuration, and forwarding. We complete the Unix sequence with
our recommended setup (Chapter 10), some detailed case studies (Chapter 11), and
troubleshooting tips (Chapter 12). The remaining chapters cover SSH products for
Windows and the Macintosh, plus brief overviews of implementations for other
platforms.

Each section in the book is numbered, and we provide cross-references throughout
the text. If further details are found in Section 7.1.2.2, we use the notation [7.1.2.2]
to indicate it.

Our Approach
This book is organized by concept rather than syntax. We begin with an overview
and progressively lead you deeper into the functionality of SSH. So, we might intro-
duce a topic in Chapter 1, show its basic use in Chapter 2, and reveal advanced uses
in Chapter 7. If you prefer the whole story at once, Appendix E presents all com-
mands and configuration options in one location.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xv

We focus strongly on three levels of server configuration, which we call compile-
time, serverwide, and per-account configuration. Compile-time configuration
(Chapter 4) means selecting appropriate options when you build the SSH clients and
servers. Serverwide configuration (Chapter 5) applies when the SSH server is run and
is generally done by system administrators, while per-account configuration
(Chapter 8) can be done anytime by end users. It’s vitally important for system
administrators to understand the relationships and differences among these three lev-
els. Otherwise, SSH may seem like a morass of random behaviors.

Although the bulk of material focuses on Unix implementations of SSH, you don’t
have to be a Unix user to understand it. Fans of Windows and the Macintosh may
stick to the later chapters devoted to their platforms, but a lot of the meaty details
are in the Unix chapters, so we recommend reading them, at least for reference.

Which Chapters Are for You?
We propose several “tracks” for readers with different interests and skills:

System administrators
Chapters 3–5 and 10 are the most important for understanding SSH and how to
build and configure servers. However, as the administrator of a security prod-
uct, you should read the whole book.

Unix users (not system administrators)
Chapters 1 and 2 provide an overview, and Chapters 6–9 discuss SSH clients in
depth.

Windows end users
Read Chapters 1, 2, 13, 14, and 16–18 for starters, and then others as your inter-
ests guide you.

Macintosh end users
Read Chapters 1, 2, 13, and 15 for starters, and then others as your interests
guide you.

Users of other computer platforms
Read Chapters 1, 2, and 13 for starters, and then others as your interests guide
you.

Even if you are experienced with SSH, you’ll likely find value in Chapters 3–12. We
cover significant details the Unix manpages leave unclear or unmentioned, including
major concepts, compile-time flags, server configuration, and forwarding.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xvi | Preface

Supported Platforms
This book covers Unix, Windows, and Macintosh implementations of SSH.

When we say “Unix” in this book, we mean the whole family of Unix-
like operating systems such as Linux, OpenBSD, and Solaris.

SSH products are also available for the Amiga, BeOs, Java, OS/2, Palm Pilot, VMS,
and Windows CE, and although we don’t cover them, their principles are the same.

This book is current for the following Unix SSH versions:

Version information for non-Unix products is found in their respective chapters.

Disclaimers
We identify some program features as “undocumented.” This means the feature isn’t
mentioned in the official documentation but works in the current release and/or is
clear from the program source code. Undocumented features might not be officially
supported by the software authors and can disappear in later releases.

Conventions Used in This Book
The following typographical conventions are used in this book:

Constant width

For configuration files, things that can be found in configuration files (such as
keywords and configuration file options), source code, and interactive terminal
sessions.

Constant width italic

For replaceable parameters on command lines or within configuration files.

Italic
For filenames, URLs, hostnames, command names, command-line options, and
new terms where they are defined.

AK
In figures, the object labeled A has been secured using a cryptographic key
labeled K. “Secured” means encrypted, signed, or some more complex relation-
ship, depending on the context. If A is secured using multiple keys (say, K and
L), they are listed in the subscript, separated by commas: A K, L.

OpenSSH 3.9a

a See Appendix A for a preview of new features in OpenSSH 4.0.

SSH Tectia 4.2



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xvii

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/sshtdg2/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see the O’Reilly web site at:

http://www.oreilly.com

Safari Enabled
When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, it means the book is available online through the O’Reilly
Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top technology books, cut and paste code samples, down-
load chapters, and find quick answers when you need the most accurate, current
information. Try it for free at http://safari.oreilly.com.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xviii | Preface

Acknowledgments
Our biggest thanks go to the two parties who made this second edition a reality: the
many readers who purchased the first edition, and our editor Mike Loukides. We
couldn’t have done this without you!

We thank the O’Reilly “tools” team for Frame typesetting advice, and Rob Romano
for turning our hasty sketches into polished illustrations. Special thanks to the
O’Reilly production team, Keith Fahlgren, John Bickelhaupt, Audrey Doyle, and
Mary Brady, for their hard work creating the final package.

We thank our excellent technical reviewers for their thorough reading and insightful
comments: Markus Friedl and Damien Miller of the OpenSSH team, Paul Lussier,
Drew Simonis, and Mike Smith. Big thanks also to several vendors of SSH products
who provided us with free copies of their software, reviewed the manuscript, and
answered our questions. From SSH Communications Security, maker of SSH Tectia,
we thank Nicolas Gabriel-Robez, Tommi Lampila, Sami J. Lehtinen, Timo J. Rinne,
Janne Saarikko, Petri Sakkinen, Vesa Vatka, and Timo Westerberg. From VanDyke
Software, maker of SecureCRT, SecureFX, and VShell, we thank Jill Christian, Mau-
reen Jett, Marc Orchant, and Tracy West. SSH Communications Security also kindly
gave us permission to include the sshregexmanpage (Appendix B) and the sshdebug.h
error codes (Appendix C).

Dan Barrett thanks Lisa and Sophie for bearing the late-night writing and hacking
sessions required for this book. He also thanks Alex Schowtka and Robert Dulaney
of VistaPrint, his employer, for their kind permission to work on this project. Bob
Byrnes thanks Alison and Rebecca for all of their help and understanding through-
out the many nights and weekends when he was glued to his keyboard. Richard Sil-
verman thanks his coauthors for their unfailing good humor and patience—even
when a sudden decision to change jobs and move out of state threw his book sched-
ule into chaos. He also thanks his various friends, especially Bob Stepno, for listen-
ing to his endless chatter about The Book. It’s truly a wonder they still speak to him
at all.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1

Chapter 1 CHAPTER 1

Introduction to SSH

Many people today have multiple computer accounts. If you’re a reasonably savvy
user, you might have a personal account with an Internet service provider (ISP), a
work account on your employer’s local network, and a few computers at home. You
might also have permission to use other accounts owned by family members or
friends.

If you have multiple accounts, it’s natural to want to make connections between
them. For instance, you might want to copy files between computers over a network,
log into one account remotely from another, or transmit commands to a remote com-
puter for execution. Various programs exist for these purposes, such as ftp for file
transfers, telnet for remote logins, and rsh for remote execution of commands.

Unfortunately, many of these network-related programs have a fundamental prob-
lem: they lack security. If you transmit a sensitive file via the Internet, an intruder can
potentially intercept and read the data. Even worse, if you log onto another com-
puter remotely using a program such as telnet, your username and password can be
intercepted as they travel over the network. Yikes!

How can these serious problems be prevented? You can use an encryption program to
scramble your data into a secret code nobody else can read. You can install a fire-
wall, a device that shields portions of a computer network from intruders, and keep
all your communications behind it. Or you can use a wide range of other solutions,
alone or combined, with varying complexity and cost.

1.1 What Is SSH?
SSH, the Secure Shell, is a popular, powerful, software-based approach to network
security.* Whenever data is sent by a computer to the network, SSH automatically
encrypts (scrambles) it. Then, when the data reaches its intended recipient, SSH

* “SSH” is pronounced by spelling it aloud: S-S-H.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: Introduction to SSH

automatically decrypts (unscrambles) it. The result is transparent encryption: users
can work normally, unaware that their communications are safely encrypted on the
network. In addition, SSH uses modern, secure encryption algorithms and is effec-
tive enough to be found within mission-critical applications at major corporations.

SSH has a client/server architecture, as shown in Figure 1-1. An SSH server program,
typically installed and run by a system administrator, accepts or rejects incoming
connections to its host computer. Users then run SSH client programs, typically on
other computers, to make requests of the SSH server, such as “Please log me in,”
“Please send me a file,” or “Please execute this command.” All communications
between clients and servers are securely encrypted and protected from modification.

Figure 1-1. SSH architecture

SSH
Client

SSH
Server

SSH
Client

SSH
Client

Send file X

Here is file X

Child
Process

Child
Process

Child
Process

Child
Process

run

run run

run

Computer

OK

Run this command

Log me in

Denied

Computer

Log me in

OK

SSH
Client

Computer



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1.3 The SSH Protocol | 3

Our description is simplified but should give you a general idea of what SSH does.
We’ll go into depth later. For now, just remember that SSH clients communicate
with SSH servers over encrypted network connections.

SSH software is very common today. It comes with most Linux distributions, Macin-
tosh OS X, Sun Solaris, OpenBSD, and virtually all other Unix-inspired operating
systems. Microsoft Windows has plenty of SSH clients and servers, both free and
commercial. You can even find it for PalmOS, Commodore Amiga, and most other
platforms. [13.3]

Many SSH clients are inspired by old Unix programs called the “r-commands:” rsh
(remote shell), rlogin (remote login), and rcp (remote copy). In fact, for many pur-
poses the SSH clients are drop-in replacements for the r-commands, so if you’re still
using them, switch to SSH immediately! The old r-commands are notoriously inse-
cure, and the SSH learning curve is small.

1.2 What SSH Is Not
Although SSH stands for Secure Shell, it is not a true shell in the sense of the Unix
Bourne shell and C shell. It is not a command interpreter, nor does it provide wild-
card expansion, command history, and so forth. Rather, SSH creates a channel for
running a shell on a remote computer, with end-to-end encryption between the two
systems.

SSH is also not a complete security solution—but then, nothing is. It won’t protect
computers from active break-in attempts or denial-of-service attacks, and it won’t
eliminate other hazards such as viruses, Trojan horses, and coffee spills. It does,
however, provide robust and user-friendly encryption and authentication.

1.3 The SSH Protocol
SSH is a protocol, not a product. It is a specification of how to conduct secure com-
munication over a network.*

The SSH protocol covers authentication, encryption, and the integrity of data trans-
mitted over a network, as shown in Figure 1-2. Let’s define these terms:

Authentication
Reliably determines someone’s identity. If you try to log into an account on a
remote computer, SSH asks for digital proof of your identity. If you pass the test,
you may log in; otherwise, SSH rejects the connection.

* Although we say “the SSH protocol,” there are actually two incompatible versions of the protocols in com-
mon use: SSH-1 (a.k.a. SSH-1.5) and SSH-2. We distinguish these protocols later.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Introduction to SSH

Encryption
Scrambles data so that it is unintelligible except to the intended recipients. This
protects your data as it passes over the network.

Integrity
Guarantees the data traveling over the network arrives unaltered. If a third party
captures and modifies your data in transit, SSH detects this fact.

In short, SSH makes network connections between computers, with strong guarantees
that the parties on both ends of the connection are genuine. It also ensures that any
data passing over these connections arrives unmodified and unread by eavesdroppers.

1.3.1 Protocols, Products, Clients, and Confusion
The first SSH product, created by Tatu Ylönen for Unix, was simply called “SSH.”
This caused confusion because SSH was also the name of the protocol. In this book,
we use more precise terminology to refer to protocols, products, and programs, sum-
marized in the sidebar “Terminology: SSH Protocols and Products.” In short:

• Protocols are denoted with dashes: SSH-1, SSH-2.

• Products are denoted in mixed case, without dashes: OpenSSH, Tectia, PuTTY,
etc.

• Client programs are in lowercase: ssh, scp, putty, etc.

Figure 1-2. Authentication, encryption, and integrity

...
and furthermore, I would just

lik
e

t o
sa

y

SSH
Server

SSH
Client

...and
furthermore, I would

just like to say

I am me

4xxY672ghjKyyTdfau12VFgKJST4L887

I am me too

Authentication

Encryption

yTdfa
???

Integrity

X%*!



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1.4 Overview of SSH Features | 5

1.4 Overview of SSH Features
So, what can SSH do? Let’s run through some examples that demonstrate the major
features of SSH, such as secure remote logins, secure file copying, and secure invoca-
tion of remote commands.

1.4.1 Secure Remote Logins
Suppose you have login accounts on several computers on the Internet. Common
programs like telnet let you log into one computer from another, say, from your
home PC to your web hosting provider, or from one office computer to another.
Unfortunately, telnet and similar programs transmit your username and password in

Terminology: SSH Protocols and Products
SSH

A generic term referring to SSH protocols and software products.

SSH-1
The SSH protocol, Version 1. This is the original protocol, and it has serious lim-
itations, so we do not recommend its use anymore.

SSH-2
The SSH protocol, Version 2, the most common and secure SSH protocol used
today. It is defined by draft standards documents of the IETF SECSH working
group. [3.4]

SSH1
The granddaddy of it all: the original SSH product created by Tatu Ylönen. It
implemented (and defined) the SSH-1 protocol and is now obsolete.

SSH2
The original SSH-2 product, created by Tatu Ylönen and his company, SSH Com-
munications Security (http://www.ssh.com).

ssh (all lowercase letters)
A client program run on the command line and included in many SSH products,
for running secure terminal sessions and remote commands. On some systems it
might be named ssh1 or ssh2.

OpenSSH
The product OpenSSH from the OpenBSD project, http://www.openssh.com.

Tectia
The successor to SSH2, this refers to the product suite “SSH Tectia” from SSH
Communications Security.We abbreviate the name as simply “Tectia.” Since Tec-
tia is available for both Unix and Windows, when we write “Tectia” we generally
mean the Unix version unless we say otherwise.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: Introduction to SSH

plain text over the Internet, where a malicious third party can intercept them.* Addi-
tionally, your entire telnet session is readable by a network snooper.

SSH completely avoids these problems. Rather than running the insecure telnet pro-
gram, you run the SSH client program ssh. To log into an account with the user-
name smith on the remote computer host.example.com, use this command:

$ ssh -l smith host.example.com

The client authenticates you to the remote computer’s SSH server using an encrypted
connection, meaning that your username and password are encrypted before they
leave the local machine. The SSH server then logs you in, and your entire login

* This is true of standard Telnet, but some implementations add security features.

Terminology: Networking
Local computer (local host, local machine)

A computer on which you are logged in and, typically, running an SSH client.

Remote computer (remote host, remote machine)
A second computer you connect to via your local computer. Typically, the remote
computer is running an SSH server and is accessed via an SSH client. As a degen-
erate case, the local and remote computers can be the same machine.

Local user
A user logged into a local computer.

Remote user
A user logged into a remote computer.

Server
An SSH server program.

Server machine
A computer running an SSH server program.We sometimes simply write “server”
for the server machine when the context makes clear (or irrelevant) the distinction
between the running SSH server program and its host machine.

Client
An SSH client program.

Client machine
A computer running an SSH client. As with the server terminology, we simply
write “client” when the context makes the meaning clear.

~ or $HOME
A user’s home directory on a Unix machine, particularly when used in a file path
such as ~/filename. Most shells recognize ~ as a user’s home directory, with the
notable exception of the Bourne shell. $HOME is recognized by all shells.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1.4 Overview of SSH Features | 7

session is encrypted as it travels between client and server. Because the encryption is
transparent, you won’t notice any differences between telnet and the telnet-like SSH
client.

1.4.2 Secure File Transfer
Suppose you have accounts on two Internet computers, me@firstaccount.com and
metoo@secondaccount.com, and you want to transfer a file from the first to the sec-
ond account. The file contains trade secrets about your business, however, that must
be kept from prying eyes. A traditional file-transfer program, such as ftp, doesn’t pro-
vide a secure solution. A third party can intercept and read the packets as they travel
over the network. To get around this problem, you can encrypt the file on
firstaccount.com with a program such as Pretty Good Privacy (PGP), transfer it via
traditional means, and decrypt the file on secondaccount.com, but such a process is
tedious and nontransparent to the user.

Using SSH, the file can be transferred securely between machines with a single secure
copy command. If the file were named myfile, the command executed on
firstaccount.com might be:

$ scp myfile metoo@secondaccount.com:

When transmitted by scp, the file is automatically encrypted as it leaves firstaccount.
com and decrypted as it arrives on secondaccount.com.

1.4.3 Secure Remote Command Execution
Suppose you are a system administrator who needs to run the same command on
many computers. You’d like to view the active processes for each user on four differ-
ent computers—grape, lemon, kiwi, and melon—on a local area network using the
Unix command /usr/bin/w. Many SSH clients can run a single remote command if
you provide it at the end of the command line. This short shell script does the trick:

#!/bin/sh
for machine in grape lemon kiwi melon
do
  ssh $machine /usr/bin/w Execute remote command by ssh
done

Each w command and its results are encrypted as they travel across the network, and
strong authentication techniques may be used when connecting to the remote
machines.

1.4.4 Keys and Agents
Suppose you have accounts on many computers on a network. For security reasons,
you prefer different passwords on all accounts; but remembering so many pass-
words is difficult. It’s also a security problem in itself. The more often you type a



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: Introduction to SSH

password, the more likely you’ll mistakenly type it in the wrong place. (Have you
ever accidentally typed your password instead of your username, visible to the
world? Ouch! And on many systems, such mistakes are recorded in a system log file,
revealing your password in plain text.) Wouldn’t it be great to identify yourself only
once and get secure access to all the accounts without continually typing passwords?

SSH has various authentication mechanisms, and the most secure is based on keys
rather than passwords. Keys are discussed in great detail in Chapter 6, but for now
we define a key as a small blob of bits that uniquely identifies an SSH user. For secu-
rity, a key is kept encrypted; it may be used only after entering a secret passphrase to
decrypt it.

Using keys, together with a program called an authentication agent, SSH can authen-
ticate you to all your computer accounts securely without requiring you to memo-
rize many passwords or enter them repeatedly. It works like this:

1. In advance (and only once), place special, nonsecure files called public key files
into your remote computer accounts. These enable your SSH clients (ssh, scp) to
access your remote accounts.

2. On your local machine, invoke the ssh-agent program, which runs in the
background.

3. Choose the key (or keys) you will need during your login session.

4. Load the keys into the agent with the ssh-add program. This requires knowledge
of each key’s secret passphrase.

At this point, you have an ssh-agent program running on your local machine, hold-
ing your secret keys in memory. You’re now done. You have passwordless access to
all your remote accounts that contain your public key files. Say goodbye to the
tedium of retyping passwords! The setup lasts until you log out from the local
machine or terminate ssh-agent.

1.4.5 Access Control
Suppose you want to permit another person to use your computer account, but only
for certain purposes. For example, while you’re out of town you’d like your secretary
to read your email but not to do anything else in your account. With SSH, you can
give your secretary access to your account without revealing or changing your pass-
word, and with only the ability to run the email program. No system-administrator
privileges are required to set up this restricted access. (This topic is the focus of
Chapter 8.)

1.4.6 Port Forwarding
SSH can increase the security of other TCP/IP-based applications such as telnet, ftp,
and the X Window System. A technique called port forwarding or tunneling reroutes



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1.5 History of SSH | 9

a TCP/IP connection to pass through an SSH connection, transparently encrypting it
end to end. Port forwarding can also pass such applications through network fire-
walls that otherwise prevent their use.

Suppose you are logged into a machine away from work and want to access the inter-
nal news server at your office, news.yoyodyne.com. The Yoyodyne network is con-
nected to the Internet, but a network firewall blocks incoming connections to most
ports, particularly port 119, the news port. The firewall does allow incoming SSH
connections, however, since the SSH protocol is secure enough that even Yoyo-
dyne’s rabidly paranoid system administrators trust it. SSH can establish a secure
tunnel on an arbitrary local TCP port—say, port 3002—to the news port on the
remote host. The command might look a bit cryptic at this early stage, but here it is:

$ ssh -L 3002:localhost:119 news.yoyodyne.com

This says “ssh, please establish a secure connection from TCP port 3002 on my local
machine to TCP port 119, the news port, on news.yoyodyne.com.” So, in order to
read news securely, configure your news-reading program to connect to port 3002 on
your local machine. The secure tunnel created by ssh automatically communicates
with the news server on news.yoyodyne.com, and the news traffic passing through the
tunnel is protected by encryption. [9.1]

1.5 History of SSH
SSH1 and the SSH-1 protocol were developed in 1995 by Tatu Ylönen, a researcher
at the Helsinki University of Technology in Finland. After his university network was
the victim of a password-sniffing attack earlier that year, Ylönen whipped up SSH1
for himself. When beta versions started gaining attention, however, he realized his
security product could be put to wider use.

In July 1995, SSH1 was released to the public as free software with source code, per-
mitting people to copy and use the program without cost. By the end of the year, an
estimated 20,000 users in 50 countries had adopted SSH1, and Ylönen was fending
off 150 email messages per day requesting support. In response, Ylönen founded
SSH Communications Security Corp., (SCS, http://www.ssh.com/) in December of
1995 to maintain, commercialize, and continue development of SSH. Today he is a
board member and technical advisor to the company.

Also in 1995, Ylönen documented the SSH-1 protocol as an Internet Engineering
Task Force (IETF) Internet Draft, which essentially described the operation of the
SSH1 software after the fact. It was a somewhat ad hoc protocol with a number of
problems and limitations discovered as the software grew in popularity. These prob-
lems couldn’t be fixed without losing backward compatibility, so in 1996, SCS intro-
duced a new, major version of the protocol, SSH 2.0 or SSH-2, that incorporates new
algorithms and is incompatible with SSH-1. In response, the IETF formed a working



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: Introduction to SSH

group called Secure Shell (SECSH) to standardize the protocol and guide its develop-
ment in the public interest. The SECSH working group submitted the first Internet
Draft for the SSH-2.0 protocol in February 1997.

In 1998, SCS released the software product SSH Secure Shell (SSH2), based on the
superior SSH-2 protocol. However, SSH2 didn’t replace SSH1 in the field: it was
missing some features of SSH1 and had a more restrictive license, so many users felt
little reason to switch, even though SSH-2 is a better and more secure protocol.

This situation changed with the appearance of OpenSSH (http://www.openssh.com/),
a free implementation of the SSH-2 protocol from the OpenBSD project (http://www.
openbsd.org/). It was based on the last free release of the original SSH, 1.2.12, but
developed rapidly into one of the reigning SSH implementations in the world.
Though many people have contributed to it, OpenSSH is largely the work of soft-
ware developer Markus Friedl. It has been ported successfully to Linux, Solaris, AIX,
Mac OS X, and other operating systems, in tight synchronization with the OpenBSD
releases.

SCS has continued to improve its SSH products, in some cases beyond what
OpenSSH supports. Its product line now carries the name Tectia. And nowadays
there are dozens of SSH implementations, both free and commercial, for virtually all
platforms. Millions of people use it worldwide to secure their communications.

1.6 Related Technologies
SSH is popular and convenient, but we certainly don’t claim it is the ultimate secu-
rity solution for all networks. Authentication, encryption, and network security origi-
nated long before SSH and have been incorporated into many other systems. Let’s
survey a few representative systems.

1.6.1 rsh Suite (r-Commands)
The Unix programs rsh, rlogin, and rcp—collectively known as the r-commands—are
the direct ancestors of the SSH clients ssh, slogin, and scp. The user interfaces and
visible functionality are nearly identical to their SSH counterparts, except that SSH
clients are secure. The r-commands, in contrast, don’t encrypt their connections and
have a weak, easily subverted authentication model.

An r-command server relies on two mechanisms for security: a network naming ser-
vice and the notion of “privileged” TCP ports. Upon receiving a connection from a
client, the server obtains the network address of the originating host and translates it
into a hostname. This hostname must be present in a configuration file on the server,
typically /etc/hosts.equiv, for the server to permit access. The server also checks that
the source TCP port number is in the range 1–1023, since these port numbers can be
used only by the Unix superuser (or root uid). If the connection passes both checks,



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1.6 Related Technologies | 11

the server believes it is talking to a trusted program on a trusted host and logs in the
client as whatever user it requests!

These two security checks are easily subverted. The translation of a network address
to a hostname is done by a naming service such as Sun’s Network Information Ser-
vice (NIS) or the Internet Domain Name System (DNS). Most implementations and/
or deployments of NIS and DNS services have security holes, presenting opportuni-
ties to trick the server into trusting a host it shouldn’t. Then, a remote user can log
into someone else’s account on the server simply by having the same username.

Likewise, blind trust in privileged TCP ports represents a serious security risk. A
cracker who gains root privilege on a trusted machine can simply run a tailored ver-
sion of the rsh client and log in as any user on the server host. Overall, reliance on these
port numbers is no longer trustworthy in a world of desktop computers whose users
have administrative access as a matter of course, or whose operating systems don’t sup-
port multiple users or privileges (such as Windows 9x and Macintosh OS 9).

If user databases on trusted hosts were always synchronized with the server, instal-
lation of privileged programs (setuid root) strictly monitored, root privileges guar-
anteed to be held by trusted people, and the physical network protected, the r-
commands would be reasonably secure. These assumptions made sense in the early
days of networking, when hosts were few, expensive, and overseen by a small and
trusted group of administrators, but they have far outlived their usefulness.

Given SSH’s superior security features and that ssh is backward-compatible with rsh
(and scp with rcp), we see no compelling reason to run the r-commands anymore.
Install SSH and be happy.

1.6.2 Pretty Good Privacy (PGP) and GNU Privacy Guard
(GnuPG)

PGP is a popular encryption program available for many computing platforms, cre-
ated by Phil Zimmerman. It can authenticate users and encrypt data files and email
messages. GnuPG is a more powerful successor to PGP with less-restrictive licensing.

SSH incorporates some of the same encryption algorithms as PGP and GnuPG, but
applied in a different way. PGP is file-based, typically encrypting one file or email
message at a time on a single computer. SSH, in contrast, encrypts an ongoing ses-
sion between networked computers. The difference between PGP and SSH is like
that between a batch job and an interactive process.

PGP and SSH are related in another way as well: Tectia can optionally
use PGP keys for authentication. [5.4.5]

More PGP and GnuPG information is available at http://www.pgp.com/ and http://
www.gnupg.org/, respectively.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 1: Introduction to SSH

1.6.3 Kerberos
Kerberos is a secure authentication system for environments where networks may be
monitored, and computers aren’t under central control. It was developed as part of
Project Athena, a wide-ranging research and development effort at the Massachu-
setts Institute of Technology (MIT). Kerberos authenticates users by way of tickets,
small sequences of bytes with limited lifetimes, while user passwords remain secure
on a central machine.

Kerberos and SSH solve similar problems but are quite different in scope. SSH is
lightweight and easily deployed, designed to work on existing systems with minimal
changes. To enable secure access from one machine to another, simply install an SSH
client on the first and a server on the second, and start the server. Kerberos, in con-
trast, requires significant infrastructure to be established before use, such as adminis-
trative user accounts, a heavily secured central host, and software for networkwide
clock synchronization. In return for this added complexity, Kerberos ensures that
users’ passwords travel on the network as little as possible and are stored only on the
central host. SSH sends passwords across the network (over encrypted connections,
of course) on each login and stores keys on each host from which SSH is used. Ker-
beros also serves other purposes beyond the scope of SSH, including a centralized
user account database, access control lists, and a hierarchical model of trust.

Another difference between SSH and Kerberos is the approach to securing client
applications. SSH can easily secure most TCP/IP-based programs via a technique
called port-forwarding. Kerberos, on the other hand, contains a set of programming
libraries for adding authentication and encryption to other applications. Developers
can integrate applications with Kerberos by modifying their source code to make
calls to the Kerberos libraries. The MIT Kerberos distribution comes with a set of
common services that have been “kerberized,” including secure versions of telnet, ftp,
and rsh.

If the features of both Kerberos and SSH sound good, you’re in luck: they’ve been
integrated. [11.4] More information on Kerberos can be found at http://web.mit.edu/
kerberos/www/.

1.6.4 IPSEC and Virtual Private Networks
Internet Protocol Security (IPSEC) is an Internet standard for network security.
Developed by an IETF working group, IPSEC comprises authentication and encryp-
tion implemented at the IP level. This is a lower level of the network stack than SSH
addresses. It is entirely transparent to end users, who don’t need to use a particular
program such as SSH to gain security; rather, their existing insecure network traffic is
protected automatically by the underlying system. IPSEC can securely connect a sin-
gle machine to a remote network through an intervening untrusted network (such as



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1.6 Related Technologies | 13

the Internet), or it can connect entire networks (this is the idea of the Virtual Private
Network, or VPN).

SSH is often quicker and easier to deploy as a solution than IPSEC, since SSH is a
simple application program, whereas IPSEC requires additions to the host operating
systems on both sides if they don’t already come with it, and possibly to network
equipment such as routers, depending on the scenario. SSH also provides user
authentication, whereas IPSEC deals only with individual hosts. On the other hand,
IPSEC is more basic protection and can do things SSH can’t. For instance, in
Chapter 11 we discuss the difficulties of trying to protect the FTP protocol using
SSH. If you need to secure an existing insecure protocol such as FTP, which isn’t
amenable to treatment with SSH, IPSEC is a way to do it.

IPSEC can provide authentication alone, through a means called the Authentication
Header (AH), or both authentication and encryption, using a protocol called Encap-
sulated Security Payload (ESP). Detailed information on IPSEC can be found at http://
www.ietf.org/html.charters/ipsec-charter.html.

1.6.5 Secure Remote Password (SRP)
The Secure Remote Password (SRP) protocol, created at Stanford University, is a
security protocol very different in scope from SSH. It is specifically an authentication
protocol, whereas SSH comprises authentication, encryption, integrity, session man-
agement, etc., as an integrated whole. SRP isn’t a complete security solution in itself,
but rather, a technology that can be a part of a security system.

The design goal of SRP is to improve on the security properties of password-style
authentication, while retaining its considerable practical advantages. Using SSH pub-
lic-key authentication is difficult if you’re traveling, especially if you’re not carrying
your own computer, but instead are using other people’s machines. You have to
carry your private key on a portable storage device and hope that you can get the key
into whatever machine you need to use.

Carrying your encrypted private key with you is also a weakness, because if someone
steals it, they can subject it to a dictionary attack in which they try to find your pass-
phrase and recover the key. Then you’re back to the age-old problem with pass-
words: to be useful they must be short and memorable, whereas to be secure, they
must be long and random.

SRP provides strong two-party mutual authentication, with the client needing only to
remember a short password which need not be so strongly random. With traditional
password schemes, the server maintains a sensitive database that must be protected,
such as the passwords themselves, or hashed versions of them (as in the Unix /etc/
passwd and /etc/shadow files). That data must be kept secret, since disclosure allows
an attacker to impersonate users or discover their passwords through a dictionary



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 1: Introduction to SSH

attack. The design of SRP avoids such a database and allows passwords to be less
random (and therefore more memorable and useful), since it prevents dictionary
attacks. The server still has sensitive data that should be protected, but the conse-
quences of its disclosure are less severe.

SRP is also intentionally designed to avoid using encryption algorithms in its opera-
tion. Thus it avoids running afoul of cryptographic export laws, which prohibits cer-
tain encryption technologies from being shared with foreign countries.

SRP is an interesting technology we hope gains wider acceptance; it is an excellent
candidate for an additional authentication method in SSH. The current SRP imple-
mentation includes secure clients and servers for the Telnet and FTP protocols for
Unix and Windows. More SRP information can be found at http://srp.stanford.edu/.

1.6.6 Secure Socket Layer (SSL) Protocol
The Secure Socket Layer (SSL) protocol is an authentication and encryption tech-
nique providing security services to TCP clients by way of a Berkeley sockets-style
API. It was initially developed by Netscape Communications Corporation to secure
the HTTP protocol between web clients and servers, and that is still its primary use,
though nothing about it is specific to HTTP. It is on the IETF standards track as
RFC-2246, under the name “TLS” for Transport Layer Security.

An SSL participant proves its identity by a digital certificate, a set of cryptographic
data. A certificate indicates that a trusted third party has verified the binding
between an identity and a given cryptographic key. Web browsers automatically
check the certificate provided by a web server when they connect by SSL, ensuring
that the server is the one the user intended to contact. Thereafter, transmissions
between the browser and the web server are encrypted.

SSL is used most often for web applications, but it can also “tunnel” other protocols.
It is secure only if a “trusted third party” exists. Organizations known as certificate
authorities (CAs) serve this function. If a company wants a certificate from the CA,
the company must prove its identity to the CA through other means, such as legal
documents. Once the proof is sufficient, the CA issues the certificate.

For more information, visit the OpenSSL project at http://www.openssl.org/.

1.6.7 SSL-Enhanced Telnet and FTP
Numerous TCP-based communication programs have been enhanced with SSL,
including telnet (e.g., SSLtelnet, SRA telnet, SSLTel, STel) and ftp (SSLftp), provid-
ing some of the functionality of SSH. Though useful, these tools are fairly single-
purpose and typically are patched or hacked versions of programs not originally writ-
ten for secure communication. The major SSH implementations, on the other hand,



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1.7 Summary | 15

are more like integrated toolsets with diverse uses, written from the ground up for
security.

1.6.8 stunnel
stunnel is an SSL tool created by Micha Trojnara of Poland. It adds SSL protection to
existing TCP-based services in a Unix environment, such as POP or IMAP servers,
without requiring changes to the server source code. It can be invoked from inetd as
a wrapper for any number of service daemons or run standalone, accepting network
connections itself for a particular service. stunnel performs authentication and autho-
rization of incoming connections via SSL; if the connection is allowed, it runs the
server and implements an SSL-protected session between the client and server
programs.

This is especially useful because certain popular applications have the option of run-
ning some client/server protocols over SSL. For instance, email clients like Microsoft
Outlook and Mozilla Mail can connect to POP, IMAP, and SMTP servers using SSL.
For more stunnel information, see http://www.stunnel.org/.

1.6.9 Firewalls
A firewall is a hardware device or software program that prevents certain data from
entering or exiting a network. For example, a firewall placed between a web site and
the Internet might permit only HTTP and HTTPS traffic to reach the site. As another
example, a firewall can reject all TCP/IP packets unless they originate from a desig-
nated set of network addresses.

Firewalls aren’t a replacement for SSH or other authentication and encryption
approaches, but they do address similar problems. The techniques may be used
together.

1.7 Summary
SSH is a powerful, convenient approach to protecting communications on a com-
puter network. Through secure authentication and encryption technologies, SSH
supports secure remote logins, secure remote command execution, secure file trans-
fers, access control, TCP/IP port forwarding, and other important features.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

16

Chapter 2CHAPTER 2

Basic Client Use

SSH is a simple idea but it has many parts, some of them complex. This chapter is
designed to get you started with SSH quickly. We cover the basics of SSH’s most
immediately useful features:

• Logging into a remote computer over a secure connection

• Transferring files between computers over a secure connection

We also introduce authentication with cryptographic keys, a more secure alternative
to ordinary passwords. Advanced uses of client programs, such as multiple keys, cli-
ent configuration files, and TCP port forwarding, are covered in later chapters. Our
examples in this chapter work with OpenSSH and Tectia on Linux and other Unix-
inspired operating systems.

2.1 A Running Example
Suppose you’re out of town on a business trip and want to access your files, which
sit on a Unix machine belonging to your ISP, shell.isp.com. A friend at a nearby uni-
versity agrees to let you log into her Linux account on the machine local.university.
edu, and then remotely log into yours. For the remote login you could use the telnet
program, but as we’ve seen, this connection between the machines is insecure. (No
doubt some subversive college student would grab your password and turn your
account into a renegade web server for pirated software and death metal MP3s.) For-
tunately, both your friend’s machine and your ISP’s have an SSH product installed.

In the example running through the chapter, we represent the shell prompt of the local
machine, local.university.edu, as a dollar sign ($) and the prompt on shell.isp.com as
shell.isp.com>.

2.2 Remote Terminal Sessions with ssh
Suppose your remote username on shell.isp.com is pat. To connect to your remote
account from your friend’s account on local.university.edu, you type:



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

2.2 Remote Terminal Sessions with ssh | 17

$ ssh -l pat shell.isp.com
pat's password: ******
Last login: Mon Aug 16 19:32:51 2004 from quondam.nefertiti.org
You have new mail.
shell.isp.com>

This leads to the situation shown in Figure 2-1. The ssh command runs a client that
contacts the SSH server on shell.isp.com over the Internet, asking to be logged into
the remote account with username pat.* You can also provide user@host syntax
instead of the –l option to accomplish the same thing:

$ ssh pat@shell.isp.com

On first contact, SSH establishes a secure channel between the client and the server
so that all transmissions between them are encrypted. The client then prompts for
your password, which it supplies to the server over the secure channel. The server
authenticates you by checking that the password is correct and permits the login. All
subsequent client/server exchanges are protected by that secure channel, including
everything you type into the SSH application and everything it displays to you from
shell.isp.com.

It’s important to remember that the secure channel exists only between the SSH cli-
ent and server machines. After logging into shell.isp.com via ssh, if you then telnet or
ftp to a third machine, insecure.isp.com, the connection between shell.isp.com and
insecure.isp.com is not secure. However, you can run another ssh client from shell.isp.
com to insecure.isp.com, creating another secure channel, which keeps the chain of
connections secure.

We’ve covered only the simplest use of ssh. Chapter 7 goes into far greater depth
about its many features and options.

2.2.1 File Transfer with scp
Continuing the story, suppose that while browsing your files, you encounter a PDF
file you’d like to print. In order to send the file to a local printer at the university, you

* If the local and remote usernames are identical, you can omit the –l option (–l pat) and just type ssh shell.
isp.com.

Figure 2-1. Our example scenario

SSH
Client

SSH
Server

Internet

University Network ISP Network

local.university.edu

secure SSH protocol

shell.isp.com



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 2: Basic Client Use

must first transfer the file to local.university.edu. Once again, you reject as insecure
the traditional file-transfer programs, such as ftp. Instead, you use another SSH cli-
ent program, scp, to copy the file across the network via a secure channel.

First, you write the attachment to a file in your home directory on shell.isp.com using
your mail client, naming the file printme.pdf. When you’ve finished reading your other
email messages, log out of shell.isp.com, ending the SSH session and returning to the
shell prompt on local.university.edu. You’re now ready to copy the file securely.

The scp program has syntax much like the traditional Unix cp program for copying
files.* It is roughly:

scp name-of-source name-of-destination

In this example, scp copies the file printme.pdf on shell.isp.com over the network to a
local file in your friend’s account on local.university.edu, also called printme.pdf:

$ scp pat@shell.isp.com:printme.pdf printme.pdf

The file is transferred over an SSH-secured connection. The source and destination
files may be specified not only by filename, but also by username (“pat” in our exam-
ple) and hostname (shell.isp.com), indicating the location of the file on the network.
Depending on your needs, various parts of the source or destination name can be
omitted, and default values used. For example, omitting the username and the at
sign (pat@) makes scp assume that the remote username is the same as the local one.

Like ssh, scp prompts for your remote password and passes it to the SSH server for
verification. If successful, scp logs into the pat account on shell.isp.com, copies your
remote file printme.pdf to the local file printme.pdf, and logs out of shell.isp.com. The
local file printme.pdf may now be sent to a printer.

The destination filename need not be the same as the remote one. For example, if
you’re feeling French, you could call the local file imprime-moi.pdf:

$ scp pat@shell.isp.com:printme.pdf imprime-moi.pdf

The full syntax of scp can represent local and remote files in powerful ways, and the
program also has numerous command-line options. [7.5]

2.3 Adding Complexity to the Example
The preceding example session provided a quick introduction to the most often-used
client programs—ssh and scp—in a format to follow while sitting at your computer.
Now that you have the basics, let’s continue the example but include situations and
complications glossed over the first time. These include the “known hosts” security
feature and the SSH escape character.

* Actually it’s modeled after the old rcp program for copying files insecurely between machines.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

2.3 Adding Complexity to the Example | 19

If you’re following at the computer as you read, your SSH clients
might behave unexpectedly or differently from ours. As you will see
throughout the book, SSH implementations are highly customizable,
by both yourself and the system administrator, on either side of the
secure connection. Although this chapter describes common behav-
iors of SSH programs based on their installation defaults, your system
might be set up differently.

If commands don’t work as you expect, try adding the –v (“verbose”)
command-line option, for example:

$ ssh -v shell.isp.com

This causes the client to print lots of information about its progress,
often revealing the source of the discrepancy.

2.3.1 Known Hosts
The first time an SSH client encounters a new remote machine, it may report that it’s
never seen the machine before, printing a message like the following:

$ ssh -l pat shell.isp.com
The authenticity of host 'shell.isp.com (192.168.0.2)' can't be established.
RSA key fingerprint is 77:a5:69:81:9b:eb:40:76:7b:13:04:a9:6c:f4:9c:5d.
Are you sure you want to continue connecting (yes/no)?

Assuming you respond yes (the most common response), the client continues:

Warning: Permanently added 'shell.isp.com,192.168.0.2' (RSA) to the list of known
hosts.

This message appears only the first time you contact a particular remote host. The
message is a security feature related to SSH’s concept of known hosts.*

Suppose an adversary wants to obtain your password. He knows you are using SSH,
and so he can’t monitor your connection by eavesdropping on the network. Instead,
he subverts the naming service used by your local host so that the name of your
intended remote host, shell.isp.com, translates falsely to the IP address of a computer
run by him! He then installs an altered SSH server on the phony remote host and
waits. When you log in via your trusty SSH client, the altered SSH server records
your password for the adversary’s later use (or misuse, more likely). The bogus server
can then disconnect with a preplanned error message such as “System down for
maintenance—please try again after 4:00 p.m.” Even worse, it can fool you com-
pletely by using your password to log into the real shell.isp.com and transparently
pass information back and forth between you and the server, monitoring your entire
session. This hostile strategy is called a man-in-the-middle attack. [3.9.4] Unless you

* Depending on your client configuration, ssh might print a different message and automatically accept or
reject the connection. [7.4.3.1]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 2: Basic Client Use

think to check the originating IP address of your session on the server, you might
never notice the deception.

The SSH known-host mechanism prevents such attacks. When an SSH client and
server make a connection, each of them proves its identity to the other. Yes, not only
does the server authenticate the client, as we saw earlier when the server checked
Pat’s password, but the client also authenticates the server by public-key cryptogra-
phy. [3.4.3.6] In short, each SSH server has a secret, unique ID, called a host key, to
identify itself to clients. The first time you connect to a remote host, a public coun-
terpart of the host key gets copied and stored in your local account (assuming you
responded “yes” to the client’s prompt about host keys, earlier). Each time you
reconnect to that remote host, the SSH client checks the remote host’s identity using
this public key.

Of course, it’s better to have recorded the server’s public host key before connecting
to it the first time, since otherwise you are technically open to a man-in-the-middle
attack that first time. Administrators can maintain systemwide known-hosts lists for
given sets of hosts, but this doesn’t do much good for connecting to random new
hosts around the world. Until a reliable, widely deployed method of verifying such
keys securely exists (such as secure DNS, or X.509-based public-key infrastructure),
this record-on-first-use mechanism is an acceptable compromise.

If authentication of the server fails, various things may happen depending on the rea-
son for failure and the SSH configuration. Typically a warning appears on the screen,
ranging from a repeat of the known-hosts message:

Host key not found from the list of known hosts.
Are you sure you want to continue connecting (yes/no)?

to more dire words:

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@    WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!     @
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
77:a5:69:81:9b:eb:40:76:7b:13:04:a9:6c:f4:9c:5d.
Please contact your system administrator.
Add correct host key in /home/smith/.ssh/known_hosts to get rid of this message.
Offending key in /home/smith/.ssh/known_hosts:36

If you answer yes, ssh allows the connection, but disables various features as a secu-
rity precaution and doesn’t update your personal known-hosts database with the
new key; you must do that yourself to make this message go away.

As the text of the message says, if you see this warning, you aren’t necessarily being
hacked: for example, the remote host key may have legitimately changed for some



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

2.4 Authentication by Cryptographic Key | 21

reason. In some cases, even after reading this book, you won’t know the cause of these
messages. If you need assistance, contact your system administrator or a knowledge-
able friend, rather than take a chance and possibly compromise your password. We’ll
cover these issues further when we discuss personal known hosts databases and how
to alter the behavior of SSH clients with respect to host keys. [7.4.3]

2.3.2 The Escape Character
Let us return to the shell.isp.com example, just after you’d discovered the attachment
in your remote email message and saved it to the remote file printme.pdf. In our origi-
nal example, you then logged out of shell.isp.com and ran scp to transfer the file. But
what if you don’t want to log out? If you’re using a workstation running a window
system, you can open a new window and run scp. But if you’re using a lowly text ter-
minal, or you’re not familiar with the window system running on your friend’s com-
puter, there is an alternative. You can temporarily interrupt the SSH connection,
transfer the file (and run any other local commands you desire), and then resume the
connection.

ssh supports an escape character, a designated character that gets the attention of the
SSH client. Normally, ssh sends every character you type to the server, but the escape
character is caught by the client, alerting it that special commands may follow. By
default, the escape character is the tilde (~), but you can change it. To reduce the
chances of sending the escape character unintentionally, that character must be the
first character on the command line, i.e., following a newline (Control-J) or return
(Control-M) character. If not, the client treats it literally, not as an escape character.

After the escape character gets the client’s attention, the next character entered deter-
mines the effect of the escape. For example, the escape character followed by a
Control-Z suspends ssh like any other shell job, returning control to the local shell.
Such a pair of characters is called an escape sequence. We cover these in detail in a
later chapter. [7.4.6.8]

To change the ssh escape character, use the –e command-line option. For example,
type the following to make the percent sign (%) the escape character when connect-
ing to shell.isp.com as user pat:

$ ssh -e "%" -l pat shell.isp.com

2.4 Authentication by Cryptographic Key
In our running example, the user pat is authenticated by the SSH server via login
password. Passwords, however, have serious drawbacks:

• In order for a password to be secure, it should be long and random, but such
passwords are hard to memorize.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 2: Basic Client Use

• A password sent across the network, even protected by an SSH secure channel,
can be captured when it arrives on the remote host if that host has been compro-
mised.

• Most operating systems support only a single password per account. For shared
accounts (e.g., a superuser account), this presents difficulties:

— Password changes are inconvenient because the new password must be com-
municated to all people with access to the account.

— Tracking usage of the account becomes difficult because the operating sys-
tem doesn’t distinguish between the different users of the account.

To address these problems, SSH supports public-key authentication: instead of rely-
ing on the password scheme of the host operating system, SSH may use crypto-
graphic keys. [3.2.2] Keys are more secure than passwords in general and address all
the weaknesses mentioned earlier.

2.4.1 A Brief Introduction to Keys
A key is a digital identity. It’s a unique string of binary data that means “This is me,
honestly, I swear.” And with a little cryptographic magic, your SSH client can prove
to a server that its key is genuine, and you are really you.

An SSH identity uses a pair of keys, one private and one public. The private key is a
closely guarded secret only you have. Your SSH clients use it to prove your identity
to servers. The public key is, like the name says, public. You place it freely into your
accounts on SSH server machines. During authentication, the SSH client and server
have a little conversation about your private and public key. If they match (accord-
ing to a cryptographic test), your identity is proven, and authentication succeeds.

The following sequence demonstrates the conversation between client and server. [3.
4.2.4] (It occurs behind the scenes, so you don’t need to memorize it or anything; we
just thought you might be interested.)

1. Your client says, “Hey server, I’d like to connect by SSH to an account on your
system, specifically, the account owned by user smith.”

2. The server says, “Well, maybe. First, I challenge you to prove your identity!”
And the server sends some data, known as a challenge, to the client.

3. Your client says, “I accept your challenge. Here is proof of my identity. I made it
myself by mathematically using your challenge and my private key.” This
response to the server is called an authenticator.

4. The server says, “Thanks for the authenticator. I will now examine the smith
account to see if you may enter.” Specifically, the server checks smith’s public
keys to see if the authenticator “matches” any of them. (The “match” is another
cryptographic operation.) If so, the server says, “OK, come on in!” Otherwise,
the authentication fails.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

2.4 Authentication by Cryptographic Key | 23

Before you can use public-key authentication, some setup is required:

• You need a private key and a public key, known collectively as a key pair. You
also need a secret passphrase to protect your private key. [2.4.2]

• You need to install your public key on an SSH server machine. [2.4.3]

2.4.2 Generating Key Pairs with ssh-keygen
To use cryptographic authentication, you must first generate a key pair for yourself,
consisting of a private key (your digital identity that sits on the client machine) and a
public key (that sits on the server machine). To do this, use the ssh-keygen program
to produce either a DSA or RSA key. The OpenSSH version of ssh-keygen requires
you to specify the key type with the –t option (there is no default):

$ ssh-keygen -t dsa
Generating public/private dsa key pair.
Enter file in which to save the key (/home/dbarrett/.ssh/id_dsa): press ENTER
Enter passphrase (empty for no passphrase): ********
Enter same passphrase again: ********
Your identification has been saved in /home/pat/.ssh/id_dsa.
Your public key has been saved in /home/pat/.ssh/id_dsa.pub.
The key fingerprint is:
14:ba:06:98:a8:98:ad:27:b5:ce:55:85:ec:64:37:19 pat@shell.isp.com

On Tectia systems, ssh-keygen produces a DSA key by default, and also accepts the –t
option:

$ ssh-keygen
Generating 2048-bit dsa key pair
   1 ..oOo.oOo.oO
   2 o.oOo.oOo.oO
   3 o.oOo.oOo.oO

The program displays a “ripple” pattern to indicate progress; the characters are actually
overwritten on a single line
  28 o.oOo.oOo.oO
Key generated.
2048-bit dsa, pat@shell.isp.com, Wed Jan 12 2005 20:22:21 -0500
Passphrase : **************
Again      : **************
Private key saved to /home/pat/.ssh2/id_dsa_2048_a
Public key saved to /home/pat/.ssh2/id_dsa_2048_a.pub

Normally, ssh-keygen performs all necessary mathematics to generate a key, but on
some operating systems you might be asked to assist it. Key generation requires some
random numbers, and if your operating system doesn’t supply a random-number
generator, you may be asked to type some random text or wiggle your mouse
around. ssh-keygen uses the timings of your keystrokes to initialize its internal
random-number generator. On a 3.2 GHz Pentium 4 system running Linux, a 1024-
bit RSA key generates in less than one second; if your hardware is slower or heavily
loaded, generation could take minutes. It can also take longer if the process runs out
of random bits and ssh-keygen waits to collect more.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 2: Basic Client Use

ssh-keygen then creates your local SSH directory (~/.ssh for OpenSSH or ~/.ssh2 for
Tectia) if it doesn’t already exist, and stores the private and public components of
the generated key in two files there. By default, their names are id_dsa and id_dsa.pub
(OpenSSH) or id_dsa_2048_a and id_dsa_2048_a.pub (Tectia). SSH clients consider
these to be your default identity for authentication purposes.

Never reveal your private key and passphrase to anyone. They are just
as sensitive as your login password. Anyone possessing them can
impersonate you!

When created, the identity file is readable only by your account, and its contents are
further protected by encrypting them with the passphrase you supplied during gener-
ation. We say “passphrase” instead of “password” both to differentiate it from a
login password, and to stress that spaces and punctuation are allowed and encour-
aged. We recommend a passphrase at least 10–15 characters long and not a gram-
matical sentence.

ssh-keygen has numerous options for managing keys: changing the passphrase,
choosing a different name for the key file, and so forth. [6.2]

2.4.3 Installing a Public Key on an SSH Server Machine
When passwords are used for authentication, the host operating system maintains
the association between the username and the password. For cryptographic keys,
you must set up a similar association manually. After creating the key pair on the
local host, you must install your public key in your account on the remote host. A
remote account may have many public keys installed for accessing it in various ways.

Returning to our running example, you must install a public key into the pat account
on shell.isp.com. This is done by editing a file in the SSH configuration directory: ~/.ssh/
authorized_keys for OpenSSH or ~/.ssh2/authorization for Tectia.

2.4.3.1 Instructions for OpenSSH

Create or edit the remote file ~/.ssh/authorized_keys and append your public key—i.e.,
the contents of the id_dsa.pub file you generated on the local machine. A typical
authorized_keys file contains a list of public-key data, one key per line. The example
contains only two public keys, each on its own line of the file, but they are too long to
fit on this page. The line breaks inside the long numbers are printing artifacts; if they
were actually in the file, it would be incorrectly formatted and wouldn’t work:

ssh-dss AAAAB3NzaC1kc3MAAACBAMCiL15WEI+0dFJZ9InMSh4PAZ3eFO7YJBFZ6ybl7ld+807z/
jnXGghYVuvKbHdNlRYWidhdFWtDW3l5v8Ce7nyYhcQU7x+j4JeUf7qmLmQxlu0v+O5rlg7L5U2RuW94yt1BGj
+xk7vzLwOhKHE/+YFVz52sFNazoYXqPnm1pRPRAAAAFQDGjroMj+ML= jones@client2.com



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

2.4 Authentication by Cryptographic Key | 25

ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAIEAvpB4lUbAaEbh9u6HLig7amsfywD4fqSZq2ikACIUBn3GyRPfeF93l/
weQh702ofXbDydZAKMcDvBJqRhUotQUwqV6HJxqoqPDlPGUUyo8RDIkLUIPRyqypZxmK9aCXokFiHoGCXfQ9i
mUP/w/jfqb9ByDtG97tUJF6nFMP5WzhM= smith@client.net

The first entry is a DSA key and the second is RSA. [8.2.1]

2.4.3.2 Instructions for Tectia

For Tectia you need to edit two files, one on the client machine and one on the server
machine. On the client machine, create or edit the file ~/.ssh2/identification and insert
a line to identify your private-key file:

IdKey id_dsa_2048_a

On the server machine, create or edit the file ~/.ssh2/authorization, which contains
information about public keys, one per line. But unlike OpenSSH’s authorized_keys
file, which contains copies of the public keys, the authorization file lists only the file-
name of the key:

Key id_dsa_2048_a.pub

Finally, copy id_dsa_2048_a.pub from your local machine to the remote Tectia server
machine, placing it in ~/.ssh2.

Regardless of which SSH implementation you use, make sure your remote SSH direc-
tory and associated files are writable only by your account:*

# OpenSSH
$ chmod 755 ~/.ssh
$ chmod 644 ~/.ssh/authorized_keys

# Tectia
$ chmod 755 ~/.ssh2
$ chmod 644 ~/.ssh2/id_dsa_2048_a.pub
$ chmod 644 ~/.ssh2/authorization

The SSH server is picky about file and directory permissions and may refuse
authentication if the remote account’s SSH configuration files have insecure per-
missions. [5.3.2.1]

You are now ready to use your new key to access the pat account:

$ ssh -l pat shell.isp.com
Enter passphrase for key '/home/you/.ssh/id_dsa': ************
Last login: Mon Aug 16 19:44:21 2004 from quincunx.nefertiti.org
You have new mail.
shell.isp.com>

If all goes well, you are logged into the remote account. Figure 2-2 shows the entire
process.

* We make files world-readable and directories world-searchable, to avoid NFS problems. [10.7.2] But if
StrictModes is enabled in the server, you’ll need to make these permissions more restrictive. [5.3.2.1]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 2: Basic Client Use

Note the similarity to the earlier example with password authentication. [2.2] On the
surface, the only difference is that you provide the passphrase to your private key,
instead of providing your login password. Underneath, however, something quite
different is happening. In password authentication, the password is transmitted to
the remote host. With cryptographic authentication, the passphrase serves only to
decrypt the private key to create an authenticator. [2.4.1]

Public-key authentication is more secure than password authentication because:

Installing OpenSSH Keys with ssh-copy-id
OpenSSH includes a program, ssh-copy-id, that installs a public key automatically on
a remote server with a single command, placing it into ~/.ssh/authorized_keys:

ssh-copy-id -i key_file [user@]server_name

For example, to install the key mykey in the dulaney account on server.example.com:

$ ssh-copy-id -i mykey dulaney@server.example.com

You don’t need to list the .pub extension of the key file; or more specifically, you can
provide either the private or public-key file, and the public key is copied to the remote
server.

In order for the copy to take place, you’ll need an account on the remote machine, of
course, and you’ll need to authenticate somehow. If you’ve never set up public-key
authentication on server.example.com before, you’ll be prompted for your login pass-
word.

ssh-copy-id is convenient, but it has some subtle issues:

• If you have no authorized_keys file on the remote machine, ssh-copy-id creates
one containing your new key; otherwise, it appends the new key.

• If you do already have a remote authorized_keys file, and it does not end with a
newline character, ssh-copy-id blindly appends your new key onto the last pub-
lic key in the file, with no newline between them. This effectively corrupts the
last two keys in authorized_keys. Moral: always make sure authorized_keys ends
with a newline. (This is easy to overlook, especially when running OpenSSH on
Windows. [14.4])

• The syntax of ssh-copy-id is similar to that of scp, the secure copy program, but
there’s an important difference: scp follows the hostname of the remote machine
with a colon. Don’t use a colon with ssh-copy-id or you’ll get an error message,
“Name or service not known,” as the hostname lookup fails.

Before you use ssh-copy-id to simplify or hide the details of public-key authentication,
we recommend that you understand how to set it up manually. This point is often true
of security-related software: you should know how and why it works.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

2.4 Authentication by Cryptographic Key | 27

• It requires two secret components—the identity file on disk, and the passphrase
in your head—so both must be captured in order for an adversary to access your
account. Password authentication requires only one component, the password,
which might be easier to steal.

• Neither the passphrase nor the key is sent to the remote host, just the authenti-
cator discussed earlier. Therefore, no secret information is transmitted off the
client machine.

• Machine-generated cryptographic keys are infeasible to guess. Human-gener-
ated passwords are routinely cracked by a password-guessing technique called a
dictionary attack. A dictionary attack may be mounted on the passphrase as well,
but this requires stealing the private-key file first.

A host’s security can be greatly increased by disabling password authentication alto-
gether and permitting only SSH connections by key.

2.4.4 If You Change Your Key
Suppose you have generated a key pair, id_dsa and id_dsa.pub, and copied id_dsa.pub
to a bunch of SSH server machines. All is well. Then one day, you decide to change
your identity, so you run ssh-keygen a second time, overwriting id_dsa and id_dsa.
pub. Guess what? Your previous public-key file is now invalid, and you must copy
the new public key to all those SSH server machines again. This is a maintenance
headache, so think carefully before changing (destroying!) a key pair. Some caveats:

• You are not limited to one key pair. You can generate as many as you like, stored
in different files, and use them for diverse purposes. [6.4]

• If you just want to change your passphrase, you don’t have to generate a new
key pair. ssh-keygen has command-line options for replacing the passphrase of
an existing key: –p for OpenSSH [6.2.1] and –e for Tectia [6.2.2]. In this case
your public key remains valid since the private key hasn’t changed, just the pass-
phrase for decrypting it.

Figure 2-2. Public-key authentication

U

SSH
Client

SSH
Server

local.university.edu

identity file

private

U U

public

encrypted

SSH
log in as Pat

shell.isp.com

Pat’s SSH authorization file
verify authenticator &

allow login

authenticator
U



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 2: Basic Client Use

2.5 The SSH Agent
Each time you run ssh or scp with public-key authentication, you have to retype your
passphrase. The first few times you might not mind, but eventually this retyping gets
annoying. Wouldn’t it be nicer to identify yourself just once and have ssh and scp
remember your identity until further notice (for example, until you log out), not
prompting for your passphrase? In fact, this is just what an SSH agent does for you.

An agent is a program that keeps private keys in memory and provides authentica-
tion services to SSH clients. If you preload an agent with private keys at the begin-
ning of a login session, your SSH clients won’t prompt for passphrases. Instead, they
communicate with the agent as needed. The effects of the agent last until you termi-
nate the agent, usually just before logging out. The agent program for both OpenSSH
and Tectia is called ssh-agent.

Generally, you run a single ssh-agent in your local login session, before running any
SSH clients. You can run the agent by hand, but people usually edit their login files
(for example, ~/.login or ~/.xsession) to run the agent automatically. SSH clients com-
municate with the agent via a local socket or named pipe whose filename is stored in
an environment variable, so all clients (and all other processes) within your login ses-
sion have access to the agent. [6.3.4] To try the agent, type:

$ ssh-agent $SHELL

where SHELL is the environment variable containing the name of your login shell.
Alternatively, you could supply the name of any other shell, such as sh, bash, csh,
tcsh, or ksh. The agent runs and then invokes the given shell as a child process. The
visual effect is simply that another shell prompt appears, but this shell has access to
the agent.

Once the agent is running, it’s time to load private keys into it using the ssh-add pro-
gram. By default, ssh-add loads the key from your default identity file:

$ ssh-add
Enter passphrase for /home/you/.ssh/id_dsa: ********
Identity added: /home/you/.ssh/id_dsa (/home/you/.ssh/id_dsa)

Now ssh and scp can connect to remote hosts without prompting for your pass-
phrase. Figure 2-3 shows the process.

ssh-add reads the passphrase from your terminal by default or, optionally, from stan-
dard input noninteractively. Otherwise, if you are running the X Window System
with the DISPLAY environment variable set, and standard input isn’t a terminal, ssh-
add reads your passphrase using a graphical X program, ssh-askpass. This behavior is
useful when calling ssh-add from X session setup scripts.

To force ssh-add to use X to read the passphrase, type ssh-add < /dev/
null at a command line.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

2.5 The SSH Agent | 29

ssh-add has further capabilities and can operate with multiple identity files. [6.3.3]
For now, here are a few useful commands. To load a key other than your default
identity into the agent, provide the filename as an argument to ssh-add:

$ ssh-add my-other-key-file

You can also list the keys the agent currently holds:

$ ssh-add -l

delete a key from the agent in memory:

$ ssh-add -d name-of-key-file

or delete all keys from the agent in memory:

$ ssh-add -D

When running an SSH agent, don’t leave your terminal unattended
while logged in. While your private keys are loaded in an agent, any-
one may use your terminal to connect to any remote accounts accessi-
ble via those keys, without needing your passphrase! Even worse, a
sophisticated intruder can extract your keys from the running agent
and steal them.

If you use an agent, make sure to lock your terminal if you leave it while
logged in. You can also use ssh-add -D to clear your loaded keys and
reload them when you return. In addition, ssh-agent can be “locked” by
ssh-add, to protect the agent from unauthorized users. [6.3.3]

2.5.1 Agents and Automation
Suppose you have a batch script that runs ssh to launch remote processes. If the
script runs ssh many times, it prompts for your passphrase repeatedly, which is
inconvenient for automation (not to mention annoying and error-prone). If you run
an agent, however, your script can run without a single passphrase prompt. [11.1]

Figure 2-3.  How the SSH agent works

identity file

private

U U

public

encrypted

ssh-add

“passphrase”

ssh-agent
plain-text key!

decrypts private key and
stores in agent U

ssh

please sign
A with key U A

authenticator A

SSH

U

U



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 2: Basic Client Use

2.5.2 A More Complex Passphrase Problem
In our running example, we copied a file from the remote to the local host:

$ scp pat@shell.isp.com:printme.pdf imprime-moi.pdf

In fact, scp can copy a file from the remote host shell.isp.com directly to a third host
running SSH on which you have an account named, say, “psmith”:

$ scp pat@shell.isp.com:printme.pdf psmith@other.host.net:imprime-moi.pdf

Rather than copying the file first to the local host and then back out again to the final
destination, this command has shell.isp.com send it directly to other.host.net. How-
ever, if you try this, you run into the following problem:

$ scp pat@shell.isp.com:printme.pdf psmith@other.host.net:imprime-moi.pdf
Enter passphrase for RSA key 'Your Name <you@local.org>': ************
You have no controlling tty and no DISPLAY.  Cannot read passphrase.
lost connection

What happened? When you run scp on your local machine, it contacts shell.isp.com
and internally invokes a second scp command to do the copy. Unfortunately, the sec-
ond scp command also needs the passphrase for your private key. Since there is no
terminal session to prompt for the passphrase, the second scp fails, causing the origi-
nal scp to fail. The SSH agent solves this problem: the second scp command simply
queries your local SSH agent, so no passphrase prompting is needed.

The SSH agent also solves another, more subtle, problem in this example. Without
the agent, the second scp (on shell.isp.com) needs access to your private-key file, but
the file is on your local machine. So, you have to copy your private key file to shell.
isp.com. This isn’t ideal; what if shell.isp.com isn’t a secure machine? Also, the solu-
tion doesn’t scale: if you have a dozen different accounts, it is a maintenance head-
ache to keep your private key file on all of them. Fortunately, the SSH agent comes to
the rescue once again. The remote scp process simply contacts your local SSH agent
and authenticates, and the secure copy proceeds successfully, through a process
called agent forwarding.

2.5.3 Agent Forwarding
In the preceding example, the remote instance of scp has no direct access to your pri-
vate key, since the agent is running on the local host, not the remote host. SSH pro-
vides agent forwarding [6.3.5] to address this problem.

When agent forwarding is turned on,* the remote SSH server masquerades as a sec-
ond ssh-agent, as shown in Figure 2-4. It takes authentication requests from your
SSH client processes there, passes them back over the SSH connection to the local

* It is on by default in Tectia, but off in OpenSSH.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

2.5 The SSH Agent | 31

agent for handling, and relays the results back to the remote clients. In short, remote
clients transparently get access to the local ssh-agent. Since any programs executed
via ssh on the remote side are children of the server, they all have access to the local
agent just as if they were running on the local host.

In our double-remote scp example, here is what happens when agent forwarding
comes into play (see Figure 2-5):

1. You run the command on your local machine:

$ scp pat@shell.isp.com:printme.pdf psmith@other.host.net:imprime-moi.pdf

2. This scp process contacts your local agent and authenticates you to shell.isp.com.

3. A second scp command is automatically launched on shell.isp.com to carry out
the copy to other.host.net.

4. Since agent forwarding is turned on, the SSH server on shell.isp.com poses as an
agent.

5. The second scp process tries to authenticate you to other.host.net by contacting
the “agent” that is really the SSH server on shell.isp.com.

6. Behind the scenes, the SSH server on shell.isp.com communicates with your local
agent, which constructs an authenticator proving your identity and passes it
back to the server.

7. The server verifies your identity to the second scp process, and authentication
succeeds on other.host.net.

8. The file copying occurs.

Figure 2-4. How agent forwarding works

SSH
Client

SSH
Client

SSH
Server

Machine X Machine Y

ProxyAgent

Agent

keys

forwarded
request

forwarded
result

forwarded
result

requestforwarded
request

result



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 2: Basic Client Use

Agent forwarding works over multiple connections in a series, allowing you to ssh
from one machine to another, and then to another, with the agent connection fol-
lowing along the whole way. These machines may be progressively less secure, but
agent forwarding doesn’t send your private key to the remote host: it just relays
authentication requests back to the first host for processing. Therefore, you don’t
have to copy your private key to other machines.

2.6 Connecting Without a Password
or Passphrase

One of the most frequently asked questions about SSH is: “How can I connect to a
remote machine without having to type a password or passphrase?” As you’ve seen,
an SSH agent can make this possible, but there are other methods as well, each with
different trade-offs. Here we list the available methods with pointers to the sections
discussing each one.

To use SSH clients for interactive sessions without a password or passphrase, you
have several options:

Figure 2-5. Third-party scp with agent forwarding

scp print-me psmith@other.host.net:imprime-moi

connect to account pat

connect to account
psmith

"scp pat@shell.isp.com:print-me psmith@other.host.net:imprime-moi"

scp -t imprime-moi

local.university.edu

ssh-agent

scp
ssh

shell.isp.com

sshd

proxy
agent

scp print-me

ssh

other.host.net

scp

imprime-moi

user keys

sshd



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

2.7 Miscellaneous Clients | 33

• Public-key authentication with an agent [2.5] [6.3]

• Hostbased authentication [3.4.3.6]

• Kerberos authentication [11.4]

Another way to achieve passwordless logins is to use an unencrypted
private key with no passphrase. Although this technique can be appro-
priate for automation purposes, never do this for interactive use.
Instead, use the SSH agent, which provides the same benefits with
much greater security. Don’t use unencrypted keys for interactive SSH!

On the other hand, noninteractive, unattended programs such as cron jobs or batch
scripts may also benefit from not having a password or passphrase. In this case, the
different techniques raise some complex issues, and we discuss their relative merits
and security issues later. [11.1]

2.7 Miscellaneous Clients
Several other clients are included in addition to ssh and scp:

• sftp,  an ftp-like client

• slogin, a link to ssh, analogous to the rlogin program

2.7.1 sftp
The scp command is convenient and useful, but many users are already familiar with
FTP (File Transfer Protocol), a more widely used technique for transferring files on
the Internet.* sftp is a separate file-transfer tool layered on top of SSH. The OpenSSH
sftp can run over either SSH-1 or SSH-2, whereas the Tectia version runs over SSH-2
only due to implementation details.

sftp has several advantages:

• It is secure, using an SSH-protected channel for data transfer.

• Multiple commands for file copying and manipulation can be invoked within a
single sftp session, whereas scp opens a new session each time it is invoked.

• It can be scripted using the familiar ftp command language.

• In other software applications that run an FTP client in the background, you can
try substituting sftp, thus securing the file transfers of that application. You
might need to run an agent, however, since programs that normally invoke ftp
might not recognize the sftp passphrase prompt, or they might expect you to
have suppressed FTP’s password prompt (using a .netrc file, for example).

* Due to the nature of the FTP protocol, FTP clients are difficult to secure using SSH port forwarding. It is
possible, however. [11.2]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 2: Basic Client Use

Anyone familiar with FTP will feel right at home with sftp, but sftp has some addi-
tional features of note:

• Command-line editing using GNU Emacs-like keystrokes (Control-B for back-
ward character, Control-E for end of line, and so forth).*

• Wildcards for matching filenames. OpenSSH uses the same “globbing” syntax
that is supported by most common shells, while Tectia uses an extended regular
expression syntax described in Appendix B.

• Several useful command-line options:

–b filename (OpenSSH)
–B filename (Tectia)

Read commands from the given file instead of the terminal.

–S path
Locate the ssh program using the given path.

–v
Print verbose messages as the program runs.

–V (OpenSSH)
Print the program version number and exit.

In addition, many of the command-line options for ssh can also be used for sftp.

The OpenSSH version of sftp supports only the binary transfer mode of standard
FTP, in which files are transferred without modification. Tectia’s sftp also supports
ASCII transfer mode, which translates end-of-line characters between systems that
might use different conventions, e.g., carriage return plus newline for Windows,
newline (only) for Unix, or carriage return (only) for Macintosh.

2.7.2 slogin
slogin is an alternative name for ssh, just as rlogin is a synonym for rsh. On Linux sys-
tems, slogin is simply a symbolic link to ssh. Note that the slogin link is found in
OpenSSH but not Tectia. We recommend using just ssh for consistency: it’s found in
all these implementations and is shorter to type.

2.8 Summary
From the user’s point of view, SSH consists of several client programs and some con-
figuration files. The most commonly used clients are ssh for remote login, and scp
and sftp for file transfer. Authentication to the remote host can be accomplished

* OpenSSH 4.0 and higher.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

2.8 Summary | 35

using existing login passwords or with public-key cryptographic techniques.
Passwords are more immediately and easily used, but public-key authentication is
more flexible and secure. The ssh-keygen, ssh-agent, and ssh-add programs generate
and manage SSH keys.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

36

Chapter 3omuCHAPTER 3

Inside SSH

SSH secures your data while it passes over a network, but how exactly does it work?
In this chapter, we move firmly onto technical ground and explain the inner work-
ings of SSH. Let’s roll up our sleeves and dive into the bits and bytes.

This chapter is written for system administrators, network administrators, and secu-
rity professionals. Our goal is to teach you enough about SSH to make an intelligent,
technically sound decision about using it. Mostly, we deal with SSH-2 as the current
and recommended SSH protocol; our treatment of the old and deprecated SSH-1 is
limited to a summary of its differences and limitations. When we refer to “the SSH
protocol,” we mean SSH-2.

Of course, the ultimate references on SSH are the protocol standards and the source
code of an implementation. We don’t completely analyze the protocols or recapitu-
late every step taken by the software. Rather, we summarize them to provide a solid,
technical overview of their operation. If you need more specifics, you should refer to
the standards documents. The SSH Version 2 protocol is in draft status on the IETF
standards track; it is available at:

http://www.ietf.org/

The older SSH-1 protocol is called Version 1.5 and is documented in a file named
RFC included in the source package of the now-obsolete SSH1.

3.1 Overview of Features
The major features and guarantees of the SSH protocol are:

• Privacy of your data, via strong encryption

• Integrity of communications, guaranteeing they haven’t been altered

• Authentication, i.e., proof of identity of senders and receivers

• Authorization, i.e., access control to accounts

• Forwarding or tunneling to encrypt other TCP/IP-based sessions



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.1 Overview of Features | 37

3.1.1 Privacy (Encryption)
Privacy means protecting data from disclosure. Typical computer networks don’t
guarantee privacy; anyone with access to the network hardware, or to hosts con-
nected to the network, may be able to read (or sniff ) all data passing over the net-
work. Although modern switched networks have reduced this problem in local area
networks, it is still a serious issue; passwords are easily stolen by such sniffing
attacks.

SSH provides privacy by encrypting data that passes over the network. This end-to-
end encryption is based on random keys that are securely negotiated for that session
and then destroyed when the session is over. SSH supports a variety of encryption
algorithms for session data, including such standard ciphers as AES, ARCFOUR,
Blowfish, Twofish, IDEA, DES, and triple-DES (3DES).

3.1.2 Integrity
Integrity means assuring that data transmitted from one end of a network connec-
tion arrives unaltered on the other end. The underlying transport of SSH, TCP/IP,
does have integrity checking to detect alteration due to network problems (electrical
noise, lost packets due to excessive traffic, etc.). Nevertheless, these methods are
ineffective against deliberate tampering and can be fooled by a clever attacker. Even
though SSH encrypts the data stream so that an attacker can’t easily change selected
parts to achieve a specific result, TCP/IP’s integrity checking alone can’t prevent, say,
an attacker’s deliberate injection of garbage into your session.

A more complex example is a replay attack. Imagine that Attila the Attacker is moni-
toring your SSH session and also simultaneously watching over your shoulder (either
physically, or by monitoring your keystrokes at your terminal). In the course of your
work, Attila sees you type the command rm -rf * within a small directory. He can’t
read the encrypted SSH session data, of course, but he could correlate a burst of
activity on that connection with your typing the command, and capture the packets
containing the encrypted version of your command. Later, when you’re working in
your home directory, Attila inserts the captured bits into your SSH session, and your
terminal mysteriously erases all your files!

Attila’s replay attack succeeds because the packets he inserted are valid; he could not
have produced them himself (due to the encryption), but he can copy and replay them
later. TCP/IP’s integrity check is performed only on a per-packet basis, so it can’t
detect Attila’s attack. Clearly, the integrity check must apply to the data stream as a
whole, ensuring that the bits arrive as they were sent: in order and with no duplication.

The SSH protocol uses cryptographic integrity checking, which verifies both that
transmitted data hasn’t been altered and that it truly comes from the other end of the
connection. It uses keyed hash algorithms based on MD5 and SHA-1 for this pur-
pose: well-known, widely trusted algorithms.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 3: Inside SSH

3.1.3 Authentication
Authentication means verifying someone’s identity. Suppose I claim to be Richard
Silverman, and you want to authenticate that claim. If not much is at stake, you
might just take my word for it. If you’re a little concerned, you might ask for my
driver’s license or other photo ID. If you’re a bank officer deciding whether to open a
safe-deposit box for me, you might also require that I possess a physical key, and so
on. It all depends on how sure you want to be. The arsenal of high-tech authentica-
tion techniques is growing constantly and includes DNA-testing microchips, retina
and hand scanners, and voice-print analyzers.

Every SSH connection involves two authentications: the client verifies the identity of
the SSH server (server authentication), and the server verifies the identity of the user
requesting access (user authentication). Server authentication ensures that the SSH
server is genuine, not an impostor, guarding against an attacker’s redirecting your
network connection to a different machine. Server authentication also protects
against man-in-the-middle attacks, wherein the attacker sits invisibly between you
and the server, pretending to be the client on one side and the server on the other,
fooling both sides and reading all your traffic in the process!

User authentication is traditionally done with passwords, which unfortunately are a
weak authentication scheme. To prove your identity you have to reveal the pass-
word, exposing it to possible theft. Additionally, in order to remember a password,
people are likely to keep it short and meaningful, which makes the password easier
for third parties to guess. For longer passwords, some people choose words or sen-
tences in their native languages, and these passwords are likely to be crackable. From
the standpoint of information theory, grammatical sentences contain little real infor-
mation (technically known as entropy): generally less than two bits per character in
English text, far less than the 8–16 bits per character found in computer encodings.

SSH supports authentication by password, encrypting the password as it travels over
the network. This is a vast improvement over other common remote-access proto-
cols (Telnet, FTP) which generally send your password in the clear (i.e., unen-
crypted) over the network, where anyone with sufficient network access can steal it!
Nevertheless, it’s still only simple password authentication, so SSH provides other
stronger and more manageable mechanisms: per-user public-key signatures, and an
improved rlogin-style authentication with host identity verified by public key. In
addition, various SSH implementations support some other systems, including Ker-
beros, RSA Security’s SecurID tokens, S/Key one-time passwords, and the Pluggable
Authentication Modules (PAM) system. An SSH client and server negotiate to deter-
mine which authentication mechanism to use, based on their configurations, and a
server can even require multiple forms of authentication.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.2 A Cryptography Primer | 39

3.1.4 Authorization
Authorization means deciding what someone may or may not do. It occurs after
authentication, since you can’t grant someone privileges until you know who she is.
SSH servers have various ways of restricting clients’ actions. Access to interactive
login sessions, TCP port and X Window forwarding, key agent forwarding, etc., can
all be controlled, though not all these features are available in all SSH implementa-
tions, and they aren’t always as general or flexible as you might want. Authorization
may be controlled at a serverwide level (e.g., the /etc/ssh/sshd_config file for
OpenSSH), or per account, depending on the authentication method used (e.g., each
user’s files ~/.ssh/authorized_keys, ~/.ssh2/authorization, ~/.shosts, ~/.k5login, etc.).

3.1.5 Forwarding ( Tunneling)
Forwarding or tunneling means encapsulating another TCP-based service, such as
Telnet or IMAP, within an SSH session. This brings the security benefits of SSH (pri-
vacy, integrity, authentication, authorization) to other TCP-based services. For
example, an ordinary Telnet connection transmits your username, password, and the
rest of your login session in the clear. By forwarding telnet through SSH, all of this
data is automatically encrypted and integrity-checked, and you may authenticate
using SSH credentials.

SSH supports three types of forwarding:

TCP port forwarding
Secures any TCP-based service [9.2]

X forwarding
Secures the X11 protocol (i.e., X Windows) [9.4]

Agent forwarding
Permits SSH clients to use SSH private keys held on remote machines [6.3.5]

From these basic facilities, some SSH products build more complex services, such as
SOCKS proxies and special-purpose forwarders that can handle difficult protocols
like FTP.

3.2 A Cryptography Primer
We’ve covered the basic properties of SSH. Now we focus on cryptography, intro-
ducing important terms and ideas regarding the technology in general. There are
many good references on cryptographic theory and practice, and we make no
attempt here to be comprehensive. (For more detailed information, check out Bruce
Schneier’s excellent book, Applied Cryptography, published by John Wiley & Sons.)
We introduce encryption and decryption, plaintext and ciphertext, keys, secret-key
and public-key cryptography, and hash functions, both in general and as they apply
to SSH.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 3: Inside SSH

Encryption is the process of scrambling data so that it can’t be read by unauthorized
parties. An encryption algorithm (or cipher) is a particular method of performing the
scrambling; examples of currently popular encryption algorithms are RSA, AES,
DSA, and Blowfish. The original, readable data is called the plaintext, or data “in the
clear,” while the encrypted version is called the corresponding ciphertext.

The goal of an encryption algorithm is to convert plaintext to ciphertext. To do this,
you pass two inputs to the encryption algorithm: the plaintext itself, and a key, a
string that is typically a secret known only to you. From these inputs, the algorithm
produces the ciphertext. An encryption algorithm is considered secure if it is infeasi-
ble for anyone to read (or decrypt) the encrypted ciphertext without the key. An
attempt to decrypt data without its key is called cryptanalysis.

3.2.1 How Secure Is Secure?
It’s important to understand the word “infeasible” in the previous paragraph.
Today’s most popular and secure ciphers are vulnerable to brute-force attacks: if you
try every possible key, you eventually succeed in decryption. However, when the
number of possible keys is large, a brute-force search requires a great deal of time
and computing power. Based on the state of the art in computer hardware and algo-
rithms, it is possible to pick sufficiently large key sizes to render brute-force key-
search unreasonable for your adversary. What counts as infeasible, though, depend-
ing on how valuable the data is, how long it must stay secure, and how motivated
and well-funded your adversary is. Keeping something secret from your rival startup
for a few days is one thing; keeping it secret from a major world government for 10
years is quite another.

Of course, for all this to make sense, you must be convinced that brute force is the
only way to attack your cipher. Encryption algorithms have structure and are suscep-
tible to mathematical analysis. Over the years, many ciphers previously thought
secure have fallen to advances in cryptanalysis. It isn’t currently possible to prove a
practical cipher secure. Rather, a cipher acquires respectability through intensive
study by mathematicians and cryptographers. If a new cipher exhibits good design
principles, and well-known researchers study it for some time and fail to find a prac-
tical, faster method of breaking it than brute force, then people will consider it
secure.*

* In his pioneering works on information theory and encryption, the mathematician Claude Shannon defined
a model for cipher security and showed there is a cipher that is perfectly secure under that model: the so-
called one-time pad. It is perfectly secure: the encrypted data gives an attacker no information whatsoever
about the possible plaintext. The ciphertext literally can decrypt to any plaintext at all with equal likelihood.
The problem with the one-time pad is that it is cumbersome and fragile. It requires that keys be as large as
the messages they protect, be generated perfectly randomly, and never be reused. If any of these require-
ments are violated, the one-time pad becomes extremely insecure. The ciphers in common use today aren’t
perfectly secure in Shannon’s sense, but for the best of them, brute-force attacks are infeasible.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.2 A Cryptography Primer | 41

3.2.2 Public- and Secret-Key Cryptography
Encryption algorithms as described so far are called symmetric or secret-key ciphers;
the same key is used for encrypting and decrypting. Examples are Blowfish, AES,
3DES, and RC4. Such a cipher immediately introduces the key-distribution prob-
lem: how do you get the key to your intended recipient? If you can meet in person
every once in a while and exchange a list of keys, that’s all well and good, but for
dynamic communication over computer networks, this doesn’t work.

Public-key, or asymmetric, cryptography replaces the single key with a pair of related
keys: public and private. They are related in a mathematically clever way: data
encrypted with one key may be decrypted only with the other member of the pair,
and it is infeasible to derive the private key from the public one. You keep your pri-
vate key, well, private, and give the public key to anyone who wants it, without wor-
rying about disclosure. Ideally, you publish it in a directory next to your name, like a
telephone book. When someone wants to send you a secret message, they encrypt it
with your public key. Other people may have your public key, but that won’t allow
them to decrypt the message; only you can do that with the corresponding private
key. Public-key cryptography goes a long way toward solving the key-distribution
problem.*

Public-key methods are also the basis for digital signatures: extra infor-
mation attached to a digital document to provide evidence that a par-
ticular person has seen and agreed to it, much as a pen-and-ink
signature does with a paper document. Any asymmetric cipher (RSA,
ElGamal, Elliptic Curve, etc.) may be used for digital signatures,
though the reverse isn’t true. For instance, the DSA algorithm is a sig-
nature-only public-key scheme and is not intended to be used for
encryption. (That’s the idea, anyway, although it’s easy to use a gen-
eral DSA implementation for both RSA and ElGamal encryption. That
was not the intent, however.)

Secret- and public-key encryption algorithms differ in another way: performance. All
common public-key algorithms are enormously slower than secret-key ciphers—by
orders of magnitude. It is simply infeasible to encrypt large quantities of data using a
public-key cipher. For this reason, modern data encryption uses both methods
together. Suppose you want to send some data securely to your friend Bob Bitflip-
per. Here’s what a modern encryption program does:

1. Generate a random key, called the bulk key, for a fast, secret-key algorithm like
3DES (a.k.a. the bulk cipher).

2. Encrypt the plaintext with the bulk key.

* There is still the issue of reliably determining whose public key is whose; but that gets into public-key infra-
structure, or PKI systems, and is a broader topic.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 3: Inside SSH

3. Secure the bulk key by encrypting it with Bob Bitflipper’s public key, so only
Bob can decrypt it. Since secret keys are small (a few hundred bits long at most),
the speed of the public-key algorithm isn’t an issue.

To reverse the operation, Bob’s decryption program first decrypts the bulk key, and
then uses it to decrypt the ciphertext. This method yields the advantages of both
kinds of encryption technology, and in fact, SSH uses this technique. User data
crossing an SSH connection is encrypted using a fast secret-key cipher, the key for
which is shared between the client and server using public-key methods.

3.2.3 Hash Functions
In cryptography (and elsewhere in computing and network technology), it is often
useful to know if some collection of data has changed. Of course, one can just send
along (or keep around) the original data for comparison, but that can be prohibi-
tively expensive both in time and storage. The common tool addressing this need is
called a hash function. Hash functions are used by SSH-1 for integrity checking (and
have various other uses in cryptography we won’t discuss here).

A hash function is simply a mapping from a larger set of data values to a smaller set.
For instance, a hash function H might take an input bit string of any length up to
50,000 bits, and uniformly produce a 128-bit output. The idea is that when sending a
message m to Alice, I also send along the hash value H(m). Alice computes H(m)
independently and compares it to the H(m) value I sent; if they differ, she concludes
that the message was modified in transit.

This simple technique can’t be completely effective. Since the range of the hash func-
tion is strictly smaller than its domain, many different messages have the same hash
value. To be useful, H must have the property that the kinds of alterations expected
to happen to the messages in transit, must be overwhelmingly likely to cause a
change in the message hash. Put another way: given a message m and a typical
changed message m', it must be extremely unlikely that H(m) = H(m').

Thus, a hash function must be tailored to its intended use. One common use is in
networking: datagrams transmitted over a network frequently include a message
hash that detects transmission errors due to hardware failure or software bugs.
Another use is in cryptography, to implement digital signatures. Signing a large
amount of data is prohibitively expensive, since it involves slow public-key opera-
tions as well as shipping along a complete encrypted copy of the data. What is actu-
ally done is to first hash the document, producing a small hash value, and then sign
that, sending the signed hash along instead. A verifier independently computes the
hash, then decrypts the signature using the appropriate public key, and compares
them. If they are the same, he concludes (with high probability) that the signature is
valid, and that the data hasn’t changed since the private-key holder signed it.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.3 The Architecture of an SSH System | 43

These two uses, however, have different requirements, and a hash function suitable
for detecting transmission errors due to line noise might be ineffective at detecting
deliberate alterations introduced by a human attacker! A cryptographic hash func-
tion must make it computationally infeasible to find two different messages having
the same hash or to find a message having a particular fixed hash. Such a function is
said to be collision-resistant (or collision-proof, though that’s a bit misleading), and
pre-image-resistant. The Cyclic Redundancy Check (CRC) hash commonly used to
detect accidental data changes (e.g., in Ethernet frame transmissions) is an example
of a noncollision-resistant hash. It is easy to find CRC-32 hash collisions, and a well-
known attack on SSH-1 is based on this fact. [3.5] Examples of cryptographically
strong hash functions are MD5 and SHA-1.

3.3 The Architecture of an SSH System
SSH has about a dozen distinct, interacting components that produce the features
we’ve covered. [3.1] Figure 3-1 illustrates the major components and their relation-
ships to one another.

By “component” we don’t necessarily mean “program”: SSH also has keys, sessions,
and other fun things. In this section we provide a brief overview of all the compo-
nents, so you can begin to get the big picture of SSH:

Server
A program that allows incoming SSH connections to a machine, handling
authentication, authorization, and so forth. In most Unix SSH implementations,
the server is sshd.

Figure 3-1. SSH architecture

H

Client

known-hosts

User Account

user key

identity file or agent

Server

Target Account

authorization file

host key

private
SSH connection

channel: interactive session

channel: fowarded TCP port

channel: remote key agent

H H

public

session keysession key

user key

U

private

U U

public



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 3: Inside SSH

Client
A program that connects to SSH servers and makes requests, such as “log me in”
or “copy this file.” In OpenSSH and Tectia, the major clients are ssh, scp, and
sftp.

Session
An ongoing connection between a client and a server. It begins after the client
successfully authenticates to a server and ends when the connection terminates.
Sessions may be interactive or batch.

Key
A relatively small amount of data, generally from tens of to 1,000 or 2,000 bits,
used as a parameter to cryptographic algorithms such as encryption or message
authentication. The key binds the algorithm operation in some way to the key
holder: in encryption, it ensures that only someone else holding that key (or a
related one) can decrypt the message; in authentication, it allows you to verify
later that the key holder actually signed the message. There are two kinds of
keys: symmetric or secret key, and asymmetric or public key. [3.2.2] An asym-
metric key has two parts: the public and private components. SSH has several
types of keys, as summarized in Table 3-1.

User key
A persistent, asymmetric key used by clients as proof of a user’s identity. (A
single user may have many keys/identities.)

Host key
A persistent, asymmetric key used by a server as proof of its identity, as well
as by a client when proving its host’s identity as part of hostbased authenti-
cation. [3.4.3.6] If a machine runs a single SSH server, the host key also
uniquely identifies the machine. (If a machine is running multiple SSH serv-
ers, each may have a different host key, or they may share.)

Session key
A randomly generated, symmetric key for encrypting the communication
between an SSH client and server. It is shared by the two parties in a secure
manner during the SSH connection setup so that an eavesdropper can’t dis-
cover it. Both sides then have the session key, which they use to encrypt
their communications. When the SSH session ends, the key is destroyed.

Table 3-1. Keys, keys, keys

Name Lifetime Created by Type Purpose

User key Persistent User Public Identify a user to the server

Host key Persistent Administrator Public Identify a server/machine

Session key One session Client (and server) Secret Protect communications



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.4 Inside SSH-2 | 45

An SSH connection has several session keys: each direction (server to
client, and client to server) has keys for encryption and others for
integrity checking. In our discussions we treat all the session keys as a
unit and speak of “the session key” for convenience; they are all
derived from a single master secret, anyway. If the context requires it,
we identify the individual key we mean.

Key generator
A program that creates persistent keys (user keys and host keys) for SSH.
OpenSSH and Tectia have the program ssh-keygen.

Known-hosts database
A collection of host keys. Clients and servers refer to this database to authenti-
cate one another.

Agent
A program that caches user keys in memory, so users needn’t keep retyping their
passphrases. The agent responds to requests for key-related operations, such as
signing an authenticator, but it doesn’t disclose the keys themselves. It is a con-
venience feature. OpenSSH and Tectia have the agent ssh-agent, and the pro-
gram ssh-add loads and unloads the key cache.

Signer
A program that signs hostbased authentication packets. We explain this in our
discussion of hostbased authentication. [3.4.3.6]

Random seed
A pool of random data used by SSH components to initialize software pseudo-
random number generators.

Configuration file
A collection of settings to tailor the behavior of an SSH client or server.

Not all these components are required in an implementation of SSH. Certainly serv-
ers, clients, and keys are mandatory, but many implementations don’t have an agent,
and some don’t even include a key generator.

3.4 Inside SSH-2
The SSH protocol has two major, incompatible versions, called Version 1* and Ver-
sion 2. [1.5] We refer to these as SSH-1 and SSH-2. The SSH-1 protocol is now a relic;
it is less flexible than SSH-2, has unfixable security weaknesses, and has been depre-
cated for years. Its implementations see no real development aside from bug fixes, and
the default protocol for most SSH software has been SSH-2 for some time now. In this
chapter, as we describe “the SSH protocol,” we are talking about SSH-2. We limit our

* SSH Version 1 went through several revisions, the most popular known as Versions 1.3 and 1.5.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 3: Inside SSH

treatment of SSH-1 to a summary of its design, its differences with SSH-2, and its
weaknesses.

The SSH protocol is actually divided into four major pieces, formally described as
four separate protocols in different IETF documents, and in principle independent of
one another. In practice, they are layered together to provide the set of services most
users associate with SSH as a whole. These are:

• SSH Transport Layer Protocol (SSH-TRANS)

• SSH Authentication Protocol (SSH-AUTH)

• SSH Connection Protocol (SSH-CONN)

• SSH File Transfer Protocol (SSH-SFTP)

There are other documents that describe other aspects of, or extensions to, the pro-
tocols, but the preceding ones represent the core of SSH. As of this writing, these
documents are still “Internet-Drafts,” but after much effort by the IETF SECSH
working group, they have been submitted to the IESG for consideration as proposed
standards and may soon be published as Internet RFCs.

Figure 3-2 outlines the division of labor between these protocols, and how they relate
to each other, application programs, and the network. Elements in italics are proto-
col extensions defined in separate Internet-Draft documents, which have attained
fairly widespread use.

Figure 3-2. SSH-2 protocol family

SSH Connection Protocol [SSH-CONN]

channel multiplexing
pseudo-terminals
flow control
signal propagation
remote program execution
authentication agent forwarding
TCP port and X forwarding
terminal handling
subsystems

SSH File Transfer Protocol [SSH-SFTP]

remote filesystem access
file transfer

application software (e.g., ssh, sshd, scp, sftp, sftp-server)

SSH Authentication Protocol [SSH-AUTH]

client authentication
    publickey
    hostbased
    password
    gssapi
    gssapi-with-mic
    external-keyx
    keyboard-interactive

SSH Transport Protocol [SSH-TRANS]

algorithm negotiation
session key exchange
session ID
server authentication
privacy
integrity
data compression

TCP (or other transparent, reliable, duplex byte-oriented connection)



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.4 Inside SSH-2 | 47

SSH is designed to be modular and extensible. All of the core protocols define
abstract services they provide and requirements they must meet, but allow multiple
mechanisms for doing so, as well as a way of easily adding new mechanisms. All the
critical parameters of an SSH connection are negotiable, including the methods and
algorithms used in:

• Session key exchange

• Server authentication

• Data privacy and integrity

• User authentication

• Data compression

Client and server negotiate the use of a common set of methods, allowing broad
interoperability among different implementations. In most categories, the protocol
defines at least one required method, to further promote interoperability. Note that
this only means a conforming implementation is required to support the method in
its code; any particular method may in fact be turned off by the administrator in a
particular environment. So, the fact that public-key authentication is required by
SSH-AUTH doesn’t mean it’s always available to clients from any particular running
SSH server; it merely means it must be available and could be turned on, if need be.

3.4.1 Protocol Summary
SSH-TRANS is the fundamental building block, providing the initial connection,
record protocol, server authentication, and basic encryption and integrity services.
After establishing an SSH-TRANS connection, the client has a single, secure, full-
duplex byte stream to an authenticated peer.

Next, the client can use SSH-AUTH over the SSH-TRANS connection to authenti-
cate itself to the server. SSH-AUTH defines a framework within which multiple
authentication mechanisms may be used, fixing such things as the format and order
of authentication requests, conditions for success or failure, and how a client learns
the available methods. There may be any number of actual methods implemented,
and the protocol allows arbitrary exchanges as part of any particular mechanism so
that protocol extensions are easily defined to incorporate any desired authentication
method in the future. SSH-AUTH requires only one method: public key with the DSS
algorithm. It further defines two more methods: password and hostbased. A number
of other methods have been defined in various Internet-Drafts, and some of them
have gained wide acceptance.

After authentication, SSH clients invoke the SSH-CONN protocol, which provides a
variety of richer services over the single pipe provided by SSH-TRANS. This includes
everything needed to support multiple interactive and noninteractive sessions: multi-
plexing several streams (or channels) over the underlying connection; managing X,



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 3: Inside SSH

TCP, and agent forwarding; propagating signals across the connection (such as SIG-
INT, when a user types ^C to interrupt a process); terminal handling; data compres-
sion; and remote program execution.

Finally, an application may use SSH-SFTP over an SSH-CONN channel to provide
file-transfer and remote filesystem manipulation functions.

It’s important to understand that the arrangement, layering, and sequencing of these
protocols is a matter of convention or need, not design; although they are typically
used in a particular order, other arrangements are possible. For instance, note that
SSH-CONN is not layered on top of SSH-AUTH; they are both at the same level
above SSH-TRANS. Typically, an SSH server requires authentication via SSH-AUTH
before allowing the client to invoke SSH-CONN—and also typically, clients want to
use SSH-CONN in order to obtain the usual SSH services (remote terminal, agent
forwarding, etc.). However, this need not be the case. A specialized SSH server for a
particular, limited purpose might not require authentication, and hence could allow
a client to invoke an application service (SSH-CONN, or perhaps some other locally
defined service) immediately after establishing an SSH-TRANS connection. An anon-
ymous SFTP server might be implemented this way, for example. However, such
nonstandard protocol arrangements are probably seen only in a closed environment
with custom client/server software. Since most SFTP clients in the world expect to
do SSH-AUTH, they probably won’t interoperate with such a server. An anonymous
SFTP server for general use would use SSH-AUTH in the usual fashion and simply
report immediate success for any attempted client authentication.

That said, these protocols were conceived as a group and rely on each other in prac-
tice. For instance, SSH-SFTP on its own provides no security whatsoever; it is merely
a language for conducting remote-filing operations. It’s assumed to be run over a
secure transport if security is needed, such as an SSH session. However, using the
sftp -S option of OpenSSH and Tectia, for example, you could connect the sftp client
to an sftp-server running on another host using some other method: over a serial line,
or some other secure network protocol...or rsh if you want to be perverse. Similarly,
SSH-AUTH mechanisms rely on a secure underlying transport to varying degrees.
The most obvious is the “password” mechanism, which simply sends the password
in plaintext over the transport as part of an authentication request. Obviously, that
mechanism would be disastrous over an insecure transport.

Another important point is that the SSH protocol deals only with communication
“on-the-wire”—that is, its formats and conventions apply only to data being
exchanged dynamically between the SSH client and server. It says nothing at all, for
instance, about:



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.4 Inside SSH-2 | 49

• Formats for storing keys on disk

• User authorization (e.g., ~/.ssh/authorized_keys)

• Key agents or agent forwarding

...and many other things that people typically think of as part of SSH. These facets are
implementation-dependent: they are not specified by the standard, and hence may be
done differently depending on what software you’re using. And in fact they do differ:
OpenSSH and Tectia use different file formats for keys. Even if you convert one to the
other, you’ll find that OpenSSH keys belong in ~/.ssh/authorized_keys, whereas each
Tectia key goes in its own file, listed by reference in yet another file, ~/.ssh2/
authorization. And although both products sport a private-key agent—with the same
name even, ssh-agent—they are incompatible.

Now that we have an overview of the major components of SSH, let’s dive in and
examine each of these protocols in detail. To give structure and concreteness to an
otherwise abstract description of the protocols, we frame our discussion by follow-
ing a particular SSH connection from beginning to end. We follow the thread of
debugging messages produced by ssh -vv, explaining the significance of the various
messages and turning aside now and then to describe the protocol phases occurring
at that point.

Since this –vv level of verbosity produces quite a few messages not relevant to our
protocol discussion, we omit some for the sake of clarity.

3.4.2 SSH Transport Layer Protocol (SSH-TRANS)

3.4.2.1 Connection

We begin by running an SSH client in verbose mode, requesting a connection to
host.foo.net:

$ ssh -vv host.foo.net
OpenSSH_3.6.1p1+CAN-2003-0693, SSH protocols 1.5/2.0, OpenSSL 0x0090702f
debug1: Reading configuration data /Users/res/.ssh/config
debug1: Applying options for com
debug1: Applying options for *
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: Connecting to host.foo.net [10.1.1.1] port 22.
debug1: Connection established.

The client is a version of OpenSSH running on a Macintosh. It reads its configura-
tion files, then makes a TCP connection to the remote side, which succeeds.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 3: Inside SSH

3.4.2.2 Protocol version selection

As soon as the server accepts the connection, the SSH protocol begins. The server
announces its protocol version using a text string:

debug1: Remote protocol version 2.0, remote software version 4.1.0.34 SSH Secure
Shell

You can see this string yourself by simply connecting to the server socket, e.g., with
telnet:

$ telnet host.foo.net 22
Trying 10.1.1.1...
Connected to host.foo.net
Escape character is '^]'.
SSH-2.0-4.1.0.34 SSH Secure Shell
^]
telnet> quit
Connection closed.

The format of the announcement is:

SSH-<protocol version>-<comment>

In this case, the server implements the SSH-2 protocol, and the software version is
4.1.0.34 of SSH Secure Shell from SSH Communications Security. Although the
comment field can contain anything at all, SSH servers commonly put their product
name and version there. This is useful, as clients often recognize specific servers in
order to work around known bugs or incompatibilities. Some people don’t like this
practice on security grounds, and try to remove or change the comment. Be aware
that if you do, you may cause more trouble than it’s worth, since previously work-
ing SSH sessions may suddenly start failing if they had relied on such workarounds.

The protocol version number “1.99” has special significance: it means the server sup-
ports both SSH-1 and SSH-2, and the client may choose either one.

Next, OpenSSH parses the comment:

debug1: no match: 4.1.0.34 SSH Secure Shell
debug1: Enabling compatibility mode for protocol 2.0
debug1: Local version string SSH-2.0-OpenSSH_3.6.1p1+CAN-2003-0693

but does not find a match in its list of known problems to work around. It elects to
proceed with SSH-2 (the only choice in this case), and sends its own version string to
the server, in the same format. If the client and server agree that their versions are
compatible, the connection process continues; otherwise, either party may decide to
terminate the connection.

At this point, if the connection proceeds, both sides switch to a nontextual, record-
oriented protocol for further communication, which is the basis of SSH transport.
This is often referred to as the SSH binary packet protocol, and is defined in SSH-
TRANS.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.4 Inside SSH-2 | 51

3.4.2.3 Parameter negotiation

Having established a connection and agreed on a protocol version, the first real func-
tion of SSH-TRANS is to arrange for the basic security properties of SSH:

• Privacy (encryption)

• Integrity (nonmodifiability and origin assurance)

• Server authentication (man-in-the-middle and spoofing resistance)

• Compression (not a security property per se, but included in this negotiation)

But first, the two sides must agree on session parameters, including the methods to
achieve these properties. The whole process happens in the protocol phase called the
key exchange, even though the first part also negotiates some parameters unrelated to
the key exchange per se.

debug1: SSH2_MSG_KEXINIT sent
debug1: SSH2_MSG_KEXINIT received

The client sends its KEXINIT (“key exchange initialization”) message, and receives
one from the server. Here are the choices it gives to the server:

debug2: kex_parse_kexinit: gss-group1-sha1-toWM5Slw5Ew8Mqkay+al2g==,
                 gss-group1-sha1-A/vxljAEU54gt9a48EiANQ==,
                 diffie-hellman-group-exchange-sha1,
                 diffie-hellman-group1-sha1

These are the key exchange algorithms the client supports, which are:

diffie-hellman-group1-sha1
This algorithm is defined and required by SSH-TRANS; this specifies the well-
known Diffie-Hellman procedure for key agreement, together with specific
parameters (Oakley Group 2 [RFC-2409] and the SHA-1 hash algorithm).

diffie-hellman-group-exchange-sha1
Similar, but allows the client to choose from a list of group parameters, address-
ing concerns about possible attacks based on a fixed group; defined in the IETF
draft document “secsh-dh-group-exchange.”*

gss-group1-sha1-toWM5Slw5Ew8Mqkay+al2g==
gss-group1-sha1-A/vxljAEU54gt9a48EiANQ==

These odd-looking names are partially encoded in Base64—they represent two
variants of a Kerberos-authenticated Diffie-Hellman exchange as defined in IETF
draft “secsh-gsskeyex.” These are useful where a Kerberos infrastructure is avail-
able, providing automatic and flexible server authentication without maintain-
ing separate SSH host keys and known-hosts files. The Kerberos authentication

* A group is a mathematical abstraction relevant to the Diffie-Hellman procedure; see a reference on group the-
ory, number theory, or abstract algebra if you’re curious.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 3: Inside SSH

proceeds by way of GSSAPI, and the name suffixes are the Base64 encoding of
the MD5 hash of the ASN.1 DER encoding of the underlying GSSAPI mecha-
nism’s OID. Say that five times fast.

In terms of abstract requirements, an SSH key exchange algorithm has two outputs:

• A shared secret, K

• An “exchange hash,” H

K is the master secret for the session: SSH-TRANS defines a method for deriving from
secret K the various keys and other cryptographic parameters needed for specific
encryption and integrity algorithms used in the SSH connection. The exchange hash
H does not have to be secret, although it should not be divulged unnecessarily. It
should be unique to each session, and computed in such a way that neither side can
force a particular value of hash H. We’ll see the significance of that later.

The key exchange should also perform server authentication, in order to guard
against spoofing and man-in-the-middle (MITM) attacks. There is an inherent asym-
metry in the SSH client/server relationship: the server accepts connections from as-
yet unknown parties, whereas a client always has a particular server as the target of
its connection. The server may demand secret information as part of user authentica-
tion (e.g., password). The client is the first party to rely on the identity of the other
side, and hence server authentication comes first. Without server authentication, an
attacker might redirect the client’s TCP connection to a host of his choice (perhaps
by subverting the DNS or network routing) and trick the user into logging into the
wrong host; this is called spoofing. Or, he might interpose himself between the client
and the (legitimate) server, executing the SSH protocol as server on one side and cli-
ent on the other, passing messages back and forth and reading all the traffic! This is a
man-in-the-middle attack.

The key exchange phase of SSH-TRANS may be repeated later in a connection, in
order to replace an aging master secret or re-authenticate the server. In fact, the draft
recommends that a connection be re-keyed after each gigabyte of transmitted data or
after each hour of connection time, whichever comes sooner. However, the hash out-
put H of the very first key exchange is used as the “session identifier” for this SSH
connection; we’ll see its use later.

Next, the client offers a choice of SSH host key types it can accept:

debug2: kex_parse_kexinit: ssh-rsa,ssh-dss,null

In this case, it offers RSA, DSA, and “null,” for no key at all. It includes “null”
because of its support of Kerberos for host authentication; if a Kerberos key
exchange is used, no SSH-specific host key is needed for server authentication.

After that, the client lists the bulk data encryption ciphers it supports:

debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,arcfour,
                 aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.4 Inside SSH-2 | 53

The selected cipher is used for privacy of data flowing over the connection. Bulk data
is never enciphered directly with public-key methods such as RSA or DSA because
they are far too slow. Instead, we use a symmetric cipher such as those listed, pro-
tecting the session key for that cipher with public-key methods if appropriate. The
names here indicate particular algorithms and associated cryptographic parameters;
for instance, aes128-cbc refers to the Advanced Encryption Standard algorithm, with
a 128-bit key in cipher-block-chaining mode.

Note the use of a private algorithm name as well: rijndael-cbc@lysator.liu.se. This
email-address-like syntax is defined in the SSH Architecture draft (“secsh-
architecture”), and allows any individuals or organizations to define and use their
own algorithms or other SSH protocol identifiers without going through the IETF to
have them approved. Identifiers that don’t contain an @ sign are global and must be
centrally registered.

The draft also defines the “none” cipher, meaning no encryption is to be applied.
While there are legitimate reasons for wanting such a connection (including debug-
ging!), some SSH implementations do not support it, at least in their default configu-
ration. Often, recompiling the software from source with different flags, or hacking
the code itself, is needed to turn on support for “none” encryption.* The reason is
that it’s deemed just too dangerous. If a user can easily turn off encryption, so can an
attacker who gains access to a user’s account, even briefly. Imagine surreptitiously
adding this to an OpenSSH user’s client configuration file, ~/.ssh/config:

# OpenSSH
Host *
 Ciphers none

or simply replacing the ssh program on a compromised machine with one that uses
the “none” cipher, and issues no warnings about it. Bingo! All the user’s SSH ses-
sions become transparent, until he notices the change (if ever). If the client doesn’t
support “none,” then this simple config file hack won’t work; if the server doesn’t,
then the client-side Trojan horse won’t work, either.

Next, the client presents its list of available integrity algorithms:

debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,
                 hmac-ripemd160@openssh.com,hmac-sha1-96,hmac-md5-96

The integrity algorithm is applied to each message sent by the SSH record protocol,
together with a sequence number and session key, to produce a message authentica-
tion code (MAC) appended to each message. The receiver can use the MAC and its
own copy of the session key to verify that the message has not been altered in transit,

* OpenSSH has no support for the “none” cipher; it can’t even be enabled at compile time. In contrast, Tectia
fully supports the “none” cipher, but it is not enabled by default; it needs to be explicitly included using the
Ciphers keyword. [5.3.5]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 3: Inside SSH

is not a replay, and came from the other holder of the session key; these are the mes-
sage integrity properties.

SSH-TRANS defines several MAC algorithms, and requires support for one: “hmac-
sha1,” a 160-bit hash using the standard keyed HMAC construction with SHA-1 (see
RFC-2104, “HMAC: Keyed-Hashing for Message Authentication”).

Finally, the client indicates which data-compression techniques it supports:

debug2: kex_parse_kexinit: none,zlib

The draft does not require any compression to be available (i.e., “none” is the
required type). It does define “zlib”: LZ77 compression as described in RFC-1950
and in RFC-1951. Although it does not appear here, SSH speakers also at this point
also can negotiate a language tag for the session (as described in RFC-3066), e.g., to
allow a server to provide error messages in a language appropriate to the user.

Having sent its negotiation message, the client also receives one from the server, list-
ing the various parameters it supports in the same categories:

debug2: kex_parse_kexinit: diffie-hellman-group1-sha1
debug2: kex_parse_kexinit: ssh-dss,x509v3-sign-rsa
debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,twofish128-cbc,cast128-cbc,
                 twofish-cbc, blowfish-cbc,aes192-cbc,aes256-cbc,
                 twofish192-cbc,twofish256-cbc,arcfour
debug2: kex_parse_kexinit: hmac-sha1,hmac-sha1-96,hmac-md5,hmac-md5-96
debug2: kex_parse_kexinit: none,zlib

Note that this server supports a much smaller set of key exchange algorithms: only
the required one, in fact. It has two host key types to offer: plain DSS, and RSA with
X.509 public-key certificate attached. It does not support a null host key since its sin-
gle key exchange algorithm requires one.

Next, each side chooses a cipher/integrity/compression combination from the other
side’s set of supported algorithms:

debug1: kex: server->client aes128-cbc hmac-md5 none
debug1: kex: client->server aes128-cbc hmac-md5 none

In this case, the choices in both directions are the same; however, they need not be.
The choice of these mechanisms is entirely independent, and they are independently
keyed, as well. Data flowing in one direction might be encrypted with AES and com-
pressed, while the return stream could be encrypted with 3DES without compression.

3.4.2.4 Key exchange and server authentication

At this point, we are ready to engage in the actual key exchange:

debug2: dh_gen_key: priv key bits set: 131/256
debug2: bits set: 510/1024
debug1: sending SSH2_MSG_KEXDH_INIT



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.4 Inside SSH-2 | 55

The client chooses an exchange algorithm from the server’s advertised set; in this
case, the server offers only one, and we go with it. We generate an ephemeral key as
part of the Diffie-Hellman algorithm, and send the initial message of the diffie-

hellman-group1-sha1 exchange, simultaneously letting the server know which
method we’re using, and actually starting it.

Next the client expects, and the server sends, its reply to our KEXDH_INIT message:

debug1: expecting SSH2_MSG_KEXDH_REPLY
debug1: Host 'host.foo.net' is known and matches the DSA host key.
debug1: Found key in /Users/res/.ssh/known_hosts:169
debug2: bits set: 526/1024
debug1: ssh_dss_verify: signature correct

Contained in the reply is the server’s SSH public host key, of a type we said we’d
accept in the earlier parameter negotiation (DSA), along with a signature proving it
holds the corresponding private key. The signature is verified, of course, but that by
itself is meaningless; for all we know, the server just generated this key. The crucial
step here is to check that the public key identifies the server we wanted to contact. In
this case, the client finds a record associating the name foo.host.net with the key sup-
plied by the server, at line 169 in the user’s OpenSSH known_hosts file.

Note that the approach used to verify the host key is entirely unspecified by the SSH
protocol; it’s completely implementation-dependent. Most SSH products provide
some version of the known-hosts file method used here: simple, but limiting and
cumbersome for large numbers of hosts, users, or different SSH implementations. A
client could do anything that makes sense to verify the host key, perhaps taking
advantage of some existing secure infrastructure, for example; look it up in a trusted
LDAP directory.

Of course, the problem of verifying the owner of a public key is hardly a new one;
that’s what Public Key Infrastructure (PKI) systems are for, such as the X.509 stan-
dard for public-key certificates. SSH-2 supports PKI, defining a number of key types
which include attached certificates:

Many SSH products handle only plain DSS/RSA keys, but some (such as Tectia) offer
PKI support as well. Recall that earlier, the server offered a key type of x509v3-sign-
rsa along with plain DSS. Our OpenSSH client does not support certificates, and so
selected the DSS key. However, with PKI support, the client could verify the host key

ssh-rsa Plain RSA key

ssh-dss Plain DSS key

x509v3-sign-rsa X.509 certificates (RSA key)

x509v3-sign-dss X.509 certificates (DSS key)

spki-sign-rsa SPKI certificates (RSA key)

spki-sign-dss SPKI certificates (DSS key)

pgp-sign-rsa OpenPGP certificates (RSA key)

pgp-sign-dss OpenPGP certificates (DSS key)



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 3: Inside SSH

by its accompanying certificate. New hosts could be added and existing keys
changed, without having to push out new known-hosts files to all clients every
time—often a practical impossibility anyway, when you consider laptops, many dif-
ferent SSH clients with different ways of storing host keys, etc. Instead, clients only
need a single key; that of the authority issuing your host key certificates. We’ll cover
PKI in more detail in a case study. [11.5]

3.4.2.5 Server authentication and antispoofing: some gory details

As noted earlier, we’re avoiding diving too deeply into protocol details, instead
attempting a technical overview that covers the issues SSH administrators most need
to understand to deploy effective systems. However, it’s worth going a little deeper
here regarding the actual mechanism of server authentication, since our description
begs the question. Simply saying that the server “provides a signature” to prove its
identity doesn’t cut it. Here’s a naive protocol:

1. Client sends a challenge.

2. Server returns challenge signed with its host key.

3. Client verifies the signature and the server/key binding and takes this as proof of
the server’s identity.

We’re being at least moderately clever here; by using a random challenge, we assure
that the response can’t be replayed by an attacker, i.e., is not a reply from an earlier
session. Not bad, but no cigar: this simple procedure does not prevent MITM
attacks! An MITM attacker can simply pass along the challenge to the server, get the
signature, and pass it back to the client. All this protocol really proves to the client is
that the entity at the other end of its connection can talk to the real server, when
what the client wants to verify is that entity actually is the real server. So, here’s how
it’s done: instead of a random challenge, the server signs the SSH session identifier,
which we described earlier. Recall that the identifier is unique to each session, and
that neither side can force a particular value for it. In order to do MITM, our attacker
has to execute the SSH protocol independently on two sides: once with the client,
and again with the server. The identifiers for those two connections are guaranteed
to be different, no matter what the attacker does. He needs to produce the client-side
identifier signed by the server in order to fool the client, but all he can get is the
server-side identifier; he can’t force the server to sign the wrong identifier.

Cryptographers are devious people. We like them.

3.4.2.6 Wonder security powers, activate!

Back to our debug trace example: we’ve sent and received a single key-exchange mes-
sage on each side now, and this key-exchange method in fact only requires the two
messages. Other exchange mechanisms could take any number and form of
messages, but ours is now complete. Based on the contents of these messages, both



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.4 Inside SSH-2 | 57

sides compute the needed shared master secret K and exchange hash H, in such a way
that an observer can’t feasibly discover them (we leave the mathematical details to
your perusal of the actual draft document, if you’re that curious). Having authenti-
cated the exchange using the server’s host key, we are convinced that we have shared
keys with the server we really wanted to talk to, and now everything is in place to
turn on security in the form of encryption and integrity checking.

Using a procedure defined in the draft, the client derives appropriate encryption and
integrity keys from the master secret; the server does the same to produce matching
keys:

debug2: kex_derive_keys
debug2: set_newkeys: mode 1
debug1: SSH2_MSG_NEWKEYS sent
debug1: expecting SSH2_MSG_NEWKEYS
debug2: set_newkeys: mode 0
debug1: SSH2_MSG_NEWKEYS received

Both sides then send the NEWKEYS message, each which marks taking the new keys
into effect in its own direction; all messages after NEWKEYS are protected using the
new set of keys just negotiated. With a functioning SSH-TRANS session at hand, the
client now requests the first service it wants access over the connection: user
authentication.

debug1: SSH2_MSG_SERVICE_REQUEST sent
debug2: service_accept: ssh-userauth
debug1: SSH2_MSG_SERVICE_ACCEPT received

3.4.3 SSH Authentication Protocol (SSH-AUTH)
Compared to SSH-TRANS, SSH-AUTH is a relatively simple affair, defined in a mere
12 pages as opposed to the 28 of the SSH-TRANS document (and that’s not count-
ing various extensions!). As with SSH-TRANS and key-exchange methods, the
authentication protocol defines a framework within which arbitrary authentication
exchanges may take place. It then defines a small number of actual authentication
mechanisms, and allows for easy extension to define others. The three defined meth-
ods are password, public-key, and host-based authentication, of which only public-
key is required.

3.4.3.1 The authentication request

The authentication process is driven by the client, framed by client requests and
server responses. A request contains the following parts:

Username U
The authorization identity the client is claiming. For most SSH systems, this
means a user account in the usual sense: for instance, in Unix, granting the right
to create processes with a particular uid. However, it might have some other
meaning in other contexts; its interpretation is not defined by the protocol.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 3: Inside SSH

Service name S
The facility to which the client is requesting access, and hence implicitly the pro-
tocol to be started over the SSH-TRANS connection after authentication suc-
ceeds. There might be several authenticated services available, but typically there
is only one: “ssh-connection,” requesting access to the various services provided
via the SSH-CONN protocol: interactive login, remote command execution, file
transfer, port forwarding, and all the other things users actually want to do with
SSH.

Method name M, and method-specific data D
The particular authentication method being used in this request—say, “pass-
word” or “publickey”—and the method-specific data convey whatever is needed
to start this particular authentication exchange, e.g., an actual password to be
verified by the server. As with key-exchange names in SSH-TRANS, names with
“@domain” syntax may be used by anyone to implement local methods, while
names without @-signs must be globally registered SSH authentication methods.

Once a particular authentication method starts, it may include any number of other
message types specific to its needs. Or in the simplest case, the data carried by the
initial request is enough, and the server can respond right away. In any case, after the
request and some number of subsequent method-specific messages back and forth,
the server issues an authentication response.

Note that, strictly speaking, calling this an “authentication request” is not quite
accurate; this request actually mixes authentication and authorization. It requests
verifying an authentication identity via some method, and simultaneously asks the
server to check that identity’s right to access a particular account: an authorization
decision. If the attempt fails, the client doesn’t know whether this was because
authentication failed (e.g., it supplied the wrong password), or authentication suc-
ceeded but authorization failed (e.g., the password was right but the account was
disabled). A human-readable error message might make that clear, but the situations
are indistinguishable as far as the protocol is concerned (in general, but individual
methods may provide more information, as we will see later with the public-key
method).

3.4.3.2 The authentication response

An SSH-AUTH authentication response comes in two flavors: SUCCESS and FAIL-
URE (an early version of the protocol had chocolate, too, which was unfortunately
abandoned). A SUCCESS message carries no other data; it simply means that
authentication was successful, and the requested service has been started; further
SSH-TRANS messages sent by the client should be defined within that service’s pro-
tocol, and the SSH-AUTH run is over.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.4 Inside SSH-2 | 59

A FAILURE message has more structure:

• A list of authentication methods that can continue

• A “Partial success” flag

The name “failure” is actually a bit misleading here. If the partial success flag is false,
then this message does mean the preceding authentication method has failed for
some reason (e.g., a supplied password was incorrect, a mismatched public key pro-
duced an incorrect signature, the requested account is locked out, etc.). If the flag is
true, however, the message means that the method succeeded; however, the server
requires that additional methods also succeed before granting access. Thus, the pro-
tocol allows an SSH server to require multiple authentication methods—although
not all implementations provide the feature; Tectia does, for instance, while
OpenSSH currently does not.*

In either case, the message also supplies the list of authentication methods the server
is willing to accept next. This allows for much flexibility; if it wants, the server can
completely control the authentication process by only allowing one method at any
time. But it can also specify multiple methods, allowing the client to choose them in
an order which makes sense for the user. For instance, given a choice, a SSH client
usually first tries methods that allow automatic authentication, such as Kerberos or
public key with an agent, before those that require user intervention, such as enter-
ing a password or key passphrase.

3.4.3.3 Getting started: the “none” request

One thing is missing from all this: if the client drives the authentication process by
making requests, but the list of available authentication methods is contained in
server responses, then how does the client pick a first method to try? Of course, it
could always just try any method and see what happens; the worst that could hap-
pen is that it fails or isn’t available, and the client gets a correct list to pick from. But
that’s messy, and there’s a standard way to do it: the “none” method. The protocol
reserves the method name “none,” and gives it a special meaning: if authentication is
required at all, then this method must always fail. A client typically starts SSH-
AUTH by sending a “none” request, expecting failure and getting back the list of
available non-“none” methods to try. Of course, if the account in question does not
require authentication, the server may respond with SUCCESS, immediately grant-
ing access.

Here, the client, having already sent the “none” request to start with, now receives its
initial list of methods to try:

debug1: Authentications that can continue: publickey,password

* The OpenSSH team is working on multiple authentication support.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 3: Inside SSH

If you’re debugging on the server side, you see something like this (with the
OpenSSH server):

debug1: userauth-request for user res service ssh-connection method none
debug1: attempt 0 failures 0
Failed none for res from 10.1.1.1 port 50459 ssh2

This message is confusing if you’re debugging some other problem, as it appears to
show some mysterious failure.

The client continues, choosing public-key authentication to try first, with a DSS key
stored in the SSH agent:

debug1: Next authentication method: publickey
debug1: Offering agent key: res-dsa
debug2: we sent a publickey packet, wait for reply

3.4.3.4 Public-key authentication

A public-key authentication request carries the method name “publickey” and may
have different forms depending on a flag setting. One form has this method-specific
payload:

• Flag = FALSE

• Algorithm name

• Key data

The usable public-key algorithms are the same set defined in SSH-TRANS, and the
format key data depends on the type; e.g., for “ssh-dss” it contains just the key,
whereas for x509v3-sign-rsa it contains an X.509 public-key certificate.

With the flag set to FALSE, this message is merely an authorization test: it asks the
server to check whether this key is authorized to access the desired account, without
actually performing authentication. If it is, a special response message comes back;
this is an example of the possible method-specific SSH-AUTH messages we men-
tioned earlier. If the key is not authorized, the response is simply FAILURE.

The second form is:

• Flag = TRUE

• Algorithm name

• Key data - signature

This actually requests authentication; the signature is computed over a set of
request-specific data which includes the session ID, which binds the request to this
SSH session and gives the public-key method its own measure of MITM resistance,
similar to that described earlier for key exchange.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.4 Inside SSH-2 | 61

The reason for providing both forms of request is that computing and verifying
public-key signatures are compute-intensive tasks, which might also require interac-
tion with the user (e.g., typing in a key passphrase). Hence, it makes sense to test a
key first, to see whether it’s worth going to the trouble of using it.

The way a server actually authorizes a key for access to an account is outside the
scope of the protocol, and can be anything at all. The usual way is to list or refer to
the key in some file in the account, as with the OpenSSH ~/.ssh/authorized_keys file.
However, the server might access any type of service to do this; again, checking an
entry in an LDAP directory comes to mind. Or again, certificates might be used: just
as with host authentication, the key here might include a certificate, and any of the
certificate’s data might be used to make the authorization decision.

Coming back to our debug trace, we see that the server accepts the offered key:

debug1: Server accepts key: pkalg ssh-dss blen 435 lastkey 0x309a40 hint -1
debug2: input_userauth_pk_ok: fp 63:24:90:03:cb:78:85:e6:59:71:49:26:55:81:f5:70
debug1: Authentication succeeded (publickey).

Then it logs the key’s fingerprint and returns the final SUCCESS message, indicating
that access is granted and the SSH-AUTH session is finished.

Before moving on to the final protocol phase, let’s examine two other methods
defined in SSH-AUTH: password and hostbased authentication.

3.4.3.5 Password authentication

The password method is very simple: its name is “password,” and the data is, sur-
prise, the password. The server simply returns success or failure messages as appro-
priate. The method it uses to verify the password is implementation-dependent, and
varies a great deal: PAM, Unix password files, LDAP, Kerberos, NTLM; all these are
available in various products.

The password is passed in plaintext, at least as far as SSH-AUTH is concerned;
hence, it is critical that this method be used over an encrypted connection (as is usu-
ally the case with SSH). Furthermore, since this method reveals the password to the
server, it is crucial that the server not be an impostor. Even if an SSH product may
warn of, but allow, a connection to an unauthenticated server in SSH-TRANS, it usu-
ally disallows password authentication in SSH-AUTH for this reason. Compare this
with the public-key method, which doesn’t reveal the user’s key in the authentica-
tion process.

It should be mentioned that “password authentication” is a pretty broad term, and
might be construed as encompassing other, better methods. If you think of it as
describing any mechanisms that rely on secrets that can be easily memorized and
typed by a human, then there are “password” methods with much better security
properties than the trivial one described here; the Secure Remote Password protocol



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 3: Inside SSH

(SRP, http://srp.stanford.edu/) is one. [1.6.5] In this book, however, when we talk
about “password” authentication, we mean as defined in SSH-AUTH.

SSH-AUTH also has a set of messages for password changing—for example, allow-
ing a user whose password has expired to set a new one before logging in.

3.4.3.6 Hostbased authentication

Hostbased authentication is fundamentally different from its public-key and pass-
word cousins, in that the server actually delegates responsibility for user authentica-
tion to the client host. In short, hostbased authentication establishes trust
relationships between machines. Rather than directly verifying the user’s identity, the
SSH server verifies the identity of the client host—and then believes the host when it
says the user has already authenticated on the client side. Therefore, you needn’t
prove your identity to every host that you visit. If you are logged in as user andrew
on machine A, and you connect by SSH to account bob on machine B using host-
based authentication, the SSH server on machine B doesn’t check your identity
directly. Instead, it checks the identity of host A, making sure that A is a trusted host.
It further checks that the connection is coming from a trusted program on A, one
installed by the system administrator that won’t lie about andrew’s identity. If the
connection passes these two tests, the server takes A’s word that you have been
authenticated as andrew and proceeds to make an authorization check that
andrew@A is allowed to access the account bob@B.

This sort of authentication makes sense only in a tightly administrated environment
with less stringent security requirements, or when deployed for very specific and lim-
ited purposes, such as batch jobs. It demands that all participating hosts be centrally
administered, making sure that usernames are globally selected and coordinated. If
not, you could get access to someone else’s account just by adding an account with
the same name to your own machine! Also, there’s the problem of transitive compro-
mise: once one host is broken, the attacker automatically gets access to all accounts
accessible via hostbased authentication from there, without any further work.

Nevertheless, hostbased authentication has advantages. For one, it is simple: you
don’t have to type passwords or passphrases, or generate, distribute, and maintain
keys. It also provides ease of automation. Unattended processes such as cron jobs
may have difficulty using SSH if they need a key, passphrase, or password coded into
a script, placed in a protected file, or stored in memory. This isn’t only a potential
security risk but also a maintenance nightmare. If the authenticator ever changes,
you must hunt down and change these hardcoded copies, a situation just begging for
things to break mysteriously later on. Hostbased authentication gets around this
problem neatly.

The “hostbased” request looks like:

• Host key algorithm

• Client host key



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.4 Inside SSH-2 | 63

• Client hostname

• Client-side username, C

• Signature

Note that this request has two usernames: the requested server-side account name U

present in every SSH-AUTH request, and the client-side username C specific to the
hostbased request. The interpretation is that user C on the client is requesting access to
account U on the server, and the client’s authentication as C is vouched for by the signa-
ture of the client host key. The mapping of which client usernames may access which
accounts on the server is up to the implementation. Unix products tend to use seman-
tics similar to the historical rhosts syntax, in the files /etc/shosts.equiv and ~/.shosts.
These can implement global identity mappings, allowing matching usernames auto-
matic access, as well as more complicated or limited access patterns.

In order to perform this authentication, the server must verify the client host iden-
tity—that is, it must check that the supplied key matches the claimed client host-
name (e.g., with a known-hosts file). Having checked that and verified the signature,
it then uses that same hostname in the authorization check (e.g., in /etc/shosts.equiv),
to see if the requested client/server name pair is allowed access from this client host.
Some implementations also check that the client’s network address actually maps to
the given hostname via the local naming service (DNS, NIS, etc.), but this is not
really necessary; the meat of the authorization is in the association of the verified
hostname supplied in the request, and the authorization rules. In fact, the address
check may cause more trouble than it’s worth, in the presence of poorly maintained
DNS, network complications such as NAT, firewalls, proxying, etc.

Of course, for this whole scenario to make any sense at all, there are yet more admin-
istrative burdens to be met. The signature, after all, is supplied by the client; and yet
it is interpreted here as a trusted third party—the client host as a separate entity—
vouching for the user’s identity. But the user is behind the SSH client; how does this
work? The answer is that the client host and SSH software must be arranged so that
the user is not fully in control of what’s going on. The private client host key must
not be accessible to the user; rather, there must be a trusted service whereby the user
can obtain the needed signature for the hostbased authentication request, and such
signatures are only issued as appropriate. In a Unix context, usually the private host
key file is readable only by the root account, and some part of SSH is installed with
special privileges by the sysadmin (“setuid root”; typically this is a separate program
called ssh-signer, which serves only this purpose). This trusted program checks the
uid of the user running it, and issues signatures only for the corresponding user-
name. This effectively translates the local authentication that allowed the person to
log in to begin with, into an SSH certificate which can be transmitted and trusted as
part of hostbased authentication. This description makes it even more clear how the
whole arrangement is predicated on a very centrally controlled and consistently
administrated system. One should evaluate very carefully whether hostbased authen-
tication is the right choice.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 3: Inside SSH

3.4.4 SSH Connection Protocol (SSH-CONN)
In its final, successful authentication request, the client specified a service name of
“ssh-connection”; this is not visible in the OpenSSH client debug trace but shows up
on the server as:

debug1: userauth-request for user res service ssh-connection method publickey

Since it authenticated the client, the server now starts that service, and we move on
to the SSH Connection Protocol. This layer actually provides the capabilities that
users want to employ directly and that define SSH for most people: remote login and
command execution, agent forwarding, file transfer, TCP port forwarding, X for-
warding, etc.

There is a lot of detail in the connection protocol, but much of it is too low-level for
our present discussion; we give a fairly high-level description here, sufficient to inter-
pret most debugging messages and to understand how an SSH product provides its
services using SSH-CONN. Unlike the earlier protocols, a really detailed understand-
ing of SSH-CONN is not usually needed for debugging everyday SSH problems.

3.4.4.1 Channels

The basic service SSH-CONN provides is multiplexing. SSH-CONN takes the single,
secure, duplex byte-stream provided by SSH-TRANS, and allows its clients to create
dynamically any number of logical SSH-CONN channels over it. Channels are identi-
fied by channel numbers, and may be created or destroyed by either side. Channels
are individually flow-controlled, and each channel has a channel type which defines
its use. Types and other items in SSH-CONN are named in the same extensible man-
ner as other SSH namespaces (key exchanges, key algorithm and authenticated
method names, etc.). The defined types are:

session
The remote execution of a program.

Merely opening a session channel does not start a program; that is done using
subsequent requests on the channel. An SSH-CONN session may have multiple
session channels open at once, simultaneously supporting several terminal, file-
transfer, or program executions at once. Various Windows-based SSH products
have used this ability for some time now; it has only recently appeared in
OpenSSH with the ControlMaster/ControlPath feature. [7.4.4.2]

x11
An X11 client connection.

One of these is opened from server to client, for each X11 program using X for-
warding as established by an x11-req on a session channel (discussed later).

forwarded-tcpip
An inbound connection to a remotely forwarded port.

When a connection arrives on a remotely forwarded TCP port, the server opens
this channel back to the client to carry the connection.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.4 Inside SSH-2 | 65

direct-tcpip
An outbound TCP connection.

This directs the peer to open a TCP connection to a given socket, and attach the
channel to that connection. The socket may be specified using a domain name or
IP address, allowing a name to be resolved on the remote side in a possibly dif-
ferent namespace than the client. These channels are used to implement local
TCP forwarding (ssh -L). Preparing for local forwarding is purely a client-side
affair: the client simply starts listening on the requested port.* The server first
hears of it when a connection actually arrives on the port, whereupon the client
opens a direct-tcpip channel with the appropriate target socket. This means that
if certain local forwardings are disallowed by the server, this isn’t noticed on
connection setup, but only when a connection is actually attempted

Channel semantics are richer than a traditional Unix file handle; the data they carry
can be typed, and this facility is used to distinguish between stdout and stderr out-
put from a program on a single channel.

3.4.4.2 Requests

In addition to an array of channel operations—open, close, send data, send urgent
data, etc.—SSH-CONN defines a set of requests, with global or channel scope. A glo-
bal request affects the state of the connection as a whole, whereas a channel request
is tied to a particular open channel. The global requests are:

tcpip-forward
Request a remote TCP port forwarding.

If the user requests a TCP port be forwarded on the remote side back to the local
side (as with “ssh -R”), the SSH client issues this global request. In response, the
server starts listening on the indicated port and starts a “forwarded-tcpip” chan-
nel back to the client for each connection.

This request actually contains the full socket to be bound on the remote: an
(address,port) pair and not just a port number. This allows the client to be selec-
tive in remote-forwarding remote ports on a multihomed server, or to imple-
ment local-only remote forwardings by binding only the loopback address (127.
0.0.1), on a per-request basis. Not all implementations take advantage of this
feature, however; Tectia does, but OpenSSH currently does not.†

cancel-tcpip-forward
Cancel an existing remote forwarding.

* Unlike remote forwarding, no initial setup is required on the remote side.

† The OpenSSH team is working on adding this feature.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 3: Inside SSH

Now let’s summarize the channel requests; except as indicated, most operations refer
to the remote side of a session channel:

pty-req
Allocate a pty, including window size and terminal modes.

This creates a pseudo-terminal for the channel, generally required for interactive
applications; the pseudo-terminal is a virtual device which makes it appear that
the remote program is directly connected to a terminal.

x11-req
Set up X11 forwarding.

Do the preparation necessary for X11 forwarding on the remote; usually involves
listening on a socket (TCP or otherwise) for X11 connections, setting the DIS-
PLAY variable to point to that socket, and setting up proxy X11 authentication.

env
Set an environment variable.

Although useful, this feature is also a potential security problem. It has not been
widely supported by SSH implementations until recently and is generally care-
fully controlled.

shell, exec, subsystem
Run the default account shell, an arbitrary program, or an abstract service,
respectively.

These requests start a program running on the remote side, and connect the
channel to the program’s standard input/output/error streams. The “sub-
system” request allows a remote program to be named abstractly, rather than
being depended on by a particular remote filename. For instance, an SFTP file
transfer is usually started by sending a subsystem request with the name “sftp.”
The SSH server is configured to execute the correct server program in response
to the request; this way, the location of the SFTP server program can change
without affecting clients. Or indeed, SFTP could be implemented internal to the
SSH server itself, rather than being a separate program, and this, too, would be
transparent to clients; this is an option with Tectia.

window-change
Change terminal window size.

xon-xoff
Use client-side ^S/^Q flow control.

signal
Send a specified signal to a remote process (as in the Unix kill command).

exit-status
Return the program’s exit status to the initiator.

exit-signal
Return the signal that terminated the program (e.g., if a remote program dies by
signal, as from a segmentation fault or manual kill -9 command).



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.4 Inside SSH-2 | 67

Theoretically, all these requests are symmetric; that is, the protocol allows the server
to open a session channel to the client and request a program to be started on it, for
example. However, in most SSH implementations as a remote-login tool, this simply
doesn’t make sense, and is an obvious security risk to boot! So, such requests are
usually not honored by clients (and the SSH-CONN draft recommends as much).

3.4.4.3 The finish line

With all this behind us, we can easily make sense of the remainder of the connection
setup. The client opens a session channel with id 0:

debug1: channel 0: new [client-session]
debug2: channel 0: send open
debug1: Entering interactive session.

This session is a terminal login, so next we request a pseudo-terminal on the session
channel:

debug1: channel 0: request pty-req

X forwarding is turned on, so the client first gets the local X11 display key by run-
ning the xauth program on this side, then requests X forwarding on the remote by
sending an x11-req global request:

debug2: x11_get_proto: /usr/X11R6/bin/xauth list :0 2>/dev/null
debug1: Requesting X11 forwarding with authentication spoofing.
debug1: channel 0: request x11-req

Agent forwarding is also turned on, so we open a channel for that as well:

debug1: Requesting authentication agent forwarding.
debug1: channel 0: request auth-agent-req@openssh.com

But wait... we didn’t mention agent forwarding anywhere in SSH-CONN, nor the
channel type that appears here, auth-agent-req@openssh.com. Indeed, that’s because
it’s not there; key agents are an implementation detail outside the purview of the
protocol. This channel type is an example of the naming extension syntax; it is par-
ticular to the OpenSSH implementation. An OpenSSH server accepts such a channel
request and sets up an agent-forwarding socket on the remote end (whose details are
specific to the OpenSSH program suite). A non-OpenSSH server would refuse the
unrecognized request, and agent forwarding would not be available.

Finally, the client issues a “shell” request on the session channel:

debug1: channel 0: request shell

directing the remote account’s default command be started. And at long last...

debug1: channel 0: open confirm rwindow 100000 rmax 1638
Last login: Mon Aug 30 2004 18:04:10 -0400 from foo.host.net
$

...we’re logged in!



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 3: Inside SSH

3.5 Inside SSH-1
With a solid understanding of the current SSH protocol behind us, we now quickly
summarize SSH-1 in terms of its differences, weaknesses, and shortcomings in com-
parison with SSH-2:

Non-modular
SSH-1 is defined as a single monolithic protocol, rather than the modular
approach taken with the SSH-2 suite.

Less negotiation
SSH-1 has more fixed parameters; in fact, only the bulk cipher is negotiated. The
integrity algorithm, host key type, key-exchange methods, etc., are all fixed.

Ad hoc naming
SSH-1 lacks the well-defined naming syntax for SSH-2 entities which allows for
smooth, implementation-specific extensions.

Single authentication
SSH-1’s user authentication process allows only one method to succeed; the
server can’t require multiple methods.

RhostsRSA authentication
SSH-1’s RhostsRSA authentication, analogous to hostbased, is in principle lim-
ited to using a network address as the client host identifier. This limits its useful-
ness in the face of network issues such as NAT, proxying, mobile clients, etc.

Less flexible remote forwarding
SSH-1 remote forwarding specifies only a port, not a full socket, so can’t be
bound to different addresses on multihomed servers, and the gatewayhosts
option must be set globally for all remote forwardings rather than per port.

Weaker integrity checking
SSH-1 uses a weak integrity check, the CRC-32 algorithm. CRC-32 is not crypto-
graphically strong, and its weakness is the basis of the Futoransky/Kargieman
“insertion attack”; see http://seclists.org/lists/firewall-wizards/1998/Jun/0095.html.

Server keys
The fixed key exchange of SSH-1 employs an extra asymmetric key called the
server key, not to be confused with a host key. [3.6.1] The server key is an
ephemeral public/private key pair, regenerated once per hour and used to pro-
vide forward secrecy for the session key. Forward secrecy means that even if
long-term secrets such as user or host private keys are compromised later, these
can’t be used to decrypt SSH sessions recorded earlier; the use of an extra key
which is never written to disk assures this. The Diffie-Hellman algorithm which
is the basis of all the SSH-2 key exchanges provides forward secrecy by itself, and
so an extra “server key” is not needed.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.6 Implementation Issues | 69

Weak key exchange
The SSH-1 key exchange is weak in that the client alone determines the session
key, and simply sends it to the server. A Trojaned client can easily use weak keys
to compromise all its sessions undetectably.

3.6 Implementation Issues
There are many differences among the current crop of SSH implementations: fea-
tures that aren’t dictated by the protocols, but are simply inclusions or omissions by
the software authors. Here we discuss a few implementation-dependent features of
various products:

• Host keys

• Authorization in hostbased authentication

• SSH-1 backward compatibility

• Randomness

• Privilege separation

3.6.1 Host Keys
SSH host keys are long-term asymmetric keys that distinguish and identify hosts run-
ning SSH, or instances of the SSH server, depending on the SSH implementation.
This happens in two places in the SSH protocol:

• Server authentication verifying the server host’s identity to connecting clients.
This process occurs for every SSH connection.*

• Authentication of a client host to the server; used only during RhostsRSA or
hostbased user authentication.

Unfortunately, the term “host key” is confusing. It implies that only one such key
may belong to a given host. This is true for client authentication but not for server
authentication, because multiple SSH servers may run on a single machine, each with
a different identifying key.† This so-called “host key” actually identifies a running
instance of the SSH server program, not a machine.

OpenSSH maintains a single database serving both server authentication and client
authentication. It is the union of the system’s known_hosts file (/etc/ssh/ssh_known_
hosts), together with the user’s ~/.ssh/known_hosts file on either the source machine
(for server authentication) or the target machine (for client authentication). The

* In SSH-1, the host key also encrypts the session key for transmission to the server. However, this use is actu-
ally for server authentication, rather than for data protection per se; the server later proves its identity by
showing that it correctly decrypted the session key. Protection of the session key is obtained by encrypting
it a second time with the ephemeral server key.

† Or sharing the same key, if you wish, assuming the servers are compatible with one another.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 3: Inside SSH

database maps a hostname or address to a set of keys acceptable for authenticating a
host with that name or address. One name may be associated with multiple keys
(more on this shortly).

Tectia, on the other hand, maintains two separate maps for these purposes:

• The hostkeys map for authentication of the server host by the client

• The knownhosts map for authentication of the client host by the server

Hooray, more confusing terminology. Here, the term “known hosts” is reused with
slightly different formatting (“knownhosts” versus “known_hosts”) for an overlap-
ping but not identical purpose.

While OpenSSH keeps host keys in a file with multiple entries, Tectia stores them in
a filesystem directory, one key per file, indexed by filename. For instance, a
knownhosts directory looks like this:

$ ls -l /etc/ssh2/knownhosts/
total 2
-r--r--r--   1 root     root       697 Jun  5 22:22 wynken.sleepy.net.ssh-dss.pub
-r--r--r--   1 root     root       697 Jul 21  1999 blynken.sleepy.net.ssh-dss.pub

Note that the filename is of the form <hostname>.<key type>.pub.

The other map, hostkeys, is keyed not just on name/address, but also on the
server’s TCP listening port; that is to say, it is keyed on TCP sockets. This allows
for multiple keys per host in a more specific manner than before. Here, the file-
names are of the form key_<port number>_<hostname>.pub. The following exam-
ple shows the public keys for one SSH server running on blynken, port 22, and two
running on wynken, ports 22 and 220. Furthermore, we’ve created a symbolic link
to make “nod” another name for the server at wynken:22. End users may add to
these maps by placing keys (either manually or automatically by client) into the
directories ~/.ssh2/knownhosts and ~/.ssh2/hostkeys.

$ ls -l /etc/ssh2/hostkeys/
total 5
-rw-r--r--   1 root     root    757 May 31 14:52 key_22_blynken.sleepy.net.pub
-rw-r--r--   1 root     root    743 May 31 14:52 key_22_wynken.sleepy.net.pub
-rw-r--r--   1 root     root    755 May 31 14:52 key_220_wynken.sleepy.net.pub
lrwxrwxrwx   1 root     root     28 May 31 14:57 key_22_nod.pub -> key_22_wynken.
sleepy.net.pub

Even though it allows for multiple keys per host, Tectia is missing one useful feature
of OpenSSH: multiple keys per name. This sounds like the same thing, but there’s a
subtle difference: names can refer to more than one host. A common example is a set
of load-sharing login servers hidden behind a single hostname. A university might
have a set of three machines intended for general login access, each with its own
name and address:

login1.foo.edu→ 10.0.0.1
login2.foo.edu→ 10.0.0.2
login3.foo.edu→ 10.0.0.3



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.6 Implementation Issues | 71

In addition, there is a single generic name that carries all three addresses:

login.foo.edu→ {10.0.0.1, 10.0.0.2, 10.0.0.3}

The university computing center tells people to connect only to login.foo.edu, and
the university’s naming service hands out the three addresses in round-robin order
(e.g., using round-robin DNS) to share the load among the three machines. SSH has
problems with this setup by default. Each time you connect to login.foo.edu, you
have a two-thirds chance of reaching a different machine than you reached last time,
with a different host key. SSH repeatedly complains that the host key of login.foo.
com has changed and issues a warning about a possible attack against your client.
This soon gets annoying. With OpenSSH, you can edit the known_hosts file to asso-
ciate the generic name with each of the individual host keys, changing this:

login1.foo.edu 1024 35 1519086808544755383...
login2.foo.edu 1024 35 1508058310547044394...
login3.foo.edu 1024 35 1087309429906462914...

to this:

login1.foo.edu,login.foo.edu 1024 35 1519086808544755383...
login2.foo.edu,login.foo.edu 1024 35 1508058310547044394...
login3.foo.edu,login.foo.edu 1024 35 1087309429906462914...

With Tectia, however, there’s no general way to do this; since the database is
indexed by entries in a directory, with one key per file, it can’t have more than one
key per name.

It might seem that you’re losing some security by doing this, but we don’t think so. All
that’s really happening is the recognition that a particular name may refer to different
hosts at different times, and thus you tell SSH to trust a connection to that name if it’s
authenticated by any of a given set of keys. Most of the time, that set happens to have
size 1, and you’re telling SSH, “When I connect to this name, I want to make sure I’m
connecting to this particular host.” With multiple keys per name, you can also say,
“When I connect to this name, I want to make sure that I get one of the following set of
hosts.” That’s a perfectly valid and useful thing to do.

Another way to solve this problem is for the system administrators of login.foo.com
to install the same host key on all three machines. But this defeats the ability of SSH
to distinguish between these hosts, even if you want it to. We prefer the former
approach.

3.6.2 Authorization in Hostbased Authentication
The most complicated aspect of hostbased authentication is not the method itself,
but the implementation details of configuring it, particularly authorization. We’ll
discuss:

• Hostbased access files

• Control file details

• Netgroups as wildcards



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 3: Inside SSH

3.6.2.1 Hostbased access files

Two pairs of files on the SSH server machine provide access control for hostbased
authentication, in both its weak and strong forms:

•  /etc/hosts.equiv and ~/.rhosts (weak)

•  /etc/shosts.equiv and ~/.shosts (strong)

The files in /etc have machine-global scope, while those in the target account’s home
directory are specific to that account. The hosts.equiv and shosts.equiv files have the
same syntax, as do the .rhosts and .shosts files, and by default they are all checked.

If any of the four access files allows access for a particular connection,
it’s allowed, even if another of the files forbids it.

The /etc/hosts.equiv and ~/.rhosts files originated with the insecure r-commands. For
backward compatibility, SSH can also use these files for making its hostbased
authentication decisions. If you’re using both the r-commands and SSH, however,
you might not want the two systems to have the same configuration. Also, because of
their poor security, it’s common to disable the r-commands, by turning off the serv-
ers in your inetd.conf files and/or removing the software. In that case, you may not
want to have any traditional control files lying around, as a defensive measure in case
an attacker managed to get one of these services turned on again.

To separate itself from the r-commands, SSH reads two additional files, /etc/shosts.
equiv and ~/.shosts, which have the same syntax and meaning as /etc/hosts.equiv and
~/.rhosts, but are specific to SSH. If you use only the SSH-specific files, you can have
SSH hostbased authentication without leaving any files the r-commands would look
at.*

All four files have the same syntax, and SSH interprets them very similarly—but not
identically—to the way the r-commands do. Read the following sections carefully to
make sure you understand this behavior.

3.6.2.2 Control file details

Here is the common format of all four hostbased control files. Each entry is a single
line, containing either one or two tokens separated by tabs and/or spaces. Com-
ments begin with #, continue to the end of the line, and may be placed anywhere;
empty and comment-only lines are allowed.

# example control file entry
[+-][@]hostspec  [+-][@]userspec  # comment

* Unfortunately, you can’t configure the server to look at one set but not the other. If it looks at ~/.shosts, then
it also considers ~/.rhosts, and both global files are always considered.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.6 Implementation Issues | 73

The two tokens indicate host(s) and user(s), respectively; the userspec may be omit-
ted. If the at sign (@) is present, then the token is interpreted as a netgroup (see the
sidebar “Netgroups”) and is looked up using the innetgr( ) library call, and the
resulting list of user or hostnames is substituted. Otherwise, the token is interpreted
as a single host or username. Hostnames must be canonical as reported by
gethostbyaddr( ) on the server host; other names won’t work.

If either or both tokens are preceded by a minus sign (–), the whole entry is consid-
ered negated. It doesn’t matter which token has the minus sign; the effect is the
same. Let’s see some examples before explaining the rules.

The following hostspec allows anyone from fred.flintstone.gov to log in if the remote
and local usernames are the same:

# /etc/shosts.equiv
fred.flintstone.gov

The following hostspecs allow anyone from any host in the netgroup “hostbasedus-
ers” to log in, if the remote and local usernames are the same, but not from evil.
empire.org, even if it is in the hostbasedusers netgroup:

# /etc/shosts.equiv
-evil.empire.org
@hostbasedusers

This next entry (hostspec and userspec) allows mark@way.too.trusted to log into any
local account! Even if a user has -way.too.trusted mark in ~/.shosts, it won’t prevent
access since the global file is consulted first. You probably never want to do this.

# /etc/shosts.equiv
way.too.trusted mark Don't do this!!

On the other hand, the following entries allow anyone from sister.host.org to con-
nect under the same account name, except mark, who can’t access any local account:

# /etc/shosts.equiv
sister.host.org -mark
sister.host.org

Remember, however, that a target account can override this restriction by placing
sister.host.org mark in ~/.shosts. Note also, as shown earlier, that the negated line
must come first; in the other order, it’s ineffective.

This next hostspec allows user wilma on fred.flintstone.gov to log into the local wilma
account:

# ~wilma/.shosts
fred.flintstone.gov

This entry allows user fred on fred.flintstone.gov to log into the local wilma account,
but no one else—not even wilma@fred.flintstone.gov:

# ~wilma/.shosts
fred.flintstone.gov fred



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

74 | Chapter 3: Inside SSH

Netgroups
A netgroup defines a list of (host, user, domain) triples. Netgroups are used to define
lists of users, machines, or accounts, usually for access-control purposes; for instance,
one can usually use a netgroup to specify what hosts are allowed to mount an NFS file-
system (e.g., in the Solaris share command or BSD exportfs).

Different flavors of Unix vary in how they implement netgroups, though you must
always be the system administrator to define a netgroup. Possible sources for netgroup
definitions include:

• A plain file, e.g., /etc/netgroup

• A database file in various formats, e.g., /etc/netgroup.db

• An information service, such as Sun’s YP/NIS

On many modern Unix flavors, the source of netgroup information is configurable
with the Network Service Switch facility; see the file /etc/nsswitch.conf. Be aware that
in some versions of SunOS and Solaris, netgroups may be defined only in NIS; it
doesn’t complain if you specify “files” as the source in nsswitch.conf, but it doesn’t
work either. Recent Linux systems support /etc/netgroup, though C libraries before
glibc 2.1 support netgroups only over NIS.

Some typical netgroup definitions might look like this:

# defines a group consisting of two hosts: hostnames "print1" and
# "print2", in the (probably NIS) domains one.foo.com and two.foo.com.
print-servers        (print1,,one.foo.com) (print2,,two.foo.com)
# a list of three login servers
login-servers        (login1,,foo.com) (login2,,foo.com) (login1,,foo.com)
# Use two existing netgroups to define a list of all hosts, throwing in
# another.foo.com as well.
all-hosts            print-servers login-servers (another,,foo.com)
# A list of users for some access-control purpose.  Mary is allowed from
# anywhere in the foo.com domain, but Peter only from one host.  Alice
# is allowed from anywhere at all.
allowed-users         (,mary,foo.com) (login1,peter,foo.com) (,alice,)

When deciding membership in a netgroup, the thing being matched is always con-
strued as an appropriate triple. A triple (x, y, z) matches a netgroup N if there exists a
triple (a, b, c) in N which matches (x, y, z). In turn, you define that these two triples
match if and only if the following conditions are met:

—continued—



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.6 Implementation Issues | 75

These entries allow both fred and wilma on fred.flintstone.gov to log into the local
wilma account:

# ~wilma/.shosts
fred.flintstone.gov fred
fred.flintstone.gov

Now that we’ve covered some examples, let’s discuss the precise rules. Suppose the
client username is C, and the target account of the SSH command is T. Then:

1. A hostspec entry with no userspec permits access from all hostspec hosts when
T = C.

2. In a per-account file (~/.rhosts or ~/.shosts), a hostspec userspec entry permits
access to the containing account from hostspec hosts when C is any one of the
userspec usernames.

3. In a global file (/etc/hosts.equiv or /etc/shosts.equiv), a hostspec userspec entry per-
mits access to any local target account from any hostspec host, when C is any one
of the userspec usernames.

