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In praise of Software Networks: A Comprehensive Approach

“SDN is here and Görannson’s book will fill a glaring need in the technical education community. It is 

a new game in town. This useful reference will help get our students up to speed and ready to play in 

this world of immense new possibilities.”

—Brian Capouch, Assistant Professor of Computer Science, Saint Joseph’s College

“This book is THE collection of the state-of-the-art in SDN. Göransson and Black have compiled all 

of the current literature into an easy-to-read text, preparing the reader to be both current in SDN tech-

nology and aware of the impact that SDN will have today and tomorrow. This is a must-have on every 

network technologist’s shelf.”

—Scott Valcourt, Director of Strategic Technology, University of New Hampshire

“Göransson and Black have truly written a comprehensive book on SDN! This is the book we’ve all 

been waiting for. Göransson and Black provide an excellent background on SDN, how OpenFlow plays 

an important role in SDNs and how the close alignment with the open source movement has allowed 

this technology to progress at lightning speed over the past few years. Anyone who reads this book will 

walk away with a detailed understanding of SDN, OpenFlow, the SDN Ecosystem and even the busi-

ness ramifications of implementing SDN. Personally, I can’t wait to use this book with my students in 

my SDN course.”

—Robert M. Cannistra, NYS Cloud Computing Center - SDN Innovation Lab School of 

Computer Science and Mathematics, Marist College
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xxi

What is Software Defined Networking, and why has it created so much hype in the networking 

 industry? This seems like a simple question to answer, yet I spent nearly three years traveling the world 

answering that very question for everyone from undergraduate engineering students to chief technol-

ogy  officers of major networking vendors.

In July 2010, when I gave my first public talk on OpenFlow, the protocol at the heart of SDN, 

virtually no one had heard of OpenFlow or Software Defined Networking, even among the university 

research networking community. By May 2011, just 10 months later, OpenFlow was the talk of Interop 

Las Vegas, with OpenFlow prototypes on display from 15 vendors; the Open Networking Foundation 

had been formed to promote and standardize SDN, and every networking publication was running sto-

ries on the new technology. That was truly an amazing time in which to be involved with SDN!

During 2010 and 2011, as the network architect for Indiana University, I worked with most of the 

networking vendors to explain how OpenFlow and SDN could bring value to large enterprises and ser-

vice provider networks. I had numerous meetings, phone calls, and lively discussions over beers with 

both engineers and executives from established players such as Cisco, Juniper, Hewlett-Packard, IBM, 

Dell, and Brocade as well as numerous startups. My team engaged in collaborations and early pilots 

with both Nicira and Big Switch Networks, the earliest and most talked about SDN startups. I was even 

fortunate enough to meet with developers from Google for briefings on the much talked about Google 

OpenFlow network nearly two years before Google first spoke publicly about the project.

During that time period, I explained SDN and why it was different and valuable to literally thou-

sands of people, from students to network engineers to C-level executives and even some university 

presidents. Some people immediately “got it” after just a few minutes of explanation, often before I 

could get to Slide 3 in the presentation. With some people it took a full-day class before the light bulb 

went on. Almost universally, the people who were quickest to understand SDN’s potential to impact the 

industry were those who had been in networking long enough to remember a time before the Internet, 

who had actually built networking products and who understood the business of networking.

This is why I was so excited when Paul and Chuck approached me about their plans to write this 

book. They both have tremendous experience in the networking industry, dating back longer than they 

probably care to admit. They have built networking solutions through multiple generations of tech-

nology. Having led two successful startups, Paul is also intimately familiar with the business of the 

networking industry. This depth and breadth of experience are absolutely invaluable when explaining 

SDN, positioning SDN in the context of the last 30-plus years of computer networking, and forecasting 

the potential impacts on networking in the coming years.

Perhaps the best proof point was a conversation I had with Chuck after he wrote his first network 

access control (NAC) solution based on an SDN controller. Chuck had spent several years at HP as the 

architect for that company’s NAC solution and knew firsthand how challenging it was to build a NAC 

solution based on “legacy” technologies such as Simple Network Management Protocol (SNMP) and 

Remote Authentication Dial-In User Service (RADIUS). After he had a working NAC solution built 

on an open-source SDN controller in a timeframe measured in days, not months, there was no doubt 

Chuck was sold on the value of SDN!

There is no shortage of information on the Internet today about SDN, in the form of blog  

posts, podcasts, tweets, and the like. There is even a self-published book on the OpenFlow protocol.  

Foreword
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However, for someone who has not been directly involved with SDN for the past couple years and 

wants to get up to speed, there has been no comprehensive source of information on SDN until the 

authors created this book.

The book is extremely approachable for anyone interested in networking and SDN, including 

undergraduate and graduate students, networking professionals, and IT managers. It is very much self-

contained and does not require extensive knowledge of networking in order to provide value to the 

reader. It provides the reader with valuable context by presenting a brief history of networking and 

a description of the technologies and industry landscape leading up to the creation of OpenFlow and 

SDN. If you are a network architect or an IT manager trying to compare multiple solutions that claim 

to be based on SDN but which appear to be based on very different technology, the authors provide a 

solid basis for understanding and evaluating the various competing approaches of SDN in the market.

Over the past three years, I have spent more time than I care to recall answering the simple ques-

tion, What is SDN and why is it valuable? I am regularly contacted via email and am approached at 

conferences by people telling me they want to learn more about SDN and asking me what they should 

read. Until now, I have had to point them to a long list of podcasts, whitepapers, blog posts, and videos 

of conference presentations that provide a very fragmented, disjointed, and often biased perspective 

on SDN. With this book, there is finally a comprehensive resource on SDN that I can feel good about 

recommending.

Matt Davy

Tallac Networks, Inc.

October 7, 2013

Matt Davy is a world-renowned expert on Software Defined Networking technology. At Indiana 

University, he served as executive director of InCNTRE, the SDN Interoperability Lab, Network 

Research, and Internships and Training. He was the lead architect for an enterprise network with more 

than 120,000 users, 100,000 Ethernet ports, and 5,000 wireless access points. He has 16 years of expe-

rience designing and operating large service provider and enterprise networks.
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When we initially conceived of the idea of writing this book, we were motivated in part by the lack 

of a single good reference for a comprehensive overview of SDN. Although both of us as authors 

were involved professionally with SDN technologies, even we found information related to SDN to be 

largely unavailable in any single comprehensive source. We realized that for the very large numbers 

of professionals who were not directly working with SDN but who needed to learn about it, this was 

a big problem. Thus, our broad-brush goal in writing this book is to describe the setting that gave rise 

to SDN, to outline the defining characteristics that distinguish it from competing technologies, and to 

explain the numerous significant commercial impacts that this nascent technology is already having.

One of the challenges in writing an early book about such a rapidly evolving technology is that it 

is a moving target. During the months of development of this text, things have changed at such a rapid 

rate that we can only strive for this to be an accurate and comprehensive snapshot of the current state of 

SDN technology. It will surely continue to evolve in the years following publication. We have selected 

to use the phrase A Comprehensive Approach as part of our title. There are many competing ideas in 

use today, the creators of which want to jump on the SDN bandwagon. Whatever aspect or type of SDN 

technology our reader may be required to deal with, we at least hope that he or she will be able to place 

it into the broader SDN context through reading this book. For this purpose, we try to discuss a variety 

of definitions of SDN. We hope that no reader takes offense that we were not dogmatic in our applica-

tion of the definition of SDN in this work.

Individuals who are interested in learning about Software Defined Networks or having a general 

interest in any of the following topics:

•฀ Networking
•฀ Switching
•฀ Software฀Deined฀Networks
•฀ OpenFlow
•฀ OpenStack
•฀ Network฀virtualization

will find this book useful.

Software Defined Networking is a broad field that is rapidly expanding. Although we have attempted to 

be as comprehensive as possible, the interested reader may need to pursue certain technical topics via the 

references provided. We assume that the reader has no special knowledge other than a basic  understanding 

of computer concepts. Some experience in computer programming and computer  networking will be 

 helpful for understanding the material presented. The book contains a large number of figures and 

 diagrams to explain and illustrate networking concepts that are being defined or discussed. These graphics 

help the reader to continue straight through the text without feeling the need to reach for other references.

Suggestions and Corrections
Although we have tried to be as careful as possible, the book may still contain some errors, and certain 

topics may have been omitted that readers feel are especially relevant for inclusion. In anticipation of 

Preface
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possible future printings, we would like to correct any mistakes and incorporate as many suggestions 

as possible. Please send comments via email to:

chuck_black@tallac.com

About the Authors
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1
CHAPTER

Introduction

It is not often that an author of a technology text gets to read about his subject matter in a major story in a

current issue of a leading news magazine. The tempest surrounding Software Defined Networking (SDN)

is indeed intense enough to make mainstream news [1]. The modern computer network has evolved into

a complex beast that is challenging to manage and that strugges to scale to the requirements of some

of today’s environments. SDN represents a new approach that attempts to address these weaknesses of

the current paradigm. SDN is a fundamentally novel way to program the switches utilized in modern

data networks. SDN’s move to a highly scalable and centralized network control architecture is better

suited to the extremely large networks prevalent in today’s megascale data centers. Rather than trying to

crowbar application-specific forwarding into legacy architectures that are ill-suited to the task, SDN is

designed from the outset to perform fine-grained traffic-forwarding decisions. Interest in SDN goes far

beyond the research and engineering communities intrigued by this new Internet switching technology.

If SDN’s technological promise is realized, it will represent nothing short of a tectonic shift in the

networking industry, as long-term industry incumbents may be unseated and costs to consumers may

plummet. Surely, though, along with this anticipation comes a degree of over-hype, and it is important

that we understand not only the potentials of this new networking model but also its limitations. In

this work we endeavor to provide a technical explanation of how SDN works, an overview of those

networking applications for which it is well suited and those for which it is not, a tutorial on building

custom applications on top of this technology, and a discussion of the many ramifications of SDN on

the networking business itself.

This introductory chapter provides background on the fundamental concepts underlying current state-

of-the-art Internet switches, where data plane, control plane, and management plane will be defined

and discussed. These concepts are key to understanding how SDN implements these core functions in a

substantially different manner than the traditional switch architecture. We also present how forwarding

decisions are made in current implementations and the limited flexibility this offers network administra-

tors to tune the network to varying conditions. At a high level, we provide examples of how more flexible

forwarding decisions could greatly enhance the business versatility of existing switches. We illustrate

how breaking the control plane out of the switch itself into a separate, open-platform controller can

provide this greater flexibility. We conclude by drawing parallels between the way the Linux operating

system has enjoyed rapid growth by leveraging the open-source development community and how the

same efficiencies can be applied to the control plane on Internet switches.

We next look at some basic packet-switching terminology that will be used throughout the text.

Following that we provide a brief history of the field of packet switching and its evolution.

Software Defined Networks. http://dx.doi.org/10.1016/B978-0-12-416675-2.00001-2
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1.1 Basic Packet-Switching Terminology

This section defines much of the basic packet-switching terminology used throughout the book. Our

convention is to italicize a new term on its first use. For more specialized concepts that are not defined

in this section, they will be defined on their first use. Many packet-switching terms and phrases have

several and varied meanings to different groups. Throughout the book we try to use the most accepted

definition for terms and phrases. Acronyms are also defined and emphasized on their first use; the book’s

appendix on acronyms provides an alphabetized list of all acronyms used in this work. An advanced

reader may decide to skip over this section. Others might want to skim this material and later look back

to refer to specific concepts.

This terminology is an important frame of reference as we explain how SDN differs from traditional

packet switching. To some degree, though, SDN does away with some of these historic concepts or

changes their meaning in a fundamental way. Throughout this book, we encourage the reader to look

back at these definitions and consider when the term’s meaning is unchanged in SDN, when SDN

requires a nuanced definition, and when a discussion of SDN requires entirely new vocabulary.

A wide area network (WAN) is a network that covers a broad geographical area, usually larger than

a single metropolitan area.

A local area network (LAN) is a network that covers a limited geographical area, usually not more

than a few thousand square meters in area.

A metropolitan area network (MAN) is a network that fills the gap between LANs and WANs.

This term came into use because LANs and WANs were originally distinguished not only by their

geographical areas of coverage but also by the transmission technologies and speeds that they used.

With the advent of technologies resembling LANs in terms of speed and access control, but with the

capability of serving a large portion of a city, the term MAN came into use to distinguish these networks

as a new entity distinct from large LANs and small WANs.

A wireless local area network (WLAN) is a LAN in which the transmission medium is air. The

typical maximum distance between any two devices in a wireless network is on the order of 50 meters.

Although it is possible to use transmission media other than air for wireless communication, we will

not consider such uses in our use of this term in this work.

The physical layer is the lowest layer of the seven-layer Open Systems Interconnection (OSI) model

of computer networking [10]. It consists of the basic hardware transmission technology to move bits of

data on a network.

The data link layer is the second lowest layer of the OSI model. This is the layer that provides the

capability to transfer data from one device to another on a single network segment. For clarity, here

we equate a LAN network segment with a collision domain. A strict definition of a LAN segment is

an electrical or optical connection between network devices. For our definition of data link layer, we

consider multiple segments linked by repeaters as a single LAN segment. Examples of network segments

are a single LAN, such as an Ethernet, or a point-to-point communications link between adjacent nodes

in a WAN. The link layer includes: (1) mechanisms to detect sequencing errors or bit errors that may

occur during transmission, (2) some mechanism of flow control between the sender and receiver across

that network segment, and (3) a multiplexing ability that allows multiple network protocols to use the

same communications medium. These three functions are considered part of the logical link control

(LLC) component of the data link layer. The remaining functions of the data link layer are part of the

Media Access Control component, described separately below.
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Media Access Control (MAC) is the part of the data link layer that controls when a shared medium

may be accessed and provides addressing in the case that multiple receivers will receive the data, yet

only one should process it. The MAC layer is part of the data link layer. For our purposes in this book,

we will not distinguish between data link layer and MAC layer.

The network layer provides the functions and processes that allow data to be transmitted from sender

to receiver across multiple intermediate networks. To transit each intermediate network involves the

data link layer processes described above. The network layer is responsible for stitching together those

discrete processes such that the data correctly makes its way from the sender to the intended receiver.

Layer one is the same as the physical layer defined above.

Layer two is the same as the data link layer defined above. We will also use the term L2 synonymously

with layer two.

Layer three is the same as the network layer defined above. L3 will be used interchangeably with

layer three in this work.

A port is a connection to a single communications medium, including the set of data link layer and

physical layer mechanisms necessary to correctly transmit and receive data over that link. This link may

be of any feasible media type. We will use the term interface interchangeably with port throughout this

text. Since this book also deals with virtual switches, the definition of port will be extended to include

virtual interfaces, which are the endpoints of tunnels.

A frame is the unit of data transferred over a layer two network.

A packet is the unit of data transferred over a layer three network. Sometimes this term is used more

generally to refer to the units of data transferred over either a layer two network (frames) as well, without

distinguishing between layers two and three. When the distinction is important, a packet is always the

payload of a frame.

A MAC address is a unique value that globally identifies a piece of networking equipment. Though

these addresses are globally unique, they serve as layer two addresses, identifying a device on a layer

two network topology.

An IP address is a nominally unique value assigned to each host in a computer network that uses the

Internet Protocol for layer three addressing.

An IPv4 address is an IP address that is a 32-bit integer value conforming to the rules of Internet

Protocol Version 4. This 32-bit integer is frequently represented in dotted notation, with each of the

4 bytes comprising the address represented by a decimal number from 0 to 255, separated by periods

(e.g., 192.168.1.2).

An IPv6 address is an IP address that is a 128-bit integer conforming to the rules of Internet Protocol

Version 6, introducing a much larger address space than IPv4.

A switch is a device that receives information on one of its ports and transmits that information out

one or more of its other ports, directing this information to a specified destination.

A circuit switch is a switch whereby contextual information specifying where to forward the data

belonging to a circuit (i.e., a connection) is maintained in the switch for a prescribed duration, which

may span lapses of time when no data belonging to that connection is being processed. This context is

established either by configuration or by some call setup or connection setup procedure specific to the

type of circuit switch.

A packet switch is a switch whereby the data comprising the communication between two or more

entities is treated as individual packets that each make their way independently through the network

toward the destination. Packet switches may be of the connection-oriented or connectionless type.
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In the connection-oriented model, data transits a network where there is some context information

residing in each intermediate switch that allows the switch to forward the data toward its destination.

The circuit switch described above is a good example of the connection-oriented paradigm.

In the connectionless model, data transits a network and there is sufficient data in each packet such

that each intermediate switch can forward the data toward its destination without any a priori context

having been established about that data.

A router is a packet switch used to separate subnets. A subnet is a network consisting of a set of

hosts that share the same network prefix. A network prefix consists of the most significant bits of the

IP address. The prefix may be of varying lengths. Usually all of the hosts on a subnet reside on the

same LAN. The term router is now often used interchangeably with layer three switch. A home wireless

access point typically combines the functionality of WiFi, layer two switch, and router into a single box.

To flood a packet is to transmit it on all ports of a switch except for the port on which it was received.

To broadcast a packet is the same as flooding it.

Line rate refers to the bandwidth of the communications medium connected to a port on a switch.

On modern switches this bandwidth is normally measured in megabits per second (Mbps) or gigabits

per second (Gbps). When we say that a switch handles packets at line rate, this means it is capable of

handling a continuous stream of packets arriving on that port at that bandwidth.

WiFi is the common name for wireless communications systems that are based on the IEEE 802.11

standard.

1.2 Historical Background

The major communications networks around the world in the first half of the 20th century were the tele-

phone networks. These networks were universally circuit-switched networks. Communication between

endpoints involved the establishment of a communications path for that dialogue and the tearing down of

that path at the dialogue’s conclusion. The path on which the conversation traveled was static during the

call. This type of communications is also referred to as connection-oriented. In addition to being based

on circuit switching, the world’s telephone networks were quite centralized, with large volumes of end

users connected to large switching centers. Paul Baran, a Polish immigrant who became a researcher

working at Rand Corporation in the United States in the 1960s, argued that in the event of enemy attack,

networks like the telephone network were very easy to disrupt [7,9]. The networks had poor survivability

characteristics in that the loss of a single switching center could remove phone capability from a large

swath of the country. Baran’s proposed solution was to transmit the voice signals of phone conversations

in packets of data that could travel autonomously through the network, finding their own way to their

destination. This concept included the notion that if part of the path being used for a given conver-

sation was destroyed by enemy attack, the communication would survive by automatically rerouting

over alternative paths to the same destination. He demonstrated that the national voice communications

system could still function even if 50% of the forwarding switches were destroyed, greatly reducing the

vulnerability characteristics of the centralized, circuit-switching architecture prevalent at the time.

When Baran did his work at Rand, he never could have envisioned the dominance his idea would

ultimately achieve in the area of data networking. Although it was certainly not the universally accepted

networking paradigm at the time, the history that followed is now part of Internet folklore. Baran’s ideas
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became embodied in the Department of Defense’s (DOD’s) experimental ARPANET network that began

to operate in 1969. The ARPANET connected academic research institutions, military departments, and

defense contractors. This decentralized, connectionless network grew over the years until bursting on the

commercial landscape around 1990 in the form of the Internet, known and loved around the world today.

For decades after the emergence of the ARPANET, networking professionals waged battles over

the advantages of connection-based vs. connectionless architectures and centralized vs. distributed

architectures. The tides in this struggle seemed to turn one way, only to reverse some years later. The

explosive growth of the Internet in the 1990s seemed to provide a conclusion to these arguments, at least

as far as computer networking was concerned. The Internet was in ascendance and was unequivocally

a distributed, connectionless architecture. Older connection-oriented protocols like X.25 [6] seemed

destined to become a thing of the past. Any overly centralized design was considered too vulnerable

to attack, whether malicious or a simple act of nature. Even the new kid on the block, Asynchronous

Transfer Mode (ATM) [6], hyped in the mid-1990s as capable of handling line rates greater than the

Internet could ever handle, would eventually be largely displaced by the ever-flexible Internet, which

somehow managed to handle line rates in the tens of gigabits-per-second range, once thought possible

only by using cell-switching technology such as ATM.

1.3 The Modern Data Center

The Internet came to dominate computer networking to a degree rarely seen in the history of technology

and was, at its core, connectionless and distributed. During this period of ascendance, the World Wide

Web (WWW), an offspring of the Internet, spawned by Sir Tim Berners-Lee of the United Kingdom,

gave rise to ever-growing data centers hosting ever more complex and more heavily subscribed web

services. These data centers served as environmentally protected warehouses housing large numbers

of computers that served as compute and storage servers. The warehouses themselves were protected

against environmental entropy as much as possible by being situated in disaster-unlikely geographies

with redundant power systems and ultimately with duplicate capacity at disparate geographical locations.

Because of the large numbers of these servers, they were physically arranged into highly organized

rows of racks of servers. Over time, the demand for efficiency drove the migration of individual server

computers into server blades in densely packed racks. Racks of compute-servers were hierarchically

organized such that top-of-rack (ToR) switches provided the networking within the rack and the inter-

rack interface capability. We depict the rigid hierarchy typical in today’s data center in Figure 1.1.

During this evolution, the sheer numbers of computers in the data center grew rapidly. Data centers

are being built now that will accommodate over 120,000 physical servers [8]. State-of-the-art physical

servers can conceivably host 20 virtual machines (VMs) per physical server. This means that the internal

network in such a data center would interconnect 2,400,000 hosts! These growing numbers of host

computers within a data center all communicate with each other via a set of communications protocols

and networking devices that were optimized to work over a large, disparate geographical area with

unreliable communications links. Obviously, tens of thousands of computers sitting side by side in

an environmental cocoon with highly reliable communications links is a different nature of network

altogether. It gradually emerged that the goals of survivability in the face of lost communications links

or a bombed-out network control center were not highly relevant in this emerging reality of the data
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Typical data center network topology.

center. Indeed, an enormous amount of complexity invented to survive precisely those situations was

making untenable the operation of the ever larger and more complex data center.

Beyond the obvious difference in the stability of the network topology, the sheer scale of these mega

data centers in terms of nodes and links creates a network management challenge different from those

encountered previously. Network management systems designed for carrier public networks or large cor-

porate intranets simply cannot scale to these numbers. A new network management paradigm is needed.

Furthermore, though these data centers exist in order to support interaction with the turbulent world

outside their walls, current research [13] predicts that by 2014 80% of the traffic in data centers will be

East-West traffic. East-West traffic is composed of packets sent by one host in a data center to another

host in that same data center. Analogously, North-South traffic is traffic entering (leaving) the data

center from (to) the outside world. For example, a user’s web browser query about the weather might be

processed by a web server (North-South) that retrieves data from a storage server in the same data center

(East-West) before responding to the user (North-South). The protocols designed to achieve robustness

in the geographically dispersed wide-area Internet today require that routers spend more than 30% of

their CPU cycles [8] rediscovering and recalculating routes for a network topology in the data center

that is highly static and only changed under strict centralized control. This increasing preponderance of

East-West traffic does not benefit from the overhead and complexities that have evolved in traditional

network switches to provide just the decentralized survivability that Paul Baran so wisely envisioned

for the WANs of the past.

The mega data centers discussed in this section differ from prior networks in a number of ways:

stability of topology, traffic patterns, and sheer scale. Traditional networking technologies are simply
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inadequate to scale to the levels being required. SDN, a technology designed explicitly to work well with

this new breed of network, represents a fundamental transformation from traditional Internet switching.

To understand how SDN does differ, in Sections 1.4 and 1.5 we review how legacy Internet switches

work to establish a baseline for comparison with SDN.

Before continuing, we should emphasize that although the modern data center is the premier driver

behind the current SDN fervor, by no means is SDN applicable to only the data center. When we review

SDN applications in Chapter 10 we will see that SDN technology can bring important innovations in

domains that have little to do with the data center, such as mobility.

1.4 Traditional Switch Architecture

We will now look at what the traditional Internet switch looks like from an architectural perspective,

and how and why it has evolved to be the complex beast it is today. The various switching functions are

traditionally segregated into three separate categories. Since each category may be capable of horizontal

communication with peer elements in adjacent entities in a topology, and also capable of vertical

communication with the other categories, it has become common to represent each of these categories

as a layer or plane. Peer communications occur in the same plane, and cross-category messaging occurs

in the third dimension, between planes.

1.4.1 Data, Control and Management Planes

We show the control, management and data planes of the traditional switch in Figure 1.2. The vast

majority of packets handled by the switch are only touched by the data plane. The data plane consists of

the various ports that are used for the reception and transmission of packets and a forwarding table with its

associated logic. The data plane assumes responsibility for packet buffering, packet scheduling, header

modification and forwarding. If an arriving data packet’s header information is found in the forwarding

table it may be subject to some header field modifications and then will be forwarded without any

intervention of the other two planes. Not all packets can be handled in that way, sometimes simply

because their information is not yet entered into the table, or because they belong to a control protocol

that must be processed by the control plane. The control plane, as shown in Figure 1.2, is involved in

many activities. Its principal role is to keep current the information in the forwarding table so that the

data plane can independently handle as high a percentage of the traffic as possible. The control plane is

responsible for processing a number of different control protocols that may affect the forwarding table,

depending on the configuration and type of switch. These control protocols are jointly responsible for

managing the active topology of the network. We review some of these control protocols below in

Section 1.5. These control protocols are sufficiently complex as to require the use of general purpose

microprocessors and accompanying software in the control plane, whereas we will see in Section 1.4.3

that the data plane logic can today be incarnated entirely in silicon.

The third plane depicted in Figure 1.2 is the management plane. Network administrators configure

and monitor the switch through this plane, which in turn extracts information from or modifies data

in the control and data planes as appropriate. The network administrators use some form of network

management system to communicate to the management plane in a switch.
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Roles of the control, management, and data planes.

1.4.2 Software-Based Routing and Bridging

In the late 1980s the commercial networking world was undergoing the cathartic process of the emer-

gence of the Internet as a viable commercial network. New startups such as Cisco Systems and Wellfleet

Communications had large teams of engineers building special-purpose, commercial versions of the

routers that had previously been relegated to use in research and military networks. Although the battle

between connection-oriented packet switching, such as X.25 and ATM, and the connectionless Internet

architecture would continue to be waged for a number of years, ultimately the connectionless router

would dominate the packet-switching world.

Before this time, most routers were just general-purpose Unix computers running software that

inspected a packet that arrived on one interface and looked up the destination IP address in some

efficiently searched data type such as a hierarchical tree structure. This data structure was called the

routing table. Based on the entry found during this search, the packet would be transmitted on the

indicated outbound interface. Control packets would be shunted to the appropriate control processes on

the Unix system rather than being processed through that routing table.

In addition to layer three routers, many companies marketed layer two bridges. Bridges create a

bridged LAN, which is a topology of interconnected LAN segments. Because multiple competing layer
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two technologies were prevalent, including Token Ring, Fiber Distributed Data Interface (FDDI), and

different speeds and physical media versions of the original Ethernet, these bridges also served as a mech-

anism to interface between disparate layer two technologies. The then-current terminology was to use the

terms bridging of frames for layer two and routing of packets for layer three. We will see in this book that

as the technologies have evolved, these terms have become blended such that a modern networking device

capable of handling both layer two and layer three is commonly referred to simply as a packet switch.

Demand for increased speed brought about concomitant advances in the performance of these network

devices. In particular, rapid evolution occurred both in optical and twisted copper pair physical media.

Ten Mbps Ethernet interfaces were commonplace by 1990, and 100 Mbps fiber and ultimately twisted

pair were on the horizon. Such increases in media speed made it necessary to continually increase

the speed of the router and bridge platforms. At first, such performance increases were achieved by

distributing the processing over ever more parallel implementations involving multiple blades, each

running state-of-the-art microprocessors with independent access to a distributed forwarding table.

Ultimately, though, the speed of the interfaces reached a point where performing the header inspection

and routing table lookup in software simply could not keep up.

1.4.3 Hardware Lookup of Forwarding Tables

The first major use of hardware acceleration in packet switching was via the use of application-specific

integrated circuits (ASICs) to perform high-speed hashing functions for table lookups. In the mid-

1990s, advances in content-addressable memory (CAM) technology made it possible to perform very

high-speed lookups using destination address fields to find the output interface for high-speed packet for-

warding. The networking application of this technology made its commercial debut in Ethernet switches.

At that time, the term switch became used to distinguish a hardware lookup-capable layer two bridge

from the legacy software lookup devices discussed in Section 1.4.2. The term router still referred to

a layer three device, and initially these were still based on software-driven address lookup. Routers

were still software-based for a number of reasons. First, the packet header modifications required for

layer three switching were beyond the capability of the ASICs used at the time. In addition, the address

lookup in layer two switching was based on the somewhat more straightforward task of looking up a

48-bit Media Access Control (MAC) address. Layer three address lookup is more complicated because

the devices look up the closest match on a network address, whereas the match may only be on the most

significant bits of a network address. Any of the destination addresses matching that network address

will be forwarded out the same output interface to the same next-hop address. The capabilities of CAMs

steadily improved, however, and within a few years there were layer three routers that were capable

of hardware lookup of the destination layer three address. At this point, the distinction between router

and switch began to blur, and the terms layer two switch and layer three switch came into common use.

Today, where the same device has the capability to simultaneously act as both a layer two and a layer

three switch, the use of the simple term switch has become commonplace.

1.4.4 Generically Programmable Forwarding Rules

In reality there are many packets that need to be processed by a switch and that need more complicated

treatment than simply being forwarded on another interface different from the one on which they arrived.

For example, the packet may belong to one of the control protocols covered in Sections 1.5.1 and 1.5.2,
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in which case it needs to be processed by the control plane of the switch. The brute-force means of

handling these exceptions by passing all exception cases to the control plane for processing rapidly

became unrealistic as forwarding rates increased. The solution was to push greater intelligence down

into the forwarding table such that as much of the packet processing as possible can take place at line

rates in the hardware forwarding engine itself.

Early routers only had to perform limited packet header field modifications. This included decrement-

ing the Time-to-Live (TTL) field and swapping the MAC header to the source-destination MAC headers

for the next hop. In the case of multicast support, they had to replicate the packet for transmission out

multiple output ports. As the switch’s features grew to support advanced capabilities such as virtual

local area networks (VLANs) and multiprotocol label switching (MPLS), more packet header fields

needed ever more complex manipulation. To this end, the idea of programmable rules came into being,

whereby some of this more complex processing could be encoded in rules and carried out directly in

the forwarding engines at line rate. Although most control protocol packets still needed to be shunted

to the control plane processor for handling, this capability allowed the evolving switches to implement

ever more complex protocols and features at ever-increasing line rates. This very programmability of

the hardware was one of the early seeds that gave life to the concept of SDN.

Though there are many variations in hardware architecture among modern switches, we attempt to

depict an idealized state-of-the-art switch in Figure 1.3. The figure shows the major functional blocks

that a packet will transit as it is being forwarded by the switch. In the figure we see that the packet may

transit the packet receive, ingress filter, packet translation, egress filter, and packet transmit functions

or be consumed by the switch OS. We can see that the forwarding database is influenced by the arrival of

certain packets, such as when a new address is learned. We also see that the hardware generates a flow
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A packet’s journey through switching hardware.
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key to serve as a lookup key into the forwarding database. The forwarding database will provide basic

forwarding instructions as well as policy directives, if relevant in this switch. The ingress filter applies

policy, perhaps resulting in the packet being dropped. Packet header modifications take place both at the

ingress filter as well as in the packet translation function. Outbound policy is implemented at the egress

filter, where again the packet may be dropped, if, for example, established quality-of-service (QoS) rates

are being exceeded. Finally, the packet passes through the packet transmit function, where additional

priority queue processing occurs prior to its actual transmission on the communications medium.

1.5 Autonomous and Dynamic Forwarding Tables

To respond to unstable communications links and the possible disappearance of an entire switching

center, protocols were developed so that bridges and routers could dynamically and autonomously

build and update their forwarding tables. In this section we provide background on some of the major

protocols that were developed to provide this capability.

1.5.1 Layer Two Control

A layer two forwarding table is a lookup table indexed by destination MAC address, where the table entry

indicates which port on the switch should be used to forward the packet. In the case of early, standalone

bridges, when a frame was first received from a device on a given interface, the switch could learn the

sender’s MAC address and location and populate its forwarding table with this new information. When

a frame arrived destined for that address, it could then use the forwarding table to send that frame out

the correct port. In the case that an unknown destination address was received, the bridge could flood

this out all interfaces, knowing that it would be dropped on all attached networks except the one where

the destination actually resided. This approach no longer worked once bridges were interconnected into

networks of bridges, because there were multiple paths to reach that destination and unless a single

one was chosen predictably, an infinite loop could be created. A static mapping of MAC addresses to

ports was an alternative, but protocols were developed that allowed the bridge to learn MAC addresses

dynamically and to learn how to assign these addresses to ports in such a way as to automatically avoid

creating switching loops yet predictably be able to reach the destination MAC address, even when that

required transiting multiple intermediate bridges. We discuss some of these MAC-learning protocols

here to illustrate ways that the legacy layer two switch’s forwarding table can be built up automatically.

As we explained earlier, the Ethernet switch’s role is to bridge multiple layer two networks. The

most simplistic concept of such a device includes only the ability to maintain a forwarding table of

MAC addresses such that when a frame reaches the switch, it understands on which attached layer two

network that destination MAC address exists and that it should forward the address out on that layer two

network. Clearly, if the frame arrived on a given port, and if the destination is reachable via that same

port, the Ethernet switch need not be involved in forwarding that frame to its destination. In this case,

the frame was dropped. The task of the Ethernet switch is considerably more complex when multiple

Ethernet switches are connected into complicated topologies containing loops. Without taking care to

prevent such situations, it was possible to accidentally construct forwarding loops whereby a frame

is sent back to a switch that had forwarded it earlier, ad infinitum. The performance impact of such

switching loops is more exaggerated in layer two switching than layer three, since the MAC header has



12 CHAPTER 1 Introduction

no analog to the layer three Time-to-Live (TTL) field, which limits the number of times the packet can

transit routers before it is dropped. Thus, an unintentional loop in a layer two network can literally bring

the network to a halt, where the switch appears frozen but is actually 100% occupied in forwarding the

same packet over and over through the loop.

The prevalence of broadcast frames in the layer two network exacerbates this situation. Since many

layer two control frames must be broadcast to all MAC addresses on that layer two topology, it was

very easy for a broadcast frame to return to a switch that had already broadcast that frame. This latter

problem is known as broadcast radiation. The Spanning Tree Protocol (STP), specified in IEEE 802.1D

[15], was designed specifically to prevent loops and thus addresses the problem of broadcast radiation.

The protocol achieves this by having all switches in the topology collectively compute a spanning tree,

a computer science concept whereby from a single root (source MAC address) there is exactly one

path to every leaf (destination MAC address) on the tree. STP has been superseded, from a standards

perspective at least, by protocols offering improvements on the original protocol’s functionality, most

recently the Shortest Path Bridging (SPB) [11] and the Transparent Interconnection of Lots of Links

(TRILL) protocols [17]. In practice, though, STP is still prevalent in networks today.

1.5.2 Layer Three Control

The router’s most fundamental task when it receives a packet is to determine whether the packet should

be forwarded out one of its interfaces or if the packet needs some exception processing. In the former,

normal case, the layer three destination address in the packet header is used to determine over which

output port the packet should be forwarded. Unless the destination is directly attached to this router, the

router does not need to know exactly where in the network the host is located; it only needs to know

the next-hop router to which it should forward the packet. There may be large numbers of hosts that

reside on the same destination network, and all of these hosts will share the same entry in the router’s

routing table. This is a table of layer three networks and sometimes layer three host addresses, not a

table of just layer two destination host addresses, as is the case with the layer two forwarding table.

Thus, the lookup that occurs in a router is to match the destination address in the packet with one of the

networks in the forwarding table. Finding a match provides the next-hop router, which maps to a specific

forwarding port, and the forwarding process can continue. In a traditional router, this routing table is

built primarily through the use of routing protocols. Although there is a wide variety of these protocols

and they are specialized for different situations, they all serve the common purpose of allowing the

router to autonomously construct a layer three forwarding table that can automatically and dynamically

change in the face of changes elsewhere in the network. Since these protocols are the basic mechanism

by which the traditional layer three switch builds its forwarding table, we provide a brief overview of

them here.

The Routing Information Protocol (RIP) [5] is a comparatively simple routing protocol that was

widely deployed in small networks in the 1990s. Each router in the RIP-controlled routing domain

periodically broadcasts its entire routing table on all of its interfaces. These broadcasts include the hop

count from the broadcasting router to each reachable network. The weight of each hop can be tailored

to accommodate relevant differences between the hops, such as link speed. Neighboring routers can

integrate this reachability and hop-count information into their own routing tables, which will in turn

be propagated to their neighbors. This propagation pervades the entire routing domain or autonomous
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system (AS). The routers in an AS share detailed routing information, allowing each member router in

the AS to compute the shortest path to any destination within that AS. In a stable network, eventually

all the routing tables in that routing domain will converge, and the hop-count information can be used

to determine a least-cost route to reach any network in that domain. RIP is a distance-vector protocol,

whereby each router uses the weighted hop count over one interface as its distance to that destination

network and is able to select the best next-hop router as the one presenting the least total distance to

the destination. RIP does not need to have a complete picture of the network topology in order to make

this distance-vector routing computation. This differs from the next two protocols, Open Shortest Path

First (OSPF) [2] and Intermediate System to Intermediate System (IS-IS) [4], both of which maintain a

complete view of the network topology in order to compute best routing paths. OSPF is an IETF project,

whereas IS-IS has its origins in OSI.

Both OSPF and IS-IS are link-state dynamic routing protocols. This name derives from the fact that

they both maintain a complete and current view of the state of each link in the AS and can thus determine

its topology. The fact that each router “knows” the topology permits it to compute the best routing paths.

Since both protocols “know” the topology, they can represent all reachable networks as leaf nodes on a

graph. Internal nodes represent the routers comprising that autonomous system. The edges on the graph

represent the communication links joining the nodes. The cost of edges may be assigned by any metric,

but an obvious one is bandwidth. The standard shortest-path algorithm, known as Dijkstra’s algorithm,

is used to compute the shortest path to each reachable network from each router’s perspective. For this

class of algorithm, the shortest path is defined as the one traversed with the smallest total cost. If a link

goes down, this information is propagated via the respective protocol, and each router in the AS will

shortly converge to have identical pictures of the network topology. OSPF is currently widely used in

large enterprise networks. Large service provider networks tend more to use IS-IS for this purpose. This

is primarily due to IS-IS having been a more mature and thus more viable alternative than OSPF in the

early service provider implementations. Although OSPF and IS-IS are essentially equally capable now,

there is little incentive for service providers to change.

Whereas the three routing protocols discussed above are interior gateway protocols (IGPs) and there-

fore concerned with optimizing routing within an AS, the Internet comprises a large set of interconnected

autonomous systems, and it is obviously important to be able to determine the best path transiting these

ASs to reach the destination address. This role is filled by an exterior gateway protocol (EGP). The only

EGP used in the modern Internet is the Border Gateway Protocol (BGP) [3]. BGP routers primarily

reside at the periphery of an AS and learn about networks that are reachable via peer edge routers in

adjacent ASs. This network routing information can be shared with other routers in the same AS, either

by using the BGP protocol between routers in the same AS, which is referred to as internal BGP, or by

redistributing the external network routing information into the IGP routing protocol. The most com-

mon application of BGP is to provide the routing glue between ASs run by different service providers,

allowing a host in one to transit through other providers’ networks to reach the ultimate destination.

Certain private networks may also require the use of BGP to interconnect multiple internal ASs that

cannot grow larger due to reaching the maximum scale of the IGP they are using. BGP is called a path

vector protocol, which is similar to a distance vector protocol like RIP, discussed above, in that it does

not maintain a complete picture of the topology of the network for which it provides routing information.

Unlike RIP, the metric is not a simple distance (i.e., hop count) but involves parameters such as network

policies and rules as well as distance to the destination network. The policies are particularly important
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when used by service providers, because there may be business agreements in place that need to dictate

routing choices that could trump simple routing cost computations.

1.5.3 Protocol Soup or (S)witch’s Brew?

The control protocols we’ve listed by name are only a small part of a long list of protocols that must

be implemented in a modern layer two or layer three switch in order to make it a fully functional

participant in a state-of-the-art Internet. In addition to those protocols we have mentioned thus far, a

modern router will likely also support LDP [18] for exchanging information about MPLS labels, as

well as IGMP [12], MSDP [19], and PIM [16] for multicast routing. We see in Figure 1.4 how the

control plane of the switch is bombarded with a constant barrage of control protocol traffic. Indeed, [8]

indicates that in large-scale data center networks, 30% of the router’s control plane capacity today is

spent tracking network topology. We have explained that the Internet was conceived as and continues to

evolve as an organism that is extremely robust in the face of flapping communications links and switches

that may experience disruption in their operation. The Internet-family protocols were also designed to

gracefully handle routers joining and leaving the topology, whether intentionally or otherwise. Such

chaotic conditions still exist to varying degrees in the geographically diverse Internet around the globe,

though switches and links are generally much more predictable today than they were at the Internet’s

inception. In particular, the data center is distinct in that it has virtually no unscheduled downtime.
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Overhead of dynamic distributed route computation.

Though there are links and nodes in the data center that fail occasionally, the base topology is centrally

provisioned. Physical servers and VMs do not magically appear or move around in the data center;

rather, they change only when the central orchestration software dictates they do so. Despite the fact

that the data center’s topology is static and the links are stable, the individual router’s travails, shown in

Figure 1.4, multiply at data center scale, as depicted in Figure 1.5. Indeed, since these control protocols

are actually distributed protocols, when something is intentionally changed, such as a server being added

or a communications link taken out of service, these distributed protocols take time to converge to a

set of consistent forwarding tables, wreaking temporary havoc inside the data center. Thus, we reach a

situation where most topology change is done programmatically and intentionally, reducing the benefit

of the autonomous and distributed protocols, and the scale of the networks is larger than these protocols

were designed for, making convergence times unacceptably long.

So, whereas this array of control protocols was necessary to develop autonomous switches that can

dynamically and autonomously respond to rapidly changing network conditions, these conditions do

not exist in the modern data center, and by using them in this overkill fashion, we have created a network

management nightmare that is entirely avoidable. Instead of drinking this (s)witch’s brew of protocols, is

there a more simple approach? Is there hope for network “sobriety” by conceiving of a less distributed,

less autonomous, but simpler approach of removing the control plane from the switches to a centralized

control plane serving the entire network? This centralized control plane would program the forwarding

tables in all the switches in the data center. The simplicity of this concept arises from the facts that
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(1) the topology inside the data center is quite stable and under strict local administrative control,

(2) knowledge of the topology is already centralized and controlled by the same administrators, and

(3) when there are node or link failures, this global topology knowledge can be used by the central-

ized control to quickly reprovision a consistent set of forwarding tables. Thus, it should follow that a

framework for programming the switches’ forwarding tables, like that depicted in Figure 1.6, might

be feasible. This more simple, centralized approach is one of the primary drivers behind SDN. This

approach is expected to help address the issue of instability in the control plane, which results in long

convergence times when changes occur in the network.

There are other important justifications for the migration to SDN. For example, there is a strong desire

to drive down the cost of networking equipment. We review this and other arguments underpinning SDN

in the next chapter. First, though, we consider a more fine-grained sort of packet switching that has been

pursued for a number of years, one for which SDN has been specifically tailored.
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Centralized programming of forwarding tables.
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1.6 Can We Increase the Packet-Forwarding IQ?

Whether centrally programmed or driven by distributed protocols, the forwarding tables we have dis-

cussed thus far have contained either layer two or layer three addresses. For many years now, network

designers have implemented special processes and equipment that permit more fine-grained forwarding

decisions. For example, it may be desirable to segregate traffic destined to different TCP ports on the

same IP address such that they travel over separate paths. We may want to route different QoS classes

such as data, voice, and video over different paths, even if they are directed to the same destination

host. Once we leave the realm of routing on just the destination address, we enter a world where many

different fields in the packet may be used for forwarding decisions. In general, this kind of routing is

called policy-based routing (PBR). At this point we introduce a new term, flow, to describe a particular

set of application traffic between two endpoints that receives the same forwarding treatment. On legacy

commercial routers, PBR is normally implemented by using access control lists (ACLs) to define a set

of criteria that determines whether an incoming packet corresponds to a particular flow. Thus, if, for

example, we decide to forward all video traffic to a given IP address via one port and all email traffic via

another port, the forwarding table will treat the traffic as two different flows with distinct forwarding

rules for each. Though PBR has been in use for a number of years, this has only been possible by

configuring these special forwarding rules through the management plane. Such more sophisticated

routing has not been dynamically updated via the control plane in the way that simple layer two and

three destinations have been. The fact that PBR has long been implemented via central configuration

provides further underpinning for SDN’s centralized approach of programming forwarding tables.

At the end of Section 1.5.3 we suggested that the SDN model of breaking the control plane out

of the switch itself into a separate, centralized controller can provide greater simplicity and flexibility

in programming the forwarding tables of the switches in a large and tightly controlled network, such

as the modern data center. Figure 1.6 hints at an architecture that might allow us such programming

capability, but the reality is that it becomes possible to do more than just replace the distributed routing

algorithms with a cleaner alternative. In particular, we can identify particular user application traffic

flows and give them different treatment, routing their traffic along different paths in some cases, even

if they are destined for the same network endpoint. In this manner, we can incorporate PBR at the

ground level of SDN. Many of the specialized network appliances, such as firewalls, load balancers,

and intrusion detection systems (IDS), have long relied on performing deeper packet inspection than

just the destination address. By looking at source and destination address and source and destination

TCP port number, these devices have been able to segregate and quarantine traffic in a highly useful

manner. If we consider that the network’s forwarding tables are to be programmed from a centralized

controller with global network knowledge, it follows naturally that the kind of information utilized by

these special appliances could be programmed directly into the switches themselves, possibly obviating

the need for the separate network appliances and simplifying the network topology. If the switches’

forwarding tables have the capability to filter, segregate, and quarantine flows, the power of the network

itself could grow exponentially. From its birth, SDN has been based on the notion of constructing

forwarding tables defining actions to take on flows rather than having forwarding tables merely map

destination address to output port.

SDN purports to incorporate a richer set of information in its processing of individual flows, includ-

ing fields such as the TCP port number that provide clues regarding to which application that flow
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corresponds. Nonetheless, we emphasize that the SDN intelligence added at the switching layers will

not require any modifications to user applications. SDN is intended to affect how layer two and layer

three forwarding decisions are made and will not affect any application protocol layer.

1.7 Open Source and Technological Shifts

The SDN paradigm that this book examines represents a major technological deviation from the legacy

network protocols and architectures that we have reviewed in this chapter. Those legacy technologies

required countless human-years of engineering effort to develop and refine. A paradigm-shifting tech-

nology such as SDN will also require a huge engineering effort. Although some of this effort will come

from commercial enterprises that expect to follow the SDN star to financial success, it is widely expected

that SDN will be able to rapidly provide matching functionality to legacy systems by counting on the

open source community to develop much of the SDN control plane software.

The open source model has revolutionized the way that software is developed and delivered. Func-

tionality that used to be reinvented in every organization is now often readily available and incorporated

into enterprise-class applications. Often software development organizations no longer have to devote

time and energy to implement features that have already been developed.

Probably the most famous and influential body of open source code today is the Linux operating

system. This complex and high-quality body of code is still developed by an amorphous and changing

team of volunteer software developers around the world. It has changed the markets of commercial

operating systems vendors and improved quality of both open source and competitive retail products.

Numerous businesses have been spawned by innovating on top of this body of work. Small technology

startups with minimal funding have had free source access to a world-class operating system, allowing

them to innovate without incurring onerous licensing fees that could have prevented them from ever

escaping their garage.

Another important example of open source is the OpenSSL implementation [14]. Encryption software

is notoriously complex, yet it is required in more and more products in today’s security-conscious world.

This very complete body of asymmetrical and symmetrical encryption protocols and key algorithms has

been a boon to many researchers and technology startups that could never afford to develop or license

this technology, yet need it to begin pursuing their security-related ideas.

In the networking world, open source implementations of routing protocols such as BGP, OSPF,

RIP, and switching functionality such as Spanning Tree have been available for many years now. Unlike

the PC world, where a common Wintel hardware platform has made it possible to develop software

trivially ported to numerous PC platforms, the hardware platforms from different network equipment

manufacturers (NEMs) remain quite divergent. Thus, porting the open source implementations of these

complex protocols to the proprietary hardware platforms of network switches has always been labor-

intensive. Moving the control plane and its associated complex protocols off the proprietary switch

hardware and onto a centralized server built on a PC platform makes the use of open source control

plane software much more feasible.

It is not possible to fully grasp the origins of SDN without understanding that the early experimen-

tation with SDN was done in a highly collaborative and open environment. Specifications and software

were exchanged freely between participating university groups. An impressive amount of pioneering
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engineering work was performed without any explicit commercial funding, all based on the principle

that something was being created for the greater good. It truly was and is a kind of network-world

reflection of the Linux phenomenon. The fact that the most vocal supporters of SDN have been individ-

uals and institutions that did not intend to extract financial profit from the sales of the technology made

possible a natural marriage with open source. We will see in later chapters of this book that SDN has

begun to have such a large commercial impact that an increasing number of proprietary implementations

of SDN-related technology are reaching the market. This is an unsurprising companion on almost any

journey where large sums of money can be made. Nevertheless, there remains a core SDN community

that believes that openness should remain an abiding characteristic of SDN.

1.8 Organization of this Book

The first two chapters of the book define terminology about packet switching and provide a historical

context for evolution of the data, control, and management planes extant in today’s switches. We describe

some of the limitations of the current technology and explain how these motivated the development of

SDN technology. In Chapter 3 we explain the historical origins of SDN. Chapter 4 presents the key

interfaces and protocols of SDN and explains how the traditional control plane function is implemented

in a novel way. Up to this point in the book our references to SDN are fairly generic. Beginning in

Chapter 4 we begin to distinguish the original, or Open SDN, from proprietary alternatives that also

fall under the SDN umbrella. When we use the term Open SDN in this work, we refer to SDN as it

was developed and defined in research institutions starting around 2008. Open SDN is tightly coupled

with the OpenFlow protocol presented in Chapter 5 and strongly committed to the openness of the

protocols and specifications of SDN. Alternative definitions of SDN exist that share some but not all

of the basic precepts of Open SDN. In Chapter 6 we provide more details about these alternative SDN

implementations, as well as a discussion of limitations and potential drawbacks of using SDN.

In Chapter 7 we present use cases related to the earliest driver of interest in SDN, the exploding

networking demands of the data center. In Chapter 8 we discuss additional use cases that contribute

to the current frenzy of interest in this new technology. Chapter 9 provides an inventory of major

enterprises and universities developing SDN products today. Chapter 10 presents several real-world

SDN applications, including a tutorial on writing one’s own SDN application. Chapter 11 provides a

survey of open source initiatives that will contribute to the standardization and dissemination of SDN.

In Chapter 12 we examine the impact that this new technology is already making in the business world,

and we consider what likely future technological and business consequences may be imminent. The

final chapter delves into current SDN research directions and considers several novel applications of

SDN. There is an appendix of SDN-related acronyms and source code from a sample SDN application

as well as a comprehensive user-friendly index.
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2
CHAPTER

Why SDN?

Networking devices have been successfully developed and deployed for several decades. Repeaters and

bridges, followed by routers and switches, have been used in a plethora of environments, performing their

functions of filtering and forwarding packets throughout the network toward their ultimate destinations.

Despite the impressive track record of these traditional technologies, the size and complexity of many

modern deployments leaves them lacking. The reasons for this fact include the ever-increasing costs of

owning and operating networking equipment, the need to accelerate innovation in networking, and, in

particular, the increasing demands of the modern data center. This chapter investigates these trends and

describes how they are nudging networking technology away from traditional methods and protocols

toward the more open and innovation-friendly paradigm of SDN.

2.1 Evolution of Switches and Control Planes

We begin with a brief review of the evolution of switches and control planes that has culminated in a

fertile playing field for SDN. This complements the material presented in Sections 1.4 and 1.5. The

reader may find it useful to employ Figure 2.1 as a visual guide through the following sections; it

provides a graphical summary of this evolution and allows the reader to understand the approximate

timeframes when various switching components moved from software to hardware.

2.1.1 Simple Forwarding and Routing Using Software

In Chapter 1 we discussed the early days of computer networking, when almost everything other than

the physical layer (layer one) was implemented in software. This was true for end-user systems as

well as for networking devices. Whether the devices were bridges, switches, or routers, software was

used extensively inside the devices in order to perform even the simplest of tasks, such as MAC-level

forwarding decisions. This remained true even through the early days of the commercialized Internet

in the early 1990s.

2.1.2 Independence and Autonomy in Early Devices

Early network device developers and standards creators wanted each device to perform in an autonomous

and independent manner to the greatest extent possible. This was because networks were generally small

and fixed, with large shared domains. A goal also was to simplify rudimentary management tasks and

make the networks as plug and play as possible. Devices’ relatively static configuration needs were

performed manually. Developers went to great lengths to implement this distributed environment with

Software Defined Networks. http://dx.doi.org/10.1016/B978-0-12-416675-2.00002-4
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Networking functionality migrating to hardware.

intelligence resident in every device. Whenever coordination between devices was required, collective

decisions could be made through the collaborative exchange of information between devices.

Interestingly, many of the goals of this distributed model, such as simplicity, ease of use, and automatic

recovery, are similar to the goals of SDN, but as the scale and complexity of networks grew, the current

distributed model has become increasingly dysfunctional.

Examples of this distributed intelligence are the layer two (bridging) and layer three (routing) pro-

tocols, which involved negotiation between the devices in order to reach a consensus on the way

forwarding and routing would be performed. We introduced these protocols in Chapter 1 and provide

more SDN-specific details on them here.

• Spanning Tree Protocol.

Basic layer two forwarding, also known as transparent bridging, can be performed independently

by each switch in the network. However, certain topologies require an imposition of a hierarchy on

the network in order to prevent loops, which would cause broadcast radiation. The Spanning Tree

Protocol (STP) is an example of the operation of autonomous devices participating in a distributed

decision-making process to create and enforce a hierarchy on the network. The result is the correct

operation of transparent bridging throughout the domain at the expense of convergence latency and

possibly arbitrary configuration. This solution was a tradeoff between cost and complexity. Multiple

paths could have been supported but at greater cost. STP was adequate when networks were of

smaller scale, but as networks grew the spanning tree solution became problematic. These problems

manifest themselves in a striking fashion when networks reach the scale of the modern data center.

For example, IEEE 802.1D specifies the following default timers for STP: 15 seconds for listening,

15 seconds for learning, and 20 seconds for max-age timeout. In older networks, convergence times

of 30–50 seconds were common. Such delays are not acceptable in today’s data centers. As the scale

of the layer two network grows, the likelihood of greater delays increases. The Rapid Spanning Tree



2.1 Evolution of Switches and Control Planes 23

Protocol (RSTP) protocol, specified in IEEE 802.1D-2004 [6], improves this latency significantly

but unfortunately is not deployed in many environments.

• Shortest-Path Bridging.

STP allowed only one active path to a destination, suffered from relatively slow convergence times

and was restricted to small network topologies. Although the newer implementations of STP have

improved the convergence times, the single active path shortcoming has been addressed in a new

layer two protocol, Shortest-Path Bridging (SPB), introduced in Section 1.5.1. SPB is a mechanism

for allowing multiple concurrent paths through a layer two fabric via collaborative and distributed

calculation of shortest and most efficient paths, then sharing that information among the participating

nodes in the meshed network. This characteristic is called multipath. SPB accomplishes this goal by

utilizing IS-IS to construct a graph representing the layer two link-state topology. Once this graph

exists, shortest-path calculations are straightforward, though more complex than with spanning tree.

To elaborate on what we mean by shortest-path calculations, in Figure 2.2 we depict a simple graph

that can be used for calculating shortest paths in a network with five switches. The costs assigned to

the various links may be assigned their values according to different criteria. A simple criterion is to

make the cost of a network link inversely proportional to its bandwidth. Thus, the cost of transiting

a 10 Gbps link is one-tenth that of transiting a 1 Gbps link. When the shortest-path calculation is

complete, the node performing the calculation knows the least-cost path to any of the other nodes

in the network. The least-cost path is considered the shortest path. For the sake of clarity, we should

point out that IS-IS is used in the SPB context strictly for layer two path calculation. This differs

from its classical application in calculating layer three routes, as described below. In the trivial
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Example graph of a network for shortest-path calculation.
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example of Figure 2.2, there is a single shortest path from node A to every other node. In real-

life networks it is common for there to be more than one least-cost path between two nodes. The

multipath characteristic of SPB would allow the traffic to be distributed across those multiple paths.

• RIP, BGP, OSPF, and IS-IS.

Routing at layer three requires cooperation between devices in order to know which routers are

attaching which subnets to the network. In Chapter 1 we provided background on four routing

protocols: RIP, BGP, OSPF, and IS-IS. These routing protocols involve the sharing of local routing

information by each device, either at the edge of the network or as an intermediate node. Their col-

lective sharing of information allows the routing state to converge as devices share their information

with each other. Each router remains autonomous in terms of its ability to make routing decisions

as packets arrive. This process is one of peers sharing and negotiating among themselves, without a

centralized entity aiding in the decision.

2.1.3 Software Moves into Silicon

Figure 2.1 shows that over time these functions moved from software into hardware. We now see most

forwarding and filtering decisions implemented entirely in hardware. These decisions are driven by con-

figured tables set by the control software above. This movement into hardware of the lower-level decision

making has yielded tremendous benefits in terms of lowering device costs and increasing performance.

Today switching devices are typically composed of hardware components such as application-

specific integrated circuits (ASICs), fully programmable gate arrays (FPGAs), and ternary content-

addressable memories (TCAMs). The combined power of these integrated circuits allows the

forwarding decisions to be made entirely in the hardware at line rate. This performance has become

more critical as network speeds have increased from 1 Gbps to 10 Gbps to 40 Gbps and beyond. The

hardware is now capable of handling all forwarding, routing, access control list (ACL), and QoS deci-

sions. Higher-level control functions, responsible for network-wide collaboration with other devices,

are implemented in software. This control software runs independently in each network device.

2.1.4 Hardware Forwarding and Control in Software

The network device evolution we have recounted thus far has yielded the following current situation:

• Bridging (layer two forwarding).

Basic layer two MAC forwarding of packets is handled in the hardware tables.

• Routing (layer three forwarding).

To keep up with today’s high-speed links and to route packets at link speeds, layer three forwarding

functionality is also implemented in hardware tables.

• Advanced filtering and prioritization.

General traffic management rules such as ACLs, which filter, forward, and prioritize packets, are

handled via hardware tables located in the hardware (e.g., in TCAMs) and accessed through low-level

software.

• Control.

The control software used to make broader routing decisions and to interact with other devices in

order to converge on topologies and routing paths is implemented in software that runs autonomously
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inside the devices. Since the current control plane software in networking devices lacks the ability

to distribute policy information about such things as security, QoS, and ACLs, these features must

still be provisioned through relatively primitive configuration and management interfaces.

Given this landscape of (1) layer two and layer three hardware handling most forwarding tasks, (2)

software in the device providing control plane functionality, and (3) policy implemented via configu-

ration and management interfaces, an opportunity presents itself to simplify networking devices and

move forward to the next generation of networking.

2.1.5 The Growing Need for Simplification

In [12] the authors state that one of the major drivers for SDN is simplification. As time has passed,

networking devices have become increasingly complex. This is due in part to the existing independent

and autonomous design of devices that make it necessary for so much intelligence be placed inside each

device. Placing more functionality in hardware in some ways simplifies the device but in other ways

makes the device more complicated because of the difficult handshakes and tradeoffs between handling

packets in hardware versus software.

Attempting to provide simplicity by adding features to legacy devices tends to complicate implemen-

tations rather than simplifying them. An analogy to the evolution of the central processing unit (CPU)

can be made here. Over time CPUs became overly complex as they attempted to support more and more

functions until ultimately that model of CPU was abandoned in favor of a simpler, easier-to-use CPU

model called reduced instruction set computing (RISC). In the same way the RISC architecture served as

a reset to CPU architecture, so too may SDN serve as a simplifying reset for network equipment design.

In addition to simplifying the devices themselves, there is an opportunity to simplify the management

of the networks of these devices. Rather than using primitive network management tools such as SNMP

and CLI, network operators would prefer to use policy-based management systems. SDN may enable

such solutions [13].

2.1.6 Moving Control Off the Device

We remind the reader that control software in our context is the intelligence that determines optimal

paths and responds to outages and new networking demands. At its core, SDN is about moving that

control software off the device and into a centrally located compute resource that is capable of seeing the

entire network and making decisions that are optimal, given a complete understanding of the situation.

Though we will discuss this in much greater detail in the chapters that follow, basically SDN attempts

to segregate network activities in the following manner:

• Forwarding, filtering, and prioritization.

Forwarding responsibilities, implemented in hardware tables, remain on the device. In addition,

features such as filtering based on ACLs and traffic prioritization are enforced locally on the device

as well.

• Control.

Complicated control software is removed from the device and placed into a centralized controller,

which has a complete view of the network and the ability to make optimal forwarding and rout-

ing decisions. There is a migration to a programming paradigm for the control plane. The basic
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forwarding hardware on the networking device is available to be programmed by external soft-

ware on the controller. The control plane is no longer embedded, closed, closely coupled with the

hardware, or optimized for particular embedded environments.

• Application.

Above the controller is where the network applications run, implementing higher-level functions

and, additionally, participating in decisions about how best to manage and control packet forwarding

and distribution within the network.

Subsequent chapters will examine in greater detail how this segregation can be achieved with a

minimum of investment and change by networking vendors while providing the maximum control and

capability by the controller and its applications. The next section of this chapter discusses another major

reason that SDN is needed today: the cost of networking devices.

2.2 Cost

Arguments related to the need for SDNs often include cost as a driving factor for this shift [1,2]. In

this section we consider the impact of the status quo in networking on the cost of designing, building,

purchasing, and operating network equipment.

2.2.1 Increased Cost of Development

Today’s autonomous networking devices must store, manage, and run the complicated control plane

software that we discussed in the previous section. The result of these demands on the device is mani-

fested in increased cost per device due to the processing power required to run that advanced software

as well as the storage capacity to hold it.

In Chapter 1 we described how software development outside the networking realm benefits greatly

from the readily available open source software. For example, application server frameworks provide

platforms that allow software developers to reuse code provided by those common frameworks and

therefore to concentrate on solving domain-specific problems. Without the ability to leverage software

functionality in this manner, each vendor would have to develop, test, and maintain large amounts of

redundant code, which is not the case in an open software environment. With the closed networking

environment that is prevalent today, little such leverage is available, and consequently each vendor must

implement all of the common functionality required by their devices. Common network functionality

and protocols must be developed by every device vendor. This clearly increases the costs attributable

to software development.

In recent years, silicon vendors have been producing common off-the-shelf (COTS) ASICs that

are capable of speeds and functionalities that rival or surpass the proprietary versions developed by

networking hardware vendors. However, given the limited software leverage mentioned, vendors are

not able to efficiently make use of their merchant silicon chips, since software must be reengineered for

each product line. That limited ability to leverage the merchant silicon results in higher costs, which

are passed along to the customer.

So, though their products may be quite profitable, NEMs must write and support larger amounts

of software than would otherwise be necessary if networking devices were developed in truly open

environments. The fact that such a large body of software must run on each and every network device
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serves to further increase this cost. There is additional overhead resulting from the requirement to support

multiple versions of legacy protocols as well as keeping up with the latest protocols being defined by

standards bodies.

2.2.2 Closed Environments Encourage Vendor Lock-in

It is true that over the years standards have been developed in the networking space for most relevant

protocols and data that are used by switches and routers. For the most part, vendors do their best to

implement these standards in a manner that allows heterogeneous networks of devices from multiple

vendors to coexist with one another.

However, in spite of good intentions by vendors, enhancements are often added to these standard

implementations, which attempt to allow a vendor’s product to outperform its competition. With many

vendors adding such enhancements, the end result is that each vendor product will have difficulty

interoperating smoothly with products from another vendor. Adherence to standards helps alleviate the

issues associated with attempting to support multiple vendor types in a network, but problems with

interoperability and management often far outweigh the advantages that might be gained by choosing

another vendor. As a result, customers frequently become effectively married to a vendor they chose

years or even decades before. This sort of vendor lock-in alleviates downward pressure on cost because

the vendor is largely safe from competition and can thus preserve high profit margins.

2.2.3 Complexity and Resistance to Change

Quite often in networking we arrive at a point of having made the network operational, and the normal

impulse from that point on is to just leave things as they are, to not disturb things lest the system break

and require us to start all over again. Others may have been burned by believing the latest vendor that

proposed a new solution and, when the dust settled, their closed, proprietary, vendor-specific solution

was just as complex as that of the previous vendor.

Unfortunately, in spite of efforts at standardization, there is still a strong argument to stay with that

single-vendor solution. Often, that closed, complex solution may be easier to deploy precisely because

there is only one vendor involved, and that vendor’s accountability is not diluted in any way. By adopting

and embracing a solution that works, we believe we lower our short-term risk. That resistance to change

results in long-term technological stagnation and sluggishness. The ideal would be a simpler, more

progressive world of networking, with open, efficient, and less expensive networking devices. This is a

goal of SDN.

2.2.4 Increased Cost of Operating the Network

As networks become ever larger and more complex, the operational expense (OPEX) of the network

grows. This component of the overall costs is increasingly seen to be more significant than the corre-

sponding capital expense (CAPEX) component. SDN has the capacity to accelerate the automation of

network management tasks in a multivendor environment [3,4]. This, combined with the fact that SDN

will permit faster provisioning of new services and provides the agility to switch equipment between

different services [5], should lead to lower OPEX with SDN. In Section 13.2.6 we examine proposals

whereby SDN may be used in the future to reduce the power consumption of the networking equipment

in a data center, which is another major contributor to network OPEX.
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2.3 SDN Implications for Research and Innovation

Networking vendors have enjoyed an enviable position for over two decades. They control networking

devices from the bottom up: the hardware, the low-level firmware, and the software required to produce

an intelligent networking device. This platform on which the software runs is closed, and consequently

only the networking vendors themselves can write the software for their own networking devices.

The reader should contrast this to the world of software and computing, where you can have many

different hardware platforms created by multiple vendors and consisting of different and proprietary

capabilities. Above that hardware reside multiple layers of software, which ultimately provide a common

and open interface to the application layer. The Java Virtual Machine and the Netbeans Integrated

Development Environment provide a good example of cross-platform development methods. Using

such tools, we can develop software that may be ported between Windows PC, Linux, or Apple Mac

environments. Analogously, tablets and smartphones, such as iPhones or Android-based phones, can

share application software and run on different platforms with relative ease. Imagine if only Apple were

able to write software for Apple products and only Microsoft were able to write software to run on PCs

or Windows-based servers? Would the technological advances we have enjoyed in the last decade have

taken place? Probably not.

In [11] the authors explain that this status quo has negatively impacted innovation in networking. In

the next section, we examine this relationship and how, on the contrary, the emergence of SDN is likely

to accelerate such innovation.

2.3.1 Status Quo Benefits Incumbent Vendors

The collective monopolies extant in the networking world today are advantageous to networking vendors.

Their only legitimate competition comes from their fellow established NEMs. Although periodically

new networking companies emerge to challenge the status quo, that is the exception rather than the rule.

The result is that the competitive landscape evolves at a much slower pace than it would in a truly open

environment. This is due to limited incentives to invest large amounts of money when the current status

quo is generating reasonable profits due primarily to the lack of real competition and the resulting high

margins they are able to charge for their products.

Without a more competitive environment, the market will naturally stagnate to some degree. The

incumbent NEMs will continue to behave as they have in the past. The small players will struggle to

survive, attempting to chip away at the industry giants but with limited success, especially since the

profit margins of those giants are so large. This competition-poor environment is unhealthy for the

market and for the consumers of products and services. Consider the difference in profit margins for a

server vendor versus those for a networking vendor. Servers are sold at margins close to 5% or below.

Networking device margins can be as high as 30% or more for the established vendors.

2.3.2 SDN Promotes Research and Innovation

Universities and research labs are focal points of innovation. In technology, innovations by academia and

other research organizations have accelerated the rate of change in numerous industries. Open software

environments such as Linux have helped to promote this rapid pace of advancement. For instance, if

researchers are working in the area of operating systems, they can look at Linux and modify its behavior.
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If they are working in the area of server virtualization or databases, they can look at KVM or Xen and

MySQL or Postgres. All of these open source packages are used in large-scale commercial deployments.

There is no equivalent in networking today. Unfortunately, the current closed nature of networking soft-

ware, network protocols, network security, and network virtualization is such that it has been challenging

to experiment, test, research, and innovate in these areas. This fact is one of the primary drivers of SDN

[1]. A number of universities collaborated to propose a new standard for networking called OpenFlow,

which would allow for this free and open research to take place. This makes one wonder if SDN will

ultimately be to the world of networking what Linux has become to the world of computing.

General innovation, whether from academia or by entrepreneurs, is stifled by the closed nature of

networking devices today. How can a creative researcher or entrepreneur develop a novel mechanism

for forwarding traffic through the Internet? That would be nearly impossible today. Is it reasonable for

a startup to produce a new way of providing hospitality-based networking access in airports, coffee

shops, and malls? Perhaps, but it would be required to run across network vendor equipment such as

wireless access points (APs) and access switches and routers that are themselves closed systems. The

more that the software and hardware components of networking are commoditized, the lower their cost

to customers. SDN promises both the hardware commoditization as well as openness, and both of these

factors contribute to innovation.

To be fair, though, one must keep in mind that innovation is also driven by the prospect of generating

wealth. It would be naïve to imagine that a world of low-cost networking products will have a purely

positive impact on the pace of innovation. For some companies, the lower product margins presaged

by SDN will reduce their willingness to invest in innovation. We examine this correlation and other

business ramifications of SDN in Chapter 12.

2.4 Data Center Innovation

In Section 1.3 we explained that in the last few years, server virtualization has caused both the capacity

and the efficiency of data centers to increase exponentially. This unbounded growth has made possible

new computing trends such as the cloud, which is capable of holding massive amounts of comput-

ing power and storage capacity. The whole landscape of computing has changed as a result of these

technological advances in the areas of compute and storage virtualization.

2.4.1 Compute and Storage Virtualization

Virtualization technology has been around for decades. The first commercially available VM technology

for IBM mainframes was released in 1972 [7], complete with the hypervisor and the ability to abstract

the hardware below, allowing multiple heterogeneous instances of other operating systems to run above

it in their own space. In 1998 VMware was established and began to deliver software for virtualizing

desktops as well as servers.

Use of this compute virtualization technology did not explode until data centers became prevalent

and the need to dynamically create and tear down servers, as well as moving them from one physical

server to another, became important. Once this occurred, however, the state of data center operations

immediately changed. Servers could be instantiated with a mouse click and could be moved without

significantly disrupting the operation of the server being moved.
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Server virtualization: creating a new VM instance.

Creating a new VM or moving a VM from one physical server to another is a straightforward process

from a server administrator’s perspective and may be accomplished very rapidly. Virtualization software,

such as VMware, Hyper-V, KVM, and Citrix, are examples of products that allow server administrators

to readily create and move virtual machines. These tools have reduced the time needed to start up a new

instance of a server to a matter of minutes or even seconds. Figure 2.3 shows the simple creation of a

new instance of a virtual machine on a different physical server.

Likewise, storage virtualization has existed for quite some time, as has the concept of abstracting

storage blocks and allowing them to be separated from the actual physical storage hardware. As with

servers, this achieves efficiency in terms of speed (e.g., moving frequently used data to a faster device) as

well as in terms of utilization (e.g., allowing multiple servers to share the same physical storage device).

These technological advancements allow servers and storage to be manipulated quickly and effi-

ciently. Although these advances in computer and storage virtualization have been taking place, the

same has not been true in the networking domain [8].

2.4.2 Inadequacies in Networks Today

In Chapter 1 we discussed the evolution of networks that allowed them to survive catastrophic events

such as outages and hardware or software failures. In large part, networks and networking devices have

been designed to overcome these rare but severe challenges. However, with the advent of data centers,
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there is a growing need for networks to not only recover from these types of events but also to be able

to respond quickly to frequent and immediate changes.

Although the tasks of creating a new network, moving a new network, and removing a network are

similar to those performed for servers and storage, doing so requires work orders, coordination between

server and networking administrators, physical or logical coordination of links, network interface cards

(NICs), and ToR switches, to name a few. Figure 2.4 illustrates the elapsed time in creating a new

instance of a VM, which is on the order of minutes, compared to the multiple days that it may take to
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Creating a new network instance in the old paradigm.
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create a new instance of a network. This is because the servers are virtualized, yet the network is still

purely a physical network. Even when we are configuring something virtual for the network, such

as a VLAN, making changes is more cumbersome than in their server counterparts. In Chapter 1 we

explained that although the control plane of legacy networks had sophisticated ways of autonomously

and dynamically distributing layer two and layer three states, no corresponding protocols exist for dis-

tributing the policies that are used in policy-based routing. Thus, configuring security policy, such as

ACLs or virtualization policy such as to which VLAN a host belongs, remains static and manual in

traditional networks. Therefore, the task of reconfiguring a network in a modern data center does not

take minutes but rather days. Such inflexible networks are hindering IT administrators in their attempts

to automate and streamline their virtualized data center environments. SDN holds the promise that the

time required for such network reconfiguration be reduced to the order of minutes, such as is already

the case for reconfiguration of VMs.

2.5 Data Center Needs

The explosion of the size and speed of data centers has strained the capabilities of traditional networking

technologies. We discuss these needs briefly here and cover them in greater detail in Chapter 7. This

section serves as an indication of new requirements emerging from the technological advances taking

place now in data center environments.

2.5.1 Automation

Automation allows networks to come and go at will, following the movements of servers and storage as

needs change. This is sometimes referred to as agility—the ability to dynamically instantiate networks

and to disable them when they are no longer needed. This must happen fast, efficiently, and with a mini-

mum of human intervention. Not only do networks come and go—they also tend to expand and contract.

Clearly, it may require a dynamic, agile, and automated network to keep pace with these changes.

2.5.2 Scalability

With data centers and cloud environments, the sheer number of end stations that connect to a single

network has grown exponentially. The limitations of MAC address table sizes and number of VLANs

have become impediments to network installations and deployments. The large number of physical

devices present in the data centers also poses a broadcast control problem. The use of tunnels and

virtual networks can contain the number of devices in a broadcast domain to a reasonable number.

2.5.3 Multipathing

Accompanying the large demands placed on the network by the scalability requirement we’ve stated is

the need for the network to be efficient and reliable. That is, the network must make optimal use of its

resources, and it must be resistant to failures of any kind; and, if failures do occur, the network must be

able to recover immediately. Figure 2.5 shows a simple example of multipath through a network, both

for choosing the shortest path as well as for alternate or redundant paths. Legacy layer two control plane

software would block some of the alternate and redundant paths shown in the figure in order to eliminate
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Multipath.

forwarding loops. Because we are living with network technology invented years ago, the network is

forced into a hierarchy that results in links that could have provided shortest-path routes between nodes

lying entirely unused and dormant. In cases of failure, the current hierarchy can reconfigure itself in a

nondeterministic manner and with unacceptable latency. The speed and high-availability requirements

of the modern data center mandate that multiple paths not be wasted by being blocked and, instead, be

put into use to improve efficiency as well as to achieve resiliency and load balancing.

2.5.4 Multitenancy

With the advances in data center technology described above and the subsequent advent of cloud

computing, the idea of hosting dozens or even hundreds or thousands of customers, or tenants, in the

same physical data center has become a requirement. One set of physical hardware hosting multiple

tenants has been feasible for some time in the server and storage area. Multitenancy implies that the

data center has to provide each of its multiple tenants with its own (virtual) network that it can manage

in a manner similar to the way it would manage a physical network.

2.5.5 Network Virtualization

The urgency for automation, multitenancy, and multipathing has increased as a result of the scale and

fluidity introduced by server and storage virtualization. The general idea of virtualization is that you

create a higher-level abstraction that runs on top of the actual physical entity you are abstracting. The

growth of compute and storage server virtualization has created demand for network virtualization.

This means having a virtual abstraction of a network running on top of the actual physical network.

With virtualization, the network administrator should be able to create a network anytime and anywhere
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he chooses, as well as expanding and contracting networks that already exist. Intelligent virtualization

software should be capable of this task without requiring the upper virtualized layer to be aware of what

is occurring at the physical layer.

Server virtualization has caused the scale of networks to increase as well, and this increased scale

has put pressure on layer two and layer three networks as they exist today. Some of these pressures

can be alleviated to some degree by tunnels and other types of technologies, but fundamental network

issues remain, even in those situations. Consequently, the degree of network virtualization required to

keep pace with data center expansion and innovation is not possible with the network technology that

is available today.

To summarize, advances in data center technology have caused weaknesses in the current networking

technology to become more apparent. This situation has spurred demand for better ways to construct

and manage networks [9], and that demand has driven innovation around SDN [10].

2.6 Conclusion

The issues of reducing cost and the speed of innovation as motivators for SDN will be recurring themes

in the balance of this work. The needs of the modern data center are so tightly linked with the demand

for SDN that we dedicate all of Chapter 7 to the examination of use cases in the data center that

benefit from SDN technology. These needs did not appear overnight, nor did SDN simply explode onto

the networking scene in 2009, however. There were a number of tentative steps over many years that

formed the basis for what ultimately appeared as the SDN revolution. In the next chapter we review this

evolution and examine how it culminated in the birth of what we now call SDN. We also discuss the

context in which SDN has matured and the organizations and forces that continue to mold its future.
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3
CHAPTER

The Genesis of SDN

We have now seen a number of the reasons for the emergence of SDN, including the fact that there were

too many disparate control plane protocols attempting to solve many different networking problems in

a distributed fashion. This has resulted in relative confusion and inertia in network switching evolution

as compared to compute and storage technologies. Overall, the system that has evolved is far too closed,

and there is a strong desire to migrate to a model closer to that of open source development and open

source initiatives (similar to Linux with respect to computer operating systems). We have also noted

that for a variety of reasons, the network equipment manufacturers (NEMs) are bogged down in their

current technologies and are unable to innovate at the rate required by the modern data center. This

fact is partly attributable to the fact that the current business model for networking equipment is a very

high-margin business, and it is not obviously in the incumbents’ interest for the status quo to change

drastically [21]. Even the standards bodies generally move too slowly [22]. Thus, the need for an SDN-

like transformative technology has become apparent to many users of network equipment, especially in

large data centers. In this chapter we explore how the SDN movement began. To understand the base

from which these SDN pioneers started, we begin with a brief review of the evolution of networking

technology up to the advent of SDN.

3.1 The Evolution of Networking Technology

In the earliest days of computing there was no networking; each individual computer occupied an entire

room or even an entire floor. As mainframes emerged and began to find their way into our technological

consciousness, these computing powerhouses still operated as islands, and any data sharing took place

using physical media such as magnetic tapes.

3.1.1 Mainframe Networking: Remote Terminals

Even in the age of mainframes, remote connectivity to the mainframe was needed. This was provided in

the form of remote terminal controllers and card readers, which operated as subservient devices known

as peripherals, with control residing entirely in the central mainframe. Network connections in this

case were simple point-to-point or point-to-multipoint links. Communication was solely between a few

connected entities, in this case the mainframe and a small set of remote terminal controllers or card

readers. This communication was entirely synchronous, with the peripherals allowed to transmit only

when polled by the mainframe.

Software Defined Networks. http://dx.doi.org/10.1016/B978-0-12-416675-2.00003-6
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3.1.2 Peer-to-Peer, Point-to-Point Connections

As computer technology began to move from solely mainframes to the addition of minicomputers,

these machines had a greater need to share information in a quick and efficient manner. Computer

manufacturers began to create protocols for sharing data between two peer machines. The network in

this case was also point-to-point, although the nature of the connection was peer-to-peer in that the two

machines (e.g., minicomputers) would communicate with each other and share data as relative equals,

at least compared to the earlier mainframe-to-terminal-controller type of connections.

Of course, in these point-to-point connections, the network was trivial, with only the two parties

communicating with each other. Control for this communication resided not in any networking device

but in the individual computers participating in this one-to-one communication.

3.1.3 Local Area Networks

Eventually, with further evolution of computing toward smaller, independent systems, the need arose for

a way to connect these devices in order to allow them to share information and collaborate in a manner

that wasn’t required when everything ran on one large mainframe or even on a powerful minicomputer.

Hence, local area networking (LAN) technology arrived, with various battles being fought between

technologies (e.g., Ethernet/IEEE 802.3 versus Token Ring/IEEE802.5). Notably, these early LANs

were running on shared media, so all traffic was seen by every device attached to the network.

IEEE 802.3 emerged as the more popular of these technologies. It uses Carrier-Sense Multiple-

Access/Collision Detect (CSMA/CD) technology, which exhibits poor aggregate throughput when the

number of active devices reaches a certain level. The exact number of devices where this would occur

is dependent on the amount of data each device attempts to transmit. This decrease in performance

resulted from each device backing off and waiting to transmit when a collision occurs, as stipulated

by CSMA/CD. The number of collisions reaches a critical point as a function of the number of nodes

and their respective transmission activity. Once this critical point is reached, the network becomes very

inefficient, with too much time spent either in the midst of or recovering from collisions.

These flat, shared-media networks were quite simple, and the repeater devices provided physical

extensions to the shared media by merely forwarding all frames to the extended medium. The greatest

impact of these early devices was a new topology created by wire concentration. This made layer two

networks more deployable and reliable than the former method of snaking a coaxial cable from one

node to the next. This early networking required minimum control plane intelligence, if any. Simple

repeaters basically just did one thing: They forwarded to everybody. More advanced, managed repeaters

did have limited control planes where segmentation and error monitoring occurred. Managed repeaters

did perform functions such as removing erroneous traffic from the network, as well as removing isolated

ports that were causing problems. Segmentable repeaters were able to split themselves into multiple

repeaters via configuration. Different groups of ports could be configured to reside in different collision

domains. These separate collision domains would be connected by bridges. This feature provided more

control over the size of the collision domains to optimize performance.

3.1.4 Bridged Networks

Eventually these shared-media networks needed to scale in physical extent as well as number of nodes. As

explained in the previous section, shared-media networks do not scale well as the number of hosts grows.



3.1 The Evolution of Networking Technology 39

It became desirable to split the shared-media network into separate segments. In so doing, and since

not all the nodes are transmitting all the time, spatial reuse occurs and the aggregate available bandwith

actually increases due to the locality of transmissions in each segment. The first devices to perform this

functionality were called bridges, forerunners of today’s switches but much simpler. They typically had

only two ports connecting two shared domains. These bridges possessed an incipient control plane in

that they were able to actually learn the location and MAC address of all devices and create forwarding

tables that allowed them to make decisions about what to do with incoming packets. As we mentioned

in the previous chapter, these forwarding tables were implemented entirely in software.

Furthermore, these bridges were implemented in such a way that each device was able to operate

independently and autonomously, without requiring any centralized intelligence. The goal was to facil-

itate expansion of the network without a lot of coordination or interruption across all the devices in

the network. One of the first manifestations of this distributed intelligence paradigm was the Spanning

Tree Protocol (STP), which allowed a group of bridges to interact with each other and converge on a

topology decision (the spanning tree), which eliminated loops and superimposed a hierarchical loop-free

structure on the network.

The important point here is that this greater scale in terms of the number of nodes as well as physical

extent drove the need for this new model of individually autonomous devices, with distributed protocols

implementing the required control functionality. If we translate this period’s realities into today’s termi-

nology, there was no centralized controller, merely a collector of statistics. Policies, if indeed one can use

that term, were administered by setting specific parameters on each device in the network. We need to

keep in mind that at the time, networks in question were small, and this solution was entirely acceptable.

3.1.5 Routed Networks

In the same manner that bridged and switched networks dealt with layer two domains with distributed

protocols and intelligence, similar strategies were employed for layer three routing. Routers were directly

connected locally to layer two domains and interconnected over large distances with point-to-point WAN

links. Distributed routing protocols were developed to allow groups of interconnected routers to share

information about those networks to which they were directly connected. By sharing this information

among all the routers, each was able to construct a routing table, allowing it to route packets to remote

layer three IP subnets using the optimal forwarding ports. This was another application of autonomous

devices, utilizing distributed protocols to allow each to make appropriate forwarding decisions.

This sequence has led to the current state of affairs, with networking intelligence distributed in

the networking devices themselves. During this evolution, however, the growth of network size and

complexity was unrelenting. The size of MAC forwarding tables grew, control plane protocols became

more complex, and network overlays and tunneling technology became more prevalent. Making major

changes to these implementations was a continual challenge. Since the devices were designed to operate

independently, centrally administered, large-scale upgrades were challenging. In addition, the fact that

the actual control plane implementations were from many different sources and not perfectly matched

created a sort of lowest common denominator effect, where only those features that were perfectly

aligned between the varied implementations could truly be relied upon. In short, existing solutions were

not scaling well with this growth and complexity. This situation led network engineers and researchers

to question whether this evolution was headed in the right direction. In the following section we describe

some of the innovations and research that resulted.
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3.2 Forerunners of SDN

Prior to OpenFlow, and certainly prior to the birth of the term Software Defined Networking, forward-

thinking researchers and technologists were considering fundamental changes to today’s world of

autonomous, independent devices and distributed networking intelligence and control. This section

considers some of those early explorations of SDN-like technology. There is a steady progression of

ideas around advancing networking technology toward what we now know as SDN. Table 3.1 shows

this progression, which is discussed in more detail in the subsections that follow. The timeframes shown

in the table represent approximate time periods when these respective technologies were developed or

applied in the manner described.

3.2.1 Early Efforts

A good survey of early programmable networks that were stepping-stones on the path to SDN can be

found in [12]. Some of the earliest work in programmable networks began not with Internet routers

and switches but with ATM switches. Two notable examples were Devolved Control of ATM Networks

(DCAN) and open signaling.

As its name indicates, DCAN [8] prescribed the separation of the control and management of the

ATM switches from the switches themselves. This control would be assumed by an external device that

is similar to the role of the controller in SDN networks.

Table 3.1 Precursors of SDN

Project Description

Open signaling Separating the forwarding and control planes in ATM switching (1999; see

Section 3.2.1)

Active networking Separating control and programmable switches (late 1990s; see Section 3.2.1)

DCAN Separating the forwarding and control planes in ATM switching (1997; see

Section 3.2.1)

IP switching Controling layer two switches as a layer three routing fabric (late 1990s; see

Section 3.2.1)

MPLS Separating control software, establishing semi-static forwarding paths for flows

in traditional routers (late 1990s; see Section 3.2.1)

RADIUS, COPS Using admission control to dynamically provision policy (2010; see Section 3.2.2)

Orchestration Using SNMP and CLI to help automate configuration of networking equipment

(2008; see Section 3.2.3)

Virtualization

Manager

Using plug-ins to perform network reconfiguration to support server virtualization

(2011; see Section 3.2.4)

ForCES Separating the forwarding and control planes (2003; see Section 3.2.5)

4D Locating control plane intelligence in a centralized system (2005; see Section 3.2.6)

Ethane Achieving complete enterprise and network access and control using separate

forwarding and control planes and utilizing a centralized controller (2007; see

Section 3.2.7)
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Open signaling [6] proposed a set of open, programmable interfaces to the ATM switching hardware.

The key concept was to separate the control software from the switching hardware. This work led to

the IETF effort that resulted in the creaton of the General Switch Management Protocol (GSMP) [7].

In GSMP, a centralized controller is able to establish and release connections on an ATM switch as

well as a multitude of other functions that may otherwise be achieved via distributed protocols on a

traditional router. Tag switching was Cisco’s version of label switching, and both of these terms refer

to the technology that ultimately became known as Multiprotocol Label Switching (MPLS). Indeed,

MPLS and related technologies are a deviation from the autonomous, distributed forwarding decisions

characteristic of the traditional Internet router, and in that sense they were a small step toward a more

SDN-like Internet switching paradigm. In the late 1990s, Ipsilon Networks utilized the GSMP protocol

to set up and tear down ATM connections internally in the company’s IP Switch product. The Ipsilon IP

Switch [13] presented normal Internet router interfaces externally, but its internal switching fabric could

utilize ATM switches for persistent flows. Flows were defined as a relatively persistent set of packets

between the same two endpoints, where an endpoint was determined by IP address and TCP/UDP port

number. Since there was some overhead in establishing the ATM connection that would carry that flow,

this additional effort would be expended only if the IP Switch believed that a relatively large number

of packets would be exchanged between the endpoints in a short period of time. This definition of flow

is somewhat consistent with the notion of flow within SDN networks.

The active networking project [10,11] also included the concept of switches that could be pro-

grammed by out-of-band management protocols. In the case of active networking, the switching hard-

ware was not ATM switches but Internet routers. Active networking also included a very novel proposal

for small downloadable programs called capsules that would travel in packets to the routers and could

reprogram the router’s behavior on the fly. These programs could be so fine-grained as to prescribe the

forwarding rules for a single packet, even possibly the payload of the packet that contained the program.

3.2.2 Network Access Control

Network access control (NAC) products control access to a network based on policies established by

the network administration. The most basic control is to determine whether or not to admit the user

onto the network. This decision is usually accomplished by some exchange of credentials between the

user and the network. If the user is admitted, his rights of access will also be determined and restricted

in accordance with those policies. In some early efforts, network policy beyond admission control

was dynamically provisioned via NAC methods, such as Remote Authentication Dial-In User Service

(RADIUS) [16] and Common Open Policy Service (COPS) [14].

RADIUS has been used to provide the automatic reconfiguration of the network. This solution was

somewhat forward-looking in that RADIUS can be viewed as a precursor to SDN. The idea is that via

RADIUS, networking attributes would change based on the identity of the compute resource that had

just appeared and required connectivity to the network. Whereas RADIUS was originally designed for

the authentication, authorization, and accounting (AAA) processes related to granting a user access to

a network, that original paradigm maps well to our network reconfiguration problem. The identity of

the resource connecting to the network serves to identify the resource to the RADIUS database, and the

authorization attributes returned from that database could be used to change the networking attributes

described above. Solutions of this nature achieved automatic reconfiguration of the network but never
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gained the full trust of IT administrators and, thus, never became mainstream. Although this RADIUS

solution did an adequate job of automatically reconfiguring the edge of the network, the static, manually

configured core of the network remained the same. This problem still awaited a solution.

Figure 3.1 shows an overview of the layout and operation of a RADIUS-based solution for automating

the process of creating network connectivity for a virtual server. In the figure, the process would be that

a VM is moved from physical server A to physical server B, and as a result the RADIUS server becomes

aware of the presence of this VM at a new location. The RADIUS server is then able to automatically

configure the network based on this information, using standard RADIUS mechanisms.

3.2.3 Orchestration

Early attempts at automation involved applications that were commonly labeled orchestrators [17].

Just as a conductor can make a harmonious whole out of the divergent instruments of an orchestra,

such applications could take a generalized command or goal and apply it across a wide range of

often heterogeneous devices. These orchestration applications would typically utilize common device

application programmer interfaces (APIs) such as the Command-Line Interface (CLI) or Simple Network

Management Protocol (SNMP).

Figure 3.2 shows an overview of the layout and operation of an orchestration management solution

for automating the process of creating network connectivity for a virtual server. The figure shows

FIGURE 3.2

Early attempts at SDN: orchestration.
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SNMP/CLI plug-ins for each vendor’s specific type of equipment; an orchestration solution can then

have certain higher-level policies that are in turn executed at lower levels by the appropriate plugins.

The vendor-specific plugins are used to convert the higher-level policy requests into the corresponding

native SNMP or CLI request specific to each vendor.

Such orchestration solutions alleviated the task of updating device configurations. But since they were

really limited to providing a more convenient interface to existing capabilities, and since no capability

existed in the legacy equipment for network-wide coordination of more complex policies such as security

and virtual network management, tasks such as configuring VLANs remained hard. Consequently,

orchestration management applications continued to be useful primarily for tasks such as software and

firmware updates but not for tasks that would be necessary in order to automate today’s data centers.

3.2.4 Virtualization Manager Network Plugins

The concept of virtualization manager network plugins builds on the notion of orchestration and attempts

to automate the network updates that are required in a virtualization environment. Tools specifically

targeted at the data center would often involve virtualization manager plugins (e.g., plugins for VMware’s

vCenter [18]), which would be configured to take action in the event of a server change, such as a vMotion

[19]. The plugins would then take the appropriate actions on the networking devices they controlled in

order to make the network follow the server and storage changes with changes of its own. Generally,

the mechanism for making changes to the network devices would be SNMP or CLI commands. These

plugins can be made to work, but since they must use the static configuration capabilities of SNMP and

CLI, they suffer from being difficult to manage and prone to error.

Figure 3.3 shows an overview of the layout and operation of a virtualization manager plugin solution

for automating the process of creating network connectivity for a virtual server. This figure reflects a

similar use of SNMP/CLI plugins to that which we saw in Figure 3.2. The most notable difference is that

this application starts from a base that supports virtualization. The nature of the reconfiguration managed

by this application is oriented to support the networking of virtual machines via VLANs and tunnels.

3.2.5 ForCES: Separation of Forwarding and Control Planes

The Forwarding and Control Element Separation (ForCES) [9] work produced in the IETF began

around 2003. ForCES was one of the original proposals recommending the decoupling of forwarding

and control planes. The general idea of ForCES was to provide simple hardware-based forwarding

entities at the foundation of a network device and software-based control elements above. These simple

hardware forwarders were constructed using cell-switching or tag-switching technology. The software-

based control had responsibility for the broader tasks, often involving coordination between multiple

network devices (e.g., BGP routing updates).

The functional components of ForCES are as follows:

• Forwarding Element. The Forwarding Element (FE) would be typically implemented in hardware

and located in the network. The FE is responsible for enforcement of the forwarding and filtering

rules that it receives from the controller.

• Control Element. The Control Element (CE) is concerned with the coordination between the indi-

vidual devices in the network and for communication forwarding and routing information to the FEs

below.



3.2 Forerunners of SDN 45

Physical Server A

Hypervisor A

VM

1

VM

2

VM

3

VM

4

Physical Server B

Hypervisor B

VM

1'

VM

2'

VM

3'

VM

4'

Top of Rack Switch A Top of Rack Switch B

Network 1

Aggregation Switch C

Network 1

Server Virtualization

Management System

Network

Plugin

CLI, SNMP

configuration

changes

FIGURE 3.3

Early attempts at SDN: plugins.

• Network Element. The Network Element (NE) is the actual network device that consists of one or

more FEs and one or more CEs.

• ForCES protocol. The ForCES protocol is used to communicate information back and forth between

FEs and CEs.
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ForCES design.

ForCES proposes the separation of the forwarding plane from the control plane, and it suggests

two different embodiments of this architecture. In one of these embodiments, both the forwarding and

control elements are located within the networking device. The other embodiment speculates that it

would be possible to actually move the control element(s) off the device and to locate them on an

entirely different system. Although the suggestion of a separate controller thus exists in ForCES, the

emphasis is on the communication between CE and FE over a switch backplane, as shown in Figure 3.4.

3.2.6 4D: Centralized Network Control

Seminal work on the topic of moving networking technology from distributed networking elements into

a centralized controller appeared in the 4D proposal [2] A Clean Slate 4D Approach to Network Control

and Management. 4D, named after the architecture’s four planes—decision, dissemination, discovery,

and data—proposes a complete refactoring of networking away from autonomous devices and toward

the idea of concentrating control plane operation in a separate and independent system dedicated to

that purpose.

4D argues that the state of networking today is fragile and, therefore, often teeters on the edge of

failure because of its current design based on distributed, autonomous systems. Such systems exhibit a

defining characteristic of unstable, complex systems: a small local event such as a misconfiguration of

a routing protocol can have a severe, global impact. The proposal argues that the root cause is the fact

that the control plane is running on the network elements themselves.

4D centers around three design principles:

• Network-level objectives. In short, the goals and objectives for the network system should be stated

in network-level terms based on the entire network domain, separate from the network elements,

rather than in terms related to individual network device performance.
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4D principles.

• Network-wide view. There should be a comprehensive understanding of the whole network. Topol-

ogy, traffic, and events from the entire system should form the basis on which decisions are made

and actions are taken.

• Direct control. The control and management systems should be able to exert direct control over

the networking elements, with the ability to program the forwarding tables for each device rather

than only being able to manipulate some remote and individual configuration parameters, as is the

case today.

Figure 3.5 shows the general architecture of a 4D solution, with centralized network control via the

control and management system.

One aspect of 4D that is actually stated in the title of the paper is the concept of a clean slate, meaning

the abandoning of the current manner of networking in favor of this new method, as described by the

three aforementioned principles. A quote from the 4D proposal states that “We hope that exploring

an extreme design point (the clean-slate approach) will help focus the attention of the research and

industrial communities on this crucially important and intellectually challenging area.”

The 4D proposal delineates some of the challenges faced by the proposed centralized architecture.

These challenges continue to be relevant today in SDN. We list a few of them here:

• Latency. Having a centralized controller means that a certain (hopefully small) number of decisions

will suffer nontrivial round-trip latency as the networking element requests policy directions from

the controller. The way this delay impacts the operation of the network, and to what extent, remains

to be determined. Furthermore, with the central controller providing policy advice for a number of

network devices, it is unknown whether the conventional servers on which the controller runs will be

able to service these requests at sufficient speed to have minimal or no impact on network operation.
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• Scale. Having a centralized controller means that responsibility for the topological organization

of the network, determination of optimal paths, and responses to changes must be handled by the

controller. As has been argued, this is the appropriate location for this functionality; however, as

more and more network devices are added to the network, questions arise of scale and the ability of

a single controller to handle all those devices. It is difficult to know how well a centralized system

can handle hundreds, thousands, or tens of thousands of network devices and to know what is the

solution when the number of network devices outgrows the capacity of the controller to handle

them. If we attempt to scale by adding controllers, how do they communicate, and who orchestrates

coordination among the controllers? Section 6.1.3 addresses these questions.

• High availability (HA). The centralized controller must not constitute a single point of failure for

the network. This implies the need for redundancy schemes in a number of areas. First, there must

be redundant controllers such that processing power is available in the event of failure of a single

controller. Second, the actual data used by the set of controllers needs to be mirrored such that the

controllers can program the network devices in a consistent fashion. Third, the communications

paths to the various controllers need to be redundant to ensure that there is always a functioning

communications path between a switch and at least one controller. We further discuss high availability

in the context of a modern SDN network in Section 6.1.2.

• Security. Having a centralized controller means that security attacks are able to focus on that one

point of failure, and thus the possibility exists that this type of solution is more vulnerable to attack

than a more distributed system. It is important to consider what extra steps must be taken to protect

both the centralized controller and the communication channels between it and the networking

devices.

ForCES and 4D contributed greatly to the evolution of the concepts that underlie SDN: separation

of forwarding and control planes (ForCES) and having a centralized controller responsible for overall

routing and forwarding decisions (4D). However, both of these proposals suffer from a lack of actual

implementations. Ethane, examined in the following section, benefited from the experience that can

only come from a real-life implementation.

3.2.7 Ethane: Controller-Based Network Policy

Ethane was introduced in a paper titled Rethinking Enterprise Network Control [1] in 2007. Ethane

is a policy-based solution that allows network administrators to define policies pertaining to network-

level access for users, which includes authentication and quarantine for misbehaving users. Ethane was

taken beyond the proposal phase. Multiple instances have been implemented and shown to behave as

suggested in [1].