4. For negated entries, replace “permits” with “denies” in the preceding rules.

Note Rule #3 carefully. You never, ever want to open your machine to such a secu-
rity hole. The only reasonable use for such a rule is if it is negated, thus disallowing
access to any local account for a particular remote account. We present some exam-
ples shortly.

The files are checked in the following order (a missing file is simply skipped, with no
effect on the authorization decision):

1. /etc/hosts.equiv

2. /etc/shosts.equiv

x = a or x is null or a is null

and:

y  = b or y is null or b is null

and:

z = c or z is null or c is null

This means that a null field in a triple acts as a wildcard. By “null,” we mean missing;
that is, in the triple (, user, domain), the host part is null. This isn’t the same as the
empty string: (“”, user, domain). In this triple, the host part isn’t null. It is the empty
string, and the triple can match only another whose host part is also the empty string.

When SSH matches a username U against a netgroup, it matches the triple ( , U ,);
similarly, when matching a hostname H, it matches (H , , ). You might expect it to
use (, U, D) and (H, , D) where D is the host’s domain, but it doesn’t.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 3: Inside SSH

3. ~/.shosts

4. ~/.rhosts

SSH makes a special exception when the target user is root: it doesn’t check the global
files. Access to the root account can be granted only via the root account’s /.rhosts and
/.shosts files. If you block the use of those files with the IgnoreRootRhosts server direc-
tive, this effectively prevents access to the root account via hostbased authentication.

When checking these files, there are two rules to keep in mind. The first rule is: the
first accepting line wins. That is, if you have two netgroups:

set     (one,,) (two,,) (three,,)
subset  (one,,) (two,,)

the following /etc/shosts.equiv file permits access only from host three:

-@subset
@set

But this next one allows access from all three:

@set
-@subset

The second line has no effect, because all its hosts have already been accepted by a
previous line.

The second rule is: if any file accepts the connection, it’s allowed. That is, if /etc/
shosts.equiv forbids a connection but the target user’s ~/.shosts file accepts it, then it
is accepted. Therefore, the sysadmin cannot rely on the global file to block connec-
tions. Similarly, if your per-account file forbids a connection, it can be overridden by
a global file that accepts it. Keep these facts carefully in mind when using hostbased
authentication.*

3.6.2.3 Netgroups as wildcards

You may have noticed the rule syntax has no wildcards; this omission is deliberate.
The r-commands recognize bare + and – characters as positive and negative wild-
cards, respectively, and a number of attacks are based on surreptitiously adding a
“+” to someone’s .rhosts file, immediately allowing anyone to rlogin as that user. So,
SSH deliberately ignores these wildcards. You’ll see messages to that effect in the
server’s debugging output if it encounters such a wildcard:

Remote: Ignoring wild host/user names in /etc/shosts.equiv

However, there’s still a way to get the effect of a wildcard: using the wildcards avail-
able in netgroups. An empty netgroup:

empty  # nothing here

* By setting the server’s IgnoreRhosts keyword to yes, you can cause the server to ignore the per-account files
completely and consult the global files exclusively instead. [5.4.4]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.6 Implementation Issues | 77

matches nothing at all. However, this netgroup:

wild  (,,)

matches everything. In fact, a netgroup containing (,,) anywhere matches every-
thing, regardless of what else is in the netgroup. So, this entry:

# ~/.shosts
@wild

allows access from any host at all,* as long as the remote and local usernames match.
This one:

# ~/.shosts
way.too.trusted @wild

allows any user on way.too.trusted to log into this account, while this entry:

# ~/.shosts
@wild @wild

allows any user access from anywhere.

Given this wildcard behavior, it’s important to pay careful attention to netgroup defi-
nitions. It’s easier to create a wildcard netgroup than you might think. Including the
null triple (,,) is the obvious approach. However, remember that the order of ele-
ments in a netgroup triple is (host,user,domain). Suppose you define a group “oops”
like this:

oops        (fred,,) (wilma,,) (barney,,)

You intend for this to be a group of usernames, but you’ve placed the usernames in
the host slots, and the username fields are left null. If you use this group as the user-
spec of a rule, it acts as a wildcard. Thus, this entry:

# ~/.shosts
home.flintstones.gov @oops

allows anyone on home.flintstones.gov, not just your three friends, to log into your
account. Beware!

3.6.2.4 Summary

Hostbased authentication is convenient for users and administrators, because it can
set up automatic authentication between hosts based on username correspondence
and interhost trust relationships. This removes the burden of typing passwords or
dealing with key management. However, it is heavily dependent on the correct
administration and security of the hosts involved; compromising one trusted host
can give an attacker automatic access to all accounts on other hosts. Also, the rules
for the access control files are complicated, fragile, and easy to get wrong in ways

* If strong hostbased authentication is in use, this means any host verified by public key against the server’s
known hosts database.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 3: Inside SSH

that compromise security. In an environment more concerned with eavesdropping
and disclosure than active attacks, it may be acceptable to deploy hostbased authen-
tication for general user authentication. In a more security-conscious scenario, how-
ever, it is probably inappropriate, though it may be acceptable for limited use in
special-purpose accounts, such as for unattended batch jobs. [11.1.3]

3.6.3 SSH-1 Backward Compatibility
The Tectia server can provide backward compatibility for the SSH-1 protocol, as
long as another package supporting SSH-1 (such as OpenSSH) is also installed on the
same machine. When the Tectia server encounters a client requesting an SSH-1 con-
nection, it simply runs the SSH-1 server.* This is rather cumbersome. It’s also waste-
ful and slow, since each new sshd1 needs to generate its own server key, which
otherwise the single master server regenerates only once an hour. This wastes ran-
dom bits, sometimes a precious commodity, and can cause noticeable delays in the
startup of SSH-1 connections to a Tectia server. Further, it is an administrative head-
ache and a security problem, since one must maintain two separate SSH server con-
figurations and try to make sure all desired restrictions are adequately covered in
both.

OpenSSH, on the other hand, supports both SSH-1 and SSH-2 in a single set of pro-
grams, an approach we prefer.

3.6.4 Randomness
Cryptographic algorithms and protocols require a good source of random bits. Ran-
domness is used in various ways:

• To generate data-encryption keys

• As plaintext padding and initialization vectors in encryption algorithms, to help
foil cryptanalysis

• For check-bytes or cookies in protocol exchanges, as a measure against packet-
spoofing attacks

Randomness is harder to achieve than you might think; in fact, even defining ran-
domness is difficult (or picking the right definition for a given situation). For exam-
ple, “random” numbers that are perfectly good for statistical modeling might be
terrible for cryptography. Each of these applications requires certain properties of its
random input, such as an even distribution. Cryptography, in particular, demands
unpredictability, so an attacker reading our data can’t guess our keys.

* Or it can use an internal SSH-1 compatibility mode.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.6 Implementation Issues | 79

True randomness—in the sense of complete unpredictability—can’t be produced by
a computer program. Any sequence of bits produced as the output of a program
eventually repeats itself. For true randomness, you have to turn to physical pro-
cesses, such as fluid turbulence or the quantum dice of radioactive decay. Even there,
you must take great care that measurement artifacts don’t introduce unwanted
structure.

There are algorithms, however, that produce long sequences of practically unpredict-
able output, with good statistical randomness properties. These are good enough for
many cryptographic applications, and such algorithms are called pseudo-random
number generators, or PRNGs. A PRNG requires a small random input, called the
seed, so it doesn’t always produce the same output. From the seed, the PRNG pro-
duces a much larger string of acceptably random output; essentially, it is a random-
ness “stretcher.” So, a program using a PRNG still needs to find some good random
bits, just fewer of them, but they had better be quite unpredictable.

Since various programs require random bits, some operating systems have built-in
facilities for providing them. Some Unix variants (including Linux and OpenBSD)
have a device driver, accessed through /dev/random and /dev/urandom, that provides
random bits when opened and read as a file. These bits are derived by all sorts of
methods, some quite clever. Correctly filtered timing measurements of disk accesses,
for example, can represent the fluctuations due to air turbulence around the drive
heads. Another technique is to look at the least significant bits of noise coming from
an unused microphone port. And of course, they can track fluctuating events such as
network packet arrival times, keyboard events, interrupts, etc.

SSH implementations make use of randomness, but the process is largely invisible to
the end user. Here’s what happens under the hood. OpenSSH and Tectia, for exam-
ple, use a kernel-based randomness source if it is available, along with their own
sampling of (one hopes) fluctuating system parameters, gleaned by running such
programs as ps or netstat. It uses these sources to seed its PRNG, as well as to “stir
in” more randomness every once in a while. Since it can be expensive to gather ran-
domness, SSH stores its pool of random bits in a file between invocations of the pro-
gram, as shown in the following table:

These files should be kept protected, since they contain sensitive information that
can weaken SSH’s security if disclosed to an attacker, although SSH takes steps to
reduce that possibility. The seed information is always mixed with some new ran-
dom bits before being used, and only half the pool is ever saved to disk, to reduce its
predictive value if stolen.

OpenSSH Tectia

Server /etc/ssh/ssh_random_seed /etc/ssh2/random_seed

Client ~/.ssh/random_seed ~/.ssh2/random_seed



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 3: Inside SSH

In OpenSSH and Tectia, all this happens automatically and invisibly. OpenSSH links
against the OpenSSL library and uses its randomness source, a kernel source if avail-
able. When building OpenSSH on a platform without /dev/random, you have a
choice. If you have installed an add-on randomness source, such as the Entropy
Gathering Daemon (EGD, http://www.lothar.com/tech/crypto/), you can compile
OpenSSH to use it with the --with-egd-pool compile-time configuration option. Or
you can use the OpenSSH entropy-gathering mechanism. You can tailor which pro-
grams are run to gather entropy and “how random” they’re considered to be, by edit-
ing the file /etc/ssh/ssh_prng_cmds. Also, note that the OpenSSH random seed is kept
in the ~/.ssh/prng_seed file, even the daemon’s, which is just the root user’s seed file.
Earlier versions of OpenSSH use this method internally and automatically if there is
no /dev/random and no pool specified. OpenSSH 3.8 and later have the random gen-
erator factored into a separate program, ssh-rand-helper, selected with the --with-

rand-helper compile-time configuration option.

3.6.5 Privilege Separation in OpenSSH
A persistent problem in the world of Unix security is the lack of fine-grained permis-
sions when it comes to process capabilities. Basically, either you’re God (that is,
“root”) or you’re not. The “Church” of Unix is missing the hosts of angels, archan-
gels, cherubim, etc., that fill other pantheons and smooth the relationship between
mere mortals and the divine, embodied for us in the mystical uid 0. This means that
in order to accomplish some common tasks, such as listening on port 22 or creating
processes under other uid’s, the SSH server must also take on all the other powers of
the root account. This flies in the face of a basic rule of security engineering: the Prin-
ciple of Least Privilege, which says that a process should have only the privileges it
needs, only when it needs them, and no more. If a serious vulnerability is found in
the code of a server running as root, you can kiss your system goodbye, because
when an attacker gets in, he has complete control.

In order to address this general problem, OpenSSH has a feature called privilege sep-
aration. The developers have factored out those server functions which require root
privilege, and placed them in a separate process. The main server does not run as
root; it gives up that privilege as soon as possible after startup, leaving a separate
privileged “monitor” process with which it can communicate. The monitor opens
the server listening socket which the main server inherits, but then closes its copy so
that it does not communicate directly with clients (i.e., potential attackers). It com-
municates only by a private pipe to the main server and obeys a strict protocol, per-
forming only those privileged operations necessary from time to time for the
operation of the main server, and nothing else. This design mitigates the problem by
restoring the Principle of Least Privilege, at least as much as is possible given the lim-
itations of Unix.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.7 SSH and File Transfers (scp and sftp) | 81

Privilege separation is a complicated feature to implement, however, due to many
small differences among Unix platforms with regard to the exact behavior of rele-
vant system calls such as setuid, seteuid, setgid, etc., as well as difficulties with
related software such as PAM. The early implementations of privilege separation in
OpenSSH were notorious for causing mysterious errors in the operation of the server.
Things have improved a great deal, but if you run into odd problems you can’t
explain—especially having to do with a privilege or access violation on the part of
the server—you could do worse than to disable privilege separation and see what
happens.

For more information on privilege separation, see:

• http://www.citi.umich.edu/u/provos/ssh/privsep.html

• “Preventing Privilege Escalation,” Niels Provos, Markus Friedl, and Peter Honey-
man, 12th USENIX Security Symposium, Washington, D.C., August 2003, http://
www.citi.umich.edu/u/provos/papers/privsep.pdf.

3.7 SSH and File Transfers (scp and sftp)
The first thing to understand about SSH and file transfers is this: SSH doesn’t really
do file transfers. That is, the core SSH protocol as implemented by a program such as
ssh (SSH-TRANS, SSH-AUTH, and SSH-CONN) has no file-transfer capability at all.
Following good modular design, file transfer is simply one of many services that
might be run over an SSH connection channel. In fact, the file-transfer programs
bundled with most Unix-based SSH products, scp and sftp, typically don’t even
implement SSH in themselves; they simply run ssh in a subprocess to connect to the
remote host, start the remote file-transfer agent, and talk to it.

Historically, the first file-transfer mechanism implemented with SSH was the pro-
gram scp, included with the original SSH1 product. scp is simply an “ssh-ification” of
the venerable Unix rcp program; just as rcp runs the rsh program to contact the
remote host, scp runs ssh instead. If existing rsh software had supported a switch to
select a different program than the default rsh (like scp -S), scp might never have been
written; there would have been no need.

The rcp protocol used by scp is very limited. In a single session it can only transfer a
set of whole files in one direction; there’s no directory browsing, partial transfer,
resumption of interrupted transfers, multiple transfer directions—in other words, it’s
nothing like FTP. When SSH Communications Security (SCS) defined the first ver-
sion of the SSH-2 protocol and delivered its implementation, it wanted to include a
much better file-transfer utility. To that end, it defined a completely new remote-
filing protocol, designed to work easily over a single, reliable, secure, duplex byte-
stream connection—that is, over SSH. The utility was called sftp. As with SSH-2, this
initially undocumented and proprietary protocol was eventually moved onto the
standards track of the IETF SECSH working group, as the “SSH File Transfer Proto-
col” (SSH-SFTP). Once that happened it began to appear in other implementations



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 3: Inside SSH

as well—for example, the sftp program in OpenSSH—first as a client only for com-
patibility with SCS servers, with sftp-server following later.

The name “SFTP” is unfortunate in two respects. First, it suggests that SFTP has
something to do with the FTP protocol as defined in RFC-959 et al. It doesn’t: they
are completely different. Indeed, that’s largely the point; as with rcp: were FTP ame-
nable to use over SSH, SFTP might never have been written. But SSH and FTP are
not a good match [11.2], so SFTP was born. It is a common mistake to think you can
somehow use an sftp program to connect securely to an FTP server—a reasonable
enough supposition, given the name—but you can’t; they’re entirely incompatible.

The name “SFTP” is also misleading in that it suggests security; many assume it
stands for “Secure FTP.” This isn’t so. The SFTP protocol has no security features at
all; implementations derive their security by speaking the protocol over an SSH
connection.

3.7.1 What’s in a Name?
So far, this isn’t too bad. There are two file-transfer protocols commonly used over
SSH—RCP and SFTP, usually implemented on the client side by the programs scp
and sftp. The situation is a bit more complicated, though, because of the way the
Tectia software operates. Although Tectia includes a program named scp2, it does
not use the RCP protocol; instead, it uses SFTP. The Tectia programs scp2 and sftp2
are simply two different frontends for the SFTP protocol. They merely provide differ-
ent user interfaces: scp2 acts like rcp/scp, and sftp2 is deliberately similar to an FTP
client.

None of this confusing terminology is made any easier by the fact that when
installed, Tectia makes symbolic links allowing you to use the plain names scp, ssh,
etc., instead of scp2 or ssh2. Even more bizarrely, scp2 has a -1 option that causes it
to run a program named scp1 for backward compatibility (of a sort). The upshot is
that typing “scp” may get you either of two entirely different protocols, depending
on what software is installed, and how it was installed. In our discussion, we ignore
this complication; when we refer to scp, we mean an OpenSSH-style scp which uses
the RCP protocol.

3.7.2 scp Details
When you run scp to copy a file from client to server, it invokes ssh with various
options, like so:

/usr/bin/ssh -x -o ForwardAgent=no -o ClearAllForwardings=yes server-host scp ...



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.7 SSH and File Transfers (scp and sftp) | 83

Earlier versions of scp actually searched your PATH for the ssh program
rather than specifying it completely. This was a problem if multiple
SSH software packages were installed, since it could run mismatched
pieces of software together.

This runs another copy of scp on the remote host. That copy is invoked with the
undocumented switches –t and –f (for “to” and “from”), putting it into SCP server
mode. This next table shows some examples; Figure 3-3 shows the details.

If you run scp to copy a file between two remote hosts, it simply executes another scp
client on the source host to copy the file to the target. For example, this command:

scp source:music.au target:playme

runs this in the background:

ssh -x -o ClearAllForwardings=yes -n source scp music.au target:playme

Note that the options are changed appropriately: agent forwarding is not turned off,
as that may be needed by the remote scp client in order to contact the target host.

This client scp command: Runs this remote command:

scp foo server:bar scp -t bar

scp server:bar foo scp -f bar

scp *.txt server:dir scp -d -t dir

Figure 3-3. scp operation

% scp file.txt server:renamed.txt

Client Server

scp

file.txt

run "ssh -x -a...server scp -t renamed.txt"

ssh

scp

sshd

run "scp -t renamed.txt"

renamed.txt

scp protocol



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

84 | Chapter 3: Inside SSH

3.7.3 scp2/sftp Details
When you run scp2 or sftp under Unix, it also runs an ssh program behind the
scenes, as with scp.* The exact details vary depend on which software is in use;
remember that sftp comes with both OpenSSH and Tectia. However, they both look
like:

ssh [options] server-host -s sftp

Instead of a remote command, this uses an SSH-2 subsystem request to start the sftp
server on the remote host. This insulates the client from the details of how SFTP is
implemented on the server, rather than embed the sftp-server pathname in the com-
mand (which might change), or relaying on the remote PATH setting to find it (which
might not work). Unlike scp, here the command line doesn’t specify the files to be
transferred; that information is carried inside the SFTP protocol.

Using a subsystem means that the SSH server must be specifically configured to han-
dle SFTP. For OpenSSH:

# sshd_config
subsystem sftp /usr/libexec/sftp-server

Tectia can either execute an external SFTP server in the same way:

# sshd2_config
subsystem-sftp /usr/libexec/sftp-server2

or run the SFTP protocol within the SSH server process itself:

# sshd2_config
subsystem-sftp internal://sftp-server

Figure 3-4 shows more details of how sftp operates.

3.8 Algorithms Used by SSH
We now summarize each of the algorithms we have mentioned. Don’t treat these
summaries as complete analyses, however. You can’t necessarily extrapolate from
characteristics of individual algorithms (positive or negative) to whole systems with-
out considering the other parts. Security is complicated that way.

3.8.1 Public-Key Algorithms

3.8.1.1 Rivest-Shamir-Adleman (RSA)

The Rivest-Shamir-Adleman (RSA) public-key algorithm is the most widely used
asymmetric cipher. It derives its security from the difficulty of factoring large integers

* Tectia for Windows simply integrates SSH into these programs.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.8 Algorithms Used by SSH | 85

that are the product of two large primes of roughly equal size. Factoring is widely
believed to be intractable (i.e., infeasible, admitting no efficient, polynomial-time
solution), although this isn’t proven. RSA can be used for both encryption and
signatures.

Until September 2000, RSA was claimed to be patented in the U.S. states by Public
Key Partners, Inc., a company in which RSA Security, Inc. is a partner. (The algo-
rithm is now in the public domain.) While the patent was in force, PKP claimed that
it controlled the use of the RSA algorithm in the U.S., and that the use of unautho-
rized implementations was illegal. Until the mid-1990s, RSA Security provided a
freely available reference implementation, RSAref, with a license allowing educa-
tional and broad commercial use (as long as the software itself was not sold for
profit). Since RSA is now in the public domain, RSAref has disappeared.

The SSH-1 protocol specified use of RSA explicitly. SSH-2 can use multiple public-
key algorithms, but originally defined only DSA. [3.8.1.2] The SECSH working
group added the RSA algorithm to SSH-2 shortly after the patent expired.

3.8.1.2 Digital Signature Algorithm (DSA)

The Digital Signature Algorithm (DSA) was developed by the U.S. National Security
Agency (NSA), and promulgated by the U.S. National Institute of Standards and
Technology (NIST) as part of the Digital Signature Standard (DSS). The DSS was
issued as a Federal Information Processing Standard, FIPS-186, in May 1994. It is a
public-key algorithm, based on the Schnorr and ElGamal methods, and relies on the
difficulty of computing discrete logarithms in a finite field. It is designed as a signa-
ture-only scheme that can’t be used for encryption, although a fully general imple-
mentation may easily perform both RSA and ElGamal encryption.

Figure 3-4. scp2/sftp operation

% scp2 file.txt server:renamed.txt

Client Server

scp2/sftp

file.txt

run "ssh2 -x -a...server -s sftp"

ssh2

sftp
server

sshd2

run "sftp server"

renamed.txt

sftp protocol

% sftp server
sftp> put file.txt renamed.txt

or



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 3: Inside SSH

DSA has also been surrounded by a swirl of controversy since its inception. The
NIST first claimed that it had designed DSA, then eventually revealed that the NSA
had done so. Many question the motives and ethics of the NSA, with ample histori-
cal reason to do so.* Researcher Gus Simmons discovered a subliminal channel in
DSA that allows an implementor to leak information—for instance, secret key bits—
with every signature.† Since the algorithm was to be made available as a closed hard-
ware implementation in smart cards as part of the government’s Capstone program,
many people considered this property highly suspicious. Finally, the NIST intended
DSA to be available royalty-free to all users. To that end it was patented by David
Kravitz (patent #5,231,668), then an employee of the NSA, who assigned the patent
to the U.S. government. There have been claims, however, that DSA infringes exist-
ing cryptographic patents, including the Schnorr patent. To our knowledge, this
issue has yet to be settled in court.

The SSH-2 protocol uses DSA as its required (and currently, only defined) public-key
algorithm for host identification.

3.8.1.3 Diffie-Hellman key agreement

The Diffie-Hellman key agreement algorithm was the first public-key system pub-
lished in the open literature, invented by Whitfield Diffie, Martin Hellman, and
Ralph Merkle in 1976. It was patented by them in 1977 (issued in 1980, patent
#4,200,770); that patent has now expired, and the algorithm is in the public
domain. Like DSA, it is based on the discrete logarithm problem, and it allows two
parties to derive a shared secret key securely over an open channel. That is, the par-
ties engage in an exchange of messages, at the end of which they share a secret key. It
isn’t feasible for an eavesdropper to determine the shared secret merely from observ-
ing the exchanged messages.

SSH-2 uses the Diffie-Hellman algorithm as its required (and currently, its only
defined) key-exchange method.

3.8.2 Secret-Key Algorithms

3.8.2.1 International Data Encryption Algorithm (IDEA)

The International Data Encryption Algorithm (IDEA) was designed in 1990 by Xuejia
Lai and James Massey,‡ and went through several revisions, improvements, and
renamings before reaching its current form. Although relatively new, it is considered

* See James Bamford’s book, The Puzzle Palace (Penguin), for an investigative history of the NSA.

† G. J. Simmons, “The Subliminal Channels in the U.S. Digital Signature Algorithm (DSA).” Proceedings of the
Third Symposium on: State and Progress of Research in Cryptography, Rome: Fondazione Ugo Bordoni, 1993,
pp. 35–54.

‡ X. Lai and J. Massey, “A Proposal for a New Block Encryption Standard,” Advances in Cryptology—EURO-
CRYPT ’92 Proceedings, Springer-Verlag, 1992, pp. 389–404.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.8 Algorithms Used by SSH | 87

secure; the well-known cryptographer Bruce Schneier in 1996 pronounced it “the best
and most secure block algorithm available to the public at this time.”

IDEA is patented in Europe and the U.S. by the Swiss company Ascom-Tech AG.*

The name “IDEA” is a trademark of Ascom-Tech. The attitude of Ascom-Tech
toward this patent and the use of IDEA in the U.S. has changed over time, especially
with regard to its inclusion in PGP. It is free for noncommercial use. Government or
commercial use may require a royalty, where “commercial use” includes use of the
algorithm internal to a commercial organization, not just directly selling an imple-
mentation or offering its use for profit. Here are two sites for more information:

• http://vmsbox.cjb.net/idea.html

• http://home.ecn.ab.ca/~jsavard/crypto/co040302.htm

3.8.2.2 Advanced Encryption Standard (AES)

In 1997, the NIST began a program to develop a replacement for the existing govern-
ment-standard symmetric encryption algorithm, DES, which was beginning to show
its age. The process involved soliciting designs from the worldwide cryptographic
community, and pitting them against one another in a design contest of sorts. After a
five-year process, the winner was finally selected. The algorithm designed by Joan
Daemen and Vincent Rijmen and originally known as Rijndael became the Advanced
Encryption Standard, codified in FIPS-197. AES is a symmetric block cipher with key
sizes of either 128, 192, or 256 bits. You can find more information at the following
site:

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

3.8.2.3 Data Encryption Standard (DES)

The Data Encryption Standard (DES) is the old workhorse of symmetric encryption
algorithms, now finally put out to pasture, replaced by AES. Designed by research-
ers at IBM in the early 1970s under the name Lucifer, the U.S. government adopted
DES as a standard on November 23, 1976 (FIPS-46). It was patented by IBM, but
IBM granted free worldwide rights to its use. It has been used extensively in the pub-
lic and private sectors ever since. DES has stood up well to cryptanalysis over the
years and is increasingly viewed as outdated only because its 56-bit key size is too
small relative to modern computing power. A number of well-publicized designs for
special-purpose “DES-cracking” machines have been put forward, and their putative
prices are falling more and more into the realm of plausibility for governments and
large companies. It seems sure that at least the NSA has such devices.

* U.S. patent #5,214,703, 25 May 1993; international patent PCT/CH91/00117, 28 November 1991; Euro-
pean patent EP 0 482 154 B1.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 3: Inside SSH

3.8.2.4 Triple-DES

Triple-DES, or 3DES, is a variant of DES intended to increase its security by increas-
ing the key length. It has been proven that the DES function can increase its security
by encrypting multiple times with independent keys.* 3DES encrypts the plaintext
with three iterations of the DES algorithm, using three separate keys. The effective
key length of 3DES is 112 bits, a vast improvement over the 56-bit key of plain DES.

3.8.2.5 ARCFOUR (RC4)

Ron Rivest designed the RC4 cipher in 1987 for RSA Data Security, Inc. (RSADSI); the
name is variously claimed to stand for “Rivest Cipher” or “Ron’s Code.” It was an
unpatented trade secret of RSADSI, used in quite a number of commercial products by
RSADSI licensees. In 1994, though, source code claiming to implement RC4 appeared
anonymously on the Internet. Experimentation quickly confirmed that the posted code
was indeed compatible with RC4, and the cat was out of the bag. Since it had never
been patented, RC4 effectively entered the public domain. This doesn’t mean that
RSADSI won’t sue someone who tries to use it in a commercial product, so it is less
expensive to settle and license than to fight. We aren’t aware of any test cases of this
issue. Since the name “RC4” is trademarked by RSADSI, the name “ARCFOUR” has
been coined to refer to the publicly revealed version of the algorithm.

ARCFOUR is very fast but less studied than many other algorithms. It uses a vari-
able-size key; SSH-1 employs independent 128-bit keys for each direction of the SSH
session. The use of independent keys for each direction is an exception in SSH-1, and
crucial: ARCFOUR is essentially a pad using the output of a pseudo-random num-
ber generator. As such, it is important never to reuse a key because to do so makes
cryptanalysis trivially easy. If this caveat is observed, ARCFOUR is considered secure
by many, despite the dearth of public cryptanalytic results.

3.8.2.6 Blowfish

Blowfish was designed by Bruce Schneier in 1993, as a step toward replacing the
aging DES. It is much faster than DES and IDEA, though not as fast as ARCFOUR,
and is unpatented and free for all uses. It is intended specifically for implementation
on large, modern, general-purpose microprocessors and for situations with relatively
few key changes. It isn’t particularly suited to low-end environments such as smart
cards. It employs a variable-size key of 32 to 448 bits; SSH-2 uses 128-bit keys. Blow-
fish has received a fair amount of cryptanalytic scrutiny and has proved impervious
to attack so far. Information is available from Counterpane, Schneier’s security con-
sulting company, at:

http://www.schneier.com/blowfish.html

* Because it doesn’t form a group over its keys. See W. Campbell and M. J. Wiener, “DES Is Not a Group,”
Advances in Cryptology—CRYPTO ’92 Proceedings, Springer-Verlag, pp. 512–520.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.8 Algorithms Used by SSH | 89

3.8.2.7 Twofish

Twofish is another design by Bruce Schneier, together with J. Kelsey, D. Whiting, D.
Wagner, C. Hall, and N. Ferguson. It was submitted in 1998 to the NIST as a candi-
date for the Advanced Encryption Standard, to replace DES as the U.S. govern-
ment’s symmetric data encryption standard. It was one of the five finalists in the AES
selection process, out of 15 initial submissions, but eventually lost to Rijndael. Like
Blowfish, it is unpatented and free for all uses, and Counterpane has provided unco-
pyrighted reference implementations, also freely usable.

Twofish admits keys of lengths 128, 192, or 256 bits; SSH-2 specifies 256-bit keys.
Twofish is designed to be more flexible than Blowfish, allowing good implementa-
tion in a larger variety of computing environments (e.g., slower processors, small
memory, in-hardware). It is very fast, its design is conservative, and it is likely to be
quite strong. You can read more about Twofish at:

http://www.schneier.com/twofish.html

You can read more about the NIST AES program at:

http://www.nist.gov/aes/

3.8.2.8 CAST

CAST was designed in the early 1990s by Carlisle Adams and Stafford Tavares.
Tavares is on the faculty of Queen’s University at Kingston in Canada, while Adams
is an employee of Entrust Technologies of Texas. CAST is patented, and the rights
are held by Entrust, which has made two versions of the algorithm available on a
worldwide royalty-free basis for all uses. These versions are CAST-128 and CAST-
256, described in RFC-2144 and RFC-2612, respectively. SSH-2 uses CAST-128,
which is named for its 128-bit key length.

3.8.3 Hash Functions

3.8.3.1 CRC-32

The 32-bit Cyclic Redundancy Check (CRC-32), defined in ISO 3309,* is a noncryp-
tographic hash function for detecting accidental changes to data. The SSH-1 proto-
col uses CRC-32 (with the polynomial 0xEDB88320) for integrity checking, and this
weakness admits the “insertion attack” discussed elsewhere. [3.5] The SSH-2 proto-
col employs cryptographically strong hash functions for integrity checking, obviat-
ing this attack.

* International Organization for Standardization, ISO Information Processing Systems—Data Communication
High-Level Data Link Control Procedure—Frame Structure, ISO 3309, October 1984, 3rd Edition.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 3: Inside SSH

3.8.3.2 MD5

MD5 (“Message Digest algorithm number 5”) is a cryptographically strong, 128-bit
hash algorithm designed by Ron Rivest in 1991, one of a series he designed for RSADSI
(MD2 through MD5). MD5 is unpatented, placed in the public domain by RSADSI,
and documented in RFC-1321. It has been a standard hash algorithm for several years,
used in many cryptographic products and standards. A successful collision attack
against the MD5 compression function by den Boer and Bosselaers in 1993 caused
some concern, and though the attack hasn’t resulted in any practical weaknesses, there
is an expectation that it will, and people are beginning to avoid MD5 in favor of newer
algorithms. RSADSI recommends moving away from MD5 in favor of SHA-1 or RIP-
EMD-160 for future applications demanding collision-resistance.*

3.8.3.3 SHA-1

SHA-1 (Secure Hash Algorithm) was designed by the NSA and the NIST for use with
the U.S. government Digital Signature Standard. Like MD5, it was designed as an
improvement on MD4, but takes a different approach. It produces 160-bit hashes.
There are no known attacks against SHA-1, and, if secure, it is stronger than MD5 sim-
ply for its longer hash value. It has replaced MD5 in some applications; for example,
SSH-2 uses SHA-1 as its required MAC hash function, as opposed to MD5 in SSH-1.†

3.8.3.4 RIPEMD-160

Yet another 160-bit MD4 variant, RIPEMD-160, was developed by Hans Dobbertin,
Antoon Bosselaers, and Bart Preneel as part of the European Community RIPE
project. RIPE stands for RACE Integrity Primitives Evaluation;‡ RACE, in turn, was
the program for Research and Development in Advanced Communications Technol-
ogies in Europe, an EC-sponsored program which ran from June 1987 to December
1995. RIPE was part of the RACE effort, devoted to studying and developing data
integrity techniques. Hence, RIPEMD-160 should be read as “the RIPE Message
Digest (160 bits).” In particular, it has nothing to do with RIPEM, an old Privacy-
Enhanced Mail (PEM) implementation by Mark Riordan.

RIPEMD-160 isn’t defined in the SSH protocol, but it is used for an implementation-
specific MAC algorithm in OpenSSH, under the name hmac-ripemd160@openssh.com.
RIPEMD-160 is unpatented and free for all uses. You can read more about it at:

http://www.esat.kuleuven.ac.be/~bosselae/ripemd160.html

* RSA Laboratories Bulletin #4, 12 November 1996, ftp://ftp.rsasecurity.com/pub/pdfs/bulletn4.pdf.

† As this bookwent to press, theNIST announced plans to phase out SHA-1 by the year 2010, in favor of stron-
ger algorithms like SHA-256 and SHA-512.

‡ Not to be confused with another “RIPE,” Réseaux IP Européens (“European IP Networks”), a technical and
coordinating association of entities operating wide area IP networks in Europe and elsewhere (http://www.
ripe.net).



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.9 Threats SSH Can Counter | 91

3.8.4 Compression Algorithms: zlib
zlib is currently the only compression algorithm defined for SSH. In the SSH proto-
col documents, the term “zlib” refers to the “deflate” lossless compression algorithm
as first implemented in the popular gzip compression utility, and later documented
in RFC-1951. It is available as a software library called ZLIB at:

http://www.zlib.net/

3.9 Threats SSH Can Counter
Like any security tool, SSH has particular threats against which it is effective and oth-
ers that it doesn’t address. We’ll discuss the former first.

3.9.1 Eavesdropping
An eavesdropper is a network snooper who reads network traffic without affecting it
in any way. SSH’s encryption prevents eavesdropping. The contents of an SSH ses-
sion, even if intercepted, can’t be decrypted by a snooper.

3.9.2 Name Service and IP Spoofing
If an attacker subverts your naming service (DNS, NIS, etc.), network-related pro-
grams may be coerced to connect to the wrong machine. Similarly, an attacker can
impersonate a host by stealing use of its IP address(es). In either case, you’re in trou-
ble: your client program can connect to a false server that steals your password when
you supply it. SSH guards against this attack by cryptographically verifying the server
host identity. When setting up a session, the SSH client validates the server’s host
key against a local list associating server names and addresses with their keys. If the
supplied host key doesn’t match the one on the list, SSH complains. This feature
may be disabled in less security-conscious settings if the warning messages get
annoying. [7.4.3.1]

The SSH-2 protocol allows for including PKI certificates along with keys. In the
future, we hope that implementation of this feature in SSH products along with more
common deployment of PKI will ease the burden of key management and reduce the
need for this particular security trade-off.

3.9.3 Connection Hijacking
An “active attacker”—one who not only can listen to network traffic, but also can
inject his own—can hijack a TCP connection, literally stealing it away from one of its
legitimate endpoints. This is obviously disastrous: no matter how good your authen-
tication method is, the attacker can simply wait until you’ve logged in, then steal



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 3: Inside SSH

your connection and insert his own nefarious commands into your session. SSH
can’t prevent hijacking, since this is a weakness in TCP, which operates below SSH.
However, SSH renders it ineffective (except as a denial-of-service attack). SSH’s
integrity checking detects if a session is modified in transit, and shuts down the con-
nection immediately without using any of the corrupted data.

3.9.4 Man-in-the-Middle Attacks
A man-in-the-middle attack is a particularly subtle type of active attack and is illus-
trated in Figure 3-5. An adversary sits between you and your real peer (i.e., between
the SSH client and server), intercepting all traffic and altering or deleting messages at
will. Imagine that you try to connect to an SSH server, but Malicious Mary inter-
cepts your connection. She behaves just like an SSH server, though, so you don’t
notice, and she ends up sharing a session key with you. Simultaneously, she also ini-
tiates her own connection to your intended server, obtaining a separate session key
with the server. She can log in as you because you used password authentication and
thus conveniently handed her your password. You and the server both think you
have a connection to each other, when in fact you both have connections to Mary
instead. Then she just sits in the middle, passing data back and forth between you
and the server (decrypting on one side with one key and re-encrypting with the other
for retransmission). Of course, she can read everything that goes by and undetect-
ably modify it if she chooses.

SSH counters this attack in two ways. The first is server host authentication. Unless
Mary has broken into the server host, she is unable to effect her impersonation,
because she doesn’t have the server’s private host key. Note that for this protection
to work, it is crucial that the client actually check the server-supplied public host key

Figure 3-5. Man-in-the-middle attack

SSH
Server

true client machine true server machine

SSH
Client

fake
server

fake
client

attacker s machine

SSH encrypted connections

unencrypted data exposed!



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.10 Threats SSH Doesn’t Prevent | 93

against its known hosts list; otherwise, there is no guarantee that the server is genu-
ine. If you connect for the first time to a new server and let ssh accept the host key,
you are actually open to a man-in-the-middle attack. However, assuming you aren’t
spoofed that one time, future connections to this server are safe as long as the server
host key isn’t stolen.

The second protection SSH affords is via certain user authentication methods. The
password method is obviously vulnerable, but publickey and hostbased authentica-
tion resist MITM attacks. Mary can’t discover the session key simply by observing
the key exchange; she must perform an active attack in which she carries out sepa-
rate exchanges with each side, obtaining separate keys of her own with the client and
server. In both SSH-1 and SSH-2, the key exchange is designed so that if she does
this, the session identifiers for each side are different. When a client provides a digi-
tal signature for either public-key or hostbased authentication, it includes the ses-
sion identifier in the data signed. Thus, Mary can’t just pass on the client-supplied
authenticator to the server, nor does she have any way of coercing the client into
signing the other session ID.*

If you don’t verify the server name/key correspondence, Mary can still perform the
man-in-the-middle attack, even though she can’t log in as you on the server side. Per-
haps she can log into her own account or another she has cracked. With some clever-
ness, she might still deceive you long enough to do damage.

3.10 Threats SSH Doesn’t Prevent
SSH isn’t a total security solution. We’ll now present some examples of attacks that
SSH wasn’t designed to prevent.

3.10.1 Password Cracking
SSH dramatically improves password security by encrypting your password as it
passes over the network. Nevertheless, a password is still a weak form of authentica-
tion, and you must take care with it. You must choose a good password, memorable
to you but not obvious to anyone else, and not easily guessable. You must also avoid
having your password stolen, since possession alone is sufficient to grant access to
your account. So, watch out: the guy at the next terminal might be surreptitiously
“shoulder surfing” (watching as you type). That computer kiosk you’re about to use
may have been tricked up to log all keystrokes to Cracker Central Command. And
the nice-sounding fellow who calls from Corporate IT and asks for your password to
“fix your account” might not be who he claims.

* This is not true of the older SSH-1 protocol, however.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 3: Inside SSH

Consider public-key authentication instead, since it is two-factor: a stolen pass-
phrase is useless without the private-key file, so an attacker needs to steal both. Of
course, the SSH client on the computer you’re borrowing can be rigged to squirrel
away your key after you blithely supply your passphrase to decrypt it. If you’re that
worried, you shouldn’t use strange computers. In the future, one hopes, crypto-
graphic smartcards and readers will be ubiquitous and supported by SSH so that you
can carry your keys conveniently and use them in other computers without fear of
disclosure.

If you must use password authentication because of its convenience, consider using a
one-time password scheme such as S/Key to reduce risk. [5.4.5]

3.10.2 IP and TCP Attacks
SSH operates on top of TCP, so it is vulnerable to some attacks against weaknesses
in TCP and IP. The privacy, integrity, and authentication guarantees of SSH limit
this vulnerability to denial-of-service attacks.

TCP/IP is resistant to network problems such as congestion and link failure. If the
enemy blows up a router, IP can route around it. It wasn’t designed to resist an
adversary injecting bogus packets into the network, however. The origin of TCP or
IP control messages isn’t authenticated. As a result, TCP/IP has a number of inher-
ent exploitable weaknesses, such as:

SYN flood
SYN stands for “synchronize,” and is a TCP packet attribute. In this case, it
refers to the initial packet sent to start the setup of a TCP connection. This
packet often causes the receiver to expend resources preparing for the coming
connection. If an attacker sends large numbers of these packets, the receiving
TCP stack may run out of space and be unable to accept legitimate connections.

TCP RST, bogus ICMP
Another TCP packet type is RST, for “reset.” Either side of a TCP connection
can send an RST packet at any time, which causes immediate teardown of the
connection. RST packets may be injected easily into a network, immediately dis-
connecting any target TCP connection.

Similarly, there is ICMP, the Internet Control Message Protocol. ICMP allows IP
hosts and routers to communicate information about network conditions and
host reachability. But again, there is no authentication, so injecting bogus ICMP
packets can have drastic effects. For instance, there are ICMP messages that say
a particular host or TCP port is unreachable; forging such packets can cause
connections to be torn down. There are also ICMP messages that communicate
routing information (redirects and router discovery); forging such messages can
cause sensitive data to be routed through unintended and possibly compro-
mised systems.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.10 Threats SSH Doesn’t Prevent | 95

TCP desynchronization and hijacking
By clever manipulation of the TCP protocol, an attacker can desynchronize two
sides of a TCP connection with respect to data byte sequence numbers. In this
state, it is possible to inject packets that are accepted as a legitimate part of the
connection, allowing the attacker to insert arbitrary information into the TCP
data stream.

SSH provides no protection against attacks that break or prevent setup of TCP con-
nections. On the other hand, SSH’s encryption and host authentication are effective
against attacks that involve inappropriate routing that would otherwise permit read-
ing of sensitive traffic or redirect a connection to a compromised server. Likewise,
attacks that hijack or alter TCP data will fail, because SSH detects them, but they also
break the SSH connection, because SSH responds to such problems by termination.

Because these threats focus on problems with TCP/IP, they can be effectively coun-
tered only by lower, network-level techniques, such as hardware link encryption or
IPSEC. [1.6.4] IPSEC is the IP Security protocol that is part of the next-generation IP
protocol, IPv6, and available as an add-on to the current IP standard, IPv4. It pro-
vides encryption, integrity, and data origin-authentication services at the IP packet
level.

3.10.3 Traffic Analysis
Even if an attacker can’t read your network traffic, he can glean a great deal of use-
ful information by simply watching it—noting the amount of data, the source and
destination addresses, and timing. A sudden increase in traffic with another com-
pany might tip him off that an impending business deal is in the works. Traffic pat-
terns can also indicate backup schedules or times of day most vulnerable to denial-
of-service attacks. Prolonged silence on an SSH connection from a sysadmin’s
desktop might indicate that she’s stepped out, and that now is a good time to
break in, electronically or physically.

SSH doesn’t address traffic-analysis attacks. SSH connections are easily identifiable
as they generally go to a well-known port, and the SSH protocol makes no attempt to
obfuscate traffic analysis. An SSH implementation could conceivably send random,
no-op traffic over a connection when it’s otherwise idle, to frustrate activity correla-
tion. OpenSSH, in fact, sends no-op packets in response to keystrokes when a pro-
gram turns off tty echo (e.g., the su program prompting for a password). This makes
it harder for an attacker to identify the keystrokes of value in a session.

Although the SSH protocol doesn’t specifically deal with traffic analy-
sis, some implementations take steps against it. OpenSSH, for exam-
ple, hides the fact that terminal echoing has been turned off by
sending fake echo packets, making it harder to recognize signatures of
non-echoing commands, such as typing the root password after an su
prompt.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 3: Inside SSH

A more serious concern regarding traffic analysis arises from recent work by U.C.
Berkeley researchers Dawn Song, David Wagner, and Xuqing Tian. At the 10th
Usenix Security Symposium (Washington D.C., August 2001), they presented a
paper titled “Timing Analysis of Keystrokes and Timing Attacks on SSH”:

http://www.usenix.org/publications/library/proceedings/sec01/song.html

The paper applies traffic-analysis techniques to interactive SSH connections to infer
information about the encrypted contents. The authors conclude that the keystroke
timing data observable from existing SSH implementations reveals a dangerously sig-
nificant amount of information about user terminal sessions—enough to locate
typed passwords in the session data stream and reduce the computational work
involved in guessing those passwords by a factor of 50. While this work describes a
very sophisticated attack which has yet to yield any practical exploits (that we know
of!), this area bears watching.

3.10.4 Covert Channels
A covert channel is a means of signaling information in an unanticipated and unno-
ticed fashion. Suppose that one day, Sysadmin Sally decides her users are having too
much fun, and she turns off email and instant messaging so that they can’t chat. To
get around this, you and your friend agree to put messages to each other into world-
readable files in your home directories, which you’ll check every once in a while for
new messages. This unanticipated communication mechanism is a covert channel.

Covert channels are hard to eliminate. If Sysadmin Sally discovers your file-based
technique, she can make all home directories unreadable and unsearchable by any-
one but their owners, and prevent the owners from changing this restriction. While
she’s at it, she can also make sure you can’t create files anywhere else, like /tmp.
(Most of your programs don’t work now, but that doesn’t matter to Sally.) Even so,
you and your friend can still list each other’s home directory nodes themselves,
which reveals the directory modification date and number of files, so you devise a
secret code based on these visible parameters and communicate by modifying them.
This is a more complex covert channel, and you can imagine even more outlandish
ones in the face of further restrictions from Sally.

SSH doesn’t attempt to eliminate covert channels. Their analysis and control are gen-
erally part of highly secure computer systems, such as those designed to handle infor-
mation safely at various security classification levels within the same system.
Incidentally, the SSH data stream itself can be used perfectly well as a covert chan-
nel: the encrypted contents of your SSH session might be a recipe for chocolate chip
cookies, while a secret message about an impending corporate merger is represented
in Morse code using even/odd packet lengths for dashes and dots.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3.11 Threats Caused by SSH | 97

3.10.5 Carelessness
Mit der Dummheit kämpfen Götter selbst vergebens.

(Against stupidity, even the Gods struggle in vain.)

—Friedrich von Schiller

Security tools don’t secure anything; they only help people to do so. It’s almost a cli-
ché, but so important that it bears any amount of repeating. The best cryptography
or most secure protocols in the world won’t help if users pick bad passwords, or
write their passphrases on Post-it notes stuck to the undersides of their keyboards.
They also won’t help sysadmins who neglect other aspects of host security, allowing
host-key theft or wiretapping of terminal sessions.

As Bruce Schneier is fond of saying, “Security is a process, not a product.” SSH is a
good tool, but it must be part of an overall and ongoing process of security aware-
ness. Other aspects of host integrity must still be attended to; security advisories for
relevant software and operating systems monitored, appropriate patches or
workarounds applied promptly, and people educated and kept aware of their security
responsibilities. Don’t just install SSH and think that you’re now secure; you’re not.

3.11 Threats Caused by SSH
We can hear the chorus now...“What? I’m using SSH to improve security; what do
you mean it causes threats!?” Calm down, we’re just being complete here. There are
no new threats that SSH causes per se, but there are existing issues that it perhaps
exacerbates.

To employ SSH, your users must be able to make outbound TCP connections: and
really, that gives them the power to do just about anything. Think you can restrict
which Internet hosts they can contact? Think again: all they need is a proxy on a host
they can reach to redirect their traffic. Think they can only use TCP because that’s all
the firewall lets through? Not at all: there are freely available tools that can operate a
full-blown VPN over a TCP (e.g., OpenVPN). Think you’re safe from inbound
attacks because you allow only outbound connections? Don’t be naive: that “out-
bound” connection is a two-way street once established and can be connected to
anything at all.

The only things that keep people from violating your security policy with this access,
aside from respecting the policy itself, are ignorance and inconvenience. Your users
might not know how to play any of the preceding tricks, or it might be too much
trouble if they do. SSH, however, makes some of these things very easy: tunneling
outbound connections to “forbidden” TCP ports, reverse forwarding to tunnel back
through your firewall and circumvent it, etc...and everything nicely encrypted so that
you can’t see what’s happening!



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 3: Inside SSH

The important lesson here is not that SSH is dangerous, but that truly limiting net-
work access is a very difficult proposition: usually impossible, in fact, with any kind
of reasonable effort (and if you want to get any other work done). When there are
convenient tools like SSH lying around tempting people to get around annoying limi-
tations, you can no longer rely on ignorance and inconvenience to enforce your secu-
rity policy. Ultimately, you must gain the trust and cooperation of your users to have
an effective security policy.

3.12 Summary
The SSH protocol uses openly published, strong cryptographic tools to provide net-
work connections with privacy, integrity, and mutual authentication. The original
SSH-1 protocol (a.k.a. SSH 1.5) was wildly popular, despite being somewhat ad hoc:
essentially a documentation of SSH1’s program behavior. It had a number of short-
comings and flaws, of which the weak integrity check and resulting Futoransky/Kar-
gieman insertion attack is perhaps the most egregious example. The current protocol
version, SSH-2, is far superior, but was slow to take off due to the dearth of imple-
mentations, licensing restrictions, and the continued availability of the free SSH1
software for many commercial purposes. Thankfully, the tide has now turned, due
primarily to the gargantuan and mostly unpaid efforts of the OpenSSH team in
bringing forth a free implementation of the SSH-2 protocol.

SSH counters many network-related security threats, but not all. In particular, it is
vulnerable to denial-of-service attacks based on weaknesses in TCP/IP, its underly-
ing transport...though now that IPSec is widespread, these weaknesses can be
addressed if need be. SSH also doesn’t address attacks such as traffic analysis and
covert channels, which may be of concern depending on the environment.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

99

Chapter 4x CHAPTER 4

Installation and Compile-Time
Configuration

Now that you know what SSH is and how it works, where do you get it and how do
you install it? This chapter surveys several popular and robust implementations of
SSH and explains how to obtain, compile, and install them:

OpenSSH
A free implementation, originally part of OpenBSD, and available for many other
operating systems including Linux, Solaris, Mac OS X, and Windows.

Tectia
A suite of commercial products from SSH Communications Security Corp., that
run on a variety of platforms including Linux, Solaris, HP-UX, AIX, and Win-
dows. Formerly known as SSH2 and SSH Secure Shell.

Non-Unix implementations of SSH are covered in Chapters 13–18.

4.1. Overview
The first question to consider when installing any implementation of SSH is whether
to use a binary or source distribution.

Binary distributions are already configured and compiled, and are therefore easy to
use. They are available for popular SSH implementations like OpenSSH and Tectia
on a variety of common platforms. The packaging technology and installation
instructions vary according to the target system—consult the documentation pro-
vided by your vendor for details. For example, on Linux systems, binary distribu-
tions are usually shipped as RPM packages, and can be installed using a single
command like:

$ rpm -Uhv openssh-3.9p1-1.i386.rpm

Installation on Unix systems typically requires root access, to install files in system
directories, and to update the databases that keep track of installed packages.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

100 | Chapter 4: Installation and Compile-Time Configuration

Binary distributions are often cryptographically signed, to ensure that no one has
tampered with the files. Signatures can be provided as separate files, or (depending
on the package format) embedded within the binary distribution files, and the tech-
nique to verify the signature depends on how the files were signed. For example, on
RPM-based Linux systems, first import the vendor’s public key, which is distributed
by keyservers or the vendor’s web site:

$ rpm --import http://www.redhat.com/security/db42a60e.txt

Then use the public key to check the signature:

$ rpm --checksig -v openssh-3.9p1-1.i386.rpm

Always check the signatures of binary distributions before installing.
Imagine the havoc that could be caused if a maliciously hacked ver-
sion of SSH was unwittingly used on your system.

Source distributions require more work to install, but allow many more configuration
options. They can also be used on platforms for which no binary distributions are
available.

To install from sources, perform the following general steps; we’ll cover specific
details for OpenSSH and Tectia in subsequent sections.

4.1.1 Install the Prerequisites
Some SSH implementations rely on other software packages; these must be obtained
and installed first. The precise requirements sometimes depend on the configuration
options chosen: e.g., support for hardware authentication devices (smartcards) might
require special libraries.

4.1.2 Obtain the Sources
Source code for open source SSH implementations can be downloaded from each
project’s web site, and often a large number of mirror sites. Sources for commercial
products are sometimes provided on the distribution media, or are available on ven-
dors’ password-protected web sites.

4.1.3 Verify the Signature
Sources should be distributed with a signature file that guarantees the distribution is
genuine and has not been modified. [1.6.2] The precise steps used to verify the signa-
ture depend on how the source file was signed.

Always check the signature before installing sources. Otherwise, you can be fooled
by a hacked version created by an untrusted third party. If you blindly install a



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4.1. Overview | 101

source without checking the signature, you can seriously compromise your system’s
security.

4.1.4 Extract the Source Files
Source distributions are almost invariably packaged in compressed tar format.* File-
names ending in .tar.gz (or sometimes .tgz) are compressed using gzip, and can be
extracted using a command like:

$ tar xzvf openssh-3.9p1.tar.gz

If your version of tar does not support the z option for running gunzip automati-
cally, try:

$ gunzip < openssh-3.9p1.tar.gz | tar xvf -

gzip (and gunzip) can be obtained, if you don’t already have them, from http://
www.gzip.org/.

Similarly, filenames ending in .tar.bz2 are compressed using bzip2, and can be
extracted using a command like:

$ tar xjvf openssh-3.9p1.tar.bz2

If your version of tar does not support the j option for running bunzip2 automati-
cally, try:

$ bunzip2 < openssh-3.9p1.tar.bz2 | tar xvf -

bzip2 (and bunzip2) can be obtained from http://sources.redhat.com/bzip2.

In all cases, the result is a new subdirectory containing all files in the distribution.
The name of the source directory is usually the same as the tar file, e.g., openssh-3.
9p1.

To list the contents of the tar file, without extracting, use the t option instead of x;
for example:

$ tar tzvf openssh-3.9p1.tar.gz

4.1.5 Perform Compile-Time Configuration
Most SSH implementations have dozens of configuration options you can set at com-
pile time. It’s a good idea to carefully consider each one, instead of blindly accepting
the defaults. In fact, the flexibility provided by this compile-time configuration pro-
cess is a primary motivation for installing from source distributions.

* Often called a “tarball.”



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 4: Installation and Compile-Time Configuration

Compile-time configuration is performed by running a script named configure that is
usually found in the top-level source directory.* Roughly speaking, the configure

script accomplishes two tasks:

• It examines the local system, setting various platform-specific and operating-
system-specific options. For example, configure notices which header files and
libraries are available and whether your C compiler is ANSI or not. It does this
by compiling and running a series of carefully constructed, small test programs,
examining system files, etc. This happens automatically in most cases, so you
can just sit back and watch the script announce what it discovers as it runs.

• It includes or excludes certain features found in the SSH source code. For exam-
ple, configure can keep or remove support for Kerberos authentication.

We’ll discuss only the second task, since it’s SSH-specific, and cover only the config-
uration options that are directly related to SSH or security. For example, we won’t
cover options that relate to the compiler (e.g., whether warnings should be printed or
suppressed) or operating system (e.g., whether particular Unix library functions
should be used). To see the full set of configure options, use the command:

$ configure --help

Also, read the installation documentation, which is often found in files named
README and INSTALL in the source directory.

The behavior of SSH servers can be controlled at three levels. The first is compile-
time configuration as discussed in this chapter. In addition, serverwide configuration
(Chapter 5) controls global settings for a running SSH server, and per-account config-
uration (Chapter 8) controls settings for each user account accepting SSH connec-
tions. Figure 4-1 illustrates where compile-time configuration fits into the whole
spectrum. We’ll remind you of this picture each time we introduce a new type of
configuration.

Compile-time configuration affects both the SSH server and client programs. Chang-
ing the configuration requires recompiling and reinstalling, which is neither easy nor
convenient, so for most aspects of server and client operation, it’s more appropriate
to edit configuration files after installation. Nevertheless, there are some good rea-
sons to use compile-time configuration:

• Some configuration options can only be set at compile time.

• Features that are disabled at compile time can’t be accidentally enabled by erro-
neous configuration files. Inflexibility can be an asset.

* The configure script is generated by a Free Software Foundation package called autoconf. You don’t need to
know this to compile SSH, but if you’re interested in learning more about autoconf, visit the GNU web site
at http://www.gnu.org/software/autoconf/.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4.1. Overview | 103

• Removing code for unused features improves security—you can’t be burned by
security holes in code that you don’t compile!

• Similarly, code removal sometimes yields a performance advantage, since less
memory and disk space is used.

The configure script accepts command-line flags, each beginning with a double dash
(--), to control its actions. Flags are of two types:

With/without flags
Include a package during compilation. These flags begin with --with or
--without. For example, support for the X Window System can be included
using the flag --with-x and omitted using --without-x.

Enable/disable flags
Set the default behavior of SSH. These flags begin with --enable or --disable.
For example, the X forwarding feature in Tectia is enabled by the flag --enable-

X11-forwarding or disabled with --disable-X11-forwarding. Some of these
defaults can be overridden later by serverwide or per-account configuration.

Figure 4-1. SSH compile-time configuration (highlighted parts)

SSH
Client

Command-line
options

Environment
variables

User’s client
configuration file

Global client
configuration file

Compile-time
flags

Key-related
files

Known hosts
databases

Configuration types

Command-line
options

Custom session
startup

Server-side
configuration file

Server-side
authorization files

Compile-time
flags

Target account’s
authorization files

TCP-wrappers
files

Kerberos
configuration files

PAM files

SSH
Server

Configuration types



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 4: Installation and Compile-Time Configuration

Flags beginning with --with or --enable may optionally be followed by an equals
sign and a string value, such as:

--with-etcdir=/usr/local/etc

--enable-X11-forwarding=no

Various string values are used, but the most common are yes and no. For a given
package P, the flags --with-P and --with-P =yes are equivalent. The following table
illustrates the relationship:

This next table shows the relationships for a given feature F:

In the sections that follow, we show many examples of configure with different
command-line flags. Most examples demonstrate only one flag at a time, but keep in
mind that other flags might be present on the command line. The proper way to run
configure is just once, before compilation, with all desired flags on the same com-
mand line.

The configure script uses directory information from its own location to embed path-
names into the Makefiles, header files, etc., that it creates. Relying on the PATH envi-
ronment variable to find the configure script is therefore a bad practice. If you choose
to compile within the source directory, specify the current directory explicitly when
you run configure:

$ ./configure ...options...

Alternately, you can compile in a different directory, which is convenient if the
source directory is used for multiple platforms. To do this, create a separate, empty
build directory, and run configure there, specifying the source directory for the con-
figure pathname:

$ mkdir -p /elsewhere/build/ssh
$ cd /elsewhere/build/ssh
$ /somewhere/src/ssh/configure ...

In our examples, we’ll omit the directory components from the configure pathname,
but remember that they should be included when you run the script.

If you write: It’s equivalent to:

--with-P=yes --with-P

--with-P=no --without-P

If you write: It’s equivalent to:

--enable-F=yes --enable-F

--enable-F=no --disable-F



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4.1. Overview | 105

4.1.6 Compile Everything
This is simple—just type:

$ make

Compiling can take a while, depending on the speed of your system.

The make command should be run in the same directory where the configure script
ran.

If make fails when you attempt to use a separate build directory (i.e.,
different from the source directory), then you might need to upgrade
your version of the make program. A good choice is GNU make, avail-
able from http://www.gnu.org/software/make/.

4.1.7 Install the Programs and Configuration Files
You need root privileges to install files in system directories, which is the usual
location:

$ su
Password: ********
# make install

Specifying Options for the configure Script
Be careful when specifying configure options, or youmight waste a lot of time. The con-
figure script is not very smart, performing little or no sanity checking on its input. For
example, if you provide an invalid value, configure can naively run for several minutes,
handling 100 other configuration options, before finally reaching the bad value and
dying. Now you have to run the script all over again.

Unrecognized command-line options are silently ignored, which makes typos espe-
cially dangerous. Be sure to check the messages produced by configure as it runs, and
especially the configuration summary printed at the end to verify that your options
were understood as you intended.

Don’t depend on default values, since they might differ among SSH implementations.
For maximum security and control, explicitly specify all the options you care about
when running configure.

The --no-create option causes the configure script to perform all of its checks, but not
to create any output files in the build directory. This can be useful if you need to debug
an unexpected interpretation of the other options.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

106 | Chapter 4: Installation and Compile-Time Configuration

4.2 Installing OpenSSH
OpenSSH is a free implementation of the SSH-1 and SSH-2 protocols, obtained from
the OpenSSH web site:

http://www.openssh.com/

OpenSSH is a very complete implementation and includes:

• Client programs for remote logins, remote command execution, and secure file
copying across a network, all with many runtime options

• A highly configurable SSH server

• Command-line interfaces for all programs, facilitating scripting with standard
Unix tools (shells, Perl, etc.)

• Numerous, selectable encryption algorithms and authentication mechanisms

• An SSH agent, which caches keys for ease of use

• Support for SOCKS proxies

• Support for TCP port forwarding and X11 forwarding

• History and logging features to aid in debugging

• Example configuration files /etc/ssh/ssh_config and /etc/ssh/sshd_config

Since it is developed by the OpenBSD Project, the main version of OpenSSH is spe-
cifically for the OpenBSD Unix operating system, and is in fact included in the base
OpenBSD installation. As a separate but related effort, another team maintains a
“portable” version that compiles on a variety of Unix flavors and tracks the main
development effort. The supported platforms include Linux, Solaris AIX, IRIX, HP/
UX, FreeBSD, NetBSD, and Windows via the Cygwin compatibility library. The por-
table version carries a “p” suffix. For example, 3.9p1 is the first release of the porta-
ble version of OpenSSH 3.9.

4.2.1 Prerequisites
OpenSSH depends on two other software packages: OpenSSL and zlib. OpenSSL is a
cryptographic library available at http://www.openssl.org/; all the cryptography used
in OpenSSH is pulled from OpenSSL. zlib is a library of data-compression routines,
available at http://www.gzip.org/zlib/. These packages must be on your system before
you build OpenSSH.

4.2.2 Downloading and Extracting the Files
Distributions are packaged in gzipped tar format and are extracted with the tar com-
mand in the usual way. [4.1.4] The results are stored in a directory with a name like
openssh-3.9p1.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4.2 Installing OpenSSH | 107

4.2.2.1 Verifying with GnuPG

Along with each OpenSSH distribution is a GnuPG (Gnu Privacy Guard) signature.
The file openssh-3.9p1.tar.gz, for example, is accompanied by openssh-3.9p1.tar.gz.
sig containing the GnuPG signature. To verify the file is genuine, you need GnuPG
installed (http://www.gnupg.org/). Then:

1. If you have not done so previously, obtain the GnuPG public key for the distri-
bution, available from various keyservers on the Internet, such as:

http://www.keyserver.net
http://pgp.mit.edu

Add the key to your GnuPG key ring by running:

$ gpg --keyserver keyserver --search-keys openssh

and following the instructions.

2. Download both the distribution file (e.g., openssh-3.9p1.tar.gz) and the signa-
ture file (e.g., openssh-3.9p1.tar.gz.sig).

3. Verify the signature with the command:

$ gpg --verify openssh-3.9p1.tar.gz.sig openssh-3.9p1.tar.gz

If no warning messages are produced, the distribution file is genuine.

Always check the GnuPG signatures.

4.2.3 Building and Installing
Building and installing OpenSSH follows the familiar pattern for Unix open source
software: configure, make, and make install. [4.1.6] Read the file INSTALL in the
top-level source directory for full instructions.

4.2.4 Configuration Options
OpenSSH’s configure script understands a wide range of options to customize its
operation. We cover the most significant ones.

4.2.4.1 File locations

The make install command installs OpenSSH in the /usr/local hierarchy by default,
placing ssh into /usr/local/bin, sshd into /usr/local/sbin, configuration files into /usr/
local/etc, and so forth. You can specify a different installation hierarchy, such as /usr,
with:

$ configure --prefix=/usr

--prefix Determine where to install the software



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 4: Installation and Compile-Time Configuration

Other options offer more fine-grained control over installation directories, such as
--bindir for the executables normally placed in a bin directory, --sbindir for the
sbin files, --sysconfdir for the etc files, --mandir for manpages, and so on: run con-
figure --help for the full list.

You can set the default command search path for OpenSSH when attempting to run
a subprogram, and an alternative path for the superuser.

If OpenSSL isn’t installed in the usual place, /usr/local/ssl, use this option to indicate
its location.

In OpenSSH, the default location of the xauth program for X authentication is a
compile-time parameter.

The location of the OpenSSH pid file, where it stores the pid of the currently run-
ning daemon, can be changed via the --with-pid-dir option. The default is /var/run/
sshd.pid.

4.2.4.2 Random number generation

OpenSSH normally relies on the OpenSSL library to provide a stream of random bits
for its cryptographic needs. The OpenSSL pseudo-random number generator
(PRNG) needs to be “seeded” to start with, and then periodically, with an initial seg-
ment of unpredictable bits (as truly random as is available). If the operating system
supplies random bits, OpenSSL uses this to seed itself; for example, many Unix vari-
ants provide random bits via a device driver accessible through /dev/random or /dev/
urandom.

If your platform doesn’t provide any randomness source, you need to build
OpenSSH with:

configure --with-rand-helper

OpenSSH then runs the external program ssh-rand-helper to seed the PRNG.

--with-default-path=PATH Default server PATH

--with-superuser-path=PATH Superuser’s server PATH

--with-ssl-dir=PATH Set path to OpenSSL installation

--with-xauth=PATH Set path to xauth program

--with-pid-dir=PATH Specify location of ssh.pid file

--with-random=FILE Read random bits from given file, normally /dev/urandom

--with-rand-helper Use external program to generate randomness

--with-prngd-port=PORT Read entropy from PRNGD/EGD TCP localhost:PORT

--with-prngd-socket=FILE Read entropy from PRNGD/EGD socket FILE (default=
/var/run/egd-pool)



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4.2 Installing OpenSSH | 109

If your system is running the Entropy Gathering Daemon (EGD) package (http://
www.lothar.com/tech/crypto/), you can use it with the --with-prngd-port and --with-

prngd-socket options.

The ssh-rand-helper program uses a configurable set of commands that monitor
changing aspects of system operation, mixing their output together to produce its
random bits. You can control which commands are used and how, with the file /etc/
ssh/ssh_prng_cmds.

If you install EGD as described earlier, use the --with-egd-pool option to have
OpenSSH use EGD as its randomness source.

4.2.4.3 Networking

In X forwarding, use DISPLAY values of the form 192.168.10.1:10.0 instead of
hostname:10.0. This option works around certain buggy X libraries that do weird
things with the hostname version, using some sort of IPC mechanism for talking to
the X server rather than TCP.

OpenSSH supports IPv6, the next-generation TCP/IP protocol suite that is still in the
development and very early deployment stages on the Internet (the current version of
IP is IPv4). The default configuration of OpenSSH attempts to use IPv6 where possi-
ble, and sometimes this results in problems. If you encounter errors mentioning
“af=10” or “address family 10,” that’s IPv6, and you should try the –4 runtime
option, or compiling --with-ipv4-default.

4.2.4.4 Authentication

PAM, the Pluggable Authentication Modules system, is a generic framework for
authentication, authorization, and accounting (AAA). The idea is that programs call
PAM to perform AAA functions, rather than implementing these functions them-
selves. This allows the sysadmin to configure individual programs to use various
kinds of authentication, apply account restrictions, do logging, etc., via dynamically
loaded libraries. PAM-aware services can be configured to do almost anything in the
way of AAA, in a consistent manner and without having to change the services them-
selves. See the manpage for pam or visit http://www.kernel.org/pub/linux/libs/pam/ for
more information on PAM.

--with-egd-pool=FILE Read randomness from EGD pool FILE (default none)

--with-ipaddr-display Use IP address instead of hostname in $DISPLAY

--with-ipv4-default Use IPv4 unless “-6” is given

--with-4in6 Check for and convert IPv4 in IPv6 mapped addresses

--with-pam Enable PAM support

--without-pam Disable PAM support



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

110 | Chapter 4: Installation and Compile-Time Configuration

In order for OpenSSH to use PAM, the support must be compiled in. PAM is very
common these days, so most OpenSSH binary packages include support; if your’s
doesn’t, use the --with-pam option. Actually, configure detects PAM if you have it, so
the option is often not necessary.

In addition, you must set the UsePAM configuration keyword in the SSH server:

# sshd_config
UsePAM yes

(This is off by default.) Setting UsePAM causes sshd to do three separate things:

• Enable the PAM “device” for keyboard-interactive authentication [5.4.6]

• Verify password authentication using PAM

• Execute all system PAM modules configured for ssh (usually found in /etc/pam.d/
ssh)

Note that the execution action is a very powerful feature; you can customize sshd’s
behavior in many ways with PAM modules. Look on your system for the PAM mod-
ules available and their documentation, e.g., /lib/security and /usr/share/doc/libpam-doc.

Generally, if a program uses PAM, some host configuration is necessary to describe
how PAM should behave for that program. The PAM configuration files are usually
in the directory /etc/pam.d, or in the single file /etc/pam.conf. Most OpenSSH pack-
ages automatically add the requisite PAM configuration for sshd; otherwise, you’ll
need to do it, usually by copying the appropriate sshd.pam file from the contrib direc-
tory to /etc/pam.d/sshd. Samples for various operating systems are included in the
contrib directory of the OpenSSH source. Note that you don’t need to restart sshd if
you change its PAM configuration; the configuration files are checked on every use of
PAM.

These options control OpenSSH’s treatment of the Unix account database (a.k.a.
passwd map). They are relevant only if OpenSSH isn’t using PAM, since otherwise
PAM deals with reading the account information, not the OpenSSH code proper.

Enable --with-md5-passwords if your system uses MD5 instead of the traditional
crypt function to hash passwords, and you are not using PAM.

“Shadow passwords” refers to the practice of keeping the hashed password in a
restricted file, /etc/shadow (/etc/passwd must be world-readable). Use --without-

shadow to suppress reading of the /etc/shadow file, should it be necessary.

--with-md5-passwords Enable use of MD5 passwords

--without-shadow Disable shadow password support

--with-kerberos5=PATH Enable Kerberos-5 support

--with-skey Enable S/Key support



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4.3 Installing Tectia | 111

The --with-kerberos5 option installs Kerberos support [11.4], and the --with-skey

option enables support for the S/Key one-time password system for password
authentication. [5.4.5]

4.2.4.5 Access control

These options include support for TCP-wrappers, providing the path to the wrapper
library, libwrap.a . If the library and header file for TCP-wrappers are not installed in
the standard locations, you can provide a pathname as an argument. The pathname
can either be a build directory that contains both the library and header file:

$ configure --with-tcp-wrappers=/var/tmp/build/tcp-wrappers

or it can be an installation directory with lib and include subdirectories:

$ configure --with-tcp-wrappers=/usr/local/tcp-wrappers

If your Unix installation doesn’t include the TCP-wrappers library, you can retrieve
and compile it yourself from ftp://ftp.porcupine.org/pub/security/index.html. For more
information on TCP-wrappers, read the manpages for tcpd and hosts_access.

4.3 Installing Tectia
Tectia is a commercial implementation of the SSH-2 protocol, with some limited
support for compatibility with the older (and deprecated) SSH-1 protocol. Binary
distributions can be downloaded for evaluation (with a limited license that is valid
for 30 days) from the SSH Communications Security web site:

http://www.ssh.com/

Fully licensed Tectia products, with distribution media and documentation, can be
purchased from the same web site.

Tectia is designed for deployment across large corporate networks, and offers tre-
mendous flexibility, power, and reliability. The products include:

• Client programs for remote logins, remote command execution, and secure file
copying across a network, all with many runtime options

• A highly configurable SSH server

• Command-line interfaces for all programs, facilitating scripting with standard
Unix tools (shells, Perl, etc.)

• Numerous, selectable encryption algorithms and authentication mechanisms

• An SSH agent, which caches keys for ease of use

--with-tcp-wrappers Include TCP-wrappers support

--without-tcp-wrappers Remove TCP-wrappers support



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 4: Installation and Compile-Time Configuration

• Support for SOCKS proxies

• Support for TCP port forwarding and X11 forwarding

• History and logging features to aid in debugging

• FIPS 140-2 certification for U.S. government applications

4.3.1 Prerequisites
Tectia is fully self contained, and requires no other packages if installed on one of the
supported platforms. Some configuration options require you to install other soft-
ware packages, however; these are discussed below.

4.3.2 Obtaining and Extracting the Files
Binary distributions are packaged according to the target platform, and can be
installed according to the documentation provided for each system.

Source distributions are packaged in gzipped tar format. For Version 4.1 and earlier,
the sources are included with the distribution media for the Tectia Server for Unix
product. Starting with Version 4.2, the sources are available only for commercial
licenses and only upon request, via a protected area of the SSH Communications
Security web site. No sources are provided for the Windows products.

To extract the files, use the tar command in the usual way. [4.1.4] The results are
stored in a directory with a name like ssh-4.2.1.1-commercial.

4.3.3 Verifying with md5sum
Binary and source distribution files are protected from tampering by MD5 message
digests. Each file is accompanied by a separate file with an extra .md5 suffix contain-
ing the digest.

To verify the integrity of the files, use the md5sum command to compute the digest,
and compare the result to the contents of the corresponding .md5 file:

$ md5sum ssh-4.1.0.34-commercial.tar.gz
0c7be85eb79e80e893d4c258df8443f0  ssh-4.1.0.34-commercial.tar.gz
$ cat ssh-4.1.0.34-commercial.tar.gz.md5
0c7be85eb79e80e893d4c258df8443f0

Here’s a brash one-liner for verification in a single step:

$ md5sum ssh-4.1.0.34-1.i386.rpm | cut -c 1-32 | cmp - ssh-4.1.0.34-1.i386.rpm.md5

If the command succeeds silently, the message digests are equal.

Unfortunately, Tectia doesn’t sign installers for binary package formats (like RPM)
that support embedded signatures. MD5 message digests are provided for these
installers, however.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4.3 Installing Tectia | 113

4.3.4 Building and Installing
To build and install Tectia, use the standard steps that we have described previ-
ously: configure, make, and make install. [4.1.6] The following files are installed:

• The server program sshd2, and a link to it called sshd.

• The secure FTP server program sftp-server2, and a link to it called sftp-server.

• The clients ssh2, scp2, and sftp2, and links to them called ssh, scp, and sftp,
respectively.

• Support programs ssh-add2, ssh-agent2, ssh-askpass2, ssh-keygen2, ssh-probe2,
and ssh-signer2, and links to them called ssh-add, ssh-agent, ssh-askpass, ssh-key-
gen, ssh-probe, and ssh-signer, respectively.

• The additional support programs sshd-check-conf and ssh-dummy-shell.

• The standard crypto library libsshcrypto-std and the FIPS-compliant library
libsshcrypto-fips if supported for the target system. The library filenames will
have a platform-dependent suffix, e.g., libsshcrypto.a or libsshcrypto.so.

• The ssh-crypto-library-chooser script used to switch between standard and FIPS
mode. [5.3.5]

• The password change plugin ssh-passwd-plugin [5.4.2.3] and (if configured) the
SecurID plugins ssh-securidv4-plugin and ssh-securidv5-plugin. [5.4.5.2]

• A newly generated host key pair, created by ssh-keygen2 and placed by default
into /etc/ssh2/hostkey (private key) and /etc/ssh2/hostkey.pub (public key).

• The server configuration file, /etc/ssh2/sshd2_config by default [5.2.1], plus sam-
ple subconfiguration files in /etc/ssh2/subconfig.

• The client configuration file, /etc/ssh2/ssh2_config by default. [7.1.2]

• The password plugin configuration file, /etc/ssh2/plugin/passwd_config. [5.4.2.3]

• Manpages for the various programs.

4.3.5 Configuration Options
Tectia’s configure script understands a wide variety of options to customize its opera-
tion. We cover the most significant ones.

4.3.5.1 File locations and permission

The make install command installs Tectia in the /usr/local directory by default. Pro-
grams that are normally run by users (e.g., ssh) are installed in the bin subdirectory,
programs run by sysadmins (e.g., sshd) in the sbin subdirectory, manpages in the

--prefix Determine where to install the software



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 4: Installation and Compile-Time Configuration

man subdirectory, etc. Use the --prefix option to specify a different parent direc-
tory, such as /usr/local/tectia:

$ configure --prefix=/usr/local/tectia

If your system uses an unusual layout for specific subdirectories, options such as
--bindir, --sbindir, and --mandir allow more precise control over the location of
individual components. The configure --help command lists all of the options for the
subdirectories.

.

By default, Tectia assumes that the standard location for system configuration files is
the /etc directory, and installs its own configuration files in a subdirectory, /etc/ssh2.
To change the system configuration directory (continuing to use an ssh2 subdirec-
tory for Tectia’s files by default), use the --with-foreign-etcdir option:

$ configure --with-foreign-etcdir=/usr/local/etc

To independently change Tectia’s configuration directory, use the --with-etcdir

option:

$ configure --with-etcdir=/usr/local/etc/ssh2

The Tectia server stores its process ID (pid) in a file to facilitate sending signals.
[5.3.1.3] By default, the pid file is created in the /var/run directory. Use the --with-
piddir option to change this directory:

$ configure --with-piddir=/var/local/pid

The --with-foreign-etcdir, --with-etcdir, and --with-piddir options
are unusual because there are no corresponding “--without” options.

Tectia uses a separate ssh-signer program to sign authentication packets for trusted-
host authentication. Normally this program is installed with setuid root permissions
so it can read the local host key file, which is readable only by the superuser.

You can install the program without setuid root permissions to eliminate possible
security holes, but then hostbased authentication fails. [3.4.3.6]

4.3.5.2 Random number generation

--with-foreign-etcdir Specify directory for system configuration files

--with-etcdir Specify directory for Tectia configuration files

--with-piddir Specify directory for pid files

--enable-suid-ssh-signer Install ssh-signer setuid root

--disable-suid-ssh-signer Install ssh-signer unprivileged

--with-ansi-rng Use ANSI X9.62 random number generator

--without-ansi-rng Use SSH random number generator



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4.3 Installing Tectia | 115

Tectia uses its own random number generator by default. The --with-ansi-rng

option configures Tectia to use the ANSI X9.62 random number generator (a.k.a. the
Elliptic Curve Digital Signature Algorithm, or ECDSA) instead. This might be
required for FIPS-standard compliance in some deployments.

4.3.5.3 Networking

Tectia supports IPv6, the next generation of IP protocols, in addition to IPv4, the
current standard. You can remove IPv6 support if you don’t need it or if you experi-
ence problems with it on your operating system.

If you plan to operate Tectia over a wide-area network as opposed to a speedy Ether-
net connection, you might consider disabling TCP/IP’s NODELAY feature, a.k.a. the
Nagle Algorithm, for SSH connections. The Nagle Algorithm reduces the number of
TCP segments sent with very small amounts of data, such as the small byte sequences
of a terminal session. You can disable it at compile time with the --disable-tcp-

nodelay flag. Alternatively, you can enable or disable it during serverwide configura-
tion using the NoDelay configuration keyword. [5.3.3.9]

TCP-wrappers is a security feature for applying access control to incoming TCP con-
nections based on their source address. [9.5] For example, TCP-wrappers can verify
the identity of a connecting host by performing DNS lookups, or it can reject connec-
tions from given addresses, address ranges, or DNS domains. Although Tectia
already includes some of this kind of control with features such as AllowHosts,
DenyHosts, etc., TCP-wrappers is more complete. It allows some controls not cur-
rently implemented in any SSH version, such as restricting the source of forwarded X
connections.

Tectia includes support for TCP-wrappers if the flag --with-libwrap is given at com-
pile time. If the TCP-wrappers library and header file were not installed in the stan-
dard locations, provide a pathname as an argument. The pathname can refer to the
library in a build directory:

$ configure --with-libwrap=/var/tmp/build/tcp-wrappers/libwrap.a

in which case the tcpd.h header file is assumed to be located in the same directory.
Alternately, the pathname can refer to the directory where the library was installed:

$ configure --with-libwrap=/usr/local/lib

--with-ipv6 Include IPv6 support

--without-ipv6 Remove IPv6 support

--enable-tcp-nodelay Enable Nagle Algorithm

--disable-tcp-nodelay Disable Nagle Algorithm

--with-libwrap Include TCP-wrappers support

--without-libwrap Remove TCP-wrappers support



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

116 | Chapter 4: Installation and Compile-Time Configuration

in which case the tcpd.h header file is assumed to be in a directory with its last com-
ponent replaced by “include” (for the previous command, /usr/local/include).

If your Unix installation doesn’t include the TCP-wrappers library, you can retrieve
and compile it yourself from:

ftp://ftp.porcupine.org/pub/security/index.html

For more information on TCP-wrappers, read the manpages for tcpd and hosts_
access.

You can instruct Tectia to limit the maximum number of simultaneous connections
it supports. By default, it accepts an unlimited number of connections, but if you
want to conserve resources on the server machine, you can set a limit. The appropri-
ate flag is --with-ssh-connection-limit with a nonnegative integer argument; for
example:

$ configure --with-ssh-connection-limit=50

You can override this value at runtime with the serverwide configuration keyword
MaxConnections. [5.3.3.7]

4.3.5.4 X Window System

If you plan to use SSH to communicate between hosts running the X Window Sys-
tem, make sure to include support for X at compile time. (By default, it is included.)
Conversely, if you never have anything to do with X, you can leave out the support,
thereby saving some memory and disk space. Few people have a strong need to elim-
inate X support.

These options enable or disable support for X forwarding, which allows X applica-
tions opened on the SSH server machine to appear on the SSH client machine’s dis-
play. [9.4] These flags set Tectia’s default behavior only. X forwarding can be further
enabled or disabled through serverwide configuration using the ForwardX11 configu-
ration keyword. [9.4.3]

By default, Tectia uses the X SECURITY extension (if supported by your X installa-
tion) to control the level of display access granted to X clients through forwarded

--with-ssh-connection-limit Specify maximum number of simultaneous
connections

--with-x Include X Window System support

--without-x Remove X Window System support

--enable-X11-forwarding Enable X forwarding

--disable-X11-forwarding Disable X forwarding

--with-x11-security Use the X SECURITY extension

--without-x11-security Don’t use the X SECURITY extension



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4.3 Installing Tectia | 117

connections. The --without-x11-security option causes Tectia to treat all X clients
as trusted, which grants full access to the display. Trusted X clients can use their dis-
play access to capture information from other clients, so you should carefully con-
sider the ramifications of disabling the X SECURITY extension.

4.3.5.5 TCP port forwarding

Port forwarding enables Tectia to encrypt the data passing through any TCP/IP-
based program. [9.2] This feature can be disabled at compile time if desired. X Win-
dow forwarding isn’t affected by these general port-forwarding flags.

4.3.5.6 Encryption

By default, Tectia includes an implementation of the RSA encryption algorithm for
public-key authentication. [3.8.1.1] You can remove support for RSA if you’ll never
need it. The option was formerly used to avoid infringing a patent that expired in
2000. Now that the algorithm is in the public domain, it is rarely desirable to remove
RSA support.

4.3.5.7 Authentication

Tectia can run a separate password-change plug-in program to manage the process
of changing expired passwords during authentication. [5.4.2.3] The configuration
option --with-passwd-plugin includes support for this mechanism in the server, and
also builds a generic plugin named ssh-passwd-plugin. The option --without-passwd-

plugin can be used to remove these features if they are not needed.

Keyboard-interactive authentication is an extensible, general-purpose mechanism for
implementing a variety of authentication techniques that require interaction with the

--enable-tcp-port-forwarding Enable port-forwarding support

--disable-tcp-port-forwarding Disable port-forwarding support

--with-rsa Include support for RSA encryption

--without-rsa Remove support for RSA encryption

--with-passwd-plugin Include support for password-change plugins

--without-passwd-plugin Remove support for password-change plugins

--enable-server-kbd-interactive Include support for keyboard-interactive
authentication in the server

--disable-server-kbd-interactive Remove support for keyboard-interactive
authentication from the server

--enable-client-kbd-interactive Include support for keyboard-interactive
authentication in the client

--disable-client-kbd-interactive Remove support for keyboard-interactive
authentication from the client



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 4: Installation and Compile-Time Configuration

remote user. Support for keyboard-interactive authentication is included by default,
but it can be removed from the Tectia server and client using separate configure
options.

Note that other authentication techniques such as SecurID and PAM are based on
keyboard-interactive authentication, so if you remove support for it, these tech-
niques will not work.

SecurID is an authentication mechanism in which users carry electronic cards,
approximately the size of a credit card, that display randomly changing integers.
During authentication, the user is prompted to type whatever number appears on the
card at the time, in addition to a username and password.

To compile Tectia with SecurID support, use the flag --with-serversecurid, provid-
ing the path to the directory containing SecurID’s header files and libraries:

$ configure --with-serversecurid=/usr/local/ace

SecurIDv5 is the most recent version at press time.

By default, SecurID support is built into the Tectia server, and is used as a keyboard-
interactive submethod. Alternately, SecurID can be supported by an external pro-
gram, ssh-securidv5-plugin. [5.4.5.2]

Support for the older SecurIDv4 can be included by specifying the --with-

serversecuridv4 option. The SecurIDv4 installation directory must be provided as
an argument:

$ configure --with-serversecuridv4=/usr/local/ace4

Very old SecurID clients can be supported by a legacy securid-1@ssh.com keyboard-
interactive submethod.

--with-serversecurid Include support for SecurID authentication

--enable-serversecurid-submethod Include SecurID support in the server

--disable-serversecurid-submethod Use an external plugin for SecurID support

--with-serversecuridv4 Include support for SecurIDv4 plugin
authentication

--enable-legacy-securid Include support for old SecurID clients

--with-daemonpam Include support for PAM authentication in
the server

--without-daemonpam Remove support for PAM authentication
from the server

--with-clientpam Include support for PAM authentication in
the client

--without-clientpam Remove support for PAM authentication
from the client



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4.3 Installing Tectia | 119

Normally PAM support is included for both the SSH server and client if it is pro-
vided by the target system. This support can be removed using separate options for
the server or client, but it is rarely desirable to do so.

By default, Tectia uses “sshd2” as the PAM service name: this refers to Tectia in the
PAM configuration files. You can change the name by providing it as an argument
for the --with-daemon-pam-service-name option:

$ configure --with-daemon-pam-service-name=tectia

Pretty Good Privacy, or PGP, is a popular encryption and authentication program
available for many computing platforms. [1.6.2] Tectia optionally authenticates users
based on their PGP keys, so long as those keys comply with the OpenPGP standard
(RFC-2440, “OpenPGP Message Format”; some PGP versions, especially older ones,
might not be OpenPGP-compliant). PGP support is included by default. [6.5]

Kerberos is an authentication mechanism that passes around tickets, small sequences
of bytes with limited lifetimes, in place of user passwords. [11.5.2.2] The configura-
tion flags --with-kerberos5 and --without-kerberos5 control whether Kerberos sup-
port is included or excluded during the build. Tectia’s Kerberos-5 support is
experimental, and is not included by default.

If Kerberos was installed in a nonstandard location, the installation directory can be
provided as an argument:

$ configure --with-kerberos5=/usr/local/kerberos5

GSS (Generic Security Services) is an emerging standard that facilitates negotiation of
security parameters among a wide variety of platforms. [11.5.2.2] Tectia can be com-
piled to use GSSAPI libraries and header files to support this standard. If the GSSAPI
installation is in a nonstandard location, specify the directory (with lib and include
subdirectories) as an argument for the --with-gssapi option:

$ configure --with-gssapi=/usr/local/gssapi

--with-daemon-pam-service-name Specify PAM service name

--with-pgp Include support for PGP authentication

--without-pgp Remove support for PGP authentication

--with-kerberos5 Include support for Kerberos-5 authentication

--without-kerberos5 Remove support for Kerberos-5 authentication

--with-gssapi Include support for GSSAPI authentication

--without-gssapi Remove support for GSSAPI authentication

--enable-gssapi-dynamic Enable dynamic loading of GSSAPI libraries

--disable-gssapi-dynamic Force static linking of GSSAPI libraries



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

120 | Chapter 4: Installation and Compile-Time Configuration

By default, GSSAPI libraries are linked statically into the SSH server and client. The
libraries can optionally be loaded dynamically at runtime: this allows new security
mechanisms to be added by replacing the libraries, without recompiling Tectia.

4.3.5.8 SOCKS proxies

SOCKS is a network protocol for proxies. A proxy is a software component that mas-
querades as another component to hide or protect it. For example, suppose a com-
pany permits its employees to surf the Web but doesn’t want the hostnames of its
internal machines to be exposed outside the company. A proxy server can be inserted
between the internal network and the Internet so that all web requests appear to be
coming from the proxy. In addition, a proxy can prevent unwanted transmissions
from entering the internal network, acting as a firewall.

Tectia supports both Versions 4 and 5 of the SOCKS protocol,* and no external
library or special configuration options are needed. The SOCKS feature is controlled
by the SocksServer client configuration keyword. [7.4.7] In addition to the usual
methods of setting this in a configuration file or on the command line with –o, you
can also set it using the SSH_SOCKS_SERVER environment variable.

SocksServer has an empty default value, causing Tectia to assume there’s no SOCKS
server. The configuration flag --with-socks-server gives nonempty default value to
this parameter, allowing you to set up a Tectia installation that assumes the pres-
ence of a SOCKS server. Note that this isn’t the same as using the SocksServer key-
word in the global client configuration file, because the keyword overrides the
environment variable. If you use the compilation option, users can specify an alter-
nate SOCKS server with SSH_SOCKS_SERVER; if you use the global file, they can’t
(although they can still override using their own SocksServer directive).

See http://www.socks.permeo.com/ for more information on SOCKS. [7.4.7]

4.3.5.9 Debugging

Tectia programs (both the server and client) produce detailed debugging output on
demand. [5.9] If desired, Tectia can be compiled with or without two levels of
debugging output. Without the debugging code, the programs might experience a

--with-socks-server Specify default SOCKS server

* Except for SOCKS5 authentication methods.

--enable-debug Enable light debugging

--disable-debug Disable light debugging

--enable-debug-heavy Enable heavy debugging

--disable-debug-heavy Disable heavy debugging



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4.3 Installing Tectia | 121

slight increase in performance, but with it, the programs are easier to maintain. We
recommend including at least some debugging code, because you never know when
you’ll need to diagnose a problem.

“Light” and “heavy” debugging are two levels of debugging that you can specify in the
source code. Light debugging output is controlled by the configure flags --enable-

debug and --disable-debug (the default). Heavy debugging output is controlled by the
configure flags --enable-debug-heavy and --disable-debug-heavy (the default). Heavy
debugging automatically enables light debugging. We recommend turning on heavy
debugging or else the messages will contain too little information to be useful.

Tectia’s memory allocations can be tracked by Electric Fence, a freely distributable
memory allocation debugger created by Bruce Perens. You must have Electric Fence
installed on the server machine in order for this to work.

The --enable-efenceflag causes Tectia’s programs to be linked with the Electric Fence
library, libefence.a, which provides instrumented versions of malloc(), free( ), and
other memory-related functions. Electric Fence is available from http://www.perens.
com/FreeSoftware/.

Rational Purify is a commercial product that supports tracking of memory accesses at
runtime. It is able to detect memory leaks and corruption due to buffer overruns, etc.

The --with-purify flag includes support for Rational Purify. When the Tectia pro-
grams run, they produce a report about memory activity that can be analyzed after
each program exits.

Rational Purify is available from http://www.ibm.com/software/awdtools/purify/.

4.3.5.10 SSH-1 protocol compatibility

The Tectia SSH client can support the older (and deprecated) SSH-1 protocol by run-
ning a separate client program named ssh1, which must be installed separately. [5.10]
By default, the Tectia SSH client also supports SSH-1 directly using its own imple-
mentation. If you don’t use the SSH-1 protocol, use the --without-internal-ssh1-

compat option to remove the internal SSH-1 support and save some space in the client.

--enable-efence Use the Electric Fence memory allocation
debugger

--with-purify Use Rational Purify to track memory accesses

--with-internal-ssh1-compat Include SSH-1 protocol support in the client

--without-internal-ssh1-compat Remove SSH-1 protocol support from the client

--with-ssh-agent1-compat Include SSH-1 protocol support in the agent

--without-ssh-agent1-compat Remove SSH-1 protocol support from the agent



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

122 | Chapter 4: Installation and Compile-Time Configuration

SSH agents [2.5] that use the protocols SSH-1 and SSH-2 are normally not compati-
ble. That is, each version of the agent can’t store keys or forward connections from
the other. However, the Tectia agent has an optional feature to serve SSH-1 protocol
applications, if it is run with the option -1 (that’s a one, not a lowercase L).

SSH-1 protocol support is included in the Tectia agent by default, but you can use
the --without-ssh-agent1-compat option to remove it if you never plan to use SSH-1
clients.

RSA support must be included (either by default, or using the --with-rsa configure

option) for the agent to support the SSH-1 protocol.

4.3.6 SSH-1 Compatibility Support for Tectia
The Tectia server only supports the SSH-2 protocol, but it can be configured to run a
separate SSH-1 server to support clients that are still using the older protocol. [5.10]
The Tectia client can similarly run a separate SSH-1 client program, or it can use its
own internal SSH-1 implementation.

If separate SSH-1 programs are used, they must be obtained and installed. OpenSSH
is a good choice for SSH-1 client support, but for SSH-1 server support, only ver-
sions earlier than 3.7 can be used.

An alternative is the latest SSH1 implementation, which is quite old and (even worse)
is no longer being actively maintained, but at least is designed to be integrated seam-
lessly with Tectia.

To install SSH1, download the tar file and associated signature file from ftp://ftp.ssh.
com/pub/ssh/. At press time, these were ssh-1.2.33.tar.gz and ssh-1.2.33.tar.gz.sig,
respectively.

To verify the signature, you also need to download the key, in the file SSH1-
DISTRIBUTION-KEY-RSA.asc. Import the key into your key ring:

$ gpg --import SSH1-DISTRIBUTION-KEY-RSA.asc

Then check the integrity of the tar file:

$ gpg --verify ssh-1.2.33.tar.gz.sig

Extract the files from the tar file in the usual way to create a source directory named
ssh-1.2.33. [4.1.4]

Run the configure script. We won’t go over its options because they are obsolete for
the most part, and because fancy features are presumably not needed (or even desir-
able) if SSH1 is only going to be employed as part of a transition strategy until older
SSH-1 clients can be upgraded to use SSH-2. You can, however, remove unneeded
features to prevent them from being exploited if any security holes are lurking in the
code (which becomes increasingly likely as the software continues to age). As usual,
see the output from configure --help for details.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4.3 Installing Tectia | 123

You can install SSH1 in the same directory as Tectia using the same configure --prefix
option for each. [4.1.5] Finally, compile everything with make, and install (typically as
root) withmake install. [4.1.6] The following files are installed:

• The server program, sshd1, and a link to it called sshd

• The clients ssh1 and scp1, and respective links called ssh and scp

• The symbolic link slogin1, pointing to ssh1, and likewise a link called slogin
pointing to slogin1

• Support programs ssh-add1, ssh-agent1, ssh-askpass1, and ssh-keygen1, and links
to them called ssh-add, ssh-agent, ssh-askpass, and ssh-keygen, respectively

• The support program make-ssh-known-hosts

• A newly generated host key pair, created by ssh-keygen1 and placed by default
into /etc/ssh/ssh_host_key (private key) and /etc/ssh/ssh_host_key.pub (public key)

• The server configuration file, /etc/ssh/sshd_config by default [5.2.1]

• The client configuration file, /etc/ssh/ssh_config by default [7.1.2]

• Manpages for the various programs

Notice that SSH1 and Tectia create some files with the same names, such as the link
sshd. What happens if you install both SSH1 and Tectia on the same machine? Hap-
pily, everything works out, even if you install the two products into the same bin and
etc directories, provided you install the most recent versions. Each of their Makefiles is
constructed to check for the existence of the other version and respond appropriately.*

Specifically, both SSH1 and Tectia create symbolic links called sshd, ssh, scp, ssh-add,
ssh-agent, ssh-askpass, and ssh-keygen. If you install SSH1 and then Tectia, the Tec-
tia Makefile renames these files by appending the suffix .old and then creates new
symbolic links pointing to its own Tectia programs. For instance, ssh originally
points to ssh1; after installing Tectia, ssh points to ssh2, and ssh.old points to ssh1.
This is appropriate since Tectia is considered a later version than SSH1.

On the other hand, if you install Tectia and then SSH1, the SSH1 Makefile leaves
Tectia’s links untouched. As a result, ssh remains pointing to ssh2, and no link points
to ssh1. This is consistent with the practice of installing SSH1 to allow Tectia to pro-
vide fallback SSH1 support.

You need to set up the SSH1 configuration files in addition to the Tectia configura-
tion files, and then keep them synchronized. [5.10.1]

* Installers for Tectia binary distributions behave the same way when integrating with SSH1 installations.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

124 | Chapter 4: Installation and Compile-Time Configuration

4.4 Software Inventory

Table 4-1 provides a reference to the many files and programs installed with SSH.

Table 4-1. Software inventory

Component OpenSSH Tectia

Server config /etc/ssh/sshd_config /etc/ssh2/sshd2_config

Global client config /etc/ssh/ssh_config /etc/ssh2/ssh2_config

Host private key /etc/ssh/ssh_host_dsa_key /etc/ssh2/hostkey

Host public key /etc/ssh/ssh_host_dsa_key.pub /etc/ssh2/hostkey.pub

Client host keys /etc/ssh/ssh_known_hosts

~/.ssh/known_hosts

/etc/ssh2/hostkeys

~/.ssh2/hostkeys/*

Remote host keys ~/.ssh/known_hosts ~/.ssh2/knownhosts/*

libwrap control files /etc/hosts.allow

/etc/hosts.deny

/etc/hosts.allow

/etc/hosts.deny

Authorization for login via public key ~/.ssh/authorized_keys ~/.ssh2/authorization

Authorization for login via trusted host /etc/hosts.equiv

/etc/shosts.equiv

~/.shosts

~/.rhosts

/etc/hosts.equiv

/etc/shosts.equiv

~/.shosts

~/.rhosts

Default key pair for public-key
authentication

SSH-2/RSA:

~/.ssh/id_rsa{.pub}

SSH-2/DSA:

~/.ssh/id_dsa{.pub}

(No default)

Random seed ~/.ssh/prng_seed a ~/.ssh2/random_seed

 /etc/ssh2/random_seed

Commands for generating randomness /etc/ssh/ssh_prng_cmds –

Terminal client ssh

slogin link to ssh

ssh2b

Secure file copy client scp scp2b

Signer program ssh-keysign ssh-signer2b

sftp2/scp2 server sftp-server sftp-server2b

Authentication agent ssh-agent ssh-agent2b

Key generator ssh-keygen ssh-keygen2b

Key add/remove ssh-add ssh-add2b



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4.5 Replacing r-Commands with SSH | 125

4.5 Replacing r-Commands with SSH
SSH and the r-commands (rsh, rcp, rlogin) can coexist peacefully on the same
machine. Since the r-commands are insecure, however, system administrators should
replace them by their SSH counterparts (ssh, scp, slogin). This replacement has two
parts:

• Installing SSH and removing rsh, rcp, and rlogin; requires some user retraining

• Modifying other programs or scripts that invoke the r-commands

The r-commands are so similar to their analogous SSH commands, you might be
tempted to rename the SSH commands as the r-commands (e.g., rename ssh as rsh,
etc.). After all, common commands like these are practically identical in syntax:

$ rsh -l jones remote.example.com
$ ssh -l jones remote.example.com

$ rcp myfile remote.example.com:
$ scp myfile remote.example.com:

Why not just rename? Well, the two sets of programs are incompatible in some
ways. For example, some old versions of rcp use a different syntax for specifying
remote filenames.

In the following sections, we discuss some common Unix programs that invoke the r-
commands and how to adapt them to use SSH instead.

4.5.1 Concurrent Versions System (CVS)
CVS is a version-control system. It maintains a history of changes to sets of files, and
helps coordinate the work of multiple people on the same files. It can use rsh to con-
nect to repositories on remote hosts. For example, when you check in a new version
of a file:

$ cvs commit myfile

if the repository is located on a remote machine, CVS can invoke rsh to access the
remote repository. For a more secure solution, CVS can run ssh instead of rsh. Of

Find SSH servers ssh-keyscan ssh-probe2b

Get passphrase via terminal or X ssh-askpass

x11-ssh-askpass

ssh-askpass2b

Server program sshd sshd2b

a Present only if using OpenSSH’s internal entropy-gathering mechanism (i.e., no /dev/random or equivalent on system).
b A symbolic link without the “2” suffix is also installed.

Table 4-1. Software inventory (continued)

Component OpenSSH Tectia



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

126 | Chapter 4: Installation and Compile-Time Configuration

course, the remote machine must be running an SSH server, and if you use public-
key authentication, your remote account must contain your key in the appropriate
place.*

To make CVS use ssh, simply set the environment variable CVS_RSH to contain the
path to your ssh client:

# Bourne shell family
# Put in ~/.profile to make permanent.
CVS_RSH=/usr/bin/ssh
export CVS_RSH

# C shell family
# Put in ~/.login to make permanent.
setenv CVS_RSH /usr/bin/ssh

This approach has one problem: each time you check in a file, the logger’s name is
the remote account owner, which might not be your own. The problem is solved by
manually setting the remote LOGNAME variable using the environment option in your
remote authorized_keys file. [8.2.5.1]

4.5.2 GNU Emacs
The Emacs variable remote-shell-program contains the path to any desired program
for invoking a remote shell. Simply redefine it to be the full path to your ssh execut-
able. Also, the rlogin package, rlogin.el, defines a variable rlogin-program you can
redefine to use slogin.

4.5.3 Pine
The Pine mail reader uses rsh to invoke mail-server software on remote machines.
For example, it might invoke the IMAP daemon, imapd, on a remote mail server.
Another program can be substituted for rsh by changing the value of a Pine configu-
ration variable, rsh-path. This variable holds the name of the program for opening
remote shell connections, normally /usr/bin/rsh. A new value can be assigned in an
individual user’s Pine configuration file, ~/.pinerc, or in the systemwide Pine configu-
ration file, typically /usr/local/lib/pine.conf. For example:

# Set in a Pine configuration file
rsh-path=/usr/local/bin/ssh

A second variable, rsh-command, constructs the actual command string to be exe-
cuted for the remote mail server. The value is a pattern in the style of the C function
printf( ). Most likely, you won’t need to change the value because both rsh and ssh
fit the default pattern, which is:

"%s %s -l %s exec /etc/r%sd"

* CVS also has a remote-access method involving its own server, called pserver. This mechanism can be
secured using SSH port forwarding instead; read Chapter 9 for the general technique.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4.6 Summary | 127

The first three “%s” pattern substitutions refer to the rsh-path value, the remote
hostname, and the remote username. (The fourth forms the remote mail daemon
name, which doesn’t concern us.) So, by default, if your username is alice and the
remote mail server is mail.example.com, rsh-command evaluates to:

/usr/bin/rsh mail.example.com -l alice ...

By changing the rsh-path, it becomes instead:

/usr/local/bin/ssh mail.example.com -l alice ...

As we said, you probably don’t need to do anything with rsh-command, but just in
case, we’ve included it for reference. We present a detailed case study of integrating
Pine and SSH later. [11.3]

4.5.4 rsync, rdist
rsync and rdist are software tools for synchronizing sets of files between different
directories on the same machine or on two different hosts. Both can call rsh to con-
nect to a remote host, and both can easily use SSH instead: simply set the RSYNC_RSH
environment variable or use the –e command-line option for rsync, and use the –P
option with rdist. rsync with SSH is a particularly simple and effective method to
securely maintain remote mirrors of whole directory trees.

4.6 Summary
OpenSSH and Tectia can be tailored in various ways by compile-time configuration
with the configure script. We’ve covered the SSH-specific flags, but remember that
other operating-system-specific flags might also apply to your installation, so be sure
to read the installation notes supplied with the software.

Once installed, SSH software can replace the insecure r-commands on your Unix sys-
tem, not only when run directly, but also within other programs that invoke rsh,
such as Emacs and Pine.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

128

Chapter 5CHAPTER 5

Serverwide Configuration

After installing an SSH server (sshd ),* it’s time to make informed decisions about
your server’s operation. Which authentication techniques should be permitted? How
many bits should the server key contain? Should idle connections be dropped after a
time limit or left connected indefinitely? These and other questions must be consid-
ered carefully. sshd has reasonable defaults, but don’t accept them blindly. Your
server should conform to a carefully planned security policy. Fortunately, sshd is
highly configurable, so you can make it do all kinds of interesting tricks.

This chapter covers serverwide configuration, in which a system administrator con-
trols the global runtime behavior of the SSH server. This includes a large, rich set
of features, such as TCP/IP settings, encryption, authentication, access control,
and error logging. Some features are controlled by modifying a serverwide configu-
ration file, and others by command-line options passed to the server at invocation.

Serverwide configuration is just one of three levels for controlling the behavior of
SSH servers. The other two levels are compile-time configuration (Chapter 4), in
which the server is compiled with or without certain functionality; and per-account
configuration (Chapter 8), in which the server’s behavior is modified by end users for
their accounts only. We’ll discuss the distinction between the three levels in more
detail later. [5.2]

This chapter covers only the OpenSSH and Tectia servers, focusing on the Unix
implementations (including Unix variants such as Linux and OpenBSD). We’ve tried
to indicate which features are present or absent in each flavor of sshd, but these will
certainly change as new versions appear, so read each product’s documentation for
the latest information.

* Tectia’s server might also be named sshd2, with sshd being a symbolic link to sshd2. See the upcoming side-
bar “Tectia’s File-Naming Conventions.”



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.1 Running the Server | 129

5.1 Running the Server
Ordinarily, an SSH server is invoked when the host computer is booted, and it is left
running as a daemon. This works fine for most purposes. Alternatively, you can
invoke the server manually. This is helpful when you’re debugging a server, experi-
menting with server options, or running a server as a nonsuperuser. Manual invoca-
tion requires a bit more work and forethought but might be the only alternative for
some situations.

Most commonly, a computer has just one SSH server running on it. It handles multi-
ple connections by spawning child processes, one per connection.* You can run mul-
tiple servers if you like: for example, two copies of sshd listening on different TCP
ports, or even several versions of sshd at once.

5.1.1 Running sshd as the Superuser
The SSH server is invoked by simply typing its name:

$ sshd

The server automatically runs in the background, so no ampersand is required at the
end of the line.

To invoke the server when the host computer boots, add appropriate lines to an
appropriate startup file on your system, such as /etc/rc.local on Linux. For example:

# Specify the path to sshd.
SSHD=/usr/local/sbin/sshd
# If sshd exists and is executable, run it and echo success to the system console.
if [ -x "$SSHD" ]
then
  $SSHD && echo 'Starting sshd'
fi

Both OpenSSH and Tectia come with a startup or boot script (i.e., a System-V-style
init control script) found in the appropriate directory for each Unix variant. For
Linux, for example, the scripts are /etc/init.d/sshd for OpenSSH and /etc/init.d/sshd2
for Tectia.†

5.1.2 Running sshd as an Ordinary User
Any user can run sshd if several steps are completed beforehand:

1. Get permission from your system administrator.

2. Generate a host key.

* Or sshd can be invoked by inetd, creating one sshd process per connection. [5.3.3.2]

† OpenSSH also includes /usr/sbin/rcsshd, a symbolic link to the startup script in /etc/init.d.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

130 | Chapter 5: Serverwide Configuration

3. Select a port number.

4. Create a server configuration file (optional but strongly recommended).

Before starting, ask your system administrator if you may run an SSH server. While
this isn’t necessary from a technical standpoint, it is a wise idea. An administrator
might not appreciate your creating a new avenue for logins behind his back. Like-
wise, if the administrator has disabled SSH or certain SSH features, there’s probably
a good security reason and you shouldn’t just work around it!

Next, generate your own host key. Any other existing host key is probably readable
only by the superuser. Host keys are generated with the program ssh-keygen. [6.2]
For now, to create a 1024-bit DSA host key and store it in the file ~/myserver/hostkey,
type the following for OpenSSH:

# OpenSSH: Note the -N value is two single quotes, not a double-quote
$ ssh-keygen -N '' -b 1024 -t dsa -f ~/myserver/hostkey

Tectia’s File-Naming Conventions
At first glance, Tectia’s filenames might seem rather inconsistent, but actually they fol-
low conventions designed for flexibility and ease of use:

• Most filenames contain a “2” suffix, e.g., sshd2. These filenames distinguish the
SSH-2 protocol implementation provided by Tectia from other implementations
(e.g., OpenSSH). As a result, you could install SSH-1 protocol programs (not
provided by Tectia) with filenames containing a “1” suffix, even in the same
directories used by Tectia, without conflicts.

• Tectia installs symbolic links so that you can omit the “2” suffix when referring
to programs, manpages, etc. For example, there’s a symbolic link sshd pointing
to sshd2. You can set up search paths so that Tectia is the preferred implementa-
tion, hiding other implementations that might be installed in other directories.

• On platforms like Microsoft Windows that don’t support symbolic links, the
program names all have the “2” suffix.

There are a few exceptions:

• Configuration files that live (at least by default) in fixed locations use only file-
names with the “2” suffix, e.g., /etc/ssh2 or ~/.ssh2, with no corresponding sym-
bolic links. This avoids confusing other SSH implementations that refer to
similar locations without the “2” suffix (e.g., /etc/ssh or ~/.ssh).

• Files unique to Tectia have only filenames that omit the “2” suffix. Strictly
speaking, the “2” suffix is unnecessary in this case, but the convention is unfor-
tunate, because it sometimes leads to unexpected filename comparisons. For
example, the Tectia program for verifying sshd2 configuration files is called sshd-
check-conf, even though the default files it checks are named /etc/ssh2/sshd2_
config and ~/.ssh2/sshd2_config. [5.2.2]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.1 Running the Server | 131

This command generates the files hostkey and hostkey.pub in the directory ~/myserver
(so make sure the directory exists). Here’s the analogous command for Tectia:

# Tectia
$ ssh-keygen -P -b 1024 -t dsa ~/myserver/hostkey

The –N (OpenSSH) and –P (Tectia) options cause the generated key to be left unen-
crypted because sshd expects to read it without a passphrase.

Third, select a port number on which the SSH server listens for connections. The
port number is set with the –p command-line option of sshd or the Port keyword in
the configuration file, as we discuss later. Your server can’t listen on port 22, the
default, because only the superuser may run processes to listen on that port. Your
port number must be greater than or equal to 1024, as lower port numbers are
reserved by the operating system for use by privileged programs. [3.4.3.6] The port
number also must not conflict with those in use by other programs on the server
computer; if it does, you get an error message when you try to start the server:

error: bind: Address already in use

If you receive this error, try another integer in the free range (above 1024). Avoid
numbers mentioned in the computer’s services map (usually /etc/services or the Net-
work Information Service [NIS] “services” map, which you can view with the Unix
command ypcat –k services). These numbers have been designated by the system
administrator for use with particular programs or protocols, so you might cause trou-
ble if you steal one. The command netstat -a lists all ports in use; add the –n option to
see numeric values for the ports instead of service names.

Finally, create your own SSH server configuration file. Otherwise, your server will
use built-in defaults or a systemwide configuration file (if one exists) and might not
operate as you intend.

Assuming you have generated a host key in ~/myserver/hostkey, selected the port
number 2345, and created a configuration file in ~/myserver/config, the server is
invoked with the command:

$ sshd -h ~/myserver/hostkey -p 2345 -f ~/myserver/config

A server run by an ordinary user has some disadvantages:

• It runs under the uid of the ordinary user, not root, so it can connect only to that
user’s account.

• It is invoked manually, rather than automatically when the computer boots. As a
result, to run the server, you must connect once without SSH to the computer.
And each time the computer is rebooted, the server dies, and you need to redo
this step. Conceivably you can set up a cron job to keep it running automatically.

• While setting up a server, consider running it in debug mode and reading the
diagnostic messages it prints, in case something isn’t working right. By default,
your server’s log messages are written to the system log files, which you don’t



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

132 | Chapter 5: Serverwide Configuration

own and possibly can’t access. This is because sshd does its logging via the sys-
log service; ordinary users can’t control where the log messages are sent, usually
/var/adm/messages, /var/log/messages, or someplace else depending on how sys-
logd is set up, and you need appropriate permissions to read these files. Running
the server in debug mode gets around this annoyance. Messages will appear on
your terminal (as well as in the system logs). [5.9] This way, you can more easily
see error messages until you get the server working.

Nevertheless, for many users, the advantages of SSH outweigh these inconveniences.
Assuming your system administrator approves, you can secure your logins with sshd
even if you aren’t a superuser.

5.2 Server Configuration: An Overview
As mentioned at the beginning of the chapter, the behavior of the server, sshd, may
be controlled at three levels:

• Compile-time configuration (Chapter 4) is accomplished when sshd is built. For
example, a server may be compiled with or without support for rhosts authenti-
cation.

• Serverwide configuration, the subject of this chapter, is performed by a system
administrator and applies to a running instance of the server. For instance, an
administrator may deny SSH access by all hosts in a given domain or make the
server listen on a particular port.

Serverwide configuration may depend on compile-time configuration. For exam-
ple, a server’s hostbased authentication options work only if the server is com-
piled with hostbased authentication support included. Otherwise, the options
have no effect. We identify such dependencies throughout the book. Figure 5-1
highlights the serverwide configuration tasks.

• Per-account configuration (Chapter 8) is performed by the end user, specifically,
the owner of the account to which an SSH connection has been requested. For
example, users may permit or deny access to their own accounts from particular
hosts, overriding the serverwide configuration.

Suppose user deborah on the machine client.unc.edu invokes an SSH client. The cli-
ent’s behavior is determined by several factors:

• The compile-time options selected when the software was built

• The machinewide client configuration file on client.unc.edu

• User deborah’s own client configuration file

• The command-line options used by deborah when invoking the client

An SSH server running on server.unc.edu accepts deborah’s connection to the account
charlie. The server’s behavior is determined by the compile-time options used when



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.2 Server Configuration: An Overview | 133

sshd was built, the machinewide server configuration file on server.unc.edu, the com-
mand-line options used when the SSH server was run, and charlie’s personal server
configuration file (e.g., an authorized_keys file), plus several files that set environment
variables for the successful login session.

With three levels of server configuration, and multiple entry points for modifying the
behavior at each level, things can get complicated. In particular, different options
may work together or cancel each other. For example, user charlie can configure his
account on server.unc.edu to accept connections from client.unc.edu, while the sys-
tem administrator of server.unc.edu can configure the SSH server to reject them. (In
this case, Charlie loses.) Administrators must understand not only how to configure
the server themselves, but also how their choices interact with compile-time and per-
account settings.

5.2.1 Server Configuration Files
Serverwide configuration is accomplished in two ways: through a server configura-
tion file, or through command-line options. In a server configuration file, numerous

Figure 5-1. Serverwide configuration (highlighted parts)

SSH
Client

Command-line
options

Environment
variables

User’s client
configuration file

Global client
configuration file

Compile-time
flags

Key-related
files

Known hosts
databases

Configuration types

Command-line
options

Custom session
startup

Server-side
configuration file

Server-side
authorization files

Compile-time
flags

Target account’s
authorization files

TCP-wrappers
files

Kerberos
configuration files

PAM files

SSH
Server

Configuration types



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

134 | Chapter 5: Serverwide Configuration

configuration variables, called keywords, may have their values set. For example, to
set the TCP port on which the server will listen, a configuration file can contain the
line:

Port 1022

You may also separate the keyword and value by an equals sign (with optional
whitespace):

Port = 1022

The configuration file is typically /etc/ssh/sshd_config for OpenSSH or /etc/ssh2/
sshd2_config for Tectia.* The file contains keywords and their values, as in the Port

example, with one pair (keyword and value) per line. Keywords are case-insensitive:
Port, port, and PoRt are all treated identically. Comments may appear in the file as
well: any line beginning with a hash sign (#) is a comment:

# This is a comment

Comments cannot be appended to keyword lines. For example, the following does
not work:

Port 1022   #  This comment is not allowed here, so don't do this

Empty lines (or lines containing only whitespace) are also ignored as comments.

To use a configuration file other than the default, invoke sshd with the –f command-
line option, providing the alternative filename as an argument:

$ sshd -f /usr/local/ssh/my_config

Tectia supports some extensions to configuration files that we cover in a detailed
case study: [11.6]

Metaconfiguration information
Structured comments at the top of the server configuration file that define syn-
tax rules for the rest of the file. For example, the REGEX-SYNTAX metaconfigura-
tion statement selects one of several different regular expression standards: grep
style (egrep), filename globbing (zsh_fileglob), and others.

Subconfiguration files
Alternative configuration files specific to particular local accounts or remote
hosts. The keywords UserSpecificConfig and HostSpecificConfig define the
associations between subconfiguration files and the affected accounts and hosts,
respectively. For example, the line:

# Tectia
UserSpecificConfig smith /usr/local/ssh/smith.config

states that all connection attempts to the smith account must adhere to the con-
figuration in file /usr/local/ssh/smith.config.

* On Windows, Tectia’s configuration files are located in the SSH Tectia Server installation folder.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.2 Server Configuration: An Overview | 135

Quoted values
Tectia has unusual rules for quoted strings, namely, that quotes are largely
ignored. The following sshd2_config lines are equivalent:

# Tectia
Port 1022
Port "1022"
Port "10"22

5.2.2 Checking Configuration Files
After you’ve changed a server configuration file (or constructed an initial version of
the file), how do you know it’s going to work and have the effects you intend? Later,
when you upgrade the server to a more recent version, how can you detect incompat-
ible changes in the meaning of keywords that you’ve been using?

The most thorough way to verify the server configuration, of course, is to run the
server exactly as you plan to deploy it, and test all of the functionality that you
expect to use. This kind of testing can be time-consuming, however, and you might
not be able to afford interrupting service on a busy production machine.

Alternately, you could use some other test machine, or run the server on a different
port [5.3.3.1] while the old configuration is still being used on the original machine.
These approaches are almost as good, but they can be complicated if the server con-
figuration refers to network characteristics of the machine where it will be deployed,
or by firewalls that block access to nonstandard ports.

Both OpenSSH and Tectia have test features to help with these situations, or to just
provide a quick check of the server configuration before more rigorous testing.

5.2.2.1 Checking OpenSSH configuration files

If the OpenSSH server is started with the –t (test) option, it starts up, checks the
validity of its host keys and the server configuration file, and then immediately exits
without performing any other actions. When no problems are found, the server
silently returns a zero exit status to indicate successful operation. Otherwise, error
messages are printed to the standard error and the server exits with a nonzero status:

# OpenSSH
$ sshd -t
/etc/ssh/sshd_config: line 33: Bad configuration option: BlurflPox
/etc/ssh/sshd_config: Bad yes/no argument: maybe

The server must be run by a user (typically root) who has read access to the host key
files and the server configuration file. Any other server options can be used in con-
junction with –t, such as –h options [5.3.1.1] to specify new host key files, the –f
option [5.2.1] to specify a new configuration file, or –d options [5.9] for more
detailed debugging output (even if no errors are detected).



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

136 | Chapter 5: Serverwide Configuration

5.2.2.2 Checking Tectia configuration files

Tectia provides a separate program, sshd-check-conf, to check server configuration
files.* Supply a hypothetical user and remote host, and sshd-check-conf will describe
its access control decisions for them:

# Tectia
$ sshd-check-conf rebecca@client.friendly.org
Verifying rebecca@client.friendly.org[10.1.2.3]...
  Logins from client.friendly.org[10.1.2.3] allowed.
  Hostbased can be used from client.friendly.org[10.1.2.3].
  Login by user rebecca allowed.
  User rebecca will not be chrooted.
  TCP forwarding by user rebecca allowed.

sshd-check-conf is especially helpful for verifying policies described by complicated
patterns and subconfiguration files. [11.6.2] It uses the same code as sshd to parse the
server configuration files and understands metaconfiguration information. [11.6.1]

If any errors are detected, sshd-check-conf prints messages to the standard error, as
sshd would:

# Tectia
$ sshd-check-conf rebecca@client.friendly.org
Warning: Unrecognized configuration parameter 'BlurflPox'.
Warning: Illegal IdleTimeout value 'never'.
Warning: Failed to parse some variables from config file '/etc/ssh2/sshd2_config'.
FATAL: Failed to read config file "/etc/ssh2/sshd2_config"

It is not necessary to run sshd-check-config as root, as long as the server configura-
tion files can be read. By default, /etc/ssh2/sshd2_config is used if the program is run
by the superuser, or $HOME/.ssh2/sshd2_config otherwise. As for sshd, the –f option
specifies a different configuration file:

# Tectia
$ sshd-check-conf -f /tmp/sshd2_config_new rebecca@client.friendly.org

The hypothetical SSH sessions are described by one or more [user@]host arguments
on the command line. A numerical user ID can be used in place of a username, or the
username can be omitted entirely to check only the remote host. In this case, sshd-
check-conf substitutes UNKNOWN for the username when it analyzes the access controls:

# Tectia
$ sshd-check-conf client.friendly.org
Verifying UNKNOWN@client.friendly.org[10.1.2.3]...
  Logins from client.friendly.org[10.1.2.3] allowed.
  Hostbased can be used from client.friendly.org[10.1.2.3].
  Login by user UNKNOWN denied.

An IP address can be used instead of a hostname: both the hostname and IP address
are checked.

* sshd-check-conf doesn’t read or verify host keys.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.2 Server Configuration: An Overview | 137

If a hostname resolves to multiple IP addresses, then only the first IP
address is used, and a warning is printed by sshd-check-conf.

Here’s a brash one-liner to check the access controls for all local users:

# Tectia
$ sed -e "s/:.*/@`hostname`/" /etc/passwd | xargs sshd-check-conf

You can also run sshd-check-conf interactively: just don’t supply any [user@]host

arguments on the command line. The program prompts for [user@]host strings, per-
mits Emacs-style editing of the strings as you enter them (using the GNU readline
library), and maintains a history of previously entered values.

In addition, sshd-check-conf recognizes a dump command to print keywords and val-
ues for the server configuration:

# Tectia
$ sshd-check-conf
...
ssh-check-conf> dump
# General
Port = 22
ProtocolVersionString = 4.1.3.2 SSH Secure Shell
MaxConnections = 0
...
# Authentication and authorization
AllowedAuthentications = publickey,password
IgnoreRhosts = no
...
# Forwardings
ForwardX11 = yes
ForwardAgent = yes
...
# Miscellaneous user setup
UserConfigDirectory = %D/.ssh2
PrintMOTD = yes
...
sshd-check-conf> quit
$

Tectia’s sshd-check-conf dump command prints most configuration
keywords and values, but not all of them.

To exit from interactive mode, use the quit command, or type the end-of-file charac-
ter (usually ^D), or just kill the program (typically with ^C). The quit and dump com-
mands are case-insensitive.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

138 | Chapter 5: Serverwide Configuration

Because sshd-check-conf matches patterns for subconfiguration files
[11.6.2], it reads the main configuration file only when a [user@]host
string has been given. Therefore, the dump command can’t be used
before then:

# Tectia
$ sshd-check-conf
sshd-check-conf> dump
No config data to dump; input <user@host> first.

The sshd-check-conf program accepts the debug options –d and –v [5.9] to print
more detailed debugging information as it reads the configuration files and analyzes
access control decisions.

5.2.3 Command-Line Options
Additionally, when invoking the server, you may supply command-line options. For
example, the port value may be specified on the command line with the –p option:

$ sshd -p 1022

Command-line options override settings in the configuration file. Thus, if the config-
uration file says port 1022 but the server is invoked with –p 2468, the port used will
be 2468.

Most command-line options duplicate the features found in the configuration file,
for convenience, while a few provide unique functionality. For instance, the –f option
instructs sshd to use a different configuration file, a feature that’s useless to put in a
configuration file.

On the other hand, most keywords don’t have command-line equivalents. However,
the –o option lets you specify any keyword and its value on the command line; for
example, to set the TCP port number by this method:

$ sshd -o "Port 1022"

The argument for the –o option should be a keyword and value, exactly as specified
in the configuration file.* An equals sign (with optional whitespace) can also be used:

$ sshd -o "Port = 1022"

You can omit the quotes if you avoid characters special to the shell (including the
whitespace around the equals sign):

$ sshd -o Port=1022

You can repeat the -o option to set values for multiple keywords on the same com-
mand line.

* Except for comments, which will not work, e.g., sshd -o "# Your message here". But this would be silly.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.2 Server Configuration: An Overview | 139

Tectia servers always use the default egrep syntax for regular expres-
sions on the command line. Unlike configuration files, command-line
options have no way to change this via metaconfiguration, e.g., for -o
options.

Command-line options can be repeated, but the effects of such repetition vary and
even differ depending on the server implementation. In almost all cases, only the last
repeated option is used, and all earlier instances of the same option are (silently)
ignored. For example, an attempt to read two configuration files:

$ sshd -f /usr/local/ssh/main.conf -f /usr/local/ssh/alt.conf
Beware! Does not read both files!

will actually read only alt.conf and ignore main.conf.

The “last option wins” rule can be handy for scripting. Suppose you launch the
server from a shell script called launch-sshd:

# launch-sshd:
sshd -f /usr/local/ssh/main.conf "$@"

Since the $@ is replaced by options from the command line, you can substitute a dif-
ferent configuration file when using the script:

$ launch-sshd -f /usr/local/ssh/alt.conf

We have seen that the –o option is an exception: it can be repeated to set values for
as many keywords as needed. There are only a few other exceptions, all for
OpenSSH. The –p option can be repeated to listen on multiple ports: [5.3.3.1]

# OpenSSH
$ sshd -p 2222 -p 3333

The –h option can be used multiple times to specify different types of host keys in
separate files: [5.3.1.1]

# OpenSSH
$ sshd -h /usr/local/ssh/my_dsa_key -h /usr/local/ssh/my_rsa_key -h /usr/local/ssh/
my_old_ssh1_key

Repeating the –d option increases the level of verbosity for debugging: [5.9]

# OpenSSH
$ sshd -d -d -d

Tectia is more consistent than OpenSSH: it always uses the last instance of each
option on the command line.

5.2.4 Changing the Configuration
sshd reads its configuration file at startup. Therefore, if you modify the file while the
server is running, the changes don’t affect the server. You must force the server to



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

140 | Chapter 5: Serverwide Configuration

reread the file in order to accept the changes. This is done by sending a SIGHUP
signal to the server process. The pid of the server is found in a file, usually /var/run/
sshd.pid for OpenSSH or /var/run/sshd2_22.pid for Tectia. [5.3.1.3]

Suppose the pid file is /var/run/sshd.pid, the default for OpenSSH. To send the
SIGHUP signal, run the Unix kill command:

$ cat /etc/sshd.pid
19384
$ kill -HUP 19384

or more succinctly, with backquotes:

$ kill -HUP `cat /etc/sshd.pid`

or on systems with the pidof command, which prints pids of given, named processes:

$ kill -HUP `pidof sshd`

Linux systems (and others) have boot scripts that can signal the SSH server. For
example, instead of explicitly sending SIGHUP to sshd, you can run:

$ /etc/init.d/sshd reload

Regardless of how it’s sent, the SIGHUP signal restarts sshd (with a different pid) but
doesn’t terminate existing SSH connections, so you can send it safely while clients
are connected. The new sshd process reads and conforms to the new configuration.

The SIGHUP technique affects settings defined in the configuration file, not com-
mand-line options. To change those, you must kill and restart the server with the
new options. For example:

$ kill 19384
$ sshd new_options

Command-line options are often specified in boot scripts that are used to start sshd.
For example, some Linux systems read an OPTIONS variable assignment from the file
/etc/sysconfig/sshd (if it exists). You may need to edit such options files if you want
to permanently change the command-line options used to start the SSH server at
boot time. After doing this, you can use the boot script to restart the server with the
new command-line options:

$ /etc/init.d/sshd restart

Boot scripts can perform other useful functions. To determine whether the SSH
server is running, use:

$ /etc/init.d/sshd status

To start or stop the server, use:

$ /etc/init.d/sshd start
$ /etc/init.d/sshd stop



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.3 Getting Ready: Initial Setup | 141

Some configuration keywords refer to external files. If the contents of
those files change, you might wonder if it is necessary to signal the
SSH server. In almost all cases, the answer is no: only the filenames are
recorded when the configuration file is read, and the external file’s
contents are reread each time they are needed. The host key file is an
important exception, because it is normally read only when the server
starts. [5.3.1.1]

5.2.5 A Tricky Reconfiguration Example
Because command-line options override their configuration file equivalents, some
interesting situations can arise. Suppose the configuration file sets the TCP port
number to be 2222:

Port 2222

but the server is invoked with the –p command-line option, overriding this value
with 3333:

$ sshd -p 3333

The server uses TCP port 3333. Now, suppose you restart sshd with SIGHUP:

$ kill -HUP `pidof sshd`

forcing sshd to reread the configuration file. What do you think happens to the port
number? Does the server use port 2222 after rereading the configuration file, or does
the command-line option remain in effect for port 3333? In fact, the command-line
option takes precedence again, so port 3333 is reused. sshd saves its argument vec-
tor* and reapplies it on restart.

5.3 Getting Ready: Initial Setup
We now embark on a detailed discussion of SSH server configuration, using both
keywords and command-line options. Please keep in mind that modern SSH prod-
ucts are actively developed and their features may change. Be sure to read their docu-
mentation for the latest information.

We begin with initial setup decisions, such as: where should important files be
kept? What should their permissions be? What TCP/IP settings should be used?
Which encryption algorithms should be supported?

* argv, to C programmers.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 5: Serverwide Configuration

5.3.1 File Locations
sshd expects certain files to exist, containing the server’s host key, the random seed,
and other data. The server looks for these files in default locations, or you may over-
ride them with keywords and command-line options as described later.

Although you may place these files anywhere you like, we strongly recommend keep-
ing them on a local disk on your server machine, not on a remotely mounted disk (e.g.,
via NFS). This is for security reasons, as NFS will gleefully transmit your sensitive files
unencrypted across the network. This would be especially disastrous for the unen-
crypted private host key!

As a running example, we use an invented directory, /usr/local/ssh, as our preferred
(nondefault) location for the SSH server’s files.

5.3.1.1 Host key files

The host key of sshd uniquely identifies a server to SSH clients. The host key is
stored in a pair of files, one containing the private key and the other the public key.
OpenSSH has distinct host keys in DSA (/etc/ssh/ssh_host_dsa_key) and RSA (/etc/
ssh/ssh_host_rsa_key) formats, as well as a legacy SSH-1 protocol key, /etc/ssh/ssh_
host_key. These private keys are readable only by privileged programs such as the
SSH server and clients. Their locations may be changed with the HostKey keyword:*

# OpenSSH
HostKey /usr/local/ssh/my_dsa_key
HostKey /usr/local/ssh/my_rsa_key
HostKey /usr/local/ssh/my_old_ssh1_key

Each private key has a corresponding public key, stored in a second file with the
same name but with .pub appended. So, in the above example, the public keys would
be /usr/local/ssh/my_dsa_key.pub, /usr/local/ssh/my_rsa_key.pub, and /usr/local/ssh/
my_old_ssh1_key.pub.

For Tectia, the default private key file is /etc/ssh2/hostkey if the server is run by the
superuser or ~/.ssh2/hostkey if run by any other user. To specify a different private
key file, use the HostKeyFile keyword:

# Tectia
HostKeyFile /usr/local/ssh/key

The server’s public key file, normally /etc/ssh2/hostkey.pub for superusers or ~/.ssh2/
hostkey.pub for others, may be changed independently with the PublicHostKeyFile

keyword:

# Tectia
PublicHostKeyFile /usr/local/ssh/pubkey

* HostKey has the aliases HostRsaKey and HostDsaKey, but they are deprecated and might be removed in a future
version of OpenSSH.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.3 Getting Ready: Initial Setup | 143

If you prefer command-line options, sshd supports the –h command-line option to
specify the private key file:

$ sshd -h /usr/local/ssh/key

Once again, the public key filename is derived by appending .pub to the private key
filename, in this case, /usr/local/ssh/key.pub.

OpenSSH allows each type of host key to be specified with a separate –h option (and
detects the type of each key automatically):

# OpenSSH
$ sshd -h /usr/local/ssh/my_dsa_key -h /usr/local/ssh/my_rsa_key -h /usr/local/ssh/
my_old_ssh1_key

For Tectia, if the –h option is repeated, only the last file is used and all earlier –h
options are ignored. This is consistent with its usual behavior with command-line
options. [5.2.3]

5.3.1.2 Random seed file

The SSH server generates pseudo-random numbers for cryptographic operations.
[3.6.4] It maintains a pool of random data for this purpose, derived either from the
operating system if provided (e.g., /dev/random on Linux) or from various bits of
changing machine state (e.g., clock time, statistics on resource use by processes,
etc.). This pool is called the random seed.

If running on a system with a random-bit source, such as /dev/urandom, OpenSSH
doesn’t create a random seed file. Tectia stores a random seed in /etc/ssh2/random_
seed, and the location may be overridden with the RandomSeedFile keyword:

# Tectia
RandomSeedFile /usr/local/ssh/seed2

5.3.1.3 Process ID file

The OpenSSH server’s pid is stored in /var/run/sshd.pid, and you can override this
location with the PidFile keyword:

# OpenSSH
PidFile /usr/local/ssh/pid

OpenSSH doesn’t record the process ID when it runs in debug mode. [5.9]

There is no corresponding keyword for Tectia. Its pid file is always named /var/run/
sshd2_N.pid, or if there is no /var/run directory, /etc/ssh2/sshd2_N.pid, where N is the
TCP port number of the server.* Since the default port is 22, the default pid file is
sshd2_22.pid. If multiple sshd2 processes are run simultaneously on different ports of

* More precisely, N is the value for the Port keyword, even if ListenAddress keywords cause the server to use
different ports. [5.3.3.1]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 5: Serverwide Configuration

the same machine, their pid files can be distinguished by this naming convention.
The directory used to store pid files can be changed by the configure option --with-

piddir. [4.3.5.1]

5.3.1.4 Server configuration file

The server configuration file is normally /etc/ssh/sshd_config for OpenSSH and /etc/
ssh2/sshd2_config for Tectia. An alternative configuration file can be specified with
the –f command-line option:

$ sshd -f /usr/local/ssh/config

This is useful when testing a new server configuration: create a new file and instruct
sshd to read it. It is also necessary if you are running multiple sshds on the same
machine and want them to operate with different configurations.

Only a single configuration file is read. If you provide multiple –f options, the last
one is used and all others are ignored.

5.3.1.5 User SSH directory

Tectia’s sshd expects a user’s SSH-related files to be in the directory ~/.ssh2 by
default, but this can be changed with the UserConfigDirectory keyword. (OpenSSH
has no such capability.) The directory name may be literal, as in:

# Tectia
UserConfigDirectory /usr/local/ssh/my_dir

or it may be specified with printf-like patterns, as in:

# Tectia
UserConfigDirectory %D/.my-ssh

The %D pattern expands to the user’s home directory. So, the preceding example
expands to ~/.my-ssh. The following table shows the available patterns:

If the % character is followed by any other characters, it is left unchanged.*

For the system administrator, the UserConfigDirectory keyword provides a quick
way to override all users’ Tectia preferences. Specifically, you can cause sshd to

Pattern Meaning

%D User’s home directory

%U User’s login name

%IU User’s uid (Unix user ID)

%IG User’s gid (Unix group ID)

* You need not double the percent sign (%%) to get a literal percent character, i.e., as required for the C function
printf.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.3 Getting Ready: Initial Setup | 145

ignore everybody’s ~/.ssh2 directories, substituting your own instead. For instance,
the line:

# Tectia
UserConfigDirectory /usr/sneaky/ssh/%U

tells sshd to seek the preferences for each user in /usr/sneaky/ssh/<username> instead
of ~/.ssh2. This powerful feature can also be misused if your machine is compro-
mised. If an intruder inserted the following line into sshd2_config:

# Tectia
UserConfigDirectory /tmp/hack

and uploaded his own public key file into /tmp/hack, he would gain SSH access to
every user’s account.

5.3.1.6 Per-account authorization files

The OpenSSH server expects to find a user’s public-key authorization file in ~/.ssh/
authorized_keys. This location can be changed with the AuthorizedKeysFile key-
word, followed by the new location:

# OpenSSH
AuthorizedKeysFile .ssh/permitted_keys

Filenames can be absolute or are relative to the user’s home directory. Additionally,
the location can contain a few special symbols: %h to mean the user’s home direc-
tory, %u for the username, or %% for a percent sign. So, when user smith authenti-
cated on a server machine with this line in /etc/ssh/sshd_config:

# OpenSSH
AuthorizedKeysFile /usr/local/access/%u

the authorization filename would expand to /usr/local/access/smith.

The Tectia server uses a different key file layout than OpenSSH. [6.1.2] Its authoriza-
tion file, normally ~/.ssh2/authorization, contains names of separate public key files,
rather than the keys themselves. sshd can be instructed to find the authorization file
elsewhere via the keyword AuthorizationFile:

# Tectia
AuthorizationFile my_public_keys

Filenames can be absolute or are relative to each user’s Tectia configuration (.ssh2)
directory. The preceding example specifies the file ~/.ssh2/my_public_keys.

5.3.1.7 utmp file structure

The utmp file (e.g., /var/run/utmp) contains information about users currently logged
in, such as their username, tty, and most notably for us, the hostname from which
they’ve logged in (for remote logins). OpenSSH’s sshd can limit the length of host-
name information written to the utmp file. (It’s inspired by a similar feature in the
telnet daemon telnetd.)



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

146 | Chapter 5: Serverwide Configuration

# OpenSSH
$ sshd -u 25 Limit hostnames to 25 characters or less

If a remote hostname is longer than this limit, the host’s IP address will be written
instead. Why is this useful? For two reasons:

• Hostnames longer than the default length—which may vary on different sys-
tems—will normally be truncated in the utmp file. While you cannot increase
the utmp length with the –u option, you can notify sshd of the length limitation
so that IP addresses get used in place of long hostnames. This way, you’ll accu-
rately record the host’s identity. See /usr/include/utmp.h to learn the length limit
for your system.

• If you specify -u0, IP addresses will always be used in place of hostnames. This
has the side effect of forcing sshd not to make DNS requests for these hostname
lookups. (It will not entirely suppress DNS, however, since it might be needed
for authentication.)

5.3.2 File Permissions
As security products, OpenSSH and Tectia require certain files and directories on the
server machine to be protected from unwanted access. Imagine if your authorized_
keys or .rhosts file were world-writable; anyone on that host could modify them and
gain convenient access to your account. sshd has several configuration keywords for
reducing this risk.

5.3.2.1 Acceptable permissions for user files

Users aren’t always careful to protect important files and directories in their
accounts, such as their .rhosts file or personal SSH directory. Such lapses can lead to
security holes and compromised accounts. To combat this, you can configure sshd to
reject connections to any user account that has unacceptable permissions.

The StrictModes keyword, with a value of yes (the default), causes sshd to check the
permissions of important files and directories. They must be owned by the account
owner or by root, and group and world write permission must be disabled. For
OpenSSH, StrictModes checks:

• The user’s home directory

• The user’s ~/.rhosts and ~/.shosts file

• The user’s SSH configuration directory, ~/.ssh

• The user’s SSH ~/.ssh/authorized_keys file

• The user and system “known hosts” files

For Tectia, the list is smaller and is checked only for hostbased authentication:
[3.4.3.6]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.3 Getting Ready: Initial Setup | 147

• The user’s home directory

• The user’s ~/.rhosts and ~/.shosts file

If any check fails, the server rejects SSH connection attempts to the account. If
StrictModes is given the value no, these checks aren’t performed:

StrictModes no

However, we strongly suggest you leave these checks enabled.

Tectia recognizes an undocumented keyword, StrictModes.UserDirMaskBits, to con-
trol the checks more precisely. The value is an octal number representing the file per-
mission bits that must be disabled. For example, to require that files grant no group
or world access (read, write, or execute):

# Tectia
StrictModes.UserDirMaskBits 077

The default value is 022, indicating that group and world write permission must be
disabled.

Even if StrictModes is enabled, it can be defeated by using POSIX access control lists
(ACLs), which are supported in Solaris and some other flavors of Unix, to set file
permissions with greater precision. sshd doesn’t check ACLs, so one could argue that
StrictModes is an incomplete test.

5.3.3 TCP/IP Settings
Since the SSH protocol operates over TCP/IP, sshd permits control over various
parameters related to TCP/IP.

Boolean Values in Configuration Files
Many keywords, such as StrictModes, require Boolean values. OpenSSH and Tectia
have different standards for these values.

OpenSSH recognizes either yes or true to enable the behavior described by a keyword,
as well as the opposite values no or false to disable. These values cannot be abbrevi-
ated, and must be lowercase.

Tectia is much more lenient: it recognizes any word starting with the letters y (yes), t
(true), or k (kyllä: Finnish for “yes”) in lowercase or uppercase to enable, and anything
else to disable.

We use yes and no in our examples because they are accepted by both products, and
we recommend you do the same.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 5: Serverwide Configuration

5.3.3.1 Port number and network interface

By default, sshd listens on TCP port 22. The port number may be changed with the
Port keyword:

Port 9876

or the –p command-line option:

$ sshd -p 9876

If you repeat the Port keyword or –p option, OpenSSH listens on all of the specified
ports:

# OpenSSH
$ sshd -p 22 -p 9876

Tectia, on the other hand, allows only a single port setting: if multiple Port key-
words or –p options are specified, the server uses only the last one and ignores all
earlier instances.*

You may also configure sshd to bind its listening port on a particular network inter-
face. By default, the port is bound on all active network interfaces on the host. The
ListenAddress keyword limits sshd to listen only on specific interfaces; the default
value is 0.0.0.0.

For example, suppose a computer has two Ethernet cards and is attached to two dif-
ferent networks. One interface has the address 192.168.10.23, and the other, 192.
168.11.17. By default, sshd listens on both interfaces; therefore, you can reach the
server by connecting to port 22 at either address. However, this may not always be
what you want; perhaps you want to provide SSH service only to hosts on one net-
work and not the other:

ListenAddress 192.168.10.23

Of course, this represents a real restriction only if the two networks aren’t otherwise
connected together (say, by a router) so that port 22 on 192.168.10.23 is not reach-
able from the network 192.168.11.24.

To listen on multiple, specific interfaces, repeat the ListenAddress keyword:

ListenAddress 192.168.10.23
ListenAddress 192.168.11.17

For even more precise control, you can also specify the port for listening on a given
interface. The syntax differs for OpenSSH and Tectia:

# OpenSSH
ListenAddress 192.168.11.17:12345 Port 12345. Notice the colon between the address and the port.

# Tectia
ListenAddress 192.168.11.17 12345  Port 12345. Notice the space between the address and the port.

* The port setting (either explicit or the default value, 22) is used in the name of the process ID file. [5.3.1.3]
Tectia servers can listen on multiple ports, but this requires use of the ListenAddress keyword.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.3 Getting Ready: Initial Setup | 149

The address 0.0.0.0 means to listen on all interfaces:

ListenAddress 0.0.0.0

optionally qualified by a port number:

# OpenSSH
ListenAddress 0.0.0.0:9876

# Tectia
ListenAddress 0.0.0.0 9876

OpenSSH servers allow the address to be omitted (meaning all interfaces) if the port
is specified:

# OpenSSH
ListenAddress :9876

For OpenSSH, a ListenAddress of 0.0.0.0:2222 will listen on port
2222 only on IPv4 interfaces, whereas :2222 means to listen on both
IPv4 and IPv6 addresses. Additionally, you can specify IPv6 addresses
with colons, but to avoid ambiguity between the address and the port
specification, enclose the IPv6 part in square brackets, e.g.,
ListenAddress [::1]:2222.

Tectia servers recognize the address any for all interfaces, with or without a port:

# Tectia
ListenAddress any
ListenAddress any 9876

Since Tectia uses only a single Port value, the only way to configure the server to lis-
ten on multiple ports is to use multiple ListenAddress keywords.

OpenSSH also permits hostnames in place of numeric addresses:

ListenAddress server.example.com

If the hostname lookup yields multiple addresses, then they are all used.

Numeric Values in Configuration Files
OpenSSH accepts numeric values in decimal, octal, or hexadecimal, using standard C
language notation. If a value begins with 0x, it is treated as hexadecimal. If it begins
with a leading zero, it is considered octal. Any other numeric value is read as decimal.

Tectia, in contrast, requires all numbers to be given in decimal, except for StrictModes.
UserDirMaskBits, which uses an octal value.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 5: Serverwide Configuration

If a ListenAddress value has no port specified, then the value (or possi-
bly multiple values, for OpenSSH) of the Port keyword is used for that
address. In such a case, the Port keyword(s) must precede that
ListenAddress keyword.

Additionally, the –p command-line option overrides all Port and
ListenAddress keywords in the configuration file. The server listens on
all interfaces if any –p options are used. Use one or several –o options
with the ListenAddress keyword to indicate specific interfaces on the
command line.

5.3.3.2 Invocation by inetd or xinetd

sshd normally runs as a daemon, listening for incoming connection requests, and
forking whenever it accepts a connection from a client. This spawns a separate child
process (a copy of the parent sshd process) to handle each session. The child process
exits when the session ends.

Alternatively, the server may be invoked by inetd or xinetd, like many other network
daemons. In this case, the general-purpose network daemon listens for and accepts
the SSH connections. It then starts a new instance of sshd for each session with the
already-connected socket attached to the standard input, output, and error streams
of sshd. Each sshd invocation is responsible for a single session.

If you prefer this behavior, place an appropriate line in the inetd or xinetd configura-
tion file to describe the SSH service, invoking sshd with the –i command-line option.
For inetd, add a single line to /etc/inetd.conf:

ssh stream  tcp     nowait  root /usr/local/sbin/sshd     sshd -i

Or if you’re using xinetd, create a new file /etc/xinetd.d/ssh containing:

service ssh
{
        socket_type = stream
        protocol    = tcp
        wait        = no
        user        = root
        server      = /usr/local/sbin/sshd
        server_args = -i
        disable     = no
}

You will also need an entry for SSH in the server machine’s TCP/IP services data-
base, usually /etc/services (or sometimes /etc/inet/services), such as:

ssh    22/tcp    # SSH Remote Login Protocol

The –i option causes sshd to:

• Ignore all Port and ListenAddress keywords and the –p command-line option,
because inetd or xinetd itself is responsible for listening

• (OpenSSH only) Ignore all MaxStartups keywords



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.3 Getting Ready: Initial Setup | 151

• (OpenSSH only) Direct debug output to syslog [5.9] instead of the standard
error stream, since stderr is attached to the SSH socket by inetd or xinetd, and
debug output would confuse the SSH client at the other end of the connection

The inetd/xinetd approach has advantages and disadvantages. On the up side, it
allows a wrapper program to invoke sshd, should that be needed, and xinetd particu-
larly supports many options that can complement the SSH server configuration.
Also, inetd and xinetd provide a single, centralized point of control for all types of
network connections, which simplifies maintenance. If you want to forbid all types
of TCP/IP connections, for example, you can simply disable inetd/xinetd instead of
running around killing other daemons. On systems where SSH connections are rare,
using inetd/xinetd for the SSH service saves resources (memory and a process slot)
otherwise consumed by the SSH server as it listens for incoming connections. Finally,
starting a new sshd instance for each connection can make attacks more difficult by
introducing additional randomness. On the down side, inetd/xinetd-based SSH con-
nections may be slower to start up.*

5.3.3.3 Restarting the SSH server for each connection

SSH servers use randomness extensively for cryptographic algorithms and protocols,
typically relying on the operating system (or other external state) to provide a source
of random bits. [3.6.4] Some operating systems also support Address Space Layout
Randomization (ASLR), which protects against certain kinds of attacks that require
knowledge of predictable memory locations. ASLR causes random offsets to be used
when program segments or shared libraries are loaded, memory regions are dynami-
cally allocated, etc.

Most of the randomness introduced by ASLR occurs when a program is initially
loaded and starts running. Even on systems without ASLR, dynamic memory alloca-
tions that primarily occur in the early stages of program execution can be affected by
the global state of the system’s virtual memory, which is hard to predict. In contrast,
when a long-running program merely forks to create many child processes, all of the
children inherit the memory layout (and even contents) from the parent process.
Restarting the child processes after each fork mitigates the risks associated with
attacks that are based on guessing memory locations.

By default, the OpenSSH server restarts itself after it accepts each connection from a
client, and forks to create a separate child process to handle the session.† Relative
pathnames can’t be used for server restarts, since sshd changes its working directory
shortly after it begins running:

# OpenSSH
$ ./sshd
sshd re-exec requires execution with an absolute path

* Only if you use the SSH-1 protocol, where sshd generates a new server key each time it’s invoked. But you’re
not using SSH-1, are you?

† This feature is new in OpenSSH 3.9.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

152 | Chapter 5: Serverwide Configuration

We’ll continue to use the relative pathname “sshd” for our examples
as an abbreviation, since the full, absolute pathname usually isn’t rele-
vant to our discussions about the sshd command line. Nevertheless, an
absolute pathname is recommended in practice, and newer versions of
OpenSSH now enforce this, as shown in the preceding example.

If the server restart fails for some other reason (e.g., the executable file used origi-
nally to start sshd was renamed or removed), then the child process continues to run
after forking, but produces a warning (which is usually sent to syslog):

error: rexec of /usr/sbin/sshd failed: No such file or directory

Before it restarts, the child process adds the undocumented –R option at the end of
its command line: this is used by the new process to detect that it has been restarted,
and should therefore use the already connected socket that it inherits from its parent
for communication with the client.* The parent process (i.e., the one that listens for
incoming connections) sends a copy of its configuration and the SSH-1 server key (if
one is used) via another socket to the restarted child process, which knows to read
the data because of the same –R option. The child process then proceeds to handle
the session normally.

If OpenSSH is started by inetd or xinetd, then there is no need to restart the SSH
server, because a new instance of sshd is started by inetd/xinetd for each connection.
[5.3.3.2] In fact, the function of the restarted child process is so similar to the opera-
tion of the server with inetd/xinetd that the –R option enables the same side effects as
the –i option: notably, debug output is forced to syslog instead of the standard error.

The restart mechanism can be disabled by the undocumented, lowercase –r option:

# OpenSSH
$ sshd -r

This is useful in conjunction with server debugging features, since restarts are an
inconvenient complication, and the side effect of sending debug output to syslog
after the child process restarts is undesirable. [5.9] The –r option can also be used to
avoid the slight performance cost for server restarts, especially on systems without
ASLR, where such restarts provide little or no additional randomness. There is no
configuration option to disable the server restart feature at build time.

5.3.3.4 Keepalive messages

The keepalive feature (TCPKeepAlive in OpenSSH, KeepAlive in Tectia) is concerned
with recognizing when a connection has failed. Suppose a client establishes an SSH
connection, and sometime later, the client host crashes abruptly. If the SSH server

* Never use the –R option to start sshd; it’s really part of the protocol for communication between the parent
and the (restarted) child server processes.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.3 Getting Ready: Initial Setup | 153

has no reason to send unsolicited messages to the client, it may never notice the half-
dead TCP connection to its partner, and the sshd remains around indefinitely, using
up system resources such as memory and a process slot (and making the sysadmin’s
ps output messy).

The TCPKeepAlive or KeepAlive keyword instructs sshd how to proceed if a connec-
tion problem occurs, such as a prolonged network outage or a client machine crash:

# OpenSSH
TCPKeepAlive yes
# Tectia
KeepAlive yes

The value yes (the default) tells the server to set the TCP keepalive option on its con-
nection to the client. This causes TCP to transmit and expect periodic keepalive mes-
sages. If it doesn’t receive responses to these messages for a while, it returns an error
to sshd, which then shuts down the connection.

The value no means not to use keepalive messages. Note that SSH clients can also
enable keepalive messages from their side of the connections, so it’s important to dis-
able those too if you want to avoid keepalive traffic completely. [7.4.5.4]

The TCP keepalive feature is intended to prevent half-dead connections from build-
ing up over time. The keepalive message interval and timeout period reflect this: they
are quite long, typically on the order of hours. This is to minimize the network load
imposed by the keepalive messages and also to prevent connections from being
unnecessarily torn down because of transient problems, such as a temporary net-
work outage or routing flap. These timers aren’t set in SSH; they are properties of the
host’s TCP stack. They shouldn’t be altered lightly, since they affect every TCP con-
nection using keepalives on that host.

This feature isn’t intended to prevent lost connections due to firewall, proxying,
NAT, or IP masquerading timeouts. For instance, when your SSH connection is
going across a firewall but has been idle for a while, the firewall can decide to tear
down the connection. Since this is done to conserve shared resources (such as a lim-
ited pool of external, routable IP addresses), these timeouts are typically quite short,
perhaps a few minutes to an hour or so. The name “keepalive” suggests that it might
be the right thing to use, since that’s what you want to do—keep your connection
alive. But really, “keepalive” is the wrong name for it; it would be better named
“detect dead” (but that sounds like a second-level cleric spell to avoid being eaten by
zombies). To deal with this problem, you’d have to shorten the TCP keepalive inter-
val dramatically on the SSH host. This is contrary to its purpose and unwise because
it affects not only SSH connections, but also every other TCP connection using keep-
alives, even those that don’t need it. Doing this on the server side is an especially bad
idea as a general principle, since a busy server may be using lots of TCP connections,
and enabling keepalives on many of them since it’s supposed to be an inexpensive



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

154 | Chapter 5: Serverwide Configuration

feature. This can impose an unnecessary and damaging additional network load,
especially if it becomes a widespread practice.