Ethane is built around three fundamental principles:

1. The network should be governed by high-level policies. Similar to 4D, Ethane espouses the idea

that the network be governed by policies defined at high levels rather than on a per-device basis.

These policies should be at the level of services and users and the machines through which users

can connect to the network.

2. Routing for the network should be aware of these policies. Paths that packets take through the

network are to be dictated by the higher-level policies described in the previous bullet point rather

than as in the case of today’s networks, in which paths are chosen based on lower-level directives.
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Ethane architecture.

For example, guest packets may be required to pass through a filter of some sort, or certain types

of traffic may require routing across lightly loaded paths. Some traffic may be highly sensitive to

packet loss; other traffic (e.g., Voice over IP, or VoIP) may tolerate dropped packets but not latency

and delay. These higher-level policies are more powerful guidelines for organizing and directing

traffic flows than are low-level and device-specific rules.

3. The network should enforce binding between packets and their origin. If policy decisions rely

on higher-level concepts such as the concept of a user, then the packets circulating in the network

must be traceable back to their point of origin (i.e., the user or machine that is the actual source of

the packet).

Figure 3.6 illustrates the basics of the Ethane solution. As will become apparent in the following

chapters, there are many similarities between this solution and OpenFlow.

To test Ethane, the researchers themselves had to develop switches in order to have them implement

the protocol and the behavior of such a device—that is, a device that allows control plane functionality

to be determined by an external entity (the controller) and that communicates with that external entity

via a protocol that allows flow entries to be configured into its local flow tables, which then perform the

forwarding functions as packets arrive.

The behavior of the Ethane switches is generally the same as today’s OpenFlow switches, which

forward and filter packets based on the flow tables that have been configured on the device. If the switch

does not know what to do with the packet, it forwards it to the controller and awaits further instructions.
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In short, Ethane is basically a Software Defined Networking technology, and its components are the

antecedents of OpenFlow, which we describe in detail in Chapter 5.

3.3 Software Defined Networking is Born

3.3.1 The Birth of OpenFlow

Just as the previous sections presented standards and proposals that were precursors to SDN, seeing

SDN through a gestation period, the arrival of OpenFlow is the point at which SDN was actually born.

In reality, the term SDN did not come into use until a year after OpenFlow made its appearance on the

scene in 2008, but the existence and adoption of OpenFlow by research communities and networking

vendors marked a sea change in networking, one that we are still witnessing even now. Indeed, though

the term SDN was in use in the research community as early as 2009, SDN did not begin to make a big

impact in the broader networking industry until 2011.

For reasons identified in the previous chapter, OpenFlow was developed and designed to allow

researchers to experiment and innovate with new protocols in everyday networks. The OpenFlow speci-

fication encouraged vendors to implement and enable OpenFlow in their switching products for deploy-

ment in college campus networks. Many network vendors have implemented OpenFlow in their products.

The OpenFlow specification delineates both the protocol to be used between the controller and the

switch as well as the behavior expected of the switch. Figure 3.7 illustrates the simple architecture of

an OpenFlow solution.

OpenFlow Switch OpenFlow Switch OpenFlow Switch

OpenFlow Controller

OpenFlow OpenFlow OpenFlow

Flow Tables Flow Tables Flow Tables

Forwarding Plane Forwarding Plane Forwarding Plane

FIGURE 3.7

General OpenFlow design.
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The following list describes the basic operation of an OpenFlow solution:

• The controller populates the switch with flow table entries.

• The switch evaluates incoming packets and finds a matching flow, then performs the associated action.

• If no match is found, the switch forwards the packet to the controller for instructions on how to deal

with the packet.

• Typically the controller will update the switch with new flow entries as new packet patterns are

received, so that the switch can deal with them locally. It is also possible that the controller will

program wildcard rules that will govern many flows at once.

OpenFlow is examined in detail in Chapter 5. For now, though, the reader should understand that

OpenFlow has been adopted by both the research community and by a number of networking vendors.

This has resulted in a significant number of network devices supporting OpenFlow on which researchers

can experiment and test new ideas.

3.3.2 Open Networking Foundation

OpenFlow began with the publication of the original proposal in 2008. By 2011 OpenFlow had gathered

enough momentum that the responsibility for the standard itself moved to the Open Networking Foun-

dation (ONF). The ONF was established in 2011 by Deutsche Telekom, Facebook, Google, Microsoft,

Verizon, and Yahoo! It is now the guardian of the OpenFlow standard and consists of a number of

working groups, many of which are listed in Table 3.2.

Table 3.2 Open Networking Foundation Working Groups

Workgroup Description

Extensibility Ongoing creation of new OpenFlow versions to support more features

and implementations.

Architecture and Framework Defining the scope of SDN that the ONF will attempt to standardize.

Forwarding Abstractions Looking at how the standard interacts with actual hardware implementa-

tion components.

Testing and Interoperability Defining test and interoperability criteria, certification, etc.

Configuration and Management Defining a protocol for configuring non-flow-related OpenFlow parame-

ters (e.g., setup, controller, etc.)

Migration Study migration of existing networks towards an SDN network based on

OpenFlow.

Optical Transport Responsible for identifying areas in which the OpenFlow Standard can

be applied to optical networks.

Market Education Responsible for educating the SDN community on the value of OpenFlow

and for channeling market feedback within the ONF.

Wireless & Mobile Study methods by which OpenFlow can be used to control wireless radio

area networks (RANs) and core networks.

Northbound Interface Developing concrete requirements, architecture, and working code for

northbound interfaces.
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One novel aspect of the ONF is that its board of directors is entirely made up of major network

operators, not the networking vendors themselves. As of this writing, the ONF board is composed of

chief technology officers (CTOs), technical directors, and fellows from companies such as Google,

Facebook, Deutsche Telekom, Verizon, Microsoft, and NTT, among others. This helps prevent the ONF

from supporting the interests of one major networking vendor over another. It also helps provide a

real-world perspective on what should be investigated and standardized. Conversely, it runs the risk of

defining a specification that is difficult for NEMs to implement. Our previous comments about NEMs

being locked into their status quo notwithstanding, it is also true that there is a wealth of engineer-

ing experience resident in the NEMs regarding how to actually design and build high-performance,

high-reliability switches. Though the real-world experience of the users is indeed indispensable, it is

imperative that the ONF seek input from the vendors to ensure that the specifications they produce are

in fact implementable.

3.4 Sustaining SDN Interoperability

At the current point in the evolution of SDN, we have a standard that has been accepted and adopted by

academia and industry alike, and we have an independent standards body to shepherd OpenFlow forward

and to ensure that it remains independent and untethered to any specific institution or organization. It

is now important to ensure that the implementations of the various players in the OpenFlow space

adhere to the standards as they are defined, clarify and expand the standards where they are found to be

incomplete or imprecise, and in general guarantee interoperability among OpenFlow implementations.

This goal can be achieved in a few ways:

• Plugfests. Plugfests, normally staged at conferences, summits, and congresses, are environments in

which vendors can bring their devices and software in order to test them with devices and software

from other vendors. These are rich opportunities to determine where implementations may be lacking

or where the standard itself is unclear and needs to be made more precise and specific.

• Interoperability labs. Certain institutions have built dedicated test labs for the purpose of testing the

interoperability of equipment from various vendors and organizations. One such lab is the Indiana

Center for Network Translational Research and Education (InCNTRE) at Indiana University, which

hosts a large collection of vendor devices and controllers as well as experimental devices and

controllers from open source contributors. We discuss open source contributions to SDN in the

next section.

• Certification programs. There is a need for certification of switches so that buyers can know they

are getting a switch that is certified to support a particular version or versions of OpenFlow. The

ONF has now implemented such a program [5].

• Education and consulting. A complex, game-changing technological shift such as that represented

by SDN will not easily permeate a large industry without the existence of an infrastructure to train

and advise networking staff about the migration. It is important that a cadre of highly qualified yet

vendor-neutral organizations address this need.

Initially, many SDN interoperability tests revealed dissimilarities and issues. Existing implemen-

tations of OpenFlow are increasingly interoperable, but challenges remain. For example, as of this

writing, it remains difficult for an OpenFlow controller to work consistently across multiple, varied
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switch implementations of OpenFlow. This is largely due to limitations in existing ASICs that lead

to switches only supporting different subsets of OpenFlow consistent with their particular hardware.

Other problems emanate from the fact that the OpenFlow 1.0 specification is vague in terms of specify-

ing which features are required versus which are optional. As we discuss in Chapter 5, the OpenFlow

standard is not static, and the goalposts of interoperability are moved with each new release.

3.5 Open Source Contributions

One of the basic rationales for SDN is that innovation and advancement have been stifled as a result of

the closed and inflexible environment that exists in networking today. Thus, the openness that results

from the creation of standards such as OpenFlow should encourage researchers to dissect old networking

methods and should usher in a new dawn of network operation, management, and control. This section

examines ways in which open source contributes to this process.

3.5.1 The Power of the Collective

Technological advancement sometimes arises from the efforts of corporations and major organizations,

quite often due to the fact that they are the only ones in the position to make contributions in their

domains. In the world of software, however, it is occasionally possible for small players to develop

technology and make it freely available to the general public. Some examples are:

• Operating systems. The Linux operating system was developed as open source and is used today to

control countless devices that we use every day, from digital video recorders (DVRs) to smartphones.

• Databases. Many of the websites we visit for news reports or to purchase products store their

information and product data in databases that were developed, at least initially, by the open source

community. MySQL is an example of such an open source database.

• Servers. When we access locations on the Internet, many of those servers are running application

server software and using tools that have been developed over time by the open source community.

For example, the open source Apache Web Server is used in countless applications worldwide.

• Security. Applying the open source model is also often considered in order to deliver more secure

environments [20]. Open source can be more secure because of the peer review and white-box

evaluation that naturally occur in the open source development paradigm. Proprietary protocols may

be less secure because they are not open and evaluated. Many security products providing antivirus

protection and maintaining lists of malicious sites and programs are running open source software

to accomplish their tasks. OpenSSL is probably the foremost example of a widely used open source

encryption toolkit.

• File sharing. The BitTorrent protocol is an example of a hugely successful [3] open protocol used

for file sharing. BitTorrent works as a P2P/overlay network that achieves high-bandwidth file down-

loading by performing the download of a file piecemeal and in parallel from multiple servers.

These are just a few examples. Imagine our world today without those items. Would private institu-

tions have eventually implemented the software solutions required in order to provide that functionality?

Most likely. Would these advancements in technology have occurred at the velocity that we have wit-

nessed in the past 10 years, without current and ongoing contributions from open source? Almost

certainly not.
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3.5.2 The Danger of the Collective

Of course, with an endeavor being driven by individuals who are governed not only by their own desire

to contribute but also by their free will, whims, and other interests, there is bound to be some risk. The

areas of risk include quality, security, timeliness, and support. Here we explain how these risks can

be mitigated.

Open source software must undergo tests and scrutiny by even larger numbers of individuals than

its commercial counterpart. This is due to the fact that an entire world of individuals has access to

and can test those contributions. For any given feature being added or any problem being solved, the

open source community may offer a number of competing approaches to accomplish the task. Even

open source initiatives are subject to release cycles, and there are key individuals involved in deciding

what code will make its way into the next release. Just because an open source developer creates a

body of code for an open source product does not mean that code will make it into a release. To keep

quality high, competing approaches may be assessed by the community, and admission into a release is

actually controlled by key individuals associated with the open source effort. These same factors serve

to minimize the risk of security threats. Since the source code is open for all to view, it is more difficult

to hide malicious threats such as back doors.

Timeliness is certainly an issue since there are no committed schedules, especially since open source

contributors are often doing so in their spare time. The prudent approach is not to depend on future

deliverables, but to use existing functionality.

There seem to be two fundamental solutions to the issue of support. If you are a business intending to

utilize open source in a product you are developing, you need to feel either that you have the resources

to support it on your own or that there is such a large community that has been using that code for a

long enough time that you simply trust that the bad bugs have already surfaced and that you are using

a stable code base.

It is important to remember that open source licensing models differ greatly from one model to

the next. Some models severely restrict the way contributions can be made and are used. Section 11.2

discusses in more detail some of the different major open source licenses and the issues with them.

3.5.3 Open Source Contributions to SDN

Based on the previous discussions, it is easy to see the potential value of open source contributions

in the drive toward SDN. Huge advances in SDN technology are attributable to open source projects.

Multiple open source implementations of SDN switches, controllers, and applications are available. In

Chapter 11 we provide details of the open source projects that have been specifically targeted to accelerate

innovation in SDN. In that chapter we also discuss other open source efforts that, though not as directly

related to SDN, are nonetheless influential on the ever-growing acceptance of the SDN paradigm.

3.6 Legacy Mechanisms Evolve Toward SDN

The urgent need for SDN we described in Chapter 2 could not wait for a completely new network

paradigm to be fleshed out through years of research and experimentation. It is not surprising, then,

that there were early attempts to achieve some SDN-like functionality within the traditional
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networking model. One such example was Cisco’s policy-based routing that we described in Chapter 1.

The capabilities of legacy switches were sometimes extended to support detailed policy configuration

related to security, QoS, and other areas. Old APIs were extended to allow centralized programming of

these features. Some SDN providers have based their entire SDN solution on a rich family of extended

APIs on legacy switches, orchestrated by a centralized controller. In Chapter 6 we examine how these

alternative solutions work and whether or not they genuinely constitute an SDN solution.

3.7 Network Virtualization

In Chapter 2 we discussed how network virtualization lagged behind its compute and storage counter-

parts and how this has resulted in a strong demand for network virtualization in the data center. Network

virtualization, in essence, provides a network service that is decoupled from the physical hardware below

that offers a feature set identical to the behavior of its physical counterpart. An important and early

approach to such network virtualization was the virtual local area network (VLAN). VLANs permitted

multiple virtual local area networks to co-reside on the same layer two physical network in total isola-

tion from one another. Although this technical concept is very sound, the provisioning of VLANs is not

particularly dynamic, and they scale only to the extent of a layer two topology. Layer three counterparts

based on tunneling scale better than VLANs to larger topologies. Complex systems have evolved to use

both VLAN as well as tunneling technologies to provide network virtualization solutions.

One of the most successful commercial endeavors in this space was Nicira, now part of VMware.

Early on, Nicira claimed that there were seven properties of network virtualization [4]:

1. Independence from network hardware

2. Faithful reproduction of the physical network service model

3. Following an operational model of compute virtualization

4. Compatibility with any hypervisor platform

5. Secure isolation among virtual networks, the physical networks, and the control plane

6. Cloud performance and scale

7. Programmatic network provisioning and control

Several of these characteristics closely resemble what we have said is required from an SDN solu-

tion. SDN promises to provide a mechanism for automating the network and abstracting the physical

hardware below from the Software Defined Network above. Network virtualization for data centers has

undoubtedly been the largest commercial driver behind SDN. This momentum has become so strong

that to some, network virtualization has become synonymous with SDN. Indeed, VMware’s (Nicira)

standpoint [15] on this issue is that SDN is simply about abstracting control plane from data plane, and

therefore network virtualization is SDN. Well, is it SDN or not?

3.8 May I Please Call My Network SDN?

If one were to ask four different attendees at a 2013 networking conference what they thought qualified

a network to be called SDN, they would likely have provided divergent answers. Based on the genesis

of SDN as presented in Section 3.3, in this book we define an SDN network as characterized by five
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fundamental traits: plane separation, a simplified device, centralized control, network automation and

virtualization, and openness. We call an SDN solution possessing these five traits an Open SDN tech-

nology. We acknowledge that there are many competing technologies offered today that claim that their

solution is an SDN solution. Some of these technologies have had larger economic impact in terms of

the real-life deployments and dollars spent by customers than those that meet all five of our criteria.

In some respects they may address customers’ needs better than Open SDN. For example, a network

virtualization vendor such as Nicira has had huge economic success and widespread installations in

data centers but does this without simplified devices. We define these five essential criteria not to pass

judgment on these other SDN solutions but in acknowledgment of what the SDN pioneers had in mind

when they coined the term SDN in 2009 to refer to their work on OpenFlow. We provide details about

each of these five fundament traits in Section 4.1 and compare and contrast competing SDN technologies

against these five as well as other criteria in Chapter 6.

3.9 Conclusion

With the research and open source communities clamoring for an open environment for expanded

research and experimentation, as well as the urgent needs of data centers for increased agility and

virtualization, networking vendors have been forced into the SDN world. Some have moved readily

into that world; others have dragged their feet or have attempted to redefine SDN. In the next chapter

we examine what SDN is and how it actually works.
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4
CHAPTER

How SDN Works

In previous chapters we have seen why SDN is necessary and what preceded the actual advent of SDN

in the research and industrial communities. In this chapter we provide an overview of how SDN actually

works, including discussion of the basic components of a Software Defined Networking system, their

roles, and how they interact with one another. In the first part of this chapter we focus on the methods

used by Open SDN. We also examine how some alternate forms of SDN work. As SDN has gained

momentum, some networking vendors have responded with alternate definitions of SDN, which better

align with their own product offerings. Some of these methods of implementing SDN-like solutions

are new (but some are not) and are innovative in their approach. We group the most important of these

alternate SDN implementations in two categories: SDN via existing APIs and SDN via hypervisor-based

overlay networks, which we discuss separately in the latter half of this chapter.

4.1 Fundamental Characteristics of SDN

As introduced in Chapter 3, Software Defined Networking, as it evolved from prior proposals, stan-

dards, and implementations such as ForCES, 4D, and Ethane, is characterized by five fundamental

traits: plane separation, a simplified device, centralized control, network automation and virtualization,

and openness.

4.1.1 Plane Separation

The first fundamental characteristic of SDN is the separation of the forwarding and control planes.

Forwarding functionality, including the logic and tables for choosing how to deal with incoming packets

based on characteristics such as MAC address, IP address, and VLAN ID, resides in the forwarding

plane. The fundamental actions performed by the forwarding plane can be described by the way it

dispenses with arriving packets. It may forward, drop, consume, or replicate an incoming packet. For

basic forwarding, the device determines the correct output port by performing a lookup in the address

table in the hardware ASIC. A packet may be dropped due to buffer overflow conditions or due to

specific filtering resulting from a QoS rate-limiting function, for example. Special-case packets that

require processing by the control or management planes are consumed and passed to the appropriate

plane. Finally, a special case of forwarding pertains to multicast, where the incoming packet must be

replicated before forwarding the various copies out different output ports.

The protocols, logic, and algorithms that are used to program the forwarding plane reside in the

control plane. Many of these protocols and algorithms require global knowledge of the network. The

control plane determines how the forwarding tables and logic in the data plane should be programmed

Software Defined Networks. http://dx.doi.org/10.1016/B978-0-12-416675-2.00004-8
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or configured. Since in a traditional network each device has its own control plane, the primary task of

that control plane is to run routing or switching protocols so that all the distributed forwarding tables on

the devices throughout the network stay synchronized. The most basic outcome of this synchronization

is the prevention of loops.

Although these planes have traditionally been considered logically separate, they co-reside in legacy

Internet switches. In SDN, the control plane is moved off the switching device and onto a centralized

controller. This is the inspiration behind Figure 1.6 in Chapter 1.

4.1.2 A Simple Device and Centralized Control

Building on the idea of separation of forwarding and control planes, the next characteristic is the

simplification of devices, which are then controlled by a centralized system running management and

control software. Instead of hundreds of thousands of lines of complicated control plane software

running on the device and allowing the device to behave autonomously, that software is removed from

the device and placed in a centralized controller. This software-based controller manages the network

using higher-level policies. The controller then provides primitive instructions to the simplified devices

when appropriate in order to allow them to make fast decisions about how to deal with incoming packets.

4.1.3 Network Automation and Virtualization

Three basic abstractions forming the basis for SDN are defined in [15]. This asserts that SDN can be

derived precisely from the abstractions of distributed state, forwarding, and configuration. They are

derived from decomposing into simplifying abstractions the actual complex problem of network control

faced by networks today. For a historical analogy, note that today’s high-level programming languages

represent an evolution from their machine language roots through the intermediate stage of languages

such as C, where today’s languages allow great productivity gains by allowing the programmer to simply

specify complex actions through programming abstractions. In a similar manner, [15] purports that

SDN is a similar natural evolution for the problem of network control. The distributed state abstraction

provides the network programmer with a global network view that shields the programmer from the

realities of a network that is actually comprised of many machines, each with its own state, collaborating

to solve network-wide problems. The forwarding abstraction allows the programmer to specify the

necessary forwarding behaviors without any knowledge of vendor-specific hardware. This implies that

whatever language or languages emerge from the abstraction need to represent a sort of lowest common

denominator of forwarding capabilities of network hardware. Finally, the configuration abstraction,

which is sometimes called the specification abstraction, must be able to express the desired goals of the

overall network without getting lost in the details of how the physical network will implement those

goals. To return to the programming analogy, consider how unproductive software developers would be

if they needed to be aware of what is actually involved in writing a block of data to a hard disk when they

are instead happily productive with the abstraction of file input and output. Working with the network

through this configuration abstraction is really network virtualization at its most basic level. This kind

of virtualization lies at the heart of how we define Open SDN in this work.

The centralized software-based controller in SDN provides an open interface on the controller to

allow for automated control of the network. In the context of Open SDN, the terms northbound and

southbound are often used to distinguish whether the interface is to the applications or to the devices.

These terms derive from the fact that in most diagrams the applications are depicted above (i.e., to the
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north of ) the controller, whereas devices are depicted below (i.e., to the south of ) the controller. The

southbound API is the OpenFlow interface that the controller uses to program the network devices. The

controller offers a northbound API, allowing software applications to be plugged into the controller

and thereby allowing that software to provide the algorithms and protocols that can run the network

efficiently. These applications can quickly and dynamically make network changes as the need arises.

The northbound API of the controller is intended to provide an abstraction of the network devices and

topology. That is, the northbound API provides a generalized interface that allows the software above it

to operate without knowledge of the individual characteristics and idiosyncrasies of the network devices

themselves. In this way, applications can be developed that work over a wide array of manufacturers’

equipment that may differ substantially in their implementation details.

One of the results of this level of abstraction is that it provides the ability to virtualize the network,

decoupling the network service from the underlying physical network. Those services are still presented

to host devices in such a way that those hosts are unaware that the network resources they are using are

virtual and not the physical ones for which they were originally designed.

4.1.4 Openness

A characteristic of Open SDN is that its interfaces should remain standard, well documented, and

not proprietary. The APIs that are defined should give software sufficient control to experiment with

and control various control plane options. The premise is that keeping open both the northbound and

southbound interfaces to the SDN controller will allow for research into new and innovative methods of

network operation. Research institutions as well as entrepreneurs can take advantage of this capability

in order to easily experiment with and test new ideas. Hence the speed at which network technology is

developed and deployed is greatly increased as much larger numbers of individuals and organizations

are able to apply themselves to today’s network problems, resulting in better and faster technological

advancement in the structure and functioning of networks. The presence of these open interfaces also

encourages SDN-related open source projects. As discussed in Sections 1.7 and 3.5, harnessing the

power of the open source development community should greatly accelerate innovation in SDN [6].

In addition to facilitating research and experimentation, open interfaces permit equipment from

different vendors to interoperate. This normally produces a competitive environment which lowers

costs to consumers of network equipment. This reduction in network equipment costs has been part of

the SDN agenda since its inception.

4.2 SDN Operation

At a conceptual level, the behavior and operation of a Software Defined Network is straightforward.

In Figure 4.1 we provide a graphical depiction of the operation of the basic components of SDN: the

SDN devices, the controller, and the applications. The easiest way to understand the operation is to

look at it from the bottom up, starting with the SDN device. As shown in Figure 4.1, the SDN devices

contain forwarding functionality for deciding what to do with each incoming packet. The devices also

contain the data that drives those forwarding decisions. The data itself is actually represented by the

flows defined by the controller, as depicted in the upper-left portion of each device.

A flow describes a set of packets transferred from one network endpoint (or set of endpoints) to

another endpoint (or set of endpoints). The endpoints may be defined as IP address-TCP/UDP port
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SDN operation overview.

pairs, VLAN endpoints, layer three tunnel endpoints, and input ports, among other things. One set of

rules describes the forwarding actions that the device should take for all packets belonging to that flow.

A flow is unidirectional in that packets flowing between the same two endpoints in the opposite direction

could each constitute a separate flow. Flows are represented on a device as a flow entry.

A flow table resides on the network device and consists of a series of flow entries and the actions

to perform when a packet matching that flow arrives at the device. When the SDN device receives a

packet, it consults its flow tables in search of a match. These flow tables had been constructed previously

when the controller downloaded appropriate flow rules to the device. If the SDN device finds a match,

it takes the appropriate configured action, which usually entails forwarding the packet. If it does not

find a match, the switch can either drop the packet or pass it to the controller, depending on the version

of OpenFlow and the configuration of the switch. We describe flow tables and this packet-matching

process in greater detail in Sections 4.3 and 5.3.

The definition of a flow is a relatively simple programming expression of what may be a very complex

control plane calculation previously performed by the controller. For the reader who is less familiar with

traditional switching hardware architecture, it is important to understand that this complexity is such that

it simply cannot be performed at line rates and instead must be digested by the control plane and reduced

to simple rules that can be processed at that speed. In Open SDN, this digested form is the flow entry.

The SDN controller is responsible for abstracting the network of SDN devices it controls and pre-

senting an abstraction of these network resources to the SDN applications running above. The controller

allows the SDN application to define flows on devices and to help the application respond to packets that

are forwarded to the controller by the SDN devices. In Figure 4.1 we see on the right side of the controller

that it maintains a view of the entire network that it controls. This permits it to calculate optimal forward-

ing solutions for the network in a deterministic, predictable manner. Since one controller can control

a large number of network devices, these calculations are normally performed on a high-performance
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machine with an order-of-magnitude performance advantage over the CPU and memory capacity than is

typically afforded to the network devices themselves. For example, a controller might be implemented

on an eight-core, 2-GHz CPU versus the single-core, 1-GHz CPU that is more typical on a switch.

SDN applications are built on top of the controller. These applications should not be confused with the

application layer defined in the seven-layer OSI model of computer networking. Since SDN applications

are really part of network layers two and three, this concept is orthogonal to that of applications in the

tight hierarchy of OSI protocol layers. The SDN application interfaces with the controller, using it to

set proactive flows on the devices and to receive packets that have been forwarded to the controller.

Proactive flows are established by the application; typically the application will set these flows when the

application starts up, and the flows will persist until some configuration change is made. This kind of

proactive flow is known as a static flow. Another kind of proactive flow is where the controller decides

to modify a flow based on the traffic load currently being driven through a network device.

In addition to flows defined proactively by the application, some flows are defined in response to a

packet forwarded to the controller. Upon receipt of incoming packets that have been forwarded to the

controller, the SDN application will instruct the controller as to how to respond to the packet and, if

appropriate, will establish new flows on the device in order to allow that device to respond locally the

next time it sees a packet belonging to that flow. Such flows are called reactive flows. In this way, it

is now possible to write software applications that implement forwarding, routing, overlay, multipath,

and access control functions, among others.

There are also reactive flows that are defined or modified as a result of stimuli from sources other

than packets from the controller. For example, the controller can insert flows reactively in response to

other data sources such as intrusion detection systems (IDS) or the NetFlow traffic analyzer [16].

Figure 4.2 depicts the OpenFlow protocol as the means of communication between the controller

and the device. Though OpenFlow is the defined standard for such communication in Open SDN, there
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are alternative SDN solutions, discussed later in this chapter, that may use vendor-specific proprietary

protocols. The next sections discuss SDN devices, controllers, and applications in greater detail.

4.3 SDN Devices

An SDN device is composed of an API for communication with the controller, an abstraction layer, and

a packet-processing function. In the case of a virtual switch, this packet-processing function is packet-

processing software, as shown in Figure 4.3. In the case of a physical switch, the packet-processing

function is embodied in the hardware for packet-processing logic, as shown in Figure 4.4.

The abstraction layer embodies one or more flow tables, which we discuss in Section 4.3.1. The

packet-processing logic consists of the mechanisms to take actions based on the results of evaluating

incoming packets and finding the highest-priority match. When a match is found, the incoming packet is

processed locally unless it is explicitly forwarded to the controller. When no match is found, the packet

may be copied to the controller for further processing. This process is also referred to as the controller

consuming the packet. In the case of a hardware switch, these mechanisms are implemented by the

specialized hardware we discuss in Section 4.3.3. In the case of a software switch, these same functions

are mirrored by software. Since the case of the software switch is somewhat simpler than the hardware

switch, we will present that first in Section 4.3.2. Some readers may be confused by the distinction

between a hardware switch and a software switch. The earliest routers that we described in Chapter 1

were indeed just software switches. Later, as we depicted in Figure 2.1, we explained that over time

the actual packet-forwarding logic migrated into hardware for switches that needed to process packets

arriving at ever-increasing line rates. More recently, a role has reemerged in the data center for the pure

software switch. Such a switch is implemented as a software application usually running in conjunction

with a hypervisor in a data center rack. Like a VM, the virtual switch can be instantiated or moved under

software control. It normally serves as a virtual switch and works collectively with a set of other such

virtual switches to constitute a virtual network. We discuss this concept in greater depth in Chapter 7.
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FIGURE 4.3

SDN software switch anatomy.



4.3 SDN Devices 65

HW

Abstraction Layer

API

L3 Fwd L2 Fwd

TCAMs

Flow TableOpenFlow

Flow TableFlow TableFlow TableFlow TableFlow TableFlow Table

To Controller

CAMs

FIGURE 4.4

SDN hardware switch anatomy.

4.3.1 Flow Tables

Flow tables are the fundamental data structures in an SDN device. These flow tables allow the device

to evaluate incoming packets and take the appropriate action based on the contents of the packet that

has just been received. Packets have traditionally been received by networking devices and evaluated

based on certain fields. Depending on that evaluation, actions are taken. These actions may include

forwarding the packet to a specific port, dropping the packet, or flooding the packet on all ports, among

others. An SDN device is not fundamentally different except that this basic operation has been rendered

more generic and more programmable via the flow tables and their associated logic.

Flow tables consist of a number of prioritized flow entries, each of which typically consists of two

components: match fields and actions. Match fields are used to compare against incoming packets. An

incoming packet is compared against the match fields in priority order, and the first complete match

is selected. Actions are the instructions that the network device should perform if an incoming packet

matches the match fields specified for that flow entry.

Match fields can have wildcards for fields that are not relevant to a particular match. For example,

when matching packets based just on IP address or subnet, all other fields would be wildcarded. Similarly,

if matching on only MAC address or UDP/TCP port, the other fields are irrelevant, and consequently

those fields are wildcarded. Depending on the application needs, all fields may be important, in which

case there would be no wildcards. The flow table and flow entry constructs allow the SDN application

developer to have a wide range of possibilities for matching packets and taking appropriate actions.

Given this general description of an SDN device, we now look at two embodiments of an SDN

device: first, the more simple software SDN device and then a hardware SDN device.

4.3.2 SDN Software Switches

In Figure 4.3 we provide a graphical depiction of a purely software-based SDN device. Implementation

of SDN devices in software is the simplest means of creating an SDN device, because the flow tables,
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flow entries, and match fields involved are easily mapped to general software data structures, such

as sorted arrays and hash tables. Consequently, it is more probable that two software SDN devices

produced by different development teams will behave consistently than will two different hardware

implementations. Conversely, implementations in software are likely to be slower and less efficient than

those implemented in hardware, since they do not benefit from any hardware acceleration. Consequently,

for network devices that must run at high speeds, such as 10 Gbps, 40 Gbps, and 100 Gbps, only hardware

implementations are feasible.

Due to the use of wildcards in matching, which poses a problem for typical hash tables, the packet-

processing function depicted in Figure 4.3 uses sophisticated software logic to implement efficient

match field lookups. Hence, in the early days of SDN, there was a wide variance in the performance of

different software implementations, based on the efficiency with which these lookups are accomplished.

Fortunately, software SDN device implementations have matured. The fact that there are two widely

recognized software reference implementations (see Section 4.3.4), both of which use sophisticated

and efficient methods of performing these lookups, has resulted in greater uniformity in software SDN

device performance.

Software device implementations also suffer less from resource constraints, since considerations

such as processing power and memory size are not an issue in typical implementations. Thus, whereas a

hardware SDN device implementation will support only a comparatively limited number of flow entries,

the ceiling on the number of flow entries on a software device may be orders of magnitude larger. As

software device implementations have more flexibility to implement more complex actions, we expect

to see a richer set of actions available on software SDN device implementations than on the hardware

SDN devices that we examine in the next section.

Software SDN device implementations are most often found in software-based network devices,

such as the hypervisors of a virtualization system. These hypervisors often incorporate a software

switch implementation that connects the various virtual machines to the virtual network. The virtual

switch working with a hypervisor is a natural fit for SDN. In fact, the whole virtualization system is

often controlled by a centralized management system, which also meshes well with the centralized

controller aspect of the SDN paradigm.

4.3.3 Hardware SDN Devices

Hardware implementations of SDN devices hold the promise of operating much faster than their soft-

ware counterparts and, thus, are more applicable to performance-sensitive environments, such as in

data centers and network cores. To understand how SDN objects such as flow tables and flow entries

can be translated into hardware, her we briefly review some of the hardware components of today’s

networking devices.

Currently, network devices utilize specialized hardware designed to facilitate the inspection of incom-

ing packets and the subsequent decisions that follow based on the packet-matching operation. We see

in Figure 4.4 that the packet-processing logic shown in Figure 4.3 has been replaced by this specialized

hardware. This hardware includes the layer two and layer three forwarding tables, usually implemented

using content-addressable memories (CAMs) and ternary content-addressable memories (TCAMs).

The layer three forwarding table is used for making IP-level routing decisions. This is the fundamental

operation of a router. It matches the destination IP address against entries in the table and, based on the
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match, takes the appropriate routing action (e.g., forwards the packet out interface B3). The layer two

forwarding table is used for making MAC-level forwarding decisions. This is the fundamental operation

of a switch. It matches the destination MAC address against entries in the table and, based on the match,

takes the appropriate forwarding action (e.g., forwards out interface 15).

The layer two forwarding table is typically implemented using regular CAM or hardware-based

hashing. These kinds of associative memories are used when there are precise indices, such as a 48-bit

MAC address. TCAMs, however, are associated with more complex matching functions. TCAMs are

used in hardware to check not only for an exact match but also for a third state, which uses a mask to treat

certain parts of the match field as wildcards. A straightforward example of this process is matching an IP

destination address against networks where a longest prefix match is performed. Depending on subnet

masks, multiple table entries may match the search key, and the goal is to determine the closest match. A

more important and innovative use of TCAMs is for potentially matching some but not all header fields of

an incoming packet. These TCAMs are thus essential for functions such as policy-based routing (PBR).

This hardware functionality allows the device to both match packets and then take actions at a very

high rate. However, it also presents a series of challenges to the SDN device developer. Specifically:

• How best to translate from flow entries to hardware entries; for example, how best to utilize the

CAMs, TCAMs, or hardware-based hash tables?

• Which of the flow entries to handle in hardware versus how many to fall back to using software?

Most implementations are able to use hardware to handle some of the lookups, but others are handed

off to software to be handled there. Obviously, hardware will handle the flow lookups much faster

than software, but hardware tables have limitations on the number of flow entries they can hold at

any time, and software tables could be used to handle the overflow.

• How to deal with hardware action limitations that may impact whether to implement the flow in

hardware versus software? For example, certain actions such as packet modification may be limited

or not available if handled in hardware.

• How to track statistics on individual flows? In using devices such as TCAMs, which may match

multiple flows, it is not possible to use those devices to count individual flows separately. Further-

more, gathering statistics across the various tables can be problematic because the tables may count

something twice or not at all.

These and other factors will impact the quality, functionality, and efficiency of the SDN device being

developed and must be considered during the design process. For example, hardware table sizes may

limit the number of flows, and hardware table capabilities may limit the breadth and depth of special

features supported. The limitations presented by a hardware SDN device might require adaptations to

SDN applications in order to interoperate with multiple heterogeneous types of SDN devices.

Although the challenges to the SDN device designer are no doubt formidable, the range of variables

confronting the SDN application developer is vast. The first-generation SDN device developer is cor-

ralled into basically retrofitting existing hardware to SDN and thus does not have many choices—and

indeed may be unable to implement all specified features. The SDN application developer, on the other

hand, must deal with inconsistencies across vendor implementations, with scaling performance on a

network-wide basis, and a host of other more nebulous issues. We discuss some of these application-

specific issues in Section 4.5.
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This section provided an overview of the composition of SDN devices and the considerations that

must be taken into account during their development and their use as part of an SDN application. We

provide further specifics on flow tables, flow entries, and actions in Chapter 5.

4.3.4 Existing SDN Device Implementations

A number of SDN device implementations are available today, both commercial and open source.

Software SDN devices are predominantly open source. Currently, two main alternatives are available:

Open vSwitch (OVS) [4] from Nicira and Indigo [5] from Big Switch. Incumbent network equipment

manufacturers (NEMs), such as Cisco, HP, NEC, IBM, Juniper, and Extreme, have added OpenFlow

support to some of their legacy switches. Generally, these switches may operate in both legacy mode

as well as OpenFlow mode. There is also a new class of devices called white-box switches, which are

minimalist in that they are built primarily from merchant silicon switching chips and a commodity CPU

and memory by a low-cost original device manufacturer (ODM) lacking a well-known brand name. One

of the premises of SDN is that the physical switching infrastructure may be built from OpenFlow-enabled

white-box switches at far less direct cost than switches from established NEMs. Most legacy control

plane software is absent from these devices, since this functionality is largely expected to be provided

by a centralized controller. Such white-box devices often use the open source OVS or Indigo switch

code for the OpenFlow logic, then map the packet-processing part of those switch implementations to

their particular hardware.

4.3.5 Scaling the Number of Flows

The granularity of flow definitions will generally be more fine as the device holding them approaches

the edge of the network and will be more general as the device approaches the core. At the edge, flows

will permit different policies to be applied to individual users and even different traffic types of the same

user. This will imply, in some cases, multiple flow entries for a single user. This level of flow granularity

would simply not scale if it were applied closer to the network core, where large switches deal with

the traffic for tens of thousands of users simultaneously. In those core devices, the flow definitions

will be generally more coarse, with a single aggregated flow entry matching the traffic from a large

number of users whose traffic is aggregated in some way, such as a tunnel, a VLAN, or a MPLS LSP.

Policies applied deep into the network will likely not be user-centric policies but rather policies that

apply to these aggregated flows. One positive result is that there will not be an explosion in the number

of flow entries in the core switches due to handling the traffic emanating from thousands of flows in

edge switches.

4.4 SDN Controller

We have noted that the controller maintains a view of the entire network, implements policy decisions,

controls all the SDN devices that comprise the network infrastructure, and provides a northbound API

for applications. When we have said that the controller implements policy decisions regarding routing,

forwarding, redirecting, load balancing, and the like, these statements referred to both the controller and
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the applications that make use of that controller. Controllers often come with their own set of common

application modules, such as a learning switch, a router, a basic firewall, and a simple load balancer.

These are really SDN applications, but they are often bundled with the controller. Here we focus strictly

on the controller.

Figure 4.5 exposes the anatomy of an SDN controller. The figure depicts the modules that provide the

controller’s core functionality, both a northbound and a southbound API, and a few sample applications

that might use the controller. As we described earlier, the southbound API is used to interface with

the SDN devices. This API is OpenFlow in the case of Open SDN or some proprietary alternative in

other SDN solutions. It is worth noting that in some product offerings, both OpenFlow and alternatives

coexist on the same controller. Early work on the southbound API has resulted in more maturity of

that interface with respect to its definition and standardization. OpenFlow itself is the best example of

this maturity, but de facto standards such as the Cisco CLI and SNMP also represent standardization in

the southbound-facing interface. OpenFlow’s companion protocol, OF-Config [17], and Nicira’s Open

vSwitch Database Management Protocol (OVSDB) [18] are both open protocols for the southbound

interface, though these are limited to configuration roles.

Unfortunately, there is currently no northbound counterpart to the southbound OpenFlow standard

or even the de facto legacy standards. This lack of a standard for the controller-to-application interface

is considered a current deficiency in SDN, and some bodies are developing proposals to standardize it.

The absence of a standard notwithstanding, northbound interfaces have been implemented in a number of

disparate forms. For example, the Floodlight controller [2] includes a Java API and a Representational

State Transfer (RESTful) [13] API. The OpenDaylight controller [14] provides a RESTful API for

applications running on separate machines. The northbound API represents an outstanding opportunity

for innovation and collaboration among vendors and the open source community.
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4.4.1 SDN Controller Core Modules

The controller abstracts the details of the SDN controller-to-device protocol so that the applications

above are able to communicate with those SDN devices without knowing their nuances. Figure 4.5

shows the API below the controller, which is OpenFlow in Open SDN, and the interface provided for

applications. Every controller provides core functionality between these raw interfaces. Core features

in the controller include:

• End-user device discovery. Discovery of end-user devices such as laptops, desktops, printers,

mobile devices, and so on.

• Network device discovery. Discovery of network devices that comprise the infrastructure of the

network, such as switches, routers, and wireless access points.

• Network device topology management. Maintain information about the interconnection details of

the network devices to each other and to the end-user devices to which they are directly attached.

• Flow management. Maintain a database of the flows being managed by the controller and perform

all necessary coordination with the devices to ensure synchronization of the device flow entries with

that database.

The core functions of the controller are device and topology discovery and tracking, flow manage-

ment, device management, and statistics tracking. These are all implemented by a set of modules internal

to the controller. As shown in Figure 4.5, these modules need to maintain local databases containing

the current topology and statistics. The controller tracks the topology by learning of the existence of

switches (SDN devices) and end-user devices and tracking the connectivity between them. It maintains

a flow cache that mirrors the flow tables on the various switches it controls. The controller locally

maintains per-flow statistics that it has gathered from its switches. The controller may be designed such

that functions are implemented via pluggable modules such that the feature set of the controller may be

tailored to an individual network’s requirements.

4.4.2 SDN Controller Interfaces

For SDN applications, a key function provided by the SDN controller is the API for accessing the

network. In some cases, this northbound API is a low-level interface, providing access to the network

devices in a common and consistent manner. In this case, that application is aware of individual devices

but is shielded from their differences. In other instances the controller may provide high-level APIs that

give an abstraction of the network itself, so that the application developer need not be concerned with

individual devices but rather with the network as a whole.

Figure 4.6 takes a closer look at how the controller interfaces with applications. The controller informs

the application of events that occur in the network. Events are communicated from the controller to the

application. Events may pertain to an individual packet that has been received by the controller or some

state change in the network topology, such as a link going down. Applications use different methods to

affect the operation of the network. Such methods may be invoked in response to a received event and

may result in a received packet being dropped, modified, and/or forwarded or the addition, deletion, or

modification of a flow. The applications may also invoke methods independently, without the stimulus

of an event from the controller, as we explain in Section 4.5.1. Such inputs are represented by the “Other

Context” box in Figure 4.6.
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4.4.3 Existing SDN Controller Implementations

There are a number of implementations of SDN controllers available on the market today. They include

both open source SDN controllers and commercial SDN controllers. Open source SDN controllers come

in many forms, from basic C-language controllers such as NOX [7] to Java-based versions such as Beacon

[1] and Floodlight [2]. There is even a Ruby-based [8] controller called Trema [9]. Interfaces to these

controllers may be offered in the language in which the controller is written or other alternatives, such

as REST or Python. An open source controller called OpenDaylight [3] has been built by a consortium

of vendors. Other vendors offer their own commercial versions of an SDN controller. Vendors such as

NEC, IBM, and HP offer controllers that are primarily OpenFlow implementations. Most other NEMs

offer vendor-specific and proprietary SDN controllers that include some level of OpenFlow support.

There are pros and cons to the proprietary alternative controllers. Although proprietary controllers are

more closed than the nominally open systems, they do offer some of the automation and programmability

advantages of SDN while providing a buck stops here level of support for the network equipment. They

permit SDN-like operation of legacy switches, obviating the need to replace older switching equipment

in order to begin the migration to SDN. They do constitute closed systems, however, which ostensibly

violates one of the original tenets of SDN. They also may do little to offload control functionality from

devices, resulting in the continued high cost of network devices. These proprietary alternative controllers

are generally a component of the alternative SDN methodologies we introduce in Section 4.6.

4.4.4 Potential Issues with the SDN Controller

In general, the Open SDN controller suffers from the birthing pains common to any new technology.

Although many important problems are addressed by the concept and architecture of the controller,

there have been comparatively few large-scale commercial deployments thus far. As more commercial

deployments scale, more real-life experience in large, demanding networks will be needed. In particular,
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experience with a wider array of applications with a more heterogeneous mix of equipment types is

needed before widespread confidence in this architecture is established. Achieving success in these

varied deployments will require that a number of potential controller issues be adequately addressed. In

some cases, these solutions will come in multiple forms from different vendors. In other cases, a standards

body such as the ONF will have to mandate a standard. In Section 3.2.6 we stated that a centralized

control architecture needed to grapple with the issues of latency, scale, high availability, and security. In

addition to these more general issues, the centralized SDN controller will need to confront the challenges

of coordination between applications, the lack of a standard northbound API, and flow prioritization.

There may be more than one SDN application running on a single controller. When this is the case,

issues related to application prioritization and flow handling become important. Which application

should receive an event first? Should the application be required to pass along this event to the next

application in line, or can it deem the processing complete, in which case no other applications get a

chance to examine and act on the received event?

The lack of an emerging standard for the northbound API is stymieing efforts to develop applications

that will be reusable across a wide range of controllers. Early standardization efforts for OpenFlow

generally assumed that such a northbound counterpart would emerge, and much of the efficiency gain

assumed to come from a migration to SDN will be lost without it. Late in 2013 the ONF formed a

workgroup that focuses on the standardization of the northbound API (see Table 3.2).

Flows in an SDN device are processed in priority order. The first flow that matches the incoming

packet is acted upon. Within a single SDN application, it is critical for the flows on the SDN device

to be prioritized correctly. If they are not, the resulting behavior will be incorrect. For example, the

designer of an application will put more specific flows at a higher priority (e.g., match all packets

from IP address 10.10.10.2 and TCP port 80) and the most general flows at the lowest priority (e.g.,

match everything else). This is relatively easy to do for a single application. However, when there are

multiple SDN applications, flow entry prioritization becomes more difficult to manage. How does the

controller appropriately interleave the flows from all applications? This is a challenge and requires

special coordination between the applications.

4.5 SDN Applications

SDN applications run above the SDN controller, interfacing to the network via the controller’s north-

bound API. SDN applications are ultimately responsible for managing the flow entries that are pro-

grammed on the network devices using the controller’s API to manage flows. Through this API the

applications are able to (1) configure the flows to route packets through the best path between two

endpoints; (2) balance traffic loads across multiple paths or destined to a set of endpoints; (3) react to

changes in the network topology such as link failures and the addition of new devices and paths, and (4)

redirect traffic for purposes of inspection, authentication, segregation, and similar security-related tasks.

Figure 4.5 includes some standard applications, such as a graphical user interface (GUI) for managing

the controller, a learning switch, and a routing application. The reader should note that even the basic

functionality of a simple layer two learning switch is not obtained by simply pairing an SDN device with

an SDN controller. Additional logic is necessary to react to the newly seen MAC address and update

the forwarding tables in the SDN devices being controlled in such a way as to provide connectivity to

that new MAC address throughout the network while avoiding switching loops. This additional logic is
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embodied in the learning switch application in Figure 4.5. One of the perceived strengths of the SDN

architecture is the fact that switching decisions can be controlled by an ever-richer family of applications

that control the controller. In this way, the power of the SDN architecture is highly expandable. Other

applications that are well suited to this architecture are load balancers and firewalls, among many others.

These examples represent some typical SDN applications that have been developed by researchers and

vendors today. Applications such as these demonstrate the promise of SDN: being able to take complex

functionality that formerly resided in each individual network device or appliance and allowing it to

operate in an Open SDN environment.

4.5.1 SDN Application Responsibilities

The general responsibility of an SDN application is to perform whatever function for which it was

designed, whether load balancing, firewalling, or some other operation. Once the controller has finished

initializing devices and has reported the network topology to the application, the application spends

most of its processing time responding to events. The core functionality of the application will vary

from one application to another, but application behavior is driven by events coming from the controller

as well as external inputs. External inputs could include network monitoring systems such as Netflow,

IDS, or BGP peers. The application affects the network by responding to the events as modeled in

Figure 4.6. The SDN application registers as a listener for certain events, and the controller will invoke

the application’s callback method whenever such an event occurs. This invocation will be accompanied

by the appropriate details related to the event. Some examples of events handled by an SDN application

are end-user device discovery, network device discovery, and incoming packet. In the first two cases,

events are sent to the SDN application upon the discovery of a new end-user device (i.e., a MAC address)

or a new network device (e.g., a switch, router, or wireless access point), respectively. Incoming packet

events are sent to the SDN application when a packet is received from an SDN device due to either

a flow entry instructing the SDN device to forward the packet to the controller or because there is no

matching flow entry at the SDN device. When there is no matching flow entry, the default action is

usually to forward the packet to the controller, though it could be to drop the packet, depending on the

nature of the applications.

There are many ways in which an SDN application can respond to events that have been received from

the SDN controller. There are simple responses, such as downloading a set of default flow entries to a

newly discovered device. These default or static flows typically are the same for every class of discovered

network device, and hence little processing is required by the application. There are also more complex

responses that may require state information gathered from some other source apart from the controller.

This can result in variable responses, depending on that state information. For example, based on a

user’s state, an SDN application may decide to process the current packet in a certain manner, or it may

take some other action, such as downloading a set of user-specific flows.