It’s good to remember that the timeout annoying you so much is there for a reason.
You might like to leave an unused SSH connection up for a long time, but if it’s
occupying one of a limited number of simultaneous outbound Internet TCP connec-
tions for your company, perhaps it’s better if you just suck it up for the common
good. Typing ssh again once in a while is really not that hard; use your shell’s alias
feature if you find the number of keystrokes onerous. If you genuinely think the
timeout is inappropriate or unnecessary, argue the case with the network administra-
tor, and try to get it changed.

For the occasions when it’s really necessary, the right way to accomplish this sort of
keepalive behavior is with an application-level mechanism implemented in SSH—
having it periodically send SSH protocol messages over the connection to make it
appear nonidle. This is exactly what OpenSSH does with its ClientAliveInterval

and ClientAliveCountMax keywords. ClientAliveInterval controls how the server
sends client-alive messages.* Its argument is a length of time in seconds:

# OpenSSH
ClientAliveInterval 300 Send client-alive every 300 seconds, or five minutes

or a time value with optional units:

# OpenSSH
ClientAliveInterval 5m Send client-alive every five minutes

If your server hasn’t heard from the client within the given amount of time, the server
will send a client-alive message to the client. It will continue sending these messages
at the given interval (in this case, every five minutes) until it receives a response or
gives up. You control how it gives up with the third keyword, ClientAliveCountMax,
representing the maximum number of consecutive client-alive messages the server
will send:

# OpenSSH
ClientAliveCountMax 8 Try eight times, then give up. The default is three times.

Once this maximum is reached, the server considers the SSH connection inactive and
terminates it. If you don’t want the server to send client-alive messages, set
ClientAliveInterval to zero.

If your SSH implementation has no similar feature (Tectia doesn’t), we recommend
simply sending characters over your connection once in a while. Run Emacs with a
clock in its mode line. Run a program in the background that prints “Boo!” to your
terminal if it’s been idle for 20 minutes. You get the idea.

* OpenSSH clients have analogous ServerAliveInterval and ServerAliveCountMax keywords. [7.4.5.4]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.3 Getting Ready: Initial Setup | 155

5.3.3.5 Idle connections

Keepalive messages are concerned with recognizing that a connection has failed. A
related feature is recognizing when a healthy connection is unused and should be ter-
minated. Tectia supports the IdleTimeout keyword for this purpose. If an SSH con-
nection is established between a server and a client, but no data passes over the
connection for a long time, what should the server do: keep the connection, or termi-
nate it?

The IdleTimeout keyword tells the server what to do if a connection is idle, i.e., if the
user doesn’t transmit any data in a given period. If IdleTimeout is zero (the default),
the server does nothing, leaving idle connections intact:

# Tectia
IdleTimeout 0

Otherwise, the server terminates the connection after a specified interval of idleness.
The time value can specify units, e.g., three hours:

# Tectia
IdleTimeout 3H

See the sidebar “Time Values in Configuration Files” for more syntax details.

The idle timeout can also be set for a given key in a user’s authorized_keys file using
the idle-timeout option. [8.2.7] Notably, this option overrides the server’s
IdleTimeout value but only for that key. This is a rare instance of a per-account
option overriding a serverwide option; however, the server will only allow a client to
decrease the timeout.

Time Values in Configuration Files
Some keywords specify intervals of time. By default, the values are numbers of seconds,
but both OpenSSH and Tectia recognize single-character suffixes for units, in either
lowercase or uppercase: s for seconds, m for minutes, h for hours, d for days, and w for
weeks. For example, one day could be represented as 1d or 24H or 1440m.

OpenSSH adds sequences of time values, so a 90-minute interval can be specified as
1h30m. Tectia allows only a single time-unit suffix.

OpenSSH recognizes time values with units for the keywords ClientAliveInterval,
LoginGraceTime, and KeyRegenerationTime.

Unfortunately, Tectia handles time values rather inconsistently. Units are recognized
only for the keywords IdleTimeout, HostkeyEKTimeOut, and ExternalMapperTimeout.
Other keywords that specify intervals accept only numbers of seconds, without units:
LoginGraceTime, AuthInteractiveFailureTimeout, and RekeyIntervalSeconds (which is
especially unusual, since the time unit “seconds” is in the keyword name).



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 5: Serverwide Configuration

5.3.3.6 Failed logins

Suppose a user attempts to log in via SSH but fails to authenticate. What should the
server do? The keywords LoginGraceTime, MaxAuthTries (OpenSSH), and
PasswordGuesses (Tectia) control the server’s response.

Users are given a limited time to authenticate successfully. The default is 120 sec-
onds (2 minutes) for OpenSSH or 600 seconds (10 minutes) for Tectia. This time-
out is controlled by the LoginGraceTime keyword, given a value in seconds:

LoginGraceTime 60

or the –g command-line option:

$ sshd -g 60

OpenSSH allows time units to be used in the configuration file or on the command
line:

# OpenSSH
LoginGraceTime 5m

# OpenSSH
$ sshd -g 5m

To disable this feature, provide a LoginGraceTime value of zero:

LoginGraceTime 0

or by command-line option:

$ sshd -g 0

OpenSSH ignores LoginGraceTime in debug mode. [5.9]

OpenSSH limits the number of times (six by default) that a user can attempt to
authenticate in a single SSH connection:

# OpenSSH
MaxAuthTries 4 Permit four attempts, and log the third and fourth failures if they occur

If authentication fails half the number of times specified (in this example, two times,
half of four), then failures are logged by sshd. In other words, sshd gives you the ben-
efit of the doubt at first, then considers you suspicious. By default, you have six
chances to authenticate in one connection.

If password authentication is used for a connection request, Tectia’s sshd permits a
client three tries to authenticate before dropping the connection. This restriction
may be modified with the PasswordGuesses keyword for Tectia:

# Tectia
PasswordGuesses 5



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.3 Getting Ready: Initial Setup | 157

There are two sorts of requests a client can make in this regard: a query whether a
particular public key is authorized to log into the target account, and an actual
authentication attempt including a signature by the corresponding private key. As
Tectia does not limit the number of public-key authentication requests, there’s no
issue with it. The OpenSSH MaxAuthTries setting, however, limits the number of
failed authentication requests overall, of any type, and OpenSSH counts a “no”
answer to a public-key query as a failure. A common side effect is an unexpected
limit to the number of keys you can usefully have in an agent! If you have five keys in
your agent, and it happens to be the fifth one that would let you in, you’re out of
luck: the server will disconnect you after the client tries the fourth key. And that’s
assuming the client didn’t try and fail some other methods first, e.g., GSSAPI or host-
based; then even fewer keys could be tried. (See [7.4.2.1] for a workaround.)

There are various security arguments to made here, of course. The server can’t distin-
guish between a legitimate user trying keys and an attacker knocking on the door, so
it measures all attempts against the repeated-authentication limit. In fact, one can
argue that the server shouldn’t honor public-key queries because they reveal informa-
tion to an attacker: which key to try to steal, or whether an account can be accessed
at all. These are all trade-offs of convenience versus security, and different server
implementations take different approaches.

You can work around this issue by listing your most relevant keys in your client con-
figuration file, ~/.ssh/config, with the IdentityFile keyword. [7.4.2] Keys that are in
both the agent and the configuration file are tried first by the client. Therefore, you
can associate particular keys with a particular host so that they’re tried first for
authentication.

5.3.3.7 Limiting simultaneous connections

sshd can handle an arbitrary number of simultaneous connections by default. Both
OpenSSH and Tectia provide keywords to limit the maximum number, if you want
to conserve resources on your server machine or reduce the risk of denial-of-service
attacks. For OpenSSH it is MaxStartups, and for Tectia it is MaxConnections:

# OpenSSH
MaxStartups 32

# Tectia
MaxConnections 32

To specify an unlimited number of connections, provide a value of zero:

# OpenSSH
MaxStartups 0

# Tectia
MaxConnections 0



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 5: Serverwide Configuration

Of course, the number of connections is also limited by available memory or other
operating system resources. These keywords have no effect on these other factors.
(Sorry, you can’t increase your CPU speed by setting a keyword!)

OpenSSH’s MaxStartups keyword has one additional bit of functionality. If you pro-
vide a triple of integers separated by colons, of the form A:B:C, this tells the server to
refuse connections based on probabilities. Specifically, if the number of connections
is A or greater, sshd will begin rejecting connections. When there are A connections,
the probability of rejection is B%. When there are C connections, the probability of
rejection is 100% (every attempt is rejected). Between A and C connections, the prob-
ability increases linearly from B% to 100%. So, for example, if you have:

# OpenSSH
MaxStartups 10:50:20

then at a load of 10 connections, the probably of rejection is 50%; at 15 connections
(halfway between 10 and 20) it’s 75% (halfway between 50% and 100%), and at 20
connections it’s 100%.

Tectia’s behavior is simpler. After the maximum number of connections have been
accepted, new connection attempts are rejected, and the server sends a “Too many
connections” error message back to the client before it disconnects. Tectia can also
limit the number of connections at compile time via the --with-ssh-connection-

limit option. [4.3.5.3]

If sshd is launched by xinetd, then you can control server resources much more pre-
cisely: the rate of incoming connections, server memory, and more. [5.3.3.2]

5.3.3.8 Reverse IP mappings

The SSH server optionally does a reverse DNS lookup on a client’s IP address. That
is, it looks up the name associated with the address, then looks up the addresses for
that name and makes sure that the client’s address is among them. If this check fails,
the server refuses the connection. This feature uses standard system services like
gethostbyname( ) and gethostbyaddr( ) to perform these mappings, so the databases
that are consulted depend on the host operating system configuration. It might use
the DNS, the Network Information Service (NIS or YP), static files on a server
machine, or some combination.

To enable this check for OpenSSH, provide the UseDNS keyword with a value of yes
or no:*

# OpenSSH
UseDNS yes

* Tectia has a similar-sounding keyword, RequireReverseMapping, but it applies only to the AllowHosts and
DenyHosts features. [5.5.3]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.3 Getting Ready: Initial Setup | 159

This feature is a bit of security-oriented consistency checking. SSH uses crypto-
graphic signatures to determine a peer’s identity, but the list of peer public keys (the
known hosts database) is often indexed by hostname, so SSH must translate the
address to a name in order to check the peer’s identity. Reverse mapping tries to
ensure that someone isn’t playing games with the naming service in a cracking
attempt. There is a trade-off, however, since in today’s Internet, the DNS reverse-
address mappings aren’t always kept up to date. The SSH server might reject legiti-
mate connection attempts because of poorly maintained reverse-address mappings
over which you have no control. In general, we recommend turning off this feature; it
isn’t usually worth the hassle, and you avoid long reverse-lookup delays at times
when DNS is down.

5.3.3.9 Controlling the Nagle Algorithm

TCP/IP has a feature called the Nagle Algorithm, which is designed to reduce the
number of TCP segments sent with very small amounts of data (e.g., one byte), usu-
ally as part of an interactive terminal session. Over fast links such as Ethernet, the
Nagle Algorithm generally isn’t needed. Over a wide-area network, however, it can
cause noticeable delays in the responsiveness of X clients and character terminal dis-
plays, as multibyte terminal control sequences may be transmitted inconveniently by
the algorithm. In such cases, you should turn off the Nagle Algorithm using the
NoDelay keyword:

# Tectia
NoDelay yes

NoDelay disables the Nagle Algorithm by toggling the TCP_NODELAY bit when
requesting a TCP connection from the Unix kernel. Legal values are yes (to disable)
and no (to enable; the default).

NoDelay can be enabled or disabled by the Tectia client, rather than serverwide, using
the client configuration keyword NoDelay. [7.4.5.5] It usually makes more sense to
use NoDelay for a single client connection than to control the Nagle Algorithm glo-
bally for all connections on the server side.

5.3.3.10 Discovering other servers

Tectia can seek out and discover other Tectia servers automatically. The keyword
MaxBroadcastsPerSecond, when given an integer value greater than zero, causes a Tec-
tia server to respond to UDP broadcasts sent to port 22:

# Tectia
MaxBroadcastsPerSecond 10

The server responds to only this many queries per second; any excess broadcasts are
silently ignored. All UDP broadcasts received on port 22 apply to this limit, includ-
ing unrecognized or malformed packets. The rate limiting prevents a denial-of-
service attack that floods the server with queries, causing it to spend all its time
replying to them.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 5: Serverwide Configuration

By default, Tectia servers do not respond to UDP broadcasts. This behavior can be
specified explicitly by setting MaxBroadcastsPerSecond to zero:

# Tectia
MaxBroadcastsPerSecond 0

No mechanism is provided to use a UDP port other than 22, and the UDP port is
completely independent of the TCP port(s) used for ordinary SSH connections.

A program supplied with Tectia, ssh-probe, sends queries to one or more specified
broadcast addresses. It listens for replies, and prints the locations (IP addresses and
ports) along with the versions of any Tectia servers that it finds:

# Tectia
$ ssh-probe 10.1.2.255
10.1.2.3:22:SSH Tectia Server 4.1.3.2
10.1.2.5:22:SSH Tectia Server 4.1.3.2
10.1.2.5:2222:SSH Tectia Server 4.1.3.2
10.1.2.5:3333:SSH Tectia Server 4.1.3.2
10.1.2.9:22:SSH Tectia Server 4.1.3.2
...

Directed broadcasts (i.e., those on different networks) can be used if intervening
gateways are willing to forward them. IP addresses of specific hosts (but not host-
names) can also be used.

UDP datagrams received on non-broadcast addresses are usually deliv-
ered only to a single process, so if several Tectia servers are running on
a target host, then only one will respond. Use broadcast addresses to
detect multiple servers.

ssh-probe does not use the ProtocolVersionString to determine the version: this
string is part of the initial negotiation between SSH servers and clients for TCP con-
nections. [5.3.7] Tectia servers always supply their actual version string in response
to UDP queries by ssh-probe.

The default output format is intended to be parsed easily by programs. The –r option
prints results in a more human-readable format:

# Tectia
$ ssh-probe -r 10.1.2.255
Server address = "10.1.2.3"
Server port = "22"
Server version = "SSH Tectia Server 4.1.3.2"
...
12 servers detected.

The –s option causes ssh-probe to operate silently, returning only an exit value of 0 to
indicate that at least one server was found, 1 if no replies were received, or -1 if some
other error occurred:



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.3 Getting Ready: Initial Setup | 161

# Tectia
$ ssh-probe -s 10.1.2.255
$ case $? in
>     0) echo "Tectia found.";;
>     1) echo "Tectia missing.";;
>     *) echo "Something bad happened to ssh-probe!";;
> esac
Tectia found.

By default, ssh-probe waits one second for replies. The –t option specifies a longer
timeout, e.g., for slow or distant servers:

# Tectia
$ ssh-probe -t 5 10.1.2.255

ssh-probe supports the –d option for debug output. [5.9] The program uses the mod-
ule names SshProbe and SshServerProbe.

Port-scanning programs such as nmap provide a more general way to locate SSH
servers, including other implementations like OpenSSH, even though port scans typi-
cally don’t provide version information as ssh-probe does for Tectia servers. For
example, to use nmap to scan a range of network addresses for any kinds of SSH
servers listening on (TCP) port 22:

$ nmap -v -p 22 10.1.2.0/24

The ScanSSH program* scans ranges of network addresses, identifying SSH servers
(along with open proxies and other interesting servers, such as HTTP and SMTP). It
attempts to determine the version for each. For example, to scan the same network
address range:

$ scanssh -s ssh 10.1.2.0/24

MaxBroadcastsPerSecond and ssh-probe are a rather ad hoc solution for locating Tec-
tia servers, and port scans are questionable, since authorized users typically know the
identity of specific servers to which they have been granted access. Probes often
don’t work across firewalls, and they might be mistaken for attacks by people and
programs that monitor network activity.

Better techniques are available to enumerate servers for administrative tasks, e.g.,
maintaining a list of servers in a netgroup or other database. Dynamic DNS and SRV
records are alternatives, although this nameserver functionality is still not widely
used.

5.3.4 Key Regeneration
All SSH servers maintain a persistent host key. It is generated by the system administra-
tor when installing SSH and identifies the host for authentication purposes. [5.3.1.1]

* http://www.monkey.org/~provos/scanssh/



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 5: Serverwide Configuration

Additionally, SSH-2 clients and servers exchange keys for data encryption and integ-
rity. By default, the Tectia client and server perform this key exchange every hour
(3600 seconds) but you can set this with the RekeyIntervalSeconds keyword. A value
of zero disables rekeying.

# Tectia
RekeyIntervalSeconds 7200

This keyword only controls the automatic, periodic session rekeying that is initiated
by the server. An SSH client can still request session rekeying at any time.

You can make the ssh client force rekeying with the escape sequence ~R (OpenSSH)
or ~r (for Tectia). [7.4.6.8]

5.3.5 Encryption Algorithms
The SSH server can use a number of data-encryption algorithms for its secure con-
nection; the client chooses a cipher from the list the server allows. The Ciphers key-
word describes the subset of allowable ciphers, selected from those the server
software supports. Its value is a comma-separated list of algorithm names (strings),
case-sensitive,* indicating which algorithms are permissible. For example:

Ciphers 3des-cbc
Ciphers 3des-cbc,blowfish-cbc,arcfour

The order of the values is not significant, since the client drives the choice of the
cipher.

If multiple Ciphers keywords are specified, the values are not accumulated into a sin-
gle list. Instead, OpenSSH uses the list for the first Ciphers keyword, and Tectia uses
the last.

OpenSSH treats unrecognized cipher names as fatal errors, but Tectia
silently ignores them, which makes typos hard to detect. For trouble-
shooting, use the sshd -d command-line option [5.9] with the
SshConfigParse module and a high debug level:

# Tectia
sshd -d SshConfigParse=9

Look for “ssh_config_set_param_algs” in the output to see the actual
list of cipher names that were used.

The Ciphers keyword is useful for quickly disabling individual encryption algo-
rithms—say, if a security hole is discovered in one of them. Just omit that algorithm
from the Ciphers list and restart the server.

* Older versions of OpenSSH treat the algorithm names as case-insensitive.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.3 Getting Ready: Initial Setup | 163

Both OpenSSH and Tectia support the following standard ciphers that are defined by
the IETF SECSH draft:

3des-cbc
aes128-cbc
aes192-cbc
aes256-cbc
arcfour
blowfish-cbc
cast128-cbc

In addition, Tectia implements the following standard ciphers:*

none
twofish-cbc
twofish128-cbc
twofish192-cbc
twofish256-cbc

The “none” cipher means that no encryption is used. This is unsuitable for produc-
tion use, but it might occasionally be convenient for testing, e.g., if you are watching
SSH traffic using a network sniffer for diagnostic purposes. Subconfiguration files
can restrict insecure ciphers like “none” to specific hosts or users. [11.6.2]

OpenSSH also implements a number of nonstandard ciphers:

acss@openssh.org†

aes128-ctr
aes192-ctr
aes256-ctr
rijndael-cbc@lysator.liu.se

By default, all ciphers supported by the OpenSSH server (both standard and non-
standard) are allowed.

Tectia supports a different set of recommended, nonstandard ciphers:

cast128-12-cbc@ssh.com
des-cbc@ssh.com
rc2-cbc@ssh.com
rc2-128-cbc@ssh.com
rijndael-cbc@ssh.com

Tectia also recognizes special values for the Cipher keyword indicating sets of
algorithms:

* A few standard ciphers aren’t supported by either OpenSSH or Tectia: idea-cbc, serpent128-cbc,
serpent192-cbc, and serpent256-cbc. These are all considered optional by the IETF SECSH draft.

† Cipher acss@openssh.org is not allowed by default; it must be explicitly enabled.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 5: Serverwide Configuration

AnyStd

Any standard algorithm implemented by Tectia, including none

AnyStdCipher

Same as AnyStd, but excluding none

Any

Any standard or recommended, nonstandard algorithm implemented by Tectia,
including none

AnyCipher

Same as Any, but excluding none

These special values are case-insensitive, in contrast to the other values for cipher
names. We recommend using the capitalization shown earlier, but you may see low-
ercase values in older Tectia configuration files or documentation.

An important and unfortunate restriction is that the special values for cipher sets
cannot be mixed with other cipher names:

# Tectia: This is ILLEGAL
Ciphers 3des-cbc,AnyStd

The default for Tectia is AnyStdCipher.

Tectia FIPS Mode
The FIPS 140-2 standard defines strict requirements for performing cryptographic
operations, including allowable ciphers. Tectia servers can use a special cryptographic
library that is certified to be FIPS 140-2 compliant. In FIPS mode, the server supports
only the following ciphers:

3des-cbc
aes128-cbc
aes192-cbc
aes256-cbc
des-cbc@ssh.com

To enable FIPS mode, run the ssh-crypto-library-chooser command:

# Tectia
$ ssh-crypto-library-chooser fips

To use the standard cryptographic library that supports all of the ciphers:

# Tectia
$ ssh-crypto-library-chooser std

With no command-line argument, the ssh-crypto-library-chooser command just prints
the currently used library.

The server must be restarted whenever the library is changed.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.3 Getting Ready: Initial Setup | 165

Tectia’s extensive but poorly documented cryptographic library actually supports a
much wider range of ciphers, including:

3des-ecb@ssh.com
3des-cfb@ssh.com
3des-ofb@ssh.com
aes-ecb@ssh.com
aes-cbc@ssh.com

Cipher Naming Conventions
Ciphers use a conventional naming scheme that encodes the algorithm and any vari-
able parameters. We illustrate the conventions by dissecting a sample cipher name:
cast128-12-cbc@ssh.com. Here is the meaning of each part:

cast
The name of the algorithm in lowercase. [3.8]

128
Many algorithms can use different key lengths. For these, the number of bits in the
key immediately follows the algorithm name. If the algorithm name ends in a digit,
then a hyphen is added between the name and the key size (e.g., rc2-128 for the
RC2 algorithm using 128-bit keys).

-12
A few algorithms are defined in terms of other parameters. If needed, these are
specified next, each with a leading hyphen. For example, the CAST algorithm can
use different numbers of rounds of encryption instead of the default 16.

-cbc
Block cipher algorithms can be run in a variety of modes of operation:

ECB
Electronic code book

CBC
Cipher block chaining

CFB
Cipher feedback

OFB
Output feedback

CTR
Counter

The mode is appended to the cipher name, again translated to lowercase, with a
hyphen.

@ssh.com:
Finally, the IETF SECSH draft specifies that nonstandard ciphers must have a suf-
fix with a leading @ character indicating the domain that defined the cipher.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 5: Serverwide Configuration

aes-cfb@ssh.com
aes-ofb@ssh.com
aes-ctr@ssh.com
blowfish-ecb@ssh.com
blowfish-cfb@ssh.com
blowfish-ofb@ssh.com
cast128-ecb@ssh.com
cast128-cfb@ssh.com
cast128-ofb@ssh.com
cast128-12-ecb@ssh.com
cast128-12-cfb@ssh.com
cast128-12-ofb@ssh.com
des-ecb@ssh.com
des-cfb@ssh.com
des-ofb@ssh.com
rc2-ecb@ssh.com
rc2-cfb@ssh.com
rc2-ofb@ssh.com
rc2-128-ecb@ssh.com
rc2-128-cfb@ssh.com
rc2-128-ofb@ssh.com
rijndael-ecb@ssh.com
rijndael-cfb@ssh.com
rijndael-ofb@ssh.com
rijndael-ctr@ssh.com
twofish-ecb@ssh.com
twofish-cfb@ssh.com
twofish-ofb@ssh.com

These are not included in the sets for Any or AnyCipher. In some cases, this is because
the ciphers are considered experimental or inferior. For example, DES is usually not
recommended because of its short key length, and block ciphers in ECB mode are
considered vulnerable to replay attacks. Other modes such as CFB, OFB, and CTR
are plausible alternatives to the default CBC, however.

Finally, Tectia recognizes a small number of convenient aliases for sets of ciphers:

Value Meaning

aes-cbc aes128-cbc, aes192-cbc aes256-cbc

cast cast128-cbc

twofish twofish-cbc, twofish128-cbc, twofish192-cbc, twofish256-cbc



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.3 Getting Ready: Initial Setup | 167

In most cases, the names of block ciphers in CBC mode are also recog-
nized by Tectia without “-cbc”, since CBC is considered the default
mode. There are exceptions, however, that don’t follow any obvious
pattern:

• aes-cbc@ssh.com

• cast128-cbc

• cast128-12-cbc@ssh.com

• rc2-cbc@ssh.com

• rc2-128-cbc@ssh.com

• twofish-cbc

We therefore recommend explicitly specifying -cbc in cipher names.

Tectia is rather forgiving (or sloppy, depending on your point of view)
about the @ssh.com suffix for cipher names, which is supposed to be
used consistently for nonstandard ciphers.

Most standard cipher names are also recognized with this suffix. The
exceptions are:

• aes128-cbc

• aes192-cbc

• aes256-cbc

• twofish128-cbc

• twofish192-cbc

• twofish256-cbc

Similarly, the suffix can be omitted from most nonstandard cipher
names. The lone exception is aes-cbc@ssh.com, because the name
without the suffix is used as an alias for all AES ciphers in CBC mode
with any key length, as described earlier.

Misusing the @ssh.com suffix in this way is inadvisable, because it
violates the IETF SECSH draft.

5.3.6 Integrity-Checking (MAC) Algorithms
The MACs keyword selects the allowable integrity-checking algorithms, known as the
message authentication code (MAC), used by sshd. [3.4.2.3] Except as described
below, the MACs keyword behaves exactly like the Ciphers keyword. [5.3.5] Here are
some examples:

MACs hmac-sha1
MACs hmac-sha1,hmac-md5



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

168 | Chapter 5: Serverwide Configuration

Both OpenSSH and Tectia support the following standard MAC algorithms defined
by the IETF SECSH draft:

hmac-sha1
hmac-sha1-96
hmac-md5
hmac-md5-96

In addition, Tectia implements the standard “none” MAC, meaning that no integrity
checking is performed. This is intended only for testing.

In Tectia’s FIPS mode, only the hmac-sha1 MAC is supported.

OpenSSH also implements a nonstandard MAC algorithm, hmac-
ripemd160@openssh.com. The name hmac-ripemd160 is also recognized without
the @openssh.com suffix, but this is deprecated, since all nonstandard names are
supposed to use a domain suffix. Tectia also supports some nonstandard MAC
algorithms:

hmac-ripemd160@ssh.com
hmac-ripemd160-96@ssh.com
hmac-sha256@ssh.com
hmac-sha256-96@ssh.com
hmac-tiger128@ssh.com
hmac-tiger128-96@ssh.com
hmac-tiger160@ssh.com
hmac-tiger160-96@ssh.com
hmac-tiger192@ssh.com
hmac-tiger192-96@ssh.com
ssl3-md5@ssh.com
ssl3-sha1@ssh.com

Tectia recognizes special values for the Macs keyword to describe sets of algorithms:

AnyStd

Any standard algorithm implemented by Tectia, including none

AnyStdMac

Same as AnyStd, but excluding none

Any

Any standard or nonstandard algorithm implemented by Tectia, including none

AnyMac

Same as Any, but excluding none



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.3 Getting Ready: Initial Setup | 169

By default, Tectia allows algorithms in the AnyStdMac set. (The Any value includes all
supported MAC algorithms, unlike the Ciphers keyword.) OpenSSH allows all its
available MACs by default.

Tectia also recognizes standard MAC names with the @ssh.com suf-
fix. The suffix cannot be omitted for nonstandard MAC names, how-
ever, in contrast to the Ciphers keyword.

It’s best to use the suffix consistently according to the IETF SECSH
draft, only for nonstandard names.

5.3.7 SSH Protocol Settings
OpenSSH lets you limit its protocol support to SSH-1, SSH-2, or both, using the
Protocol keyword. Permissible values are 1 (for SSH-1), 2 (for SSH-2), or both 1 and
2 separated by a comma (the default):

# OpenSSH
Protocol 2,1

If you specify both protocols, the order doesn’t matter since the client, not the server,
drives the authentication process. And as we’ve said before, the SSH-1 protocol is
less secure and we recommend avoiding it. [3.5]

Algorithm Naming Conventions
MAC names encode the algorithm and parameters, as for cipher names. To demon-
strate, let’s decode a sample name: hmac-ripemd160-96@ssh.com:

hmac-
Algorithms are prefixed by the name of the scheme that is used to combine a
shared secret key with the contents of each packet. The most common is HMAC,
the keyed hashing technique described by RFC-2104. Tectia also supports an early
HMAC variant used by SSL Version 3, denoted by the prefix “ssl3-”.

ripemd160
The name of MAC hash algorithm is next, which often contains digits that indi-
cate either a version (e.g., sha1 and md5) or the number of bits produced by the
hash. [3.8.3] The names are translated to lowercase, and any hyphens are
removed.

-96
Some MAC algorithms have variants that truncate a larger message digest to a
smaller number of bits. These are appended to the name, preceded by a hyphen.

@ssh.com
A suffix is required by the IETF SECSH draft for nonstandard ciphers, describing
the domain that defined the MAC algorithm, preceded by an @ character.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

170 | Chapter 5: Serverwide Configuration

5.3.7.1 Protocol version string

SSH servers and clients exchange protocol version information as part of their initial
negotiations, to agree on a protocol. [3.4.4.2] You can see the protocol version string
used by the server by connecting to the SSH port:

$ telnet localhost 22
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
SSH-2.0-4.1.3.2 SSH Secure Shell

By default, Tectia servers use a string like “4.1.3.2 SSH Secure Shell” for the com-
ment part (after the second hyphen) of the protocol version. This can be changed
using the undocumented ProtocolVersionString keyword:

# Tectia
ProtocolVersionString Generic SSH Implementation

Port-scanning tools that connect to the SSH port and observe the protocol version
string will not see the detailed information about the specific installed version of Tec-
tia if the string is changed:

$ telnet localhost 22
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
SSH-2.0-Generic SSH Implementation

ProtocolVersionString changes only the comment part of the version
string. The initial parts (e.g., SSH-2.0) always specify the protocol(s)
that the server is willing to use, according to the SSH protocol
standard.

Although an obscured ProtocolVersionString might thwart very simplistic port-
scanning tools, in practice it doesn’t help much, since many attacks try to exploit
bugs regardless of the version string, and determined attackers can probably figure
out the implementation by noticing specific behavioral quirks of the server anyway.
If the Tectia server is configured to respond to UDP queries by ssh-probe [5.3.3.10],
then it always will respond to such queries with the actual version information, not
the changed ProtocolVersionString. Furthermore, changing ProtocolVersionString

might prevent workarounds by clients for known server incompatibilities or bugs.

The OpenSSH server always uses a string like “OpenSSH_3.9p1” for its protocol ver-
sion string. This cannot be changed except by modifying the source code.

5.3.8 Compression
The data flowing between the SSH client and server may optionally be compressed to
save bandwidth. Often this option is set by the client [7.4.14], but OpenSSH gives



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.4 Authentication: Verifying Identities | 171

the server the ultimate authority on whether data compression is permitted, using
the Compression keyword:

# OpenSSH
Compression no

The default value is yes.

5.4 Authentication: Verifying Identities
A large part of the SSH server’s job is to grant or deny connection requests from cli-
ents. This is done at two levels: authentication and access control (a.k.a. authoriza-
tion). We discuss the former here and the latter in the section “Access Control:
Letting People In.” [5.5] Authentication, as we’ve seen, means verifying the identity
of the user requesting a connection.

5.4.1 Authentication Syntax
sshd supports several different techniques for authentication that may be enabled or
disabled. [3.1.3] [3.4.3] For example, if you don’t trust password authentication, you
can turn it off serverwide but still permit public-key authentication.

As SSH has evolved, the syntax for configuring authentication has changed several
times, and OpenSSH and Tectia use entirely different syntaxes. In OpenSSH, differ-
ent authentication techniques are turned on and off with keywords of the form:

<Name_Of_Technique>Authentication

For example, password authentication is controlled by the keyword
PasswordAuthentication, public-key authentication by PubKeyAuthentication, and so
forth, one keyword per technique. Values may be yes or no, as in:

# OpenSSH
PubKeyAuthentication yes

Table 5-1 lists all the authentication techniques supported by OpenSSH, and each is
described in detail later.

Table 5-1. OpenSSH authentication keywords

Keyword Meaning

ChallengeResponseAuthentication One-time passwords.

GSSAPIAuthentication Typically used for Kerberos.

HostbasedAuthentication Host-based authentication.

PasswordAuthentication Password authentication. Exactly what this means is determined by the
UsePAM and KerberosAuthentication keywords.

PubKeyAuthentication Public-key authentication.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 5: Serverwide Configuration

Tectia has a more extensible syntax. Instead of creating a new keyword for each tech-
nique, you use only two keywords, AllowedAuthentications and
RequiredAuthentications. Each is followed by the names of one or more authentica-
tion techniques, separated by commas. For example:

# Tectia
AllowedAuthentications password,hostbased,publickey

AllowedAuthentications means that any of the given techniques can be used. In con-
trast, RequiredAuthentications means that all of the listed techniques must be used.
If both keywords are present, then RequiredAuthentications is used, and
AllowedAuthentications is ignored.* Table 5-2 lists the supported values for these
keywords. The first four techniques are specified by the IETF SECSH draft, while the
ones with the @ssh.com suffix are nonstandard. It doesn’t matter in what order you
list the values because the SSH client, not the server, drives the authentication pro-
cess. By default, Tectia’s sshd allows only password and public-key authentication.

RhostsRSAAuthentication SSH-1 protocol only: avoid.

RSAAuthentication SSH-1 protocol only: avoid.

* This behavior, with RequiredAuthentications overriding AllowedAuthentications, began in Version 3.1.0 of
Tectia’s sshd. In previous versions, the two keywords were used together, but in practice this forced the two
lists of techniques to be identical: a required technique must also be allowed, and an allowed technique that
is not required is pointless, since it would be insufficient for authentication.

Table 5-2. Tectia authentication techniques for AllowedAuthentications and
RequiredAuthentications

Value Meaning

password Password authentication.

publickey Public-key authentication.

hostbased Host-based authentication.

keyboard-interactive Extensible, general-purpose, interactive authentication.

gssapi-with-mic GSSAPI authentication with Message Integrity Code (MIC).

gssapi GSSAPI authentication (deprecated in favor of gssapi-with-mic).

kerberos-2@ssh.com Kerberos. Unsupported. Not available by default: requires recompilation.

kerberos-tgt-2@ssh.com Kerberos authentication with TGT (passed to server). Unsupported.

Not available by default: requires recompilation.

pam-1@ssh.com Mostly obsolete: replaced by keyboard-interactive. Used only for old clients.

securid-1@ssh.com Mostly obsolete: replaced by keyboard-interactive. Used only for old clients.

Table 5-1. OpenSSH authentication keywords (continued)

Keyword Meaning



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.4 Authentication: Verifying Identities | 173

We now describe how to enable and disable each type of authentication except the
deprecated SSH-1 keywords, which are in Appendix D.

5.4.2 Password Authentication
Password authentication accepts your login password as proof of identity. [3.4.3.5]
OpenSSH allows or disallows password authentication with the
PasswordAuthentication keyword, given the value yes (the default) or no:

# OpenSSH
PasswordAuthentication yes

Normally, OpenSSH password authentication requires your ordinary login pass-
word. However, this may be changed via PAM [5.4.8], Kerberos [5.4.7], or other fea-
tures.

For Tectia, you can allow or require password authentication by adding the value
password to the lists for AllowedAuthentications or RequiredAuthentications,
respectively:

# Tectia
AllowedAuthentications password

5.4.2.1 Failed password attempts

Tectia servers wait two seconds by default after each failed password authentication
attempt, to thwart brute-force password-guessing attacks. The AuthInteractive-
FailureTimeout keyword controls this delay:

# Tectia
AuthInteractiveFailureTimeout 5

5.4.2.2 Empty passwords

If an account has an empty password, both the OpenSSH and Tectia servers may
refuse access to the account. This feature is controlled by the keyword
PermitEmptyPasswords with a value of yes (the default) or no. If enabled:

PermitEmptyPasswords yes

empty passwords are permissible; otherwise, they are not.

5.4.2.3 Expired passwords

Some operating systems support expiration dates for passwords. For those that do,
OpenSSH and Tectia allow expired passwords to be changed during authentication.

If the OpenSSH server detects an expired password, it runs the system passwd com-
mand to change it once the user has logged in. It then closes the connection so that
the user must log in again:

$ ssh -oPubKeyAuthentication=no -l smith server.example.com
smith@server.example.com's password:



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

174 | Chapter 5: Serverwide Configuration

Last login: Sat Jan 22 17:07:27 2005 from client.example.com
WARNING: Your password has expired.
You must change your password now and login again!
Changing local password for smith.
Old password:
New password:
Retype new password:
Connection to server.example.com closed.

For Tectia, by default, after the server verifies the user’s password, if the password is
found to be expired, then the system’s password-change program (e.g., passwd) is
run as a forced command. [8.2.3] An alternate password-change program (e.g., one
that enforces policies for choosing good passwords) can be specified by the
PasswdPath keyword:

# Tectia
PasswdPath /usr/local/bin/goodpasswd

The password-change program runs with the privileges of the user, not those of the
server (typically root). Here’s an example of a password change during authentica-
tion, from the client’s perspective:

$ ssh server.example.com
rebecca's password: < ... old, expired password ... >

Authentication successful.
< ... the following output is from running the passwd forced command ... >
Changing password for user rebecca.
Changing password for rebecca
(current) UNIX password: < ... old, expired password, again ... >

New password: < ... new password ... >

Retype new password: < ... new password, again ... >

passwd: all authentication tokens updated successfully.
Connection to server.example.com closed.

We discuss more powerful alternatives to this technique in a later case study. [11.7.1]

5.4.3 Public-Key Authentication
Public-key authentication verifies a user’s identity by cryptographic key. [2.4] In
OpenSSH, public-key authentication is permitted or forbidden with the
PubKeyAuthentication keyword which may have the value yes (the default) or no:*

#  OpenSSH
PubKeyAuthentication yes

For Tectia, you allow or require public-key authentication by adding the value
publickey to the lists for AllowedAuthentications or RequiredAuthentications,
respectively:

# Tectia
AllowedAuthentications publickey

* For SSH-1 protocol connections in OpenSSH, use the keyword RSAAuthentication instead.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.4 Authentication: Verifying Identities | 175

Tectia provides keywords that restrict the minimum and maximum sizes for public
keys:

# Tectia
AuthPublicKey.MinSize 1024
AuthPublicKey.MaxSize 2048

You might want to require a minimum key size for improved security, but reject
huge keys because they slow down authentication. A value of zero (the default) dis-
ables the key-size checks.

Public-key authentication is marvelously configurable for most SSH implementa-
tions. See Chapter 8 for details on tailoring authentication for individual accounts.

5.4.4 Hostbased Authentication
Hostbased authentication verifies an SSH client’s identity by checking the remote
hostname and username associated with it. [3.4.3.6] This mimics the behavior of the
insecure Berkeley r-commands (rsh, rlogin, rcp) which check the server files /etc/
hosts.equiv and ~/.rhosts for permission to authenticate. SSH’s hostbased authentica-
tion is more secure, however: instead of relying on a potentially compromised net-
work naming service (e.g., DNS, NIS) and a privileged TCP source port, the SSH
server uses secure, cryptographic tests of host keys to verify the client host’s identity.

OpenSSH has the keyword HostbasedAuthentication (surprise!) to enable or disable
this type of authentication:*

#  OpenSSH
HostbasedAuthentication yes

For Tectia, you allow or require hostbased authentication by adding the value
hostbased to the lists for AllowedAuthentications or RequiredAuthentications,
respectively:

# Tectia
AllowedAuthentications hostbased

Hostbased authentication is useful but unfortunately also enables connections via
the insecure r-commands, since it obeys the same permission files. To eliminate this
potential security risk, use the SSH-specific files /etc/shosts.equiv and ~/.shosts instead
of /etc/hosts.equiv and ~/.rhosts. In fact, we recommend you delete /etc/hosts.equiv
and forbid your users to create ~/.rhosts files. (An even better approach is to disable
the services for insecure protocols like the r-commands; these services are usually
started by inetd or xinetd.)

You can also tell the SSH server to ignore all users’ .rhosts and .shosts files with the key-
word IgnoreRhosts. (This keyword does not impact the system files /etc/shosts.equiv

* OpenSSH has another keyword, RhostsRSAAuthentication, that applies only to SSH-1 protocol connections.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

176 | Chapter 5: Serverwide Configuration

and /etc/hosts.equiv, however.) Permissible values are yes (to ignore them) or no (the
default):

IgnoreRhosts yes

Ignoring users’ files might be appropriate in an environment of centralized control,
where only sysadmins are authorized to decide which hosts are trusted for
authentication.

Tectia permits separate control over hostbased authentication for root. The keyword
IgnoreRootRhosts permits or prevents use of the superuser’s .rhosts and .shosts files,
overriding IgnoreRhosts:

# Tectia
IgnoreRootRhosts yes

Values of yes (ignore the files) and no (don’t ignore) are permitted. If not specified,
the value of IgnoreRootRhosts defaults to that of IgnoreRhosts. For example, you can
permit all .rhosts and .shosts files except root’s:

# Tectia
IgnoreRhosts no
IgnoreRootRhosts yes

or ignore all .rhosts files except root’s:

# Tectia
IgnoreRhosts yes
IgnoreRootRhosts no

Again, IgnoreRootRhosts doesn’t stop the server from considering /etc/hosts.equiv and
/etc/shosts.equiv. For stronger security, it’s best to disable hostbased access entirely.

The SSH server needs the public keys of all hosts from which it accepts connections
via hostbased authentication. These keys are kept in a single file, /etc/ssh/ssh_known_
hosts (for OpenSSH), or in separate files in the directory /etc/ssh2/knownhosts (for
Tectia). A host’s public key is fetched from these locations whenever that host
requests a connection. Optionally, the server also searches the file ~/.ssh/known_
hosts (for OpenSSH) or separate files in the directory ~/.ssh2/knownhosts in the tar-
get user’s account.

This optional feature (which is enabled by default) can be controlled with the key-
words IgnoreUserKnownHosts (for OpenSSH):

# OpenSSH
IgnoreUserKnownHosts yes

or UserKnownHosts (for Tectia):

# Tectia
UserKnownHosts no

Having sshd consult the user’s known hosts database might be unacceptable in a
security-conscious environment. Since hostbased authentication relies on the integ-
rity and correct administration of the client host, the system administrator usually



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.4 Authentication: Verifying Identities | 177

grants hostbased authentication privileges to only a limited set of audited hosts. If
the user’s file is respected, however, a user can extend this trust to a possibly inse-
cure remote host. An attacker can then:

• Compromise the insecure, remote host

• Impersonate the user on the remote host

• Access the user’s local account via SSH, without needing a key passphrase or the
local account password

Hostbased authentication can be complicated by other aspects of your server
machine’s environment, such as DNS, NIS, and the ordering of entries in static host
files. It may also open new avenues for attack on a system. [3.4.3.6]

Tectia servers can require that the hostname provided by the client must match the
one found in DNS, using the keyword HostbasedAuthForceClientHostnameDNSMatch:

# Tectia
HostbasedAuthForceClientHostnameDNSMatch yes

By default, no such check is performed, and in practice, this feature provides only a
moderate level of protection against spoofing, since the DNS server(s) can still be
attacked. [3.6.2]

5.4.5 Keyboard-Interactive Authentication
Keyboard-interactive authentication is an extensible, general-purpose mechanism for
implementing a variety of authentication techniques that require interaction with the
remote user, such as one-time passwords and challenge-response schemes. Clients
must implement the keyboard-interactive protocol (described in an IETF SECSH
draft, and tunneled securely over the SSH transport layer) but need no other modifi-
cations as new authentication techniques are added.

An example of a keyboard-interactive authentication technique is one-time pass-
words, found in systems like Bellcore’s S/Key. “One-time” means that each time you
authenticate, you provide a different password, helping to guard against attacks,
since a captured password will likely be useless. Here’s how it works:

1. When you connect to a remote service, it provides you with an integer and a
string, called the sequence number and the key, respectively.

2. You enter the sequence number and key into an S/Key calculator program on
your local machine.

3. You also enter a secret passphrase into the calculator, known only to yourself.
This passphrase isn’t transmitted over the network, only into the calculator on
your local machine, so security is maintained.

4. Based on the three inputs you provided, the calculator produces your one-time
password.

5. You enter the password to authenticate to the remote service.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

178 | Chapter 5: Serverwide Configuration

More information on one-time passwords is available at:

http://www.ietf.org/html.charters/otp-charter.html

5.4.5.1 OpenSSH keyboard-interactive authentication

In OpenSSH, you enable keyboard-interactive authentication with the keyword
ChallengeResponseAuthentication:

# sshd_config
ChallengeResponseAuthentication yes

OpenSSH supports three challenge/response methods, called “devices,” listed in
Table 5-3. Since these methods are dependent on external software, you have to con-
figure OpenSSH at compile time to support them.

PAM is widely available and hence often included in compiled OpenSSH packages.
Just make sure the server configuration keyword UsePAM is set: [5.4.8]

# OpenSSH
UsePAM yes

BSD authentication will likely be available only if running on a BSD platform (e.g.,
OpenBSD); see the manpage for login.conf for details on its operation. If you want
S/Key support, you have two options: obtain a PAM library that supports it, such as
libpam_opie or libpam_skey, or build OpenSSH yourself to get direct S/Key sup-
port. We recommend the PAM library approach.

In conducting keyboard-interactive authentication, the client by default specifies no
device, which means the server will try all. There’s an undocumented client-side
option, KbdInteractiveDevices, however, whose value is the list of devices to try:

# OpenSSH
KbdInteractiveDevices pam,skey,bsdauth

5.4.5.2 Tectia’s keyboard-interactive authentication

For Tectia, you can allow or require keyboard-interactive authentication by adding
the value keyboard-interactive to the lists for AllowedAuthentications or
RequiredAuthentications, respectively:

# Tectia
AllowedAuthentications keyboard-interactive

Table 5-3. OpenSSH keyboard-interactive (challenge/response) authentication methods

Method Device name Compilation option

BSD authentication bsdauth --with-bsd-auth

PAM pam --with-pam

S/Key skey --with-skey



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.4 Authentication: Verifying Identities | 179

Tectia servers support the following keyboard-interactive authentication techniques:

password
Standard password authentication [5.4.2]

pam
Pluggable Authentication Modules [5.4.8]

securid
SecurID hardware-based authentication

plugin
Programmatic authentication [11.7.2]

Keyboard-interactive authentication techniques can be either optional or required (or
both), and are specified using the keywords AuthKbdInt.Optional or AuthKbdInt.

Required. Multiple authentication techniques are separated by commas:

# Tectia
AuthKbdInt.Optional pam,securid,password
AuthKbdInt.Required plugin,password

The order of the authentication techniques is not significant for either keyword,
since the client drives the authentication process.

Beware of typographic errors in the values of AuthKbdInt.Optional and
AuthKbdInt.Required: they are not checked when the server reads them
from configuration files. Invalid or unrecognized techniques are
detected only when keyboard-interactive authentication is attempted,
which can be long after the server starts.

Authentication succeeds if all of the required authentication techniques succeed, as
well as a number of optional authentication techniques specified by the AuthKbdInt.
NumOptional keyword:

# Tectia
AuthKbdInt.NumOptional 2

The default for AuthKbdInt.NumOptional is zero if there are any required authentica-
tion techniques, or one otherwise.

The AuthKbdInt.Retries keyword determines how many attempts are allowed for
keyboard-interactive authentication:

# Tectia
AuthKbdInt.Retries 5

By default, three retries are allowed.

The Tectia server waits after each failed keyword-interactive authentication attempt,
as for password authentication; the AuthInteractiveFailureTimeout keyword applies
to this delay. [5.4.2.1]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

180 | Chapter 5: Serverwide Configuration

The keyboard-interactive password authentication technique is functionally identi-
cal to standard password authentication. [5.4.2]

PAM authentication is supported by binary distributions of Tectia on systems that
provide PAM (e.g., Linux, Solaris). On other systems, support for PAM requires
recompiling the SSH server with the appropriate PAM headers and libraries. [5.4.8]

SecurID from Security Dynamics is a hardware-based authentication technique.
Users need a physical card, called a SecurID card, in order to authenticate. The card
contains a microchip that displays (on a little LCD) an integer that changes at regu-
lar intervals. To authenticate, provide this integer along with your password. Some
versions of the SecurID card also have a keypad that supports entering a password,
for two-factor authentication. Users must provide the current integer from their card
in order to authenticate.

By default, Tectia allows three attempts to enter the SecurID password. This can be
changed with the SecurIdGuesses keyword:

# Tectia
SecurIdGuesses 5

SecurID support is included in binary distributions of Tectia. The securid keyboard-
interactive authentication technique mentioned previously refers to code incorpo-
rated into the server. Alternately, separate plugins called ssh-securidv5-plugin and
ssh-securidv4-plugin are provided for different RSA ACE versions on some platforms.*

In either case, recompiling the server or plugins requires special SecurID headers and
libraries. SecurID must also be configured by setting the environment variable VAR_

ACE to the pathname of the ACE data directory before the server is started: consult
the SecurID documentation for details.

New authentication techniques can be added using keyboard-interactive plugins. If
plugin is specified as either an optional or required keyboard-interactive authentica-
tion technique, then the AuthKbdInt.Plugin keyword must be used to identify a pro-
gram that controls the interactive authentication steps:†

# Tectia
AuthKbdInt.Plugin /usr/local/sbin/ssh-keyboard-interactive-plugin

The server communicates with the plugin program using the Tectia plugin protocol,
which we’ll describe in a later case study. [11.7.2]

* If SecurID plugins are used, specify plugin instead of securid as the value of AuthKbdInt.Optional or
AuthKbdInt.Required, and set AuthKbdInt.Plugin to the pathname for the appropriate plugin.

† If no plugin program is specified, or the specified program cannot be run, then keyboard-interactive plugin
authentication will always fail.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.4 Authentication: Verifying Identities | 181

5.4.6 PGP Authentication
Tectia can authenticate users via the PGP key. We cover this topic in Chapter 6. [6.5]

5.4.7 Kerberos Authentication
Kerberos, the well-known secure authentication system, can be used by OpenSSH
and Tectia. We summarize the Kerberos-related configuration keywords here and
defer a more detailed treatment of the topic. [11.4]

5.4.7.1 Kerberos and OpenSSH

Kerberos authentication is supported only if enabled at compile time by the configu-
ration option --with-kerberos5. Assuming the SSH server was built in this manner,
Kerberos authentication can be used in two ways: directly, and as a verifier for pass-
word authentication.

Direct Kerberos authentication is enabled by the GSSAPIAuthentication keyword:

# OpenSSH
GSSAPIAuthentication yes

This allows normal, ticket-based Kerberos user authentication: it requires that the
usual service principal host/server@REALM be added to the Kerberos KDC, and that
principal’s key added to the server host keytab, usually /etc/krb5.keytab. By default,
the Kerberos principal foo@REALM will be allowed access to server account “foo”;
you can allow others by adding them to ~foo/.k5login (along with foo@REALM
itself, which would otherwise lose access!). There is also the default:

# OpenSSH
GSSAPICleanupCredentials yes

which means sshd will delete a user’s forwarded Kerberos credentials on logout; this
is usually a good idea and should be left on. [11.5.2]

The second method, password verification, is indirect. It does not require any Ker-
beros support on the client at all: it simply means that for regular SSH password
authentication, sshd will verify a user’s password against Kerberos. This mode is
enabled or disabled by the keyword KerberosAuthentication with the value yes or no:

# OpenSSH
KerberosAuthentication yes

Instead of checking against the local login password, sshd requests a Kerberos ticket-
granting ticket (TGT) for the user and allows login if the ticket matches the pass-
word.* It also stores that TGT in the user’s credentials cache, eliminating the need to
do a separate kinit. Note that for technical reasons, the server also requires a service

* It also requires a successful granting of a host ticket for the local host as an antispoofing measure.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

182 | Chapter 5: Serverwide Configuration

principal in this case, even though it might not seem necessary: there’s an extra step
involved that protects against a KDC spoofing attack.

If Kerberos fails to validate a password, the server optionally validates the same pass-
word by ordinary password authentication. This is convenient in an environment
where not everyone uses Kerberos. To enable this option, use the keyword
KerberosOrLocalPasswd with a value of yes; the default is no:

# OpenSSH
KerberosOrLocalPasswd yes

Finally, since password authentication via Kerberos may also result in stored Ker-
beros user credentials, there’s a KerberosTicketCleanup keyword:

# OpenSSH
KerberosTicketCleanup yes

Similar to GSSAPICleanupCredentials, this has the server delete such credentials upon
logout.

OpenSSH also used to support Kerberos TGT passing via the KerberosTgtPassing

keyword, but at press time the support has been removed.

5.4.7.2 Kerberos and Tectia

Kerberos is used with Tectia via GSSAPI authentication. You can allow or require
GSSAPI authentication by adding the value gssapi to the lists for
AllowedAuthentications or RequiredAuthentications, respectively:

# Tectia
AllowedAuthentications gssapi

GSSAPI authentication was added in Tectia Version 4.2. The older
kerberos-2@ssh.com and kerberos-tgt-2@ssh.com authentication
methods are still available if they were enabled when Tectia was con-
figured, but they are unsupported.

The GSSAPI.AllowedMethods keyword specifies a list of allowed GSSAPI methods.
Currently, only kerberos is supported:

# Tectia
GSSAPI.AllowedMethods kerberos

The kerberos GSSAPI method is allowed by default, so there is currently no reason to
use the GSSAPI.AllowedMethods keyword, unless you want to be explicit.

Tectia’s GSSAPI authentication attempts to use the MIC. If the keyword GSSAPI.

AllowOldMethodWhichIsInsecure is enabled, then Tectia is willing to fall back to using
GSSAPI without MIC:

# Tectia
GSSAPI.AllowOldMethodWhichIsInsecure yes



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.4 Authentication: Verifying Identities | 183

The default is yes, since GSSAPI with MIC is not yet widely supported. If the value
no is used, then GSSAPI authentication requires MIC: another way to specify this is
to use gssapi-with-mic instead of gssapi as the authentication method.

The GSSAPI.Dlls keyword identifies the location of the GSSAPI libraries, as a comma-
separated list of full pathnames:

# Tectia
GSSAPI.Dlls /usr/local/gssapi/lib/libgssapi.so

By default, Tectia searches a list of common locations for the libraries, including:

• /usr/lib/libgssapi_krb5.so

• /usr/lib/libkrb5.so

• /usr/lib/libgss.so

• /usr/local/gss/gl/mech_krb5.so

• /usr/local/lib/libgssapi_krb5.so

• /usr/local/lib/libkrb5.so

• /usr/kerberos/lib/libgssapi_krb5.so

• /usr/kerberos/lib/libkrb5.so

• /usr/lib/gss/libgssapi_krb5.so

The .so suffix varies for different Unix platforms.

5.4.8 PAM Authentication
The Pluggable Authentication Modules system (PAM) by Sun Microsystems is an
infrastructure for supporting multiple authentication methods; it’s found on Solaris
and most Linux systems. Ordinarily when a new authentication mechanism comes
along, programs need to be rewritten to accommodate it. PAM eliminates this has-
sle. Programs are written to support PAM, and new authentication mechanisms may
be plugged in at runtime without further source-code modification. More PAM infor-
mation is found at:

http://www.sun.com/software/solaris/pam/

OpenSSH includes support for PAM, enabled with the UsePAM keyword, which
defaults to no:

# OpenSSH
UsePAM yes

Tectia supports PAM as a keyboard-interactive authentication technique. [5.4.5]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

184 | Chapter 5: Serverwide Configuration

5.4.9 Privilege Separation
OpenSSH supports privilege separation, a security feature that isolates the code that
requires root privileges. [3.6.5] You can enable and disable it with the keyword
UsePrivilegeSeparation with the value yes (the default) or no.

# OpenSSH
UsePrivilegeSeparation yes

5.4.10 Selecting a Login Program
Most Unix systems have a program called login for setting up a new user login pro-
cess. It can be called by the getty process, for instance, when processing logins on a
terminal line, or by a Telnet server. By default, OpenSSH does not use the system’s
login program. You can make it do so with the UseLogin keyword:

# OpenSSH
UseLogin yes

You might need to do this if your system has a login program that performs some
specialized processing missing from OpenSSH. However, there are drawbacks to
UseLogin yes:

• X forwarding is turned off, since sshd loses the chance to specially handle its
xauth cookies for X authentication.

• Privilege separation is turned off after user authentication, in order to allow login
to function correctly.

The behavior of a login program versus a login shell is entirely implementation- and
operating-system-specific, so we won’t cover the intricacies. If you need to muck
about with UseLogin, you first need to understand the features of your operating sys-
tem and your login program in detail.

5.5 Access Control: Letting People In
Serverwide access control permits or denies connections from particular hosts or
Internet domains, or to specific user accounts on the server machine. It’s applied sep-
arately from authentication: for example, even if a user’s identity is legitimate, you
might still want to reject connections from her computer. Similarly, if a particular
computer or Internet domain has poor security policies, you might want to reject all
SSH connection attempts from that domain.

SSH access control is scantily documented and has many subtleties and “gotchas.”
The configuration keywords look obvious in meaning, but they aren’t. Our primary
goal in this section is to illuminate the murky corners so that you can develop a cor-
rect and effective access-control configuration.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.5 Access Control: Letting People In | 185

Keep in mind that SSH access to an account is permitted only if both the server and
the account are configured to allow it. If a server accepts SSH connections to all
accounts it serves, individual users may still deny connections to their accounts. [8.2]
Likewise, if an account is configured to permit SSH access, the SSH server on its host
can nonetheless forbid access. This two-level system applies to all SSH access con-
trol, so we won’t state it repeatedly. Figure 5-2 summarizes the two-level access con-
trol system.*

5.5.1 Account Access Control
Ordinarily, any account may receive SSH connections as long as it is set up cor-
rectly. This access may be overridden by the server keywords AllowUsers and
DenyUsers. AllowUsers specifies that only a limited set of local accounts may receive
SSH connections. For example, the line:

AllowUsers smith

permits the local smith account, and only the smith account, to receive SSH connec-
tions. The configuration file may have multiple AllowUsers lines:

AllowUsers smith
AllowUsers jones
AllowUsers oreilly

in which case the results are cumulative: the local accounts smith, jones, and oreilly,
and only those accounts, may receive SSH connections. The SSH server maintains a
list of all AllowUsers values, and when a connection request arrives, it does a string
comparison (really a pattern match, as we’ll see in a moment) against the list. If a
match occurs, the connection is permitted; otherwise, it’s rejected.

A single AllowUsers keyword in the configuration file cuts off SSH
access for all other accounts not mentioned. If the configuration file
has no AllowUsers keywords, the server’s AllowUsers list is empty, and
connections are permissible to all accounts.

Figure 5-2. Access control levels

* This concept is true for the configuration keywords discussed in this section but not for hostbased control
files, e.g., ~/.rhosts and /etc/hosts.equiv. Each of these may in fact override the other. [3.4.3.6]

SSH
Client

connection request Access
granted

serverwide
access control

per-account
access control SSH Server



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

186 | Chapter 5: Serverwide Configuration

DenyUsers is the opposite of AllowUsers: it shuts off SSH access to particular
accounts. For example:

DenyUsers smith

states that the smith account may not receive SSH connections. DenyUsers keywords
may appear multiple times, just like AllowUsers, and the effects are again cumula-
tive. As for AllowUsers, the server maintains a list of all DenyUsers values and com-
pares incoming connection requests against them.

Tectia recognizes numerical user IDs in place of account names (but OpenSSH does
not):

# Tectia
AllowUsers 123
DenyUsers 456

Both AllowUsers and DenyUsers accept more complicated values than simple account
names. An interesting but potentially confusing syntax is to specify both an account
name and a hostname (or numeric IP address), separated by an @ symbol:

AllowUsers jones@example.com

Despite its appearance, this string isn’t an email address, and it doesn’t mean “the
user jones on the machine example.com.” Rather, it describes a relationship between
a local account, jones, and a remote client machine, example.com. The meaning is:
“clients on example.com may connect to the server’s jones account.” Although this
meaning is surprising, it would be even stranger if jones were a remote account, since
the SSH server has no way to verify account names on remote client machines
(except when using hostbased authentication).

For OpenSSH, wildcard characters are acceptable in AllowUsers and DenyUsers argu-
ments. The ? symbol represents any single character except @, and the * represents
any sequence of characters, again not including @. For Tectia, the patterns use the
regular-expression syntax that is specified by the REGEX-SYNTAX metaconfiguration
parameter; see Appendix B.*

The default egrep regex syntax used by Tectia treats “.” as a wildcard
that matches any character, so a hostname pattern like example.com
will also match unqualified hostnames like examplexcom. If you are
using the egrep regex syntax, be sure to escape literal “.” characters in
hostnames, IP addresses, etc., with a backslash character:

# Tectia (egrep regex syntax)
AllowUsers jones@example\.com

Alternatively, use the zsh_fileglob or traditional regex syntax, which
treats “.” characters literally. See Appendix B for more detailed infor-
mation about the different regex syntaxes supported by Tectia.

* Our general discussion of metaconfiguration might also be of help. [11.6.1]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.5 Access Control: Letting People In | 187

Here are some examples. SSH connections are permitted only to accounts with five-
character names ending in “mith”:

# OpenSSH, and Tectia with zsh_fileglob or traditional regex syntax
AllowUsers ?mith

# Tectia with egrep regex syntax
AllowUsers .mith

SSH connections are permitted only to accounts with names beginning with the let-
ter “s”, coming from hosts whose names end in “.edu”:

# OpenSSH, and Tectia with zsh_fileglob or traditional regex syntax
AllowUsers s*@*.edu

# Tectia with egrep regex syntax
AllowUsers s.*@.*\.edu

Tectia connections are permitted only to account names of the form “testN” where N
is a number, e.g., “test123”.

# Tectia with zsh_fileglob or traditional regex syntax
AllowUsers test[[:digit:]]##

# Tectia with egrep regex syntax
AllowUsers test[[:digit:]]+

Tectia connections are permitted only to accounts with numerical user IDs in the
range 3000–6999:

# Tectia with zsh_fileglob or traditional regex syntax
AllowUsers [3-6][[:digit:]][[:digit:]][[:digit:]]

# Tectia with egrep regex syntax
AllowUsers [3-6][[:digit:]]{3}

IP addresses can be used instead of hostnames. For example, to allow access to any
user from the network 10.1.1.0/24:*

# OpenSSH, and Tectia with zsh_fileglob or traditional regex syntax
AllowUsers *@10.1.1.*
# Tectia  with egrep regex syntax
AllowUsers .*@10\.1\.1\..*

Tectia also recognizes netmasks preceded by the \m prefix:

# Tectia with zsh_fileglob or traditional regex syntax
AllowUsers *@\m10.1.1.0/28

# Tectia with egrep regex syntax
AllowUsers .*@\m10.1.1.0/28

* In this notation, the mask specifies the number of 1 bits in the most-significant portion of the netmask. You
might be more familiar with the older, equivalent notation giving the entire netmask, e.g., 10.1.1.0/255.255.
255.0.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

188 | Chapter 5: Serverwide Configuration

Wildcards and regular-expression metacharacters are not used in net-
masks, so netmasks are independent of the regex syntax, and “.” char-
acters are not escaped with backslashes as usual for the egrep regex
syntax. Netmasks are always interpreted IP address ranges, without
hostname lookups, so \mexample.com/28 does not work.

Netmasks are often more concise than other patterns for expressing IP address
ranges, especially those that don’t coincide with an octet boundary. For example,
10.1.1.0/28 is equivalent to the range of addresses 10.1.1.0 through 10.1.1.15,
which is expressed as:

# Tectia with zsh_fileglob or traditional regex syntax
AllowUsers *@10.1.1.([[:digit:]]|1[0-5])

# Tectia with egrep regex syntax
AllowUsers .*@10\.1\.1\.([[:digit:]]|1[0-5])

The specification of address ranges is even more of a struggle using OpenSSH’s lim-
ited wildcards, and it is frequently necessary to enumerate individual addresses:

# OpenSSH
AllowUsers *@10.1.1.?
AllowUsers *@10.1.1.10 *@10.1.1.11 *@10.1.1.12 *@10.1.1.13 *@10.1.1.14 *@10.1.1.15

By default, a reverse lookup is first attempted to convert the client’s IP address to a
canonical hostname, and if the lookup succeeds, then the hostname is used for pat-
tern matches. Next, the IP address is checked using the same patterns.

Access control using IP addresses can avoid some attacks on hostname lookup mecha-
nisms, such as compromised nameservers, but we need to be careful. For example, our
previous example that intended to limit access to the network 10.1.1.0/24 would actu-
ally also allow connections from a machine on some remote network named 10.1.1.
evil.org!

Tectia provides several ways to fix this. We can use a more precise pattern that
matches only digits, to reject arbitrary domains like evil.org.

# Tectia with zsh_fileglob or traditional regex syntax
AllowUsers *@10.1.1.[[:digit:]]##

# Tectia with egrep regex syntax
AllowUsers .*@10\.1\.1\.[[:digit:]]+

An even better approach is to add the \i prefix to force the pattern to be interpreted
only as an IP address. This avoids the hostname lookup entirely, and allows us to use
simpler patterns safely:

# Tectia with zsh_fileglob or traditional regex syntax
AllowUsers *@\i10.1.1.*

# Tectia with egrep regex syntax
AllowUsers .*@\i10\.1\.1\..*



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.5 Access Control: Letting People In | 189

Even this isn’t foolproof: source IP addresses can be easily spoofed. Address-based
access controls are most appropriate for trusted internal networks protected by an
external firewall.

Tectia allows some control of the hostname lookups performed for all of the access
control patterns. To disable hostname lookups completely, use the Resolve-

ClientHostName keyword:

# Tectia
ResolveClientHostName no

This is appropriate if only IP address matching is desired. It can also be useful if host-
name lookups would cause unnecessary delays, e.g., if some nameservers aren’t
available.

Conversely, to insist that hostname lookups must succeed, rejecting connections
instead of resorting to IP address matching whenever the hostname lookups fail, use
the RequireReverseMapping keyword:

# Tectia
RequireReverseMapping yes

This is appropriate if only hostname address matching is desired. It also provides
some limited protection against connections from unrecognized machines.

Of course, hostname lookups should not be disabled by ResolveClientHostName if
they are forced by RequireReverseMapping.

Keep in mind that hostname-based access controls are even more inherently weak
restrictions than address-based controls, and both should be used only as an adjunct
to other strong authentication methods.

Multiple strings may appear on a single AllowUsers line, but the syntax differs for
OpenSSH and Tectia. OpenSSH separates strings with whitespace:

# OpenSSH
AllowUsers smith jones

and Tectia separates them with commas:

# Tectia
AllowUsers smith,jones
AllowUsers rebecca, katie, sarah  Whitespace after commas is undocumented but works

Commas must be escaped with backslashes within regular expres-
sions, to prevent misinterpretation as list separators. For example, to
allow access by usernames that begin with “elf” and are followed by
one to three digits, plus elvis:

# Tectia with egrep regex syntax
AllowUsers elf[[:digit:]]{1\,3},elvis



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

190 | Chapter 5: Serverwide Configuration

AllowUsers and DenyUsers may be combined effectively. Suppose you’re teaching a
course and want your students to be the only users with SSH access to your server. It
happens that only student usernames begin with “stu”, so you specify:

# OpenSSH, and Tectia with zsh_fileglob or traditional regex syntax
AllowUsers stu*

# Tectia with egrep regex syntax
AllowUsers stu.*

Later, one of your students, stu563, drops the course, so you want to disable her SSH
access. Simply add the following to the configuration:

DenyUsers stu563

Hmm…this seems strange. The AllowUsers and DenyUsers lines appear to conflict
because the first permits stu563 but the second rejects it. The server handles this in
the following way: if any line prevents access to an account, the account can’t be
accessed. So, in the preceding example, stu563 is denied access by the second line.

Consider another example with this AllowUsers line:

# OpenSSH, Tectia
AllowUsers smith

followed by a DenyUsers line (appropriate to your SSH implementation):

# OpenSSH, Tectia with zsh_fileglob or traditional regex syntax
DenyUsers s*

# Tectia with egrep regex syntax
DenyUsers s.*

The pair of lines permits SSH connections to the smith account but denies connec-
tions to any account beginning with “s”. What does the server do with this clear con-
tradiction? It rejects connections to the smith account, following the same rule: if any
restriction prevents access, such as the DenyUsers line shown, access is denied. Access
is granted only if there are no restrictions against it.

Finally, here is a useful configuration example:

# OpenSSH
AllowUsers walrus@* carpenter@* *@*.beach.net

# Tectia with zsh_fileglob or traditional regex syntax
AllowUsers walrus@*,carpenter@*,*@*.beach.net

# Tectia with egrep regex syntax
AllowUsers walrus@.*,carpenter@.*,.*@.*\.beach\.net

This restricts access for most accounts to connections originating inside the domain
beach.net—except for the accounts walrus and carpenter, which may be accessed
from anywhere. The hostname qualifiers following walrus and carpenter aren’t
strictly necessary but help make clear the intent of the line.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.5 Access Control: Letting People In | 191

5.5.1.1 Restricting all logins

AllowUsers and DenyUsers operate on individual accounts, but you can also deny
access to all users in a pinch. If the file /etc/nologin exists, sshd allows only root to log
in; no other accounts are allowed access. Thus, touch /etc/nologin is a quick way to
restrict access to the system administrator only, without having to reconfigure or
shut down SSH.

Tectia also checks /etc/nologin_<hostname>, where <hostname> should match the out-
put from the hostname command. This is useful if the /etc directory is shared among
several machines in a cluster.

5.5.2 Group Access Control
sshd may permit or deny SSH access to all accounts in a Unix group on the server
machine. The keywords AllowGroups and DenyGroups serve this purpose:

AllowGroups faculty
DenyGroups students

These keywords operate much like AllowUsers and DenyUsers. OpenSSH accepts the
wildcards * and ? within group names, and separates multiple groups with
whitespace. Tectia accepts patterns according to the regular-expression syntax deter-
mined by the metaconfiguration information [11.6.1], and separates groups with
commas:

# OpenSSH
AllowGroups good* better
DenyGroups bad* worse

# Tectia with zsh_fileglob or traditional regex syntax
AllowGroups good*,better
DenyGroups bad*, worse

# Tectia with egrep regex syntax
AllowGroups good.*,better
DenyGroups bad.*, worse

Tectia recognizes numerical group IDs as well (but OpenSSH does not):

# Tectia
AllowGroups 513
DenyGroups 781

By default, access is allowed to all groups. If any AllowGroups keyword appears,
access is permitted only to the groups specified (and may be further restricted with
DenyGroups).

These directives apply to both the primary group (typically listed in /etc/passwd or
the corresponding NIS map) and all supplementary groups (in /etc/group or an NIS
map). If a user is a member of any group that matches a pattern listed by AllowGroups
or DenyGroups, then access is restricted accordingly.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

192 | Chapter 5: Serverwide Configuration

Group access control is often more convenient than restricting specific users, since
group memberships can be changed without updating the configuration of the SSH
server.

AllowGroups and DenyGroups do not accept hostname qualifiers, however, in contrast
to AllowUsers and DenyUsers. This is a surprising and unfortunate inconsistency: if
hostname (or IP address) restrictions are useful for controlling access by specific
users, then those same restrictions could be even more useful for controling access
for entire groups.

As was the case for AllowUsers and DenyUsers, conflicts are resolved in the most
restrictive way. If any AllowGroups or DenyGroups line prevents access to a given
group, access is denied to that group even if another line appears to permit it.

5.5.3 Hostname Access Control
We’ve described previously how to use hostname qualifiers with AllowUsers and
DenyUsers. [5.5.1] For the common case when you don’t need to restrict username,
Tectia provides the keywords AllowHosts and DenyHosts to restrict access by host-
name (or IP address) more concisely, without wildcards to match usernames:*

# Tectia with zsh_fileglob or traditional regex syntax
AllowHosts good.example.com,\i10.1.2.3
DenyHosts bad.example.com, \m10.1.1.0/24

# Tectia with egrep regex syntax
AllowHosts good\.example\.com,\i10\.1\.2\.3
DenyHosts bad\.example\.com, \m10.1.1.0/24

As with AllowUsers and DenyUsers:

• Patterns are interpreted according to the regular-expression syntax determined
by the metaconfiguration information (Appendix B).

• Values may contain multiple strings separated by commas, plus optional
whitespace.

• Keywords may appear multiple times in the configuration file, and the results are
cumulative.

• Hostnames or IP addresses may be used, with optional \i or \m prefixes.

• By default, access is allowed to all hosts, and if any AllowHosts keyword appears,
access is permitted only to the hosts specified (and may be further restricted with
DenyHosts).

* Finer-grained control is provided by the from option in authorized_keys. [8.2.4] Each public key may be
tagged with a list of acceptable hosts that may connect via that key.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.5 Access Control: Letting People In | 193

You can also make AllowHosts and DenyHosts do reverse DNS lookups (or not) with
the RequireReverseMapping keyword, providing a value of yes or no:

# Tectia
RequireReverseMapping yes

5.5.4 shosts Access Control
AllowHosts and DenyHosts offer total hostname-based access control, regardless of the
type of authentication requested. A similar but less restrictive access control is spe-
cific to hostbased authentication. The Tectia server can deny access to hosts that are
named in .rhosts, .shosts, /etc/hosts.equiv, and /etc/shosts.equiv files. This is accom-
plished with the keywords AllowSHosts and DenySHosts:*

For example, the line:

# Tectia with zsh_fileglob or traditional regex syntax
DenySHosts *.badguy.com

# Tectia with egrep regex syntax
DenySHosts .*\.badguy\.com

forbids access by connections from hosts in the badguy.com domain, but only when
hostbased authentication is being attempted. Likewise, AllowSHosts permits access
only to given hosts when hostbased authentication is used. Values follow the same
syntax as for AllowHosts and DenyHosts. As a result, system administrators can over-
ride values in users’ .rhosts and .shosts files (which is good, because this can’t be
done via the /etc/hosts.equiv or /etc/shosts.equiv files).

AllowSHosts and DenySHosts have caveats similar to those of AllowHosts and
DenyHosts:

• Patterns are interpreted according to the regular-expression syntax determined
by the metaconfiguration information (Appendix B).

• Values may contain multiple patterns separated by commas, plus optional
whitespace.

• Keywords may appear multiple times in the configuration file, and the results are
cumulative.

• Hostnames or IP addresses may be used, with optional \i or \m prefixes.

• By default, access is allowed to all hosts, and if any AllowSHosts keyword
appears, access is permitted only to the hosts specified (and may be further
restricted with DenySHosts).

* Even though the keywords have “SHosts” in their names, they apply also to .rhosts and /etc/hosts.equiv files.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

194 | Chapter 5: Serverwide Configuration

5.5.5 Root Access Control
sshd has a separate access-control mechanism for the superuser. The keyword
PermitRootLogin allows or denies access to the root account by SSH:

PermitRootLogin no

Permissible values for this keyword are yes (the default) to allow access to the root
account by SSH; no to deny all such access; and without-password (OpenSSH) or
nopwd (Tectia) to allow access except by password authentication.

In addition, OpenSSH recognizes the value forced-commands-only to allow access only
for forced commands specified in authorized_keys [8.2.3]; Tectia always allows such
access for all values of PermitRootLogin. OpenSSH’s level of control is useful, for
example, if root’s authorized_keys file contains a line beginning with:

command="/bin/dump" ....

Then the root account may be accessed by SSH to run the dump command. This
capability lets remote clients run superuser processes, such as backups or filesystem
checks, but not unrestricted login sessions.

The server checks PermitRootLogin after authentication is complete. In other words,
if PermitRootLogin is no, a client is offered the opportunity to authenticate (e.g., is
prompted for a password or passphrase) but is shut down afterward regardless.

We’ve previously seen a similar keyword, IgnoreRootRhosts, that controls access to the
root account by hostbased authentication. [5.4.4] It prevents entries in ~root/.rhosts
and ~root/.shosts from being used to authenticate root. Because sshd checks
PermitRootLogin after authentication is complete, it overrides any value of
IgnoreRootRhosts. Table 5-4 illustrates the interaction of these two keywords.

5.5.6 External Access Control
Tectia allows access control (authorization) decisions to be made by an external pro-
gram, which is identified by the ExternalAuthorizationProgram keyword:*

# Tectia
ExternalAuthorizationProgram /usr/local/sbin/ssh-external-authorization-program

Table 5-4. Can root log in?

IgnoreRootRhosts yes IgnoreRootRhosts no

PermitRootLogin yes Yes, except by hostbased Yes

PermitRootLogin no No No

PermitRootLogin without-password
(OpenSSH);

PermitRootLogin nopwd (Tectia)

Yes, except by hostbased or password Yes, except by password

* If the specified program cannot be run, then access is denied.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.5 Access Control: Letting People In | 195

The program can be used to implement arbitrary access control logic, extending the
mechanisms that are supported directly by the Tectia server.* The server communi-
cates with the program using the Tectia plugin protocol, and we’ll go into more
detail in a later case study. [11.7.3]

The external authorization program can only veto access controls
applied by other keywords in the server’s configuration. This follows
the same policy that we have seen earlier: conflicts are always resolved
using the most restrictive interpretation.

5.5.7 Restricting Directory Access with chroot
The Unix system call chroot causes a process (and any subprocesses) to treat a given
directory as the root directory. After chroot, absolute filenames beginning with “/”
actually refer to subdirectories of the given directory. Access is effectively restricted
to the given directory, because it is impossible to name files outside. This is useful for
restricting a user or process to a subset of a filesystem for security reasons.

Tectia provides two keywords for imposing this restriction on incoming SSH clients.
ChRootUsers specifies that SSH clients, when accessing a given account, are restricted
to the account’s home directory and its subdirectories:

# Tectia
ChRootUsers guest

Values for ChRootUsers use the same syntax as for AllowUsers: [5.5.1]

# Tectia with zsh_fileglob or traditional regex syntax
ChRootUsers guest*,backup,300[[:digit:]],visitor@*.friendly.org

# Tectia with egrep regex syntax
ChRootUsers guest.*,backup,300[[:digit:]],visitor@.*\.friendly\.org

The other keyword, ChRootGroups, works similarly but applies to all accounts that
belong to a group that matches any of the specified patterns:

# Tectia
ChRootGroups guest[a-z],ops,999[[:digit:]]

Values for ChRootGroups use the same syntax as for AllowGroups. [5.5.2]

ChRootUsers and ChRootGroups can be specified multiple times in configuration files;
the values are accumulated into a single list for each keyword. Each account that
matches a pattern from either ChRootUsers or ChRootGroups is individually restricted
when accessed via Tectia.

* The external authorization program is similar in function to a keyboard-interactive plugin that is used for
authentication, except that access control does not need interaction with the remote user, because the user
has already authenticated successfully before the program is run.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

196 | Chapter 5: Serverwide Configuration

To make chroot functionality work, all system files used by any programs run via the
Tectia server must be copied into the home directory for each restricted account.

Files Used by the Tectia Server After chroot
After chroot, the Tectia server needs only minimal access to files. All its configuration
files (and subconfiguration files, if any) have already been read, and all authentication
and authorization steps completed, before chroot is done. The server therefore needn’t
access devices, shared libraries, system configuration files, etc., used during these ear-
lier operations. The only files accessed after chroot are related to starting a user session:

• Setting up the environment: [5.6.2]

/etc/environment
$HOME/.ssh2/environment

• The user rc file(s) [5.6.3], plus any programs and files used by the scripts:

$HOME/.ssh2/rc
/etc/ssh2/sshrc (if $HOME/.ssh2/rc doesn’t exist)

• X authentication, if no user rc files are found [9.4.5.2], plus any shared libraries,
files, etc., used by xauth:

/usr/X11R6/bin/xauth (or a similar location, possibly determined by
XauthPath)

• Suppressing login messages: [5.6.1]

$HOME/.hushlogin

• Message of the day: [5.6.1]

/etc/motd

• Checking for mail: [5.6.1]

/var/spool/mail/$USER (or a similar location)

In most cases, accounts using chroot are heavily restricted and wouldn’t use these fea-
tures anyway, so this is rarely a problem.

Sometimes the Tectia server uses the original pathname from the passwd database for
$HOME after chroot, even though it really should use “/” instead. This can be fixed by
a symbolic link in the user’s home directory (after any necessary parent directories are
created):

$ mkdir -p "$HOME$HOME"
$ rmdir    "$HOME$HOME"
$ ln -s  / "$HOME$HOME"

If, for example, $HOME is /home/elvis according to the passwd database, then this sets up
a symbolic link:

/home/elvis/home/elvis -> /

After chroot("/home/elvis"), the symbolic link will cause the original /home/elvis path-
name to be equivalent to the new root directory, as it should be. Crude but effective!



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.5 Access Control: Letting People In | 197

Such files can include special device files like /dev/null or /dev/zero, shared libraries
from /lib or /usr/lib, configuration files like /etc/termcap, etc.

The permissions for the copied system files (and the directories in which they live)
need to be carefully controlled. Typically they should not be writable by the owner of
the restricted account.

Discovering all of the system files needed for all of the programs used by an account
can be challenging, and may require considerable experimentation and debugging:
tools that monitor filesystem usage (like lsof, strace, and ldd) can help.* Dependen-
cies on shared libraries can be eliminated by statically linking the programs.

Maintenance costs for restricted accounts are minimized if the accounts are further
restricted to run only a very limited set of carefully controlled commands. The login
shell is typically set to a special-purpose program, or access is allowed only to a col-
lection of forced commands. [8.2.3]

5.5.8 Summary of Authentication and Access Control
SSH provides several ways to permit or restrict connections to particular accounts or
from particular hosts. Tables 5-5 and 5-6 summarize the available options.

* We discuss this in more detail in our other O’Reilly book, Linux Security Cookbook.

Table 5-5. OpenSSH summary of authentication and access control

If you are… And you want to allow or restrict... Then use...

User Connections to your account by public-
key authentication

authorized_keys [8.2.1]

Administrator Connections to an account AllowUsers, DenyUsers

User Connections by a host from option in authorized_keys [8.2.4.1]

Administrator Connections by a host AllowUsers, DenyUsers

User Connections to your account by host-
based authentication

.shosts

Administrator Hostbased authentication HostbasedAuthentication, IgnoreRhosts

Administrator Root logins PermitRootLogin

Table 5-6. Tectia summary of authentication and access control

If you are... And you want to allow or restrict... Then use...

User Connections to your account by public-key
authentication

authorization file [8.2.2]

Administrator Connections to an account AllowUsers, DenyUsers

User Connections by a host allow-from, deny-from options in the
authorization file [8.2.4.2]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

198 | Chapter 5: Serverwide Configuration

5.6 User Logins and Accounts
When a login occurs, the SSH server can take special actions. Here, we discuss:

• Printing welcome messages for the user

• Setting environment variables

• Taking arbitrary actions with initialization scripts

5.6.1 Welcome Messages for the User
sshd can display custom messages for the user before and after authentication. Before
authentication, the SSH server can optionally display the contents of any file you
select with the Banner keyword (OpenSSH) or BannerMessageFile keyword (Tectia):

# OpenSSH
Banner /usr/local/etc/warning.txt

# Tectia
BannerMessageFile  /usr/local/etc/warning.txt

By default, OpenSSH displays no banner message, whereas Tectia displays the con-
tents of /etc/ssh2/ssh_banner_message if the file exists.* The banner message is often
used for legal statements that forbid unauthorized access. Since the file is sent before
authentication, be careful that it doesn’t reveal sensitive information.

After authentication, both OpenSSH’s and Tectia’s sshd optionally prints the stan-
dard Unix “message of the day” file ( /etc/motd). This output may be turned on and
off with the PrintMotd keyword with the value yes (the default) or no:

PrintMotd no

Since most Unix shells print /etc/motd on login, this SSH feature is often redundant
and turned off.

Administrator Connections by a host AllowHosts, DenyHosts (or AllowUsers,
DenyUsers)

User Connections to your account by hostbased
authentication

.shosts

Administrator Hostbased authentication AllowedAuthentications,
AllowSHosts, DenySHosts,
IgnoreRhosts

Administrator Root logins PermitRootLogin, IgnoreRootRhosts

* SSH clients are not required (by the SSH-2 protocol) to display the message.

Table 5-6. Tectia summary of authentication and access control (continued)

If you are... And you want to allow or restrict... Then use...



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.6 User Logins and Accounts | 199

For Tectia, a message about email (e.g., “You have mail”) is printed on login if the
CheckMail keyword has the value of yes (the default), or the message is skipped if the
value is no:

# Tectia
CheckMail yes

In OpenSSH, the last login time is also printed if the PrintLastLog keyword has the
value of yes (the default), or the message is skipped if the value is no:

# OpenSSH
PrintLastLog yes

Tectia has no separate keyword to control printing the last login time—it’s always
printed, if available.

The SSH server also obeys the Unix hushlogin convention, which allows each user to
control whether these welcome messages are printed. If the file ~/.hushlogin exists,
then the message of the day, the mail notification message (for Tectia), and the last
login time are all omitted.

5.6.2 Setting Environment Variables
As we’ll see later, SSH clients have several ways to set environment variables in the
server before the login shell is invoked,* such as the environment file [7.1.3], the
SendEnv (OpenSSH) or SetRemoteEnv (Tectia) configuration keywords [7.4.4.3], and
the environment option in the authorized_keys (OpenSSH) or authorization (Tectia)
file [8.2.5]. However, these changes happen only with the server’s permission; other-
wise, SSH clients could circumvent server security policies.

The OpenSSH server grants or denies permission for clients to modify the environ-
ment in this manner, using the PermitUserEnvironment and AcceptEnv keywords.
PermitUserEnvironment controls whether the server pays attention to the user’s ~/.ssh/
environment file and authorized_keys files, with a value of yes or no (the default):

# OpenSSH
PermitUserEnvironment yes

AcceptEnv controls how the server accepts or rejects environment variables that are
sent from the SSH client according to the SendEnv (OpenSSH) or SetRemoteEnv (Tec-
tia) keywords. Normally the SSH server pays no attention to such environment vari-
ables, but you can use the AcceptEnv keyword to allow specific variables to be copied,
with their values, into SSH sessions on the server machine.

The AcceptEnv keyword lists the environment variables that are accepted, either sepa-
rated by whitespace or specified by multiple keywords. Wildcard characters * and ?

will match classes of environment variables.

* And also before the user rc script, ~/.ssh/rc (OpenSSH) or ~/.ssh2/rc (Tectia). [5.6.3]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

200 | Chapter 5: Serverwide Configuration

# OpenSSH
AcceptEnv LANG LC_*
AcceptEnv PATH TERM TZ

Likewise, the Tectia SSH server permits or denies permission for clients to modify
the environment prior to login. Its SettableEnvironmentVars keyword lists environ-
ment variables that can be set by any of the methods, separated by commas (and
optional whitespace), or specified by multiple keywords. The environment variables
are matched against patterns. [11.6.1]

# Tectia
SettableEnvironmentVars LANG,LC_(ALL|COLLATE|CTYPE|MONETARY|NUMERIC|TIME)
SettableEnvironmentVars PATH, TERM, TZ

The SettableEnvironmentVars keyword applies only to user-configurable environ-
ment variables. Files like /etc/environment controlled by the server administrator are
not affected.

In all these cases, users are still free to set any environment variables after their login
shells are invoked. The restrictions apply only to the mechanisms for initializing the
environment of the login shell.

5.6.3 Initialization Scripts
When a user logs in, her Unix shell runs one or more initialization scripts, such as /etc/
profile. In addition, sshd runs the script /etc/ssh/sshrc (OpenSSH) or /etc/ssh2/sshrc
(Tectia) for each SSH-based login. This feature lets the system administrator run spe-
cial commands for SSH logins that don’t occur for ordinary logins. For example, you
can do some additional logging of SSH connections, print welcome messages for SSH
users only, etc.

The /etc/ssh/sshrc or /etc/ssh2/sshrc script is always processed by the Bourne shell (/bin/
sh), rather than the user’s shell, so it can run reliably for all accounts regardless of their
various shells. It is run for logins (e.g., ssh my-host) and remote commands (ssh my-
host /bin/who), just before the user’s shell or command is invoked but after environ-
ment variables are initialized. The script runs in a separate shell, which exits after the
script finishes, so it cannot initialize environment variables for the session. The script
runs under the target account’s uid, so it can’t take privileged actions. If the script exits
due to an error (say, a syntax error), the SSH session continues normally.

Note that this file is run as input to the Bourne shell: sshd runs /bin/sh /etc/ssh/sshrc, not
/bin/sh –c /etc/ssh/sshrc. This means that it can’t be an arbitrary program; it must be a
file containing Bourne-shell commands (and it doesn’t need the execute mode bit set).

/etc/ssh/sshrc or /etc/ssh2/sshrc operates machinewide: it is run for every incoming
SSH connection. For more fine-grained control, users may create the script ~/.ssh/
rc (OpenSSH) or ~/.ssh2/rc (Tectia) to be run instead of the machinewide script
/etc/ssh/sshrc or /etc/ssh2/sshrc, respectively. [8.4] The machinewide script isn’t
executed if the user-specific script exists in the target account, but a user script can
run the machinewide script directly. OpenSSH always runs ~/.ssh/rc using the



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.7 Forwarding | 201

Bourne shell (like /etc/ssh/sshrc), but Tectia runs ~/.ssh2/rc using each user’s shell
(in contrast to /etc/ssh2/sshrc). OpenSSH ignores user scripts if a subsystem is used,
but Tectia does not. [5.8]

Note that SSH rc files interact with X authentication. [9.4.5.2]

5.7 Forwarding
Forwarding (or tunneling) is the use of SSH to protect another network service. We
discuss it in detail in Chapter 9, but here we describe the available serverwide config-
uration options.

5.7.1 Port Forwarding
SSH’s forwarding (or tunneling) features protect other TCP/IP-based applications by
encrypting their connections. We cover forwarding in great detail in Chapter 9, but
we introduce here the serverwide configuration keywords for controlling it.

TCP port forwarding can be enabled or disabled by the keyword AllowTcpForwarding,
with the value yes (the default) or no:

AllowTcpForwarding no

Tectia can specify this more selectively for particular users or Unix groups, with the
keywords AllowTcpForwardingForUsers, AllowTcpForwardingForGroups, DenyTcp-

ForwardingForUsers, and DenyTcpForwardingForGroups:

# Tectia
AllowTcpForwardingForUsers smith
AllowTcpForwardingForGroups students
DenyTcpForwardingForUsers evildoer
DenyTcpForwardingForGroups badguys

The values for these keywords use the same syntax as for AllowUsers, AllowGroups,
DenyUsers, and DenyGroups, respectively: [5.5.1] [5.5.2]

# Tectia with zsh_fileglob or traditional regex syntax
AllowTcpForwardingForUsers good*@*.friendly.org,*@\i10.1.2.*,12[[:digit:]]
DenyTcpForwardingForGroups bad*,33[[:digit:]]

# Tectia with egrep regex syntax
AllowTcpForwardingForUsers good.*@.*\.friendly\.org,.*@\i10\.1\.2\.*,12[[:digit:]]
DenyTcpForwardingForGroups bad.*,33[[:digit:]]

Tectia’s ForwardACL keyword provides the most precise access control for specific for-
wardings.* Its use is complicated but it provides great flexibility. It uses multiple val-
ues (separated by whitespace), with the general format:

# Tectia
ForwardACL access direction client forward [originator]

* ACL stands for “access control list.”



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

202 | Chapter 5: Serverwide Configuration

The values stand for:

access
Either allow or deny, indicating the type of control to be applied.

direction
Either local or remote, specifying the kind of forwarding being controlled.*

client
A pattern describing the SSH client, with the same syntax as the
UserSpecificConfig keyword, with the components user[%group][@chost]:
[11.6.2]

user
Matches the username requested by the client

group
(Optional) Matches any of the groups that claim the user as a member

chost
(Optional) Matches the machine from which the SSH connection origi-
nates, i.e., where the SSH client program runs

forward
For local forwardings, a pattern that matches the forwarding target, where the
application server runs, as shown in Figure 5-3, which illustrates the result of
running the command:†

chost$ ssh -L[faddr:]fport:thost:tport shost

The local forward value has the form thost[%tport], where the thost compo-
nent uses the same syntax as the AllowHost keyword, and matches either the
hostname provided by the SSH client, or the address resulting from the host-
name lookup that is performed by the SSH server for the forwarding. The
optional tport is a pattern matching the numeric value of the port on which the
application server is listening, and to which the SSH server connects for the for-
warding. If the port is not specified, then the access control applies to all ports.

For remote forwardings, the forward value matches the address and (optionally)
the port on which the SSH server listens for forwarded connections, as shown in
Figure 5-4, which illustrates the result of running the command:

chost$ ssh -R[faddr:]fport:thost:tport shost

The remote forward value uses the same syntax as for local forwardings, with the
components faddr[%fport].

* These keywords are case-insensitive, but the documentation mentions only lowercase, so we recommend it.

† Only Tectia SSH clients allow the listening address faddr to be specified with the forwarding command-line
options –L and –R.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.7 Forwarding | 203

originator
(Optional) A pattern that matches the source address used by the application cli-
ent to connect to the forwarded port, labeled ohost in Figures 5-3 and 5-4. This
is most useful for remote forwarding, since the source address can be directly
determined by the SSH server when it accepts the forwarded connection.

For local forwarding, the SSH server must rely on the SSH client to provide the
source address, and a malicious client might forge the address, so it really can’t
be trusted as a basis for granting access. In addition, the source address reported
by the SSH client might belong to private address space that is not meaningful to
the SSH server, e.g., if network address translation (NAT) is used.

The ForwardACL keyword is one of the most complex keywords available for con-
figuring Tectia, because so many parameters are needed to describe forwarded
connections fully. The reward for conquering this complexity is precision. For

Figure 5-3. Local forwarding with the Tectia ForwardACL keyword

Figure 5-4. Remote forwarding with the Tectia ForwardACL keyword

ohost

application
client

chost

SSH
Client

fport

faddr

thost

application
server

shost

SSH
Server

tport

thost

application
server

chost

SSH
Client

tport

faddr

ohost

application
client

shost

SSH
Server

fport



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 5: Serverwide Configuration

example, to allow any user in the trusted group to use local forwarding when initi-
ating SSH connections from any machine in the friendly.org domain, but only to
forward IMAP connections (port 143) to the internal servermail.example.com, use:

# Tectia with zsh_fileglob or traditional regex syntax
ForwardACL allow local *%trusted@*.friendly.org mail.example.com%143

# Tectia with egrep regex syntax
ForwardACL allow local .*%trusted@.*\.friendly\.org mail\.example\.com%143

A trusted user could then run her SSH client on somewhere.friendly.org as:

$ ssh -L2001:mail.example.com:143 ssh.example.com

where ssh.example.com is the host that runs the SSH server. Note that no restrictions
are imposed on the listening port for local forwardings (2001 in this case); the SSH
server has no reason to care about that, and no way to verify it anyway.

To allow guest users (i.e., those whose usernames start with “guest”) initiating SSH
connections from a range of addresses described by the netmask 10.1.2.0/24 to use
remote forwarding, but only listening on the localhost interface and accepting for-
warded connections on a range of ports 7000-7009:

# Tectia with zsh_fileglob or traditional regex syntax
ForwardACL allow remote guest*@\m10.1.2.0/24 localhost:700[[:digit:]]

# Tectia with egrep regex syntax
ForwardACL allow remote guest.*@\m10.1.2.0/24 localhost:700[[:digit:]]

The user guest33 could then run his SSH client on a host with address 10.1.2.3 as:

# Tectia
$ ssh -Rlocalhost:7005:server.elsewhere.net:8080 ssh.example.com

Note that there are no restrictions on the target for the forwarding (port 8080 on
server.elsewhere.net); the SSH server again neither knows nor cares about the for-
warded connection on the SSH client side.

To relax this access control, allowing the SSH server to accept connections on any
listening address, but only from application clients originating forwarded connec-
tions from hosts in the outbound.example.com domain, replace the localhost compo-
nent in the previous forward pattern with a “match anything” wildcard, and add a
fifth originator pattern:

# Tectia with zsh_fileglob or traditional regex syntax
ForwardACL allow remote guest*@\m10.1.2.0/24 *:700[[:digit:]] *.outbound.example.com

# Tectia with egrep regex syntax
ForwardACL allow remote guest.*@\m10.1.2.0/24 .*:700[[:digit:]] .*\.outbound\.
example\.com

ForwardACL restrictions for local and remote forwardings are completely indepen-
dent. If any ForwardACL keywords allow specific, limited access for either kind of for-
warding, then all other access for that kind of forwarding will be denied.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.7 Forwarding | 205

Tectia uses the most restrictive interpretation for forwarding access control: if multi-
ple ForwardACL keywords match a requested forwarding, and any of them deny
access, then the forwarding is rejected. This can be useful for creating exceptions.
For example, to allow local forwarding to any port on any target host in the example.
com domain, but not to any port on the database server db.example.com, or to http
servers (port 80) on any example.com hosts:

# Tectia with zsh_fileglob or traditional regex syntax
ForwardACL allow local  *  *.example.com
ForwardACL deny  local  * db.example.com
ForwardACL deny  local  *  *.example.com%80

# Tectia with egrep regex syntax
ForwardACL allow local .* .*\.example\.com
ForwardACL deny  local .* db\.example\.com
ForwardACL deny  local .* .*\.example\.com%80

Furthermore, ForwardACL keywords cannot override restrictions imposed by the other
forwarding access control keywords (AllowTcpForwardingForUsers, AllowTcp-

ForwardingForGroups, DenyTcpForwardingForUsers, DenyTcpForwardingForGroups, or
AllowTcpForwarding): if any of these applicable keywords deny access for a requested
forwarding, then the forwarding is forbidden.

5.7.2 X Forwarding
Forwarding for X, the popular Window System, can be separately enabled or dis-
abled with the keyword X11Forwarding:*

X11Forwarding no

OpenSSH automatically disables X11Forwarding if UseLogin is enabled. [5.4.10]

Administrators may wish to disable forwarding for users who are not trusted to have
forwarding securely configured on the client side. For example, it is usually desirable
to avoid SSH clients that indiscriminately accept connections from anywhere, and
then forward them across SSH tunnels to trusted servers. Similarly, misconfigured X
servers (which run on the SSH client side) can expose X client programs running on
the SSH server side to attack, if the X server access is overly permissive.

Disabling forwarding isn’t effective for users who are granted shell access to run arbi-
trary commands, because such users can use their own programs to set up equiva-
lent forwarding functionality. For better control, set up special-purpose accounts
that use carefully written, restricted programs instead of standard shells, and con-
sider using subsystems. [5.8]

* Tectia supports the keywords ForwardX11 and AllowX11Forwarding as synonyms for X11Forwarding.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 5: Serverwide Configuration

5.7.3 Agent Forwarding
Agent forwarding permits a series of SSH connections (from one machine to another
to another, ...) to operate seamlessly using a single agent. [6.3.5] Agent forwarding
may be enabled or disabled in the Tectia server using the keyword
AllowAgentForwarding with a value of yes (the default) or no:*

# Tectia
AllowAgentForwarding no

It may also be enabled or disabled by OpenSSH and Tectia clients. [6.3.5.3]

Agent forwarding is convenient, but in a security-sensitive environment, it might be
appropriate to disable this feature. Because forwarded agent connections are imple-
mented as Unix domain sockets, an attacker can conceivably gain access to them.
These sockets are just nodes in the filesystem, protected only by file permissions that
can be compromised.

For example, suppose you maintain a network of exposed, untrusted machines that
you access from a more secure network using SSH. You might consider disabling
agent forwarding on the untrusted machines. Otherwise, an attacker can compro-
mise an untrusted machine; take control of a forwarded agent from a legitimate,
incoming SSH connection; and use the agent’s loaded keys to gain access to the
secure network via SSH. (The attacker can’t retrieve the keys themselves in this way,
however.)

5.8 Subsystems
Subsystems are a layer of abstraction for defining and running remote commands via
SSH.† Normally remote commands are specified ad hoc on the client command line.
For example, the following command runs a script to perform tape backups:

$ ssh server.example.com /usr/local/sbin/tape-backups

Subsystems are a set of remote commands predefined on the server machine, with
simple names so that they can be executed conveniently.

The syntax to define subsystems in the server configuration file is slightly different
for OpenSSH and Tectia. A subsystem for the preceding backup command is:

# OpenSSH
Subsystem backups   /usr/local/sbin/tape-backups

# Tectia
Subsystem-backups   /usr/local/sbin/tape-backups

* The keyword ForwardAgent is also supported as a synonym for backward compatibility.

† Subsystems are supported only by the SSH-2 protocol.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.8 Subsystems | 207

Note that OpenSSH uses the keyword Subsystem with a separate value for the sub-
system name, whereas Tectia uses a keyword of the form Subsystem-name. This Tec-
tia syntax is quite odd and unlike anything else in its configuration language; we
don’t know how it ended up that way.

To run this tape backup script on the server machine, use the ssh -s option:

$ ssh server.example.com -s backups

This command behaves identically to the previous one in which the script was speci-
fied explicitly.

Subsystems are mainly a convenience feature to predefine commands for SSH clients
to invoke easily. The additional level of abstraction is useful for system administra-
tors, who can hide (and therefore easily change) details for the subsystem com-
mands. For example, the backups subsystem could be changed to use a completely
different script, without any changes in the ssh client command that operators run to
perform tape backups.

System administrators can also define and advertise more generally useful sub-
systems. Suppose your users run the Pine email reader to connect to your IMAP server
to secure the connection. [11.3] Instead of telling everyone to use the command:

$ ssh server.example.com /usr/sbin/imapd

and revealing the path to the IMAP daemon, imapd, you can define an imap sub-
system to hide the path in case it changes in the future:

# OpenSSH
Subsystem imap  /usr/sbin/imapd

# Tectia
Subsystem-imap  /usr/sbin/imapd

Now users can run the command:

$ ssh server.example.com -s imap

to establish secure IMAP connections via the subsystem.

Subsystems are especially useful for tunneling other protocols. If clients refer only to
a subsystem, the corresponding server implementation can be changed without mod-
ifying (and redeploying) the clients, which might be numerous and widely scattered.

The best example is the sftp subsystem, which provides secure file transfers. [2.7.1]
The sftp client runs ssh -s sftp to launch an sftp-server program and set up a secure
tunnel for communication between the client and server.* The default server configu-
ration file for both OpenSSH and Tectia contains a definition of the sftp subsystem,
with the correct, absolute pathname for sftp-server. Tectia also provides an internal

* Tectia’s scp client also uses the sftp subsystem.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

208 | Chapter 5: Serverwide Configuration

implementation of the sftp subsystem that is built into the SSH server itself. This can
be selected by using a special syntax for the command:

# Tectia
Subsystem-sftp  internal://sftp-server

The internal sftp subsystem is much more convenient than the default (external)
sftp-server command for accounts that are subject to chroot restrictions. [5.5.7]

Subsystem commands are executed by each user’s shell, and they can be affected by
environment variables set by the user (if permitted by the server [5.6.2]), shell start-
up scripts, etc. OpenSSH avoids running the ~/.ssh/rc script for subsystems, but Tec-
tia always runs ~/.ssh2/rc. If a subsystem server command uses a special token to
mark the start of its output, clients can ignore unexpected output from user scripts.
Of course, the token must be defined as part of the protocol that’s understood and
used by the client and server.

OpenSSH requires that subsystem commands use absolute filenames, since no PATH

search is performed. If a relative filename is used, e.g.:

# OpenSSH: this does not work
Subsystem backups   tape-backups

then no error occurs when the server configuration file is read, but on subsequent
attempts to use the subsystem, clients fail silently, and the server emits syslog
warnings:

Dec 20 14:14:47 server.example.com sshd[1554]: error: subsystem: cannot stat tape-
backups: No such file or directory

Furthermore, OpenSSH doesn’t permit command-line arguments for subsystem
commands:

# OpenSSH: this does not work
Subsystem backups   /usr/local/sbin/tape-backups --full --filesystem=/home

This restriction is enforced when the server configuration file is read:

/etc/ssh/sshd_config line 99: garbage at end of line; "--full".

Tectia is more permissive. The server searches for simple commands (i.e., relative
filenames and no command-line arguments) in the libexec and bin subdirectories of
the Tectia install directory, and then searches each directory in the PATH. Absolute
filenames are still recommended, however, since the PATH can be redefined or modi-
fied by each user, and (if not set explicitly) defaults to the value inherited when the
server was started.

Tectia also allows extra arguments or even shell metacharacters in subsystem
commands:

# Tectia
Subsystem-backups   /usr/local/sbin/tape-backups --full 2>&1 | tee /var/log/backups



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.9 Logging and Debugging | 209

This is usually a bad idea, because various shells for individual users differ in their
interpretation of metacharacters (e.g., the 2>&1 notation in the previous example is
understood only by Bourne-style shells). The SSH server configuration file is the
wrong place for this complexity: a better approach is to wrap the details in a sepa-
rate script, and use the name of that script as the subsystem command.

Subsystem keywords can be repeated to define multiple, independent subsystems.
OpenSSH can define a maximum of 256 subsystems; there is no limit for Tectia.
OpenSSH refuses to allow subsystem names to be reused:

/etc/ssh/sshd_config line 98: Subsystem 'backups' already defined.

Tectia uses later subsystem definitions with the same name to override the com-
mands from earlier definitions. This can be useful in conjunction with subconfigura-
tion files. [11.6.2]

OpenSSH subsystem names are case-sensitive. In contrast, Tectia maps subsystem
names to lowercase when the configuration file is read, but then uses case-sensitive
comparisons to look up the subsystems specified by clients. This unfortunate and
confusing behavior effectively restricts Tectia subsystem names to be all lowercase.*

The IETF SECSH draft only defines the “sftp” subsystem name and mandates that
other, nonstandard names use an @ suffix to identify the domain that defined the
subsystem:

# OpenSSH
Subsystem smail@example.com     /usr/local/sbin/secure-mail-server

# Tectia
Subsystem-smail@example.com     /usr/local/sbin/secure-mail-server

This convention should be followed to avoid name clashes for software that is widely
used, but the domain suffix is commonly omitted for subsystems that are used only
within a single organization, and the convention is not enforced.

5.9 Logging and Debugging
As an SSH server runs, it optionally produces log messages to describe what it’s
doing. Log messages aid the system administrator in tracking the server’s behavior
and detecting and diagnosing problems. For example, if a server is mysteriously
rejecting connections, one of the first places to look is the server’s log output.

* We suspect this is a consequence of Tectia’s peculiar syntax for the Subsystem keyword in server configura-
tion files. Keywords are case-insensitive, and it’s therefore consistent to ignore the case of the subsystem
name when the name is appended to the keyword.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

210 | Chapter 5: Serverwide Configuration

By default, the SSH server writes log messages to syslog, the standard Unix logging
service (see the sidebar, “The Syslog Logging Service”). For example, an SSH server
typically announces its startup with log messages like:*

Server listening on 0.0.0.0 port 22.
Generating 768 bit RSA key.
RSA key generation complete.

and a connection from a client is recorded with log messages like:

session opened for user rebecca by (uid=9005)
Accepted publickey for rebecca from 10.1.2.3 port 1265
ssh2 session closed for user rebecca

The SyslogFacility keyword specifies how the SSH server tags log messages:

SyslogFacility LOCAL3

The value is one of the (case-insensitive) syslog facility codes, and the default is AUTH.

Tectia confusingly interprets AUTH to actually mean AUTHPRIV (this also
applies to the default behavior), and does not recognize AUTHPRIV as a
syslog facility code. On systems that do not support a separate
AUTHPRIV facility, Tectia resorts to AUTH. Otherwise, Tectia provides no
way to specify the AUTH facility explicitly.

* The system logger adds other information to each log message, such as a timestamp, the name of the
machine, and the process ID of the SSH server, so lines in the log files will actually look like:

Aug 30 17:41:47 graceland sshd[731]: Illegal user elvis from 10.11.12.13

The Syslog Logging Service
Syslog is the standard Unix logging service. Programs send their log messages to the
syslog daemon, syslogd, which forwards them to other destinations such as files, the
system console, or even other machines. Destinations are specified in the syslog con-
figuration file, /etc/syslog.conf.

Messages received by syslogd are processed according to their facility, which indicates
their origin. Standard syslog facilities include AUTH (security and authorization),
AUTHPRIV (similar, but for sensitive information), DAEMON (system daemons), LOCAL0
through LOCAL7 (reserved for local use), and USER (user processes).

Log messages are also assigned a priority level, which indicates their importance. The
standard syslog priorities are, in order frommost to least important, EMERG, ALERT, CRIT,
ERR, WARNING, NOTICE, INFO, and DEBUG.

See the manpages for syslog, syslogd, and syslog.conf for more information about this
logging service.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.9 Logging and Debugging | 211

For Tectia, a separate syslog facility code is used for the sftp subsystem. [5.8] This is
specified by the SftpSysLogFacility keyword:

# Tectia
SftpSysLogFacility LOCAL7

By default, no logging is performed for sftp.

If the sftp subsystem is implemented by an external program, then the
Tectia server passes the sftp syslog facility code via the environment
variable SSH2_SFTP_LOG_FACILITY. Otherwise, if the internal sftp sub-
system that is built into the server is used, then the value for the
SftpSysLogFacility keyword is consulted directly.

SSH servers use a range of syslog priority levels, depending on the types of log mes-
sages that are sent. These priority levels aren’t directly controllable, but the syslog
configuration determines where and how they are recorded (or discarded).

The amount of detail provided by log messages can be specified in a variety of ways,
however. OpenSSH uses the keyword LogLevel to control the verbosity level:

# OpenSSH
LogLevel VERBOSE

The permitted values (in order of increasing verbosity) are QUIET, FATAL, ERROR, INFO,
VERBOSE, DEBUG, and DEBUG1 through DEBUG3.*

The QUIET level sends nothing whatsoever to the system log (although some mes-
sages resulting from OpenSSH activity may still be recorded by other programs and
libraries, such as PAM). Tectia uses a separate keyword, QuietMode, to suppress all
log messages (except fatal errors), with the values yes or no (the default):

# Tectia
QuietMode yes

The –q command-line option also selects quiet operation:

$ sshd -q

5.9.1 OpenSSH Logging and Debugging
For OpenSSH, the LogLevel values DEBUG1 through DEBUG3 produce voluminous infor-
mation useful only for diagnostic purposes.† These levels are sufficiently verbose to
reveal sensitive personal information that should not normally be recorded, so avoid
them for routine operation. Debugging output is usually requested on the command
line:

# OpenSSH
$ sshd -o "LogLevel DEBUG2"

* These names are not syslog priority levels, although some of the names are similar.

† DEBUG is a synonym for DEBUG1.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

212 | Chapter 5: Serverwide Configuration

More concisely, the –d command-line option can be specified one to three times, to
set the LogLevel to DEBUG1 through DEBUG3, respectively:

# OpenSSH
$ sshd -d -d DEBUG2 level

The –t (test) option causes the OpenSSH server to start up, check the validity of its
host keys and the server configuration file, and exit. [5.2.2] Combine it with –d to see
more details about successful operation:

# OpenSSH
$ sshd -d -t
debug1: sshd version OpenSSH_3.9p1
debug1: read PEM private key done: type RSA
debug1: private host key: #0 type 1 RSA
debug1: read PEM private key done: type DSA
debug1: private host key: #1 type 2 DSA

For OpenSSH, the –d command-line option also causes the server to run in “debug
mode,” which alters its behavior to support debugging. The LogLevel keyword does
not enable debug mode—it only sets the verbosity level.

In debug mode, the OpenSSH server runs in the foreground, without forking, instead
of running detached as a daemon. Normally, the server forks again after it accepts
each connection from a client, and continues further work for the session in a sepa-
rate child process, while the parent process resumes listening for more connection
requests. In debug mode, however, the OpenSSH server handles only a single con-
nection, again without forking, and then exits. This is usually convenient for debug-
ging, when forking and multiple processes are unwelcome complications; it’s often
easier to determine what’s happening if all actions are performed by a single process.

OpenSSH doesn’t bother to record its process ID in the PidFile [5.3.1.3] when it
runs in debug mode, since no forking occurs, and it’s easy to determine the process
ID if the server needs to be signaled.

OpenSSH can also be prevented from running as a daemon by using the –D
command-line option:

# OpenSSH
$ sshd -D

The –D option does not change the LogLevel or enable any of the other side effects of
debug mode. The OpenSSH server still forks to handle multiple client connections,
even when –D is specified.

The –D option is handy in special circumstances when some other process needs to
monitor the OpenSSH server, and would incorrectly conclude that sshd had exited if
it forked and ran in the background. For example, the Cygwin program cygrunsrv
uses sshd -D to launch OpenSSH as a Windows service. [14.1]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.9 Logging and Debugging | 213

In debug mode, the OpenSSH server prints log messages to the standard error,
instead of sending them to syslog. For example, we can use the –p option to test the
server without disturbing normal operation on the standard port: [5.3.3.1]

# OpenSSH
$ sshd -d -p 2222
debug1: sshd version OpenSSH_3.5p1
debug1: private host key: #0 type 0 RSA1
debug1: read PEM private key done: type RSA
debug1: private host key: #1 type 1 RSA
debug1: read PEM private key done: type DSA
debug1: private host key: #2 type 2 DSA
debug1: rexec_argv[0]='/usr/sbin/sshd'
debug1: rexec_argv[1]='-d'
debug1: rexec_argv[2]='-p'
debug1: rexec_argv[3]='2222'
debug1: Bind to port 2222 on 0.0.0.0.
Server listening on 0.0.0.0 port 2222.
Generating 768 bit RSA key.
RSA key generation complete.
... The server waits for an incoming connection request, and then ...
debug1: Server will not fork when running in debugging mode.
debug1: rexec start in 4 out 4 newsock 4 pipe -1 sock 7
... Further debug output is sent to syslog: see below ...

Log messages that would have been sent to syslog are printed directly. Extra debug
messages are printed with the debug1 prefix (or debug2 or debug3 if more verbose
debugging log levels are used). Lots of sample output from sshd -d can be found in
Chapter 3.

The –e option causes the OpenSSH server to independently redirect syslog output to
the standard error, without all of the other side effects of debug mode. For example:

# OpenSSH
$ sshd -D -e -p 2222
Server listening on 0.0.0.0 port 2222.
Accepted publickey for rebecca from 10.1.2.3 port 32788 ssh2
...

When debugging OpenSSH, it’s usually a good idea to disable server restarts with
the undocumented –r option, again to confine all activity to a single process for sim-
plicity, and to prevent debug output from being diverted from stderr to syslog after
the restart. [5.3.3.3] In the previous example for sshd -d, debug output lines that
mention rexec refer to server restarts, and debug output sent to stderr abruptly ends
after the rexec start line. If we repeat the example with the –r option, we see much
more debugging information sent to stderr, without any of the rexec clutter:

# OpenSSH
$ sshd -d -r -p 2222
debug1: sshd version OpenSSH_3.9p1
debug1: private host key: #0 type 0 RSA1
debug1: read PEM private key done: type RSA
debug1: private host key: #1 type 1 RSA



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

214 | Chapter 5: Serverwide Configuration

debug1: read PEM private key done: type DSA
debug1: private host key: #2 type 2 DSA
debug1: Bind to port 2222 on 0.0.0.0.
Server listening on 0.0.0.0 port 2222.
Generating 768 bit RSA key.
RSA key generation complete.
... The server waits for an incoming connection request, and then ...
debug1: Server will not fork when running in debugging mode.
Connection from 10.1.2.3 port 32777
debug1: Client protocol version 2.0; client software version OpenSSH_3.9p1
debug1: match: OpenSSH_3.9p1 pat OpenSSH*
debug1: Enabling compatibility mode for protocol 2.0
debug1: Local version string SSH-1.99-OpenSSH_3.9p1
... Lots more output follows ...

Alternately, if the restart mechanism itself is being debugged, the –e option can be
used to prevent the diversion of debug output from syslog to stderr after the server
restarts:

# OpenSSH
$ sshd -d -e -p 2222
debug1: sshd version OpenSSH_3.9p1
debug1: private host key: #0 type 0 RSA1
debug1: read PEM private key done: type RSA
debug1: private host key: #1 type 1 RSA
debug1: read PEM private key done: type DSA
debug1: private host key: #2 type 2 DSA
debug1: rexec_argv[0]='/usr/sbin/sshd'
debug1: rexec_argv[1]='-d'
debug1: rexec_argv[2]='-e'
debug1: rexec_argv[3]='-p'
debug1: rexec_argv[4]='2222'
debug1: Bind to port 2222 on 0.0.0.0.
Server listening on 0.0.0.0 port 2222.
Generating 768 bit RSA key.
RSA key generation complete.
... The server waits for an incoming connection request, and then ...
debug1: Server will not fork when running in debugging mode.
debug1: rexec start in 4 out 4 newsock 4 pipe -1 sock 7
... The restarted process rereads the host keys as it repeats all of the initializations ...
debug1: sshd version OpenSSH_3.9p1
debug1: private host key: #0 type 0 RSA1
debug1: read PEM private key done: type RSA
debug1: private host key: #1 type 1 RSA
debug1: read PEM private key done: type DSA
debug1: private host key: #2 type 2 DSA
... The restarted process uses the SSH socket accepted by the original process ...
debug1: inetd sockets after dupping: 3, 3
... Finally, the server continues to handle the session, as before ...
Connection from 10.1.2.3 port 32778
debug1: Client protocol version 2.0; client software version OpenSSH_3.9p1
debug1: match: OpenSSH_3.9p1 pat OpenSSH*
debug1: Enabling compatibility mode for protocol 2.0
debug1: Local version string SSH-1.99-OpenSSH_3.9p1
... Lots more output follows ...



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.9 Logging and Debugging | 215

When the OpenSSH server is running in debug mode, extra information is also sent
to (and displayed by) the client, such as environment variables, initialization scripts,
xauth actions, etc., which aid in debugging connection problems.

For example, a connection to the server on the alternate port shown earlier produces
diagnostic output like this:

$ ssh -p 2222 server.example.com
Environment:
 USER=elvis
 LOGNAME=elvis
 HOME=/u/elvis
 PATH=/usr/local/bin:/bin:/usr/bin
 MAIL=/var/mail/elvis
 SHELL=/bin/tcsh
 SSH_CLIENT=10.1.2.3 1059 2222
 SSH_CONNECTION=10.1.2.3 1059 10.4.5.6 2222
 SSH_TTY=/dev/pts/2
 TERM=xterm
 DISPLAY=localhost:10.0
 SSH_AUTH_SOCK=/tmp/ssh-XXg0cfvG/agent.1989
Running /bin/tcsh -c '/bin/sh .ssh/rc'
  ... or ...
Running /bin/sh /etc/ssh/sshrc
  ... or ...
Running /usr/X11R6/bin/xauth remove unix:13.0
/usr/X11R6/bin/xauth add unix:13.0 MIT-MAGIC-COOKIE-1
007ab9e94cf72f081390f46ab0d92f1f

The OpenSSH server ignores the LoginGraceTime keyword [5.3.3.6] when it runs in
debug mode, since debugging sessions often last much longer!

5.9.2 Tectia Logging and Debugging
Debug mode for Tectia is also controlled by the –d command-line option,* but the
option requires an argument indicating the debug level.

We strongly recommend compiling Tectia with heavy debugging turned
on, using the --enable-debug-heavy configure option. [4.3.5.9] The
resulting log messages are far more detailed than those printed by
default.

Debug levels may be indicated in a variety of ways. The simplest is a nonnegative
integer:

# Tectia
$ sshd -d 2

* The –d option has no corresponding keyword.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

216 | Chapter 5: Serverwide Configuration

Specifying a debug level means that messages for all lower levels will be printed as
well. Higher numbers indicate increased verbosity. The approximate meanings of the
integer debug levels are:

The –v command line option is equivalent to –d 2:

# Tectia
$ sshd -v

Alternatively, the VerboseMode keyword (or the abbreviated synonym Verbose) is
equivalent to the –v option:

# Tectia
VerboseMode yes

Since debug logging isn’t recommended for normal operation, the VerboseMode key-
word is useful primarily in alternate configuration files that are specified with the –f
command-line option [5.2.1], or in subconfiguration files. [11.6.2]

The integer debug levels affect all aspects of Tectia’s operation. Debug levels can also
be set differently for each module in the Tectia source distribution. This permits
much finer-grained control over logging.

To use module-based debugging effectively, you should have some understanding of
C programming, and consult the source code (especially the header file lib/sshutil/
sshcore/sshdebug.h). Each source file is considered to be a “module” for debugging
purposes, as determined by the definition of SSH_DEBUG_MODULE within the file. For
example, the file apps/ssh/authspasswd.c has the module name Ssh2AuthPasswdServer
because it contains the line:

#define SSH_DEBUG_MODULE "Ssh2AuthPasswdServer"

Level Approximate meaning

0–2 Software malfunctions

3 Non-fatal, high-level errors caused by data received from the
network

4 Successful, high-level operations

5 Start of high-level operations

6 Uncommon situations that might indicate bugs

7 Successful, mid-level operations

8 Data block dumps

9 Protocol packet dumps

10 Successful, low-level operations

11–15 Miscellaneous, extremely low-level operations



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.9 Logging and Debugging | 217

The complete set of module names for Tectia at press time is found in Appendix C.
To extract the current set of module names from the source code, search for SSH_
DEBUG_MODULE definitions in all source files from within the Tectia distribution:

$ find . -type f -print | xargs grep "define.*SSH_DEBUG_MODULE"

Module names are case-sensitive. Once you have identified the name of your desired
module, run the server in debug mode, providing the module’s name and debug
level. For example, to cause the Ssh2AuthPasswdServer module to log at debug level 2:

# Tectia
$ sshd -d "Ssh2AuthPasswdServer=2"

If the debug level is omitted (i.e., only the module name is specified), then the debug
level is taken to be zero, so either of the following forms can be used:

# Tectia
$ sshd -d "Ssh2AuthPasswdServer"
$ sshd -d "Ssh2AuthPasswdServer=0"

The special module name global refers to all modules, and is equivalent to specify-
ing an integer debug level. For example, the following two commands function iden-
tically:

# Tectia
$ sshd -d "global=2"
$ sshd -d 2

The default global debug level is zero.

Multiple modules may be specified, separated by commas, each set to individual
debug levels:

# Tectia
$ sshd -d "Ssh2AuthPasswdServer=2,SshAdd=3,SshSftpServer=5"

Add whitespace to improve readability:

# Tectia
$ sshd -d "Ssh2AuthPasswdServer = 2, SshAdd = 3, SshSftpServer = 5"

If the –d option is repeated, the debug levels are concatenated. This is an alternative
to comma-separated lists:

# Tectia
$ sshd -d "Ssh2AuthPasswdServer=2" -d "SshAdd=3" -d "SshSftpServer=5"

More generally, module names are patterns that can contain the wildcards * and ? to
match multiple modules:

# Tectia
$ sshd -d "Ssh2Auth*=3"

These two wildcards have the same meaning as for zsh_fileglob or
traditional regex syntax, but debug module patterns are not full regu-
lar expressions: no other wildcards or regex syntax is recognized.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

218 | Chapter 5: Serverwide Configuration

Remember to enclose wildcards for the patterns in quotes to prevent their expansion
by the Unix shell.

Wildcards cannot match the special global module name, so the following does not
work:

# Tectia: does not work
$ sshd -d "glo*=2"

Setting the global debug level (using either a simple integer or the special global
module name) causes all earlier module debug level assignments to be ignored, so
global assignments should always be specified first:

# Tectia
$ sshd -d 1 -d "Ssh2AuthPasswdServer=2,SshAdd=3,SshSftpServer=5"
$ sshd -d "global=1, Ssh2AuthPasswdServer=2,SshAdd=3,SshSftpServer=5"

The global debug level is used as the default for all modules; otherwise, the debug
level for a specific module is determined by the last match in the list. This rule, when
combined with wildcards, can be used to conveniently set debug levels for entire cat-
egories of modules, by overriding earlier, more general assignments with a sequence
of increasingly specific patterns. For example:

# Tectia
$ sshd -d "global = 1, Ssh2* = 2, Ssh2Auth* = 3, Ssh2AuthPasswd* = 4"

The “match anything” pattern * functions similarly to the global debug level:

# Tectia
$ sshd -d "* = 1, Ssh2* = 2, Ssh2Auth* = 3, Ssh2AuthPasswd* = 4"

Debug output lines always start with the word “debug,” followed by the process ID
in square brackets. Messages for specific modules mention the module name, and
provide the name of the source file (with a line number) in which the code is found,
plus the name of the function in which they occur. For example:

# Tectia
$ sshd -d "Ssh2AuthPasswdServer=2"
...
debug[2665]: Ssh2AuthPasswdServer/auths-passwd.c:136/ssh_server_auth_passwd: password
auth.
debug[2665]: Ssh2AuthPasswdServer/auths-passwd.c:138/ssh_server_auth_passwd: op = 0
user = elvis
...
debug[2665]: Ssh2AuthPasswdServer/auths-passwd.c:250/ssh_server_auth_passwd: ssh_
server_auth_passwd: accepted by local passwd
...

Some debug output isn’t associated with any module, and is printed for all debug
levels. In addition, some modules produce output even for debug level 0:

# Tectia
$ sshd -d 0
debug[3320]: Host key pair is not specified, trying to use default 'hostkey'.
debug[3320]: Becoming server.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.9 Logging and Debugging | 219

debug[3320]: Creating listener(s)
...
debug[3320]: Listeners created
debug[3320]: no udp listener created.
...
debug[3320]: Running event loop
...
debug[3320]: Ssh2Common/sshcommon.c:510/ssh_common_wrap: local ip = 10.1.2.3, local
port = 22
debug[3320]: Ssh2Common/sshcommon.c:512/ssh_common_wrap: remote ip = 10.1.2.3, remote
port = 32793
...
debug[3320]: Sshd2/sshd2.c:334/server_disconnect: locally_generated = TRUE

Just because a source code file has a debugging module name associ-
ated with it doesn’t mean it actually logs any information that way.
You may find that turning on debugging for specific modules doesn’t
produce any extra debugging output.

The sshd-check-conf program [5.2.2] also accepts the debug options –d and –v. Use
the module names SshdCheckConf, SshConfigParse, or SshConfig to see more details
about parsing of configuration files:

# Tectia
$ sshd-check-conf -d "SshConfigParse=9"
debug: SshConfigParse/sshconfig_parse.c:224/ssh_parse_config_ext: Got metaconfig line
`## REGEX-SYNTAX egrep'.
debug: SshConfigParse/sshconfig_parse.c:246/ssh_parse_config_ext: Metaconfig
specifies regex style 'EGREP'.
debug: SshConfigParse/sshconfig_parse.c:252/ssh_parse_config_ext: Metaconfig parsing
stopped at line 3.
debug: SshConfigParse/sshconfig_parse.c:464/ssh_config_parse_line: n_var = `Port', n_
val = `22'
debug: SshConfigParse/sshconfig_parse.c:464/ssh_config_parse_line: n_var =
`SettableEnvironmentVars', n_val = `LANG,LC_
(ALL|COLLATE|CTYPE|MONETARY|NUMERIC|TIME),PATH,TERM,TZ'
debug: SshConfigParse/sshconfig_parse.c:464/ssh_config_parse_line: n_var =
`subsystem-sftp', n_val = `sftp-server'
...

As for OpenSSH, the –d command-line option causes the Tectia server to run in the
foreground, processing a single connection, and then exiting.

Although the VerboseMode keyword is equivalent to the –v option,
which in turn means the same as –d 2, the keyword cannot prevent
forking if it is used in a subconfiguration file [11.6.2], because forking
will have already occurred when the subconfiguration file is read.
Therefore, VerboseMode in a subconfiguration file only determines the
debug level. In the main configuration file, the keyword controls fork-
ing too.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

220 | Chapter 5: Serverwide Configuration

To continue listening for more connections, use the –D option instead of –d:

# Tectia
$ sshd -D "Ssh*TCP*=8"

When the Tectia server is started with the –D option, it runs in the foreground, but
subsequently forks to spawn a separate child process to handle the session for each
client connection. In all other respects, the –D and –d options function identically.

Tectia doesn’t provide any means to run the server in the foreground without
enabling debug mode. However, debug output can be minimized by using the –D
option with a debug level of zero, and the relatively small amount of unneeded
debug information can be discarded:

# Tectia
$ sshd -D 0 2> /dev/null

If you need this quieter mode of operation frequently, consider rebuilding the server
without debugging support. [4.3.5.9]

When specifying debug options (–d, –D, or –v) on the sshd command
line, list them first so that debugging output starts as early as possible.
This is especially important if you are investigating the parsing of com-
mand-line options or configuration files.

Tectia always sends debug output to the standard error, distinct from the messages
sent to syslog. In debug mode, messages continue to be sent to syslog as they are for
normal operation, but these messages are also copied to the standard error, and
intermingled with the debug output. The copied syslog messages are annotated with
the name of the Tectia server program (usually “sshd2”) instead of “debug,” and
they are unaffected by the debug level:

# Tectia
$ sshd -d 0
sshd2[3320]: Listener created on  *** SSH_IPADDR_ANY ***:22.
sshd2[3320]: Daemon is running.
sshd2[3320]: connection from "10.1.2.3" (listen iface: *** SSH_IPADDR_ANY ***:22)
...
sshd2[3320]: Destroying session channel 0
sshd2[3320]: Local disconnected: Connection closed.
sshd2[3320]: connection lost: 'Connection closed.'
sshd2[3320]: Logout for user elvis.

If syslog output is not desired when debugging Tectia, it can be directed to some sys-
log facility that is discarded by syslogd:

# Tectia
$ sshd -d 0 -o "SysLogFacility LOCAL3"

The Tectia server catches the signal SIGUSR1 after it accepts a connection from a client,
and finishes authentication and authorization. When SIGUSR1 is received, the server
prints detailed information about the connection to its standard error stream. This is



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.9 Logging and Debugging | 221

useful only when the server is running in the foreground (i.e., with the –d or –D
options), since output to stderr is discarded when sshd is running in the background, as
a daemon.

If the –d option is used, no forking occurs, and SIGUSR1 can be sent to the single
server process anytime after the single session starts. For the –D option, however, a
separate child process is used for each connection, and SIGUSR1 must be sent to chil-
dren, not the original parent process that continues to listen for connections:*

# Tectia
$ sshd -D 0 -p 2222
...
debug[1234]: Becoming server.
debug[1234]: Creating listener(s)
sshd2[1234]: Listener created on  *** SSH_IPADDR_ANY ***:2222.
debug[1234]: Listeners created
debug[1234]: no udp listener created.
sshd2[1234]: Daemon is running.
...
sshd2[5678]: Public key authentication for user elvis accepted.
sshd2[5678]: User elvis (uid 501), coming from client.friendly.org, authenticated.
sshd2[5678]: Received a channel open request, type session, channel id 0
sshd2[5678]: Received a session channel extension request of type x11-req for channel
number 0
sshd2[5678]: Received a session channel extension request of type exec for channel
number 0
...

Here the parent process that is listening for connections is 1234, while the child that
accepted the connection is 5678. If we send SIGUSR1 to the latter:

$ kill -USR1 5678

then the server responds with the requested information:

*** Config Data ***
Server Protocol Version String: 4.1.0.34 SSH Secure Shell

*** Connection Data ***
Server on host: client.friendly.org (10.1.2.3)
Server listening on port: 2222
Connection from 10.1.2.3
Client hostname: client.friendly.org

*** Algorithm Data ***
Chosen Hostkey Algorithm: ssh-dss

Client to Server Algorithms:
Chosen Cipher: aes128-cbc
Chosen MAC: hmac-sha1
Chosen Compression: none

* If SIGUSR1 is sent to the parent, it will die, since it has not arranged to catch the signal.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

222 | Chapter 5: Serverwide Configuration

Server to Client Algorithms:
Chosen Cipher: aes128-cbc
Chosen MAC: hmac-sha1
Chosen Compression: none

*** Channel Data ***
Number of Channels: 1
 Channel 0 (session):
  Sent bytes: 0
  Received bytes: 0

  Incoming window size: 100000
  Incoming window left: 100000
  Outgoing window left: 99249

*** Connection Statistics ***
compressed bytes in: 3918
uncompressed bytes in: 3918
compressed bytes out: 5418
uncompressed bytes out: 5418
packets in: 22
packets out: 22
rekeys: 0

*** User Data ***
Username: elvis
User's uid: 501
User belongs to the following groups:
Group: memphis, gid: 501
User's home directory: /u/elvis
User's shell: /bin/tcsh

*** Local/Remote Tunnel Data ***
No active local forwards.
No active remote forwards.

In debug mode, the Tectia server sends extra information to the client. The content
and format are similar to information sent by the OpenSSH server, except for Tec-
tia’s annotations identifying debug and (copied) syslog messages, with the process ID
of the server after it forks to launch the user’s shell:

# Tectia
$ ssh -p 2222 server.example.com
debug[2045]: /etc/nologin_server.example.com does not exist.
sshd2[2045]: Now running on elvis's privileges.
debug[2045]: Environment:
debug[2045]:   HOME=/u/elvis
debug[2045]:   USER=elvis
debug[2045]:   LOGNAME=elvis
debug[2045]:   PATH=/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin
debug[2045]:   MAIL=/var/spool/mail/elvis
debug[2045]:   SHELL=/bin/tcsh
debug[2045]:   SSH2_CLIENT=10.1.2.3 32781 10.1.2.3 2222
debug[2045]:   DISPLAY=server.example.com:10.0



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.10 Compatibility Between SSH-1 and SSH-2 Servers | 223

debug[2045]:   SSH2_SFTP_LOG_FACILITY=-1
debug[2045]: Running /bin/tcsh /u/elvis/.ssh2/rc
  ... or ...
debug[2045]: Running /bin/sh /etc/ssh2/sshrc
  ... or ...
debug[2045]: Running /usr/X11R6/bin/xauth add server.example.com:10.0 MIT-MAGIC-
COOKIE-1 81e51d2ccefaf62b288e9f772cdaa21d
debug[2045]: Running /usr/X11R6/bin/xauth add 10.1.2.3:10.0 MIT-MAGIC-COOKIE-1
81e51d2ccefaf62b288e9f772cdaa21d

5.9.3 Debugging Under inetd or xinetd
If you run the SSH server from inetd or xinetd using the –i command-line option [5.
3.3.2], debugging can be tricky. It is necessary for sshd to avoid sending any extra
debugging output to the standard error, since it would be relayed by inetd or xinetd
to the SSH client along with the normal SSH protocol conversation, messing it up
and causing the connection to fail.

OpenSSH forces all debug output to be sent to syslog if the –i option is used, which
neatly solves the problem. For Tectia, however, the easiest approach is to redirect the
debug output from the standard error to a file. Because many versions of inetd or
xinetd do not support shell metacharacters in their configuration files, it’s best to use
a short shell script to invoke sshd with the redirected output:

#!/bin/sh
# redirect Tectia sshd standard error to a file
exec /usr/local/sbin/sshd -d 2 -i 2> /tmp/sshd2.debug

Simply specify this shell script in place of sshd in the inetd or xinetd configuration
files.

Alternately, you can send debug output to syslog using the logger program:

#!/bin/sh
# send Tectia sshd debug output to syslog
exec /usr/local/sbin/sshd -d 2 -i 2>&1 | grep "^debug" | logger -p local3.debug

grep selects only the debug output, discarding the duplicate syslog messages that are
also sent to the standard error in debug mode.

5.10 Compatibility Between SSH-1
and SSH-2 Servers

OpenSSH supports both the SSH-1 and SSH-2 protocols within a single daemon
accepting both types of connections. The Protocol keyword can be used to limit the
support to either protocol exclusively. [5.3.7]

For Tectia, however, the story is more complicated. The Tectia server itself only sup-
ports the SSH-2 protocol, but it can accept connections from clients that request the



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

224 | Chapter 5: Serverwide Configuration

older SSH-1 protocol. This backward compatibility is achieved by having the Tectia
server run some other server program for the SSH-1 protocol instead, whenever an
SSH-1 connection is requested. This feature is enabled and disabled with the Tectia
Ssh1Compatibility keyword, given a value of yes or no (the default):

# Tectia
Ssh1Compatibility yes

When Ssh1Compatibility is enabled, and an SSH-1 client connects to the Tectia
server, the two programs exchange strings indicating their versions. [3.6.3] sshd
(also known as sshd2, see the sidebar “Tectia’s File-Naming Conventions” [5.1])
then locates the sshd1 executable by examining the value of the Sshd1Path key-
word:

# Tectia
Sshd1Path /usr/local/sbin/sshd1

and invokes sshd1. The Tectia server adds the –i option [5.3.3.2] to the sshd1 com-
mand line to indicate that the client connection has already been accepted by Tectia,
and sshd1 should expect the socket to be attached to its standard input, output, and
error streams. In addition, the Tectia server passes the client’s version string using
the (mostly undocumented) –V command-line option:

# Tectia, invoked automatically by sshd
/usr/local/sbin/sshd1 -i -V "client version string" <other arguments>

Although sshd2 can accept and reroute SSH-1 client connections, the
reverse isn’t true: sshd1 can’t accept SSH-2 connections.

The –V command-line option is supported by sshd1 implementations for internal use
only by sshd2. It is necessary because when sshd1 starts this way, the client has
already sent its initial version announcement, which sshd1 needs to get somehow.
We can’t think of any practical reason to use this option manually, but we mention it
here for completeness.

The OpenSSH server also implements the –V option, so you could use OpenSSH to
handle SSH-1 protocol connections that are delegated from Tectia in its backward-
compatibility mode. Be sure to set OpenSSH’s Protocol keyword value to 1 to force
protocol SSH-1.

Unfortunately, Tectia’s SSH-1 compatibility mode is scarcely sup-
ported by other SSH implementations. Only OpenSSH versions earlier
than 3.7 understand the –V option. An alternative is to use the latest
implementation of SSH1—the original SSH product—which is still
available from ftp://ftp.ssh.com/pub/ssh/, but it is ancient and no longer
actively maintained.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

5.10 Compatibility Between SSH-1 and SSH-2 Servers | 225

Most other command-line options are passed on from sshd2 to sshd1 without modifi-
cation. Specifically, the Tectia server leaves the following options untouched: –b, –g,
–h, –k, –p, –q, and –i. The –d option [5.9] is passed to sshd1, but the debug level
argument is removed, since it is Tectia-specific. Similarly, the argument for the –f
option is unsuitable for sshd1, since it specifies an alternate configuration file, and
the syntax for sshd2 and sshd1 configuration files isn’t compatible. Therefore, if an
sshd2 -f option is specified, then Tectia uses the Sshd1ConfigFile keyword to modify
the argument for the –f option that is used for the sshd1 invocation:

# Tectia
Sshd1ConfigFile /usr/local/etc/sshd1_config

The Sshd1ConfigFile is only used if sshd2 was invoked with an explicit –f command-
line option. Otherwise, no –f option is passed on the sshd1, and sshd1 uses its own
default configuration file, just like sshd2.

All other sshd2 options are removed from the command line that is passed to sshd1.

Other command-line options besides –f can cause compatibility prob-
lems when they are passed on from sshd2 to sshd1. Some sshd2
options are not supported by all sshd1 implementations, and (even
worse) some options with the same names have different interpreta-
tions. Be sure to carefully compare the sshd2 and sshd1 documenta-
tion for any options that are used. It is usually best to use keywords in
different configuration files for sshd2 and sshd1 instead of command-
line options in SSH-1 compatibility mode.

If SSH-1 compatibility mode is used, only the Tectia server should be started at boot
time. sshd1 is then launched by sshd2 only when needed for SSH-1 connections.

5.10.1 Security Issues with Tectia’s
  SSH-1 Compatibility Mode

There’s one vital thing to keep in mind if you’re using the SSH-1 compatibility fea-
ture in Tectia: you must maintain two separate SSH server configurations. When
sshd2 starts sshd1, it is an entirely new process, with its own SSH-1 server configura-
tion file. No restrictions set in your sshd2 server configuration apply to it. Even
restrictions that could apply, such as AllowHosts, don’t, because sshd2 invokes sshd1
before performing such checks.

This means you must keep the two configurations synchronized with respect to your
security intent. Otherwise, an attacker can circumvent your carefully crafted sshd2
configuration simply by connecting with an SSH-1 client.

A good strategy for automating the synchronization of sshd2 and sshd1 configura-
tions is to derive the configuration files from a common template file, using a
general-purpose macro preprocessor like m4. The following list describes the basic
idea.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

226 | Chapter 5: Serverwide Configuration

1. Invent symbols like TECTIA and OPENSSH to label the implementations for the
sshd2 and sshd1 configurations.

2. Construct the template file using m4 preprocessor conditionals like ifdef to han-
dle incompatibilities between sshd2 and sshd1, such as syntax differences:

ifdef(TECTIA, 'DenyGroups bad.*, worse')
ifdef(OPENSSH,'DenyGroups bad* worse')

The template file helps to maintain the configurations because similar con-
structs are kept together, and duplicate information is minimized. Any common
keywords and values can be specified in the template file without conditionals.

3. Generate the sshd2 and sshd1 configurations from the template by defining the
appropriate implementation symbols on the command line using the m4
preprocessor:

m4 -DTECTIA sshd_config_template > sshd2_config
m4 -DOPENSSH sshd_config_template > sshd1_config

4. For even more automation, set up aMakefile containing targets for the sshd2 and
sshd1 configuration files, with m4 preprocessor commands for each:

all: sshd2_config sshd1_config
sshd2_config: sshd_config_template

m4 -DTECTIA $< > $@
sshd1_config: sshd_config_template

m4 -DOPENSSH $< > $@

5. To ensure that the real sshd2 and sshd1 configuration files are up to date when-
ever the template file changes, regenerating the configuration files if necessary,
simply use the command make. This can be done at boot time before the Tectia
server is started, or subsequently when the configuration file is reread using
SIGHUP. [5.2.4]

5.11 Summary
As you can see, SSH servers have a tremendous number of configuration options,
and in some cases, multiple ways to achieve the same results. All this power comes at
a price, however. When setting up a secure system, it is vital to consider each option
carefully and select appropriate values. Don’t skimp on understanding: the security
of your systems may depend on it. Chapter 10 lists configurations for OpenSSH and
Tectia. In addition, all the keywords and options in this chapter appear in
Appendix E.

Remember that serverwide configuration is only one avenue for affecting server
behavior. We discuss compile-time configuration in Chapter 4 and per-account con-
figuration in Chapter 8.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

227

Chapter 6 CHAPTER 6

Key Management and Agents

Your SSH private key is a precious thing. When you use public-key authentication,
your key proves your identity to SSH servers. We’ve encountered several programs
related to keys:

ssh-keygen
Creates key pairs

ssh-agent
Holds private keys in memory, saving you from typing your passphrase repeat-
edly

ssh-add
Loads private keys into the agent

However, we haven’t gone into much depth, covering only the most basic opera-
tions with keys. Now it’s time to examine these concepts and programs in detail.

We begin with an overview of SSH identities and the keys that represent them. After
that, we thoroughly cover SSH agents and their many features. Finally, we extol the
virtues of having multiple SSH identities. If you’ve been getting by with a single key
and only light agent use, we have a lot of cool stuff in store for you. Figure 6-1 sum-
marizes the role of key management in the overall configuration process.

This chapter is the first in a sequence on advanced SSH for end users, as opposed to
system administrators. Once you’ve covered key management in this chapter, we’ll
take you through client configuration, server configuration, and forwarding in Chap-
ters 7–9.

6.1 What Is an Identity?
An SSH identity is a sequence of bits that says, “I am really me.” It is a mathematical
construct that permits an SSH client to prove itself to an SSH server, so the SSH
server says, “Ah, I see, it’s really you. You are hereby authenticated. Come in.”



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

228 | Chapter 6: Key Management and Agents

An identity consists of two parts, called the private key and the public key. Together,
they are known as a key pair.

The private key represents your identity for outgoing SSH connections. When you
run an SSH client in your account, such as ssh or scp, and it requests a connection
with an SSH server, the client uses this private key to prove your identity to the
server.

Private keys must be kept secret. An intruder with your private key can
access your account as easily as you can.

The public key represents your identity for incoming connections to your account.
When an SSH client requests access to your account, using a private key as proof of
identity, the SSH server examines the corresponding public key. If the keys “match”
(according to a cryptographic test), authentication succeeds and the connection pro-
ceeds. Public keys don’t need to be secret; they can’t be used to break into an
account.

Figure 6-1. SSH user key and agent configuration (highlighted parts)

SSH
Client

Command-line
options

Environment
variables

User’s client
configuration file

Global client
configuration file

Compile-time
flags

Key-related
files

Known hosts
databases

Configuration types

Command-line
options

Custom session
startup

Server-side
configuration file

Server-side
authorization files

Compile-time
flags

Target account’s
authorization files

TCP-wrappers
files

Kerberos
configuration files

PAM files

SSH
Server

Configuration types



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6.1 What Is an Identity? | 229

A key pair is typically stored in a pair of files with related names. In SSH, the public-
key filename is the same as the private one, but with the suffix .pub added. For exam-
ple, if the file mykey holds a private key, its corresponding public key is found in
mykey.pub.

You may have as many SSH identities as you like. Most SSH implementations let you
specify a default identity clients use unless told otherwise. To use an alternative iden-
tity, you must change a setting by command-line argument, configuration file, or
some other configuration tool.

The structure of identity files differs for OpenSSH and Tectia, so we explain them
separately. Their locations in the filesystem are shown in Figures 6-2 (private keys)
and 6-3 (public keys).

6.1.1 OpenSSH Identities
An OpenSSH identity is stored in two files. By default, the private key is stored in the
file id_dsa, and the public key in id_dsa.pub.* This key pair, which is kept in your ~/.ssh
directory, is your default identity that clients use unless told otherwise. The private key
looks something like this:

-----BEGIN DSA PRIVATE KEY----- Or “BEGIN RSA” for RSA keys
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,89C3AE51BC5876FD

MXZJgnkYE+1+eff3yt9j/aCCABz75egbGJfAbWrseiu0k3Dim9Teu2Ob1Xjdv4U9
II1hVYOkgQYuhdJbzrLMpJ0W1+N5ujI8akJ6j0ESeGTwJbhGyst71Y3A2+w4m1iv

Figure 6-2. SSH identity files (private keys) and the programs that use them

* If your default key is an RSA key, the filenames are id_rsa and id_rsa.pub.

$HOME

.ssh

identity

.ssh2

id_dsa identification

private key

...

IDkey one

IDkey two
private key

file one

file two

1
1

2

OpenSSH
SSH-1

Tectia
SSH-2 ...



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

230 | Chapter 6: Key Management and Agents

... lines omitted ...
gMtQSdL26V1+EmGiPfio8Q==
-----END DSA PRIVATE KEY-----

and the public key file contains a long, single line:

ssh-dss AAAAB3NzaC1kc3MAAACBAM4a2KKBE6zhPBgR ...more... smith@example.com

The file format for these keys is known as “OpenSSH format.”

The .pub file containing your public key has no function by itself. Before it can be
used for authentication, this public key must be copied into an authorization file on
an SSH server machine, ~/.ssh/authorized_keys. Thereafter, when an SSH client
requests a connection to your server account using a private key as proof of identity,
the OpenSSH server consults your authorized_keys file to find the matching public
key.

6.1.2 Tectia Identities
A Tectia key pair is also stored in two files with related names (i.e., the private-key
filename plus .pub yields the public-key filename). Tectia key files are often named
based on the key’s cryptographic properties. For example, a 2048-bit, DSA-
encrypted key is generated by default in the Tectia files id_dsa_2048_a and id_dsa_
2048_a.pub. These files are in a format known as “SECSH public-key file format”
and sometimes “SSH2 format.” The encrypted private key looks like this:

---- BEGIN SSH2 ENCRYPTED PRIVATE KEY ----
Subject: smith
Comment: "2048-bit dsa, smith@example.com, Sat Feb 12 2005 15:17:53 -0200"

Figure 6-3. SSH authorization files (public keys) and the programs that use them

$HOME

.ssh

authorized_keys

.ssh2

authorization

public key #1

public key #2

file onepublic key #1

public key #2

. . 
. file two

. . 
.

. . 
.

. . 
.

OpenSSH
SSH-1

Tectia
SSH-2

SSH1

Key one

Key two



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6.1 What Is an Identity? | 231

P2/56wAAA4oAAAAmZGwtbW9kcHtzaWdue2RzYS1uaXN5LXNoYTF9LGRoe3BsYWlufX0AAA
AIM2Rlcy1jYmMAAANIEYkNTUySnPZlYsNh15lkVfzRk6dPx4XYcXe+4f45XHIxwqcUo2Cd
... lines omitted ...
RFI0RQxDhgWS/SXlFF
---- END SSH2 ENCRYPTED PRIVATE KEY ----

and the public key like this:

---- BEGIN SSH2 PUBLIC KEY ----
Subject: smith
AAAAB3NzaC1kc3MAAAEBAP3QfkjOBm1+aPgEUG39j5va13CRrPSedFYtv/52VqIgrBzRV8
Es1KHPIwmB1FOn5ej02FATNGtaR/fg6K4DVoWscIHGZk95OjLgAz+JeBq7lxYwQ0EzpsTQ
... lines omitted ...
mQ1et1r4Wr0fj0F/2tXf+o71P2HfNw1M6I0B/54eI=
---- END SSH2 PUBLIC KEY ----

Unlike OpenSSH, however, a Tectia identity is not a single key but a collection of
keys. When a Tectia client tries to authenticate, it may use all keys in the collection.
If the first key fails to authenticate, the Tectia client automatically tries the second,
and so forth, until it succeeds or fails completely.

Converting SSH-1 Keys to SSH-2 with ssh-keyconverter
OpenSSH includes the program ssh-keyconverter, which converts old SSH-1 RSA keys
into a format suitable for SSH-2 authentication. If you used SSH-1 in the early days but
are just getting around to upgrading, ssh-keyconvertermight save you the time of gen-
erating and installing new keys. There are two uses:

Converting key files
Run ssh-keyconverter with the –k option to convert a single SSH-1 RSA key file to
SSH-2 format. If your private key file is mykey, run:

$ ssh-keyconverter -k -o newfile mykey
Creates newfile and newfile.pub

Converting your entire authorized_keys file
Run ssh-keyconverter with the –a option to convert all SSH-1 RSA keys in your
authorized_keys file to SSH-2 format:

$ cd ~/.ssh
$ ssh-keyconverter -a -o newfile authorized_keys
...Check that file newfile looks correct, and then...
$ mv newfile authorized_keys
$ chmod 600 authorized_keys

Existing SSH-2 format keys are ignored.

See the manpage for ssh-keyconverter for more details.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

232 | Chapter 6: Key Management and Agents

To create an identity in Tectia, private keys must be listed in a file called an identifi-
cation file. Your default identity file is ~/.ssh2/identification.* Inside the file, private
keys are listed one per line. For public-key authentication, a line begins with the key-
word IdKey, followed by the name of the private-key file:

# Tectia identification file
# The following names are relative to ~/.ssh2
IdKey id_dsa_2048_a
IdKey my-other-tectia-key
# This key uses an absolute path
IdKey /usr/local/etc/third-key

The identification file may also contain PGP-related keywords: [6.5]

# Tectia identification file
PgpSecretKeyFile my-file.pgp
IdPgpKeyName my-key-name

Like OpenSSH, Tectia has an authorization file for incoming connections, but with a
difference. Instead of containing copies of the public keys, the Tectia authorization
file merely lists the public-key filenames using the Key keyword:

# Tectia authorization file
Key id_dsa_2048_a.pub
Key something-else.pub

Notice you have only one copy of each public key. This is slightly easier to maintain
than OpenSSH’s system, which has separate copies in the .pub file and authorized_
keys file. [8.2.1]

Tectia’s identification file can group multiple keys as a single identity.
You can approximate this behavior in OpenSSH with the IdentityFile
keyword. [7.4.2] To set up a default “identity” with multiple keys, add
the following section to the end of your ~/.ssh/config file:

Host *

 IdentityFile key1

 IdentityFile key2

 IdentityFile key3

Now this multiple-key “identity” is available for all SSH connections.
Similarly, you can place multiple IdentityFile values in any other sec-
tion of the configuration file to associate a multikey identity with a
particular host or set of hosts.

* This default may be changed with the IdentityFile keyword. [7.4.2]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6.2 Creating an Identity | 233

6.2 Creating an Identity
Most SSH implementations include a program for creating key pairs. We cover ssh-
keygen from OpenSSH and Tectia.

6.2.1 Generating Keys for OpenSSH
OpenSSH uses the program ssh-keygen to create key pairs. [2.4.2] Let’s go into more
detail about this program for creating new keys or modifying existing keys.

6.2.1.1 Creating OpenSSH keys

When creating a new key, you must indicate the key type (DSA or RSA) using the –t
flag:

$ ssh-keygen -t dsa

You may also specify these options for creating keys:

• The number of bits in the key, using –b; the default is 1024 bits:

$ ssh-keygen -t dsa -b 2048

• The name of the private-key file to be generated, using –f. The name is relative to
your current directory. Recall that the public-key file is named after the private
one with .pub appended.

$ ssh-keygen -t dsa -f mykey Creates mykey and mykey.pub

If you omit the –f option, you are prompted for the information:

$ ssh-keygen -t dsa
...
Enter file in which to save the key (/home/barrett/.ssh/id_dsa): mykey

The default filename for DSA keys is ~/.ssh/id_dsa, and for RSA keys it’s ~/.ssh/
id_rsa.

• The passphrase to decode the key, using –N:

$ ssh-keygen -t dsa -N secretword

If you omit this option, you’ll be prompted for the information:

$ ssh-keygen -t dsa
...
Enter passphrase: [nothing is echoed]
Enter the same passphrase again: [nothing is echoed]

• A textual comment associated with the key, using –C. If you omit this option,
the comment is username@host, where username is your username and host is the
local hostname:

$ ssh-keygen ... -C "my favorite key"



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

234 | Chapter 6: Key Management and Agents

Before using any option that places your passphrase on the shell com-
mand line, such as the –N or –P options of ssh-keygen, carefully con-
sider the security implications. Because the passphrase appears on
your screen, it may be visible to onlookers, and while running, it may
be visible to other users viewing the machine’s process list via the ps
command. In addition, if your shell creates history files of the com-
mands you type, the passphrase is inserted into a history file where it
can be read by a third party.

Also, if you think you have a good reason just to type Return and give
your key no passphrase, think again. That is essentially equivalent to
putting your password in a file in your home directory named MY-
PASSWORD.PLEASE-STEAL-ME. If you don’t want to have to type a
passphrase, the right thing to do is to use ssh-agent, hostbased authen-
tication, or Kerberos. There are very limited circumstances having to
do with unattended usage (e.g., cron jobs) where a plaintext, pass-
phrase-less client key might be acceptable. [11.1]

If you use both –f (specify output file) and –N (specify passphrase), ssh-keygen issues
no prompts. Therefore, you can automate key generation using these options (and
perhaps redirecting output to /dev/null):

$ ssh-keygen -f mykey -N secretword

You might use this technique to automate generation of a large number of keys for
some purpose. Use it carefully, though, and always on a secure machine. The pass-
word on the command line is probably visible to other users on the same machine
via ps or similar programs; and if you’re scripting with this technique, obviously the
passphrases shouldn’t be kept in files for long.

6.2.1.2 Working with OpenSSH keys

In addition to creating keys, ssh-keygen can manipulate existing keys in the follow-
ing ways:

• Changing the passphrase of an existing key, using –p. You can specify the file-
name with –f and the old and new passphrases with –P and –N, respectively:

$ ssh-keygen -t dsa -p -f mykey -P secretword -N newword
Your identification has been saved with the new passphrase.

But if you omit them, you are prompted:

$ ssh-keygen -t dsa -p
Enter file in which the key is (/home/barrett/.ssh/id_rsa): mykey
Enter old passphrase: [nothing is echoed]
Key has comment 'my favorite key'
Enter new passphrase (empty for no passphrase): [nothing is echoed]
Enter the same passphrase again:
Your identification has been saved with the new passphrase.

Note that this changes the passphrase but doesn’t change the key, it just re-
encrypts the key with the new passphrase. So, the corresponding public-key file
on remote machines doesn’t change or need to be replaced.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6.2 Creating an Identity | 235

• Printing the fingerprint of a given key file, with –l. See the sidebar “Key Finger-
prints” for more information. The fingerprint can be calculated from the public
key:

$ ssh-keygen -l -f stevekey.pub
1024 5c:f6:e2:15:39:14:1a:8b:4c:93:44:57:6b:c6:f4:17 steve@snailbook.com
$ ssh-keygen -B -f stevekey.pub
1024 xitot-larit-gumet-fyfim-sozev-vyned-cigeb-sariv-tekuk-badus-bexax
Steve@snailbook.com

• Printing a DNS resource record with –r, and using DNS resource record format
with –g. These options produce key fingerprints in a format suitable for a BIND
nameserver, for the purposes of verifying SSH host keys via the DNS. [7.4.3.2]

• Converting between SECSH (Tectia) and OpenSSH key-storage formats, with –e,
–i, and –y.

An OpenSSH “private” key file actually contains both the public and private keys
of a pair, so the –e and –y options simply extract the public key and print it out in
the desired format. Use –e to convert an OpenSSH public key for your ~/.ssh2/
authorization file on a Tectia server host, and –i to do the opposite. The –y
option is useful if you accidentally delete your OpenSSH public-key file and need
to restore it. Tectia keys are in a format called SECSH Public Key File Format or
SSH2 format, also used by other SSH implementations whose keys you may
import and export.

A function that’s missing is converting the private keys as well. This is useful if
you have an OpenSSH server host on which you also want to run Tectia, and
you want the two SSH servers to share a host key.

When you make changes to a key, such as its passphrase or comment, the changes are
applied to the key file only. If you have keys loaded in an SSH agent, the copies in the
agent don’t get changed. For instance, if you list the keys in the agent with ssh-add -l
(lowercase L) after changing the comment, you still see the old comment in the agent.
To make the changes take effect in the agent, unload and reload the affected keys.

6.2.2 Generating Keys for Tectia
Tectia also uses a program named ssh-keygen to create key pairs and manipulate
existing keys.

Option Extract/convert from... To...

-e OpenSSH private-key file (“export”) SECSH public key (Tectia format)

-i SECSH public-key file (“import”) OpenSSH public key

-y OpenSSH private-key file OpenSSH public key



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

236 | Chapter 6: Key Management and Agents

Key Fingerprints
Fingerprints are a common cryptographic feature for checking that two keys in differ-
ent places are the same, when comparing them literally—bit by bit—is infeasible.
OpenSSH and Tectia can compute fingerprints.

Suppose Steve wants SSH access to Judy’s account. He sends his public key to Judy by
email, and she installs it in her SSH authorization file. While this key exchange seems
straightforward, it is insecure: a hostile third party could intercept Steve’s key and sub-
stitute his own, gaining access to Judy’s account.

To prevent this risk, Judy needs some way to verify that the key she receives is Steve’s.
She can call Steve on the telephone and check, but reading a 500-byte encrypted public
key over the phone is annoying and error-prone. This is why fingerprints exist.

A fingerprint is a short value computed from a key. It’s analogous to a checksum, ver-
ifying that a string of data is unaltered—in our case, a key. To check the validity of a
key using fingerprints, Steve and Judy could do the following:

1. Judy receives a public key that is supposed to be Steve’s, storing it in the file
stevekey.pub.

2. Separately, Judy and Steve view the fingerprint of the key:

# OpenSSH
$ ssh-keygen -l -f stevekey.pub
1024 5c:f6:e2:15:39:14:1a:8b:4c:93:44:57:6b:c6:f4:17 Steve@snailbook.com
$ ssh-keygen -B -f stevekey.pub
1024 xitot-larit-gumet-fyfim-sozev-vyned-cigeb-sariv-tekuk-badus-bexax
Steve@snailbook.com

# Tectia
$ ssh-keygen -F stevekey.pub
Fingerprint for key:
xitot-larit-gumet-fyfim-sozev-vyned-cigeb-sariv-tekuk-badus-bexax

3. Judy calls Steve on the telephone and asks him to read the fingerprint over the
phone. Judy verifies that it matches the fingerprint of the key she received. Fin-
gerprints are not unique, but for any two keys, the probability that their finger-
prints are identical is extremely small. Therefore, fingerprints are a quick and
convenient method for checking that a key is unaltered.

As you can see, OpenSSH and Tectia use different output formats for fingerprints.
OpenSSH supports both a numeric format which is more traditional and should be
familiar to users of PGP, and a textual format called “Bubble Babble” which is claimed
to be easier to read and remember. Tectia supports only Bubble Babble fingerprints.

Fingerprints also surface when you connect to an SSH server whose host key has
changed. In this case, OpenSSH prints a warning message and the fingerprint of the
new key, which may be conveniently compared with the fingerprint of the real host
key, should you have it.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6.2 Creating an Identity | 237

6.2.2.1 Creating Tectia keys

When creating a new key, you may choose the name of the private-key file to be gen-
erated, by specifying the name at the end of the command line:

$ ssh-keygen mykey creates mykey and mykey.pub

The name is relative to your current directory, and as usual, the public key file is
named after the private one with .pub appended. The key is saved in the directory
~/.ssh2 in a file whose name indicates the key type and number of bits. An exam-
ple is id_dsa_2048_a, which was generated by the DSA algorithm with 2048 bits.

You also may indicate the following with command-line options:

• The number of bits in the key, using –b; the default is 2048 bits:

$ ssh-keygen -b 4096

• The key type, such as DSA or RSA, using –t:

$ ssh-keygen -t dsa

• A textual comment associated with the key, using –c:

$ ssh-keygen -c "my favorite Tectia key"

If you omit this option, the generated comment describes how and by whom the
key was generated. For example:

"2048-bit dsa, barrett@server.example.com, Tue Feb 22 2000 02:03:36"

• The passphrase to decode the key, using –p. If you omit this option, you are
prompted after generation.

$ ssh-keygen -p secretword

You can also designate an empty password using –P. This shouldn’t be done in
general but is appropriate in some special cases: [11.1.2.2]

$ ssh-keygen -P

• Whether or not to overwrite the key file, if it already exists, with --overwrite

and the value yes (the default) or no:

$ ssh-keygen --overwrite no mykeyfile

6.2.2.2 Working with Tectia keys

In addition to creating keys, ssh-keygen can operate on keys in the following ways:

• By changing the passphrase and comment of an existing key, using –e. This
option causes ssh-keygen to become interactive, prompting for the new informa-
tion. This interactive mode is primitive and annoying, requiring nearly 10 user
responses to change the passphrase and comment, but it does the job:

$ ssh-keygen -e mykey
Passphrase needed for key "my favorite Tectia key"
Passphrase : [nothing is echoed]
Do you want to edit key "my favorite Tectia key" (yes or no)? yes
Your key comment is "my favorite Tectia key".
 Do you want to edit it (yes or no)? yes



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

238 | Chapter 6: Key Management and Agents

New key comment: this is tedious
Do you want to edit passphrase (yes or no)? yes
New passphrase : [nothing is echoed]
Again          : [nothing is echoed]
Do you want to continue editing key "this is tedious" (yes or no)? god no
(yes or no)? no
Do you want to save key "this is tedious" to file mykey (yes or no)? yes

Changes are applied to the key files but not propagated to any copies currently
loaded in an agent. (So, if you run ssh-add -l to list the keys in your agent, for
example, you still see the old comment.)

• By converting between various key-storage formats, with the following options:

ssh-keygen also gives you some control over input, output, and diagnostics:

• By printing the fingerprint of a given key file, with –F. See the sidebar “Key Fin-
gerprints” for more information. [6.2] The fingerprint is calculated from the
public key:

$ ssh-keygen -F stevekey.pub
Fingerprint for key:
xitot-larit-gumet-fyfim-sozev-vyned-cigeb-sariv-tekuk-badus-bexax

• By printing cryptographic information about a key, with –i:

$ ssh-keygen -i stevekey.pub
DSA Public Key
[Strength estimation as of July, 2000 considering NFS and Pollard rho: Attack
requires O(2^80) steps, which is roughly equivalent to 6.7 * 10^7 years of effort
with 1GHz machine.]
  p = [Large prime, characteristic of the finite field]
18257155510680634708091813901445079313554557329637337413272033369505053693222548
32994959179095338002184212706407725165597654255005411958024968996544803955496850.
...

Option Extract/convert from... To...

-1 SSH1 key SECSH key

--import-public-key OpenSSH public key SECSH public key

--import-private-key OpenSSH private key, unencrypted only SECSH private key

--import-ssh1-
authorized-keys

An OpenSSH or SSH1 authorized_keys file Tectia authorization file, plus an
individual file for each referenced
public key

-D SECSH private key SECSH public keya

a Handy if you ever lose your public-key file.

-x X.509 private key SECSH private key

-k PKCS 12 file SECSH certificate and private key

-7 PKCS 7 file Certificates from that file



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6.2 Creating an Identity | 239

You can display this information in different bases with –B; the default is base 10:

$ ssh-keygen -i -B 16 stevekey.pub Base 16, hexadecimal
...
0x909fe130f9fa7192dc2a28591a53c0687...

• By printing the program version number, with –V:

$ ssh-keygen -V
ssh-keygen: SSH Tectia Server 4.2.1 on i686-pc-linux-gnu
Build: 1
Crypto library version: SSH Cryptographic Library, version 1.2.4

• By printing a help message, with –h or –?; most Unix shells require you to escape
the question mark to prevent the shell from interpreting it as a wildcard:

$ ssh-keygen -h
$ ssh-keygen -\? escaping the question mark

• By printing debug information, with –d, as for Tectia’s sshd. [5.9]

• By suppressing the progress indicator, using –q. The progress indicator is a
sequence of O’s and periods that displays while ssh-keygen runs, like this: .oOo.
oOo.oOo.oOo:

$ ssh-keygen
Generating 2048-bit dsa key pair
.oOo.oOo.oOo.oOo
Key generated.

$ ssh-keygen -q
Generating 2048-bit dsa key pair
Key generated.

Finally, ssh-keygen has one guru-level advanced option, –r, for affecting the random
numbers used for key generation. It causes ssh-keygen to modify ~/.ssh2/random_seed
using data you enter on standard input. [3.6.4] The Tectia manpages call this “stir-
ring data into the random pool.” Note that the program doesn’t prompt you to enter
data, it just sits there looking like it’s hung. When this occurs, type as much data as
you like and press the EOF character (Control-D in most shells):

$ ssh-keygen -r
I am stirring the random pool.
blah blah blah
^D

Stirred in 46 bytes.

See Table 6-1 for a description of ssh-keygen options.

Table 6-1. ssh-keygen options

ssh-keygen feature OpenSSH Tectia

Set number of bits –b bits –b bits

Set output file –f file final argument of the command

Overwrite output file if present --overwrite [yes|no]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

240 | Chapter 6: Key Management and Agents

6.2.3 Selecting a Passphrase
Choose your passphrases carefully. Make them at least 10 characters long, contain-
ing a mix of uppercase and lowercase letters, digits, and nonalphanumeric symbols.
At the same time, you want the passphrase to be easy to remember, but hard for oth-
ers to guess. Don’t use your name, username, phone number, or other easily guessed

Set comment string –C comment –c comment

Change comment string –c –e file

Set (new) passphrase –N phrase –p phrase

Set empty passphrase –N ‘’ –P

Specify current passphrase –P

Change passphrase –p –e file

Set encryption algorithm –t algorithm –t algorithm

Change encryption algorithm –u

Derive public key from private –D file

Quieter output –q –q

Describe key –i file

Set numeric base for printing key information –B base

Print version number –V –V

Print help message –h a –h, –? b

Print debugging information –d debug_spec

Use data from stdin for randomness –r

Print a key’s fingerprint – l or –B –F file

Convert from SSH-1 to SSH-2 format –1 file

Convert OpenSSH private to Tectia public –e

Convert OpenSSH private to Tectia private --import-private-key

Convert Tectia public to OpenSSH public –i --import-public-key

Extract OpenSSH private to public –y

Convert authorized_keys to authorization file --import-ssh1-authorized-
keys

Convert X.509 key to SECSH formatc –x file

Convert PKCS 12 file to SECSH format –k file

Convert PKCS 7 file to SECSH format –7 file

a Any illegal argument, such as –h, causes a help message to print.
b You might need to escape the question mark in your shell, e.g., -\?.
c The key file format used by SSH Tectia and several other implementations, but not OpenSSH.

Table 6-1. ssh-keygen options (continued)

ssh-keygen feature OpenSSH Tectia



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6.2 Creating an Identity | 241

information in the passphrase. Coming up with an effective passphrase can be a
chore, but the added security is worth it.

If you forget a passphrase, you are out of luck: the corresponding SSH private key
becomes unusable because you can’t decrypt it. The same encryption that makes
SSH so secure also makes passphrases impossible to recover. You have to abandon
your SSH key, generate a new one, and choose a new passphrase for it. You must
also install the new public key on every machine that holds the original one.

6.2.4 Generating New Groups for Diffie-Hellman
   Key   Exchange

As we saw in Chapter 3, the SSH Transport Protocol uses the Diffie-Hellman key-
agreement algorithm to generate cryptographic session keys for the SSH connection.
[3.8.1.3] One parameter to this algorithm is a mathematical structure from algebra
known as a “group”; specifically, a finite integer group with respect to multiplica-
tion modulo a prime. In the initial SSH protocol, a single fixed group was used for
the key exchange. Due to concern over possible future attacks against this fixed
parameter, an extension was created to allow the group to be negotiated, and this
extension is now widely implemented.

The OpenSSH server selects the groups to be offered the client from the file /etc/
moduli. OpenSSH comes with a moduli file defining a set of suitable groups, and for
most people this is sufficient; there is no pressing need to regenerate them. On par-
ticularly slow systems, you might edit this file to select groups with a smaller prime
modulus, to speed up the key exchange.

Smartcard Support in OpenSSH
OpenSSH includes experimental support for hardware devices (smartcards) that can
hold private user keys. This includes:

ssh-keygen
The –D (download) and –U (upload) options

ssh-add
The –s (add key) and –e (remove key) options

ssh
The –I option and the SmartCardDevice configuration keyword, to choose a smart-
card device

At press time, smartcard support in OpenSSH is still experimental, so we don’t cover
it. We mention it only for completeness.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

242 | Chapter 6: Key Management and Agents

If you like, you can generate your own set of key-exchange groups using ssh-keygen -G.
This usage is quite technical and infrequently used, so we won’t delve further into it
here; refer to the ssh-keygen manpage, in the section “MODULI GENERATION,” for
details. You can also see an example in OpenBSD’s usr/src/etc/Makefile for OpenSSH,
e.g.:

http://www.openbsd.org/cgi-bin/cvsweb/src/etc/Makefile?
rev=1.215&content-type=text/x-cvsweb-markup

6.3 SSH Agents
An SSH agent is a program that caches private keys and responds to authentication-
related queries from SSH clients. [2.5] They are terrific labor-saving devices, han-
dling all key-related operations and eliminating the need to retype your passphrase.

The programs related to agents are ssh-agent and ssh-add. ssh-agent runs an agent,
and ssh-add inserts and removes keys from the agent’s key cache. A typical use might
look like this:

# Start the agent
$ ssh-agent $SHELL
# Load your default identity
$ ssh-add
Need passphrase for /home/barrett/.ssh/identity (barrett@example.com).
Enter passphrase: ********

By typing your passphrase a single time, you decrypt the private key which is then
stored in memory by the agent. From now on, until you terminate the agent or log
out, SSH clients automatically contact the agent for all key-related operations. You
needn’t type your passphrase again.

We now briefly discuss how agents work. After that we get practical and illustrate
different ways to start an agent, various configuration options, and several tech-
niques for automatically loading your keys into the agent. Finally, we cover agent
security and agent forwarding.

6.3.1 Agents Do Not Expose Keys
Agents perform two tasks:

• Store your private keys in memory

• Answer questions (from SSH clients) about those keys

Agents don’t, however, send your private keys anywhere. This is important to under-
stand. Once loaded, private keys remain within an agent, unseen by SSH clients. To
access a key, a client says, “Hey agent! I need your help. Please perform a key-related
operation for me.” The agent obeys and sends the results to the client, as in
Figure 6-4.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6.3 SSH Agents | 243

For example, if ssh needs to sign an authenticator, it sends the agent a signing
request containing the authenticator data and an indication of which key to use. The
agent performs the cryptographic operation itself and returns the signature.

In this manner, SSH clients use the agent without seeing its private keys. This tech-
nique is more secure than handing out keys to clients. The fewer places that private
keys get stored or sent, the harder it is to steal them.*

6.3.2 Starting an Agent
There are two ways to invoke an agent in your login account:

• The single-shell method that uses your current login shell

• The subshell method that forks a subshell to facilitate the inheritance of some
environment variables

Don’t invoke an agent with the “obvious” but wrong command:

$ ssh-agent

Although the agent runs without complaint, SSH clients can’t contact
it, and the termination command (ssh-agent -k) doesn’t kill it, because
some environment variables aren’t properly set.

6.3.2.1 Single-shell method

The single-shell method runs an agent in your current login shell. This is most conve-
nient if you’re running a login shell on a single terminal, as opposed to a Unix Win-
dow system such as X. Type:

$ eval `ssh-agent`

Figure 6-4. How an SSH agent works with its clients

* This design also fits well with token-based key storage, in which your keys are kept on a smart card carried
with you. Like agents, smart cards respond to key-related requests but don’t give out keys, so integration
with SSH would be straightforward. Though adoption of tokens has been slow, we believe it will be com-
monplace in the future.

bobs private keys, unencrypted

SSH
Clientrun by

Bob

Agent for user bob

result

request for a key related computation
1

2



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

244 | Chapter 6: Key Management and Agents

and an ssh-agent process is forked in the background. The process detaches itself
from your terminal, returning a prompt to you, so you needn’t run it in the back-
ground manually (i.e., with an ampersand on the end). Note that the quotes around
ssh-agent are backquotes, not apostrophes.

What purpose does eval serve? Well, when ssh-agent runs, it not only forks itself in
the background, but it also outputs some shell commands to set several environ-
ment variables necessary for using the agent. The variables are SSH_AUTH_SOCK and
SSH_AGENT_PID for OpenSSH, or SSH2_AUTH_SOCK and SSH2_AGENT_PID for Tectia. The
eval command causes the current shell to interpret the commands output by ssh-
agent, setting the environment variables. If you omit the eval, the following com-
mands are printed on standard output as ssh-agent is invoked. For example:

# OpenSSH
$ ssh-agent
SSH_AUTH_SOCK=/tmp/ssh-barrett/ssh-22841-agent; export SSH_AUTH_SOCK;
SSH_AGENT_PID=22842; export SSH_AGENT_PID;
echo Agent pid 22842;

# Tectia
SSH2_AUTH_SOCK=/tmp/ssh-barrett/ssh2-22842-agent; export SSH2_AUTH_SOCK;
SSH2_AGENT_PID=22842; export SSH2_AGENT_PID;
echo Agent pid 22842;

Now you’ve got an agent running, but inaccessible to the shell. You can either kill it
using the pid printed in the previous output:

$ kill 22842

or point your shell manually to the agent by setting the environment variables exactly
as given:*

# OpenSSH
$ SSH_AUTH_SOCK=/tmp/ssh-barrett/ssh-22841-agent; export SSH_AUTH_SOCK
$ SSH_AGENT_PID=22842; export SSH_AGENT_PID

# Tectia
$ SSH2_AUTH_SOCK=/tmp/ssh-barrett/ssh2-22842-agent; export SSH2_AUTH_SOCK
$ SSH2_AGENT_PID=22842; export SSH2_AGENT_PID

Nevertheless, it’s easier to use eval, so everything is set up for you.†

To terminate the agent, kill its pid:

$ kill 22842

and unset the environment variables:

# OpenSSH
$ unset SSH_AUTH_SOCK

* This is Bourne shell syntax. If your shell is csh or tcsh, use the appropriate syntax. [6.3.2.3]

† Why can’t ssh-agent set its environment variables without all this trickery? Because under Unix, a program
can’t set environment variables in its parent shell.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6.3 SSH Agents | 245

$ unset SSH_AGENT_PID

# Tectia
$ unset SSH2_AUTH_SOCK
$ unset SSH2_AGENT_PID

Or for OpenSSH, use the more convenient –k command-line option:

# OpenSSH
$ eval `ssh-agent -k`

This prints termination commands on standard output so that eval can invoke them.
If you forget eval, the agent is still killed, but your environment variables don’t get
unset automatically:

# OpenSSH
$ ssh-agent -k
unset SSH_AUTH_SOCK;  # This won't get unset,
unset SSH_AGENT_PID  # and neither will this,
echo Agent pid 22848 killed # but the agent gets killed.

Running an agent in a single shell, as opposed to the method we cover next (spawn-
ing a subshell), has one problem. When your login session ends, the ssh-agent pro-
cess doesn’t die. After several logins, you see many agents running, serving no
purpose:*

$ ps uax | grep ssh-agent
barrett   7833  0.4  0.4  828  608 pts/1    S 21:06:10  0:00 grep agent
barrett   4189  0.0  0.6 1460  844 ?        S   Feb 21  0:06 ssh-agent
barrett   6134  0.0  0.6 1448  828 ?        S 23:11:41  0:00 ssh-agent
barrett   6167  0.0  0.6 1448  828 ?        S 23:24:19  0:00 ssh-agent
barrett   7719  0.0  0.6 1456  840 ?        S 20:42:25  0:02 ssh-agent

You can get around this problem by running ssh-agent -k automatically when you log
out. In Bourne-style shells (sh, ksh, bash), this may be done with a trap of Unix sig-
nal 0 at the top of ~/.profile:

# ~/.profile
trap '
  test -n "$SSH_AGENT_PID"  && eval `ssh-agent -k` ;
  test -n "$SSH2_AGENT_PID" && kill $SSH2_AGENT_PID
' 0

For C shells and for tcsh, terminate the agent in your ~/.logout file:

# ~/.logout
if ( "$SSH_AGENT_PID" != "" ) then
  eval `ssh-agent -k`
endif
if ( "$SSH2_AGENT_PID" != "" ) then
  kill $SSH2_AGENT_PID
endif

* Actually, you can reconnect to an agent launched in a previous login, by modifying your SSH_AUTH_SOCK vari-
able to point to the old socket.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

246 | Chapter 6: Key Management and Agents

Once this trap is set, your ssh-agent process is killed automatically when you log out,
printing a message like:

Agent pid 8090 killed

6.3.2.2 Subshell method

The second way to invoke an agent spawns a subshell. You provide an argument to
ssh-agent, which is a path to a shell or shell script. Examples are:

$ ssh-agent /bin/sh
$ ssh-agent /bin/csh
$ ssh-agent $SHELL
$ ssh-agent my-shell-script # Run a shell script instead of a shell

This time, instead of forking a background process, ssh-agent runs in the fore-
ground, spawning a subshell and setting the aforementioned environment variables
automatically. The rest of your login session runs within this subshell, and when you
terminate it, ssh-agent terminates as well. This method, as you will see later, is most
convenient if you run a Window System such as X and invoke the agent in your ini-
tialization file (e.g., ~/.xsession).* However, the method is also perfectly reasonable
for single-terminal logins.

When using the subshell method, invoke it at an appropriate time. We recommend
the last line of your login initialization file (e.g., ~/.profile or ~/.login) or the first
typed command after you log in. Otherwise, if you first run some background pro-
cesses in your shell and then invoke the agent, those initial background processes
become inaccessible until you terminate the agent’s subshell. For example, if you run
the vi editor, suspend it, and then run the agent, you lose access to the editor session
until you terminate the agent:

$ vi myfile # Run your editor.
^Z # Suspend it.
$ jobs # View your background processes.
[1] + Stopped (SIGTSTP) vi
$ ssh-agent $SHELL # Run a subshell.
$ jobs # No jobs here! They're in the parent shell.
$ exit # Terminate the agent’s subshell.
$ jobs # Now we can see our processes again.
[1] + Stopped (SIGTSTP) vi

The advantages and disadvantages of the two methods are shown in Table 6-2.

* In fact, many Linux distributions set this up for you, automatically launching ssh-agent when you log in via
KDE or GNOME. Red Hat Linux and SUSE Linux are two examples. After logging in, run a ps command
and grep for “agent” to see this in action.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6.3 SSH Agents | 247

6.3.2.3 Format of environment variable commands

As we’ve said, ssh-agent prints a sequence of shell commands to set several environ-
ment variables. The syntax of these commands differs depending on which shell is
being used. You can force the commands to use Bourne-style or C-shell-style syntax
with the –s and –c options, respectively:

# Bourne-shell style commands
$ ssh-agent -s
SSH_AUTH_SOCK=/tmp/ssh-barrett/ssh-3654-agent; export SSH_AUTH_SOCK;
SSH_AGENT_PID=3655; export SSH_AGENT_PID;
echo Agent pid 3655;

# C-shell style commands
$ ssh-agent -c
setenv SSH_AUTH_SOCK /tmp/ssh-barrett/ssh-3654-agent;
setenv SSH_AGENT_PID 3655;
echo Agent pid 3655;

Normally ssh-agent detects your login shell and prints the appropriate lines, so you
don’t need –c or –s. One situation where you need these options is if you invoke ssh-
agent within a shell script, but the script’s shell is not the same type as your login
shell. For example, if your login shell is /bin/csh, and you invoke this script:

#!/bin/sh
`ssh-agent`

ssh-agent outputs C-shell-style commands, which fails. So, you should use:

#!/bin/sh
`ssh-agent -s`

This is particularly important if you run an agent under X, and your ~/.xsession file
(or other startup file) is executed by a shell different from your login shell.

6.3.3 Loading Keys with ssh-add
The program ssh-add is your personal communication channel to an ssh-agent pro-
cess. When you first invoke an SSH agent, it contains no keys. ssh-add, as you might
guess from its name, can add private keys to an SSH agent. But the name is mislead-
ing because ssh-add also controls the agent in other ways, such as listing keys, delet-
ing keys, and locking the agent from accepting further keys.

Table 6-2. Pros and cons of invoking an agent

Method Pros Cons

eval `ssh-agent` Simple, intuitive. Must be terminated manually.

ssh-agent $SHELL Agent’s environment variables are propagated
automatically; terminates on logout. Conve-
niently set up by many Linux distributions.

Your login shell becomes dependent on the
agent’s health; if the agent dies, your login
shell may die.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

248 | Chapter 6: Key Management and Agents

If you invoke ssh-add with no arguments, your default SSH keys are loaded into the
agent, once you have typed their passphrases.* For example:

# Output shown for OpenSSH
$ ssh-add
Enter passphrase for /home/smith/.ssh/id_dsa: ********
Identity added: /home/smith/.ssh/id_dsa

Normally, ssh-add reads the passphrase from the user’s terminal. If the standard input
isn’t a terminal, however, and the DISPLAY environment variable is set, ssh-add instead
invokes an X Window graphical program called ssh-askpass or x11-ssh-askpass that
pops up a window to read your passphrase. This is especially convenient in xdm
startup scripts.†

If you don’t like ssh-askpass, set your environment variable SSH_
ASKPASS to the full path to an alternative program (say, /usr/local/bin/
my-ask-pass). Then this other program, rahter than ssh-askpass, runs
automatically to gather your passphrase. (OpenSSH only.)

ssh-add supports the following command-line options for listing and deleting keys,
and for reading the passphrase:

• List all identities loaded in the agent. OpenSSH lists the key fingerprints with –l
(see the earlier sidebar “Key Fingerprints” for more detail):

# OpenSSH
$ ssh-add -l
1024 e9:39:50:f0:b4:65:ba:b9:d7:d3:69:10:d0:23:a7:88 a (DSA)
1024 7c:91:07:29:46:a8:61:b4:7c:95:69:fc:47:1e:3c:ff b (RSA)

To print the public keys held in the OpenSSH agent, use –L:

# OpenSSH
$ ssh-add -L
ssh-dss AAAAB3NzaC1kc3MAAACBAK5ArDaZyPXa5Iz... and so forth
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAtIgHblLp1i... and so forth

Tectia lists brief information about the loaded keys with –l:

# Tectia
$ ssh-add -l
Listing identities.
The authorization agent has two keys:
id_dsa_2048_a: my main key
id_dsa_2048_b: another key

• Delete an identity from the agent, with –d:

$ ssh-add -d ~/.ssh/second_id
Identity removed: /home/smith/.ssh/second_id (second_id.pub)

* OpenSSH’s ssh-add tries to reuse a passphrase to load subsequent keys.

† X has its own security problems, of course. If someone can connect to your X server, they can monitor all
your keystrokes, including your passphrase. Whether this is an issue in using ssh-askpass depends on your
system and security needs.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6.3 SSH Agents | 249

If you don’t specify a key file, ssh-add deletes your default identity from the
agent:

$ ssh-add -d
Identity removed: /home/smith/.ssh/id_dsa (/home/smith/.ssh/id_dsa.pub)

• Delete all identities from the agent, with –D; this unloads every currently loaded
key but leaves the agent running:

# OpenSSH
$ ssh-add -D
All identities removed.

# Tectia
$ ssh-add -D
Deleting all identities.

• Set a timeout for a key, with –t. Normally when you add a key, it remains loaded
in the agent indefinitely, until the agent terminates or you unload the key manu-
ally. The –t option assigns a lifetime to a key, measured in seconds (OpenSSH)
or minutes (Tectia). After this time has passed, the agent automatically unloads
the key:

$ ssh-add -t 30 mykey

OpenSSH has a richer syntax for specifying times that may also be used here; see
the sidebar “Time Values in Configuration Files” in Chapter 5:

# OpenSSH
$ ssh-add -t 3W mykey Set a key lifetime of three weeks

You can also specify the maximum lifetime for all keys in the agent:

# OpenSSH
$ eval 'ssh-agent -t 3W' All keys in the agent have a lifetime of three weeks or less

• Lock and unlock the agent with a password, using –x and –X (OpenSSH) or –L
and –U (Tectia). A locked agent refuses all ssh-add operations except an unlock
request. If you try to modify the state of the agent (adding or deleting keys, etc.),
the operation is rejected, and if you try to list the agent’s keys, you are told the
agent has no keys.

To lock:

# OpenSSH
$ ssh-add -x
Enter lock password: ****
Again: ****
Agent locked

# Tectia
$ ssh-add -L
Enter lock password: ****
Again: ****

and to unlock:

# OpenSSH
ssh-add -X



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

250 | Chapter 6: Key Management and Agents

Enter lock password: ****
Agent unlocked

# Tectia
$ ssh-add -U
Enter lock password: ****

Locking is a convenient way to protect the agent if you step away from your
computer but leave yourself logged in. You can instead unload all your keys with
ssh-add -D, but then you have to reload them again when you return. If you have
only one key there’s no difference, but if you use several it’s a pain. Unfortu-
nately, both OpenSSH and Tectia’s locking mechanism aren’t tremendously
secure. ssh-agent simply stores the lock password in memory, refusing to honor
any more requests until it receives an unlock message containing the same pass-
word. The locked agent is still vulnerable to attack: if an intruder gains access to
your account (or the root account), he can dump the agent’s process address
space and extract your keys. The lock feature certainly deters casual misuse, but
the potential for an attack is real. If you’re seriously concerned about key disclo-
sure, think twice before relying on locking. We prefer to see this feature imple-
mented by encrypting all the agent’s loaded keys with the lock password. This
gives the same user convenience and provides better protection.

OpenSSH’s ssh-add program can also be forced to confirm identities via ssh-askpass
before using them, with –c. [6.3.3]

Tectia’s ssh-add program has additional features controlled by command-line
options:

• Place limits on agent forwarding with –f and –F. (Agent forwarding, which we’ll
cover soon, transmits agent requests between hosts.) The –f option lets you
limit, for a given key, the distance that requests for this key may traverse. If a
request is made from too far away, measured in hops from machine to machine,
the request fails. A hop count of zero disables forwarding for this key alone.

# Tectia
$ ssh-add -f 0 mykey Load a key that may be used only locally
$ ssh-add -f 3 mykey Load a key and accept requests from up to three hops

 away

The –F option lets you limit the set of hosts that may make requests relating to
this key. It takes as an argument a set of hostnames, domains, and IP addresses
that may make or forward requests. The argument is a comma-separated list of
wildcard patterns, as for the serverwide configuration keywords AllowHosts and
DenyHosts. [5.5.3]

# Tectia
$ ssh-add -F '*.example.com' mykey Permit forwarding only in the example.com domain
$ ssh-add -F 'server.example.com,*.harvard.edu' mykey Permit forwarding from server
      example.com and the harvard.edu domain
$ ssh-add -F 'server.example.com,*.harvard.edu' -f 2 mykey Same as the preceding
     command, but limit forwarding to two hops



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6.3 SSH Agents | 251

• Reading your passphrase from standard input, with –p, to provide it by a pipe or
similar means. So, if you had a program passphraser that produces the pass-
phrase, you could feed the passphrase to ssh-add:

# Tectia
$ passphraser | ssh-add

• Read keys from a URL rather than a file, with –u:

# Tectia
$ ssh-add -u http://server.example.com/mykey

• Prohibit keys from being used for SSH-1 protocol connections, with -1:

# Tectia
$ ssh-add -1 my-ssh2-only-key

• Perform PGP key operations. Tectia’s ssh-add2 manpage documents the options
–R, –N, –P, and –I for OpenPGP keyring operations, but they aren’t officially
supported.

• Print the program version number, with –V:

# Tectia
$ ssh-add -V
ssh-add2 SSH Tectia Server 4.2.1 on i686-pc-linux-gnu
Build: 1
Released 2004-11-30 (YYYY-MM-DD).

6.3.3.1 Automatic agent loading (single-shell method)

It’s a pain to invoke ssh-agent and/or ssh-add manually each time you log in. With
some clever lines in your login initialization file, you can automatically invoke an
agent and load your default identity. We’ll demonstrate this with both methods of
agent invocation, single-shell and subshell.

With the single-shell method, here are the major steps:

1. Make sure you’re not already running an agent, by testing the environment vari-
able SSH_AUTH_SOCK or SSH2_AUTH_SOCK.

2. Run ssh-agent using eval.

3. If your shell is attached to a tty, load your default identity with ssh-add.

For the Bourne shell and its derivatives (ksh, bash), the following lines can be placed
into ~/.profile:

# Make sure ssh-agent dies on logout
trap '
  test -n "$SSH_AGENT_PID"  && eval `ssh-agent -k` ;
  test -n "$SSH2_AGENT_PID" && kill $SSH2_AGENT_PID
' 0

# If no agent is running and we have a terminal, run ssh-agent and ssh-add.
# (For Tectia, change this to use SSH2_AUTH_SOCK.)
if [ "$SSH_AUTH_SOCK" = "" ]
then



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

252 | Chapter 6: Key Management and Agents

  eval `ssh-agent`
  /usr/bin/tty > /dev/null && ssh-add
fi

For the C shell and tcsh, the following lines can be placed into ~/.login:

# Use SSH2_AUTH_SOCK instead for Tectia
if ( ! $?SSH_AUTH_SOCK  ) then
  eval `ssh-agent`
  /usr/bin/tty > /dev/null && ssh-add
endif

and termination code in ~/.logout:

# ~/.logout
if ( "$SSH_AGENT_PID" != "" ) eval `ssh-agent -k`
if ( "$SSH2_AGENT_PID" != "" ) kill $SSH2_AGENT_PID

Another single-shell technique to make your clients aware of the agent
is to use OpenSSH’s ssh-agent -a option. (This does not work with
Tectia’s agent.) With this approach, you choose your own socket in
advance—say, ~/.ssh/mysocket—and make decisions based on its
existence. For example, in your ~/.profile you could have:

#!/bin/bash

SOCKETFILE=~/.ssh/mysocket

if [ ! -S "$SOCKETFILE" ]

then

  eval `ssh-agent -a $SOCKETFILE`

fi

Since you know the socket path, you can direct SSH clients to it by set-
ting SSH_AUTH_SOCK=~/.ssh/mysocket as needed. When you termi-
nate the OpenSSH agent with ssh-agent -k, the socket file is deleted
automatically.

6.3.3.2 Automatic agent loading (subshell method)

The second way to load an agent on login uses the subshell method to invoke the
agent, and is described in the following list. This time, you add lines to both your login
initialization file (~/.profile or ~/.login), an optional second file of your choice, and your
shell initialization file (~/.cshrc, ~/.bashrc, etc.). This method doesn’t work for the
Bourne shell, which has no shell initialization file.

1. In your login initialization file, make sure you’re not already running an agent,
by testing the environment variable SSH_AUTH_SOCK or SSH2_AUTH_SOCK.

2. As the last line of your login initialization file, exec ssh-agent, which spawns a
subshell. Optionally run a second initialization file to configure aspects of the
subshell.

3. In your shell initialization file, check whether the shell is attached to a tty and the
agent has no identities loaded yet. If so, load your default identity with ssh-add.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6.3 SSH Agents | 253

Now let’s see how to do this with Bourne-shell and C-shell families. For derivatives
of the Bourne shell (ksh, bash), put the following line at the end of ~/.profile:

test -n "$SSH_AUTH_SOCK" && exec ssh-agent $SHELL

This runs the agent, spawning a subshell. If you want to tailor the environment of
the subshell, create a script (say, ~/.profile2) to do so, and use this instead:

test -n "$SSH_AUTH_SOCK" && exec ssh-agent $SHELL $HOME/.profile2

Next, in your shell initialization file ($ENV for ksh, or ~/.bashrc for bash), place the
following lines to load your default identity only if it’s not loaded already:

# Make sure we are attached to a tty
if /usr/bin/tty > /dev/null
then
  # Check the output of "ssh-add -l" for identities.
  ssh-add -l | grep 'no identities' > /dev/null
  if [ $? -eq 0 ]
  then
    # Load your default identity.
    ssh-add
  fi
fi

6.3.3.3 Automatic agent loading (X Window System)

If you’re using X and want to run an agent and load your default identity automati-
cally, it’s simple. Just use the single-shell method. For example, in your X startup
file, usually ~/.xsession, you can use these two lines:

eval `ssh-agent`
ssh-add

However, first check if your window environment (e.g., GNOME or KDE) is already
running an SSH agent for you, in which case you needn’t do it yourself. This setup is
commonly found in Linux distributions.

6.3.4 Agents and Security
As we mentioned earlier, agents don’t expose private keys to SSH clients. Instead,
they answer requests from clients using the keys. This approach is more secure than
passing keys around, but it still has security concerns. It is important to understand
these concerns before completely trusting the agent model:

• Agents rely on external access control mechanisms.

• Agents can be cracked.

6.3.4.1 Access control

When your agent is loaded with private keys, a potential security issue arises. How
does your agent distinguish between legitimate requests from your SSH clients and



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

254 | Chapter 6: Key Management and Agents

illegitimate requests from unauthorized sources? Since the agent speaks only to other
processes on the same host, it uses the host’s existing security mechanisms. These
vary from one operating system to another, but the four main mechanisms are:

• File permissions

• Client identification

• Protected memory

• Prompt-on-use

File permissions. Under Unix, the agent communicates with users via a named pipe
(Unix-domain socket) in the filesystem, so the first line of defense is the file permis-
sions on the socket. OpenSSH and Tectia keep agent sockets in a protected direc-
tory. OpenSSH’s socket is named /tmp/ssh-STRING/agent.N, where STRING is random
text based on the agent’s process ID, and N is a number:

# OpenSSH
$ ls -la /tmp/ssh-alHMKX4537
drwx------   2 smith    smith       4096 Feb  4 13:40 .
drwxrwxrwt   7 root     root        4096 Feb  4 13:40 ..
srwxr-xr-x   1 smith    smith       0 Feb  4 13:40 agent.4537

while Tectia’s is named /tmp/ssh-USERNAME/ssh2-N-agent, where USERNAME is your user-
name and N is again a number:

# Tectia
$ ls -la /tmp/ssh-smith/
drwx------   2 smith   smith       4096 Feb  4 13:40 .
drwxrwxrwt   7 root    root        4096 Feb  4 13:40 ..
srw-------   1 smith   smith       0 Feb  4 13:40 ssh2-4537-agent

The number N is usually one less than the process ID (pid) of the agent itself. This is
because ssh-agent first creates the socket using its pid, then later starts another pro-
cess that actually persists as the agent. In these examples, user smith has a socket for
an agent which probably has PID 4536. The containing directory itself has mode
0700.

This organization of a user’s sockets into a single directory is not only for neatness
but also for security and portability, because different operating systems treat socket
permissions in different ways. For example, Solaris appears to ignore them com-
pletely; even a socket with permission 000 (no access for anyone) accepts all connec-
tions. Linux respects socket permissions, but a write-only socket permits both
reading and writing. To deal with such diverse implementations, SSH keeps your
sockets in a directory owned by you, with directory permissions that forbid anyone
else to access the sockets inside.

Using a subdirectory of /tmp, rather than /tmp itself, also prevents a class of attacks
called temp races. A temp-race attack takes advantage of race conditions inherent in
the common setting of the “sticky” mode bit on the Unix /tmp directory, allowing



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6.3 SSH Agents | 255

anyone to create a file there, but only allowing deletion of files owned by the same
uid as the deleting process.

If you want to move the socket out of the default /tmp directory, use the –a option:
[6.3.3.1]

# OpenSSH
ssh-agent -a /private/ssh/mysocket
SSH_AUTH_SOCK=/private/ssh/mysocket; export SSH_AUTH_SOCK;
echo Agent pid 28320;

Client identification. Some flavors of Unix allow one process to find out who’s on the
other end of a named pipe: the peer’s process ID, user ID, etc. If this feature is avail-
able, an agent can verify that the client’s user ID matches its own.

Protected memory. The ssh-agent process won’t reveal keys via the agent protocol, but
those keys are in its memory. A privileged user might be able to attach to the agent
process and read the keys from its memory space, bypassing the usual Unix process
separation. Some Unixes allow a process to limit or prevent this kind of external
interference, so some agents make use of this feature.

Prompt-on-use. Some agents can query the user for permission each time a request
comes in over the agent socket (e.g., OpenSSH ssh-add -c). If you use this feature and
a window pops up unexpectedly asking about your agent, something’s wrong!

6.3.4.2 Cracking an agent

If the machine running your agent is compromised, an attacker can easily gain access
to the IPC channel and thus to your agent. This permits the interloper to make
requests of the agent, at least for a time. Once you log out or unload your keys from
the agent, the security hole is closed. Therefore, you should run agents only on
trusted machines, perhaps unloading your keys (ssh-agent -D) if you’re away from
the computer for an extended time, such as overnight.

Since agents don’t give out keys, your keys seem safe from theft if the machine is
compromised. Alas, that’s not the case. An enterprising cracker, once logged into the
machine, has other means for getting your keys, such as:

• Stealing your private-key file and attempting to guess your passphrase

• Tracing processes that you’re running, and catching your passphrase while you
type it

• Trojan horse attacks: installing modified versions of system programs, such as
the login program, shells, or the SSH implementation itself, that steal your pass-
phrase

• Obtaining a copy of the memory space of your running agent and picking the
keys out of it directly (this is a bit harder than the others)



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

256 | Chapter 6: Key Management and Agents

The bottom line is this: run agents only on trusted machines. SSH does not excuse
you from securing other aspects of your system.

6.3.5 Agent Forwarding
So far, our SSH clients have conversed with an SSH agent on the same machine.
Using a feature called agent forwarding, clients can also communicate with agents on
remote machines. This is both a convenience feature—permitting your clients on
multiple machines to work with a single agent—and a means for avoiding some
firewall-related problems.

6.3.5.1 A firewall example

Suppose you want to connect from your home computer, H, to a computer at work,
W. Like many corporate computers, W is behind a network firewall and not directly
accessible from the Internet, so you can’t create an SSH connection from H to W.
Hmm...what can you do? You call technical support and for once, they have good
news. They say that your company maintains a gateway or “bastion” host, B, that is
accessible from the Internet and runs an SSH server. This means you should be able
to reach W by opening an SSH connection from H to B, and then from B to W, since
the firewall permits SSH traffic. Tech support gives you an account on the bastion
host B, and the problem seems to be solved...or is it?

For security reasons, the company permits access to its computers only by public-key
authentication. So, using your private key on home machine H, you successfully con-
nect to bastion host B. And now you run into a roadblock: also for security reasons,
the company prohibits users from storing SSH keys on the exposed bastion host B,
since they can be stolen if B is hacked. That’s bad news, since the SSH client on B
needs a key to connect to your work account on W. Your key is at home on H.
(Figure 6-5 illustrates the problem.) What now? Use SSH agent forwarding.

Figure 6-5. Bastion host scenario

sshd sshd

WH
Internet

B

Corporate Network

no SSH keys permitted



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6.3 SSH Agents | 257

SSH agent forwarding allows a program running on a remote host, such as B, to
access your ssh-agent on H transparently, as if the agent were running on B. Thus, a
remote SSH client running on B can now sign and decrypt data using your key on H,
as shown in Figure 6-6. As a result, you can invoke an SSH session from B to your
work machine W, solving the problem.

6.3.5.2 How agent forwarding works

Agent forwarding, like all SSH forwarding (Chapter 9), works “behind the scenes.”
In this case, the key-related requests of an SSH client are forwarded across a sepa-
rate, previously established SSH session to an agent holding the needed keys, shown
in Figure 6-7. Let’s examine in detail the steps that occur.

1. Suppose you’re logged onto machine X, and you invoke ssh to establish a remote
terminal session on machine Y.

# On machine X:
$ ssh Y

2. Assuming that agent forwarding is turned on, the client says to the SSH server, “I
would like to request agent forwarding, please,” when establishing the connec-
tion.

3. sshd on machine Y checks its configuration to see if it permits agent forwarding.
Let’s assume that it’s enabled.

4. sshd on machine Y sets up an interprocess communication (IPC) channel local to
Y by creating some Unix domain sockets and setting some environment vari-
ables. [6.3.2.1] The resulting IPC mechanism is just like the one ssh-agent sets
up. As a result, sshd is now prepared to pose as an SSH agent.

5. Your SSH session is now established between X and Y.

Figure 6-6. Solution with SSH agent forwarding

ssh

ssh

sshd

sshd

W

H

ssh-agent user keys

ssh
proxy
agent

Internet

B

SSH

Corporate Network



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

258 | Chapter 6: Key Management and Agents

6. Next, from machine Y, you run another ssh command to establish an SSH ses-
sion with a third machine, Z:

# On machine Y:
$ ssh Z

7. This new ssh client now needs a key to make the connection to Z. It believes
there’s an agent running on machine Y, because sshd on Y is posing as one. So,
the client makes an authentication request over the agent IPC channel.

8. sshd intercepts the request, masquerading as an agent, and says, “Hello, I’m the
agent. What would you like to do?” The process is transparent: the client
believes it’s talking to an agent.

9. sshd then forwards the agent-related request back to the original machine, X,
over the secure connection between X and Y. The agent on machine X receives
the request and accesses your local key, and its response is forwarded back to
sshd on machine Y.

10. sshd on Y passes the response on to the client, and the connection to machine Z
proceeds.

Thanks to agent forwarding, you have transparent access from machine Y to any SSH
keys back on machine X. Thus, any SSH clients on Y can access any hosts permitted
by your keys on X. To test this, run this command on machine Y to list your keys:

# On machine Y:
$ ssh-add -l

You see all keys that are loaded in your agent on machine X.

Figure 6-7. Agent forwarding

SSH
Client

SSH
Client

SSH
Server

Machine X Machine Y

ProxyAgent

Agent

keys

forwarded
request

forwarded
result

forwarded
result

requestforwarded
request

result



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6.3 SSH Agents | 259

It’s worth noting that the agent-forwarding relationship is transitive: if you repeat
this process, making a chain of SSH connections from machine to machine, then cli-
ents on the final host still have access to your keys on the first host (X). (This
assumes agent forwarding is permitted by sshd on each intermediate host.)

6.3.5.3 Enabling agent forwarding

Before an SSH client can take advantage of agent forwarding, the feature must be
turned on. SSH implementations vary in their default settings of this feature, and of
course the system administrator can change it. If necessary, you can turn it on manu-
ally with the configuration keyword ForwardAgent in the client configuration file ~/.ssh/
config, giving a value of yes (the default) or no:*

ForwardAgent yes

Likewise, you can use command-line options. In addition to the –o command-line
option, which accepts any configuration keyword and its value:

$ ssh -o "ForwardAgent yes" ...

ssh accepts command-line options to turn on agent forwarding, even though it’s on
by default:

# OpenSSH
$ ssh -A ...

# Tectia
$ ssh +a ...

The option –a turns off agent forwarding:

$ ssh -a ...

6.3.6 Agent CPU Usage
Before we leave our discussion of agents, we’ll make one final note about perfor-
mance. Agents carry out all cryptographic work that is otherwise done by SSH clients.
This means an agent can accumulate substantial CPU time. In one case we saw, some
friends of ours were using SSH for a great deal of automation, running hundreds of
short-lived sessions in a row. Our friends were quite puzzled to find that the single ssh-
agent used by all these processes was eating the lion’s share of CPU on that machine!

6.3.7 Debugging the Agent
OpenSSH’s ssh-agent has a primitive debugging mode that’s enabled with the –d
option:

# OpenSSH
ssh-agent -d

* Tectia supports the keyword AllowAgentForwarding as a synonym for ForwardAgent.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

260 | Chapter 6: Key Management and Agents

SSH_AUTH_SOCK=/tmp/ssh-nQxHO27500/agent.27500; export SSH_AUTH_SOCK;
echo Agent pid 27500;

In debug mode, the agent runs in the foreground instead of putting itself into the
background (forking). To communicate with the agent and watch it print debug
messages, open a second shell (e.g., in a separate X terminal window) and run the
variable-setting command that ssh-agent printed on invocation:

$ SSH_AUTH_SOCK=/tmp/ssh-nQxHO27500/agent.27500; export SSH_AUTH_SOCK;

Then try some ssh-add commands and see what the agent does. For example, if you
run this in your second shell:

$ ssh-add -l
The agent has no identities.

then the agent in the original shell prints:

debug1: type 1
debug1: type 11

The type output indicates the type of message that ssh-agent has received. Types 1
and 11 are requests for identities (SSH-1 and SSH-2, respectively), which makes per-
fect sense because that’s what ssh-add -l does. A few other message codes are 17 to
load an identity, 18 to delete one, and 19 to delete all identities. You can learn more
message types by reading the C header file authfd.h in the OpenSSH source code.

6.4 Multiple Identities
Until now, we’ve assumed you have a single SSH identity that uniquely identifies you
to an SSH server. You do have a default identity—our earlier ssh-add examples oper-
ated on it—but you may create as many other identities as you like.

Why use several identities? After all, with a single SSH identity, you can connect to
remote machines with a single passphrase. That’s very simple and convenient. In
fact, most people can survive perfectly well with just one identity. Multiple identities
have important uses, however:

Additional security
If you use different SSH keys for different remote accounts, and one of your keys
is cracked, only some of your remote accounts are vulnerable.

Secure batch processes
Using an SSH key with an empty passphrase, you can create secure, automated
processes between interacting computers, such as unattended backups. [11.1.2.2]
However, you definitely don’t want your regular logins to use an unencrypted pri-
vate key, so you should create a second key for this purpose.

Different account settings
You can configure your remote account to respond differently based on which
key is used for connecting. For example, you can make your Unix login session
run different startup files depending on which key is used.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6.4 Multiple Identities | 261

Triggering remote programs
Your remote account can be set up to run specific programs when an alternative
key is used, via forced commands. [8.2.3]

In order to use multiple identities, you need to know how to switch between them.
There are two ways: manually, and automatically with an agent.

6.4.1 Switching Identities Manually
ssh and scp let you switch your identity with the –i command-line option and the
IdentityFile configuration keyword. For either of these techniques, you provide the
name of your desired private-key file (OpenSSH) or identification file (Tectia). [7.4.2]
Table 6-3 displays a summary of the syntax.

6.4.2 Switching Identities with an Agent
If you use an SSH agent, identity switching is handled automatically. Simply load all
the desired identities into the agent using ssh-add. Thereafter, when you attempt a
connection, your SSH client requests and receives a list of all your identities from the
agent. The client then tries each identity in turn until one authenticates successfully,
or they all fail. Even if you have 10 different identities for 10 different SSH servers, a
single agent (containing these keys) provides appropriate key information to your
SSH clients for seamless authentication with all 10 servers.

All of this happens transparently with no effort on your part. Well, almost no effort.
If you have several identities loaded in the agent, and more than one can apply in a
given situation, the agent might pick the wrong one. For example, suppose you have
two OpenSSH identities stored in the files id-normal and id-backups. You use id-
normal for terminal sessions, and id-backups for invoking a remote backup program
on the same server machine (e.g., using a forced command [8.2.3]). Each day when
you log in, you load both keys into an agent, using a clever script that locates and
loads all key files in a given directory:

#!/bin/csh
cd ~/.ssh/my-keys # An example directory
foreach keyfile (*)
  ssh-add $keyfile
end

What happens when you invoke an SSH client?

$ ssh server.example.com

Table 6-3. Specifying an alternate identity

Version ssh scp IdentityFile keyword

OpenSSH ssh -i key_file ... scp -i key_file ... IdentityFile key_file

Tectia ssh -i id_file ... scp -i id_file ... IdentityFile id_file



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

262 | Chapter 6: Key Management and Agents

In this case, the remote backup program gets run, authenticating with the key in file
id-backups. You see, the wildcard in your script returns a list of key files in alphabeti-
cal order, so id-backups is added before id-normal, as if you’d typed:

$ ssh-add id-backups
$ ssh-add id-normal

Therefore, your SSH clients always use the key id-backups when connecting to
server.example.com because the agent provides it first in response to a client request.
This might not be what you intended. In this case you could specify the right key on
the command line using the –i option:

$ ssh -i id-normal server.example.com

or use the IdentityFile configuration keyword in ~/.ssh/config. [7.4.2]

6.4.3 Tailoring Sessions Based on Identity
Multiple identities can be extremely useful. In particular, you can configure your
remote accounts to respond differently to different identities. This is a three-step
process:

1. Generate a new SSH identity, as we have discussed in this chapter.

2. Set up a detailed client configuration that does what you want, using your new
identity. This is the subject of Chapter 7.

3. Set up your account on the SSH server machine to respond to your new identity
in a desired manner. This is covered in detail in Chapter 8.

We strongly encourage you to experiment with this technique. You can do some
really powerful and interesting things with SSH this way. If you’re just running sim-
ple terminal sessions with SSH, you are missing half the fun.

6.5 PGP Authentication in Tectia
Pretty Good Privacy (PGP) is another security product employing public-key authen-
tication. [1.6.2] PGP keys and SSH keys are implemented differently and aren’t inter-
changeable, however, Tectia can perform authentication by PGP key, following the
OpenPGP standard.* Yes, you can use your favorite PGP key to prove your identity to
a Tectia server (as long as the key file is OpenPGP-compatible; some PGP keys, espe-
cially those produced by older software versions, aren’t). At press time, this feature is
only sketchily documented. Here’s how to make it work.

* According to SSH Communications Security, PGP authentication in Tectia is not officially supported, nor is
any other feature that is enabled by recompiling the source code.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6.5 PGP Authentication in Tectia | 263

First, you need Tectia installed on both the client and server machines. Also, both
implementations must be compiled with PGP support included, using the compile-
time flag --with-pgp. [4.3.5.7]

On the client machine, you need to make your PGP secret key ring and the desired
secret key for authentication available to Tectia clients. Here’s how:

1. Copy your PGP secret key ring to your account’s Tectia directory, ~/.ssh2. Sup-
pose it is called secring.pgp.

2. In an identification file, either ~/.ssh2/identification or another of your choice,
indicate the secret key ring with the keyword PgpSecretKeyFile:

# Tectia
PgpSecretKeyFile secring.pgp

3. Identify the PGP key you wish to use for authentication. This may be done with
any of three keywords:

• To identify the key by name, use IdPgpKeyName:

# Tectia
IdPgpKeyName mykey

• To identify the key by its PGP fingerprint, use IdPgpKeyFingerprint:

# Tectia
IdPgpKeyFingerprint 48 B5 EA 28 80 5E 29 4D 03 33 7D 17 5E 2E CD 20

• To identify the key by its key ID, use IdPgpKeyId:

# Tectia
IdPgpKeyId 0xD914738D

For IdPgpKeyId, the leading 0x is necessary, indicating that the value is in hexadeci-
mal. You can give the value in decimal instead, without the leading 0x, but since PGP
displays the value in hex already, it’s unlikely you’d want to do this.

On the server machine, you need to make your PGP public-key ring and the desired
public key for authentication available to the Tectia server:

1. Copy your public-key ring from the client machine to the server machine. (Note
that this is a key ring, not a lone public key.) Place the ring into your ~/.ssh2
directory on the server. Suppose it is called pubring.pgp.

2. In your authorization file, ~/.ssh2/authorization, identify the public-key ring with
the keyword PgpPublicKeyFile:

# Tectia
PgpPublicKeyFile pubring.pgp

3. Identify the public key by name, fingerprint, or key ID, as in the client’s identifi-
cation file. The relevant keywords are slightly different: PgpKeyName,
PgpKeyFingerprint, and PgpKeyId, respectively. (The keywords for the identifica-
tion file begin with “Id”.)

# Tectia: use any ONE of these
PgpKeyName mykey



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

264 | Chapter 6: Key Management and Agents

PgpKeyFingerprint 48 B5 EA 28 80 5E 29 4D 03 33 7D 17 5E 2E CD 20
PgpKeyId 0xD914738D

You are done! From the client, initiate a Tectia SSH session. Suppose you create an
alternative identification file to use PGP authentication, called ~/.ssh2/idpgp, contain-
ing your PgpSecretKeyFile and other lines. Use the –i flag to indicate this file, and
initiate a connection:

# Tectia
$ ssh -i idpgp server.example.com

If everything is set up properly, you are prompted for your PGP passphrase:

Passphrase for pgp key "mykey":

Enter your PGP passphrase, and authentication should succeed.

6.6 Tectia External Keys
Tectia clients can use external key providers that distribute keys, somewhat like
authentication agents. These are typically part of a more general solution for PKI
(Public Key Infrastructure). The ssh -E command-line option identifies the name of
the provider, and Tectia currently supports two of them:

entrust

Entrust products, such as the Entrust Authority Security Manager; see http://
www.entrust.com/authority.

pkcs11

PKCS#11-compliant dynamic libraries.

An initialization string must be sent to the external key provider using the –I option.
The format of this string depends on the provider. It typically includes authentica-
tion information and identifies the desired key. Sometimes you also need a DLL sup-
plied by the provider. Consult the documentation for specific providers, and the ssh-
externalkeys manpage, for details about the initialization string.

# Tectia
$ ENTRUST_INIT="dll(libentrust.so)"
$ ENTRUST_INIT="$ENTRUST_INIT password(blartz)"
$ ENTRUST_INIT="$ENTRUST_INIT ini-file($HOME/solo.ini)"
$ ENTRUST_INIT="$ENTRUST_INIT profile-file($HOME/solo_user.epf)"
$ ENTRUST_INIT="$ENTRUST_INIT login-options(entrust)""
$ ssh -E entrust -I "$ENTRUST_INIT"

The external key provider and initialization string can also be specified in the client
configuration file, using the keywords EkProvider and EkInitString, respectively:

# Tectia
EkProvider      pkcs11
EkInitString    "lib=libpcks11.so password=blurfl key=laptop"



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6.7 Summary | 265

The keywords are usually more convenient than the command-line options, espe-
cially for long initialization strings, but beware of storing sensitive authentication
information in configuration files. Be sure to quote the initialization string if it con-
tains characters with special meaning to the shell (e.g., wildcards) or to the configu-
ration file itself.

6.7 Summary
In this chapter, we’ve seen how to create and use SSH identities, represented by key
pairs, either individually (OpenSSH) or in collections (Tectia). Keys are created by
ssh-keygen and are accessed by clients as needed. Tectia provides an additional layer
of configuration, the identification file, which lets you use a set of identities as a sin-
gle identity. You may have as many identities as you like. Be sure to read our case
study on PKI and scalable authentication for another detailed look at identities. [11.5]

SSH agents are useful timesavers to avoid retyping passphrases. Their operation has
numerous subtleties, but once you get the hang of it, running an agent should
become second nature.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

266

Chapter 7pCHAPTER 7

Advanced Client Use

SSH clients are marvelously configurable. Chapter 2 introduced remote logins and
file copying but covered only the tip of the iceberg. You can also connect with multi-
ple SSH identities, use a variety of authentication and encryption techniques, exer-
cise control over TCP/IP settings, and generally tailor the feel and operation of SSH
clients to your liking. You can even save common collections of SSH settings in con-
figuration files for ease of use.

We’ll be focusing on outgoing SSH use, running SSH clients to connect to remote
hosts, using the components highlighted in Figure 7-1. A related topic, not covered
in this chapter, is how to control incoming SSH connections to your account. That
sort of access control is a function of the SSH server, not the clients, and is covered in
Chapter 8.

7.1 How to Configure Clients
The clients ssh and scp are quite configurable, with many settings that can be
changed to suit your whim. If you want to modify the behavior of these clients, three
general techniques are at your disposal:

Command-line options
For changing the behavior of ssh or scp for a single invocation

Configuration keywords
For changes that remain in force until you change them again; these are stored in
a client configuration file

Environment variables
For a few miscellaneous features

We now present a general overview of these three methods.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.1 How to Configure Clients | 267

7.1.1 Command-Line Options
Command-line options let you change a client’s behavior just once, at invocation.
For example, if you’re using ssh over a slow modem connection, you can tell it to
compress the data with the –C command-line option:

$ ssh -C server.example.com

ssh, scp, and most of their support programs, when invoked with the --help option,
will print a helpful summary describing all their command-line options.* For example:

$ ssh --help
$ scp --help
$ ssh-keygen -help

Figure 7-1. Client configuration (highlighted parts)

* Tectia recognizes –h as an abbreviation of --help.

SSH
Client

Command-line
options

Environment
variables

User’s client
configuration file

Global client
configuration file

Compile-time
flags

Key-related
files

Known hosts
databases

Configuration types

Command-line
options

Custom session
startup

Server-side
configuration file

Server-side
authorization files

Compile-time
flags

Target account’s
authorization files

TCP-wrappers
files

Kerberos
configuration files

PAM files

SSH
Server

Configuration types



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

268 | Chapter 7: Advanced Client Use

7.1.2 Client Configuration Files
If you don’t want to retype command-line options continually, configuration files let
you change a client’s behavior now and in the future, until you change the configura-
tion file again. For example, you can enable compression for all clients you invoke by
inserting this line into a client configuration file:

Compression yes

In a client configuration file, client settings are changed by specifying keywords and
values. In the example, the keyword is Compression and the value is yes. You may
also separate the keyword and value with an equals sign, with optional whitespace:

Compression = yes

You may configure clients to behave differently for each remote host you visit. This
can be done on the fly with command-line options, but for anything reasonably com-
plex, you’ll end up typing long, inconvenient command lines like:

$ ssh -a -p 220 -c blowfish -l sally -i myself server.example.com

Alternatively, you can set these options within a configuration file. The following
entry duplicates the function of the preceding command-line options, collecting
them under the name “myserver”:

# OpenSSH (Tectia's syntax differs slightly as we'll see later)
Host myserver
 ForwardAgent no
 Port 220
 Cipher blowfish
 User sally
 IdentityFile myself
 HostName server.example.com

Now, to run a client with these options enabled, simply type:

$ ssh myserver

Configuration files take some time to set up, but in the long run they are significant
timesavers. We now discuss the general structure of these files (host specifications
followed by keyword/value pairs), then dive into specific keywords.

7.1.2.1 Keywords versus command-line options

Configuration files and command-line options have two important relationships:

• Every configuration keyword can appear on the command line with the –o
option.

• Alternative configuration files are referenced with the –F option.

For any configuration line of the form:

Keyword Value



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.1 How to Configure Clients | 269

you may type:

$ ssh -o "Keyword Value" ...

For example, the configuration file lines:

User sally
Port 220

can be specified on the command line as:

$ ssh -o "User sally" -o "Port 220" server.example.com

As in the configuration file, an equals sign (with optional whitespace) is permitted
between the keyword and the value:

$ ssh -o User=sally -o Port=220 server.example.com

If you use an equals sign, and the value for the keyword contains special characters
that would be misinterpreted by the shell, surround the value with quotes.

The –o option may appear multiple times on the same command line, for both ssh
and scp:

#  OpenSSH
$ scp -o "User sally" -o "Port 220" myfile server.example.com:

The other relationship between command-line options and configuration keywords
is found in the –F option, which instructs a client to use a different configuration file
instead of the default. For example:

$ ssh -F /usr/local/ssh/other_config

OpenSSH and Tectia treat the –F option differently. OpenSSH will
ignore the default configuration file (/etc/ssh/ssh_config) and use only
the one you provide. Tectia, on the other hand, will still process its
default configuration file (/etc/ssh2/ssh2_config), and then your pro-
vided file can override those settings.

7.1.2.2 Global and local files

Client configuration files come in two flavors. A single, global client configuration file,
usually created by a system administrator, governs client behavior for an entire com-
puter. The file is traditionally /etc/ssh/ssh_config (OpenSSH) or /etc/ssh2/ssh2_config
(Tectia). (Don’t confuse these with the server configuration files in the same directo-
ries.) Each user may also create a local client configuration file within his or her
account, usually ~/.ssh/config (OpenSSH) or ~/.ssh2/ssh2_config (Tectia). This file con-
trols the behavior of clients run in the user’s login session.*

* The system administrator may change the locations of client configuration files via the compile-time flag
--with-etcdir [4.3.5.1] or the serverwide keyword UserConfigDirectory. [5.3.1.5] If the files aren’t in their
default locations on your computer, contact your system administrator.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

270 | Chapter 7: Advanced Client Use

Values in a user’s local file take precedence over those in the global file. For instance, if
the global file turns on data compression, and your local file turns it off, the local file
wins for clients run in your account. We cover precedence in more detail later. [7.2]

7.1.2.3 Configuration-file sections

Client configuration files are divided into sections. Each section contains settings for
one remote host or for a set of related remote hosts, such as all hosts in a given
domain.

The beginning of a section is marked differently in different SSH implementations.
For OpenSSH, the keyword Host begins a new section, followed by a string called a
host specification. The string may be a hostname:

Host server.example.com

an IP address:

Host 123.61.4.10

a nickname for a host: [7.1.2.5]

Host my-nickname

or a wildcard pattern representing a set of hosts, where ? matches any single charac-
ter and * any sequence of characters (just like filename wildcards in your favorite
Unix shell):

Host *.example.com
Host 128.220.19.*

Some further examples of wildcards:

Host *.edu Any hostname in the edu domain
Host a* Any hostname whose name begins with “a”
Host *1* Any hostname (or IP address!) with 1 in it
Host * Any hostname or IP address

Tectia, in contrast, does not use a Host keyword. A new section is marked by a host
specification string followed by a colon. This string may likewise be a computer
name:

server.example.com:

an IP address:

123.61.4.10:

a nickname:

my-nickname:

or a wildcard pattern:

*.example.com:
128.220.19.*:



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.1 How to Configure Clients | 271

You then follow the host-specification line with one or more settings, i.e., configura-
tion keywords and values, as in the example we saw earlier. The following table con-
trasts OpenSSH and Tectia configuration files:

The settings apply only to the hosts named in the host specification. The section
ends at the next host specification or the end of the file, whichever comes first.

7.1.2.4 Multiple matches

Because wildcards are permitted in host specifications, a single hostname might
match two or more sections in the configuration file. For example, if one section
begins:*

Host *.edu

and another begins:

Host *.harvard.edu

and you connect to server.harvard.edu, which section applies? Believe it or not, they
both do. Every matching section applies, and if a keyword is set more than once with
different values, only one value applies. For OpenSSH, the earliest value takes prece-
dence, whereas for Tectia the latest value wins.

Suppose your client configuration file contains two sections to control data compres-
sion, password authentication, and the ssh escape character:

Host *.edu
 Compression yes
 PasswordAuthentication yes

Host *.harvard.edu
 Compression no
 EscapeChar %

and you connect to server.harvard.edu:

$ ssh server.harvard.edu

Notice that the string server.harvard.edu matches both Host patterns, *.edu and *.

harvard.edu. As we’ve said, the keywords in both sections apply to your connection.

OpenSSH Tectia

Host myserver
 User sally
 IdentityFile myself
 ForwardAgent no
 Port 220
 Cipher blowfish

myserver:
 User sally
 IdentityFile myself
 ForwardAgent no
 Port 220
 Ciphers blowfish

* We use only the OpenSSH file syntax here to keep things tidy, but the explanation is true of Tectia as well.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

272 | Chapter 7: Advanced Client Use

Therefore, the preceding ssh command sets values for the keywords Compression,
PasswordAuthentication, and EscapeChar.

But notice, in the example, that the two sections set different values for Compression.
What happens? The rule is that the first value prevails—in this case, yes. So, in the
previous example, the values used for server.harvard.edu are:

Compression yes The first of the Compression lines
PasswordAuthentication yes Unique to first section
EscapeChar % Unique to second section

and as shown in Figure 7-2. Compression no is ignored because it is the second
Compression line encountered. Likewise, if 10 different Host lines match server.harvard.
edu, all 10 of those sections apply, and if a particular keyword is set multiple times,
only the first value is used.

While this feature might seem confusing, it has useful properties. Suppose you want
some settings applied to all remote hosts. Simply create a section beginning with:

Host *

and place the common settings within it. This section should be either the first or the
last in the file. If first, its settings take precedence over any others. This can be used
to guard against your own errors. For example, if you want to make sure you never,
ever, accidentally use the old SSH-1 protocol, at the beginning of your configuration
file put:

# First section of file
Host *
 Protocol 2

Alternatively, if you place Host * as the last section in the configuration file, its set-
tings are used only if no other section overrides them. This is useful for changing
SSH’s default behavior, while still permitting overrides. For example, by default, data

Figure 7-2. OpenSSH client configuration file with multiple matches (Tectia not shown)

Client configuration file

Host *.edu
 Compression yes
 PasswordAuthentication yes

Host *.com
 StrictHostKeyChecking yes

Host *.harvard.edu
 Compression no
 EscapeChar %

server.harvard.edu configuration

Compression yes
PasswordAuthentication yes
EscapeChar %



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.1 How to Configure Clients | 273

compression is disabled. You can make it enabled by default by ending your configu-
ration file with:

# Last section of file
Host *
 Compression yes

Voilá, you have changed the default behavior of ssh and scp for your account! Any
other section, earlier in the configuration file, can override this default simply by set-
ting Compression to no.

The precedence rule is different for keywords that can apply multiple
times in a section. For example, you can legitimately have more than
one IdentityFile keyword in a section of ~/.ssh/config (OpenSSH),
meaning to try all the listed keys in turn. [7.4.2] Likewise, if more than
one section applies to a host, and they each contain IdentityFile
lines, then the union of all the named keys will be tried for authentica-
tion. In other words, IdentityFile values accumulate rather than over-
ride each other.

7.1.2.5 Making nicknames for hosts

Suppose your client configuration file contains a section for the remote host
myserver.example.com:

Host myserver.example.com
 ...

One day, while logged onto ourclient.example.com, you decide to establish an SSH
connection to myserver.example.com. Since both computers are in the same domain,
example.com, you can omit the domain name on the command line and simply type:

$ ssh myserver

This does establish the SSH connection, but you run into an unexpected nuance of
configuration files. ssh compares the command-line string “myserver” to the Host
string “myserver.example.com”, determines that they don’t match, and doesn’t
apply the section of the configuration file. Yes, the software requires an exact textual
match between the hostnames on the command line and in the configuration file.

You can get around this limitation by declaring myserver to be a nickname for
myserver.example.com. In OpenSSH, this is done with the Host and HostName key-
words. Simply use Host with the nickname and HostName with the fully qualified host-
name:

# OpenSSH
Host myserver
 HostName myserver.example.com
 ...



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

274 | Chapter 7: Advanced Client Use

ssh will now recognize that this section applies to your command ssh myserver. You
may define any nickname you like for a given computer, even if it isn’t related to the
original hostname:

# OpenSSH
Host simple
 HostName myserver.example.com
 ...

Then you can use the nickname on the command line:

$ ssh simple

For Tectia, the syntax is different but the effect is the same. Use the nickname in the
host specification, and provide the full name to the Host keyword:

# Tectia
simple:
 Host myserver.example.com
 ...

Then type:

$ ssh simple

Nicknames are convenient for testing new client settings. Suppose you have an
OpenSSH configuration for server.example.com:

Host server.example.com
 ...

and you want to experiment with different settings. You could just modify the set-
tings in place, but if they don’t work, you’d have to waste time changing them back.
The following steps demonstrate a more convenient way:

1. Within the configuration file, make a copy of the section you want to change:

# Original
Host server.example.com
 ...
# Copy for testing
Host server.example.com
 ...

2. In the copy, change “Host” to “HostName”:

# Original
Host server.example.com
 ...
# Copy for testing
HostName server.example.com
 ...

3. Add a new Host line at the beginning of the copy, using a phony name; for exam-
ple, “Host my-test”:

# Original
Host server.example.com



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.1 How to Configure Clients | 275

...
# Copy for testing
Host my-test
 HostName server.example.com
 ...

4. Setup is done. In the copy (my-test), make all the changes you want and con-
nect using ssh my-test. You can conveniently compare the old and new behavior
by running ssh server.example.com versus ssh my-test. If you decide against the
changes, simply delete the my-test section. If you like the changes, copy them to
the original section (or delete the original and keep the copy).

You can do the same with Tectia:

# Original
server.example.com:
 ...
# Copy for testing
my-test:
 Host server.example.com
 ...

7.1.2.6 Comments, indenting, and style

You probably noticed in the previous examples that we use the # symbol to repre-
sent comments:

# This is a comment

In fact, any line beginning with # in the configuration file is treated as a comment
and ignored. Likewise, blank lines (empty or containing only whitespace) are also
ignored.

You might also have noticed that the lines following a host specification are
indented:

# OpenSSH
Host server.example.com
 Keyword1 value1
 Keyword2 value2

# Tectia
server.example.com:
 Keyword1 value1
 Keyword2 value2

Indenting is considered good style because it visually indicates the beginning of a
new section. It isn’t required, but we recommend it.

7.1.3 Environment Variables
SSH clients set a number of environment variables, and a few miscellaneous features
are controlled by variables you can set. We’ll point out these variables as we



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

276 | Chapter 7: Advanced Client Use

encounter them from time to time. Environment variables may be set in your current
shell by the standard methods:

# C shell family (csh, tcsh)
$ setenv MY_VARIABLE 1

# Bourne shell family (sh, ksh, bash)
$ MY_VARIABLE=1
$ export MY_VARIABLE

Alternatively, environment variables and values may be specified in a file. System
administrators can set environment variables for all users in /etc/environment, and
users can set them in ~/.ssh/environment (OpenSSH) and ~/.ssh2/environment (Tec-
tia). These files contain lines of the format:

NAME=VALUE

where NAME is the name of an environment variable, and VALUE is its value. The value
is taken literally, read from the equals sign to the end of the line. Don’t enclose the
value in quotes, even if it contains whitespace, unless you want the quotes to be part
of the value.

7.2 Precedence
Perhaps you are wondering: what happens if some configuration settings conflict?
For instance, if you use the Compression keyword to turn compression off, and also
the –C command-line option to turn it on, who wins? In other words, who has
precedence?

For OpenSSH and Tectia clients, the order of precedence is, from strongest to
weakest:

1. Command-line options

2. The user’s local client configuration file

3. The global client configuration file*

Command-line options have the highest precedence, overriding any client configura-
tion files. The user’s local file has next highest precedence, and the global file has
lowest precedence. So, in our compression example, –C takes precedence over the
Compression keyword, and compression is enabled. If a setting isn’t changed by any
keyword or command-line option, the client’s default setting is used.

Remember that we’re speaking only of outgoing connections initiated by clients.
Incoming connections, controlled by the SSH server, have other precedence rules.
For servers, the user’s local configuration file definitely does not override the global

* We don’t mention environment variables in this list because they don’t compete for precedence. Environ-
ment variables control different features that don’t overlap with command-line options and configuration
files.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.3 Introduction to Verbose Mode | 277

file; otherwise, users could override global server settings, creating security holes and
wreaking other havoc. [8.1.1]

7.3 Introduction to Verbose Mode
Now that we’ve covered the generalities of command-line options and configuration
files, we’re about to launch into an extended discussion of configuration. Before we
begin, let’s practice some defense. As you try these options, occasionally you might
see behavior that’s not what you expected. Whenever this occurs, your first instinct
should be: turn on verbose mode with the –v command-line option to track down
the problem:

$ ssh -v server.example.com

In verbose mode, the client prints messages as it proceeds, providing clues to the
problem. New SSH users (and quite a few experienced ones) frequently forget or
neglect to use verbose mode when problems arise. Don’t hesitate! Many questions
we’ve seen in the Usenet SSH newsgroup, comp.security.ssh [12.3], could have been
answered immediately by running ssh –v and examining the output.

Suppose you just installed your public key on server.example.com and are trying to
authenticate with it. Strangely, you are prompted for your login password instead of
your public-key passphrase:

$ ssh server.example.com
barrett@server.example.com's password:

Don’t just sit there scratching your head in wonder. Let verbose mode come to the
rescue:

$ ssh -v server.example.com
OpenSSH_3.8p1, SSH protocols 1.5/2.0, OpenSSL 0.9.7d 17 Mar 2004
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: Applying options for *
debug1: Connecting to server.example.com [192.168.0.10] port 22.
debug1: Connection established.
debug1:  Remote: Bad file modes for /users/barrett/.ssh Uh oh!
debug1: Server refused our key.
debug1: Doing password authentication.
barrett@server.example.com's password:

These messages (which are abbreviated for this example) confirm that the SSH con-
nection is succeeding, but public-key authentication is failing. The reason is “bad file
modes”: the remote SSH directory, /home/barrett/.ssh, has incorrect permissions. A
quick trip to the server and a well-placed chmod command later, the problem is
solved:

# On the server
$ chmod 700 ~/.ssh



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

278 | Chapter 7: Advanced Client Use

Repeating the –v option causes OpenSSH clients to produce even more detailed
information:

# OpenSSH
$ ssh -v -v -v server.example.com

whereas for Tectia, use its –d option, as we saw in detail for sshd: [5.9]

# Tectia
$ ssh -d3 server.example.com

And of course, verbose mode also works for scp:

$ scp -v myfile server.example.com:
Executing: program /usr/bin/ssh host server.example.com, user (unspecified), command
scp -v -t .
OpenSSH_3.9p1, SSH protocols 1.5/2.0, OpenSSL 0.9.7e 24 Oct 2004
...

except that Tectia’s scp uses –D instead of –d:*

# Tectia
$ scp -D3 myfile server.example.com:

scp also supports the –q option for no output at all:

# Tectia
$ scp -q myfile server.example.com: Be completely quiet

Verbose mode is your friend. Use it liberally. Now we’re ready to learn those dozens
of options.

7.4 Client Configuration in Depth
ssh and scp take their cues from command-line options, configuration-file keywords,
and environment variables. OpenSSH and Tectia clients behave differently and obey
different settings, but as usual, we cover them simultaneously. When a setting is sup-
ported by only some of these products, we’ll say so.

Both OpenSSH and Tectia ssh will print a usage message briefly describing all its
options:

$ ssh --help

You can get the same effect if you omit all arguments (OpenSSH) or use –h (Tectia).
Tectia will also print its version number on request, with the –V option:

# Tectia
$ ssh -V
ssh: SSH Tectia Server 4.2.1 on i686-pc-linux-gnu
Build: 1
Released 2004-11-30 (YYYY-MM-DD).
Crypto library version: SSH Cryptographic Library, version 1.2.4

* Tectia’s –v option is equivalent to –D2, and can also be written as --verbose.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.4 Client Configuration in Depth | 279

FIPS certification mode: DISABLED
Product: SSH Tectia Server (T)
License type: commercial

7.4.1 Remote Account Name
ssh and scp assume that your local and remote usernames are the same. If your local
username is henry and you run:

$ ssh server.example.com

ssh assumes your remote username is also henry and requests a connection to that
account on server.example.com. If your remote account name differs from the local
one, you must tell the SSH client your remote account name. For henry to connect to
a remote account called sally, he can use the –l command-line option:

$ ssh -l sally server.example.com

If copying files with scp, the syntax is different for specifying the remote account
name, looking more like an email address. [7.5.1] To copy the file myfile to the
remote account sally on server.example.com:

$ scp myfile sally@server.example.com:

If you frequently connect to a remote machine using a different username, instead of
monkeying with command-line options specify the remote username in your client
configuration file. The User keyword serves this purpose, and both ssh and scp pay
attention to it. Here’s how to declare that your remote username is sally on a given
remote host:

Now, when connecting to server.example.com, you don’t have to specify that your
remote username is sally:

# The remote username sally will be used automatically
$ ssh server.example.com

7.4.1.1 Tricks with remote account names

With User and nicknames, you can significantly shorten the command lines you type
for ssh and scp. Continuing the preceding example with sally, if you have the config-
uration shown:

OpenSSH Tectia

Host server.example.com
 User sally

server.example.com:
 User sally

OpenSSH Tectia

Host simple
 HostName server.example.com
 User sally

simple:
 Host server.example.com
 User sally



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

280 | Chapter 7: Advanced Client Use

then these long commands:

$ ssh server.example.com -l sally
$ scp myfile sally@server.example.com:

may be reduced to:

$ ssh simple
$ scp myfile simple:

Here’s how to specify separately several different account names on different hosts,
each in its own section of the configuration file:

This technique is convenient if you have only one account on each remote machine.
But suppose you have two accounts on server.example.com, called sally and sally2. Is
there some way to specify both in the configuration file? The following attempt
doesn’t work (we show OpenSSH syntax only):

# THIS WILL NOT WORK PROPERLY!!!
Host server.example.com
 User sally
 User sally2
 Compression yes

because only the first value (sally) prevails. To get around this limitation, you can
use nicknames to create two sections for the same machine in your configuration file,
each with a different User:

# OpenSSH
# Section 1: Convenient access to the sally account
Host sally-account
 HostName server.example.com
 User sally
 Compression yes

# Section 2: Convenient access to the sally2 account
Host sally2-account
 HostName server.example.com
 User sally2
 Compression yes

Now you can access the two accounts easily by nickname:

$ ssh sally-account
$ ssh sally2-account

This works, but it isn’t ideal. You’ve duplicated your settings (HostName and
Compression) in each section. Duplication makes a configuration file harder to

OpenSSH Tectia

Host server.example.com
 User sally
 ...
Host another.example.com
 User sharon
 ...

server.example.com:
 User sally
 ...
another.example.com:
 User sharon
 ...



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.4 Client Configuration in Depth | 281

maintain, since any future changes need to be applied twice. (In general, duplication
isn’t good software engineering.) Are you doomed to duplicate? No, there’s a better
solution. Immediately after the two sections, create a third section with a Host wild-
card that matches both sally-account and sally2-account. Suppose you use sally*-
account and move all duplicated settings into this new section:

# OpenSSH
Host sally*-account
 HostName server.example.com
 Compression yes

The end result is:

Since sally*-account matches both previous sections, its full name and compression
settings apply to both sally-account and sally2-account. Any settings that differ
between sally-account and sally2-account (in this case, User) are kept in their
respective sections. You’ve now achieved the same effect as in the previous
example—two accounts with different settings on the same remote machine—but
with no duplication of settings.

7.4.2 User Identity
SSH identifies you by an identity represented by a key pair (OpenSSH) or a collec-
tion of key pairs (Tectia). [6.1] Normally, SSH clients use your default key file
(OpenSSH) or default identification file (Tectia) to establish an authenticated con-
nection. However, if you’ve created other keys, you may instruct SSH clients to use
them to establish your identity. A command-line option (–i) and configuration key-
word (IdentityFile) are available for this purpose.

In OpenSSH, for example, if you have a private-key file called my-key, you can make
clients use it with the commands:

$ ssh -i my-key server.example.com
$ scp -i my-key myfile server.example.com:

or with the configuration keyword:

IdentityFile my-key

The file location is assumed to be relative to the current directory, i.e., in these cases
the file is ./my-key.

OpenSSH Tectia

Host sally-account
 User sally
Host sally2-account
 User sally2
Host sally*-account
 HostName server.example.com
 Compression yes

sally-account:
 User sally
sally2-account:
 User sally2
sally*-account:
 Host server.example.com
 Compression yes



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

282 | Chapter 7: Advanced Client Use

Tectia also has –i and IdentityFile, but their meanings are slightly different from
those of OpenSSH. Instead of a key file, you supply the name of an identification file:

# Tectia
$ ssh -i my-id-file server.example.com

# Tectia configuration file
IdentityFile my-id-file

If Tectia complains about your identity file:

warning: /home/smith/.ssh2/id_dsa_2048_a: 4: parsing line
failed.

you probably handed ssh a key file (id_dsa_2048_a) instead of an iden-
tity file like ~/.ssh2/identification.

Multiple identities can be quite useful. [6.4] For example, you can set up your
remote account to run specific programs when a second key is used. The ordinary
command:

$ ssh server.example.com

initiates a regular login session, but:

$ ssh -i other_identity server.example.com

can run a complex batch process on server.example.com. Using configuration key-
words, you can accomplish the same effect by specifying an alternative identity, as
shown in this table:

You can then invoke:

$ ssh SomeComplexAction

OpenSSH can specify multiple identities in a single command:*

# OpenSSH
$ ssh -i id1 -i id2 -i id3 server.example.com

or:

# OpenSSH
Host server.example.com
 IdentityFile id1

OpenSSH Tectia

Host SomeComplexAction
 HostName server.example.com
 IdentityFile other_identity
 ...

SomeComplexAction:
 Host server.example.com
 IdentityFile other_identity
 ...

* Tectia accomplishes the same thing with identification files, which may contain multiple keys.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.4 Client Configuration in Depth | 283

 IdentityFile id2
 IdentityFile id3

Multiple identities are tried in order until one successfully authenticates. However,
OpenSSH limits you to 100 identities per command.*

If you plan to use multiple identities frequently, remember that an SSH agent can
eliminate hassle. Simply load each identity’s key into the agent using ssh-add, and
you won’t have to remember multiple passphrases while you work.

7.4.2.1 Using identities

IdentityFile specifies an identity you’d like to use for authentication, but it does not
restrict authentication to that identity. Suppose your client configuration file says:

# OpenSSH
Host server.example.com
 IdentityFile wendy
 IdentityFile abby

and you run:

# OpenSSH
$ ssh server.example.com

ssh will dutifully try to authenticate using identities wendy and abby; but if it fails,
ssh will try other identities held in your SSH agent, in case one of them might suc-
ceed. You can change this behavior with the IdentitiesOnly keyword:

# OpenSSH
Host server.example.com
 IdentityFile wendy
 IdentityFile abby
 IdentitiesOnly yes Restrict authentication only to listed identity files

Now if ssh fails to authenticate by identities wendy and abby, it will stop trying (and
move on to other non-public-key techniques, if configured to do so).

This feature is particularly useful with a server that limits the number of public-key
authentication attempts, such as OpenSSH. If you have many keys in your agent,
only a few can be tried before the server disconnects you for “too many failures.”
The configuration shown avoids this problem by indicating exactly which keys to use
for a given host. Even though the IdentityFile keyword refers to files, the OpenSSH
client will try those keys from the agent if they’ve been loaded. You are prompted for
a passphrase only if the needed key isn’t in the agent and is encrypted on disk.

* Per the constant SSH_MAX_IDENTITY_FILES in the source code.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

284 | Chapter 7: Advanced Client Use

7.4.3 Host Keys and Known-Hosts Databases
Every SSH server has a host key [3.3] that uniquely identifies the server to clients.
This key helps prevent spoofing attacks. When an SSH client requests a connection
and receives the server’s host key, the client checks it against a local database of
known host keys. If the keys match, the connection proceeds. If they don’t, the cli-
ent behaves according to several options you can control.

In OpenSSH, the host key database is maintained partly in a serverwide location (/etc/
ssh/ssh_known_hosts) and partly in the user’s SSH directory (~/.ssh/known_hosts). In
Tectia, there are two databases of host keys for authenticating server hosts (the “host-
keys” map in /etc/ssh2/hostkeys) and client hosts (the “knownhosts” map); in this sec-
tion we are concerned only with the former. Similar to its OpenSSH counterpart, the
Tectia hostkeys map is maintained in a serverwide directory (/etc/ssh2/hostkeys/) and a
per-account directory (~/.ssh2/hostkeys/). In this section, we refer to the OpenSSH and
Tectia map simply as the host key database.

7.4.3.1 Strict host-key checking

Suppose you request an SSH connection with server.example.com, which sends its
host key in response. Your client looks up server.example.com in its host key data-
base. Ideally, a match is found and the connection proceeds. But what if this doesn’t
happen? Two scenarios may arise:

SCENARIO 1: Mismatched key
A host key is found for server.example.com in the database, but it doesn’t match
the incoming key. This can indicate a security hazard, or it can mean that server.
example.com has changed its host key, which can happen legitimately. [3.9.4]

SCENARIO 2: No key
No host key for server.example.com exists in the database. In this case, the SSH
client is encountering server.example.com for the first time.

In each scenario, should the client proceed or fail? Should it store the new host key in
the database, or not? These decisions are controlled by the keyword
StrictHostKeyChecking, which may have three values:

yes

Be strict. If a key is unknown or has changed, the connection fails. This is the
most secure value, but it can be inconvenient or annoying if you connect to new
hosts regularly or if your remote host keys change frequently.

no

Not strict. If a key is unknown, automatically add it to the user’s database and
proceed. If a key has changed, leave the known hosts entry intact, print a warn-
ing, and permit the connection to proceed. This is the least secure value.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.4 Client Configuration in Depth | 285

ask

Prompt the user. If a key is unknown, ask whether it should be added to the
user’s database and whether to connect. If a key has changed, ask whether to
connect. This is the default and a sensible value for knowledgeable users. (Less-
experienced users might misunderstand what they’re being asked and make the
wrong decision.)

Here’s an example:

StrictHostKeyChecking yes

Table 7-1 summarizes SSH’s StrictHostKeyChecking’s behavior.

OpenSSH has an additional keyword, CheckHostIP, to make a client verify the IP
address of an SSH server in the database. Its values may be yes (the default, to verify
the address) or no. The value yes provides security against name service spoofing
attacks: [3.9.2]

# OpenSSH
CheckHostIP no

7.4.3.2 Verifying host keys by DNS

The known-hosts mechanism for verifying hostkeys is fine when dealing with a
handful of hosts, but quickly becomes unwieldy for larger numbers. Later we dis-
cuss overarching authentication systems such as PKI or Kerberos to address this
problem. [11.5] Another method is to use the DNS: if we could attach hostkeys to
domain names, then SSH could verify the server by looking up its keys in the DNS.
The method is documented in draft-ietf-secsh-dns. It uses DNS resource records with
the following format:

IN SSHFP <key type> <fingerprint type> <fingerprint>

where the key types can be 1 (for RSA) or 2 (DSS), and the fingerprint type can be 1
(for SHA-1).

Table 7-1. StrictHostKeyChecking behavior

Key found? Match? Strict? Action

Yes Yes – Connect

Yes No Yes Warn and fail

Yes No No Warn and connect

Yes No Ask Warn and ask whether to connect

No – Yes Warn and fail

No – No Add key and connect

No – Ask Ask whether to add key and to connect



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

286 | Chapter 7: Advanced Client Use

ssh-keygen can generate these DNS records in a form ready to be included in a zone
file for the BIND nameserver:

# OpenSSH
$ ssh-keygen -r host.domain.net -f /etc/ssh/ssh_host_dsa_key.pub
host.domain.net IN SSHFP 2 1 7ae79057cbff7de6d61b30fba02d936d6a0f5b5f

$ ssh-keygen -r host.domain.net -f /etc/ssh/ssh_host_dsa_key.pub -g
host.domain.net IN TYPE44 \# 22 02 01 7ae79057cbff7de6d61b30fba02d936d6a0f5b5f

The –g form is for nameservers that don’t understand the SSHFP RR type.

To have OpenSSH use these DNS records, set the VerifyHostDNS keyword to yes, no,
or ask:

# ~/ssh/config
VerifyHostKeyDNS=yes

It’s vitally important to remember that the DNS itself is usually not secure! There is a
standard for DNS security (DNSSEC, RFC-2535), but it is not much used yet. With-
out DNSSEC, DNS queries and replies can be easily intercepted and forged by
attackers, so this level of hostkey verification may not be acceptable.

If VerifyHostKeyDNS is ask, and StrictHostKeyChecking is yes or ask, OpenSSH will
indicate whether it found a matching hostkey in the DNS, but still obey the usual
semantics of StrictHostKeyChecking in deciding whether to approve the server.
VerifyHostKeyDNS yes is the same, except that matching fingerprints obtained via
secure DNS are considered just as trustworthy as those stored in the known-hosts
list. If StrictHostKeyChecking is no, then VerifyHostKeyDNS makes no difference.

7.4.3.3 Host key aliasing

OpenSSH uses a simple method to find the host key for server authentication: it sim-
ply looks up in the known-hosts list exactly what you type on the command line for
the remote server name. Sometimes, the situation is more complicated; you know
which host you’re actually contacting, but OpenSSH doesn’t. For instance, you
might be using SSH-over-SSH to contact a remote host through a second SSH port
forwarding, like so:

$ ssh -L 2001:david:22 goliath
$ ssh -p 2001 localhost

The second command will connect to the SSH server david through another one,
goliath. However, the second ssh may complain about a host-key mismatch. It has no
way of knowing about the port-forwarding indirection; it thinks you are connecting
to an SSH server which is actually running on the local host, compares goliath’s host-
key to that of the local host, and finds they do not match. In this situation, you can
tell OpenSSH which key to use with HostKeyAlias:

# OpenSSH
$ ssh -p 2001 -o HostKeyAlias=david localhost



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.4 Client Configuration in Depth | 287

7.4.3.4 Ignoring host keys for localhost

In many computing environments, users’ home directories are shared across many
machines. As a result, users’ ~/.ssh configuration files are shared in this manner. This
is useful but has one little glitch: the idiom ssh localhost.

The problem is that “localhost” means something different on every host! The first
time you run this command, ssh will add a key for “localhost” to your known-hosts
file—but the next time you do it on a different machine, SSH will complain about a
host-key mismatch! You could get around this by adding multiple “localhost” lines
to the known-hosts list, expanding the set of keys acceptable for that destination.
However, since there’s little security to be gained in verifying the identity of the host
you’re already logged into, OpenSSH has a special option, NoHostAuthentication-
ForLocalhost, to disable server authentication for the connections to the loopback
address:

# ~/.ssh/config
NoHostAuthenticationForLocalhost yes

7.4.3.5 Moving the known hosts files

OpenSSH permits the locations of the host key database, both the serverwide and
per-account parts, to be changed using configuration keywords. GlobalKnown-
HostsFile defines an alternative location for the serverwide file. It doesn’t actually
move the file—only the system administrator can do that—but it does force your cli-
ents to use another file in its place. This keyword is useful if the default file is out-
dated and you want your clients to ignore the serverwide file, particularly if you’re
tired of seeing warning messages from your clients about changed keys:

# OpenSSH
GlobalKnownHostsFile /users/smith/.ssh/my_global_hosts_file

Similarly, you can change the location of your per-user part of the database with the
keyword UserKnownHostsFile:

# OpenSSH
UserKnownHostsFile /users/smith/.ssh/my_local_hosts_file

7.4.4 SSH Protocol Settings
OpenSSH lets the client control a number of features relating to the SSH protocol
itself.

7.4.4.1 Choosing a protocol version

OpenSSH supports protocols SSH-1 and SSH-2. By default, the client and server will
try to negotiate an SSH-2 connection first, then fall back to an SSH-1 connection if
unsuccessful. You can control which protocols are tried by the client, and in what
order, with the Protocol keyword, just as for the server: [5.3.7]

# OpenSSH
Protocol 2,1 Comma-separated list of protocol versions



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

288 | Chapter 7: Advanced Client Use

You should always use SSH-2 for maximum security, if your software supports it, so
it’s a good idea to instruct your clients to avoid SSH-1 servers. You can do this for all
hosts by placing a Protocol line at the bottom of your ~/.ssh/config file:

# OpenSSH
Host *
 Protocol 2

or by the command-line arguments –1 and –2, for protocols SSH-1 and SSH-2,
respectively:

# OpenSSH
$ ssh -2 server.example.com    Require an SSH-2 connection

Tectia supports the –1 option, with required qualifiers t and i to control how the
SSH-1 support is accomplished:

# Tectia
$ ssh-1t server.example.com     “traditional”: invoke an external ssh1 program
$ ssh-1i server.example.com     “internal”: do SSH-1 protocol internally

7.4.4.2 Connection sharing

A single SSH connection can have multiple channels simultaneously supporting a
variety of services: interactive terminals, remote program execution, file transfer,
agent forwarding, etc. [3.4.4.1] Setting up an SSH connection is a computationally
expensive process, and can take a few seconds. That’s no big deal if you do it once in
a while, but if you have a procedure that makes many connections, the delay can get
pretty annoying or problematic. The Unix “style” promotes this problem: for
instance, you can use CVS over SSH by setting the environment variable CVS_RSH=ssh.
If you’re running a lot of CVS commands, however, each will now take an extra five
seconds or so, and computer users are notoriously impatient. Given that SSH can use
channels, wouldn’t it be better to set up one SSH connection to a given host, and
then somehow issue our various commands over that one session?

Well, yes it would, and OpenSSH has this feature in its ControlMaster and
ControlPath keywords, and the –M and –S options of ssh. This command:

# OpenSSH
$ ssh -S /tmp/ssh-snowcrash -Mfn snowcrash.neal.org

opens an SSH connection to the server snowcrash.neal.org, placing it in the back-
ground. It also tells this SSH process to act as a “master” process, allowing other ssh
invocations (its “slaves”) to open channels to this server through it. Master and slave
communicate via the Unix socket /tmp/ssh-snowcrash. So this:

# OpenSSH
$ ssh -S /tmp/ssh-snowcrash snowcrash.neal.org

will open a remote terminal on snowcrash, and will do it quickly because no new
SSH connection is set up; it goes through the existing connection. You can make this
more convenient with custom configuration:



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.4 Client Configuration in Depth | 289

# ~/.ssh/config
host snowcrash-master
  hostname snowcrash.neal.org
  ControlPath /tmp/ssh-snowcrash
  ControlMaster

host snowcrash-slave
  hostname snowcrash.neal.org
  ControlPath /tmp/ssh-snowcrash

And thus you can efficiently run:

# OpenSSH
$ ssh -fn snowcrash-master
$ ssh snowcrash-slave

7.4.4.3 Setting environment variables in the server

SSH clients can set environment variables in their remote SSH sessions. This mecha-
nism is supported only by the SSH-2 protocol, and works only if it is permitted by
the server, according to the keywords AcceptEnv (OpenSSH) or Settable-

EnvironmentVars (Tectia). [5.6.2]

OpenSSH clients use the SendEnv keyword to specify the names of environment vari-
ables that are sent to the server:

# OpenSSH
SendEnv COLOR

Multiple variables can be listed, separated by whitespace, or specified by multiple
keywords. Wildcard characters * and ? send all variables in the client’s environment
whose name matches the pattern:

# OpenSSH
SendEnv LANG LC_*
SendEnv PATH TERM TZ

The value for each variable is copied from the environment of the OpenSSH client.

Tectia clients use the SetRemoteEnv keyword to specify both the name and the value,
separated by an equals sign (with no whitespace):

# Tectia
SetRemoteEnv COLOR=blue

Use multiple keywords to send several variables to the server. Each variable must be
named explicitly: no wildcards or patterns are used. The value can be omitted (to
indicate an empty string), but the equals sign is required. Whitespace is permitted
within the value, and is copied verbatim:

# Tectia
SetRemoteEnv GRANDDAUGHTERS=katie rebecca sarah

Note that the Tectia client’s environment is not consulted at all, and the variables
that are sent to the server need not even be present in the environment of the client.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

290 | Chapter 7: Advanced Client Use

7.4.5 TCP/IP Settings
SSH uses TCP/IP as its transport mechanism. Most times you don’t need to change
the default TCP settings, but in some situations it’s necessary:

• Connecting to SSH servers on other TCP ports

• Connecting via a particular network interface

• Using privileged versus nonprivileged ports

• Keeping an idle connection open by sending keepalive messages

• Enabling the Nagle Algorithm (TCP_NODELAY)

• Requiring IP addresses to be Version 4 or 6

7.4.5.1 Selecting a remote port

Most SSH servers listen on TCP port 22, so clients connect to this port by default.
Nevertheless, sometimes you need to connect to an SSH server on a different port
number. For example, if you are a system administrator testing a new SSH server,
you might run it on a different port to avoid interference with an existing server.
Then your clients need to connect to this alternate port. This can be done with the
client’s Port keyword, followed by a port number:

Port 2035

or the –p command-line option, followed by the port number:

$ ssh -p 2035 server.example.com

You can also specify an alternative port for scp, but the command-line option is –P
instead of –p:*

$ scp -P 2035 myfile server.example.com:

Tectia also accepts a port number as part of the user and host specification, pre-
ceded by a hash sign. For example, the commands:

# Tectia
$ ssh server.example.com#2035
$ ssh smith@server.example.com#2035
$ scp smith@server.example.com#2035:myfile localfile

each connect to remote port 2035. (We don’t see much use for this syntax, but it’s
available.)

After connecting to the server, ssh sets an environment variable in the remote shell
to hold the port information. For OpenSSH, the variable is called SSH_CLIENT, and
for Tectia it is SSH2_CLIENT. The variable contains a string with three values, sepa-
rated by a space character: the client’s IP address, the client’s TCP port, and the

* scp already has a lowercase –p option that means “preserve file permissions.” [7.5.4]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.4 Client Configuration in Depth | 291

server’s TCP port. For example, if your client originates from port 1016 on IP
address 24.128.23.102, connecting to the server’s port 22, the value is:

# OpenSSH
$ echo $SSH_CLIENT
::ffff:24.128.23.102 1016 22

# Tectia
$ echo $SSH2_CLIENT
24.128.23.102 1016 22

OpenSSH also sets an environment variable, SSH_CONNECTION, with slightly extended
port information, appending the server’s IP address and port:

# OpenSSH
$ echo $SSH_CONNECTION
::ffff:24.128.23.102 10969 ::ffff:128.220.67.30 22

These variables are useful for scripting. In your shell’s startup file (e.g., ~/.profile,
~/.login), you can test for the variable and, if it exists, take actions. For example:

#!/bin/sh
# Test for an SSH_CLIENT value of nonzero length
if [ -n "$SSH_CLIENT" ]
then
# We logged in via SSH.
  echo 'Welcome, OpenSSH user!'
  # Extract the IP address from SSH_CLIENT
  IP=`echo $SSH_CLIENT | awk '{print $1}'`
  # Translate it to a hostname.
  HOSTNAME=`host $IP | grep Name: | awk '{print $2}'`
  echo "I see you are connecting from $HOSTNAME."
else
  # We logged in not by SSH, but by some other means.
  echo 'Welcome, O clueless one. Feeling insecure today?'
fi

7.4.5.2 Connecting via a given network interface

If your client machine has more than one network interface or IP address, OpenSSH
clients can connect through a particular one with the BindAddress keyword:

# OpenSSH
BindAddress 192.168.10.235

or the –b command-line option:

# OpenSSH
$ ssh -b 192.168.10.235 server.example.com

7.4.5.3 Forcing a nonprivileged local port

SSH connections get locally bound to a privileged TCP port, one whose port num-
ber is below 1024. If you ever need to override this feature—say, if your connection



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

292 | Chapter 7: Advanced Client Use

must pass through a firewall that doesn’t permit privileged source ports—use the
configuration keyword UsePrivilegedPort. Its values are yes (use a privileged port)
and no (use a nonprivileged port, the default):

# OpenSSH
UsePrivilegedPort no

Hostbased authentication requires a privileged port.

7.4.5.4 Keepalive messages

The TCPKeepAlive (OpenSSH) and KeepAlive (Tectia) keywords instruct the client
how to proceed if a TCP connection problem occurs, such as a prolonged network
outage or a server machine crash:

# OpenSSH
TCPKeepAlive yes

# Tectia
KeepAlive yes

The value yes (the default) tells the client to transmit and expect periodic keepalive
messages. If the client detects a lack of responses to these messages, it shuts down the
connection. The value no means not to use keepalive messages.

Keepalive messages represent a trade-off. If they are enabled, a faulty connection is
shut down even if the problem is transient. However, the TCP keepalive timeout on
which this feature is based is typically several hours, so this shouldn’t be a big prob-
lem. If keepalive messages are disabled, an unused faulty connection can persist
indefinitely.

TCP keepalive messages are generally more useful in the SSH server, since a user sit-
ting on the client side will certainly notice if the connection becomes unresponsive.
However, SSH can connect two programs together, with the one running the SSH cli-
ent waiting for input from the other side. In such a situation, it may be necessary to
detect dead connections eventually.

TCPKeepAlive and KeepAlive aren’t intended to deal with the problem of SSH ses-
sions being torn down because of firewall, proxying, NAT, or IP masquerading time-
outs. [5.3.3.4] In these cases, if you don’t send any data for some period of time, the
firewall (or whatever) closes the TCP connection. Additionally, TCP keepalive mes-
sages are not secure, as they don’t use any real authentication technique.

OpenSSH provides a robust and secure solution to keep the connection up, called
client-alive and server-alive messages. OpenSSH clients can send client-alive mes-
sages to the server, indicating the client is up. The client also detects server-alive
messages sent by the OpenSSH server. [5.3.3.4]

If certain criteria are met, the client or server will tear down the connection. You can
control this at three levels. First, the client’s initial connection to the server can obey



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.4 Client Configuration in Depth | 293

a timeout. If the server hasn’t responded at all within a certain number of seconds,
the client will give up. This is controlled by the ConnectTimeout keyword:

# OpenSSH
ConnectTimeout 60 If no connection with the server within one minute, give up

Next, the ServerAliveInterval keyword controls how the client sends server-alive
messages. Its argument is a length of time in seconds:

# OpenSSH
ServerAliveInterval 300 Send server-alive every 300 seconds, or five minutes

If your client hasn’t heard from the server within the given amount of time, the cli-
ent will send a server-alive message to the server. It will continue sending these mes-
sages at the given interval (in this case, every five minutes) until it receives a response
or gives up. You control how it gives up with the third keyword,
ServerAliveCountMax, representing the maximum number of consecutive server-alive
messages the client will send:

# OpenSSH
ServerAliveCountMax 8 Try eight times, then give up. The default is three times.

Once this maximum is reached, the client says, “Oh well, I guess the server has gone
out for a walk,” and terminates the SSH connection. If you don’t want the client to
send server-alive messages, set ServerAliveInterval to zero.

7.4.5.5 Controlling TCP_NODELAY

TCP/IP has a feature called the Nagle Algorithm, an optimization for reducing the
number of TCP segments sent with very small amounts of data. [5.3.3.9] Tectia cli-
ents may also enable or disable the Nagle Algorithm using the NoDelay keyword:

# Tectia
NoDelay yes

Legal values are yes (to disable the algorithm) and no (to enable it; the default).

7.4.5.6 Requiring IPv4 and IPv6

OpenSSH can force its clients to use Internet Protocol Version 4 (IPv4) or 6 (IPv6)
addresses. IPv4 is the current version of IP used on the Internet; IPv6 is the future
version, permitting far more addresses than IPv4 can support. For more information
on these address formats, visit:

http://www.ipv6.org/

To force IPv4 addressing, use the –4 flag:

# OpenSSH
$ ssh -4 server.example.com



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

294 | Chapter 7: Advanced Client Use

or likewise for IPv6, use –6:

# OpenSSH
$ ssh -6 server.example.com

You can also control these settings with the AddressFamily keyword, with the values
inet (IPv4 only), inet6 (IPv6 only), or any:

# OpenSSH
AddressFamily inet6 Use IPv6 only

7.4.6 Making Connections
Under the best conditions, an SSH client attempts a secure connection, succeeds,
obtains your authentication credentials, and executes whatever command you’ve
requested, be it a shell or otherwise. Various steps in this process are configurable,
including:

• The number of times the client attempts the connection

• The look and behavior of the password prompt (for password authentication
only)

• Suppressing all prompting

• Running remote commands interactively with a tty

• Running remote commands in the background

• Whether or not to fall back to an insecure connection, if a secure one can’t be
established

• The escape character for interrupting and resuming an SSH session

7.4.6.1 Number of connection attempts

If you run an OpenSSH client and it can’t establish a secure connection, it will retry.
By default, it tries once. You can change this behavior with the keyword
ConnectionAttempts:

# OpenSSH
ConnectionAttempts 10

In this example, ssh tries 10 times before admitting defeat. Most people don’t have
much use for this keyword, but it might be helpful if your network is unreliable. Just
for fun, you can force ssh to give up immediately by setting ConnectionAttempts equal
to zero:

# OpenSSH
$ ssh -o ConnectionAttempts=0 server.example.com
ssh: connect to host server.example.com port 22: Success
$ ssh has exited: no connection was made



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.4 Client Configuration in Depth | 295

7.4.6.2 Password prompting in OpenSSH

If you’re using password authentication in OpenSSH, you may control the number of
times you are prompted for your password if mistyped. By default, you’re prompted
three times, and if you mistype the password repeatedly, the client exits. You can
change this number with the keyword NumberOfPasswordPrompts:*

#  OpenSSH
NumberOfPasswordPrompts 2

Now your SSH client provides only two chances to type your password correctly.

7.4.6.3 Password prompting in Tectia

Tectia adds flexibility to password prompting. Instead of preset prompt strings, you
can design your own with the PasswordPrompt keyword:

# Tectia
PasswordPrompt Enter your password right now, infidel:

You can insert the remote username or hostname with the symbols %U (remote user-
name) or %H (remote hostname). For a typical username@hostname prompt you
could use:

# Tectia
PasswordPrompt "%U@%H's password:"

Or you can be fancier:

# Tectia
PasswordPrompt "Welcome %U! Please enter your %H password:"

7.4.6.4 Batch mode: suppressing prompts

In some cases, you don’t want to be prompted for your password or passphrase. If
ssh is invoked by an unattended shell script, for example, nobody will be at the key-
board to type a password. This is why SSH batch mode exists. In batch mode, all
prompting for authentication credentials is suppressed. The keyword BatchMode can
have a value of yes (disable prompting) or no (the default, with prompting enabled):

BatchMode yes

Batch mode may be enabled for scp also with the –B option, for OpenSSH:

# OpenSSH
$ scp -B myfile server.example.com:

Batch mode doesn’t replace authentication. If a password or passphrase is required,
you can’t magically log in without it by suppressing the prompt. If you try, your client
exits with an error message such as “permission denied.” In order for batch mode to

* Although this is a client setting, the SSH server ultimately controls how many authentication attempts to
accept.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

296 | Chapter 7: Advanced Client Use

work, you must arrange for authentication to work without a password/passphrase—
say, with hostbased authentication or an SSH agent. [11.1]

7.4.6.5 Pseudo-terminal allocation (TTY/PTY/PTTY)

A Unix tty (pronounced as it’s spelled, T-T-Y) is a software abstraction representing
a computer terminal, originally an abbreviation for “teletype.” As part of an interac-
tive session with a Unix machine, a tty is allocated to process keyboard input, limit
screen output to a given number of rows and columns, and handle other terminal-
related activities. Since most terminal-like connections don’t involve an actual hard-
ware terminal, but rather a window, a software construct called a pseudo-tty (or pty,
pronounced P-T-Y) handles this sort of connection.

When a client requests an SSH connection, the server doesn’t necessarily allocate a
pty for the client. It does so, of course, if the client requests an interactive terminal
session, e.g., just ssh host. But if you ask ssh to run a simple command on a remote
server, such as ls:

$ ssh remote.server.com /bin/ls

no interactive terminal session is needed, just a quick dump of the output of ls. In
fact, by default sshd doesn’t allocate a pty for such a command. On the other hand, if
you try running an interactive command like the text editor Emacs in this manner,
you get an error message:

$ ssh remote.server.com emacs -nw
emacs: standard input is not a tty

because Emacs is a screen-based program intended for a terminal. In such cases, you
can request that SSH allocate a pty using the –t option:

$ ssh -t server.example.com emacs

Tectia also has the keyword ForcePTTYAllocation, which does the same thing as –t .*

# Tectia
ForcePTTYAllocation yes

Also, OpenSSH can request not to use a pty with the –T option, though most of the
time this isn’t needed:

# OpenSSH
$ ssh -T server.example.com who
barrett      :0           Aug 25 21:51  (console)
byrnes       pts/1        Aug 25 15:19  (yoyodyne.org)
silverman    pts/2        Aug 22 09:42  (client.example.com)

If SSH allocates a pty, it also automatically defines an environment variable in the
remote shell. The variable is SSH_TTY (for OpenSSH) or SSH2_TTY (for Tectia) and con-
tains the name of the character device file connected to the “slave” side of the pty,

* The no-pty option in the authorization file can override this request for a tty. [8.2.8]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.4 Client Configuration in Depth | 297

the side that emulates a real tty. We can see this in action with a few simple com-
mands. Try printing the value of SSH_TTY on a remote machine. If no tty is allocated,
the result is blank:

$ ssh server.example.com 'echo $SSH_TTY$SSH_TTY2'
[no output]

If you force allocation, the result is the name of the tty:

$ ssh -t server.example.com 'echo $SSH_TTY$SSH_TTY2'
/dev/pts/1

Thanks to this variable, you can run shell scripts on the remote machine that use this
information. For example, here’s a script that runs your default editor only if a termi-
nal is available:

#!/bin/sh
if [ -n $SSH_TTY -o -n $SSH2_TTY ]; then
   echo 'Success!'
   exec $EDITOR
else
   echo "Sorry, interactive commands require a tty"
fi

Place this script in your remote account, calling it myscript (or whatever), and run:

$ ssh server.example.com myscript
Sorry, interactive commands require a tty
$ ssh -t server.example.com myscript
Success!
...Emacs runs...

7.4.6.6 Backgrounding a remote command

If you try running an SSH remote command in the background, you might be sur-
prised by the result. After the remote command runs to completion, the client auto-
matically suspends before the output is printed:

$ ssh server.example.com ls &
[1]  11910
$
... time passes ...
[1] + Stopped (SIGTTIN)        ssh server.example.com ls &

This happens because ssh is attempting to read from standard input while in the
background, which causes the shell to suspend ssh. To see the resulting output, you
must bring ssh into the foreground:

$ fg
README
myfile
myfile2



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

298 | Chapter 7: Advanced Client Use

ssh provides the –n command-line option to get around this problem. It redirects
standard input to come from /dev/null, which prevents ssh from blocking for input.
Now when the remote command finishes, the output is printed immediately:

$ ssh -n server.example.com ls &
[1]  11912
$
... time passes ...
README
myfile
myfile2

Tectia has a keyword, DontReadStdin, that does the same thing as –n, accepting the
values yes or no (the default is no):

# Tectia
DontReadStdin yes

7.4.6.7 Backgrounding a remote command, take two

The preceding section assumed you didn’t need to type a password or passphrase,
e.g., that you’re running an SSH agent. What happens if you use –n or Tectia’s
DontReadStdin but the SSH client needs to read a password or passphrase from you?

$ ssh -n server.example.com ls &
$
Enter passphrase for RSA key 'smith@client':

STOP! Don’t type your passphrase! Because the command is run in
the background with –n, the prompt is also printed in the back-
ground. If you respond, your password will be visible! This is because
you will be typing to the shell, not the ssh prompt.

You need a solution that not only disables input and sends the process into the back-
ground, but also permits ssh to prompt you. This is the purpose of the –f command-
line option, which instructs ssh to do the following, in order:

1. Perform authentication, including any prompting

2. Cause the process to read from /dev/null, exactly like –n

3. Put the process into the background: no “&” is needed

Here’s an example:

$ ssh -f server.example.com ls
Enter passphrase for RSA key 'smith@client': ********
$
... time passes...
README
myfile
myfile2



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.4 Client Configuration in Depth | 299

Tectia has a keyword, GoBackground, that does the same thing, accepting the values
yes or no (the default):

# Tectia
GoBackground yes

GoBackground and –f also set up any port forwardings you may have specified on the
command line. [9.2.6] The setup occurs after authentication but before back-
grounding.

7.4.6.8 Escaping

Recall that the ssh client has an escape sequence feature. [2.3.2] By typing a particu-
lar character, normally a tilde (~), immediately after a newline or carriage return,
you can send special commands to ssh: terminate the connection, suspend the con-
nection, and so forth. Table 7-2 summarizes the supported escape sequences. It’s fol-
lowed by a list that describes each sequence’s meaning.

If the next character following the escape character isn’t in Table 7-2,
then OpenSSH sends the entire (unrecognized) escape sequence to the
server verbatim, whereas Tectia discards the escape sequence and
sends nothing.

Table 7-2. ssh escape sequences

Sequence Example with <ESC> = ~ Meaning

<ESC> ^Z ~ ^Z Suspend the connection (^Z means Control-Z)

<ESC> . ~ . Terminate the connection

<ESC> # ~ # List all forwarded connections

<ESC><ESC> ~ ~ Send the escape character (by typing it twice)

<ESC> ? ~ ? Print a help message

OpenSSH only:

<ESC> & ~ & Send ssh into the background when waiting for connections to
terminate

<ESC> B ~ B Send a break to the server )

<ESC> C ~ C Open a command line to add or remove a port forwarding

<ESC> R ~R Request rekeying immediately

Tectia only:

<ESC> - ~ - Disable the escape character

<ESC> c ~ c Print statistics for individual channels

<ESC> l ~ l Switch to line mode

<ESC> r ~r Request rekeying immediately

<ESC> s ~ s Print statistics about this session

<ESC> V ~ V Print version information



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

300 | Chapter 7: Advanced Client Use

• “Suspend the connection” puts ssh into the background, suspended, returning
control of the terminal to the local shell. To return to ssh, use the appropriate
job control command of your shell, typically fg. While suspended, ssh doesn’t
run, and if left suspended long enough, the connection may terminate since the
client isn’t responding to the server. Also, any forwarded connections are simi-
larly blocked while ssh is suspended. [9.2.9]

• “Terminate the connection” ends the SSH session immediately. This is most use-
ful if you have lost control of the session: for instance, if a shell command on the
remote host has hung and become unkillable, or if you tried exiting while a tun-
nel (forwarding) is still active. Any X or TCP port forwardings are terminated
immediately as well. [9.2.9]

• “List all forwarded connections” prints a list of each X forwarding or TCP port
forwarding connection currently established. This lists only active instances of
forwarding; if forwarding services are available but not currently in use, nothing
is listed here.

• “Send ssh into the background,” like the “suspend connection” command,
reconnects your terminal to the shell that started ssh, but it doesn’t suspend the
ssh process. Instead, ssh continues to run. This isn’t ordinarily useful, since the
backgrounded ssh process immediately encounters an error.* This escape
sequence becomes useful if your ssh session has active, forwarded connections
when you log out. Normally in this situation, the client prints a message about
waiting for forwarded connections to terminate. The client typically waits
(silently) in the foreground for the forwarded connections to close before it exits:
you can detect this by using the “list all forwarded connections” escape. While
the client is in this state, the “send ssh into the background” escape sequence
returns you to the local shell prompt.

• “Request rekeying immediately” causes the SSH client and server to generate and
use some new internal keys for encryption and integrity. Normally, the client
and server agree to rekey automatically at regular intervals. [5.3.4]

• “Send the escape character” tells the client to send a real tilde (or whatever the
escape character is) to the SSH server as plaintext, not to interpret it as an
escape.

• “Disable the escape character” prevents further escape sequences from having
any effect, and is therefore irrevocable.

• “Open a command line to add or remove a port forwarding” prompts for –L or –R
options to create a new local or remote port forwarding, respectively. [9.2] An
existing remote forwarding can be canceled using -KR, followed by the target port
number.† To obtain a help message, type –h or ?.

* The error occurs as ssh attempts to read input from the now disconnected pseudo-terminal.

† Local forwardings cannot be canceled.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.4 Client Configuration in Depth | 301

• “Switch to line mode” causes characters to be collected by the client and then
sent together to the server after a newline has been entered. This allows line-edit-
ing features that are available on the client machine to be used, even in situa-
tions when similar features are not available on the server machine. Line mode is
temporary: after a single line has been sent, the client resumes its normal opera-
tion of sending each character to the server as soon as it has been entered.

The rest of the escape sequences are self-explanatory.

Sometimes the default escape character can cause a problem. Suppose you connect
by ssh from host A to host B, then from host B to host C, and finally from host C to
host D, making a chain of ssh connections (we represent the machines’ shell prompts
as A$, B$, C$, and D$):

A$ ssh B
...
  B$ ssh C
  ...
    C$ ssh D
    ...
      D$

While logged onto host D, you press the Return key, then ~ ^Z (tilde followed by
Control-Z) to suspend the connection temporarily. Well, you’ve got three ssh con-
nections active, so which one gets suspended? The first one does, and this escape
sequence brings you back to the host A prompt. Well, what if you want to escape
back to host B or C ? There are two methods, one with forethought and one on the
spur of the moment.

If you prepare in advance, you may change the escape character for each connection
with the configuration keyword EscapeChar, followed by a character:

EscapeChar %

or the –e command-line option, followed again by the desired character (quoted if
necessary to protect it from expansion by the shell):

$ ssh -e '%' server.example.com

OpenSSH supports the value none to mean no escape character:

# OpenSSH
EscapeChar none

So, going back to our example of hosts A through D, you want a different escape
character for each segment of this chain of connections. For example:

A$ ssh B
...
  B$ ssh -e '$' C
  ...
    C$ ssh -e '%' D
    ...
      D$



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

302 | Chapter 7: Advanced Client Use

Now, while logged onto host D, a tilde still brings you back to host A, but a dollar
sign brings you back to host B and a percent sign back to host C. The same effect can
be achieved with the EscapeChar keyword, but the following table shows that more
forethought is required to set up configuration files on three hosts.

Even if you don’t normally make chains of SSH connections, you might still want to
change the escape character. For example, your work might require you to type a lot
of tildes for other reasons, and you might accidentally type an escape sequence such
as ~. (tilde period) and disconnect your session. Oops!

There’s a second method that requires no forethought: type the escape character
multiple times. Typing it twice sends the character literally across the SSH connec-
tion. [7.4.6.8] Therefore, you can suspend the second SSH connection by typing two
escapes, the third by typing three escapes, and so on. Remember, you must precede
your escape characters by pressing the Return key. While logged onto host D, you
could escape back to host B, for example, by hitting the Return key, then typing two
tildes, and Control-Z.

7.4.7 Proxies and SOCKS
SOCKS is an application-layer network proxying system supported by various SSH
implementations. Proxying in general provides a way to connect two networks at the
application level, without allowing direct network-level connectivity between them.
Figure 7-3 shows a typical SOCKS installation.

The figure shows a private network and the Internet. The gateway machine is con-
nected to both, but doesn’t function as a router; there’s no direct IP connectivity
between the two networks. If a program running on H wants to make a TCP connec-
tion to a server on S, it instead connects to the SOCKS server running on G. Using
the SOCKS protocol, H requests a connection to S. The SOCKS server makes a con-
nection from G to S on behalf of H and then steps out of the way, passing data back
and forth between H and S.

OpenSSH Tectia

# Host A configuration file
Host B
 EscapeChar ~

# Host B configuration file
Host C
 EscapeChar ^

# Host C configuration file
Host D
 EscapeChar %

# Host A configuration file
B:
 EscapeChar ~

# Host B configuration file
C:
 EscapeChar ^

# Host C configuration file
D:
 EscapeChar %



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.4 Client Configuration in Depth | 303

A general drawback of application-level proxying is lack of transparency: only those
programs written with support for the particular proxying scheme have network
access. SOCKS, however, isn’t specific to any higher-level protocol such as HTTP or
SMTP. It provides general services: makes a TCP connection, pings a host, performs
a traceroute, etc. Many of its services match the existing programming boundary
between applications and network-services libraries. As a result, on modern com-
puter systems employing dynamically linked libraries, it is often possible to extend
SOCKS to non-SOCKS-aware applications, such as SSH, by replacing the right
libraries with SOCKS-aware ones.

SOCKS comes in two versions, SOCKS4 and SOCKS5. There are two major added
features in SOCKS5: authentication and naming support. SOCKS5 supports user
authentication so that a proxy can apply access control and user logging to its ser-
vice. “Naming support” refers to the fact that in SOCKS4, a proxy client expresses
the socket it wants to reach as an (IP address, port) pair. In real-world situations,
however, the client will often know only the name, not the address, of the host it
wants to reach. Furthermore, it may not be able to resolve that name directly, since
being behind a proxy, it is likely to be in a different naming context than the server
(e.g., a corporate network with split DNS). With SOCKS5, the client can instead
pass a (name,port) pair to the proxy server, leaving the proxy to perform the name
lookup where it is mostly likely to succeed.

There are two ways in which SSH clients use SOCKS:

• As a normal SOCKS client, as described earlier.

• As a SOCKS server, in conjunction with port forwarding. This allows for
dynamic forwarding, by which other SOCKS clients may reach any TCP socket
on the other side of an SSH connection, through a single forwarded port.

OpenSSH supports only the second method, while Tectia supports both.

Figure 7-3. A typical SOCKS installation

Host

H
Private

network

SOCKS
gateway

G
Internet

Host

S



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

304 | Chapter 7: Advanced Client Use

7.4.7.1 SOCKS in OpenSSH: using DynamicForward

Dynamic forwarding in OpenSSH is done using the –D switch or DynamicForward

configuration statement:

$ ssh -D1080 server

or:

# ~/.ssh/config:
host server
  DynamicForward 1080

As with static (–L) port forwarding, this command causes the SSH client to listen for
TCP connections on the given port (here 1080, the standard SOCKS port). Note,
however, that there’s no argument specifying a target socket for the forwarding!
That’s because this sort of forwarding is completely flexible: each connection to port
1080 can go to a different remote socket, given at connection time via the SOCKS
protocol. Set any network client with SOCKS support to use this SSH-forwarded
port as its “SOCKS server,” and it will have complete TCP access to the network on
the other side of the SSH connection.

Just as with static forwarding, a dynamically forwarded port by default listens only
on the loopback address. Use the –g switch to have it listen on all host addresses.
This option affects all locally forwarded ports established with this instance of ssh.

Unfortunately, OpenSSH does not have SOCKS client support built in. However,
there are a number of packages around for conveniently “socksifying” existing pro-
grams on the fly; two such packages are tsocks and runsocks. They both play with the
system dynamic linker to replace basic network library calls with SOCKS-aware
wrappers, and they are both effective on OpenSSH.

If this sort of linking trick doesn’t work, then you can use a separate program
instead. You’ll need a simple utility which makes the connection through your
SOCKS proxy, e.g., a socksified version of netcat (nc):

http://www.securityfocus.com/tools/137
http://netcat.sourceforge.net/

Then simply:

# OpenSSH
# ssh -o ProxyCommand="nc %h %p" ...

7.4.7.2 SOCKS in Tectia

Tectia supports both SOCKS client and server (dynamic-forwarding) features, and
both SOCKS4 and SOCKS5. However, it does not support user authentication in the
SOCKS5 client.

Tectia SOCKS client. The Tectia SOCKS client feature is controlled with a single param-
eter, set with the SocksServer configuration keyword or the SSH_SOCKS_SERVER



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.4 Client Configuration in Depth | 305

environment variable. The configuration option overrides the environment variable if
both are present.

The SocksServer keyword is a string with the following format:

socks://[user]@gateway[:port]/[net1/mask1,net2/mask2,...]

Here, gateway is the machine running the SOCKS server, user is the username you
supply for identification to SOCKS, and port is the TCP port for the SOCKS server
(by default, 1080). The net/mask entries indicate netblocks that are to be considered
local; that is, ssh uses SOCKS only for connections lying outside the given network
ranges. The mask is given as the length of the network prefix, not an explicit mask,
e.g., 192.168.10.0/24 rather than 192.168.10.0/255.255.255.0.

The parts of the string enclosed in square brackets are optional. So, an SSH_SOCKS_

SERVER value can be as simple as this:

socks://laces.shoes.net

With this value, ssh uses SOCKS for all connections. It connects to a SOCKS server
running on laces.shoes.net, port 1080, and it doesn’t supply a username. You’ll prob-
ably never want to use an SSH_SOCKS_SERVER setting as simple as this one, which uses
the SOCKS server for all ssh connections, even those connecting back to the same
machine or to a machine on the same network. A better setup is to use SOCKS only
for hosts on the other side of the gateway from you. Here’s a more complete
example:

socks://dan@laces.shoes.net:4321/127.0.0.0/8,192.168.10.0/24

With this value, ssh connects directly to itself via its loopback address (127.0.0.1), or to
hosts on the class C network, 192.168.10.0. It uses SOCKS for all other connections,
supplying the username “dan” and looking for the SOCKS server on port 4321.

Tectia SOCKS server (dynamic port forwarding). Tectia also has dynamic port forwarding
via SOCKS, as described earlier for the OpenSSH –D option. [7.4.7.1] It works anal-
ogously, using this syntax:

# Tectia
$ ssh -L socks/1080 server

You could then even use a separate ssh command as a SOCKS client of this one, to
reach a second SSH server on the far side of the first one:

# Tectia
$ ssh -o 'SocksServer socks://localhost/' ...

7.4.8 Forwarding
Port forwarding and X forwarding are covered in Chapter 9 and agent forwarding in
Chapter 6. We mention them here only for completeness, since forwarding can be
controlled in the client configuration file and on the command line.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

306 | Chapter 7: Advanced Client Use

7.4.9 Encryption Algorithms
When establishing a connection, an SSH client and server have a little conversation
about encryption. The server says, “Hello client, here are the encryption algorithms I
support.” In return, the client says, “Hi there server, I’d like to choose this particular
algorithm, please.” Normally, they reach agreement, and the connection proceeds. If
they can’t agree on an encryption algorithm, the connection fails.

Most users let the client and server work things out themselves. But if you like, you
may instruct the client to request particular encryption algorithms in its conversa-
tion with the server. This is done with the Ciphers keyword followed by a comma-
separated list of encryption algorithms of choice:

Ciphers blowfish,3des

or the –c command-line option, either followed by a comma-separated list
(OpenSSH) or specified multiple times (Tectia):

# OpenSSH
$ ssh -c blowfish,3des server.example.com

# Tectia
$ ssh -c blowfish -c 3des server.example.com

indicating that any of these algorithms is acceptable.

All ciphers acceptable by a server may be specified for the client. [5.3.5] Check the
latest SSH documentation for a current list of supported ciphers.

7.4.10 Integrity-Checking (MAC) Algorithms
The –m command-line option lets you select the integrity-checking algorithm, known
as the message authentication code (MAC), used by the SSH-2 protocol: [3.8.3]

$ ssh -m hmac-sha1 server.example.com

You can specify multiple algorithms on the command line, either as a comma-
separated list (OpenSSH) or with multiple –m options (Tectia):

# OpenSSH
$ ssh -m hmac-sha1,hmac-md5 server.example.com

# Tectia
$ ssh -m hmac-sha1 -m hmac-md5 server.example.com

and the SSH server selects one to use. OpenSSH supports the MACs keyword to do the
same thing:

# OpenSSH
MACs hmac-sha1,hmac-md5



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.4 Client Configuration in Depth | 307

7.4.11 Host Key Types
OpenSSH lets you choose host key types you will accept. Provide a comma-separated
list of types, from highest to lowest precedence, to the HostKeyAlgorithms keyword.
See the ssh_config manpage for the current selection of algorithms.

# OpenSSH
HostKeyAlgorithms ssh-dss,ssh-rsa

Suppose you are about to SSH to a new server for the first time. Being security con-
scious, you have obtained the server’s RSA hostkey through reliable means and
placed it in ~/.ssh/known-hosts. But when you connect, you find that OpenSSH uses
the server’s DSA key instead, and complains about an unknown hostkey. OpenSSH
is not smart enough to prefer a key type it has over one it doesn’t—but you can work
around this by setting HostKeyAlgorithms to ssh-rsa.

7.4.12 Session Rekeying
The RekeyIntervalSeconds keyword specifies how often (in seconds) the Tectia client
performs key exchange with the server to replace the session data-encryption and
integrity keys. The default is 3600 seconds (one hour), and a zero value disables
rekeying:

# Tectia
RekeyIntervalSeconds 7200

7.4.13 Authentication
In a typical SSH setup, clients try to authenticate by the strongest methods first. If a
particular method fails or isn’t set up, the next one is tried, and so on. This default
behavior should work fine for most needs.

Nevertheless, your clients may request specific types of authentication if they need to
do so. For example, you might want to use public-key authentication only, and if it
fails, no other methods should be tried.

7.4.13.1 Requesting an authentication technique

OpenSSH clients can request specific authentication methods by keyword. The syn-
tax is the same as the server’s in /etc/ssh/sshd_config, and you can specify all the same
authentication methods. [5.4.1] Examples are PasswordAuthentication,
PubKeyAuthentication, and KerberosAuthentication, followed by yes or no:

# OpenSSH
PasswordAuthentication no
PubKeyAuthentication yes



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

308 | Chapter 7: Advanced Client Use

Additionally, you can specify the order in which the client should try these authenti-
cation methods, with the PreferredAuthentications keyword:

# OpenSSH
PreferredAuthentications publickey,hostbased,password

The ssh_config(5) manpage lists the currently supported methods.

For Tectia, the AllowedAuthentications keyword selects one or more authentication
techniques. Again, the keyword has the same use here as for the Tectia server: [5.4.1]

# Tectia
AllowedAuthentications publickey, password

7.4.13.2 The server is the boss

When a client specifies an authentication technique, this is just a request, not a
requirement. For example, the configuration:

PasswordAuthentication yes

informs the SSH server that you, the client, agree to participate in password authenti-
cation. It doesn’t guarantee that you will authenticate by password, just that you are
willing to do it if the server agrees. The server makes the decision and might still
authenticate you by another method.

For a client to require an authentication technique, it must tell the server that one,
and only one, technique is acceptable. To do this, the client must deselect every
other authentication technique. For example, to try only password authentication
with the server, use OpenSSH’s PreferredAuthentications keyword:

# OpenSSH
PreferredAuthentications password

or Tectia’s AllowedAuthentications keyword, which has the same syntax as the server
keyword of the same name: [5.4.1]

# Tectia
AllowedAuthentications password

If the server doesn’t support password authentication, however, this connection
attempt will fail.

7.4.13.3 Detecting successful authentication

Tectia provides two keywords for reporting whether authentication is successful:
AuthenticationSuccessMsg and AuthenticationNotify. Each of these causes Tectia cli-
ents to print a message after attempting authentication.

AuthenticationSuccessMsg controls the appearance of the message “Authentication
successful” after authentication, which is printed on standard error. Values may be
yes (the default, to display the message) or no:

# Tectia
$ ssh server.example.com



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.4 Client Configuration in Depth | 309

Authentication successful.
Last login: Sat Jun 24 2000 14:53:28 -0400
...
$ ssh -p221 -o 'AuthenticationSuccessMsg no' server.example.com
Last login: Sat Jun 24 2000 14:53:28 -0400
...

AuthenticationNotify, an undocumented keyword, causes Tectia’s ssh to print a dif-
ferent message, this time on standard output. If the authentication is successful, the
message is “AUTHENTICATED YES”; otherwise, it’s “AUTHENTICATED NO”.
Values may be yes (print the message) or no (the default):

$ ssh -q -o 'AuthenticationNotify yes' server.example.com
AUTHENTICATED YES
Last login: Thu Jun 24 2004 14:53:35 -0400
...

The behavior of these two keywords differs in the following ways:

• AuthenticationSuccessMsg writes to stderr; AuthenticationNotify writes to std-
out.

• The –q command-line option [7.4.17] silences AuthenticationSuccessMsg but not
AuthenticationNotify. This makes AuthenticationNotify better for scripting (for
example, to find out if an authentication can succeed or not). Notice that exit is
used as a remote command so that the shell terminates immediately:

#!/bin/csh
# Tectia
# Get the AUTHENTICATION line
set line = `ssh -q -o 'AuthenticationNotify yes' server.example.com exit`
# Capture the second word
set result = `echo $line | awk '{print $2}'`
if ( $result == "YES" ) then
  ...

In fact, AuthenticationNotify is used precisely in this manner by Tectia’s scp and
sftp, when these programs run ssh in the background to connect to the remote
host for file transfers. They wait for the appearance of the “AUTHENTICATED
YES” message to know that the connection was successful, and they can now
start speaking to the sftp-server.

AuthenticationSuccessMsg provides an additional safety feature: a guarantee that
authentication has occurred. Suppose you invoke Tectia’s ssh and are prompted for
your passphrase:

# Tectia
$ ssh server.example.com
Passphrase for key "mykey": ********

You then see, to your surprise, a second passphrase prompt:

Passphrase for key "mykey":

You might conclude that you mistyped your passphrase the first time, and so you
type it again. But what if the second prompt came not from your ssh client, but from



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

310 | Chapter 7: Advanced Client Use

the server, which has been cracked by an evil intruder? Your passphrase has just been
stolen! To counteract this potential threat, ssh prints “Authentication successful”
after authentication, so the previous session actually looks like this:

# Tectia
$ ssh server.example.com
Passphrase for key "mykey": ********
Authentication successful.
Passphrase for key "mykey": Suspicious!

The second passphrase prompt is now revealed as a fraud.

7.4.13.4 Using ssh-keysign for hostbased authentication

Earlier we described how hostbased authentication requires a privileged program
that provides SSH credentials to user processes. [3.4.3.6] In OpenSSH, this program
is ssh-keysign. It must be installed setuid root (or any account that can read the cli-
ent hostkey).

To allow a client system to perform hostbased authentication, the system administra-
tor must set the EnableSSHKeysign keyword in /etc/ssh/ssh_config:

# ssh_config
EnableSSHKeysign yes

Most options in ssh_config are for the ssh program itself, but this one option is read
by ssh-keysign. Hostbased authentication relies critically on the integrity of the client
host and on other administrative requirements, such as correspondence of account
names across hosts. It is crucial that it not be used unless these requirements are met;
this option is to make sure that it is not enabled unless the system administrator con-
sciously chooses to do so.

7.4.14 Data Compression
SSH connections may be compressed. That is, data sent over an SSH connection may
be compressed automatically before it is encrypted and sent, and automatically
uncompressed after it is received and decrypted. If you’re running SSH software on
fast, modern processors, compression is generally a win. However, it also depends on
your network speed, and whether the data you’re transferring is already compressed
or not (say, a large compressed tar file).

To enable compression for a single session, use command-line options. Unfortu-
nately, the implementations have incompatible syntax. For OpenSSH, compression
is disabled by default, and the –C command-line option turns it on:

# OpenSSH: turn compression ON
$ ssh -C server.example.com
$ scp -C myfile server.example.com:



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.4 Client Configuration in Depth | 311

For Tectia, however, –C means the opposite, turning compression off:

# Tectia: turn compression OFF
$ ssh -C server.example.com

and +C turns it on:

# Tectia: turn compression ON
$ ssh +C server.example.com

(There is no compression option for Tectia’s scp.) To enable or disable compression
for all sessions, use the Compression keyword, given a value of yes or no (the default):

Compression yes

7.4.15 Program Locations
The auxiliary Tectia program ssh-signer is normally located in Tectia’s installation
directory, along with the other Tectia binaries. [3.4.3.6] You can change this loca-
tion with the undocumented keyword SshSignerPath:

# Tectia
SshSignerPath /usr/alternative/bin/ssh-signer2

If you use this keyword, be sure to set it to the fully qualified path of the program. If
you use a relative path, hostbased authentication works only for users who have ssh-
signer2 in their search path, and cron jobs fail without ssh-signer2 in their path.

7.4.16 Subsystems
Subsystems are predefined commands supported by an SSH server. [5.8] Each
installed server can implement different subsystems, so check with the system
administrator of the server machine for a list.*

The –s option of ssh invokes a subsystem on a remote machine. For example, if the
SSH server running on server.example.com has a “backups” subsystem defined, you
run it as:

$ ssh server.example.com -s backups

OpenSSH uses the remote command as the subsystem name: this must be specified
last on the ssh command line. In contrast, Tectia obtains the subsystem name from
the command-line argument that immediately follows the –s option. Therefore, our
previous example works in both cases, so we highly recommend this syntax. Other
orderings of the command line are possible for specific implementations:

# OpenSSH
$ ssh -s server.example.com backups

# Tectia
$ ssh -s backups server.example.com

* Or examine the remote machine’s server configuration file yourself for lines beginning with subsystem.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

312 | Chapter 7: Advanced Client Use

Command-line arguments cannot be used with subsystems: neither OpenSSH nor
Tectia provides any mechanism for passing them from client to server. If any extra
arguments are given on the ssh command line, OpenSSH (mis)interprets them as part
of the subsystem name:

# OpenSSH
$ ssh server.example.com -s backups /home
Request for subsystem 'backups /home' failed on channel 0

whereas Tectia simply forbids extra command-line arguments if –s is used:

# Tectia
$ ssh server.example.com -s backups /home
ssh: FATAL: No command allowed with subsystem.

7.4.17 Logging and Debugging
Earlier in the chapter, we introduced the –v command-line option which causes SSH
clients to print verbose debugging messages. [7.3] Verbose mode works for ssh and
scp , e.g.:

$ ssh -v server.example.com

OpenSSH also has the LogLevel keyword, which takes the following levels as an argu-
ment: QUIET, FATAL, ERROR, INFO, VERBOSE, DEBUG1, DEBUG2, and DEBUG3 (in order of
increasing verbosity). The value DEBUG is equivalent to DEBUG1, and:

# OpenSSH
$ ssh -o LogLevel=DEBUG

is equivalent to ssh –v.

Verbose mode can also be turned on for Tectia with the (surprise!) VerboseMode

keyword:

# Tectia
VerboseMode yes

If you ever encounter problems or strange behavior from SSH, your first instinct
should be to turn on verbose mode.

Tectia’s ssh has multiple levels of debug messages; verbose mode corresponds to
level 2. You can specify greater or less debugging with the –d command-line option,
followed by an integer from 0 to 99:

# Tectia
$ ssh -d0 No debugging messages
$ ssh -d1 Just a little debugging
$ ssh -d2 Same as –v
$ ssh -d3 A little more detailed
$ ssh -d# And so on...



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.5 Secure Copy with scp | 313

Tectia’s –d option may also use the same module-based syntax as for
serverdebugging: [5.9]

# Tectia
$ ssh -d Ssh2AuthPasswdServer=2 server.example.com

Tectia’s scp also supports this level of debugging, but the option is –D instead of –d
since scp –d is already used to mean something else:

 # Tectia
$ scp -D Ssh2AuthPasswdServer=2 myfile server.example.com

To disable all debug messages, use –q:

$ ssh -q server.example.com

or specify it with the LogLevel (OpenSSH) or QuietMode (Tectia) keyword:

# OpenSSH
LogLevel QUIET

# Tectia
QuietMode yes

Finally, to print the program version number, use –V:

$ ssh -V

7.4.18 Random Seeds
Tectia lets you change the location of your random seed file, which is ~/.ssh2/
random_seed by default: [5.3.1.2]

# Tectia
RandomSeedFile /u/smith/.ssh2/new_seed

7.5 Secure Copy with scp
The secure copy program, scp, obeys keywords in your client configuration file just
as ssh does. In addition, scp provides other features and options that we’ll cover in
this section. Remember that scp supports several options for logging and debugging,
so you can watch what’s going on when it runs. [7.3]

7.5.1 Full Syntax of scp
So far, we’ve described the syntax of scp only in general: [2.2.1]

scp name-of-source name-of-destination



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

314 | Chapter 7: Advanced Client Use

Each of the two names, or path specifications, on the command line represents files
or directories in the following manner (it is fairly consistent with the behavior of
Unix cp or rcp):

• If name-of-source is a file, name-of-destination may be a file (existing or not) or a
directory (which must exist). In other words, a single file may be copied to
another file or into a directory.

• If name-of-source is two or more files, one or more directories, or a combina-
tion, name-of-destination must be an existing directory into which the copy takes
place.* In other words, multiple files and directories may be copied only into a
directory.

Both name-of-source and name-of-destination may have the following form from left
to right:

• The username of the account containing the file or directory, followed by @.
This part is optional, and if omitted, the value is the username of the user invok-
ing scp.

• The hostname of the host containing the file or directory, followed by a colon.
This part is optional, if the path is present, and the username isn’t; if omitted,
the value is localhost. Tectia permits an optional TCP port number for the SSH
connection to be inserted between the hostname and the colon, preceded by a
hash sign.

• The directory path to the file or directory. (Optional if the hostname is present.)
Relative pathnames are assumed relative to the default directory, which is the
current directory (for local paths) or the user’s home directory (for remote
paths). If omitted entirely, the path is assumed to be the default directory.

Although each field is optional, you can’t omit them all at the same time, yielding the
empty string. Either the hostname (•) or the directory path (•) must be present.
Some examples:

MyFile
The file . /MyFile on localhost

MyDirectory
The directory ./MyDirectory on localhost

. (period)
The current directory on localhost

server.example.com:
The directory ~username on server.example.com

* We say “must,” but technically you could specify a file as a destination in some cases. However, this behavior
is probably not what you want. As your multiple files get copied into a single destination file, each is over-
written by the next!



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.5 Secure Copy with scp | 315

server.example.com
A local file named “server.example.com” (Oops: did you forget the trailing
colon? This is a common mistake.)

server.example.com:MyFile
The fileMyFile in the remote user’s home directory on server.example.com

bob@server.example.com:
The directory ~bob on server.example.com

bob@server.example.com
A local file named “bob@server.example.com” (oops; forgot the trailing colon
again)

bob@server.example.com:MyFile
The file ~bob/MyFile on server.example.com

server.example.com:dir/MyFile
The file dir/MyFile in the remote user’s home directory on server.example.com

server.example.com:/dir/MyFile
The file /dir/MyFile on server.example.com (note the absolute path)

bob@server.example.com:dir/MyFile
The file ~bob/dir/MyFile on server.example.com

bob@server.example.com:/dir/MyFile
The file /dir/MyFile on server.example.com (although you authenticate as bob,
the path is absolute)

server.example.com#2000:
The remote user’s home directory on server.example.com, via TCP port 2000
(Tectia only)

Here are a few complete examples:

$ scp myfile myfile2 A local copy just like cp
$ scp myfile bob@host1: Copy ./myfile to ~bob on host1
$ scp bob@host1:myfile . Copy ~bob/myfile on host1 to ./myfile
$ scp host1:file1 host2:file2 Copy file1 from host1 to file2 on host2
$ scp bob@host1:file1 jen@host2:file2  Same as above, but copying from bob's
                                                                              to jen's account

Table 7-3 summarizes the syntax of an scp path.

Table 7-3. scp path specifications

Field Other syntax Optional? Default for local host Default for remote host

Username Followed by @ Yes Invoking user’s user-
name

Invoking user’s username

Hostname Followed by : Only if username is omitted
and path is present

None, file is accessed
locally

N/A



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

316 | Chapter 7: Advanced Client Use

7.5.2 Handling of Wildcards
scp for OpenSSH has no special support for wildcards in filenames. It simply lets the
shell expand them:

$ scp *.txt server.example.com:

Watch out for wildcards in remote file specifications, as they are evaluated on the
local machine, not the remote. For example, this attempt is likely to fail:

$ scp server.example.com:*.txt . Bad idea!

The Unix shell attempts to expand the wildcard before scp is invoked, but the cur-
rent directory contains no filename matching “server.example.com:*.txt”. The C
shell and its derivatives will report “no match” and will not execute scp. Bourne-style
shells, noticing no match in the current directory, will pass the unexpanded wild-
card to scp, and the copy may succeed as planned, but this coincidental behavior
shouldn’t be relied on. Always escape your wildcards so that they are explicitly
ignored by the shell and are passed to scp:

$ scp server.example.com:\*.txt .

Tectia’s scp does its own regular expression matching after shell-wildcard expansion
is complete. The sshregex manpage for Tectia (see Appendix B) describes the sup-
ported operators. Even so, escape your wildcard characters if you want your local
shell to leave them alone.

7.5.3 Recursive Copy of Directories
Sometimes you want to copy not just a single file, but a directory hierarchy. In this
case, use the –r option, which stands for recursive. For example, to securely copy the
directory /usr/local/bin and all its files and subdirectories to another machine:

$ scp -r /usr/local/bin server.example.com:

If you forget the –r option when copying directories, scp complains:

$ scp /usr/local/bin server.example.com:
/usr/local/bin: not a regular file

Although scp can copy directories, it isn’t necessarily the best method. If your direc-
tory contains hard links or soft links, they won’t be duplicated. Links are copied as
plain files (the link targets). Other types of special files, such as named pipes, also

Port number a Preceded by # Yes 22 22

Directory path N/A Only if hostname is present Current (invoking)
directory

Username’s remote home
directory

a Tectia only.

Table 7-3. scp path specifications (continued)

Field Other syntax Optional? Default for local host Default for remote host



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.5 Secure Copy with scp | 317

aren’t copied correctly.* A better solution is to use tar, which handles special files
correctly, and send it to the remote machine to be untarred, via SSH:

$ tar cf - /usr/local/bin | ssh server.example.com tar xf -

or rsync, tunneled through SSH:

$ rsync -e ssh /usr/local/bin server.example.com:

7.5.4 Preserving Permissions
When scp copies files, the destination files are created with certain file attributes. By
default, the file permissions adhere to a umask on the destination host, and the mod-
ification and last access times will be the time of the copy. Alternatively, you can tell
scp to duplicate the permissions and timestamps of the original files. The –p option
accomplishes this:

$ scp -p myfile server.example.com:

For example, if you transfer your entire home directory to a remote machine, you
probably want to keep the file attributes the same as the original:

$ scp -rp $HOME server.example.com:myhome/

Again, scp does not duplicate special files and links, so consider tar or rsync -a
instead:

$ rsync -a -e ssh /usr/local/bin server.example.com:

7.5.5 Automatic Removal of Original File
After copying a file, Tectia’s scp can optionally remove the original if desired. The –u
command-line option specifies this:

# Tectia
$ scp myfile server.example.com:
$ ls myfile
myfile
$ scp -u myfile server.example.com:
$ ls myfile
myfile: No such file or directory

If you’ve ever wanted a “secure move” command in addition to secure copy, you can
define one in terms of scp –u:

# Tectia
$ alias smv='scp -u'

* These limitations also are true when copying single files, but at least you see the erroneous result quickly.
With directories, you can copy a hierarchy incorrectly and not notice.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

318 | Chapter 7: Advanced Client Use

7.5.6 Safety Features
Tectia’s scp has several features to protect you from running dangerous commands.

7.5.6.1 Directory confirmation

Suppose you want to copy a local file, myfile, to a remote directory. You type:

$ scp myfile server.example.com:mydir
$ rm myfile

Then you connect to server.example.com and find, to your horror, that mydir was a
file, not a directory, and you just overwrote it! Tectia’s –d option prevents this trag-
edy. If the destination isn’t a directory, scp complains and exits without copying the
file:

# Tectia
$ scp -d myfile server.example.com:mydir
scp: warning: Destination (example.com:mydir) is not a directory.

This option is necessary only if you are copying a single file. If you are copying multi-
ple files or a directory, all the scp implementations check by default that the remote
destination is a directory.*

7.5.6.2 No-execute mode

Another safety feature of Tectia’s scp is the –n option, which instructs the program to
describe its actions but not perform any copying. This is useful for verifying the
behavior of scp before executing a potentially risky command.