4.6 Alternate SDN Methods

Thus far in this chapter we have examined what we consider the original definition of SDN, which we

distinguish from other alternatives by the term Open SDN. Open SDN most certainly has the broadest

support in the research community and among the operators of large data centers such as Google, Yahoo!,
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and their ilk. Nevertheless, there are other proposed methods of accomplishing at least some of the goals

of SDN. These methods are generally associated with a single networking vendor or a consortium of

vendors. We define here two alternate categories of SDN implementations: SDN via existing APIs and

SDN via hypervisor-based overlay networks. The first of these consists of employing functions that exist

on networking devices that can be invoked remotely, typically via traditional methods such as SNMP

or CLI or by the newer, more flexible mechanisms provided by RESTful APIs. In SDN via hypervisor-

based overlay networks, the details of the underlying network infrastructure are not relevant. Virtualized

overlay networks are instantiated across the top of the physical network. We make the distinction that

the overlays be hypervisor-based since network overlays exist in other, non-hypervisor-based forms

as well. One early example of this sort of network virtualization is VLAN technology. Another type

of overlay network that is not related to our use of the term is the P2P/overlay network, such as

Napster and BitTorrent. We further clarify the distinction between SDN and P2P/overlay networks later

in Section 8.8.

In the following sections we provide an introduction of how these two alternate SDN methods work.

We defer a more detailed treatment of these as well as the introduction of some others to Chapter 6.

4.6.1 SDN via Existing APIs

If a basic concept of SDN is to move control functionality from devices to a centralized controller,

this can be accomplished in other ways than the OpenFlow-centric approach coupled to Open SDN.

In particular, one method is to provide a richer set of control points on the devices so that centrally

located software can manipulate those devices and provide the intelligent and predictable behavior

that is expected in an SDN-controlled network. Consequently, many vendors offer SDN solutions by

improving the means of affecting configuration changes on their network devices.

We depict SDN via existing APIs graphically in Figure 4.7. The diagram shows a controller com-

municating with devices via a proprietary API. Often with SDN via existing APIs solutions, vendors

provide an enhanced level of APIs on their devices, rather than just the traditional CLI and SNMP. The

architecture shown in the figure is reminiscent of the earlier diagrams in this chapter. As before, there is

a set of applications that use a centralized controller to affect forwarding in the physical network. The

genesis of this idea derives from the fact that legacy switches all afford some degree of control over

forwarding decisions via their existing management interfaces. By providing a simplifying abstraction

to this plethora of interfaces, some network programmability can be gained by this approach.

Since the early days of the commercial Internet, it has been possible to set configuration param-

eters on devices using methods such as the CLI and SNMP. Although these mechanisms have long

been available, they can be cumbersome and difficult to maintain. Furthermore, they are geared toward

relatively rare static management tasks, not the dynamic, frequent, and automated tasks required in

environments such as today’s data centers. Newer methods of providing the means to make remote

configuration changes have been developed in the last few years. The most common of these is

the RESTful API. REST has become the dominant method of making API calls across networks.

REST uses HyperText Transfer Protocol (HTTP), the protocol commonly used to pass web traffic.

RESTful APIs are simple and extensible and have the advantage of using a standard TCP port and thus

require no special firewall configuration to permit the API calls to pass through firewalls. We provide a

more detailed discussion of RESTful APIs in Section 6.2.3.
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SDN via existing APIs.

There are a number of benefits of SDN via existing APIs. One distinct advantage of this approach is

that, because it uses legacy management interfaces, it therefore works with legacy switches. Thus, this

solution does not require upgrading to OpenFlow-enabled switches. Another benefit of this approach

is that it allows for some improvement in agility and automation. These APIs also make it easier to

write software such as orchestration tools that can respond quickly and automatically to changes in the

network (e.g., the movement of a virtual machine in a data center). A third advantage is that these APIs

allow for some amount of centralized control of the devices in the network. Therefore, it is possible

to build an SDN solution using the provided APIs on the distributed network devices. Finally, there

is potential for increased openness in the SDN via existing APIs approach. Although the individual

interfaces may be proprietary to individual vendors, when they are exposed to the applications, they are

made open for exploitation by applications. The degree of openness will vary from one NEM to another.

Of course, the API-based SDN methods have their limitations. First, in most cases there is no

controller at all. The network programmer needs to interact directly with each switch. Second, even

when there is a controller, it does not provide an abstract, network-wide view to the programmer.

Instead, the programmer needs to think in terms of individual switches. Third, since there is still a

control plane operating on each switch, the controller and, more important, the programmer developing

applications on top of that controller must synchronize with what the distributed control plane is doing.

Another drawback is that the solution is proprietary. Since these APIs are nonstandard (as opposed to a

protocol such as OpenFlow), SDN-like software applications using this type of API-based approach will

only work with devices from that specific vendor or a small group of compatible vendors. This limitation

is sometimes circumvented by extending this approach to provide support for multiple vendors’ APIs.
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This masks the differences between the device APIs to the application developer, who will see a single

northbound API despite the incompatible device interfaces on the southbound side. Obviously, this

homogeneity on the northbound interface is achieved by increased complexity within the controller.

In addition, the SDN precept of moving control off the switch onto a common controller was in

part intended to create simpler, less expensive switches. The SDN via existing APIs approach relies on

the same complicated, expensive switches as before. Admittedly, this is a double-edged sword, since a

company that already has the expensive switches may find it more expensive to change to less expensive

switches, considering they already have made the investment in the legacy devices.

Finally, though the SDN via existing APIs approach does allow some control over forwarding, in

particular with VLANs and VPNs, it does not allow the same degree of fine-grained control of individual

flows afforded by OpenFlow.

In summary, SDN via existing APIs is a step in the right direction, moving toward the goal of

centralized, software-based network control. It is possible to view SDN via existing APIs as a practical

extension of current functionality that is useful when the more radical OpenFlow solution is not yet

available or is otherwise inappropriate.

4.6.2 SDN via Hypervisor-Based Overlay Networks

Another more innovative alternate SDN method is what we refer to as hypervisor-based overlay net-

works. Under this concept the current physical network is left as it is, with networking devices and

their configurations remaining unchanged. Above that network, however, hypervisor-based virtualized

networks are erected. The systems at the edges of the network interact with these virtual networks,

which obscure the details of the physical network from the devices that connect to the overlays.

We depict such an arrangement in Figure 4.8, where we see the virtualized networks overlaying the

physical network infrastructure. The SDN applications making use of these overlay network resources
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Encapsulated frames.

are given access to virtualized networks and ports, which are abstract in nature and do not necessarily

relate directly to their physical counterparts below.

As shown in Figure 4.8, conceptually the virtual network traffic runs above the physical network

infrastructure. The hypervisors inject traffic into the virtual network and receive traffic from it. The

traffic of the virtual networks is passed through those physical devices, but the endpoints are unaware of

the details of the physical topology, the way routing occurs, or other basic network functions. Since these

virtual networks exist above the physical infrastructure, they can be controlled entirely by the devices

at the very edge of the network. In data centers, these would typically be the hypervisors of the VMs

that are running on each server.

The mechanism that makes this possible is tunneling, which uses encapsulation. When a packet

enters the edge of the virtual network at the source, the networking device (usually the hypervisor) will

take the packet in its entirety and encapsulate it within another frame. This is shown in Figure 4.9. Note

that the edge of the virtual network is called a tunnel endpoint or virtual tunnel endpoint (VTEP).

The hypervisor then takes this encapsulated packet and, based on information programmed by the

controller, sends it to the destination’s VTEP. This VTEP decapsulates the packet and forwards it to

the destination host. As the encapsulated packet is sent across the physical infrastructure, it is being

sent from the source’s VTEP to the destination’s VTEP. Consequently, the IP addresses are those of

the source and destination VTEP. Normally, in network virtualization, the VTEPs are associated with

hypervisors.

This tunneling mechanism is referred to as MAC-in-IP tunneling because the entire frame, from

MAC address inward, is encapsulated within this unicast IP frame, as shown in Figure 4.9. Different

vendors have established their own proprietary methods for MAC-in-IP tunneling. Specifically, Cisco

offers VXLAN [10], Microsoft uses NVGRE [11], and Nicira’s is called STT [12].

This approach mandates that a centralized controller be in charge of making sure there is always a

mapping from the actual destination host to the destination hypervisor that serves that host.

Figure 4.10 shows the roles of these VTEPs as they serve the source and destination host devices.

The virtual network capability is typically added to a hypervisor by extending it with a virtual switch.

We introduced the notion of virtual switch in Section 4.3.2, and it is well suited to the overlay network

concept. The virtual network has a virtual topology consisting of the virtual switches interconnected

by virtual point-to-point links. The virtual switches are depicted as the VTEPs in Figure 4.10, and the

virtual links are the tunnels interconnecting them. All the traffic on each virtual network is encapsulated

as shown in Figure 4.9 and sent VTEP-to-VTEP. The reader should note that the tunnels depicted in
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Figure 4.10 are the same as the links interconnecting hypervisors in Figure 4.8. As Figure 4.8 indicates,

multiple overlay networks can exist independently and simultaneously over the same physical network.

In summary, SDN via hypervisor-based overlay networks is well suited to environments such as data

centers already running compute and storage virtualization software for their servers. It does address a

number of the needs of an SDN solution. First, it addresses MAC address explosion in data centers and

cloud environments because all those host MAC addresses are hidden within the encapsulated frame.

Second, it addresses VLAN limitations because all traffic is tunneled and VLANs are not required for

supporting the isolation of multiple tenants. Third, it addresses agility and automation needs because it

is implemented in software, and these virtual networks can be constructed and taken down in a fraction

of the time that would be required to change the physical network infrastructure.

Nevertheless, these overlay networks do not solve all the problems that can be addressed by an Open

SDN solution. In particular, they do not address existing issues within the physical infrastructure, which

still requires manual configuration and maintenance. Moreover, they fail to address traffic prioritization

and efficiency in the physical infrastructure, so confronting STP’s blocked links and QoS settings

continues to challenge the network engineer. Finally, hypervisor-based overlays do not address the

desire to open up network devices for innovation and simplification, since those physical network

devices have not changed at all.

4.7 Conclusion

This chapter has described the basic functionality related to the manner in which an SDN solution

actually works. It is important to realize that there is no fundamental incompatibility between the

hypervisor-based overlay network approach to SDN and Open SDN. In fact, some implementations

use OpenFlow to create and utilize the tunnels required in this kind of network virtualization. It is

not unreasonable to think of these overlay networks as stepping stones toward a more complete SDN
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solution that includes SDN and OpenFlow for addressing the virtual as well as the physical needs of

the network. In Chapter 6 we delve more deeply into the SDN alternatives introduced in this chapter

as well as other alternatives not yet discussed. First, though, in the next chapter we provide a detailed

overview of the OpenFlow specification.
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5
CHAPTER

The OpenFlow Specification

Casual followers of networking news can experience confusion as to whether SDN and OpenFlow are

one and the same thing. Indeed, they are not. OpenFlow is definitely a distinct subset of the technologies

included under the big tent of SDN. An important tool and catalyst for innovation, OpenFlow defines

both the communications protocol between the SDN data plane and the SDN control plane and part

of the behavior of the data plane. It does not describe the behavior of the controller itself. There are

other approaches to SDN, but today OpenFlow is the only nonproprietary, general-purpose protocol for

programming the forwarding plane of SDN switches. This chapter focuses only on the protocol and

behaviors dictated by OpenFlow, since there are no directly competing alternatives.

We see the basic components of an OpenFlow system in Figure 5.1. There is always an OpenFlow

controller that communicates to one or more OpenFlow switches. The OpenFlow protocol defines the

specific messages and message formats exchanged between controller (control plane) and device (data

plane). The OpenFlow behavior specifies how the device should react in various situations and how it

should respond to commands from the controller. There have been various versions of OpenFlow, which

we examine in detail in this chapter. We also consider some of the potential drawbacks and limitations

of the OpenFlow specification.

Note that our goal in this chapter is not to provide an alternative to a detailed reading of the specifica-

tion itself. We hope to provide the reader with a rudimentary understanding of the elements of OpenFlow

and how they interoperate to provide basic switch and routing functions, as well as an experimental

platform that allows each version to serve as a springboard for innovations that may appear in future

versions of OpenFlow. In particular, though we provide tables that list the different ports, messages,

instructions, and actions that make up OpenFlow, we do not attempt to explain each in detail, because

this would essentially require that we replicate the specification here. We use the most important of

these in clear examples so that the reader is left with a basic understanding of OpenFlow operation. We

provide a reference to each of the four versions of OpenFlow in the section where it is introduced.

5.1 Chapter-Specific Terminology

The following new operations are introduced in this chapter:

To pop an item is to remove it from a last-in-first-out (LIFO) ordered list of like items.

To push an item is to add it to a LIFO ordered list of like items.

These terms are frequently used in conjunction with the term stack, which is a computer science

term for a LIFO ordered list. If one pictures a stack of items such as books, and if three books are then

added to that stack, the order in which those books are normally retrieved from the pile is a LIFO order.

That is, the first book pulled off the top of the pile is the last one that was added to it. If we alter slightly
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OpenFlow components.

the perception of the stack of books to imagine that the stack exists in a spring-loaded container such

that the topmost book is level with the top of the container, the use of the terms pop and push become

apparent. When we add a book to such a stack we push it onto the top and later pop it off to retrieve

it. The OpenFlow specification includes several definitions that use these concepts. In this context, the

push involves adding a new header element to the existing packet header, such as an MPLS label. Since

multiple such labels may be pushed on before any are popped off, and since they are popped off in LIFO

order, the stack analogy is apt.

5.2 OpenFlow Overview

The OpenFlow specification has been evolving for a number of years. The nonprofit Internet organization

openflow.org was created in 2008 as a mooring to promote and support OpenFlow. Though openflow.org

existed formally on the Internet, in the early years the physical organization was really just a group

of people that met informally at Stanford University. From its inception OpenFlow was intended to

“belong” to the research community to serve as a platform for open network switching experimentation,

with an eye on commercial use through commercial implementations of this public specification. The

first release, Version 1.0.0, appeared on December 31, 2009, though numerous point prereleases existed

before then and were made available for experimental purposes as the specification evolved. At this

point and continuing up through release 1.1.0, development and management of the specification were

performed under the auspices of openflow.org. On March 21, 2011, the Open Network Foundation

(ONF) was created for the express purpose of accelerating the delivery and commercialization of SDN.

As we explain in Chapter 6, there are a number of proponents of SDN that offer SDN solutions that

are not based on OpenFlow. For the ONF, however, OpenFlow remains at the core of its SDN vision

for the future. For this reason the ONF has become the responsible entity for the evolving OpenFlow

specification. Starting after the release of V.1.1, revisions to the OpenFlow specification have been

released and managed by the ONF.

One could get the impression from the fanfare surrounding OpenFlow that the advent of this technol-

ogy has been accompanied by concomitant innovation in switching hardware. The reality is a bit more



5.2 OpenFlow Overview 83

complicated. The OpenFlow designers realized a number of years ago that many switches were really

built around ASICs controlled by rules encoded in tables that could be programmed. Over time, fewer

homegrown versions of these switching chips were being developed, and there was greater consolidation

in the semiconductor industry. More manufacturers’ switches were based on ever-consolidating switch-

ing architecture and programmability, with ever-increasing use of programmable switching chips from

a relatively small number of merchant silicon vendors. OpenFlow is an attempt to allow the program-

ming, in a generic way, of the various implementations of switches that conform to this new paradigm.

OpenFlow attempts to exploit the table-driven design extant in many of the current silicon solutions.

As the number of silicon vendors consolidates, there should be a greater possibility for alignment with

future OpenFlow versions.

It is worth pausing here to remark on the fact that we are talking a lot about ASICs for a technology

called Software Defined Networking. Yet hardware must be part of the discussion, since it is necessary

to use this specialized silicon in order to switch packets at high line rates. We explained in Chapter 4

that though pure software SDN implementations exist, they cannot switch packets at sufficiently high

rates to keep up with high-speed interfaces. What is really meant by the word software in the name

SDN, then, is that the SDN devices are fully programmable, not that everything is done using software

running on a traditional CPU.

The sections that follow introduce the formal terminology used by OpenFlow and provide basic

background that will allow us to explore the details of the different versions of the OpenFlow specification

that have been released up to the time of the writing of this book.

5.2.1 The OpenFlow Switch

Figure 5.2 depicts the basic functions of an OpenFlow V.1.0 switch and its relationship to a controller.

As would be expected in a packet switch, we see that the core function is to take packets that arrive

on one port (path X on port 2 in the figure) and forward it through another port (port N in the figure),

making any necessary packet modifications along the way. A unique aspect of the OpenFlow switch is

embodied in the packet-matching function shown in Figure 5.2. The adjacent table is a flow table, and

we give separate treatment to this in Section 5.3.2. The wide, gray, double arrow in Figure 5.2 starts

in the decision logic, shows a match with a particular entry in that table, and directs the now-matched

packet to an action box on the right. This action box has three fundamental options for the disposition

of this arriving packet:

• A. Forward the packet out a local port, possibly modifying certain header fields first.

• B. Drop the packet.

• C. Pass the packet to the controller.

These three fundamental packet paths are illustrated in Figure 5.2. In the case of path C , the packet

is passed to the controller over the secure channel shown in the figure. If the controller has either a

control message or a data packet to give to the switch, the controller uses this same secure channel

in the reverse direction. When the controller has a data packet to forward out through the switch, it

uses the OpenFlow PACKET_OUT message. We see in Figure 5.2 that such a data packet coming

from the controller may take two different paths through the OpenFlow logic, both denoted Y . In the

rightmost case, the controller directly specifies the output port and the packet is passed to that port N
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OpenFlow V.1.0 switch.

in the example. In the leftmost path Y case, the controller indicates that it wants to defer the forwarding

decision to the packet-matching logic. Section 5.3.4 demonstrates that the controller dictates this by

stipulating the virtual port TABLE as the output port.

A given OpenFlow switch implementation is either OpenFlow-only or OpenFlow-hybrid. An

OpenFlow-only switch is one that forwards packets only according to the OpenFlow logic described

above. An OpenFlow hybrid is a switch that can also switch packets in its legacy mode as an Ethernet

switch or IP router. One can view the hybrid case as an OpenFlow switch residing next to a completely

independent traditional switch. Such a hybrid switch requires a preprocessing classification mechanism

that directs packets to either OpenFlow processing or the traditional packet processing. It is probable

that hybrid switches will be the norm during the migration to pure OpenFlow implementations.

Note that we use the term OpenFlow switch in this chapter instead of the term OpenFlow device

we customarily use. This is because switch is the term used in the OpenFlow specification. In general,

though, we opt to use the term device, since there are already nonswitch devices being controlled by

OpenFlow controllers, such as wireless access points.

5.2.2 The OpenFlow Controller

Modern Internet switches make millions of decisions per second about whether or not to forward an

incoming packet, to what set of output ports it should be forwarded, and what header fields in the packet
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may need to be modified, added, or removed. This is a very complex task. The fact that this can be

carried out at line rates on multigigabit media is a technological wonder. The switching industry has

long understood that not all functions on the switching datapath can be carried out at line rates, so there

has long been the notion of splitting the pure data plane from the control plane. The data plane matches

headers, modifies packets, and forwards them based on a set of forwarding tables and associated logic,

and it does this very, very fast. The rate of decisions being made as packets stream into a switch through

a 100 Gbps interface is astoundingly high. The control plane runs routing and switching protocols and

other logic to determine what the forwarding tables and logic in the data plane should be. This process

is very complex and cannot be done at line rates as the packets are being processed, and it is for this

reason we have seen the control plane separated from the data plane, even in legacy network switches.

The OpenFlow control plane differs from the legacy control plane in three key ways. First, it can

program different data plane elements with a common, standard language, OpenFlow. Second, it exists

on a separate hardware device than the forwarding plane, unlike traditional switches, where the control

plane and data plane are instantiated in the same physical box. This separation is made possible because

the controller can program the data plane elements remotely over the Internet. Third, the controller can

program multiple data plane elements from a single control plane instance.

The OpenFlow controller is responsible for programming all the packet-matching and forwarding

rules in the switch. Whereas a traditional router would run routing algorithms to determine how to

program its forwarding table, that function or an equivalent replacement to it is now performed by the

controller. Any changes that result in recomputing routes will be programmed onto the switch by the

controller.

5.2.3 The OpenFlow Protocol

As shown in Figure 5.2, the OpenFlow protocol defines the communication between an OpenFlow con-

troller and an OpenFlow switch. This protocol is what most uniquely identifies OpenFlow technology.

At its essence, the protocol consists of a set of messages that are sent from the controller to the switch

and a corresponding set of messages that are sent in the opposite direction. Collectively the messages

allow the controller to program the switch so as to allow fine-grained control over the switching of user

traffic. The most basic programming defines, modifies, and deletes flows. Recall that in Chapter 4 we

defined a flow as a set of packets transferred from one network endpoint (or set of endpoints) to another

endpoint (or set of endpoints). The endpoints may be defined as IP address-TCP/UDP port pairs, VLAN

endpoints, layer three tunnel endpoints, or input ports, among other things. One set of rules describes

the forwarding actions that the device should take for all packets belonging to that flow. When the

controller defines a flow, it is providing the switch with the information it needs to know how to treat

incoming packets that match that flow. The possibilities for treatment have grown more complex as the

OpenFlow protocol has evolved, but the most basic prescriptions for treatment of an incoming packet

are denoted by paths A, B, and C in Figure 5.2. These three options are to forward the packet out one

or more output ports, drop the packet, or pass the packet to the controller for exception handling.

The OpenFlow protocol has evolved significantly with each version of OpenFlow, so we cover the

detailed messages of the protocol in the version-specific sections that follow. The specification has

evolved from development point release 0.2.0 on March 28, 2008, through release V.1.3.0, released in

2012. Numerous point releases over the intervening years have addressed problems with earlier releases
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and added incremental functionality. OpenFlow was viewed primarily as an experimental platform in

its early years. For that reason, there was little concern on the part of the development community

in advancing this standard to provide for interoperability between releases. As OpenFlow began to

see more widespread commercial deployment, backward compatibility has become an increasingly

important issue. Many features, however, were introduced in earlier versions of OpenFlow that are

no longer present in the current version. Since the goal of this chapter is to provide a road map to

understanding OpenFlow as it exists today, we take a hybrid approach to covering the major releases

that have occurred since V.1.0. We focus on those key components of each release that became the basis

for the advances in subsequent releases and do not focus on functionality in earlier releases that has

subsequently been subsumed by new features.

5.2.4 The Controller-Switch Secure Channel

The secure channel is the path used for communications between the OpenFlow controller and the

OpenFlow device. Generally, this communication is secured by TLS-based asymmetrical encryption,

though unencrypted TCP connections are allowed. These connections may be in-band or out-of-band.

Figure 5.3 depicts these two variants of the secure channel. In the out-of-band example, we see in the

figure that the secure channel connection enters the switch via port Z , which is not switched by the

OpenFlow data plane. Some legacy network stack will deliver the OpenFlow messages via the secure

...
...

...

OpenFlow Controller

Secure Channel

Port 1 Port 4 Port K Port NPort 3Port 2

LOCAL

Packet-

Matching

Function

OpenFlow Protocol –         control & data

Action

Out-of-Band In-Band

OpenFlow Switch

Port Z

FIGURE 5.3

OpenFlow controller-switch secure channel.
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channel to the secure channel process in the switch, where all OpenFlow messages are parsed and

handled. Thus, the out-of-band secure channel is relevant only in the case of an OpenFlow-hybrid switch.

In the in-band example, we see the OpenFlow messages from the controller arriving via port K ,

which is part of the OpenFlow data plane. In this case these packets will be handled by the OpenFlow

packet-matching logic shown in the figure. The flow tables will have been constructed so that this

OpenFlow traffic is forwarded to the LOCAL virtual port, which results in the messages being passed

to the secure channel process. We discuss the LOCAL virtual port in Section 5.3.4.

Note that when the controller and all the switches it controls are located entirely within a tightly

controlled environment such as a data center, it may be wise to consider not using TLS-based encryption

to secure the channel. This is because a performance overhead is incurred by using this type of security,

and if it is not necessary, it is preferable to not pay this performance penalty.

5.3 OpenFlow 1.0 and OpenFlow Basics

OpenFlow 1.0 [1] was released on December 31, 2009. For the purposes of this work, we treat OpenFlow

1.0 as the initial release of OpenFlow. Indeed, years of work and multiple point releases preceded the

OpenFlow 1.0 release, but we subsume all this incremental progress into the single initial release of 1.0

as though it had occurred atomically. In this section we describe in detail the basic components of this

initial OpenFlow implementation.

Local Out

Drop

Pkt

C

Port n
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Q
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Q

2
Q
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FIGURE 5.4

OpenFlow support for multiple queues per port.
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5.3.1 Ports and Port Queues

The OpenFlow specification defines the concept of an OpenFlow port. An OpenFlow V.1.0 port corre-

sponds to a physical port. This concept is expanded in subsequent releases of OpenFlow. For many years,

sophisticated switches have supported multiple queues per physical port. These queues are generally

served by scheduling algorithms that allow the provisioning of different quality of service (QoS) levels

for different types of packets. OpenFlow embraces this concept and permits a flow to be mapped to an

already defined queue at an output port. Thus, if we look back to Figure 5.2, the output of a packet on

port N may include specifying onto which queue on port N the packet should be placed. Thus, if we

zoom in on option A in Figure 5.2, we reveal what we now see in Figure 5.4. In our zoomed-in figure

we can see that the actions box specifically enqueued the packet being processed to queue 1 in port N .

Note that the support for QoS is very basic in V.1.0. QoS support in OpenFlow was expanded

considerably in later versions (see Section 5.6.3).

5.3.2 Flow Table

The flow table lies at the core of the definition of an OpenFlow switch. We depict a generic flow table in

Figure 5.5. A flow table consists of flow entries, one of which is shown in Figure 5.6. A flow entry consists

of header fields, counters, and actions associated with that entry. The header fields are used as match

criteria to determine whether an incoming packet matches this entry. If a match exists, the packet belongs

to this flow. The counters are used to track statistics relative to this flow, such as how many packets have

been forwarded or dropped for this flow. The actions fields prescribe what the switch should do with a

packet matching this entry. We describe this process of packet matching and actions in Section 5.3.3.
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Fields

Inport 12

192.32.10.1,

Port 1012

Counters val

Actions val

Flow Entry 0

Header 
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Inport *
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Counters val
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Flow Entry 1
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192.32.30.1,

Port 995
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Flow Entry M
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Counters val

Actions val

Flow Entry F

FIGURE 5.5

OpenFlow V.1.0 flow table.
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Basic flow entry.
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5.3.3 Packet Matching

When a packet arrives at the OpenFlow switch from an input port (or, in some cases, from the controller),

it is matched against the flow table to determine whether there is a matching flow entry. The following

match fields associated with the incoming packet may be used for matching against flow entries:

• Switch input port

• VLAN ID

• VLAN priority

• Ethernet source address

• Ethernet destination address

• Ethernet frame type

• IP source address

• IP destination address

• IP protocol

• IP Type of Service (ToS) bits

• TCP/UDP source port

• TCP/UDP destination port

These 12 match fields are collectively referred to as the basic 12-tuple of match fields. The flow

entry’s match fields may be wildcarded using a bit mask, meaning that any value that matches on the

unmasked bits in the incoming packet’s match fields will be a match. Flow entries are processed in

order, and once a match is found, no further match attempts are made against that flow table. (We will

see in subsequent versions of OpenFlow that there may be additional flow tables against which packet

matching may continue.) For this reason, it is possible for there to be multiple matching flow entries for

a packet to be present in a flow table. Only the first flow entry to match is meaningful; the others will

not be found, because packet matching stops upon the first match.

The V.1.0 specification is silent about which of these 12 match fields are required versus those that

are optional. The ONF has clarified this confusion by defining three different types of conformance in its

V.1.0 conformance-testing program. The three levels are full conformance, meaning all 12 match fields

are supported; layer two conformance, when only the layer two header field matching is supported; and,

finally, layer three conformance, when only layer three header field matching is supported.

If the end of the flow table is reached without finding a match, this is called a table miss. In the event

of a table miss in V.1.0, the packet is forwarded to the controller. (Note that this is no longer strictly

true in later versions.) If a matching flow entry is found, the actions associated with that flow entry

determine how the packet is handled. The most basic action prescribed by an OpenFlow switch entry

is how to forward this packet. We discuss this concept in the following section.

It is important to note that this V.1.0 packet-matching function was designed as an abstraction of

the way that real-life switching hardware works today. Early versions of OpenFlow were designed to

specify the forwarding behavior of existing commercial switches via this abstraction. A good abstraction

hides the details of the thing being abstracted while still permitting sufficiently fine-grained control

to accomplish the needed tasks. As richer functionality is added in later versions of the OpenFlow

protocol, we will see that the specification outpaces the reality of today’s hardware. At that point,

it is no longer providing a clean abstraction for current implementations but specifying behavior for

switching hardware that has yet to be built.
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Packet paths corresponding to virtual ports.

5.3.4 Actions and Packet Forwarding

The required actions that must be supported by a flow entry are to either output (forward) or drop the

matched packet. The most common case is that the output action specifies a physical port on which

the packet should be forwarded. There are, however, five special virtual ports defined in V.1.0 that

have special significance for the output action. They are LOCAL, ALL, CONTROLLER, IN_PORT,

and TABLE. We depict the packet transfers resulting from these various virtual port designations in

Figure 5.7. In the figure, the notations in brackets next to the wide shaded arrows represent one of the

virtual port types discussed in this section.1

LOCAL dictates that the packet should be forwarded to the switch’s local OpenFlow control software,

circumventing further OpenFlow pipeline processing. LOCAL is used when OpenFlow messages from

the controller are received on a port that is receiving packets switched by the OpenFlow data plane.

LOCAL indicates that the packet needs to be processed by the local OpenFlow control software.

ALL is used to flood a packet out all ports on the switch except the input port. This provides

rudimentary broadcast capability to the OpenFlow switch.

CONTROLLER indicates that the switch should forward this packet to the OpenFlow controller.

1The ALL and FLOOD virtual ports do not appear in the figure, for reasons explained later in this section.
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IN_PORT instructs the switch to forward the packet back out of the port on which it arrived. Effec-

tively, IN_PORT normally creates a loopback situation, which could be useful for certain scenarios.

One scenario in which this is useful is the case of an 802.11 wireless port. In this case, it is quite normal

to receive a packet from that port from one host and to forward it to the receiving host via the same

port. This needs to be done very carefully so as not to create unintended loopback situations. Thus the

protocol requires explicit stipulation of this intent via this special virtual port.

Another instance when IN_PORT is required is edge virtual bridging (EVB) [9]. EVB defines a

reflective relay service between a physical switch in a data center and a lightweight virtual switch

within the server known as a virtual edge port aggregator (VEPA). The standard IEEE 802.1Q bridge

at the edge of the network will reflect packets back out the port on which they arrive to allow two virtual

machines on the same server to talk to one another. This reflective relay service can be supported by

the IN_PORT destination in OpenFlow rules.

Finally, there is the TABLE virtual port, which only applies to packets that the controller sends to the

switch. Such packets arrive as part of the PACKET_OUT message from the controller, which includes

an action list. This action list will generally contain an output action, which will specify a port number.

The controller may want to directly specify the output port for this data packet, or, if it wants the output

port to be determined by the normal OpenFlow packet-processing pipeline, it may do so by stipulating

TABLE as the output port. These two options are depicted in the two Y paths shown in Figure 5.2.

There are two additional virtual ports, but support for these is optional in V.1.0. The first is the

NORMAL virtual port. When the output action forwards a packet to the NORMAL virtual port, it

sends the packet to the legacy forwarding logic of the switch. We contrast this with the LOCAL virtual

port, which designates that the packet be passed to the local OpenFlow control processing. Conversely,

packets for which matching rules indicate NORMAL as the output port will remain in the ASIC to be

looked up in other forwarding tables that are populated by the local (non-OpenFlow) control plane. Use

of NORMAL makes sense only in the case of a hybrid switch.

The remaining virtual port is FLOOD. In this case, the switch sends a copy of the packet out all ports

except the ingress port.

Note that we have excluded the ALL and FLOOD representations from Figure 5.7 because the number

of arrows would have overly congested the portrayal. The reader should understand that ALL and

FLOOD would show arrows to all ports on the OpenFlow switch except the ingress port. Also note that

the figure depicts the more normal non-virtual cases of real port specified and drop specified, underlined

without brackets. When the V.1.0 switch passes a packet to the controller as a result of finding no table

matches, the path taken in Figure 5.7 is the same as that denoted for the virtual port CONTROLLER.

There are two optional actions in V.1.0: enqueue and modify field. The enqueue action selects a

specific queue belonging to a particular port. This would be used in conjunction with the output action

and is used to achieve desired QoS levels via the use of multiple priority queues on a port. Finally, the

modify-field action informs the switch how to modify certain header fields. The specification contains

a lengthy list of fields that may be modified via this action. In particular, VLAN headers, Ethernet

source and destination address, IPv4 source and destination address, and TTL field may be modified.

Modify field is essential for the most basic routing functions. To route layer three packets, a router must

decrement the TTL field before forwarding the packet out the designated output port.

When there are multiple actions associated with a flow entry, they appear in an action list, just like

the PACKET_OUT message described above. The switch must execute actions in the order in which
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they appear on the action list. We walk through a detailed example of V.1.0. packet forwarding in

Section 5.3.7.

5.3.5 Messaging Between Controller and Switch

The messaging between the controller and switch is transmitted over a secure channel. This secure

channel is implemented via an initial TLS connection over TCP. (Subsequent versions of OpenFlow

allow for multiple connections within one secure channel.) If the switch knows the IP address of the

controller, the switch will initiate this connection. Each message between controller and switch starts

with the OpenFlow header. This header specifies the OpenFlow version number, the message type,

the length of the message, and the transaction ID of the message. The various message types in V.1.0

are listed in Table 5.1. The messages fall into three general categories: symmetric, controller-switch,

and async. We explain the categories of messages shown in Table 5.1 in the following paragraphs. We

suggest that the reader refer to Figure 5.8 as we explain each of these messages. Figure 5.8 shows the

most important of these messages in a normal context and illustrates whether it normally is used during

the initialization, operational, or monitoring phases of the controller-switch dialogue. The operational

Table 5.1 OFPT Message Types in OpenFlow 1.0

Message Type Category Subcategory

HELLO Symmetric Immutable

ECHO_REQUEST Symmetric Immutable

ECHO_REPLY Symmetric Immutable

VENDOR Symmetric Immutable

FEATURES_REQUEST Controller-switch Switch configuration

FEATURES_REPLY Controller-switch Switch configuration

GET_CONFIG_REQUEST Controller-switch Switch configuration

GET_CONFIG_REPLY Controller-switch Switch configuration

SET_CONFIG Controller-switch Switch configuration

PACKET_IN Async NA

FLOW_REMOVED Async NA

PORT_STATUS Async NA

ERROR Async NA

PACKET_OUT Controller-switch Cmd from controller

FLOW_MOD Controller-switch Cmd from controller

PORT_MOD Controller-switch Cmd from controller

STATS_REQUEST Controller-switch Statistics

STATS_REPLY Controller-switch Statistics

BARRIER_REQUEST Controller-switch Barrier

BARRIER_REPLY Controller-switch Barrier

QUEUE_GET_CONFIG_REQUEST Controller-switch Queue configuration

QUEUE_GET_CONFIG_REPLY Controller-switch Queue configuration
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Controller-switch protocol session.
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and monitoring phases generally overlap, but for the sake of clarity we show them as disjoint in the

figure. In the interest of brevity, we have truncated the OFPT_ prefix from the message names shown

in Table 5.1. We follow this convention whenever we refer to these message names in the balance of

the book; however, they appear in index with their full name, including their OFPT_ prefix.

Symmetric messages may be sent by either the controller or the switch without having been solicited

by the other. The HELLO messages are exchanged after the secure channel has been established to

determine the highest OpenFlow version number supported by the peers. The protocol specifies that the

lower of the two versions is to be used for controller-switch communication over this secure channel

instance. ECHO messages are used by either side during the life of the channel to ascertain that the

connection is still alive and to measure the current latency or bandwidth of the connection. The VENDOR

messages are available for vendor-specific experimentation or enhancements.

Async messages are sent from the switch to the controller without having been solicited by the

controller. The PACKET_IN message is the way the switch passes data packets back to the controller

for exception handling. Control plane traffic will usually be sent back to the controller via this mes-

sage. The switch can inform the controller that a flow entry is removed from the flow table via the

FLOW_REMOVED message. PORT_STATUS is used to communicate changes in port status, whether

by direct user intervention or by a physical change in the communications medium itself. Finally, the

switch uses the ERROR message to notify the controller of problems.

Controller-switch is the broadest category of OpenFlow messages. In fact, as shown in Table 5.1,

they can be divided into five subcategories: switch configuration, command from controller, statistics,

queue configuration, and barrier. The switch configuration messages consist of a unidirectional config-

uration message and two request-reply message pairs. The controller uses the unidirectional message,

SET_CONFIG to set configuration parameters in the switch. In Figure 5.8 we see the SET_CONFIG

message sent during the initialization phase of the controller-switch dialogue. The controller uses the

FEATURES message pair to interrogate the switch about which features it supports. Similarly, the

GET_CONFIG message pair is used to retrieve a switch’s configuration settings.

There are three messages comprising the command from controller category. PACKET_OUT is the

analog of the PACKET_IN mentioned above. The controller uses PACKET_OUT to send data packets to

the switch for forwarding out through the data plane. The controller modifies existing flow entries in the

switch via the FLOW_MOD message. PORT_MOD is used to modify the status of an OpenFlow port.

Statistics are obtained from the switch by the controller via the STATS message pair. The BARRIER

message pair is used by the controller to ensure that a particular OpenFlow command from the controller

has finished executing on the switch. The switch must complete execution of all commands received prior

to the BARRIER_REQUEST before executing any commands received after it, and the switch notifies

the controller of having completed such preceding commands via the BARRIER_REPLY message sent

back to the controller.

The queue configuration message pair is somewhat of a misnomer in that actual queue configuration

is beyond the scope of the OpenFlow specification and is expected to be done by an unspecified out-

of-band mechanism. The QUEUE_GET_CONFIG_REQUEST and QUEUE_GET_CONFIG_REPLY

message pair is the mechanism by which the controller learns from the switch how a given queue is

configured. With this information, the controller can intelligently map certain flows to specific queues

to achieve desired QoS levels.
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Note that immutable in this context means that the message types will not be changed in future

releases of OpenFlow. (Author’s note: It is somewhat remarkable that the immutable characteristic is

cited as distinct in OpenFlow. In many more mature communications protocols, maintaining backward

compatibility is of paramount importance. This is not the case with OpenFlow, where support for

some message formats in earlier versions is dropped in later versions. This situation is handled within

the OpenFlow environment by the fact that two OpenFlow implementations coordinate their version

numbers via the HELLO protocol, and presumably the higher-versioned implementation reverts to the

older version of the protocol for the sake of interoperability with the other device.)

In the event that the HELLO protocol detects a loss of the connection between controller and switch,

the V.1.0 specification prescribes that the switch should enter emergency mode and reset the TCP

connection. At this time all flows are to be deleted except special flows that are marked as being part

of the emergency flow cache. The only packet matching that is allowed in this mode is against those

flows in that emergency flow cache. The specification did not specify which flows that should be in this

cache, and subsequent versions of OpenFlow have addressed this area differently and more thoroughly.

5.3.6 Example: Controller Programming Flow Table

In Figure 5.9 two simple OpenFlow V.1.0 flow table modifications are performed by the controller. We

see in the figure that the initial flow table has three flows. In the quiescent state before time ta , we see

an exploded version of flow entry zero. It shows that the flow entry specifies that all Ethernet frames

entering the switch on input port K with a destination Ethernet address of 0x000CF15698AD should

be output on output port N. All other match fields have been wildcarded, indicated by the asterisks

in their respective match fields in Figure 5.9. At time ta , the controller sends a FLOW_MOD (ADD)

command to the switch, adding a flow for packets entering the switch on any port, with source IP

addresses 192.168.1.1 and destination IP address 209.1.2.1, source TCP port 20, and destination port

20. All other match fields have been wildcarded. The outport port is specified as P. We see that after this

controller command is received and processed by the switch, the flow table contains a new flow entry

F corresponding to that ADD message. At time tb, the controller sends a FLOW_MOD (MODIFY)

command for flow entry zero. The controller seeks to modify the corresponding flow entry such that

there is a one-hour (3600-second) idle time on that flow. The figure shows that after the switch has

processed this command, the original flow entry has been modified to reflect that new idle time. Note

that idle time for a flow entry means that after that number of seconds of inactivity on that flow, the flow

should be deleted by the switch. Looking back at Figure 5.8, we see an example of such a flow expiration

just after time td . The FLOW_REMOVED message we see there indicates that the flow programmed at

time tb in our examples in Figures 5.8 and 5.9 has expired. This controller had requested to be notified

of such expiration when the flow was configured, and the FLOW_REMOVED messages serves this

purpose.

5.3.7 Example: Basic Packet Forwarding

We illustrate the most basic case of OpenFlow V.1.0 packet forwarding in Figure 5.10. The figure depicts

a packet arriving at the switch through port 2 with source IPv4 address of 192.168.1.1 and destination

IPv4 address of 209.1.2.1. The packet-matching function scans the flow table starting at flow entry 0
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Controller programming flow entries in V.1.0.
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Packet matching function: basic packet forwarding V.1.0.

and finds a match in flow entry F . Flow entry F stipulates that a matching packet should be forwarded

out port P . The switch does this, completing this simple forwarding example.

An OpenFlow switch forwards packets based on the header fields it matches. The network program-

mer designates layer three switch behavior by programming the flow entries to try to match layer three

headers such as IPv4. If it is a layer two switch, the flow entries will dictate matching on layer two

headers. The semantics of the flow entries allow matching for a wide variety of protocol headers but a

given switch will be programmed only for those that correspond to the role it plays in packet forwarding.

Whenever there is overlap in potential matches of flows, the priority the controller assigns the flow entry

will determine which match takes precedence. For example, if a switch is both a layer two and a layer

three switch, placing layer three header-matching flow entries at a higher priority would ensure that if

possible, layer three switching will be done on that packet.

5.3.8 Example: Switch Forwarding Packet to Controller

We showed in the last section an example of an OpenFlow switch forwarding an incoming data packet

to a specified destination port. Another fundamental action of the OpenFlow V.1.0 switch is to forward

packets to the controller for exception handling. The two reasons for which the switch may forward a

packet to the controller are OFPR_NO_MATCH and OFPR_ACTION. Obviously OFPR_NO_MATCH

is used when no matching flow entry is found. OpenFlow retains the ability to specify that a particular

matching flow entry should always be forwarded to the controller. In this case OFPR_ACTION is

specified as the reason. An example is a control packet such as a routing protocol packet that always

needs to be processed by the controller. In Figure 5.11 we show an example of an incoming data packet

that is an OSPF routing packet. There is a matching table entry for this packet that specifies that the

packet should be forwarded to the controller. We see in the figure that a PACKET_IN message is sent

via the secure channel to the controller, handing off this routing protocol update to the controller for

exception processing. The processing that would likely take place on the controller is that the OSPF

routing protocol would be run, potentially resulting in a change to the forwarding tables in the switch. The

controller could then modify the forwarding tables via the brute-force approach of sending FLOW_MOD

commands to the switch modifying the output port for each flow in the switch affected by this routing
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Switch forwarding incoming packet to controller.

table change. (Section 5.4.2 describes that there is a more efficient way for the controller to program the

output port for flows in a layer three switch where multiple flows share the same next-hop IP address.)

At a minimum, the controller needs access to the packet header fields to determine its disposition of

the packet. In many cases, though not all, it may need access to the entire packet. This would in fact

be true in the case of the OSPF routing packet in this example. In the interest of efficiency, OpenFlow

allows the optional buffering of the full packet by the switch. In the event of a large number of packets

being forwarded from the switch to the controller, for which the controller only needs to examine the

packet header, significant bandwidth efficiency gains are achieved by buffering the full packet in the

switch and only forwarding the header fields. Since the controller will sometimes need to see the balance

of the packet, a buffer ID is communicated with the PACKET_IN message. The controller may use this

buffer ID to subsequently retrieve the full packet from the switch. The switch has the ability to age out

old buffers that the switch has not retrieved.

There are other fundamental actions that the switch may take on an incoming packet: (1) to flood the

packet out all ports except the port on which it arrived, or (2) to drop the packet. We trust that the reader’s

understanding of the drop and flood functions will follow naturally from the two examples just provided,

so we now move onto discuss the extensions to the basic OpenFlow functions provided in V.1.1.
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Table 5.2 Major New Features Added in OpenFlow 1.1

Feature Name Description

Multiple flow tables See Section 5.4.1

Groups See Section 5.4.2

MPLS and VLAN tag support See Section 5.4.3

Virtual ports See Section 5.4.4

Controller connection failure See Section 5.4.5

5.4 OpenFlow 1.1 Additions

OpenFlow 1.1 [2] was released on February 28, 2011. Table 5.2 lists the major new features added in

this release. Multiple flow tables and group table support are the two most prominent. We highlight

these new features in Figure 5.12. From a practical standpoint, V.1.1 had little impact other than as

a stepping stone to V.1.2. This was because it was released just before the ONF was created, and the

SDN community waited for the first version following the ONF transition (i.e., V.1.2) before creating

implementations. It is important that we cover V.1.1 here, though, because the subsequent versions of

OpenFlow are built on some of the V.1.1 feature set.

5.4.1 Multiple Flow Tables

V.1.1 significantly augments the sophistication of packet processing in OpenFlow. The most salient

shift is due to the addition of multiple flow tables. The concept of a single flow table remains much as

it was in V.1.0; however, in V.1.1 it is now possible to defer further packet processing to subsequent

matching in other flow tables. For this reason, it was necessary to break the execution of actions from

its direct association with a flow entry. With V.1.1 the new instruction protocol object is associated with

a flow entry. The processing pipeline of V.1.1 offered much greater flexibility than was available in

V.1.0. This improvement derives from the fact that flow entries can be chained by an instruction in one

flow entry pointing to another flow table. This is called a GOTO instruction. When such an instruction

is executed, the packet-matching function depicted earlier in Figures 5.10 and 5.11 is invoked again,

this time starting the match process with the first flow entry of the new flow table. This new pipeline

is reflected in the expanded packet-matching function shown in Figure 5.12. The pipeline allows all

the power of an OpenFlow V.1.1 instruction to test and modify the contents of a packet to be applied

multiple times, with different conditions used in the matching process in each flow table. This allows

dramatic increases in both the complexity of the matching logic as well as the degree and nature of

the packet modifications that may take place as the packet transits the OpenFlow V.1.1 switch. V.1.1

packet processing, with different instructions chained through complex logic as different flow entries

are matched in a sequence of flow tables, constitutes a robust packet-processing pipeline.2

2This increased robustness comes at a price. It has proven challenging to adapt existing hardware switches to support multiple

flow tables. We discuss this further in Section 5.6. In Sections 12.9.3 and 13.2.7, we discuss attempts to specifically design

hardware with this capability in mind.
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FIGURE 5.12

OpenFlow V.1.1 switch with expanded packet processing.

In Section 5.3.4 we described the actions supported in V.1.0 and the order in which they were executed.

The V.1.1 instructions form the conduit that controls the actions that are taken and in what order. They

can do this in two ways. First, they can add actions to an action set. The action set is initialized and

modified by all the instructions executed during a given pass through the pipeline. Instructions delete

actions from the action set or merge new actions into the action set. When the pipeline ends, the actions

in the action set are executed in the following order:

1. Copy TTL inward

2. Pop
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3. Push

4. Copy TTL outward

5. Decrement TTL

6. Set: Apply all set_field actions to the packet

7. QoS: Apply all QoS actions to the packet, such as set_queue

8. Group: If a group action is specified, apply the actions to the relevant action buckets (which can

result in the packet being forwarded out the ports corresponding to those buckets)

9. Output: If no group action is specified, forward the packet out the specified port

The output action, if such an instruction exists (and it normally does), is executed last. This is logical

because other actions often manipulate the contents of the packet, and this clearly must occur before

the packet is transmitted. If there is neither a group nor output action, the packet is dropped. We explain

the most important of the actions listed above in discussion and examples in the following sections.

The second way that instructions can invoke actions is via the Apply-Actions instruction. This is used

to execute certain actions immediately between flow tables, while the pipeline is still active, rather than

waiting for the pipeline to reach its end, which is the normal case. Note that the action list that is part

of Apply-Actions has exactly the same semantics as the action list in the PACKET_OUT message, and

both are the same as the action-list semantics of V.1.0.

In the case of the PACKET_OUT message being processed through the pipeline rather than the action

list being executed upon a flow entry match, its component actions on the action list are merged into

the action set being constructed for this incoming packet. If the current flow entry includes a GOTO

instruction to a higher-numbered flow table, further action lists may be merged into the action set before

it is ultimately executed.

When a matched flow entry does not specify a GOTO flow table, the pipeline processing completes,

and whatever actions have been recorded in the action set are then executed. In the normal case, the

final action executed is to forward the packet to an output port, to the controller, or to a group table,

which we describe next.

5.4.2 Groups

V.1.1 offers the group abstraction as a richer extension to the FLOOD option. In V.1.1 there is the group

table, which we first included in Figure 5.12 and is shown in detail in Figure 5.13. The group table

consists of group entries, each entry consisting of one or more action buckets. The buckets in a group

have actions associated with them that get applied before the packet is forwarded to the port defined by

that bucket. Refinements on flooding, such as multicast, can be achieved in V.1.1 by defining groups

as specific sets of ports. Sometimes a group may be used when there is only a single output port, as

illustrated in the case of group 2 in Figure 5.13. A use case for this would be when many flows all

should be directed to the same next-hop switch and it is desirable to retain the ability to change that

next hop with a single configuration change. This can be achieved in V.1.1 by having all the designated

flows pointing to a single group entry that forwards to the single port connected to that next hop. If the

controller wants to change that next hop due to a change in IP routing tables in the controller, all the flows

can be rerouted simply by reprogramming the single group entry. This provides a more efficient way of

handling the routing change from the OSPF update example presented earlier, in Section 5.3.8. Clearly,

changing a single group entry’s action bucket is faster than updating the potentially large number of
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OpenFlow V.1.1 group table.

flow entries whose next hop changed as a result of a single routing update. Note that this is a fairly

common scenario. Whenever a link or neighbor fails or is taken out of operation, all flows traversing

that failed element need to be rerouted by the switch that detects that failure.

Note that one group’s buckets may forward to other groups, providing the capability to chain groups

together.

5.4.3 MPLS and VLAN Tag Support

V.1.1 is the first OpenFlow version to provide full VLAN support. Since providing complete support

for multiple levels of VLAN tags required robust support for the popping and pushing of multiple levels

of tags, support for MPLS tagging followed naturally and is also part of V.1.1. For the interested reader

unfamiliar with MPLS technology, we provide a good reference in [5]. Both the new PUSH and POP

actions as well as the chaining of flow tables were necessary to provide this generic support for VLANs
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and MPLS. When a PUSH action is executed, a new header of the specified type is inserted in front

of the current outermost header. The field contents of this new header are initially copied from the

corresponding existing fields in the current outermost header, should one exist. If it does not exist, they

are initialized to zero. New header values are then assigned to this new outermost header via subsequent

SET actions. Whereas the PUSH is used to add a new tag, the POP is used to remove the current

outermost tag. In addition to PUSHing and POPping, V.1.1 also permits modification of the current

outermost tag, whether it be a VLAN tag or an MPLS shim header.

V.1.1 correctly claims full MPLS and VLAN tag support, but that support requires specification of

very complex matching logic that has to be implemented when such tags are encountered in the incoming

packet. The extensible match support that we introduce in Section 5.5.1 provides the more generalized

semantics to the controller such that this complex matching logic in the switch can be disposed of. Since

this V.1.1 logic is replaced by the more general solution in Section 5.5.1, we will not confuse the reader

by providing details about it here.

5.4.4 Virtual Ports

In V.1.0, the concept of an output port mapped directly to a physical port, with some limited use of

virtual ports. Though the TABLE and other virtual ports did exist in earlier versions of OpenFlow, the

concept of virtual ports was augmented in V.1.1. A V.1.1 switch classifies ports into the categories of

standard ports and reserved virtual ports.

Standard ports consist of:

• Physical ports.

• Switch-defined virtual ports. In V.1.1 it is now possible for the controller to forward packets to an

abstraction called switch-defined virtual ports. Such ports are used when more complex processing

will be required on the packet than simple header field manipulation. One example is when the packet

should be forwarded via a tunnel. Another use case for a virtual port is link aggregation (LAG). For

more information about LAGs, refer to [7].

Reserved virtual ports consist of:

• ALL. This is the straightforward mechanism to flood packets out all standard ports except the port

on which the packet arrived. This is similar to the effect provided by the optional FLOOD reserved

virtual port.

• CONTROLLER. Forwards the packet to the controller in an OpenFlow message.

• TABLE. Processes the packet through the normal OpenFlow pipeline processing. This only applies

to a packet that is being sent from the controller (via a PACKET_OUT message). We explained the

use of the TABLE virtual port in Section 5.3.4.

• IN_PORT. This provides a loopback function. The packet is sent back out on the port on which it

arrived.

• LOCAL (optional). This optional port provides a mechanism whereby the packet is forwarded

to the switch’s local OpenFlow control software. Because a LOCAL port may be used both as an

output port and an ingress port, LOCAL can be used to implement an in-band controller connection,

obviating the need for a separate control network for the controller-switch connection. Refer to our

earlier discussion on LOCAL in Section 5.3.3 for an example of how LOCAL may be used.
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• NORMAL (optional). This directs the packet to the normal non-OpenFlow pipeline of the switch.

NORMAL differs from the LOCAL reserved virtual port in that it may only be used as an output port.

• FLOOD (optional). The general use of this port is to send the packet out all standard ports except

the port on which it arrived. Refer to the OpenFlow V.1.1 specification for the specific nuances of

this reserved virtual port.

5.4.5 Controller Connection Failure

Loss of connectivity between the switch and controller is a serious and real possibility, and the OpenFlow

specification needs to specify how it should be handled. The emergency flow cache was included in

V.1.0 in order to handle such a situation, but support for this cache was dropped in V.1.1 and replaced

with two new mechanisms, fail secure mode and fail standalone mode. The V.1.1 switch immediately

enters one of these two modes upon loss of connection to the controller. Which of these two modes is

entered will depend on which is supported by the switch or, if both are supported, by user configuration.

In the case of fail secure mode, the switch continues to operate as a normal V.1.1 switch except that

all messages destined for the controller are dropped. In the case of fail standalone mode, the switch

additionally ceases its OpenFlow pipeline processing and continues to operate in its native, underlying

switch or router mode. When the connection to the controller is restored, the switch resumes its normal

operation mode. The controller, having detected the loss and restoration of the connection, may choose

to delete existing flow entries and begin to configure the switch anew. (Author’s note: This is another

example of the aforementioned lack of backward compatibility in the OpenFlow specifications.)

5.4.6 Example: Forwarding with Multiple Flow Tables

Figure 5.14 expands on our earlier example of V.1.0 packet forwarding that was presented in Figure 5.10.

Assuming that the incoming packet is the same as in Figure 5.10, we see in Figure 5.14 that there is

a match in the second flow entry in flow table 0. Unlike in V.1.0, the pipeline does not immediately

execute actions associated with that flow entry. Its counters are updated, and the newly initialized action

set is updated with those actions programmed in that flow entry’s instructions. One of those instructions

is to continue processing at table K . We see this via the jump to processing at the letter A, where we

resume the pipeline process matching the packet against table K . In this case, a matching flow entry is

found in flow entry F . Once again, this match results in the flow entry’s counters being updated and

its instructions being executed. These instructions may apply further modifications to the action set

that has been carried forward from table 0. In our example, an additional action A3 is merged into the

action set. Since there is no GOTO instruction present this time, this represents the end of the pipeline

processing, and the actions in the current action set are performed in the order specified by OpenFlow

V.1.1. (The difference between action set and action list was explained earlier in Section 5.4.1.) The

OUTPUT action, if it is present, is the last action performed before the pipeline ends. We see that the

OUTPUT action was present in our example as the packet is forwarded out port P in Figure 5.14.

5.4.7 Example: Multicast Using V.1.1 Groups

We direct the reader to Figure 5.13, discussed previously. In this figure we see that group 3 has group type

ALL and has three action buckets. This group configuration prescribes that a packet sent for processing
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Packet matching function - basic packet forwarding, V.1.1.
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Multicast using group table in V.1.1.

by this group entry should have a copy sent out each of the ports in the three action buckets. Figure 5.15

shows that the packet-matching function directs the incoming packet to group 3 in the group table for

processing. Assuming that the group 3 in Figure 5.15 is as shown in Figure 5.13, the packet is multicast

out ports 3, 4, and N , as indicated by the dashed arrows in the figure.

5.5 OpenFlow 1.2 Additions

OpenFlow 1.2 [3] was released on December 5, 2011. Table 5.3 lists the major new features added in

this release. We discuss the most important of these in the following sections.

5.5.1 Extensible Match Support

Due to the relatively narrow semantics in the packet matching prior to V.1.2, it was necessary to define

complex flow diagrams that described the logic of how to perform packet parsing. The packet-matching

capability provided in V.1.2 provides sufficient richness in the packet-matching descriptors that the
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Table 5.3 Major New Features Added in OpenFlow 1.2

Feature Name Description

Extensible match support See Section 5.5.1

Extensible set_field packet-rewriting support See Section 5.5.2

Extensible context expression in “packet-in” See Section 5.5.3

Extensible error messages via experimenter error type -

IPv6 support See Section 5.5.2

Simplified behavior of flow-mod request -

Removed packet parsing specification See Section 5.5.1

Multiple controller enhancements See Section 5.5.4

controller can encode the desired logic in the rules themselves. This obviates the earlier versions’

requirement that the behavior be hardcoded into the switch logic.

A generic and extensible packet-matching capability has been added in V.1.2 via the OpenFlow

Extensible Match (OXM) descriptors. OXM defines a set of type-length-value (TLV) pairs that can

describe or define virtually any of the header fields an OpenFlow switch would need to use for matching.

This list is too long to enumerate here, but in general any of the header fields that are used in matching

for Ethernet, VLAN, MPLS, IPv4, and IPv6 switching and routing may be selected and a value (with

bitmask wildcard capability) provided. Prior versions of OpenFlow had a much more static match

descriptor, which limited flexibility in matches and made adding future extensions more difficult. An

example is that in order to accommodate the earlier fixed structure, the single match field TCP Port was

overloaded to also mean UDP Port or ICMP code, depending on the context. This confusion has been

eliminated in V.1.2 via OXM. Because the V.1.2 controller can encode more descriptive parsing into the

pipeline of flow tables, complex packet parsing does not need to be specified inside the V.1.2 switch.

This ability to match on any combination of header fields is provided within the OPENFLOW_BASIC

match class. V.1.2 expands the possibilities for match fields by allowing for multiple match classes.

Specifically, the EXPERIMENTER match class is defined, opening up the opportunity for matching on

fields in the packet payload, providing a near-limitless horizon for new definitions of flows. The syntax

and semantics of EXPERIMENTER are left open so that the number and nature of various fields are

subject to the experimental implementation.

5.5.2 Extensible SET_FIELD Packet Rewriting Support

The V.1.2 switch continues to support the action types we saw in previous versions. A major enhancement

provides the ability to set the value of any field in the packet header that may be used for matching. This

is due to the fact that the same OXM encoding we described for enhanced packet matching is made

available in V.1.2 for generalized setting of fields in the packet header. For example, IPv6 support falls

out naturally from the fact that any of the fields that may be described by an OXM TLV may also be set

using the set_field action. The ability to match an incoming IPv6 header against a flow entry and, when

necessary, to set an IPv6 address to a new value together provide support for this major feature of V.1.2.

CRC recalculation is performed automatically when a set-field action changes the packet’s contents.
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Since the EXPERIMENTER action type can be a modification or extension to any of the basic action

types or even something totally novel, this allows for packet fields not part of the standard OXM header

fields to be modified. In general, if a packet field may be used for matching in V.1.2, it may also be

modified.

5.5.3 Extensible Context Expression in PACKET_IN

The OXM encoding is also used to extend the PACKET_IN message sent from the switch to the

controller. In previous versions this message included the packet headers used in matching that resulted

in the switch deciding to forward the packet to the controller. In addition to the packet contents, the

packet-matching decision is influenced by context information. Formerly this consisted of the input

port identifier. In V.1.2 this context information is expanded to include the input virtual port, the input

physical port, and metadata that has been built up during packet-matching pipeline processing. Metadata

semantics is not prescribed by the OpenFlow specification other than that the OXM metadata TLV may

be initialized, modified, or tested at any stage of the pipeline processing. Since the OXM encoding we

described contains TLV definitions for all the context fields as well as all matchable packet headers, the

OXM format provides a convenient vehicle to communicate the packet-matching state when the switch

decides to forward the packet to the controller. The switch may forward a packet to the controller because:

• There was no matching flow.

• An instruction was executed in the pipeline, prescribing that a matching packet be forwarded to the

controller.

• The packet had an invalid TTL.

5.5.4 Multiple Controllers

In previous versions of OpenFlow, there was very limited support for backup controllers. In the event

that communication with the current controller was lost, the switch entered either fail secure mode

or fail standalone mode. The notion that the switch would attempt to contact previously configured

backup controllers was encouraged by the specification, but it was not explicitly described. In V.1.2

the switch may be configured to maintain simultaneous connections to multiple controllers. The switch

must ensure that it only sends messages to a controller pertaining to a command sent by that controller.

In the event that a switch message pertains to multiple controllers, it is duplicated and a copy sent to

each controller. A controller may assume one of three different roles relative to a switch:

• Equal

• Slave

• Master

These terms relate to the extent to which the controller has to change the switch configuration. The least

powerful is obviously slave mode, wherein the controller may only request data from the switch, such

as statistics, but may make no modifications. Both equal and master modes allow the controller the full

ability to program the switch, but in the case of master mode the switch enforces that only one switch

be in master mode and all others be in slave mode. The multiple-controllers feature is part of the way

OpenFlow addresses the high-availability (HA) requirement.
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5.5.5 Example: Bridging VLANs Through SP Networks

V.1.2 is the first release to provide convenient support for bridging customer VLANs through service

provider (SP) networks. This feature is known by a number of different names, including provider

bridging, Q-in-Q, and stacked VLANs. These all refer to the tunneling of an edge VLAN through a

provider-based VLAN. There are a number of variants of this basic technology, but they are most often

based on the nesting of multiple IEEE 802.1Q tags [10]. In this example we explain how this can be

achieved by stacking one VLAN tag inside another, which involves the PUSHing and POPping of VLAN

tags that was introduced in Section 5.4.3. We deferred this example until our discussion of V.1.2, since

the V.1.1 packet-matching logic to support this process was very complex and not easily extended. With

the extensible match support in V.1.2, the logic required to provide VLAN stacking in the OpenFlow

pipeline is much more straightforward.

This feature is implemented in OpenFlow V.1.2 by encoding a flow entry to match a VLAN tag from

a particular customer’s layer two network. In our example, this match occurs at an OpenFlow switch

serving as a service provider access switch. This access switch has been programmed to match VLAN

10 from site A of customer X and to tunnel this across the service provider core network to the same

VLAN 10 at site B of this same customer X. The OpenFlow pipeline will use the extensible match

support to identify frames from this VLAN. The associated action will PUSH service provider VLAN

tag 40 onto the frame, and the frame will be forwarded out a port connected to the provider backbone

network. When this doubly tagged frame emerges from the backbone, the OpenFlow-enabled service

provider access switch matches VLAN tag 40 from that backbone interface, and the action associated

with the matching flow entry POPs off the outer tag and the singly tagged frame is forwarded out a port

connected to site B of customer A.

Note that although our example uses VLAN tags, similar OpenFlow processing can be used to tunnel

customer MPLS connections through MPLS backbone connections. In that case, an outer MPLS label

is PUSHed onto the packet and then POPped off upon exiting the backbone.

5.6 OpenFlow 1.3 Additions

OpenFlow V.1.3 [4] was released on April 13, 2012. This release was a major milestone. Many imple-

mentations are being based on V.1.3 in order to stabilize controllers around a single version. This is

also true of ASICs. Since V.1.3 represents a major new leap in functionality and has not been followed

quickly by another release, this provides an opportunity for ASIC designers to develop hardware sup-

port for many of the V.1.3 features, with the hope of a more stable market into which to sell their new

chips. This ASIC opportunity notwithstanding, some post-V.1.0 features that are very challenging to

implement in hardware. For example, the iterative matching actions we described in Section 5.4.1 are

difficult to implement in hardware at line rates. It is likely that the real-life chips that support V.1.3 will

have to limit the number of flow tables to a manageable number.3 Such limitations are not imposed on

software-only implementations of OpenFlow, and, indeed, such implementations will provide full V.1.3

support. Table 5.4 lists the major new features added in this release. The most prominent of these new

features are discussed in the following sections.

3In Sections 12.9.3 and 13.2.7, we discuss the possibility of ASICs that would allow more general support of these features.
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Table 5.4 Major New Features Added in OpenFlow 1.3

Feature Name Description

Refactor capabilities negotiation See Section 5.6.1

More flexible table-miss support See Section 5.6.2

IPv6 extension header-handling support -

Per-flow meters See Section 5.6.3

Per-connection event filtering See Section 5.6.4

Auxiliary connections See Section 5.6.5

MPLS BoS matching Bottom-of-stack bit (BoS) from the MPLS header may now

be used as part of match criteria

Provider backbone bridging tagging See Section 5.6.7

Rework tag order Instruction execution order now determines tag order rather

than it being statically specified

Tunnel-ID metadata Allows for support of multiple tunnel encapsulations

Cookies in PACKET_IN See Section 5.6.6

Duration for stats The new duration field allows more accurate computation

of packet and byte rate from the counters included in those

statistics

On-demand flow counters Disable/enable packet and byte counters on a per-flow basis

5.6.1 Refactor Capabilities Negotiation

There is a new MULTIPART_REQUEST/MULTIPART_REPLY message pair in V.1.3. This replaces

the READ_STATE messaging in prior versions that used the STATS_REQUEST/STATS_REPLY to

get this information. Rather than having this capability information embedded as though it were a table

statistic, the new message request-reply pair is utilized and the information is conveyed using a standard

type-length-value (TLV) format. Some of the capabilities that can be reported in this new manner

include next-table, table-miss flow entry, and experimenter. This new MULTIPART_REQUEST/REPLY

message pair subsumes the older STATS_REQUEST/REPLY pair and is now used for both reporting

of statistics and capability information. The data formats for the capabilities are the TLV format, and

this capability information has been removed from the table statistics structure.

5.6.2 More Flexible Table-Miss Support

We have explained that a table miss occurs when a packet does not match any flow entries in the current

flow table in the pipeline. Formerly there were three configurable options for handling such a table miss.

This included dropping the packet, forwarding it to the controller, or continuing packet matching at the

next flow table. V.1.3 expands on this limited handling capability via the introduction of the table-miss

flow entry. The controller programs a table-miss flow entry into a switch in much the same way it would

program a normal flow entry. The table-miss flow entry is distinct in that it is by definition of lowest

priority (zero) and all match fields are wildcards. The zero-priority characteristic guarantees that it is
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the last flow entry that can be matched in the table. The fact that all match fields are wildcards means

that any packet being matched against the table miss will be a match. The upshot of these characteristics

is that the table-miss entry serves as a kind of backstop for any packets that would otherwise have found

no matches. The advantage of this approach is that the full semantics of the V.1.3 flow entry, including

instructions and actions, may be applied to the case of a table miss. It should be obvious to the reader that

the table-miss base cases of dropping the packet, forwarding it to the controller, or continuing at next

flow table are easily implemented using the flow entry instructions and actions. Interestingly, though, by

using the generic flow entry semantics, it is now conceivable to treat table misses in more sophisticated

ways, including passing the packet that misses to a higher-numbered flow table for further processing.

This capability adds more freedom to the matching “language” embodied by the flow tables, entries,

and associated instructions and actions.

5.6.3 Per-Flow Meters

V.1.3 introduces a flexible meter framework. Meters are defined on a per-flow basis and reside in a meter

table. Figure 5.16 shows the basic structure of a meter and how it is related to a specific flow. A given

meter is identified by its meter ID. V.1.3 instructions may direct packets to a meter identified by its meter

ID. The framework is designed to be extensible to support the definition of complex meters in future

OpenFlow versions. Such future support may include color-aware meters that will provide DiffServ

QoS capabilities. V.1.3 meters are only rate-limiting meters. As we see in Figure 5.16, there may be

multiple meter bands attached to a given meter. Meter 3 in the example in the figure has three meter

Meter ID 1

Meter ID 2

Meter ID 3

Meter ID 4

Meter ID 5

Bands

Counters

Band Type

Rate

Counters

Type-Specific Arguments

Band Type

Rate

Counters

Type-Specific Arguments

Band Type

Rate

Counters

Type-Specific Arguments

FIGURE 5.16

OpenFlow V.1.3 meter table.
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bands. Each meter band has a configured bandwidth rate and a type. Note that the units of bandwidth are

not specified by OpenFlow. The type determines the action to take when that meter band is processed.

When a packet is processed by a meter, at most one band is used. This band is selected based on the

highest bandwidth rate band that is lower than the current measured bandwidth for that flow. If the

current measured rate is lower than all bands, no band is selected and no action is taken. If a band is

selected, the action taken is that prescribed by the band’s type field. There are no required types in V.1.3.

The optional types described in V.1.3 consist of DROP and DSCP remark. DSCP remark indicates that

the DiffServ drop precedence field of the Differentiated Services Code Point (DSCP) field should be

decremented, increasing the likelihood that this packet will be dropped in the event of queue congestion.

Well-known and simple rate-limiting algorithms such as the leaky bucket [6] may be implemented in

a straightforward manner under this framework. This feature provides direct QoS control at the flow

level to the OpenFlow controller by careful programming of the meters.

As shown in Figure 5.16, there are meter-level counters and meter-band-level counters. The meter

counters are updated for all packets processed by the meter, and the per-meter-band counters are updated

only when that particular band is selected. The dual level of counters is key in that presumably the

majority of the packets processed by the meter suffer no enforcement, but their passage through the

meter must be recorded in order to track the current measured rate. The reader should understand now

that when a packet is processed by a band, it has exceeded a bandwidth threshold, which results in some

kind of enforcement (e.g., dropping of the packet or marking it as drop eligible via DSCP remark).

5.6.4 Per Connection Event Filtering

We saw in V.1.2 the introduction of the notion of multiple controllers. Multiple controllers, able to

take on different roles, achieve an improved level of fault tolerance and load balancing. The earlier

discussion explained that the switches would only provide replies to the controller that initiated the

request that elicits that reply. This, however, did not prescribe how to damp down the communication of

asynchronous messages from the switch to its family of controllers. The idea that the different controllers

have asymmetrical roles was not as effective as it could have been if all controllers must receive the

same kind and quantity of asynchronous notifications from the switches. For example, a slave controller

may not want to receive all types of asynchronous notifications from the switch. V.1.3 introduces a

SET_ASYNC message that allows the controller to specify the sorts of async messages it is willing to

receive from a switch. It additionally allows the controller to filter out certain reason codes that it does not

want to receive. A controller may use two different filters: one for the master/equal role and another for the

slave role. Note that this filter capability exists in addition to the ability to enable or disable asynchronous

messages on a per-flow basis. This new capability is controller-oriented rather than flow-oriented.

5.6.5 Auxiliary Connections

We have already seen that earlier releases of OpenFlow allowed some parallelism in the switch-controller

channel via the use of multiple controllers. In this way, mutiple parallel communication channels

existed from a single switch to mutiple controllers. V.1.3 introduces an additional layer of parallelism

by allowing multiple connections per communications channel. That is, between a single controller

and switch, multiple connections may exist. We depict these multiple connections between the switch

and the MASTER controller in Figure 5.17. The figure shows that there are also multiple channels
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Controller A
Role: slave

Controller B
Role: master

Controller C
Role: slave

Controller D
Role: slave

Switch

Legend:

Connection

Channel

FIGURE 5.17

Multiple connections and multiple channels from a switch.

connecting the switch to different controllers. The advantage provided by the additional connections on

a channel lies in achieving greater overall throughput between the switch and the controller. Because

of the flow-control characteristics of a TCP connection, it is possible for the connection to be forced to

quiesce (due to TCP window closing or packet loss) when there is actually bandwidth available on the

physical path(s) between the switch and controller. Allowing multiple parallel connections allows the

switch to take advantage of that. The first connection in the channel is specified to be a TCP connection.

The specification indicates that other, unreliable connection types, such as UDP, may be used for the

secondary connections, but the specification is fairly clear that the problems of potential data loss and

sequencing errors that can arise from the use of such alternative transport layers is beyond the scope of

the specification.

If bandwidth between the controller and switch becomes a constraint, it is most likely due to a

preponderance of data packets. Some loss of data packets can be tolerated. Thus, the primary intended

use of the auxiliary connections is to transmit and receive data packets between the switch and the

controller. This presumes that any control messages would be sent over the reliable, primary connection.

One example of the utility of auxiliary connections is that when a switch has many PACKET_IN

messages to send to the controller, this can create a bottleneck due to congestion. The delay due to this

bottleneck could prevent important OpenFlow control messages, such as a BARRIER_REPLY message,

from reaching the controller. Sending PACKET_IN data messages on the UDP auxiliary connection

will obviate this situation. Another possible extension to this idea is that the OpenFlow pipeline could

send UDP-based PACKET_IN messages directly from the ASIC to the controller without burdening

the control code on the switch CPU.

5.6.6 Cookies in PACKET_IN

The straightforward handling of a PACKET_IN message by the controller entails performing a complete

packet-matching function to determine the existing flow to which this packet relates, if any. As the size
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of commercial deployments of OpenFlow grows, performance considerations have become increasingly

important. Accordingly, the evolving specification includes some features that are merely designed to

increase performance in high-bandwidth situations. Multiple connections per channel, discussed above,

is such an example. In the case of PACKET_IN messages, it is somewhat wasteful to require the controller

to perform a complete packet match for every PACKET_IN message, considering that this lookup has

already just occurred in the switch and, indeed, is the very reason the PACKET_IN message is being

sent to the controller (that is, either a specific instruction to forward this packet to the controller was

encountered or a table miss resulted in the packet being handed off to the controller). This is particularly

true if this is likely to happen over and over for the same flow. To render this situation more efficient,

V.1.3 allows the switch to pass a cookie with the PACKET_IN message. This cookie allows the switch

to cache the flow entry pointed to by this cookie and circumvent the full packet-matching logic. Such a

cookie would not provide any efficiency gain the first time it is sent by the switch for this flow, but once

the controller caches the cookie and pointer to the related flow entry, considerable performance boost

can be achieved. The actual savings accrued would be measured by comparing the computational cost

of full packet-header matching versus performing a hash on the cookie. As of this writing, we are not

aware of any study that has quantified the potential performance gain.

The switch maintains the cookie in a new field in the flow entry. Indeed, the flow entries in V.1.3

have expanded considerably compared to the basic flow entry we presented in Figure 5.6. The V.1.3.0

flow entry is depicted in Figure 5.18. The header, counter, and actions fields were present in Figure 5.6

and were covered earlier in Section 5.3.2. The priority field determines where this particular flow entry

is placed in the table. A higher priority places the entry lower in the table such that it will be matched

before a lower-priority entry. The timeouts field can be used to maintain two timeout clocks for this flow.

Both an idle timer and a hard timeout may be set. If the controller wants the flow to be removed after

a specified amount of time without matching any packets, then the idle timer is used. If the controller

wants the flow to exist only for a certain amount of time, regardless of the amount of traffic, the hard

timeout is used and the switch will delete this flow automatically when the timeout expires. We provide

an example of such a timeout condition in Section 5.3.6. We covered the application of the cookie field

earlier in this section.

Header Fields Field value

Priority Field value

Counters Field value

Timeouts Field value

Cookie

Actions/Instructions Field value

Field value

FIGURE 5.18

V.1.3 flow entry.
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5.6.7 Provider Backbone Bridging Tagging

Earlier versions of OpenFlow supported both VLAN and MPLS tagging. Another WAN/LAN technol-

ogy known as provider backbone bridging (PBB) is also based on tags similar to VLAN and MPLS.

PBB allows user LANs to be layer two bridged across provider domains, allowing complete domain

separation between the user layer two domain and the provider domain via the use of MAC-in-MAC

encapsulation. For the reader interested in learning more about PBB, we provide a reference to the

related standard in [8]. This is a useful technology that’s already supported by high-end commercial

switches; support for this in OpenFlow falls out easily as an extension to the support already provided

for VLAN tags and MPLS shim headers.

5.6.8 Example: Enforcing QoS via Meter Bands

Figure 5.19 depicts the new V.1.3 meter table as well as the group table that first appeared in V.1.1.

We see in the figure that the incoming packet is matched against the second flow entry in the first flow

Secure Channel

Port 1 Port 4 Port K Port NPort 3Port 2

Pkt In

Drop

Pkt

Group
Table

Meter 3
Meter

Table

Drop

 Packet

FIGURE 5.19

Use of meters for QoS control in V.1.3.
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table and that the associated instructions direct the packet to meter 3. The two dashed lines emanat-

ing from the meter table show that based on the current measured bandwidth of the port selected

as the output port (port N in this case), the packet may be dropped as exceeding the bandwidth

limits, or it may be forwarded to port N if the meter does not indicate that bandwidth enforce-

ment is necessary. As we explained earlier, if the packet passes the meter control without being

dropped or marked as dropped-eligible, it is not automatically forwarded to the output port but may

undergo any further processing indicated by the instructions in its packet-processing pipeline. This

could entail being matched against a higher-numbered flow table with its own instructions and related

actions.

5.7 OpenFlow Limitations

As OpenFlow remains in a state of rapid evolution, it is difficult to pin down precise limitations, as these

may be addressed in subsequent releases. One limitation is that the currently defined match fields are

limited to the packet header. Thus, deep packet inspection (DPI), whereby fields in the packet’s payload

may be used to distinguish flows, is not supported in a standard OpenFlow. Nonetheless, the EXPERI-

MENTER modes that are permitted within OpenFlow do open the way for such application layer flow

definition in the future. Second, some OpenFlow abstractions may be too complex to implement directly

in today’s silicon. This is unlikely to remain an insurmountable obstacle for long, however, since the

tremendous momentum behind SDN is likely to give birth to switching chips that are designed explicitly

to implement even OpenFlow’s most complicated features.

If we cast a wider net and consider limitations of all of Open SDN, there are a number of other areas

to consider. We discuss these in Section 6.1.

5.8 Conclusion

In this chapter we attempted to provide the reader with a high-level understanding of the general

OpenFlow framework. This discussion covered the protocol that an OpenFlow controller uses to con-

figure and control an OpenFlow switch. We also presented the switch-based OpenFlow abstractions

that must be implemented on a physical switch as an interface to the actual hardware tables and for-

warding engine of the switch in order for it to behave as an OpenFlow switch. For the reader inter-

ested in a deeper understanding of these issues, whether out of sheer academic interest or a need

to implement one of the versions of OpenFlow, there is no substitute for reading the specifications

cited in [1–4]. These specifications are, however, very detailed and are not especially easy for the

OpenFlow novice to follow. We believe that this chapter serves as an excellent starting point and

guide for that reader who needs to delve into the lengthy specifications that comprise the OpenFlow

releases covered here. In particular, these specifications contain a plethora of structure and constant

names. To aid in reading the specifications, we draw your attention to Table 5.5 in this chapter

as a quick reference and an aid to understanding to what part of the protocol a specific reference

pertains.
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Table 5.5 OpenFlow Protocol Constant Classes

Prefix Description

OFPT OpenFlow message type

OFPPC Port configuration flags

OFPPS Port state

OFPP Port numbers

OFPPF Port features

OFPQT Queue properties

OFPMT Match type

OFPXMC OXM class identifiers

OFPXMT OXM flow match field types for basic class

OFPIT Instruction types

OFPAT Action types

OFPC Datapath capabilities and configuration

OFPTT Flow table numbering

OFPFC Flow modification command type

OFPFF Flow modification flags

OFPGC Group modification command type

OFPGT Group type identifier

OFPM Meter numbering

OFPMC Meter commands

OFPMF Meter configuration flags

OFPMBT Meter band type

OFPMP Multipart message types

OFPTFPT Flow table feature property type

OFPGFC Group capabilities flags
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CHAPTER

Alternative Definitions of SDN

There are likely to be networking professionals who dismiss Open SDN as much ado about nothing.

To be sure, some of the criticism is a natural reaction against change. Whether you are a network

equipment manufacturer or a customer or any part of the vast industry gluing those endpoints together,

the expectation of disruptive change such as that associated with SDN is unsettling. There are indeed

valid drawbacks to the Open SDN concept. In the first part of this chapter, we inventory the drawbacks

most commonly cited about Open SDN. For each, we attempt to assess whether there are reasonable

solutions to these drawbacks proposed by the Open SDN community.

In some cases, the disadvantages of Open SDN have been addressed by proposed alternative SDN

solutions that do not exhibit these flaws. In Chapter 4 we introduced a number of alternative SDN

technologies that propose SDN solutions that differ from Open SDN. In a field with so much revenue-

generating opportunity, some vendors may have a tendency to jump on the SDN bandwagon and claim

that their product is an SDN solution. It is therefore important that we have a way of determining whether

or not we should consider a particular alternative a true SDN solution. Recall that in Section 4.1 we said

that we characterize an SDN solution as possessing all of the five following traits: plane separation, a

simplified device, centralized control, network automation and virtualization, and openness. As we dis-

cuss each of the alternative SDN technologies in the latter part of this chapter, we will evaluate it against

these five criteria. Admittedly, this process remains a bit subjective, since our litmus test is not absolute.

Some of the alternatives do exhibit some of our defined SDN traits, but not all. In addition, we evaluate

whether or not each alternative suffers from the same drawbacks noted early in the chapter for Open

SDN. Without providing any absolute judgment about winners or losers, our hope is that this SDN report

card will help others make decisions about which, if any, SDN technology is appropriate for their needs.

6.1 Potential Drawbacks of Open SDN

Many have met the advent of SDN with enthusiasm, but it is not without critics. They point to a number

of shortcomings related to both the technology and its implementation. Some of the most vocal critics

are the network vendors themselves. This is not surprising, since they are the most threatened by such

a radical change in the landscape of networking. Some critics are skeptics who do not believe that this

new technology will be successful, for various reasons that we examine in this chapter.

6.1.1 Too Much Change, Too Quickly

In Chapter 3 we introduced the creation of the Clean Slate project at Stanford, where researchers were

encouraged to consider what networking might be like if we started anew without the baggage of our

Software Defined Networks. http://dx.doi.org/10.1016/B978-0-12-416675-2.00006-1

© 2014 Elsevier Inc. All rights reserved.
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legacy networks. Out of Clean Slate came the creation of OpenFlow and the basic concepts of Open SDN

as defined in this book. Some network professionals feel that this approach is not practical, since real-

world customers do not have the luxury of being able to discard old technology wholesale and start fresh.

The following reasons are often cited as to why such a comprehensive change would negatively

impact network equipment customers:

• The expense of new equipment. A complete change to the way networking is performed is too

expensive because it requires a forklift change to the network. Large quantities of existing network

equipment must be discarded as new equipment is brought en masse into customer networking

environments. Counterargument: If this is a greenfield deployment, this point is moot because new

equipment is being purchased anyway. If this is an existing environment with equipment being

continually upgraded, it is possible to upgrade your network to SDN incrementally using a sound

migration plan.

• Too risky. A complete change to the networking process is too risky because the technology is

new, is possibly untested, and is not backed by years of troubleshooting and debugging experience.

Counterargument: Continued use of legacy protocols also incurs risk due to the increased costs of

administering them, the inability to easily automate the network, and the inability to scale virtual

networks as needed. It is unreasonable to consider only the risks of migrating to SDN without also

considering the risk of maintaining the status quo.

• Too revolutionary. There are tens of thousands of network engineers and IT staff personnel who

have had extensive training in the networking technology that exists today. Though it may be true that

Open SDN has the potential to yield benefits in terms of lowered operational expenses, in the short

term these expenses will be higher. This increased expense will in large part be due to the necessary

training and education for network engineers and IT personnel. Counterargument: The scale and

growth of data centers has itself been revolutionary and it is not unreasonable to think that a solution

to such a problem may also need to be revolutionary.

The risk associated with too much change too quickly can be mitigated by deploying Open SDN in

accordance with a carefully considered migration plan. The network can be converted to Open SDN

in stages, targeting specific network areas for conversion and rolling out the changes incrementally.

Figure 6.1 shows a simple example of such phasing. First, the SDN technology is tested in a lab

environment. It is subsequently rolled out to various subnets or domains incrementally, based on timing,

cost, and sensitivity to change. This phased approach can help mitigate the cost issue as well as the risk.

It also provides time for the retraining of skilled networking personnel. Nevertheless, for those areas

Phase I

SDN

Phase II

SDN

SDN

Phase III

SDN

SDN

SDN

Lab Environment

SDN

FIGURE 6.1

Phased deployment of SDN.
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where Open SDN is newly deployed, the change will be radical. If this radical change brings about

radical improvements in an environment previously careening out of control, this is a positive outcome.

Indeed, sometimes radical change is the only escape from an out-of-control situation.

6.1.2 Single Point of Failure

One of the advantages of distributed control is that there is no single point of failure. In the current

model, a distributed, resilient network is able to tolerate the loss of a single node in the infrastructure and

reconfigure itself to work around the failed module. However, Open SDN is often depicted as a single

controller responsible for overseeing the operation of the entire network. Since the control plane has been

moved to the controller, while the SDN switch can forward packets matching currently defined flows,

no changes to the flow tables are possible without that single controller. A network in this condition

cannot adapt to any change. In these cases, the controller can indeed become a single point of failure.

Figure 6.2 shows a single switch failing in a traditional network. Prior to the failure, we see that

two flows, F1 and F2, were routed via the switch that is about to fail. We see in the figure that upon

detecting the failed node, the network automatically uses its distributed intelligence to reconfigure itself

to overcome the single point of failure. The two flows are routed via the same alternate route.

Figure 6.3 shows a recovery from the failure of a single node in an SDN. In this case, it is the intel-

ligence in the SDN controller that reconfigures the network to circumvent the failed node. One of the

premises of SDN is that a central controller will be able to deterministically reconfigure the network in an

optimal and efficient manner, based on global knowledge of the network. Because of other information

about the overall network that the SDN controller has at its disposal, we see in the figure that it reroutes

F1 and F2 over different paths. One scenario that would cause this rerouting would be that the two

flows have specific QoS guarantees that cannot be met if they are both placed on the same alternate path

that was chosen in Figure 6.2. Finding optimal paths for different flows is relatively straightforward

within the Open SDN model, yet it is very challenging to implement in traditional networking with

autonomous devices. We revisit this topic via a specific use case in Section 8.1.2.

If, however, the single point of failure is the controller itself, the network is vulnerable, as shown

in Figure 6.4. As long as there is no change in the network that requires a flow table modification, the

network can continue to operate without the controller. However, if there is any change to the topology,

Normal Operation Single Node Failure Recovery

F1

F2
F1

F2

F1

F2

FIGURE 6.2

Traditional network failure recovery.
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Normal Operation Single Node Failure Recovery

SDN Controller SDN Controller SDN Controller
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FIGURE 6.3

SDN network failure recovery.

the network is unable to adapt. The loss of the controller leaves the network in a state of reduced

functionality, unable to adapt to failure of other components or even normal operational changes. So,

failure to the centralized controller could potentially pose a risk to the entire network. The SDN controller

is vulnerable to both hardware and software failures as well as to malicious attacks. Note that in addition

to such negative stimuli such as failures or attacks, a sudden surge in flow entry modifications due to

a sudden increase in network traffic could also cause a bottleneck at the controller, even if that sudden

surge is attributable to an entirely positive circumstance, such as a flash mob!

Normal Operation
Controller Is the

Single Node Failure
No Recovery

SDN Controller SDN Controller SDN Controller

FIGURE 6.4

SDN controller as single point of failure.

The SDN controller runs on a physical compute node of some sort, probably a standard off-the-

shelf server. These servers, like any other hardware components, are physical entities, frequently with

moving parts; as such, they are subject to failure. Software is subject to failure due to poor design, bugs,
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becoming overloaded due to scale, and other typical software issues that can cause the failure of the

controller. A single SDN controller is an attractive target for malicious individuals who want to attack

an organization’s networking infrastructure. Denial-of-service (DoS) attacks, worms, bots, and similar

malware can wreak havoc on an SDN controller that has been compromised, just as they have wreaked

havoc in legacy networks for years.

Critics of SDN point to these as evidence of the susceptibility of SDN to catastrophic failure. If indeed

the SDN controller is allowed to become that single point of failure, this does represent a structural

weakness. Clearly, SDN designers did not intend that operational SDN networks be vulnerable to the

failure of a single controller. In fact, the Open SDN pioneers described the concept of a logically cen-

tralized controller. In Open SDN, one has the flexibility to decide how many control nodes (controllers)

the network has. This number can range from a totally centralized situation with a single control node to

one control node per device. The latter extreme may still theoretically fit the Open SDN paradigm, but

it is not practical. The disparate control nodes will face an unnecessary challenge in trying to maintain

a consistent global view of the network. The other extreme of the single controller is also not realistic.

A reasonable level of controller redundancy should be used in any production network.

High-Availability Controller with Hardened Links

SDN controllers must use high-availability (HA) techniques and/or redundancy. SDN controllers are not

the only systems in the broad computer industry that must be highly available. Wireless LAN controllers,

critical servers, storage units, even networking devices themselves have for some time relied on HA

and redundancy to ensure that there is no suspension of service should there be a failure of a hardware

or software component. Figure 6.5 shows an example of a well-designed controller configuration with

redundant controllers and redundant controller databases. Redundancy techniques range from N + 1

Controller DB

SDN Monitor

SDN Controller SDN Controller

FIGURE 6.5

Controller high availability and monitoring.
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approaches, where a single hot-standby stands ready to assume the load of any of the N active controllers,

to the more brute-force approach of having a hot-standby available for each controller. A version of

hot-standby for each controller is to use HA designs internal to the controller hardware such that all

critical components are redundant within that server (e.g., mirrored disks, redundant power supplies).

Redundancy is also reflected by allowing the devices themselves to switch to a backup controller, as we

discussed in Section 5.5.4.

Detecting complete failure can be relatively simple compared to ascertaining the correct operation of

a functional component. However, instrumentation exists to monitor and evaluate systems to make sure

they are working as intended and to notify network administrators if they begin to deviate from the norm.

Thus, SDN controllers must have monitoring and instrumentation in place to ensure correct operation.

Figure 6.5 depicts a monitor that is constantly alert for changes in the behavior and responsiveness of the

SDN controllers under its purview. When a problem arises, the monitor is able to take corrective action.

With respect to malicious attacks, our intuition leads us to the conclusion that by centralizing the

control plane, the network now has a vulnerable central point of control that must be protected against

attack or the entire network becomes vulnerable. This is in fact true, and the strongest available security

measures must be used to defend against such attacks. In practice, both the controller and the links

to it would be hardened to attack. For example, it is common practice to use out-of-band links or

high-priority tunnels for the links between the devices and the controller. In any case, it is naïve to

assume that the distributed control system such as that used in legacy networks is immune to attack.

In reality, distributed systems can present a large attack surface to a malicious agent. If one device is

hacked, the network can self-propagate the poison throughout the entire system. In this regard, a single

SDN controller presents a smaller attack surface. If we consider the case of a large data center, there

are thousands or tens of thousands of control nodes available to attack. This is because each network

device has a locally resident control plane. In an equivalent-sized SDN, there might be 10 to 20 SDN

controllers. Assuming that the compromising of any control node can bring down an entire network,

that means that the SDN presents two orders of magnitude fewer control nodes susceptible to attack,

compared to its traditional equivalent. Through hardening both the controllers and the secure channels

to attack, network designers can focus extra protection around these few islands of intelligence in order

to keep malicious attacks at bay.

In summary, the introduction of a single point of failure is indeed a vulnerability. With the right

architecture and safeguards in place, an Open SDN environment may actually be a safer and more

secure network than the earlier distributed model.

6.1.3 Performance and Scale

As the saying goes, “Many hands make light work.” Applied to networking, this saying would imply

that the more the networking intelligence is spread across multiple devices, the easier it is to handle

the overall load. In most cases this is certainly true. Having a single entity responsible for monitoring

as well as switching and routing decisions for the entire network can create a processing bottleneck.

The massive amount of information pertaining to all end nodes in a large network such as a data center

can indeed become an issue. In spite of the fact that the controller software is running on a high-speed

server with large storage capabilities, there is a limit at which even the capacity of such a server becomes
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strained and performance could suffer. An example of this performance sensitivity is the potential for

request congestion on the controller. The greater the quantity of network devices that are dependent on

the SDN controller for decisions regarding packet processing, the greater the danger of overloading the

input queues of the controller such that it is unable to process incoming requests in a timely manner,

again causing delays and impacting network performance.

We have dedicated a considerable part of this book to promoting the practice of moving the control

plane off the switch and onto a centralized controller. The larger the network under the management of

the SDN controller, the higher the probability of network delays due to physical separation or network

traffic volume. As network latency increases, it becomes more difficult for the SDN controller to receive

requests and respond in a timely manner.

Issues related to performance and scalability of Open SDN are real and should not be dismissed. It is

worth noting, however, that although there can be performance issues related to scale in a network design

involving a centralized controller, the same is true when the network intelligence is distributed. One such

issue is that those distributed entities will often need to coordinate and share their decisions with one

another; as the network grows, more of these distributed entities need to coordinate and share informa-

tion, which obviously impacts performance and path convergence times. Indeed, there is evidence that for

Open SDN the convergence times in the face of topology changes should be as good or better than with

traditional distributed routing protocols [1]. Additionally, these distributed environments have their own

frailties regarding size and scale, as we have pointed out in earlier chapters, in areas such as MAC address

table size and VLAN exhaustion. Also, in large data center networks, with VMs and virtual networks

constantly being ignited and extinguished, path convergence may never occur with traditional networks.

A further issue with autonomous, distributed architectures is that in real-life networks the protocols

that comprise the control plane are implemented by different groups of people at different times, usually

working at multiple NEMs. Although we have standards for these protocols, the actual implementations

on the devices are different from one version to another and from one manufacturer to another. In

addition to the vagaries that result from different groups of humans trying to do anything, even identical

implementations will behave differently from one device to another due to different CPU speeds,

differing buffering constraints, and the like. These differences can create instability within the group

of devices, and there is no way to scale the computation needed to manage the topology effectively.

The centralized design has fewer differences in the implementation of the control plane because there

are fewer implementations running it, and it can be scaled, as we have explained, using traditional

compute scaling approaches as well as by simply buying a bigger server. The upgrade process to

higher-performing control planes is easier to address in this centralized environment. Conversely, in

the embedded, distributed world of traditional networking, we are stuck with low-powered CPUs and a

nonupgradable memory footprint that came with the devices when they were purchased.

There are ways to improve Open SDN’s performance and scalability through appropriate controller

design. In particular, it is important to employ network design where more than one controller is used to

distribute the load. There are two primary ways of doing this. The first is to deploy multiple controllers

in a cluster. As network size grows, there will be a need for multiple coordinated controllers. Note that

the logistics required to coordinate a number of these controllers is nowhere near the complexity of

logistics and coordination required with thousands of network devices, so the problem is easier to solve.

In this type of deployment, the controllers are able to share the load of the large set of network devices
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Controller cluster.

under their control. Figure 6.6 shows three controllers spreading the load of the management of a large

number of devices. Though the details of how to implement clusters of controllers are currently outside

the scope of the OpenFlow specification, the specification does state that a multiple-controller scenario

is likely, and some aspects of the protocol have been extended to describe messaging to multiple con-

trollers. This notion of clusters of controllers has been in widespread use for some time with wireless

controllers. Some NEMs, notably Cisco in [3] and HP in [4], have published guidelines for the way

multiple wireless controllers for the same network should interact.

A second means of utilizing multiple controllers is to organize the controllers into a hierarchy of

controllers. As network size grows, it may be necessary to create such a hierarchy. This model allows

for offloading some of the burden from the leaf controllers to be handled by the root controller. The

concept of controller hierarchies for SDNs is explored in detail in [2]. Figure 6.7 shows a two-level

hierarchy of controllers, with the root controller managing the coordination between the leaf controllers’

peers below. In this type of deployment there can be a separation of responsibilities as well; the highest-

level controller can have global responsibility for certain aspects of the network, while lower-level

responsibilities that require more geographical proximity may be handled by the controllers at the

lower tier. This geographical proximity of the leaf controllers can ameliorate the problems of increased

latency that come with increased network size.

To summarize, performance issues can arise in large Open SDN networks, just as they can in non-

SDNs. The solution lies in designing and deploying the SDN controllers and the network in such a way

as to obviate those potential issues.

6.1.4 Deep Packet Inspection

A number of network applications may have requirements that exceed the capabilities of SDN or, more

specifically of OpenFlow as it is defined today. In particular, there are applications that need to see more

of the incoming packet in order to make matches and take actions.

One type of application that requires deep packet inspection (DPI) is a firewall. Simple firewalls

may make decisions based on standard fields available in OpenFlow, such as destination IP address or
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Controller hierarchy.
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Deep packet inspection.

TCP/UDP port. More advanced firewalls may need to examine and act on fields that are not available

to OpenFlow matches and actions. If it is impossible to set flows that match on appropriate fields, the

device will be unable to perform local firewall enforcement.

Another application of this sort is a load balancer. Simple load balancers, like firewalls, make deci-

sions based on standard fields available in OpenFlow, such as source or destination IP address or source

or destination TCP/UDP port. This is sufficient in many cases, but more advanced load balancers may

want to forward traffic based on fields not available in OpenFlow today, such as the specific destination

URL. Figure 6.8 shows the fields that OpenFlow 1.0 devices are able to match. As the figure illustrates,
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OpenFlow is not able to match against fields in the payload. The payload data includes many important

items such as URLs. It is possible that even simple load-balancing decisions might be made on criteria

in the payload. In addition, detecting viruses, worms, and other spyware may require examining and

processing such data. Since OpenFlow devices are not able to match data in the packet payload, they

cannot make enforcement decisions locally.

Two distinct challenges are brought to light in this scenario. The first is to detect that a packet might

need special treatment. If the criteria for that decision lie within the packet payload, an OpenFlow

device cannot perform that test. Second, even if the device can determine that a packet needs to be

further scrutinized, the OpenFlow device will not have the processing horsepower to perform the packet

analysis that many intrusion detection systems (IDS) and intrusion prevention systems (IPS) perform.

In this case, there is a solution that dovetails well with OpenFlow capabilities. When the OpenFlow

pipeline determines that a packet does not need deeper inspection, perhaps because of packet size or

TCP/UDP port number, it can forward the packet around the bump in the wire that the in-band IDS/IPS

normally constitutes. This has the advantage of allowing the vast majority of the packets transiting

the network to completely bypass the IDS/IPS, helping to obviate the bottlenecks that these systems

frequently become.

Rather than directing selected packets around an in-line appliance, OpenFlow can sometimes be used

to shunt them to a deep-packet inspection device and allow normal packets to proceed unfettered. Such

a device could actually reside inside the same switch in a separate network processor card. This is the

idea behind the split SDN data plane architecture presented in [14].