# Tectia
$ scp -n myfile server.example.com:
Not transferring myfile -> server.example.com:./myfile  (1k)

7.5.6.3 Overwriting existing files

Tectia’s scp will refuse to overwrite existing files if you desire. The –I or --interactive
option will prompt you before overwriting a destination file:

# Tectia
$ scp -I myfile server.example.com:
Overwrite destination file './myfile' with '/home/smith/myfile' (yes/yes to all/no/no
to all/abort) [y/Y/n/N/a]:n

As an alternative, if you know in advance whether you’ll want to overwrite existing
files, use the --overwrite option (the default is no):

# Tectia
$ scp --overwrite yes myfile server.example.com:    Always overwrite

* There’s one degenerate case. If your copy occurs on a single machine, e.g., scp *.c mydir, the scp client doesn’t
necessarily check that mydir is a directory.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.5 Secure Copy with scp | 319

7.5.7 Batch Mode
If you’re using scp in scripts with passwordless authentication [11.1], you might
want to suppress all prompting of the user. That’s what the –B option is for, which
enables batch mode. When present, this option suppresses all interaction with the
user. [7.4.6.4]

$ scp -B myfile server.example.com:

7.5.8 User Identity
OpenSSH provides the –i option for scp, as it does for ssh, to specify a particular
identity file for authentication. [7.4.2]

# OpenSSH
$ scp -i my_favorite_key myfile server.example.com:

Tectia has no option like this, but you can get around this limitation with –o: [7.1.2.1]

# Tectia
$ scp -o "IdentityFile my_identity_file" myfile server.example.com:

7.5.9 SSH Protocol Settings
You can downgrade scp to use the SSH-1 protocol with the -1 option, if you are feel-
ing insecure:

$ scp -1 myfile server.example.com:

or redundantly specify the SSH-2 protocol, which is the default anyway:

# OpenSSH
$ scp -2 myfile server.example.com:

7.5.10 TCP/IP Settings
You can specify the remote TCP port contacted by scp with the –P option
(OpenSSH):

# OpenSSH
$ scp -P 23456 myfile server.example.com:

or by appending a hash mark and port number to the file specification (Tectia):

# Tectia
$ scp myfile server.example.com#23456:

Both OpenSSH and Tectia can require the use of IP Version 4 or 6, as ssh does, with
the -4 and -6 options. [7.4.5.6]

7.5.11 Encryption Algorithms
You can set the encryption cipher for scp with the –c option, exactly as for ssh. [7.4.9]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

320 | Chapter 7: Advanced Client Use

7.5.12 Controlling Bandwidth
The –l (lowercase L) option of OpenSSH’s scp command will limit the bandwidth of
the connection, in case you want to avoid saturating a slower network.

# OpenSSH
$ scp -l 1000 myfile server.example.com:    Limit bandwidth to 1000 kilobits per second

Tectia’s scp command can limit the maximum number of concurrent requests it will
issue, with the –N option:

# Tectia
$ scp -r -N 5 mydirectory server.example.com: Limit to five concurrent requests in this recursive
       directory transfer

Finally, Tectia’s –b option controls the buffer size for the file transfer; the default is
32K:

# Tectia
$ scp -b 65536 myfile server.example.com: Set buffer size to 64K

7.5.13 Data Compression
OpenSSH’s scp command can compress the data before sending it, with the –C
option, to speed up transfers: [7.4.14]

# OpenSSH
$ scp -C myfile server.example.com:

Tectia does not provide a similar option, but you can get around this and enable
compression with –o: [7.1.2.1]

$ scp -o "Compression yes" myfile server.example.com:

7.5.14 File Conversion
Tectia’s scp has several options for changing the files in transit. It can change the des-
tination filenames to all lowercase, with the --force-lower-case option:

# Tectia
$ scp --force-lower-case MyFile server.example.com:

The destination file on server.example.com will be named myfile rather thanMyFile.

Another Tectia transformation involves the treatment of lines in a text file. scp nor-
mally transfers files literally, as binary data. You can choose to treat the files spe-
cially as text files—that is, lines of ASCII characters terminated by carriage returns
and/or linefeeds—with the –a option. Unix, DOS, and Macintosh operating systems
use different standards for terminating lines of text, and scp can convert between
these standards.

# Tectia
$ scp -a my_text_file server.example.com:



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.5 Secure Copy with scp | 321

The above command assumes that the SSH client and server can accurately commu-
nicate and agree upon the text file standards. If not, you can use a more advanced
syntax for –a that specifies the line terminators as unix, dos, or mac. This is done by
placing src: (for the source machine) and dst: (for the destination machine) after the
–a option. Some examples:

# Tectia
$ scp -asrc:unix -adst:dos myfile server.example.com:  Convert from Unix to DOS/Windows
       format
$ scp -asrc:dos -adst:mac myfile server.example.com:   Convert from DOS/Windows to
       Macintosh format
$ scp -asrc:mac -adst:unix myfile server.example.com:  Convert from Macintosh to Unix
       format

7.5.15 Optimizations
Tectia’s scp does a few optimizations to avoid transferring unnecessary files and data.
Before coping a file, scp compares the file sizes. If they are different, the copy com-
mences, but if they are the same, scp computes an MD5 checksum of the source and
destination file. If the checksums are equal, the files are assumed to be identical and
no copy takes place, and you’ll see a message like this:

myfile: complete md5 match -> transfer skipped

If you always want your files copied, even if they are identical (i.e., have equal check-
sums), you can disable the MD5 test with the --checksum option, providing the value
no:

# Tectia
$ scp --checksum no myfile server.example.com:   Don’t compute checksums for files

Tectia’s scp performs similar checking on individual data blocks to determine
whether to transfer them or not. You can control this with the –W or --whole-file
options, providing the value yes or no:

# Tectia
$ scp --whole-file yes myfile server.example.com:    Always transfer whole files

7.5.16 Statistics Display
As scp copies files, it prints information about its progress, including statistics about
the file transfer. You can control this information with various options.

OpenSSH simply lets you suppress the statistics with its –q option:

# OpenSSH
$ scp -q myfile server.example.com:

Tectia can likewise suppress statistics with the –Q option (Tectia).

# Tectia
$ scp -Q myfile server.example.com:



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

322 | Chapter 7: Advanced Client Use

but permits more control with the --statistics option:

# Tectia
$ scp --statistics no myfile server.example.com:    Same as -Q option

$ scp --statistics simple myfile server.example.com:    Minimal statistics
/home/smith/myfile |    4B |    4B/s | TOC: 00:00:01

$ scp --statistics yes myfile server.example.com:     Full statistics
myfile                                     |    4B |    4B/s | TOC: 00:00:01 | 100%

7.5.17 Locating the ssh Executable
To copy files securely, scp invokes ssh internally. Therefore, scp needs to know where
the ssh executable resides on disk. Normally, the path to ssh is made known to scp at
compile time (by the compile-time flag --prefix), but you can specify the path man-
ually if you like. [4.3.5.1] For instance, you can test a new version of ssh with an old
version of scp. The command-line option –S specifies the path:

$ scp -S /usr/alternative/bin/ssh myfile server.example.com:

7.5.18 Getting Help
Both OpenSSH and Tectia scp will print a usage message briefly describing all its
options:

$ scp --help

You can get the same effect if you omit all arguments (OpenSSH) or use –h (Tectia).
Tectia will also print its version number on request:

# Tectia
$ scp --version
$ scp -V

7.5.19 For Internal Use Only
scp for OpenSSH has two undocumented options, –t and –f, for internal use. Most
likely you will never need to use them explicitly. They inform scp of the direction of
the copy: from the local to the remote machine, or from remote to local. The –t
option means copying to a remote machine and –f means copying from a remote
machine.

Whenever you invoke scp, it invisibly runs a second scp process on the remote host
that includes either –t or –f on its command line. You can see this if you run scp in
verbose mode. If copying from the local to the remote machine, you see:

$ scp -v myfile server.example.com:
Executing: host server.example.com, ..., command scp -v -t .
...



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.6 Secure, Interactive Copy with sftp | 323

On the other hand, if you copy from the remote to the local machine, you see:

$ scp -v server.example.com:myfile .
Executing: host server.example.com, ..., command scp -v -f .
...

Again, it’s likely you’ll never use these options, but they’re useful to know when
reading scp’s output in verbose mode.

7.5.20 Further Configuration
You can set any client configuration keywords for scp using the –o option, exactly as
for ssh. Additionally, OpenSSH lets you specify an alternative configuration file with
–F. [7.1.2.1]

7.6 Secure, Interactive Copy with sftp
The sftp client is an alternative to scp, though under the hood it does mostly the
same thing: it copies files between SSH client and server machines securely. The
main difference is that sftp is interactive, with an interface much like the old FTP
programs. [2.7.1]

7.6.1 Interactive Commands
To get started, run sftp with a remote hostname:

$ ftp server.example.com

or username and hostname:

$ sftp smith@server.example.com

You’ll get a prompt:

sftp>

and now may type commands to transfer files between your local and remote
machine. For example:

sftp> cd remote_directory Change to a particular remote directory
sftp> ls List the names of available files
sftp> get remotefile Download the file “remotefile”
sftp> get remotefile newname Same as above, but the local file will be renamed as “newname”
sftp> put localfile Upload the file “localfile”
sftp> put localfile othername Same as above, but the remote file will be renamed as ”othername”
sftp> quit Quit sftp

The basic use of sftp will feel familiar to anyone who’s used an FTP program. Use the
cd command to move around the remote filesystem (or lcd for the local filesystem), ls
to list the available remote files, and the get and put commands to download and



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

324 | Chapter 7: Advanced Client Use

upload files, respectively. Table 7-4 lists the interactive commands available during
an sftp connection.

Table 7-4. Interactive commands for sftp, grouped by function

Command Meaning Support

Basic commands

open Open a connection to the remote machinea Tectia

lopen Open a connection to the local machinea Tectia

close Close the connection to the remote machine Tectia

lclose Close the connection to the local machine Tectia

bye, quit Quit sftp OpenSSH, Tectia

exit Quit sftp OpenSSH

help Print a help message OpenSSH, Tectia

? Print a help message OpenSSH

version Display the SFTP protocol version OpenSSH

! Shell escape: execute a local shell or command OpenSSH

Directory commands

ls List files in a remote directory OpenSSH, Tectia

lls List files in a local directory OpenSSH, Tectia

cd Change the remote working directory OpenSSH, Tectia

lcd Change the local working directory OpenSSH, Tectia

pwd Print the name of the remote working directory OpenSSH, Tectia

lpwd Print the name of the local working directory OpenSSH, Tectia

mkdir Create a remote directory OpenSSH, Tectia

lmkdir Create a local directory OpenSSH, Tectia

rmdir Delete a remote directory OpenSSH, Tectia

lrmdir Delete a local directory Tectia

lsroots List virtual roots of a VShell SSH server [17.9] Tectia

File commands

get Download a file from the remote machine OpenSSH, Tectiab

mget Download multiple files by wildcard OpenSSH, Tectiab

put Upload a file to the remote machine OpenSSH, Tectiab

mput Upload multiple files to the remote machine OpenSSH, Tectiab

rename Rename a remote file OpenSSH, Tectia

lrename Rename a local file Tectia

ln, symlink Create a symbolic link on the remote machine OpenSSH

rm Delete a remote file OpenSSH, Tectia

lrm Delete a local file Tectia



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

7.7 Summary | 325

7.6.2 Command-Line Options
Virtually all command-line options available to scp will work for sftp. [7.5]

7.7 Summary
SSH clients are highly configurable through environment variables, command-line
options, and keywords in configuration files. Remember that command-line options
have the highest precedence, followed by your local client configuration file, and
finally the global client configuration file.

Client configuration files consist of sections that apply to individual hosts or groups
of hosts. When you run an SSH client, remember that multiple sections can apply to
it, according to the precedence rules we covered. If the same keyword is set multiple
times, the earliest (OpenSSH) or latest (Tectia) value is the winner.

When experimenting with client configuration, remember verbose mode. If you
experience unusual SSH behavior, your first instinct should be to add the –v option
and run the client again, watching the debug output for clues.

chmod Change the permissions on a remote file OpenSSH, Tectia

lchmod Change the permissions on the local file Tectia

chown Change the owner of a remote file OpenSSH

chgrp Change the group ownership of a remote file OpenSSH

Transfer settings

binary Transfer all files as binary Tectia

ascii Transfer all files as ASCII Tectia

auto Determine the file type using the “setext” list Tectia

getext Print the list of file extensions that indicate text files Tectia

setext Set the list of file extensions that indicate text files Tectia

lumask Set the umask for downloaded files OpenSSH

progress Toggle the display of a progress meter for file transfers OpenSSH

a Not needed unless you run Tectia sftp with no arguments, so no initial connection is established.
b On Tectia, get and mget are equivalent, and so are put and mput.

Table 7-4. Interactive commands for sftp, grouped by function (continued)

Command Meaning Support



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

326

Chapter 8CHAPTER 8

Per-Account Server Configuration

We’ve seen two techniques for controlling the SSH server’s behavior globally:
compile-time configuration (Chapter 4) and serverwide configuration (Chapter 5).
These techniques affect all incoming SSH connections to a given server machine.
Now it’s time to introduce a third, finer-grained method of server control: per-
account configuration.

As the name implies, per-account configuration controls the SSH server differently
for each user account on the server machine. For example, a user account sandy can
accept incoming SSH connections from any machine on the Internet, while rick per-
mits connections only from the domain verysafe.com, and fraidycat refuses key-
based connections. Each user configures his own account, using the facilities
highlighted in Figure 8-1, without needing special privileges or assistance from the
system administrator.

We have already seen a simple type of per-account configuration. A user may place a
public key into her authorization file, instructing the SSH server to permit logins to
her account by public-key authentication. But per-account configuration can go fur-
ther, becoming a powerful tool for access control and playing some fun tricks with
your account. Accepting or rejecting connections by particular keys or hosts is just
the beginning. For instance, you can make an incoming SSH connection run a pro-
gram of your choice, instead of the client’s choice. This is called a forced command,
and we’ll cover quite a few interesting applications.

Per-account configuration may control only incoming SSH connections to your
account. If you’re interested in configuring outgoing SSH connections by running
SSH clients, refer to Chapter 7.

8.1 Limits of This Technique
Per-account configuration can do many interesting things, but it has some restric-
tions that we will discuss:



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

8.1 Limits of This Technique | 327

• It can’t defeat security measures put in place by compile-time or serverwide con-
figuration. (Thank goodness.)

• It is most flexible and secure if you use public-key authentication. Hostbased
and password authentication provide a much narrower range of options.

8.1.1 Overriding Serverwide Settings
SSH settings in a user’s account may only restrict the authentication of incoming
connections. They can’t enable any SSH features that have been turned off more glo-
bally, and they can’t permit a forbidden user or host to authenticate. For example, if
your SSH server rejects all connections from the domain evil.org, you can’t override
this restriction within your account by per-account configuration.*

Figure 8-1. Per-account configuration (highlighted parts)

* There is one exception to this rule: hostbased authentication. A user’s ~/.shosts file may override a restriction
placed by the system administrator in /etc/shosts.equiv. [8.3]

SSH
Client

Command-line
options

Environment
variables

User’s client
configuration file

Global client
configuration file

Compile-time
flags

Key-related
files

Known hosts
databases

Configuration types

Command-line
options

Custom session
startup

Server-side
configuration file

Server-side
authorization files

Compile-time
flags

Target account’s
authorization files

TCP-wrappers
files

Kerberos
configuration files

PAM files

SSH
Server

Configuration types



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

328 | Chapter 8: Per-Account Server Configuration

This limitation makes sense. No end-user tool should be able to violate a server secu-
rity policy. However, end users should be (and are) allowed to restrict incoming con-
nections to their accounts.

A few features of the server may be overridden by per-account configuration. The
most notable one is the server’s idle timeout, which may be extended beyond the
serverwide setting. But such features can’t coerce the server to accept a connection it
has been globally configured to reject.

If you are an end user, and per-account configuration doesn’t provide enough flexi-
bility, you can run your own instance of the SSH server, which you may configure to
your heart’s content. [5.1.2] Be cautious, though, since this is seldom the right thing
to do. The restrictions you’re trying to circumvent are part of the security policy
defined for the machine by its administrators, and you shouldn’t run a program that
flouts this policy just because you can. If the machine in question is under your
administrative control, simply configure the main SSH server as you wish. If not,
then installing and running your own sshd might violate your usage agreement and/
or certainly annoy your sysadmin. And that’s never a wise thing to do.

8.1.2 Authentication Issues
To make the best use of per-account configuration, use public-key authentication.
Password authentication is too limited, since the only way to control access is with
the password itself. Hostbased authentication permits a small amount of flexibility,
but not nearly as much as public-key authentication.

If you’re still stuck in the password-authentication dark ages, let this be another rea-
son to switch to public keys. Even though passwords and public-key passphrases
might seem similar (you type a secret word, and voilà, you’re logged in), public keys
are far more flexible for permitting or denying access to your account. Read on and
learn how.

8.2 Public-Key-Based Configuration
To set up public-key authentication in your account on an SSH server machine, you
create an authorization file, typically called authorized_keys (OpenSSH) or
authorization (Tectia), and list the keys that provide access to your account. [2.4]
Well, we’ve been keeping a secret. Your authorization file can contain not only keys,
but also other keywords or options to control the SSH server in powerful ways. We
will discuss:

• The full format of an authorization file

• Forced commands for limiting the set of programs that the client may invoke on
the server

• Restricting incoming connections from particular hosts



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

8.2 Public-Key-Based Configuration | 329

• Setting environment variables for remote programs

• Setting an idle timeout so that clients will be forcibly disconnected if they aren’t
sending data

• Disabling or placing limits on certain features of the incoming SSH connection,
such as port forwarding and tty allocation

As we demonstrate how to modify your authorization file, remember that the file is
consulted by the SSH server only at authentication time. Therefore, if you change
your authorization file, only new connections will use the new information. Any
existing connections are already authenticated and won’t be affected by the change.

Also remember that an incoming connection request won’t reach your authorization
file if the SSH server rejects it for other reasons, namely, failing to satisfy the server-
wide configuration. If a change to your authorization file doesn’t seem to be having
an effect, make sure it doesn’t conflict with a (more powerful) serverwide configura-
tion setting.

8.2.1 OpenSSH Authorization Files
Your OpenSSH authorization file, ~/.ssh/authorized_keys, is a secure doorway into
your account via SSH. Each line of the file contains a public key and means the fol-
lowing: “I give permission for SSH clients to access my account, in a particular way,
using this key as authentication.” Notice the words “in a particular way.” Until now,
public keys have provided unlimited access to an account. Now we’ll see the rest of
the story.

Each line may contain, in order:

1. A set of authorization options for the key (optional)

2. A string indicating the key type: ssh-dss for a DSA key, or ssh-rsa for an RSA
key (required)

3. The public key, represented as a long string (required)

4. A descriptive comment (optional); this can be any text, such as “Bob’s public
key” or “My home PC using SecureCRT 3.1”

Here’s an example:

from="192.168.10.1" ssh-dss AAAAB3NzaC1kc3MA... My OpenSSH key

It contains authorization options (from="192.168.10.1"), the key type (ssh-dss), the
public key itself (abbreviated here with an ellipsis), and the final comment (“My
OpenSSH key”).



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

330 | Chapter 8: Per-Account Server Configuration

Public keys are generated by ssh-keygen in .pub files, you may recall, and you typi-
cally insert them into authorized_keys by copying. [2.4.3] Options, however, are usu-
ally typed into authorized_keys with a text editor.*

An option may take two forms. It may be a keyword, such as:

# OpenSSH: Turn off port forwarding
no-port-forwarding

or it may be a keyword followed by an equals sign and a value, such as:

# OpenSSH: Allow connections only from myhost
from=myhost

Multiple options may be given together, separated by commas, with no whitespace
between the options:

# OpenSSH
no-port-forwarding,from=myhost

If you mistakenly include whitespace:

# THIS IS ILLEGAL: whitespace between the options
no-port-forwarding, from=myhost

your connection by this key won’t work properly. If you connect with debugging
turned on (ssh -v), you will see a “bad options” message from the SSH server.

Many SSH users aren’t aware of options or neglect to use them. This is a pity because
options provide extra security and convenience. The more you know about the cli-
ents that access your account, the more options you can use to control that access.

8.2.2 Tectia Authorization Files
A Tectia authorization file, typically found in ~/.ssh2/authorization,† has a different
format than OpenSSH’s. Instead of public keys, it contains keywords and values,
much like other SSH configuration files we’ve seen. Each line of the file contains one
keyword followed by its value. The most commonly used keywords are Key and
Options.

Public keys are indicated using the Key keyword. Key is followed by whitespace, and
then the name of a file containing a public key. Relative filenames refer to files in
~/.ssh2. For example:

# Tectia
Key myself.pub

* When editing authorized_keys, be sure to use a text editor capable of handling long lines. The public keymay
be several hundred characters long. Some text editors can’t display long lines, won’t edit them properly,
automatically insert line breaks, or wreak other sorts of havoc upon your nice public keys. (Aaargh. Don’t
get us started talking about brain-damaged text editors.) Use a modern editor, and turn off automatic line
breaking. We use GNU Emacs.

† The name can be changed with the keyword AuthorizationFile in the serverwide configuration file. [5.3.1.6]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

8.2 Public-Key-Based Configuration | 331

means that an SSH-2 public key is contained in ~/.ssh2/myself.pub. Your
authorization file must contain at least one Key line for public-key authentication to
occur.

Each Key line may optionally be followed immediately by an Options keyword and its
value, which is a comma-separated list of options:

# Tectia
Key myself.pub
Options no-port-forwarding, no-x11-forwarding, command="mycommand"

One common option is command, which specifies a forced command, i.e., a command
to be executed whenever the key immediately above is used for access. We discuss
forced commands later in great detail. [8.2.3] For now, all you need to know is this:
a forced command begins with the keyword Options followed by command and its
quoted value, a shell command line. For example:

# Tectia
Key somekey.pub
Options command="/bin/echo All logins are disabled"

Remember that an Options line by itself is an error. The following examples are
illegal:

# Tectia
# THIS IS ILLEGAL: no Key line
Options command="/bin/echo This line is bad."
# THIS IS ILLEGAL: no Key line precedes the second Options
Key somekey.pub
Options command="/bin/echo All logins are disabled"
Options command="/bin/echo This line is bad."

8.2.2.1 Tectia PGP key authentication

Tectia supports authentication by PGP key. [6.5] Your authorization file may also
include PgpPublicKeyFile, PgpKeyName, PgpKeyFingerprint, and PgpKeyId lines. An
Options line may follow PgpKeyName, PgpKeyFingerprint, or PgpKeyId, just as it may
follow Key.

# Tectia
PgpKeyName my-key
Options command="/bin/echo PGP authentication was detected"

8.2.3 Forced Commands
Ordinarily, an SSH connection invokes a remote command chosen by the client:

# Invoke a remote login shell
$ ssh server.example.com
# Invoke a remote directory listing
$ ssh server.example.com /bin/ls



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

332 | Chapter 8: Per-Account Server Configuration

A forced command transfers this control from the client to the server. Instead of the
client deciding which command will run, the owner of the server account decides. In
Figure 8-2, the client has requested the command /bin/ls, but the server-side forced
command runs /bin/who instead.

Forced commands can be quite useful. Suppose you want to give your assistant
access to your account, but only to read your email. You can associate a forced com-
mand with your assistant’s SSH key to run only your email program and nothing
else.

In OpenSSH, a forced command may be specified in authorized_keys with the com-
mand option preceding the desired key. For example, to run the email program pine
whenever your assistant connects:

# OpenSSH
command="/usr/bin/pine" ...secretary's public key...

In Tectia, a forced command appears on the line immediately following the desired
Key, using the command option. The previous example would be represented like so:

# Tectia
Key secretary.pub
Options command "/usr/bin/pine"

You may associate, at most, one forced command with a given key. To associate
multiple commands with a key, put them into a script on the remote machine and
run the script as the forced command. (We will demonstrate this. [8.2.3.3])

Figure 8-2. Forced command substituting /bin/who for /bin/ls

SSH
Client

SSH
Server

Client machine

run /bin/ls via key X

output of /bin/who instead

Server machine

.

.

.

.
forced command for key X = /bin/who
.
.

authorization file



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

8.2 Public-Key-Based Configuration | 333

8.2.3.1 Security issues

Before we begin in-depth examples of forced commands, let’s discuss security. At
first glance, a forced command seems at least as secure as a “normal” SSH connec-
tion that invokes a shell. This is because a shell can invoke any program, while a
forced command can invoke only one program, the forced command itself. If a
forced command is /usr/bin/pine, only /usr/bin/pine can be invoked.

Nevertheless, there’s a caveat. A forced command, carelessly used, may lull you into a
sense of false security, believing that you have limited the client’s capabilities when
you haven’t. This occurs if the forced command unintentionally permits a shell escape,
i.e., a way to invoke a shell from within the forced command. Using a shell escape, a
client can invoke any program available to a shell. Many Unix programs have shell
escapes, such as text editors (vi, Emacs), pagers (more, less), programs that invoke
pagers (man), news readers (rn), mail readers (such as Pine in the previous example!),
and debuggers (gdb). Interactive programs are the most common culprits, but even
noninteractive commands may run shell commands (find, xargs, etc.).

When you define a forced command, you probably don’t want its key used for arbi-
trary shell commands. Therefore, we propose the following safety rules for deciding
whether a program is appropriate as a forced command:

• Avoid programs that have shell escapes. Read their documentation carefully. If
you still aren’t sure, get help.

• Avoid compilers, interpreters, or other programs that let the user generate and
run arbitrary executable code.

• Treat very carefully any program that creates or deletes files on disk in user-
specified locations. This includes not only applications (word processors, graph-
ics programs, etc.), but also command-line utilities that move or copy files (cp,
mv, rm, scp, ftp, etc.).

• Avoid programs with their setuid or setgid bits set, particularly setuid root.

• If using a script as a forced command, follow traditional rules of safe script writ-
ing. Within the script, limit the search path to relevant directories (omitting “.”),
invoke all programs by absolute path, don’t blindly execute user-supplied strings
as commands, and don’t make the script setuid anything.* And again, don’t
invoke any program that has a shell escape.

• Consider using a restricted shell to limit what the incoming client can do. For
example, the restricted shell /usr/lib/rsh (not to be confused with the r-command
also called “rsh”) can limit the remote directories the client can enter.

• Associate the forced command with a separate, dedicated SSH key, not the one
used for your logins, so that you can conveniently disable the key without affect-
ing your login capability.

* Modern Unix implementations often ignore the setuid bit on scripts for security reasons.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

334 | Chapter 8: Per-Account Server Configuration

• Disable unnecessary SSH features using other options we cover later. Under
OpenSSH, you may disable port forwarding with no-port-forwarding, X for-
warding with no-x11-forwarding, agent forwarding with no-agent-forwarding,
and tty allocation using no-pty.

Any program may be used as a forced command, but some may be risky choices. In
the examples that follow, we cover several of these issues as they’re encountered.

8.2.3.2 Rejecting connections with a custom message

Suppose you’ve permitted a friend to access your account by SSH, but now you’ve
decided to disable the access. You can simply remove his key from your authoriza-
tion file, but here’s something fancier. You can define a forced command to print a
custom message for your friend, indicating that his access has been disabled. For
example:

# OpenSSH
command="/bin/echo Sorry, buddy, but you've been terminated!" ...key...

# Tectia
Key friend.pub
Options command="/bin/echo Sorry, buddy, but you've been terminated!"

Any incoming SSH connection that successfully authenticates with this key causes
the following message to be displayed on standard output:

Sorry, buddy, but you've been terminated!

and then the connection closes. If you’d like to print a longer message, which might
be awkward to include in your authorization file, you can store it in a separate file
(say, ~/go.away) and display it using an appropriate program (e.g., cat):

# OpenSSH
command="/bin/cat $HOME/go.away" ...key...

# Tectia
Key friend.pub
Options command="/bin/cat $HOME/go.away"

Since the message is long, you might be tempted to display it one screenful at a time
with a pager program such as more or less. Don’t do it!

# OpenSSH: Don't do this!
command="/usr/bin/less $HOME/go.away" ...key...

This forced command opens an unwanted hole into your account: the less program,
like most Unix pager programs, has a shell escape. Instead of restricting access to
your account, this forced command permits unlimited access.*

* The less program has a secure mode that disables shell escapes. See the manpage for less about the environ-
ment variable LESSSECURE.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

8.2 Public-Key-Based Configuration | 335

8.2.3.3 Displaying a command menu

Suppose you want to provide limited access to your account, permitting the incom-
ing SSH client to invoke only a few, specific programs. Forced commands can
accomplish this. For instance, you can write a shell script that permits a known set of
programs to be executed and then run the script as a forced command. A sample
script, shown in Example 8-1, permits only three programs to be chosen from a
menu.

When someone accesses your account by public key and invokes the forced com-
mand, the script displays:

Welcome!
Your choices are:
 1       See today's date

Example 8-1. Menu script

#!/bin/sh
/bin/echo "Welcome!
Your choices are:

1       See today's date
2       See who's logged in
3       See current processes
q       Quit"

/bin/echo "Your choice: \c"
read ans
while [ "$ans" != "q" ]
do
  case "$ans" in
    1)
        /bin/date
        ;;
    2)
        /bin/who
        ;;
    3)
        /usr/ucb/w
        ;;
    q)
        /bin/echo "Goodbye"
        exit 0
        ;;
    *)
        /bin/echo "Invalid choice '$ans': please try again"
        ;;
  esac
  /bin/echo "Your choice: \c"
  read ans
done
exit 0



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

336 | Chapter 8: Per-Account Server Configuration

 2       See who's logged in
 3       See current processes
 q       Quit

Your choice:

The user may then type 1, 2, 3, or q to run the associated program. Any other input
is ignored, so no other programs can be executed.

Such scripts must be written carefully to avoid security holes. In particular, none of
the permitted programs should provide a means to escape to a shell, or else the user
may execute any command in your account.

8.2.3.4 Examining the client’s original command

As we’ve seen, a forced command gets substituted for any other command the SSH
client might send. If an SSH client attempts to invoke the program ps:

$ ssh server.example.com ps

but a forced command is set up to execute “/bin/who” instead:

# OpenSSH
command="/bin/who" ...key...

# Tectia
key mykey.pub
Options command="/bin/who"

then ps is ignored and /bin/who runs instead. Nevertheless, the SSH server does read
the original command string sent by the client and stores it in an environment vari-
able. For OpenSSH, the environment variable is SSH_ORIGINAL_COMMAND, and for Tec-
tia, it’s SSH2_ORIGINAL_COMMAND. So, in our example, the value of SSH_ORIGINAL_

COMMAND would be ps.

A quick way to see these variables in action is to print their values with forced com-
mands. For OpenSSH, create a forced command like the following:

# OpenSSH
command="/bin/echo You tried to invoke $SSH_ORIGINAL_COMMAND" ...key...

Then connect with an SSH client, supplying a remote command (which won’t be
executed), such as:

$ ssh server.example.com cat /etc/passwd

Instead of executing cat, the OpenSSH server simply prints:

You tried to invoke cat /etc/passwd

and exits. Similarly, for Tectia, you can set up a forced command like this:

# Tectia
Key mykey.pub
Options command="/bin/echo You tried to invoke $SSH2_ORIGINAL_COMMAND"



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

8.2 Public-Key-Based Configuration | 337

Then, a client command like:

$ ssh server.example.com cat /etc/passwd

produces:

You tried to invoke cat /etc/passwd

8.2.3.5 Restricting a client’s original command

Let’s try a slightly more complex example using the environment variable SSH_

ORIGINAL_COMMAND. We create a forced command that examines the environment vari-
able and turns a requested command into another of our choice. For example, sup-
pose you want to permit a friend to invoke remote commands in your account,
except for the rm (remove file) command. In other words, a command like:

$ ssh server.example.com rm myfile

is rejected. Here’s a script that checks for the presence of rm in the command string
and, if present, rejects the command:

#!/bin/sh
# OpenSSH.  For Tectia, use $SSH2_ORIGINAL_COMMAND.
#
case "$SSH_ORIGINAL_COMMAND" in
  *rm*)
    echo "Sorry, rejected"
    ;;
  *)
    $SSH_ORIGINAL_COMMAND
    ;;
esac

Save this script in ~/rm-checker, and define a forced command to use it:

# OpenSSH
command="$HOME/rm-checker" ...key...

# Tectia
Key mykey.pub
Options command="$HOME/rm-checker"

Our script is just an example: it isn’t secure. It can be easily bypassed by a clever
command sequence to remove a file:

$ ssh server.example.com '/bin/ln -s /bin/r? ./killer && ./killer myfile'

which creates a link to /bin/rm with a different name (killer) and then performs the
removal. Nevertheless, the concept is still valid: you can examine SSH_ORIGINAL_

COMMAND to select another command to execute instead.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

338 | Chapter 8: Per-Account Server Configuration

8.2.3.6 Logging a client’s original command

Another cool use of the “original command” environment variables is to keep a log
of commands that are run using a given key. For example:

# OpenSSH
command="log-and-run" ...key...

# Tectia
Key mykey.pub
Options command="log-and-run"

where log-and-run is the following script. It appends a line to a log file, containing a
timestamp and the command attempted:

#!/bin/sh
# OpenSSH.  For Tectia, use $SSH2_ORIGINAL_COMMAND.
if [ -n "$SSH_ORIGINAL_COMMAND" ]
then
  echo "`/bin/date`: $SSH_ORIGINAL_COMMAND" >> $HOME/ssh-command-log
  exec $SSH_ORIGINAL_COMMAND
fi

8.2.3.7 Forced commands and secure copy (scp)

We’ve seen what happens when ssh encounters a key with a forced command. But
what does scp do in this situation? Does the forced command run, or does the copy
operation take place?

In this case, the forced command executes, and the original operation (file copy) is
ignored. Depending on your needs, this behavior might be good or bad. In general,
we do not recommend using scp with any key that has a forced command. Instead,
use two keys, one for ordinary logins and file copying and the other for the forced
command.

Now that we’ve thoroughly examined forced commands, let’s move on to other fea-
tures of per-account configuration.

8.2.4 Restricting Access by Host or Domain
Public-key authentication requires two pieces of information: the corresponding pri-
vate key and its passphrase (if any). Without either piece, authentication can’t suc-
ceed. Per-account configuration lets you add a third requirement for additional
security: a restriction on the client’s hostname or IP address.

8.2.4.1 OpenSSH host access control

In OpenSSH, host access control is accomplished in the authorized_keys file with the
from option. For example:

# OpenSSH
from="client.example.com" ...key...



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

8.2 Public-Key-Based Configuration | 339

enforces that any SSH connection must come from client.example.com, or else it is
rejected. Therefore, if your private-key file is somehow stolen, and your passphrase
cracked, an attacker might still be stymied if he can’t connect from the authorized
client machine.

If the concept of “from” sounds familiar, you’ve got a good memory: it’s the same
access control provided by the AllowUsers keyword for serverwide configuration.
[5.5.1] The authorized_keys option, however, is set by you within your account
and applies to a single key, while AllowUsers is specified by the system administra-
tor and applies to all connections to an account. Here’s an example to demon-
strate the difference. Suppose you want to permit connections from remote.org to
enter the benjamin account. As system administrator, you can configure this
within /etc/ssh/sshd_config:

# OpenSSH
AllowUsers benjamin@remote.org

Using per-account configuration, the user benjamin can configure the identical set-
ting within his authorized_keys file, for a particular key only:

# OpenSSH
# File ~benjamin/.ssh/authorized_keys
from="remote.org" ...key...

Of course, the serverwide setting takes precedence. If the system administrator had
denied this access using the DenyUsers keyword:

# OpenSSH
DenyUsers benjamin@remote.org

then user benjamin can’t override this restriction using the from option in
authorized_keys.

Just like AllowUsers, the from option can use the wildcard characters *, matching any
string, and ?, matching any one character:

from="*.someplace.org" Matches any host in the someplace.org domain
from="som?pla?e.org" Matches somXplaYe.org but not foo.someXplaYe.org or foo.somplace.org

It may also match the client IP address, with or without wildcards:

from="192.220.18.5"
from="192.2??.18.*"

There can also be multiple patterns, this time separated by commas (AllowUsers
employs spaces). No whitespace is allowed. You may also negate a pattern by prefix-
ing it with an exclamation point (!). The exact matching rules are: every pattern in
the list is compared to either the client’s canonical hostname or its IP address. If the
pattern contains only numerals, dots, and wildcards, it is matched against the



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

340 | Chapter 8: Per-Account Server Configuration

address, otherwise, it is matched against the hostname.* The connection is accepted
if and only if the client matches at least one positive pattern and no negated pat-
terns. So for example, the following rule denies connections from saruman.ring.org,
allows connections from other hosts in the domain ring.org, and denies everything
else:

from="!saruman.ring.org,*.ring.org"

while this one again denies saruman.ring.org but allows all other clients:

from="!saruman.ring.org,*"

Remember that access control by hostname may be problematic, due to issues with
name resolution and security. [3.4.3.6] Fortunately, the from option is just an auxil-
iary feature of OpenSSH public-key authentication, which provides stronger security
than would an entirely hostname-based solution.

8.2.4.2 Tectia host access control

Host access control in Tectia is accomplished in the authorization file with the allow-
from and deny-from options. For example, to permit connections to your account
from the example.com domain:

# ~/.ssh2/authorization
Key mykey.pub
Options allow-from="example.com"

or to deny them from very.evil.org:

# ~/.ssh2/authorization
Key otherkey.pub
Options deny-from="very.evil.org"

These options follow the same rules as the AllowHosts and DenyHosts server configu-
ration keywords, respectively. [5.5.3] However, allow-from and deny-from control
access per key, rather than serverwide.

8.2.5 Setting Environment Variables
The environment option instructs the SSH server to set an environment variable when
a client connects via the given key. For example, the OpenSSH authorized_keys line:

# OpenSSH
environment="EDITOR=emacs" ...key...

or Tectia authorization file option:

# Tectia
Key mykey.pub
Options environment="editor=emacs"

* OpenSSH unfortunately doesn’t let you specify arbitrary IP networks using an address and mask, nor by
“address / number of bits.” libwrap does [9.5], but its restrictions apply to all connections, not on a per-key
basis.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

8.2 Public-Key-Based Configuration | 341

sets the environment variable EDITOR to the value emacs, thereby setting the client’s
default editor for the login session. The syntax following environment= is a quoted
string containing a variable, an equals sign, and a value. All characters between the
quotes are significant, i.e., the value may contain whitespace:

# OpenSSH
environment="MYVARIABLE=this value has whitespace in it" ...key...

# Tectia
Key mykey.pub
Options environment="MYVARIABLE=this value has whitespace in it"

or even a double quote, if you escape it with a forward slash:

# OpenSSH
environment="MYVARIABLE=I have a quote\" in my middle" ...key...

# Tectia
Key mykey.pub
Options environment="MYVARIABLE=I have a quote\" in my middle"

Also, a single key may have multiple environment variables set:

# OpenSSH
environment="EDITOR=emacs",environment="MYVARIABLE=26" ...key...

# Tectia
Key mykey.pub
environment="EDITOR=emacs",environment="MYVARIABLE=26"

Why set an environment variable for a key? This feature lets you tailor your account
to respond differently based on which key is used. For example, suppose you create
two keys, each of which sets a different value for an environment variable—say,
SPECIAL:

# OpenSSH
environment="SPECIAL=1" ...key...
environment="SPECIAL=2" ...key...

# Tectia
Key key1.pub
Options environment="SPECIAL=1"
Key key2.pub
Options environment="SPECIAL=2"

Now, in your account’s shell configuration file, you can examine $SPECIAL and trig-
ger actions specific to each key:

# In your .login file
switch ($SPECIAL)
  case 1:
    echo 'Hello Bob!'
    set prompt = 'bob> '
    breaksw
  case 2:



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

342 | Chapter 8: Per-Account Server Configuration

    echo 'Hello Jane!'
    set prompt = jane> '
    source ~/.janerc
    breaksw
endsw

Here, we print a custom welcome message for each key user, set an appropriate shell
prompt, and in Jane’s case, invoke a custom initialization script, ~/.janerc. Thus, the
environment option provides a convenient communication channel between a partic-
ular key and the remote shell.

8.2.5.1 Example: CVS and $LOGNAME

As a more advanced example of the environment option, suppose a team of open
source software developers around the Internet is developing a computer program.
The team decides to practice good software engineering and store its code with CVS,
the Concurrent Versions System, a popular version control tool. Lacking the funds to
set up a server machine, the team places the CVS repository into the computer
account of one of the team members, Benjamin, since he has lots of available disk
space. Benjamin’s account is on the SSH server machine cvs.repo.com.

The other developers do not have accounts on cvs.repo.com, so Benjamin places their
public keys into his authorized_keys file so that they can do check-ins. Now there’s a
problem. When a developer changes a file and checks the new version into the repos-
itory, a log entry is made by CVS, identifying the author of the change. But everyone
is connecting through the benjamin account, so CVS always identifies the author as
“benjamin,” no matter who checked in the changes. This is bad from a software
engineering standpoint: the author of each change should be clearly identified.*

You can eliminate this problem by modifying Benjamin’s file, preceding each devel-
oper’s key with an environment option. CVS examines the LOGNAME environment vari-
able to get the author’s name, so you set LOGNAME differently for each developer’s key:

# OpenSSH
environment="LOGNAME=dan" ...key...
environment="LOGNAME=richard" ...key...
...

# Tectia
Key dan.pub
Options environment="LOGNAME=dan"
Key richard.pub
Options environment="LOGNAME=richard"
...

* In an industrial setting, each developer would have an account on the CVS repository machine, so the prob-
lem wouldn’t exist.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

8.2 Public-Key-Based Configuration | 343

Now, when a given key is used for a CVS check-in, CVS identifies the author of the
change by the associated, unique LOGNAME value. Problem solved!*

8.2.6 Setting Idle Timeout
Tectia’s idle-timeout option tells the SSH server to disconnect a session that has
been idle for a certain time limit. This is just like Tectia’s IdleTimeout keyword for
serverwide configuration but is set by you within your account, instead of by the sys-
tem administrator. [5.3.3.5]

Suppose you let your friend Jamie access your account by SSH. Jamie works in an
untrusted environment, however, and you are worried that he might walk away from
his computer while connected to your account, and someone else might come by and
use his session. One way to reduce the risk is to set an idle timeout on Jamie’s key,
automatically disconnecting the SSH session after a given period of idle time. If the
client stops sending output for a while, Jamie has probably walked away, and the
session is terminated.

Timeouts are set with the idle-timeout option. For example, to set the idle timeout
to 60 seconds:

# Tectia
Key mykey.pub
Options idle-timeout=60s

idle-timeout uses the same notation for time as the IdleTimeout server keyword.
[5.3.3.5] It also overrides any serverwide value set with the IdleTimeout keyword.
For example, if the serverwide idle timeout is five minutes:

# Tectia
IdleTimeout 5m

but your authorization file sets it to 10 minutes for your account:

# Tectia
Key mykey.pub
Options idle-timeout=10m

then any connection using this key has an idle timeout of 10 minutes, regardless of
the serverwide setting.

This feature has more uses than disconnecting absent typists. Suppose you’re using
an SSH key for an automated process, such as backups. An idle timeout value kills
the process automatically if it hangs due to an error.

* Incidentally, the authors used this technique while collaborating on this book.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

344 | Chapter 8: Per-Account Server Configuration

8.2.7 Disabling or Limiting Forwarding
Although you’re permitting SSH access to your account, you might not want your
account to be used as a springboard to other machines by port forwarding. [9.2] To
prevent this, use the no-port-forwarding option for that key:

# OpenSSH
no-port-forwarding ...key...

# Tectia
Key mykey.pub
Options no-port-forwarding

Rather than disable forwarding, OpenSSH can place limits on it with the permitopen
option for a key. For example, to restrict port forwarding to local port 12345 con-
necting to remote host server.example.com:

# OpenSSH
permitopen="server.example.com:12345" ...key...

permitopen may have multiple values separated by commas. The syntax is hostname:
port for IPv4 addresses and hostname/port for IPv6 addresses.

X forwarding [9.4] can be prohibited per key with the no-x11-forwarding option:

# OpenSSH
no-x11-forwarding ...key...

# Tectia
Key mykey.pub
Options no-x11-forwarding

Agent forwarding can also be disabled per key, if you don’t want remote users to
travel through your account and onto other computers using the given key. [6.3.5]
This is done with the no-agent-forwarding option:

# OpenSSH
no-agent-forwarding ...key...

# Tectia
Options no-agent-forwarding

These aren’t strong restrictions. As long as you allow shell access, just
about anything can be done over the connection. The user need
employ only a pair of custom programs that talk to each other across
the connection and directly implement port forwarding, agent for-
warding, or anything else you thought you were preventing. To be
more than just a reminder or mild deterrent, these options must be
used together with carefully restricted access on the server side, such
as forced commands or a restricted shell on the target account.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

8.2 Public-Key-Based Configuration | 345

8.2.8 Disabling TTY Allocation
Normally, when you log in via SSH, the server allocates a pseudo-terminal (hence-
forth, tty) for the login session: [7.4.6.5]

# A tty is allocated for this client
$ ssh server.example.com

The server even sets an environment variable, SSH_TTY for OpenSSH or SSH2_TTY for
Tectia, with the name of the tty allocated. For example:

# After logging in via OpenSSH
$ echo $SSH_TTY Use $SSH2_TTY for Tectia
/dev/pts/1

When you run a noninteractive command, however, the SSH server doesn’t allocate
a tty to set the environment variable, e.g.:

# OpenSSH: No tty is allocated
$ ssh server.example.com /bin/ls

Suppose you want to give someone SSH access for invoking noninteractive com-
mands, but not for running an interactive login session. You’ve seen how forced
commands can limit access to a particular program, but as an added safety precau-
tion, you can also disable tty allocation with the no-pty option:

# OpenSSH
no-pty ...key...

# Tectia
Key mykey.pub
Options no-pty

Noninteractive commands will now work normally, but requests for interactive ses-
sions are refused by the SSH server. If you try to establish an interactive session, your
client may appear to hang.* Run it in verbose mode to see the reason:

# OpenSSH output
debug1: Remote: Pty allocation disabled.

Just for fun, let’s observe the effect of no-pty on the environment variable with a sim-
ple experiment. Set up a public key and precede it with the following forced
command:

# OpenSSH
command="echo SSH_TTY is [$SSH_TTY]" ...key...

# Tectia
Key mykey.pub
Options command="echo SSH2_TTY is [$SSH2_TTY]"

* If the connection hangs and your client appears to be frozen, type the ssh escape character followed by a
period (usually ~. unless you’ve overridden it) to close the connection.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

346 | Chapter 8: Per-Account Server Configuration

Now try connecting noninteractively and interactively, and watch the output. The
interactive command assigns a value to the environment variable, but the noninterac-
tive one doesn’t:

$ ssh server.example.com
SSH_TTY is [/dev/pts/2] For Tectia it would be SSH2_TTY

$ ssh server.example.com anything
SSH_TTY is [] For Tectia it would be SSH2_TTY

Next, add the no-pty option:

# OpenSSH
no-pty,command="echo SSH_TTY is [$SSH_TTY]" ...key...

# Tectia
Key mykey.pub
no-pty,command="echo SSH_TTY is [$SSH_TTY]"

and try connecting interactively. The connection (properly) fails and the environ-
ment variable has no value:

$ ssh server.example.com
SSH_TTY is [] For Tectia it would be SSH2_TTY
Connection to server.example.com closed.

Even if a client requests a tty specifically (with ssh -t), the no-pty option forbids its
allocation. For instance, if you try running the Emacs editor over the SSH connection:

$ ssh -t server.example.com emacs

Emacs will fail to run or appear to hang.

8.3 Hostbased Access Control
A limited type of per-account configuration is possible in OpenSSH if you use host-
based authentication rather than public-key authentication. Specifically, you can per-
mit SSH access to your account based on the client’s remote username and hostname
via the system files /etc/shosts.equiv and /etc/hosts.equiv, and personal files ~/.rhosts
and ~/.shosts. A line like:

+client.example.com jones

permits hostbased SSH access by the user jones@client.example.com. Since we’ve
already covered the details of these four files, we won’t repeat the information in this
chapter. [3.6.2]

Per-account configuration with hostbased authentication is similar to using host
access control in your OpenSSH authorized_keys or Tectia authorization file. [8.2.4]
Both methods may restrict SSH connections from particular hosts. The differences
are shown in this table:



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

8.3 Hostbased Access Control | 347

To use hostbased authentication for access control, all of the following conditions
must be true:

• Hostbased authentication is enabled in the server, both at compile time and in
the serverwide configuration file.

• Your desired client hosts aren’t specifically excluded by serverwide configura-
tion, e.g., by AllowHosts and DenyHosts.

• For OpenSSH, the server configuration keyword EnableSSHKeysign must be set to
yes.*

Despite its capabilities, hostbased authentication is more complex than one might
expect. For example, if your carefully crafted .shosts file denies access to
sandy@trusted.example.com:

# ~/.shosts
-trusted.example.com sandy

but your .rhosts file inadvertently permits access:

# ~/.rhosts
+trusted.example.com

then sandy will have SSH access to your account. Worse, even if you don’t have a
~/.rhosts file, the system files /etc/hosts.equiv and /etc/shosts.equiv can still punch a
hostbased security hole into your account against your wishes. Unfortunately,
using per-account configuration, there’s no way to prevent this problem. Only
compile-time or serverwide configuration can disable hostbased authentication.

Because of these issues and other serious, inherent weaknesses, we recommend
against using the weak form of hostbased authentication, Rhosts authentication, as a
form of per-account configuration. (By default it is disabled, and we approve.) If you
require the features of hostbased authentication, we recommend the stronger form,
called RhostsRSAAuthentication (OpenSSH) or hostbased (Tectia), which adds cryp-
tographic verification of host keys.

Feature Hostbased access Public-key host access

Authenticate by hostname Yes Yes

Authenticate by IP address Yes Yes

Authenticate by remote username Yes No

Wildcards in hostnames and IP No Yes

Passphrase required for logins No Yes

Use other public-key features No Yes

Security Less More

* In olden days, the ssh executable needed to be setuid root.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

348 | Chapter 8: Per-Account Server Configuration

8.4 The User rc File
The shell script /etc/ssh/sshrc is invoked by the SSH server for each incoming SSH
connection. [5.6.3] You may define a similar script in your account, ~/.ssh/rc
(OpenSSH) or ~/.ssh2/rc (Tectia), to be invoked for every SSH connection to your
account. If this file exists, /etc/ssh/sshrc isn’t run.

The SSH rc file is much like a shell startup file (e.g., ~/.profile or ~/.cshrc), but it exe-
cutes only when your account is accessed by SSH. It is run for both interactive logins
and remote commands. Place any commands in this script that you would like exe-
cuted when your account is accessed by SSH, rather than an ordinary login. For
example, you can run and load your ssh-agent in this file:

# ~/.ssh/rc, assuming your login shell is the C shell
if ( ! $?SSH_AUTH_SOCK  ) then
  eval `ssh-agent`
  /usr/bin/tty | grep 'not a tty' > /dev/null
  if ( ! $status ) then
    ssh-add
  endif
endif

Like /etc/ssh/sshrc, your personal rc file is executed just before the shell or remote
command requested by the incoming connection. OpenSSH always uses the Bourne
shell (/bin/sh) for ~/.ssh/rc, as it does for /etc/ssh/sshrc. In contrast, Tectia uses your
login shell for ~/.ssh2/rc, unlike /etc/ssh2/sshrc.

8.5 Summary
Per-account configuration lets you instruct the SSH server to treat your account differ-
ently. Using public-key authentication, you can permit or restrict connections based
on a client’s key, hostname, or IP address. With forced commands, you can limit the
set of programs that a client may run in your account. You can also disable unwanted
features of SSH, such as port forwarding, agent forwarding, and tty allocation.

Using hostbased authentication, you can permit or restrict particular hosts or
remote users from accessing your account. This uses the file ~/.shosts or (less opti-
mally) ~/.rhosts. However, the mechanism is less secure and less flexible than
public-key authentication.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

349

Chapter 9zp CHAPTER 9

Port Forwarding and X Forwarding

One of SSH’s major benefits is transparency. A terminal session secured by SSH
behaves like an ordinary, insecure one (e.g., created by telnet or rsh) once it has been
established. Behind the scenes, however, SSH keeps the session secure with strong
authentication, encryption, and integrity checking.

In some situations, however, transparency is hard to achieve. A network firewall
might be in the way, interfering with certain network traffic you need. Corporate
security policies might prohibit you from storing SSH keys on certain machines. Or
you might need to use insecure network applications in a secure environment.

In this chapter, we’ll discuss an important feature of SSH, called forwarding or tun-
neling, that addresses several concerns about transparency:

Securing other TCP/IP applications
SSH can transparently encrypt another application’s data stream. This is called
port forwarding.

Securing X Window applications
Using SSH, you can invoke X programs on a remote machine and have them
appear, securely, on your local display. (This feature of X is insecure ordinarily.)
This is called X forwarding, a special case of port forwarding for which SSH has
extra support.

SSH forwarding isn’t completely transparent, since it occurs at the application level,
not the network level. Applications must be configured to participate in forwarding,
and a few protocols are problematic to forward (FTP data channels are a notable
example). But in most common situations, once a secure tunnel is set up, the partici-
pating applications appear to the user to operate normally. For complete application-
level transparency, you need a network-level technique, such as IPSEC [1.6.4] or a
proprietary Virtual Private Network (VPN) technology available from various ven-
dors, in host software or dedicated routers. While VPNs provide a more complete
solution, they require significantly more work and expense to set up compared to
SSH forwarding.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

350 | Chapter 9: Port Forwarding and X Forwarding

So, when we say “transparent” in this chapter, we mean “transparent to the applica-
tion, once a little configuration has been done.”

In this chapter, we discuss SSH forwarding techniques to allow other-
wise prohibited traffic across firewalls. This can be a perfectly legiti-
mate and adequately safe practice if done properly: the firewall
prevents unauthorized traffic, while SSH forwarding allows autho-
rized users to bypass the restriction. However, don’t forget you are
bypassing a security restriction that is in place for a reason. Be sure to
follow the guidelines we give for safe SSH forwarding. Also, take care
that you are not violating a company policy by using forwarding. Just
because you can do something doesn’t automatically mean that it’s a
good idea. If in doubt, consult with your system administrators.

9.1 What Is Forwarding?
Forwarding is a type of interaction with another network application, as shown in
Figure 9-1. SSH intercepts a service request from some other program on one side of
an SSH connection, sends it across the encrypted connection, and delivers it to the
intended recipient on the other side. This process is mostly transparent to both sides
of the connection: each believes it is talking directly to its partner and has no knowl-
edge that forwarding is taking place. Even more powerfully, SSH forwarding can
achieve certain types of communication that are impossible without it.

Forwarding isn’t a new concept. The basic operation of a terminal connection over a
network (say, using telnet) is also a kind of forwarding. In a telnet connection, you sit
on one end, your remote shell is on the other, and both sides operate as if directly
connected by a serial cable. Nevertheless, sitting in the middle is a cooperating telnet
client and server, forwarding bytes back and forth. SSH forwarding is much the
same, except SSH plays fancy tricks with the data to add security.

We have also seen another type of SSH forwarding, agent forwarding. [6.3.5] This let
us create SSH connections from one computer, through a second computer, and

Figure 9-1. SSH forwarding

SSH SSH

Host A

application
client

Host B

direct connection

forwarded connection

application
server



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.2 Port Forwarding | 351

onto a third using public-key authentication, but without installing our private key
on the second machine. To accomplish this, an SSH server pretended to be an SSH
agent, while transparently forwarding data to and from a remote agent. This para-
digm holds true for TCP port forwarding and X forwarding, as the SSH server trans-
parently masquerades as another network application.

9.2 Port Forwarding
SSH uses TCP/IP as its transport mechanism, usually TCP port 22 on the server
machine, as it encrypts and decrypts the traffic passing over the connection. We now
discuss a cool feature that encrypts and decrypts TCP/IP traffic belonging to other
applications, on other TCP ports, using SSH. This process, called port forwarding, is
largely transparent and quite powerful. Telnet, SMTP, NNTP, IMAP, and other inse-
cure protocols running over TCP can be made secure by forwarding the connections
through SSH. Port forwarding is sometimes called tunneling because the SSH connec-
tion provides a secure “tunnel” through which another TCP/IP connection may pass.

Suppose you have a home machine H that runs an IMAP-capable email reader, and
you want to connect to an IMAP server on machine S to read and send mail. Nor-
mally, this connection is insecure, with your mail account password transmitted as
plaintext between your mail program and the server. With SSH port forwarding, you
can transparently reroute the IMAP connection (found on server S’s TCP port 143)
to pass through SSH, securely encrypting the data over the connection.* The IMAP
server machine must be running an SSH server for port forwarding to provide real
protection.

In short, with minimal configuration changes to your programs, SSH port forward-
ing protects arbitrary TCP/IP connections by redirecting them through an SSH ses-
sion. Port forwarding can even pass a connection safely through a firewall if you
configure things properly. Once you start securing your communications with port
forwarding, you’ll wonder how you ever got along without it. Here are examples of
what you can do:

• Access various kinds of TCP servers (e.g., SMTP, IMAP, POP, LDAP, etc.) across
a firewall that prevents direct access.

• Provide protection for your sessions with these same TCP servers, preventing
disclosure or alteration of passwords and other content that would otherwise be
sent in the clear as part of the session.

* Our port forwarding example protects your IMAP connection but doesn’t truly protect your email messages.
Before reaching your IMAP server, the messages pass through other mail servers and may be intercepted in
transit. For end-to-end email security, you and your correspondent should use tools such as PGP or S/MIME
to sign and/or encrypt the messages themselves.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

352 | Chapter 9: Port Forwarding and X Forwarding

• Tunnel the control connection of an FTP session, to encrypt your username,
password, and commands. (It isn’t usually possible to protect the data channels
that carry the file contents, though. [11.2])

• Use your ISP’s SMTP servers for sending mail, even if you’re connected outside
the ISP’s network and the ISP forbids mail relaying from your current location.
[11.3.2]

SSH port forwarding is a general proxying mechanism for TCP only.
(See the sidebar “TCP Connections” for an overview of TCP concepts.)
Forwarding can’t work with protocols not built on TCP, such as the
UDP-based DNS, DHCP, NFS, and NetBIOS,* or with non-IP-based
protocols, such as AppleTalk or Novell’s SPX/IPX.

9.2.1 Local Forwarding
In our earlier example, we had an IMAP server running on machine S, and an email
reader on home machine H, and we wanted to secure the IMAP connection using
SSH. Let’s delve into that example in more detail.

IMAP uses TCP port 143; this means that an IMAP server listens for connections on
port 143 on the server machine. To tunnel the IMAP connection through SSH, we
need to pick a local port on home machine H (between 1024 and 65535) and for-
ward it to the remote socket (S,143). Suppose you randomly pick local port 2001.
The following command then creates the tunnel:†

$ ssh -L2001:localhost:143 S

The –L option specifies local forwarding, in which the TCP client is on the local
machine with the SSH client. The option is followed by three values separated by
colons: a local port to listen on (2001), the remote machine name or IP address (S),
and the remote, target port number (143).

The previous command logs you into S, just like ssh S does. However, this SSH ses-
sion has also forwarded TCP port 2001 on H to port 143 on S; the forwarding
remains in effect until you log out of the session. To make use of the tunnel, the final
step is to tell your email reader to use the forwarded port. Normally, your email pro-
gram connects to port 143 on the server machine—that is, the socket (S,143).
Instead, it’s configured to connect to port 2001 on home machine H itself, i.e.,
socket (localhost,2001). So the path of the connection follows the list shown next.

* We’re being a little imprecise here. DHCP is entirely based on UDP, so SSH port forwarding can’t do any-
thing with it. The others, however, either use both TCP and UDP for different purposes or can sometimes
be configured to run over TCP, though they generally use UDP. Nevertheless, in most common situations,
SSH can’t forward them.

† You can also use ssh -L2001:S:143 S, substituting “S” for localhost, but we discuss later why localhost is the
better alternative when possible.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.2 Port Forwarding | 353

TCP Connections
To understand port forwarding, it’s important to know some details about TCP, the
Transmission Control Protocol. TCP is a fundamental building block of the Internet.
Built on top of IP, it is the transport mechanism for many application-level Internet
protocols such as FTP, Telnet, HTTP, SMTP, POP, IMAP, and SSH itself.

TCP comes with strong guarantees. A TCP connection is a virtual, full-duplex circuit
between two communicating parties, acting like a two-way pipe. Either side may write
any number of bytes at any time to the pipe, and the bytes are guaranteed to arrive
unaltered and in order at the other side.a If an application doesn’t need these strong
guarantees, or doesn’t want the overhead associated with them, another protocol
called UDP (User Datagram Protocol) often suffices. It is packet-oriented, rather than
connection-based, and has no guarantees of delivery or packet ordering. Some proto-
cols that exclusively or commonly run over UDP are NFS, DNS, DHCP, NetBIOS,
TFTP, Kerberos, SYSLOG, and NTP.

When a program establishes a TCP connection to a service, the program needs two
pieces of information: the IP address of the destination machine, and a way to identify
the desired service. TCP (andUDP) use a positive integer, called a port number, to iden-
tify a service. For example, SSH uses port 22, telnet uses port 23, and IMAP uses port
143. Port numbers allow multiple services at the same IP address.

If you combine an IP address and a port number, the pair is called a socket. For exam-
ple, if you run telnet to connect to port 23 on the machine at IP address 128.220.91.4,
the socket is denoted “(128.220.91.4,23).” Simply put, when you make a TCP connec-
tion, its destination is a socket. The source (client program) also has a socket on its end
of the connection, and the connection as a whole is completely defined by the pair of
source and destination sockets.

In order for a connection attempt to a socket to succeed, somethingmust be “listening”
on that socket. That is, a program running on the destination machine has asked TCP
to accept connection requests on that port, and to pass the connections on to the pro-
gram. If you’ve ever attempted a TCP connection and received the response “connec-
tion refused,” it means that the remote machine is up and running, but nothing is
listening on the target socket.

How does a client program know the target port number of a listening server? Port
numbers for many protocols are standardized, being assigned by the Internet Assigned
Numbers Authority (IANA).b For instance, the TCP port number assigned to the
NNTP (Usenet news) protocol is 119. Therefore, news servers listen on port 119, and
newsreaders (clients) connect to them via port 119. More specifically, if a newsreader
is configured to talk to a news server at IP address 10.1.2.3, it requests a TCP connec-
tion to the socket (10.1.2.3,119).

—continued—



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

354 | Chapter 9: Port Forwarding and X Forwarding

1. The email reader on home machine H sends data to local port 2001.

2. The local SSH client on H reads port 2001, encrypts the data, and sends it
through the SSH connection to the SSH server on S.

Port numbers are not always hardcoded into programs. Many operating systems let
applications refer to protocols by name, instead of number, by defining a table of TCP
names and port numbers. Programs can then look up port numbers by the protocol
name. Under Unix, the table is often contained in the file /etc/services or the NIS ser-
vices map, and queries are performed using the library routines getservbyname,
getservbyport, and related procedures. Other environments allow servers to register
their listening ports dynamically via a naming service, such as the AppleTalk Name
Binding Protocol or DNS’s WKS and SRV records.

So far, we’ve discussed the port number used by a TCP server when a TCP client pro-
gram wants to connect. We call this the target port number. The client also uses a port
number, called the source port number, so the server can transmit to the client. If you
combine the client’s IP address and its source port number, you get the client’s socket.

Unlike target port numbers, source port numbers are not standard. Inmost cases, in fact,
neither the client nor the server cares which source port number is used by the client.
Often a client lets TCP select an unused port number for the source.c If you examine the
existing TCP connections on a machine with a command like netstat -a or lsof -i tcp,
you’ll see connections to the well-known port numbers for common services (e.g., 23 for
telnet, 22 for SSH), with large, apparently random source port numbers on the other end.
Those source ports were chosen from the range of unassigned ports by TCP on the
machines initiating those connections.

Once established, a TCP connection is completely determined by the combination of
its source and target sockets. Therefore, multiple TCP clients may connect to the same
target socket. If the connections originate from different hosts, then the IP address por-
tions of their source sockets differ, distinguishing the connections. If they come from
two different programs running on the same host, then TCP on that host ensures they
have different source port numbers.

a. The mechanisms used to implement these guarantees, though, are designed to counter transmission
problems in the network, such as routing around failed links, or retransmitting data corrupted by
noise or lost due to temporary network congestion. They are not very effective against deliberate
attempts to steal a connection or alter data in transit part. SSH provides this protection that TCP
alone lacks.

b. IANA’s complete list of port numbers is found at http://www.isi.edu/in-notes/iana/assignments/port-
numbers/.

c. The Berkeley r-commands, however, do care about source ports.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.2 Port Forwarding | 355

3. The SSH server on S decrypts the data and sends it to the IMAP server listening
on port 143 on S.

4. Data is sent back from the IMAP server to home machine H by the same process
in reverse.

Port forwarding can be specified only when you create an SSH connection. You can’t
add a forwarding to an existing SSH connection with any SSH implementation we
know of, though there’s nothing intrinsic to the SSH protocol that would prevent it,
and it would sometimes be a useful feature. Instead of using the –L option to estab-
lish a local forwarding, you can use the LocalForward keyword in your client configu-
ration file:

#  OpenSSH
LocalForward 2001 localhost:143
# Tectia
LocalForward "2001:localhost:143"

Note the small syntactic differences. In OpenSSH, there are two arguments: the local
port number, and the remote socket expressed as host:port. In Tectia, the expression
is just as on the command line, except that it must be enclosed in double quotes. If
you forget the quotes, ssh doesn’t complain, but it doesn’t forward the port, either.

Our example with home machine H and IMAP server S can be set up like this:

#  OpenSSH
Host local-forwarding-example
 HostName S
 LocalForward 2001 localhost:143

# Run on home machine H
$ ssh local-forwarding-example

9.2.1.1 Local forwarding and GatewayPorts

In OpenSSH, by default, only the host running the SSH client can connect to locally
forwarded ports. This is because ssh listens only on the machine’s loopback inter-
face for connections to the forwarded port; that is, it binds the socket (local-
host,2001), a.k.a. (127.0.0.1,2001), and not (H,2001). So, in the preceding example,
only machine H can use the forwarding; attempts by other machines to connect to
(H,2001) get the message “connection refused.” However, ssh for OpenSSH has a
command-line option, –g, that disables this restriction, permitting any host to con-
nect to locally forwarded ports:

# OpenSSH
$ ssh -g -L<localport>:<remotehost>:<remoteport> hostname

The client configuration keyword GatewayPorts also controls this feature; the default
value is no, whereas yes does the same thing as –g:

#  OpenSSH
GatewayPorts yes



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

356 | Chapter 9: Port Forwarding and X Forwarding

Tectia provides the +g option as the opposite of –g.

GatewayPorts and –g are disabled by default. They are a security risk.
[9.2.4.3]

9.2.1.2 Remote forwarding

A remotely forwarded port is just like a local one, but the directions are reversed.
This time the TCP client is remote, its server is local, and a forwarded connection is
initiated from the remote machine.

Continuing with our example, suppose instead that you are logged into server
machine S to begin with, where the IMAP server is running. You can now create a
secure tunnel for remote clients to reach the IMAP server on port 143. Once again,
you select a random port number to forward (say, 2001 again) and create the tunnel:

$ ssh -R2001:localhost:143 H

The –R option specifies remote forwarding. It is followed by three values, separated
by colons as before but interpreted slightly differently. The remote port to be for-
warded (2001) is now first, followed by the machine name or IP address (localhost)
and port number (143). SSH can now forward connections from (localhost,143) to
(H,2001).

Once this command has run, a secure tunnel has been constructed from the port
2001 on the remote machine H, to port 143 on the server machine S. Now any pro-
gram on H can use the secure tunnel by connecting to (localhost,2001). As before,
the command also runs an SSH terminal session on remote machine H, just as ssh H
does.

As with local forwarding, you may establish a remote forwarding using a keyword in
your client configuration file. The RemoteForward keyword is analogous to
LocalForward, with the same syntactic differences between OpenSSH and Tectia:

# OpenSSH
RemoteForward 2001 S:143

# Tectia
RemoteForward "2001:S:143"

For example, here’s the preceding forwarding defined in a Tectia-format configura-
tion file:

# Tectia
remote-forwarding-example:
 Host H
 RemoteForward "2001:S:143"

$ ssh remote-forwarding-example



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.2 Port Forwarding | 357

You might think that the GatewayPorts feature discussed in the last
section applies equally well to remote port forwardings. This would
make sense as a feature, but as it happens, it isn’t done. There would
have to be a way for the client to communicate this parameter to the
server for a given forwarding, and that feature hasn’t been included in
the SSH protocol. In Tectia, remotely forwarded ports always listen on
all network interfaces and accept connections from anywhere.

The OpenSSH server does accept the GatewayPorts configuration
option, and it applies globally to all remote forwardings established by
that server. This allows the server administrator to control whether
users can bind to nonlocal sockets.

9.2.2 Trouble with Multiple Connections
If you use LocalForward or RemoteForward in your configuration file, you might run
into a subtle problem. Suppose you have set up a section in your configuration file to
forward local port 2001 to an IMAP server:

# OpenSSH  syntax used for illustration
Host server.example.com
 LocalForward 2001 server.example.com:143

This configuration works fine if you connect once:

$ ssh server.example.com

But if you try to open a second ssh connection to server.example.com at the same
time—perhaps to run a different program in another window of your workstation—
the attempt fails:

$ ssh server.example.com
Local: bind: Address already in use

Why does this happen? Because your configuration file section tries to forward port
2001 again but finds that port is already in use (“bound” for listening) by the first
instance of ssh. You need some way to make the connection but omit the port for-
warding.

OpenSSH provides a solution, the client configuration keyword ClearAllForwardings.
From the name, you might think it terminates existing forwardings, but it doesn’t.
Rather, it nullifies any forwardings specified in the current ssh command. In the previ-
ous example, you can connect without forwardings to server.example.com with:

# OpenSSH
$ ssh -o ClearAllForwardings=yes server.example.com

The original tunnel, set up by the first invocation, continues to exist, but
ClearAllForwardings prevents the second invocation from attempting to re-create the
tunnel. To illustrate the point further, here’s a rather silly command:

# OpenSSH
$ ssh -L2001:localhost:143 -o ClearAllForwardings=yes mymachine



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

358 | Chapter 9: Port Forwarding and X Forwarding

The –L option specifies a forwarding, but ClearAllForwardings cancels it. This silly
command is identical in function to:

$ ssh mymachine

ClearAllForwardings may also be placed in your client configuration file, of course. It
seems more useful on the command line, however, where it can be used on the fly
without editing a file.

9.2.3 Comparing Local and Remote Port Forwarding
The differences between local and remote forwarding can be subtle. It can get a bit
confusing to know which kind of forwarding to use in a given situation. The quick
rule is look for the TCP client application.

If the TCP client application (whose connections you want to for-
ward) is running locally on the SSH client machine, use local forward-
ing. Otherwise, the client application is on the remote SSH server
machine, and you use remote forwarding.

The rest of this section is devoted to dissecting the forwarding process in detail and
understanding where this rule comes from.

9.2.3.1 Common elements

Local and remote forwarding can be confusing because of overloaded terminology.
In a given port-forwarding situation, there are two clients and two servers lying
around. We have the SSH client and server programs (e.g., ssh and sshd), plus the
TCP application’s client and server programs whose connection you want to protect
by port forwarding.

An SSH session has a direction of establishment. That is, you run an SSH client on
one machine, and it initiates a session with an SSH server on another. Likewise, a
forwarded connection has a direction of establishment: you run an application client
on one machine, and it initiates a session with a service on another. These two direc-
tions may or may not match. This is the difference between local and remote for-
warding. Let’s introduce some terminology and provide some diagrams to make
sense of this.

To begin with, we have an application client and server running on two hosts, A and
B (Figure 9-2).

The application server is listening on a well-known port W for incoming client con-
nections. Without SSH, you can tell the application client that its server is on host B,
port W. The client makes a direct connection to the server, and all application proto-
col data goes in the clear over the network (Figure 9-3).



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.2 Port Forwarding | 359

To protect the application protocol data by forwarding, you establish an SSH ses-
sion between these two hosts. When setting up the SSH session, you select an
unused port number P on the application client side (host A), and request SSH port
forwarding from the socket (A,P) to the socket (B,W). Once the session is estab-
lished, the SSH process on A is listening for incoming TCP connection requests on
port P. Tell the application client that its server is on (A,P) instead of (B,W), and the
stage is now set for port forwarding (Figure 9-4).

There are now two cooperating SSH processes with an established, encrypted SSH
session between them; you don’t distinguish between the SSH client and server.
Inside that session, SSH creates multiple channels, or logical streams for carrying
data. It uses channels to carry and distinguish the input, output, and error streams
for an interactive login or remote command run via SSH, and similarly creates a new
channel for each use of a port forwarding, to carry the forwarded data inside the pro-
tected SSH session.

Figure 9-2. Application client and server

Figure 9-3. Direct client/server connection (no forwarding)

application
server

Host A Host B

TCP

W
application

client

Host A Host B

TCP

W
server B:W application

server
application

client



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

360 | Chapter 9: Port Forwarding and X Forwarding

Figure 9-5 shows that now, when the application client tries to connect to its server,
it connects instead to the listening SSH process (1). The SSH listener notices this and
accepts the connection. It then notifies its partner SSH process that a new instance of
this port forwarding is starting up, and they cooperate to establish a new channel for
carrying the data for this forwarding instance (2). Finally, the partner SSH process
initiates a TCP connection to the target of the port forwarding: the application server
listening on (B,W) (3). Once this connection succeeds, the port-forwarding instance
is in place. The SSH processes cooperate to pass back and forth any data transmitted
by the application client and server, over the channel inside the SSH session. This
allows them to communicate and secures the application’s activities on the network.

9.2.3.2 Local versus remote forwarding: the distinction

With this general framework in place, you can distinguish between local and remote
forwarding. First we introduce some terms. In the generic port-forwarding descrip-
tion in the last section, you saw that one SSH process listens for connections, while
the other is ready to initiate connections in response to connections accepted on the

Figure 9-4. A forwarded port

Figure 9-5. A forwarded connection

SSH SSH

Host A Host B

TCPTCP

SSH

application
server

application
clientserver A:P W

P

SSH SSH

server A:P

Host A Host B

TCP

W

TCP

1

2

3P
SSH

application
server

application
client



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.2 Port Forwarding | 361

other side, to complete the forwarded path. We call the first side the listening side of
the SSH session with respect to this forwarding, and the other, the connecting side.
For example, in Figure 9-4, host A is the listening side, while host B is the connect-
ing side. Note that these terms aren’t mutually exclusive. Since a single SSH session
may have multiple forwardings in place, the same side of a session may be the listen-
ing side for some forwardings, and simultaneously the connecting side for others.
But with respect to any particular forwarding, it’s one or the other.

Now, recall that in the last section we didn’t label the SSH processes according to
which was the SSH client and which was the SSH server, but simply referred to two
cooperating SSH processes. We do so now and can state succinctly the local versus
remote distinction:

• In a local forwarding (Figure 9-6), the application client and hence the listening
side are located with the SSH client. The application server and connecting side
are located with the SSH server.

• In a remote forwarding (Figure 9-7), the situation is reversed: the application cli-
ent and listening side are located with the SSH server, while the application
server and connecting side are located with the SSH client.

So, as we said at the beginning of this section: use a local forwarding when the appli-
cation client is on the local side of the SSH connection, and a remote forwarding
when it’s on the remote side.

9.2.4 Forwarding Off-Host
In all our discussions of port forwarding so far, the application client and server have
been located on the machines on the ends of the SSH session. This is reflected in our
always using “localhost” in naming the target socket of a forwarding:

$ ssh -L2001:localhost:143 server.example.com

Figure 9-6. Local forwarding

SSH
Client

SSH
Server

Host A Host B

TCPTCP

SSH

application
server

application
client



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

362 | Chapter 9: Port Forwarding and X Forwarding

Since the application server is located on the same machine as the connecting side of
the SSH port forwarding, the target host can be “localhost.” But the connections
between the application client and the SSH listening side, and between the applica-
tion server and the SSH connecting side, are themselves TCP connections. For conve-
nience, TCP implementations allow programs to make connections between two
sockets on the same host. The connection data is simply transferred from one pro-
cess to another without actually being transmitted on any real network interface.
However, in principle, either the application client or server—or both—could be on
different machines, potentially involving as many as four hosts in a single forward-
ing (Figure 9-8).

Although this situation is possible, you generally don’t want to do it for security rea-
sons—namely, privacy and access control.

Figure 9-7. Remote forwarding

Figure 9-8. Off-host port forwarding

SSH
Client

SSH
Server

Host A Host B

TCPTCP

SSH

application
server application

client

SSH
Client

SSH
Server

server A:P

Host A Host B

Host C Host S

“ssh -L P:S:W B”

TCP

P

W

SSH

application
client

application
server

TCP



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.2 Port Forwarding | 363

9.2.4.1 Privacy

As shown in Figure 9-8, the complete path followed by forwarded data includes
three TCP connections. But only the second connection, between the two SSH pro-
cesses, is protected as a channel inside the SSH session. The other two connections
are just simple TCP connections. Normally, each of these is on a single host, and is
therefore protected from network snooping or interference, so the entire forwarding
path is secure. But if either of these two connections is between different hosts, its
data is vulnerable in transit.

9.2.4.2 Access control and the loopback address

The other security problem of off-host forwarding concerns the listening side. In
short, the listening side of a forwarding has no access control, so intruders may gain
access to it. To explain this problem, we must first discuss the loopback address of a
host.

In addition to physical network interfaces, a host running IP also has a virtual inter-
face called the loopback interface. This is a software construct, not corresponding to
any network hardware. Nonetheless, the loopback appears and responds like a real
interface. Under Unix, it is often named lo0 and is listed by ifconfig:

$ ifconfig -a
...
lo0: flags=849<UP,LOOPBACK,RUNNING,MULTICAST> mtu 8232
        inet 127.0.0.1 netmask ff000000

The loopback interface leads back to the host itself. A datagram “transmitted” on the
loopback interface immediately appears as an incoming packet on the loopback
interface and is picked up and processed by IP as being destined for the local host.

The loopback interface is always assigned the same IP address—127.0.0.1, the loop-
back address*—and the local naming service provides the name “localhost” for that
address. This mechanism gives a reliable way for processes to communicate with one
another on the local host via IP, regardless of what IP addresses the host may have on
real connected networks, or indeed if the host has no real network connections at all.
You can always refer to your local host using the well-known loopback address.

By design, a loopback address is local to its host. One machine can’t contact the
loopback address of another. Since the loopback address 127.0.0.1 is standard on all
IP hosts, any connection to 127.0.0.1 leads a machine to talk to itself. (Plus, the
loopback network isn’t routed on the Internet.)

* Actually, the entire network 127.0.0.0/8—comprising 24 million addresses—is reserved for addresses that
refer to the local host. Only the address 127.0.0.1 is commonly used, although we have seen devices use a
handful of others for special purposes, such as “reject” interfaces on a terminal server or router.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

364 | Chapter 9: Port Forwarding and X Forwarding

9.2.4.3 Listening on (“binding”) an interface

When a host listens on a TCP port, it establishes a potential endpoint for a TCP con-
nection. But the endpoints of a TCP connection are sockets, and a socket is an
(address,port) pair, not a (host,port) pair. Listening must take place on a particular
socket and thus be associated with a particular address, hence a particular interface
on the host. This is called binding the interface.* Unless otherwise specified, when
asked to listen on a particular port, TCP binds all the host’s interfaces and accepts
connections on any of them. This is generally the right behavior for a server. It
doesn’t care how many network interfaces the local host has: it just accepts any con-
nection made to its listening port, regardless of which host address was requested.

Consider, however, what this means in the case of SSH port forwarding. There is no
authentication or access control at all applied to the listening side of a forwarding; it
simply accepts any connection and forwards it. If the listening side binds all the
host’s interfaces for the forwarded port, this means that anyone with network con-
nectivity to the listening host—possibly the whole Internet—can use your forward-
ing. This is obviously not a good situation. To address it, SSH by default binds only
the loopback address for the listening side of a forwarding. This means that only
other programs on the same host may connect to the forwarded socket. This makes
it reasonably safe to use port forwarding on a PC or other single-user machine, but is
still a security problem on multiuser hosts. On most Unix machines, for example, a
knowledgeable user can connect to any listening sockets and see what’s on them.
Keep this in mind when using port forwarding on a Unix machine!

If you want to allow off-host connections to your forwarded ports, you can use the –g
switch or GatewayPorts option to have the listening side bind all interfaces, as we did
in an earlier example: [9.2.4]

$ ssh -g -L P:S:W B

But be aware of the security implications! You may want to exercise more control
over the use of forwarded ports in this situation by using TCP-wrappers, which we
discuss later in this chapter.

9.2.5 Bypassing a Firewall
Let’s tackle a more complicated example of port forwarding. Figure 9-9 returns us to
the same company situation as in Figure 6-5, when we discussed agent forwarding.
[6.3.5] Your home machine H talks to work machine W via a bastion host, B, and you
want to access your work email from home. Machine W runs an IMAP server, and
your home machine H has an IMAP-capable email reader, but you can’t hook them up.
Your home IMAP client expects to make a TCP connection directly to the IMAP server
on W, but unfortunately that connection is blocked by the firewall. Since host B is

* Named after the Berkeley sockets library routine bind, commonly used to establish the association.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.2 Port Forwarding | 365

inside the firewall, and it’s running an SSH server, there should be some way to put all
the pieces together and make the IMAP connection from H to W.

Port forwarding can solve this problem. As before, the IMAP server is on port 143,
and we select a random local port number, 2001. This time, however, we use a
slightly different command to set up forwarding:

# Executed on home machine H
$ ssh -L2001:W:143 B

This establishes an interactive SSH session from home machine H to bastion host B
and also creates an SSH tunnel from local host H to the email server machine W. Spe-
cifically, in response to a connection on port 2001, the local SSH client directs the SSH
server running on B to open a connection to port 143 onW, that is, socket W:143. The
SSH server can do this because B is inside the firewall. If you configure your email
reader to connect to local port 2001, as before, the communication path is now as
follows:

1. The email reader on home machine H sends data to local port 2001.

2. The local SSH client reads port 2001, encrypts the data, and sends it into the
tunnel.

3. The tunnel passes through the firewall, because it is an SSH connection (port 22)
that the firewall accepts.

4. The SSH server on bastion host B decrypts the data and sends it to port 143 on
work machine W. This transmission isn’t encrypted, but it’s protected behind
the firewall, so encryption isn’t necessary. (Assuming you’re not worried about
snooping on your internal network.)

5. Data is sent back from the IMAP server to home machine H by the same process
in reverse.

You have now bypassed the firewall by tunneling the IMAP traffic through SSH.

Figure 9-9. Port forwarding through a firewall

SSH
Client SSH

Server

H

B2001

mail reader
IMAP

mail server

W

143

Internet

SSH

Corporate Network



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

366 | Chapter 9: Port Forwarding and X Forwarding

9.2.6 Port Forwarding Without a Remote Login
It may happen that you’d like to forward a port via SSH but don’t want an SSH login
session to the remote host. For example, if you’re using the IMAP forwarding exam-
ple we’ve been harping on, you may want only to read email, not open an unneces-
sary terminal connection at the same time. With Tectia, this is simple: just provide
the –f option to ssh in your port-forwarding command:

# Tectia
$ ssh -f -L2001:localhost:143 server.example.com

or use the GoBackground keyword for the same effect:

# Tectia
GoBackground yes

As a result, ssh puts itself into the background and handles connections to the for-
warded port 2001, and that is all. It doesn’t create an interactive terminal session
with standard input, output, and error channels. The –S option also avoids starting a
terminal session, but unlike –f, it doesn’t put the session in the background (in other
words, the –f option implies –S):

# Tectia
$ ssh -S -L2001:localhost:143 server.example.com

The –f option is also supported by OpenSSH, but by default it still requires a com-
mand to execute. This usage is intended more for executing remote commands that
don’t require terminal interaction, such as graphical programs using X. Specifically, it
causes the backgrounded ssh to connect the local end of the terminal session to /dev/
null (that is, –f implies the –n option).

For example, if X forwarding is turned on (which we’ll discuss later), the following
command puts itself into the background, popping up a graphical clock on your
local display, with the clock program running on the remote host zwei.uhr.org:

#  OpenSSH
$ ssh -f zwei.uhr.org xclock

This is similar to the background command:

#  OpenSSH
$ ssh -n zwei.uhr.org xclock &

but –f is better because it performs any needed user interaction—like prompting for a
password—before forking into the background. If you want to background an
OpenSSH session without a remote command, as with Tectia earlier, then add the –N
switch as well:

$ ssh -f -L2001:localhost:143 server.example.com

Technically, this means the client will not create a “shell channel” in the SSH proto-
col. Tectia doesn’t require the extra option, it just does the right thing whether you
give a remote command or not; with OpenSSH, you must use the –N option if you
don’t provide a command. If you forget the option, you’ll see:



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.2 Port Forwarding | 367

#  OpenSSH
$ ssh -f -L2001:localhost:143 server.example.com
Cannot fork into background without a command to execute.

The old SSH-1 protocol always requires the remote command, so as a workaround,
provide one that does nothing for a long time, such as sleep:

#  An SSH-1 client
$ ssh -f -L2001:localhost:143 server.example.com sleep 1000000

9.2.6.1 One-shot forwarding

When invoked with –f or GoBackground, ssh persists until you explicitly kill it with the
Unix kill command. (You can find its pid with the ps command.) Alternatively, you
can request one-shot forwarding, which causes the client to exit when forwarding is
over with. Specifically, the client waits indefinitely for the first forwarded connec-
tion. After that, when the number of forwarded connections drops to zero, the client
exits.

One-shot forwarding is accomplished easily in Tectia with the -fo command-line
option, a variation on –f (the “o” stands for “one shot”).

# Tectia
$ ssh -fo -L2001:localhost:143 server

One-shot forwarding isn’t directly supported by OpenSSH, but you can get the same
effect with the following method:

1. Set up the forwarding with ssh -f, and for the required remote command, use
sleep with a short duration:

$ ssh -f -L2001:localhost:143 server sleep 10

2. Before the sleep interval expires, use the forwarded connection:

$ ssh -p2001 localhost

Once the sleep command finishes, the first ssh tries to exit—but it notices a for-
warded connection is in use and refuses to exit, printing a warning you can ignore:

Waiting for forwarded connections to terminate...
The following connections are open:
  port 2001, connection from localhost port 143

ssh waits until that connection ends, and then terminates, providing the behavior of
one-shot forwarding.

9.2.7 The Listening Port Number
Earlier, we suggested selecting any unused port for the listening side of a forwarding.
Port numbers are encoded in a 16-bit field and can have any value from 1 to 65535
(port 0 is reserved). On multiuser operating systems such as Unix, ports 1 through
1023 are called privileged and are reserved for processes run by the superuser (user



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

368 | Chapter 9: Port Forwarding and X Forwarding

ID zero). If a nonprivileged process tries to bind a privileged port for listening, it fails
with an error message such as “insufficient permission.”*

When setting up the listening side of a tunnel, you generally must select a port num-
ber between 1024 and 65535, inclusive. This is because an SSH program running
under your user ID, not the superuser’s, is responsible for listening on that port. If
SSH reports that your chosen port is already in use, just choose another; it shouldn’t
be hard to find a free one.

For the target side of the tunnel, you can specify any port number, privileged or not.
You are attempting to connect to the port, not listen on it. In fact, most of the time
the target side is a privileged port, since the most common TCP services have ports
in the privileged range.

If you are the superuser on a machine with SSH clients, you can perform local for-
warding with a privileged port. Likewise, you can forward a remote privileged port if
your remote account has superuser privileges.

Some TCP applications hardcode the server port numbers and don’t permit them to
be changed. These applications aren’t usable with port forwarding if the operating
system has a privileged port restriction. For example, suppose you have an FTP cli-
ent that’s hardwired to connect to the server on the standard FTP control port, 21.
To set up port forwarding, you have to forward the local port 21 to the remote port
21. But since port 21 is privileged, you can’t use it as a listening port number unless
you are the superuser. Fortunately, most Unix TCP-based programs let you set the
destination port number for connections.

9.2.8 Choosing the Target Forwarding Address
Suppose you want to forward a connection from your local machine to remote.host.
net. Both of the following commands work:

$ ssh -L2001:localhost:143 remote.host.net
$ ssh -L2001:remote.host.net:143 remote.host.net

The forwarded connection is made from the remote machine to either the loopback
address or remote.host.net, and in either case, the connection stays on the remote
machine and doesn’t go over the network. However, the two connections are percep-
tibly different to the server receiving the forwarded connection. This is because the
source sockets of the connections are different. The connection to localhost appears
to come from source address 127.0.0.1, whereas the connection to remote.host.net is
from the address associated with that name.

Most of the time this difference doesn’t matter, but sometimes you must take it into
account. The application server (e.g., the IMAP daemon) might be doing access
control based on the source address and may not be configured to accept the loop-

* Microsoft Windows has no privileged port restriction, so any user can listen on any free port.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.2 Port Forwarding | 369

back address. Or it might be running on a multihomed host, and have bound only a
subset of the addresses the host has, possibly not including the loopback address.
Each of these situations is usually an oversight, but you might not be able to do any-
thing about it. If you’re getting “connection refused” from the connecting side of the
forwarding, but you’ve verified that the server appears to be running and responding
to normal clients, this might be the problem. If the server machine is running Unix,
the command netstat -a -n should list all the network connections and listeners on
that machine. Look for listeners on the relevant port, and the addresses on which
they are listening.

Sometimes, the problem can be more acute if the server uses the source IP address
itself as part of whatever protocol it’s speaking. This problem crops up when trying
to forward FTP over SSH. [11.2]

In general, we recommend using localhost as the forwarding target whenever possi-
ble. This way, you are less likely to set up an insecure off-host forwarding by
accident.

9.2.9 Termination
What happens to forwardings when an SSH connection terminates? The ports sim-
ply cease being forwarded; that is, SSH is no longer listening on them, and connec-
tion attempts to those ports will fail with the error “connection refused.”

What happens if you try to terminate an SSH session while it still has active for-
warded connections? SSH notices and waits for them to disconnect before stopping
the session. The details of this behavior differ among implementations.

In Tectia, if you log out of a session that has an active forwarded connection, the ses-
sion stays open but sends itself into the background:

remote$ logout
warning: ssh[7021]: number of forwarded channels still open, forked to background to
wait for completion.
local$

The ssh process now waits in the background until the forwarded connections termi-
nate, and then it exits. In contrast, with OpenSSH, if you disconnect a session with
active forwardings, you get a warning, but the session stays in the foreground:

remote$ logout
Waiting for forwarded connections to terminate...
The following connections are open:
  port 2002, connection from localhost port 1465

To send it into the background and return to your local shell prompt, type the escape
sequence Return-tilde-ampersand: [7.4.6.8]

  ~& [backgrounded]
  local$



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

370 | Chapter 9: Port Forwarding and X Forwarding

and as with Tectia, the connection exits only after its forwarded connections termi-
nate. Be careful not to use the SSH ^Z escape for this purpose. That sends ssh into the
background, but in a suspended state, unable to accept TCP connections to its for-
warded ports. If you do this accidentally, use your shell’s job control commands (e.g.,
fg and bg) to resume the process.

9.2.9.1 The TIME_WAIT problem

Sometimes a forwarded port mysteriously hangs around after the forwarding SSH
session has gone away. You try a command you’ve used successfully several times in
a row and suddenly get an error message:

$ ssh -L2001:localhost:21 server.example.com
Local: bind: Address already in use

(This happens commonly if you’re experimenting with port forwarding, trying to get
something to work.) You know that you have no active SSH command listening on
port 2001, so what’s going on? If you use the netstat command to look for other lis-
teners on that port, you may see a connection hanging around in the TIME_WAIT
state:

$ netstat -an | grep 2001
tcp    0   0   127.0.0.1:2001   127.0.0.1:1472    TIME_WAIT

The TIME_WAIT state is an artifact of the TCP protocol. In certain situations, the
teardown of a TCP connection can leave one of its socket endpoints unusable for a
short period of time, usually only a few minutes. As a result, you can’t reuse the port
for TCP forwarding (or anything else) until the teardown completes. If you’re impa-
tient, choose another port for the time being (say, 2002 instead of 2001) and get on
with your work, or wait a short time for the port to become usable again.

9.2.10 Configuring Port Forwarding in the Server
We’ve seen several keywords and command-line options for configuring SSH clients
for port forwarding, such as –L and –R. In addition, the SSH server can be config-
ured for port forwarding. We’ll cover compile-time, serverwide, and per-account
configuration.

9.2.10.1 Compile-time configuration

You can enable or disable port forwarding at compile time in Tectia with configure.
[4.3.5.5] The Tectia flag --disable-tcp-port-forwarding disables port forwarding for
both clients and servers.

9.2.10.2 Serverwide configuration

Port forwarding can be globally enabled or disabled in sshd. This is done with the
serverwide configuration keyword AllowTcpForwarding in /etc/sshd_config. The



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.2 Port Forwarding | 371

keyword may have the value yes (the default, enabling forwarding) or no (disabling
forwarding):

AllowTcpForwarding no

In addition, Tectia has the following options:

# Tectia
AllowTcpForwardingForUsers
AllowTcpForwardingForGroups

The syntax of these is the same as for the AllowUsers and AllowGroups options. [5.5.1]
They specify a list of users or groups that are allowed to use port forwarding; the
server refuses to honor port-forwarding requests for anyone else. Note that these refer
to the target account of the SSH session, not the client username (which is often not
known).

9.2.10.3 Per-account configuration

In your account, you can disable port forwarding for any client that connects via a
particular key. [8.2.7] For OpenSSH, locate the public key in your authorized_keys
file and precede it with the option no-port-forwarding:

# OpenSSH
no-port-forwarding ...key...

or for Tectia, follow the Key line with an Options line:

# Tectia
Key mykey.pub
Options no-port-forwarding

Any SSH client that authenticates using this key can’t perform port forwarding with
your SSH server. Nevertheless, the earlier remarks we made about serverwide port-
forwarding configuration apply here: the restriction isn’t really meaningful unless
you further restrict what this key is allowed to do.

9.2.11 Protocol-Specific Forwarding: FTP
SSH port forwarding works best with protocols that make simple use of TCP: those
which operate over a single TCP connection and are not sensitive to its network-
related details such as IP addresses or ports—in other words, they could operate just
as well over a serial line or other similar path. Many common protocols fall in this
category, but not all. The exceptions tend to be older protocols designed before the
rise of firewalls and NAT on the Internet, which degrade true peer-to-peer connectiv-
ity and make some techniques problematic. As we have already mentioned, a prime
example is FTP, which exhibits several forwarding problems all at once:

• It uses multiple TCP connections.

• They may go in different directions.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

372 | Chapter 9: Port Forwarding and X Forwarding

• The destination ports may be dynamically determined.

• It carries TCP port numbers and IP addresses inside the protocol.

This is all pretty disastrous from a forwarding perspective in the presence of NAT,
and we’ll share those gory details later. [11.2.6] Some SSH implementations, though,
have an FTP-specific forwarding feature designed to work around these problems.
This protocol-specific forwarding involves the SSH client watching the tunneled FTP
protocol as it operates, creating dynamic forwardings to accommodate it, and possi-
bly altering some FTP messages as they pass through in order to accommodate this
hacking. Tectia has an FTP forwarding mode, while OpenSSH doesn’t. The Tectia
usage is:

# Tectia
$ ssh -L ftp/2001:localhost:21 S

This logs into server S, forwarding local port 2001 with the FTP workaround magic,
to the FTP server running on S (the normal FTP control port is 21). To use the for-
warding, point your FTP client at localhost:2001. FTP programs vary in syntax for
this; some examples are:

$ ftp localhost 2001
$ ftp -P 2001 localhost

As long as the FTP and SSH clients are together on one host, the servers are together
on another, and “localhost” is used as shown in the commands, both active and pas-
sive FTP now work. This is normally the way you want it, since if the clients or serv-
ers are split up, then FTP data transfers (which include directory listings) pass in the
clear over a portion of the path, unprotected by SSH. However, in some circum-
stances you might be forced to split one side up. As a result of the way Tectia FTP
forwarding works, the rule is:

In active mode, the servers must be together; in passive mode, the cli-
ents must be together.

Observe that if you split up both sides so that four separate hosts (technically,
addresses) are in the picture, then neither mode works, and FTP won’t work at all
beyond the initial connection and login.

This rule applies because when Tectia forwards ports to accommodate FTP data con-
nections, the ports listen on the loopback address only, forcing both participants on
one side or the other to be on the same host. Which side depends on which mode: in
active mode the FTP server makes the data connections, so the SSH forwardings are
remote, forcing the servers to be together. In passive mode, the FTP client makes the
connections, so the SSH forwardings are local, forcing the clients to be together.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.3 Dynamic Port Forwarding | 373

9.3 Dynamic Port Forwarding
We are often asked, “How can I tunnel my web browsing over SSH?” The usual rea-
sons are for privacy or for browsing across a firewall. The SSH port forwarding we’ve
described so far doesn’t meet this need very well, but there is another flavor called
dynamic port forwarding which does. We’ll call the previous technique “static for-
warding” in contrast.

Suppose you’re at home, using your home machine H, and need to access a web
server W1 at work, but your employer’s internal network is behind a firewall. You
might attempt to do this through a bastion server at work (say, B) which you can log
into via SSH; and then from B, you can reach whatever internal web servers you
want. So you create a tunnel using the following port-forwarding command on home
machine H:

$  ssh -L 8080:W1:80 B This runs into problems

and point your web browser on H at http://localhost:8080/. This is a reasonable try,
based on forwarding as we’ve seen it so far, but there are lots of problems:

Problem 1: virtual hosts
Web servers can make decisions based on the hostname portion of the URL you
request. For example, if the names foo and bar are aliases for the same host, then
the URLs http://foo/ and http://bar/ may return different pages. A practical exam-
ple is an ISP’s web server, which could host content for dozens or hundreds of
customers’ web sites under different hostnames, all of which point to that same
machine. This web server configuration is often called virtual hosts.

In our home/work example, we’re trying to access web server W1 as “local-
host,” but it might not be configured to serve any content under this name; and
even if it does, it might not be the content you want. To address this problem,
you’d have to get the browser to recognize other names as aliases for localhost,
e.g., by hacking /etc/hosts on a Unix box—not exactly a smooth solution.

Problem 2: absolute links
Suppose problem 1 is a non-issue, and you see the web page you want. How-
ever, if that web page has any absolute links that directly reference the host-
name W1, they might not work. For example, the absolute URL http://W1/some_
great_content.html fails when your browser tries to follow it, because your
browser knows the site only as localhost.

Problem 3: links to other secured servers
Even if problems 1 and 2 don’t bite you, your luck runs out when you hit a link
to another internal web server, W2, or even a page on the same server but on a
different port (e.g., http://W1:81/java-is-great.jsp).

Clearly, static port forwarding is woefully inadequate for this scenario. You could get
around individual problems by editing your host file or stopping now and then to



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

374 | Chapter 9: Port Forwarding and X Forwarding

forward another port, but who wants the annoyance? And such a burdensome solu-
tion isn’t exactly convenient to explain to your Aunt Mae. Or your boss.

We can address problems 1 and 2 by making a realization: that we want to redirect
the web browser over SSH without fussing with the URL. Most browsers have just
such a feature: a proxy. We can set the browser’s HTTP proxy to our SSH-forwarded
port localhost:8080; this means it always connects to our forwarded port in response
to any HTTP URL we provide. The browser assumes this port leads to a proxy server
that knows how to get the content for the various web servers we seek, so the
browser doesn’t have to contact those servers directly.

Proxying gets us part of the way there, but doesn’t solve problem 3: what happens if
we hit a link to a hostname besides W1? The browser sends it to W1 anyway via its
proxy setting, but W1 won’t know how to handle it, so we’ll get a web server error
along the lines of “unrecognized URL.” We can’t feasibly deal with this manually;
not only would we have to forward another port, but also we’d have to reset the
browser to proxy through the new port, at which point it could reach the new URLs
but not the old ones on W1! That’s just a mess...what we really need is a way for the
browser to communicate dynamically with SSH itself, telling it to forward to the cor-
rect web server for each URL the browser handles. And indeed, there is a feature to
do exactly this, called dynamic forwarding or SOCKS forwarding.

SOCKS is a small protocol, defined in RFC-1928. A SOCKS client connects via TCP,
and indicates via the protocol the remote socket it wants to reach; the SOCKS server
makes the connection, then gets out of the way, transparently passing data back and
forth. Thereafter, it is just as if the client had connected directly to the remote socket.
The OpenSSH and Tectia syntax for this kind of forwarding would be:

# OpenSSH
$ ssh -D 1080 B

# Tectia
$ ssh -L socks/1080 B

We’ve switched to port 1080 since that’s the usual SOCKS port; 8080 or any other
port would do, as usual. Note that there’s no destination socket in either command,
just the local port to be forwarded; that’s because the destination is determined
dynamically, and can be different for each connection. We can use this solution only
if the browser has an option to use a SOCKS proxy (as most do).

This solves the whole problem neatly! The process goes like so:

1. The user types URL scheme://foo:1234/ into the browser. The port 1234 might be
implicit, as in 80 for HTTP or 443 for HTTPS.

2. The browser connects to the SSH SOCKS proxy on localhost:1080, and asks for
a connection to foo:1234 using the SOCKS protocol.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.3 Dynamic Port Forwarding | 375

3. In response, the SSH client associates the browser’s connection with a new
direct-tcpip channel in the existing SSH session [3.4.4.1], connected to foo:1234
via another TCP connection established by the SSH server.

4. The SSH client and server “get out of the way,” and the browser is connected to
the desired web server. Note that there is nothing here specific to HTTP; the
browser can next build an SSL session if the scheme is HTTPS, or use any proto-
col at all over the proxied connection.

Each time a new connection arrives on port 1080, it can be forwarded to a different
socket. This might seem odd if you have static forwarding firmly in mind, but it’s
just an extension of what you already know. With static forwarding, the SSH client
still creates a new channel for each connection; it just sends them all to the same
place. With dynamic forwarding, SOCKS allows each connection to indicate its own
destination, and SSH obliges.

No special support is required for dynamic forwarding on the SSH server, since it in
fact uses the same mechanism as static forwarding. Only the client needs to support
dynamic forwarding.

So, this would be a perfect lightweight solution: complete remote web browsing with
just SSH. Ah, if only we lived in such a simple world....

9.3.1 SOCKS v4, SOCKS v5, and Names
There are actually two commonly used versions of the SOCKS protocol: Version 4
and Version 5. Both OpenSSH and Tectia clients can do SOCKS proxying, and
recent versions implement SOCKS5 as well as SOCKS4. SOCKS5 added many fea-
tures over SOCKS4—authentication, UDP support, bidirect forwarding, and more—
but the germane feature here is that SOCKS4 only understands IP addresses in desti-
nation sockets, whereas SOCKS5 accepts domain names as well. This is crucial for
both practical and privacy reasons. Often, the naming context on either side of the
SSH connection is different: in our current example, your company’s network proba-
bly has a private namespace for hosts (e.g., an internal-only DNS which isn’t avail-
able to the outside world). With SOCKS4, your browser must look up the name in
the URL locally, then ask the SOCKS proxy to connect to the resulting address. That
won’t work for us; we want to give the proxy the (name,port) to reach, and have it
resolve the name on the far side of the connection, in the correct context.

The privacy aspect is, if you’re proxying your browsing traffic to shield your local
web traffic from prying eyes, you don’t want to reveal the names of all the web serv-
ers you’re hitting to anyone who can watch the DNS traffic from your browsing host.

OK, so SOCKS4 is out; that’s no problem, as many browsers support SOCKS5. But
there’s a further complication; the ugly face of reality nosing into our elegant solu-
tion. Disappointingly, most of the major browsers, even when they support
SOCKS5, don’t actually use it properly: they look up names locally, even though



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

376 | Chapter 9: Port Forwarding and X Forwarding

they could be passed through the proxy. We’ve tried dozens of OS/browser combi-
nations, including Firefox, Safari, Netscape, Mozilla, Internet Explorer (IE), and
Opera, and the only one we’ve found so far which does the right thing is...(drum roll
please...) IE 5.2 on Macintosh OS X. We guess that the main motivation for adding
SOCKS5 support was authentication, and so it was added without changing the
address-lookup logic—but this is an oversight that makes any use of SOCKS5 proxy-
ing much less useful than it could be. So: write your browser developers and ask for
better SOCKS5 support! A switch for choosing either local or remote name resolu-
tion would be ideal.

Given the realities of browser SOCKS support, the best solution for now is usually
using a static SSH port forwarding to a separate HTTP proxy server, such as Squid or
Privoxy. These proxies can also provide lots of other useful features, such as pop-up
blocking and cookie management—but one doesn’t always have such a proxy avail-
able or the ability to set one up, so the SSH-only approach with dynamic forwarding
is preferable if you can use it.

9.3.2 Other Uses of Dynamic Forwarding
The remote web-browsing problem provided a perfect setting in which to introduce
dynamic forwarding, but there are certainly other uses. Any program which can use a
SOCKS proxy is a candidate, and there are lots of them if you look. For instance:
SSH itself! With dynamic forwarding, SSH acts as a SOCKS server, but as a com-
pletely separate feature, some SSH products can also be SOCKS clients. The usual
use for this is for external connectivity where the local network isn’t directly con-
nected to the Internet, but provides only proxied Net access via SOCKS. However, it
has a neat use in combination with dynamic forwarding:

# Tectia
# In one window:
$ ssh -L socks/1080 B
# In another window:
$ export SSH_SOCKS_SERVER=socks://localhost:1080/
$ ssh -o'usesocks5 yes' HOST1

where you’re on the outside but HOST1 is on your company’s internal network. The
second ssh command uses the SSH/SOCKS proxy established by the first to connect
through the bastion host B to HOST1, resolving the name HOST1 on the inside.
This is obviously more convenient than forwarding a separate port to host:22 for
each internal host you might want to reach. It also has many advantages over the
idiom ssh B -t ssh HOST1, including:

• It’s faster, since multiple subsequent SSH commands to internal hosts use the
same SSH/SOCKS connection, rather than waiting for two connections every
time.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.4 X Forwarding | 377

• It doesn’t require an SSH client or other state (keys, known-hosts files, etc.) on
bastion host B. Indeed, this technique could work were a shell login not allowed
on B, only SSH connections for forwarding purposes.

• There is an SSH connection directly between home machine H and HOST1,
which simplifies things immensely if you want to do X forwarding or port for-
warding between them.

9.4 X Forwarding
Now that you’ve seen general TCP port forwarding, we move to a new topic: for-
warding of X protocol connections. X is a popular window system for Unix worksta-
tions, and one of its best features is its transparency. Using X, you can run remote X
applications that open their windows on your local display (and vice versa, running
local applications on remote displays). Unfortunately, the inter-machine communi-
cation is insecure and wide open to snoopers. But there’s good news: SSH X forward-
ing makes the communication secure by tunneling the X protocol.

X forwarding also addresses some firewall-related difficulties. Suppose you’re a sys-
tem administrator with a set of exposed production machines on the other side of a
firewall from you. You log into one of these machines using SSH, and want to run a
graphical performance-monitoring tool, such as Solaris’s perfmon, that uses the X
Window System. You can’t, though, because to do that, the external machine needs
to make a TCP connection back to the internal machine you started on, and the fire-
wall blocks it (as it should, since X is quite insecure). X forwarding solves this prob-
lem, permitting X protocol connections to pass through the firewall, securely
tunneled via SSH.

Our discussion begins with a brief overview, then explains the details of X forward-
ing. In addition to explaining how to use X forwarding, we also expose the internals
of X authentication and how it interacts with SSH, as well as other technical topics.

9.4.1 The X Window System
The X Window System, or X, is the most widely used graphical display system for
Unix machines. Like SSH, X has clients and servers. X clients are windowing applica-
tion programs, such as terminal emulators, paint programs, graphical clocks, and so
forth. An X server is the underlying display engine that processes requests from X cli-
ents, communicating via a network protocol called the X protocol. A machine typi-
cally runs a single X server but possibly many X clients.

Most important to our discussion, X supports sophisticated window management
over a network. X clients can open windows not only on their local machine, but
also on other computers on the network, whether they are down the hall or across
the globe. To accomplish this, an X client makes a network connection to a remote X



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

378 | Chapter 9: Port Forwarding and X Forwarding

server and carries on a conversation, using the X protocol to draw on the remote
screen, receive remote keyboard events, learn the remote mouse location, and so on.
This obviously requires some type of security, which we discuss soon.

A central concept of X is the display, an abstraction for the screen managed by an X
server. When an X client is invoked, it needs to know which display to use. Displays
are named by strings of the form HOST:n.v, where:

• HOST is the name of the machine running the X server controlling the display.

• n is the display number, an integer, usually 0. X allows for multiple displays con-
trolled by a single server; additional displays are numbered 1, 2, and so on.

• v is the visual number, another integer. A visual is a virtual display. X supports
multiple virtual displays on a single, physical display. If there’s only one virtual
display (which is the most common scenario), you omit the “.v”, and the default
is visual 0.

For example, on the machine server.example.com, display 0, visual 1 is represented
by the display string “server.example.com:0.1”.

Under Unix, most X client programs let you specify the display string in two ways:
the –d or -display command-line option, or the environment variable DISPLAY. For
example, to run the X client program xterm on the only X display of the workstation
anacreon, use the command-line option:

$ xterm -d anacreon:0 &

VNC Forwarding: An Alternative to X Forwarding
X forwarding is problematic from a security point of view, for the same reason as X
itself. As you will see, the design of X means that remote programs must make separate
network connections back to the user; this requires yet another layer of authentication
and authorization, complicating the situation and opening an avenue of attack. SSH X
forwarding tries to secure this as much as possible, but it may still be unacceptable in
some environments.

An alternative technique is to use Virtual Network Computing (VNC) over SSH. VNC
is free software developed by AT&T Laboratories in the UK, which provides remote
GUI access for Unix and Windows platforms. With VNC, you can open a window on
your Unix machine running X, and have the desktop of a remote Windows machine
appear there, so you can operate the Windows box remotely. Conversely, you can run
the VNC client on a Windows machine and connect to a remote X display running on
a Unix host. Since VNC involves only a single outbound connection, it is easy and safer
to tunnel through SSH than X. You can find out more about VNC (and download the
software) at http://www.realvnc.com/.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.4 X Forwarding | 379

or the environment variable:

$ setenv DISPLAY anacreon:0
$ xterm &

X is a large, deep software product whose documentation fills a dozen O’Reilly
books. We’ve barely scratched the surface with our explanation, but you’ve now
seen enough to understand X forwarding.

9.4.2 How X Forwarding Works
Although X clients can communicate with remote X servers, this communication
isn’t secure. All interactions between the X client and server, such as keystrokes and
displayed text, can be easily monitored by network snooping because the connec-
tion isn’t encrypted. In addition, most X environments use primitive authentication
methods for connecting to a remote display. A knowledgeable attacker can get a con-
nection to your display, monitor your keystrokes, and control other programs you’re
running.

Once again, SSH comes to the rescue. An X protocol connection can be routed
through an SSH connection to provide security and stronger authentication. This fea-
ture is called X forwarding.

X forwarding works in the following way, as illustrated in Figure 9-10. An SSH client
requests X forwarding when it connects to an SSH server (assuming X forwarding is
enabled in the client). If the server allows X forwarding for this connection, your
login proceeds normally, but the server takes some special steps behind the scenes.
In addition to handling your terminal session, it sets itself up as a proxy X server run-
ning on the remote machine and sets the DISPLAY environment variable in your
remote shell to point to the proxy X display:

syrinx$ ssh sys1
Last login: Sat Nov 13 01:10:37 1999 from blackberry
Sun Microsystems Inc.   SunOS 5.6       Generic August 1997
You have new mail.
sys1$ echo $DISPLAY
sys1:10.0
sys1$ xeyes
The “xeyes” X client appears on the screen

The DISPLAY value appears to refer to X display #10 on sys1, but there’s no such dis-
play. (In fact, there might be no true displays on sys1 at all!) Instead, the DISPLAY

value points to the X proxy established by the SSH server, i.e., the SSH server is mas-
querading as an X server. If you now run an X client program, it connects to the
proxy. The proxy behaves just like a “real” X server, and in turn instructs the SSH
client to behave as a proxy X client, connecting to the X server on your local
machine. The SSH client and server then cooperate to pass X protocol information
back and forth over the SSH pipe between the two X sessions, and the X client



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

380 | Chapter 9: Port Forwarding and X Forwarding

program appears on your screen just as if it had connected directly to your display.
That’s the general idea of X forwarding.

X forwarding can even solve the firewall problem mentioned earlier, as long as the
firewall permits SSH connections to pass through. If a firewall sits between your local
and remote machines, and you run an X client on the remote machine, X forwarding
tunnels the X connection through the firewall’s SSH port to the local machine.
Therefore, the X client’s windows can open on your local display. If X forwarding
were not present, the firewall would block the connection.

Some aspects of X forwarding probably sound familiar from our earlier explanation
of port forwarding. In fact, X forwarding is just a special case of port forwarding for
which SSH has special support.

9.4.3 Enabling X Forwarding
X forwarding is on by default. If you need to enable or disable X forwarding for your
clients, here’s how to do it. Unlike general port forwarding, which requires you to
fiddle with TCP port numbers, X forwarding has only an on/off switch. In your SSH
client configuration file, use the keyword ForwardX11 with a value of yes (the default,
to enable) or no (to disable):

ForwardX11 yes

On the command line, you may also use –x to disable X forwarding:

$ ssh -x server.example.com

OpenSSH and Tectia enable X forwarding with the following options:

# OpenSSH
$ ssh -X server.example.com

# Tectia
$ ssh +x server.example.com

Figure 9-10. X forwarding

SSH
Server

SSH
Client

A

display
hardware

B

SSH

port 6000
(DISPLAY A:0)

port 6010
(DISPLAY B:10)

X client

X server



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.4 X Forwarding | 381

9.4.4 Configuring X Forwarding
The behavior of X forwarding can be modified through compile-time configuration,
serverwide configuration, and per-account configuration.

9.4.4.1 Compile-time configuration

Tectia can be compiled with or without X support. The compile-time flags --with-x
and --without-x make this determination:

$ configure ... --without-x ...

You can also enable or disable all X forwarding by default with --enable-X11-

forwarding or --disable-X11-forwarding:

# Tectia
$ configure ... --enable-X11-forwarding ...

Remember, enable/disable flags simply set the default behavior. You can override
these defaults with serverwide and per-account configuration.

9.4.4.2 Serverwide configuration

The serverwide configuration keyword X11Forwarding* enables or disables X forward-
ing in the SSH server. By default, it is enabled.

X11Forwarding no

The X11DisplayOffset keyword lets you reserve some X11 display numbers so that
sshd can’t use them. This keyword specifies the lowest display number SSH may use,
preventing sshd from clashing with real X servers on the lower-numbered displays.
For example, if you normally run actual X servers on displays 0 and 1, set:

#  OpenSSH
X11DisplayOffset 2

The XAuthLocation keyword specifies the path to the xauth program, which manipu-
lates authorization records for X. We describe this keyword later, after we discuss
xauth. [9.4.6.4]

# OpenSSH
XAuthLocation /usr/local/bin/xauth

9.4.4.3 Per-account configuration

In your authorization file for public keys, you may disallow X forwarding for incom-
ing SSH connections that use a particular key for authentication. [8.2.7] In OpenSSH
and Tectia this is done with the option no-X11-forwarding:

# OpenSSH
no-x11-forwarding ...key...

* And its Tectia synonyms ForwardX11 and AllowX11Forwarding.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

382 | Chapter 9: Port Forwarding and X Forwarding

# Tectia
Key mykey.pub
Options no-x11-forwarding

9.4.5 X Authentication
We’ve mentioned in passing that X performs its own authentication when X clients
connect to X servers. Now we’re going to dive into technical detail on the inner
workings of X authentication, why it’s insecure, and how SSH X forwarding builds
on it to create a secure solution.

In most cases, X forwarding simply works, and you don’t have to think about it. The
following material is to aid your understanding and satisfy any intense cravings for
tech talk (both yours and ours).

9.4.5.1 How X authentication works

When an X client requests a connection to an X server, the server authenticates the
client. That is, the X server determines the client’s identity to decide whether to
allow a connection to the server’s display. The current release of the X Window Sys-
tem (X11R6) provides two categories of authentication: host-based and key-based:

Host-based X authentication
The simpler method. Using the program xhost, you indicate a list of hosts that
may connect to your X display. Notice that connections are authenticated only
by hostname, not by username. That is, any user on a listed host may connect to
your display.

Key-based X authentication
Uses the xauth program to maintain a list of X authentication keys, or display
keys, for X clients. Keys are kept in a file, usually ~/.Xauthority, along with other
data associated with the various displays the client wants to access. When an X
client connects to a server requiring authentication, the client supplies the
appropriate credentials for that display from the xauth data. If authentication is
successful, the X client can then connect to the display managed by the X server.

Display keys are obtained from the X server in various ways depending on the envi-
ronment. For example, if you start the server directly on the console of a machine
using xinit or startx, these programs invoke an X server and insert a copy of the
server’s key directly into your xauth data. Alternatively, if you connect to a remote
machine that runs the X Display Manager (XDM), the key is sent to your remote
account when establishing your XDM session.

9.4.5.2 xauth and the SSH rc files

SSH has startup files that can be set to execute on the server side when a client logs
in. These are the systemwide /etc/sshrc and the per-account ~/.ssh/rc files. These can
be shell scripts or any kind of executable program.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.4 X Forwarding | 383

An important thing to note is that sshd runs xauth only to add the proxy display key
if it doesn’t run an rc program. If it does run an rc program, it feeds the key type and
data to the program on a single line to its standard input, and it is up to the rc pro-
gram to store the display key. This feature provides a way to customize handling the
display key, in case just running xauth isn’t the right thing to do in your situation.

9.4.5.3 Trusted X forwarding

The X Windows protocol was not designed with much security in mind. Usually,
once an application has access to an X display, it pretty much has the run of it. A
malicious X client can easily read all keyboard input, see all screen contents, add or
modify keystrokes, and so on. This is why X forwarding is risky and should gener-
ally be turned on only when you need it, and only for hosts you trust.

There is a security extension to the X Windows protocol that allows at least some
further granularity, partitioning X clients into “trusted” and “untrusted” groups. Pro-
grams like the X Window Manager must be trusted, since they have to manipulate
the windows of other applications and perform other global operations on the dis-
play. Other programs may be left untrusted, though, with more limited access to the
display and less opportunity for mischief.

Both OpenSSH and Tectia support this trust distinction in X forwarding. OpenSSH
has the ForwardX11Trusted client option and Tectia has TrustX11Applications. Set to
yes or no, these keywords control whether remote X clients accessing the local dis-
play via SSH X forwarding will be considered trusted or untrusted by the X server.

# OpenSSH
ForwardX11Trusted yes

# Tectia
TrustX11Applications yes

The default setting is no, meaning “untrusted.” You can override this setting per con-
nection with ssh -Y (OpenSSH) or ssh +X (Tectia):

# OpenSSH
$ ssh -Y ... Equivalent to ssh -X -o ForwardX11Trusted=yes

# Tectia
$ ssh +X ... Equivalent to ssh +x -o TrustX11Applications=yes

Technically, for trusted forwarding, the client uses the existing xauth key to access
the display: that is, it inherits whatever trust is already in effect. For untrusted for-
warding it generates a new, specifically untrusted key using the command xauth gen-
erated ... untrusted, and uses the new key with forwarded X connections. In either
case, the local key never goes to the remote host; that is always a throwaway key
used only for authenticating the connection within SSH.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

384 | Chapter 9: Port Forwarding and X Forwarding

9.4.5.4 Problems with X authentication

If you’ve used X, the authentication was probably transparent and seemed to work
fine. Behind the scenes, however, the mechanism is insecure. Here are the major
problems:

xhost is insecure
Once you give permission for a remote host to connect to your display, any user
on that host can connect. As with the r-commands, this authentication method
depends on the network address of the connecting host, which can be easy for
an attacker to usurp.

Key transfer may be manual and insecure
Some remote-login protocols, such as telnet, don’t assist with X authentication.
If your display keys aren’t available on a remote machine, you have to transfer
them yourself, either manually or by automating the transfer, perhaps in your
login script. This isn’t only a nuisance but also insecure, since you’re sending the
key in plaintext over the network.

The most common key-based method, MIT-MAGIC-COOKIE-1, is insecure
Although it uses a random string of bits, or cookie, as the xauth display key, this
key is transmitted in plaintext at the beginning of every connection, where it can
be intercepted and read.

The remote host might not support your chosen X authentication method
X11R6 supports other, more secure authentication methods. SUN-DES-1
employs Sun’s secure RPC system, XDM-AUTHORIZATION-1 uses DES, and
MIT-KERBEROS-5 involves Kerberos user-to-user authentication.* Unfortu-
nately, these methods are often not available in particular instances of the X soft-
ware. Sometimes they aren’t compiled into X installations due to cryptographic
export restrictions; other times, the X version is too old to support the more
secure methods.

If the remote host is insecure, your display key can be compromised
In the best scenario, where the X server supports strong authentication and your
key can be copied securely to the remote machine, you still have to store your
sensitive display key there. If that machine is untrustworthy, your key can be at
risk. (SSH doesn’t have this problem, since only your public key is stored on the
SSH server machine.)

9.4.5.5 SSH and authentication spoofing

Through X forwarding, SSH provides transparent, secure authentication and key
transfer for X sessions. This is done by a technique called authentication spoofing, as

* See the X11R6Xsecurity(1) manpage for details on thesemethods. Also, remember that this is authentication
only, not encryption. The contents of your X connection remain unencrypted and open to snooping or mod-
ification on the network.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.4 X Forwarding | 385

depicted in Figure 9-11. Authentication spoofing involves a fake display key, which
we call the proxy key, that authenticates to the SSH X proxy server on the remote
side. When relaying X traffic containing a key, SSH cleverly substitutes the real dis-
play key. Here’s how it works.

The players begin in the following positions. You are logged into a local machine
with a local display. The local machine runs an X server and SSH clients. On the
other side of the network connection, an SSH server is running on a remote machine,
where you invoke X clients. The goal is for the remote X clients to appear on your
local display by way of SSH.

First, you run a local SSH client, asking it to set up X forwarding. The SSH client
requests X forwarding from the remote SSH server, and it also reads your local dis-
play key from your .Xauthority file.

Next, the SSH client generates a proxy key. This is a string of random data of the
same length as your local display key. The SSH client then sends the proxy key and
its key type (e.g., MIT-MAGIC-COOKIE-1) to the remote machine, and the SSH
server runs the xauth program on your behalf to associate the proxy key with your
local display. The stage is now set for X forwarding.

When you start a remote X client, your local SSH client connects to your local X dis-
play. It then watches for the first X protocol message sent over the forwarded con-
nection and treats it specially. Specifically, the SSH client parses the message, finds
the X authentication key inside it, and compares it to the proxy key. If the keys don’t

Figure 9-11. Authentication of forwarded X connections

SSH
Server

swap keys

SSH Client

X X
SSH

X Client

X
initial X connection

packet

proxy display key

$XAUTHORITY

xlib

xauth add...

X Server

X

real display key

~/.Xauthority

OK

OK

2

1
11

10

9

8

4

3

7

6

5



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

386 | Chapter 9: Port Forwarding and X Forwarding

match, the SSH client rejects and closes the connection. Otherwise, if the keys
match, the SSH client substitutes the real display key in place of the proxy key and
relays the modified message to your local X server. The X server, blissfully unaware
that a key switch has taken place, reads the display key and proceeds normally with
X authentication. The forwarded X connection is now established.

X forwarding with authentication spoofing solves all but one of the X authentication
problems we raised earlier:

xhost
X forwarding doesn’t use xhost. (By the way, make sure to disable all xhost per-
missions when using X forwarding, or you’ll undermine the X security provided
by SSH.)

Key transfer
SSH transfers the X display key automatically and runs xauth on your behalf to
install it on the remote side. The transfer is secure since the key travels over the
encrypted SSH connection.

MIT-MAGIC-COOKIE-1 insecurity
The key transmitted at the beginning of every X session is now encrypted, along
with the rest of the X traffic, inside the SSH session. This greatly increases the
operational security of this common X authentication scheme.

Untrustworthy remote hosts
With authentication spoofing, only the proxy key, not the true display key, is
sent to the remote host. The proxy key is good only for connecting to your dis-
play through SSH, not for connecting to your display directly. As soon as your
SSH session ends, the proxy key becomes useless. Since SSH sessions come and
go, but some people leave their X sessions up (with the same key) for days, X for-
warding can be a great improvement.

9.4.5.6 Improving authentication spoofing

The remaining problem with X forwarding is the possibility of unsupported X
authentication mechanisms. The local side can use a more sophisticated authentica-
tion method that a remote host might not support.

In theory, SSH X forwarding can solve this problem by always installing a proxy key
of type MIT-MAGIC-COOKIE-1, no matter what local authentication method is
actually in use. After the SSH client has checked the X client’s key against the proxy
key for a match, its client could then generate and substitute whatever local authenti-
cator is required using the true authentication type and key.

Unfortunately, SSH implementations don’t go this far. The server compares keys liter-
ally as bit strings, and the SSH client substitutes keys verbatim, regardless of the key
types. As a result, if you use a stronger X authentication method such as XDM-
AUTHORIZATION-1, sshd blindly compares an encrypted authenticator with the



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.4 X Forwarding | 387

proxy key, rightly determines that they don’t match, and invalidly rejects the connec-
tion. The failure is silent and mysterious; we wish the software would detect the pres-
ence of an unsupported mode and issue a warning when setting up the connection.

If SSH knew the details of all X authentication modes, it could check the proxy
authenticators on one side and generate correct ones for the X server on the other.
However, this can be a significant development effort, though perhaps one could link
SSH against the X11 libraries to obtain the necessary algorithms. SSH would also
have to deal with differing key data lengths, constructing a new X message to hold
the proxy key instead of copying it to an existing message.

It would also be useful if X forwarding could be used without authentication spoof-
ing. Then you could arrange your own security for the connection by, say, using
xhost to allow any connection from your local machine (and hence the SSH X proxy),
while still applying key-based authentication to X connections originating from else-
where. You can accomplish this with general port forwarding, as discussed in the
next section, but direct support is more convenient.

9.4.5.7 Nonstandard X clients

X clients generally do X xauth-style authentication by virtue of having been linked
against Xlib, the common X programming library. Occasionally, though, you run
across particular X client programs that don’t use Xlib and simply ignore authentica-
tion issues. Since you can’t turn off SSH X authentication spoofing, you can’t use
such programs across SSH X forwarding; you get this message:

X11 connection requests different authentication protocol: 'MIT-MAGIC-COOKIE-1' vs.
''

 You can, however, use a general port forwarding instead. For example:

foo% ssh -R6010:localhost:6000 bar
bar% setenv DISPLAY bar:10

Note that this bypasses the discipline imposed by X forwarding, of requiring xauth
authentication on forwarded X connections. If your real X server is using xhost for
access control, this port forwarding allows anyone on host foo to connect to your X
server. Use this sort of thing with caution.

9.4.6 Further Issues
As we’ve said, X forwarding usually works fine without any special effort on your
part. In some special situations, however, you might need to take some extra steps.

9.4.6.1 X server configuration

In order for X forwarding to work, your X server must accept the proxy X connec-
tions from your SSH client. This is sometimes not set up to begin with, because nor-
mal use doesn’t require it. For example, if you’re using an X server on a PC to access



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

388 | Chapter 9: Port Forwarding and X Forwarding

a remote Unix machine via XDM, you might never run local X clients at all, and they
may not be allowed by default. You can use xhost +localhost to allow all connections
from your PC, while still applying key-based authentication to connections from
other sources. This allows SSH-forwarded (and authenticated) connections to be
accepted.

9.4.6.2 Setting your DISPLAY environment variable

SSH sets the DISPLAY variable automatically only if X forwarding is in effect. If you
don’t use X forwarding but want to use X on a remote machine you logged into via
SSH, remember that you have to set the DISPLAY variable yourself. You should really
do this only when both machines are on the same, trusted network, as the X proto-
col by itself is quite insecure.

Be careful not to set DISPLAY unintentionally! It is common for people to set the
DISPLAY variable in a login command file or by other means. If you’re not careful, this
can make your X connections insecure without your noticing! If you use SSH to tun-
nel through a firewall that blocks normal X connections, then of course you’ll notice
because your X clients won’t work. But if normal X connections are possible but
undesirable, and X forwarding isn’t in effect, your X programs will work but
(silently) not be secured! This is a good reason to block X traffic at the firewall if it
presents a security risk or to configure your X server to accept connections only from
the local host (the source of the SSH-forwarded X connections). If that’s not feasi-
ble, you may want to put something like this in your login script:

#!/bin/csh
if ($?DISPLAY) then
   set display_host   = `expr "$DISPLAY" : '\(.*\):'`
   set display_number = `expr "$DISPLAY" : '.*:\([^.]*\)'`
   set my_host = `hostname`
   set result  = `expr '(' "$display_host" = "$my_host" ')' '&' '(' \
                 "$display_number" '>' "0" ')'`
   if ($result == 0) then
      echo "WARNING: X display $DISPLAY does not appear to be protected by SSH!"
      echo "unsetting DISPLAY variable just to be safe"
      unsetenv DISPLAY
   endif
endif

9.4.6.3 Shared accounts

If you share a single account among multiple people, you may have some trouble
with X forwarding. For example, it is common for a group of sysadmins to share use
of the root account. For each person to retain their own environment when using the
root account, they may set their USER, LOGNAME, and HOME environment variables
explicitly to reflect their personal accounts rather than the root account. If you use
SSH to log into the root account with X forwarding turned on, though, it adds the
proxy xauth key to root’s .Xauthority file before the shell reads your login script and



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.5 Forwarding Security: TCP-Wrappers and libwrap | 389

resets these environment variables. The result is that once you’re logged in and try to
use X, it fails: the X client looks in your .Xauthority file (because of the setting of
your HOME variable), but the key isn’t there.

You can deal with this problem by setting the XAUTHORITY variable to point to root’s
.Xauthority file, or by using code like the following in your login script to copy the
needed key into your personal one:

if (($uid == 0) && ($?SSH_CLIENT) && ($?DISPLAY)) then
# If I do ssh -l root with X forwarding, the X proxy server's xauth key
# gets added to root's xauth db, not mine.  See if there's an entry for my
# display in root's xauth db...
  set key = `bash -c "xauth -i -f /.Xauthority list $DISPLAY 2> /dev/null"`
# ... and if so, copy it into mine.
  if ($? == 0) then
    xauth -bi add $key
    chown res ~res/.Xauthority >& /dev/null
  endif
endif

9.4.6.4 Location of the xauth program

Remember that sshd runs the xauth program on your behalf, to add the proxy key to
your .Xauthority file on the remote side. The location of the xauth program is discov-
ered when you configure the SSH package and compile into the sshd executable. If
xauth is subsequently moved, X forwarding won’t work (ssh -v reveals this explic-
itly). For OpenSSH, the system administrator on the server side can use the server-
wide configuration keyword XAuthLocation to set the path to the xauth program
without having to recompile sshd1:

# OpenSSH
XAuthLocation /usr/local/bin/xauth

XAuthLocation can also appear in the OpenSSH client configuration file; the client
uses xauth to get the local X display key.

9.4.6.5 X forwarding and the GatewayPorts feature

The GatewayPorts (–g) feature discussed earlier applies only to general port forward-
ing, not to X forwarding. The X proxies in OpenSSH and Tectia always listen on all
network interfaces and accept connections from anywhere, though those connec-
tions are then subject to X authentication as described earlier. To restrict X client
source addresses, use TCP-wrappers, which we discuss in the next section.

9.5 Forwarding Security: TCP-Wrappers
and libwrap

At several points in this chapter, we have talked about security issues and limitations
of forwarding. So far, we’ve seen very little control over who can connect to a



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

390 | Chapter 9: Port Forwarding and X Forwarding

forwarded port. The OpenSSH default is to allow connections only from the local
host, which is reasonably secure for a single-user machine. But if you need to allow
connections from elsewhere, you have a problem, since it’s all or nothing: to allow
connections from elsewhere (using –g or GatewayPorts yes), you must allow them
from anywhere. And with Tectia it’s worse: forwarded ports always accept connec-
tions from anywhere. X forwarding is in a slightly better position, since the X proto-
col has its own authentication, but you might still prefer to restrict access, preventing
intruders from exploiting an unknown security flaw or performing a denial-of-service
attack. SSH on the Unix platform provides an optional feature for access control
based on the client address, called “TCP-wrappers.”

The term “TCP-wrappers” refers to software written by Wietse Venema. If it isn’t
already installed in your Unix distribution, you can get it at:

ftp://ftp.porcupine.org/pub/security/index.html

TCP-wrappers are a global access control mechanism that integrates with other
TCP-based servers, such as sshd or telnetd. Access control is based on the source
address of incoming TCP connections. That is, a TCP-wrapper permits or denies
connections based on their origin, as specified in the configuration files /etc/hosts.
allow and /etc/hosts.deny. Figure 9-12 shows where TCP-wrappers fit into the
scheme of SSH configuration.

There are two ways to use TCP-wrappers. The most common method, wrapping, is
applied to TCP servers that are normally invoked by inetd. You “wrap” the server by
editing /etc/inetd.conf and modifying the server’s configuration line. Instead of invok-
ing the server directly, you invoke the TCP-wrapper daemon, tcpd, which in turn
invokes the original server. Then, you edit the TCP-wrapper configuration files to
specify your desired access control. tcpd makes authorization decisions based on the
their contents.

The inetd technique applies access control without having to modify the TCP server
program. This is nice. However, sshd is usually not invoked by inetd [5.3.3.2], so the
second method, source code modification, must be applied. To participate in TCP-
wrapper control, the SSH server must be compiled with the flag --with-tcp-wrappers
[4.2.4.5] or --with-libwrap [4.3.5.3] to enable internal support for TCP-wrappers.
sshd then invokes TCP-wrapper library functions to do explicit access-control checks
according to the rules in /etc/hosts.allow and /etc/hosts.deny. So, in a sense, the term
“wrapper” is misleading since sshd is modified, not wrapped, to support TCP-
wrappers. Figure 9-13 illustrates the process.

9.5.1 TCP-Wrappers Configuration
The access control language for TCP-wrappers has quite a few options and may vary
depending on whose package you use and what version it is. We won’t cover the lan-
guage completely in this book. Consult your local documentation for a complete



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.5 Forwarding Security: TCP-Wrappers and libwrap | 391

understanding: the manpages on tcpd, hosts_access, and hosts_options. We just indi-
cate some simple, common configurations.

The TCP-wrapper configuration is kept in the files /etc/hosts.allow and /etc/hosts.
deny. These files contain patterns of the form:

service_1 [service_2 service_3 ...] : client_1 [client_2 client_3 ...]

Each pattern matches some (server,client) pairs, and hence may match a particular
client/server TCP connection. Specifically, a connection between client C and server
S matches this rule if some service servicei matches S, and some clientj matches C.
(We explain the format and matching rules for these subpatterns shortly.) The hosts.
allow file is searched first, followed by hosts.deny. If a matching pattern is found in
hosts.allow, the connection is allowed. If none is found there, but one matches in
hosts.deny, the connection is dropped. Finally, if no patterns match in either file, the
connection is allowed. Nonexistence of either file is treated as if the file existed and
contained no matching patterns. Note that the default, then, is to allow everything.

Figure 9-12. TCP-wrappers and SSH configuration (highlighted parts)

SSH
Client

Command-line
options

Environment
variables

User’s client
configuration file

Global client
configuration file

Compile-time
flags

Key-related
files

Known hosts
databases

Configuration types

Command-line
options

Custom session
startup

Server-side
configuration file

Server-side
authorization files

Compile-time
flags

Target account’s
authorization files

TCP-wrappers
files

Kerberos
configuration files

PAM files

SSH
Server

Configuration types



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

392 | Chapter 9: Port Forwarding and X Forwarding

There is also an extended syntax, documented on the hosts_options manpage. It may
or may not be available, depending on how your TCP-wrapper library was built. It
has many more options, but in particular, it allows tagging an individual rule as
denying or rejecting a matching connection, for example:

sshd : bad.host.com : DENY

Using this syntax, you can put all your rules into the hosts.allow file, rather than hav-
ing to use both files. To reject anything not explicitly allowed, just put ALL : ALL : DENY

at the end of the file.

In a pattern, each service is a name indicating a server to which this pattern applies.
SSH recognizes the following service names:

sshd
The main SSH server. This can be sshd, sshd1, sshd2, or whatever name you
invoke the daemon under (its argv[0] value, in C-programmer-speak).

sshdfwd-x11
The X forwarding port.

sshdfwd-N
Forwarded TCP port N (e.g., forwarded port 2001 is service sshdfwd-2001).

The X and port -orwarding control features are available only in Tec-
tia; OpenSSH uses libwrap only to control access to the main server.

Figure 9-13. TCP-wrapper (libwrap) operation

SSH

Can H connect to P?

libwrap YES/NO

/etc/hosts.allow

/etc/hosts.deny

forwarded port,
X forwarding,
or main server

P

Host
H

TCP



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.5 Forwarding Security: TCP-Wrappers and libwrap | 393

Each client is a pattern that matches a connecting client. It can be:

• An IP address in dotted-quad notation (e.g., 192.168.10.1).

• A hostname (DNS, or whatever naming services the host is using).

• An IP network as network-number/mask (e.g., 192.168.10.0/255.255.255.0; note
that the “/n-mask-bits” syntax, 192.168.10.0/24, isn’t recognized).

• “ALL”, matching any client source address.

Example 9-1 shows a sample /etc/hosts.allow configuration. This setup allows con-
nections to any service from the local host’s loopback address, and from all addresses
192.168.10.x. This host is running publicly available servers for POP and IMAP, so
we allow connections to these from anywhere, but SSH clients are restricted to
sources in another particular range of networks.

We allow connections to the forwarded port 1234 from a particular host, blynken.
sleepy.net. Note that this host doesn’t have to be on any of the networks listed so far
but can be anywhere at all. The rules so far say what is allowed, but don’t by them-
selves forbid any connections. So, for example, the forwarding established by the

Example 9-1. Sample /etc/hosts.allow file

#
# /etc/hosts.allow
#
# network access control for programs invoked by tcpd (see inetd.conf) or
# using libwrap. See the manpages hosts_access(5) and hosts_options(5).

# allow all connections from my network or localhost (loopback address)
#
ALL : 192.168.10.0/255.255.255.0 localhost

# allow connections to these services from anywhere
#
ipop3d imapd : ALL

# allow SSH connections from these eight class C networks
# 192.168.20.0, 192.168.21.0, ..., 192.168.27.0
#
sshd : 192.168.20.0/255.255.248.0

# allow connections to forwarded port 1234 from host blynken
# Tectia only
sshdfwd-1234 : blynken.sleepy.net

# restrict X forwarding access to localhost
# Tectia only
sshdfwd-x11 : localhost

# deny everything else
#
ALL : ALL : DENY



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

394 | Chapter 9: Port Forwarding and X Forwarding

command ssh -L1234:localhost:21 remote is accessible only to the local host, since
Tectia defaults to binding only the loopback address in any case. But ssh -g -L1234:
localhost:21 remote is accessible to blynken.sleepy.net as well. The important differ-
ence is that with this use of TCP-wrappers, sshd rejects connections to the for-
warded port, 1234, from any other address.

The sshdfwd-x11 line restricts X-forwarding connections to the local host. This
means that if ssh connects to this host with X forwarding, only local X clients can use
the forwarded X connection. X authentication does this already, but this configura-
tion provides an extra bit of protection.

The final line denies any connection that doesn’t match the earlier lines, making this
a default-to-closed configuration. If you wanted instead to deny some particular con-
nections but allow all others, you would use something like this:

ALL : evil.mordor.net : DENY
telnetd : completely.horked.edu : DENY
ALL : ALL : ALLOW

The final line is technically not required, but it’s a good idea to make your inten-
tions explicit. If you don’t have the host_options syntax available, you instead have
an empty hosts.allow file, and the following lines in hosts.deny:

ALL : evil.mordor.net
telnetd : completely.horked.edu

9.5.2 Notes About TCP-Wrappers
Here are a few things to remember when using TCP-wrappers:

• You can’t distinguish between ports forwarded by SSH-1 and SSH-2: the “sshd-
fwd” rules refer to both simultaneously. You can work around this limitation by
linking each against a different libwrap.a, compiled with different filenames for
the allow and deny files, or by patching the ssh and sshd executables directly, but
then you have to keep track of these changes and extra files.

• The big drawback to TCP-wrappers is that it affects all users simultaneously. An
individual user can’t specify custom access rules for himself; there’s just the sin-
gle set of global configuration files for the machine. This limits its usefulness on
multiuser machines.

• If you compile SSH with the --with-libwrap option, it is automatically and
always turned on; there’s no configuration or command-line option to disable
the TCP-wrappers check. Remember that SSH does this check not only for for-
warded ports and X connections, but also for connections to the main SSH
server! As soon as you install a version of sshd with TCP-wrappers, you must
ensure that the TCP-wrappers configuration allows connections to the server—
for instance, with the rule sshd : ALL in /etc/hosts.allow.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

9.6 Summary | 395

• Using hostnames instead of addresses in the TCP-wrappers rule set involves the
usual security trade-off. Names are more convenient, and their use avoids break-
age in the future if a host address changes. On the other hand, an attacker can
potentially subvert the naming service and circumvent the access control. If the
host machine is configured to use only its /etc/hosts file for name lookup, this
may be acceptable even in a highly secure environment.

• The TCP-wrappers package includes a program called tcpdchk. This program
examines the wrapper control files and reports inconsistencies that might signal
problems. Many sites run this periodically as a safety check. Unfortunately, tcpd-
chk is written only with explicit wrapping via inetd.conf in mind. It doesn’t have
any way of knowing about programs that refer to the control files via the lib-
wrap routines, as does sshd. When tcpdchk reads control files with SSH rules, it
finds uses of the service names “sshd1,” “sshdfwd-n,” etc., but no correspond-
ing wrapped services in inetd.conf, and it generates a warning. Unfortunately, we
know of no workaround.

9.6 Summary
In this chapter, we discussed SSH port forwarding and X forwarding. Port forward-
ing is a general TCP proxying feature that tunnels TCP connections through an SSH
session. This is useful for securing otherwise insecure protocols running on top of
TCP or for tunneling TCP connections through firewalls that would otherwise for-
bid access. X forwarding is a special case of port forwarding for X Window System
connections, for which SSH has extra support. This makes it easy to secure X con-
nections with SSH, which is good because X, while popular and useful, is notori-
ously insecure. Access control on forwarded ports is normally coarse, but you can
achieve finer control with the TCP-wrappers feature.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

396

Chapter 10CHAPTER 10

A Recommended Setup

We’ve just covered a pile of chapters on SSH configuration: is your head spinning
yet? With so many choices, you might be wondering which options you should use.
How can system administrators secure their systems most effectively with SSH?

When set up properly, SSH works well and invisibly, but sometimes a good setup
takes a few tries. In addition, there are some ways to configure the software that are
simply wrong. If you’re not careful, you can introduce security holes into your
system.

In this chapter we present a recommended set of options for compilation, server con-
figuration, key management, and client configuration. We assume:

• You’re running SSH on a Unix machine.

• You want a secure system, sometimes at the expense of flexibility. For instance,
rather than tell you to maintain your .rhosts files carefully, we recommend dis-
abling Rhosts authentication altogether.

Of course, no single configuration covers all the possibilities; that is, after all, the
point of configuration. This is just a sample setup, more on the secure side, to give
you a starting point and cover some of the issues involved.

10.1 The Basics
Before you start configuring, make sure you’re running an up-to-date SSH version.
Some older versions have known security holes that are easily exploited. Always run
the latest stable version, and apply updates or patches in a timely manner. (The same
goes for your other security software.)

Always keep important SSH-related files and directories protected. The server’s host
key should be readable only by root. Each user’s home directory, SSH configuration
directory, and .rhosts and .shosts files should be owned by the user and protected
against all others.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

10.3 Serverwide Configuration | 397

Also, remember that SSH doesn’t and can’t protect against all threats. It can secure
your network connections but does nothing against other types of attacks, such as
dictionary attacks against your password database. SSH should be an important part,
but not the only part, of a robust security policy. [3.10]

10.2 Compile-Time Configuration
In Chapter 4, we covered many compile-time flags for building SSH distributions.
Several flags should be carefully set to make your server machine maximally secure:

--sysconfdir=... (OpenSSH, Tectia)
Make sure your etc directory is on a local disk, not an NFS-mounted partition. If
the SSH server reads a file via NFS, the contents are transmitted in the clear
across the network, violating security. This is especially true of the host key,
which is stored unencrypted in this directory.

--bindir=... (OpenSSH, Tectia)

--sbindir=... (OpenSSH, Tectia)
Likewise, make sure your SSH executables are installed on a local disk, as they
can be spoofed if loaded over NFS.*

--disable-suid-ssh-signer (Tectia)
Our recommended serverwide configuration disables hostbased authentication,
so there’s no need for setuid permissions for ssh-signer.

--with-tcp-wrappers (OpenSSH)
--with-libwrap (Tectia)

libwrap affords more precise control over which client machines are allowed to
connect to your server. It also makes port and X forwarding more flexible, since
otherwise local forwardings are available either only to the local host or from
anywhere at all. With GatewayPorts (or ssh -g) and libwrap, you can limit for-
warding access to specific hosts. [9.2.1.1]

10.3 Serverwide Configuration
Chapter 5 provided a detailed discussion of sshd and how to configure its runtime
behavior. Now let’s determine which configuration options are most important for
security.

* Or use --prefix to root all SSH system directories together.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

398 | Chapter 10: A Recommended Setup

10.3.1 Disable Other Means of Access
SSH can provide a secure front door into your system, but don’t forget to close the
back doors. If your system allows access via the infamous r-commands, disable them.
This means:

• Remove the file /etc/hosts.equiv, or make it a read-only empty file.

• Disable rshd, rlogind, and rexecd by removing or commenting out their lines in
the inetd or xinetd configuration file. For example, in /etc/inetd.conf you might
do:

# turned off -- don't use!
#shell   stream  tcp   nowait  root  /usr/sbin/in.rshd     in.rshd

Make sure you restart inetd or xinetd after doing this so that the change takes
effect.

• Educate users not to create .rhosts files.

You might also consider disabling telnetd and other insecure avenues for logging in,
permitting logins only via SSH.

10.3.2 sshd_config for OpenSSH
We’ll now discuss our recommended sshd_config settings for OpenSSH. We have
omitted some keywords that aren’t particularly security-related, such as PrintMotd,
which simply prints a message after login. For any remaining keywords, use your
judgment based on your system and needs.

10.3.2.1 Choice of protocol

We recommend disabling the SSH-1 protocol altogether:

# OpenSSH
Protocol 2

10.3.2.2 Important files

Important files containing your host key, PID, and so on, may be located anywhere
on the machine’s local disk. For security’s sake, don’t put them on an NFS-mounted
partition. If you do, each time the files are accessed by the SSH server, their contents
are transmitted in the clear over the network.

# OpenSSH
HostKey /etc/ssh/ssh_host_key
PidFile /var/run/sshd.pid

10.3.2.3 File and directory permissions

The StrictModes value requires users to protect their SSH-related files and directo-
ries, or else they can’t authenticate.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

10.3 Serverwide Configuration | 399

# OpenSSH
StrictModes yes

10.3.2.4 TCP/IP settings

The Port and ListenAddress values we recommend are standard. Also, we enable
keepalive messages so that connections to clients that have crashed or otherwise
become unreachable will terminate rather than hang around and require manual
reaping by the sysadmin.

# OpenSSH
Port 22
ListenAddress 0.0.0.0
TcpKeepAlive yes

We also disable reverse DNS lookups on incoming connections:

# OpenSSH
UseDNS no

You might think security is increased by reverse DNS lookups, but in fact, DNS
isn’t secure enough to guarantee accurate lookups. Also, due to other issues in your
Unix and network environment, reverse DNS mappings might not even work prop-
erly. [5.3.3.8] Finally, SSH connections can be tremendously slowed down or fail
altogether if the client’s DNS is hosed (e.g., lots of nameservers, all unresponsive, so
sshd times out). The IP addresses of connecting hosts end up in your logs anyway,
so you can look them up later.

10.3.2.5 Login time

For logins we allow 30 seconds for a successful authentication, which should be long
enough for users and automated processes:

# OpenSSH
LoginGraceTime 30

10.3.2.6 Authentication

We enable only public-key authentication. Password authentication is disabled
because passwords can be stolen and used more easily than public keys. This is a
fairly harsh restriction, so you might want to leave it enabled depending on your
needs. Without password authentication, you have a “chicken and egg” problem:
how do users upload their public keys securely the first time? As system administra-
tor, you have to institute a process for this transfer: for example, users can generate
keys on a client machine and then request that you install them on the server
machine. Rhosts authentication is disabled because it can be spoofed. RhostsRSA
authentication is disabled too, because overall it is a medium-security method and
this configuration is on the side of higher security.

# OpenSSH
PubkeyAuthentication yes



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

400 | Chapter 10: A Recommended Setup

PasswordAuthentication no
PermitEmptyPasswords no     Already disabled, but we’re being paranoid
RSAAuthentication no
RhostsRSAAuthentication no
HostbasedAuthentication no
KerberosAuthentication no Optional
ChallengeResponseAuthentication no       Optional
GSSAPIAuthentication no Optional

We optionally disable Kerberos, keyboard-interactive, and GSSAPI authentication,
even though they are quite secure, under the “keep it simple” principle: disable what
you aren’t using. Most SSH users aren’t set up to use these techniques. Reenable
them if your server needs to support them.

Although we’ve disabled hostbased authentication already, we still forbid sshd to use
.rhosts files at all (just in case you reenable hostbased authentication):

# OpenSSH
IgnoreRhosts yes
IgnoreRootRhosts yes

10.3.2.7 Access control

If you want to restrict access to particular local accounts or Unix groups, add
AllowUsers and AllowGroups lines (or DenyUsers and DenyGroups). We recommend cre-
ating a group for all your system’s SSH users, called “ssh”, and configuring the server
with:

AllowGroups ssh

Now you’ve made SSH access a specific privilege to be granted or revoked, and you
can easily do it for a user without changing the sshd configuration:

# usermod -G ssh,... joe Add user joe to the SSH group

As a bonus, you’ve disallowed SSH access by system accounts like bin, sys, and
daemon that should never use SSH anyway.

We also permit the superuser to connect via SSH but not by password authentica-
tion. This is redundant but consistent with turning off PasswordAuthentication.

# OpenSSH
PermitRootLogin without-password

10.3.2.8 Forwarding

We permit TCP port forwarding and X forwarding so that users can secure their
other TCP connections:

# OpenSSH
AllowTcpForwarding yes
X11Forwarding yes



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

10.3 Serverwide Configuration | 401

10.3.2.9 SFTP

Confirm that the SFTP subsystem is defined so that incoming sftp connections will
work. (It is enabled in the default /etc/ssh/sshd_config file for OpenSSH.)

# OpenSSH
Subsystem    sftp    /usr/lib/ssh/sftp-server

10.3.3 sshd2_config for Tectia
We now move to our recommended sshd2_config settings for Tectia. Again, we’ve
omitted some keywords that are not security-related.

10.3.3.1 Choice of protocol

We recommend disabling the SSH-1 protocol altogether:

# Tectia
Ssh1Compatibility no
Sshd1Path /dev/null Not strictly necessary, just our paranoia

10.3.3.2 Important files

As we have mentioned for OpenSSH [10.3.2.2], make sure all SSH-related files are
on local disks, not remotely mounted partitions:

# Tectia
HostKeyFile /etc/ssh2/hostkey
PublicHostKeyFile /etc/ssh2/hostkey.pub
RandomSeedFile /etc/ssh2/random_seed

For the following settings, consider the pros and cons of storing user files on NFS-
mounted filesystems: [10.7]

# Tectia
UserConfigDirectory directory
IdentityFile filename
AuthorizationFile filename

10.3.3.3 File and directory permissions

The StrictModes value requires users to protect their SSH-related files and directo-
ries, or else they can’t authenticate:

# Tectia
StrictModes yes

10.3.3.4 TCP/IP settings

We recommend the same configuration as for OpenSSH, for the same reasons:
[10.3.2.4]

# Tectia
Port 22



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

402 | Chapter 10: A Recommended Setup

ListenAddress 0.0.0.0
KeepAlive yes
RequireReverseMapping no

10.3.3.5 Login time

For logins we allow 30 seconds for a successful authentication, which should be long
enough for users and automated processes:

# Tectia
LoginGraceTime 30

10.3.3.6 Authentication

These settings mirror those for OpenSSH:

# Tectia
AllowedAuthentications publickey
RequiredAuthentications publickey Overrides AllowedAuthentications; we’re being paranoid
PermitEmptyPasswords no Already disabled, but we’re being paranoid

Although we’ve disabled hostbased authentication already, we still forbid sshd to
use .rhosts files at all (just in case you reenable hostbased authentication). We also
disable UserKnownHosts to prevent users from extending trust to unknown hosts for
the purpose of hostbased authentication. The superuser can still specify trusted
hosts in /etc/ssh2/knownhosts.

# Tectia
IgnoreRhosts yes
IgnoreRootRhosts yes
UserKnownHosts no

10.3.3.7 Access control

We permit SSH connections only from within the local domain*:

# Tectia
AllowHosts fred@* *.your.domain.com Just an example

except for the account fred in this example, which may receive connections from
anywhere.

If you want to restrict access to particular local accounts or Unix groups, add
AllowUsers and AllowGroups lines (or DenyUsers and DenyGroups). Also create an “ssh”
group as we described earlier. [10.3.2.7]

We permit the superuser to connect via SSH but not by password authentication.
This is redundant but consistent with turning off PasswordAuthentication.

# Tectia
PermitRootLogin nopwd

* The reliability of this restriction depends on the integrity of DNS. Unfortunately, due to the implementation
of AllowHosts, restriction by IP address is no more secure. [5.5.1]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

10.4 Per-Account Configuration | 403

10.3.3.8 Forwarding

We permit TCP port forwarding and X forwarding so that users can secure their
other TCP connections:

# Tectia
AllowTcpForwarding yes
X11Forwarding yes

10.3.3.9 Encryption

Use either of the following settings as fits your needs. The notable feature is that they
both exclude the “none” cipher which may be a security risk.

# Tectia
Ciphers anycipher
Ciphers anystdcipher

10.3.3.10 SFTP

Confirm that the SFTP subsystem is defined so that incoming sftp connections will
work. (It is enabled in the default /etc/ssh2/sshd2_config for Tectia.)

# Tectia
subsystem-sftp   sftp-server

10.4 Per-Account Configuration
Users should be instructed not to create .rhosts files. If hostbased authentication is
enabled in the local SSH server, advise users to create .shosts files instead of .rhosts
files.

For OpenSSH, each key in ~/.ssh/authorized_keys should be restricted by appropri-
ate options. First, use the from option to restrict access to particular keys by particu-
lar hosts when appropriate. For example, suppose your authorized_keys file contains
a public key for your home PC, myhome.isp.net. No other machine will ever authen-
ticate using this key, so make the relationship explicit:

from="myhome.isp.net" ...key...

Also set idle timeouts for appropriate keys:

from="myhome.isp.net",idle-timeout=5m ...key...

Finally, for each key, consider whether port forwarding, agent forwarding, and tty
allocation are ever necessary for incoming connections. If not, disable these fea-
tures with no-port-forwarding, no-agent-forwarding, and no-pty, respectively:

from="myhome.isp.net",idle-timeout=5m,no-agent-forwarding ...key...



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

404 | Chapter 10: A Recommended Setup

10.5 Key Management
We recommend creating user keys at least 1024 bits long. Protect your key with a
good passphrase. Make it lengthy and use a mixture of lowercase, uppercase,
numeric, and symbolic characters. Don’t use words found in a dictionary.

Empty passphrases should be avoided unless you absolutely need to use one—for
example, in an automated batch script. [11.1.2.2]

10.6 Client Configuration
Most SSH security pertains to the server, but SSH clients have security-related set-
tings too. Here are a few tips:

• Whenever you leave a computer while SSH clients are running, lock the com-
puter’s display with a password-protected screen locker. This is particularly
important if you’re running an agent that permits an intruder to access your
remote accounts without a passphrase.

• In your client configuration file, turn on some safety features as mandatory
values:

# OpenSSH
# Put at the top of your configuration file
Host *
  GatewayPorts no
  StrictHostKeyChecking ask
 ForwardX11Trusted no

# Tectia
# Put at the bottom of your configuration file
*:
 GatewayPorts no
 StrictHostKeyChecking ask
 TrustX11Applications no

The GatewayPorts value forbids remote clients from connecting to locally for-
warded ports. Finally, rather than blindly connect, the StrictHostKeyChecking

value warns you of any changed host keys and asks what you want to do. For
X11 forwarding we elect to generate a new, untrusted xauth key rather than
inherit the trust already in effect. [9.4.5.3]

10.7 Remote Home Directories (NFS, AFS)
We’ve mentioned NFS several times as a potential security risk for SSH installations.
Now we delve into more detail on this topic.

In today’s world of ubiquitous networking, it is common for your home directory to
be shared among many machines via a network file-sharing protocol, such as SMB



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

10.7 Remote Home Directories (NFS, AFS) | 405

for Windows machines or NFS and AFS for Unix. This is convenient, but it does
raise some issues with SSH, both technical and security-related.

SSH examines files in the target account’s home directory in order to make critical
decisions about authentication and authorization. For every form of authentica-
tion except password, the various control files in your home directory (authorized_
keys, .shosts, .k5login, etc.) enable SSH access to your account. Two things are
therefore important:

• Your home directory needs to be safe from tampering.

• SSH must have access to your home directory.

10.7.1 NFS Security Risks
The security of shared home directories is often not very high. Although the NFS
protocol has versions and implementations that afford greater security, it is woefully
insecure in most installations. Often, it employs no reliable form of authentication
whatsoever, but rather, uses the same scheme as rsh: the source IP address and DNS
identify clients, and a privileged source port is proof of trustworthiness. It then sim-
ply believes the uid number encoded in NFS requests and grants access as that user.
Breaking into a home directory can be as simple as:

1. Discover the uid, and create an account with that uid on a laptop running Unix.

2. Connect that machine to the network, borrowing the IP address of a trusted
host.

3. Issue a mount command, su to the account with the uid, and start rifling through
the files.

At this point, an intruder can easily add another public key to authorized_keys, and
the account is wide open. The moral is that when designing a system, keep in mind
that the security of SSH is no stronger than that of the home directories involved.
You need at least to be aware of the trade-off between security and convenience
involved here. If you are using an insecure NFS and want to avoid this weakness, you
can:

• Use Tectia, which has the UserConfigDirectory option to place the per-user SSH
configuration files, normally in ~/.ssh2, elsewhere—say, in /var/ssh/<username>.
You can still set the permissions so their owners can control them, but they
won’t be shared via NFS and thus not vulnerable. You can do the same with
OpenSSH, but as it lacks such a configuration option, you need to edit the
source code.

• Turn off hostbased authentication, since the ~/.shosts control file is vulnerable,
and you can’t change its location. Or, if you want to use hostbased authentica-
tion, set the IgnoreRhosts option. This causes sshd to ignore ~/.shosts, relying
instead solely on the systemwide /etc/shosts.equiv file.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

406 | Chapter 10: A Recommended Setup

• If you are truly paranoid, disable swapping on your Unix machine. Otherwise,
sensitive information such as server, host, and user keys, or passwords, may be
written to disk as part of the normal operation of the Unix virtual memory sys-
tem (should the running sshd be swapped out to disk). Someone with root access
(and a lot of knowledge and luck) could read the swap partition and tease this
information out of the mess there—though it’s a difficult feat. Another option is
to use an operating system that encrypts swap pages on disk, such as OpenBSD.

10.7.2 NFS Access Problems
Another problem that can arise with SSH and NFS is one of access rights. With the
public-key or hostbased methods, if the per-user control files are in the usual place,
sshd must read the target account’s home directory in order to perform authentica-
tion. When that directory is on the same machine as sshd, this isn’t a problem. sshd
runs as root, and therefore has access to all files. However, if the directory is
mounted from elsewhere via NFS, sshd might not have access to the directory. NFS is
commonly configured so that the special access privileges accorded the root account
don’t extend to remote filesystems.

Now, this isn’t a truly serious restriction. Since one of the root privileges is the abil-
ity to create a process with any uid, root can simply “become” the right user, and
access the remote directory. Current versions of Tectia and OpenSSH handle this
correctly, but you might run into older versions that do not. You can work around
the problem, but to do so you must make your authorized_keys file world-readable;
the only way to let root read it remotely is to let everyone read it. This isn’t too objec-
tionable. The authorized_keys file contains no secrets; though you might prefer not
to reveal which keys allow access to your account, thus advertising which keys to
steal. However, to grant this access, you must make your home directory and ~/.ssh
world-searchable (that is, permissions at least 711). This doesn’t allow other users to
steal the contents, but it does allow them to guess at filenames and have those
guesses verified. It also means that you must be careful about permissions on your
files, since the top-level permissions on your directory don’t prevent access by others.

All this may be entirely unacceptable or no problem at all; it depends on your atti-
tude toward your files and the other users on the machines where your home direc-
tory is accessible.

10.7.3 AFS Access Problems
The Andrew File System, or AFS, is a file-sharing protocol similar in purpose to NFS,
but considerably more sophisticated. It uses Kerberos-4 for user authentication and
is generally more secure than NFS. The access problem discussed previously comes
up for AFS, but it’s more work to solve, and this time, OpenSSH is the winner.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

10.8 Summary | 407

AFS uses its own authentication system; access to remote files is controlled by pos-
session of an appropriate AFS token. There are no uid-switching games root can play;
sshd must have the right AFS token in order to access your home directory. If you
were logged into that machine, of course, you could use the usual AFS klog com-
mand to authenticate to AFS. However, sshd needs it before you’ve logged in, so
there’s a bit of a quandary.

There is one solution available, though, involving Kerberos. If Kerberos is available,
AFS will usually be configured so that AFS tokens can be obtained via Kerberos,
bringing AFS into the Kerberos single-signon universe. If you have protocol-2 Ker-
beros support enabled with ticket forwarding [11.5.2.2], then OpenSSH can use your
forwarded credentials to automatically obtain the needed AFS token:

# ~/.ssh/config
GSSAPIAuthentication       yes
GSSAPIDelegateCredentials  yes
KerberosGetAFSToken        yes

Note that the older OpenSSH Kerberos-4 mechanism for this, controlled by the
keyword AFSTokenPassing, is no longer available. The current support is only for
Kerberos-5 and GSSAPI.

10.8 Summary
OpenSSH and Tectia are complex and have many options. It is vitally important to
understand all options when installing and running SSH servers and clients, so their
behavior will conform to your local security policy.

We have presented our recommended options for a high security setting. Your needs
may vary. For instance, you might want the flexibility of other authentication meth-
ods that we have forbidden in our configuration.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

408

Chapter 11omuCHAPTER 11

Case Studies

In this chapter we’ll delve deeply into some advanced topics: complex port forward-
ing, integration of SSH with other applications, and more. Some interesting features
of SSH don’t come to the surface unless examined closely, so we hope you get a lot
out of these case studies. Roll up your sleeves, dive in, and have fun.

11.1 Unattended SSH: Batch or cron Jobs
SSH isn’t only a great interactive tool, but also a resource for automation. Batch
scripts, cron jobs, and other automated tasks can benefit from the security provided
by SSH, but only if implemented properly. The major challenge is authentication:
how can a client prove its identity when no human is available to type a password or
passphrase? (We’ll just write “password” from now on to mean both.) You must
carefully select an authentication method, and then equally carefully make it work.
Once this infrastructure is established, you must invoke ssh properly to avoid
prompting the user. In this case study, we discuss the pros and cons of different
authentication methods for operating an SSH client unattended.

Note that any kind of unattended authentication presents a security problem and
requires compromise, and SSH is no exception. Without a human present when
needed to provide credentials (type a password, provide a thumbprint, etc.), those
credentials must be stored persistently somewhere on the host system. Therefore, an
attacker who compromises the system badly enough can use those credentials to
impersonate the program and gain whatever access it has. Selecting a technique is a
matter of understanding the pros and cons of the available methods, and picking
your preferred poison.

11.1.1 Password Authentication
Rule number 1: forget password authentication if you care about the security of your
batch jobs. As we mentioned, authentication for any unattended process will require



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.1 Unattended SSH: Batch or cron Jobs | 409

some kind of persistent secret lying around, so it might seem that a password in a
protected file will do as well as anything else, and password authentication is simple.
In a strict sense that’s correct, but it’s a bad idea both practically and securitywise.
Embedding a password in a command line is unwise: it may be exposed to other
users by simple commands such as ps, end up in shell history files (e.g. ~/.bash_
history) or system logs, etc. In fact, most SSH clients deliberately require terminal
input (a “tty”) for a password, precisely to discourage this. You can use a tool like
Expect to get around this limitation, but that will be awkward. Another practical
limitation is that more methods tend to be available on the server side to restrict log-
ins with public-key authentication, e.g., the “command” parameters in ~/.ssh/
authorized_keys (OpenSSH) and ~/.ssh2/authorization (Tectia). This is just an imple-
mentation detail, but it’s very relevant since you definitely want to restrict unat-
tended logins to do just what they’re intended to do.

More generally, compared to other available methods, SSH password authentication
is just inherently weak: passwords tend to be short and often guessable, and the cli-
ent must reveal the password to the server as part of the authentication process; so if
the server has been compromised, it will get your password. Public-key authentica-
tion, however, does not reveal the private key in the process.

In the real world, though, you might be stuck using password authentication any-
way. Perhaps you have to automate a transaction with a server not under your con-
trol; it only supports passwords, and you can’t get that changed. If you must, we
suggest co-opting the “askpass” facility if it’s available. [6.3.3] The ssh-askpass pro-
gram normally displays a window prompting for the password, but it can use instead
a program that provides the password from wherever you’re storing it. It does so via
a pipe, which is much better than letting it appear on a command line.

11.1.2 Public-Key Authentication
In public-key authentication, a private key is the client’s credentials. Therefore, the
batch job needs access to the key, which must be stored where the job can access it.
You have three choices of location for the key, which we discuss separately:

• Store the encrypted key and its passphrase in the filesystem.

• Store a plaintext (unencrypted) private key in the filesystem, so it doesn’t require
a passphrase.

• Store the key in an agent, which keeps secrets out of the filesystem but requires a
human to decrypt the key at system boot time.

11.1.2.1 Storing the passphrase in the filesystem

In this technique, you store an encrypted key and its passphrase in the filesystem so
that a script can access them. We don’t recommend this method, since you can store
an unencrypted key in the filesystem with the same level of security (and consider-
ably less complication). In either case, you rely solely on the filesystem’s protections
to keep the key secure. This observation is the rationale for the next technique.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

410 | Chapter 11: Case Studies

11.1.2.2 Using a plaintext key

A plaintext or unencrypted key requires no passphrase. To create one, run ssh-key-
gen and simply press the Return key when prompted for a passphrase (or similarly,
remove the passphrase from an existing key using ssh-keygen –p). You can then sup-
ply the key filename on the ssh command line using the –i option, or in the client
configuration file with the IdentityFile keyword. [7.4.2]

Usually plaintext keys are undesirable, equivalent to leaving your password in a file
in your account. They are never a good idea for interactive logins, since the SSH
agent provides the same benefits in a much more secure fashion. But a plaintext
key is a viable option for automation, since the unattended aspect forces us to rely
on some kind of persistent state in the machine. The filesystem is one possibility.

Plaintext keys are frightening, though. To steal the key, an attacker needs to override
filesystem protections only once, and this doesn’t necessarily require any fancy hack-
ing: stealing a single backup tape will do. You can arrange to keep them off backups,
but that’s an additional complication. If you need your batch jobs to continue work-
ing after an unattended system restart, plaintext keys are pretty much your best
option. If the situation allows for some leeway in this regard, however, consider
using ssh-agent instead.

11.1.2.3 Using an agent

ssh-agent provides another, somewhat less vulnerable method of key storage for
batch jobs. A human invokes an agent and loads the needed keys from passphrase-
protected key files, just once. Thereafter, unattended jobs use this long-running
agent for authentication.

In this case, the keys are still in plaintext but within the memory space of the run-
ning agent rather than in a file on disk. As a matter of practical cracking, it is more
difficult to extract a data structure from the address space of a running process than
to gain illicit access to a file. Also, this solution avoids the problem of an intruder
walking off with a backup tape containing the plaintext key.

Security can still be compromised by other methods, though. The agent provides
access to its services via a Unix-domain socket, which appears as a node in the file-
system. Anyone who can read and write that socket might be able to instruct the
agent to sign authentication requests and thus gain use of the keys. Some agent
implementations attempt further checks, such as ensuring the communicating pro-
cess runs under the same uid, but not all flavors of Unix support this. [6.3.4.1] In
any event, this compromise isn’t quite so devastating since the attacker can’t obtain
the actual keys through the agent socket. She merely gains use of the keys for as long
as the agent is running and as long as she can maintain her compromise of the host.

The agent method does have a down side: the system can’t continue unattended after
a reboot. When the host comes up again automatically, the batch jobs won’t have
their keys until someone shows up to restart the agent and provide the passphrases



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.1 Unattended SSH: Batch or cron Jobs | 411

to load the keys. This is just a cost of the improved security, and you have a pager,
right?

Another bit of complication with the agent method is that you must arrange for the
batch jobs to find the agent. SSH clients locate an agent via an environment vari-
able pointing to the agent socket, such as SSH_AUTH_SOCK for the OpenSSH
agent. [6.3.2.1] When you start the agent for batch jobs, you need to record its
output where the jobs can find it. For instance, if the job is a shell script, you can
store the environment values in a file:

$ ssh-agent | head -2 > ~/agent-info
$ cat ~/agent-info
setenv SSH_AUTH_SOCK /tmp/ssh-res/ssh-12327-agent;
setenv SSH_AGENT_PID 12328;

You can add keys to the agent (assuming C-shell syntax here):

$ source ~/agent-info
$ ssh-add batch-key
Need passphrase for batch-key (batch job SSH key).
Enter passphrase: **************

then instrument any scripts to set the same values for the environment variables:

#!/bin/csh
# Source the agent-info file to get access to our ssh-agent.
set agent = ~/agent-info
if (-r $agent) then
  source $agent
else
  echo "Can't find or read agent file; exiting."
  exit 1
endif
# Now use SSH for something...
ssh -q -o 'BatchMode yes' user@remote-server my-job-command

You also need to ensure that the batch jobs (and nobody else!) can read and write the
socket. If there’s only one uid using the agent, the simplest thing to do is start the agent
under that uid (e.g., as root, do su <batch_account> ssh-agent ...). If multiple uids are
using the agent, you must adjust the permissions on the socket and its containing
directory so that these uids can all access it, perhaps using group permissions.

Some operating systems behave oddly with respect to permissions on
Unix-domain sockets. Some versions of Solaris, for example, com-
pletely ignore the modes on a socket, allowing any process at all full
access to it. To protect a socket in such situations, set the containing
directory to forbid access. For example, if the containing directory is
mode 700, only the directory owner may access the socket. (This
assumes there’s no other shortcut to the socket located elsewhere,
such as a hard link.)



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

412 | Chapter 11: Case Studies

Using an agent for automation is more complicated and restrictive than using a
plaintext key; however, it is more resistant to attack and doesn’t leave the key on
disk and tape where it can be stolen. Considering that the agent is still vulnerable to
being misused via the filesystem, and that it is intended to run indefinitely, the
advantages of this method are debatable. Still, we recommend the agent method as
the most secure and flexible strategy for automated SSH usage in a security-
conscious environment.

11.1.3 Hostbased Authentication
If security concerns are relatively light, consider hostbased authentication for batch
jobs. In this case, the “credentials” are the operating system’s notion of a process’s
uid: the identity under which a process is running, which determines what rights it
has over protected objects. An attacker need only manage to get control of a process
running under your uid, to impersonate you to a remote SSH server. If he breaks root
on the client, this is particularly simple, since root may create processes under any
uid. The real crux, though, is the client host key: if the attacker gets that, he can sign
bogus authentication requests presenting himself as any user at all, and sshd will
believe them.

Hostbased authentication is in many ways the least secure SSH authentication
method. [3.4.3.6] It leaves systems vulnerable to transitive compromise: if an
attacker gains access to an account on host H, she immediately has access to the
same account on all machines that trust H, with no further effort. Also, hostbased
configuration is limited, fragile, and easy to get wrong. Public-key authentication
affords both greater security and flexibility, particularly since you can restrict the
commands that may be invoked and the client hosts that may connect, using its
forced commands and other options in the authorization file.

Of course, if your security policy permits and you’re already using hostbased for gen-
eral user authentication, then you’re all set for batch jobs too. However if you’re
using something stronger for user authentication, and you’re considering the host-
based method for batch jobs, then we recommend that you:

• Restrict its use to the batch accounts only (via /etc/shosts.equiv rules); continue
to use stronger methods for interactive authentication.

• Use only the SSH-specific configuration files /etc/shosts.equiv and ~/.shosts, and
not the legacy files /etc/hosts.equiv and ~/.rhosts. This avoids any accidental
changes to the behavior of wildly insecure mechanisms like rcmd and rsh.

• Set options such as OpenSSH IgnoreRhosts and IgnoreUserKnownHosts, and Tec-
tia AllowSHosts/DenySHosts, if possible. Since per-account hostbased configura-
tion can override the systemwide files, it’s best to disable them.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.1 Unattended SSH: Batch or cron Jobs | 413

11.1.4 Kerberos
There’s no reason to deploy Kerberos [11.4] solely in order to support batch jobs; it
has no special overall advantage in this regard. However, if you’re already using Ker-
beros, you might want to keep things simple by using it for batch as well as interac-
tive jobs. Unattended Kerberos usage has similar security properties to using a
plaintext SSH key as described earlier: the Kerberos principal’s key is stored on disk,
can be similarly strong since it does not have to be derived from a user-memorable
passphrase, and is not revealed in the authentication process.

To do this, use the kadmin command:

$ kadmin -q "ktadd -k keytab principal"

to store the principal’s key in the file keytab, and protect that file appropriately (e.g.,
so that only the Unix batch account can read it). The batch job can then call kinit:

$ kinit -k -t keytab

to obtain Kerberos credentials for that principal.

We suggest the following arrangement:

• Arrange that the keytab file does not travel insecurely over the network, e.g., on
an unsecured NFS filesystem. Perhaps also arrange that it is not dumped to
backup tapes.

• Create separate principals for batch jobs; do not use existing user principals.

• Create a random key for the batch principal using the kadmin option, addprinc
-randkey.

• If feasible, periodically change these keys. An advantage of the Kerberos system
is that this does not require changing corresponding authorization entries, as
changing a simple SSH key would require updating the matching authorized_
keys files. Any running jobs will have to be restarted, though, since their creden-
tials will become invalid.

• As always, restrict what the batch principal can do on the server side, here using
the Kerberos ~/.k5login or ~/.k5users files.

Kerberos-5 contains support for long-running jobs with “renewable” tickets, but
note that this is still intended for jobs started interactively; it just supports those that
may run for a long time. It is not intended as a solution for truly unattended jobs.

11.1.5 General Precautions for Batch Jobs
Regardless of the method you choose, some extra precautions will help secure your
environment.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

414 | Chapter 11: Case Studies

11.1.5.1 Least-privilege accounts

The account under which the automated job runs should have only those privileges
needed to run the job, and no more. Don’t run every batch job as root just because
it’s convenient. Arrange your filesystem and other protections so that the job can run
as a less-privileged user. Remember that unattended remote jobs increase the risk of
account compromise, so take the extra trouble to avoid the root account whenever
possible.

11.1.5.2 Separate, locked-down automation accounts

Create accounts that are used solely for automation. Try not to run system batch
jobs in a user account, since you might not be able to reduce its privileges to the
small set necessary to support the job. In many cases, an automation account doesn’t
even need to admit interactive logins. If jobs running under its uid are created
directly by the batch job manager (e.g., cron), the account doesn’t need a password
and should be locked.

11.1.5.3 Restricted-use keys

As much as possible, restrict the target account to perform only the work needed for
the job. With public-key authentication, automated jobs should use keys that aren’t
shared by interactive logins. Imagine that someday you might need to eliminate the
key for security reasons, and you don’t want to affect other users or jobs by this
change. For maximum control, use a separate key for each automated task. Addi-
tionally, place all possible restrictions on the key by setting options in the authoriza-
tion file. [8.2] The command option restricts the key to running only the needed
remote command, and the from option restricts usage to appropriate client hosts.
Consider always adding the following options as well, if they don’t interfere with the
job:

no-port-forwarding,no-X11-forwarding,no-agent-forwarding,no-pty

These make it harder to misuse the key should it be stolen.

If you’re using hostbased authentication, these restrictions aren’t available. In this
case, it’s best to use a special shell for the account, which limits the commands that
may be executed. Since sshd uses the target account’s shell to run any commands on
the user’s behalf, this is an effective restriction. One standard tool is the Unix
“restricted shell.” Confusingly, the restricted shell is usually named “rsh,” but has
nothing to do with the Berkeley r-command for opening a remote shell, rsh.

11.1.5.4 Useful ssh options

When running SSH commands in a batch job, it’s a good idea to use these options:

ssh -q -o 'BatchMode yes'



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.2 FTP and SSH | 415

The –q option is for quiet mode, preventing SSH from printing a variety of warnings.
This is sometimes necessary if you’re using SSH as a pipe from one program to
another. Otherwise, the SSH warnings may be interpreted as remote program out-
put and confuse the local program. [7.4.17]

The BatchMode keyword tells SSH not to prompt the user, who in this case doesn’t
exist. This makes error reporting more straightforward, eliminating some confusing
SSH messages about failing to access a tty. [7.4.6.4]

11.1.6 Recommendations
Our recommended method for best security with unattended SSH operation is public-
key authentication with keys stored in an agent. If that isn’t feasible, hostbased or
plaintext-key authentication may be used instead; your local security concerns and
needs will determine which is preferable, using the foregoing discussion as a guideline.

To the extent possible, use separate accounts and keys for each job. By doing so, you
limit the damage caused by compromising any one account, or stealing any one key.
But of course, there is a complexity trade-off here; if you have 100 batch jobs, sepa-
rate accounts or keys for each one may be too much to deal with. In that case, parti-
tion the jobs into categories according to the privileges they need, and use a separate
account and/or key for each category of job.

You can ease the burden of multiple keys by applying a little automation to the busi-
ness of loading them. The keys can all be stored under the same passphrase: a script
prompts for the passphrase, then runs ssh-add multiple times to add the various
keys. Or they have different passphrases, and the human inserts a diskette contain-
ing the passphrases when loading them. Perhaps the passphrase list itself is
encrypted under a single password provided by the human. For that matter, the keys
themselves can be kept on the key diskette and not stored on the filesystem at all:
whatever fits your needs and paranoia level.

11.2 FTP and SSH
One of the most frequently asked questions about SSH is, “How can I use port for-
warding to secure FTP?” If the forwarding in question is the traditional sort of static
port forwarding provided by SSH clients such as OpenSSH, then the short answer is
that you usually can’t, at least not completely, as we will explain in detail in this sec-
tion. Such port forwarding can protect your account password, but usually not the
files being transferred. Still, protecting your password is a big win, since the most
egregious problem with FTP is that it usually reveals your password to network
snoopers.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

416 | Chapter 11: Case Studies

It’s worth noting that FTP can in fact be used securely on its own.
Both FTP and Telnet are famously considered “insecure,” but it’s
more accurate to say that they are simply used insecurely most of the
time. Both protocols allow the use of strong authentication and
encryption methods, such as SSL or Kerberos. However, the vast
majority of FTP and Telnet servers in the world do not provide these
features, and so we are left trying to secure them as best we can with
other tools, such as SSH.

Before trying to figure out how to forward FTP over SSH, you should first ask your-
self whether you really need to use FTP at all. If possible, it’s far less trouble to sim-
ply use a file-transfer method that works easily over SSH, such as scp, sftp, rsync, etc.
(and remember that SFTP and FTP have nothing to do with one another, save the
acronym). If you’re going to secure FTP end-to-end with SSH, then the FTP server
must already be running an SSH server—which means it shouldn’t be hard to make
the requisite files available via SSH as well. But the real world is messy, and you
might be stuck with FTP.

11.2.1 FTP-Specific Tools for SSH
As we will describe, the FTP protocol is not amenable to standard SSH port forward-
ing. There are SSH clients, however, with features tailored specifically for dealing
with FTP. We describe two of them here.

11.2.1.1 VanDyke’s SecureFX

VanDyke Software (http://www.vandyke.com/) has a useful Windows product, specif-
ically designed to forward FTP over SSH, data connections and all: SecureFX. It is a
specialized combination of SSH-2 and FTP clients. SecureFX acts as a GUI FTP cli-
ent, first creating an SSH connection, then logging into the remote FTP server via an
SSH channel. Whenever it needs an FTP data connection, it dynamically creates the
needed tcpip-direct channels (for passive mode) or remote forwardings (active mode);
to the remote FTP server, SecureFX looks like an FTP client connecting from the
same host. SecureFX works very smoothly and we recommend the product.

SecureFX is a great solution if you can choose your client. However, perhaps you
need to secure FTP traffic in an existing system, where you can’t replace the client
side. In this case, Tectia has a feature that will help.

11.2.1.2 Tectia client

The Tectia software has a special FTP-aware port-forwarding mode. In the GUI Win-
dows client, when configuring tunneling in the Add New Outgoing Tunnel dialog
box, set Type = FTP. In the command-line version, FTP forwarding works this way:



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.2 FTP and SSH | 417

# Tectia
$ ssh -L ftp/1234:localhost:21 server

This forwards local port 1234 to an FTP server running on the standard FTP port
(21), on the same machine as the SSH server. After connecting with a regular FTP cli-
ent to the forwarded port, FTP data-transfer commands such as ls, get, put, etc.,
should work normally, in either FTP’s “active” or “passive” mode. Tectia intercepts
and alters FTP command traffic, particularly the PORT and PASV commands and their
responses. It does this to “fool” the FTP client and server into using SSH-forwarded
ports it creates for data channels, instead of the direct connections each side intends
to make.

11.2.2 Static Port Forwarding and FTP: A Study in Pain
So far, we’ve described a number of alternatives for dealing with SSH and FTP. If
you’re particularly unlucky, though, you might be stuck having to secure FTP with
SSH, without any of these options—for instance, using OpenSSH, which has no
FTP-specific forwarding features. If so, this section is for you. And even if you’re not
stuck with this unenviable task, you may find the discussion useful for understand-
ing the general problem and limitations. Or simply for the morbid fascination of it
all.

Here, we explain in detail what you can and can’t do with FTP and SSH, and why.
Some difficulties are due to limitations of FTP, not only when interacting with SSH,
but also in the presence of firewalls and network address translation (NAT). We will
discuss each of these situations, since firewalls and NAT are common nowadays, and
their presence might be the reason you’re trying to forward FTP securely. If you are a
system administrator responsible for both SSH and these networking components,
we will try to guide you to a general understanding that will help you design and
troubleshoot entire systems.

Depending on your network environment, different problems may arise when com-
bining SSH with FTP. Since we can’t cover every possible environment, we describe
each problem in isolation, illustrating its symptoms and recommending solutions. If
you have multiple problems occurring simultaneously, the software behavior you
observe might not match the examples we’ve given. We recommend reading the
entire case study once (at least cursorily) before experimenting with your system, so
you will have an idea of the problems you might encounter. Afterward, go ahead and
try the examples at your computer.

11.2.3 The FTP Protocol
To understand the problems between FTP and SSH, you need to understand a bit
about the FTP protocol. Most TCP services involve a single connection from client to



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

418 | Chapter 11: Case Studies

server on a known, server-side port. FTP, however, involves multiple connections in
both directions, mostly to unpredictable port numbers:

• A single control connection for carrying commands from the client and responses
from the server. It connects on TCP port 21 and persists for the entire FTP
session.

• A number of data connections for transferring files and other data, such as direc-
tory listings. For each file transfer, a new data connection is opened and closed,
and each one may be on a different port. These data connections may come from
the client or the server.

Let’s run a typical FTP client and view the control connection. We’ll use debug
mode (ftp –d) to make visible the FTP protocol commands the client sends on the
control connection, since they aren’t normally displayed. Debug mode prints these
commands preceded by “--->”. For example:

---> USER res

You’ll also see responses from the server, which the client prints by default. These
are preceded by a numerical code:

230 User res logged in.

Here’s a session in which the user res connects to an FTP server, logs in, and
attempts to change directory twice, once successfully and once not:

$ ftp -d aaor.lionaka.net
Connected to aaor.lionaka.net.
220 aaor.lionaka.net FTP server (SunOS 5.7) ready.
---> SYST
215 UNIX Type: L8 Version: SUNOS
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> user res
---> USER res
331 Password required for res.
Password:
---> PASS XXXX
230 User res logged in.
ftp> cd rep
---> CWD rep
250 CWD command successful.
ftp> cd utopia
---> CWD utopia
550 utopia: No such file or directory.
ftp> quit
---> QUIT
221 Goodbye.

The control connection can be secured by standard port forwarding because it is on a
known port (21). [9.2] In contrast, the destination port numbers for data connec-
tions are generally not known in advance, so setting up SSH forwarding for these



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.2 FTP and SSH | 419

connections is far more difficult. There’s a second standard port number associated
with FTP, the ftp-data port (20). But this is only the source port for data connections
coming from the server; nothing ever listens on it.

Surprisingly, the data connections generally go in the opposite direction from the
control one; that is, the server makes a TCP connection back to the client in order to
transfer data. The ports on which these connections occur can be negotiated dynami-
cally by the FTP client and server, and doing so involves sending explicit IP address
information inside the FTP protocol. These features of usual FTP operation can
cause difficulties when forwarding SSH connections and in other scenarios involving
firewalls or NAT.

An alternative FTP mode, called passive mode, addresses one of these problems: it
reverses the sense of the data connections so that they go from the client to the
server. Passive mode is a matter of FTP client behavior, and so is determined by a cli-
ent setting. The behavior of setting up data connections from the server to the client,
which we will call active-mode FTP, is traditionally the default in FTP clients,
although that’s changing. With a command-line client, the passive command
switches to passive mode. The internal command that the client sends the server to
tell it to enter passive mode is PASV. We discuss specific problems, and how passive
mode solves them, in upcoming sections. Figure 11-1 summarizes the workings of
passive and active FTP.

Figure 11-1. Basic FTP operation: control connection and active- versus passive-mode transfers

PORT 10,1,2,3,7,209
control connection

data connection
2001

=

7x256+209

data

PASV

20483

=

80x256+3

20

Active Mode

FTP Server

Passive Mode

FTP Server

FTP Client

IP address
10.1.2.17

FTP Client

IP address 10.1.2.3

227 Entering passive mode (10,1,2,17,80,3)
21



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

420 | Chapter 11: Case Studies

11.2.4 Forwarding the Control Connection
Since the FTP control connection is just a single, persistent TCP connection to a
well-known port, you can forward it through SSH. As usual, the FTP server machine
must be running an SSH server, and you must have an account on it that you may
access via SSH (see Figure 11-2).

Suppose you are logged into the machine client and want to connect securely to an
FTP server on the machine server. To forward the FTP control connection, run a
port-forwarding command on client:*

client% ssh -L2001:server:21 server

Then, to use the forwarded port:

client% ftp localhost 2001
Connected to localhost
220 server FTP server (SunOS 5.7) ready.
Password:
230 User res logged in.
ftp> passive
Passive mode on.
ftp> ls
...and so on

There are two important things to notice about the commands we just recom-
mended. We will discuss each.

• The target of the forwarding is server, not localhost.

• The client uses passive mode.

Figure 11-2. Forwarding the control connection

* If you’re using the popular ncftp client, run this instead: ncftp ftp://client:2001.

SSH
Client

SSH
Server

2001

passive mode (10,1,2,17,80,27)
SSH

control

data

21

control

20507 FTP
server

FTP
client

ssh -L2001:S:21 S

S 10.1 .2.17



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.2 FTP and SSH | 421

11.2.4.1 Choosing the forwarding target

We chose server as the target of our forwarding, not localhost (i.e., we didn’t use
–L2001:localhost:21). This is contrary to our previous advice, which was to use
localhost where possible as the forwarding target. [9.2.8] Well, that technique isn’t
advisable here. Here’s what can happen if you do:

client% ftp localhost 2001
Connected to client
220 client FTP server (SunOS 5.7) ready.
331 Password required for res.
Password:
230 User res logged in.
ftp> ls
200 PORT command successful.
425 Can't build data connection: Cannot assign requested address.
ftp>

The problem is a bit obscure but can be revealed by an execution trace of the FTP
server as it responds to the ls command. The following output was produced by the
Linux strace command:*

so_socket(2, 2, 0, "", 1)                       = 5
bind(5, 0x0002D614, 16, 3)                      = 0
        AF_INET  name = 127.0.0.1  port = 20
connect(5, 0x0002D5F4, 16, 1)                   Err#126 EADDRNOTAVAIL
        AF_INET  name = 192.168.10.1  port = 2845
write(1, " 4 2 5   C a n ' t   b u".., 67)      = 67

The FTP server is trying to make a TCP connection to the correct client address but
from the wrong socket: the ftp-data port on its loopback address, 127.0.0.1. The
loopback interface can talk only to other loopback addresses on the same machine.
TCP knows this and responds with the error “address not available” (EADDRNOT-
AVAIL). The FTP server is being careful to originate the data connection from the
same address to which the client made the control connection. Here, the control
connection has been forwarded through SSH; so to the FTP server, it appears to
come from the local host. And because we used the loopback address as the forward-
ing target, the source address of that leg of the forwarded path (from sshd to ftpd) is
also the loopback address. To eliminate the problem, use the server’s nonloopback
IP address as the target; this causes the FTP server to originate data connections from
that address.

You might try to solve this problem using passive mode, since then the server
wouldn’t originate any connections. But if you try:

ftp> passive
Passive mode on.

* If you’re on a Solaris 2 (SunOS 5) system, the corresponding operating system-supplied program is called
truss. There is also an strace program with Solaris, but it is completely unrelated. Solaris 1 (SunOS 4 and ear-
lier) has a trace command, and BSD has ktrace.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

422 | Chapter 11: Case Studies

ftp> ls
227 Entering Passive Mode (127,0,0,1,128,133)
ftp: connect: Connection refused
ftp>

In this case, the failure is a slightly different manifestation of the same problem. This
time, the server listens for an incoming data connection from the client, but again, it
thinks the client is local, so it listens on its loopback address. It sends this socket
(address 127.0.0.1, port 32901) to the client, and the client tries to connect to it. But
this causes the client to try to connect to port 32901 on the client host, not the
server! Nothing is listening there, of course, so the connection is refused.

11.2.4.2 Using passive mode

Note that we had to put the client into passive mode. You will see later that passive
mode is beneficial for FTP in general, because it avoids some common firewall and
NAT problems. Here, however, it’s used because of a specific FTP/SSH problem; if
you didn’t, here’s what happens:

$ ftp -d localhost 2001
Connected to localhost.
220 server FTP server (SunOS 5.7) ready.
---> USER res
331 Password required for res.
Password:
---> PASS XXXX
230 User res logged in.
ftp> ls
---> PORT 127,0,0,1,11,50
200 PORT command successful.
---> LIST
425 Can't build data connection: Connection refused.
ftp>

This is a mirror image of the problem we saw when localhost was the forwarding tar-
get, but this time it happens on the client side. The client supplies a socket for the
server to connect to, and since it thinks the server is on the local host, that socket is
on the loopback address. This causes the server to try connecting to its local host
instead of the client machine.

Passive mode can’t always be used: the FTP client or server might not support it, or
server-side firewall/NAT considerations may prevent it (you’ll see an example of that
shortly). If so, you can use the GatewayPorts feature of SSH and solve this problem as
we did the previous one: use the host’s real IP address instead of the loopback. To
wit:

client% ssh -g -L2001:server:21 server

Then connect to the client machine by name, rather than to localhost:

client% ftp client 2001



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.2 FTP and SSH | 423

This connects to the SSH proxy on the client’s nonloopback address, causing the
FTP client to listen on that address for data connections. The –g option has security
implications, however. [9.2.1.1]

Of course, as we mentioned earlier, it’s often the case that active-mode FTP isn’t
usable. It’s perfectly possible that your local firewall/NAT setup requires passive
mode, but you can’t use it. In that case, you’re just out of luck. Put your data on a
diskette and contribute to the local bicycle-courier economy.

The various problems we have described, while common, depend on your particular
Unix flavor and FTP implementation. For example, some FTP servers fail even before
connecting to a loopback socket; they see the client’s PORT command and reject it,
printing “illegal PORT command”. If you understand the reasons for the various fail-
ure modes, however, you will learn to recognize them in different guises.

11.2.4.3 The “PASV port theft” problem

Trying to use FTP with SSH can be sort of like playing a computer dungeon game:
you find yourself in a twisty maze of TCP connections, all of which look alike and
none of which seem to go where you want. Even if you follow all of our advice so far,
and understand and avoid the pitfalls we’ve mentioned, the connection might still
fail:

ftp> passive
Passive mode on.
ftp> ls
connecting to 192.168.10.1:6670
Connected to 192.168.10.1 port 6670
425 Possible PASV port theft, cannot open data connection.
! Retrieve of folder listing failed

Assuming you don’t decide to give up entirely and move into a less irritating career,
you may want to know, “What now?” The problem here is a security feature of the
FTP server, specifically the popular wu-ftpd from Washington University. (See http://
www.wu-ftpd.org/. This feature might be implemented in other FTP servers, but we
haven’t seen it.) The server accepts an incoming data connection from the client,
then notices that its source address isn’t the same as that of the control connection
(which was forwarded through SSH and thus comes from the server host). It con-
cludes that an attack is in progress! The FTP server believes someone has been moni-
toring your FTP control connection, seen the server response to the PASV command
containing the listening socket, and jumped in to connect to it before the legitimate
client can do so. So, the server drops the connection and reports the suspected “port
theft” (see Figure 11-3).

There’s no way around this problem but to stop the server from performing this
check. It’s a problematic feature to begin with, since it prevents not only attacks, but
also legitimate FTP operations. For example, passive-mode operation was originally
intended to allow an FTP client to effect a file transfer between two remote servers



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

424 | Chapter 11: Case Studies

directly, rather than first fetching the file to the client and then sending it to the sec-
ond server. This isn’t a common practice, but it is part of the protocol design, and
the “port theft” check of wu-ftpd prevents its use. You can turn it off by recompiling
wu-ftpd without FIGHT_PASV_PORT_RACE (use configure --disable-pasvip). You
can also leave the check on but allow certain accounts to use alternate IP addresses
for data connections, with the pasv-allow and port-allow configuration statements.
See the ftpaccess(5) manpage for details. Note that these features are relatively recent
additions to wu-ftpd and aren’t in earlier versions.

11.2.5 FTP, Firewalls, and Passive Mode
Recall that in active mode, the FTP data connections go in the opposite direction
than you might expect—from the server back to the client. This usual mode of oper-
ation (shown in Figure 11-4) often develops problems in the presence of a firewall.
Suppose the client is behind a firewall that allows all outbound connections but
restricts inbound ones. Then the client can establish a control connection to log in
and issue commands, but data-transfer commands such as ls, get, and put will fail,
because the firewall blocks the data connections coming back to the client machine.
Simple packet-filtering firewalls can’t be configured to allow these connections,
because they appear as separate TCP destinations to random ports, with no obvious
relation to the established FTP control connection.* The failure might happen

Figure 11-3. “PASV port theft”

* More sophisticated firewalls can take care of this problem. These products are a cross between an applica-
tion-level proxy and a packet filter and are often called “transparent proxies” or “stateful packet filters.”
Such a firewall understands the FTP protocol and watches for FTP control connections. When it sees a PORT
command issued by an FTP client, it dynamically opens a temporary hole in the firewall, allowing the spec-
ified FTP data connection back through. This hole disappears automatically after a short time and can only
be between the socket given in the PORT command and the server’s ftp-data socket. These products often also
do NAT and can transparently deal with the FTP/NAT problems we describe next.

SSH SSH

control

forwarded control
connection

wu-ftpd

6670

source: C:p

PASV

source localhost:q

localhost:q = C:p; REJECT!

FTP
client

C 192.168.10.1



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.2 FTP and SSH | 425

quickly with the message “connection refused,” or the connection might hang for a
while and eventually fail. This depends on whether the firewall explicitly rejects the
connection attempt with an ICMP or TCP RST message, or just silently drops the
packets. Note that this problem can occur whether or not SSH is forwarding the con-
trol connection.

Passive mode usually solves this problem, reversing the direction of data connec-
tions so they go from the client to the server. Unfortunately, not all FTP client or
servers implement passive-mode transfers. Command-line FTP clients generally use
the passive command to toggle passive-mode transfers on and off; if it doesn’t recog-
nize that command, it probably doesn’t do passive mode. If the client supports pas-
sive mode but the server doesn’t, you may see a message like “PASV: command not
understood” from the server. PASV is the FTP protocol command that instructs the
server to listen for data connections. Finally, even if passive mode solves the firewall
problem, it doesn’t help with SSH forwarding, since the ports in question are still
dynamically chosen.

Here is an example of the firewall problem, blocking the return data connections:

$ ftp lasciate.ogni.speranza.org
Connected to lasciate.ogni.speranza.org
220 ProFTPD 1.2.0pre6 Server (Lasciate FTP Server) [lasciate.ogni.speranza.org]
331 Password required for slade.
Password:
230 User slade logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> ls
200 PORT command successful.
[...long wait here...]
425 Can't build data connection: Connection timed out

Figure 11-4. FTP client behind a firewall

PORT 219,243,169,50,80,53
control

Port 20533 REJECTED

connect to 219.243.169.50: 20533

21

Firewall

FTP
server

FTP
client

219.243.169.50



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

426 | Chapter 11: Case Studies

Passive mode comes to the rescue:

ftp> passive
Passive mode on.
ftp> ls
227 Entering Passive Mode (10,25,15,1,12,65)
150 Opening ASCII mode data connection for file list
drwxr-x--x  21 slade    web          2048 May  8 23:29 .
drwxr-xr-x 111 root     wheel       10240 Apr 26 00:09 ..
-rw-------   1 slade    other         106 May  8 15:22 .cshrc
-rw-------   1 slade    other       31384 Aug 18  1997 .emacs
226 Transfer complete.
ftp>

Now, in discussing the problem of using FTP through a firewall, we didn’t mention
SSH at all; it is a problem inherent in the FTP protocol and firewalls. However, even
when forwarding the FTP control connection through SSH, this problem still applies,
since the difficulty is with the data connection, not the control, and those don’t go
through SSH. So, this is yet another reason why you will normally want to use pas-
sive mode with FTP and SSH.

11.2.6 FTP and Network Address Translation (NAT)
Passive-mode transfers can also work around another common problem with FTP: its
difficulties with network address translation, or NAT. NAT is the practice of connect-
ing two networks by a gateway that rewrites the source and destination addresses of
packets as they pass through. One benefit is that you may connect a network to the
Internet or change ISPs without having to renumber the network (that is, change all
your IP addresses). It also allows sharing a limited number of routable Internet
addresses among a larger number of machines on a network using private addresses
not routed on the Internet. This flavor of NAT is often calledmasquerading.

Suppose your FTP client is on a machine with a private address usable only on your
local network, and you connect to the Internet through a NAT gateway. The client
can establish a control connection to an external FTP server. However, there will be
a problem if the client attempts the usual reverse-direction data connections. The cli-
ent, ignorant of the NAT gateway, tells the server (via a PORT command) to connect
to a socket containing the client’s private address. Since that address isn’t usable on
the remote side, the server generally responds “no route to host” and the connection
will fail.* Figure 11-5 illustrates this situation. Passive mode gets around this prob-
lem as well, since the server never has to connect back to the client and so the cli-
ent’s address is irrelevant.

* It could be worse, too. The server could also use private addressing, and if you’re unlucky, the client’s private
address might coincidentally match a completely different machine on the server side. It’s unlikely, though,
that a server-side machine would happen to listen on the random port picked by your FTP client, so this
would probably just generate a “connection refused” error.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.2 FTP and SSH | 427

So far, we’ve listed three situations requiring passive-mode FTP: control connection
forwarding, client inside a firewall, and client behind NAT. Given these potential
problems with active-mode FTP, and that there’s no down side to passive mode that
we know of, we recommend always using passive-mode FTP if you can.

11.2.6.1 Server-side NAT issues

The NAT problem we just discussed was a client-side issue. A more difficult prob-
lem can occur if the FTP server is behind a NAT gateway, and you’re forwarding the
FTP control connection through SSH.

First, let’s understand the basic problem without SSH in the picture. If the server is
behind a NAT gateway, then you have the mirror-image problem to the one dis-
cussed earlier. Before, active-mode transfers didn’t work because the client supplied
its internal, non-NAT’d address to the server in the PORT command, and this address
wasn’t reachable. In the new situation, passive-mode transfers don’t work because
the server supplies its internal-only address to the client in the PASV command
response, and that address is unreachable to the client (see Figure 11-6).

The earlier answer was to use passive mode; here the simplest answer is the reverse:
use active mode. Unfortunately, this isn’t very helpful. If the server is intended for

Figure 11-5. Client-side NAT prevents active-mode FTP transfers

Figure 11-6. Server-side NAT prevents passive-mode FTP transfers

PORT 10,1,2,3,20,20

NAT 10.0.0.0/8
private addresses

Internet

21

connect to 10.1.2.3:20509

No route to host!

FTP
server

FTP
client

10.1.2.3

NAT: connect to 10.112.17:21

Internet

connect to 10.1.2.19:20521

No route to host!

PASV
227 Entering passive mode (10,1,2,17,80,41)

21

connect to 206.243.169.50:21

NAT 10.0.0.0/8
private addresses

FTP
server

10.1.2.17
FTP

client



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

428 | Chapter 11: Case Studies

general Net access, it should be made useful to the largest number of people. Since
client-side NAT and firewall setups requiring passive-mode FTP are common, it
won’t do to use a server-side NAT configuration that requires active mode instead;
this makes access impossible. One approach is to use an FTP server with special fea-
tures designed to address this very problem. The wu-ftpd server we touched on ear-
lier has such a feature. Quoting from the ftpaccess(5) manpage:

passive address <externalip> <cidr>
     Allows control of the address reported in response to
     a PASV command.  When any control connection matching
     the <cidr> requests a passive data connection (PASV),
     the  <externalip>  address  is  reported.  NOTE: this
     does not change the address the daemon actually lis-
     tens  on,  only  the  address reported to the client.
     This feature allows the daemon to  operate  correctly
     behind IP-renumbering firewalls.

For example:
 passive address 10.0.1.15   10.0.0.0/8
 passive address 192.168.1.5 0.0.0.0/0

Clients  connecting  from  the  class-A network 10 will be
told the passive connection  is  listening  on  IP-address
10.0.1.15  while all others will be told the connection is
listening on 192.168.1.5

Multiple passive addresses may be specified to handle com-
plex, or multi-gatewayed, networks.

This handles the problem quite neatly, unless you happen to be forwarding the FTP
control connection through SSH. Site administrators arrange for FTP control connec-
tions originating from outside the server’s private network to have external addresses
reported in the PASV responses. But the forwarded control connection appears to
come from the server host itself, rather than the outside network. Control connec-
tions coming from inside the private network should get the internal address, not the
external one. The only way this will work is if the FTP server is configured to pro-
vide the external address to connections coming from itself as well as from the out-
side. This is actually quite workable, as there’s little need in practice to transmit files
by FTP from a machine back to itself. You can use this technique to allow control-
connection forwarding in the presence of server-side NAT or suggest it to the site
administrators if you have this problem.

Another way of addressing the server-side NAT problem is to use an intelligent NAT
gateway of the type mentioned earlier. Such a gateway automatically rewrites the
FTP control traffic in transit to account for address translation. This is an attractive
solution in some respects, because it is automatic and transparent; there is less cus-
tom work in setting up the servers behind the gateway, and there are fewer depen-
dencies between the server and network configurations. As it happens, though, this
solution is actually worse for our purposes than the server-level one. This technique



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.2 FTP and SSH | 429

relies on the gateway’s ability to recognize and alter the FTP control connection as it
passes through. But such manipulation is exactly what SSH is designed to prevent! If
the control connection is forwarded through SSH, the gateway doesn’t know there is
a control connection, because it’s embedded as a channel inside the SSH session.
The control connection isn’t a separate TCP connection of its own; it’s on the SSH
port rather than the FTP port. The gateway can’t read it because it’s encrypted, and
the gateway can’t modify it even if the gateway can read it, because SSH provides
integrity protection. If you’re in this situation—the client must use passive-mode
FTP, and the server is behind a NAT gateway doing FTP control traffic rewriting—
you must convince the server administrator to use a server-level technique in addi-
tion to the gateway, specifically to allow forwarding. Otherwise, it’s not going to
happen, and we see trucks filled with tapes in your future, or perhaps HTTP over
SSL with PUT commands.

We have now concluded our discussion of forwarding the control connection of
FTP, securing your login name, password, and FTP commands. If that’s all you want
to do, you are done with this case study. We’re going to continue, however, and
delve into the murky depths of data connections. You’ll need a technical back-
ground for this material as we cover minute details and little-known modes of FTP.
(You might even wonder if we’ve accidentally inserted a portion of an FTP book into
the SSH book.) Forward, brave reader!

11.2.7 All About Data Connections
Ask most SSH users about forwarding the FTP data connection, and they’ll respond,
“Sorry, it’s not possible.” Well, it is possible. The method we’ve discovered is
obscure, inconvenient, and not usually worth the effort, but it works. Before we can
explain it, we must first discuss the three major ways that FTP accomplishes file
transfers between client and server:

• The usual method

• Passive-mode transfers

• Transfers using the default data ports

We’ll just touch briefly on the first two, since we’ve already discussed them; we’ll
just amplify with a bit more detail. Then we’ll discuss the third mode, which is the
least known and the one you need if you really, really want to forward your FTP data
connections.

11.2.7.1 The usual method of file transfer

Most FTP clients attempt data transfers in the following way. After establishing the
control connection and authenticating, the user issues a command to transfer a file.
Suppose the command is get fichier.txt, which asks to transfer the file fichier.txt
from the server to the client. In response to this command, the client selects a free



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

430 | Chapter 11: Case Studies

local TCP socket, call it C, and starts listening on it. It then issues a PORT command
to the FTP server, specifying the socket C. After the server acknowledges this, the cli-
ent issues the command RETR fichier.txt, which tells the server to connect to the
previously given socket (C) and send the contents of that file over the new data con-
nection. The client accepts the connection to C, reads the data, and writes it into a
local file also called fichier.txt. When done, the data connection is closed. Here is a
transcript of such a session:

$ ftp -d aaor.lionaka.net
Connected to aaor.lionaka.net.
220 aaor.lionaka.net FTP server (SunOS 5.7) ready.
---> USER res
331 Password required for res.
Password:
---> PASS XXXX
230 User res logged in.
---> SYST
215 UNIX Type: L8 Version: SUNOS
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> get fichier.txt
local: fichier.txt remote: fichier.txt
---> TYPE I
200 Type set to I.
---> PORT 219,243,169,50,9,226
200 PORT command successful.
---> RETR fichier.txt
150 Binary data connection for fichier.txt (219.243.169.50,2530) (10876 bytes).
226 Binary Transfer complete.
10876 bytes received in 0.013 seconds (7.9e+02 Kbytes/s)
ftp> quit

Note the PORT command, PORT 219,243,169,50,9,226. This says the client is listening
on IP address 219.243.169.50, port 2530 = (9<<8)+226; the final two integers in the
comma-separated list are the 16-bit port number represented as two 8-bit bytes,
most significant byte first. The server response beginning with “150” confirms estab-
lishment of the data connection to that socket. What isn’t shown is that the source
port of that connection is always the standard FTP data port, port 20 (remember that
FTP servers listen for incoming control connections on port 21).

There are two important points to note about this process:

• The data connection socket is chosen on the fly by the client. This prevents for-
warding, since you can’t know the port number ahead of time to forward it with
SSH. You can get around this problem by establishing the FTP process “by
hand” using telnet. That is, choose a data socket beforehand and forward it with
SSH, telnet to the FTP server yourself, and issue all the necessary FTP protocol
commands by hand, using your forwarded port in the PORT command. But this
can hardly be called convenient.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.2 FTP and SSH | 431

• Remember that the data connection is made in the reverse direction from the
control connection; it goes from the server back to the client. As we discussed
earlier in this chapter, the usual workaround is to use passive mode.

11.2.7.2 Passive mode in depth

Recall that in a passive-mode transfer, the client initiates a connection to the server.
Specifically, instead of listening on a local socket and issuing a PORT command to the
server, the client issues a PASV command. In response, the server selects a socket on
its side to listen on and reveals it to the client in the response to the PASV command.
The client then connects to that socket to form the data connection, and issues the
file-transfer command over the control connection. With command line–based cli-
ents, the usual way to do passive-mode transfers is to use the passive command.
Again, an example:

$ ftp -d aaor.lionaka.net
Connected to aaor.lionaka.net.
220 aaor.lionaka.net FTP server (SunOS 5.7) ready.
---> USER res
331 Password required for res.
Password:
---> PASS XXXX
230 User res logged in.
---> SYST
215 UNIX Type: L8 Version: SUNOS
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> passive
Passive mode on.
ftp> ls
---> PASV
227 Entering Passive Mode (219,243,169,52,128,73)
---> LIST
150 ASCII data connection for /bin/ls (219.243.169.50,2538) (0 bytes).
total 360075
drwxr-xr-x98   res      500         7168 May  5 17:13 .
dr-xr-xr-x   2 root     root           2 May  5 01:47 ..
-rw-rw-r--   1 res      500          596 Apr 25  1999 .FVWM2-errors
-rw-------   1 res      500          332 Mar 24 01:36 .ICEauthority
-rw-------   1 res      500           50 May  5 01:45 .Xauthority
-rw-r--r--   1 res      500         1511 Apr 11 00:08 .Xdefaults
226 ASCII Transfer complete.
ftp> quit
---> QUIT
221 Goodbye.

Note that after the user gives the ls command, the client sends PASV instead of PORT.
The server responds with the socket on which it will listen. The client issues the LIST
command to list the contents of the current remote directory, and connects to the
remote data socket; the server accepts and confirms the connection, then transfers
the directory listing over the new connection.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

432 | Chapter 11: Case Studies

An interesting historical note, which we alluded to earlier, is that the PASV command
wasn’t originally intended for this use; it was designed to let an FTP client direct a
file transfer between two remote servers. The client makes control connections to
two remote servers, issues a PASV command to one causing it to listen on a socket,
issues a PORT command to the other telling it to connect to the other server on that
socket, then issues the data-transfer command (STOR, RETR, etc.). These days, most
people don’t even know this is possible, and will pull a file from one server to the
local machine, and transfer it again to get it to the second remote machine. It’s so
uncommon that many FTP clients don’t support this mode, and some servers pre-
vent its use for security reasons. [11.2.4.3]

11.2.7.3 FTP with the default data ports

The third file-transfer mode occurs if the client issues neither a PORT nor a PASV com-
mand. In this case, the server initiates the data connection from the well-known ftp-
data port (20) to the source socket of the control connection, on which the client
must be listening (these sockets are the “default data ports” for the FTP session). The
usual way to use this mode is with the FTP client command sendport, which switches
on and off the client’s feature of using a PORT command for each data transfer. For
this mode, we want it turned off, and it is generally on by default. So, the sequence of
steps is this:

1. The client initiates the control connection from local socket C to server:21.

2. The user gives the sendport command, and then a data-transfer command, such
as put or ls. The FTP client begins listening on socket C for an incoming TCP
connection.

3. The server determines the socket C at the other end of the control connection. It
doesn’t need the client to send this explicitly via the FTP protocol, since it can
just ask TCP for it (e.g., with the getpeername( ) sockets API routine). It then
opens a connection from its ftp-data port to C, and sends or receives the
requested data over that connection.

Now, this is certainly a simpler way of doing things than using a different socket for
each data transfer, and so it begs the question of why PORT commands are the norm.
If you try this out, you will discover why. First off, it might fail on the client side with
the message “bind: Address already in use”. And even if it does work, it does so only
once. A second ls elicits another address-related error, this time from the server:

aaor% ftp syrinx.lionaka.net
Connected to syrinx.lionaka.net.
220 syrinx.lionaka.net FTP server (Version wu-2.5.0(1) Tue Sep 21 16:48:12 EDT
331 Password required for res.
Password:
230 User res logged in.
ftp> sendport
Use of PORT cmds off.
ftp> ls



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.2 FTP and SSH | 433

150 Opening ASCII mode data connection for file list.
keep
fichier.txt
226 Transfer complete.
19 bytes received in 0.017 seconds (1.07 Kbytes/s)
ftp> ls
425 Can't build data connection: Cannot assign requested address.
ftp> quit

These problems are due to a technicality of the TCP protocol. In this scenario, every
data connection is between the same two sockets, server:ftp-data and C. Since a TCP
connection is fully specified by the pair of source and destination sockets, these con-
nections are indistinguishable as far as TCP is concerned; they are different incarna-
tions of the same connection and can’t exist at the same time. In fact, to guarantee
that packets belonging to two different incarnations of a connection aren’t confused,
there’s a waiting period after one incarnation is closed, during which a new incarna-
tion is forbidden. In the jargon of TCP, on the side that performed an “active close”
of the connection, the connection remains in a state called TIME_WAIT. This state
lasts for a period that is supposed to be twice the maximum possible lifetime of a
packet in the network (or “2MSL,” for two times the Maximum Segment Lifetime).
After that, the connection becomes fully closed, and another incarnation can occur.
The actual value of this timeout varies from system to system, but is generally in the
range of 30 seconds to 4 minutes.*

As it happens, some TCP implementations enforce even stronger restrictions. Often,
a port that is part of a socket in the TIME_WAIT state is unavailable for use, even as
part of a connection to a different remote socket. We have also run into systems that
disallow listening on a socket that is currently an endpoint of some connection,
regardless of the connection state. These restrictions aren’t required by the TCP pro-
tocol, but they are common. Such systems usually provide a way to avoid the restric-
tions, such as the SO_REUSEADDR option of the Berkeley sockets API. An FTP
client generally uses this feature, of course, but it doesn’t always work!

This address-reuse problem comes up in two places in a default-port FTP transfer.
The first one is when the client must start listening on its default data port, which by
definition is currently the local endpoint of its control connection. Some systems
simply don’t allow this, even if the program requests address reuse; that’s why the
attempt might fail immediately with the message, “address already in use.”

The other place is on a second data transfer. When the first transfer is finished, the
server closes the data connection, and that connection on the server side moves into
the TIME_WAIT state. If you try another data transfer before the 2MSL period has
elapsed, the server tries to set up another incarnation of the same connection, and it

* See TCP/IP Illustrated, Volume 1: The Protocols, by W. Richard Stevens (Addison Wesley), for more techni-
cal information about the TIME_WAIT state.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

434 | Chapter 11: Case Studies

will fail saying “cannot assign requested address.” This happens regardless of the
address reuse setting, since the rules of the TCP require it. You can transfer a file
again within a few minutes, of course, but most computer users aren’t good at wait-
ing a few seconds, let alone minutes. It is this problem that prompts the use of a PORT
command for every transfer; since one end of the connection is different every time,
the TIME_WAIT collisions don’t occur.

Because of these problems, the default-port transfer mode isn’t generally used. It has,
however, an important property for us: it is the only mode in which the data connec-
tion destination port is fixed and knowable before the data-transfer command is
given. With this knowledge, some patience, and a fair amount of luck, it is possible
to forward your FTP data connections through SSH.

11.2.8 Forwarding the Data Connection
With all the foregoing discussion in mind, here we simply state the sequence of steps
to set up data-connection forwarding. One caveat is that SSH must request address
reuse from TCP for forwarded ports. Tectia and OpenSSH do this already, but not all
SSH clients may.

Another issue is that the operating system in which the FTP client is running must
allow a process to listen on a socket already in use as the endpoint of an existing con-
nection. Some don’t. To test this, try an FTP data transfer on the default data ports
without SSH, just by using ftp as usual but giving the sendport command before ls,
get, or whatever. If you get:

 ftp: bind: Address already in use

then your operating system probably won’t cooperate. There may be a way to alter
this behavior; check the operating system documentation. Figure 11-7 illustrates the
following steps:

1. Start an SSH connection to forward the control channel as shown earlier in this
chapter, and connect with the FTP client. Make sure that passive mode is off.
For OpenSSH:

client% ssh -f -n -L2001:localhost:21 server sleep 10000 &

or for Tectia:

client% ssh -f -n -L2001:localhost:21 server

Then:

client% ftp localhost 2001
Connected to localhost
220 server FTP server (SunOS 5.7) ready.
Password:
230 User res logged in.
ftp> sendport
Use of PORT cmds off.
ftp> passive



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.2 FTP and SSH | 435

Passive mode on.
ftp> passive
Passive mode off.

Note that we are using localhost as the forwarding target here, despite our ear-
lier advice. That’s OK, because there won’t be any PORT or PASV commands with
addresses that can be wrong.

2. Now, we need to determine the real and proxy default data ports for the FTP cli-
ent. On the client side, you can do this with netstat:

client% netstat -n | grep 2001
tcp        0      0 client:2001 client:3175 ESTABLISHED
tcp        0      0 client:3175 client:2001 ESTABLISHED

This shows that the source of the control connection from the FTP client to SSH
is port 3175. You can do the same thing on the server side, but this time you need
to know what’s connected to the FTP server port (netstat –n | egrep ‘\<21\>’), and
there may be many things connected to it. If you have a tool like lsof, it’s better to
find out the pid of the ftpd or sshd serving your connection and use lsof –p <pid>
to find the port number. If not, you can do a netstat before connecting via FTP
and then one right afterward, and try to see which is the new connection. Let’s
suppose you’re the only one using the FTP server, and you get it this way:

server% netstat | grep ftp
tcp        0      0 server:32714 server:ftp   ESTABLISHED
tcp        0      0 server:ftp   server:32714 ESTABLISHED

Figure 11-7. Forwarding the FTP data connection

SSHClient #1

SSH
Server

#1

SSHClient #2

SSH
Server

#2

Client

FTP client

3175

2001

ftp localhost 2001

ssh —L2001:localhost:21 server

ssh —R32714:localhost:3175 server

SSH

SSH

control

data

Server

FTP server

21

32714

1

3

data

data

32714

2



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

436 | Chapter 11: Case Studies

So now, we have the FTP client’s default data port (3175), and the source port of
the forwarded control connection to the FTP server (32714), which we’ll call the
proxy default data port; it is what the FTP server thinks is the client’s default
data port.

3. Now, forward the proxy default data port to the real one:

#  OpenSSH
client% ssh -f -n -R32714:localhost:3175 server sleep 10000 &

# Tectia
client% ssh -f -R32714:localhost:3175 server

If, as we mentioned earlier, you don’t replace sshd or run a second one, then
you’d use the modified ssh on the server in the other direction, like this:

server% ./ssh -f -n -L32714:localhost:3175 client sleep 10000 &

4. Now, try a data-transfer command with ftp. If all goes well, it should work once,
then fail with this message from the FTP server:

425 Can't build data connection: Address already in use.

(Some FTP servers return that error immediately; others will retry several times
before giving up, so it may take a while for that error to appear.) If you wait for
the server’s 2MSL timeout period, you can do another single data transfer. You
can use netstat to see the problem and track its progress:

server% netstat | grep 32714
127.0.0.1.32714     127.0.0.1.21         32768      0 32768      0 ESTABLISHED
127.0.0.1.21        127.0.0.1.32714      32768      0 32768      0 ESTABLISHED
127.0.0.1.20        127.0.0.1.32714      32768      0 32768      0 TIME_WAIT

The first two lines show the established control connection on port 21; the third
one shows the old data connection to port 20, now in the TIME_WAIT state.
When that disappears, you can do another data-transfer command.

And there you have it: you have forwarded an FTP data connection through SSH.
You have achieved the Holy Grail of FTP with SSH, though perhaps you agree with
us and Sir Gawain that “it’s only a model.” Still, if you’re terribly concerned about
your data connections, have no other way to transfer files, can afford to wait a few
minutes between file transfers, and are quite lucky, then this will work. It also makes
a great parlor trick at geek parties.

11.3 Pine, IMAP, and SSH
Pine is a popular, Unix-based email program from the University of Washington
(http://www.washington.edu/pine/). In addition to handling mail stored and delivered



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.3 Pine, IMAP, and SSH | 437

in local files, Pine also supports IMAP* for accessing remote mailboxes and SMTP†

for posting mail.

In this case study, we integrate Pine and SSH to solve two common problems:

IMAP authentication
In many cases, IMAP permits a password to be sent in the clear over the net-
work. We discuss how to protect your password using SSH, but (surprisingly)
not by port forwarding.

Restricted mail relaying
Many ISPs permit their mail and news servers to be accessed only by their cus-
tomers. In some circumstances, this restriction may prevent you from legiti-
mately relaying mail through your ISP. Once again, SSH comes to the rescue.

We also discuss techniques to avoid Pine connection delays and facilitate access to
multiple servers and mailboxes, including the use of a Pine-specific SSH connection
script. This discussion will delve into more detail than the previous one on Pine/SSH
integration. [4.5.3]

11.3.1 Securing IMAP Authentication
Like SSH, IMAP is a client/server protocol. Your email program (e.g., Pine) is the cli-
ent, and an IMAP server process (e.g., imapd) runs on a remote machine, the IMAP
host, to control access to your remote mailbox. Also like SSH, IMAP generally
requires you to authenticate before accessing your mailbox, typically by password.
Unfortunately, in some cases this password is sent to the IMAP host in the clear over
the network; this represents a security risk (see Figure 11-8).‡

There’s no longer any good reason for this. Years ago, security options were rarely
available in IMAP software; these days, however, they’re common and should be

* Internet Message Access Protocol, RFC-2060.

† Simple Mail Transfer Protocol, RFC-821.

Figure 11-8. A normal IMAP connection

‡ IMAP does support more secure methods of authentication, but they aren’t widely deployed.

Pine
IMAPServer

... 0 LOGIN slade password ...

TCP

IMAP protocol

exposed!

inbox = {email.isp.net/imap/user=slade}inbox

mail.isp.net



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

438 | Chapter 11: Case Studies

used! There are standard ways to secure IMAP traffic using SSL or Kerberos. With
SSL, the entire IMAP session is protected, so even plain password authentication can
be used relatively securely. Kerberos can provide secure authentication and single-
signon with or without session encryption; for example, the Apple Mail client imple-
ments both. Pine uses Kerberos only for authentication, not encryption—but you
can combine Kerberos with SSL to get both single-signon and privacy. Note the
power of having multiple independent and standards-based options available!

Nonetheless, it is still all too common to encounter IMAP servers with no security
features; here, we show you how to address this problem with SSH.

If your mail server is sealed—that is, your only access to it is via the IMAP proto-
col—then there’s nothing you can do to improve security using SSH. However, if
you can also log into the IMAP server host via SSH, you have options. Because IMAP
is a TCP/IP-based protocol, one approach is to use SSH port forwarding between the
machine running Pine and the IMAP host (see Figure 11-9). [9.2.1]

However, this technique has two drawbacks:

Security risk
On a multiuser machine, any other user can connect to your forwarded port.
[9.2.4.3] If you use forwarding only to protect your password, this isn’t a big
deal, since at worst, an interloper could access a separate connection to the
IMAP server having nothing to do with your connection. On the other hand, if
port forwarding is permitting you to access an IMAP server behind a firewall,
an interloper can breach the firewall by hijacking your forwarded port, a more
serious security risk.

Inconvenience
In this setup, you must authenticate twice: first to the SSH server on the IMAP
host (to connect and to create the tunnel) and then to the IMAP server by pass-
word (to access your mailbox). This is redundant and annoying.

Figure 11-9. Forwarding an IMAP connection

IMAPServerPine

2001

SSH 0 LOGIN slade password

IMAP in SSH

inbox = {localhost:2001/imap/user=slade}inbox

SSH

143



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.3 Pine, IMAP, and SSH | 439

Fortunately, we can address both of these drawbacks and run Pine over SSH securely
and conveniently.

11.3.1.1 Pine and preauthenticated IMAP

There are two broad types of Unix-based IMAP servers, exemplified by the Univer-
sity of Washington (UW) imapd and the Carnegie Mellon Cyrus software. Cyrus is a
self-contained system: it uses an internal database to hold user mail, and the only
access to it is via the IMAP protocol or particular programs for mail delivery or
administration. In particular, there is no relationship between Unix accounts on the
server host, and IMAP accounts; they are completely separate.

The UW imapd, on the other hand, is a lighter-weight affair: it simply provides an
IMAP view of the traditional Unix mail store: files in /var/spool/mail or elsewhere,
owned by the Unix accounts of the mail recipients. Thus, its notion of user account
and access control is tied to that of the host. If your mail is stored in a spool file
owned by you, and you can log into the host via SSH, then you’ve already proven
you have access to that file—why should you have to prove it again to the IMAP
server? In fact, with the UW server, you don’t have to. We now discuss how to do
this with UW imapd, or another IMAP server with similar behavior.

The IMAP protocol defines two modes in which an IMAP server can start: normal
and preauthenticated (see Figure 11-10). Normally, imapd runs with special privi-
leges to access any user’s mailbox (as when started as root by inetd), and hence it
requires authentication from the client.

Here’s a sample session that invokes an IMAP server, imapd, through inetd so that it
runs as root:

server% telnet localhost imap
* OK localhost IMAP4rev1 v12.261 server ready

Figure 11-10. Pine/IMAP over SSH, preauthenticated

SSH
Server

Pine

"ssh -q -l slade exec imapd"

ssh
subprocess PREAUTH

IMAP in SSH

“exec imapd”

imapd remote command
pre-authenticated as slade

slade’s mailbox



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

440 | Chapter 11: Case Studies

0 login res password'
1 select inbox
* 3 EXISTS
* 0 RECENT
* OK [UIDVALIDITY 964209649] UID validity status
* OK [UIDNEXT 4] Predicted next UID
* FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
* OK [PERMANENTFLAGS (\* \Answered \Flagged \Deleted \Draft \Seen)] Permanent flags
1 OK [READ-WRITE] SELECT completed
2 logout
* BYE imap.example.com IMAP4rev1 server terminating connection
2 OK LOGOUT completed

Alternatively, in preauthenticated mode, the IMAP server assumes that authentica-
tion has already been done by the program that started the server and that it already
has the necessary rights to access the user’s mailbox. If you invoke imapd on the
command line under a nonroot uid, imapd skips the authentication phase and sim-
ply opens the mailbox file of the current account (which must be accessible via the
existing Unix permissions structure). You can then type IMAP commands and access
your mailbox without authentication:

server% /usr/local/sbin/imapd
* PREAUTH imap.example.com IMAP4rev1 v12.261 server ready
0 select inbox
* 3 EXISTS
* 0 RECENT
* OK [UIDVALIDITY 964209649] UID validity status
* OK [UIDNEXT 4] Predicted next UID
* FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
* OK [PERMANENTFLAGS (\* \Answered \Flagged \Deleted \Draft \Seen)] Permanent flags
0 OK [READ-WRITE] SELECT completed
1 logout
* BYE imap.example.com IMAP4rev1 server terminating connection
1 OK LOGOUT completed

Notice the PREAUTH response at the beginning of the session, indicating preauthenti-
cated mode. It is followed by the command select inbox, which causes the IMAP server
implicitly to open the inbox of the current user without demanding authentication.

Now, how does all this relate to Pine? Pine has a built-in feature whereby, instead of
using a direct IMAP connection, it logs into the IMAP host using ssh and runs a pre-
authenticated instance of imapd directly. If this succeeds, Pine then converses with
the IMAP server over the SSH connection, and has automatic access to the remote
inbox without further authentication.

11.3.1.2 Making Pine use SSH

Pine’s SSH feature is controlled by three configuration variables in the ~/.pinerc file:
ssh-path, ssh-command, and ssh-open-timeout. ssh-path stores the program name for
opening a Unix remote shell connection. The default should point to a usable SSH
program, but you may have to set it yourself:

ssh-path=/usr/bin/ssh



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.3 Pine, IMAP, and SSH | 441

ssh-command represents the Unix command line for opening the SSH connection. The
value is a printf-style format string with four “%s” conversion specifications that are
automatically filled in at runtime. From first to last, these four specifications stand
for:

1. The value of ssh-path

2. The remote hostname

3. The remote username

4. The connection method; in this case, “imap”

The default value of ssh-command is:

"%s %s -l %s exec /etc/r%sd"

To access the mailbox on imap.example.com for user smith via SSH, Pine would then
run the command:

/usr/bin/ssh imap.example.com -l smith exec /etc/rimapd

This follows a convention, somewhat antiquated nowadays, of having links named
/etc/r<protocol>d that point to servers for various protocols that operate in this
preauthenticated fashion. In modern systems such links are usually not available,
so you may need to alter the ssh-command to run imapd. You can also use it to add
other options, like so:

ssh-command="%s %s -l %s -o BatchMode=yes -axq exec /usr/sbin/imapd"

With this setting, Pine would end up running this command:

/usr/bin/ssh imap.example.com -l -o BatchMode=yes -axq exec /usr/sbin/imapd

The –q (Quiet) option is advisable so that ssh doesn’t emit warning messages that
may confuse Pine, which would try to interpret them as part of the IMAP protocol.
The options -ax turns off agent and X Windows forwarding, which might be on by
default but are not necessary for this connection. BatchMode lets ssh know that it can’t
prompt the user for a password on the terminal, since Pine is using it.

The third variable, ssh-open-timeout, sets the number of seconds Pine will wait for
the SSH connection to succeed; its default value is 15. A value of 0 disables SSH
entirely, which may be useful if the feature is on by default and you do not want to
use it.

So, finally, the Pine configuration is:

ssh-path=/usr/bin/ssh
ssh-command="%s %s -l %s -o BatchMode=yes -axq exec /usr/sbin/imapd"
ssh-open-timeout=15

Generally, you want to use an SSH authentication method that doesn’t require typ-
ing a password or passphrase, such as hostbased or public-key with an agent. SSH is
run behind the scenes by Pine and doesn’t have access to the terminal to prompt
you. If you’re running the X Window System, ssh can instead pop up an X widget—



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

442 | Chapter 11: Case Studies

ssh-askpass—to get input, but you probably don’t want that either. Pine may make
several separate IMAP connections in the course of reading your mail, even if it’s all
on the same server, and this will cause repeated queries for your password.

With the given settings in your ~/.pinerc file and the right kind of SSH authentica-
tion in place, you’re ready to try Pine over SSH. Just start Pine and open your remote
mailbox; if all goes well, it will open without prompting for a password.

11.3.2 Mail Relaying and News Access
Pine uses IMAP to read mail but not to send it. For that, it can either call a local pro-
gram (such as sendmail ) or use an SMTP server. Pine can also be a newsreader and
use NNTP (the Network News Transfer Protocol, RFC-977) to contact a news
server.

An ISP commonly provides NNTP and SMTP servers for its customers, but obvi-
ously does not want to allow arbitrary people to use them. Modern extensions to the
NNTP and SMTP protocols include authentication, and ISPs are starting to use and
require them. Before such mechanisms were available, however, the usual method of
restricting access to these services was via network address: the ISP would allow
access from addresses within its own network (and hence hopefully only from its
customers). Many ISPs have not yet switched to direct authentication for these ser-
vices, and are still using address-based authorization; so, if you’re connected to the
Internet from elsewhere and try to use your ISP’s mail server, the attempt might fail.
Access to your usual servers might be blocked by a firewall, or the mail server might
reject your mail with a message about “no relaying,” and the news server rejects you
with a message about “unauthorized use.”

You are authorized to use the services, of course, so what do you do? Use SSH port
forwarding! By forwarding your SMTP and NNTP connections over an SSH session
to a machine inside the ISP’s network, your connections appear to come from that
machine, thus bypassing the address-based restrictions. You can use separate SSH
commands to forward each port:

Remote Usernames in Pine
By the way, it’s not mentioned in the Pine manpage or configuration file comments,
but if you need to specify a different username for connecting to a remote mailbox, the
syntax is:

{hostname/user=jane}mailbox

This causes Pine to call the ssh-command with “jane” as the remote username (i.e., the
third %s substitution).



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.3 Pine, IMAP, and SSH | 443

$ ssh -L2025:localhost:25 smtp-server ...
$ ssh -L2119:localhost:119 nntp-server ...

Alternatively, if you have a shell account on one of the ISP’s machines running SSH
but can’t log into the mail or news servers directly, do this:

$ ssh -L2025:smtp-server:25 -L2119:nntp-server:119 shell-server ...

or neatly automate it this way:

[~/.ssh/config]
Host mail-news-forwarding
  Hostname shell-server
  LocalForward 2025 smtp-server:25
  LocalForward 2119 nntp-server:119

$ ssh mail-news-forwarding

This is an off-host forwarding, and thus the last leg of the forwarded path isn’t pro-
tected by SSH. [9.2.4] But since the reason for this forwarding isn’t so much protec-
tion as it is bypassing the source-address restriction, that’s OK. Your mail messages
and news postings are going to be transferred insecurely once you drop them off,
anyway. (If you want security for them, you need to sign or encrypt them separately,
e.g., with PGP or S/MIME.)

In any case, now configure Pine to use the forwarded ports by setting the smtp-server
and nntp-server configuration options in your ~/.pinerc file:

smtp-server=localhost:2025
nntp-server=localhost:2119

Even if your ISP uses direct authentication, you might choose to use SSH anyway if it
does so poorly. For instance, some badly deployed services require password authen-
tication but do not provide encryption for the connection! In this case, you would
forward over SSH in order to protect your password.

One possible complication: the SSH feature has a global on/off switch, applying to
every remote mailbox. That is, if ssh-open-timeout is nonzero, Pine tries to use this
style of access for every remote mailbox. If you have multiple mailboxes but only
some of them are accessible via SSH/imapd, this leads to annoyance. Pine falls back
to a direct TCP connection if SSH fails to get an IMAP connection, but you have to
wait for it to fail. If the server in question is behind a firewall silently blocking the
SSH port, this can be a lengthy delay. If you’re in this situation, you can disable SSH
access for specific mailboxes using the /norsh switch, like this:

{imap.example.com/user=smith/norsh}inbox

That’s not a typo: the switch is /norsh rather than /nossh. This is just an historical
artifact of the software: originally, Pine supported this style of mailbox access via rsh.
In fact, there are still configuration variables—rsh-path, rsh-command, and rsh-open-

timeout—that function entirely analogously; so much so, that in the first edition of
this book, we described how to use SSH with older versions of Pine by simply setting



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

444 | Chapter 11: Case Studies

rsh-command to “ssh”. Anyway, /norsh turns off the use of both the ssh or rsh features
of Pine for the mailbox in question.

11.3.3 Using a Connection Script
The Pine configuration option ssh-path can point not only to ssh, but also to any
other program: most usefully, a script you’ve written providing any needed customi-
zations. If your needs are complex, you might have to do this. For example, the ssh-
path setting is global to all mailboxes, but perhaps the imapd executable is in differ-
ent locations on different servers you want to access. You can solve this problem
with a script which takes the four ssh-command arguments from Pine, and does the
right thing depending on which server is specified:

ssh-path=/home/smith/bin/my-pine-ssh-script
ssh-command="%s %s %s %s"

where the script my-pine-ssh-script is:

#!/bin/sh

ssh=$1
server=$2
user=$3
method=$4

prefix="exec $ssh -qax $user@$server exec"

case $server in
    mail.work.com) $prefix /usr/sbin/imapd ;;
     imap.isp.net) $prefix /usr/local/sbin/imapd ;;
                *) exit 0
esac

The default action of exit will cause Pine to skip SSH access quickly for servers other
than the two mentioned.

11.4 Connecting Through a Gateway Host
All along we’ve assumed that your outgoing connectivity is unlimited: that you can
establish any outgoing TCP connection you desire. Even our discussions of firewalls
have assumed that they restrict only incoming traffic. In more secure (or simply more
regimented) environments, this might not be the case: in fact, you might not have
direct IP connectivity at all to the outside world.

In the corporate world, companies commonly require all outgoing connections to
pass through a proxy server or gateway host: a machine connected to both the com-
pany network and the outside. Although connected to both networks, a gateway
host doesn’t act as a router, and the networks remain separated. Rather, it allows
limited, application-level access between the two networks.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.4 Connecting Through a Gateway Host | 445

In this case study, we discuss issues of SSH in this environment:

• Connecting transparently to external hosts using chained SSH commands

• Making scp connections to these hosts

• Running SSH-within-SSH by port forwarding

• Running SSH-within-SSH by ProxyCommand

These gateway techniques apply equally well when the situation is
reversed: you’re on an external machine, and need to access various
internal hosts through a single SSH gateway.

11.4.1 Making Transparent SSH Connections
Suppose your company has a gateway host, G, which is your only gateway to the
Internet. You are logged into a client host, C, and want to reach a server host, S, out-
side the company network, as shown in Figure 11-11. We assume that all three
machines have SSH installed.

To make a connection from client C to server S now requires two steps:

1. Connect from C to gateway G:

# Execute on client C
$ ssh G

2. Connect from G to server S:

# Execute on gateway G
$ ssh S

This works, and using agent forwarding and public-key authentication on both
hosts, you can avoid a second authentication prompt on gateway G.

Now, an obvious simplification would be this single command:

$ ssh G ssh S

If you do this, though, you’ll have a problem: first, you’ll see this warning:

Pseudo-terminal will not be allocated because stdin is not a terminal.

Figure 11-11. Proxy gateway

private corporate
network

InternetC G S



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

446 | Chapter 11: Case Studies

...and next, your shell on S will behave very strangely! You won’t get a prompt, or
any fancy line-editing—but if you persist and enter some commands, they will get
executed. The problem is that ssh only creates a pseudo-terminal, needed for interac-
tive terminal-based programs, if you explicitly request a remote shell session; to ssh,
this means that you do not specify a remote program to run. By default, it assigns no
terminal when running remote commands like ssh host uname -a. Most of the time
this is a reasonable default, but sometimes you’ll run a remote command that actu-
ally needs a terminal—in this case, the shell! You can fix this with the –t switch for
force a pseudo-terminal:

$ ssh -t G ssh S

But this introduces yet another messy aspect: to reach hosts through the gateway,
you not only have to use double-ssh commands, but furthermore, specify –t in some
cases but not others. Not a big burden for occasional use, perhaps, but cumbersome
if large numbers of hosts or automation are involved.

Fortunately, SSH configuration is flexible enough to afford a neat solution, which we
now present using OpenSSH features and syntax.*We use public-key authentication
to take advantage of the options of the authorized_keys file, and ssh-agent with agent
forwarding so that authentication passes on transparently to the second SSH connec-
tion (see Figure 11-12).

Suppose your account on gateway G is gilligan, and on server S it is skipper. First, set
up your SSH client configuration file so that the name S is a nickname for accessing
your account on gateway G:

# ~/.ssh/config on client C

* The same method should work with Tectia: just adapt the client configuration to Tectia syntax. [7.1.2.3]

Figure 11-12. Chained SSH connections through a proxy gateway

C

run "ssh S"ssh

G

sshd

"ssh S"

ssh run a shell

S

sshd

shell



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.4 Connecting Through a Gateway Host | 447

host S
  hostname G
  user gilligan

Next, on gateway G, associate a forced command with your chosen key to invoke an
SSH connection to server S: [8.2.3]

 # ~/.ssh/authorized_keys on gateway G
command="ssh -l skipper S" ...key..

Now, when you invoke the command ssh S on client C, it connects to gateway G,
runs the forced command automatically, and establishes a second SSH session to
server S. And thanks to agent forwarding, authentication from G to S happens
automatically, assuming you’ve loaded the appropriate key. This can be the same
key you used to access gilligan@G or a different one.*

This trick not only provides a transparent connection from client C to server S, it also
sidesteps the fact that the name S might not have any meaning on client C. Often in
this kind of network situation, your internal network naming scheme is cut off from
the outside world (e.g., split DNS with internal roots). After all, what’s the point of
allowing you to name hosts you can’t reach? Thanks to the Host configuration key-
word for SSH clients, you can create a nickname S that instructs SSH to reach that
host transparently via G. [7.1.2.5]

You’ll soon notice a problem, though. Interactive logins work fine, but remote com-
mands are ignored! And worse, the missing terminal problem rears its head again:

$ ssh S echo Hello
Pseudo-terminal will not be allocated because stdin is not a terminal.

You’re left talking to a mute shell, and no “Hello” appears. The problem now is that
we’ve done nothing to pass along any remote command to S; the forced command
on G simply ignores it and always tries to start a remote-login SSH connection
(hence provoking the missing terminal problem, as before). We can fix this using
another OpenSSH feature:†

command="ssh -l skipper S $SSH_ORIGINAL_COMMAND" ...key...

If a remote command is used, sshd stores it in the environment variable SSH_

ORIGINAL_COMMAND; we use that here to pass it along to the next ssh command. The
variable is not set, however, if there is no remote command. Some shells consider this
an error, so you might have to augment this in some way to accommodate the shell’s
predilections. For example, some shells have this syntax:

command="ssh -l skipper S ${SSH_ORIGINAL_COMMAND:-}" ...key...

* Note that if you want to use this setup for an interactive connection, you need to use the –t option to ssh, to
force it to allocate a tty on G. It doesn’t normally do that, because it doesn’t have any way to know that the
remote command—in this case, another instance of ssh—needs one.

† For Tectia use SSH2_ORIGINAL_COMMAND.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

448 | Chapter 11: Case Studies

where ${foo:-bar} evaluates to “bar” if the variable foo is not set. And remember,
the shell used here is the one belonging to the remote account; to be especially
robust, it might be best to use a particular shell explicitly:

command="/bin/bash -c 'ssh -l skipper S ${SSH_ORIGINAL_COMMAND:-}'" ...key...

This technique also neatly solves the “missing terminal” problem at the same time!

11.4.2 Using SCP Through a Gateway
Recall that the command:

$ scp ... S:file ...

actually runs ssh in a subprocess to connect to S and invoke a remote scp server. [3.7]
Now that we’ve gotten ssh working from client C to server S, you’d expect that scp
would work between these machines with no further effort. Well, it almost does, but it
wouldn’t be software if there weren’t a small problem to work around, in this case
authentication. You can’t provide a password or passphrase to the second ssh pro-
gram, since there is no pseudo-terminal on the first ssh session—ssh requires a termi-
nal for user input. So, you need a form of authentication that doesn’t require user
input: either hostbased, or public-key authentication with agent forwarding. Host-
based works as is, so if you plan to use it, you can skip to the next section. Public-key
authentication, however, may have a problem: some versions of scp run ssh with the –a
switch to disable agent forwarding. [6.3.5.3] You need to reenable agent forwarding for
this to work, and this is surprisingly tricky.

Normally, you could turn on agent forwarding in your client configuration file:

# ~/.ssh/config on client C, but this FAILS
ForwardAgent yes

but this doesn’t help because as it happens, the –a on the command line takes prece-
dence. Alternatively, you might try the –o option of scp, which can pass along
options to ssh, such as –o ForwardAgent yes. But in this case, scp places the –a after
any –o options it passes where it takes precedence, so that doesn’t work either.

There is a solution, though. scp has a –S option to indicate a path to the SSH client
program it should use, so you create a “wrapper” script that tweaks the SSH com-
mand line as needed, and then make scp use it with –S. Place the following script in
an executable file on client C—say, ~/bin/ssh-wrapper:

#!/usr/bin/perl
exec '/usr/bin/ssh', map {$_ eq '-a' ? ( ) : $_} @ARGV;

This runs the real ssh, removing –a from the command line if it’s there. Now, give
your scp a command like this:

scp -S ~/bin/ssh-wrapper ... S:file ...

and it should work.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.4 Connecting Through a Gateway Host | 449

11.4.3 Another Approach: SSH-in-SSH (Port Forwarding)
Instead of using a forced command, here’s another way to connect by SSH through a
gateway: forward a port on client C to the SSH server on S, using an SSH session
from C to G, and then run a second SSH session through the first (see Figure 11-13).

That is:

# Execute on client C
$ ssh -L2001:S:22 G

# Execute on client C in a different shell
$ ssh -p 2001 -o HostKeyAlias=S localhost

This connects to server S by carrying the second SSH connection (from C to S) inside
a port-forwarding channel of the first (from C to G). Note the use of HostKeyAlias,
so ssh will look up S’s host key with the name “S.” Otherwise, it would try to use the
key for “localhost,” which would be the wrong key.

You can make this more transparent by creating a nickname S in your client configu-
ration file:

# ~/.ssh/config on client C
Host S
  Hostname localhost
  Port 2001
  HostKeyAlias S

Now the earlier commands become:

# Execute on client C
$ ssh -L2001:S:22 G

# Execute on client C in a different shell
$ ssh S

Figure 11-13. Forwarded SSH connection through a proxy gateway

SSH
Server

C

SSH

SSH

"ssh localhost 2001"

2001

SSH

G S

SSH
Server

ssh -L 2001:S:22 G



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

450 | Chapter 11: Case Studies

Because this technique requires a separate, manual step to establish the port for-
warding, it is less transparent than the one in [11.4.1]. However, it has some advan-
tages. If you plan to use port or X forwarding between C and S with the first method,
it’s a little complicated. scp not only gives the –a switch to ssh to turn off agent for-
warding, but also it gives –x and –o “ClearAllForwardings yes”, turning off X and
port forwarding. So, you need to modify the earlier wrapper script to remove these
unwanted options as well. [11.4.2] Then, for port forwarding you need to set up a
chain of forwarded ports that connect to one another. For example, to forward port
2017 on client C to port 143 (the IMAP port) on server S:

# ~/.ssh/config on client C
host S
  hostname G
  user gilligan

# ~/.ssh/authorized_keys on gateway G
command="ssh -L1234:localhost:143 skipper@S" ...key...

# Execute on client C
$ ssh -L2017:localhost:1234 S

This works, but it’s difficult to understand, error-prone, and fragile: if you trigger the
TIME_WAIT problem [9.2.9.1], you have to edit files and redo the tunnel just to
pick a new ephemeral port to replace 1234.

Using the SSH-in-SSH technique instead, your port and X-forwarding options oper-
ate directly between client C and server S in the usual, straightforward manner. The
preceding example becomes:

# ~/.ssh/config on client C
Host S
  Hostname localhost
  Port 2001
  HostKeyAlias S

# Execute on client C
$ ssh -L2001:S:22 G

# Execute on client C in a different shell
$ ssh -L2017:localhost:143 S

This final command connects to server S, forwarding local port 2017 to the IMAP
port on S.

11.4.4 SSH-in-SSH with a Proxy Command (OpenSSH)
Here’s yet another way to implement the tunneled SSH technique:

# ~/.ssh/config on client C
Host S
  ProxyCommand "ssh -qax G nc S 22"



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.4 Connecting Through a Gateway Host | 451

If a ProxyCommand value is set, OpenSSH uses this command to get a communication
channel to the remote host, rather than using the network directly. The command, in
turn, can do anything at all—it could connect to an SSH server at the other end of a
serial line, for example! In this case, we actually use a second ssh command to connect
through gateway G to the SSH server TCP port on server S. The trick is that we really
want a kind of connection that OpenSSH doesn’t provide. Ideally, we’d like to be able
to say something like ssh --tcp S:22 G (note: this syntax does not currently exist), the
meaning of which would be: “connect to G via SSH, instruct G to make a TCP connec-
tion to host S port 22, and connect the local stdin/stdout to that stream.” Making
remote TCP connections is already something sshd can do; that’s how local TCP for-
warding is done. Unfortunately, no SSH clients we know of provide this useful feature.
So, we must have a separate program on G, which just makes a simple TCP connec-
tion for us; here, we use netcat (nc).

Expanding on this a bit...instead of a single host on the other side of the gateway,
suppose you have many you want to access. If their names follow a pattern, you may
be able to express this behavior very succinctly using OpenSSH. Suppose the
machines in question are a cluster with hostnames beowulf-1, beowulf-1, etc. Then
you can use this:

# ~/.ssh/config on client C
Host beowulf-*
  ProxyCommand "ssh -qax G nc %h %p"

This Host directive will match any of the cluster hostnames, and use an ssh subpro-
cess to reach the host in question through the gateway: OpenSSH substitutes the %h
and %p in the ProxyCommand with the host and port to use.

The ProxyCommand technique is simpler than port forwarding: there’s no extra SSH
command to start separately and no ad hoc port numbers to coordinate and possibly
have to change. It also gains in security, since port forwarding always has the prob-
lem of unauthenticated access to the forwarded connection. And, we need no
HostKeyAlias statements. However, we lose the speed advantage gained over chained
ssh commands, since once again we end up waiting for two SSH connections every
time. A compromise approach would be to use the ProxyCommand method together
with an OpenSSH connection server. [7.4.4.2]

11.4.5 Comparing the Techniques
We’ve presented several methods of SSH access through a gateway. There are vari-
ous trade-offs, but overall we think tunneling is usually the best way to go. Here’s
why.

11.4.5.1 Smoothness

The tunneling methods are smoother end-to-end: the interaction between client C
and server S is simpler because they talk directly to one another. This is especially



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

452 | Chapter 11: Case Studies

true if you need to request additional services via SSH, such as any kind of forward-
ing. On the other hand, the setup for tunneled connections using port forwarding is
more cumbersome with its extra SSH process. ProxyCommand tunneling, though, is
both smoother than chaining and at least no slower—and may be sped up if the
OpenSSH connection server is available. The speedup is again at the cost of an extra
SSH process, but its startup could be automated, and coordinating the control socket
is easier than picking ad hoc ports and dealing with possible TIME_WAIT problems.
Overall, tunneling via ProxyCommand wins.

11.4.5.2 Security

A chained connection has a serious security problem: the gateway G. All data is
decrypted on G in between the two SSH sessions; if G is compromised, then all is
lost. There is simply no end-to-end security in this scenario, because there is no
actual SSH session from client C to server S. In contrast, a compromise of G poses no
extra threat to the security of a tunneled SSH connection from C to S. The break-in
simply puts the attacker on G in the position of altering or diverting the data path
between C and S—but SSH already has mechanisms for countering exactly that
threat. In other words, the top SSH connection does not trust the lower one at all. It
treats it as it would any other connection method, and thus is no more vulnerable to
attacks on it than if a simple TCP connection were in use. Tunneling in either form is
the clear winner here.

11.5 Scalable Authentication for SSH
One of the main strengths of SSH is easy setup. Install an SSH server on one host and
a client on another, and you immediately have secure login via password. Generate a
key pair and put the public key on the server, and you immediately have even better
authentication, and single-signon. This lightweight approach is one of the main rea-
sons for the initial popularity of SSH.

No solution fits all situations, however, and this simplicity becomes a liability as the
number of users and hosts grows. In large installations, managing both server and
user authentication becomes difficult. Every time you add an SSH server host, or
change its name, or add an alias for it, you must update the global known-hosts list.
This by itself may be a practically impossible task, because there are no standards for
representing these lists. OpenSSH uses one format, Tectia another; some Windows-
based clients keep them in a file, some in the registry. Even if you had a means to
generate lists for all your SSH clients in their various native formats, many of the
actual client machines may be unreachable for updates (remote machines, laptops,
etc.).

At all too many companies, the difficulty of managing SSH server keys leads to a very
lax approach to server verification. Users frequently see warning messages about



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.5 Scalable Authentication for SSH | 453

missing or changed keys, and the IT staff tells them to “just accept the new key.”
Very soon, these messages are completely ignored by everyone—or worse, just made
to go away entirely! We’ve actually encountered an SSH installation with this config-
uration:

# /etc/ssh/ssh_config
GlobalKnownHostsFile   /dev/null
UserKnownHostsFile     /dev/null
StrictHostKeyChecking  no

Scary, but understandable; SSH had cried wolf one too many times. Unfortunately,
effectively skipping server authentication disables a vital part of SSH security: resis-
tance to server host spoofing and man-in-the-middle attacks! This situation also
makes it impractical to replace server keys periodically, as should be done, or to
revoke a key in case it is known to be compromised (i.e., tell clients to no longer
trust it).

All these remarks apply to the usual modes of SSH public-key user authentication, as
well. Authorizing a user for login means modifying an authorization list on every
host to which the user requires access, adding his key. Revoking that access means
tracking all those files down—including files he may have modified himself, perhaps
to allow access to accounts other than his own, that you know nothing about.
Changing keys may be essentially impossible; after a while, the user himself may
have no idea where that key has gotten to! Eventually, a compromised key is almost
sure to work on some machine where it’s lying forgotten in a dusty authorized_keys
file (or ~/.ssh2/authorization file, or registry key, or ...).

Now, none of these issues is new or unique to SSH. The problem of large-scale, cen-
tralized authentication and authorization (AA) has been studied for a long time, and
standard solutions exist. Fortunately, besides simplicity, another strength of SSH is
flexibility. The common devices that we’re complaining about are not implied by the
SSH protocol; they’re just widespread implementations. The protocol says nothing
about how a server key should be verified or a user key authorized for access, and
SSH software is free to use more sophisticated methods. Moreover, the protocol is
extensible so that new elements such as key types or authentication exchanges can be
defined as needed in order to support such methods.

Of course, flexibility doesn’t help much if there are no such “sophisticated meth-
ods” actually available. For years, there weren’t—but recently, maturing SSH prod-
ucts have incorporated support for scalable AA. We will discuss two here: X.509
public-key infrastructure (PKI) with Tectia, and Kerberos with OpenSSH.

A word before we start: both Kerberos and X.509 PKI are substantial topics on their
own, and we can’t do more than scratch the surface of them here. We’ll give just a
brief (incomplete!) sketch of each system, present a simple working configuration,
and make some comments about other features to look at. Beyond that, you’ll need
to read up on these systems yourself in order to delve into their use.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

454 | Chapter 11: Case Studies

11.5.1 Tectia with X.509 Certificates

11.5.1.1 What’s a PKI?

“X.509 PKI”—a forbidding term; it sounds like part of a warp engine that needs cali-
bration, right after you reinitialize the field coils. Let’s break it down: PKI stands for
Public Key Infrastructure, and refers to a system for dealing in scalable fashion with
the trust issues raised by deploying asymmetric (public-key) cryptography, including:

• Binding public keys to identities: users, hosts, routers, etc.—these are the princi-
pals in the system

• Indicating or controlling the use of keys (encryption, signing, email, web/SSL,
etc.)

• Replacing keys

• Renewing or revoking previously made bindings

• Securely communicating all these properties

Although the term sounds generic, in practice it has come to refer specifically to hier-
archical systems in which so-called Certifying Authorities (CAs) vouch for the iden-
tity of principals and certify ownership of cryptographic keys. CAs can themselves be
vouched for by higher CAs, arranged in a tree of trust. This reduces the trust prob-
lem to distributing the keys of a small number of well-known authorities, avoiding
the combinatorial explosion of dealing individually with every pair of principals who
might need to communicate securely.

X.509 is the name of a standards document of the International Telecommunica-
tions Union (ITU, formerly the CCITT). Its original intent was to describe an
authentication system for another ITU standard: X.500 directories (the title is “Rec-
ommendation X.509: The Directory Authentication Framework”). However, in the
process it specified a format for digital certificates: data structures which embody the
key/principal binding we mentioned, and that portion of X.509 has become widely
used in PKI systems.

X.509-style PKIs also use a great many other standards. To get an idea of the scope of
the subject, just take a look at the home page of the IETF PKIX working group, at:

http://www.ietf.org/html.charters/pkix-charter.html

It’s a daunting list...but we’ll just sum up the essentials here. The most important
components of a certificate are:

• Issuer name

• Subject name

• Public key

• Validity dates

• Signature



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.5 Scalable Authentication for SSH | 455

The signature is a cryptographic function of the entire certificate data structure, and
is made by the issuer using its private key (which does not appear here). The mean-
ing of the certificate is: “the issuer vouches that the subject owns the private counter-
part to this public key (but this affidavit is only good between the given validity
dates).”

Now in reality, certificates can be much more complex, containing many more
attributes. Also, the interpretation may be different: “owns” might mean “is autho-
rized to use,” or “has access to sign with but does not actually know,” etc. And there
are many unanswered questions here, such as how carefully did the issuer check the
subject’s identity? But we’ll leave all that alone and concentrate on the basics.

The issuer and subject name are expressed as Distinguished Names (DNs), as defined
by X.509. These are attribute/value sets, represented in text like this:

/C=US/ST=New York/O=Mad Writer Enterprises/CN=Richard E. Silverman/
emailAddress=res@oreilly.com

The attribute abbreviations here are Country, STate, Organization, and Common
Name (and there are more).

Now, let’s see how all this helps with SSH host key verification.

11.5.1.2 Using certificates with Tectia host keys

When an SSH client connects to a server, it needs to verify that the server’s host key
actually belongs to the host it intended to contact. The usual way is to compare it to
a local list of already known keys, but that has many drawbacks, as we pointed out
earlier. Instead of managing an unwieldy, changing set of host keys, with PKI each
client needs only one public key: that of a CA shared by all hosts in the system. Each
time you deploy a new Tectia host, you generate a new hostkey as usual—but you
also obtain a certificate, binding the host’s name to its public key. That certificate is
signed by the CA, and every client has the CA’s public key. During the key-exchange
phase of the SSH protocol, the client receives the certificate along with the server’s
hostkey; there are key types x509v3-sign-rsa and x509v3-sign-dss for this purpose
instead of the usual ssh-rsa and ssh-dss. Instead of looking up the hostkey in a list,
the Tectia client:

1. Compares the subject name in the certificate to the server hostname and verifies
that they match

2. Verifies the server’s signature on the key-exchange transaction, proving it actu-
ally holds the corresponding private key

3. Verifies the issuer signature on the certificate using the CA’s public key, to be
sure it’s genuine (i.e., that the certificate was actually issued by the trusted CA)

If the key passes all these tests, then the client considers the key valid, and server
authentication succeeds. You’ll notice this doesn’t completely remove the need for
key distribution: the clients do still need to get the CA key in a trusted manner. But



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

456 | Chapter 11: Case Studies

it’s much easier to distribute or update a single key that changes very infrequently,
than to manage a constantly changing known-hosts list!

Now we’ll get down to specifics with a simple example.

11.5.1.3 A simple configuration

For our example, we’ll start with a new instance of Tectia Server installed on a Linux
host; first, we need to generate a hostkey with a certificate. This is not something we
can describe very comprehensively, because it relies on outside factors: what actual
PKI system is in use. You might be using anything from a home-brew CA using the
free OpenSSL software that comes with most Unix variants these days, to a managed
PKI service outsourced to a major security vendor, involving multiple layers of hier-
archy, cross-certification among organizations, separate Registration Authorities,
private-key escrow, etc.

If the PKI in question uses the Certificate Management Protocols (CMP, RFC-2510),
then you can use ssh-cmpclient to communicate with the PKI system: generate keys;
request, receive, revoke, or update certificates; etc. You should consult your PKI ven-
dor or managing staff as to how to proceed in this case. To keep our example sim-
ple, we’ll follow an older but still widely used process: generating a keypair and
certificate request using OpenSSL, which we then supply to the CA by some simple
method (email and the Web are the usual ways).

11.5.1.4 Getting a certificate

Suppose our company is Vogon Construction, Inc., and the server hostname is jeltz.
vcon.com. To generate a key pair and certificate request:

% openssl req -nodes -config -new rsa:1024 -out request.pem \
  -outform pem -keyout private.pem -days 1095 \
  -subj '/C=US/ST=New York/L=Manhattan/O=Vogon Construction, Inc./CN=jeltz.vcon.com'

This generates a new 1024-bit RSA key pair and produces two files:

private.pem
The unencrypted private key

request.pem
An X.509 certificate request

The request.pem file contains the public key and asks to bind the hostname jeltz.
vcon.com to that key for a period of three years (1095 days). The DN contains other
information besides the hostname, and typically the CA will require set values for
some of that, e.g., that the Organization field match that of the CA.

Next, send the request to the CA, and engage in whatever authentication procedures
it requires: call Bob in IT, verify receipt of an email at your given address, swear an
oath and sign in blood—whatever it takes. When the CA is satisfied, it will return to



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.5 Scalable Authentication for SSH | 457

you a certificate, which you save in a file, certificate.blob. If it is an ASCII file looking
like this:

-----BEGIN CERTIFICATE-----
MIIDbzCCAtigAwIBAgIDA9GvMA0GCSqGSIb3DQEBBQUAME4xCzAJBgNVBAYTAlVT
MRAwDgYDVQQKEwdFcXVpZmF4MS0wKwYDVQQLEyRFcXVpZmF4IFNlY3VyZSBDZXJ0
...
VdrJ1Z4HLT7PL+nEuvRJcpyw+A==
-----END CERTIFICATE-----

then it is in a format called PEM; if it’s not, then it’s in another format called DER.

The two files, private.pem and certificate.blob, contain the host private key and our
desired certificate; you can delete request.pem. Now, we need to convert these to
Tectia’s format for host keys, in a two-step process. First:

% openssl pkcs12 -export -out jeltz.p12 -in certificate.blob -inform {pem|der} -inkey
private.pem

Choose “pem” or “der” depending on the format of the certificate. This stores the
combined public key, private key, and certificate in a single file using yet another for-
mat, PKCS-12. You will be prompted for a passphrase to protect the file. This is a
good format in which to store the keypair and certificate in case you need to rebuild
the host and restore the key, so keep that file. Next:

$ ssh-keygen -k jeltz.p12 -p ''

This will, of course, prompt you for the passphrase (twice, in fact), and finally pro-
duce the two files we want:

jeltz.p12-1_ssh2.crt
Certificate in DER format

jeltz.p12_ssh2
Unencrypted private key in SECSH format used by Tectia [6.1.2]

Now, to get Tectia sshd to use them.

11.5.1.5 Hostkey verification: configuring the server

Install the new key and certificate in the Tectia configuration directory:

# install -o root -m 444 jeltz.p12-1_ssh2.crt /etc/ssh2/jeltz.crt
# install -o root -m 444 jeltz.p12_ssh2 /etc/ssh2/jeltz

and add this to sshd2_config:

HostCertificateFile jeltz.crt
HostKeyFile jeltz

If you want to continue offering the existing plain ssh-dss host key as well as the new
certificate, you may need to add or uncomment the following:

PublicHostKeyFile hostkey.pub
HostKeyFile hostkey



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

458 | Chapter 11: Case Studies

These are the defaults if no hostkey is specified, but once you add the
HostCertificateFile, the defaults will not apply. For our example, though, we sug-
gest you turn or leave off all other hostkeys so that successful server authentication
by the client depends on this one key working.

Lastly, restart Tectia Server:

# service sshd2 restart

and try to connect with ssh:

% ssh jeltz.vcon.com
warning: Received host certificate is not valid, error:
search-state = { certificate-was-not-found database-method-search-failed } warning:
Authentication failed.  Disconnected (local); key exchange or algorithm negotiation
failed
(Key exchange failed.).

This error message shows that we succeeded: the client received a certificate along
with the host key. A debug trace will show more specifically that the host-key type
has changed:

% ssh -d4 jeltz.vcon.com
...
debug: Ssh2Client/sshclient.c:244/ssh_client_key_check: Got key of type x509v3-sign-
rsa
debug: Ssh2Client/sshclient.c:286/ssh_client_key_check: Checking certificate validity
...

Now, we just need to arrange for the client to be able to verify the certificate.

11.5.1.6 Hostkey verification: configuring the Client

For this, we need the CA’s public key, itself in the form of a certificate. This should
be readily available from your CA; after all, the CA isn’t much use unless everyone
has it. Get it in DER format; if they provide it in PEM, convert it thus:

$ openssl x509 -inform pem -outform der -in <certificate file> -out cacert.der

Now install the CA certificate:

# install -o root -m 444 cacert.der /etc/ssh2

configure ssh to use it:

# /etc/ssh2/ssh2_config
# Note that this path must be absolute, unlike in the server config, since otherwise
it is relative
# to the user's ~/.ssh2 directory.
HostCANoCRLs /etc/ssh2/cacert.der

...and try!

# Tectia
$ ssh -v jeltz.vcon.com
...



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.5 Scalable Authentication for SSH | 459

debug: Ssh2Client/sshclient.c:984/keycheck_cert_cb: Host certificate valid and signed
by a trusted CA, accepting
...

If all has gone according to plan, this works, using whatever user authentication
method you have available; the debug message shown indicates that the certificate
validation succeeded.

11.5.1.7 User authentication: configuring the client

We have just set up server authentication using a server-supplied certificate. In fact,
the converse is possible as well: Tectia Server can authenticate users by certificate as
well. As before, we need a new keypair and certificate, this time for a DN matching a
user. We follow the same procedure we used earlier [11.5.1.4], but with the follow-
ing subject name:

/C=US/ST=New York/L=Manhattan/O=Vogon Construction, Inc./CN=Prostetnic V. Jeltz/
subjectAltName=email:pvj@vcon.com

It is critical to include a subjectAltName of type email as shown—even
if the user has no email address at all, in fact, and you have to make
one up. It is a very confusing and thoroughly undocumented fact that
Tectia Server requires the presence of this attribute for user certifi-
cates, even if it’s not used. Otherwise, Tectia mysteriously rejects the
certificate with no reason. It cost us several hours of bewilderment,
culminating in an intense threesome with gdb and the Tectia source, to
uncover this fact.

In a related bit of confusion, there’s a bug in OpenSSL whereby this
attribute will not be automatically copied into the certificate request,
like everything else next to it. You must edit the OpenSSL configura-
tion file (often in /usr/share/ssl/openssl.cnf), and add or uncomment the
following:

[ usr_cert ]

Once you have your private key and user certificate, place them in ~/.ssh2, say:

~/.ssh2/pvj.crt
Certificate

~/.ssh2/pvj
Private key

and configure ssh to use this key:

# ~/.ssh2/identification
CertKey pvj

We know it won’t work, since we haven’t configured the server yet—but as a test:

% ssh -l pvj jeltz -o AllowedAuthentications=publickey
warning: Authentication failed.
Disconnected (local); no more authentication methods available (No further
authentication methods available.).



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

460 | Chapter 11: Case Studies

We set ssh to try only public-key authentication since that’s what we want to test;
this way it doesn’t end up asking for a password. The interesting message will be in
the server log, typically /var/log/secure:

sshd2: Authorization check for user pvj's certificate rejected, reason: No
certificate authorization configured.

And now finally, we tell the server how to authorize users based on their certificates.

11.5.1.8 User authentication: configuring the server

With the old method, there was an implicit correspondence between an account and
a public key authorized to log into it: the key sat in a special file in the account’s
home directory. With PKI, there is only the certificate, so we need a rule whereby
Tectia can determine whether a particular certificate grants access to the requested
account. In fact, Tectia allows great flexibility in expressing such rules. First, add this
to the server configuration:

# /etc/ssh2/sshd2_config
PKI cacert.der
PKIDisableCrls yes
MapFile cert.users

This tells Tectia Server to trust user certificates signed by our CA, and to use the
rules in /etc/ssh2/cert.users to authorize access to accounts. The rule language is
described in the manpage for ssh_certd_config, section “MAPPING FILES.” We’ll
give a few examples here:

# allow a certificate issued to Prostetnic V. Jeltz in our company, access to account
pvj
#
pvj subject C=US,ST=New York,L=Manhattan,O=Vogon Construction, Inc.,CN=Prostetnic V.
Jeltz

# allow any certificate issued to Prostetnic V. Jeltz, whether by our organization or
not
#
pvj subject CN=Prostetnic V. Jeltz

# allow certificate serial number 17 issued by our CA
#
pvj SerialAndIssuer 17 C=US,ST=New York,L=Manhattan,O=Vogon Construction, Inc.

# allow any certificate issued by us to access account "shared"
#
shared Issuer C=US,ST=New York,L=Manhattan,O=Vogon Construction, Inc.

# allow certificate with email address pvj@vcon.com
#
pvj email pvj@vcon.com

# pattern rule: allow certificate with email address <foo>@vcon.com to access account
<foo>
#
%subst% EmailRegex ([a-z]+)@vcon\.com



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.5 Scalable Authentication for SSH | 461

You would think we’d now restart sshd to have these changes take effect, but in fact
Tectia has a separate daemon responsible for certificate validation: ssh-certd. So:

# service ssh-certd restart

Now, try logging in again:

% ssh -l pvj jeltz -o AllowedAuthentications=publickey

If all has gone well, it will work, with the following telltale message in syslog:

sshd2: Certificate authentication for user pvj accepted.

You can have multiple PKI blocks in the server configuration, directing trust of vari-
ous CAs and each with its own account mapping.

We have presented the simplest possible view of PKI; it may be much more compli-
cated. You might interact with something called a Registration Authority for obtain-
ing your certificate, for example, rather than directly with the CA. Verifying a
certificate might involve following a chain of certificates and signatures back to a
trusted “root” certificate, rather than just one—or there might be multiple trust
paths, if cross-certification is available, etc.

11.5.2 OpenSSH and Tectia with Kerberos
Kerberos is an authentication system that addresses the same set of problems as PKI:
providing a scalable system for mutual authentication and secure communication.
Kerberos simply uses a different basic model and set of technologies. It was origi-
nally developed as part of Project Athena, a wide-ranging research and development
effort carried out at MIT between 1983 and 1991, funded primarily by IBM and Digi-
tal Equipment Corporation. Project Athena contributed many other pieces of tech-
nology to the computing world, including the well-known X Window System. There
is now an IETF Kerberos working group:

http://www.ietf.org/html.charters/krb-wg-charter.html

which coordinates work on and standardization of the current version of the Ker-
beros protocol, Kerberos-5.

There are two main distinctions between Kerberos and PKI:

• Kerberos is based on symmetric encryption rather than public-key techniques.

• Kerberos is an active third-party system.

Both the Kerberos and PKI models have trusted third parties: in PKI it is the CA, and
in Kerberos it is a service called the Key Distribution Center (KDC). Both are trusted
in the sense that principals depend on them to correctly identify other users, and not
to reveal certain cryptographic secrets. However, Kerberos requires the real-time,
online participation of the KDC when two principals wish to communicate. This is
in contrast to PKI: once two principals have obtained certificates from the CA, they
may communicate at any time by speaking only to each other; the CA is not



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

462 | Chapter 11: Case Studies

involved. It may be necessary to contact the CA for related services, such as check-
ing for certificate revocation or obtaining issuance policies—but it is not required for
the basic mutual authentication procedure.

This added availability requirement would seem to be a liability over PKI—but as
usual, it’s all about trade-offs. In exchange, Kerberos offers a much simpler adminis-
tration and user experience, as well as some different security properties. For
instance, with Kerberos, users’ long-term secrets are never stored outside the KDC,
whereas in PKI each user has the secret component of his keypair, which must be
stored and protected.

11.5.2.1 How Kerberos works

Since it is based on symmetric cryptography, Kerberos is perforce a shared-secret sys-
tem. The basic unit of Kerberos administration is called a realm, which consists of a
set of principals and single KDC database they trust. When a principal joins a Ker-
beros realm, it shares a secret key with the KDC; the KDC database essentially con-
sists of a list of principals and their keys. For user principals, the key is derived from
a password. Principals may also correspond to software services, such as an SSH
server, IMAP server, etc.; their keys are randomly generated and stored in protected
files where the services can access them. A principal name looks like 1/2/3/.../

n@REALM. There can be any (positive) number of initial parts as shown, but in practice
there are usually either one or two. A plain-user principal name would be res@REALM.
A user principal name for particular uses, such as a privileged administrative
instance, might be res/admin@REALM. And a principal representing a service—say, an
IMAP server on host mail.foo.org—would have the name imap/mail.foo.org@REALM.

When principal A wants to communicate with another—say, B—principal A first
tells the KDC that it wants to talk to B. Principal A needs to do two things: prove its
identity to B, and establish a shared secret with B for secure communication, called a
session key. The KDC provides these things in a message called a ticket, which it
sends back to A. The ticket is sealed with A’s secret key, known only to the KDC and
A—hence A trusts that it is genuine, and it is protected from network snooping.
Unsealing the ticket, A finds the needed session key—and yet another ticket! This
one, however, is sealed with B’s secret key (known only to the KDC and B). A can’t
read this at all, but that doesn’t matter; all A needs to do is send this ticket as-is to B.
When B unseals its ticket, it finds A’s name and another copy of the session key. Just
as before, since B’s ticket is sealed with B’s key, B trusts that the ticket is genuine.
The meaning of each ticket is that the KDC has shared the session key with A and B.
The two principals then execute a protocol which proves to each that the other does
in fact hold that key—at which point, mutual authentication is accomplished. Fur-
ther, the session key can be used for subsequent security functions, such as encrypt-
ing a conversation between them.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.5 Scalable Authentication for SSH | 463

Now, this explanation is very basic.* It doesn’t exactly describe the Kerberos proto-
col, but rather, a simpler one. However, it gives the essential flavor of how the third-
party shared-secret model works. The real Kerberos-5 protocol can be viewed as an
elaboration on this basic idea, to address various possible attacks and provide more
features. We won’t get any more detailed than we already have, except to list a few of
the real-life differences:

• Our model requires the user to type his password for every Kerberos transac-
tion. Real Kerberos instead involves first issuing to a user a special ticket, called
a ticket-granting ticket (TGT). Subsequent tickets for other principals involve
presenting the TGT back to the KDC, proving that the requestor has been
recently authenticated. TGTs (and indeed all tickets) expire after a period of
time, typically 10 hours. So, the user need only type his password infrequently,
and it need not be locally stored. The TGT must be stored, but it is of limited
value (and can’t be used to change the user’s password).

• The ticket expiration feature involves timestamps, which in turn require that all
principals have synchronized clocks. Some skew is allowed (typically up to five
minutes), but Kerberos will not function properly if hosts’ clocks drift too far
from one another.

11.5.2.2 Kerberos support in SSH

Kerberos support for SSH is not defined directly; rather, there is a draft that extends
SSH to use GSSAPI, as documented in “Generic Security Services/Application Pro-
gramming Interface (RFC-2743).”

GSS is a sort of security meta-protocol, with a role and implementation structure
similar to that of PAM or SASL. GSS allows two communicating peers to negotiate
security parameters abstractly, in terms of types of protection and relative strength
rather than particular protocols, ciphers, or algorithms. The GSS layers on either side
will pick the strongest compatible mechanisms available to each which meet their cli-
ents’ needs, without the higher-level software needing to bother with the details.
Typical GSS implementations allow adding new mechanisms in the form of system
dynamic libraries, which then automatically become available to GSS clients without
recompilation.

In particular, there is a GSS mechanism supporting Kerberos-5, documented in “The
Kerberos Version 5 GSS-API Mechanism (RFC 1964).”

Of course, this is a bit convoluted; why not simply support Kerberos directly as its
own SSH protocol extension? This was in fact done in SSH-1. The answer is that GSS
is becoming a widely used standard. By defining a method for using GSS in SSH,
implementers can take advantage of existing GSSAPI software libraries. And in doing

* And in fact, in some ways an outright lie.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

464 | Chapter 11: Case Studies

so, SSH can automatically use new GSS security mechanisms as they become avail-
able, without further standards work. For example, Tectia Windows Server provides
both Kerberos and NTLM user authentication via GSSAPI. The relevant SSH proto-
col draft is “GSSAPI Authentication and Key Exchange for the Secure Shell Proto-
col” (draft-ietf-secsh-gsskeyex).

Just a few years ago, this whole area was a work in progress, with only patches and
experimental implementations. Now, however, it has solidified and is present in sev-
eral mainstream SSH products and platforms, including OpenSSH, OS X, and Tectia
on both Windows and Unix. This matches the widening adoption of Kerberos in
general. And amazingly...for the most part, they all interoperate! It is now possible to
have strong authentication and single-signon among various OS/SSH combinations,
using Kerberos.

Note that while it has been possible for a while to get something similar using SSH
public-key authentication with ssh-agent, Kerberos is a win for two different rea-
sons. The issue of central management and scalability for larger organizations, we’ve
already discussed. The other important point is that public-key authentication is
SSH-specific. You go to all the trouble to teach people about generating keys, using
agents, enabling agent forwarding, etc.; and after all that work, you get a solution
that works only for SSH. Suppose you log into a domain account on a Windows
machine, then SSH to another one. Public-key authentication may let you log in, but
you’ll have to type your password again at some point to gain access to resources
such as network shares—your Windows domain credentials did not follow you over
SSH. With Kerberos, however, the same credentials which allowed login can also be
forwarded to the remote host and used there for other purposes. And since Kerberos
is a standard, the same can be true connecting from a Windows to a Unix host. This
provides a much more pervasive and useful single-signon system.

11.5.2.3 Kerberos interoperability with OpenSSH and Tectia

As an example, we will take a lone Debian GNU/Linux box, attached to a network
of Windows machines in an Active Directory domain named AD.ORG. The Linux
box, lonely.ad.org, is running Debian-unstable and has the following packages
installed; krb5-user, krb5-doc, and ssh-krb5 (which as of this writing is based on
OpenSSH 3.8.1). The Windows machines are running the Tectia Windows Server,
Version 4.2 or later. Suppose you have an account, “joe,” in the Windows domain,
you’re logged into the Debian machine, and you want to connect to the Windows
server, “winnie,” You simply type:

lonely% kinit -f joe@AD.ORG

Amazingly, this prompts for your Windows password, and (assuming you type it in
correctly)—it works! No errors, no complaints, no “DANGER! WARNING! WIN-
DOWS INCOMPATIBILITY DETECTED!” Disbelievingly, you type:

lonely% klist
Ticket cache: FILE:/tmp/krb5cc_11500



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.5 Scalable Authentication for SSH | 465

Default principal: joe@AD.ORG

Valid starting     Expires            Service principal
01/30/05 02:28:35  01/30/05 10:28:41  krbtgt/AD.ORG@AD.ORG
        renew until 01/30/05 03:28:35

You have just received Kerberos credentials from a Windows Domain Controller—
say, “dc1.” No local configuration was necessary, because kinit found the domain
controller via the DNS, using records like this:

$ORIGIN ad.org
_kerberos               TXT      "AD.ORG"
_kerberos._udp          SRV      0 0 88  dc1
_kerberos-master._udp   SRV      0 0 88  dc1
_kpasswd._udp           SRV      0 0 464 dc1
_kerberos-adm._tcp      SRV      0 0 749 dc1
_kerberos-iv._udp       SRV      0 0 750 dc1

These tell a DNS client that machines with names under ad.org belong to the AD.ORG
Kerberos realm, and that a Kerberos KDC is available on dc1.ad.org via UDP to port 88
(among other Kerberos services: some of these records might be absent or unnecessary
in your DNS). The Windows DNS servers for the domain will publish such records
automatically. If you have an alternate or more complicated configuration—say, using
non-Windows nameservers—then you may have to add these records yourself (or you
could resort to local configuration; see the manpage for krb5.conf).

Trembling with technological anticipation, you forge onward:

lonely% ssh winnie
The authenticity of host 'winnie (10.2.17.4)' can't be established.
DSA key fingerprint is b6:b2:09:81:f4:c7:96:43:4a:0c:cc:12:9d:61:54:1f.
Are you sure you want to continue connecting (yes/no)?

Remember that SSH server authentication happens first, before user authentication;
this shows that we’re still using the usual SSH key-based server authentication
(assuming you don’t already have winnie’s key in your known-hosts list). That’s dis-
appointing, but we’ll talk about that later. Assuming you say yes and continue,
though...

Warning: Permanently added 'winnie,10.2.17.4' (DSA) to the list of known hosts.
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\joe>

You have been logged into the Windows machine! Furthermore, you’ll find that you
have Windows domain credentials there; you could, for example, map a network
share (via the net use command) that requires the joe identity to access—without
retyping your password. Repeating the ssh command with –v will show the details:

lonely% ssh -v winnie
OpenSSH_3.8.1p1  Debian-krb5 3.8.1p1-7, OpenSSL 0.9.7e 25 Oct 2004
debug1: Reading configuration data /etc/ssh/ssh_config



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

466 | Chapter 11: Case Studies

debug1: Connecting to winnie [10.2.17.4] port 22.
debug1: Connection established.
...
debug1: Remote protocol version 2.0, remote software version 4.2.0.21 SSH Secure
Shell Windows NT Server
debug1: no match: 4.2.0.21 SSH Secure Shell Windows NT Server
debug1: Enabling compatibility mode for protocol 2.0
debug1: Local version string SSH-2.0-OpenSSH_3.8.1p1  Debian-krb5 3.8.1p1-7
...
debug1: Authentications that can continue: gssapi-with-mic,gssapi,publickey,password
debug1: Next authentication method: gssapi-with-mic
debug1: Authentication succeeded (gssapi-with-mic).

The user authentication method chosen is gssapi-with-mic, an improvement which
fixes a security flaw in the earlier method named simply gssapi. A subsequent klist
on the client side shows the new Kerberos ticket acquired for the connection:

lonely% klist
Ticket cache: FILE:/tmp/krb5cc_11500
Default principal: joe@AD.ORG

Valid starting     Expires            Service principal
01/30/05 02:28:35  01/30/05 10:28:41  krbtgt/AD.ORG@AD.ORG
        renew until 01/30/05 03:28:35
01/30/05 02:45:00  01/30/05 03:45:00  host/winnie.ad.org@AD.ORG
        renew until 01/30/05 03:28:35

Now, of course, there are many possible combinations of client, server, and Ker-
beros systems, and some of them will require more work. For example, going the
other way in this scenario (Windows to Linux) would mean joining the Debian box
to the Windows Kerberos realm. You could do this using Resource Kit utilities to
add its host principal, host/lonely.ad.org@AD.ORG, to the domain controller; extract a
Unix-compatible keytab file from it; and copy it to /etc/krb5.keytab on the Linux
machine. Or, you might solve the problem a different way by placing the non-
Windows hosts in a separate realm, perhaps with Linux-based KDCs, and establish-
ing inter-realm trust between them. These issues are more specific to Kerberos
administration than to SSH proper, and are beyond our scope here.

Before leaving this case study, let’s discuss some final details of SSH configuration,
server authentication, and network address translation (NAT).

SSH configuration. The Debian ssh-krb5 package is built with Kerberos authentication
turned on by default; that’s not normally true. In other situations you would have to
set some configuration options:

# ~/.ssh/config
GSSAPIAuthentication       yes
GSSAPIDelegateCredentials  yes

You might not want to delegate credentials automatically for all connections,
though, just as you might not set X forwarding on by default: it could give access to
an attacker if the remote host has been compromised.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.5 Scalable Authentication for SSH | 467

Server authentication. The secsh-keyex draft defines Kerberos server authentication as
well, in the form of new SSH-TRANS key exchange methods using GSSAPI. This
part of the draft is not as widely implemented as user authentication, however; for
example, the Debian and OS X versions of OpenSSH support it, whereas the main
OpenSSH and Tectia do not. Its use is controlled with the GSSAPIKeyExchange server
keyword. To see that the client supports it, look in the –v trace for lines like this:

debug1: Mechanism encoded as toWM5Slw5Ew8Mqkay+al2g==
debug1: Mechanism encoded as A/vxljAEU54gt9a48EiANQ==

The “mechanisms” here are GSSAPI mechanisms, and these messages occur during
the key-exchange phase.

Kerberos server authentication, when available, has several advantages:

It relieves you of managing known-hosts lists
The client doesn’t consult these files at all; instead, it relies on Kerberos to vali-
date the server’s identity. In fact, depending on the server implementation, you
may be able to dispense with even generating host keys at all; the draft defines a
“null” host key type for just this situation, where none is required. Of course,
this would keep non-Kerberized clients from connecting at all, so you might
want to keep host keys anyway for compatibility’s sake.

It automatically deals with host aliases
With known-host lists, every possible name a host might be called must be listed
with that host’s key in the file. Kerberos, though, uses the server’s canonical
name from the DNS, obtained by mapping the given name to an address and
then mapping that address back to a name. As long as you maintain your hosts’
canonical names properly and use them for corresponding Kerberos service prin-
cipals, aliases will be handled automatically.

Note that this does entail some security trade-off: an attacker who can subvert
the DNS can cause an SSH client to authenticate the server against the wrong
name. Of course, the server it contacts must still actually validate against Ker-
beros with this name, so it can’t be just any machine—but it might have creden-
tials from a host the attacker previously compromised. This level of risk may be
acceptable, but should be considered. This isn’t really a Kerberos-specific prob-
lem; the same feature could be used with hostkey authentication, with the same
usability/security trade-off.

It’s much faster
Since Kerberos uses symmetric cryptography, it is noticeably faster than public-
key methods. If both server and user authentication happen via Kerberos, new
SSH connections can be very fast. In fact, the Kerberos exchange that affects
server authentication does client authentication as well, and some implementa-
tions support a userauth method named external-keyx that takes advantage of
this fact. external-keyx says to the server, “Look back at the key exchange—
you’ll find it already authenticated me, so please let me in!”



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

468 | Chapter 11: Case Studies

There are some limitations, though. One is name uniqueness: hosts must have
unique names known beforehand in order to be joined to the Kerberos realm. This
shows up most immediately with the “localhost” problem: ssh localhost doesn’t usu-
ally work with Kerberos server authentication, even when it works for connecting to
the same machine using its hostname. This is because the name “localhost” means a
different host on every machine—so there can’t be an entry in the Kerberos database
for “localhost,” because it can only have one key. You can make it work by arrang-
ing /etc/hosts files so that on each host, 127.0.0.1 maps back to that host’s canonical
name—but the way that hosts files work, this means the name must also forward-
map to the loopback address, not the host’s “real” address. This has some advan-
tages, actually, but is likely to break some things also; it may not be worth it.

The problem can also show up with more complicated network situations such as
proxies, tunnels, or clusters of machines with dynamically assigned and shared
addresses—anything in which the simple server/hostname/address correspondence
Kerberos needs is violated. Furthermore, it won’t work for batch jobs if those don’t
also use Kerberos for authentication, which is often not the best choice. The bottom
line is that while Kerberos server authentication can be useful, hostkey-based authen-
tication usually needs to be available as well for exceptional situations.

Network address translation (NAT). Kerberos originally bound credentials to the address
of the machine to which they were issued, to make attacks harder: if someone man-
aged to steal a ticket, it would be harder to (mis)use it. However, in today’s sad
world of ubiquitous NAT, this can cause more trouble than it’s worth. Most recent
Kerberos deployments have this address-matching feature turned off, but you may
need to do it yourself if not, e.g., with a statement like:

# /etc/krb5.conf
[libdefaults]
noaddresses = true

This actually controls whether clients include addresses in ticket requests, so when you
change it you will need to run kinit again. Situations involving multiple credential-
forwarding connections may have addresses creep back in anyway, due to forwarding
code which requests them anyway even if the original ticket had none; again, most
recent Kerberos code has eliminated this problem, but you may still see it.

11.6 Tectia Extensions to Server
Configuration Files

In Chapter 5, we described the server configuration files in detail, including
OpenSSH’s sshd_config and Tectia’s sshd2_config. Tectia provides several levels of
configuration not found in OpenSSH, called metaconfiguration and subconfigura-
tion, and also some unusual rules for quoted values. We now cover them in detail.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.6 Tectia Extensions to Server Configuration Files | 469

11.6.1 Metaconfiguration
Tectia recognizes specially structured comments at the beginning of configuration
files. These lines determine the syntax rules for the rest of the file, and are therefore
called metaconfiguration information.

Configuration files distributed with Tectia all start with lines of the form:

## SSH CONFIGURATION FILE FORMAT VERSION 1.1
## REGEX-SYNTAX egrep
## end of metaconfig
## (leave above lines intact!)

The first line specifies the syntax version number, and defines the start of the meta-
configuration information. Increasing syntax version numbers allow the syntax rules
to be extended, possibly in incompatible ways. As long as older configuration files
explicitly specify their syntax versions, they can still be correctly understood by
newer versions of the Tectia server.

The default syntax version (used if there is no metaconfiguration information) is 1.0.
This refers to the “traditional” syntax rules understood by Tectia versions before
Version 3.0.0 (when the metaconfiguration information syntax was introduced). The
latest syntax version at press time is 1.1.

Syntax rules are further refined by lines that immediately follow the syntax version.
These lines contain pairs of metaconfiguration parameter names and values, and
look similar to the keyword lines in the rest of the configuration file, with two impor-
tant differences:

• The pairs occur within comment lines.

• The metaconfiguration parameter names must always be uppercase.

Syntax Version 1.1 adds support for the REGEX-SYNTAX parameter, which determines
how regular expressions are interpreted. The three standards are:

egrep (the default for syntax version 1.1)
zsh_fileglob or traditional (the default for syntax version 1.0)
ssh

These values are case-insensitive, unlike the parameter names. Full syntax rules are
described in Appendix B.

Metaconfiguration information ends when an unrecognized comment line (or a stan-
dard, uncommented keyword line) is encountered. It’s a good idea to mark the end
with an ordinary comment line (like “end of metaconfig” as shown earlier) that does
not look like a metaconfiguration parameter, to prevent possible misinterpretation of
adjacent comment lines and to enhance readability. Use of ## instead of # is just a
stylistic convention to allow the metaconfiguration information to be more easily dis-
tinguished from unrelated comments.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

470 | Chapter 11: Case Studies

Pitfalls with Tectia Metaconfiguration
Since metaconfiguration information in Tectia is represented as structured comments,
there is an unfortunate consequence: typos can cause the information to be ignored
silently, because unrecognized lines are just ordinary comments. This can cause subtle
(and dangerous) misinterpretation of the rest of the configuration file.

We therefore recommend using the boilerplate metaconfiguration information in the
sample configuration files fromTectia as a template. Edit carefully and sparingly, if you
need to make changes (e.g., to use a different regex syntax). Resist the temptation to
omit the metaconfiguration information, however, because explicitly specifying the
syntax rules will protect you in the future if the default rules change.

For troubleshooting, the sshd -d command-line option [5.9] with the SshConfigParse
module and a relatively high debug level can be informative:

# Tectia
sshd -d SshConfigParse=9

More precise rules for recognizing metaconfiguration information are:

• Metaconfiguration information must be at the beginning of the configuration
file. It can only be preceded by empty lines or whitespace, but not by ordinary
comments or uncommented keyword lines.

• Metaconfiguration information lines can only be separated by empty lines or
whitespace. Don’t try to add ordinary comments (or standard keywords) within
the metaconfiguration information.

• The syntax version line must match the (egrep) regular expression:

#.*VERSION[[:space:]]+[[:digit:]]+\.[[:digit:]]+.*

Note that VERSION must be uppercase, but can be preceded by any other charac-
ters, which are ignored. At least one space must separate VERSION from the ver-
sion number, which must have two numeric components, separated by a period.
Any trailing characters are ignored. Here’s a valid example:

#VERSION 1.1 -- Tectia Configuration File for server.example.com

• Metaconfiguration parameter lines must match the (egrep) regular expression:

#[#[:space:]]+[[:upper:][:digit:]-]+\s+.*

Note that at least one space or extra # character must appear between the first #
comment character and the parameter name (in contrast to the VERSION line), so
a line like #REGEX egrep does not work.

Parameter names can contain only uppercase letters, digits, or hyphens. At least
one space must separate the parameter name from the value. Values can contain
whitespace.

• Unrecognized parameter names are ignored, but metaconfiguration information
continues as long as the parameter line is well formed.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.6 Tectia Extensions to Server Configuration Files | 471

11.6.2 Subconfiguration Files
It is sometimes useful to customize the SSH server configuration depending on the
type of connection or session. For example, a system administrator might want to
impose stronger authentication requirements if a connection originates from a client
outside of a firewall, or to record more detailed logging information about the activi-
ties of special-purpose guest accounts.

Tectia servers support these kinds of conditional configuration modifications with
host- and user-specific configuration files, which are known collectively as subconfig-
uration files. The subconfiguration files use the same syntax as the main configura-
tion file, except as noted later. Each file starts with its own, independent
metaconfiguration information.

The HostSpecificConfig keyword is used to update the configuration based on the
client host:

# Tectia with zsh_fileglob or traditional regex syntax
HostSpecificConfig *.example.com    /etc/ssh2/subconfig/ourhosts

# Tectia with egrep regex syntax
HostSpecificConfig .*\.example\.com /etc/ssh2/subconfig/ourhosts

The first value is a pattern that matches hostnames or addresses, as described for the
AllowHosts keyword. [5.5.3] For example, if all of the machines inside a firewall are
assigned to a range of addresses, it might be convenient to use a netmask for the
pattern:

# Tectia
HostSpecificConfig \m10.1.1.0/24 /etc/ssh2/subconfig/insiders

The second value is the filename containing the host-specific configuration.

Similarly, the UserSpecificConfig keyword specifies a pattern describing user
accounts, and the filename with user-specific configuration settings that apply to
those accounts. In the simplest case, the pattern matches usernames or numerical
user IDs, as for the AllowUsers keyword: [5.5.1]

# Tectia with zsh_fileglob or traditional regex syntax
UserSpecificConfig guest[[:digit:]]## /etc/ssh2/subconfig/guests

# Tectia with egrep regex syntax
UserSpecificConfig guest[[:digit:]]+  /etc/ssh2/subconfig/guests

# Tectia
UserSpecificConfig 12[3-6][[:digit:]] /etc/ssh2/subconfig/guests

More generally, patterns have the form user[%group][@host]. The optional group
matches either group names or numerical group IDs, as for the AllowGroup keyword:
[5.5.2]

# Tectia with zsh_fileglob or traditional regex syntax
UserSpecificConfig *%[x-z]guests /etc/ssh2/subconfig/xyz-guests



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

472 | Chapter 11: Case Studies

UserSpecificConfig *%800[[:digit:]] /etc/ssh2/subconfig/guests-8k

# Tectia with egrep regex syntax
UserSpecificConfig .*%[x-z]guests /etc/ssh2/subconfig/xyz-guests
UserSpecificConfig .*%800[[:digit:]] /etc/ssh2/subconfig/guests-8k

Users can (and often do) belong to multiple groups: they are all checked.

The optional host matches the client hostname or address, as for the AllowHosts key-
word [5.5.3] or HostSpecificConfig:

# Tectia with zsh_fileglob or traditional regex syntax
UserSpecificConfig guest@*.friendly.org /etc/ssh2/subconfig/friends
UserSpecificConfig *%trusted@\m10.1.1.0/24 /etc/ssh2/subconfig/trusted-insiders

# Tectia with egrep regex syntax
UserSpecificConfig guest@.*\.friendly\.org /etc/ssh2/subconfig/friends
UserSpecificConfig .*%trusted@\m10.1.1.0/24 /etc/ssh2/subconfig/trusted-insiders

The user cannot be omitted from the pattern. If the pattern has two or more compo-
nents (user, group, or host), then all of them must match for the user-specific config-
uration to be read.

The Tectia server starts by reading the main configuration file, and sets up the
default configuration, which can include references to the subconfiguration files, and
an associated pattern for each. When a connection is accepted from a client host, the
server forks, and the child process that handles the session inherits its own private
copy of the configuration. This private configuration is discarded when the child pro-
cess exits at the end of the session, so the private configuration can be modified with-
out affecting the default configuration that is used as the starting point for other
sessions.*

The metaconfiguration parameters are not considered part of the con-
figuration and are not inherited by subconfiguration files. Metaconfig-
uration information is independently associated with each file,
because it describes the syntax of that file’s contents. Although it’s
possible to use different metaconfiguration parameters for subconfigu-
ration files, this is confusing, and we strongly recommend starting
each subconfiguration file with the same, explicit metaconfiguration
information as the main configuration file.

Immediately after the server accepts a new connection, but before any conversation
ensues with the client, the server uses the client hostname or address to check the
patterns for all HostSpecificConfig keywords, in the order that they were specified in
the main configuration file. The server reads each host-specific configuration file for
patterns that match, and modifies its private configuration as it does so.

* If debugging options [5.9] prevent forking, then the single server process exits after handling a single session,
so only a single copy of the configuration is needed.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.6 Tectia Extensions to Server Configuration Files | 473

Later, when the username has been specified by the client (and group memberships
have been determined by the server for the user), the server checks the patterns for
all UserSpecificConfig keywords, again in the order indicated by the main configura-
tion file, and reads user-specific configuration files for matching patterns to further
customize the configuration.

The order for reading the configuration files is important because it determines how
keywords apply to the final configuration that is used for each session. Keywords
that are read later either override or append to the values for earlier keywords—this
principle applies whether the keywords appear multiple times in a single file, or in
separate files.

For example, suppose our main configuration file contains:*

# Tectia: /etc/ssh2/sshd2_config
PasswordGuesses 1

UserSpecificConfig guest[[:digit:]]+     /etc/ssh2/subconfig/guests
UserSpecificConfig        .*%[x-z]guests /etc/ssh2/subconfig/xyz-guests

HostSpecificConfig      .*\.example\.com /etc/ssh2/subconfig/ourhosts
HostSpecificConfig .*\.foo\.example\.com /etc/ssh2/subconfig/foohosts

PasswordGuesses 2

When the server starts, it reads this main configuration file, and sets the value for the
PasswordGuesses keyword first to 1, and then to 2. The server also records the file-
names and patterns for the subconfiguration files.

Later, the server checks the patterns for the host-specific configuration files, in order.
If a connection is accepted from laptop.foo.example.com, then both host patterns
match. So, if the files contain:

# Tectia: /etc/ssh2/subconfig/ourhosts
PasswordGuesses 3

# Tectia: /etc/ssh2/subconfig/foohosts
PasswordGuesses 4

then the value for the PasswordGuesses keyword is overridden to 3, and subsequently
to 4.

Finally, the server checks the patterns for the user-specific configuration files, again
in order. If the client specifies the username as guest33, and the server determines
that this user belongs to the group yguests, then both user patterns match. So, if the
files contain:

# Tectia: /etc/ssh2/subconfig/guests

* We’ll use egrep regex syntax exclusively in this running example for simplicity, but of course other regex syn-
taxes could be used as well.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

474 | Chapter 11: Case Studies

PasswordGuesses 5

# Tectia: /etc/ssh2/subconfig/xyz-guests
PasswordGuesses 6

then the value for the PasswordGuesses keyword is overridden to 5, and eventually to
6, which is the value that is actually used for authentication.

The order for reading keywords is determined primarily by the order for reading files,
and secondarily by the order of occurrence of the individual keywords within each
file. In our example, even though the last PasswordGuesses keyword in the main con-
figuration file appears after the subconfiguration keywords, the settings in the sub-
configuration files still override the default configuration. Similarly, even though
UserSpecificConfig keywords appear before HostSpecificConfig keywords in the
main configuration file, the server always reads host-specific configuration files
before user-specific configuration files.

It’s therefore a good idea to order the keywords in the main configuration file to
reflect the order imposed by reading subconfiguration files, with default settings first,
followed by HostSpecificConfig and UserSpecificConfig keywords at the end. Our
example would be more clearly written as:*

# Tectia: /etc/ssh2/sshd2_config
PasswordGuesses 2

HostSpecificConfig      .*\.example\.com /etc/ssh2/subconfig/ourhosts
HostSpecificConfig .*\.foo\.example\.com /etc/ssh2/subconfig/foohosts

UserSpecificConfig guest[[:digit:]]+     /etc/ssh2/subconfig/guests
UserSpecificConfig        .*%[x-z]guests /etc/ssh2/subconfig/xyz-guests

Because host- and user-specific configuration files are read in the order specified in
the main configuration file, the patterns should be listed starting with general pat-
terns first, followed by increasingly specific patterns.† Patterns can be carefully con-
structed and ordered to encode arbitrarily complicated logic for customizing almost
any aspect of the configuration based on the client host, users, or groups: a very
powerful feature.

Subconfiguration files can be further divided into sections, which are marked by even
more specific patterns, each followed by a colon, on separate lines.‡ The keywords in
each section are used only if the pattern for the section matches. Sections end when a

* We have removed the first PasswordGuesses keyword, since it is always overridden by the second occurrence
anyway.

† The order for reading files can also be viewed as a consistent progression from general settings in the main
configuration file to increasingly specific settings for hosts and users in the subconfiguration files.

‡ The Tectia documentation also refers to sections as configuration blocks, or stanzas. Subconfiguration sec-
tions have the same structure as those used in client configuration files [7.1.2], except for the interpretation
of the patterns.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.6 Tectia Extensions to Server Configuration Files | 475

new pattern line is encountered, or at the end of the subconfiguration file. The sec-
tion patterns in host- and user-specific configuration files are interpreted in the same
way as the patterns for the HostSpecificConfig and UserSpecificConfig keywords, in
the main configuration file, respectively.

Any line that ends in a colon character (“:”) is considered to be a sec-
tion pattern line.

Sections are a useful alternative to separate subconfiguration files. We might choose
to combine the host-specific configuration files from our original example as:

# Tectia: /etc/ssh2/subconfig/ourhosts
PasswordGuesses 3
# ... other general keywords for all hosts in example.com

.*\.foo\.example\.com:
  PasswordGuesses 4
  # ... other more specific keywords for foo.example.com

.*\.bar\.example\.com:
  PasswordGuesses 8
  # ... other more specific keywords for bar.example.com

.*\.baz\.example\.com:
  PasswordGuesses 9
  # ... other more specific keywords for baz.example.com

This is especially convenient if there are many general keywords for the primary
domain, but only a few, more specific keywords for each subdomain. It’s also handy
if there are lots of subdomains, because we can add or remove subdomains without
modifying the main configuration file.

Sections cannot be used in the main configuration file. This makes
sense: it isn’t at all clear what would be used to match such patterns.
The server warns if any section pattern lines are detected in configura-
tion files where sections are inappropriate, like the main configuration
file.

Sections for user-specific configuration files work similarly. We can override settings
for specific users:

# Tectia: /etc/ssh2/subconfig/guests
PasswordGuesses 5
# ... other general keywords for all guest usernames

guest[0-4][[:digit:]]*:
  PasswordGuesses 10
  # ... other more specific keywords for guest usernames with [0-4] digits

guest[5-9][[:digit:]]*:



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

476 | Chapter 11: Case Studies

  PasswordGuesses 12
  # ... other more specific keywords for guest usernames with [5-9] digits

or for specific groups:

# Tectia: /etc/ssh2/subconfig/xyz-guests
PasswordGuesses 6
# ... other general keywords for all [x-z]guests groups

.*%xguests:
  PasswordGuesses 15
  # ... other more specific keywords for the xguests group

.*%yguests:
  PasswordGuesses 16
  # ... other more specific keywords for the yguests group

.*%zguests:
  PasswordGuesses 17
  # ... other more specific keywords for the zguests group

Several other important aspects of server behavior follow directly as consequences of
the order and timing for reading the configuration files. The server normally reads its
main configuration file only when it starts, and must be signaled to reread the config-
uration later, if changes are made. [5.2.4] In contrast, subconfiguration files are
reread for each connection, so no signaling is necessary if the files are modified. In
fact, a “match anything” pattern can be used to store frequently changed keywords
in a subconfiguration file, to avoid the need for frequent signaling:

# Tectia with zsh_fileglob or traditional regex syntax
HostSpecificConfig  * /etc/ssh2/subconfig/volatile

# Tectia with egrep regex syntax
HostSpecificConfig .* /etc/ssh2/subconfig/volatile

If an error is detected while reading the main configuration file, then the server exits.
Errors within host-specific configuration files cause the connection to be terminated.
For user-specific configuration files, errors result in denial of access.

Some keywords cannot be specified in subconfiguration files. In some cases, the key-
words control server behavior that happens before the subconfiguration files are
read. For example, it doesn’t make sense to specify the Port keyword [5.3.3.1] in
subconfiguration files, because the port (or ports) must be chosen to listen for
incoming connections before any connections can be accepted. Certain other key-
words are forbidden in subconfiguration files because they would be too confusing.
For example, the HostSpecificConfig and UserSpecificConfig keywords are
restricted to main configuration files: imagine trying to understand the pretzel logic
resulting from nested subconfiguration files! Tables 11-1, 11-2, and 11-3 list the key-
words permitted in each kind of configuration file.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.6 Tectia Extensions to Server Configuration Files | 477

Table 11-1. Tectia keywords permitted only in the main configuration file

AllowHosts CertdListenerPath DenyHosts

ExternalMapper ExternalMapperTimeout FIPSMode

HostCa HostCAMoCRLs HostCertificateFile

HostKeyFile HostSpecificConfig HostKeyEkInitString

HostKeyEkTimeOut HostKeyEkProvider KeepAlive

LDAPServers ListenAddress MapFile

MaxBroadcastsPerSecond MaxConnections NoDelay

OCSPResponderURL PKI PKIDisableCrls

PasswordAuthentication Port ProtocolVersionString

PubkeyAuthentication PublicHostKeyFile RSAAuthentication

RandomSeedFile RequireReverseMapping ResolveClientHostName

SocksServer SshPAMClientPath UseSOCKS5

UserSpecificConfig XauthPath

Table 11-2. Tectia keywords permitted in the main and host-specific configuration files, but not
user-specific ones

AllowGroups AllowTcpForwardingForGroups AllowTcpForwardingForUsers

AllowUsers AuthPassword.ChangePlugin BannerMessageFile

ChRootGroups ChRootUsers Ciphers

DenyGroups DenyTcpForwardingForGroups DenyTcpForwardingForUsers

DenyUsers DisableVersionFallback ExternalAuthorizationProgram

ForwardACL LoginGraceTime MACs

PermitRootLogin Ssh1Compatibility Sshd1ConfigFile

Sshd1Path

Table 11-3. Tectia keywords permitted in all configuration files

AllowAgentForwarding AllowSHosts

AllowTcpForwarding AllowX11Forwarding

AllowedAuthentications AuthInteractiveFailureTimeout

AuthKbdInt.NumOptional AuthKbdInt.Optional

AuthKbdInt.Plugin AuthKbdInt.Required

AuthKbdInt.Retries AuthPublicKey.Cert.MaxSize

AuthPublicKey.Cert.MinSize AuthPublicKey.MaxSize

AuthPublicKey.MinSize AuthorizationFile

Cert.RSA.Compat.HashScheme CheckMail

DenySHosts FascistLogging

ForwardAgent ForwardX11

HostbasedAuthForceClientHostnameDNSMatch IdleTimeout



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

478 | Chapter 11: Case Studies

11.6.3 Quoted Values
Tectia removes double quotes from values. The following lines are all valid:*

# Tectia
PermitEmptyPasswords "no"
PermitEmptyPasswords "y"es

In most cases, there is no reason to use quotes, but they are handy in a few, rare situ-
ations. If a value ends with a colon (:) character, it will be misinterpreted as a sec-
tion pattern: [5.2.1]

# Tectia: misinterpreted as a section pattern!
AuthKbdInt.Plugin /usr/local/sbin/kiplugin --prompt color:

This is a particularly insidious error if it occurs in a configuration file that supports
sections (e.g., subconfiguration files), because the section pattern will probably never
match, so the rest of the configuration file is silently ignored!†

To prevent this, enclose the value in quotes:

# Tectia
AuthKbdInt.Plugin "/usr/local/sbin/kiplugin --prompt  color:"

This works because the recognition of section pattern lines occurs before quotes are
removed. Since the quoted line doesn’t end in a colon, it isn’t considered a section

IgnoreRhosts IgnoreRootRhosts

NoOp PGPPublicKeyFile

PGPSecretKeyFile PasswdPath

PasswordGuesses PermitEmptyPasswords

PrintMOTD QuietMode

RekeyIntervalBytes RekeyIntervalSeconds

RequiredAuthentications SecurIdGuesses

SettableEnvironmentVars SftpSysLogFacility

StrictModes StrictModes.UserDirMaskBits

Subsystem-... SysLogFacility

UserConfigDirectory UserKnownHosts

Verbose VerboseModea

X11Forwarding

a The VerboseMode keyword (or the Verbose synonym) [5.8] prevents forking only if used in the main configuration file. In subconfig-
uration files, it merely enables debug output.