In any event, as of this writing, deep packet inspection is still absent from the latest version of the

OpenFlow standard. Since this is a recognized limitation of OpenFlow, it is possible that a future version

of the standard will provide support for matching on fields in the packet payload.

Limitations on Matching Resulting from Security Mechanisms

Note that the crux of the problem of deep packet inspection is the inability to make forwarding decisions

based on fields that are not normally visible to the traditional packet switch. What we have presented

thus far refers to fields that are in the packet payload, but the same problem can exist for certain packet

header fields in the event that those fields are encrypted by some security mechanism. An example

is encrypting the entire payload of a layer two frame. Obviously, this obscures the layer three header

fields from inspection. This is not a problem for the traditional layer two switch, which will make its

forwarding decisions solely on the basis of the layer two header fields, which are still in the clear. An

Open SDN switch, on the other hand, would lose its ability to make fine-grained flow-based forwarding

decisions using as criteria all of the 12-tuple of packet header fields normally available. In this sense,

such encryption renders normal header fields unavailable to the OpenFlow pipeline, much like fields

deep within the packet payload.

6.1.5 Stateful Flow Awareness

An OpenFlow device examines every incoming packet independently, without consideration of earlier-

arriving packets that may have affected the state of either the device or the transaction taking place

between the two communicating nodes. We describe this characteristic as a lack of stateful flow aware-

ness or statefulness. An OpenFlow device attempting to perform a function that requires statefulness



6.1 Potential Drawbacks of Open SDN 129

will not be adequate for the task. Examples of such functions include stateful firewalls or more sophis-

ticated IPS/IDS solutions. As we noted in Section 6.1.4, in some cases OpenFlow can help the network

scale by shunting packets that are candidates for stateful tracking to a device capable of such processing,

diverting much of the network flows away from those processing-intensive appliances.

Most network applications use standard and well-known TCP or UDP ports. For example, HTTP

traffic uses TCP port 80, Domain Name System (DNS) uses TCP port 53, Dynamic Host Configuration

Protocol (DHCP) uses TCP and/or UDP ports 67 and 68, and so on. These are easy to track and to

establish appropriate OpenFlow rules. However, certain protocols—for example, FTP and Voice over

IP (VoIP)—start on a standard and fixed port (21 for FTP, 5060 for the VoIP Session Initiation Protocol

(SIP) protocol) for the initial phase of the conversation but then set up an entirely separate connection

using dynamically allocated ports for the bulk of their data transfer. Without stateful awareness, it is

impossible for an OpenFlow device to have flow rules that match these dynamic and variable ports.

Figure 6.9 shows an example of stateful awareness in which an FTP request is made to the FTP service

on TCP port 21, which creates a new FTP instance that communicates with the FTP client on an entirely

new TCP port chosen from the user space. An ability to track this state of the FTP request and subsequent

user port would be helpful for some applications that want to deal with FTP traffic in a particular manner.

Some solutions, such as load balancers, require the ability to follow transactions between two end

nodes to apply policy for the duration of the transaction. Without stateful awareness of the transaction, an

OpenFlow device is unable to independently make decisions based on the state of ongoing transactions

and to take action based on a change in that state. Figure 6.10 shows a sequence of HTTP requests that

together constitute an entire transaction. The transaction is identified by the session number. Stateful

awareness would allow the transaction to be dealt with as an integral unit.

It should be noted that contemporary Internet switches are generally stateless. Higher-function spe-

cialized appliances such as load balancers and firewalls do implement stateful intelligence, however.

Since Open SDN is often touted as a technology that could replace purpose-built network appliances

such as these, the lack of stateful awareness is a genuine drawback. Some vendors of these appliances

will justifiably advertise their capability for deep packet inspection as well as their ability to track state

and provide features based on these two capabilities.

As with deep packet inspection, the lack of stateful awareness can be a genuine limitation for certain

applications. We are not aware of any effort by the ONF to specify such stateful behavior for flow
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Stateful awareness of application-level transactions.

forwarding in OpenFlow. In those instances in which such stateful flow treatment is required, the user

will likely have to continue to rely on specialized hardware or software rather than Open SDN.

6.1.6 Summary

In this section we reviewed a number of often-cited shortcomings of Open SDN. In some cases, there are

documented Open SDN strategies for dealing with these issues. In other cases, workarounds outside the

scope of Open SDN need to be used to address the specific application. In the balance of this chapter we

examine alternative SDN technologies in greater depth than we have previously. For each, we determine

whether the Open SDN drawbacks discussed in this section apply to that alternative SDN technology

as well. This is important, since these alternatives are often promoted specifically as a response to the

perceived limitations of Open SDN. We also assess how well each alternative meets our criteria to be

considered an SDN technology.

6.2 SDN via APIs

One of the alternative SDN approaches that we introduced in Chapter 4 was SDN via existing APIs.1

Superficially, one might be tempted to dismiss SDN via APIs as incumbent network vendors’ attempt

to protect their turf against encroachment by radical new technologies. But we would do this solution

a disservice if we did not consider its positive elements. One such positive element is the movement

toward controller-driven networks.

This brings us to the first of two artificial constraints we use in our definition of SDN via APIs.

First, we acknowledge that there are some proponents of controller-less SDN via APIs. Juniper’s JunOS

SDK [16] provides a rich set of network device programmability and was initially released before SDN

1For the sake of brevity, we will henceforth use the term SDN via APIs.
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became known to the industry. It is not controller-based, since the JunOS SDK applications actually

reside in the devices themselves. Through the SDK APIs, these applications may wield control over

a wide variety of device functions, including packet processing in the data plane. The details of the

individual platforms’ data plane hardware are abstracted so that a network programmer can affect

packet processing without worrying about the vagaries of one hardware implementation versus another.

Nonetheless, we consider such controller-less approaches to be outliers, and so we exclude them from

consideration in this category. Looking back at our introduction to SDN via APIs in Chapter 4, Figure 4.7

portrayed a controller accessing APIs residing in the devices. This model will guide our definition of

the SDN-via-APIs approach.

The second constraint is on the very definition of API. We want to delineate the OpenSDN approach

from SDN via APIs. Nonetheless, OpenFlow itself is clearly the preeminent southbound API to the

networking devices in Open SDN. Since we are trying to bring clarity to a confusing situation, when

we say SDN via APIs, we refer to APIs that program or configure a control plane that is active in the

device. Our introduction to SDN via APIs in Chapter 4 used the term SDN via existing APIs. Although

that term suited the context of that chapter, the word existing is not sufficiently precise. Legacy APIs all

programmed the control plane that was resident on the device. If a brand-spanking-new API continues

to program a control plane residing in the device, it will still fall into this category. We contrast this

with OpenFlow. As we explained in Chapter 5, OpenFlow is used to directly control the data plane.

This distinction will be very important as we review both legacy and new APIs that are part of the

SDN-via-APIs paradigm.

We have spent significant time in this book discussing the history behind the distributed-intelligence

model of networking and the stagnation that has occurred due to the resulting closed system. SDN

via APIs actually does open up the environment to a certain degree, since there are opportunities for

software developed for the SDN controller to use those APIs in new and better ways and, hence, to

advance networking technology.

This movement toward networking control residing in software in a controller is definitely a step

forward in the evolution of networking. Another major step forward is the improvement in APIs on the

devices themselves, which we discuss in the next section.

6.2.1 Legacy APIs in Network Devices

Currently, networking devices have APIs that allow for a certain amount of configuration. There are a

number of network device APIs in current use:

• The Simple Network Management Protocol (SNMP) was first standardized in 1988 and has been

the standard for management interactions with networking devices since that time. The general

mechanism involves a simple protocol allowing the controlling function to GET and SET objects on

a device that have been defined in a management information base (MIB). The functionality offered

by SNMP can be extended by the definition of new and sometimes proprietary MIBs, allowing access

to more information and attributes on a device. SNMP does provide both GET and SET primitives,

but it is primarily used for monitoring using GET rather than for configuration, which uses SET.

• The command-line interface (CLI) is the most fundamental way of accessing a device and is designed

with a human end user in mind. Often the networking device functionality placed into a device is

accessible only via CLI (not SNMP). Consequently, management software attempting to access this
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data must emulate a user logging into the CLI, executing CLI commands, and attempting to read the

results. Even when the CLIs are enhanced to support scripting, this merely automates an interface

designed for static configuration changes.

• The Transaction Language 1 (TL1), developed for telecommunications equipment in the 1980s,

is similar in some respects to SNMP in that its intent is to provide a language for communication

between machines.

• The Network Configuration Protocol (NETCONF) was developed in the last decade to be a successor

to protocols such as SNMP, since SNMP was mainly being used to monitor networks, not to configure

them. The configuration payload utilizes an Extensible Markup Language (XML) format for passing

data and commands to and from the networking devices.

• The TR-069 CPE WAN Management Protocol [15] is intended to control the communication between

customer-premises equipment (CPE) and an autoconfiguration server (ACS). In our context, the

CPE is the network device. The ACS is a novel contribution of TR-069. The ACS provides secure

autoconfiguration of the network device and incorporates other device management functions into

a unified framework.

These APIs have been used for years, primarily by network management applications. We consider

these to be legacy APIs, but this should not imply that they are only for configuring old features. They

have been extended to provide support for cutting-edge features such as Cisco’s PBR [5]. However, these

extended APIs have not scaled well into the current world of networking, especially in data centers.

When there is a fully distributed control plane on hundreds or thousands of devices, this means that

the configuration of the control plane on each device is very complex. Thus, programming a network

of these distributed control planes requires exposing a very complex API to the network programmers,

making their task much harder.

6.2.2 Appropriate APIs for SDN via APIs

SDN-appropriate APIs differ first in that they indirectly affect the behavior of the data plane in the

networking device by setting parameters ranging from basic operational parameters to information

about specific flows. We emphasize indirectly here because, by our definition of this alternative, these

APIs directly interact with the control plane on the device, as was the tradition with all legacy APIs. The

level of flow detail that can be specified by such APIs should be similar to the level of detail provided

by OpenFlow. Although legacy APIs can be retrofitted to configure specific flows as in [5], that solution

is really just extending an old interface on a legacy device to enable a new feature. SDN-appropriate

APIs are more than this. First, they are dynamic, flexible, and designed to have an immediate effect on

the behavior of the networking device. This is in contrast to legacy APIs, which, in many instances, are

not put into effect until some process on the device has been restarted.

Second, SDN-appropriate APIs are designed to be used by a centralized controller, not just to enable

a feature in a single network device in isolation but rather as part of programming a network of devices.

A prime example of an SDN-appropriate API is the Representational State Transfer (REST) API.

6.2.3 REST: A Different API Protocol

The protocols and mechanisms for accessing devices to perform monitoring and configuration tasks,

such as SNMP, CLI, TL1, NETCONF, and TR-069, have been used to a limited degree with SDN.



6.2 SDN via APIs 133

The new technology of choice for SDN-appropriate APIs is REST, which uses HTTP or HTTPS. APIs

based on this technology are called RESTful interfaces.

REST technology was introduced a number of years ago and has been used primarily for access to

information through a web service. The movement toward REST as the primary means for manipulating

SDNs is based on a number of its perceived advantages:

• Simplicity. The web-based REST mechanism utilizes the simple HTTP GET, PUT, POST, and

DELETE commands. Access to data involves referencing resources on the target device using

normal and well-understood URL encoding.

• Flexibility. Requesting entities can access the defined configuration components on a device using

REST resources, which are represented as separate URLs. There is no need for complicated schemas

or MIB definitions to make the data accessible.

• Extensibility. Support for new resources does not require re-compilation of schemas or MIBs but

only requires that the calling application access the appropriate URL.

• Security. It is very straightforward to secure REST communications. Simply running this web-based

protocol through HTTPS adequately addresses security concerns. This has the advantage of easily

penetrating firewalls, a characteristic not shared by all network security approaches.

A potential risk in using a protocol as flexible and extensible as REST is that it lacks the strict

formalism and type checking of other methods. Although this may be true, in the trade-off between

ease of use versus strict controls, REST appears to be gaining an ever-stronger beachhead as the API

of choice for SDN via API networks.

It is important to point out that thus far we have been discussing APIs for devices such as switches.

This is the context in which we have referred to REST as well as the earlier API technologies. The reader

should note that REST is also frequently used as a northbound API to the controller. Such northbound

APIs are used at different levels of the controller and may exist as high as the management layer that

oversees a cluster of controllers. Since this kind of northbound API plays an important role in how

network programmers actually program an SDN network, they certainly are SDN-appropriate APIs.

Nonetheless, the reader should distinguish these from the device APIs that we refer to when discussing

SDN via APIs.

6.2.4 Examples of SDN via APIs

Cisco has its own proprietary SDN program called Cisco onePK [7] that consists of a broad set of APIs

in the devices. These APIs provide SDN functionality on legacy Cisco switches. Cisco onePK does

not rely on traditional switch APIs such as the CLI but extends the switch software itself to support a

richer API to support user application control of routing and traffic steering, network automation, policy

control, and security features of the network, among others. Cisco onePK is used in conjunction with

the Cisco ONE controller.2

A hybrid approach is the OpenDaylight open source project [8]. OpenDaylight supports OpenFlow

as one of its family of southbound APIs for controlling network devices. Used in this way, OpenDaylight

clearly fits into the Open SDN camp. The OpenDaylight controller also supports southbound APIs that

2The core technology of the Cisco ONE controller is the open source basis for its commercial XNC controller, which we

discuss in Section 12.8.4.
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program the legacy control plane on network devices. When OpenDaylight is used with those legacy

southbound APIs, it falls into the controller-based SDN-via-APIs category. Due to this chameleon-like

role, we do not categorize it as exclusively either SDN via APIs or Open SDN. Note that the Cisco

ONE controller is the source-code basis for the OpenDaylight controller. We discuss the OpenDaylight

program in more detail in Chapter 11.

Arista is another commercial example of a company that asserts that SDN is not about the separation

of the control plane from the data plane and is instead about scaling the existing control and data

plane with useful APIs [9]. Arista is basing its company’s messaging squarely around this API-centric

definition of SDN. Arista claims that it supports both centralized controllers and an alternative of

distributed controllers that may reside on devices themselves.

6.2.5 Ranking SDN via APIs

Table 6.1 provides a ranking of SDN via APIs versus the other technologies discussed in this chapter.

As stated in the chapter introduction, despite our best efforts there is surely some subjectivity in this

ranking. Rather than assign strict letter grades for each criterion, we simply provide a high, medium, or

low ranking as an assessment of how these alternatives stack up against one another. We said earlier that

for the sake of clarity we have tightly constrained our definitions of each category, which may exclude

an implementation that an individual reader could consider important. We also acknowledge that some

criteria that are extremely important for some network professionals or users could be entirely absent

from our list. For this, we apologize, and we hope that this attempt at ranking at least serves to provoke

productive discussions.

The first five criteria are those that define how well a technology suits our definition of an SDN

technology. Of these five, the only criterion in which SDN via APIs seems to qualify as a true SDN

technology is in the area of improved network automation and virtualization. Networking devices that

are changed only in that they have better APIs are certainly not simplified devices. Such devices retain

the ability to operate in an autonomous and independent manner, which means that the device itself

will be no simpler and no less costly than it is today. Indeed, by our very definition, these APIs still

program the locally resident control plane on the device. SDN via APIs does, however, partly move

toward a centralized controller model. For this reason, we give it a grade of medium for centralized

controller. The APIs defined by vendors are generally unique to their own devices, and hence they are

usually proprietary.3 The end result is that SDN applications written to one vendor’s set of APIs will

often not work with network devices from another vendor. It might be true that the Cisco APIs have

been mimicked by Cisco’s competitors in order to make their devices interoperable with Cisco-based

management tools, but this is not true interoperability. Cisco continually creates new APIs so as to

differentiate itself from competitors, which puts its competitors in constant catch-up mode. Finally, the

control plane remains in place in the device, and only a small part of forwarding control has been moved

to a centralized controller.

When ranked against the drawbacks of Open SDN, however, this technology fares somewhat better.

Since the network is still composed of the same autonomous legacy switches with distributed control,

3An important exception relevant to SDN is Nicira’s Open vSwitch Database Management Protocol (OVSDB). OVSDB is

an open interface used for the configuration of OVS virtual switches.
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there is neither too much change nor a single point of failure. We rank it as medium with respect to

performance and scale, since legacy networks have proven that they can handle sizable networks but

are showing inability to scale to the size of mega data centers. SDN-via-APIs solutions support neither

deep packet inspection nor stateful flow awareness. Nothing in these solutions directly addresses the

problems of MAC forwarding table or VLAN ID exhaustion.

So, in summary, SDN via APIs provides a mechanism for moving toward a controller-based net-

working model. Additionally, these APIs can help alleviate some of the issues raised by SDN around the

need to have a better means of automating the changing of network configurations in order to attempt to

keep pace with what is possible in virtualized server environments. However, SDN via APIs falls short

of meeting many other goals of SDN.

6.3 SDN via Hypervisor-Based Overlays

In Chapter 4 we introduced SDN via hypervisor-based overlay networks. This hypervisor-based overlay

technology creates a completely new virtual network infrastructure that runs independently on top of

the underlying physical network, as depicted in Figure 4.8. In that diagram we saw that the overlay

networks exist in an abstract form above the actual physical network below. The overlay networks can

be created without requiring reconfiguration of the underlying physical network, which is independent

of the overlay virtual topology.

With these overlays it is possible to create networks that are separate and independent of each other,

even when VMs are running on the same server. As shown in Figure 4.8, a single physical server hosting

multiple VMs can have each VM be a member of a separate virtual network. This VM can communicate

with other VMs in its virtual network, but it usually does not cross boundaries and talk to VMs that are

part of a different virtual network. When it is desirable to have VMs in different networks communicate,

they do so using a virtual router between them.

It is important to notice in the diagram that traffic moves from VM to VM without any dependence

on the underlying physical network other than its basic operation. The physical network can use any

technology and can be either a layer two or a layer three network. The only matter of importance is that

the virtual switches associated with the hypervisor at each endpoint can talk to each other.

What is actually happening is that the virtual switches establish communication tunnels among

themselves using general IP addressing. As packets cross the physical infrastructure, as far as the

virtual network is concerned they are passed directly from one virtual switch to another via virtual

links. These virtual links are the tunnels we just described. The virtual ports of these virtual switches

correspond to the virtual tunnel endpoints (VTEPs) defined in Section 4.6.2. The actual payload of

the packets between these vSwitches is the original layer two frame being sent between the VMs. In

Chapter 4 we defined this as MAC-in-IP encapsulation, which was depicted graphically in Figure 4.9.

We provide a detailed discussion about MAC-in-IP encapsulation in Chapter 7.

Much as we did for SDN via APIs, we restrict our definition of SDN via hypervisor-based overlays

to those solutions that utilize a centralized controller. We acknowledge that there are some SDN overlay

solutions that do not use a centralized controller (e.g., MidoNet, which has MidoNet agents located

in individual hypervisors), but we consider those to be exceptions that cloud the argument that this

alternative is, generally speaking, a controller-based approach.
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6.3.1 Overlay Controller

By our definition, SDN via hypervisor-based overlays utilizes a central controller, as do the other SDN

alternatives discussed thus far. The central controller keeps track of hosts and edge switches. The overlay

controller has knowledge of all hosts in its domain, along with networking information about each of

those hosts, specifically their IP and MAC addresses. These hosts will likely be virtual machines in

data center networks. The controller must also be aware of the edge switches that are responsible for

each host. Thus, there will be a mapping between each host and its adjacent edge switch. These edge

switches will most often be virtual switches associated with a hypervisor resident in a physical server

and attaching the physical server’s virtual machines to the network.

In an overlay environment, these edge switches act as the endpoints for the tunnels that carry the traffic

across the top of the physical network. These endpoints are the VTEPs mentioned above. The hosts them-

selves are unaware that anything other than normal layer two Ethernet forwarding is being used to trans-

port packets throughout the network. They are unaware of the tunnels and operate just as though there

were no overlays involved whatsoever. It is the responsibility of the overlay controller to keep track of

all hosts and their connecting VTEPs so that the hosts need not concern themselves with network details.

6.3.2 Overlay Operation

The general sequence of events involved with sending a packet from host A to a remote host B in an

overlay network is as follows:

1. Host A wants to send payload P to host B.

2. Host A discovers the IP address and MAC address for host B using normal methods (DNS and

ARP). Host A uses its ARP broadcast mechanism to resolve host B’s MAC address, but the means

by which this layer two broadcast is translated to the tunneling system varies. The original VXLAN

tries to map layer two broadcasts directly to the overlay model by using IP multicast to flood the layer

two broadcasts. This allows the use of Ethernet-style MAC address learning to map between virtual

network MAC addresses and the virtual network IP addresses. There are also proprietary control

plane implementations whereby the tunnel endpoints exchange the VM-MAC address to VTEP-IP

address mapping information. Another approach is to use MP-BGP to pass MPLS VPN membership

information between controllers where MPLS is used as the tunneling mechanism. In general, this

learning of the virtual MAC addresses across the virtual network is the area where virtual network

overlay solutions differ most. We provide this sampling of some alternative approaches only to

highlight these differences and do not attempt an authoritative review of the different approaches.

3. Host A constructs the appropriate packet, including MAC and IP addresses, and passes it upstream

to the local switch for forwarding.

4. The local switch takes the incoming packet from host A, looks up the destination VTEP to which

host B is attached, and constructs the encapsulating packet as follows:

• The outer destination IP address is the destination VTEP and the outer source IP address is the

local VTEP.

• The entire layer two frame that originated from host A is encapsulated within the IP payload of

the new packet.

• The encapsulating packet is sent to the destination VTEP.
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Overlay operation.

5. The destination VTEP receives the packet, strips off the outer encapsulation information, and for-

wards the original frame to Host B.

Figure 6.11 shows these five steps. From the perspective of the two hosts, the frame transmitted

from one to the other is the original frame constructed by the originating host. However, as the packet

traverses the physical network, it has been encapsulated by the VTEP and passed directly from one

VTEP to the other, where it is finally decapsulated and presented to the destination host.

6.3.3 Examples of SDN via Hypervisor-Based Overlays

Prior to Nicira’s acquisition by VMware in 2012, Nicira’s Network Virtualization Platform (NVP)

was a very popular SDN via hypervisor-based overlays offering in the market. NVP has been widely

deployed in large data centers. It permits virtual networks and services to be created independently of

the physical network infrastructure below. Since the acquisition, NVP is now bundled with VMware’s

vCloud Network and Security (vCNS) and is marketed as VMware NSX [10],4 where it continues to

enjoy considerable market success. The NVP system includes an open source virtual switch, Open

vSwitch, (OVS) that works with the hypervisors in the NVP architecture. Open vSwitch has become

the most popular open source virtual switch implementation, even outside of NVP implementations.

Interestingly, NVP uses OpenFlow as the southbound interface from its controller to the OVS switches

that form its overlay network. Thus, it is both an SDN via hypervisor-based overlays and an Open SDN

implementation.

Juniper’s JunosV Contrail [17], however, does not use OpenFlow. Contrail is a controller-based

virtual overlay approach to network virtualization. It uses the Extensible Messaging and Presence

Protocol (XMPP) to program the control plane of the virtual switches in its overlay networks. Because

4Since we focus on the NVP component in this work, we usually refer to that component by its original, pre-acquisition name

rather than NSX.
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the southbound API is XMPP, it is indeed a standards-based approach. Since the control plane still

resides on those virtual switches and XMPP is not directly programming the data plane, we do not

consider it Open SDN. It is clearly an SDN via hypervisor-based overlays approach, though.

Another important SDN via hypervisor-based overlays offering is IBM’s Software Defined Network

for Virtual Environments (SDN VE) [11]. SDN VE is based on IBM’s established overlay technology,

Distributed Overlay Virtual Ethernet (DOVE).

6.3.4 Ranking SDN via Hypervisor-Based Overlays

In Table 6.1 we include our ranking of SDN via hypervisor-based overlays versus the alternatives. SDN

via hypervisor-based overlays is founded on the concepts of network automation and virtualization

and, thus, scores high in those categories. With respect to openness, this depends very much on the

particular implementation. NVP, for example, uses OpenFlow, OVSDB, and OVS, all open technologies.

Other vendors use proprietary controller-based strategies. There are both closed and open subcategories

within this alternative, so we have to rate it with a dual ranking [Medium, High] against this criterion,

depending on whether or not the overlay is implemented using Open SDN. Because we restricted our

definition of SDN via hypervisor-based overlays to controller-based strategies, it ranks high in this

category. With respect to device simplification, the overlay strategy does allow the physical network to

be implemented by relatively simple IP layer three switches, so we give this a ranking of medium with

respect to device simplification.

A sidenote is called for here. The SDN via hypervisor-based overlays is often touted as delivering

network virtualization on top of the existing physical network. Taken at face value, this does not force

any device simplification, it merely allows it. A customer may be very pleased to be able to keep

his very complex switches if the alternative means discarding that investment in order to migrate to

simple switches. This actually holds true for OpenFlow as well. Many vendors are adding the OpenFlow

protocol to existing complex switches, resulting in hybrid switches. Thus, OpenFlow itself does not

mandate simple devices either, but it does allow them.

Plane separation is more complicated. In the sense that the topology of the physical network has been

abstracted away and the virtual network simply layers tunnels on top of this abstraction, the control

plane for the virtual network has indeed been separated. The physical switches themselves, however, still

implement locally their traditional physical network control plane, so we give this a score of medium.

The criterion of too much change is also difficult to rank here. On one hand, the same physical network

infrastructure can usually remain in use, so no forklift upgrade of equipment is necessarily required.

On the other hand, converting the network administrators’ mindset to thinking of virtual networks is

a major transformation, and it would be wrong to underestimate the amount of change this represents.

Thus, we rank this medium.

Since SDN via hypervisor-based overlays may or may not be based on the centralized controller

concept, it gets an N/A ranking in the single-point-of-failure category. Similarly, we feel that it deserves

the same medium ranking in performance and scale as Open SDN. It fares better than Open SDN with

respect to deep packet inspection and stateful flow awareness because the virtual switches are free to

implement it under the overlay paradigm. They may map different flows between the same hosts to

different tunnels. This freedom derives from the fact that these virtual switches may implement any

propriety feature, such as deep packet inspection, and are not restricted by a standard like OpenFlow.
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Since these features may be supported by proprietary overlay solutions but are not currently supported

by some of the largest overlay incumbents, we give these both a medium ranking.

SDN via hypervisor-based overlays receives the highest marks in the final two categories. The MAC

forwarding table size problem is solved, since the physical network device deals with only the MACs

of the VTEPs, which is a much smaller number than if it had to deal with all the VM MAC addresses.

Similarly, since virtualization can be achieved by tunnels in this technology, the system does not need

to over-rely on VLANs for virtualization.

To summarize, because SDN via hypervisor-based overlay networks was specifically designed for

the data center, it was not tailored to other environments such as campus, service provider, carrier, and

transport networks. For this reason, though it directly addresses some major needs in the data center,

it has fewer applications in other networking environments. In the overlay alternative, the underlying

physical network does not fundamentally change. As we examine SDN use cases outside the data center

in Chapter 8, we will see that in many cases the solution depends on changing the underlying physical

network. In such cases, the overlay approach is clearly not appropriate. SDN via hypervisor-based

overlays is an important solution gaining considerable traction in data center environments, but it does

not necessarily offer the device simplification or openness of Open SDN.

6.4 SDN via Opening Up the Device

There is another approach to SDN that has received considerably less attention than the other alternatives.

This approach attempts to provide SDN characteristics by opening up the networking device itself for

software development. We examine this alternative in the sections that follow.

We have stated that traditional networking devices themselves are closed environments. Only Cisco

engineers can write networking software for Cisco devices, only Juniper engineers can write software

for Juniper devices, and so on. The ramifications of this situation are that the evolution of networking

devices has been stunted because so few people are enabled to innovate and develop new networking

technologies.

The approaches we have discussed thus far, Open SDN, SDN via APIs, and SDN via hypervisor-

based overlays, generally push networking intelligence off the switch onto a controller, which sees the

entire network and on which it is possible to write networking applications. To varying degrees, these

applications may be written by developers from outside the switch manufacturers. We have explained the

advantages of this in our discussion of the SDN trait of openness. A fundamentally different approach

to SDN is to provide networking devices that are themselves open, capable of running software that has

been written by the open source community.

This Open Device concept is represented in Figure 6.12. The device itself, at the lower levels, is

the same as in any other device, with L2 and L3 forwarding tables and TCAMs for the more complex

matching and actions. However, above this layer is an API that allows networking software applications

to be written and installed into the device. Under the Open Device approach, the current distributed,

independent, and autonomous device model remains unchanged. The network intelligence is still dis-

tributed throughout the network on the devices, and there is no centralized controller. The nature of the

networking devices changes from being closed and proprietary to being open and standardized, such

that any outside party can write software to run on these open devices. To be successful, there needs to be
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Opening up the device.

some level of standardization of the APIs that will be used by the networking software running on these

devices. This is similar to the experience with Linux, where the operating system of the networking

device provides some APIs that are relatively universal so that software can be written once and run

on multiple open device platforms. It is important to recognize that the Linux experience was possible

only because of the prevalence of a standardized PC hardware platform, which is a result of the Wintel

de facto partnership.

This situation does not yet exist with enterprise-class switches but may begin to occur as more original

service manufacturers (ODMs) build enterprise-class switches all based on the same reference design

from the same merchant silicon vendors such as Broadcom or Intel. Since the switching chip manufac-

turers are few in number, the number of different reference designs will be small, and we may see de

facto standardization of these switching platforms. Interestingly, this is already occurring with consumer

wireless router hardware, which provides a concrete example of how opening up the device can work.

OpenWRT [18] is an open source implementation of a consumer wireless router. This is a Linux-based

distribution that has been extended to include the IEEE 802.11, routing, and switching software necessary

to support the home AP functionality. OpenWRT has enjoyed considerable success due to the fact that

the consumer AP ODMs have largely followed the model we described above: A very large number

of devices are manufactured from the same reference design and thus are compatible from a software

point of view. This is evidenced by the very long list of supported hardware documented in [18]. This

hardware compatibility allows the OpenWRT to be reflashed onto the hardware, overwriting the software

image that was installed at the factory. Since the source code for OpenWRT is open, developers can add

extensions to the basic consumer AP and bring that hybrid product to market. Although OpenWRT is

not an SDN implementation, the model it uses is very much that of opening up the device. The challenge

in directly translating this model to SDN is that the consumer wireless device hardware is much simpler

than an enterprise-class switch. Nonetheless, the sophistication of ODMs has been increasing, as is the

availability and sophistication of reference designs for enterprise-class switches.
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This approach to SDN is advocated primarily by the merchant silicon vendors who develop the ASICs

and hardware that exist at the lower levels of the networking device. By providing an open API to anybody

who wants to write networking applications, they promote the adoption of their products. Intel has taken

a step in this direction with its open source Data Plane Development Kit (DPDK) [6,13]. Despite this

momentum, such a standardized hardware platform for enterprise-class switches does not yet exist. The

success of SDN via opening up the device is predicated on this standardization becoming a reality.

6.5 Network Functions Virtualization

We cannot complete our chapter on SDN alternatives without mentioning network functions virtual-

ization (NFV), since there is confusion in the industry as to whether or not NFV is a form of SDN

[12]. NFV is the implementation of the functionality of network appliances and devices in software.

This means implementing a generalized component of your network such as a load balancer or IDS

in software. It can even be extended to the implementation of routers and switches. This has been

made possible by advancements in general-purpose server hardware. Multicore processors and network

interface controllers that offload network-specific tasks from the CPU are the norm in data centers.

Although these hardware advances have been deployed initially to support the large numbers of VMs

and virtual switches required to realize network virtualization, they have the advantage that they are fully

programmable devices and can thus be reprogrammed to be many different types of network devices.

This is particularly important in the service provider data center, where the flexibility to dynamically

reconfigure a firewall into an IDS [19] as a function of tenant demand is of enormous value.

The reason for the confusion about whether or not NFV is a form of SDN is that the two ideas are

complementary and overlapping. SDN may be used very naturally to implement certain parts of NFV.

NFV may be implemented by non-SDN technologies, however, just as SDN may be used for many

purposes not related to NFV. In short, NFV is not just another approach to SDN.

6.6 Alternatives Overlap and Ranking

We have tried to define a clear framework and delineated four distinct SDN alternatives; however, the

lines between these alternatives are sometimes blurred. For example:

• NVP uses OpenFlow as the southbound interface from its controller to the OVS switches that form its

overlay network, so it is an SDN via hypervisor-based overlays and an Open SDN implementation.

• The OpenDaylight controller uses several different southbound APIs to control the network devices.

One of those southbound APIs is OpenFlow. Thus, depending on the exact configuration, OpenDay-

light may be considered to implement SDN via APIs or OpenSDN.

In Figure 6.13 we attempt to depict the possible overlap between our four major SDN approaches. The

category of SDN via opening up the device is a difficult one for comparison. As Figure 6.13 indicates,

this category actually subsumes all the other categories and includes alternatives not yet contemplated.

After all, if the device is truly opened up, nothing restricts that implementation from sticking with

any current or future paradigm. For example, Big Switch’s Indigo provides OpenFlow switch software

freely to device vendors who want to use it. This should encourage ODMs to build standard hardware
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SDN alternatives overlap.

and software so that they can use software such as Indigo to OpenFlow-enable their switch without

developing the switch-side OpenFlow software. So, one could argue that Indigo is an example of SDN

via opening up the device. But Indigo is clearly an example of OpenSDN, because it is an implementation

of OpenFlow. For this reason, we exclude SDN via opening up the device from Table 6.1, since the

comparisons against something that can mean all things to all people are not reasonable.

Before examining Table 6.1 in detail, we remind the reader to recall certain constraints on our

definitions of the alternatives:

• We restrict our definition of both SDN via APIs and SDN via hypervisor-based overlays to controller-

based approaches.

• We restrict our definition of SDN via APIs to those approaches whereby the APIs reside on the

devices and are used to program a locally resident control plane on those devices.

• It is possible to implement SDN via hypervisor-based overlays using Open SDN. We thus define

two subcategories for this alternative. The first subcategory is not based on Open SDN, and the

second uses Open SDN and, when appropriate, the ranking will reflect those two subcategories (i.e.,

[not OpenSDN , OpenSDN ]).
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Table 6.1 SDN Technologies Report Card

Criterion Open SDN SDN via APIs SDN via Hypervisor-Based

Overlays

Plane separation High Low Medium

Simplified device High Low Medium

Centralized control High Medium High

Network automation and virtualization High High High

Openness High Low [Medium, high]a

Too much change Low High Medium

Single point of failure Low Medium N/A

Performance and scale Medium Medium Medium

Deep packet inspection Low Low Medium

Stateful flow awareness Low Low Medium

MAC forwarding table overflow High Low High

VLAN exhaustion High Low High

a See Section 6.6 for an explanation of this bipartite ranking.

6.7 Conclusion

In this chapter we examined some well-publicized drawbacks of Open SDN and looked at three alter-

native SDN definitions. We examined the ways in which each of these approaches to SDN meets our

definition of what it means to be SDN as well as to what degree they suffer from those same well-

publicized drawbacks. Each of the alternatives, SDN via APIs, SDN via hypervisor-based overlays, and

SDN via open devices, has strengths and areas in which it addresses real SDN-related issues. Conversely,

none of the alternatives matches our criteria for what constitutes an SDN system as well as does Open

SDN. Thus, our primary focus as we study different use cases in the next two chapters will be how Open

SDN can be used to address these real-life problems. We consider these alternative definitions where

they have proven to be particularly effective at addressing a given use case.
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7
CHAPTER

SDN in the Data Center

More than most mainstream deployments, the modern data center has stretched traditional networking to

the breaking point. Previous chapters in this book highlighted the importance of data center technology

in accelerating the urgency and relevance of SDN. In its various incarnations discussed thus far, SDN has

evolved specifically to address the limitations of traditional networking that have presented themselves

most dramatically in today’s mega data center. In this chapter we delve more deeply into data center

networking technology, both as it exists today and as it will adapt in the future through the benefit of

SDN. Specifically, in this chapter we examine:

• Data center needs. What are the specific shortcomings that exist in data center networks today?

• Data center technologies. What technologies are employed in the data center, both now and with

the advent of SDN?

• Data center use cases. What are some specific applications of SDN in the data center?

In answering these questions, we hope to illuminate the close relationship that exists between SDN’s

technical strengths and the modern data center.

7.1 Data Center Definition

Let us define what exactly a data center is so that we can better understand its needs and the technologies

that have arisen to address those needs. The idea of a data center is not new. Densely packed racks of

high-powered computers and storage have been around for decades, originally providing environments

for mainframes. These eventually gave way to minicomputers and then to the servers that we know and

deal with today. Over time the density of those servers and the arrays of storage that served them have

made it possible to host a tremendous amount of compute power in a single room or pod.

Today’s data centers hold thousands, even tens of thousands, of physical servers. These data centers

can be segregated into the following three categories:

• Private single-tenant. Individual organizations that maintain their own data centers belong in this

category. The data center is for the private use of the organization, and there is only the one organi-

zation or tenant using the data center.

• Private multitenant. Organizations that provide specialized data center services on behalf of other

client organizations belong in this category. IBM and EDS (now HP) are examples of companies

that host such data centers. These centers are built and maintained by the organization providing the

service, and multiple clients store data there, suggesting the term multitenant. These data centers

are private because they offer their services contractually to specific clients.
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• Public multitenant. Organizations that provide generalized data center services to any individual

or organization belong in this category. Examples of companies that provide these services include

Google and Amazon. These data centers offer their services to the public. Anybody, whether indi-

viduals or organizations, who wants to use these services may access them via the web.

In the past, these data centers were often hosted such that they could be reached only through private

communication channels. However, in recent years, these data centers have begun to be designed to be

accessible through the Internet. These types of data centers are often referred to as residing in the cloud.

Three subcategories of clouds are in common use: public clouds, private clouds, and hybrid clouds.

In a public cloud, a service provider or other large entity makes services available to the general

public over the Internet. Such services may include a wide variety of applications or storage services,

among other things. Examples of public cloud offerings include Microsoft Azure Services Platform and

Amazon Elastic Compute Cloud. In a private cloud, a set of server and network resources is assigned

to one tenant exclusively and protected behind a firewall specific to that tenant. The physical resources

of the cloud are owned and maintained by the cloud provider, which may be a distinct entity from

the tenant. The physical infrastructure may be managed using a product such as VMware’s vCloud.

Amazon Web Services is an example of the way a private cloud may also be hosted by a third party

(i.e., Amazon).

An increasingly popular model is the hybrid cloud, where part of the cloud runs on resources dedicated

to a single tenant, but other parts reside on resources that are shared with other tenants. This is particularly

beneficial when the shared resources may be acquired and released dynamically as demand grows and

declines. Verizon’s cloud bursting, which we present in Section 8.2.3, provides an example of how a

hybrid cloud might work. Note that the ability to dynamically assign resources between tenants and to

the general public is a major driver behind the interest in network virtualization and SDN.

Combining the increasing density of servers and storage and the rise in networking speed and

bandwidth, the trend has been to host more and more information in ever-larger data centers. Add

to that enterprises’ desire to reduce operational costs, and we find that merging many data centers into

a larger single data center is the natural result.

Concomitant with this increased physical density is a movement toward virtualization. Physical

servers now commonly run virtualization software that allows a single server to actually run a number

of virtual machines. This move toward virtualization in the compute space reaps a number of benefits,

from decreasing power requirements to more efficient use of hardware and the ability to quickly create,

remove, and grow or shrink applications and services.

One of the side effects of the migration to cloud computing is that it is usually associated with

a usage-sensitive payment system. The three main business models of cloud computing are Infras-

tructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). These

three are all provided and sold on an on-demand, usage-sensitive basis, shifting CAPEX costs to

OPEX. The popularity of this new business model has been a major driver for the explosion in the

size and number of data centers. We discuss the business ramifications of this new model on SDN in

Chapter 12.

Thus, the three trends toward cloud, increased density, and virtualization have placed demands on

data center networking that did not exist before. We examine those needs in the next section.



7.2 Data Center Demands 147

7.2 Data Center Demands

As a result of the evolutionary trends identified in the previous section, a number of critical networking

needs have arisen that must be met in order for data center technology to thrive. We mentioned some

of these needs in previous chapters. We examine them in greater detail here.

7.2.1 Overcoming Current Network Limitations

The potential to easily ignite and tear down VMs is a radical departure from the physical world that

network managers have traditionally faced. Networking protocols were coupled with physical ports,

which is not the case moving forward. The dynamic nature and sheer number of VMs in the data

center have placed demands on the capacity of network components that were earlier thought to be safe

from such pressures. In particular, these areas include MAC address table size, number of VLANs, and

spanning tree.

MAC Address Explosion

In switches and routers, the device uses MAC address table to quickly determine the port or interface

out of which the device should forward the packet. For speed, this table is implemented in hardware. As

such, it has a physical limit to its size. Naturally, device vendors will determine the maximum number

of entries to hold in the MAC table based on controlling their own costs, at the same time providing an

adequate number of entries for network demands. If the table is too large, the vendor will have spent too

much money on creating the device. If the table is too small, the customer will experience the problems

we describe here.

Networks in the past had manageable limits on the maximum number of MAC addresses that would

need to be in the MAC address table at any given time. This was partly attributed to physical limitations of

data centers and the number of servers that would be part of a single layer two network. It is also affected

by the physical layout of the network. In the past, physically separate layer two networks remained

logically separate. Now, with network virtualization and the use of Ethernet technology across WANs,

the layer two networks are being stretched geographically as never before. With server virtualization,

the number of servers possible in a single layer two network has increased dramatically. With numerous

virtual network interface cards (NICs) on each virtual server, this problem of a skyrocketing number of

MAC addresses is exacerbated. Layer two switches are designed to handle the case of a MAC table miss

by flooding the frame out all ports except the one on which it arrived, as shown in Figure 7.1. This has

the benefit of ensuring that the frame reaches its destination if that destination exists on the layer two

network. Under normal circumstances, when the destination receives that initial frame, this prompts a

response from the destination. Upon receipt of the response, the switch is able to learn the port on which

that MAC address is located and populates its MAC table accordingly. This scheme works well unless

the MAC table is full, in which case it cannot learn the address. Thus, frames sent to that destination

continue to be flooded. This is a very inefficient use of bandwidth and can have significant negative

impact on performance. This problem is exacerbated in the core of the data center network. When the

traditional nonvirtualized network design is used, where all the MAC addresses are visible throughout

the topology, the pressure on the MAC address tables is intense.
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Switch MACs

MAC address table full, causing

incoming packets to fail their match,

resulting in the packet getting flooded

to all ports

FIGURE 7.1

MAC address table overflow.

Since VLANs are used extensively in modern layer two networks, let us take a closer VLAN-centric

look at Figure 7.1. When a VLAN-tagged packet fails its match, it is flooded out only to all ports on that

VLAN, somewhat mitigating the flooding inefficiency. Conversely, a host may be a member of multiple

VLANs, in which case it will occupy one MAC address table entry per VLAN, further exacerbating the

problem of MAC address table overflow.

Number of VLANs

When the IEEE 802.1 working group created the 802.1Q extension to the definition of local area

networks, they did not anticipate that there would be a need for more than 12 bits to hold potential

VLAN IDs. The IEEE 802.1Q tag for VLANs is shown in Figure 7.2. The tag depicted in Figure 7.2

supports 212 (4096) VLANs. When these tags were introduced in the mid to late 1990s, networks were

smaller and there was very limited need for multiple virtual domains within a single physical network.

The introduction of data centers created the need to segregate traffic so as to ensure security and

separation of the various tenant networks’ traffic. The technology responsible for providing this sepa-

ration is VLANs. As long as data centers remained single-tenant networks, the maximum number of

4096 VLANs seemed more than sufficient. To have expanded this 12 bit field unnecessarily was not

wise, since different tables in memory and in the ASICs had to be large enough to accommodate the

maximum number. Thus, to have made the maximum larger than 4096 had a definite downside at the

time the design work was performed.

When data centers continued to expand, however, especially with multi-tenancy and server virtual-

ization, the number of VLANs required could easily exceed 4096. When there are no more available
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FIGURE 7.2

VLAN exhaustion.

VLANs, the ability to share the physical resources among the tenants quickly becomes complex. Since

the number of bits allocated to hold the VLAN is fixed in size and for years hardware has been built

that depends on that specific size, it is nontrivial to expand the size of this field to accommodate more

VLANs. Thus, some other solution is needed to overcome this limitation.

An upshot of the limit of 4096 VLANs has been an increase in the use of MPLS. MPLS does not

suffer the same limitation in the number of MPLS tags as exists with VLAN IDs, and the tags need

not be isolated to a single layer two network. Precisely because it is a layer three technology with the

correspondingly more complex control plane, MPLS has primarily been deployed in WANs. It is likely,

though, that MPLS will see more use in data centers [9]. We explore the use case of MPLS with SDN

in the WAN in Section 8.1.1.

Spanning Tree

In the early years of Ethernet, bridges were built as transparent devices capable of forwarding packets

from one segment to another without explicit configuration of forwarding tables by an operator. The

bridges learned forwarding tables by observing the traffic being forwarded through them. Distributed

intelligence in the devices was capable of collectively determining whether there were loops in the

network and truncating those loops so as to prohibit issues such as broadcast storms from bringing

down the network.

This was accomplished by the bridges or switches collectively communicating with one another to

create a spanning tree, which enforces a loop-free hierarchical structure on the network in situations

where physical loops do exist. This spanning tree was then calculated using the Spanning Tree Protocol

(STP) we briefly reviewed in Section 1.5.1. The process of determining this spanning tree is called

convergence, and in the early days it would take some time (dozens of seconds) for the spanning tree

to converge after a physical change to the networking devices and their links had taken place.

Over time, through improvements to STP, the process of converging the spanning tree increased

in speed. For example, with the improvements in recent versions of the standard, convergence times



150 CHAPTER 7 SDN in the Data Center

for conventionally large networks have decreased dramatically.1 Despite these improvements, STP still

leaves perfectly functional links unused and with frames being forwarded to the root of the spanning tree,

which is certainly not universally the optimal path. Data centers need more cross-sectional bandwidth.

By this we mean using the most efficient path between any two nodes without imposing an artificial

hierarchy in the traffic patterns.

The fact that the fluidity of data center virtualization has increased the frequency of changes and

disruptions, thus requiring reconvergence to occur more often, has only added to the inefficiency of

STP in the data center. STP was simply not built for the modern data center world of virtual switches

and ephemeral MAC addresses.

7.2.2 Adding, Moving, and Deleting Resources

Today’s virtualized data centers are able to make changes much more quickly than in the past. Networks

need to adapt in order to keep pace with the virtualization capabilities of servers and storage. Speed

and automation are of critical importance when it comes to handling the rapid changes demanded by

virtualized servers and storage.

It is clearly important that changes to networking infrastructure take place at the same rate as is

possible with servers and storage. Legacy networks require days or weeks for significant changes to

VLANs and other network plumbing needs. A large part of the reason for this time requirement is

that the repercussions of a mistaken network change can easily impact all the data center resources,

including not only networking but also its compute and storage components. Coordinating changes with

all these disparate departments is unavoidably complex. These changes need to have the ability to be

automated so that changes that must happen immediately can take place without human intervention.

Legacy protocols were designed to react after the newly ignited service comes online. With SDN one

can use the foreknowledge that a new service is about to be initiated and proactively allocate the network

capacity it will require.

7.2.3 Failure Recovery

The size and scale of data centers today make recovery from failure a complex task, and the ramifications

of poor recovery decisions are only magnified as scale grows. Determinism, predictability, and optimal

re-configuration are among the most important recovery-related considerations.

With the distributed intelligence of today’s networks, recovery from failures results in unpredictable

behavior. It is desirable that the network move to a known state, given a particular failure. Distributed

protocols make this difficult to do. A complete view of the network is required to make the recovery

process yield the best result.

7.2.4 Multitenancy

Data center consolidation has resulted in more and more clients occupying the same set of servers,

storage, and network. The challenge is to keep those individual clients separated and insulated from

each other and to utilize network bandwidth efficiently.

1In practice, including link failure detection time, convergence times have been reduced to the order of hundreds of milli-

seconds.
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In a large multitenant environment, it is necessary to keep separate the resources belonging to each

client. For servers this could mean not mixing clients’ virtual machines on the same physical server.

For networks it could mean segregation of traffic using a technology that ensures that packets from two

distinct tenants remain insulated from one another. This is needed not only for the obvious security

reasons but also for QoS and other service guarantees.

With a small number of tenants in a data center, it was possible to arrange traffic and bandwidth

allocation using scripts or some other rudimentary techniques. For example, if it was known that backups

would be run at a certain time, arrangements could be made to route traffic appropriately around that

heavy load. However, in an environment with hundreds (a large data center) or thousands (a cloud) of

tenants with varying needs and schedules, a more fluid and robust mechanism is required to manage

traffic loads. This topic is examined in more detail in the next section.

7.2.5 Traffic Engineering and Path Efficiency

As data centers have grown, so has the need to make better use of the resources being shared by all the

applications and processes using the physical infrastructure. In the past this was less an issue because

overprovisioning could make up for inefficiencies. But with the current scale of data centers, it is

imperative to optimally utilize the capacity of the network. This entails proper use of monitoring and

measurement tools for more informed calculation of the paths that network traffic takes as it makes its

way through the physical network.

To understand traffic loads and take the appropriate action, the traffic data must be monitored and

measured. Gathering traffic intelligence has often been a luxury for networks. But with the need to make

the most efficient use of the links and bandwidth available, this task has become an imperative.

State-of-the-art methods of calculating routes use link-state technology, which provides the network

topology for the surrounding network devices that are part of the same autonomous system (AS).

This allows path computation to determine the shortest path. However, the shortest path as defined by

traditional technology is not always the optimal path, since it does not take into consideration dynamic

factors such as traffic load.