* Single quotes have no special significance.

† The server does warn about section patterns in configuration files that should not have them, like the main
configuration file, which makes the error easier to detect.

Table 11-3. Tectia keywords permitted in all configuration files (continued)



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.7 Tectia Plugins | 479

pattern line. Equivalently, you can also enclose only part of the value in quotes, as
long as the quoted part includes the final colon:

# Tectia
AuthKbdInt.Plugin  /usr/local/sbin/kiplugin --prompt "color:"
AuthKbdInt.Plugin  /usr/local/sbin/kiplugin --prompt  color":"

To include a literal quote character in a value, precede it with a backslash. For exam-
ple, to construct a shell command that uses (shell) quotes to protect a command-line
argument with embedded whitespace from being split:

# Tectia
AuthKbdInt.Plugin /usr/local/sbin/kiplugin --prompt \"Enter your favorite color:\"

When configuration files are read, the whitespace between the keyword and value is
discarded, and any trailing whitespace at the end of each line is removed from the
value.* Quotes can be used to retain this whitespace as part of the value. As a devi-
ous example, you can hide user configurations in a temporary directory named as a
single space character:

# Tectia
UserConfigDirectory /tmp/" "

11.7 Tectia Plugins
The Tectia server can use external programs, known as plugins, for flexible handling
of tasks like changing passwords [5.4.2.3], driving the process for keyboard-
interactive authentication [5.4.5.2], or performing arbitrary checks for access con-
trol. [5.5.6] We’ll demonstrate how to use plugins with several examples:

• Handling expired passwords

• Extending keyboard-interactive authentication

• Authorization

11.7.1 A Plugin for Changing Expired Passwords
Remember our discussion of expired passwords in Chapter 5? [5.4.2.3] We showed
how Tectia’s SSH server can detect an expired password at authentication time, and
prompt the user to change it:

$ ssh server.example.com
rebecca's password: < ... old, expired password ... >

Authentication successful.
< ... the following output is from running the passwd forced command ... >
Changing password for user rebecca.

* Keywords that use multiple values separated by whitespace also discard the whitespace between those val-
ues. Otherwise, whitespace that is embedded within a single value is left unchanged.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

480 | Chapter 11: Case Studies

Changing password for rebecca
(current) UNIX password: < ... old, expired password, again ... >

New password: < ... new password ... >

Retype new password: < ... new password, again ... >

passwd: all authentication tokens updated successfully.
Connection to server.example.com closed.

The SSH server accomplishes this by calling either the system password-change pro-
gram (e.g., passwd) or an alternative program specified by the PasswdPath configura-
tion keyword. This technique, which is the default, uses a forced command to
change the password. This method is conceptually simple but has several drawbacks:

• No explicit indication is given that the password is expired, or that a forced com-
mand is being used. Of course, the prompts from the password-change program
are a clue, but a user might be (understandably!) suspicious about prompts that
demand passwords for no apparent reason. Furthermore, if the user intends to
run some other command with similar prompts for unrelated passwords, she
might be confused by unexpected interactions with the password-change
program.

• While it makes sense to ask the user to type his new password twice, to avoid
mistakes, it’s annoying and unnecessary to require entering the old password
twice. This happens because the first old password is sent to the SSH server
while the second is demanded by the password-change program, and the server
doesn’t forward the password.

• The connection is closed after the forced command finishes, whether the pass-
word change was successful or not, and the user must then repeat the authenti-
cation with a separate ssh command, which in turn requires entering the new
password yet again.

• The username isn’t passed from the SSH server to the password-change pro-
gram, since most programs only allow non-root users to change their own pass-
words, and some allow only root to specify a username on the command line. If
several usernames use the same numerical user ID (a bad practice, but it does
occur), then only the first user’s password is changed.

Fortunately, the SSH-2 protocol provides a better mechanism for changing pass-
words during authentication, and Tectia allows a separate program, known as a pass-
word-change plugin, to manage the process. This mode of operation is enabled by the
AuthPassword.ChangePlugin keyword:

# Tectia
AuthPassword.ChangePlugin /usr/local/libexec/ssh-passwd-plugin

Here’s an example of a password change using the plugin:

$ ssh server.example.com
rebecca's password: < ... old, expired password ... >

Your password has expired.
New password: < ... new password ... >



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.7 Tectia Plugins | 481

Enter password again: < ... new password, again ... >

Authentication successful.
< ... login session starts ... >

As before, the client collects the user’s password and sends it to the server, which
verifies it. When the server discovers that the password is expired, it sends an expira-
tion message back to the client, which informs the user about what’s happening. The
client then prompts for the new password and sends it to the server, which passes all
of the necessary information (the username, plus the old and new passwords) to the
plugin program to change the password. If the plugin tells the server that the change
was successful, then the server considers authentication complete, and continues.
Otherwise (if the change failed), the server tells the client, which can prompt the user
to try again, without starting a new session or using a separate ssh command. Much
better!

The plugin program runs with the privileges of the user, not those of the server. If the
plugin program isn’t found or can’t be run for some other reason, then password
changes always fail.

11.7.1.1 The ssh-passwd-plugin program

Tectia includes a generic plugin program, ssh-passwd-plugin, in most binary distribu-
tions.* ssh-passwd-plugin runs the system’s password-change program within a
pseudo-terminal, effectively acting as an intermediary between the SSH server and
the program that actually performs the password change, as shown in Figure 11-14.

The actions of ssh-passwd-plugin are controlled by the configuration file /etc/ssh2/
plugin/passwd_config, which uses the same syntax as other server configuration files.†

[5.2.1] The configuration file is read every time the plugin runs.

* Alternatively, the ssh-passwd-plugin program can be built from the source distribution.

Figure 11-14. Tectia password-change plugin

† Including metaconfiguration information.

SSH
Client

SSH
Server

SSH Password-Change Plugin
(ssh-passwd-plugin)

Password-Change Program
(passwd)



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

482 | Chapter 11: Case Studies

The ssh-passwd-plugin configuration consists of a series of Request and Response (or
FinalResponse) keywords, which should occur in pairs:

# Tectia: /etc/ssh2/plugin/passwd_config with egrep regex syntax
Request "\(current\) UNIX password:"
Response $old_password$\n

Request "New password:"
Response $new_password$\n

Request "Retype new password:"
FinalResponse $new_password$\n

This example describes the behavior of the password-change program used for the
preceding forced-command example.

Request values are regular expressions that match output from the password-change
program.

Quotes are required if the Request pattern ends with a colon (:) char-
acter, to prevent misinterpretation as a section pattern line [5.2.1], or
if the pattern ends in whitespace, which is normally discarded. It’s a
good idea always to quote Request values.

Response values are strings that are sent to the password-change program when the
preceding Request value matches. These strings can contain the following special
tokens:

• $user_name$

• $old_password$

• $new_password$

which are replaced by the values supplied by the client and forwarded via the server.
Use $$ in the string to send a single $ character, or \n to send a newline.*

The last expected response is indicated by the FinalResponse keyword; its value uses
the same format as Response.

Response strings can also be one of the following special result values:

$ERROR_DISPLAY
Send the match for the preceding Request value back to the client via the server
and terminate, indicating that the password change failed.

$ERROR_LOG
The same, but only send the match to the server for logging, not to the client.

* Newlines are not supplied automatically, so most response strings will need at least one explicit \n, usually
at the end.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.7 Tectia Plugins | 483

$SUCCESS
Indicate that the password change was completed successfully whenever the pre-
ceding Request value matches.

The special result values for the response strings have a $ character at
the beginning only, not at the end, unlike the tokens for the username
and passwords.

The result values are case-insensitive, but it’s best to use uppercase to
distinguish them from the tokens, which must be lowercase.

Unrecognized output from the password-change program is ignored, so expected
error messages should be matched and sent to the user:

# Tectia: /etc/ssh2/plugin/passwd_config
Request "BAD PASSWORD: it's WAY too short"
Response $ERROR_DISPLAY

If error messages contain sensitive information, or aren’t interesting for users, then
they can be logged instead:

# Tectia: /etc/ssh2/plugin/passwd_config
Request "internal error: database corruption"
Response $ERROR_LOG

Similarly, if the password-change program prints a success message, ssh-passwd-
plugin can use it to determine that the operation went well:

# Tectia: /etc/ssh2/plugin/passwd_config
Request "all authentication tokens updated successfully"
Response $SUCCESS

Some password-change programs succeed silently, however. In this case, ssh-passwd-
plugin can examine the exit status returned by the password-change program to
detect success, using the GetSuccessFromExit keyword:

# Tectia: /etc/ssh2/plugin/passwd_config
GetSuccessFromExit yes

A zero exit status indicates success. The default value for GetSuccessFromExit is no,
meaning that the exit status is ignored. Unless you are using a broken program that
returns random exit status values, we recommend configuring ssh-passwd-plugin to
enable GetSuccessFromExit.

By default, ssh-passwd-plugin waits up to four seconds for output from the password-
change program. This can be changed using the DataTimeout keyword:

# Tectia: /etc/ssh2/plugin/passwd_config
DataTimeout 10

The value is a number of seconds; time units are not recognized.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

484 | Chapter 11: Case Studies

An alternate password-change program can be specified using the PasswdPath

keyword:

# Tectia: /etc/ssh2/plugin/passwd_config
PasswdPath /usr/local/bin/goodpasswd $user_name$

This differs from the PasswdPath keyword in the server configuration file in that ssh-
passwd-plugin expands tokens, as shown for the username.

The server is supposed to supply the value for its PasswdPath keyword
to the plugin as a default; the PasswdPath keyword in ssh-passwd-
plugin’s own configuration file would then override the server’s value.
However, this isn’t actually done (as of Tectia Version 4.1), so it’s nec-
essary for ssh-passwd-plugin to always specify the PasswdPath if the
value needs to be changed.

Debugging the interactions between ssh-passwd-plugin and the password-change
program can be challenging. Because unrecognized output is simply discarded, the
usual symptom of mismatches in the configuration file is the error:

Timeout when waiting for exit status.

ssh-passwd-plugin recognizes the –d or --debug command-line options, but these are
not passed automatically from the sshd command line to the ssh-passwd-plugin com-
mand line, so it’s necessary to specify the option in the value for the AuthPassword.

ChangePlugin keyword. Use the GenPasswdPlugin module and a high debug level to
see all of the data exchanged between the programs:

# Tectia
AuthPassword.ChangePlugin /usr/local/libexec/ssh-passwd-plugin -d GenPasswdPlugin=9
2>> /tmp/plugin.dbg

Alternately, ssh-passwd-plugin uses the value of the environment variable SSH_DEBUG_
LEVEL, which can be set before starting the server. If both the environment variable
and the command-line option are used, the option wins.

Debug output is written to the standard error stream, but the server runs the plugin
using the (Bourne) shell, so we append the output to a file with the 2>> redirection.
This is needed when the SSH server runs in the background as a daemon, because
stderr is discarded. If the server is also running in debug mode, so stderr is already
being sent to some convenient location, then the 2>> redirection can be omitted, and
ssh-passwd-plugin will send its debug output to the same place as the server.

11.7.1.2 A Perl package implementing the Tectia plugin protocol

All Tectia plugins use a simple, line-oriented protocol designed to facilitate script-
ing. Here we discuss some of the common elements of the protocol, and illustrate
them by writing a Perl package, Net::SSH::Tectia::Plugin, containing handy func-
tions that we’ll use in our example plugin scripts. We chose the Net::SSH prefix to
correspond with other Perl packages for SSH available on CPAN.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.7 Tectia Plugins | 485

As we discuss each type of plugin, we’ll provide examples written in Perl, but any
language can be used; in fact, the Tectia source distribution includes some sample
plugins written as Bourne shell scripts.

The package starts with the usual preliminaries, identifying the names of the
exported functions, and a version number for the package:

package Net::SSH::Tectia::Plugin;
use strict;
BEGIN {
    use Exporter;
    use vars qw(@ISA @EXPORT $VERSION);
    @ISA = qw(Exporter);
    @EXPORT = qw(
        &ssh_plugin_recv
        &ssh_plugin_params
        &ssh_plugin_send
        &ssh_plugin_success
        &ssh_plugin_failure
    );
    $VERSION = 1.01;
}

1;  # return true for import

The server sends lists of (key,value) pairs to the plugin, which reads them on its stan-
dard input. Each pair is formatted as “key:value” on a separate line, and the end of
the list is marked by a line of the form “end_of_words” where “words” describes the
kind of information in the list.

General Rules for Plugins
When working with plugins, be aware of the following important points:

Use absolute pathnames to specify plugins
This is true even though some Tectia sample configuration files suggest using only
command names as values for plugin keywords. The server intends to search the
libexec and bin subdirectories of the Tectia install directory for plugin programs.
However, bugs prevent this feature from working (as of Tectia Version 4.1), so
only the PATH inherited by the SSH server is actually used.

Command-line arguments are supported
Use quotes carefully in the values for plugin keywords if the command-line argu-
ments include whitespace or colons. [11.6.3]

Know your stdin, stdout, and stderr
The server runs a plugin program with pipes connected to the plugin’s standard
input and output streams for communication with the server. The standard error
stream is discarded by both the server and the plugin, and should therefore be
avoided.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

486 | Chapter 11: Case Studies

Keys and the end marker are case-insensitive. The plugin is supposed to ignore keys
that it does not understand, to allow for future extensions to the protocol. If the end
marker is not seen, the plugin must fail, as described shortly.

The ssh_plugin_recv function conveniently reads information lists from the server:

# Read a list of "key:value\n" pairs from the server.
# Usage: &ssh_plugin_recv($words), where "end_of_$words\n" (case-insensitive)
# marks the end of the list.
# Returns ("end_of_$words", key1, value1, key2, value2, ...) on success,
# or an empty list on failure.
sub ssh_plugin_recv
{
    my $words = shift;
    my @pairs;  # accumulated list of (key, value) pairs

    # read each line from the server
    while (<>) {
        chomp;  # discard newlines
        # return the end marker and list of pairs if the end marker is seen
        return ($_, @pairs) if /^end_of_$words$/i;  # case-insensitive

        my ($key, $value) = split(':', $_, 2);
        $key = lc($key);    # keys are case-insensitive: translate to lowercase

        push(@pairs, $key, $value);
    }

    return undef;   # return an empty list if no end marker was seen
}

All plugins start by reading a list of parameters from the server, so we provide a
shorthand function for that:

# Read a list of parameters from the server.
sub ssh_plugin_params   { &ssh_plugin_recv("params"); }

The plugin sends messages back to the server by writing single-word tokens or “key:
value” pairs, each on a separate line, to the plugin’s standard output stream:

# Send a message to the server.
# Usage: &ssh_plugin_send($token) to send "$token\n"
#     or &ssh_plugin_send($key, $value) to send "$key:$value\n".
sub ssh_plugin_send
{
    local $| = 1;   # flush data to pipe after every write, to avoid buffering
    print join(':', @_), "\n";
}

Special messages are used to indicate success or failure of the operation performed by
the plugin:

# Send success or failure messages to the server.
sub ssh_plugin_success  { &ssh_plugin_send("success"); }
sub ssh_plugin_failure  { &ssh_plugin_send("failure"); }



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.7 Tectia Plugins | 487

The server doesn’t examine the exit status values returned by the plugin; it only
notices success or failure messages. Nevertheless, it’s good form to return a zero or
nonzero exit status value for success or failure, respectively.

11.7.1.3 Creating a customized password-change plugin

Now that we’ve created the Net::SSH::Tectia::Plugin package, let’s write our own
password-change plugin script with it. This might be useful if passwords are stored
in some kind of nonstandard external database, and are changed by a mechanism
other than a traditional passwd program, so that ssh-passwd-plugin can’t be used.

The plugin starts by reading parameters from the server, which include the user-
name as well as old and new passwords supplied by the client:

#!/usr/bin/perl -w
use strict;
use Net::SSH::Tectia::Plugin;
my ($end, %params) = &ssh_plugin_params( );

The keys and values for the parameters are stored in the %params hash for easy
retrieval.

The plugin sends error messages back to the server using error_msg and error_log

keys, which correspond to the $ERROR_DISPLAY and $ERROR_LOG special response val-
ues used by ssh-passwd-plugin:

sub ssh_plugin_error_msg    { &ssh_plugin_send("error_msg", @_); }
sub ssh_plugin_error_log    { &ssh_plugin_send("error_log", @_); }

It’s a good idea for the plugin to check for and log protocol violations:

sub ssh_plugin_die
{
    &ssh_plugin_error_log(@_);
    &ssh_plugin_failure( );
    exit(2);
}
&ssh_plugin_die("missing end marker for params")    unless defined($end);
&ssh_plugin_die("missing user_name")    unless exists($params{"user_name"});
&ssh_plugin_die("missing old_password") unless exists($params{"old_password"});
&ssh_plugin_die("missing new_password") unless exists($params{"new_password"});

Finally, the plugin changes the password, in our example using a change_password

function that updates the database, and indicates the result of the operation to the
server, which forwards it back to the client:

my $result = &change_password($params{"user_name"},
                              $params{"old_password"},
                              $params{"new_password"});

if ($result eq "success") {
    &ssh_plugin_success( );
    exit(0);
} else {



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

488 | Chapter 11: Case Studies

    &ssh_plugin_error_msg($result);     # tell the client why it failed
    &ssh_plugin_failure( );
    exit(1);
}

The complete code for our plugin is shown in Example 11-1.

The server is supposed to pass the value for its PasswdPath keyword to the plugin
using the SSH2_PASSWD_PATH environment variable, which could be accessed as:

my $passwd = $ENV{"SSH2_PASSWD_PATH"};

However, the server doesn’t currently do this (as of Tectia Version 4.1).

11.7.2 A Plugin for Keyboard-Interactive Authentication
Keyboard-interactive authentication, including one-time passwords and challenge-
response authentication, was covered in Chapter 5. [5.4.5] Here we’ll show how to
construct a plugin with our Net::SSH::Tectia::Plugin package to hook into

Example 11-1. Our password-change plugin

#!/usr/bin/perl -w

use strict;
use Net::SSH::Tectia::Plugin;

my ($end, %params) = &ssh_plugin_params( );

sub ssh_plugin_error_msg    { &ssh_plugin_send("error_msg", @_); }
sub ssh_plugin_error_log    { &ssh_plugin_send("error_log", @_); }

sub ssh_plugin_die
{
&ssh_plugin_die("missing end marker for params")    unless defined($end);
&ssh_plugin_die("missing user_name")    unless exists($params{"user_name"});
&ssh_plugin_die("missing old_password") unless exists($params{"old_password"});
&ssh_plugin_die("missing new_password") unless exists($params{"new_password"});

my $result = &change_password($params{"user_name"},
                              $params{"old_password"},
                              $params{"new_password"});

if ($result eq "success") {
    &ssh_plugin_success( );
    exit(0);
} else {
    &ssh_plugin_error_msg($result);     # tell the client why it failed
    &ssh_plugin_failure( );
    exit(1);
}



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.7 Tectia Plugins | 489

keyboard-interactive authentication. It will prompt the user for some personal infor-
mation, which is recorded (perhaps at account creation time) in a database.*

The plugin starts by reading parameters from the server:

#!/usr/bin/perl -w
use strict;
use Net::SSH::Tectia::Plugin;

sub ssh_plugin_die
{
    &ssh_plugin_failure( );
    exit(2);
}

my ($end_params, %params) = &ssh_plugin_params( );
&ssh_plugin_die( ) unless defined($end_params);

The plugin checks for protocol violations, such as a missing end marker for the
parameters, and indicates failure using the ssh_plugin_die function.

The parameters are stored in the %params hash for easy retrieval. Keys supplied by the
server include:

user_name
The username requested by the client (to be used on the server).

host_ip
The local (server) host address.

host_name
The local (server) hostname.

remote_user_name
The remote (client) username. This is sent only if it is known by the server from
an earlier hostbased authentication.

remote_host_ip
The remote (client) host address.

remote_host_name
The remote (client) hostname.

The RFC.kbdint_plugin_protocol file in the source distribution only
defines the parameter’s user_name, remote_host_ip, and remote_host_
name. The Tectia plugin protocol requires plugins to ignore unrecog-
nized parameters.

* See the file RFC.kbdint_plugin_protocol in the Tectia distribution for details, and kbdint_plugin_example.sh
for another example implemented as a shell script.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

490 | Chapter 11: Case Studies

The keyboard-interactive plugin next sends a list of prompts to be displayed by the
client:

&ssh_plugin_send("instruction", "Please provide some personal information.");
&ssh_plugin_send("req",         "Favorite color: ");
&ssh_plugin_send("req",         "Pet's name: ");
&ssh_plugin_send("req_echo",    "Do you like chocolate? ");
&ssh_plugin_send("end_of_requests");

The optional “instruction” message is used to display introductory information.

Although the SSH-2 protocol (as described in the IETF SECSH draft)
supports newlines in the instruction string, there is no way to send
them using the Tectia plugin protocol, which uses newlines as delimit-
ers. If multiple instruction strings are sent, only the last one is used by
the server.

Responses collected by the client are not echoed for prompts specified by req mes-
sages. If the response should be echoed, then the req_echo message can be used
instead.

The list of prompts ends with the end_of_requests marker. When the server reads
the marker, it sends the list of requests to the client.

After the client collects the replies and sends them back to the server, the server for-
wards them to the plugin using the same kind of list:

my ($end_replies, @replies) = &ssh_plugin_recv("replies");
&ssh_plugin_die( ) unless defined($end_replies);

The replies are stored in the @replies list as a series of (key,value) pairs; each reply
pair corresponds to a request prompt. We use a list rather than a hash because the
server uses a reply message for each response value, but the plugin can step through
the list to set up a %replies hash for easy retrieval, checking for and rejecting proto-
col violations as it does so:

my %replies;
foreach my $reply qw(color petname chocolate) {
    my ($key, $value) = splice(@replies, 0, 2);
    &ssh_plugin_die( ) unless defined($key) && $key eq "reply" &&
                             defined($value);
    $replies{$reply} = $value;
}
&ssh_plugin_die( ) if @replies;  # too many replies

Finally, the plugin uses any subset of the parameters and the replies collected from
the user for authentication, in our example using a verify_personal_info function,
and indicates the result of the operation to the server, which forwards it back to the
client:

my $result = &verify_personal_info($params{"user_name"},
                                   # ... and other params, if relevant ...



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.7 Tectia Plugins | 491

                                   $replies{"color"},
                                   $replies{"petname"},
                                   $replies{"chocolate"});

if ($result eq "success") {
    &ssh_plugin_success( );
    exit(0);
} else {
    &ssh_plugin_failure( );
    exit(1);
}

Here’s an example of keyboard-interactive authentication in action, shown from the
client’s perspective:

$ ssh server.example.com
Keyboard-interactive:
Plugin authentication
Please provide some personal information.
Favorite color: green < ... not echoed ... >
Pet's name: Elvis < ... not echoed ... >
Do you like chocolate? yes < ... echoed ... >
Authentication successful.
< ... login session begins ... >

Of course, a GUI-based SSH client could display the information in a different
format.

The plugin can perform additional rounds of request/reply interactions if needed.

For example, if some of the responses were malformed, the plugin can ask again; in
this case, an instruction message is often used to provide guidance about allowable
values:

unless ($replies{"chocolate"} eq "yes" ||
        $replies{"chocolate"} eq "no") {
    &ssh_plugin_send("instruction", "Please answer \"yes\" or \"no\".");
    &ssh_plugin_send("req_echo",    "Do you like chocolate? ");
    &ssh_plugin_send("end_of_requests");
}

Subsequent interactions are sometimes needed to collect follow-up information
whose relevance is based on previous responses:

if ($replies{"chocolate"} eq "yes") {
    &ssh_plugin_send("instruction", "Tell us more about how you like chocolate!");
    &ssh_plugin_send("req",         "Light or dark? ");
    &ssh_plugin_send("req",         "With nuts? ");
    &ssh_plugin_send("end_of_requests");
}

More realistic examples of additional queries would be prompting to update expired
passwords, multistage challenge-response protocols, etc.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

492 | Chapter 11: Case Studies

Only a single plugin can be specified by the AuthKbdInt.Plugin keyword. If multiple
keyboard-interactive authentication techniques must be supported by the plugin,
then it should ask the user to pick a technique during an initial round of interac-
tions, and pose follow-up queries for specific techniques during subsequent rounds.

To use Tectia’s SecurID plugins along with other techniques that are
supported by a custom plugin, the custom plugin can be written to
forward information between the server and the SecurID plugins,
according to the Tectia plugin protocol. An alternative is to recompile
the server with built-in support for SecurID, eliminating the need for
separate SecurID plugins.

The plugin should not implement its own retry logic for failed authentications.
Instead, it should simply indicate failure and let the server manage retry attempts,
according to the value for the AuthKbdInt.Retries keyword.

The plugin program must be written carefully, since it runs with all of the privileges
of the SSH server (typically root). For example, it’s important to treat all data sup-
plied by the user as potentially hostile: consider buffer overruns, special characters
used to construct filenames, etc. Perl’s “taint mode” is useful for detecting possible
security problems.

A more subtle danger is information leakage. For example, it might seem reasonable
for a plugin to fail immediately after the initial parameters have been received from
the server, if (say) the username is found to be invalid. After all, why ask for more
information if the authentication will fail anyway? The problem with this approach is
that it allows remote attackers to determine which usernames are valid, without
authenticating. A system administrator might notice large numbers of failed authen-
tications in the system logs [5.9], but by then, the damage has already been done.

A better approach is to always collect all information from the user, and make
authentication decisions only after this has been done. The design of the prompts
can be tricky when later interactions depend on the validity of previous responses. In
some cases, it’s necessary to use “fake” information so that all of the interactions will
seem plausible when early replies are incorrect.

Even timing can be a concern. If authentication is computationally expensive, or
requires a measurable amount of time to complete for other reasons, it may be neces-
sary for the plugin to sleep for an equivalent interval when those costly authentica-
tion steps are skipped, so an attacker can’t tell what’s happening.

11.7.3 A Plugin for External Authorization
Next we’ll write a plugin, once again using our Net::SSH::Tectia::Plugin package,
to perform external access control. Our plugin will allow guest accounts to log in



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11.7 Tectia Plugins | 493

from untrusted systems, but only at certain times.* We covered external access con-
trol in Chapter 5. [5.5.6]

The plugin starts by reading parameters from the server:

#!/usr/bin/perl -w
use strict;
use Net::SSH::Tectia::Plugin;

my ($end, %params) = &ssh_plugin_params( );

unless (defined($end)) {
    &ssh_plugin_failure( );
    exit(2);
}

The plugin checks for protocol violations, such as a missing end marker for the
parameters, and indicates failure (causing access to be denied) if any are detected.

The parameters are stored in the %params hash for easy retrieval. The server supplies
the same keys as for keyboard-interactive plugins. [11.7.2]

The program then uses any of the parameters and other information at its disposal to
determine if access should be allowed or denied:

my $restrict =
    &account_type($params{"user_name"}) eq "guest" &&
    &host_trust_level($params{"remote_host_ip"},
                      $params{"remote_host_name"}) eq "outside" &&
    &schedule(time) eq "prime";

Our example uses an &account_type function to categorize usernames, perhaps based
on the username itself (like AllowUsers or DenyUsers [5.5.1]) or by looking up group
memberships (like AllowGroups or DenyGroups [5.5.2]). Similarly, an &host_trust_

level function classifies remote hosts, based on the address or hostname (like
AllowHosts or DenyHosts [5.5.3]).

External authorization programs are especially useful when access control decisions
must be based on complicated logic or information that is not understood directly by
the Tectia server. For example, netgroups or other databases could be used by the
&account_type or &host_trust_level functions to evaluate users or hosts, respec-
tively, and other factors such as the time can be incorporated, in our example by a
&schedule function.

Finally, the program indicates success or failure to the server to allow or deny access:

if (! $restrict) {
    &ssh_plugin_success( );
    exit(0);
} else {

* See the file RFC.authorization_program_protocol.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

494 | Chapter 11: Case Studies

    &ssh_plugin_failure( );
    &ssh_plugin_send("error_code", "generic_error");
    &ssh_plugin_send("error_msg",  "Remote guest logins are not allowed during prime
time.");
    exit(1);
}

The program can send an error code and message to the server to describe failures.
The protocol defines only two error codes:

password_too_old
The user’s password has expired.

generic_error
Some other error occurred.

If the program informs the server about password expiration, then the server runs the
system password-change program (either the default, or the value for the PasswdPath
keyword) as a forced command. [8.2.3] It does not, however, run a password-change
plugin, because the plugin applies only to the authentication phase, which has
already been completed when the external authorization program runs.

In practice, password expiration isn’t very useful for external authori-
zation programs, since the programs don’t interact (even indirectly)
with clients, and passwords are really associated with separate authen-
tication techniques that are performed earlier. Instead of using the
password_too_old error code with an external authorization program,
use a keyboard-interactive plugin [11.7.2] to flexibly handle password
expiration.

Because that leaves only the generic_error code, the error_code mes-
sage is itself not very useful. Perhaps someday the protocol will be
extended to define other, more meaningful error codes, if they are
needed to modify server operation.

The error message is an arbitrary string that explains why access has been denied.

Unfortunately, the server doesn’t currently (as of Tectia V476 Version
4.1) use the error message string for any purpose whatsoever. It isn’t
forwarded to the client, so it can be displayed by the user, and it isn’t
even recorded in the system log or mentioned in debug output. [5.9]

It’s still a good idea for external authorization programs to send an
error message back to the server, however, so that future versions of
the server might be able to use it.

The external authorization program should be written carefully, since it runs with all
of the privileges of the SSH server (typically root). Perl’s “taint mode” is useful for
detecting possible security problems.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

495

Chapter 12 CHAPTER 12

Troubleshooting
and FAQ

OpenSSH and Tectia are complex products. When a problem occurs, your plan of
action should be, in order:

1. Run the client and server in debug mode.

2. Consult archives of questions and answers to see if anyone else has encountered
and solved this problem.

3. Seek help.

Many people jump immediately to Step 3, posting questions in public forums and
waiting hours or days for a reply, when a simple ssh –v or FAQ can clarify the prob-
lem in moments. Be a smart and efficient technologist, and use your available
resources before seeking help from the community. (Although the SSH community is
eager to help if you’ve done your homework.)

12.1 Debug Messages: Your First Line of Defense
SSH clients and servers have debugging built in. When invoked with appropriate
options, these programs emit messages about their progress and failures. You can use
these messages to isolate problems.

12.1.1 Client Debugging
Most clients print debug messages when invoked with the –v (verbose mode) option:
[7.4.17]

$ ssh -v server.example.com
$ scp -v myfile server.example.com:otherfile

So many problems can be identified in verbose mode. This should be your first
instinct whenever you encounter a problem.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

496 | Chapter 12: Troubleshooting and FAQ

Please take a deep breath and repeat after us:

“ssh –v is my friend….”

“ssh –v is my friend….”

“ssh –v is my friend….”

12.1.2 Server Debugging
The OpenSSH and Tectia servers also print debug messages when asked: [5.9]

# OpenSSH
$ sshd -d -e

# Tectia
$ sshd -v
$ sshd -d debug_spec

In either case, the server enters a special debugging mode. It accepts a single connec-
tion, operates normally until the connection terminates, and then exits. It doesn’t go
into the background or create a child process to handle the connection, and it prints
information on its progress to the screen (that is, to the standard error stream).

Tectia has a more complicated system for debugging: numeric debugging levels,
specified with the –d option, where a higher number means more information. [5.9]
In fact, –v for verbose mode is actually just a shorthand for –d2. At higher debug lev-
els, the output is so huge that only SSH developers will likely find it of use in track-
ing down obscure problems. But you may need to crank up the level beyond 2 to see
the information you need. For example, to have it report which algorithms are nego-
tiated for a connection, use –d3. If you get the error message “TCP/IP Failure,” turn-
ing up to –d5 shows the more specific OS-level error message returned from the
connection attempt.

When debugging a server, remember to avoid port conflicts with any other running
SSH server. Either terminate the other server, or use an alternative port number for
debugging via the Port keyword or –p option. For example, using OpenSSH syntax,
run the server:

# OpenSSH
$ sshd -d -e -p 54321

Then use the –p option in the client when testing this debugging instance of the
server:

$ ssh -p 54321 localhost

This way, you don’t interrupt or affect another sshd in use.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

12.2 Problems and Solutions | 497

12.2 Problems and Solutions
In this section, we cover a wide range of difficulties, organized by category. The side-
bar “The Top 10 SSH Questions” lists what, in our experience, are the most fre-
quently asked of the frequently asked questions. We focus on problems that may
occur in many versions of the SSH software on diverse operating systems. We don’t
address the sorts of questions shown next that rapidly become obsolete.

The Top 10 SSH Questions
Q: How do I install my public-key file on the remote host for the first time?

A: Connect by password authentication and use your terminal program’s copy and
paste feature. [12.2.2.4]

Q: I put my SSH public-key file, mykey.pub, into my remote SSH directory, but pub-
lic-key authentication doesn’t work.

A: The public key must be referenced in your remote authorization file. [12.2.2.4]

Q: Public-key authentication isn’t working.

A: Use ssh –v, and check your keys, files, and permissions. [12.2.2.4]

Q: Password authentication isn’t working.

A: Use ssh –v. There are a variety of possible causes. [12.2.2.2]

Q: Hostbased authentication isn’t working.

A: Use ssh –v. Check your four control files, hostnames, and setuid status of the
SSH client program or ssh-signer2. [12.2.2.3]

Q: How do I authenticate without typing a password or passphrase?

A: ssh-agent, unencrypted keys, trusted-host authentication, or Kerberos.

Q: How do I secure FTP with port forwarding?

A: Forward a local port to port 21 on the FTP server for the control connection; the
data connection is much harder. [12.2.5.6] Alternatively, use an SSH client with
special support for FTP forwarding, such as Tectia. [9.2.11] Also consider using
the SFTP protocol instead of FTP.

Q: X forwarding isn’t working.

A: Don’t set your remote DISPLAY variable manually. (And there are other things to
check.) [12.2.5.6]

Q: Why don’t wildcards or shell variables work on the scp command line?

A: Your local shell expands them before scp runs. Escape the special characters.
[12.2.5.4]

Q: A feature of ssh or scp isn’t working, but I’m sure I’m using it correctly.

A: Use ssh –v. Also, the system configuration may be overriding your settings.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

498 | Chapter 12: Troubleshooting and FAQ

• Compilation problems specific to one operating system, such as “HyperLinux
beta 0.98 requires the --with-woozle flag”

• Problems and bugs that are specific to one version of SSH, particularly older
versions

In all questions, we will assume you have already used debug or verbose mode (e.g.,
ssh –v) to isolate the problem. (If you haven’t, you should!)

12.2.1 General Problems
Q: The commands ssh, scp, ssh-agent, ssh-keygen, etc., aren’t doing what I expect.

Even the help messages look weird.

A: Maybe they are Tectia programs when you are expecting OpenSSH, or vice
versa. Try running these commands to find out:

$ ssh -V
$ ssh --help

Q: When I try to connect to an SSH server, I get the error “Connection refused.”

A: No SSH server is running where you tried to connect. Double-check the host-
name and TCP port number: perhaps the server is running on a port different
from the default?

Q: When I log in, the message of the day (/etc/motd) prints twice.

A: Both sshd and the login program are printing it. Disable sshd ’s printing by set-
ting the serverwide configuration keyword PrintMotd to no.

Q: When I log in, I see two messages about email, such as “No mail” or “You have
mail.”

A: Both sshd and the login program are checking for mail. Prevent sshd from check-
ing by setting the serverwide configuration keyword CheckMail to no.

12.2.2 Authentication Problems

12.2.2.1 General authentication problems

Q: The SSH server says “Permission denied” and exits.

A: This occurs if all authentication techniques have failed. Run your client in debug
mode and read the diagnostic messages, looking for clues. Also read our solu-
tions to specific authentication problems in the rest of this section.

Q: How do I authenticate without typing a password or passphrase?

A: The four available authentication methods for this are:

• Public-key with ssh-agent

• Public-key with an unencrypted key on disk (empty passphrase)



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

12.2 Problems and Solutions | 499

• Trusted-host

• Kerberos

Automatic authentication has a number of important issues you should care-

fully consider before selecting from the preceding list. Read our case study on

this topic. [11.1]

Q: I get prompted for my password or passphrase, but before I have time to respond,
the SSH server closes the connection.

A: Your server’s idle timeout value may be too short. If you are a system adminis-
trator of a Tectia server machine, set IdleTimeout to a larger value in the server-
wide configuration file. [5.3.3.5] If you are an end user of OpenSSH, set an idle-

timeout value in authorized_keys. [8.2.7]

12.2.2.2 Password authentication

Q: Password authentication isn’t working.

A: Use ssh –v. If the connection is being refused altogether, the SSH server is proba-
bly not running, or you are connecting to the wrong port. Port 22 is the default,
but the remote system administrator might have changed it. If you see “permis-
sion denied,” password authentication might be disabled in the server.

Make sure the server permits password authentication in the serverwide

configuration file (PasswordAuthentication yes for OpenSSH, Allowed-

Authentications password for Tectia). Also check your client configuration file to

make sure you don’t have PasswordAuthentication no.

If you are prompted for your password, but it is rejected, you might accidentally

be connecting to the wrong account. Does your local username differ from the

remote username? Then you must specify the remote username when connecting:

$ ssh -l my_remote_username server.example.com
$ scp myfile my_remote_username@server.example.com:

If this still doesn’t work, check your local client configuration file (~/.ssh/config

or ~/.ssh2/ssh2_config) to make sure you haven’t accidentally set the wrong value

for the User keyword. In particular, if your configuration file contains Host val-

ues with wildcards, check that your current command line (the one that isn’t

working) isn’t matching the wrong section in the file. [7.1.2.4]

One common problem on the server side involves OpenSSH and Pluggable

Authentication Modules configuration. PAM is a general system for performing

authentication, authorization, and accounting in an application-independent

fashion. If your operating system supports PAM (as Linux and HPUX do, for

example), OpenSSH will probably have been automatically compiled to use it.

Unless you take the extra step of configuring PAM to support SSH, all password



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

500 | Chapter 12: Troubleshooting and FAQ

authentication will mysteriously fail. This is usually just a matter of copying the

appropriate sshd.pam file from the contrib directory in the OpenSSH distribu-

tion, naming the copy “sshd,” and placing it in the PAM configuration directory

(usually /etc/pam.d ). The contrib directory contains several example files for dif-

ferent flavors of Unix. For example, on a Red Hat Linux system:

# cp contrib/redhat/sshd.pam /etc/pam.d/sshd
# chown root.root /etc/pam.d/sshd
# chmod 644 /etc/pam.d/sshd

If OpenSSH isn’t using PAM, and password authentication still isn’t working,

the compilation options --with-md5-passwords or --without-shadow might be

relevant. These make no difference if PAM support is enabled in OpenSSH,

because they deal with how OpenSSH reads the Unix passwd map. When

using PAM, the OpenSSH code doesn’t read the passwd map directly; the PAM

libraries do it instead. Without PAM, though, if your system is using MD5-

hashed passwords instead of the more traditional crypt (DES) hash, you must

use --with-md5-passwords. You can tell which hash your system is using by

inspecting the /etc/passwd and /etc/shadow files. The hashed password is the

second field in each entry; if the password field in /etc/passwd is just “x”, then

the real entry is in /etc/shadow instead. MD5 hashes are much longer and con-

tain a wider range of characters:

# /etc/shadow, MD5 hash
test:$1$tEMXcnZB$rDEZbQXJzUz4g2J4qYkRh.:...

# /etc/shadow, crypt hash
test:JGQfZ8DeroV22:...

Finally, you can try the compilation option --without-shadow if you suspect

OpenSSH is trying to use the shadow password file, but your system doesn’t use

it.

Q: The server won’t let me use an empty password.

A: Empty passwords are insecure and should be avoided. Nevertheless, you can set
PermitEmptyPasswords yes in the serverwide configuration file. [5.4.2.2]

12.2.2.3 Hostbased authentication

Q: Hostbased authentication isn’t working.

A: Use ssh –v. If everything looks right, check the following. Suppose the client user
is orpheus@earth, and the target account is orpheus@hades—that is, on host
earth, user orpheus invokes ssh hades.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

12.2 Problems and Solutions | 501

For OpenSSH:

• PubkeyAuthentication yes belongs in the server and client configurations.

• EnableSSHKeysign yes must be in the server configuration.

• A copy of earth’s public host key must be in hades:/etc/ssh/ssh_known_hosts
(or hades:~orpheus:/.ssh/known_hosts2).

• The entry may be in the target account’s known hosts file instead, i.e., in
hades:~orpheus/.ssh/known_hosts. Take care that “earth” is the canonical
name of the client host from the server’s point of view. That is, if the SSH
connection is coming from the address 192.168.10.1, then
gethostbyname(192.168.10.1) on hades must return “earth,” and not a
nickname or alias for the host (e.g., if the hostname is river.earth.net, the
lookup must not return just “river”). Note that this can involve multiple
naming services, since gethostbyname can be configured to consult multi-
ple sources to determine a translation (e.g., DNS, NIS, /etc/hosts). See /etc/
nsswitch.conf. If your systems don’t agree on canonical hostnames, you’ll
have no end of trouble with hostbased authentication. You can work
around such problems to an extent by manually adding extra host nick-
names to the known hosts file, like this:

earth,gaia,terra 1024 37 71641647885140363140390131934...

For Tectia:

• AllowedAuthentications must include the value hostbased in the server and
client configurations.

• ssh-signer must be setuid root. More precisely, it needs to be able to read the
private host key, which in the normal installation means it must be setuid
root.

• A copy of earth’s public host key in hades:/etc/ssh2/knownhosts/earth.ssh-dss.
pub (or hades:~orpheus:/.ssh2/knownhosts/earth.ssh-dss.pub, if you specified
UserKnownHosts yes on the server).

• Regarding canonical hostnames, the same comments as for OpenSSH apply.

12.2.2.4 Public-key authentication

Q: How do I install my public key file on the remote host the first time?

A: Here’s the general method:

a. Generate a key pair.

b. Copy the text of the public key into your computer’s clipboard or other cut/
paste buffer.

c. Log into the remote host via SSH with password authentication, which
doesn’t require any special files in your remote account.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

502 | Chapter 12: Troubleshooting and FAQ

d. Edit the appropriate authorization and key files on the remote host:

• For OpenSSH, append the public key to ~/.ssh/authorized_keys. Alterna-
tively, run the program ssh-copy-id. [2.4.3]

• For Tectia, paste the public key into a new .pub file in ~/.ssh2 (say,
newkey.pub), and append the line Key newkey.pub to ~/.ssh2/
authorization.

e. Log out from the remote host.

f. Log back into the remote host using public-key authentication.

When editing the remote authorization file, make sure your text editor doesn’t insert
line breaks into the middle of a public key. OpenSSH public keys are very long and
must be kept on a single line.

Q: I put my SSH public-key file, mykey.pub, into my remote SSH directory, but pub-
lic-key authentication doesn’t work.

A: Placing a valid public-key file (e.g., mykey.pub) in your SSH directory isn’t suffi-
cient. For OpenSSH you must append the key (i.e., the contents of mykey.pub)
to ~/.ssh/authorized_keys. For Tectia, you must add a line of text to ~/.ssh2/
authorization, Key mykey.pub.

Q: Public-key authentication isn’t working.

A: Invoke the client in debug mode (ssh –v). Make sure:

• Your local client is using the expected identity file

• The correct public key is on the remote host in the right location

• Your remote home directory, SSH directory, and other SSH-related files
have the correct permissions [5.3.2.1]

Q: I’m being prompted for my login password instead of my public-key passphrase.
Or, my connection is rejected with the error message “No further authentication
methods available.” (Tectia)

A: There are several possible causes for both of these problems:

• Public-key authentication must be enabled in both the client and server
(OpenSSH PubkeyAuthentication yes, Tectia AllowedAuthentications

publickey).

• Specify your remote username with –l (lowercase L) if it differs from your
local username, or else the SSH server will examine the wrong remote
account:

$ ssh -l jones server.example.com

• Check the file permissions in your server account. If certain files or directo-
ries have the wrong owner or careless access permissions, the SSH server
refuses to perform public-key authentication. This is a security feature. Run
ssh in verbose mode to reveal the problem:



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

12.2 Problems and Solutions | 503

$ ssh -v server.example.com
...
server.example.com: Remote: Bad file modes for /u/smith/.ssh

In your server account, make sure that the following files and directories are
owned by you and are not world-writable: ~ (your home directory), ~/.ssh,
~/.ssh/authorized_keys, ~/.ssh2, ~/.rhosts, and ~/.shosts.

• For Tectia, if you use the –i option to specify an identification file:

$ ssh -i my-identity server.example.com

check that my-identity is an identification file, not a private-key file. (In con-
trast, ssh –i for OpenSSH expects a private-key file.) Remember that Tectia
identification files are text files containing the names of private keys.

Q: I’m being prompted for the passphrase of the wrong key.

A: Make sure your desired public key is in your authorization file on the SSH server
machine. Also check for typographical errors in any options specified for the
key. [8.2] A mistyped option causes the associated key line to be skipped
silently. Remember that options are separated by commas, not whitespace.

Q: I ran ssh-agent, but when I run ssh-add to add keys, it cannot find the agent.

A: ssh-add can communicate with ssh-agent only if certain environment variables
are set. These variables—SSH_AUTH_SOCK for OpenSSH and SSH2_AUTH_SOCK for
Tectia—direct ssh-add to the socket used by ssh-agent. The environment vari-
ables are set automatically if you run the agent correctly. [6.3.2] This implies
that any shells run before ssh-agent won’t know how to contact it.

In the shell where you’re running the failed ssh-add, check for the presence of the

appropriate environment variable:

$ env | grep SSH
SSH_AGENT_PID=7206
SSH_AUTH_SOCK=/tmp/ssh-gckksA7161/agent.7161

If you don’t see it, then either you didn’t run the agent correctly, you ran this

shell before you ran ssh-agent, or you’re not properly exporting the SSH_AUTH_

SOCK variable. If you do see the socket variable, then perhaps it has an old value

(from a previously run and now-dead agent). Try opening a new shell and run-

ning ssh-add.

12.2.2.5 PGP key authentication

Q: After the PGP passphrase prompt, I am being prompted for my login password.

A: If you get prompted for your PGP key, and then your password:

  Passphrase for pgp key "mykey": ********
  smith's password:

first make sure you’re typing your PGP passphrase correctly. (For instance, PGP-

encrypt a file with that public key and decrypt it.) If so, then there might be an



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

504 | Chapter 12: Troubleshooting and FAQ

incompatibility between the PGP implementations on your client and server

machines. We’ve seen this behavior when the PGP key (generated on the client

machine) doesn’t have sufficient bits for the PGP implementation on the server

machine. Generate a new key on the server machine.

Q: I get “Invalid pgp key id number ‘0276C297’”.

A: You probably forgot the leading “0x” on the key ID, and SSH is trying to inter-
pret a hexadecimal number as a decimal. Use PgpKeyId 0x0276C297 instead.

12.2.3 Key and Agent Problems

12.2.3.1 ssh-keygen

Q: I generated an OpenSSH key and tried using it with Tectia, but it didn’t work. (Or
vice versa.)

A: This is normal. OpenSSH and Tectia (SECSH) keys aren’t compatible. How-
ever, you can convert one to the other with ssh-keygen. [6.2.1]

Q: Each time I run ssh-keygen, it overwrites my default identity file.

A: Tell ssh-keygen to write its output to a different file. For ssh-keygen in OpenSSH,
use the –f option. For Tectia, specify the filename as the last argument on the
command line; no option is needed.

Q: Can I change the passphrase for a key without regenerating the key?

A: Yes. For ssh-keygen in OpenSSH, use the –N option, and for Tectia use the –p
option.

Q: How do I generate a host key?

A: Generate a key with an empty passphrase and install it in the correct location.
The OpenSSH source distribution has aMakefile target to do this:

# cd directory_containing_source_code
# make host-key Will not overwrite existing keys
# make host-key-force Will overwrite existing keys

or you can do it manually:

# ssh-keygen -t rsa1 -f /usr/local/etc/ssh_host_key -N ""
# ssh-keygen -t dsa -f /usr/local/etc/ssh_host_dsa_key -N ""
# ssh-keygen -t rsa -f /usr/local/etc/ssh_host_rsa_key -N ""

Likewise, the Tectia source distribution has aMakefile target:

# cd directory_containing_source_code
# make generate-host-key Will not overwrite existing key

or you can do it manually:

# ssh-keygen -P -t dsa -c "DSA hostkey" /etc/ssh2/hostkey



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

12.2 Problems and Solutions | 505

Q: Generating a key takes a long time.

A: Yes it may, depending on the speed of your CPU and the number of bits you
have requested. DSA keys tend to take longer than RSA keys.

Q: How many bits should I make my keys?

A: We recommend at least 1024 bits for strong security.

Q: What does oOo.oOo.oOo.oOo mean, as printed by Tectia’s ssh-keygen?

A: The manpage calls it a “progress indicator.” We think it’s an ASCII representa-
tion of a sine wave. Or the sound of a chattering gorilla. You can hide it with the
–q flag.

12.2.3.2 ssh-agent and ssh-add

Q: My ssh-agent isn’t terminating after I log out.

A: If you use the single-shell method to start an agent, this is normal. You must ter-
minate the agent yourself, either manually (bleah) or by including appropriate
lines in your shell configuration files. [6.3.2.1] If you use the subshell method,
the agent automatically terminates when you log out (actually, when you exit the
subshell). [6.3.2.2]

Q: When I invoke ssh-add and type my passphrase, I get the error message “Could not
open a connection to your authentication agent.”

A: Follow this debugging process:

a. Make sure you are running an ssh-agent process:

$ /usr/bin/ps -ef | grep ssh-agent
smith 22719     1  0 23:34:44 ?        0:00 ssh-agent

If not, you need to run an agent before ssh-add will work.

b. Check that the agent’s environment variables are set:

$ env | grep SSH
SSH_AUTH_SOCK=/tmp/ssh-barrett/ssh-22719-agent
SSH_AGENT_PID=22720

If not, then you probably ran ssh-agent incorrectly, like this:

# Wrong!
$ ssh-agent

For the single-shell method, you must use eval with backquotes:

  $ eval `ssh-agent`

Or for the subshell method, you must instruct ssh-agent to invoke a shell:

$ ssh-agent $SHELL

c. Make sure the agent points to a valid socket:

$ ls -lF $SSH_AUTH_SOCK
prwx------   1 smith   0 May 14 23:37 /tmp/ssh-smith/ssh-22719-agent|



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

506 | Chapter 12: Troubleshooting and FAQ

If not, your SSH_AUTH_SOCK variable might be pointing to an old socket from a
previous invocation of ssh-agent, due to user error. Terminate and restart the
agent properly.

12.2.3.3 Per-account authorization files

Q: My per-account server configuration isn’t taking effect.

A: Check the following:

• You might be confused about which versions of SSH use which files:

OpenSSH
~/.ssh/authorized_keys

Tectia
~/.ssh2/authorization

• Remember that the authorized_keys file contains keys, whereas the Tectia
authorization file contains directives referring to other key files.

• You might have a typographical error in one of these files. Check the spell-
ing of options, and remember to separate OpenSSH authorized_keys options
with commas, not whitespace. For example:

# correct
no-x11-forwarding,no-pty 1024 35 8697511247987525784866526224505...

# INCORRECT (will silently fail)
no-x11-forwarding no-pty 1024 35 8697511247987525784866526224505...
# ALSO INCORRECT (note the extra space after "no-x11-forwarding,")
no-x11-forwarding, no-pty 1024 35 8697511247987525784866526224505...

12.2.4 Server Problems

12.2.4.1 sshd_config, sshd2_config

Q: How do I get sshd to recognize a new configuration file?

A: You can terminate and restart sshd, but there’s quicker way: send the “hangup”
signal (SIGHUP) to sshd with kill –HUP.

Q: I changed the sshd config file and sent SIGHUP to the server. But it didn’t seem to
make any difference.

A: sshd may have been invoked with a command-line option that overrides that
keyword. Command-line options remain in force and take precedence over
configuration-file keywords. Try terminating and restarting sshd.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

12.2 Problems and Solutions | 507

12.2.5 Client Problems

12.2.5.1 General client problems

Q: A feature of ssh or scp isn’t working, but I’m sure I’m using it correctly.

A: The feature might have been disabled by a system administrator, either when the
SSH software was compiled (Chapter 4) or during serverwide configuration
(Chapter 5). Compile-time flags cannot be checked easily, but serverwide config-
urations are found in the files /etc/ssh/sshd_config (OpenSSH) or /etc/ssh2/sshd2_
config (Tectia). Ask your system administrator for assistance.

12.2.5.2 Client configuration file

Q: ssh or scp is behaving unexpectedly, using features I didn’t request.

A: The program might be responding to keywords specified in your client configu-
ration file. [7.1.2] Remember that multiple sections of the config file apply if
multiple Host lines match the remote machine name you specified on the com-
mand line.

Q: My OpenSSH ~/.ssh/config file doesn’t seem to work right.

A: Remember that after the first use of a Host directive in the config file, all state-
ments are inside some Host block (because one Host block is terminated only by
the start of another). The ssh manpage suggests that you put defaults at the end
of the config file, which is correct; when looking up a directive in the config file,
ssh uses the first match it finds, so defaults should go after any Host blocks. But
don’t let your own indentation or whitespace fool you. The end of your file
might look like this:

# last Host block
Host server.example.com
 User linda

# defaults
User smith

You intend that the username for logging into server.example.com is “linda”, and

the default username for hosts not explicitly listed earlier is “smith”. However,

the line User smith is still inside the Host server.example.com block. And since

there’s an earlier User statement for server.example.com, User smith never

matches anything, and ssh appears to ignore it. The right thing to do is this:

# last Host block
Host server.example.com
 User linda

# defaults
Host *
 User smith



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

508 | Chapter 12: Troubleshooting and FAQ

Q: My Tectia ~/.ssh2/ssh2_config file doesn’t seem to work right.

A: See our answer to the previous question for OpenSSH. However, Tectia has the
opposite precedence rule: if multiple configurations match your target, then the
last, not the first, prevails. Therefore, your defaults go at the beginning of the
file.

12.2.5.3 ssh

Q: I want to suspend ssh with the escape sequence but I am running more than two
levels of ssh (machine to machine to machine). How do I suspend an intermediate
ssh?

A: One method is to start each ssh with a different escape character; otherwise, the
earliest ssh client in the chain interprets the escape character and suspends.

Or you can be clever. Remember that if you type the escape character twice,

that’s the meta-escape: it allows you to send the escape character itself, circum-

venting its usual special function. So, if you have several chained ssh sessions all

using the default escape character ~, you can suspend the nth one by pressing

the Return key, then n tildes, then Control-Z.

Q: I ran an ssh command in the background on the command line, and it suspended
itself, not running unless I “fg” it.

A: Use the –n command-line option, which instructs ssh not to read from stdin
(actually, it reopens stdin on /dev/null instead of your terminal). Otherwise, the
shell’s job-control facility suspends the program if it reads from stdin while in
the background. Or better: use ssh -f (possibly with –N). [9.2.6]

Q: ssh prints “Compression level must be from 1 (fast) to 9 (slow, best)” and exits.

A: Your CompressionLevel is set to an illegal value for this host, probably in your
~/.ssh/config file. It must be an integer between 1 and 9, inclusive. [7.4.14]

Q: ssh prints “Cannot fork into background without a command to execute” and exits.

A: You used the –f flag of ssh, didn’t you? This tells the client to put itself into the
background as soon as authentication completes, and then execute whatever
remote command you requested. But, you didn’t provide a remote command.
You typed something like:

# This is wrong
$ ssh -f server.example.com

The –f flag makes sense only when you give ssh a command to run after it goes

into the background:

$ ssh -f server.example.com /bin/who



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

12.2 Problems and Solutions | 509

Q: ssh prints “No host key is known for <server name> and you have requested strict
checking (or ‘cannot confirm operation when running in batch mode’),” and exits.

A: The client can’t find the server’s host key in its known-hosts list, and it is config-
ured not to add it automatically (or is running in batch mode, so it can’t prompt
you about adding it). You must add it manually to your per-account or system-
wide known-hosts files.

Q: ssh prints “Selected cipher type...not supported by server” and exits.

A: You requested that ssh use a particular encryption cipher, but the SSH server
doesn’t support it. Normally, the SSH client and server negotiate to determine
which cipher to use, so you probably forced a particular cipher by providing the
–c flag on the ssh command line or by using the Cipher keyword in the configura-
tion file. Either don’t specify a cipher and let the client and server work it out, or
select a different cipher.

Q: ssh prints “channel_request_remote_forwarding: too many forwards” and exits.

A: ssh has a static limit of 100 forwardings per session, and you’ve requested more.

12.2.5.4 scp

Q: scp printed an error message: “Write failed flushing stdout buffer. write stdout:
Broken pipe.” or “packet too long”.

A: Your shell startup file (e.g., ~/.cshrc, ~/.bashrc), which is run when scp connects,
might be writing a message on standard output. These interfere with the com-
munication between the two scp programs. If you don’t see any obvious output
commands, look for stty or tset commands that might be printing something.

Either remove the offending statement from the startup file, or suppress it for

noninteractive sessions:

if ($?prompt) then
  echo 'Here is the message that screws up scp.'
endif

Q: scp printed an error message, “Not a regular file.”

A: Are you trying to copy a directory? Use the –r option for a recursive copy. Other-
wise, you may be trying to copy a special file that it doesn’t make sense to copy,
such as a device node, socket, or named pipe. If you do an ls –l of the file in ques-
tion and the first character in the file description is something other than “–” (for a
regular file) or “d” (for a directory), this is probably what’s happening. You didn’t
really want to copy that file, did you?



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

510 | Chapter 12: Troubleshooting and FAQ

Q: Why don’t wildcards or shell variables work on the scp command line?

A: Remember that wildcards and variables are expanded by the local shell first, not
on the remote machine. This happens even before scp runs. So if you type:

$ scp server.example.com:a* .

the local shell attempts to find local files matching the pattern server.example.

com:a*. This is probably not what you intended. You probably wanted files

matching a* on server.example.com to be copied to the local machine.

Some shells, notably the C shell and its derivatives, simply report “No match”

and exit. The Bourne shell and its derivatives (sh, ksh, bash), finding no match,

will actually pass the string server.example.com:a* to the server as you’d hoped.

Similarly, if you want to copy your remote mail file to the local machine, the

command:

$ scp server.example.com:$MAIL .

might not do what you intend. $MAIL is expanded locally before scp executes.

Unless (by coincidence) $MAIL is the same on the local and remote machines, the

command won’t behave as expected.

Don’t rely on shell quirks and coincidences to get your work done. Instead,

escape your wildcards and variables so that the local shell won’t attempt to

expand them:

$ scp server.example.com:a\* .
$ scp 'server.example.com:$MAIL' .

Q: I used scp to copy a file from the local machine to a remote machine. It ran with-
out errors. But when I logged into the remote machine, the file wasn’t there!

A: By any chance, did you omit a colon? Suppose you want to copy the file myfile
from the local machine to server.example.com. A correct command is:

$ scp myfile server.example.com:

but if you forget the final colon:

  # This is wrong!
  $ scp myfile server.example.com

myfile gets copied locally to a file called “server.example.com”. Check for such a

file on the local machine.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

12.2 Problems and Solutions | 511

Q: How can I give somebody access to my account by scp to copy files, but not give full
login permissions?

A: Bad idea. Even if you can limit the access to scp, this doesn’t protect your
account. Your friend could run:

$ scp evil_authorized_keys you@your.host:.ssh/authorized_keys

Oops, your friend has just replaced your authorized_keys file, giving himself full

login permissions. Maybe you can accomplish what you want with a clever

forced command, limiting the set of programs your friend may run in your

account. [8.2.3.3]

Q: scp –p preserves file timestamps and modes. Can it preserve file ownership?

A: No. Ownership of remote files is determined by SSH authentication. Suppose
user smith has accounts on local computer L and remote computer R. If the local
smith copies a file by scp to the remote smith account, authenticating by SSH,
then the remote file is owned by the remote smith. If you want the file to be
owned by a different remote user, scp must authenticate as that different user.
scp has no other knowledge of users and uids, and besides, only root can change
file ownership (on most modern Unix variants, anyway).

Q: OK, scp -p doesn’t preserve file ownership information. But I am the superuser,
and I’m trying to copy a directory hierarchy between machines (scp -r) and the files
have a variety of owners. How can I preserve the ownership information in the
copies?

A: Don’t use scp for this purpose. There are better ways, with tar:

# tar cpf - local_dir | (ssh remote_machine "cd remote_dir; tar xpf -")

or rsync:

# rsync -ra -e ssh local_dir remote_machine:/remote_dir

The rsync method has the advantage of being interruptible and resumable with-

out retransferring files.

12.2.5.5 sftp

Q: sftp reports “Cipher <name> is not supported. Connection lost.”

A: Internally, sftp invokes an ssh command to contact sftp-server. [3.7.3] It searches
the user’s PATH to locate the ssh executable rather than a hardcoded location. If
you have more than one SSH product installed on your system, sftpmight invoke
the wrong ssh program. This can produce the error message shown.

Q: sftp reports “ssh_packet_wrapper_input: invalid packet received.”

A: Although this error appears mysterious, its cause is mundane. A command in the
remote account’s shell startup file is printing something to standard output, even



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

512 | Chapter 12: Troubleshooting and FAQ

though stdout isn’t a terminal in this case, and sftp is trying to interpret this
unexpected output as part of the SFTP packet protocol. It fails and dies.

You see, sshd uses the shell to start the sftp-server subsystem. The user’s shell

startup file prints something, which the SFTP client tries to interpret as an SFTP

protocol packet. This fails, and the client exits with the error message; the first

field in a packet is the length field, which is why it’s always that message.

To fix this problem, be sure your shell startup file doesn’t print anything unless

it’s running interactively. tcsh, for example, sets the variable $interactive if

stdin is a terminal.

12.2.5.6 Port forwarding

Q: I’m trying to do port forwarding, but ssh complains: “bind: Address already in use.“

A: The port you’re trying to forward is already being used by another program on
the listening side (the local host if it’s a –L forwarding or the remote host if it’s a
–R). Try using the netstat –a command, available on most Unix implementa-
tions and some Windows platforms. If you see an entry for your port in the
LISTEN state, you know that something else is using that port. Check to see
whether you’ve inadvertently left another ssh command running that’s forward-
ing the same port. Otherwise, just choose another, unused port to forward.

This problem can occur when there doesn’t appear to be any other program

using your port, especially if you’ve been experimenting with the forwarding fea-

ture and have repeatedly used the same ssh to forward the same port. If the last

one of these died unexpectedly (you interrupted it, or it crashed, or the connec-

tion was forcibly closed from the other side, etc.), the local TCP socket may have

been left in the TIME_WAIT state (you may see this if you used the netstat program

as described earlier). When this happens, you have to wait a few minutes for the

socket to time out of this state and become free for use again. Of course, you can

just choose another port number if you’re impatient.

Q: How do I secure FTP with port forwarding?

A: This is a complex topic. [11.2] FTP has two types of TCP connections: control
and data. The control connection carries your login name, password, and FTP
commands; it is on TCP port 21 and can be forwarded by the standard method.
In two windows, run:

$ ssh -L2001:name.of.server.com:21 name.of.server.com
$ ftp localhost 2001

Your FTP client probably needs to run in passive mode (execute the passive

command). FTP data connections carry the files being transferred. These con-

nections occur on randomly selected TCP ports and can’t be forwarded in



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

12.3 Other SSH Resources | 513

general, unless you enjoy pain. If firewalls or NAT (network address translation)

are involved, you may need additional steps (or it may not be possible).

Q: X forwarding isn’t working.

A: Use ssh –v, and see if the output points out an obvious problem. If not, check
the following:

• Make sure you have X working before using SSH. Try running a simple X
client such as xlogo or xterm first. Your local DISPLAY variable must be set, or
SSH doesn’t attempt X forwarding.

• X forwarding must be turned on in the client and server, and not disallowed
by the target account (that is, with no-X11-forwarding in the authorized_keys
file).

• sshdmust be able to find the xauth program to run it on the remote side. If it
can’t, this should show up when running ssh -v. You can fix this on the
server side with the XAuthLocation directive (OpenSSH), or by setting a
PATH (that contains xauth) in your remote shell startup file.

• Don’t set the DISPLAY variable yourself on the remote side. sshd automati-
cally sets this value correctly for the forwarding session. If you have com-
mands in your login or shell startup files that unconditionally set DISPLAY,
change the code to set it only if X forwarding isn’t in use.

• OpenSSH sets the remote XAUTHORITY variable as well, placing the xauth cre-
dentials file under /tmp. Make sure you haven’t overridden this setting,
which should look like:

$ echo $XAUTHORITY
/tmp/ssh-maPK4047/cookies

Some flavors of Unix actually have code in the standard shell startup files
(e.g., /etc/bashrc, /etc/csh.login) that unconditionally sets XAUTHORITY to
~/.Xauthority. If that’s the problem, you must ask the sysadmin to fix it;
the startup file should set XAUTHORITY only if the variable is unset.

• If you are using an SSH startup file (/etc/ssh/sshrc or ~/.ssh/rc), sshd doesn’t
run xauth for you on the remote side to add the proxy key; one of these
startup files must do it, receiving the proxy key type and data on standard
input from sshd.

• Try ssh -Y (OpenSSH) or ssh2 +X (Tectia) to make forwarded X clients
“trusted” by the display server. [9.4.5.3]

12.3 Other SSH Resources
If we haven’t answered your questions in this chapter, try the following good sources
of help available on the Internet.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

514 | Chapter 12: Troubleshooting and FAQ

12.3.1 Web Sites
The SSH home page, maintained by SSH Communications Security, is also a good
resource of general information and links to related content:

http://www.ssh.com/

Information on OpenSSH can be found at:

http://www.openssh.com/

And of course, check out this book’s web sites:

http://www.oreilly.com/catalog/sshtdg/
http://www.snailbook.com/

12.3.2 Usenet Newsgroups
On Usenet, the newsgroup comp.security.ssh discusses technical issues about SSH. If
you don’t have Usenet access, you can read and search for its articles on the Web at
Google Groups:

 http://groups.google.com/

or any other site that archives Usenet posts.

Before posting a troubleshooting question, run the SSH client and server in debug or
verbose mode and include the full text of the debug messages in your note.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

515

Chapter 13 CHAPTER 13

Overview of Other Implementations

SSH products are available not only for Unix, but also for Windows, Macintosh,
Amiga, OS/2, VMS, BeOS, PalmOS, Windows CE, and Java. Some programs are
original, finished products, and others are ports of OpenSSH or of Tectia ancestors,
undertaken by volunteers and in various stages of completion.

In the remaining chapters of this book, we cover several robust implementations of
SSH for Windows and the Macintosh. But first, in this chapter, we quickly survey
SSH products for many platforms.

We have set up a web page pointing to SSH-related products that we know. From
this book’s catalog page:

http://www.oreilly.com/catalog/sshtdg/

follow the link labeled Author’s Online Resources, or visit us directly at:

http://www.snailbook.com/

Also check out this third-party page listing many free SSH implementations:

http://www.freessh.org/

13.1 Common Features
Every SSH implementation has a different set of features, but virtually all have one
thing in common: a client program for logging into remote systems securely. Some
clients are command line–based, and others operate like graphical terminal emula-
tors, opening windows with dozens of configurable settings.

The remaining features vary widely across implementations. Secure file copy (scp
and sftp), remote batch command execution, SSH servers, SSH agents, and particu-
lar authentication and encryption algorithms are found in only some of the prod-
ucts. Most include a generator of public and private keys.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

516 | Chapter 13: Overview of Other Implementations

13.2 Covered Products
For Microsoft Windows, we cover in full chapters:

• OpenSSH, ported to Windows using the Cygwin library (Chapter 14)

• Tectia’s commercial products for Windows (Chapter 16)

• SecureCRT, a commercial SSH client by VanDyke Software (Chapter 17)

• PuTTY, a small, free suite of SSH clients (Chapter 18)

For Macintosh OS X, we cover in a full chapter:

• OpenSSH, as included with Macintosh OS X (Chapter 15)

13.3 Other SSH Products
Unfortunately we can’t cover every SSH implementation, but here are summaries to
aid your explorations. Because SSH products need to remain secure, we list only
products that are in active development (or at least have been updated in the past
year or two) and that support the SSH-2 protocol. This means we’ve intentionally
left out dozens of older SSH products with respected histories, like NiftyTelnet SSH
for the Mac, Top Gun SSH for Palm, FISH for VMS, and Sergey Okhapkin’s classic
Windows port of the original SSH1. Old-timers like these have their place in history,
but have been supplanted by more modern implementations.

We’ve organized the products by platform. Some products are free and others are
shareware or commercial, usually quite inexpensive. Additionally, many of the com-
mercial products have free evaluation versions available, so you can try before you
buy.

13.3.1 BeOS
At press time, we have found no modern SSH clients for BeOS. There are a bunch of
ancient ones (2000–2002) supporting the old SSH-1 protocol: search http://www.
bebits.com/ to find them.

13.3.2 Commodore Amiga
At press time, we have found no modern SSH clients for the Amiga. The closest is an
Amiga port of OpenSSH (http://www.chernoff.org/amiga/, free). However, it’s a port
of Version 3.0.2, which is several years out of date.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

13.3 Other SSH Products | 517

13.3.3 GNU Emacs
ssh.el (http://www.splode.com/~friedman/software/emacs-lisp/src/ssh.el, free) is an
Emacs interface for SSH client connections. It does not implement SSH itself, but
invokes an external client (e.g., ssh  from OpenSSH or Tectia) within Emacs.

13.3.4 Java
JavaSSH (http://javassh.org/, free), a.k.a. Java Telnet/SSH Applet, is just what it
sounds like: an SSH client applet.

JSch (http://www.jcraft.com/jsch/, free), a.k.a. Java Secure Channel, is an implemen-
tation of the SSH-2 protocol.

MindTerm (http://www.mindbright.se/, commercial, but free for personal or limited
commercial use) is an SSH client and terminal emulator. The same company sells
Appgate Security Server, an enterprise-level security product with SSH capabilities.

SSHTerm Professional (http://www.sshtools.com/, commercial, but free for personal
or limited commercial use). The same vendor also produces Maverick SSHD, an SSH
server written in Java; J2SSH Maverick, a Java SSH library for programmers; and
Maverick.NET, an SSH API for Microsoft’s .NET platform.

13.3.5 Macintosh OS 9
MacSSH (http://www.macssh.com/, shareware) is the premier SSH client for OS 9. It
supplanted NiftyTelnet SSH, which we covered in the first edition of this book.

MacSFTP (http://www.macssh.com/, shareware) is an SFTP client by the maker of
MacSSH, for copying files securely between computers.

13.3.6 Macintosh OS X
Macintosh OS X comes with OpenSSH installed. However, MacSFTP is also available.
[13.3.5]

13.3.7 Microsoft Windows
Windows SSH products have exploded in number in the past few years. Frankly,
there are so many commercial SSH terminal clients it’s almost ridiculous. On the
other hand, it’s nice to have choices.

Axessh 2.6 (http://www.labf.com/axessh/, commercial) is a terminal emulator and file-
transfer program supporting SSH.

Ericom PowerTerm (http://www.ericom.com/, commercial) is a whole suite of SSH
products for the enterprise.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

518 | Chapter 13: Overview of Other Implementations

F-Secure SSH (http://www.f-secure.com/, commercial) is an SSH-based terminal
emulator.

Kermit 95 (http://www.columbia.edu/kermit/k95.html, commercial) is the classic pro-
gram and protocol from the 1980s, updated to support SSH by borrowing code from
OpenSSH.

OpenSSH on Cygwin (http://www.cygwin.com/, free) is a port of the whole OpenSSH
suite to Windows and is the subject of Chapter 14.

PenguiNet (http://www.siliconcircus.com/penguinet/, commercial) is an SSH terminal
emulator and secure file-copy program.

Pragma Fortress (http://www.pragmasys.com/, commercial) is an enterprise-level SSH
server.

PuTTY (http://www.chiark.greenend.org.uk/~sgtatham/putty/, free), is a small but
mighty suite of SSH clients covered fully in Chapter 18.

RemotelyAnywhere (http://www.remotelyanywhere.com/, commercial) is a remote
system administration package that includes an SSH server.

Secure iXplorer (http://www.i-tree.org/, commercial) is a Windows Explorer-like pro-
gram for accessing remote files. It is based internally on PuTTY.

Secure KoalaTerm (http://www.foxitsoftware.com/, commercial) is an SSH terminal
emulator with particular focus on terminal emulation features.

SecureCRT (http://www.vandyke.com/, commercial) is a terminal emulator with SSH
support, covered in Chapter 17. SecureFX is VanDyke’s secure file-transfer program
with a graphical user interface. It is not an SSH terminal program.

ShellGuard (http://www.shellguard.com/, commercial) is an SSH-capable terminal
emulator with secure copy capability.

Tectia (http://www.ssh.com/, commercial) is the Windows implementation of the
major product we’ve been covering throughout this whole book, from SSH Commu-
nications Security.

VShell (http://www.vandyke.com/, commercial) is an SSH server from the maker of
SecureCRT.

WinSSHD (http://www.bitvise.com/winsshd.html, commercial) is an SSH server.

WiSSH (http://www.wissh.com/, commercial) is a “remote desktop” program that
operates over the SSH protocol, encrypting traffic between your local machine and
the remote PC.

ZOC (http://www.emtec.com/zoc/, commercial) is an SSH terminal emulator.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

13.3 Other SSH Products | 519

13.3.8 Microsoft Windows CE (PocketPC)
PocketPuTTY (http://pocketputty.duxy.net/, free) is a port of PuTTY.

PocketTTY (http://dejavusoftware.com/pocketty/) is another SSH terminal client.

13.3.9 OS/2
ZOC, the Windows client, is also available for OS/2. [13.3.7]

13.3.10  Palm OS
The only Palm implementation used to be Top Gun SSH, but it supports only the
SSH-1 protocol and is quite old. Fortunately there are some new kids on the block.

pSSH (http://www.sealiesoftware.com/pssh, free) is an SSH client for PalmOS 5 and
up.

TuSSH (http://www.tussh.com/) is an SSH client for PalmOS 4 and up.

13.3.11 Perl
Several free Perl modules (http://www.cpan.org/) are available that provide an SSH
API for software developers:

Net::SSH::Perl
An implementation of the SSH protocol, written in Perl

Net::SSH
An SSH API that provides wrappers around the ssh command

Net::SCP
An SSH API that provides wrappers around the scp command

Net::SCP::Expect
Another wrapper around scp, this one supporting Expect (http://expect.nist.gov/)
so that passwords can be passed to it programmatically

13.3.12 Unix Variants (Linux, OpenBSD, etc.)
We’ve covered OpenSSH and Tectia extensively in this book, but there are others....

Dropbear (http://matt.ucc.asn.au/dropbear/dropbear.html, free) is an SSH client and
server intended to run in as little memory as possible.

Kermit (http://www.columbia.edu/kermit/ssh.html, free), the venerable communica-
tions program of long ago, has been updated with SSH protocol support.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

520 | Chapter 13: Overview of Other Implementations

lsh (http://www.lysator.liu.se/~nisse/lsh/, free) is an SSH-2 client (lsh) and server
(lshd).

PuTTY runs on Linux as well as Windows. [13.3.7] In addition, there is an unre-
lated program gPutty (http://www.defora.org/index.php?page=gputty), that is a
PuTTY clone for the GNOME environment.

SecPanel (http://www.pingx.net/secpanel/, free) is a graphical, point-and-click man-
ager for SSH client connections. It’s written in the programming language tcl and
invokes SSH clients from your installed OpenSSH or Tectia distribution.

13.3.13 VMS
BAMSE (http://www.free.lp.se/bamse/) is an SSH client. It has not been updated since
2002 but is supposedly the best VMS client available.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

521

Chapter 14 CHAPTER 14

OpenSSH for Windows

OpenSSH, though originally written for Unix-like operating systems, runs well under
Windows too. If you prefer command-line programs rather than a GUI, OpenSSH is
probably your best bet for a free SSH implementation.

In order to run OpenSSH on Windows, you must install the Cygwin library (http://
www.cygwin.com/) and associated programs. The installation is pretty simple but
large: some users complain about the added “bloat” of Cygwin’s many programs. If
this concerns you, check out OpenSSH For Windows (http://sshwindows.sourceforge.
net/), a minimal installation of OpenSSH and Cygwin. Our perspective, however, is
that Cygwin comes with so many mind-bogglingly useful tools (ported from Unix)
that you might as well do a full install.

In most cases, OpenSSH operates the same way under Windows as it does under
Unix. In this chapter we’ll cover only the differences; in Chapter 15 we will cover
OpenSSH on the Macintosh similarly.

Like Unix, Cygwin uses the term “directory” to refer to a folder. We
will use the Cygwin terminology.

14.1 Installation
Cygwin is available from http://www.cygwin.com/. Download the installation pro-
gram and run it. Make sure to install the following packages:

openssh
The full suite of programs and support files

cygrunsrv
A program needed to run sshd as a Windows service



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

522 | Chapter 14: OpenSSH for Windows

Once Cygwin is installed, complete the setup:

1. Make sure that c:\cygwin\bin is in your search path.

2. Create an environment variable called CYGWIN, and give it the value ntsec tty.

14.2 Using the SSH Clients
The client programs ssh, scp, and sftp work just as they do on Unix:

# Log into server.example.com as user smith
$ ssh -l smith server.example.com

# Copy myfile from your local machine to server.example.com
$ scp myfile server.example.com:

# Run an interactive file-copy session with sftp
$ sftp server.example.com

The only bit of trickiness is locating your ~/.ssh directory via Windows. On Unix
platforms, your home directory is located in an obvious place, usually /home/
yourname. And in fact, if you run a Cygwin shell, you can literally refer to /home/
yourname as well. But what if you’re using a standard Windows command shell (e.g.,
cmd) or browsing files with Windows Explorer: how can you find your ~/.ssh direc-
tory? Simply type this command from a Windows command shell:

C:\> cygpath -w ~
C:\cygwin\home\smith

The cygpath command converts Cygwin paths into Windows paths, and the lone
tilde (~) represents your Cygwin home directory. In this example, cygpath reveals
your home directory to be C:\cygwin\home\smith. Thus, your SSH-related client files
will be stored in the directory C:\cygwin\home\smith\.ssh.

14.3 Setting Up the SSH Server
The SSH server, sshd, runs under Cygwin as a standard Windows service, called (not
surprisingly) Cygwin SSH Service. Cygwin provides a script, called ssh-host-config, to
set this up. Here’s what to do:

The Cygwin SSH Service (a.k.a. sshd) runs only on flavors of Win-
dows that support services: NT, 2000, XP, 2003, etc.

1. Make sure you’ve set up the path and environment variables for OpenSSH and
Cygwin. [14.1]

2. From an account with administrative privileges, run:

C:\> ssh-host-config



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

14.3 Setting Up the SSH Server | 523

3. Answer yes to all questions.

4. When ssh-host-config completes, your service should be ready to run. Open your
Services control panel, look for Cygwin SSHD Service, and start the service.
Alternatively, use the command line:

C:\> net start sshd

You might also want to set the service startup to Automatic, so it runs whenever
you boot the computer. To stop the service, again use the Services control panel
or type:

C:\> net stop sshd

If the service refuses to run, here are some things to try:

• Make sure the file /var/log/sshd.log is writable by the SYSTEM account.

• Read /var/log/sshd.log for error messages.

To test the server, connect to yourself:

C:\> ssh localhost

You should be prompted for your password and be able to log in.

Serverwide configuration files are found in /etc, such as /etc/sshd_
config. This is in contrast to Unix-like systems that usually keep these
files in /etc/ssh.

14.3.1 Opening Remote Windows on the Desktop
If you want to run graphical applications via ssh that open windows, such as notepad
or regedit:

C:\> ssh my-pc-name notepad

this will not work unless you grant sshd permission to do so. Here’s how to do it on
Windows XP and 2000:

1. Open the Services control panel.

2. Stop the Cygwin sshd service.

3. Double-click the Cygwin sshd service to view its properties.

4. Select the Log On tab.

5. Under “Log on as,” select the Local System account and check the box “Allow
service to interact with desktop.”

6. Click OK and restart the Cygwin sshd service.

Before doing this, however, carefully consider the security implications. You’re per-
mitting any user with SSH privileges—not just the logged-in user, not just adminis-
trators—to open windows on the desktop remotely.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

524 | Chapter 14: OpenSSH for Windows

14.4 Public-Key Authentication
The OpenSSH clients—ssh, scp, and sftp—and the key-related programs—ssh-key-
gen, ssh-agent, and ssh-add (covered in Chapter 6)—use public-key authentication
just as they do under Unix. You might need to know where your ~/.ssh folder is to
refer to keys. [14.2]

When connecting to the Cygwin SSHD Service (sshd) from the outside world, there
are a few things to think about:

• Make sure your ~/.ssh/authorized_keys file contains the appropriate public keys.
[6.1.1]

• Check the Cygwin SSHD Service in the Services control panel, and note the NT
user account under which it is running. Then make sure that this account:

— Has read access to your ~/.ssh directory and your ~/.ssh/authorized_keys file.

— Has read access to the host keys in the Cygwin /etc directory.

— Has write access to the log file /var/log/sshd.log.

— Is in the local Administrators group, if you plan to invoke operations by SSH
that require administrative privileges. Then authenticate using this account.
(For more flexible credentials, consider a PKI solution. [11.5] Cygwin
includes a Kerberos package.*)

— Is listed in the Cygwin /etc/passwd file. Use the Cygwin mkpasswd program
to generate this file if you need; for example, in the Cygwin shell:

$ mkpasswd -l > /etc/passwd

but make sure you understand what you’re doing so that you don’t wipe out
vital accounts! Run man mkpasswd to learn more.

14.4.1 Running an Agent
An agent is a program that keeps private keys in memory and provides authentica-
tion services to SSH clients. If you preload an agent with private keys at the begin-
ning of a login session, your SSH clients won’t prompt for passphrases. Instead, they
communicate with the agent as needed. [2.5] The OpenSSH agent program is ssh-
agent.

In order for ssh-agent to work, it communicates via environment variables. [6.3.2] If
you’re using the Cygwin shell (bash), you can start the agent via the same methods as

* For Kerberos or GSSAPI support., you might need to recompile OpenSSH. At press time,
KerberosAuthentication and GSSAPIAuthentication are disabled in the Cygwin binaries for OpenSSH. You’ll
need to download the OpenSSH source code and recompile it with the GNU C compiler, gcc, also included
with Cygwin. Once things are set up, they do work as in our case study. [11.5.2]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

14.6 Summary | 525

on Unix. Unfortunately, these methods don’t work immediately on Windows if
you’re using the command shell (cmd.exe or command.exe), so here is a quick recipe:

1. Run the agent:

C:\> ssh-agent
SSH_AUTH_SOCK=/tmp/ssh-agent.1468; export SSH_AUTH_SOCK;
SSH_AGENT_PID=3212; export SSH_AGENT_PID;
echo Agent pid 3212;

2. Notice the output includes some environment variables:

SSH_AUTH_SOCK=/tmp/ssh-agent.1468; export SSH_AUTH_SOCK;
SSH_AGENT_PID=3212; export SSH_AGENT_PID;

3. Set the environment variables by hand:

C:\> set SSH_AUTH_SOCK=/tmp/ssh-agent.1468
C:\> set SSH_AGENT_PID=3212

4. Your agent is ready to load with keys: [2.5]

C:\> ssh-add
Enter passphrase for /home/you/.ssh/id_dsa: ********
Identity added: /home/you/.ssh/id_dsa (/home/you/.ssh/id_dsa)

14.5 Troubleshooting
The following lists some ideas for troubleshooting:

• If /var/log/sshd.log says “Privilege separation user sshd does not exist,” then
either turn off privilege separation in /etc/sshd_config, or create the “sshd”
account (e.g., with Cygwin’s useradd command).

• Run filemon from the command line, and look for accesses to the ~/.ssh
directory.

• In the Local Security Policy administrative tool, turn on auditing for object
access: this is found under Local Policies/Audit Policy. Set it to audit both suc-
cess and failure. Then select the ~/.ssh folder and enable this auditing for all
accesses to the folder and its contents (Properties/Security/Advanced/Auditing).

14.6 Summary
The full-featured OpenSSH suite runs on Windows for free. What could be better?



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

526

Chapter 15CHAPTER 15

OpenSSH for Macintosh

OpenSSH is supplied with Macintosh OS X and runs much like it does for other
Unix-like operating systems. The primary differences and distinguishing features are:

• Some extra setup before the OpenSSH server, sshd, can be accessed by the out-
side world

• The software, which is a modified version of OpenSSH maintained by Apple

• Some important differences in the way sshd is configured by default, such as
invocation and Kerberos support

15.1 Using the SSH Clients
The usual OpenSSH clients, ssh, scp, and sftp, work normally without any extra
effort on your part:

# Log into server.example.com as user smith
$ ssh -l smith server.example.com

# Copy myfile from your local machine to server.example.com
$ scp myfile server.example.com:

# Run an interactive file-copy session with sftp
$ sftp server.example.com

15.2 Using the OpenSSH Server
Before you can use sshd on Mac OS X, you’ll need to enable the server and possibly
open up the Mac’s firewall. In addition, you’ll want to know about some configura-
tion differences as compared to most other OpenSSH installations.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

15.2 Using the OpenSSH Server | 527

15.2.1 Enabling the Server
SSH server startup is controlled from the Sharing pane in System Preferences, under
Services, as in Figure 15-1. To enable sshd, select Remote Login and click the Start
button.

15.2.2 Opening the Firewall
By default, the Mac OS X personal firewall will block SSH connections from the out-
side world. If you have this firewall enabled, you must manually permit SSH traffic
through it. This is done from the Sharing pane in System Preferences, under Fire-
wall, as in Figure 15-2.

Figure 15-1. Enabling the SSH server in System Preferences



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

528 | Chapter 15: OpenSSH for Macintosh

15.2.3 Control by xinetd
In most Unix-like operating systems, the OpenSSH server runs as a daemon, listen-
ing for SSH connections. On Mac OS X, however, sshd is controlled by the super-
server daemon, xinetd. [5.3.3.2] Whenever an SSH client attempts to contact sshd on
TCP port 22, xinetd notices the attempt and invokes a single instance of sshd (specifi-
cally, sshd -i) to serve that connection.

The xinetd configuration file for sshd is /etc/xinetd.d/ssh:

# /etc/xinetd.d/ssh:
service ssh
{
        disable = no

Figure 15-2. Opening a firewall hole for SSH in System Preferences



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

15.2 Using the OpenSSH Server | 529

        socket_type     = stream
        wait            = no
        user            = root
        server          = /usr/libexec/sshd-keygen-wrapper
        server_args     = -i
        groups          = yes
        flags           = REUSE IPv6
        session_create  = yes
}

Note the use of the wrapper script sshd-keygen-wrapper: it will generate new host
keys if they are missing, as after a fresh OS install.

15.2.4 Server Configuration Details
On Mac OS X, the serverwide configuration files are found in the /etc directory
instead of the more common /etc/ssh: for example, the serverwide configuration file
is /etc/sshd_config rather than /etc/ssh/sshd_config.

The SSH software is a modified version of OpenSSH maintained by Apple; they
backport security fixes to it whenever required.

At press time, version “OpenSSH_3.6.1p1+CAN-2004-0175” has a
bug whereby dynamic port forwarding (–D) doesn’t work: it listens on
the specified port, but actual connection forwarding fails.

15.2.5 Kerberos Support
The OS X OpenSSH build has protocol 2 Kerberos support for both user and server
authentication, following the major Internet-Drafts on these (draft-ietf-secsh-gsskex
and draft-ietf-galb-secsh-gssapi). It implements user authentication via the gssapi and
external-keyx methods; it does not yet have the improved gssapi-with-mic method.
In case a Kerberos-secured key exchange has been used for server authentication, the
external-keyxmethod allows the userauth protocol to refer back to the previous Ker-
beros exchange for user authentication, skipping an unnecessary extra authentica-
tion phase.

This Kerberos support is also fully DNS-enabled, meaning it will find Kerberos
authentication servers from information in the DNS if it is available. In a network of
compatible and correctly configured Kerberos and OpenSSH servers, no extra config-
uration is needed for a plain OS X host newly attached to the network to use Ker-
beros for secure, single-signon client SSH connections. All that is required is to run:

$ kinit user@REALM
Please enter the password for user@REALM: ********

$ ssh user@host



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

530 | Chapter 15: OpenSSH for Macintosh

Place the following lines into /etc/krb5.conf to relieve the user from having to specify
the realm—and if the Kerberos principal and OS X account usernames are the same,
then a simple kinit will suffice:

[libdefaults]
default_realm        = REALM

Instead of the command-line utility kinit, you can use the OS X GUI Kerberos util-
ity: /System/Library/CoreServices/Kerberos.app.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

531

Chapter 16 CHAPTER 16

Tectia for Windows

Our treatment of Tectia in previous chapters has focused on Unix implementations,
but Tectia is fully supported on Microsoft Windows platforms. It’s packaged as a
suite of products, including:

Tectia Client
A GUI application that initiates outgoing SSH connections, with a terminal emu-
lator, supporting key-management functionality, port forwarding, and file trans-
fers using SFTP, plus command-line programs for scripting

Accession Lite
An authentication agent

Tectia Connector
Transparent, dynamic port forwarding for selected applications

Tectia Server
A service to accept incoming SSH connections

At press time, the Tectia products can be installed on the versions of Windows listed
in Table 16-1. Consult the latest documentation for a complete list of supported
platforms.

Table 16-1. Supported Microsoft Windows platforms for SSH Tectia

Program 95 98 Me NT 2000 XP Server 2003

Tectia Client - any any 4.0SP6 SP2 any any

Accession Lite - any any 4.0SP6 SP2 any any

Tectia Connector - - - 4.0SP6 SP2 SP1 -

Tectia Server - - - 4.0SP6 SP2 any any



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

532 | Chapter 16: Tectia for Windows

16.1 Obtaining and Installing
Tectia products are shipped as Windows Installer Packages.* The easiest way to
install is to use Windows Explorer to double-click on the included .msi files:

• TectiaClient-version.msi

• TectiaConnector-version.msi

• TectiaServer-version.msi

These files can be found in the install/windows folder on your distribution media, or
downloaded from the ssh.com web site, depending on how you purchased the prod-
ucts. The installers must be run by a user with administrative privileges. Installing
the Connector package requires a reboot.

During interactive installation, you’ll see a series of dialogs; use these to specify the
install directory if the default location is not appropriate. By default, Tectia products
are installed within the Program Files folder in a Tectia subfolder named SSH
Communications Security.† Files for each product are collected in separate subfolders
under the Tectia subfolder:

• SSH Secure Shell

• SSH Accession Lite

• SSH Tectia Connector

• SSH Secure Shell Server

We’ll refer to these as the “installation folders.” The installers also create entries in
the Start/Programs menu, under the program groups:

• SSH Tectia Client

• SSH Tectia Connector

• SSH Tectia Server

The installer for the Client package optionally creates desktop icons for the GUI cli-
ent application:

• SSH Tectia Client

• SSH Tectia Client – File Transfer

The PATH environment variable is updated to include the installation folder for the
Client package, so scripts can easily access command-line programs.

* Accession Lite is included with the Client and Connector packages and is not available as a separate package.

† The Program Files folder can be determined by examining the value of the PROGRAMFILES environment vari-
able. It is typically C:\Program Files.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

16.2 Basic Client Use | 533

The Server installer generates host key files by running ssh-keygen2 in a command
window: this can take several minutes to complete.* The server is added as a service
that starts automatically whenever the system boots.

Tectia products can also be installed silently, using the msiexec command-line tool:

C:\> msiexec /q /i Tectia<Product>-<version>.msi INSTALLDIR="<path>"

If the INSTALLDIR argument is omitted, the default locations are used. Silent installa-
tion is handy for rolling out products to a large number of systems.

To remove Tectia products, use the Add/Remove Programs section of the Control
Panel, or the command:

C:\> msiexec /q /x Tectia<Product>-<version>.msi

The Tectia Server must be stopped before it is uninstalled.

16.2 Basic Client Use
When you run the GUI client application (typically via the desktop icon or the Start
menu), it displays a terminal window. To initiate an outgoing connection, do one of
the following:

• Click on the Connect toolbar icon.

• Use the File/Connect menu item.

• Press the Enter key or space bar within an unconnected terminal window.

This brings up the Connect To Remote Host dialog shown in Figure 16-1. Fill out
the values for the server’s hostname, the remote username (on the server), and the
port number (if different from the default 22); select an authentication method from
the drop-down menu; and finally click Connect. If the host key for the server has not
been seen before, the client prompts for confirmation before saving it, as in
Figure 16-2. Respond to the prompts demanded by subsequent dialogs, which
depend on the authentication method chosen.

If authentication succeeds and the server grants access, you can work within the ter-
minal window in Figure 16-3.

You can create additional sessions on the same server by using the New Terminal
Window toolbar icon or the Window/New Terminal menu item. These sessions run
in separate terminal windows, and are tunneled through different channels within
the existing SSH connection, so no additional authentication is required.

* If you run Server installer in silent mode, the host key is not generated automatically. Use ssh-keygen2 to gen-
erate the host key manually.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

534 | Chapter 16: Tectia for Windows

The client disconnects automatically when the last session terminates. If you need to
disconnect manually for some reason, use the Disconnect toolbar icon or the File/
Disconnect menu item.

16.3 Key Management
To manage the key pairs that are used for public-key authentication, use the Keys
page (Figure 16-4) of the Settings dialog, which is accessed by either the Settings
toolbar icon or the Edit/Settings menu item. The Settings dialog is a GUI-based inter-
face to the functionality provided by the ssh-keygen2 command-line program.

Click Generate New Keypair to start the Key Generation Wizard, which presents a
dialog that prompts for the key type (DSA or RSA) and key length, generates the key
(this can run for several minutes, which provides plenty of time to appreciate an ani-
mated display of random bits), and finally prompts for a filename to store the key, an
optional comment, and the passphrase.

To copy a key pair from files in some other location to the user profile folder, click
Import. If an existing key is selected, click Export to copy the key pair from the user

Figure 16-1. The Connect to Remote Host dialog

Figure 16-2. Encountering a previously unknown host key



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

16.3 Key Management | 535

profile folder to some other folder, or Delete to remove the key pair, or Change Pass-
phrase to present a dialog that prompts for the old and new passphrases.

Click Upload to conveniently transfer a selected public key to a server using sftp, and
automatically add an entry in the authorization file so that the key will be used.* This
assumes you have already authenticated using some other mechanism. A dialog
allows the destination folder and authorization filename to be changed if the default
locations on the server are not appropriate.

To view the contents of the public-key file (using the Notepad editor), double-click
on a key in the list, or select a key and click View.

Finally, click Configure to update the identification file that is used by the ssh2 com-
mand-line program. All keys in the list are included; the identification file must be
edited manually if some keys should be excluded.

Figure 16-3. Terminal window

* Uploading is also offered as an option by the Key GenerationWizard whenever new key pairs are produced.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

536 | Chapter 16: Tectia for Windows

16.4 Accession Lite
Accession Lite is started automatically when each user logs in; it acts as an authenti-
cation agent.* The GUI application provides the same functionality as the ssh-agent
and ssh-add programs that are used on Unix systems.†

The easiest way to access the Accession Lite GUI, shown in Figure 16-5, is to double-
click the icon in the tool tray on the taskbar. The Tectia Client and Connector appli-
cations also have icons and menus for Accession Lite. Normally, Accession Lite stops

Figure 16-4. Keys page of the Settings dialog

* By default, a splash screen is briefly displayed when the program starts. This can be disabled if you find it
annoying.

† These command-line programs are not provided with the Tectia Client product on Windows. Only Acces-
sion Lite can be used as an authentication agent.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

16.4 Accession Lite | 537

automatically when the user logs out (or the system is shut down), but if it needs to
be stopped manually for some reason, use the File /Quit menu item.

The main Accession Lite window displays information about the loaded keys and a
log of its operations in separate panes.

The toolbar icons or equivalent items in the Tools menu can be used to perform
actions:

• Add a key to the agent: a series of dialogs prompt for the filename and a pass-
phrase.

• Delete a selected key from the agent.

• Lock or unlock a selected key: dialogs prompt for a passphrase.

• Edit attributes for a selected key: this presents the Key Attributes page
(Figure 16-6) of the Settings dialog, which can also be obtained via the Settings
toolbar icon or the Edit/Settings menu item.

The default attributes apply to all of the keys, unless overridden for specific keys.
Keys can be set to expire after a specified time, and can be limited to a maximum
number of uses. Forwarding can be restricted to a limited number of hops, or more

Figure 16-5. Accession Lite



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

538 | Chapter 16: Tectia for Windows

generally according to a constraint string, which uses the same syntax as the ssh-add
-F option. [6.3.3]

A short alias can be assigned to each key; these are optionally displayed by the GUI
instead of the more verbose descriptions according to settings on the Appearance
page.

“Enable key compatibility” means that SSH-1 keys can be used by SSH-2 clients, and
vice versa. Support for SSH-1 and SSH-2 client connections is controlled indepen-
dently by checkboxes on the Compatibility page.

If “Confirm key operations” is checked, then the agent prompts for each use of the
key. “Test private key” requires the agent to verify that the certificate corresponds to
the key whenever it is used.

The Compatibility page allows a single key to be loaded automatically when Acces-
sion Lite starts. To load an entire collection of keys automatically, use the Key Pro-
viders page and add the Software provider. This emulates a smart card by monitoring
a specified folder, and automatically adding or deleting keys in the agent as they are
created or removed from the folder.

The Log page allows the transaction log that is displayed in the log pane of the main
window to be saved to a file.

Figure 16-6. Key Attributes page of Accession Lite



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

16.5 Advanced Client Use | 539

By default, all configuration settings are saved automatically; this can be disabled by
a setting on the Appearance page. The File/Save Configuration menu item is used to
manually record configuration changes.

16.5 Advanced Client Use
Most of the time, the Tectia GUI applications effectively act as configuration editors,
allowing users and administrators to change and save the configuration without wor-
rying about the location or format of configuration files. In some other circum-
stances, however, an understanding of these details is useful, so we’ll provide a brief
guided tour through the internal structure of Tectia’s configuration on Windows.

The system client configuration file ssh2_config is stored in the Tectia client installa-
tion folder. This file has the same format and function as the /etc/ssh2/ssh2_config file
on Unix systems.[7.1.2.2]

Most other parts of the configuration are separately maintained for each user, and
are stored in the user profile folder* in the application data subfolder.† Tectia config-
uration files are collected in a subfolder named SSH. This folder is analogous to the
user configuration folder on Unix systems (typically ~/.ssh2, but ultimately deter-
mined by the UserConfigDirectory keyword), although the specific files and folder
layout are different for Windows, as we’ll see. [5.3.1.5]

If roaming profiles are used, then the user profile folder is replicated
on a server, and files are transmitted to client machines via the net-
work, where they can be seen by anyone who is able to sniff traffic en
route. To prevent this, either disable roaming profiles for Tectia users,
or store the Tectia configuration files in a different, local folder. If the
SSHCLIENT_USERPROFILE environment variable is set, its value specifies
an alternate location to be used for the Tectia configuration files,
instead of the user profile folder.

The Tectia user configuration folder contains:

RandomSeed
A pool of random data. [7.4.18]

HostKeys
A subfolder to store public keys for known hosts. [7.4.3]

* The user profile folder can be determined by examining the value of the USERPROFILE environment variable.
It is typically C:\Documents and Settings\username.hostname or (on older systems) C:\WINNT\Profiles\
username.

† The full pathname for the application data folder, including the user profile folder components, can be found
in the value of the APPDATA environment variable. The subfolder is typically named Application Data.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

540 | Chapter 16: Tectia for Windows

UserKeys
A subfolder for storing user identities.

identification
A list of keys used by the command-line client, ssh2.exe. This file can be pro-
duced automatically by the GUI client. [16.3] If the identification file is missing,
then all keys in the UserKeys folder are used.

*.ssh2
Profile settings for the GUI client, which are used to store configuration informa-
tion based on the connection target (discussed shortly).

global.dat
Global settings for the GUI client, which apply to all connections (discussed
shortly).

SSH Accession\config.cfg
The configuration settings for Accession Lite, stored in XML format.

The All Users profile folder is conceptually merged with each user profile folder.*

Host keys and profile settings can be copied from a user profile folder to the All
Users profile folder to provide systemwide access.

The All Users profile folder isn’t available on older platforms such as
Windows 98 or Me.

To provide a systemwide default configuration for Accession Lite, copy a suitably
crafted config.cfg file from a user profile folder to the Accession Lite installation
folder.

Accession Lite doesn’t use the All Users profile folder.

The *.ssh2 files for profile settings and the global.dat configuration file are usually
updated by the GUI client (discussed shortly). However, they are ordinary text files
that use the venerable DOS *.ini format and are easy to edit directly.

Settings are grouped in sections that are identified by names with square brackets, on
separate lines. Each setting is a keyword and value, separated by an equals sign, with
one pair per line. Values have prefixes to indicate the type of data:

* The All Users profile folder can be determined by examining the value of the ALLUSERSPROFILE environment
variable. It is typically C:\Documents and Settings\All Users or (on older systems) C:\WINNT\Profiles\All
Users.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

16.5 Advanced Client Use | 541

N:
Decimal number

H:
Hexadecimal number

S:
String

Boolean values are represented as decimal numbers, with zero and one indicating
false and true, respectively. For example:

[Security]
...
FIPS mode=N:0

Direct editing of these files is required to update a few settings that are not displayed
by the GUI client: e.g., the FIPS mode setting. It is also occasionally convenient to
use a script to generate a large number of profile setting files that differ only by a few
settings.

The files default.ssh2 and defaultsftp.ssh2 contain default settings for the GUI client’s
terminal and SFTP modes, respectively. If these files are missing, then hardwired
default settings are used.

Profile settings files can be used in several ways:

• Double-click on *.ssh2 files in Windows Explorer. This works because the
installer arranges to associate the .ssh2 file suffix with the GUI client.

• Create desktop shortcuts to the profile settings files, and then double-click on
the desktop icons. The Tectia client installer automatically creates desktop
shortcuts for the default profiles using the terminal and SFTP modes.

• Click on the Profiles toolbar icon, and then select one of the defined profile set-
tings from the drop-down menu.

• Use the File/Profiles menu item to present the same drop-down menu.

The drop-down profiles menu also contains items that allow new profiles to be added,
and existing profiles to be edited. When new connections are initiated using unsaved
profile settings, a dialog is briefly displayed that allows the new profile settings to be
added. The Settings toolbar icon or the Edit/Settings menu item provides access to the
Profile Settings page of the Settings dialog for editing the current profile.

Use the File/Save Settings menu item to save the current profile settings, as well as
the global settings. The File/Save Layout menu item performs the same function, but
also records the current position of all the GUI client’s windows.

Profile settings include connection parameters (e.g., the remote hostname, user-
name, and port number), encryption and MAC algorithms, authentication methods,
optional port forwarding (which is discussed in the next section), and sftp file trans-
fer modes.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

542 | Chapter 16: Tectia for Windows

Global settings include key pairs (which we’ve discussed previously: see Figure 16-4),
host keys, other sftp options, and SOCKS firewall specifications.

Except for settings that are related to the appearance or behavior of the GUI client
itself, all of the profile and global settings correspond to keywords discussed in
Chapter 7.

16.6 Port Forwarding
Port forwarding allows Tectia to tunnel TCP connections through multiplexed chan-
nels within an existing SSH connection. [9.2] To set up forwarding, use the Tunnel-
ing page (Figure 16-7) of the Settings dialog which is accessed by either the Settings
toolbar icon or the Edit/Settings menu item. Local and remote forwarding (specified
by the –L and –R options for the ssh2 command-line client) correspond to outgoing
and incoming tunnels, respectively, for the GUI client.

Figure 16-7. Tunneling page



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

16.7 Connector | 543

Configure forwarding by first selecting the Outgoing or Incoming tab. Click Add to
define settings for a new port forwarding, using a separate dialog (Figure 16-8), or
click Edit to redefine settings for a selected existing forwarding, using a similar dia-
log. Click Remove to destroy a selected forwarding.

Settings for each forwarding include:

• A descriptive name, for the displayed list

• The port on which to listen, either on the client side (for local forwarding or out-
going connections) or on the server side (for remote forwarding or incoming
connections)

• The destination host and port, to which connections should be forwarded on the
opposite side

• A checkbox to allow only local connections (only for local forwarding or outgo-
ing connections), which is usually left enabled

• The type of forwarding: usually TCP to indicate no special processing, or FTP to
create temporary forwarding in the reverse direction for FTP data channels in
active mode

Forwarding changes are effective only for the next session, except for removals,
which happen immediately.

X forwarding is controlled by a checkbox. This is used with a separate X server run-
ning on the same system as the Tectia client.

16.7 Connector
We have previously seen how static port forwarding can be extended for SOCKS-
aware applications to provide dynamic port forwarding. [9.3] SOCKS is fully sup-
ported by the Tectia client, but you have to reconfigure each application to use the
SOCKS proxy, which can be annoying.

Figure 16-8. Defining settings for a new port forwarding



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

544 | Chapter 16: Tectia for Windows

Tectia Connector extends this concept further to achieve complete transparency:
applications can use dynamic port forwarding without any reconfiguration whatso-
ever, because the applications are entirely unaware that the forwarding is happening.

To accomplish this feat, Connector worms its way into the Windows TCP/IP proto-
col stack (which includes hostname lookup functionality). This allows it to intercept
networking operations by applications and reroute them to its own Connector
engine, which then initiates SSH connections to servers on behalf of the applica-
tions. The capture and forward mechanism also allows the Connector engine to exer-
cise precise control over network connections, and to enforce security policies that
require certain kinds of connections to use secure protocols, like SSH.

As of Version 4.2, Connector requires functionality provided only by
“Tectia Server (T).” [16.11] “Tectia Server (A)” can’t be used with
Connector, and other non-Tectia servers are unsupported.

Connector only affects outgoing TCP connections. Applications can still accept
incoming connections directly, and other protocols (like UDP, ICMP, etc.) are com-
pletely ignored by Connector. Note, however, that all applications can be affected by
Connector’s interception of hostname lookups.

Connector uses only the SSH-2 protocol, never SSH-1. It is fully self-contained, and
does not rely on the Tectia client. Instead, Connector implements the SSH-2 proto-
col and initiates its own connections.

The Connector engine starts automatically when each user logs in. If it has been
stopped for some reason, it can be restarted manually using the SSH Tectia Connec-
tor item from the Start/Programs/SSH Tectia Connector menu, or by running the
SSHConnector program in the Connector installation folder.

In normal operation, Connector is unobtrusive, presenting only a small icon in the
tool tray on the taskbar to announce its presence. Right-click the icon to produce a
menu that displays a list of applications currently using Connector, a checkbox that
allows the Connector engine to be enabled or disabled, and an Exit item that shuts
down the Connector engine.

The Connector Status dialog can be displayed by double-clicking the tool tray icon
or selecting the Status item from the tool tray icon menu. The Tunnels view shows
each forwarded port, with the program using the connection, the destination server,
and usage statistics (data sent and received). The Logs view displays messages (with
timestamps) about authentication, creation of forwarded ports, connections by
applications, etc. The Connector engine maintains its own log; it doesn’t send mes-
sages to the Windows event log.

Privileged users can use the Administration dialog or edit the configuration file
directly to configure the Connector engine. The administrative GUI interface is



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

16.7 Connector | 545

accessed by selecting the SSH Tectia Connector Admin item from the Start/
Programs/SSH Tectia Connector menu, or a similar item in the Connector tool tray
icon menu, or by running the SSHConnectorAdmin program in the Connector instal-
lation folder.

16.7.1 General Settings
The Connector engine itself is configured by the General Settings view of the Admin-
istration dialog (Figure 16-9), which applies to all outgoing connections.

Sometimes it is necessary or convenient to bypass Connector and allow applications
to initiate their own connections directly: this is known as pass-through mode. An
option is provided to allow pass-through if the engine is disabled or shut down. If
this pass-through option is disabled, then connections will be blocked, which might
be appropriate if security policies mandate that only secure connections are allowed.
A comma-separated list of applications can also be exempted from interference by

Figure 16-9. Configuring the Connector engine



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

546 | Chapter 16: Tectia for Windows

Connector. Typically these applications are for network diagnostics (e.g., nslookup
or ping) or related to direct use of SSH (e.g., the Tectia client, Accession Lite, etc.).

Applications frequently need to connect to secure servers within internal networks
from outside of firewalls. External hostname lookups are commonly prevented, to
avoid leaking information about the internal network, and because direct access to
the secure servers is blocked by the firewall anyway. In such cases, Connector can be
configured to return dynamically assigned pseudo (or fake) IP addresses to applica-
tions in response to hostname lookups. When the connection is forwarded across the
firewall via SSH, the hostname lookup is done internally. This is similar to the nam-
ing support provided by SOCKS5.

A base address must be identified for the pseudo IP addresses. This should be cho-
sen carefully to avoid conflicts with real addresses of machines that applications
might need to contact. It is natural to use reserved addresses (e.g., the 10.0.0.0/8 net-
work) for this purpose, but if applications detect the use of such reserved addresses
and misbehave, then it may be necessary to use a suitable range of otherwise unused
real addresses.

As we have seen, Connector works by modifying the Windows TCP/IP protocol
stack. Other, unrelated packages that also modify the protocol stack (such as fire-
walls and VPN software) can interfere with the operation of Connector, and require
that Connector’s protocol stack modifications be reinstalled, which in turn requires a
reboot. An option is provided to automate this; no user confirmation is needed.

Connector’s SSH implementation supports FIPS mode, which can be selected by an
option. [5.3.5]

In most cases, Connector operates silently, and behind the scenes. However, SSH
servers can be configured to send banner messages to clients, and Connector has an
option for displaying them. [5.6.1] In addition, Connector can display a splash
screen as a brief security notification when new forwarded connections are created
for applications.

The tray icon menu can be configured to control access to functions that affect the
engine, to prevent unprivileged users from circumventing security policies. Of
course, the Connector configuration file should only be writable by privileged users.

16.7.2 Servers for Outgoing SSH Connections
Settings for each server used for an outgoing SSH connection must be defined by the
Servers view of the Administration dialog in Figure 16-10.

A display name is assigned to the collection of settings for the server. Connections to
a server can be routed via a previously defined server, to set up chains of port for-
wardings, if required for nested firewalls.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

16.7 Connector | 547

The most important characteristics of the SSH connection can be specified for the
server. The special token %USERNAME% means that the local Windows username is used
for the remote username as well.

By default, Connector initiates SSH connections only when required to forward con-
nections from applications, but an option is provided to initiate the connection when
the Connector engine starts. Idle SSH connections are terminated by Connector after
a specified timeout interval elapses.* Normally, SSH connections are retained (even
when idle) if any forwarding channels are still active, but Connector can be config-
ured to ignore active channels when it closes idle connections.

The allowed authentication methods are specified as a comma-separated list, chosen
from the set: gssapi-with-mic, publickey, keyboard-interactive, and password.
Public-key authentication is especially convenient with Accession Lite acting as an
authentication agent. [16.4] Accession Lite is included with the Tectia Connector pack-

Figure 16-10. Defining settings for outgoing SSH connections

* The timeout interval is expressed as a number of seconds.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

548 | Chapter 16: Tectia for Windows

age, and the agent can be started using the Connector tray icon menu. A predefined
response can be stored in the Connector configuration for password authentication.
This is insecure, since the password saved in the configuration file is not encrypted in
any way, and the predefined response is intended only for situations when the applica-
tion handles its own authentication using some other secure mechanism.

A proxy server URL can be specified using the same syntax as for the Tectia client’s
SocksServer keyword or the SSH_SOCKS_SERVER environment variable. [7.4.7.2] HTTP
forwarding is also supported, using a similar syntax. SOCKS4 is used by default, but
an option is provided to use SOCKS5 instead.

A filename should be chosen to store the host key for the server. The key can be
fetched automatically by the Connector administration program, but the fingerprint
should be verified using ssh-keygen -F. [6.2.2] Host keys are commonly stored in the
All Users profile folder.

16.7.3 Filter Rules for Dynamic Port Forwarding
The Connector engine consults a list of filter rules to decide how to forward outgo-
ing connections by applications. These are configured by the Filters view of the
Administration dialog in Figure 16-11.

A display name is assigned to each filter rule. The filter rules are matched according
to the DNS hostname or IP address requested by an application, and the first match-
ing filter rule is used for the connection. DNS hostnames and IP addresses can be
specified either literally or as patterns using the egrep regular expression syntax. DNS
hostnames are case-insensitive.

In the usual case when an application connects using a DNS hostname, Connector
scans the filter rule list. If a hostname match is found, then the first matching filter
rule is used. The IP address returned to the application is taken from the filter rule if
one is specified, or is otherwise dynamically assigned from the pool of pseudo IP
addresses.* If no matching filter rule is found, then the connection is initiated
directly, with no port forwarding.

When an application connects using an IP address, Connector similarly scans the fil-
ter rule list, looking for a filter rule with a matching address, and uses the first filter
rule that is found. Otherwise, if there is no matching filter rule, then Connector does
a reverse hostname lookup using the IP address. If this lookup succeeds, then Con-
nector performs a DNS hostname match, as described previously. Otherwise, if the
reverse hostname lookup failed, then Connector blocks the connection. Any host-
name specified for the filter rule is passed to the other side of the forwarded connec-
tion so that the server can perform the hostname lookup for the real IP address on an
internal network.

* If pseudo IP addresses are disabled in the General Settings, then the actual IP address of the server is used.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

16.7 Connector | 549

Connections are forwarded based on the target port requested by the application,
according to a list of connection rules for each filter rule. Each connection rule con-
sists of a comma-separated list of ports, or the special value All, plus one of the fol-
lowing actions:

DIRECT

Initiate a connection directly, without port forwarding.

BLOCK

Block the connection, so the application will see the error “connection refused.”

server

Initiate an SSH connection, according to the settings for the named server.

The first matching connection rule for the requested port is used. If no connection
rule matches, then a direct connection is initiated.

Connections are also forwarded according to the full pathname for the application.
The Connector administrative interface allows the specification of only a single
application. This restriction was imposed as of Version 4.2, and is actually a

Figure 16-11. Filter rules for forwarding outgoing connections



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

550 | Chapter 16: Tectia for Windows

reduction in functionality. Earlier versions of SSHConnectorAdmin allowed the speci-
fication of an application for each filter rule.*

16.7.4 Configuration File
The Connector engine uses the configuration file sshcorpoeng.cfg in the installation
folder. The Connector administration program saves its settings in the configuration
file automatically, and is the usual way to change the configuration.

However, the configuration file uses a straightforward format and is easy to edit
directly. Settings are grouped in hierarchical sections that are delimited by curly
braces. Each setting is a keyword and value, separated by an equals sign, with one
pair per line. Values are Boolean (FALSE or TRUE), decimal numbers, or quoted strings,
which use C-language conventions for backslash escape sequences. This convention
is unfortunate, because all backslashes for Windows filename separators must be
doubled.

Some features can only be used by editing the configuration file, and are not avail-
able via the GUI-based administrative interface. For example, the filter rules shown
in Figure 16-11 correspond to the configure file section:

Filters = {
  secure_mail = {
    DNSNameRegexp = ".*\\.mail\\.example\\.com$"
    Application = "C:\\\\Program Files\\\\WhizBangMail\\\\MailClient\\.exe"
    RealIP = FALSE
    Connections = {
      connection1 = {
        Via = "mail"
        Port = "25,143"
      }
      connection2 = {
        Via = "DIRECT"
        Port = "0-65536"
      }
    }
  }
}

Regular expressions or literal values can be selected independently for DNS host-
names and IP addresses by using any combination of the following keywords:

• DNSNameRegexp

• DNSName

• IPAddressRegexp

• IPAddress

* You can specify multiple applications if you use Tectia Manager to configure Connector. The restriction also
does not apply if you edit the configuration file directly.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

16.8 File Transfers | 551

The RealIP keyword controls assignment of pseudo IP addresses for each rule.

A separate application can be specified for each filter rule. The application path-
name is actually a pattern, using the egrep regular expression syntax. The combina-
tion of C-language conventions for strings and regular expressions leads to an
abundance of backslashes. For the setting:

Application = "C:\\\\Program Files\\\\WhizBangMail\\\\MailClient\\.exe"

the C-language string corresponds (collapsing the doubled backslashes) to the regu-
lar expression:

C:\\Program Files\\WhizBangMail\\MailClient\.exe

which matches the pathname:

C:\Program Files\WhizBangMail\MailClient.exe

16.8 File Transfers
The Tectia client supports file transfers using sftp. The File Transfer window
(Figure 16-12) for the GUI client is obtained by using the New File Transfer Win-
dow toolbar icon or the Window/New File Transfer menu item, and operates simi-
larly to Windows Explorer.

To transfer files, use any of the following methods:

• Simply drag and drop files or folders between the Local and Remote views.

• Select the files or folders to be transferred in the Local or Remote views, and
then click the download or upload icons in the toolbar.

• Right-click on a file or folder in the Local or Remote view to produce a menu,
and then use the Upload or Download menu items. If the Upload Dialog or
Download Dialog menu items are used instead, then a separate dialog allows
selection of files to be transferred.

• Select the files or folders to be transferred in the Local or Remote views, and
then use the same menu items in the Operation menu.

Most other file operations can be performed within the Local or Remote views using
the Operation menu, or familiar Windows Explorer gestures. These include opening
files, running programs, deleting or renaming files and folders, creating new folders,
etc. Some restrictions on the operations may be imposed by the remote system.

The sftp file transfer mode can be set to ASCII, Binary, or Auto Select using icons on
the toolbar, or the Operation/File Transfer Mode menu items.

The transfer view at the bottom of the window shows progress information and sta-
tistics for each transfer.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

552 | Chapter 16: Tectia for Windows

16.9 Command-Line Programs
The GUI client can be launched from the command line. This is useful for creating
customized shortcuts, or other wrapper scripts (e.g., *.bat files).

The program is named SSHClient, and supports the following options:*

-r
Reset all customizations made to the user interface (toolbars and menus). The
client asks for confirmation before doing this.

-u [username]
Specify the remote username.

Figure 16-12. File transfer window

* Options can also be specified with a forward slash instead of a hyphen: e.g., /f or -f.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

16.9 Command-Line Programs | 553

-h [hostname]
Specify the remote hostname (where the SSH server runs).

-p [port]
Specify the port number.

-f
Start using the file-transfer window instead of the terminal window.

A profile settings file (*.ssh2) can also be specified as the last argument on the com-
mand line.

The GUI client immediately initiates an outgoing connection if any of the –u, –h,
or –p options, or a profile settings file, are specified. If no remote hostname is given
(either by the –h option or a profile settings file), then the client prompts for con-
nection parameters, with any other supplied values as defaults. Otherwise, the cli-
ent starts in an unconnected state and waits for outgoing connections to be
initiated manually.

The precedence for settings is (from strongest to weakest):

1. Command-line options

2. A profile settings file specified on the command line

3. Default profile settings files: either default.ssh2 or defaultsftp.ssh2 (if the -f option
is used)

4. Hardwired default settings, if the default profile settings files do not exist

The Tectia Client package also supplies a set of command-line programs, including
ssh2, scp2, sftp2, and ssh-keygen2.* These programs are intended for scripting, and
function almost exactly as they do for Unix implementations, except that they are
aware of the Windows conventions for configuration file locations. In fact, ssh2 -h is
an easy way to list the location of the configuration files for the client (in the user
profile folder). The programs understand both Windows and Unix filename conven-
tions using backslashes and (forward) slashes, respectively. Wildcards are case-insen-
sitive, in accordance with Windows filesystem conventions.

Command-line variants for ssh-agent2 or ssh-add2 are notably absent.
This functionality is provided only by Accession Lite. The command-
line client program (ssh2) uses Accession Lite to contact an agent for
authentication.

* Note that all of the program names end with the “2” suffix. Corresponding program names without “2” are
not provided, as they are (via symbolic links) on Unix systems.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

554 | Chapter 16: Tectia for Windows

16.10 Troubleshooting
The Help menu offers two items that are useful for identifying problems.

The Troubleshooting dialog (Figure 16-13) displays a collection of useful informa-
tion, including:

• Local client version

• License details

• Operating system

• Remote server version

• Algorithms used

• Connection settings

• Error messages

The Debugging dialog (Figure 16-14) collects diagnostic output messages from the
client. A checkbox enables or disables debugging. The debug level is specified
according to the syntax described for the ssh2 -d command-line option [7.3]; it can

Figure 16-13. The Troubleshooting dialog



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

16.11 Server | 555

restrict output to specific modules.* A log file must be specified to store the debug
messages, which are also displayed in a scrollable view. A checkbox allows the log
file to be automatically cleared when the client starts; it can also be cleared manually
at any time using the Clear File button.

16.11 Server
Two distinct flavors of the Tectia server are available (as of Version 4.2). The full-fea-
tured Tectia Server (T) is intended for application tunneling, and supports extra
functionality needed by Tectia Connector, while the slightly encumbered Tectia
Server (A) is intended only for remote system administration. All the programs that
make up these products are identical; the only difference is the license file that
enables or disables the additional features.

* Verbose log levels cause the client to run more slowly.

Figure 16-14. The Debugging dialog



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

556 | Chapter 16: Tectia for Windows

16.11.1 Server Operation
The Tectia server is implemented by a program, ssh2master, that runs as a daemon
and listens for incoming connections. A separate program, ssh2server, is run to han-
dle each connection when it is accepted. The sftp server is implemented by the pro-
gram sftp_server2.

If you run a Tectia server on a Windows system configured with a fire-
wall, be sure to allow access to the port(s) used to accept SSH connec-
tions, typically port 22.

Stopping the ssh2master program doesn’t affect existing connections, since
ssh2server continues to run. The Tectia server can even be restarted by a session that
uses an SSH connection!

Normally, the Tectia server is run as a Windows service that is automatically started
whenever the system boots. Several mechanisms can be used to start or stop the ser-
vice manually:

• Use the Tectia server administration program (discussed shortly).

• Select either the Start Server or Stop Server item within the menu Start/
Programs/SSH Tectia Server/Tools.

• Access the Control Panel, and use the dialogs for Administrative Tools/Services
to select the display name SSH Tectia Server, and then click Start, Stop, or
Restart the service.

• Run the start-ssh.bat or stop-ssh.bat scripts in the installation folder.

• Start or stop the service using the command net start SSHSecureShell2Server or
net stop SSHSecureShell2Server, respectively.

• Run ssh2master -start or ssh2master -stop.

ssh2master also understands the options –install and –remove to add or delete the
Tectia server from the list of Windows services.

In addition, ssh2master accepts a few options that we have discussed previously for
sshd2 on Unix platforms:

-p port
Listen to the specified port. [5.3.3.1]

-f config-file
Use an alternate server configuration file. [5.2.1]

-d level
Run in debug mode, and specify the debug level. [5.9.2]



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

16.11 Server | 557

16.11.2 Server Configuration
The server’s configuration files are stored in the installation folder (nothing is stored
in the Windows registry):

hostkey
Private host key (must be protected!)

hostkey.pub
Public host key

server_random_seed
Pool of random data

sshd2_config
Server configuration

sshd2_config has the same format as for Unix systems, and almost all of the key-
words have exactly the same meaning for Windows, so we’ll just discuss the differ-
ences.

The server administration program, ssh2admin, also known as the Server Configura-
tion tool (Figure 16-15), can display and change some keywords, but many features
can be customized only by editing the file.

ssh2admin can be either run directly, or accessed by selecting the SSH Tectia Server
Administration item within the menu Start/Programs/SSH Tectia Server. The Tools/
View Configuration item displays the sshd2_config file in the Notepad editor.

Configuration changes take effect for each new session, as they are read by
ssh2server. Only a few configuration keywords are used by ssh2master. If any of
these are changed, the service should be restarted:

• Port

• ListenAddress

• MaxConnections

FIPS mode is controlled by the FIPSmode keyword, with a value of yes or no (the
default): [5.3.5]

FIPSMode    yes

16.11.3 Commands and Interactive Sessions
When a command has been specified by an SSH client, it is run directly by the Tectia
server. For commands that are built into the Windows command interpreter cmd.exe,
specify cmd explicitly for the ssh command:

$ ssh winserver.example.com cmd /c type readme.txt



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

558 | Chapter 16: Tectia for Windows

Otherwise, if no command is given, then the server runs cmd.exe by default for the
interactive session. An alternate program can be specified by the TerminalProvider

keyword:

# Tectia
TerminalProvider    "some-other-cmd.exe"

This provides the same functionality as the login shell for Unix systems, except that
it applies to all users. User-specific subconfiguration files can specify different pro-
grams for individual users. [11.6.2]

Users can run graphical applications from SSH sessions, but the applications have no
access to the display, so this has limited usefulness. Full-screen text applications
don’t work correctly, because they expect to run in a real console window, and the
SSH connection doesn’t provide information about the window dimensions, etc.

By default, the Tectia server creates terminals for interactive sessions in a fully pri-
vate window station. This is controlled by the PrivateWindowStation keyword:

# Tectia
PrivateWindowStation    yes

Figure 16-15. Server configuration with ssh2admin



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

16.11 Server | 559

The DoubleBackSpace keyword copes with Japanese Windows systems, which require
double backspaces to be sent by the server in response to single backspaces from the
client, for each two-byte Japanese character. The value is either yes (to enable this
behavior) or no (the default):

# Tectia
DoubleBackSpace     yes

Child processes that are launched from SSH sessions are not automatically termi-
nated when the session ends. This could be construed as a bug or a feature, depend-
ing on the circumstances: beware.

The user profile folder is used as the home folder for commands and interactive
sessions.

16.11.4 Authentication
Windows passwords are used for password authentication. The password authenti-
cation method is always required for domain user accounts. Public-key authentica-
tion works only for local user accounts, not domain user accounts.

The %D pattern for the UserConfigDirectory keyword refers to the user profile folder.
[5.3.1.5] The user configuration folder contains the authorization file and public keys.

The default value for UserConfigDirectory is %D/.ssh2, which works
and is consistent with the Unix location. However, it is strange from a
Windows perspective, and different from all of the other Tectia pro-
grams, which use the Application Data\SSH subfolder within the user
profile folder.

16.11.5 Access Control
Accounts that use the SSH server for logins must possess the right to “log on locally.”
This is disabled by default on some servers, such as domain controllers. Keywords
like PermitRootLogin that refer to the Unix superuser affect any Windows accounts
with administrative privileges.

In the server configuration, domain user accounts should be specified as domain/
user (with a forward slash). The usual Windows backslash separator cannot be used.

Windows groups are not supported by the server, so keywords and values that refer
to groups must not appear in the configuration files.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

560 | Chapter 16: Tectia for Windows

16.11.6 Forwarding
The Tectia server supports only TCP port forwarding on Windows, and enforces the
restriction that only privileged users can use privileged port numbers (less than
1024).* X forwarding and agent forwarding are not supported.

16.11.7 SFTP Server
To support SFTP, the Tectia server configuration must include the sftp subsystem
definition:

Subsystem-sftp      "sftp_server2.exe"

No internal implementation is built into the SSH server, as it is for the Tectia servers
on Unix systems.

The SFTP server restricts access to a set of folders. This is controlled by the Sftp-

DirList keyword:

# Tectia
Sftp-DirList    "HOME=%D, SCRATCH=S:\scratch\%U"

The value is a comma-separated list (with optional whitespace), where each element
has the format virtual=real. Virtual folder names are arbitrary, and are presented to
the SFTP clients. These are mapped to the specified real folders on the server. The
folder names can contain the patterns %D and %U, representing the user profile folder
and the username, respectively. The default value is HOME=%D.

A set of administrative (or power) users can be defined to use an alternate list of
folders:

# Tectia
Sftp-AdminUsers     "administrator, backup.*, rebecca"
Sftp-AdminDirList   "HOME=%D, BACKUP=Z:\backup, C:=C:, D:=D:"

The value for Sftp-AdminUsers is a comma-separated list (with optional whitespace)
of username patterns. By default, only the administrator account is included.

The Sftp-AdminDirList value has the same format as for Sftp-DirList. The default is
HOME=%D, C:=C:, D:=D:.

SFTP sessions start in a home folder, which is specified by the Sftp-Home keyword:

# Tectia
Sftp-Home           "S:\sftp\%U"

The SFTP home folder must be accessible, according to Sftp-DirList or Sftp-

AdminDirList. The folder can use the same patterns, %D and %U. The default is %D (the
user profile folder).

* Windows does not normally distinguish privileged ports from higher-numbered ports.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

16.11 Server | 561

16.11.8 Logging and Debugging
The server records log messages in the Windows event log, instead of using the stan-
dards syslog service found on Unix systems. The event log can be viewed using the
Tectia server administration program, or using the Control Panel, by selecting
Administrative Tools/Event Viewer.

The verbosity of the messages is controlled by the EventLogFilter keyword:

# Tectia
EventLogFilter      error, warning

Values are a comma-separated list (with optional whitespace) consisting of one or
more of the following levels:

error
Serious problems that prevent operations from completing

warning
Problems that allow operations to continue

information
Normal, successful events

Note that the higher levels do not include the lower levels, as they do for syslog on
Unix systems. Each Windows event log level must be specified explicitly.

The SFTP server’s log messages are controlled by a separate keyword,
SftpLogCategory, that specifies the kinds of messages that are sent to the event log:

# Tectia
SftpLogCategory     31

The numeric value is the sum of any of the following:

• 16 = user login/logout (the default)

• 8 = folder listings

• 4 = modifications

• 2 = uploads

• 1 = downloads

The ssh2admin program provides more convenient checkboxes to specify the value
for SftpLogCategory.

The ssh2master -d option works the same way as it does for sshd2 on Unix systems to
enable debug mode and specify the debug log level: [5.9.2]

# Tectia
ssh2master -d4



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

562 | Chapter 16: Tectia for Windows

Debug output is written to the console window by default, but this can be redirected
to a file:

# Tectia
ssh2master -d4 2> debug.txt

The scripts debug-ssh.bat and debug-ssh-file.bat run ssh2master with debug level 4, as
shown earlier. In addition, the debug-ssh-file.bat script redirects output to the file
sshd2_debug_output.txt in the installation folder, and then displays the file in the
Notepad editor after the server exits. These scripts can also be run by selecting the
items Troubleshoot Server or Troubleshoot Server and Save Debug Output from the
menu Start/Programs/SSH Tectia Server/Tools.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

563

Chapter 17 CHAPTER 17

SecureCRT and SecureFX for Windows

SecureCRT, created by VanDyke Software, is a commercial SSH client for Microsoft
Windows 95 through Windows 2003. It is structured as a terminal program; in fact,
it started life as the terminal program CRT, another VanDyke product. As a result,
SecureCRT’s terminal capabilities are quite configurable. It includes emulation of
several terminal types, logins via Telnet as well as SSH, a scripting language, a key-
map editor, SOCKS firewall support, chat features, and much more. We will focus
only on its SSH capabilities, however.

SecureCRT supports both SSH-1 and SSH-2 in a single program. Other important
features include port forwarding, X11 packet forwarding, support for multiple SSH
identities, and an agent. Secure file copy is accomplished not only by an scp-type pro-
gram, vcp, but also by ZModem, an old protocol for uploading and downloading
files. (The remote machine must have ZModem installed.) If ZModem is used while
you’re logged in via SSH, these file transfers are secure.

We’ve organized this chapter to mirror the first part of the book covering Unix SSH
implementations. When appropriate, we refer you to the earlier material for more
detailed information.

Our discussion of SecureCRT is based on a prerelease of Version 5.0, dated Decem-
ber 2004.

17.1 Obtaining and Installing
SecureCRT may be purchased and downloaded from VanDyke Software:

http://www.vandyke.com/

A free evaluation version is available, expiring 30 days after installation, so you can
try before you buy. If you do purchase the program, VanDyke will provide a serial
number and license key.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

564 | Chapter 17: SecureCRT and SecureFX for Windows

Installation is straightforward and glitch-free. The software is distributed as a sin-
gle .exe file; simply run it to install the program. Follow the onscreen instructions,
installing the software in any folder you like. We accepted the default choices.

17.2 Basic Client Use
Once you’ve installed the program, it’s time to set up a new session, which is Secure-
CRT’s word for a collection of settings. Choose “Quick Connect...” from the File
menu, and in the window that appears (see Figure 17-1), enter the following
information:

Protocol
Select ssh2 for the SSH-2 protocol.

Hostname
Enter the hostname of the remote SSH server, such as server.example.com.

Port
Leave it at the default port number, 22, unless your server uses a nonstandard
port.

Username
Enter your username on the remote machine.

Authentication
Select Password, unless you have another method set up already.

Also put a checkmark in the “Save session” checkbox if you plan to return to this
SSH server regularly.

Now click the Connect button. You should be prompted for your login password on
the remote machine, and then you’ll be logged in via SSH. SecureCRT operates just
like a normal terminal program. SSH’s end-to-end encryption is transparent to the
user, as it should be.

17.3 Key Management
SecureCRT supports public-key authentication using DSA or RSA keys. It can gener-
ate keys with a built-in wizard (in SECSH format, compatible with Tectia [6.1.2]), or
you can import existing keys. It also distinguishes between two different types of
SSH identities: global and session-specific. Finally, SecureCRT includes an SSH agent
and supports OpenSSH-style agent forwarding.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

17.3 Key Management | 565

17.3.1 Key Generation Wizard
SecureCRT’s Key Generation Wizard creates key pairs for public-key authentication.
The utility is run in the Tools menu by selecting Create Public Key. Equivalently,
from the Global Options window, under SSH2 or SSH1,* click Create Identity File.

Operation is straightforward. All you need to supply are the passphrase, the number
of bits in the key, and some random data by moving your mouse around the screen.
The RSA Key Generation Wizard then creates a key pair and stores it in two files. As
with the Unix SSH implementations, the private key filename is anything you choose
(say, mykey), and its corresponding public-key filename is the same with .pub added
(e.g., mykey.pub).

Once your key pair is generated, you need to copy the public key to the SSH server
machine, storing it in your account’s authorization file. [6.1] SecureCRT can do this
automatically, or you can do it manually.

17.3.1.1 Automatic installation of keys

SecureCRT can upload your public keys to an SSH server with the click of a button,
but there’s a catch: your remote SSH server must support the publickey subsystem,
described in technical detail at:

http://www.vandyke.com/technology/draft-ietf-secsh-publickey-subsystem.txt

Figure 17-1. SecureCRT Quick Connect window

* VanDyke uses the terms “SSH1” and “SSH2” to mean the protocols SSH-1 and SSH-2, respectively.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

566 | Chapter 17: SecureCRT and SecureFX for Windows

VanDyke’s own VShell server supports it, and VanDyke makes available a patched
OpenSSH server with similar support at:

http://www.vandyke.com/download/os/pks_ossh.html

Assuming you’re running one of these servers:

1. Open the Session Options window, either for an existing session or to create a
new session.

2. Under Connection/SSH2, fill in your desired hostname and remote username.
Then, for your primary authentication method, choose PublicKey.

3. Click the Properties button to display the Public Key Properties dialog (see
Figure 17-2).

4. Select your desired public key, or generate a new one.

5. Click the Upload button.

6. SecureCRT will upload your public key to the remote SSH server machine. You
will have to authenticate.

If the server does not support the publickey subsystem, you’ll see an error message
like “Unable to open the subsystem for publickey assistant.” Try installing the key
manually.

17.3.1.2 Manual installation of keys

To install your SecureCRT public key on a remote SSH server:

1. Log into the SSH server machine using SecureCRT and password authentication.

2. View the public-key file and copy the full text of the key to the Windows
clipboard.

Figure 17-2. SecureCRT Public Key Properties dialog



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

17.3 Key Management | 567

3. Install the public key (by pasting from the clipboard as necessary) on the SSH
server machine in your remote account. [2.4.3]

4. Log out.

5. In the Session Options window, select Connection/SSH2, and change Authenti-
cation from Password to PublicKey.

6. Log in again. SecureCRT prompts you for your private-key passphrase, and
you’ll be logged in.

17.3.2 Using Multiple Identities
SecureCRT supports two types of SSH identities. Your global identity is the default
for all SecureCRT sessions, and is found on the Global Options window, under
SSH2 or SSH1 (“Use identity file”).

You may override the default by using a session-specific identity that may differ (as
the name implies) for each session you define:

1. Open the Session Options window.

2. Select Connection/SSH2.

3. For your primary authentication type, select PublicKey, then click the Properties
button to its right, to view the Public Key Properties dialog (see Figure 17-2).

4. Select “Use session public key setting,” then select or generate your key of
choice.

17.3.3 The SSH Agent
SecureCRT comes with an SSH agent for holding your SSH keys in memory, so you
don’t have to type your passphrase. (We cover agents in Chapter 6.)

SecureCRT’s agent is the simplest to use of any SSH implementation we’ve seen.
Simply open the Global Options window, select SSH2, and place a checkmark next
to “Add keys to agent.” From that point onward, each time you enter a passphrase
for a key, the decrypted key will be stored in the agent, so you won’t have to reenter
the passphrase.

To enable SecureCRT’s agent forwarding, which works with OpenSSH and
VanDyke’s own VShell servers only, open the Global Options window and select
SSH2. Then place a checkmark next to “Enable OpenSSH agent forwarding.” [6.3.5]

You might also notice that SecureCRT offers to remember login passwords when you
use password authentication. This is not the same as using an agent: your login pass-
word on the remote machine has nothing to do with keys and passphrases on the
local machine.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

568 | Chapter 17: SecureCRT and SecureFX for Windows

17.4 Advanced Client Use
SecureCRT lets you change settings for its SSH features and its terminal features. We
will cover only the SSH-related ones. The others (and more details on the SSH fea-
tures) are found in SecureCRT’s online help.

SecureCRT calls a set of configuration parameters a session. It also distinguishes
between session options that affect only the current session and global options that
affect all sessions.

You can change session options before starting an SSH connection or while you are
connected. Some options can’t be changed while connected, naturally, such as the
name of the remote SSH server machine. View the Session Options window
(Figure 17-3) by selecting Session Options from the Options menu or clicking the
Properties button on the button bar.

Figure 17-3. SecureCRT session options



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

17.4 Advanced Client Use | 569

17.4.1 Mandatory Fields
To establish any SSH connection, fill in the Connection fields in the Session Options
window. These include:

Name
A memorable name for your collection of settings. This can be anything, but it
defaults to the name of the SSH server.

Protocol
Either SSH-1 or SSH-2.

Then fill in the following fields under Connection/SSH2:

Hostname
The name of the remote SSH server machine to which you want to connect.

Port
The TCP port for SSH connections. Virtually all SSH clients and servers operate
on port 22. Unless you plan to connect to a nonstandard SSH server, you won’t
need to change this. [7.4.5.1]

Username
Your username on the remote SSH server machine. If you’re using public-key
authentication, this username must belong to an account that contains your
public key.

Authentication
How you identify yourself to the SSH server. This can be password (i.e., your
remote login password), public key, keyboard-interactive authentication (a.k.a.
challenge-response or one-time password), or GSSAPI authentication. [5.4]

17.4.2 Data Compression
SecureCRT can transparently compress and uncompress the data traveling over an
SSH connection. This can speed up your connection. [7.4.14]

In the Session Options window, choose Connection/SSH2/Advanced. The “Com-
pression” dropdown lets you select the type of compression (zlib is the most stan-
dard). You may also set a value for the compression Level. The higher the value, the
better the compression, but the greater load on the CPU, potentially slowing your
computer.

17.4.3 Firewall Use
SecureCRT supports connections through several types of firewalls, such as the
SOCKS4 and SOCKS5 firewalls supported by various SSH servers. You can config-
ure one or more named firewalls and select one to be the default for all new sessions.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

570 | Chapter 17: SecureCRT and SecureFX for Windows

Every individual session can use any of the named firewalls. You need to know the
hostname or IP address of the firewall, and the TCP port on which to connect.

17.5 Forwarding
SecureCRT supports the SSH feature called forwarding (Chapter 9), in which
another network connection can be passed through SSH to encrypt it. It is also called
tunneling because the SSH connection provides a secure “tunnel” through which
another connection may pass. Both TCP port forwarding and X forwarding are sup-
ported. (As well as agent forwarding, as we mentioned earlier.)

17.5.1 Port Forwarding
Port forwarding permits an arbitrary TCP connection to be routed through an SSH
connection, transparently encrypting its data. [9.2] This turns an insecure TCP con-
nection, such as Telnet, IMAP, or NNTP (Usenet news), into a secure one. Secure-
CRT supports local port forwarding, meaning that your local SSH client
(SecureCRT) forwards the connection to a remote SSH server.

Each SecureCRT session you create may have different port forwardings set up. To
set up forwarding to a particular remote host, open the Session Options window and
select Connection/Port Forwarding.

To create a new forwarding, first click the Add button to display the Local Port For-
warding Properties window, as in Figure 17-4. Then enter:

Name
Any descriptive name for your forwarding, to help you remember what it does.

Local
The port number on your local machine to connect to the secure tunnel. This
can be just about any number, but for tradition’s sake, make it 1024 or higher.
Choose a local port number that’s not being used by any other SSH client on
your PC. If you want to restrict the local IP address that allows connections (i.e.,
if your PC has multiple network addresses), check the associated checkbox
(“Manually select local IP addresses...”) and fill in the address.

Remote
The port number of the remote service, such as 119 for NNTP or 143 for IMAP.
The remote machine, by default, is the same one used for your SecureCRT ses-
sion, but you can change this by checking “Destination host is different from the
SSH server” and entering the hostname where the remote service is found. But
beware: you can produce a non-secured tunnel with this kind of third-party for-
warding if you’re not careful.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

17.5 Forwarding | 571

Application
SecureCRT can run an external program for you to take part in the forwarding.
For example, if you’re forwarding to an IMAP mail server, SecureCRT could
launch your mail client. If you want this behavior, enter the path to your desired
application program.

When you’re done, click OK to save the forwarding, and your desired TCP port will
be forwarded for the duration of your connection.

17.5.2 X Forwarding
The X Window System is the most popular windowing software for Unix machines.
If you want to run remote X clients that open windows on your PC, you need:

• A remote host, running an SSH server, that has X client programs available

• An X server running on your PC under Windows, such as Cygwin/X or X-
SecurePro

SSH makes your X connection secure by a process called X forwarding. [9.4] Turn-
ing on X forwarding is trivial in SecureCRT. Simply put a checkmark in the checkbox

Figure 17-4. Local Port Forwarding properties window



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

572 | Chapter 17: SecureCRT and SecureFX for Windows

“Forward X11 Packets.” It is found in the Session Options window under Connec-
tion/Port Forwarding/X11.

To secure an X connection by forwarding it through SSH, first run SecureCRT and
establish a secure terminal connection to the SSH server machine, with X forwarding
enabled. Then run your PC’s X server, disabling its login features such as XDM. Now
simply invoke X clients on the server machine.

17.6 Command-Line Client Programs
Although SecureCRT is a graphical terminal program, it also comes with a few com-
mand-line programs very similar to the ssh, scp, and sftp programs supplied with
OpenSSH and Tectia. They are called vsh, vcp, and vsftp.

vsh is a remote login and command-execution program similar to ssh. Type vsh by
itself for full usage information. Here are some notable examples:

# Log into server.example.com as smith
C:\> vsh -l smith server.example.com

# Invoke the remote command "who"
C:\> vsh -l smith server.example.com who

vcp is a file-transfer program similar to scp: we discuss it in the next section. vsftp is
an interactive file-transfer program similar to sftp and ftp.

17.7 File Transfer
SecureCRT offers three ways to transfer files securely between systems via SSH:

• vcp and vsftp

• Xmodem or Zmodem

• SecureFX

17.7.1 The vcp and vsftp Commands
SecureCRT comes with a command-line program, vcp, for transferring files securely.
It has syntax almost identical to scp. For example, to copy the local file myfile to the
remote SSH server server.example.com, authenticating as smith, and naming the copy
newfile:

C:\> vcp myfile smith@server.example.com:newfile

Many of vcp’s options are the same as scp’s:

-r Recursive copy

-i Specify a public-key identity for authentication

-v Verbose flag for debugging



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

17.7 File Transfer | 573

However, other options are different. Type vcp by itself for full usage information.

vsftp is an FTP-like client provided with SecureCRT; it should feel familiar to any-
one who has used an FTP client. Run vsftp -h for full usage information.

17.7.2 Zmodem File Transfer
SecureCRT supports file transfer using the old Xmodem and Zmodem protocols,
secured via SSH. To use these protocols, your SSH server machine will need Xmo-
dem or Zmodem programs installed, such as sz and rz (send and receive Zmodem,
respectively) or sx and rx (send and receive Xmodem, respectively), often found on
Linux machines. For example, to send a file from the remote server machine to your
local client machine via Zmodem:

1. On the remote system, run:

$ sz myfile

2. SecureCRT will automatically detect the Zmodem connection and perform the
download, displaying the file-transfer status in a window.

Similarly, to upload a file:

1. On the remote system, run:

$ rz

2. In SecureCRT, choose Transfer/Zmodem Upload List, and select the files you
want to transfer. Then select Transfer/Start Zmodem Upload.

17.7.3 SecureFX
If you want a graphical file transfer with a Windows Explorer-like interface, plus
integration with SecureCRT, consider VanDyke’s commercial product, SecureFX.
Once you’ve authenticated and connected to a remote SSH server, you can drag and
drop files between the machines with your mouse.

SecureFX also has an interesting feature called Quick Synchronize, which is roughly
similar to hotsynching on a Palm Pilot. Suppose you have a set of files on your local
computer and a backup copy on a remote system. The Quick Synchronize feature
compares the two sets, displays the differences, and lets you make them identical by
copying files securely between the two systems. Even if you’ve edited the files on
both systems, Quick Synchronize can bring both sets up to date with the most recent
changes.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

574 | Chapter 17: SecureCRT and SecureFX for Windows

17.8 Troubleshooting
SecureCRT, like any other SSH client, can run into unexpected difficulties interact-
ing with an SSH server. In this section we cover problems specific to SecureCRT. For
more general problems, see also Chapter 12.

17.8.1 Authentication
Q: When I try to upload my public key, I get the message, “Unable to open publickey

subsystem” and the upload fails.

A: SecureCRT can upload public keys only to SSH servers supporting the public-
key subsystem, an open standard created by VanDyke. If you get this message,
your remote server doesn’t have this support.

17.8.2 Forwarding
Q: I can’t do port forwarding. I get a message that the port is already in use.

A: Do you have another SecureCRT window open and connected with the same
port-forwarding setup? You can’t have two connections forwarding the same
local port. As a workaround, create a second session that duplicates the first, but
with a different local port number. Now you can use both sessions simulta-
neously.

17.9 VShell
VanDyke Software also sells an SSH server product, VShell, that runs on Windows
and various Unix platforms, including Red Hat Linux, Solaris, FreeBSD, OS X, and
HP-UX. VShell has interesting features to recommend it:

File and notification triggers
VShell can execute arbitrary commands in response to events such as SFTP file
transfers or failed authentication attempts.

Flexible SFTP configuration
VShell’s SFTP server has an access control list (ACL) language that can assign
access to individual server directories by any combination of account name or
group membership. It can conveniently use the Unix chroot mechanism to
restrict users to given directories, as well as define virtual directories that hide
details of server file organization from clients.

Fine-grained access control
Again using ACLs, the VShell server can restrict access to services by individual
accounts. One account might be allowed full access while another may use only
SFTP. One group may do local port forwarding and get interactive sessions with



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

17.10 Summary | 575

their defined shells, but not remote forwarding or arbitrary remote command
execution, except for one user in that group, who still gets full access.

Of course, the efficacy of such measures depends on further work: it does little
good to restrict remote commands, for example, if any program can be started
by the user’s shell. But VShell provides these restrictions at the right place: in
terms of the basic SSH channel types used to invoke the services. Other SSH
products often do not have this level of control, and require awkward and frag-
ile combinations of special shells or specific authentication methods to achieve
the same goal.

GSSAPI
Support for emerging GSSAPI/Kerberos SSH standards for both client and server
authentication.

Very understandable debug messages
Don’t underestimate the value of readable verbose messages! There will always
be problems, and logging is your main tool for solving them. Reading the ver-
bose output of some SSH products can be an art in itself. VShell’s messages are
particularly well done.

17.10 Summary
VanDyke’s SSH products are mature, stable, and well rounded, and have good ven-
dor support. The GUI clients SecureCRT and SecureFX both work well. The com-
mand-line clients are not as flexible as OpenSSH and Tectia’s, but they cover the
basics and get the job done. The VShell server supports some interesting features and
is well worth checking out.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

576

Chapter 18CHAPTER 18

PuTTY for Windows

The world is full of rich, hyper-powerful SSH implementations, but sometimes sim-
plicity is best. Enter PuTTY, a tiny, uncomplicated, free SSH client for Microsoft
Windows.* There’s no installation procedure, no steep learning curve, and in many
cases, no configuration needed.

At press time, PuTTY was still labeled as “beta” software, but don’t be discouraged:
it’s a robust and just plain useful SSH client. Thanks to Simon Tatham for creating
the PuTTY suite of programs, releasing them as free software, and writing a detailed
manual on his web site. Because PuTTY’s manual is very good, we’ll focus on the
most common uses. This chapter covers PuTTY Version 0.56.

18.1 Obtaining and Installing
Installation of PuTTY is as easy as it gets. Just download the putty.exe executable
from:

http://www.chiark.greenend.org.uk/~sgtatham/putty/

and run it. This simplicity is especially handy if you’re traveling and need an SSH cli-
ent; PuTTY is just a quick download away.

18.2 Basic Client Use
To get started, just run (or double-click) putty.exe. The PuTTY Configuration dialog
shown in Figure 18-1 will appear:

For a quick start, locate the box labeled “Host Name (or IP address),” enter the host-
name of your remote server machine, and click the Open button. A terminal win-
dow then appears and prompts you for your login name and password. Assuming

* It’s also available for Unix, but OpenSSH and Tectia are so widespread that we don’t see much point in using
PuTTY on Unix platforms.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

18.2 Basic Client Use | 577

there’s nothing unusual about your SSH server, you’re done: PuTTY establishes a
secure login session with the server.

PuTTY supports not only SSH, but also insecure protocols like Telnet
and Rlogin. Make sure your connections are using the SSH protocol by
selecting SSH on the initial PuTTY Configuration dialog. SSH is the
default protocol for the other programs in the suite, such as Plink,
PSFTP, and PSCP.

18.2.1 Plink, a Console Client
PuTTY comes with a second SSH terminal client, Plink, which is reminiscent of the
ssh client of OpenSSH and Tectia. For a quick start, open a command window and
type:

C:\> plink smith@server.example.com

This command connects you via SSH to server.example.com, logging in as remote
user smith.

Plink is most appropriate for noninteractive use: for example, setting up tunnels for
port forwarding, or running inside batch jobs. It can also handle interactive logins,

Figure 18-1. PuTTY Configuration dialog



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

578 | Chapter 18: PuTTY for Windows

but PuTTY is a better choice, particularly for screen-based programs like text edi-
tors. The Windows command line is not a particularly good terminal emulator.

The plink client has many command-line options, similar to those of ssh. Run plink
by itself to see a list of valid options, as shown in Table 18-1.

18.2.2 Running Remote Commands
Instead of an interactive terminal session, PuTTY and Plink can run a single com-
mand of your choice, then exit immediately. It’s simplest with Plink: just append the
remote command to the Plink command line. For example, to run the ls (list files)
command on a remote Linux machine running an SSH server, type:

C:\> plink smith@server.example.com ls

With PuTTY, visit the PuTTY Configuration dialog and look under Connection/
SSH. Fill in the blank labeled “Remote command,” then connect. The command will
run and PuTTY will terminate afterward.

18.3 File Transfer
The PuTTY suite includes two programs for copying your files securely between
machines. PSCP is a noninteractive program much like scp, and PSFTP is an interac-
tive program inspired by ftp.

Table 18-1. plink command-line options

Option Meaning

1 Use SSH-1 protocol.

2 Use SSH-2 protocol.

C Use compression for the SSH connection. [7.4.14]

-i keyname Use the private key keyname.

-l username Specify the remote username (if omitted, it defaults to your local username).

-load session Load settings from a saved session.

-m filename Read remote commands from the file filename.

-pw P Use password P.

-P port Use TCP port port to connect to the remote SSH server.

-s Use an SSH subsystem. [5.8]

-t Allocate a pseudo-terminal (pty).

-T Do not allocate a pseudo-terminal. (pty).

-v Print verbose diagnostics.

V Display the program version.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

18.3 File Transfer | 579

18.3.1 File Transfer with PSCP
PuTTY’s pscp client is for copying files securely between machines, just like scp from
OpenSSH and Tectia. Also like scp, pscp is noninteractive. (For an interactive client,
see psftp. [18.3.2])

The syntax for PSCP is almost identical to that of scp. [7.5] Remote files are refer-
enced by:

[user@]host:path

where user is the remote username, host is the remote hostname, and path is the
folder path to the file in question.

18.3.2 File Transfer with PSFTP
PSCP can copy files securely between computers, but the user interface is noninterac-
tive. If you prefer a familiar FTP-like interface, try PSFTP, PuTTY’s interactive file-
transfer program. To start a file copying session with remote computer server.
example.com, run:

C:\> psftp server.example.com
login as: smith
Using username "smith".
smith@server.example.com's password:
Remote working directory is /home/smith
psftp>

The prompt psftp> indicates that PSFTP is ready to accept commands. If you’re
familiar with FTP, the PSFTP commands will make you feel right at home. To trans-
fer a file from your local machine to the remote server, use:

psftp> put myfile

or to copy a local file, myfile, as remote file remotefile:

psftp> put myfile remotefile

This is equivalent to the PSCP command:

C:\> scp myfile server.example.com:remotefile

In the other direction, to transfer files from the remote server to your local machine,
use get:

psftp> get remotefile
psftp> get remotefile myfile

To traverse the directory (folder) hierarchy of the remote machine, use the cd com-
mand as in DOS or Unix:

psftp> cd my_remote_subfolder
psftp> cd ..



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

580 | Chapter 18: PuTTY for Windows

To change your working directory on the local machine, use lcd:

psftp> lcd my_local_subfolder
psftp> lcd ..

For a full list of commands, type help, or for assistance with a particular command,
specify the command name as well (e.g., help put). Table 18-2 lists the available com-
mands. Unfortunately, PSFTP does not include the useful mput and mget commands
for transferring many files at once.

18.4 Key Management
If you’d like to use public-key authentication to connect to remote hosts [2.4],
PuTTY includes a key generator program, called PuTTYgen. It has a simple graphi-
cal user interface for creating and editing RSA and DSA keys, as shown in
Figure 18-2.

Table 18-2. PSFTP commands

Basic commands:

open Open an SFTP connection to a remote server.

bye, exit, quit Exit PSFTP.

help Get a help message.

! Shell escape: run a command-line program on your local computer.

Directory (folder) commands:

dir, ls List a directory.

cd Change directory (remote machine).

lcd Change directory (local machine).

pwd Print the name of the directory you’re in (remote machine).

lpwd Print the name of the directory you’re in (local machine).

mkdir Create a directory.

rmdir Delete a directory.

File commands:

get Download a file.

put Upload a file.

reget Restart a download that you tried previously, but failed; will pick up where the
previous download left off.

reput Restart an upload that you tried previously, but failed; will pick up where the pre-
vious upload left off.

mv, ren Rename a file.

rm, del Delete a file.

chmod Change permissions of a file, like the Unix chmod command.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

18.4 Key Management | 581

To create a new key, simply click the Generate button. You’ll be asked to waggle
your mouse around to supply random numbers to the generator, then to supply a
passphrase. To edit an existing key, just click the Load button.

You might remember that OpenSSH and Tectia use different file formats for their
keys. PuTTYgen uses the SECSH format for public keys [6.1.2], but its own unique
format for private keys. The private key is stored in a file with the suffix .ppk and
looks like this:

PuTTY-User-Key-File-2: ssh-rsa
Encryption: aes256-cbc
Comment: Your comment here
Public-Lines: 4
AAAAB3NzaC1yc2EAAAABJQAAAIBltDpO1wC9qJ98peVr5y9C7N9vdOh+OrCNwbIh
lba1oSf94rrDl1TQXKXxgIHSd1ICgh7wkdxFWbyDRXSuWdur6kreTGRaw9XgCzQt
LyANMtKAPpDYVE1g8jb6jA1bOMtK8b+pGPmetbvdyBDmFcQ/oPwYyrZIjfbd8IdK
FxxJvw==
Private-Lines: 8
3ryAyuTLEnYuLGsetfNvazRYOhxQmzBWSyMLyT2i+zt7QqArlPglY1Um3NBJlYgS
caHDiLyH95tV2onEeBThJzYFAvgrr7UlXVjQTDLr29fe2FTS/bNm4OahTaKzTNV4
0EojvG1yafCucaZMVwsndB4djpm4otJja+xDVLN7Wj3ibzUT+SfodSJyazMAjB0y
Q3ndbcqcIPPg4OM3sL8c09KTVdcuLkkyKMSV5yEgTAP0RG0M+T8/ChHLFLHswwV+

Figure 18-2. PuTTYgen, the key generator



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

582 | Chapter 18: PuTTY for Windows

/tlb0GLZRa1w3KsnzHHFKxMsM2zOdHXnSG8TX0kecdpT2p8PT3UGw2+SMESD8umc
GLai7g/o03lMJVSOezrooDC06p8J8OXk8h84gYeJbBIyXdELh10E3fnDSkTy5jS4
w2SCNzXX67ggWjIFtsefsx6VJ4WwJUYtNbKY35M59xMug/GRBL07QPLu+xSh8/RB
yM/rWtUvGwXG3ygW/TVm7A==
Private-MAC: a0f9fa2204172fc6df9e0f6d5b918c8790d88611

But never fear: PuTTYgen can read and write public and private keys for both
OpenSSH and Tectia:

• To read an OpenSSH or Tectia key, simply click the Load button and select the
key file. (In the file dialog, be sure to set the file type to “All Files (*.*)” so that
your non-PuTTY keys show up.)

• To write an OpenSSH or Tectia private key, use the Conversion menu and select
“Export OpenSSH key” or “Export ssh.com key.”

• To write an OpenSSH public key, copy and paste the key shown at the top of the
window, under “Public key for pasting into OpenSSH authorized_keys file.” To
write a Tectia public key, do nothing: PuTTY’s public keys are already in SECSH
format.

18.4.1 Choosing a Key
To select the private key for PuTTY to use, open the PuTTY Configuration dialog
and visit Connection/SSH/Auth. Under “Private key file for authentication,” browse
to and select your key of choice. (Make sure the corresponding public key is prop-
erly installed on the server. [6.2])

If you’re using Plink, you can choose the key on the command line with the –i
option:

C:\> plink -i c:\keys\me.ppk smith@server.example.com

18.4.2 Pageant, an SSH Agent
An SSH agent goes hand in hand with public-key authentication. [6.3] PuTTY has an
agent, called Pageant, that caches private keys (stores them in memory) and responds
to authentication-related queries from PuTTY, PSCP, and other clients in the suite.
In short, Pageant is a timesaver, so you don’t have to keep retyping your passphrase.

To run Pageant, just double-click it or invoke it from the command line. (Even bet-
ter, add pageant.exe to your system startup so that it’s always available when you
boot or log in.) An icon will appear in the Windows System Tray on the taskbar.
Right-click the icon and you can load keys into the agent, view your keys, or per-
form other operations, as shown in Figure 18-3. (To add a key, you’ll need to know
its passphrase.) Once a key is loaded into Pageant, the various PuTTY clients will use
the key transparently, and you won’t have to retype its passphrase.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

18.5 Advanced Client Use | 583

You can also run Pageant on the command line. Just follow it with one or more keys
you’d like to load, e.g.:

C:\> pageant key1 key2 key3

and it will dutifully load them.

Speaking of agents, PuTTY also supports agent forwarding [6.3.5], but only for
OpenSSH servers, not Tectia servers. Just make sure the option “Allow agent for-
warding” is checked in PuTTY’s configuration window; or if you’re using Plink, add
the –A option to enable agent forwarding or –a to disable it.

18.5 Advanced Client Use
PuTTY is simple to use in its most basic form. Nevertheless, its clients have many
options that are worth trying out. We will cover the ones relating to SSH. Other
terminal-related features, like settings for the window, keyboard, and mouse, we
encourage you to explore on your own.

18.5.1 Saved Sessions
If you have a habit of connecting to the same remote machines often, set up a Saved
Session, which remembers the settings for that connection so that you can reuse
them. This is similar to the OpenSSH and Tectia feature of configuration files, but
with a GUI. [7.1.2] Simply configure PuTTY the way you like it, then save that con-
figuration under a name, such as “My Favorite Settings” or “office.”

Figure 18-3. Pageant, the PuTTY agent



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

584 | Chapter 18: PuTTY for Windows

When you create and name a Saved Session, it becomes available not only to PuTTY,
but also to the other programs in PuTTY’s suite, such as PSCP and Plink. Just pro-
vide the saved session’s name in place of a hostname. For example, if you created a
Saved Session called “office” to stand for employer.example.com, you could run:

C:\> plink office

and it will connect to employer.example.com.

Saved Sessions are stored in the Windows registry under the key \HKEY_CURRENT_

USER\Software\SimonTatham\PuTTY\Sessions.

18.5.2 Host Keys
Like other SSH implementations, PuTTY records the host keys of SSH servers it
encounters. They are stored in the Windows registry under the key \HKEY_CURRENT_

USER\Software\SimonTatham\PuTTY\SshHostKeys.

18.5.3 Choosing a Protocol Version
We always recommend you use the SSH-2 protocol, since it is more secure and
robust than the original SSH-1. Nevertheless, PuTTY does support both protocols,
and you can choose your preferred protocol on the PuTTY Configuration dialog,
under Connection/SSH. The choices are:

1 only
Require SSH-1, or else fail.

1
Try SSH-1 first, then SSH-2.

2
Try SSH-2 first, then SSH-1.

2 only
Require SSH-2, or else fail (recommended).

With Plink, you can force the protocol version with the -1 (SSH-1 only) and -2 (SSH-
2) options:

C:\> plink -2 smith@server.example.com

18.5.4 TCP/IP Settings
SSH uses TCP/IP as its transport mechanism, and PuTTY gives you control over
some TCP-related settings.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

18.5 Advanced Client Use | 585

18.5.4.1 Selecting a remote port

SSH servers almost always run on TCP port 22, but if you encounter a nonstandard
server, you can choose a port in the PuTTY Configuration dialog, under Connec-
tion. Locate the Port value and fill it in.

With Plink, just specify the –P option to set the port number:

C:\> plink -P 12345 smith@server.example.com

18.5.4.2 Keepalive messages

SSH clients can optionally send TCP keepalive messages to an SSH server to recog-
nize when a connection has failed. [7.4.5.4] If the client detects a lack of responses to
these messages, it shuts down the connection. You can enable or disable this feature
in the PuTTY Configuration dialog, under Connection.

18.5.4.3 The Nagle Algorithm

TCP/IP has a feature called the Nagle Algorithm, which is designed to reduce the
number of TCP segments sent with very small amounts of data (e.g., 1 byte), usually
as part of an interactive terminal session. This can affect performance over wide-area
networks. [7.4.5.5] PuTTY lets you enable or disable the Nagle Algorithm in the
PuTTY Configuration dialog, under Connection.

18.5.5 Pseudo-Terminal Allocation
SSH clients allocate a pseudo-terminal on the server machine: a software abstraction
representing a computer terminal. [7.4.6.5] PuTTY does this by default, but you can
prevent this in the PuTTY Configuration dialog, under Connection/SSH.

Because PuTTY is designed as a terminal client, which is interactive, you generally
can leave this setting alone. But if you’re using PuTTY noninteractively, say, only to
set up port forwarding—you don’t strictly need a pseudo-terminal. If you’re using
Plink, you can disable pseudo-terminal allocation with the –T option or leave it
enabled with –t.

18.5.6 Proxies and SOCKS
PuTTY supports SOCKS, an application-layer network proxying system supported
by various SSH implementations. [7.4.7] You can enable it in the PuTTY Configura-
tion dialog, under Connection/Proxy.

18.5.7 Encryption Algorithms
On the Connection/SSH section of the PuTTY Configuration dialog, you can choose
the encryption algorithms (ciphers) acceptable to the client. [7.4.9] Any algorithms



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

586 | Chapter 18: PuTTY for Windows

appearing below the line “—warn below here—” will cause PuTTY to display a
warning before they are used.

For most people, the defaults are fine. But if, say, a security hole were found in one
of the algorithms (say, Blowfish), you could move it below the line, and PuTTY will
warn before using it.

18.5.8 Authentication
PuTTY supports the following authentication types: password, public-key, chal-
lenge-response (a.k.a. keyboard-interactive), and TIS. [7.4.13] Password authentica-
tion works by default. Public-key authentication requires you to set up a key, as
we’ve seen. [2.4] Challenge-response authentication is enabled in the PuTTY Config-
uration dialog, under Connection/SSH/Auth. [5.4.5]

TIS authentication is uncommon: it authenticates users via the Gauntlet firewall
toolkit from Trusted Information Systems. It works only for the SSH-1 protocol so
we recommend against using it. That being said, it is enabled in the PuTTY Configu-
ration dialog, under Connection/SSH/Auth.

18.5.9 Compression
The data flowing between the SSH client and server may optionally be compressed to
save bandwidth. [7.4.14] To enable compression, open the PuTTY Configuration
dialog and look under Connection/SSH. If you’re using Plink, add the –C option to
enable compression:

C:\> plink -C smith@server.example.com

18.5.10 Logging and Debugging
If you’re having a connection problem with PuTTY, you can capture the session data
in a file. Open the PuTTY Configuration dialog and look under Session/Logging.
Here you select the file to receive the data, and four different settings:

Logging completely turned off
As it says, do no logging.

Log printable output only
This simply captures the text of your terminal session, and is not very useful for
debugging.

Log all session output
This captures not only the text of your session, but also any nonprinting control
characters. This is useful for debugging terminal emulation problems, e.g., if
your favorite text editor isn’t behaving when viewed through PuTTY.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

18.6 Forwarding | 587

Log SSH packet data
This is the big one: the actual SSH data, unencrypted, that passes over the con-
nection. It appears in hexadecimal and ASCII, annotated with high-level infor-
mation such as “Doing Diffie-Hellman group exchange” and “Access denied.” If
you’re debugging an SSH problem, this is the logging you need. However, it’s
not very user-friendly: you’ll need substantial knowledge of the SSH protocol to
figure out what’s going on.

If you select “Log SSH packet data,” always select “Omit known pass-
word fields” as well. Otherwise, sensitive data like passwords will be
captured in the log file, which is a security risk if the log file is read or
stolen by a hostile third party.

If you’re using Plink, you can display diagnostic information with the –v option:

C:\> plink -v smith@server.example.com
Server version: SSH-1.99-OpenSSH_3.8.1p1
We claim version: SSH-2.0-PuTTY-Release-0.56
Using SSH protocol version 2
Doing Diffie-Hellman group exchange
Doing Diffie-Hellman key exchange
Host key fingerprint is:
ssh-dss 1024 80:de:c6:fa:f7:82:4f:c7:c4:8c:1f:6f:d4:40:4b:0e
Initialised AES-256 client->server encryption
Initialised AES-256 server->client encryption
...

18.5.11 Batch Jobs
SSH can be used within batch jobs to secure their communications. [11.1] With
PuTTY, batch jobs are most easily done with Plink and its -batch option:

C:\> plink -batch smith@server.example.com my-job

The -batch option suppresses all user prompts. But wait: just because you’ve dis-
abled prompts doesn’t automatically authenticate you. You’ll also need to set up
passwordless authentication. Otherwise, you’ll simply fail to authenticate, prompts
or no.

18.6 Forwarding
Forwarding or tunneling is the use of SSH to secure another network application,
covered fully in Chapter 9. Both PuTTY and Plink can set up secure tunnels for this
purpose.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

588 | Chapter 18: PuTTY for Windows

18.6.1 Forwarding with PuTTY
Forwarding is set up with the PuTTY Configuration dialog. For local port forward-
ing, which is the most common type, select Tunnels. Then fill in these fields:

Source port
Any unused TCP/IP port on your local machine.

Destination
The remote SSH server name, followed by a colon, followed by the remote port
number.

Local/Remote/Dynamic
Choose Local.

For example, to connect to a remote VNC server (port 5900) on server.example.com,
you’d provide a destination of server.example.com:5900, and any unused source port
(say, 12345). This example demonstrates local forwarding [9.2.1], but PuTTY can
also do remote [9.2.1.2] and dynamic [9.3] port forwarding.

To turn on X forwarding [9.4] for secure connections with an X Window server, sim-
ply choose Tunnels again and select the checkbox Enable X11 Forwarding.

To turn on agent forwarding [6.3.5] to allow your SSH agent to communicate with
clients on other machines, navigate to Connection/SSH/Auth and select the check-
box Allow Agent Forwarding.

18.6.2 Forwarding with Plink
To enable the various kinds of forwarding with the command-line program Plink:

Local port forwarding [9.2.1]
Use the –L option, supplying the source port, remote server name, and remote
port. For example, to forward local port 12345 to remote port 5900 on server.
example.com, run:

C:\> plink server.example.com -L 12345:server.example.com:5900

Remote port forwarding [9.2.1.2]
Use the –R option, supplying the remote source port, local server name, and
local port. For example, to forward remote port 12345 on outerspace.example.
com to your local port 5900, run:

C:\> plink outerspace.example.com -R 12345:localhost:5900

Dynamic port forwarding [9.3]
Use the –D option. For example, to perform dynamic port forwarding via proxy
on port 12345, run:

C:\> plink -D 12345 server.example.com



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

18.7 Summary | 589

X forwarding [9.4]
Use the –X option to enable it, or –x to disable it

Agent forwarding [6.3.5]
Use the –A option to enable it, or –a to disable it.

18.7 Summary
PuTTY is a small, useful SSH client for Windows (and available for Linux if you
don’t already have another SSH client installed). Its major benefit is its simplicity—
just download and start using it—but under the hood it has additional powerful fea-
tures for the inquisitive user. For more information, see the PuTTY manual at:

http://www.chiark.greenend.org.uk/~sgtatham/putty/





This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

591

Appendix A APPENDIX A

OpenSSH 4.0 New Features

Stop the presses! Just before this book was printed, OpenSSH 4.0 was released by
those fine folks at openssh.com. While compatible with Version 3.9, it has several
important new features that we discuss briefly. (We cover just features, not bug fixes.)

Server Features: sshd
The OpenSSH server has new features pertaining to logging, listening addresses, and
password and account expiration warnings.

Logging of Access Control Violations
When authentication attempts are rejected by user-level access control (AllowUsers,
DenyUsers) or group-level access control (AllowGroups, DenyGroups), sshd will log an
informative message about it.

AddressFamily Keyword
The AddressFamily configuration keyword, previously available to clients only, can
now be configured for the SSH server as well. If your server supports both IPv4 and
IPv6, this lets you control on which sort of addresses sshd will listen.

Password and Account Expiration Warnings
If your password or account is going to expire (on operating systems that support
expiration), sshd will now warn you in advance when you authenticate—for example.:

Your password will expire in 6 days
Your account will expire in 11 days



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

592 | Appendix A: OpenSSH 4.0 New Features

Client Features: ssh, scp, and sftp
OpenSSH clients have new features pertaining to keyboard-interactive authentica-
tion, connection sharing, known-hosts handling, port forwarding, and command-
line editing and history.

KbdInteractiveDevices Keyword
The KbdInteractiveDevices keyword was undocumented in OpenSSH 3.9, but now
it’s officially supported. It determines the devices that the client will try for
keyboard-interactive authentication.

KbdInteractiveDevices = pam,skey,bsdauth

More Control for Connection Sharing
If you’re using the connection-sharing feature of ssh, you can now control the mas-
ter process of that connection with the –O option. To check whether you’re using
connection sharing, run the following:

$ ssh -O check server.example.com

To request the master process to exit, run the following:

$ ssh -O exit server.example.com

Hashing of Hostnames
In previous versions of OpenSSH, known_host files contain the hostnames and IP
addresses of the computer’s you’ve visited via SSH. If you’d like to keep this informa-
tion more private, use the new HashKnownHosts configuration keyword in your client
configuration file:

HashKnownHosts yes

SSH clients will now hash the hostnames so they look like random strings—for
example:

|1|Un5Q61BdVPCq65Yj3ec/HH6r+zI=|2pPQE/qjP7rrPLblvS1epjYbUOs=

This feature is experimental at the moment, so use it at your own risk.

Port Forwarding
When you construct a port forwarding, you can now specify a bind address: the
address on which the accepting side of the forwarding will listen. This is useful either
for controlling whether a forwarding is available off-host (not listening on only on the
loopback), or distinguishing among multiple addresses if the listening host is multi-
homed. You give the bind address on the command line, preceding the usual –L or –R



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ssh-keygen | 593

value. For example, to set up a local forwarding from local port 2001 to remote server
port 143 (IMAP), listening on 192.168.100.66:

$ ssh -L 192.168.100.66:2001:localhost:143 server.example.com

or for a remote forwarding:

$ ssh -R 192.168.100.66:2001:localhost:143 server.example.com

You can also do this with the LocalForward and RemoteForward configuration key-
words, prepending the bind address to the second argument:

LocalForward 2001 192.168.100.66:localhost:143
RemoteForward 2001 192.168.100.66:localhost:143

Note that this forwarding will not be listening on the loopback address. You need to
connect to 192.168.100.66:2001, even on the server itself; trying to connect to local-
host:2001 will result in “connection refused.” Also note that the bind address refers
to the client for local forwarding and to the server for remote forwarding.

For local forwarding, the default binding is determined by the GatewayPorts key-
word. For remote forwarding, the server may choose to honor or ignore a client’s
binding request using a new GatewayPorts value, clientspecified:

GatewayPorts clientspecified

This means the SSH client can select the binding address for the forwarding. This
permits clients to bind addresses for remote forwardings

An empty binding address, or the special value *, indicates that the client or server
should listen on all interfaces (including real ones and the loopback interface for
localhost).

sftp Command-Line Features
The sftp client now supports command-line history and editing using Emacs-like
keystrokes. You’ll need the libedit library installed on your computer, available from
http://sourceforge.net/projects/libedit. This feature is controlled at compile time with
the flag --with-libedit.

ssh-keygen
If you’re using the experimental hostname hashing feature described earlier, ssh-
keygen has some new command-line options to support it.

Hashing Your Known Hosts File
ssh-keygen can convert your known_hosts file to use hashes with the –H option:

$ ssh-keygen -H



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

594 | Appendix A: OpenSSH 4.0 New Features

The ssh-keygen manpage claims that the results of ssh-keygen -H are
written to standard output, but this is not true. The command modi-
fies your ~/.ssh/known_hosts file directly. It also stashes a copy of the
old file in ~/.ssh/known_hosts.old for safety, but don’t depend on this:
running ssh-keygen -H twice obliterates the safe copy.

Managing Hosts
Once you’ve hashed your hostnames, it’s hard to edit the known_hosts file because
you can’t read which line corresponds to which host. ssh-keygen provides new com-
mands for locating and removing hosts from the file. To locate a particular host in
the file, use the –F option:

$ ssh-keygen -F server.example.com
# Host server.example.com found: line 3 type RSA1
server.example.com 1024 35 1301302858553510086.....

To remove a known host, use the –R option and provide the original hostname:

$ ssh-keygen -R server.example.com
/home/smith/.ssh/known_hosts updated.
Original contents retained as /home/smith/.ssh/known_hosts.old



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

595

Appendix B APPENDIX B

Tectia Manpage for sshregex

This document describes the regular expressions (or globbing patterns) used in file-
name globbing with scp2 and sftp2 and in the configuration files ssh2_config and
sshd2_config.

Regex syntax used with scp2 and sftp2 is ZSH_FILEGLOB.

Regex Syntax: Egrep Patterns
The escape character is a backslash (\). You can use it to escape metacharacters to
use them in their plain character form.

In the following examples, literal E and F denote any expression, whether a pattern or
a character:

( Start a capturing subexpression.

) End a capturing subexpression.

E|F
Disjunction, match either E or F (inclusive). E is preferred if both match.

E*

Act as Kleene star, match E zero or more times.

E+

Closure, match E one or more times.

E?

Option, match E optionally once.

. Match any character except for newline characters (\n, \f, \r) and the NULL
byte.

E{n}

Match E exactly n times.

E{n,} or E{n,0}
Match E n or more times.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

596 | Appendix B: Tectia Manpage for sshregex

E{,n} or E{0,n}
Match E at most n times.

E{n,m}

Match E no less than n times and no more than m times.

[ Start a character set. See “Character Sets for Egrep and ZSH_FILEGLOB.”

$ Match the empty string at the end of the input or at the end of a line.

^ Match the empty string at the start of the input or at the beginning of a line.

Escaped Tokens for Regex Syntax Egrep
The following list describes the tokens:

\0n..n

The literal byte with octal value n..n.

\0

The NULL byte.

\[1-9]..x

The literal byte with decimal value [1-9]..x.

\xn..n or \0xn..n
The literal byte with hexadecimal value n..n.

\<

Match the empty string at the beginning of a word.

\>

Match the empty string at the end of a word.

\b

Match the empty string at a word boundary.

\B

Match the empty string provided it is not at a word boundary.

\w

Match a word-constituent character, equivalent to [a:zA:Z0:9-].

\W

Match a non-word-constituent character.

\a

Literal alarm character.

\e

Literal escape character.

\f

Literal line feed.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Regex Syntax: ZSH_FILEGLOB (or Traditional) Patterns | 597

\n

Literal newline, equivalent to C’s \n so that it can be more than one character
long.

\r

Literal carriage return.

\t

Literal tab.

All other escaped characters denote the literal character itself.

Regex Syntax: ZSH_FILEGLOB
(or Traditional) Patterns
The escape character is a backslash (\). With this you can escape metacharacters to
use them in their plain character form.

In the following examples, literal E and F denote any expression, whether a pattern or
a character:

*

Match any string consisting of zero or more characters. The characters can be
any characters apart from slashes (/). However, the asterisk does not match a
string if the string contains a dot (.) as its first character, or if the string contains
a dot immediately after a slash. This means that the asterisk cannot be used to
match filenames that have a dot as their first character.

If the previous character is a slash (/), or if an asterisk (*) is used to denote a
match at the beginning of a string, it does match a dot (.).

That is, the asterisk (*) functions as normal in Unix shell fileglobs.

?

Match any single character except for a slash (/). However, do not match a dot
(.) if located at the beginning of the string, or if the previous character is a slash
(/).

That is, the question mark (?) functions as normal in Unix shell fileglobs (at least
in ZSH, although discarding the dot may not be a standard procedure).

**/

Match any sequence of characters that is either empty, or ends in a slash. How-
ever, the substring /. is not allowed. This mimics the **/ construct in ZSH.
(Please note that ** is equivalent to *.)

E#

Act as Kleene star, match E zero or more times.

E##

Closure, match E one or more times.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

598 | Appendix B: Tectia Manpage for sshregex

( Start a capturing subexpression.

)

End a capturing subexpression.

E|F
Disjunction, match either E or F (inclusive). E is preferred if both match.

[

Start a character set (covered next).

Character Sets for Egrep and ZSH_FILEGLOB
A character set starts with [ and ends at non-escaped ] that is not part of a POSIX
character set specifier and that does not follow immediately after [.

The following characters have a special meaning and need to be escaped if meant
literally:

- (minus sign)
A range operator, except immediately after [ where it loses its special meaning.

^ or ! (latter applies to ZSH_FILEGLOB)
If immediately after the starting [, denotes a complement: the whole character
set will be complemented. Otherwise, literal.

[:alnum:]

Characters for which isalnum returns true (see ctype.h).

[:alpha:]

Characters for which isalpha returns true (see ctype.h).

[:cntrl:]

Characters for which iscntrl returns true (see ctype.h).

[:digit:]

Characters for which isdigit returns true (see ctype.h).

[:graph:]

Characters for which isgraph returns true (see ctype.h).

[:lower:]

Characters for which islower returns true (see ctype.h).

[:print:]

Characters for which isprint returns true (see ctype.h).

[:punct:]

Characters for which ispunct returns true (see ctype.h).

[:space:]

Characters for which isspace returns true (see ctype.h).



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Regex Syntax: SSH Patterns | 599

[:upper:]

Characters for which isupper returns true (see ctype.h).

[:xdigit:]

Characters for which isxdigit returns true (see ctype.h).

Example

[[:xdigit:]XY]

is typically equivalent to:

[0123456789ABCDEFabcdefXY] .

It is also possible to include the predefined escaped character sets into a newly
defined one, so:

[\d\s]

matches digits and whitespace characters.

Regex Syntax: SSH Patterns
The escape character is a tilde ~. With this you can escape metacharacters to use
them in their plain character form.

In configuration the backslash (\) is used to escape the list separator
(',').

In the following examples literal E and F denote any expression, whether a pattern or
a character.

(

Start a capturing subexpression.

)

End a capturing subexpression.

{

Start an anonymous, noncapturing subexpression.

}

End an anonymous, noncapturing subexpression.

E|F
Disjunction, match either E or F (inclusive). E is preferred if both match.

E*

Act as Kleene star, match E zero or more times.

E*?

Act as Kleene star, but match nongreedily (lazy match).



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

600 | Appendix B: Tectia Manpage for sshregex

E+

Closure, match E one or more times.

E+?

Closure, but match non-greedily (lazy match).

E?

Option, match E optionally once.

E??

Option, but match non-greedily (lazy match).

.

Match ANY character, including possibly the NULL byte and the newline char-
acters.

E/n/

Match E exactly n times.

E/n,/ or E/n,0/
Match E n or more times.

E/,n/ or E/0,n/
Match E at most n times.

E/n,m/

Match E no less than n times and no more than m times.

E/n,/? , E/n,0/? , E/,n/? , E/0,n/? , E/n,m/?
The lazy versions of above.

[

Start a character set. See the section “Escaped Tokens for Regex Syntax SSH.”

>C

One-character lookahead. ‘C’ must be either a literal character or parse as a
character set. Match the empty string anywhere provided that the next character
is ‘C’ or belongs to it.

<C

One-character lookback. As above, but examine the previous character instead
of the next character.

$

Match the empty string at the end of the input.

^

Match the empty string at the start of the input.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Regex Syntax: SSH Patterns | 601

Escaped Tokens for Regex Syntax SSH
The following list describes the tokens:

~0n..n

The literal byte with octal value n..n.

~0

The NULL byte.

~[1-9]..x

The literal byte with decimal value ~[1-9]..x.

~xn..n or ~0xn..n
The literal byte with hexadecimal value n..n.

~<

Match the empty string at the beginning of a word.

~>

Match the empty string at the end of a word.

~b

Match the empty string at a word boundary.

~B

Match the empty string provided it is not at a word boundary.

~d

Match any digit, equivalent to [0:9].

~D

Match any character except a digit.

~s

Match a whitespace character (matches space, newline, line feed, carriage return,
tab, and vertical tab).

~S

Match a nonwhitespace character.

~w

Match a word-constituent character, equivalent to [a:zA:Z0:9-].

~W

Match a non-word-constituent character.

~a

Literal alarm character.

~e

Literal escape character.

~f

Literal line feed.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

602 | Appendix B: Tectia Manpage for sshregex

~n

Literal newline, equivalent to C’s \n so that it can be more than one character
long.

~r

Literal carriage return.

~t

Literal tab.

All other escaped characters denote the literal character itself.

Character Sets for Regex Syntax SSH
A character set starts with '[' and ends at non-escaped ]' that is not part of a POSIX
character set specifier and that does not follow immediately after '['.

The following characters have a special meaning and need to be escaped if meant
literally:

:

A range operator, except immediately after [, where it loses its special meaning.

- (minus sign)
Until next +, the characters, ranges, and sets will be subtracted from the current
set instead of being added. If appears as the first character after [, start subtract-
ing from a set containing all characters instead of the empty set.

Until next -, the characters, ranges, and sets will be added to the current set.
This is the default.

[:alnum:]

Characters for which isalnum returns true (see ctype.h).

[:alpha:]

Characters for which isalpha returns true (see ctype.h).

[:cntrl:]

Characters for which iscntrl returns true (see ctype.h).

[:digit:]

Characters for which isdigit returns true (see ctype.h).

[:graph:]

Characters for which isgraph returns true (see ctype.h).

[:lower:]

Characters for which islower returns true (see ctype.h).

[:print:]

Characters for which isprint returns true (see ctype.h).

[:punct:]

Characters for which ispunct returns true (see ctype.h).



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

See Also | 603

[:space:]

Characters for which isspace returns true (see ctype.h).

[:upper:]

Characters for which isupper returns true (see ctype.h).

[:xdigit:]

Characters for which isxdigit returns true (see ctype.h).

It is also possible to include the predefined escaped character sets into a newly
defined one, so:

[~d~s]

matches digits and whitespace characters.

Also, escape sequences resulting in literals work inside character sets.

Example

[[:xdigit:]-a:e]

is typically equivalent to :

[0123456789ABCDEFf]

Authors
SSH Communications Security Corp.

For more information, see http://www.ssh.com/.

See Also
ssh2_config(5), sshd2_config(5), scp2(1), sftp2(1)



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

604

Appendix CRiAPPENDIX C

Tectia Module Names for Debugging

AnsiX962Rand
ArcFour
CmiStress
CryptoRandomPoll
DUMMY_ACC
GenHash
GenMac
GenPasswdPlugin
GenRand
GenTestCipher
GenTestMac
GenTestMain
GenTestMisc
GenTestPkcs
GenTestRand
GetOptCompat
Hash_Test
ModuleName
Pkcs1
PkcsImportExport
Scp2
Sftp2
SftpCwd
SftpPager
ssh-certview
Ssh-F-ConfigD
Ssh-F-ConfigD-Log
Ssh-F-ConfigD-Ssh-Configure
Ssh-F-ConfigD-SshD-Conf
Ssh1KeyDecode

Ssh1Protocol
Ssh2
Ssh2AuthCommonServer
Ssh2AuthGSSAPI
Ssh2AuthGSSAPICommon
Ssh2AuthHostBasedClient
Ssh2AuthHostBasedRhosts
Ssh2AuthHostBasedServer
Ssh2AuthKbdInteractiveClient
Ssh2AuthKbdInteractiveServer
Ssh2AuthKbdIntPAM
Ssh2AuthKbdIntPasswd
Ssh2AuthKbdIntPlugin
Ssh2AuthKbdIntRadius
Ssh2AuthKbdIntSecurID
Ssh2AuthKbdIntSubmethods
Ssh2AuthKerberosClient
Ssh2AuthKerberosServer
Ssh2AuthKerberosTgtClient
Ssh2AuthKerberosTgtServer
Ssh2AuthPAMClient
Ssh2AuthPAMCommon
Ssh2AuthPAMServer
Ssh2AuthPasswdClient
Ssh2AuthPasswdServer
Ssh2AuthPubKeyClient
Ssh2AuthPubKeyServer
Ssh2AuthSecurIDClient
Ssh2AuthSecurIDServer
Ssh2ChannelAgent



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tectia Module Names for Debugging | 605

Ssh2ChannelSession
Ssh2ChannelSsh1Agent
Ssh2ChannelTcpFwd
Ssh2ChannelX11
Ssh2Client
Ssh2Common
Ssh2KeyBlob
Ssh2PgpPublic
Ssh2PgpSecret
Ssh2PgpUtil
Ssh2SftpServer
SshAdd
SshADT
SshADTArray
SshADTAssoc
SshADTAvlTree
SshADTConv
SshADTList
SshADTMap
SshADTPriorityHeap
SshADTRanges
SshAgent
SshAgentClient
SshAgentPath
SshAppCommon
SshAskPass
SshAsn1
SshAsn1Ber
SshAsn1Create
SshAsn1OidDB
SshAsn1VM
SshAuthMethodClient
SshAuthMethodServer
SshAuthServerPasswdChange
SshBuffer
SshBufferAux
SshBufZIP
SshCAEK
SshCert
SshCertCheck
SshCertClient
SshCertCMi
SshCertCMiKey

SshCertCMiTrust
SshCertCMiUtil
SshCertCrmf
SshCertd
SshCertDB
SshCertDNDer
SshCertDNEncode
SshCertDNLdap
SshCertEdb
SshCertEdbHttp
SshCertEdbLdap
SshCertEdbOcsp
SshCertEncode
SshCertEval
SshCertIDCheck
SshCertMap
SshCertOid
SshCertReqEncode
SshCertServer
SshCertX509
SshCipherAlias
SshCipherRabbit
SshCipherRijndael
SshClientExternalKey
SshCmiPolicyTree
SshCmpClient
SshConfig
SshConfigParse
SshCopyStream
SshCryptHmac
SshCryptoAuxInit
SshCryptoAuxKeyExpand
SshCryptoAuxOldImport
SshCryptoGenpkcs
SshCryptoInit
SshCryptoPKGroup
SshCryptoPKPrivate
SshCryptoRGF
SshCryptoRSA
SshCryptoSSL3MAC
SshCryptoTests
SshCryptTwofish
Sshd2



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

606 | Appendix C: Tectia Module Names for Debugging

SshdCheckConf
SshDebug
SshDecay
SshDirectory
SshDLib
SshDumpCert
SshDumpCRL
SshEcCmp
SshEKAcc
SshEKDummy
SshEkGenAccDevice
SshEkGenaccProv
SshEKPKCS11
SshEKProv
SshEKSystem
SshEkView
SshEncode
SshEventLoop
SshFastalloc
SshFCGlob
SshFCRecurse
SshFCTransfer
SshFCTransferCore
SshFdStream
SshFileBuffer
SshFileCopy
SshFileXferClient
SshFileXferInternal
SshFilterStream
SshFSM
SshFtpFilter
SshGafpClientInterface
SshGafpFragmentStore
SshGafpKeyEncode
SshGenCiph
SshGenMPAux
SshGenMPInteger
SshGenMPPrime
SshGenPlugin
SshGenPluginCmd
SshGetCwd
SshGetOpt
SshGlob

SshGlobals
SshHostKey
SshHostKeyIO
SshHS
SshHSBackEndSymlink
SshHttp
SshHttpClient
SshHttpFilterProxy
SshHttpProxy
SshHttpServer
SshHttpTests
SshHttpUtils
SshInet
SshInetEncode
SshKeyFile
SshKeyGen
SshKneel
SshLdapBind
SshLdapConnect
SshLdapConvenience
SshLdapExt
SshLdapFilterFromString
SshLdapFilterToString
SshLdapInit
SshLdapInput
SshLdapModify
SshLdapObject
SshLdapOutput
SshLdapSearch
SshLdapTest
SshMiscString
SshMP2Adic
SshMPArithmetic
SshMPArithmeticExtra
SshMPInit
SshMPIntegerCore
SshMPIntegerMisc
SshMPIntMod
SshMPKernel
SshMPMont
SshMPPowM
SshMPSieve
SshMtTimeouts



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tectia Module Names for Debugging | 607

SshNameList
SshNameServer
SshObstack
SshOcsp
SshOcspClient
SshOcspHttp
SshOcspTest
SshOcspTestUtil
SshPacketImplementation
SshPacketWrapper
SshPAMClient
SshPdbDummy
SshPgpCipher
SshPgpFile
SshPgpGen
SshPgpKey
SshPgpKeyDB
SshPgpPacket
SshPgpStringToKey
SshPipeStream
SshPKB
SshPKCS12
SshPKCS12Conv
SshPkcs6
SshPkcs7Common
SshPkcs7Decode
SshPkcs7Encode
SshPkExport
SshPKIDiscovery
SshPkiEnroll
SshPkiEnrollPkix
SshPkiEnrollScep
SshPrivateKeyRead
SshProbe
SshProcess
SshProtoAuthClient
SshProtoAuthServer
SshProtoCompat
SshProtoConnection
SshProtoCross
SshProtoKex
SshProtoTransport
SshProtoTransportAppl

SshProxyKey
SshPrvFile
SshPswbMac
SshRadius
SshRadiusConfig
SshRadiusUrl
SshRandomAnsiX917
SshRandomDev
SshRandomPool
SshReadLine
SshReadPass
SshRegex
SshSecSHAlgName
SshSerialStream
SshServer
SshServerProbe
SshSftpServer
SshSftpStandaloneServer
SshSha
SshSigChld
SshSigner2
SshSKB
SshSNList
SshSocks
SshSocksFilter
SshSPrintf
SshStdIOFilter
SshStr
SshStream
SshStreamConnect
SshStreamPair
SshStreamstub
SshTcp
SshThreadedMbox
SshThreadPool
SshThreadStubs
SshTime
SshTimeMeasure
SshTimeout
SshTtyFlags
SshUdp
SshUdpGeneric
SshUnixLocalStream



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

608 | Appendix C: Tectia Module Names for Debugging

SshUnixPtyStream
SshUnixPtyStreamPTMX
SshUnixTcp
SshUnixUser
SshUserFile
SshUserFileBuffer
SshUserFiles
SshUtilFile
SshWinSyslog
SshX509CertReqDecode
SshX509Cmp
SshX509CmpDecode
SshX509CmpEncode

SshX509CmpUtil
SshX509CrlEncode
SshXmlCompress
t-ldapconv
TestCertdStresser
TestParser
TestRandom
TestSshFileCopy
TestSshGlob
TestTtyFlags
TPassExploit
X509Private



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

609

Appendix DRi APPENDIX D

SSH-1 Features of OpenSSH
and Tectia

This appendix describes the SSH-1 protocol features of OpenSSH and Tectia. Since
we recommend against using SSH-1, you might never encounter these features, but
we mention them for completeness.

OpenSSH Features

Serverwide Configuration
KeyRegenerationInterval (or sshd -k)

Set the number of seconds between generations of the SSH-1 server key. This
temporary key is used only for SSH-1 connections. The default is 3600 seconds
(1 hour), and a value of zero disables regeneration.

RhostsRSAAuthentication

Permit or deny authentication by the RSA key together with authentication by
rhosts files.

RSAAuthentication

Permit or deny authentication by the RSA key.

ServerKeyBits (or sshd -b)
Set the number of bits in the SSH-1 server key: see KeyRegenerationInterval

above. The default is 768 bits, and the fewest allowable is 512 bits.

Client Configuration
Cipher

Replaced by Ciphers for SSH-2 protocol connections

RhostsRSAAuthentication

Same as for serverwide configuration

RSAAuthentication

Same as for serverwide configuration



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

610 | Appendix D: SSH-1 Features of OpenSSH and Tectia

Files
~/.ssh/identity, ~/.ssh/identity.pub

These files contain your default private and public keys, respectively, for public-
key authentication.

/etc/ssh/ssh_host_key
This system file contains the SSH-1 protocol (RSA) host key.

Tectia Features
Tectia provides limited support for SSH-1, mostly by running programs from some
older implementation whenever the SSH-1 protocol is required. Some of the Tectia
programs do have built-in support for SSH-1, however.

Serverwide Configuration
The Tectia server has no built-in support for SSH-1, but it can be configured to run a
separate SSH-1 server for SSH-1 clients. See “Compatibility Between SSH-1 and SSH-
2 Servers” in Chapter 5.

The following keywords in the /etc/ssh2/sshd2_config file control SSH-1 compatibil-
ity mode:

Ssh1Compatibility

Run the SSH-1 server when SSH-1 clients connect (if yes).

Sshd1Path

The pathname for the SSH-1 server.

Sshd1ConfigFile

An alternate configuration file for the SSH-1 server, replacing the one specified
for the Tectia server by the –f command-line option.

Client Configuration
The ssh -1t option runs an SSH-1 client program, and ssh -1i uses built-in SSH-1
emulation. See “Choosing a protocol version” in Chapter 7.

The following keywords in the /etc/ssh2/ssh2_config file control SSH-1 compatibility
mode:

Ssh1Compatibility

Use SSH-1 if the server supports only supports the older protocol (if yes), or oth-
erwise fail (if no).

Ssh1InternalEmulation

Use the Tectia client’s built-in SSH-1 functionality (if yes), or otherwise run an
external SSH-1 program (if no).



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Tectia Features | 611

Ssh1Path

The pathname for the external SSH-1 program.

Ssh1MaskPasswordLength

Send SSH_MSG_IGNORE packets with SSH-1 sessions to obscure the length of
the password (if yes, the default). Otherwise, the unencrypted length fields used
by SSH-1 can be easily intercepted.

Ssh1AgentCompatibility

Specifies whether and how to do agent forwarding. The value is one of:

none

Don’t forward SSH-1 agent connections (the default).

traditional

Forward SSH-1 agent connections with no information about the forward-
ing path.

ssh2

Forward SSH-1 agent connections, and add information about the forward-
ing path as for SSH-2. This requires using the Tectia agent in SSH-1 compat-
ibility mode.

File Transfers
scp can run a program scp1 for file transfers using SSH-1. No mechanism is provided
to specify an alternate name for the compatibility mode program (or a complete
pathname: the scp1 program is always found by searching the PATH).

If the scp -1 option [7.5.9] is specified as the first option on the command line, then
scp1 is run for SSH-1 compatibility, with the rest of the arguments passed verbatim.

scp1 is also run if the –t or –f command-line options are used. These options were
used for old implementations of the remote scp server.

Key Management
The ssh-keygen -1 option converts a key (in a file specified as an argument for the
option) from an older format used by some SSH-1 implementations to the new for-
mat used by Tectia.

Authentication Agent
The ssh-agent -1 option causes the agent to handle requests from SSH-1 clients.

Keys added with the ssh-add -1 option are an exception: they are not allowed to be
used for SSH-1 operations.

The ssh client uses the keyword Ssh1AgentCompatibility to control agent forward-
ing, as described previously.



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

612

Appendix ERiAPPENDIX E

SSH Quick Reference

Legend

sshd Options

Mark Meaning

✓ Yes: feature is supported/included

1 SSH-1 protocol only, not SSH-2

2 SSH-2 protocol only, not SSH-1

OpenSSH Tectia Option Meaning

✓ –4 Use IPv4 addresses only

✓ –6 Use IPv6 addresses only

✓ –b bits # of bits in server key

✓ –d Verbose mode

✓ –d debug_spec Enable debug messages

✓ –D debug_spec Enable debug messages, keep listening

✓ –D Don’t detach into background

✓ –e Send error messages to stderr

✓ ✓ –f filename Use other configuration file

✓ ✓ –g time Set login grace time

✓ ✓ –h filename Use other host key file

✓ ✓ –i Use inetd for invocation

1 –k time Regeneration interval for SSH-1 server key

✓ ✓ –o “keyword value” Set configuration keyword

✓ ✓ –p port Select TCP port number

✓ ✓ –q Quiet mode



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

sshd Keywords | 613

sshd Keywords

✓ –Q Quiet if RSA support is missing

✓ –t Test mode

✓ –u length Set length of utmp structure

✓ –v Verbose mode

✓ –V Print version number

OpenSSH Tectia Keyword Value Meaning

✓ ✓ # Any text Comment line

✓ AcceptEnv Variables Copy client environment vari-
ables to server

✓ AllowAgentForwarding Yes/no Same as ForwardAgent

✓ AllowedAuthentications Auth types Permitted authentication
techniques

✓ ✓ AllowGroups Group list Access control by Unix group

✓ AllowHosts Host list Access control by hostname

✓ AllowSHosts Host list Access control via .shosts

✓ ✓ AllowTcpForwarding Yes/no Enable TCP port forwarding

✓ AllowTcpForwardingForUsers User list Per user forwarding

✓ AllowTcpForwardingForGroups Group list Per group forwarding

✓ ✓ AllowUsers User list Access control by username

✓ AllowX11Forwarding Yes/no Same as ForwardX11

✓ AuthInteractiveFailureTimeout Seconds

✓ AuthKbdInt.NumOptional # submethods Set number of optional sub-
methods required for
authentication

✓ AuthKbdInt.Optional Auth methods Set optional authentication sub-
methods for keyboard-interac-
tive auth

✓ AuthKbdInt.Plugin Filename Path to plugin for keyboard-
interactive auth

✓ AuthKbdInt.RADIUS.
NASIdentifier

Client identifier for RADIUS key-
board-interactive authentication

✓ AuthKbdInt.RADIUS.Server Server spec RADIUS server for keyboard-
interactive auth

✓ AuthKbdInt.Required Auth methods Set required authentication sub-
methods for keyboard-interac-
tive auth

OpenSSH Tectia Option Meaning



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

614 | Appendix E: SSH Quick Reference

✓ AuthKbdInt.Retries # retries Permitted retries for keyboard-
interactive auth

✓ AuthorizationFile Filename Location of authorization file

✓ AuthorizedKeysFile Filename Location of authorization file

✓ AuthPassword.ChangePlugin Filename Location of password-change
plugin program

✓ AuthPublicKey.MaxSize # bytes Max size of public key

✓ AuthPublicKey.MinSize # bytes Min size of public key

2 Banner Filename Location of banner file

✓ BannerMessageFile Filename Location of banner file

✓ Cert.RSA.Compat.HashScheme md5/sha1 Set hash compatibility

✓ CertdListenerPath Filename Location of certificate validation
daemon

✓ ChallengeResponseAuthen-
tication

Yes/no Permit Challenge-Response
authentication

✓ ✓ CheckMail Yes/no Check new mail on login

✓ ChRootGroups Group list Run chroot( ) on login

✓ ChRootUsers User list Run chroot( ) on login

2 ✓ Ciphers Cipher list Select encryption ciphers

✓ ClientAliveCountMax # messages Upper limit on client-alive mes-
sages

✓ ClientAliveInterval Time Frequency of sending client-alive
messages

✓ Compression Yes/no Enable compression

✓ ✓ DenyGroups Group list Access control by Unix group

✓ DenyHosts Host list Access control by hostname

✓ DenySHosts Host list Access control via .shosts

✓ DenyTcpForwardingForUsers User list Per user forwarding

✓ DenyTcpForwardingForGroups Group list Per group forwarding

✓ ✓ DenyUsers User list Access control by username

✓ DisableVersionFallback Yes/no Compatibility with old versions
of software

✓ ExternalAuthorizationProgram Filename Location of authorization
program

✓ ForwardACL Forwarding spec Access control over port
forwarding

✓ ForwardAgent Yes/no Enable agent forwarding

✓ ✓ ForwardX11 Yes/no Enable X forwarding

✓ GatewayPorts Yes/no Gateway all locally forwarded
ports

OpenSSH Tectia Keyword Value Meaning



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

sshd Keywords | 615

✓ GSSAPI.AllowedMethods kerberos Permitted GSSAPI methods

✓ GSSAPI.
AllowOldMethodWhichIsInsecure

Yes/no Use fallback code for old GSSAPI
methods

✓ GSSAPI.Dlls Directory Path to GSSAPI libraries

2 GSSAPIAuthentication Yes/no Enable GSSAPI authentication

2 GSSAPICleanupCredentials Yes/no Destroy credentials on logout

2 HostbasedAuthentication Yes/no Enable hostbase authentication

✓ HostbasedAuthForceClientHost-
nameDNSMatch

Yes/no Fail authentication on DNS
mismatch

✓ HostCertificateFile Filename Location of X.509 certificate key
file

✓ HostKey Filename Location of host key file

✓ HostKeyEkInitString Init string Initialization string for external
host key provider

✓ HostKeyEkProvider Provider spec External host key provider

✓ HostKeyEkTimeOut Time External host key provider
timeout

✓ HostKeyFile Filename Location of host key file

✓ HostSpecificConfig Filename Location of subconfiguration file
for hosts

✓ IdleTimeout Time Set idle timeout

✓ IgnoreLoginRestrictions.
PasswordExpiration

Yes/no Ignore password-expiration pol-
icy of operating system

✓ IgnoreLoginRestrictions.
Rlogin.AIX

Yes/no Ignore remote login restriction
on IBM AIX

✓ ✓ IgnoreRhosts Yes/no Ignore .rhosts files

✓ IgnoreRootRhosts Yes/no Ignore .rhosts for root

✓ IgnoreUserKnownHosts Yes/no Ignore user’s known-hosts keys

✓ KeepAlive Yes/no Send keepalive packets

✓ KerberosAuthentication Yes/no Permit Kerberos authentication

✓ KerberosGetAFSToken Yes/no Attempt to get AFS tokens
(Kerberos)

✓ KerberosOrLocalPasswd Yes/no Kerberos fallback authentication

✓ KerberosTicketCleanup Yes/no Destroy ticket cache on logout

✓ KeyRegenerationInterval Time Key regeneration interval

✓ ✓ ListenAddress IP address Listen on given interface

✓ ✓ LoginGraceTime Time Time limit for authentication

✓ LogLevel Syslog level Set syslog level

✓ ✓ Macs Algorithm Select MAC algorithm

OpenSSH Tectia Keyword Value Meaning



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

616 | Appendix E: SSH Quick Reference

✓ MaxAuthTries # attempts Maximum number of authenti-
cation attempts per connection

✓ MaxBroadcastsPerSecond # broadcasts Listen for UDP broadcasts

✓ MaxConnections # connections Maximum # of simultaneous
connections

✓ MaxStartups # connections Maximum # of simultaneous
connections

✓ NoDelay Yes/no Enable Nagle Algorithm

✓ PasswordAuthentication Yes/no Permit password authentication

✓ PasswordGuesses # guesses Limit # of password tries

PasswordExpireWarningDays # days Warn user before expiration

✓ ✓ PermitEmptyPasswords Yes/no Permit empty passwords

✓ ✓ PermitRootLogin Yes/no/nopwd Permit superuser logins

✓ PermitUserEnvironment Yes/no Permit users to set environment
variables

✓ PGPPublicKeyFile Filename Default location of PGP public-
key file for authentication

✓ PidFile Filename Location of pid file

✓ ✓ Port Port
number

Select server port number

✓ PrintLastLog Yes/no Print date/time of last login

✓ ✓ PrintMotd Yes/no Print message of the day

✓ Protocol 1/2/1,2 Permit SSH-1,SSH-2 connections

✓ ProxyServer Server spec Set SOCKS server

2 PubKeyAuthentication Yes/no Permit public-key authentication

✓ PublicHostKeyFile Filename Location of public host key

✓ QuietMode Yes/no Quiet mode

RandomSeed Filename Location of random seed file

✓ RandomSeedFile Filename Location of random seed file

✓ RekeyIntervalSeconds Seconds Frequency of rekeying

✓ RequiredAuthentications Auth types Required authentication
techniques

✓ RequireReverseMapping Yes/no Do reverse DNS lookup

✓ ResolveClientHostName Yes/no Should server resolve client IP
addresses

1 RhostsRSAAuthentication Yes/no Permit combined authentication

1 RSAAuthentication Yes/no Permit public-key authentication

✓ ServerKeyBits # bits # of bits in server key

✓ SettableEnvironmentVariables Patterns Environment variables that may
be set in server

OpenSSH Tectia Keyword Value Meaning



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

sshd Keywords | 617

✓ SftpSysLogFacility Syslog level Set syslog level for sftp

✓ SkeyAuthentication Yes/no Permit S/Key authentication

✓ Ssh1Compatibility Yes/no Enable SSH1 compatibility

✓ Sshd1ConfigFile Filename Configuration file for SSH-1
sessions

✓ Sshd1Path Filename Path to sshd1

✓ SocksServer Same as ProxyServer

✓ ✓ StrictModes Yes/no Strict file/directory permissions

✓ Subsystem-name Name | URL Define a subsystem

✓ Subsystem Name Define a subsystem

✓ ✓ SyslogFacility Syslog level Set syslog level

✓ Terminal.AllowGroups Group list AllowGroups for terminal
access

✓ Terminal.AllowUsers User list AllowUsers for terminal
access

✓ Terminal.DenyGroups Group list DenyGroups for terminal
access

✓ Terminal.DenyUsers User list DenyUsers for terminal access

✓ TCPKeepAlive Yes/no Send keepalive packets

✓ UseDNS Yes/no Do reverse DNS lookups

✓ UseLogin Yes/no Select login program

✓ UsePAM Yes/no Use Pluggable Authentication
Modules (PAM)

✓ UsePrivilegeSeparation Yes/no Enable privilege separation

✓ UserConfigDirectory Directory name Location of user SSH2 directories

✓ UserKnownHosts Yes/no Respect ~/.ssh2/knownhosts

✓ UserSpecificConfig Filename Location of subconfiguration file
for users

✓ UseSOCKS5 Yes/no Use SOCKS5 instead of SOCKS4

✓ VerboseMode Yes/no Verbose mode

✓ ✓ X11Forwarding Yes/no Same as ForwardX11

✓ X11DisplayOffset # offset Limit X displays for SSH

✓ X11UseLocalhost Yes/no Bind X server to loopback or
wildcard address

✓ XAuthLocation Filename Location of xauth

✓ XAuthPath Filename Location of xauth

OpenSSH Tectia Keyword Value Meaning



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

618 | Appendix E: SSH Quick Reference

ssh Options

OpenSSH Tectia Option Meaning

✓ –1 Use SSH-1 protocol only

✓ –1(t |i) Use SSH-1 protocol via ssh1 executable (t) or internal emula-
tion (i)

✓ –2 Use SSH-2 protocol only

✓ ✓ –4 Use IPv4 addresses only

✓ ✓ –6 Use IPv6 addresses only

✓ ✓ –a Disable agent forwarding

✓ +a Enable agent forwarding

✓ –b bind_address Select a network interface

✓ –A Enable agent forwarding

✓ ✓ –c cipher Select encryption cipher

✓ –C Enable compression

✓ –C Disable compression

✓ +C Enable compression

✓ –d debug_spec Enable debug messages

✓ –D port Do dynamic port forwarding

✓ ✓ –e character Set escape character

✓ –E name Use external key-provider name

✓ ✓ –f Fork into background

✓ –fo Fork into background once

✓ ✓ –F filename Use other configuration file

✓ ✓ –g Gateway locally forwarded ports

✓ +g Don’t gateway locally forwarded ports

✓ –h Print help message

✓ ✓ –i filename Select identity file

✓ –I string Initialization string for external-key provider

✓ –I device Choose smartcard device

✓ –k Disable Kerberos ticket forwarding

✓ ✓ –l username Remote username

✓ ✓ –L port1:host2: port2 Local port forwarding

✓ ✓ –m algorithm Select MAC algorithm

✓ –M Do not execute remote command

✓ ✓ –n Redirect stdin from /dev/null

2 –N Execute no remote command

✓ ✓ –o “keyword value” Set configuration keyword



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

scp Options | 619

scp Options

✓ ✓ –p port Select TCP port number

✓ ✓ –P Use nonprivileged port

✓ ✓ –q Quiet mode

✓ ✓ –R port1:host2: port2 Remote port forwarding

✓ ✓ –s subsystem Invoke remote subsystem

✓ –S No session channel

✓ –S socket Choose control socket for connection sharing

✓ ✓ –t Allocate tty

✓ –T Don’t allocate tty

✓ ✓ –v Verbose mode

✓ –V Print version number

✓ ✓ –x Disable X forwarding

✓ +x Enable X forwarding

✓ +X Enable trusted X forwarding

✓ –X Enable X forwarding

✓ –Y Enable trusted X forwarding

OpenSSH Tectia Option Meaning

✓ ✓ –1 Use SSH-1 protocol

✓ –2 Use SSH-2 protocol

✓ –4 Use IPv4 addresses only

✓ –6 Use IPv6 addresses only

✓ –a [src: |dest:[unix |mac |dos]] Transfer files in ASCII mode

✓ –a No file-by-file statistics

✓ –A Print file-by-file statistics

✓ ✓ –B Batch mode: disable prompting

✓ ✓ –c cipher Select encryption cipher

✓ –C Enable compression

✓ ––checksum (yes |no) Compare files by checksum (optimization)

✓ ✓ –d Require target to be a directory when copying a single file

✓ –D debug_spec Enable debug messages

✓ ✓ –f Specify copy FROM (internal use)

✓ –F filename Specify alternative configuration file

✓ ––force-lower-case Rename destination files in all lowercase

✓ –h Print help message

OpenSSH Tectia Option Meaning



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

620 | Appendix E: SSH Quick Reference

ssh and scp Keywords

✓ ✓ –i filename Select identity file

✓ –I Interactive mode: prompt before overwriting

✓ –l kilobits_per_second Limit bandwidth

✓ –M num Set maximum number of requests to num

✓ –n Print actions, but don’t copy

✓ ✓ –o “keyword value” Set configuration keyword

✓ ––overwrite (yes |no) Do/don’t overwrite existing files

✓ ✓ –p Preserve file attributes

✓ ✓ –P port Select TCP port number

✓ ✓ –q Quiet mode

✓ –Q Don’t print statistics

✓ ✓ –r Recursive copy

✓ ✓ –S filename Path to ssh executable

✓ ––statistics (yes |no |simple) Verbosity level for statistics

✓ ✓ –t Specify copy TO (internal use)

✓ –u Remove original file after copying

✓ ✓ –v Verbose mode

✓ –V Print version number

✓ –W Always transfer whole files; don’t optimize

OpenSSH Tectia Keyword Value Meaning

✓ ✓ # Any text Comment line

✓ AddressFamily any | inet | inet6 Set IP address type

✓ AllowAgentForwarding Yes/no Same as ForwardAgent

✓ AllowedAuthentications Auth types Permitted authentication
techniques

✓ AuthenticationNotify Yes/no Print message on stdout on suc-
cessful authentication

✓ AuthenticationSuccessMsg Yes/no Print message on stderr on suc-
cessful authentication

✓ ✓ BatchMode Yes/no Disable prompting

✓ BindAddress Interface Select a network interface

✓ Cert.DODPKI Yes/no Certificates must be DoD PKI-
compliant

✓ Cert.EndpointIdentityCheck Yes/no Verify server hostname versus
certificate

OpenSSH Tectia Option Meaning



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ssh and scp Keywords | 621

✓ Cert.RSA.Compat.HashScheme md5/sha1 Set hash compatibility

✓ ChallengeResponseAuthen-
tication

Yes/no Enable challenge-response
authentication

✓ CheckHostIP Yes/no Detect DNS spoofing

1 Cipher Cipher Request encryption cipher

2 ✓ Ciphers Cipher_ list Supported encryption ciphers

✓ ✓ ClearAllForwardings Yes/no Ignore any specified
forwarding

✓ ✓ Compression Yes/no Enable data compression

✓ CompressionLevel 0–9 Select compression algorithm

✓ ConnectionAttempts # attempts # of retries by client

✓ ConnectTimeout Time Timeout for connecting to SSH
server

✓ ControlMaster Yes/no/ask Enable connection sharing

✓ ControlPath Socket Location of socket for connec-
tion sharing

✓ DebugLogFile Filename File for debug messages

✓ DefaultDomain Domain Specify domain name

✓ DisableVersionFallback Yes/no Compatibility with old versions
of software

✓ DontReadStdin Yes/no Redirect stdin from /dev/ null

✓ DynamicForward Port, socket Set up a dynamic forwarding

✓ EkInitString Init string Initialization string for external
host key provider

✓ EkProvider Provider External host key provider

✓ EnableSSHKeysign Yes/no Enable ssh-keysign

✓ ✓ EscapeChar Character Set escape character
(^ = Ctrl key)

✓ ForcePTTYAllocation Yes/no Allocate a pseudo-tty

✓ ✓ ForwardAgent Yes/no Enable agent forwarding

✓ ✓ ForwardX11 Yes/no Enable X forwarding

✓ ForwardX11Trusted Port, socket Set up a trusted X forwarding

✓ ✓ GatewayPorts Yes/no Gateway locally forwarded
ports

✓ GlobalKnownHostsFile Filename Location of global known hosts
file

✓ GoBackground Yes/no Fork into background

✓ GSSAPI.AllowedMethods kerberos Permitted GSSAPI methods

✓ GSSAPI.
AllowOldMethodWhichIsInsecure

Yes/no Use fallback code for old GSSAPI
methods

OpenSSH Tectia Keyword Value Meaning



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

622 | Appendix E: SSH Quick Reference

✓ GSSAPI.DelegateToken Yes/no Delegate GSSAPI tokens

✓ GSSAPI.Dlls Directory Location of GSSAPI libraries

✓ GSSAPIAuthentication Yes/no Enable GSSAPI authentication

✓ GSSAPIDelegateCredentials Yes/no Delegate GSSAPI tokens

✓ Host Hostname Real name of a host

✓ Host Pattern Begin section for this host

✓ HostCa CA spec CA certificate for authentication

✓ HostCAMoCRLs Same as HostCa but disables
CRL checking

✓ HostKeyAlgorithms Algorithm list Set precedence of host key
algorithms

✓ HostKeyAlias Alias Set alias for a host key

✓ HostName Hostname Real name of host

✓ IdentitiesOnly Yes/no Ignore ssh-agent

✓ ✓ IdentityFile Filename Name of private-key file (RSA)

✓ KeepAlive Yes/no Send keepalive packets

✓ LDAPServers LDAP URL Locate LDAP servers

✓ ✓ LocalForward Port, socket Local port
forwarding

✓ ✓ Macs Algorithm Select MAC algorithm

✓ NoDelay Yes/no Enable Nagle Algorithm

✓ NoHostAuthenticationForLocal-
host

Yes/no Ignore localhost when checking
host keys

✓ ✓ NumberOfPasswordPrompts # prompts # of prompts before failure

✓ PasswordAuthentication Yes/no Permit password authentica-
tion

✓ PasswordPrompt String Password prompt

✓ ✓ Port Port number Select server port number

✓ PreferredAuthentications Auth list Permitted authentication
techniques

✓ Protocol 1/2 SSH protocol version

✓ ProxyCommand Command Connect to proxy server

✓ ProxyServer Server spec SOCKS server

✓ PubkeyAuthentication Yes/no Public-key authentication

✓ QuietMode Yes/no Quiet mode

✓ RandomSeedFile Filename Location of random seed file

✓ RekeyIntervalSeconds Time Frequency of key exchange

✓ ✓ RemoteForward Port, socket Remote port
forwarding

OpenSSH Tectia Keyword Value Meaning



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ssh-keygen Options | 623

ssh-keygen Options

1 RhostsRSAAuthentication Yes/no Permit combined authenti-
cation

1 RSAAuthentication Yes/no Permit public-key authenti-
cation

✓ SendEnv Variable list Which environment variables
are sent to SSH server

✓ ServerAliveCountMax # retries Upper limit on retries to contact
SSH server

✓ ServerAliveInterval Time Timeout to contact SSH server

✓ SetRemoteEnv var=value Set environment variable

✓ SmartcardDevice device Smartcard device

✓ SocksServer Server Same as ProxyServer

✓ Ssh1AgentCompatibility Yes/no Enable SSH1 agent compati-
bility

✓ Ssh1Compatibility Yes/no Enable SSH1 compatibility

✓ Ssh1InternalEmulation Yes/no Do SSH-1 internally

✓ Ssh1MaskPasswordLength Yes/no Mask password length

✓ Ssh1Path Filename Path to ssh1

✓ SshSignerPath Filename Path to ssh-signer2

✓ ✓ StrictHostKeyChecking Yes/no/ask Behavior on host key mismatch

✓ TCPKeepAlive Yes/no Send keepalive packets

✓ TrustX11Applications Yes/no Enable trusted X11 forwarding

✓ UsePrivilegedPort Yes/no Permit privileged port use

✓ ✓ User Username Remote username

✓ UserKnownHostsFile Filename Location of user known hosts
file

✓ UseSOCKS5 Yes/no Use SOCKS5 instead of SOCKS4

✓ VerboseMode Yes/no Verbose mode

✓ VerifyHostKeyDNS Yes/no/ask Verify a remote host key via
DNS

✓ XAuthLocation Filename Location of xauth

✓ XAuthPath Filename Location of xauth

OpenSSH Tectia Option Meaning

✓ –1 filename Convert SSH1 key file to Tectia

✓ –7 filename Convert PKCS #7 key file to Tectia

OpenSSH Tectia Keyword Value Meaning



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

624 | Appendix E: SSH Quick Reference

✓ –a trials DH-GEX: number of primality

✓ ✓ –b bits # of bits in generated key

✓ –B positive_integer Specify numeric base for displaying key

✓ –B Print fingerprint of key in BubbleBabble format

✓ –c Change comment (with –C )

✓ –c comment Change comment

✓ –C comment Specify new comment (with –c)

✓ –d Generate DSA key

✓ –D filename Derive public key from private-key file

✓ –D reader Download public key from smartcard reader

✓ –e filename Edit key file interactively

✓ –e Export OpenSSH public key to Tectia format

✓ –f filename a Output filename

✓ –F filename Print fingerprint of public key

✓ –G filename DH-GEX: output file to generate candidate primes

✓ –h Print help and exit

✓ –i Display key information

✓ –i Convert Tectia public key to OpenSSH

✓ –k Convert PKCS #12 key file to Tectia

✓ –l Print fingerprint of public key

✓ –M memory DH-GEX: set amount of memory to use

✓ –N passphrase Specify new passphrase

✓ –o filename Output filename

✓ ––overwrite (yes |no) Overwrite output file or not

✓ –p Change passphrase (with –P and –N )

✓ –P passphrase Specify old passphrase (with –p)

✓ –P Use empty passphrase

✓ ✓ –q Quiet: suppress progress indicator

✓ –r Stir in data from random pool

✓ –S hexnumber DH-GEX: starting point

✓ –r hostname Print DNS record

✓ –R Detect RSA (exit code 0/1)

✓ ✓ –t algorithm Select key-generation algorithm

✓ –T filename DH-GEX: output file for test primes

✓ –U Upload public key to smartcard reader

✓ –V Print version string and exit

✓ –W generator DH-GEX: choose generator

OpenSSH Tectia Option Meaning



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ssh-add Options | 625

ssh-agent Options

ssh-add Options

✓ –x filename Convert key from X.509 to Tectia

✓ –y Derive public key from private-key file

✓ –?b Print help and exit

a The output filename is given as the final argument to ssh-keygen.
b You may need to escape the question mark in your shell, e.g., –\?.

OpenSSH Tectia Option Meaning

✓ –1 SSH1 compatibility mode

✓ –a socket Bind to given socket

✓ –d Debug mode

✓ –d debug_spec Debug mode

✓ ✓ –c Print C-shell-style commands

✓ –k Kill existing agent

✓ ✓ –s Print sh-style commands

✓ –t time Set maximum lifetime of identities

OpenSSH Tectia Option Meaning

✓ –1 Limit SSH-1 compatibility

✓ –c Confirm identities before loading them

✓ ✓ –d Unload key

✓ ✓ –D Unload all keys

✓ –e reader Remove key in smartcard reader

✓ –f step Limit agent-forwarding hops

✓ –F host_list Limit agent-forwarding hosts

✓ –I PGP keys are identified by ID

✓ –l List loaded keys

✓ –l List fingerprints of loaded keys

✓ –L Lock agent

✓ –L List loaded keys

✓ –N PGP keys are identified by name

✓ –p Read passphrase from stdin

✓ –P PGP keys are identified by fingerprint

✓ –R filename Specify PGP keyring file

OpenSSH Tectia Option Meaning



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

626 | Appendix E: SSH Quick Reference

Identity and Authorization Files, OpenSSH
~/.ssh/authorized_keys key options: use one public key per line, preceded by options.

Identity and Authorization Files, Tectia
~/.ssh2/authorization keywords: use one keyword/value pair per line.

✓ –s reader Add key in smartcard reader

✓ ✓ –t timeout Expire key after timeout

✓ –u Read key from URL

✓ –U Unlock agent

✓ –x Lock agent

✓ –X Unlock agent

Option Meaning

command="Unix shell command " Specify a forced command

environment="variable=value" Set environment variable

from=host_or_ip_address_
specification

Limit incoming hosts

no-agent-forwarding Disable agent forwarding

no-port-forwarding Disable port forwarding

no-pty Don’t allocate TTY

no-x11-forwarding Disable X Window forwarding

permitopen ="H:P" Permit forwarding to local port P from remote host H

Keyword Meaning

Command Unix_command Old way to specify a forced command; now obsolete, use Options

Key filename.pub Location of public-key file

Options comma-separated-list-
of-options

Options for the key immediately preceding it; see Options table below

PgpPublicKeyFile filename Location of PGP public-key file

PgpKeyFingerprint fingerprint Select PGP key by fingerprint

PgpKeyId id Select PGP key by ID

PgpKeyName name Select PGP key by name

OpenSSH Tectia Option Meaning



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Environment Variables | 627

~/.ssh2/authorization key options: one or more options separated by commas.

~/.ssh2/identification keywords: one keyword/value pair per line.

Environment Variables

Option Meaning

allow-from=host_or_ip_address_
specification

Accept connections from incoming hosts

command="Unix shell command" Specify a forced command

deny-from=host_or_ip_address_
specification

Reject connections from incoming hosts

environment="variable=value" Set environment variable

idle-timeout=time Set idle timeout

no-agent-forwarding Disable agent forwarding

no-port-forwarding Disable port forwarding

no-pty Don’t allocate TTY

no-x11-forwarding Disable X Window forwarding

Keyword Meaning

IdKey filename Location of private-key file

IdPgpKeyFingerprint fingerprint Select PGP key by fingerprint

IdPgpKeyId id Select PGP key by ID

IdPgpKeyName name Select PGP key by name

PgpSecretKeyFile filename Location of PGP private-key file

Variable Set by In Meaning

SSH_ASKPASS ssh user OpenSSH Path to askpass program

SSH_AUTH_SOCK ssh-agent OpenSSH Path to socket

SSH2_AUTH_SOCK ssh-agent Tectia Path to socket

SSH_CLIENT sshd OpenSSH Client socket info

SSH2_CLIENT sshd Tectia Client socket info

SSH_CONNECTION sshd OpenSSH Client and server socket info

SSH_ORIGINAL_COMMAND sshd OpenSSH Client’s remote command string

SSH_ORIGINAL_COMMAND2 sshd Tectia Client’s remote command string

SSH_SOCKS_SERVER ssh user Tectia SOCKS firewall information

SSH_TTY sshd OpenSSH Name of allocated TTY

SSH2_TTY sshd Tectia Name of allocated TTY





This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

629

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Numbers
3DES, 88

Symbols
$HOME environment variable, 6
-- (double dash), 103
~ (tilde), 21

A
AAA (authentication, authorization, and

accounting), 109
AcceptEnv keyword, 199
Accession Lite, 536–539
Enable Key Compatibility, 538

account access control, 185–191
account permissions and security, 25
active-mode (FTP), 419
Address Space Layout Randomization

(ASLR), 151
AddressFamily keyword, 294, 591, 620
addressing, single name, multiple address

issue, 71
Advanced Encryption Standard (see AES)
AES (Advanced Encryption Standard), 87
AFS (Andrew File System), 406
agents, 28–32, 45, 242–260
access control, 253
agent forwarding, 30–32, 256–259, 350
connections in series, 32
enabling, 259
firewall example, 256

operation, 257
server configuration, 206

authentication agents, 8
automatic loading
single-shell method, 251
subshell method, 252
X Windows, 253

automation and, 29
client identification, 255
cpu usage, 259
debugging (OpenSSH), 259
double-remote copying with scp, 30–32
environment variable command

format, 247
identities, listing and deleting, 248
invocation, login accounts, 243
keys, 29
listing, 29
loading, 28, 247–253

locking and unlocking, 29, 249
protected memory, 255
security aspects, 253–256
agent cracking, 255

single-shell invocation, 243–245
subshell invocation, 246
switching identities, 261
troubleshooting, 504

AllowAgentForwarding keyword
(Tectia), 206

AllowedAuthentications keyword
(Tectia), 172

gssapi, 182
hostbased, 175
keyboard interactive, 178



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

630 | Index

allow-from keyword, 197, 340
AllowGroups keyword, 191, 192, 195, 201,

371, 400, 402, 477, 493, 591, 613
AllowHosts keyword, 115, 158, 192, 193,

198, 225, 250, 340, 347, 402, 471,
472, 477, 493, 613

AllowSHosts keyword, 193, 198, 412, 477,
613

AllowTcpForwarding keyword, 201, 205,
370, 371, 400, 403, 477, 613

AllowTcpForwardingForGroups
keyword, 201, 371, 477, 613

AllowTcpForwardingForUsers
keyword, 201, 205, 371, 477, 613

AllowUsers keyword, 185
pattern matching, 186

AllowX11Forwarding keyword, 205, 381,
477, 613

ARCFOUR (see RC4)
ASLR (Address Space Layout

Randomization), 151
asymmetric cryptography, 41
attacks, 91–96
agent cracking, 255
brute-force attacks, 40
connection hijacking, 91
covert channels, 96
dictionary attack, 27
eavesdropping, 91
IP attacks, 94
IP spoofing, 91
keystroke timing data and potential

attacks, 96
man-in-the-middle attacks, 19, 92
name service spoofing, 91
password cracking, 93
replay attacks, 37
TCP attacks, 94
traffic analysis, 95
user or administrator carelessness and, 97

authentication, 3, 38
agents, using (see agents)
authorization in hostbased authentication

(SSH), 71
failure messages, 20
passwordless, 32
per-account configuration and, 328
public-key authentication (see public-key

authentication)
scalability case study, 452–468

SecurID hardware-based
authentication, 180

server configuration for (see serverwide
configuration, authentication)

ssh (client) configuration, 307–310
troubleshooting, 498–504
(see also SSH (Secure Shell), SSH-AUTH)

AuthenticationNotify keyword, 308, 309,
620

AuthenticationSuccessMsg keyword, 308,
309, 620

AuthInteractiveFailureTimeout keyword
(Tectia), 173, 179

AuthKbdInt.NumOptional keyword
(Tectia), 179

AuthKbdInt.Optional keyword, 179, 180,
477, 613

AuthKbdInt.Plugin keyword, 180, 477, 478,
479, 492, 613

AuthKbdInt.RADIUS.NASIdentifier
keyword, 613

AuthKbdInt.RADIUS.Server keyword, 613
AuthKbdInt.Required keyword, 179, 180,

477, 613
AuthKbdInt.Retries keyword (Tectia), 179
authorization, 39
authorization files, server accounts, 329–331
AuthorizationFile keyword, 145, 330, 477,

614
authorized_keys, 24, 346
AuthorizedKeysFile keyword, 145, 614
AuthPassword.ChangePlugin keyword, 477,

480, 484, 614
AuthPublicKey.MinSize and MaxSize

keywords (Tectia), 175
autoconf, 102
Axessh, 517

B
BAMSE, 520
Banner keyword (OpenSSH), 198
BannerMessageFile keyword (Tectia), 198
bastion host, 256
batch jobs, 408–415
hostbased authentication, 412
Kerberos authentication, 413
password authentication, 408
public-key authentication, 409–412
agents, 410–412
filesystem passphrase storage, 409
plaintext keys, 410



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 631

security precautions, 413
least-privilege accounts, 414
locked-down automation
accounts, 414

restricted-use keys, 414
ssh options, 414

BatchMode keyword, 295, 415, 441, 620
BeOS SSH implementations, 516
binary distributions, 99
binary packet protocol, 50
BindAddress keyword, 291, 620
Blowfish, 88
bogus ICMP attacks, 94
boot versus manual invocation, 129
brute-force attacks, 40
bulk keys or bulk ciphers, 41
bzip2 and bunzip2, 101

C
cancel-tcpip-forward request, 65
case studies
authentication, 452–468
batch and cron jobs (see batch jobs)
FTP, 415–436
gateway hosts, connecting

through, 444–452
Pine email client, 436–444

CAST, 89
CertdListenerPath keyword, 477, 614
Cert.DODPKI keyword, 620
Cert.EndpointIdentityCheck keyword, 620
certificate authorities, 14
Cert.RSA.Compat.HashScheme

keyword, 477, 614, 621
challenge/response authentication, 22
ChallengeResponseAuthentication

keyword, 171, 178
channels, 47, 64
channel numbers, 64
channel requests, 66

CheckHostIP keyword, 285, 621
CheckMail keyword (Tectia), 199
ChRootGroups keyword, 195, 477, 614
ChRootUsers keyword, 195, 477, 614
Cipher keyword, 163, 509, 609, 621
ciphers, 40
Ciphers keyword, 53, 162, 167, 169, 306,

477, 614, 621
ClearAllForwardings keyword, 357, 358, 621
client configuration, 266
debugging messages, 495

setup recommendations, 404
troubleshooting, 507

ClientAliveCountMax keyword, 154, 614
ClientAliveInterval keyword, 154, 155, 614
Command keyword, 626
Commodore Amiga SSH

implementations, 516
compression algorithms, 91
Compression keyword, 171, 268, 272, 273,

276, 280, 311, 614, 621
CompressionLevel keyword, 508, 621
configuration, 101
compile-time configuration, 101–105
configuration files, 45
configure script, 102
command-line flags, 103–104
options, 105
pathname embedding versus PATH
variable, 104

make command, 105
“none” encryption, 53
OpenSSH (see OpenSSH)
per-account configuration (see

per-account configuration)
serverwide configuration (see serverwide

configuration)
Tectia (see Tectia)
(see also client configuration)

connection hijacking, 91
ConnectionAttempts keyword, 621
Connector, 543–551
ConnectTimeout keyword, 293, 621
control connections (FTP), 418
forwarding, 420–424
choosing the target, 421

ControlMaster keyword, 64, 288, 621
ControlPath keyword, 64, 288, 621
covert channels, 96
CRC (Cyclic Redundancy Check) hash, 43
CRC-32 (Cyclic Redundancy Check), 89
cron jobs (see batch jobs)
cryptanalysis, 40
cryptography, 39–43
hash functions, 42
public-key cryptography, 41
secret-key cryptography, 41
security, 40

CVS (Concurrent Versions System), 125
Cyclic Redundancy Check (CRC-32), 89
Cygwin, 518



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

632 | Index

D
data connections (FTP), 418
Data Encryption Standard (DES), 87
debugging
messages, 495
serverwide configuration
syslog files, 131

DebugLogFile keyword, 621
default identity, 229
DefaultDomain keyword, 621
deny-from keyword, 197, 340
DenyGroups, 402
DenyGroups keyword, 191, 192, 201, 400,

402, 477, 493, 591, 614, 617
DenyHosts keyword, 115, 158, 193, 198,

250, 340, 347, 477, 493, 614
DenySHosts keyword, 193, 198, 412, 477,

614
DenyTcpForwardingForGroups

keyword, 201, 205, 477, 614
DenyTcpForwardingForUsers keyword, 201,

205, 477, 614
DenyUsers keyword, 185
pattern matching, 186

DES (Data Encryption Standard), 87
dictionary attack, 27
Diffie-Hellman key agreement algorithm, 86
digital certificates, 14
Digital Signature Algorithm (DSA), 85
digital signatures, 41
DisableVersionFallback keyword, 477, 614,

621
display, 382
DNS (Domain Name Service), 11
DontReadStdin keyword, 298, 621
DropBear, 519
DSA (Digital Signature Algorithm), 85
dynamic port forwarding, 373–377
DynamicForward keyword, 304, 621

E
eavesdropping, 91
Egrep, sshregex (Tectia), 595
character sets, 598
escaped tokens, 596

EkInitString keyword, 264, 621
EkProvider keyword, 264, 621
email clients (see Pine email client)
EnableSSHKeysign keyword, 347, 501, 621

encryption, 4, 40
algorithms, 40
ssh (client), 306

programs, 1
env channel request, 66
environment variables, 627
agents and, 247
per-account settings, 340–343
ssh (client), 275

Ericom PowerTerm, 517
escape characters and sequences, 21
EscapeChar keyword, 272, 301, 302, 621
exec channel request, 66
Expect, 519
ExternalAuthorizationProgram

keyword, 194, 477, 614

F
file transfers
sftp, 323

filesystems, recommended settings, 404–407
firewalls, 1, 15
FTP passive mode and, 424
port forwarding, bypassing with, 364

forced commands, 326, 332
command menu, displaying, 335
logging, 338
rejecting connections, 334
scp and, 338
security concerns, 333
SSH_ORIGINAL_COMMAND

environment variable, 336
ForcePTTYAllocation keyword, 296, 621
ForwardACL keyword, 201, 203, 204, 205,

477, 614
ForwardAgent keyword, 259
forwarding, 39, 350
limiting or disabling per-account, 344
(see also port forwarding; agents, agent

forwarding)
ForwardX11 keyword, 116, 380, 381, 477,

614, 621
ForwardX11Trusted keyword, 383, 621
Friedl, Markus, 10
F-Secure SSH, 518
FTP (file transfer protocol), 417, 429–434
case study, 415–436
control connection
forwarding, 420–424

static port forwarding, 417



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 633

Tectia client, 416
VanDyke’s SecureFX tool, 416

data connections, forwarding through
SSH, 434–436

default data port mode, 432
TCP protocol and, 433

NAT and, 426–429
passive mode, 422–426, 431
firewalls and, 424
PASV port theft problem, 423

SSL-enhanced, 14
troubleshooting, 511
typical data transfer mode, 429

G
gateway hosts, 256
case study, 444–452
port forwarding (SSH-in-SSH), 449
scp, 448
SSH connection, making, 445–448
tunnelled SSH
withProxyCommand, 450

GatewayPorts keyword, 355, 356, 357, 364,
389, 390, 397, 404, 422, 593, 614,
621

GlobalKnownHostsFile keyword, 621
GNU Emacs and SSH, 517
GnuPG (GNU Privacy Guard), 11
GoBackground keyword, 367, 621
gPutty, 520
group access control, 191
GSSAPI, 463
GSSAPI.AllowedMethods keyword

(Tectia), 182
GSSAPI.AllowOldMethodWhichIsInsecure

keyword, 182, 615, 621
GSSAPIAuthentication keyword

(OpenSSH), 181
GSSAPICleanupCredentials keyword, 182,

615
GSSAPIDelegateCredentials keyword, 622
GSSAPI.DelegateToken keyword, 622
GSSAPI.Dlls keyword (Tectia), 183
gzip and gunzip, 101

H
hash functions, 42, 89
collision-resistance and

pre-image-resistance, 43
HOME environment variable, 6

host keys, 20, 284–287
implementation dependency, SSH, 69

Host keyword, 270, 271, 272, 273, 274, 281,
447, 499, 507, 622

hostbased authentication
batch jobs and, 412
per-account configuration and, 347
security of, 412
server configuration for, 175–177
troubleshooting, 500

HostbasedAuthentication keyword
(OpenSSH), 175

HostbasedAuthForceClientHostnameDNSM
atch keyword, 177, 477, 615

HostCa keyword, 477, 622
HostCAMoCRLs keyword, 477, 622
HostCertificateFile keyword, 458, 477, 615
host-key generation, 130
HostKey keyword, 142, 615
HostKeyAlgorithms keyword, 307, 622
HostKeyAlias keyword, 286, 449, 451, 622
HostKeyEkInitString keyword, 477, 615
HostKeyEkProvider keyword, 615
HostKeyEkTimeOut keyword, 477, 615
HostKeyFile keyword, 142, 477, 615
HostName keyword, 273, 280, 622
hosts, 19–21
HostSpecificConfig keyword (Tectia), 471
hostspecs, 73

I
IDEA (International Data Encryption

Algorithm), 86
identification files (Tectia), 232
identities, 227–242, 281–283
creating, 233–242
Diffie-Hellman key exchange, group
generation, 241

default identity, 229
listing and deleting, 248
manual switching, 261
multiple identities, 260–262
OpenSSH, 229
switching with agents, 261
tailored sessions, 262
Tectia, 230

IdentitiesOnly keyword, 283, 622
IdentityFile keyword, 157, 232, 261, 262,

273, 281, 282, 283, 410, 622
IdKey keyword, 232, 627
IdleTimeout keyword, 155



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

634 | Index

idle-timeout keyword, 155, 343, 403, 499
IdPgpKeyFingerprint keyword, 263, 627
IdPgpKeyId keyword, 263, 627
IdPgpKeyName keyword, 263, 627
IgnoreLoginRestrictions.PasswordExpiration

keyword, 615
IgnoreLoginRestrictions.Rlogin.AIX

keyword, 615
IgnoreRhosts keyword, 76, 175, 176, 197,

198, 405, 412, 478
IgnoreRootRhosts keyword (Tectia), 176
IgnoreUserKnownHosts keyword

(OpenSSH), 176
IMAP (Internet Message Access

Protocol), 437
authentication, 437

inetd
server configuration and debugging, 223
server invocation using, 150

initialization scripts, SSH servers, 200
installation
prerequisites, 100
signature verification, 100
software inventory, table, 124
source code, 100
source files
extraction, 101

symbolic links created during, 123
Tectia (see Tectia, installation)
Unix implementations, 99–101
binary distributions, 99

on Unix systems, 99
integrity, 37
integrity checking, 4, 167–169
interactive sessions, authentication without

passwords, 32
International Data Encryption Algorithm (see

IDEA)
IP attacks, 94
IP spoofing, 91
IPSEC (Internet Protocol Security), 12

J
J2SSH Maverick, 517
Java SSH implementations, 517
JavaSSH, 517
JSch, 517

K
kadmin command, 413
KDC (Key Distribution Center), 461
KeepAlive keyword, 153
keepalive messages, 152–154
Kerberos, 12, 461–468
batch job authentication using, 413
integration in SSH, 12
OpenSSH and Tectia

interoperability, 464–468
OpenSSH implementation, 111
server configuration for, 181–183
support in SSH, 463
tickets, 12

KerberosAuthentication keyword
(OpenSSH), 181

KerberosOrLocalPasswd keyword
(OpenSSH), 182

KerberosTgtPassing keyword
(OpenSSH), 182

KerberosTicketCleanup keyword, 182
Kermit, 518, 519
KEXINIT messages, 51
Key keyword (Tectia), 232, 330
keyboard-interactive

authentication, 177–180
one-time passwords, 177
Tectia plugin for, 488–492

KeyRegenerationInterval keyword, 609, 615
keys, 8, 22, 40, 44
changing, 27
host keys, 20, 284–287
implementation dependency, SSH, 69

key exchange, 51
key generators, 45
key management, 227–265
programs for key creation, 227
setup recommendations, 404

key pairs, 228
key-distribution problem, 41
secrecy, 24
session keys, 462
Tectia external keys, 264
troubleshooting, 504

keywords, 134
known hosts, 19–21
known hosts mechanism, 20
known-hosts databases, 45, 284–287



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 635

L
launch-sshd shell script, 139
LDAPServers keyword, 477, 622
limiting simultaneous connections, 157
Linux SSH implementations, 519
ListenAddress, 148
local computers, securing, 29
LocalForward keyword, 355, 356, 357, 593,

622
LoginGraceTime keyword, 155, 156, 477,

615
LogLevel keyword, 312, 313, 615
lsh, 520

M
MAC (message authentication code), 53,

167–169
Macintosh
OpenSSH, 526–530
SSH clients, 526
SSH server, 526–530

SSH implementations, 517
Macs keyword, 168, 615, 622
MacSFTP, 517
MacSSH, 517
man-in-the-middle attacks, 19, 92
masquerading, 426
Maverick SSHD, 517
Maverick.NET, 517
MaxAuthTries keyword, 156
MaxBroadcastsPerSecond keyword, 159
MaxConnections keyword, 157
MaxStartups keyword, 157
MD5, 90
message authentication code (see MAC)
metaconfiguration, 469
Microsoft Windows (see Windows)
MindTerm, 517
motd (message of the day), 198

N
Nagle Algorithm, 159
name service spoofing, 91
NAT (Network Address

Translation), 426–429
masquerading, 426
server-side issues, 427

netgroups, 74
network applications, security issues, 1
Network Information Service (NIS), 11
network interface server settings, 148

networking terminology, 6
NEWKEYS, 57
NFS, recommended settings, 404–407
NiftyTelnet SSH, 517
NIS (Network Information Service), 11
nmap, 161
no-agent-forwarding keyword, 334, 344,

403, 414
NoDelay keyword, 115, 159, 293, 477, 616,

622
NoHostAuthenticationForLocalhost

keyword, 287, 622
“none” encryption, 53
no-port-forwarding keyword, 330, 331, 334,

344, 371, 403, 414
no-pty keyword, 296, 334, 345, 346, 403,

414, 506
no-X11-forwarding keyword, 381, 414, 513
NumberOfPasswordPrompts keyword, 295,

622

O
one-time pad, 40
one-time passwords, 111, 177
OpenBSD, 5, 10
SSH implementations, 519

OpenSSH, 5, 10, 99
account authorization files, 329
authorization files, 626
configuration, 107–111
access control with
TCP-wrappers, 111

command-line flags, 107–111
dependencies, 106
file locations, 107
Kerberos support, 111
networking, 109
PAM authentication, 109
pid file, 108
turning on support for Internet
Protocol Version 4 (IPv4), 109

conversion, SSH-1 to SSH-2 keys, 231
environment variables, 627
help command, 278
host access control, 338
host keys implementation, 70
identities, 229, 626
installation, 106–111
build and install, 107
extraction of zipped files, 106
verification with PGP, 107

Macintosh operation, 526–530



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

636 | Index

OpenSSH (continued)
SSH clients, 526
SSH server, 526–530

popularity of, xi
prerequisites, 106
privilege separation, 80, 184
public-key installation, 24
quick reference, 612–627
random number generation, 108
random number storage, 79
scp keywords, 620–623
scp options, 619
server configuration, 157
logging and debugging, 211–215

server host-key generation, 130
server protocol version string, 170
serverwide configuration
authentication keywords, 171
configuration files, checking, 135
debugging messages, 496
hostbased authentication, 175
Kerberos authentication, 181
password authentication, 173
public-key authentication, 174
recommended settings, 398–401
reverse IP mapping, 158
SSH protocol settings, 169
user welcome, 198

smartcard support, 241
software inventory, 124
SSH configuration directory, key storage

file, 24
ssh keywords, 620–623
ssh options, 618
SSH-1, 609
ssh-add options, 625
ssh-agent options, 625
sshd keywords, 613–617
sshd options, 612
ssh-keygen options, 623
SSH_ORIGINAL_COMMAND

environment variable, 336
subsystem command syntax, 208
Version 4.0 new features, 591–594
AddressFamily configuration
keyword, 591

clients, 592
connection sharing, 592
hostname hashing, 592
KbdInteractiveDevices keyword, 592
logging of access violations, 591

password and account expiration
warnings, 591

port forwarding, 592
server, 591
sftp command line, 593
ssh-keygen command-line
options, 593

Windows and Cygwin operation, 518,
521–525

agents, 524
Cygwin installation, 521
opening remote windows, 523
public-key authentication, 524
ssh clients, 522
SSH server setup, 522
troubleshooting, 525

OpenSSL, 14, 106
directory path, flagging, 108

Options keyword, 330, 331, 371
OS/2 SSH implementations, 519

P
packet filters, stateful, 424
PalmOS SSH implementations, 519
PAM (Pluggable Authentication

Modules), 109, 183
OpenSSH authentication, 109
serverwide configuration, 183

passive mode (FTP), 419, 422–426
firewalls and, 424
PASV port theft problem, 423

passphrases, 24
changing, 27
limitations, 28

PasswdPath keyword (Tectia), 174
password authentication, 173–174
batch jobs, issues with, 408
empty passwords, 173
expired passwords, 173
failed password attempts, 173
troubleshooting, 499

password cracking attacks, 93
PasswordAuthentication keyword, 171, 173,

272, 307, 400, 402, 499, 616, 622
PasswordExpireWarningDays keyword, 616
PasswordGuesses keyword (Tectia), 156,

473
PasswordPrompt keyword, 295, 622
passwords
one-time passwords, 111
security risks, 21



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 637

PenguiNet, 518
per-account configuration, 102, 326–348
advantages, 326
authentication, 328
access restriction by host or
domain, 338

forced commands, 331
OpenSSH authorization files, 329
public-key based
configuration, 328–346

Tectia authorization files, 330
environment variables, setting, 340–343
forwarding, disabling, or limiting, 344
hostbased access control, 346
idle-timeout option, setting (Tectia), 343
limitations, 326
setup recommendations, 403
troubleshooting, 506
TTY allocation, disabling, 345
user’s rc file, 348

Perl modules for SSH implementation, 519
PermitEmptyPasswords keyword, 173
permitopen keyword, 344
PermitUserEnvironment keyword, 199
PGP (Pretty Good Privacy), 11
authentication in Tectia, 262–264

PgpKeyFingerprint keyword, 263, 331, 626
PgpKeyId keyword, 263, 331, 626
PgpKeyName keyword, 263, 331, 626
PGPPublicKeyFile keyword, 478, 616
PgpPublicKeyFile keyword, 263, 331, 626
PgpSecretKeyFile keyword, 264, 627
PidFile keyword, 143, 212, 616
Pine email client, 126, 436–444
connection scripts, 444
mail relaying, 442
remote usernames and, 442

PKI (Public Key Infrastructure), 55, 454
plaintext, 40
PocketPuTTY, 519
PocketTTY, 519
port forwarding, 8, 349, 351–372
dynamic port forwarding, 373–377
firewalls, bypassing, 364
forwarding off-host, 361–364
ftp protocol forwarding, 371
listening port number, 367
local forwarding, 352–356
gateway ports, 355
remote forwarding, compared
to, 358–361

multiple connection issues, 357
remote forwarding, 356
remote logins, without, 366–367
server configuration, 201–205, 370
target forwarding address, choosing, 368
TCP-wrappers (see TCP-wrappers)
termination, 369
TIME_WAIT problem, 370

troubleshooting, 512
X forwarding (see X forwarding)

Port keyword, 148
port number
server settings, 148

Pragma Fortress, 518
PreferredAuthentications keyword, 308, 622
PrintLastLog keyword (OpenSSH), 199
PrintMotd keyword, 198, 398, 498, 616
privacy, 37
private keys, 228
privilege separation, issues with, 80
privileged ports, 10
PRNGs (pseudo-random number

generators, 79
Protocol keyword (OpenSSH), 223
protocols, 3
ProxyCommand keyword, 445, 450, 451,

452, 622
ProxyServer keyword, 616, 622
pseudo-random number generators

(PRNGs), 79
pSSH, 519
pty-req channel request, 66
PubKeyAuthentication keyword

(OpenSSH), 174
public key files, 229
Public Key Infrastructure (PKI), 55
PublicHostKeyFile keyword, 142, 477, 616
public-key authentication, 21–32
agents, using (see agents)
algorithms, 84–86
authenticator, 22
batch jobs, 409–412
agents, 410–412
filesystem passphrases storage, 409
plaintext keys, 410

client/server interaction, 22
key pair generation, 23
keys, changing, 27
OpenSSH, 27
Tectia systems, 27



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

638 | Index

public-key authentication (continued)
password authentication, compared

to, 26
private keys, 22
public keys, 22, 228
installing in remote accounts, 24
OpenSSH installation, 24
Tectia systems, installation, 25

server configuration for, 174
Tectia systems, key generation on, 23
troubleshooting, 501

public-key cryptography, 41
PuTTY, 518, 520, 576–589
batch jobs, 587
configuration and settings
authentication, 586
compression, 586
encryption algorithms, 585
logging and debugging, 586
Proxies and SOCKS, 585
pseudo-terminal allocation, 585

configuration and use, 576
host keys, 584
saved sessions, 583
SSH protocol selection, 584
TCP/IP settings, 584

file transfers, 578
PSCP, 579
PSFTP, 579

forwarding, 587
installation, 576
key management, 580–583
agents, 582
key selection, 582

Plink console client, 577
remote commands, 578
TCP/IP settings
keepalive messages, 585
Nagle algorithm, 585
remote port selection, 585

Q
QuietMode keyword, 211, 313, 478, 616,

622

R
random number generation, 78
OpenSSH, 108

random seed, 45
RandomSeed keyword, 616

RandomSeedFile keyword, 143, 477, 616,
622

RC4 (ARCFOUR), 88
r-commands, 10
disabling, 398
insecurity, 11
SSH, replacing with, 125–127
in CVS, 125
in GNU Emacs, 126
in Pine, 126
in rsync and rdist, 127

rcp, 81
rdist, 127
realms, 462
regex syntax, SSH patterns (Tectia), 599–603
character sets, 602
escaped tokens, 601

regular expressions manpage
(Tectia), 595–603

egrep patterns, 595
ZSH_FILEGLOB, 597

RekeyIntervalSeconds keyword, 155, 162,
307, 478, 616, 622

remote account name, 279–281
remote program invocation and security, 333
RemoteForward keyword, 356, 357, 593,

622
RemotelyAnywhere, 518
replay attacks, 37
requests, 65
RequiredAuthentications keyword

(Tectia), 172
gssapi, 182
hostbased, 175
keyboard interactive, 178

RequireReverseMapping keyword, 158, 189,
193, 477, 616

ResolveClientHostName keyword, 189, 477,
616

restricted shell, 414
reverse IP mappings in server

configuration, 158
RhostsRSAAuthentication keyword, 172,

175, 347, 609, 616, 623
RIPEMD-160, 90
Rivest-Shamir-Adleman public-key algorithm

(see RSA)
RPM packages, 99
RSA (Rivest-Shamir-Adleman) public-key

algorithm, 84
RSAAuthentication keyword, 172, 174, 477,

609, 616, 623



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 639

rsh (restricted shell), 414
rsh suite, 10
rsync, 127

S
ScanSSH program, 161
scp (Secure Copy Program), 7, 17, 81, 82,

313–323
authentication through local agents, 31
bandwidth settings, 320
batch mode, 319
Cygwin under Windows, 522
data compression, 320
directories, recursive copying, 316
double-remote copying using

agents, 30–32
encryption algorithms, setting, 319
file conversions, 320
file transfers, 17
forced commands and, 338
gateway hosts, using through, 448
help, 322
internal options, 322
keywords, 620–623
Macintosh, 526
optimization, 321
options, 619
original file, automatic removal

(Tectia), 317
permissions, 317
safety features, 318
ssh executable, locating, 322
SSH protocol settings, 319
statistics, display of, 321
syntax, 18, 313–316
TCP/IP settings, 319
troubleshooting, 509
user identity, 319
wildcards, 316

scp2, 82, 84
sealed servers, 438
SecPanel, 520
secret-key algorithms, 86–89
secret-key cryptography, 41
SECSH (Secure Shell) working group, 10
secure file transfers, 7
Secure Hash Algorithm (see SHA-1)
Secure iXplorer, 518
Secure KoalaTerm, 518
secure remote logins, 5
Secure Shell protocol (see SSH)

Secure Socket Layers (SSL), 14
SecureCRT, 518, 563–573
client configuration and use, 568–570
command-line programs, 572
file transfers, 572–573
vcp and vsftp commands, 572
Zmodem over SSH, 573

forwarding, 570–572
port forwarding, 570
X forwarding, 571

key management, 564–567
agents, 567
key generation, 565
key installation, automatic, 565
key installation, manual, 566
multiple identities, 567

session configuration, 564
troubleshooting, 574

SecureFX, 573
SecurID, 180
SecurIdGuesses keyword (Tectia), 180
security
agent forwarding and untrusted

machines, 206
batch job precautions, 413
carelessness and, 97
compile-time configuration setup

recommendations, 397
forced commands and, 333
forwarding and, 205
multiple identities, advantages, 260
network applications and, 1
shell escapes and, 333
Tectia SSH-1 compatibility mode

issues, 225
SendEnv keyword, 199, 289, 623
server settings and, 199

server authentication, 38
ServerAliveCountMax keyword, 154, 293,

623
ServerAliveInterval keyword, 154, 293, 623
ServerKeyBits keyword, 609, 616
serverwide configuration, xv, 102, 128–226
access control, 184–198
account access control, 185–191
chroot, restricting directory access
with, 195

external access control, 194
group access control, 191
hostname access control, 192
root access control, 194
shosts access control, 193



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

640 | Index

serverwide configuration (continued)
authentication, 171–184
authentication syntax, 171–173
hostbased authentication, 175–177
Kerberos, 181–183
keyboard-interactive
authentication, 177–180

login programs, selecting, 184
PAM, 183
password authentication, 173–174
PGP, 181
public-key authentication, 174

configuration files, 133–138
checking, 135
time values in, 155

file locations, 142–146
host-key files, 142
per-account authorization files, 145
process ID file, 143
random seed file, 143
server configuration files, 144
utmp file structure, 145

file permissions, 146
forwarding, 201–206
agent forwarding, 206
port forwarding, 201–205
X forwarding, 205

host-key generation, 130
initial setup, 141–171
data compression, 170
encryption algorithms, 162–167
integrity-checking (MAC)
algorithms, 167–169

key regeneration, 161
numeric values, configuration
files, 149

protocol version string, 170
restart for each connection, 151
SSH protocol settings, 169
TCP/IP settings (see TCP/IP settings,
server)

logging and debugging, 209–223
syslog, 210

making changes, 139
metaconfiguration information, 134,

468–479
per-account configuration (see

per-account configuration)
port forwarding, 370
port selection, 131
reconfiguration example, 141

server compatibility, SSH-1 and
SSH-2, 223–226

setup recommendations, 397–403
startup file script, 129
subconfiguration files, 134
subsystems, 206–209
definition syntax, 206

troubleshooting, 506
user logins and accounts, 198–201
client environment variables, setting
permissions, 199

initialization scripts, 200
user welcome messages, 198

session keys, 462
sessions, 44
identity-based tailoring, 262

SetRemoteEnv keyword (Tectia)
server settings and, 199

SettableEnvironmentVars keyword
(Tectia), 200

setup recommendations, 396–407
client configuration, 404
compile-time configuration, 397
key management, 404
per-account configuration, 403
remote home directories, 404–407
serverwide configuration, 397–403

sftp, 33, 81, 84, 323–325
ASCII vs. binary transfer, 34
command-line options, 34, 325
Cygwin under Windows, 522
interactive commands, 323–325
Macintosh, 526
vs. ftp, 34

SftpSysLogFacility keyword, 211, 617
SHA-1 (Secure Hash Algorithm), 90
shadow files, 110
Shannon, Claude, 40
shell channel request, 66
SHELL environment variable, 28
shell escapes, 333
ShellGuard, 518
SIGHUP signal, 140
signers, 45
single-shell agent invocation, 243–245
S/Key in OpenSSH, 111
SkeyAuthentication keyword, 617
slogin (SSH1), 34
SmartcardDevice keyword, 623
SMTP (Simple Mail Transfer Protocol), 437
sniffing, 37



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 641

SocksServer keyword, 120, 304, 477, 548,
617, 623

source distributions, 100
SRP (Secure Remote Password), 13
ssh (client), 5
configuration, 266–313
authentication, 307–310
command-line options, 267
configuration files, 268–275
connections, 294–302
data compression, 310
encryption algorithms, 306
environment variables, 275
forwarding, 305
host key types, 307
host keys and known-hosts
databases, 284–287

integrity-checking (MAC)
algorithms, 306

logging and debugging, 312
precedence, 276
protocol settings, 287–289
proxies, 302, 302–305
random seeds (Tectia), 313
remote account name, 279–281
session rekeying, 307
SOCKS, 302–305
subsystems, 311
TCP/IP settings, 290–294
user identities, 281–283

Cygwin under Windows, 522
debugging messages, 495
escape character, 21
keywords, 620–623
known and unknown hosts, 19–21
Macintosh, 526
remote terminal sessions, 16
client/server channel, establishing, 17
login, 17

ssh options, 618
ssh-add options, 625
ssh-agent options, 625
ssh-keygen options, 623
troubleshooting, 508
unexpected behaviors, handling, 19
verbose mode, 19, 277

SSH Communications Security, 5, 9
SSH (protocol)
quick reference, 612–627

SSH (Secure Shell), xii, 1–15, 36–98
address name with multiple numeric

address, problems, 71

algorithms, 84–91
hash functions, 89
public-key algorithms, 84–86
secret-key algorithms, 86–89

authentication, 38
supported methodologies, 38

authorization, 39
authorization in hostbased

authentication, 71
control file details, 72
hostbased access files, 72
netgroups, 74
netgroups as wildcards, 76

backward compatibility, 78
clients, 16–35, 44
scp (see scp)
sftp (see sftp)
slogin, 34
ssh (see ssh)

client/server architecture, 2
compression algorithms, 91
configuration directory
key storage files, 24

configuration (see configuration)
cryptography (see cryptography)
denotation of protocols, products and

clients, 4
features, 5–9, 36–39
keys and agents, 7
port forwarding, 8
remote commands execution, 7
remote logins, 5
scp (see scp)
secure file transfers, 7

file transfers, 81–84
flexibility in prosecution of services, 47
forwarding, 39
supported types, 39

function and purpose, 1
history, 9
implementation-dependent features, 48,

69–81
host keys, 69

included component protocols, 46–49
installation (see installation)
integrity, 37
keys, 44
known-hosts mechanism, 20
PKI, supported types and supporting

implementations, 55
privacy, 37
privilege separation (OpenSSH), 80



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

642 | Index

SSH (Secure Shell) (continued)
pronunciation, 1
protections provided by, 91–93
random number generation, 78
r-commands, replacing, 125–127
in CVS, 125
in GNU Emacs, 126
in Pine, 126
in rsync and rdist, 127

related technologies, 10–15
firewalls, 15
IPSEC and VPNs, 12
Kerberos, 12
PGP and GnuPG, 11
SRP, 13
SSL, 14
SSL-enhanced telnet and FTP, 14
stunnel, 15

security vulnerabilities, 93–98
server, 43
sessions, 44
software inventory, 124
SSH agent (see agents)
SSH-1, 36, 68
Tectia compatibility support, 122–123

SSH-1 protocol, 9
SSH-2, 36, 45–67
SSH-1 compared to, 68

SSH-2 protocol, 9
SSH-AUTH, 47, 57–63
authentication request, 57
authentication response, 58
host-based authentication, 62
“none” request, 59
password authentication, 61
public-key authentication, 60

SSH-CONN, 47, 64–67
channel requests, 66
channels, 64
completing the connection process, 67
global requests, 65
requests, 65

SSH-SFTP, 48
SSH-TRANS, 47, 49–57
connection, 49
initialization of encryption, 56
key exchange algorithm, 51
key exchange and server
authentication, 54

message authentication code and
algorithms, 53

parameter negotiation, 51

protocol version selection, 50
server authentication and
anti-spoofing, 56

supported encryption algorithms, 37
system architecture, 43–45
Unix implementations (see OpenSSH;

Tectia)
Unix versions, xvi

SSH Secure Shell product (see Tectia)
SSH1 product, 9
Ssh1AgentCompatibility keyword, 611, 623
Ssh1Compatibility keyword, 224, 477, 610,

617, 623
Ssh1InternalEmulation keyword, 610, 623
Ssh1MaskPasswordLength keyword, 611,

623
Ssh1Path keyword, 611, 623
ssh-add command, 28, 247–253
command-line options, 250
listing keys, 29
reading input, 28
troubleshooting, 505

ssh-agent command, 28
locking agents form unauthorized use, 29
troubleshooting, 505

ssh-askpass program, 28
password piping, 409

ssh-copy-id command (for key
installation), 26

sshd (server), 129
authentication syntax, 171–173
client environment variables and, 199
command-line options, 138
configuration (see server configuration)
debugging messages, 496
hushlogin and, 199
inetd, 223
initialization scripts, 200
key regeneration, 161
keywords, 613–617
launch-sshd shell script, 139
public keys file, 176
running as ordinary user, 129
disadvantages, 131

running as superuser, 129
setup recommendations, 397–403
SIGHUP signal, 140
sshd command options, 612
user SSH directory, 144
user welcome messages, 198
xinetd, 223



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 643

Sshd1ConfigFile keyword, 225, 477, 610,
617

Sshd1Path keyword, 224, 477, 610, 617
sshd-check-conf program, 136–138, 219
ssh-keyconverter (OpenSSH), 231
ssh-keygen command, 23, 233
command line options to change

passphrases, 27
ssh.pid file, path specification, 108
ssh-probe program (Tectia), 160
sshrc files, 200
sshregex (Tectia) manpage, 595–603
egrep patterns, 595
syntax, 595
ZSH_FILEGLOB, 597

SshSignerPath keyword, 311, 623
SSHTerm Professional, 517
SSL (Secure Socket Layers), 14
TCP-based applications, enhanced

with, 14
StrictHostKeyChecking keyword, 284, 285,

286, 623
StrictModes keyword, 25, 146, 147, 149,

478, 617
stunnel, 15
subconfiguration files, 471
forbidden keywords, 476
keyword order, 473
sections, 474

subshell agent invocation, 246
subsystem channel request, 66
Subsystem keyword, 207
symbolic links, created by SSH

installations, 123
symmetric ciphers, 41
SYN flood attack, 94
SyslogFacility keyword, 210
system administration, xv

T
tar format, 101
TCP attacks, 94
TCP/IP settings, server
ASLR (Address Space Layout

Randomization), 151
failed logins, 156
idle connections, 155
invocation by inetd or xinetd, 150
keepalive messages, 152–154
Nagle Algorithm, 159

port number and network interface, 148
reverse IP mappings, 158
server discovery, 159
simultaneous connections, limiting, 157

tcpip-forward request, 65
TCPKeepAlive keyword, 153
TCP_NODELAY bit, 159
TCP-wrappers, 389–395
Tectia, 5, 99
account authorization files, 330
authentication
authorization file, 232
external keys, 264
identification files, 232
identities, 230
PGP, using, 262–264
X.509 certificates, 454–461

authorization files, 626
client for FTP, 416
configuration, 113–122
authentication, 117–120
debugging, 120
encryption, 117
file locations and permissions, 113
networking, 115
random number generation, 115
SOCKS proxies, 120
TCP port forwarding, 117
X Window system, 116

configuration extensions, 468–479
configuration files
keywords, 477
quoted values, 478

debugging
module names, 604–608

environment variables, 627
file-naming conventions, 130
help command, 278
host access control, 340
host keys implementation, 70
host-key generation, 131
identity files, 626
idle-timeout option, setting, 343
installation, 111–113
build and install, 113
file extraction, 112
md5 verification, 112
prerequisites, 112

metaconfiguration, 134, 468–479
plugins, 479–494



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

644 | Index

Tectia (continued)
customized password-change
plugin, 487

expired passwords,
changing, 479–484

external authorization, 492
general rules, 485
keyboard-interactive
authentication, 488–492

Perl package for plugin
implementation, 484

public keys, changing, 27
public-key generation, 23
public-key installation, 25
quick reference, 612–627
random number storage, 79
scp keywords, 620–623
scp options, 619
scp2, 84
scp, contrasted with, 82

server debugging messages, 496
serverwide configuration
access control files, 196
authentication syntax, 172
authentication techniques, 172
configuration files, checking, 136
hostbased authentication, 175
host-key generation, 130
Kerberos authentication, 182
keyboard-interactive
authentication, 178

limiting simultaneous
connections, 157

logging and debugging, 215–223
password authentication, 173
public-key authentication, 174
recommended settings, 401–403
rules for quoted strings, 135
server discovery, 159
SSH protocol settings, 170
SSH-1 and SSH-2 compatibility
issues, 223–226

ssh-probe, 160
user welcome, 198

software inventory, 124
SSH configuration directory, key storage

file, 24
ssh keywords, 620–623
ssh options, 618
SSH Secure Shell product, name

change, xi
SSH-1, 610–611

client configuration, 610
key management, 611
scp file transfers, 611
serverwide configuration, 610

SSH-1 protocol compatibility and
support, 121–123

SSH2_ORIGINAL_COMMAND, 336
ssh-add options, 625
ssh-agent options, 625
sshd keywords, 613–617
sshd options, 612
ssh-keygen options, 623
sshregex manpage, 595–603
egrep patterns, 595
syntax, 595
ZSH_FILEGLOB, 597

subconfiguration files, 471
forbidden keywords, 476
keyword order, 473
sections, 474

subsystem command syntax, 208
Windows operation (see Tectia for

Windows)
Tectia for Windows, 531–562
Accession Lite, 536–539
client application, 533–534
configuration and profiles, 539–542

command-line programs, 552
Connector, 543–551
file transfers, 551
installation, 532
key management, 534
port forwarding, 542–543
supported Windows platforms, 531
Tectia Servers A and T, 555–562
access control, 559
authentication, 559
commands, 557
configuration, 557
forwarding, 560
logging and debugging, 561
operation, 556
SFTP server, 560

troubleshooting, 554
telnet
SSL-enhanced, 14

terminal locking, 29
Terminal.AllowGroups keyword, 617
Terminal.AllowUsers keyword, 617
Terminal.DenyGroups keyword, 617
Terminal.DenyUsers keyword, 617
tickets, 462



This is the Title of the Book, eMatter Edition

Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 645

time values, server configuration files, 155
TIME_WAIT state, 433
TLS (Transport Layer Security), 14
Top Gun SSH, 519
traffic analysis, 95
transparency, 349
transparent proxies, 424
Triple-DES, 88
Trojnara, Micha, 15
troubleshooting, 497–513
TrustX11Applications keyword, 383, 623
TTY allocation, disabling per-account, 345
tunneling, 39, 351
advantages, 451

tunnels, 8
TuSSH, 519
Twofish, 89

U
Unix
hushlogin convention and SSH, 199
"message of the day" (motd), 198
syslog, 210

UseDNS keyword, 158
UseLogin keyword, 184, 205, 617
UsePAM keyword, 110, 171, 178, 183, 617
UsePrivilegedPort keyword, 292, 623
UsePrivilegeSeparation keyword, 184, 617
user authentication, 38
User keyword, 279, 499, 623
UserConfigDirectory keyword, 137, 144,

145, 269, 539, 559, 617
UserKnownHosts keyword, 176, 617
UserKnownHostsFile keyword, 287, 623
UserSpecificConfig keyword (Tectia), 471
UseSOCKS5 keyword, 477, 617, 623

V
VanDyke Software, 563
VerboseMode keyword, 216, 219, 312, 478,

617, 623
VerifyHostDNS keyword, 286
VerifyHostKeyDNS keyword, 623
version-control systems, 125
VMS SSH implementations, 520
VPNs (Virtual Private Networks), 12
VShell, 518, 574

W
Windows
OpenSSH on Cygwin, 521–525
agents, 524
enabling remote windows, 523
installation, 521
public-key authentication, 524
ssh clients, 522
SSH server setup, 522
troubleshooting, 525

PuTTY client (see PuTTY)
SecureCRT (see SecureCRT)
SSH implementations, 517
Tectia (see Tectia for Windows)

Windows Pocket PC SSH
implementations, 519

WinSSHD, 518
WiSSH, 518
wu-ftpd, 423

X
X forwarding, 349, 377–389
limiting or disablig per-account, 344
server configuration, 205

X11DisplayOffset keyword, 381, 617
X11Forwarding keyword, 205, 617
x11-req channel request, 66
X11UseLocalhost keyword, 617
xauth, 108
XAuthLocation keyword, 381, 389, 513,

617, 623
XAuthPath keyword, 617, 623
xinetd
server configuration and debugging, 223
server invocation using, 150

Y
Ylönen, Tatu, 4, 5, 9

Z
zlib, 91, 106
ZOC, 518, 519
ZSH_FILEGLOB, sshregex (Tectia), 597
character sets, 598





About the Authors

Daniel J. Barrett, Ph.D., has been immersed in Internet technology since 1985.
Currently working as a software engineer, Dan has also been a heavy metal singer,
Unix system administrator, university lecturer, web designer, and humorist. He is the
author of O’Reilly’s Linux Pocket Guide, and is the coauthor of Linux Security Cook-
book and the first edition of SSH, The Secure Shell: The Definitive Guide. He also
writes monthly columns for Compute! and Keyboard Magazine, as well as articles for
the O’Reilly Network.

Richard E. Silverman has a B.A. in computer science and an M.A. in pure mathe-
matics. Richard has worked in the fields of networking, formal methods in software
development, public-key infrastructure, routing security, and Unix systems adminis-
tration. He coauthored the first edition of SSH, The Secure Shell: The Definitive
Guide, and he loves to read, study languages and mathematics, sing, dance, and
exercise.

Robert G. Byrnes, Ph.D., has been hacking on Unix systems for 20 years, and has
been involved with security issues since the original Internet worm was launched
from Cornell University, while he was a graduate student and system administrator.
Currently, he’s a software engineer at Curl Corporation. He has worked in the fields
of networking, telecommunications, distributed computing, financial technology,
and condensed matter physics.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of SSH, the Secure Shell: The Definitive Guide is a land snail
(Mollusca gastropoda).

A member of the mollusk family, a snail has a soft, moist body that is protected by a
hard shell, into which it can retreat when in danger or when in arid or bright condi-
tions. Snails prefer wet weather and, though not nocturnal, will stay out of bright
sun. At the front of a snail’s long body are two sets of tentacles: its eyes are at the end
of one set, and the other set is used for smelling and navigation.

Land snails are hermaphrodites, each having both female and male sex organs,
though a snail must mate with another snail in order for fertilization to occur. A snail
lays eggs approximately six times a year, with almost 100 eggs each time. Young
snails hatch in a month and become adults in two years. A snail’s life span is approx-
imately 5–10 years.

Known as a slow mover, a snail moves by muscles on its underside that contract and
expand, propelling the snail along at a slow pace. It leaves a wet trail of mucus,



which protects the snail from anything sharp it may need to crawl over as it searches
for food. The snail’s diet of plants, bark, and fruits causes it to be a pest in many
parts of the world where it is notorious for destroying crops.

Mary Brady was the production editor for SSH, the Secure Shell: The Definitive
Guide . Audrey Doyle proofread the book. Marlowe Shaeffer and Mary Anne Weeks
Mayo provided quality control. Lydia Onofrei provided production assistance. John
Bickelhaupt wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie
Freedman. The cover image is an original engraving from the book Natural History
of Animals by Sanborn Tenney and Abby A. Tenney, published by Scribner,
Armstrong & Co. in 1873. Karen Montgomery produced the cover layout with
Adobe InDesign CS  using Adobe’s ITC Garamond font.

David Futato designed the interior layout. This book was converted by Keith Fahl-
gren to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason
McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The
text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the
code font is LucasFont’s TheSans Mono Condensed. The illustrations that appear in
the book were produced by Robert Romano, Jessamyn Read, and Lesley Borash
using Macromedia FreeHand MX and Adobe Photoshop CS. The tip and warning
icons were drawn by Christopher Bing. This colophon was written by Nicole Arigo.


	Table of Contents
	Preface
	Protect Your Network with SSH
	Intended Audience
	End-User Audience
	Prerequisites

	System-Administrator Audience
	Prerequisites


	Reading This Book
	Our Approach
	Which Chapters Are for You?
	Supported Platforms
	Disclaimers
	Conventions Used in This Book
	Comments and Questions
	Safari Enabled
	Acknowledgments

	Introduction to SSH
	1.1 What Is SSH?
	1.2 What SSH Is Not
	1.3 The SSH Protocol
	1.3.1 Protocols, Products, Clients, and Confusion

	1.4 Overview of SSH Features
	1.4.1 Secure Remote Logins
	1.4.2 Secure File Transfer
	1.4.3 Secure Remote Command Execution
	1.4.4 Keys and Agents
	1.4.5 Access Control
	1.4.6 Port Forwarding

	1.5 History of SSH
	1.6 Related Technologies
	1.6.1 rsh Suite (r-Commands)
	1.6.2 Pretty Good Privacy (PGP) and GNU Privacy Guard (GnuPG)
	1.6.3 Kerberos
	1.6.4 IPSEC and Virtual Private Networks
	1.6.5 Secure Remote Password (SRP)
	1.6.6 Secure Socket Layer (SSL) Protocol
	1.6.7 SSL-Enhanced Telnet and FTP
	1.6.8 stunnel
	1.6.9 Firewalls

	1.7 Summary

	Basic Client Use
	2.1 A Running Example
	2.2 Remote Terminal Sessions with ssh
	2.2.1 File Transfer with scp

	2.3 Adding Complexity to the Example
	2.3.1 Known Hosts
	2.3.2 The Escape Character

	2.4 Authentication by Cryptographic Key
	2.4.1 A Brief Introduction to Keys
	2.4.2 Generating Key Pairs with ssh-keygen
	2.4.3 Installing a Public Key on an SSH Server Machine
	2.4.3.1 Instructions for OpenSSH
	2.4.3.2 Instructions for Tectia

	2.4.4 If You Change Your Key

	2.5 The SSH Agent
	2.5.1 Agents and Automation
	2.5.2 A More Complex Passphrase Problem
	2.5.3 Agent Forwarding

	2.6 Connecting Without a Password or Passphrase
	2.7 Miscellaneous Clients
	2.7.1 sftp
	2.7.2 slogin

	2.8 Summary

	Inside SSH
	3.1 Overview of Features
	3.1.1 Privacy (Encryption)
	3.1.2 Integrity
	3.1.3 Authentication
	3.1.4 Authorization
	3.1.5 Forwarding (�Tunneling)

	3.2 A Cryptography Primer
	3.2.1 How Secure Is Secure?
	3.2.2 Public- and Secret-Key Cryptography
	3.2.3 Hash Functions

	3.3 The Architecture of an SSH System
	3.4 Inside SSH-2
	3.4.1 Protocol Summary
	3.4.2 SSH Transport Layer Protocol (SSH-TRANS)
	3.4.2.1 Connection
	3.4.2.2 Protocol version selection
	3.4.2.3 Parameter negotiation
	3.4.2.4 Key exchange and server authentication
	3.4.2.5 Server authentication and antispoofing: some gory details
	3.4.2.6 Wonder security powers, activate!

	3.4.3 SSH Authentication Protocol (SSH-AUTH)
	3.4.3.1 The authentication request
	3.4.3.2 The authentication response
	3.4.3.3 Getting started: the “none” request
	3.4.3.4 Public-key authentication
	3.4.3.5 Password authentication
	3.4.3.6 Hostbased authentication

	3.4.4 SSH Connection Protocol (SSH-CONN)
	3.4.4.1 Channels
	3.4.4.2 Requests
	3.4.4.3 The finish line


	3.5 Inside SSH-1
	3.6 Implementation Issues
	3.6.1 Host Keys
	3.6.2 Authorization in Hostbased Authentication
	3.6.2.1 Hostbased access files
	3.6.2.2 Control file details
	3.6.2.3 Netgroups as wildcards
	3.6.2.4 Summary

	3.6.3 SSH-1 Backward Compatibility
	3.6.4 Randomness
	3.6.5 Privilege Separation in OpenSSH

	3.7 SSH and File Transfers (scp and sftp)
	3.7.1 What’s in a Name?
	3.7.2 scp Details
	3.7.3 scp2/sftp Details

	3.8 Algorithms Used by SSH
	3.8.1 Public-Key Algorithms
	3.8.1.1 Rivest-Shamir-Adleman (RSA)
	3.8.1.2 Digital Signature Algorithm (DSA)
	3.8.1.3 Diffie-Hellman key agreement

	3.8.2 Secret-Key Algorithms
	3.8.2.1 International Data Encryption Algorithm (IDEA)
	3.8.2.2 Advanced Encryption Standard (AES)
	3.8.2.3 Data Encryption Standard (DES)
	3.8.2.4 Triple-DES
	3.8.2.5 ARCFOUR (RC4)
	3.8.2.6 Blowfish
	3.8.2.7 Twofish
	3.8.2.8 CAST

	3.8.3 Hash Functions
	3.8.3.1 CRC-32
	3.8.3.2 MD5
	3.8.3.3 SHA-1
	3.8.3.4 RIPEMD-160

	3.8.4 Compression Algorithms: zlib

	3.9 Threats SSH Can Counter
	3.9.1 Eavesdropping
	3.9.2 Name Service and IP Spoofing
	3.9.3 Connection Hijacking
	3.9.4 Man-in-the-Middle Attacks

	3.10 Threats SSH Doesn’t Prevent
	3.10.1 Password Cracking
	3.10.2 IP and TCP Attacks
	3.10.3 Traffic Analysis
	3.10.4 Covert Channels
	3.10.5 Carelessness

	3.11 Threats Caused by SSH
	3.12 Summary

	Installation and Compile-Time Configuration
	4.1.� Overview
	4.1.1 Install the Prerequisites
	4.1.2 Obtain the Sources
	4.1.3 Verify the Signature
	4.1.4 Extract the Source Files
	4.1.5 Perform Compile-Time Configuration
	4.1.6 Compile Everything
	4.1.7 Install the Programs and Configuration Files

	4.2 Installing OpenSSH
	4.2.1 Prerequisites
	4.2.2 Downloading and Extracting the Files
	4.2.2.1 Verifying with GnuPG

	4.2.3 Building and Installing
	4.2.4 Configuration Options
	4.2.4.1 File locations
	4.2.4.2 Random number generation
	4.2.4.3 Networking
	4.2.4.4 Authentication
	4.2.4.5 Access control


	4.3 Installing Tectia
	4.3.1 Prerequisites
	4.3.2 Obtaining and Extracting the Files
	4.3.3 Verifying with md5sum
	4.3.4 Building and Installing
	4.3.5 Configuration Options
	4.3.5.1 File locations and permission
	4.3.5.2 Random number generation
	4.3.5.3 Networking
	4.3.5.4 X Window System
	4.3.5.5 TCP port forwarding
	4.3.5.6 Encryption
	4.3.5.7 Authentication
	4.3.5.8 SOCKS proxies
	4.3.5.9 Debugging
	4.3.5.10 SSH-1 protocol compatibility

	4.3.6 SSH-1 Compatibility Support for Tectia

	4.4 Software Inventory
	4.5 Replacing r�Commands with SSH
	4.5.1 Concurrent Versions System (CVS)
	4.5.2 GNU Emacs
	4.5.3 Pine
	4.5.4 rsync, rdist

	4.6 Summary

	Serverwide Configuration
	5.1 Running the Server
	5.1.1 Running sshd as the Superuser
	5.1.2 Running sshd as an Ordinary User

	5.2 Server Configuration: An Overview
	5.2.1 Server Configuration Files
	5.2.2 Checking Configuration Files
	5.2.2.1 Checking OpenSSH configuration files
	5.2.2.2 Checking Tectia configuration files

	5.2.3 Command-Line Options
	5.2.4 Changing the Configuration
	5.2.5 A Tricky Reconfiguration Example

	5.3 Getting Ready: Initial Setup
	5.3.1 File Locations
	5.3.1.1 Host key files
	5.3.1.2 Random seed file
	5.3.1.3 Process ID file
	5.3.1.4 Server configuration file
	5.3.1.5 User SSH directory
	5.3.1.6 Per-account authorization files
	5.3.1.7 utmp file structure

	5.3.2 File Permissions
	5.3.2.1 Acceptable permissions for user files

	5.3.3 TCP/IP Settings
	5.3.3.1 Port number and network interface
	5.3.3.2 Invocation by inetd or xinetd
	5.3.3.3 Restarting the SSH server for each connection
	5.3.3.4 Keepalive messages
	5.3.3.5 Idle connections
	5.3.3.6 Failed logins
	5.3.3.7 Limiting simultaneous connections
	5.3.3.8 Reverse IP mappings
	5.3.3.9 Controlling the Nagle Algorithm
	5.3.3.10 Discovering other servers

	5.3.4 Key Regeneration
	5.3.5 Encryption Algorithms
	5.3.6 Integrity-Checking (MAC) Algorithms
	5.3.7 SSH Protocol Settings
	5.3.7.1 Protocol version string

	5.3.8 Compression

	5.4 Authentication: Verifying Identities
	5.4.1 Authentication Syntax
	5.4.2 Password Authentication
	5.4.2.1 Failed password attempts
	5.4.2.2 Empty passwords
	5.4.2.3 Expired passwords

	5.4.3 Public-Key Authentication
	5.4.4 Hostbased Authentication
	5.4.5 Keyboard-Interactive Authentication
	5.4.5.1 OpenSSH keyboard-interactive authentication
	5.4.5.2 Tectia’s keyboard-interactive authentication

	5.4.6 PGP Authentication
	5.4.7 Kerberos Authentication
	5.4.7.1 Kerberos and OpenSSH
	5.4.7.2 Kerberos and Tectia

	5.4.8 PAM Authentication
	5.4.9 Privilege Separation
	5.4.10 Selecting a Login Program

	5.5 Access Control: Letting People In
	5.5.1 Account Access Control
	5.5.1.1 Restricting all logins

	5.5.2 Group Access Control
	5.5.3 Hostname Access Control
	5.5.4 shosts Access Control
	5.5.5 Root Access Control
	5.5.6 External Access Control
	5.5.7 Restricting Directory Access with chroot
	5.5.8 Summary of Authentication and Access Control

	5.6 User Logins and Accounts
	5.6.1 Welcome Messages for the User
	5.6.2 Setting Environment Variables
	5.6.3 Initialization Scripts

	5.7 Forwarding
	5.7.1 Port Forwarding
	5.7.2 X Forwarding
	5.7.3 Agent Forwarding

	5.8 Subsystems
	5.9 Logging and Debugging
	5.9.1 OpenSSH Logging and Debugging
	5.9.2 Tectia Logging and Debugging
	5.9.3 Debugging Under inetd or xinetd

	5.10 Compatibility Between SSH-1 and SSH-2 Servers
	5.10.1 Security Issues with Tectia’s SSH-1 Compatibility Mode

	5.11 Summary

	Key Management and Agents
	6.1 What Is an Identity?
	6.1.1 OpenSSH Identities
	6.1.2 Tectia Identities

	6.2 Creating an Identity
	6.2.1 Generating Keys for OpenSSH
	6.2.1.1 Creating OpenSSH keys
	6.2.1.2 Working with OpenSSH keys

	6.2.2 Generating Keys for Tectia
	6.2.2.1 Creating Tectia keys
	6.2.2.2 Working with Tectia keys

	6.2.3 Selecting a Passphrase
	6.2.4 Generating New Groups for Diffie-Hellman Key Exchange

	6.3 SSH Agents
	6.3.1 Agents Do Not Expose Keys
	6.3.2 Starting an Agent
	6.3.2.1 Single-shell method
	6.3.2.2 Subshell method
	6.3.2.3 Format of environment variable commands

	6.3.3 Loading Keys with ssh-add
	6.3.3.1 Automatic agent loading (single-shell method)
	6.3.3.2 Automatic agent loading (subshell method)
	6.3.3.3 Automatic agent loading (X Window System)

	6.3.4 Agents and Security
	6.3.4.1 Access control
	6.3.4.2 Cracking an agent

	6.3.5 Agent Forwarding
	6.3.5.1 A firewall example
	6.3.5.2 How agent forwarding works
	6.3.5.3 Enabling agent forwarding

	6.3.6 Agent CPU Usage
	6.3.7 Debugging the Agent

	6.4 Multiple Identities
	6.4.1 Switching Identities Manually
	6.4.2 Switching Identities with an Agent
	6.4.3 Tailoring Sessions Based on Identity

	6.5 PGP Authentication in Tectia
	6.6 Tectia External Keys
	6.7 Summary

	Advanced Client Use
	7.1 How to Configure Clients
	7.1.1 Command-Line Options
	7.1.2 Client Configuration Files
	7.1.2.1 Keywords versus command-line options
	7.1.2.2 Global and local files
	7.1.2.3 Configuration-file sections
	7.1.2.4 Multiple matches
	7.1.2.5 Making nicknames for hosts
	7.1.2.6 Comments, indenting, and style

	7.1.3 Environment Variables

	7.2 Precedence
	7.3 Introduction to Verbose Mode
	7.4 Client Configuration in Depth
	7.4.1 Remote Account Name
	7.4.1.1 Tricks with remote account names

	7.4.2 User Identity
	7.4.2.1 Using identities

	7.4.3 Host Keys and Known-Hosts Databases
	7.4.3.1 Strict host-key checking
	7.4.3.2 Verifying host keys by DNS
	7.4.3.3 Host key aliasing
	7.4.3.4 Ignoring host keys for localhost
	7.4.3.5 Moving the known hosts files

	7.4.4 SSH Protocol Settings
	7.4.4.1 Choosing a protocol version
	7.4.4.2 Connection sharing
	7.4.4.3 Setting environment variables in the server

	7.4.5 TCP/IP Settings
	7.4.5.1 Selecting a remote port
	7.4.5.2 Connecting via a given network interface
	7.4.5.3 Forcing a nonprivileged local port
	7.4.5.4 Keepalive messages
	7.4.5.5 Controlling TCP_NODELAY
	7.4.5.6 Requiring IPv4 and IPv6

	7.4.6 Making Connections
	7.4.6.1 Number of connection attempts
	7.4.6.2 Password prompting in OpenSSH
	7.4.6.3 Password prompting in Tectia
	7.4.6.4 Batch mode: suppressing prompts
	7.4.6.5 Pseudo-terminal allocation (TTY/PTY/PTTY)
	7.4.6.6 Backgrounding a remote command
	7.4.6.7 Backgrounding a remote command, take two
	7.4.6.8 Escaping

	7.4.7 Proxies and SOCKS
	7.4.7.1 SOCKS in OpenSSH: using DynamicForward
	7.4.7.2 SOCKS in Tectia

	7.4.8 Forwarding
	7.4.9 Encryption Algorithms
	7.4.10 Integrity-Checking (MAC) Algorithms
	7.4.11 Host Key Types
	7.4.12 Session Rekeying
	7.4.13 Authentication
	7.4.13.1 Requesting an authentication technique
	7.4.13.2 The server is the boss
	7.4.13.3 Detecting successful authentication
	7.4.13.4 Using ssh-keysign for hostbased authentication

	7.4.14 Data Compression
	7.4.15 Program Locations
	7.4.16 Subsystems
	7.4.17 Logging and Debugging
	7.4.18 Random Seeds

	7.5 Secure Copy with scp
	7.5.1 Full Syntax of scp
	7.5.2 Handling of Wildcards
	7.5.3 Recursive Copy of Directories
	7.5.4 Preserving Permissions
	7.5.5 Automatic Removal of Original File
	7.5.6 Safety Features
	7.5.6.1 Directory confirmation
	7.5.6.2 No-execute mode
	7.5.6.3 Overwriting existing files

	7.5.7 Batch Mode
	7.5.8 User Identity
	7.5.9 SSH Protocol Settings
	7.5.10 TCP/IP Settings
	7.5.11 Encryption Algorithms
	7.5.12 Controlling Bandwidth
	7.5.13 Data Compression
	7.5.14 File Conversion
	7.5.15 Optimizations
	7.5.16 Statistics Display
	7.5.17 Locating the ssh Executable
	7.5.18 Getting Help
	7.5.19 For Internal Use Only
	7.5.20 Further Configuration

	7.6 Secure, Interactive Copy with sftp
	7.6.1 Interactive Commands
	7.6.2 Command-Line Options

	7.7 Summary

	Per-Account Server Configuration
	8.1 Limits of This Technique
	8.1.1 Overriding Serverwide Settings
	8.1.2 Authentication Issues

	8.2 Public-Key-Based Configuration
	8.2.1 OpenSSH Authorization Files
	8.2.2 Tectia Authorization Files
	8.2.2.1 Tectia PGP key authentication

	8.2.3 Forced Commands
	8.2.3.1 Security issues
	8.2.3.2 Rejecting connections with a custom message
	8.2.3.3 Displaying a command menu
	8.2.3.4 Examining the client’s original command
	8.2.3.5 Restricting a client’s original command
	8.2.3.6 Logging a client’s original command
	8.2.3.7 Forced commands and secure copy (scp)

	8.2.4 Restricting Access by Host or Domain
	8.2.4.1 OpenSSH host access control
	8.2.4.2 Tectia host access control

	8.2.5 Setting Environment Variables
	8.2.5.1 Example: CVS and $LOGNAME

	8.2.6 Setting Idle Timeout
	8.2.7 Disabling or Limiting Forwarding
	8.2.8 Disabling TTY Allocation

	8.3 Hostbased Access Control
	8.4 The User rc File
	8.5 Summary

	Port Forwarding and X Forwarding
	9.1 What Is Forwarding?
	9.2 Port Forwarding
	9.2.1 Local Forwarding
	9.2.1.1 Local forwarding and GatewayPorts
	9.2.1.2 Remote forwarding

	9.2.2 Trouble with Multiple Connections
	9.2.3 Comparing Local and Remote Port Forwarding
	9.2.3.1 Common elements
	9.2.3.2 Local versus remote forwarding: the distinction

	9.2.4 Forwarding Off-Host
	9.2.4.1 Privacy
	9.2.4.2 Access control and the loopback address
	9.2.4.3 Listening on (“binding”) an interface

	9.2.5 Bypassing a Firewall
	9.2.6 Port Forwarding Without a Remote Login
	9.2.6.1 One-shot forwarding

	9.2.7 The Listening Port Number
	9.2.8 Choosing the Target Forwarding Address
	9.2.9 Termination
	9.2.9.1 The TIME_WAIT problem

	9.2.10 Configuring Port Forwarding in the Server
	9.2.10.1 Compile-time configuration
	9.2.10.2 Serverwide configuration
	9.2.10.3 Per-account configuration

	9.2.11 Protocol-Specific Forwarding: FTP

	9.3 Dynamic Port Forwarding
	9.3.1 SOCKS v4, SOCKS v5, and Names
	9.3.2 Other Uses of Dynamic Forwarding

	9.4 X Forwarding
	9.4.1 The X Window System
	9.4.2 How X Forwarding Works
	9.4.3 Enabling X Forwarding
	9.4.4 Configuring X Forwarding
	9.4.4.1 Compile-time configuration
	9.4.4.2 Serverwide configuration
	9.4.4.3 Per-account configuration

	9.4.5 X Authentication
	9.4.5.1 How X authentication works
	9.4.5.2 xauth and the SSH rc files
	9.4.5.3 Trusted X forwarding
	9.4.5.4 Problems with X authentication
	9.4.5.5 SSH and authentication spoofing
	9.4.5.6 Improving authentication spoofing
	9.4.5.7 Nonstandard X clients

	9.4.6 Further Issues
	9.4.6.1 X server configuration
	9.4.6.2 Setting your DISPLAY environment variable
	9.4.6.3 Shared accounts
	9.4.6.4 Location of the xauth program
	9.4.6.5 X forwarding and the GatewayPorts feature


	9.5 Forwarding Security: TCP-Wrappers and libwrap
	9.5.1 TCP-Wrappers Configuration
	9.5.2 Notes About TCP-Wrappers

	9.6 Summary

	A Recommended Setup
	10.1 The Basics
	10.2 Compile-Time Configuration
	10.3 Serverwide Configuration
	10.3.1 Disable Other Means of Access
	10.3.2 sshd_config for OpenSSH
	10.3.2.1 Choice of protocol
	10.3.2.2 Important files
	10.3.2.3 File and directory permissions
	10.3.2.4 TCP/IP settings
	10.3.2.5 Login time
	10.3.2.6 Authentication
	10.3.2.7 Access control
	10.3.2.8 Forwarding
	10.3.2.9 SFTP

	10.3.3 sshd2_config for Tectia
	10.3.3.1 Choice of protocol
	10.3.3.2 Important files
	10.3.3.3 File and directory permissions
	10.3.3.4 TCP/IP settings
	10.3.3.5 Login time
	10.3.3.6 Authentication
	10.3.3.7 Access control
	10.3.3.8 Forwarding
	10.3.3.9 Encryption
	10.3.3.10 SFTP


	10.4 Per-Account Configuration
	10.5 Key Management
	10.6 Client Configuration
	10.7 Remote Home Directories (NFS, AFS)
	10.7.1 NFS Security Risks
	10.7.2 NFS Access Problems
	10.7.3 AFS Access Problems

	10.8 Summary

	Case Studies
	11.1 Unattended SSH: Batch or cron Jobs
	11.1.1 Password Authentication
	11.1.2 Public-Key Authentication
	11.1.2.1 Storing the passphrase in the filesystem
	11.1.2.2 Using a plaintext key
	11.1.2.3 Using an agent

	11.1.3 Hostbased Authentication
	11.1.4 Kerberos
	11.1.5 General Precautions for Batch Jobs
	11.1.5.1 Least-privilege accounts
	11.1.5.2 Separate, locked-down automation accounts
	11.1.5.3 Restricted-use keys
	11.1.5.4 Useful ssh options

	11.1.6 Recommendations

	11.2 FTP and SSH
	11.2.1 FTP-Specific Tools for SSH
	11.2.1.1 VanDyke’s SecureFX
	11.2.1.2 Tectia client

	11.2.2 Static Port Forwarding and FTP: A Study in Pain
	11.2.3 The FTP Protocol
	11.2.4 Forwarding the Control Connection
	11.2.4.1 Choosing the forwarding target
	11.2.4.2 Using passive mode
	11.2.4.3 The “PASV port theft” problem

	11.2.5 FTP, Firewalls, and Passive Mode
	11.2.6 FTP and Network Address Translation (NAT)
	11.2.6.1 Server-side NAT issues

	11.2.7 All About Data Connections
	11.2.7.1 The usual method of file transfer
	11.2.7.2 Passive mode in depth
	11.2.7.3 FTP with the default data ports

	11.2.8 Forwarding the Data Connection

	11.3 Pine, IMAP, and SSH
	11.3.1 Securing IMAP Authentication
	11.3.1.1 Pine and preauthenticated IMAP
	11.3.1.2 Making Pine use SSH

	11.3.2 Mail Relaying and News Access
	11.3.3 Using a Connection Script

	11.4 Connecting Through a Gateway Host
	11.4.1 Making Transparent SSH Connections
	11.4.2 Using SCP Through a Gateway
	11.4.3 Another Approach: SSH-in-SSH (Port Forwarding)
	11.4.4 SSH-in-SSH with a Proxy Command (OpenSSH)
	11.4.5 Comparing the Techniques
	11.4.5.1 Smoothness
	11.4.5.2 Security


	11.5 Scalable Authentication for SSH
	11.5.1 Tectia with X.509 Certificates
	11.5.1.1 What’s a PKI?
	11.5.1.2 Using certificates with Tectia host keys
	11.5.1.3 A simple configuration
	11.5.1.4 Getting a certificate
	11.5.1.5 Hostkey verification: configuring the server
	11.5.1.6 Hostkey verification: configuring the Client
	11.5.1.7 User authentication: configuring the client
	11.5.1.8 User authentication: configuring the server

	11.5.2 OpenSSH and Tectia with Kerberos
	11.5.2.1 How Kerberos works
	11.5.2.2 Kerberos support in SSH
	11.5.2.3 Kerberos interoperability with OpenSSH and Tectia


	11.6 Tectia Extensions to Server Configuration Files
	11.6.1 Metaconfiguration
	11.6.2 Subconfiguration Files
	11.6.3 Quoted Values

	11.7 Tectia Plugins
	11.7.1 A Plugin for Changing Expired Passwords
	11.7.1.1 The ssh-passwd-plugin program
	11.7.1.2 A Perl package implementing the Tectia plugin protocol
	11.7.1.3 Creating a customized password-change plugin

	11.7.2 A Plugin for Keyboard-Interactive Authentication
	11.7.3 A Plugin for External Authorization


	Troubleshooting and FAQ
	12.1 Debug Messages: Your First Line of Defense
	12.1.1 Client Debugging
	12.1.2 Server Debugging

	12.2 Problems and Solutions
	12.2.1 General Problems
	12.2.2 Authentication Problems
	12.2.2.1 General authentication problems
	12.2.2.2 Password authentication
	12.2.2.3 Hostbased authentication
	12.2.2.4 Public-key authentication
	12.2.2.5 PGP key authentication

	12.2.3 Key and Agent Problems
	12.2.3.1 ssh-keygen
	12.2.3.2 ssh-agent and ssh-add
	12.2.3.3 Per-account authorization files

	12.2.4 Server Problems
	12.2.4.1 sshd_config, sshd2_config

	12.2.5 Client Problems
	12.2.5.1 General client problems
	12.2.5.2 Client configuration file
	12.2.5.3 ssh
	12.2.5.4 scp
	12.2.5.5 sftp
	12.2.5.6 Port forwarding


	12.3 Other SSH Resources
	12.3.1 Web Sites
	12.3.2 Usenet Newsgroups


	Overview of Other Implementations
	13.1 Common Features
	13.2 Covered Products
	13.3 Other SSH Products
	13.3.1 BeOS
	13.3.2 Commodore Amiga
	13.3.3 GNU Emacs
	13.3.4 Java
	13.3.5 Macintosh OS 9
	13.3.6 Macintosh OS X
	13.3.7 Microsoft Windows
	13.3.8 Microsoft Windows CE (PocketPC)
	13.3.9 OS/2
	13.3.10 Palm OS
	13.3.11 Perl
	13.3.12 Unix Variants (Linux, OpenBSD, etc.)
	13.3.13 VMS


	OpenSSH for Windows
	14.1 Installation
	14.2 Using the SSH Clients
	14.3 Setting Up the SSH Server
	14.3.1 Opening Remote Windows on the Desktop

	14.4 Public-Key Authentication
	14.4.1 Running an Agent

	14.5 Troubleshooting
	14.6 Summary

	OpenSSH for Macintosh
	15.1 Using the SSH Clients
	15.2 Using the OpenSSH Server
	15.2.1 Enabling the Server
	15.2.2 Opening the Firewall
	15.2.3 Control by xinetd
	15.2.4 Server Configuration Details
	15.2.5 Kerberos Support


	Tectia for Windows
	16.1 Obtaining and Installing
	16.2 Basic Client Use
	16.3 Key Management
	16.4 Accession Lite
	16.5 Advanced Client Use
	16.6 Port Forwarding
	16.7 Connector
	16.7.1 General Settings
	16.7.2 Servers for Outgoing SSH Connections
	16.7.3 Filter Rules for Dynamic Port Forwarding
	16.7.4 Configuration File

	16.8 File Transfers
	16.9 Command-Line Programs
	16.10 Troubleshooting
	16.11 Server
	16.11.1 Server Operation
	16.11.2 Server Configuration
	16.11.3 Commands and Interactive Sessions
	16.11.4 Authentication
	16.11.5 Access Control
	16.11.6 Forwarding
	16.11.7 SFTP Server
	16.11.8 Logging and Debugging


	SecureCRT and SecureFX for Windows
	17.1 Obtaining and Installing
	17.2 Basic Client Use
	17.3 Key Management
	17.3.1 Key Generation Wizard
	17.3.1.1 Automatic installation of keys
	17.3.1.2 Manual installation of keys

	17.3.2 Using Multiple Identities
	17.3.3 The SSH Agent

	17.4 Advanced Client Use
	17.4.1 Mandatory Fields
	17.4.2 Data Compression
	17.4.3 Firewall Use

	17.5 Forwarding
	17.5.1 Port Forwarding
	17.5.2 X Forwarding

	17.6 Command-Line Client Programs
	17.7 File Transfer
	17.7.1 The vcp and vsftp Commands
	17.7.2 Zmodem File Transfer
	17.7.3 SecureFX

	17.8 Troubleshooting
	17.8.1 Authentication
	17.8.2 Forwarding

	17.9 VShell
	17.10 Summary

	PuTTY for Windows
	18.1 Obtaining and Installing
	18.2 Basic Client Use
	18.2.1 Plink, a Console Client
	18.2.2 Running Remote Commands

	18.3 File Transfer
	18.3.1 File Transfer with PSCP
	18.3.2 File Transfer with PSFTP

	18.4 Key Management
	18.4.1 Choosing a Key
	18.4.2 Pageant, an SSH Agent

	18.5 Advanced Client Use
	18.5.1 Saved Sessions
	18.5.2 Host Keys
	18.5.3 Choosing a Protocol Version
	18.5.4 TCP/IP Settings
	18.5.4.1 Selecting a remote port
	18.5.4.2 Keepalive messages
	18.5.4.3 The Nagle Algorithm

	18.5.5 Pseudo-Terminal Allocation
	18.5.6 Proxies and SOCKS
	18.5.7 Encryption Algorithms
	18.5.8 Authentication
	18.5.9 Compression
	18.5.10 Logging and Debugging
	18.5.11 Batch Jobs

	18.6 Forwarding
	18.6.1 Forwarding with PuTTY
	18.6.2 Forwarding with Plink

	18.7 Summary

	OpenSSH 4.0 New Features
	Server Features: sshd
	Logging of Access Control Violations
	AddressFamily Keyword
	Password and Account Expiration Warnings

	Client Features: ssh, scp, and sftp
	KbdInteractiveDevices Keyword
	More Control for Connection Sharing
	Hashing of Hostnames
	Port Forwarding
	sftp Command-Line Features

	ssh-keygen
	Hashing Your Known Hosts File
	Managing Hosts


	Tectia Manpage for sshregex
	Regex Syntax: Egrep Patterns
	Escaped Tokens for Regex Syntax Egrep

	Regex Syntax: ZSH_FILEGLOB (or Traditional) Patterns
	Character Sets for Egrep and ZSH_FILEGLOB
	Example

	Regex Syntax: SSH Patterns
	Escaped Tokens for Regex Syntax SSH
	Character Sets for Regex Syntax SSH
	Example


	Authors
	See Also

	Tectia Module Names for Debugging
	SSH-1 Features of OpenSSH and Tectia
	OpenSSH Features
	Serverwide Configuration
	Client Configuration
	Files

	Tectia Features
	Serverwide Configuration
	Client Configuration
	File Transfers
	Key Management
	Authentication Agent


	SSH Quick Reference
	Legend
	sshd Options
	sshd Keywords
	ssh Options
	scp Options
	ssh and scp Keywords
	ssh-keygen Options
	ssh-agent Options
	ssh-add Options
	Identity and Authorization Files, OpenSSH
	Identity and Authorization Files, Tectia
	Environment Variables

	Index