One of the reasons for the increasing attention on traffic engineering and path efficiency in the data

center has been the rise of East-West traffic relative to North-South traffic. In Section 1.3 we defined

these traffic types as follows: East-West traffic is composed of packets sent by one host in a data center

to another host in that same data center. Analogously, North-South traffic is traffic entering (leaving)

the data center from (to) the outside world.

Facebook provides a good example of what is driving the growth in East-West traffic. When you

bring up your newsfeed page on Facebook, it has to pull in a multitude of data about different people

and events in order to build the webpage and send it to you. That data resides throughout the data center.

The server that is building and sending you your Facebook newsfeed page has to pull data from servers

in other parts of the data center. That East-West traffic is at least as large as the North-South data (i.e.,

the final page it sends you) and in fact can be larger if you account for the fact that servers are moving

data around even when no one is requesting it (via replication, staging data in different data centers,

and so on).

In the older data center model, when most traffic was North-South, traffic engineering inside the data

center was mostly a question of ensuring that congestion and loss would not occur as the data moved
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from the servers back toward the outside world. With so much East-West traffic, traffic engineering in

the data center has become much more complex. These new traffic patterns are a large part of the reason

for the interest in the Ethernet fabrics we discuss in Section 7.5.

We have now described some of the most critical needs that exist in data center networks as a result

of server virtualization and the massive scale that occurs due to data center consolidation and the advent

of the cloud. In response to these needs, the networking industry has developed new technologies to

mitigate some of these issues. Some of these technologies are directly related to SDN, and some are

not. We examine a number of these technologies in the sections that follow.

7.3 Tunneling Technologies for the Data Center

Previously in this chapter we have noted the impact of server virtualization. One of the responses to

server virtualization has been the birth of the concept of network virtualization. We defined network

virtualization in Section 3.7. We also discussed one of the alternative definitions of SDN, which we

referred to as SDN via hypervisor-based overlays. At that time we showed how hypervisor-based

tunneling technologies are employed to achieve this virtualization of the network. There are a number

of tunneling technologies used in the data center, some of which predate SDN. Three main technologies

are being used today to address many of the data center needs we presented in Section 7.2. These

tunneling methods are Virtual eXtensible Local Area Network (VXLAN) [3], Network Virtualization

using Generic Routing Encapsulation (NVGRE) [4], and Stateless Transport Tunneling (STT) [5].

All these tunneling protocols are based on the notion of encapsulating an entire layer two MAC frame

inside an IP packet. This is known as MAC-in-IP tunneling. The hosts involved in communicating with

each other are unaware that there is anything other than a traditional physical network between them. The

hosts construct and send packets in exactly the same manner as they would had there been no network

virtualization involved. In this way, network virtualization resembles server virtualization, where hosts

are unaware that they are actually running in a virtual machine environment. Admittedly, the fact that

the packets are encapsulated as they transit the physical network does reduce the maximum transmission

unit (MTU) size, and the host software must be reconfigured to account for that detail.

All three of these tunneling methods may be used to form the tunnels that knit together the virtual

tunnel endpoints (VTEPs) in an SDN via hypervisor-based overlays system.2 Given this background

and common behavior of these tunneling technologies, the next sections take a deeper look at these

technologies and examine how they differ from one another.

7.3.1 Virtual eXtensible Local Area Network

The VXLAN technology was developed primarily by VMware and Cisco as a means to mitigate the

inflexibility and limitations of networking technology. Some of the main characteristics of VXLAN are:

• VXLAN utilizes MAC-in-IP tunneling.

• Each virtual network or overlay is called a VXLAN segment.

2These are sometimes called VXLAN tunnel endpoints, which essentially means the same thing as the more generic and

commonly used virtual tunnel endpoint.



7.3 Tunneling Technologies for the Data Center 153

Outer MAC / IP/ UDP Header

Dest

MAC U
D

PSource

MAC

Source

IP

Dest

IP

Src UDP

Port

Dst UDP

4789

Source / Dest
MAC & IP of Switch
Tunnel Endpoints

VXLAN UDP
Port = 4789

VXLAN Header

VXLAN

Net ID

24-bit
Network Identifier

Outer Payload

Original Packet

Dest

MAC

Source

MAC
Payload

Original Host Dest &
Source and PayloadDynamically 

generated by 
hashing

FIGURE 7.3

VXLAN packet format.

• VXLAN segments are identified by a 24-bit segment ID, allowing for up to 224 (approximately

16 million) segments.

• VXLAN tunnels are stateless.

• VXLAN segment endpoints are the switches that perform the encapsulation and are called virtual

tunnel endpoints (VTEPs).

• VXLAN packets are unicast between the two VTEPs and use UDP-over-IP packet formats.

• It is UDP based. The UDP port number for VXLAN is 4789.

Figure 7.3 illustrates the format of a VXLAN packet. As you can see in the diagram, the outer header

contains the MAC and IP addresses appropriate for sending a unicast packet to the destination switch,

acting as a virtual tunnel endpoint. The VXLAN header follows the outer header and contains a VXLAN

network identifier of 24 bits in length, sufficient for about 16 million networks.

The proponents of VXLAN technology argue that it assists load balancing within the network. Much

of the load balancing within the data center network is based on the values of various packet fields,

including the destination and source port numbers. The fact that the source port of the UDP session is

derived by hashing other fields of the flow results in a smooth distribution function for load balancing

with the network.

7.3.2 Network Virtualization Using GRE

The NVGRE technology was developed primarily by Microsoft, with other contributors including Intel,

Dell, and Hewlett-Packard. Some of the main characteristics of NVGRE are:

• NVGRE utilizes MAC-in-IP tunneling.

• Each virtual network or overlay is called a virtual layer two network.

• NVGRE virtual networks are identified by a 24-bit virtual subnet identifier, allowing for up to 224

(16 million) networks.

• NVGRE tunnels, like GRE tunnels, are stateless.

• NVGRE packets are unicast between the two NVGRE end points, each running on a switch. NVGRE

utilizes the header format specified by the GRE standard [11,12].
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NVGRE packet format.

Figure 7.4 shows the format of an NVGRE packet. The outer header contains the MAC and IP

addresses appropriate for sending a unicast packet to the destination switch, acting as a virtual tunnel

endpoint, just like VXLAN. Recall that for VXLAN the IP protocol value was UDP. For NVGRE the

IP protocol value is 0x2F, which means GRE. GRE is a separate and independent IP protocol in the

same class as TCP or UDP. Consequently, as you can see in the diagram, there are no source and

destination TCP or UDP ports. The NVGRE header follows the outer header and contains a NVGRE

subnet identifier of 24 bits in length, sufficient for about 16 million networks.

7.3.3 Stateless Transport Tunneling

Stateless Transport Tunneling (STT) is a recent entry into the field of tunneling technologies used for net-

work virtualization. Its major sponsor was originally Nicira. Some of the main characteristics of STT are:

• STT utilizes MAC-in-IP tunneling.

• The general idea of a virtual network exists in STT but is enclosed in a more general identifier called

a context ID.

• STT context IDs are 64 bits, allowing for a much larger number of virtual networks and a broader

range of service models.

• STT attempts to achieve performance gains over NVGRE and VXLAN by leveraging the TCP

Segmentation Offload (TSO) found in the network interface cards (NICs) of many servers. TSO is a

mechanism implemented on server NICs that allows large packets of data to be sent from the server to

the NIC in a single send request, thus reducing the overhead associated with multiple smaller requests.

• STT, as the name implies, is stateless.

• STT packets are unicast between tunnel end points, utilizing TCP in the stateless manner associated

with TSO. This means that it does not use the typical TCP windowing scheme, which requires state

for TCP synchronization and flow control.

Figure 7.5 shows the format of an STT packet. Like the other tunneling protocols discussed here,

the outer header contains the MAC and IP addresses appropriate for sending a unicast packet to the

destination switch, acting as a VTEP. For VXLAN, the IP protocol value was UDP, and for NVGRE
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STT packet format.

the IP protocol value was GRE. For STT, the IP protocol is TCP. The TCP port for STT has yet to be

ratified, but, tentatively, the value 7471 has been used. The STT header follows the outer header and

contains an STT context identifier of 64 bits in length, which can be subdivided and used for multiple

purposes; however that is done, there is ample space for as many virtual networks as required.

7.4 Path Technologies in the Data Center

One of the critical issues in current data centers is the efficient use of the physical network links that

connect network devices forming the data center’s network infrastructure. With the size and demands

of data centers, it is imperative that all links be utilized to their full capacity.

As we explained in Section 7.2.1, one of the shortcomings of layer two network technologies such

as spanning tree is that it will intentionally block certain links in order to ensure a hierarchical network

without loops. Indeed, in the data center, this drawback has become more important than the problem

of slow convergence times, which formed the bulk of the early critiques of STP.

Layer three networks also require intelligent routing of packets as they traverse the physical network.

This section explores some path-related technologies that are intended to provide some of the intelligence

required to make the most efficient use of the network and its interconnecting links.

7.4.1 General Multipath Routing Issues

In a typical network of layer three subnets, there will be multiple routers connected in some manner

as to provide redundant links for failover. These multiple links have the potential to be used for load

balancing. Multipath routing is the general category for techniques that make use of multiple routes

in order to balance traffic across a number of potential paths. Issues that must be considered in any

multipath scheme are:

• The potential for out-of-order delivery (OOOD) of packets that take different paths and must be

reordered by the recipient, and

• The potential for maximum packet size differences on links within the different paths, causing issues

for certain protocols such as TCP and its path MTU discovery.
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7.4.2 Multiple Spanning Tree Protocol

The Multiple Spanning Tree Protocol (MSTP) was introduced to achieve better network link utilization

with spanning tree technology when there are multiple VLANs present. Each VLAN would operate

under its own spanning tree. The improved use of the links was to have one VLAN’s spanning tree

use unused links from another VLAN, when reasonable to do so. MSTP was originally introduced

as IEEE 802.1s. It is now part of IEEE 802.1Q-2005 [1]. It was necessary to have a large number of

VLANs in order to achieve a well-distributed utilization level across the network links, because the only

distribution was at VLAN-granularity. MSTP predates the Shortest Path Bridging protocol discussed

below, which does not suffer this limitation.

7.4.3 Shortest Path Bridging

IEEE 802.1aq is the Shortest Path Bridging (SPB) standard, and its goal is to enable the use of multiple

paths within a layer two network. Thus, SPB allows all links in the layer two domain to be active.

SPB is a link state protocol, which means that devices have awareness of the topology around

them and are able to make forwarding decisions by calculating the best path to the destination. It uses

the Intermediate System to Intermediate System (IS-IS) routing protocol [6] to discover and advertise

network topology and to determine the paths to all other bridges in its domain.

SPB accomplishes its goals using encapsulation at the edge of the network. This encapsulation can be

either MAC-in-MAC (IEEE 802.1ah) or Q-in-Q (IEEE 802.1ad). We discussed Q-in-Q encapsulation

briefly in Section 5.5.5.

Figure 7.6 shows the frame format for Q-in-Q. As shown in the figure, Q-in-Q means pushing VLAN

tags into the packet such that the inner tag becomes the original VLAN, also called the customer VLAN

or C-VID. The outer tag has multiple names, depending on the context of its use. They are metro tag

for its use in Metro Ethernet backbones, PE-VLAN for its use in provider networks, and S-VID for its

use in service provider VLANs. C-VID represents the original customer VLAN tag.
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Shortest path bridging: Q-in-Q (VLAN).
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Shortest path bridging: MAC-in-MAC.

When the packet arrives at the edge of the provider’s interior network, a new VLAN tag is pushed

into the packet, identifying the VLAN on which the packet will travel when it is inside the provider’s

network. When it exits, that VLAN tag is removed.

Figure 7.7 shows the frame format for MAC-in-MAC. The new MAC header includes the backbone’s

source (SA) and destination (DA) addresses. Also part of the header is the VLAN identifier for the

backbone provider’s network (B-VID) as well as the backbone’s service instance ID (I-SID), which

allows the provider to organize customers into specific services and provide appropriate levels of QoS

and throughput to each service. When a packet arrives at the provider edge, the new header gets attached

to the beginning of the packet and is sent through the provider’s network. When it leaves the provider’s

domain, the header is stripped.

7.4.4 Equal-Cost Multipath

One of the most important operations that must be undertaken in large networks is optimal path compu-

tation. Merely getting a packet to its destination is far simpler than getting it there in the most efficient

way possible. In Section 1.5.2 we introduced OSPF and IS-IS as modern link-state protocols used for

calculating routes in complex layer three networks. We just explained in Section 7.4.3 that IS-IS is used

as the basis for calculating routes in the layer two SPB protocol. There is a general routing strategy

called equal-cost multipath (ECMP) that is applicable in the data center. Multipath routing is a feature

that is explicitly allowed in both OSPF and IS-IS. The notion is that when more than one equal-cost

path exists to a destination, these multiple paths can be computed by a shortest-path algorithm and

exposed to the packet-forwarding logic. At that point some load-balancing scheme must be used to

choose between the multiple available paths. Because several routing protocols can derive the multiple

paths and there are many ways in which to load-balance across the multiple paths, ECMP is more of a

routing strategy than a specific technology. A discussion of some of the issues with ECMP can be found

in [10]. An analysis of a specific ECMP algorithm is found in [8].

Another sophisticated path computation technology is the Path Computation Element (PCE)-based

architecture. It has been used primarily in the WAN and not seen much use in the data center, so we

defer this topic to Section 8.1.1.
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7.4.5 SDN and Shortest-Path Complexity

Throughout this chapter we have made frequent reference to the importance of calculating optimal

paths. We have implied that a centralized controller can perform this task better than the traditional

distributed algorithm approach because (1) it has a more stable, global view of the network, (2) it

can take more factors into consideration, including current bandwidth loads, than current distributed

approaches do, and (3) the computation can be performed on the higher-capacity memory and processor

of a server rather than the more limited memory and processor available on the network devices. Though

all this is true, we should point out that the fundamental computational complexity of shortest-path

calculation is not changed by any of these factors. Shortest-path remains a fundamentally difficult

problem that grows harder very fast as the number of switches and links scales. The well-known

Dijkstra’s algorithm [2] for shortest-path remains in wide use (it is used in both OSPF and IS-IS),

and SDN is unlikely to alter that. Having a faster machine and a more stable database of the network

graph helps compute optimal paths more quickly; they do not affect the complexity of the fundamental

problem.

7.5 Ethernet Fabrics in the Data Center

Traffic engineering in the data center is challenging using traditional Ethernet switches arranged in a

typical hierarchy of increasingly powerful switches as one moves up the hierarchy closer to the core.

Although the interconnecting links increase in bandwidth as we move closer to the core, these links are

normally heavily oversubscribed, and blocking can easily occur. By oversubscription we mean that the

aggregate potential bandwidth entering one tier of the hierarchy is greater than the aggregate bandwidth

going to the next tier.

An alternative to a network of these traditional switches is the Ethernet fabric [7]. Ethernet fabrics

are based on a nonblocking architecture whereby every tier is connected to the next tier with equal

or higher aggregate bandwidth. This is facilitated by a topology referred to as fat-tree topology. We

depict such a topology in Figure 7.8. In a fat-tree topology, the number of links entering one switch in

a given tier of the topology is equal to the number of links leaving that switch toward the next tier. This

implies that as we approach the core, the number of links entering the switches is much greater than

those toward the leaves of the tree. The root of the tree will have more links than any switch lower than

it. This topology is also often referred to as a Clos architecture. Clos switching architecture dates from

the early days of crossbar telephony and is an effective nonblocking switching architecture. Note that

the Clos architecture is not only used in constructing the network topology but may also be used in the

internal architecture of the Ethernet switches themselves.

For Ethernet fabrics, the key characteristic is that the aggregate bandwidth not decrease from one

tier to the next as we approach the core. Whether this is achieved by a larger number of low-bandwidth

links or a lower number of high-bandwidth links does not fundamentally alter the fat-tree premise.

As we approach the core of the data center network, these interconnecting links are increasingly built

from 10 Gbps links, and it is costly to simply try to overprovision the network with extra links. Thus,

part of the Ethernet fabric solution is to combine it with ECMP technology so that all of the potential

bandwidth connecting one tier to another is available to the fabric.
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Fat-tree topology.

7.6 SDN Use Cases in the Data Center

We have described several definitions of Software Defined Networking: the original SDN, which we

call Open SDN; SDN via APIs; and SDN via hypervisor-based overlays. We additionally described

SDN via opening up the device, but here we focus on the first three, since they are the only ones to have

gained significant commercial traction as of this writing. How do these versions of SDN address the

needs of today’s data center as we have described them in this chapter? The following sections answer

that question.

For each data center requirement we presented in Section 7.2, we consider each of the three SDN

technologies. We present them in the order SDN via overlays first, followed by Open SDN, and finally

SDN via APIs. The reader should note that in this book, when we use the expression SDN via overlays, we

mean SDN via hypervisor-based overlays. This distinction is important because there are other overlay

mechanisms that are not hypervisor-based. The reason for this ordering is that SDN via overlays is a

technology specifically addressing the data center, so one would expect the overlay solution to directly

address most of these issues.

Of the three alternative SDN technologies, the one we consider least likely to address data center

needs is SDN via APIs. Our rationale relies on the definition of SDN via APIs in Section 6.2, where we

said that such APIs programmed a control plane local to the device. We believe that since the control
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Table 7.1 Comparison of Alternatives in Addressing Data Center Needs

Need SDN via Overlays Open SDN SDN via APIs

Overcoming network limitations Yes Yes No

Adds, moves, deletes Yes Yes Yes

Failure recovery No Yes No

Multitenancy Yes Yes No

Traffic engineering and path efficiency No Yes Some

plane is locally resident in the network device, this approach to SDN is at a disadvantage with respect

to the other two in its ability to bring the radical change needed to address data center needs. As such,

this type of SDN is considered last.

Note that Table 7.1 briefly summarizes the ability of the various SDN definitions to address the data

center needs that we have mentioned in this chapter. We discuss this table in the sections that follow.

7.6.1 Overcoming Current Network Limitations

In this section we examine how SDN via overlays, Open SDN, and SDN via APIs address the limitations

of MAC address table size and maximum number of VLANs.

SDN via Overlays

The simplest and most readily available solution to these problems involves tunneling, so SDN via

overlays is an obvious choice here. The only MAC addresses visible through the physical network are

the MAC addresses of the tunnel endpoints, which are at the hypervisors. As a trivial example, if there

are eight VMs per hypervisor, you have reduced the total number of MAC addresses by a factor of eight.

If the tunnel endpoints are further upstream or the number of VMs per hypervisor is higher, the MAC

address savings are even greater.

For the issue of VLAN exhaustion, i.e., exceeding the limit of 4096, this solution is superior because

the new mechanism for multitenancy is tunnels, not VLANs. As we explained in Section 7.3, the number

of tunneled networks or segments can be 16 million or greater using VXLAN, NVGRE, or STT tunneling

technologies.

As for the issue of spanning tree convergence and using all links in the physical infrastructure, SDN

via overlays does not address issues related to the physical infrastructure. The network designer would

have to use current non-SDN technologies to mitigate these types of physical limitations.

Open SDN

Open SDN has the capability of addressing these network limitations as well. However, it does not

inherently resolve these limitations in the same way as does SDN via overlays due to that alterna-

tive’s basic nature of using tunnels. Moving control functionality off the device to a centralized con-

troller does not directly address limitations such as MAC address table size and the maximum number

of VLANs.
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However, Open SDN is well suited to creating a solution that is an instance of SDN via overlays.

The SDN controller can create tunnels as required at what will become the tunnel endpoints, and then

OpenFlow rules are used to push traffic from hosts into the appropriate tunnel. Since hardware exists that

has built-in tunneling support, SDN devices can be built that derive these benefits from tunneling but

with the performance gain of hardware. Thus, Open SDN can solve these network limitations similarly

to the overlay alternative.

SDN via APIs

Adding SDN APIs to networking devices does not directly address network limitations as we have

discussed them in this chapter.

7.6.2 Adding, Moving, and Changing Resources

Agility, automation, fast and efficient adds, moves, and changes—this type of functionality is critical

in data centers in order to keep pace with speeds brought about by automation of servers and storage.

We now describe the ways in which SDN technology can address these issues.

SDN via Overlays

The primary attribute of SDN via overlays as it addresses adds, moves, and changes is that the technology

revolves around virtualization. It does not deal with the physical infrastructure at all. The networking

devices that it manipulates are most often the virtual switches that run in the hypervisors. Furthermore,

the network changes required to accomplish the task are simple and confined to the construction and

deletion of virtual networks, which are carried within tunnels that are created expressly for that purpose.

These virtual networks are easily manipulated via software.

Consequently, the task of making adds, moves, deletes, and changes in an overlay network is quite

straightforward and is easily automated. Because the task is isolated and constrained to tunnels, problems

of complexity are less prevalent compared to what would be the case if the changes needed to be applied

and replicated on all the physical devices in the network. Thus, many would argue that overlays are the

simplest way to provide the automation and agility required to support frequent adds, moves, deletes,

and changes.

A downside of this agility is that since the virtual networks are not tightly coupled with the physical

network, it is easy to make these adds, moves, and changes without being certain that the underlying

physical network has the capacity to handle them. The obvious solution is to over-engineer the physical

network with great excess capacity, but this is not an efficient solution to the problem.

Open SDN

As we discussed in the previous section, if Open SDN is being used to create tunnels and virtual networks,

it is straightforward for Open SDN to achieve the same results as discussed earlier. The task is to create

the overlay tunnels as required and to use OpenFlow rules to push packets into the appropriate tunnels.

In addition to the advantages of virtual networks via tunnels, Open SDN offers the ability to change

the configuration and operation of the physical network below—what some refer to as the underlay.

The real advantage of this capability is described in Section 7.6.5.
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SDN via APIs

APIs provide a programmatic framework for automating tasks that would otherwise require manual

intervention. The ability to have a controller that is aware of server virtualization changes and can make

changes to the network in response is a definite advantage. The downside of this solution revolves around

the fact that the fundamental capabilities of the network have not changed. Neither network virtualization

(overlays and Open SDN) nor fundamental improvement of the actual infrastructure (Open SDN) is a

necessary component of the API solution.

7.6.3 Failure Recovery

Data centers today have mechanisms for achieving high availability, redundancy, and recovery in the

case of failure. However, as mentioned earlier, these mechanisms have deficiencies in terms of the

predictability and optimization of those recovery methods. Consequently, we would expect SDN to

provide some assistance in meeting those specific needs.

Note that failures on the compute side, i.e., physical servers or virtual machines, are really just a

subset of the previous section on adds, moves, and changes and have been addressed in that context.

SDN via Overlays

Because it does not deal at all with the physical network below it, overlay technology offers little in

terms of improving the failure recovery methods in the data center. If there are failures in the physical

infrastructure, those must be dealt with via the mechanisms already in place, apart from overlays. In

addition, the interplay between the virtual and physical topologies can sometimes be difficult to diagnose

when there are problems.

Open SDN

One of the stated benefits of Open SDN is that with a centralized controller the whole network topology is

known and routing (or, in this case, rerouting) decisions can be made that are consistent and predictable.

Furthermore, those decisions can incorporate other sources of data related to the routing decisions, such

as traffic loads, time of day, even scheduled or observed loads over time. Creating a solution such as this

is not trivial, but the SDN application responsible for such failure recovery functionality can leverage

existing and emerging technologies, such as IS-IS and PCE.

SDN via APIs

The presence of improved APIs on network devices and a controller to use those APIs to automatically

update the device provides some improvement in the realm of failure recovery. However, at the heart

of the issue is whether the network devices are performing their own route and path management or

whether that management is under the control of a centralized controller. If the APIs are giving only a

slightly improved access to traditional configuration parameters, clearly SDN via APIs provides little

value in this area. However, if those APIs are accompanied by the devices ceding their path decision-

making functionality to the SDN controller, the APIs can furnish more value. This, however, is not the

typical case for SDN via APIs.
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7.6.4 Multitenancy

With large data centers and cloud computing, it is frequently the case that more and more tenants are

passing traffic along the same physical network infrastructure and therefore sharing the same physical

communications links. The traditional way of achieving the separation required by this sharing of

network bandwidth has been through the use of VLANs. We have shown how the maximum number of

VLANs is no longer adequate for today’s data centers.

SDN via Overlays

Overlay technology resolves the multitenancy issue by its very nature through the creation of virtual

networks that run on top of the physical network. These virtual networks substitute for VLANs as the

means of providing traffic separation and isolation. In overlay technologies, VLANs are only relevant

within a single tenant. For each tenant, there is still the 4096 VLAN limit, but that seems to currently

suffice for a single tenant’s traffic.

Open SDN

Open SDN can implement network virtualization using layer three tunnel-based overlays in a manner

very similar to SDN via Overlays. Open SDN offers other alternatives as well, however. Other types

of encapsulation (e.g., MAC-in-MAC, Q-in-Q) can also be employed to provide layer two tunneling,

which can provide multiplicative increases in the number of tenants. For example, using Q-in-Q can

theoretically result in 4096 times 4096 VLANs, or roughly 16 million, the same value as is possible

with the Overlay solutions utilizing VXLAN or NVGRE.

SDN via APIs

Without some complementary changes to devices, such as providing virtual networks, SDN via APIs

does not address the issue of multitenancy. Recall that in the SDN-via-APIs solution, much or all of the

control functionality still resides on the device, and the main use of those APIs is to improve the speed

and accuracy of configuration changes.

7.6.5 Traffic Engineering and Path Efficiency

In the past, networking hardware and software vendors created applications that measured traffic loads

on various links in the network infrastructure. Some even recommended changes to the infrastructure in

order to make more efficient use of network bandwidth. As good as these applications may have been,

the harsh reality was that the easiest way to ensure optimal response times and minimal latency was

to overprovision the network. In other words, the simplest and cheapest solution was almost always to

purchase more and newer networking gear to make certain that links were uncongested and throughput

was maximized.

However, with the massive expansion of data centers due to consolidation and virtualization, it has

become imperative to make the most efficient use of networking bandwidth. Service-level agreements

(SLAs) with clients and tenants must be met; at the same time, costs need to be cut in order for the data

center service to be competitive. This has placed an added importance on traffic load measurements and

in using that information to make critical-path decisions for packets as they traverse the network.
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SDN via Overlays

In a similar manner to the issue of failure recovery, SDN via overlays does not have much to contribute

in this area due to the fact that it does not attempt to affect the physical network infrastructure. Traffic

loads as they pass from link to link across the network are not a part of the discussion concerning

traffic that is tunneled across the top of the physical devices and interfaces. Thus, SDN via overlays is

dependent on existing underlying network technology to address these types of issues.

Open SDN

Open SDN has major advantages here in the areas of centralized control and having complete control

of the network devices. Open SDN has centralized control with a view of the full network and can make

decisions predictably and optimally. It also controls the individual forwarding tables in the devices and,

as such, maintains direct control over routing and forwarding decisions.

Two other major ways that Open SDN can impact the traffic moving through the network are (1)

path selection and (2) bandwidth management on a per-flow basis. Open SDN can make optimal path

decisions for each flow. It can also prioritize traffic down to the flow level, allowing for granular control

of queuing, using methods such as IEEE 802.1 Class of Service (CoS), IP-level Type of Service (ToS),

and Differentiated Services Code Point (DSCP).

Figure 7.9 provides an illustration of the difference between shortest path via the current node-

by-node technology and optimal path, which is possible with an SDN controller that can take into

consideration more network parameters such as traffic data in making its decisions.

Open SDN is explicitly designed to be able to control directly the switching hardware network traffic

down to the flow level. We contrast this with the overlay alternative, where network traffic does exist at

the flow level in the virtual links but not natively in the switching hardware. Therefore, Open SDN is

particularly well suited to addressing traffic engineering and path efficiency needs.
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SDN via APIs

The general capability of SDN via APIs is to set configuration of networking devices in a simpler and

more efficient manner, allowing for automation and a certain amount of agility. However, although these

APIs were generally not designed to handle the immediate and highly granular needs presented in traffic

engineering challenges, it should be possible to support better traffic engineering with extended APIs,

even in legacy devices with local control planes.

It is worth noting that policy-based routing (PBR) has the ability to direct packets across paths at a

fairly granular level. In theory one could combine current traffic-monitoring tools with PBR and use

current SNMP or CLI APIs to accomplish the sort of traffic engineering we discuss here. RSVP and

MPLS-TE are examples of traffic engineering protocols that may be configured via API calls to the

device’s control plane. However, PBR and those APIs are not designed for regular and dynamic changes

to paths and cannot react as quickly as OpenFlow in the face of change. Therefore, this type of solution

is not ideal for traffic engineering and path efficiency.

7.7 Open SDN versus Overlays in the Data Center

We saw in Table 7.1 that SDN via overlays and Open SDN seem to have an advantage over SDN via

APIs. For the moment, let’s focus on these two technologies for a more fine-grained comparison.

7.7.1 SDN via Overlays

• The technology is designed for solving data center issues.

• The technology utilizes (for the most part) contemporary data center technologies, specifically

VXLAN and NVGRE, and thus the technology is not entirely new.

• The technology creates a virtual overlay network and thus does a very good job of overcoming

networking limitations and improving agility.

• The technology does not address any issues related to improving the behavior of the physical infras-

tructure. However, this has the advantage of incurring little or no costs related to new networking

equipment.

• It is sometimes difficult to diagnose problems and determine whether they relate to the virtual

network or the physical one.

7.7.2 Open SDN

• The technology is designed for solving networking issues in a wide range of domains, not just data

centers.

• Open SDN can be implemented using networking devices designed for Open SDN. Legacy switching

hardware can often be enhanced by adding OpenFlow to function as Open SDN devices.

• The technology, used in conjunction with virtual networks (e.g., VXLAN and NVGRE), does a very

good job of addressing all the networking issues we have discussed.

• The technology is broader in scope; hence, it is more disruptive and may pose more transitional

issues than does SDN via overlays.
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• Although both Open SDN and SDN via overlays allow significant innovation, the Open SDN use

cases discussed in Chapter 8 will demonstrate how implementors have radically redefined how the

network is addressed and structured. In so doing, they abandon legacy constructs and structure the

network to behave in exact alignment with application requirements.

These points indicate that SDN via overlays is a good solution and may be an easier transitional phase in

the near term, whereas Open SDN holds the most promise in a broader and more comprehensive sense.

Table 7.1 illustrated that SDN via APIs is unlikely to be a good long-term solution for the data center,

but we should point out that some data center problems may be addressed in this way. This may in

fact represent the easiest transition plan for network programmers in the short term because less radical

change is needed than that required moving to either the overlay or Open SDN approach.

7.8 Real-World Data Center Implementations

In this chapter we have spent time defining the needs of modern data centers, and we have investigated

the ways that each SDN technology has addressed those needs. One may wonder if anybody is actually

implementing these SDN technologies in the data center. The answer is that, although it is still a work

in progress, there are organizations that are running SDN pilots and in some cases placing SDN into

production. In Table 7.2 we list a number of well-known enterprises and their early-adopter imple-

mentations of SDN in their data centers. The table shows a mix of Open SDN and SDN via overlays

but no examples of SDN via APIs. The bulk of the API-oriented efforts are not really what we have

defined as SDN. They use technologies similar to those we described in Sections 3.2.3 and 3.2.4—

that is, orchestration tools and VMware plugins to manipulate networks using SNMP and CLI. Some

experimentation with newer SDN APIs is presumably underway, but as of this writing production data

center SDN networks tend more to be hypervisor-based overlays, with a few examples using Open SDN.

Between Open SDN and the overlay approach, our observation is that the extremely large greenfield

Table 7.2 Data Center SDN Implementations

Enterprise SDN Type Description

Google Open SDN Has implemented lightweight OpenFlow switches, an OpenFlow

controller, and SDN applications for managing the WAN connections

between their data centers. Google is moving that Open SDN

technology into the data centers

Microsoft Azure Overlays Implementing overlay technology with NVGRE in vSwitches,

communicating via enhanced OpenFlow, creating tens of thousands of

virtual networks

eBay Overlays Creating public cloud virtual networks using VMware’s Nicira solution

Goldman Sachs Open SDN Using Floodlight-based application and OpenFlow-supporting

commodity switches. Also replacing firewalls by augmenting

OpenFlow-supporting switches for firewalling functionality

Rackspace Overlays Creating large multitenant public clouds using VMware’s Nicira solution
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data center examples gravitate toward Open SDN, whereas hypervisor-based overlays have seen greater

adoption in the more typical-scale data centers.

7.9 Conclusion

This chapter described the many significant and urgent needs that have caused data center networking to

become a stumbling block to technological advancement in that domain. We examined new technologies

and standards that are attempting to at least partially address those needs. Then we presented a description

of how the three main SDN alternatives use those technologies, as well as new ideas introduced by SDN

to address those needs. Finally, we listed how some major enterprises are using SDN in their data center

environments today.

In Chapter 8 we consider other use cases for SDN, such as WANs and backbones, carrier networks,

enterprise networks, and network functions virtualization.
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8
CHAPTER

SDN in Other Environments

The urgency associated with the growth of data centers has caused SDN to leap to the forefront of

solutions considered by IT professionals and CIOs alike. But the data center is not the only environment

in which SDN is relevant. This chapter looks at other domains in which SDN will play a major role.

The following environments and some accompanying use cases are examined in this chapter:

• Wide area networks (Section 8.1)

• Service provider and carrier networks (Section 8.2)

• Campus networks (Section 8.3)

• Hospitality networks (Section 8.4)

• Mobile networks (Section 8.5)

• In-line network functions (Section 8.6)

• Optical networks (Section 8.7)

As we examine each of these domains, we explain the most pressing issues and then consider the

ways in which SDN can play a part in helping to resolve them. We discuss current implementations

and proofs of concept (PoCs) that have been developed to address needs in these areas. Before we look

into each environment in detail, we review some advantages that accompany an SDN solution that are

particular to these environments.

Consistent Policy Configuration

One of the major issues currently facing IT departments is the problem of scale related to having con-

sistent configuration across very large populations of networking devices. In the past this task has fallen

to manual configuration or network management, but with Open SDN there is the promise of great

simplification of these tasks, with the associated reduction in operational costs for the enterprise. Some

specifics of SDN with respect to configuration are (1) dealing with large numbers of devices, (2) con-

sistency of configuration, (3) central policy storage, (4) common policy application, and (5) granularity

of control.

The sheer number of devices operating in networks today has grown to the point of becoming nearly

unmanageable. In the largest data centers, a few thousand physical switches might be deployed. IT

personnel today are required to maintain such a large number of devices using traditional tools such

as CLI, web interfaces, SNMP, and other manual, labor-intensive methods. SDN promises to remove

many of these tasks. In order for SDN to work and scale, the controllers will be built from the ground

up to comprehend and manage a huge number of devices. In addition, this centralization drives more

commonality between the devices. The task of managing large numbers of devices is simplified as

Software Defined Networks. http://dx.doi.org/10.1016/B978-0-12-416675-2.00008-5
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Ensuring consistent policy configuration.

a direct result of this homogeneity. This simplification of network configuration is one of the major

operational cost savings brought about by SDN.

One common issue with large networks today is the difficulty in maintaining consistency across all

the devices that are part of the infrastructure. Figure 8.1 gives a simple example of the comparison

of autonomous devices that have been individually and manually configured versus common policy

distributed via flow rules from a central controller. The trivial case depicted in the diagram is compounded

by orders of magnitude in real-life networks. Keeping configuration of policy consistent simply cannot

be done by purely manual means. For some time now, sophisticated network management tools have

existed that purport to provide centralized configuration and policy management. However, as we have

described in previous chapters, these tools have only realized marginal success. They are generally based

on a model of creating a driver that abstracts away vendor and device differences. These tools attempt to

standardize at such a high level that the actual low-level vendor and device differences pose a constant

challenge. This model has not been able to scale with the amount of change that is endemic in networking.

SDN approaches configuration in a radically different way. Configuration is performed in a standard

but entirely new and more fine-grained fashion at the flow level. The configuration is based on the

fundamental construct of the flow, which is shared by all networking devices. This permits configuration

by a common protocol such as OpenFlow. Rather than trying to bandage over a configuration morass with

a system of the aforementioned drivers, this SDN approach has the ability to scale with the evolution of

the network and to implement consistent network-wide configuration and policy. Central policy storage

falls out naturally from centralized controller architecture of SDN. These attributes stem from SDN’s

very roots. We recall from Section 3.2.7 that Ethane, the direct precursor to OpenFlow, was specifically

targeted at the distribution of complex policy on a network.
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Global Network View

In previous chapters we mentioned the importance of network-wide visibility, noting this as a real value

of controller-based networking. This is true for any type of system that relies on a central management

and control system, such as phone systems, power grids, and the like. Having complete visibility allows

the controlling system to make optimal decisions, as we discuss here.

The control plane of today’s network devices has evolved to the point where each device holds the

network topology represented as a graph. This solution is imperfect because the individual graphs held

in each device are constructed by propagating changes across the network from neighbor to neighbor.

This can result in relatively long periods before the devices converge on a consistent view of the network

topology. During these periods of convergence, routing loops can occur. In such networks, it is cumber-

some to understand exactly how the network will behave at any point in time. This legacy technology

was geared toward maintaining basic connectivity, not the use cases we presented in Chapter 7 and

continue to discuss here. In addition, the traditional networks do not have real-time data about traffic

loads. Even maximum bandwidth information is not typically shared. A centralized control system is

able to gather as much data (traffic loads, device loads, bandwidth limits) as is necessary to make the

decisions required at any moment.

Having the aforementioned information makes it possible for the controller to make optimal routing

and path decisions. Running on a processor that is many times more powerful than that present on a

networking device increases the probability that the controller will be able to perform faster and higher-

quality analysis in these decisions. Additionally, these decisions can take into account traffic patterns and

baselines stored in secondary storage systems, which would be prohibitively expensive for networking

devices. The distributed counterpart to this centralized control suffers the additional disadvantage of

running a variety of protocol implementations on a selection of weaker processors, which creates a more

unpredictable environment. Finally, if the capabilities of the physical server on which the controller is

running are exceeded, the controller can use horizontal scaling approaches, something not possible on

a networking device. In this context, horizontal scaling means adding more controllers and distributing

the load across them. Horizontal scaling is not possible on the networking device, because such scaling

would change the network topology. Changing the network topology does not provide more power to

control the same problem; rather, it alters the fundamental problem and creates new ones.

A network-wide view takes the guesswork and randomness out of path decisions and allows the con-

troller to make decisions that are reliable and repeatable. This deterministic behavior is critical in environ-

ments that are highly sensitive to traffic patterns and bandwidth efficiency, in which suboptimal behavior

based on arbitrary forwarding assignments may cause unacceptable packet delays and congestion.

These common, general-use case values of SDN-based networks are relevant to just about every one

of the environments described in this chapter. In certain cases they are of particular importance and are

mentioned as such in those sections.

8.1 Wide Area Networks

Wide area networks have historically been used to connect remote islands of networks, such as connect-

ing geographically dispersed LANs at different offices that are part of the same enterprise or organization.
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A number of non-Ethernet technologies have been used to facilitate this WAN connectivity, including

these:

• Leased line. These point-to-point connections were used in the early days of networking and were

very expensive to operate.

• Circuit switching. Dialup connections are an example of this type of connectivity, which had limited

bandwidth but was also very inexpensive.

• Packet switching. Carrier networks at the center carried traffic from one endpoint to another using

technologies such as X.25 and Frame Relay.

• Cell relay. Technologies such as ATM, featuring fixed cell sizes and virtual circuits, are still used

today.

• Cable and digital subscriber loop (DSL). These technologies play a key role in bringing WAN

connectivity to the home.

However, recently these technologies have significantly given way to Ethernet-based WAN links, as

we describe in greater detail in Section 8.2. Nowadays, companies and institutions are using Ethernet

to connect geographically dispersed networks using either private backbones or, in certain cases, the

Internet. When we use the term Ethernet in this context, we are referring to the use of Ethernet framing

over the WAN optical links. We do not imply that these links operate as broadcast, CSMA/CD media,

like the original Ethernet.

Ethernet has proven to be an excellent solution in areas not envisioned in the past. However, the

move toward Ethernet brings with it not only the advantages of that technology but also many of those

challenges that we have described in detail in this book. The following section addresses some of the

major issues that are relevant for WAN environments.

The key issues that face network designers when it comes to WANs are reliability and making the most

efficient use of available bandwidth. Due to the cost of long-haul links in the WAN, bandwidth is a scarce

commodity compared to LANs. In environments such as a data center, it is possible to create redundant

links with little concern for cost, since cables are relatively inexpensive. Furthermore, bandwidth needs

can be met by adding more ports and links. Not so with WAN, where bandwidth costs are orders of magni-

tude greater over distance than they are within a data center or campus. Adding redundant ports just exac-

erbates this problem. As a result, it is important to drive higher utilization and efficiency in WAN links.

8.1.1 SDN Applied to the WAN

Overcoming the loss of connectivity on a link using redundancy and failover is common in all forms of

networking, including WANs. This technology exists in devices today and has existed for many years.

However, routing decisions made during a failover are not predictable during the period of convergence

and often are not optimal even after convergence. The suboptimal paths are due to the lack of a central

view that sees all paths as well as bandwidth capabilities and other criteria. Such global knowledge

permits repeatable and optimal decisions. This aspect of reliability is keenly desired by organizations

that rely on wide-area connections to operate their businesses and institutions. As we discussed in

Section 7.4, the SDN controller can have access to all this information, and since it presumably runs

on a high-performance server, it can compute optimal paths more quickly and more reliably than the

traditional distributed approach.
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A number of pre-SDN technologies attempt to enable optimal routing decisions. These include:

• Network monitoring and traffic management applications—for example, sFlow and NetFlow—

collect the necessary information so that a network management system can make optimal routing

decisions.

• MPLS-TE (see Section 8.2.2) uses traffic engineering mechanisms to choose optimal paths for MPLS

label switched paths (LSPs) An LSP is a path through an MPLS network. Packets are forwarded

along this path by intermediate routers that route the packets by a preassigned mapping of ingress

label-port pairs to egress label-port pairs. An LSP is sometimes referred to as an MPLS tunnel.

• The path computation element (PCE)-based architecture [13] determines optimal paths between

nodes based on a larger set of network-loading conditions than may be considered in simple best-

path analysis such as IS-IS.

Even when these pre-SDN technologies attempt to make optimal path decisions based on a global

view of the network, they are thwarted by devices that retain their autonomous control planes. We

consider an example in the following section.

8.1.2 Example: MPLS LSPs in the Google WAN

In [9] Google describes how its pre-SDN WAN solution handles the case of a failed link. In this particular

scenario, the problem revolves around rerouting MPLS LSPs in the event of a link failure.

We depict the pre-SDN situation in Figure 8.2. Say that the link labeled Best route on the right in

the figure goes down. When a link goes down and the network needs to reconverge, all the LSPs try to

reroute. This process is done autonomously by the routers along the path using the Resource Reservation

Protocol (RSVP) to establish the path and reserve the bandwidth. When the first LSP is established and

reserves the remaining bandwidth on a link, the others have to retry over the remaining paths. Because

the process is performed autonomously and ad hoc, it can be repeated multiple times with a single

winner declared each time. This process can iterate for some time until the last LSP is established. It

is not deterministic in that it is not known which LSP will be the last in any given scenario. This is a

real-life problem, and this pre-OpenFlow solution is clearly lacking.
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Google with OpenFlow.

We contrast this with Figure 8.3, which shows how an SDN system with a centralized controller

containing knowledge of all possible routes and current available bandwidth can address this problem

much more efficiently. The computation of an optimal solution for mapping the LSPs to the remain-

ing network can be made once and then programmed into the devices. This SDN-based solution is

deterministic in that the same result will occur each time.

Google has been at the forefront of SDN technology since its outset, and the company has made

use of the technology to its advantage in managing its WAN networks. Google has connected its data

centers using OpenFlow switches connected to a controller designed with the features we just described

in mind. The values that Google has realized from its conversion to OpenFlow in the WAN are:

• Lower cost of managing devices

• Predictable and deterministic routing decisions in the case of failover

• Optimal routing decisions based on bandwidth and load

8.2 Service Provider and Carrier Networks

Service provider (SP) and carrier networks are wide area in nature and are sometimes referred to as

backhaul networks, since they aggregate edge networks, carrying huge amounts of data and voice

traffic across geographies, often on behalf of telecommunications and Internet service providers (ISPs).

Examples of service providers and carriers are Verizon, AT&T, Sprint, Vodafone, and China Mobile.

A network service provider (NSP) sells networking bandwidth to subscribers, who are often ISPs.

A carrier is typically associated with the telecommunications and mobility industries, which in the

past have been concerned primarily with voice traffic. Carriers and SPs now carry a much more diverse
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traffic mix, including Voice over IP (VoIP) and video. In addition to a greater variety of traffic types,

the total volume of traffic grows at an ever-increasing pace. Smartphones with data plans have played

a large role in increasing both the total amount of traffic as well as its diversity.

Without taking a new approach to managing bandwidth, this growth in diversity and volume of traffic

results in costs spiraling out of control. Over-provisioning links to accommodate changing traffic patterns

is too costly for the WAN links used by the SPs. Traditionally, bandwidth management is provided via

network management platforms that can certainly measure traffic utilization and can perhaps even

recommend changes that could be made manually in order to respond to traffic patterns.

Not only does network bandwidth need to be utilized most efficiently, it is also necessary to respond

immediately to changes in requirements brought about by service contract upgrades and downgrades. If

a customer wants to have their traffic travel across the network at a higher priority or at greater speeds,

SPs would like to be able to implement changes to their service policies immediately, without disruption

to existing flows. Being able to provide bandwidth on demand is a selling point for SP. Other require-

ments include the ability to dynamically change paths to higher-bandwidth, lower latency paths and to

reprioritize packets so that they take precedence in queues as they pass through networking devices.

Another aspect of reducing costs involves the simplification of devices. In the large core networks

operated by carriers, the OPEX costs of managing a complex device outweigh the increased CAPEX

outlay for that device. Thus, a simpler device provides cost savings in two ways. This is true as well not

only for network devices but also for network appliances that today require specialized hardware, such

as load balancers, firewalls, and security systems.

SPs are responsible for taking network traffic from one source, passing it throughout the SP’s network,

and forwarding it out the remote network edge to the destination. Thus, the packets themselves must

cross at least two boundaries. When more than one SP must be traversed, the number of boundaries

crossed increases. Traffic coming into the service provider’s network is typically marked with specific

tags for VLAN and priority. The SP has needs regarding routing traffic as well, which may require the

packet to be tagged again. Furthermore, the routing mechanism may be different within the SP network.

For example, the SP may use MPLS or VLAN tagging for internal routing. Using these additional

tagging mechanisms entails another layer of encapsulation of the customer data packet. The boundaries

that traffic must cross are often referred to as customer edge (CE) and provider edge (PE). The network-

to-network interface (NNI) is the boundary between two SPs. Since the NNI is an important point for

policy enforcement, it is important that policy be easily configurable at these boundaries. Technologies

supporting SPs in this way must support these boundary-crossing requirements.

Figure 8.4 shows a simplified version of a network with customers and a pair of SPs. The two endpoint

hosts are attempting to communicate by passing through the CE and then the PE. After traversing SP1’s

network, the packet will egress that network at the PE on the other side. After the packet passes through

the CE, the destination receives the packet.

The figure shows a packet traversing the network from the endpoint on the left to the endpoint on

the right. The original packet as it emanates from the source device is unencapsulated. The packet may

acquire a VLAN tag as it passes through the CE (probably provided by the ISP). When the packet

passes through the PE, it may be encapsulated using a technology such as PBB that we discussed in

Section 5.6.7, or it may be tagged with another VLAN or MPLS tag. When the packet exits the provider

network and passes through the other PE on the right, it is correspondingly either decapsulated or the

tag is popped and it is then passed into the destination CE network.
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Service provider environment.

Figure 8.4 additionally depicts the NNI between SP1 and SP2. If the customer packets were directed

to a destination on the SP2 network, they would traverse such an NNI boundary. Policies related to

business agreements between the SP1 and SP2 service providers would be enforced at that interface.

8.2.1 SDN Applied to SP and Carrier Networks

A key focus of SPs when considering SDN is monetization. This refers to the ability to make or save

money by using specific techniques and tools. SDN is promoted as a way for providers and carriers to

monetize their investments in networking equipment by increasing efficiency, reducing the overhead of

management, and rapidly adapting to changes in business policy and relationships.

Some of the ways in which SDN can help improve monetization for providers and carriers are

(1) bandwidth management, (2) CAPEX and OPEX savings, and (3) policy enforcement at the PE and

NNI boundaries.

SDN exhibits great agility and the ability to maximize the use of existing links using traffic engi-

neering and centralized, network-wide awareness of state. The granular and pliable nature of SDN

allows changes to be made easily and with improved ability to do so with minimal service interruption.

This facilitates the profitable use of bandwidth as well as the ability to adapt the network to changing

requirements related to customer needs and service-level agreements (SLAs).

SDN can reduce costs in a couple of ways. First, there are CAPEX savings. The cost of white-box

SDN devices is appreciably lower than the cost of comparable non-SDN equipment. This may be due to

bill-of-materials (BOM) reduction as well as the simple fact that the white-box vendors are accustomed

to a lower-margin business model. The BOM reductions derive from savings such as reduced memory

and CPU costs due to the removal from the device of so much CPU- and memory-intensive control



8.2 Service Provider and Carrier Networks 177

software. Second, there are reduced OPEX costs, which come in the form of reduced administrative

loads related to the management and configuration of the devices.

As described, packets will travel from the customer network across the PE into the provider’s network,

exiting at the remote PE. OpenFlow supports multiple methods of encapsulating traffic as is required

in these circumstances. OpenFlow 1.1 supports the pushing and popping of MPLS and VLAN tags.

OpenFlow 1.3 added support for PBB encapsulation. This makes it possible to conform to standard

interfaces with Open SDN technology. Additionally, Open SDN provides a versatile mechanism for

policy enforcement on the aggregated traffic that traverses NNI boundaries. Since these policies are

often tied to fluid business relationships between the SPs, it is essential that the technology supporting

policy enforcement be easily manipulated itself. With the additional bandwidth, cost-cutting, visibility,

and policy enforcement advantages of SDN, an SDN solution, becomes even more compelling.

8.2.2 Example: MPLS-TE and MPLS VPNs

A research project at Stanford [6] demonstrated MPLS Traffic Engineering (MPLS-TE) using OpenFlow.

The authors stated that “while the MPLS data plane is fairly simple, the control planes associated with

MPLS-TE and MPLS-VPM are complicated. For instance, in a typical traffic engineered MPLS network,

one needs to run OSPF, LDP, RSVP-TE, I-BGP and MP-BGP.” They argue that the control plane for

a traditional MPLS network that determines routes using traffic information is unnecessarily complex.

The amount and complexity of control signaling in the traditional approach is such that when there are

frequent changes in the network, there are so many control packets exchanged that some can readily be

lost. This results in a cascade of instability in the MPLS-TE control plane. The authors demonstrate that

it is simple to build an equivalent network using OpenFlow to push and pop MPLS tags according to the

topology and traffic statistics available at the NOX OpenFlow controller. In addition to providing a more

stable and predictable alternative to the traditional approach, the OpenFlow-based solution was able to

be implemented in less than 2,000 lines of code, which is far more simple than the current systems.

Figure 8.5 shows the architecture of the research project, replacing many routing and traffic engineer-

ing protocols on the devices with an MPLS-TE application running on the OpenFlow controller, setting

MPLS-TE
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Physical

Switch
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FIGURE 8.5

Service provider and SDN: MPLS (Courtesy [6]).
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flows consistent with the connectivity and QoS requirements. This OpenFlow-based MPLS solution

obviates the need for a number of other protocols and functions that would otherwise have had to be

implemented by the individual devices.

MPLS-TE remains an active area of research for the application of SDN. For example, Ericsson has

published related research in using OpenFlow for MPLS-TE in [7].

8.2.3 Example: Cloud Bursting with Service Providers

Cloud bursting allows a service provider to expand an enterprise’s private cloud (data center) capacity

on demand by dynamically allocating the compute and storage resources in the SP’s data center to

that enterprise. This additionally entails allocating the network resources to allow the free flow of data

between the original private cloud and its dynamic extension in the SP. In [12], the author proposes to

accomplish this cloud bursting via an SDN network. Controllers in the enterprise’s private cloud make

requests to the SP’s SDN controller for the needed facilities, and the SP SDN controller allocates the

needed networking, compute, and storage components to that enterprise. This model facilitates a major

business opportunity for SPs. Verizon, in collaboration with HP and Intel, describes an SDN-based proof-

of-concept (PoC) project [10,11] to implement a solution for cloud bursting. In this PoC, an Intel private

cloud in Oregon is dynamically augmented by the capacity in a Verizon public cloud in Massachusetts.

Without manual intervention, network bandwidth is increased to handle the surge in data between the

two data centers. The security that Intel requires on the Verizon VMs can be implemented without the

need for physical appliances, using SDN techniques such as those that we discuss in Section 8.6. This

PoC demonstrates a method whereby an SP can obtain improved CAPEX return on investment (ROI),

lower operating expenses, and improved business agility through the use of SDN.

8.3 Campus Networks

Campus networks are a collection of LANs in a concentrated geographical area. Usually the networking

equipment and communications links belong to the owner of the campus. This may be a university, a

private enterprise, or a government office, among other entities. Campus end users can connect through

wireless access points (APs) or through wired links. They can connect using desktop computers, laptop

computers, shared computers, or mobile devices such as tablets and smartphones. The devices with

which they connect to the network may be owned by their organization or by individuals. Furthermore,

those individually owned devices may be running some form of access software from the IT department,

or the devices may be completely independent.

There are a number of networking requirements that pertain specifically to campus networks. These

include (1) differentiated levels of access, (2) bring your own device (BYOD), (3) access control and

security, (4) service discovery, and (5) end-user firewalls.

Various types of users in the campus will require different levels of access. Day guests should have

access to a limited set of services, such as the Internet. More permanent guests may obtain access to

more services. Employees should receive access based on the category into which they fall, such as

executives or IT staff. These differentiated levels of access can be in the form of access control (i.e.,

what they can and cannot have access to) as well as their quality of service, such as traffic prioritization

and bandwidth limits.
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BYOD is a phenomenon that has arisen from the exponential increase in functionality available in

smartphones and tablet computers. Campus network users want to access the network using the devices

with which they are familiar with rather than campus-issued devices. In addition to mobile devices,

some individuals may prefer Apple or Linux laptops over the corporate-issued Windows systems.

In years past, access to networks was based on physical proximity. If you were in the building and

could plug your device into the network, you were granted access. With the popularity of wireless

connectivity and heightened security, it is now more common for employees and guests alike to have

to overcome some security hurdle in order to be granted access. That security may be in a more secure

form, such as IEEE 802.1X [1], or it may be some more limited form of security, such as authentication

based on MAC address or a captive portal web login.

Campus end users want access to services such as printers or file shares or perhaps even TVs. Service

discovery makes this possible through simple interfaces and automatic discovery of devices and systems

that provide these services. To achieve this level of simplicity, however, there is a cost in terms of network

traffic load associated with protocols providing these services.

One of the dangers of campus networks is the possibility of infected devices introducing unwanted

threats to the network. This threat is magnified by the presence of BYOD devices on the network. These

may take the form of malicious applications such as port scanners, which probe the network looking

for vulnerable devices. End-user firewalls are needed to protect against such threats.

8.3.1 SDN on Campus: Application of Policy

At the beginning of this chapter we described the value of centralized policy management and deploy-

ment. Campus networks are one area in which this capability is readily realized. SDN’s flexibility to

manipulate flow rules based on policy definitions makes it well suited to the application of policy in the

campus. The general idea of policy application is as follows:

• The user connects to and attempts to send traffic into the network.

• No policy is in place for this user, so the user’s initial packets are forwarded to the controller. At this

point, the user has either no access or only limited access to the network.

• The controller consults the policy database to determine the appropriate prioritization and access

rights for this user.

• The controller downloads the appropriate flow rules for this user.

• The user now has access that is appropriate for the group to which he or she belongs as well as other

inputs such as the user’s location, time of day, etc.

This system provides the differentiated levels of access that are needed in campus networks.

Clearly, as we explained in Section 3.2.2, this functionality is similar to what network access control

(NAC) products provide today. However, this SDN-based application can be simple, open, software-

based, and flexible in that policies can be expressed in the fine-grained and standard language of the

flow. We discuss programming an SDN NAC application in greater detail in Section 10.13.

Note that this type of access control using SDN should be applied at the edge of the network, where

the number of users and thus the number of flow entries will not exceed the limits of the actual hardware

tables of the edge networking device. We introduced the topic of scaling the number of flow entries

in Section 4.3.5. After the edge, the next layer of network concentration is called the distribution or



180 CHAPTER 8 SDN in Other Environments

aggregation layer. Application of policy at this layer of the campus network would take another form.

At this level of the network, it is not appropriate or even practical to apply end-user rules that should

be applied at the edge, as described above. Rather, SDN policy in these devices should be related to

classes of traffic or traffic that has been aggregated in some other way, such as a tunnel or MPLS LSP.

Flows can also be established for various types of traffic that set priorities appropriately for each

traffic type. Examples of different traffic types are HTTP versus email. For example, HTTP traffic might

be set at a lower priority during office hours, assuming that the organization’s work-based traffic was

not HTTP-based.

8.3.2 SDN on Campus: Device and User Security

Technological trends such as BYOD, access control, and security can also be addressed by SDN tech-

nology. For example, one of the requirements for registering users’ BYOD systems and guests involves

the use of a captive portal. This is the mechanism by which a user’s browser request gets redirected to

another destination website. This other website can be for the purpose of device registration or guest

access. Captive portals are traditionally implemented by encoding the redirection logic into the switch

firmware or by in-line appliances. To implement this in a pre-SDN environment could entail upgrading

to switches that had this capability, implying more complex devices, or by installing specialized in-line

appliances, adding to network complexity. Configuring which users need to be authenticated via the

captive portal would entail configuring all these devices where a user could enter the network. Here we

describe a simpler SDN solution for a captive portal:

• The user connects to the network and attempts to establish network connectivity.

• No access rules are in place for this user, so the SDN controller is notified.

• The SDN controller programs flows in the edge device, which will cause the user’s HTTP traffic to

be redirected to a captive portal.

• The user is redirected to the captive portal and engages in the appropriate exchange to gain access

to the network.

• Once the captive portal exchange is complete, the SDN controller is notified to set up the user’s

access rules appropriately.

• The user and/or BYOD device now has the appropriate level of access.

Figure 8.6 illustrates an SDN-based captive portal-based application. The network edge device is

initially programmed to route ARP, DNS, and DHCP requests to the appropriate server. In the figure, the

end user connects to the network and makes a DHCP request to obtain an IP address. When the DHCP

reply is returned to the user, a copy is sent to the SDN controller. Using the end-user MAC address as a

lookup key, the controller consults the database of users. If the user device is currently registered, it is

allowed into the network. If it is not, then OpenFlow rules are programmed to forward that user’s HTTP

traffic to the controller. When the unauthenticated user’s HTTP traffic is received at the controller, that

web session is redirected to the captive portal web server. After completing the user authentication or

device registration, the controller updates the user’s flow(s) so that the packets will be allowed into the

network. Note that this is also the appropriate time to configure rules related to the user’s policy, which

can include levels of access and priority, among other items.
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NAC captive portal application.

This type of functionality, like policy, is appropriately applied at the edge of the network. The further

into the network this type of application is attempted, the more problematic it becomes, with flow table

overflow becoming a real issue.

HP currently offers a commercial SDN application called Sentinel [8] that provides secure BYOD

access. The approach of securing the network from end-user infection by installing anti-malware soft-

ware on end-user devices is not viable in the BYOD case since they are not under the control of the

network administration. The Sentinel SDN application provides a solution by turning the entire net-

work infrastructure into a security-enforcement device using mechanisms that are hardened and more

sophisticated versions of the basic methods for campus security we described above. Sentinel is an SDN

application that works with HP’s TippingPoint threat database to secure and apply policy to the intranet

as follows:

1. Identify botnets on the intranet and neutralize them by blocking DNS requests and IP connections

to their botnet masters in the Internet.

2. Identify and prevent users or machines from accessing infected or prohibited sites on the Internet

by monitoring and blocking DNS requests and IP connections (see Section 8.3.3).

3. Identify and quarantine infected machines on the intranet so that they can be remediated.

While traditional NAC solutions provide similar functionality, as an SDN application Sentinel can

be deployed without installing additional hardware, and it can provide protection at the edge of the

network. Sentinel is a sophisticated example of the blacklist technology discussed in the next section.
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8.3.3 SDN on Campus: Traffic Suppression

Having flow table rules at the edge of the network carries the additional benefit of being able to suppress

unwanted traffic. That unwanted traffic could be benign, such as service discovery multicasts, or it

could be malicious, such as infected devices bringing viruses into the network. With flow tables at the

edge of the network, service discovery traffic can be captured by the edge device and forwarded to the

controller. The controller can then keep a repository of services and service requestors, which can be

used to satisfy requests without having to forward all those multicasts upstream to flood the possibly

overloaded network.

The ability to set policy and security for end users with highly granular flow-based mechanisms

facilitates effective per-user firewalls. Only certain types of traffic (e.g., traffic destined for certain UDP

or TCP ports) will be allowed to pass the edge device. All other types of traffic will be dropped at the

very edge of the network. This is an effective means of blocking certain classes of malicious traffic.

Note that the implementation of per-user firewalls requires that the controller know who the user is. If

a NAC solution is running in the SDN controller, this is not a problem. If the NAC solution, such as

RADIUS, is implemented outside of SDN, there is a challenge because the relationship between that

external NAC solution and OpenFlow is not standardized nor well understood.

One facet of a per-user firewall is an application known as a blacklist. Blacklist technology blocks

attempts by end users to access known malicious or harmful hostnames and IP addresses. Traditional

blacklist solutions rely on in-line appliances that snoop all traffic and attempt to trap and block attempts

to reach these bad destinations. SDN is able to implement a blacklist solution without the insertion

of additional appliances into the network. This provides both CAPEX savings due to less network

equipment and OPEX savings due to a network that is easier to administer. An SDN application for

blocking attempts to reach specific hostnames entails setting up flow table rules in edge devices to

capture DNS requests and send them to the controller. The SDN controller consults a database of

undesirable hostnames and blocks the DNS request from being sent out when a blacklisted hostname

is encountered.

Figure 8.7 shows the simple manner in which a DNS blacklist could be implemented. The controller

sets flows in the edge devices, directing them to forward all DNS requests to the controller. When DNS

requests arrive at the controller, the controller consults a local or remote database of known malicious

sites. If the result is that the hostname is clean, the controller returns the DNS request with instructions

to the edge device to forward the packet as it normally would. If the hostname is deemed unsafe, the

controller instructs the edge device to drop the packet, denying the user access to that host.

A savvy user can circumvent this first blacklist application if he/she knows the IP address of the

destination host. By specifying the IP address directly instead of the hostname, no DNS request is sent.

Figure 8.8 shows a simple SDN implementation for this variant of the blacklist problem. In this second

solution, packets with destination IP addresses of unknown virtue are forwarded to the controller, which

inspects the packets and either allows the IP address (so that packets to and from that IP address will

now automatically be allowed) or else the device is programmed to drop this and future packets sent to

that bad address. If the packet is allowed, the application will install a transient flow allowing requests

to that destination IP address.

Note with this latter solution, application design is critical. If destination IP address allow rules have

aging timers that are too short, they will age out in between requests, and consequently, every time

a destination is visited, there will be delay and overhead associated with verifying and allowing the



8.3 Campus Networks 183

Internet Malicious

Sites

SDN-Enabled 
Edge Devices

SDN

Controller

Check hostname

DNS Requests

Allow | Deny

FIGURE 8.7

DNS blacklist application.

packets to that destination. If those rules have aging timers that are too long, the device runs the risk of

being overloaded with flow entries, possibly even exceeding the maximum size of the flow table.

We provide a detailed analysis with accompanying source code for an Open SDN blacklist application

in Section 10.4.

Blacklist is really a simple host-level firewall. HP’s Sentinel application, described earlier, provides

a blacklist feature as a component of its commercial SDN security application.
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8.4 Hospitality Networks

Hospitality networks are found in hotels, airports, coffee shops, and fast-food restaurants among other

places. There is a fair degree of overlap between the user requirements in campus networks and those of

hospitality networks. The primary end user in a hospitality network is a guest who is using the network

either through the largesse of the establishment or through the purchase of a certain amount of time. One

class of the for-purchase situation is end users who have purchased connectivity for a certain duration,

such as a month or a year, and who are thus able to connect to the network without a direct financial

exchange each time they connect.

The application of SDN for captive portals in the campus discussed in Section 8.3.2 applies similarly

to hospitality networks. The difference is that in the case of hospitality networks, the user is paying

directly or indirectly for the access, so a corresponding form of identification will likely be involved

in authenticating with the registration server. These could include providing hotel room or credit card

information.

Hospitality networks frequently offer WiFi access. We describe a more general application of SDN

to WiFi access in the next section on mobile networks.

8.5 Mobile Networks

Mobile networking vendors, such as AT&T, Verizon, and Sprint, compete for customers to attach to

their networks. The customers use smartphones or tablets to connect using the available cellular service,

whether that is 3G, 4G, LTE, or another cellular technology.

When mobile customers use traditional WiFi hotspots to connect to the Internet, those mobile vendors

effectively lose control of their customers. This is because the users’ traffic enters the Internet directly

from the hotspot. Since this completely circumvents the mobile vendor’s network, the vendor is not even

aware of the volume of traffic that the user sends and receives and certainly cannot enforce any policy on

that connection. When customer traffic circumvents the mobile provider’s network, the provider loses

a revenue-generating opportunity. Nevertheless, since their cellular capacities are continually being

stretched, from that perspective it is advantageous for the mobile vendors to offload traffic to WiFi

networks when possible. Thus, the mobile provider is interested in a solution that allows its customers

to access its networks via public WiFi hotspots without the provider losing control of and visibility to

its customers’ traffic. The owner of such hotspots may want for multiple vendors to share the WiFi

resource offered by the hotspot. The multitenant hotspot we describe here is somewhat analogous to

network virtualization in the data center. Just as SDN shines in that data center environment, so can it

play a pivotal role in implementing such multitenant hotspots.

8.5.1 SDN Applied to Mobile Networks

Mobile vendors interested in gaining access to users who are attaching to the Internet via WiFi hotspots

require a mechanism to control their users’ traffic. Control in this context may simply mean being able

to measure how much traffic that user generates. It may mean the application of some policy regarding
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QoS. It may mean diverting the user traffic before it enters the public Internet and redirecting that traffic

through its own network. SDN technology can play a role in such a scheme in the following ways:

• Captive portals

• Tunneling back to the mobile network

• Application of policy

We discussed captive portals and access control in Section 8.3.1. This functionality can be applied

to mobile networks as well. It requires allowing users to register for access based on their mobile

credentials. Once valid credentials are processed, the user is granted appropriate levels of access.

One of the mechanisms for capturing and managing mobile user traffic is through the establishment

of tunnels from the user’s location back to the mobile vendor’s network. The tunnel would be established

using one of several available tunneling mechanisms. By programming SDN flows appropriately, that

user’s traffic would be forwarded into a tunnel and diverted to the mobile vendor’s network. Usage

charges could be applied by the mobile provider. In addition to charging for this traffic, other user-

specific policies could be enforced. Such policies could be applied at WiFi hotspots where the user

attaches to the network. SDN-enabled access points can receive policy, either from the controller of the

mobile vendor or from a controller on the premises.

As an example of the utilization of SDN and OpenFlow technology as it relates to the needs of mobile

networks and their service providers, consider Figure 8.9.

VirginMobile

O
p

e
n

F
lo

w

R
o

u
te

r

O
p

e
n

F
lo

w
-E

n
a

b
le

d

A
P

Internet

Broker

&

Controller

Verizon

AT&T

Authentication

Network Access

Internet Access Alternatives

Verizon

User

AT&T

User

VirginMobile

User

O
p

e
n

F
lo

w

R
o

u
te

r

FIGURE 8.9

Mobile service providers.
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The example depicted in Figure 8.9 shows the basic means by which SDN and OpenFlow can be

used to grant carrier-specific access and private or public access from mobile devices to the Internet.

In Figure 8.9 the customers on the left want to access the Internet, and each set has a different carrier

through which they gain network access. Connecting through an OpenFlow-enabled wireless hotspot,

they are directed through a broker that acts as an OpenFlow controller. Based on their carrier, they are

directed to the Internet in various ways, depending on the level of service and the mechanism set up by

the carrier. In the example, AT&T users gain access directly to the Internet, whereas Verizon and Virgin

Mobile users access the Internet through being directed by OpenFlow through a tunnel to the carrier’s

network. Both tunnels start in the OpenFlow-enabled AP. One tunnel ends in an OpenFlow-enabled

router belonging to Verizon, the other in an OpenFlow-enabled router belonging to Virgin Mobile.

These two routers then redirect their respective customers’ traffic back into the public Internet. In so

doing, the customers gain the Internet access they desire, and two of the mobile providers achieve the

WiFi offload they need while maintaining visibility and control over their users’ traffic. To facilitate

such a system, there is presumably a business relationship between the providers and the hotspot owner

whereby the hotspot owner is compensated for allowing the three providers’ users to access the hotspot.

There would likely be a higher fee charged Verizon and Virgin Mobile for the service that allows them

to retain control of their customers’ traffic.

The ONF’s Wireless and Mobile Working Group has published a number of OpenFlow-based use

cases. These include:

• Flexible and scalable packet core

• Dynamic resource management for wireless backhaul

• Mobile traffic management

• Management of secured flows in LTE

• Media-independent handover

• Energy efficiency in mobile backhaul networks

• Security and backhaul optimization

• Unified equipment management and control

• Network-based mobility management

• SDN-based mobility management in LTE

• Unified access network for enterprise and large campus

These use cases are very detailed and specific applications relevant to mobile operators. In a number

of cases, implementing them would require extensions to OpenFlow. The mobile use cases listed here

as well as others are described in [5].

8.6 In-Line Network Functions

In-line network functions typically include functionality such as load balancers, firewalls, intrusion

detection systems (IDS), and intrusion prevention systems (IPS). These services must be able to inspect

the packets passing through them. These functions are often delivered in specialized appliances that

can be very expensive. These appliances are bumps in the wire, meaning that they are inserted into

the data plane. In some cases, the bump shunts traffic to an out-of-band processor, which can result in
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cost savings. In other cases, the value-added service performed by the appliance is performed at line

rate, and the increased cost of such devices is necessary if performance is of paramount concern. Data

centers and SPs that must employ these types of services welcome any novel means to drive down the

costs associated with these devices.

There are many schemes for load balancing traffic, but all involve some level of packet inspection,

choosing the destination in order to evenly distribute the load across the entire set of servers.

Firewalls play the role of admitting or denying incoming packets. The decision criteria involve packet

inspection and can be based on factors such as destination or source IP address, destination or source

TCP or UDP port, or something deeper into the payload, such as the destination URL.

IDS and IPS solutions analyze packets for malicious content. This entails performing process-

intensive analysis of the packet contents to determine whether a threat is present. Although an IPS

is a bump in the wire, an IDS can run in parallel with the data plane by looking at mirrored traffic. Such

systems require some traffic-mirroring mechanism. A hybrid system can be implemented in the SDN

paradigm by shunting only those packets requiring deeper inspection to an appliance that is off the data

path. This approach has the advantage of removing the bump in the wire, since packets that are not

subject to deeper inspection suffer no additional latency at all. Furthermore, since not all packets need

to be processed by the appliance, fewer or less powerful appliances are needed in the network. This can

be realized in SDN by simply programming flow rules, which is much simpler than the special Switch

Port ANalyzer (SPAN) ports that are in use on contemporary traditional switches. We discuss SPAN

ports in Section 8.6.4.

8.6.1 NFV vs. SDN

SDN has been proposed to address network service needs through network functions virtualization

(NFV), introduced in Section 6.5. The idea of NFV is to move service functionality (load balancers,

firewalls, etc.) off specialized appliances and implement it as software that runs on common server

platforms. This has been made possible by advances in server and network interface technology. Appli-

cations that once required specialized hardware for both CPU and NICs can now be performed by

industry-standard servers. Arguments in favor of this shift include the lower cost of servers com-

pared to these specialized appliances as well as the ability to easily upgrade the hardware when

necessary.

Active standards efforts are under way for NFV. The European Telecommunications Standards

Institute (ETSI) has the Industry Specification Group (ISG) working on NFV standardization, with 127

companies participating. There is also the CloudNFV industry consortium led by the CIMI Corporation

that is building NFV prototypes. A number of NEMs are bringing NFV products to the market. These

include Juniper, Cisco, Intel, VMware, and the startup Embrane.

NFV is a logical next step in the migration toward the server virtualization in data centers that we

have discussed previously. Part of the motivation is to lower equipment costs and power consumption

by reducing the amount of physical equipment. This reduction in equipment results in a more simplified

network topology, which is easier to manage and permits faster rollout of new services. New services can

be enabled by merely loading and configuring software. The fact that these services are software-enabled

means that it is easier to maintain test beds for services being evaluated and trial rollouts alongside the

operational services.
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Migrating to NFV is not without its challenges. Performance is a key concern. Different functions

have very different performance requirements, and some functions need to be performed at line rate on

specialized hardware. Extra effort is necessary to ensure that the NFV implementations work well on the

many different servers and hypervisors that come from different vendors. Because the migration to NFV

will take place over many years, and indeed there will always be the need for some specialized hardware

appliances, it will be necessary to manage the coexistence of NFV solutions with traditional appliances.

Architecting for resiliency to hardware and software failures in an NFV world will be very different

than with traditional networking. Finally, traffic flows must be directed to these virtual appliances. The

way this is done will depend on where in the network the NFV functionality is hosted. There are three

basic methods:

• Standard servers running NFV functionality in the same topological network location as the appli-

ance. This saves on hardware costs but does not reduce network complexity.

• Much of the network functionality, including switches and appliances, can be virtualized in a hyper-

visor. This is the approach taken by Nicira and others. This may be appropriate in data center

environments.

• OpenFlow-capable switches can selectively shunt traffic to standard servers running NFV function-

ality off the main data path. This is the area of overlap between SDN and NFV of greatest interest

in this book. We provide an example of SDN working with NFV in this way in Section 8.6.4.

NFV is an extensive field that merits deeper treatment than the scope of this book allows. We refer

the interested reader to [2] for an excellent introduction to this topic. To be clear, NFV is not the same as

SDN, although there is some overlap. Running network services on standard servers is not the same as

moving control planes off networking devices, having a controller, and opening the entire networking

domain to innovation.

8.6.2 SDN Applied to Server Load Balancing

Load balancers must take incoming packets and forward them to the appropriate servers. Using SDN

and OpenFlow technology, it is straightforward to imagine a switch or other networking device having

rules in place that would cause it to act as a load-balancer appliance at a fraction of the cost of purchasing

additional, specialized hardware. Figure 8.10 shows a switch acting as a load balancer distributing load

across a set of servers.

OpenFlow 1.0 supports matching against the basic 12-tuple of input fields, as described in Section

5.3.3. A load balancer has a rich set of input options for determining how to forward traffic. For

example, as shown in the figure, the forwarding decision could be based on the source IP address. This

would afford server continuity for the duration of time that that particular endpoint was attempting to

communicate with the service behind the load balancer. This would be necessary if the user’s transaction

with the service required multiple packet exchanges and if the server needed to maintain state across

those transactions.

The fact that the controller will have the benefit of understanding the load on each of the links to the

servers, as well as information about the load on the various servers behind the firewall, opens up other

possibilities. The controller could make load-balancing decisions based on a broader set of criteria than

would be possible for a single network appliance.
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Load balancers using OpenFlow.

8.6.3 SDN Applied to Firewalls

Firewalls take incoming packets and forward them, drop them, or take some other action such as

forwarding the packet to another destination or to an IDS for further analysis. Like load balancers,

firewalls using SDN and OpenFlow have the ability to use any of the standard 12 match fields for

making these forward or drop decisions. Figure 8.11 shows a switch behaving as an inexpensive firewall.

Packets matching certain protocol types (e.g., HTTPS, HTTP, Microsoft Exchange) are forwarded to

the destination, and those that do not match are dropped. Simple firewalls that are ideally suited to

an SDN-based solution include firewalls that are based on blocking or allowing specific IP addresses

or specific TCP/UDP ports. As with load balancers, SDN-based firewalls may be limited by a lack of

statefulness and inability for deeper packet inspection.

One SDN use case applied to firewalls is to insert an OpenFlow-enabled switch in front of a battery of

firewalls. One benefit is that the SDN switch can load balance between the firewall devices, permitting

greater scale of firewall processing. More important, the SDN switch can shunt known-safe traffic around

the firewalls. This is possible because OpenFlow rules can be programmed such that we offload from the

firewalls traffic that is known to be problem-free. The benefit of doing so is that less firewall equipment

and/or power is needed and less traffic is subjected to the latency imposed by firewall processing.

8.6.4 SDN Applied to Intrusion Detection

An IDS is intended to observe network traffic to detect network intrusions. An IPS additionally attempts

to prevent such intrusions. The range of intrusions that these systems are intended to recognize is very

broad, and we do not attempt to enumerate them here. We do, however, consider two particular IDS

functions that lend themselves well to SDN-based solutions.
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Firewalls using OpenFlow.

The first type of intrusion detection we consider requires deep inspection of packet payloads, search-

ing for signs of viruses, trojans, worms, and other malware. Since this inspection is processing-intensive,

it must take place somewhere outside the data plane of the network. Typical solutions utilize a network

tap, which is configured to capture traffic from a particular source, such as a VLAN or physical port, and

copy that traffic and forward it to an IDS for analysis. Physical taps such as this are mostly port-based.

One pre-SDN solution is based on a network patch-panel device that can be configured to take

traffic from an arbitrary device port and forward it to the analysis system. This requires patch panel

technology capable of copying traffic from any relevant network port. This technology is available from

companies such as Gigamon and cPacket Networks. In large networks the cost of such approaches may

be prohibitive. Forwarding traffic on uplinks is also sensitive to the volume of traffic, which may exceed

the capacity of the uplink data path.

Another pre-SDN solution for IDS is to use configuration tools on the network devices to configure

SPAN ports. This allows the switch to operate as a virtual tap, where it copies and forwards traffic to

the IDS for analysis. Such taps can be based on port or VLAN or even some other packet-based filter,

such as device address.

OpenFlow is well suited to this application, since it is founded on the idea of creating flow entries

that match certain criteria (e.g., device address, VLAN, ingress port) and performing some action. A tap

system using OpenFlow can be programmed to set up actions on the device to forward packets of interest

either out through a monitor port or to the IP address of an IDS.

Note that the use case cited at the end of Section 8.6.3, where an SDN switch is used to front-end

a battery of firewalls, can also be applied to a battery of IPS appliances. The same two rationales of
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shunting safe traffic around the IPS appliances while allowing the system to scale by using multiple IPS

units in parallel apply in this case as well.

The FlowScale open source project done at InCNTRE is an example of this kind of front-end load

balancing with the SPAN concept. FlowScale sends mirrored traffic to a battery of IDS hosts, load

balancing the traffic across them.

8.7 Optical Networks

An optical transport network (OTN) is an interconnection of optical switches and optical fiber links.

The optical switches are layer one devices. They transmit bits using various encoding and multiplexing

techniques. The fact that such optical networks transmit data over a lightwave-based channel as opposed

to treating each packet as an individually routeable entity lends itself naturally to the SDN concept of

a flow. In the past, data traffic was transported over optical fiber using protocols such as Synchronous

Optical Networking (SONET) and Synchronous Digital Hierarchy (SDH). More recently, however,

OTN has become a replacement for those technologies. Some companies involved with both OTN and

SDN are Ciena, Cyan, and Infinera. Some vendors are creating optical devices tailored for use in data

centers. Calient, for example, uses optical technology for fast links between racks of servers.

As was shown in Table 3.2, the ONF has a working group dedicated to studying use cases for SDN

applications for optical transport, underscoring the importance of this field of application for SDN. Next

we examine a simple example of such a use case.

8.7.1 SDN Applied to Optical Networks

In data center networks, there often arise certain traffic flows that make intense use of network bandwidth,

sometimes to the point of starving other traffic flows. These are often called elephant flows due to their siz-

able nature. The flows are characterized by being of relatively long duration yet having a discrete begin-

ning and end. They may occur due to bulk data transfer, such as backups that happen between the same

two endpoints at regular intervals. These characteristics can make it possible to predict or schedule these

flows. Once detected, the goal is to reroute that traffic onto some type of equipment, such as an all-optical

network that is provisioned specifically for such large data offloads. OTNs are tailor-made for these huge

volumes of packets traveling from one endpoint to another. Packet switches’ ability to route such elephant

flows at packet-level granularity is of no benefit, yet the burden an elephant flow places on the packet-

switching network’s links is intense. Combining a packet-switching network with an OTN into the kind

of hybrid network shown in Figure 8.12 provides an effective mechanism for handling elephant flows.

In Figure 8.12 we depict normal endpoints (A1, A2) connected through top-of-rack (ToR) switches

T oR−1 and T oR−2, communicating through the normal path, which traverses the packet-based net-

work fabric. The other elephant devices (B1, B2) are transferring huge amounts of data from one to

the other; hence, they have been shunted over to the optical circuit switch, thus protecting the bulk of

the users from such a large consumer of bandwidth.

The mechanism for this shunting or offload entails the following steps:

1. The elephant flow is detected between endpoints in the network. Note that, depending on the flow,

detecting the presence of an elephant flow is itself a difficult problem. Simply observing a sudden



192 CHAPTER 8 SDN in Other Environments

 SDN Controller

Topo Flow ModifierFlow Listener

Packet-Based

Network Fabric

Circuit-Switched

Optical Fabric

Overloaded

Packet-Based

Switch

Offload Optical

Switch for Large

Flows

OCS

ToR-1 ToR-2

Normal

Endpoint

A1

Elephant

Endpoint

B1

Elephant

Endpoint

B2

Normal

Endpoint

A2

Normal Flow: A1-A2

Elephant Flow: B1-B2

U1

U2

O2

O1

FIGURE 8.12

Optical offload application overview.

surge in the data flow between two endpoints in no way serves to predict the longevity of that flow.

If the flow is going to end in 500 ms, this is not an elephant flow and we would not want to incur any

additional overhead to set up special processing for it. This is not trivial to know or predict. Normally,

some additional contextual information is required to know that an elephant flow has begun. An

obvious example is the case of a regularly scheduled backup that occurs across the network. This

topic is beyond the scope of this book; we direct the interested reader to [3,4].

2. The information regarding the endpoints’ attaching network devices is noted, including the uplinks

(U1,U2), which pass traffic from the endpoints up into the overloaded network core.

3. The SDN controller program flows in T oR−1 and T oR−2 to forward traffic to and from the

endpoints (B1, B2) out an appropriate offload port (O1, O2) rather than the normal port (U1,U2).

Those offload ports are connected to the optical offload fabric.

4. The SDN controller programs flows on the SDN-enabled optical offload fabric to patch traffic

between B1 and B2 on the two offload links (O1, O2). At this point, the rerouting is complete and

the offload path has been established between the two endpoints through the OTN.

5. The elephant flow eventually returns to normal and the offload path is removed from both connecting

network devices and from the optical offload device. Subsequent packets from B1 to B2 traverse

the packet-based network fabric.

We discuss details of programming an offload application in Section 10.12.
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8.8 SDN vs. P2P/Overlay Networks

At a conceptual level, P2P/overlay networks resemble the overlay networks presented in detail through-

out this book. Just as the data center virtual networks are overlaid on a physical infrastructure, the

details of which are masked from the virtual network, so also is the P2P/overlay network overlaid over

the public Internet without concern or knowledge of the underlying network topology. Such networks

comprise a usually ad hoc collection of host computers in diverse locations owned and operated by

separate entities, with each host connected to the Internet in either permanent or temporary fashion.

The peer-to-peer (hence the name P2P) connections between these hosts are usually TCP connections.

Thus, all of the hosts in the network are directly connected. Napster is the earliest well-known example

of a PTP/overlay network.

We introduce P2P/overlay networks here primarily to distinguish them from the overlay networks we

describe in SDN via hypervisor-based overlays. Although the nature of the overlay itself is different, it is

interesting to consider where there might be some overlap between the two technologies. Just as scaling

SDN will ultimately require coordination of controllers across controlled environments, there is a need

for coordination between P2P/overlay devices. SDN helps move up the abstraction of network control,

but there will never be a single controller for the entire universe, and thus there will still need to be

coordination between controllers and controlled environments. P2P/overlay peers also must coordinate

among each other, but they do so in a topology-independent way by creating an overlay network. A big

distinction is that Open SDN can also control the underlay network. The only real parallel between

these two technologies is that at some scaling point, they must coordinate and control in a distributed

fashion. The layers at which this is applied are totally different, however.

8.9 Conclusion

Through examples, we have illustrated in this and the preceding chapter that SDN can be applied to a

very wide range of networking problems. We remind the reader of the points made in Section 4.1.3: that

SDN provides a high-level abstraction for detailed and explicit programming of network behavior. It is

this ease of programmability that allows SDN to address these varied use cases. One of the most exciting

aspects of SDN is that the very flexibility that has rendered it capable of crisply addressing traditional

network problems will also make it adaptable to solve yet-to-be conceived networking challenges.

Addressing the different use cases that we have described in these two chapters requires a wide variety

of controller applications. In Chapter 10 we examine some sample SDN applications in detail and

see how domain-specific problems are addressed within the general network programming paradigm

of SDN. First, though, we should acknowledge that this important movement could only take place

because of key players that have pushed it forward. For that reason, in Chapter 9 we take a step back

from technology and review the individuals, institutions, and enterprises that have had the greatest

influence on SDN since its inception.
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9
CHAPTER

Players in the SDN Ecosystem

A technological shift as radical and ambitious as SDN does not happen without many players contributing

to its evolution. Beyond the luminaries behind the early concepts of SDN are many organizations that

continue to influence the direction in which SDN is headed and its rate of growth. These players’

impact is sometimes positive and at other times contrary to the growth of SDN, but they are in any case

influential in SDN’s evolution. We classify the various organizations that have had the most influence

on SDN into the following categories:

• Academic researchers

• Industry research labs

• Network equipment manufacturers

• Software vendors

• Merchant silicon vendors

• Original device manufacturers

• Enterprises

• Standards bodies and industry alliances

Figure 9.1 depicts these major groupings of SDN players and the synergies and conflicts that exist

between them. We also show three super-categories in the figure. Academic and industry-based basic

research, standards bodies and industry alliances, and the white-box ecosystem make up these super-

categories. In the context of this book, a white-box switch is a hardware platform that is purpose-built

to easily incorporate the OpenFlow device software that would come in the form of an OpenFlow

implementation such as Switch Light or OVS. In this chapter we discuss each of these categories, how

they have contributed to the evolution of SDN, and the various forces that draw them together or place

them into conflict.

9.1 Academic Research Institutions

Universities worldwide have engaged in research related to SDN. Many academic institutions have

contributed to the advancement of SDN; we mention here three institutions of particular interest. They

are Stanford University, U.C. Berkeley, and Indiana University. Stanford and Berkeley have been at the

forefront of SDN since its very inception and have employed an impressive number of the luminaries

who created this new model of networking.

As we saw in Section 3.2.6, events at Stanford led directly to the creation of the Clean Slate [1]

program, including forwarding and control plane separation and, notably, the OpenFlow protocol. The

Open Networking Research Center (ONRC) began as a joint project of Stanford and U.C. Berkeley [6],

Software Defined Networks. http://dx.doi.org/10.1016/B978-0-12-416675-2.00009-7
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FIGURE 9.1

SDN players ecosystem.

receiving funding from a number of major vendors such as Cisco, Intel, Google, VMware, and others.

The ONRC’s stated intention is to open up the Internet infrastructure for innovations. The ONRC

has produced a number of research projects [7]. An affiliated organization called ON.LAB seeks to

develop, deploy, and support various SDN and OpenFlow-related tools and platforms. The ONRC is

more research oriented, whereas ON.LAB is more focused on the practical application of SDN.

Indiana University has been instrumental in promoting SDN and OpenFlow with a number of research

projects and implementations, including the Indiana Center for Network Translational Research and

Education (InCNTRE) [8]. Its goal is to advance development, increase knowledge, and encourage

adoption of OpenFlow and other standards-based SDN technologies. One of the most notable activities

at InCNTRE is a plugfest hosted by the Open Networking Foundation (ONF), where vendors bring

their networking devices and controllers for interoperability testing. InCNTRE is the first certified lab

selected by ONF for its conformance-testing program [9].
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9.1.1 Key Contributors to SDN from Academia

A significant number of SDN pioneers have worked or studied at Stanford and U.C. Berkeley, some of

whom we list here:

• Nick McKeown, currently a professor of electrical engineering and computer science at Stanford,

has established multiple technology companies that have been acquired by larger companies in the

high-tech industry. He is credited with helping to ignite the SDN movement, along with Martin

Casado and Scott Shenker.

• Martin Casado is currently a consulting assistant professor at Stanford University in addition to his

work at Nicira, which he founded with Nick McKeown and Scott Shenker. He was initially one of

the creators of OpenFlow through the Ethane project [3].

• Scott Shenker, a professor in the School of Electrical Engineering and Computer Science at U.C.

Berkeley, was involved with Nick McKeown and Martin Casado in the creation of Nicira.

• Guru Parulkar is a professor at Stanford as well as having been executive director of the Clean Slate

program at that university. He is also executive director of the ONRC. He is a strong advocate of

Open SDN and a vocal opponent of SDN washing [4], the use of the term SDN to refer to related

technologies other than Open SDN, such as SDN via APIs and SDN via hypervisor-based overlays.

• Guido Appenzeller, co-founder of Big Switch Networks, is another participant in Stanford’s Clean

Slate program. In his role at Big Switch he is one of the strongest advocates for the Open SDN

approach to reinventing networks.

• David Erickson and Rob Sherwood are the authors of most of the modules for the Beacon SDN

controller [5]. Since most of the current open source SDN controllers were forked from that original

Beacon source code, they have had significant influence on the design of contemporary Open SDN

controllers. Controller implementations that were derived from Beacon include Floodlight and the

OpenFlow portion of OpenDaylight.

9.2 Industry Research Labs

Quite often major enterprises and vendors support their own research labs that are performing basic

research. We distinguish such pure research from research directed toward specific product development.

These corporations often participate in research organizations and conferences and contribute papers

based on their findings. For example, some research labs that have presented papers on SDN at recent

SIGCOMM conferences are as follows:

• Telekom Innovation Laboratories (research arm of Deutsche Telekom)

• NTT Innovation Institute

• Microsoft Research

• Hewlett-Packard (HP) Laboratories

• Fujitsu Laboratories Ltd.

• IBM Research

• NEC Labs

These companies contribute to the furthering of SDN through research into topics such as scalability,

deployment alternatives, ASIC development, and many other topics central to SDN.
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9.3 Network Equipment Manufacturers

A number of networking vendors were quick to join the SDN movement, some of them contributing

OpenFlow-enabled devices to researchers for testing, even before the first official OpenFlow standard

document was published. Others have provided funding for SDN-related standards organizations or

industry alliance research institutions. Some have made small acquisitions to gain access to SDN

technology. Some have begun to support Open SDN, whereas others promote an SDN-via-APIs or an

SDN-via-overlays strategy.

Virtually every NEM has SDN as part of its story today. This is a virtual marketing necessity,

considering all the hype surrounding SDN, yet much of it constitutes the SDN washing mentioned in

Section 9.1.1. It is not our intent in this chapter to document all the vendors’ SDN claims. We focus on

specific NEMs that, due to either their size or their commitment to SDN, seem most likely to influence

the future course of SDN for better or worse. In Table 9.1 we list some of these SDN networking

vendors and the products they offer in the areas of SDN device, SDN controller, and SDN application.

The NEMs called out in the table are not the only ones to have brought SDN products to market as of

this writing, but we believe that they reflect the most significant contributions by NEMs thus far. In this

section we provide some brief background on the NEMs cited in Table 9.1.

Cisco was not involved with the early work on OpenFlow; the company began to support OpenFlow

in its devices in 2012. Cisco is now heavily involved with SDN. Though only a lukewarm supporter of

Table 9.1 2013 SDN Commercial Product List by Vendor

Vendor SDN Devices SDN Controllers SDN Applications

Cisco OpenFlow: coming ONE (XNC)/onePK

SDN via APIs

Hewlett-Packard OpenFlow: 3500, 5400 and

8200

OpenFlow Security (Sentinel)

Brocade OpenFlow: NetIron CER, CES

SDN via APIs

VMware OpenFlow: Open vSwitch

(OVS)

NVP (NSX) NVP (NSX)

Big Switch OpenFlow: Indigo Big Network Controller Big Virtual Switch

OpenFlow: Switch Light Big Tap

IBM OpenFlow: RackSwitch and

Flex System

Programmable Network

Controller

SDN VE

DOVE

NEC Programmable Flow

5240 and 5820

Programmable Flow

Controller

Virtual Tenant Networks

Firewall, others

Extreme OpenFlow: Switch Light

Juniper OpenFlow: MX, EX series Coming: API-based

Alcatel-Lucent SDN via APIs

Arista OpenFlow: 7050 series

SDN via APIs
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the ONF, Cisco is the primary driving force behind the OpenDaylight Project, focused on an open source

SDN controller, as we discuss in Section 9.9.2. In addition to its open source efforts in the OpenDaylight

project, Cisco strongly promotes SDN via its proprietary APIs. The vendor claims to support APIs

and programmability to more of the networking stack than is available with only OpenFlow. Cisco’s

two main thrusts are its Extensible Network Controller (XNC) and its programmability aid, the Open

Networking Environment Platform Kit (onePK), which we discussed in Section 6.2.4. The controller

supports proprietary APIs to Cisco devices as well as OpenFlow. Some of the stated possibilities for

applications using onePK are for functions such as path determination, per-flow capabilities such as

QoS, and automating configuration across many devices. As the dominant NEM, Cisco will undoubtedly

play a large part in shaping the role that SDN will assume in industry. As Cisco creates APIs, other

vendors will pragmatically follow suit and provide the same or very similar APIs in order to sell into

Cisco markets, creating de facto standards. Two examples of this trend are:

• Cisco Controller. Cisco’s XNC controller offers a proprietary northbound API, which is also part

of OpenDaylight, and already some vendors (such as NEC, IBM, and others [22]) have written SDN

applications that interface with that API.

• Cisco Device APIs. Cisco has made much progress in selling its prospective SDN solution, which

includes OpenFlow but highlights the non-OpenFlow capabilities: Cisco’s device APIs. As a conse-

quence, other vendors that want to sell their products into environments using the Cisco controller

may have to implement those same Cisco device APIs.

Note that Cisco’s announced spin-in Insieme that we discuss in Chapter 12 is further evidence of the

company’s interest in aspects of SDN.

Brocade has been active for a number of years in providing OpenFlow-supporting networking devices

to researchers. However, the vendor also provides SDN-via-APIs support in its devices and have pro-

moted its RESTful API SDN support in use cases with various customers. This dual-pronged approach

allows Brocade to offer customers short-term transition plans by offering SDN APIs on its devices as

a migration path as well as supporting Open SDN as a longer-term strategy. Brocade is currently a

major supporter of the OpenDaylight project. In Chapter 12 we discuss Brocade’s acquisition of Vyatta,

another SDN-related startup.

NEC and IBM have partnered together from the early days of the OpenFlow project. Their switch

and OpenFlow controller implementations have similar capabilities. Both vendors have been stalwart

contributors to the OpenFlow research community of OpenFlow-enabled switches. Both vendors have

created applications for their controllers, including virtualization applications that implement overlay

technology. Both companies are committed to OpenFlow and support SDN via overlays using OpenFlow

as the southbound API from the controller.

IBM and NEC have joined the OpenDaylight project and have ported their virtualization applications

to run on that controller. NEC’s contribution is a version of its own network virtualization application,

called Virtual Tenant Networks. IBM’s contribution is a version of its network virtualization applica-

tion, SDN Virtual Environments, which is called Distributed Overlay Virtual Ethernet (DOVE) in the

OpenDaylight environment (see Section 6.3.3).

Like NEC and IBM, Hewlett-Packard contributed OpenFlow-supporting switches to the Open-

Flow research community long before the first ratified version of OpenFlow was approved. HP con-

tinues to support OpenFlow in many switch product lines and claims to have shipped millions of
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OpenFlow-supporting switch ports in the past few years. Among NEMs, HP stands out for its unequiv-

ocal support of OpenFlow and enthusiastic participation in the ONF.

HP offers a commercial OpenFlow-based SDN controller. At ONS 2013, HP presented a number of

SDN applications using OpenFlow to implement security and traffic-prioritization features. HP currently

offers the Sentinel SDN security application that we described in Section 8.3.3. Because of its large

server business, HP is also heavily involved in OpenStack and, consequently, will likely provide some

type of network virtualization support through that project.

In Table 9.1 we see several NEMs listed that we have not yet mentioned. Extreme is partnering with

Big Switch Networks to create a lightweight switch, which we discuss in more detail in Section 9.5.

Alcatel-Lucent provides SDN via APIs in its networking devices. Juniper is headed toward a strategy

aligned with SDN via APIs and has also acquired the startup Contrail. The Contrail controller provides

network virtualization technology via overlays, presumably using the RESTful APIs that Juniper is

building into its networking products. Arista is very vocal in SDN forums and ships commercial SDN

products. Arista does offer some OpenFlow support, but its emphasis is on SDN via APIs.

9.4 Software Vendors

The move toward network virtualization has opened the door for software vendors to play a large role in

the networking component of the data center. Some of the software vendors that have become significant

players in the SDN space include VMware, Microsoft, and Big Switch as well as a number of startups.

Here we will try to put their various contributions into context.

VMware, long a dominant player in virtualization software for the data center, has contributed

significantly to the interest and demand for SDN in the enterprise. VMware boldly altered the SDN

landscape when it acquired Nicira. VMware’s purchase of Nicira has turned VMware into a networking

vendor. Nicira’s roots, as we explained in Section 9.1.1, come directly from pioneers in the Open SDN

research community.

VMware’s current offerings include Open vSwitch (OVS) as well as the Network Virtualization Plat-

form (NVP) acquired through Nicira. (NVP is now marketed as VMware NSX.) NVP uses OpenFlow

(with some extensions) to program forwarding information into its subordinate OVS switches.

Current VMware marketing communications claim that SDN is complete with only SDN via overlays.

OpenFlow is VMware’s southbound API of choice, but the emphasis is on network virtualization via

overlay networks, not on what can be achieved with OpenFlow in generalized networking environments.

This is a very logical business position for VMware. The holy grail for VMware is not about academic

arguments but about garnering as much of the data center networking market as it can. This is best

achieved by promoting VMware’s virtualization strengths and avoiding esoteric disputes about one

southbound API’s virtues versus other approaches.

Other vendors and enterprises have begun to see the need to inter-operate with the Nicira solution.

Although VMware’s solution does not address physical devices, vendors who want to create overlay

solutions that work with VMware environments will likely need to implement these Nicira-specific

APIs as well.

Though VMware and Cisco were co-definers of the VXLAN [17] standard, the two companies

now appear to be diverging. Cisco is focused on its XNC controller and API strategy, and VMware is
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focused on NSX. With respect to tunneling technologies, Cisco promotes VXLAN, which is designed

for software and hardware networking devices, whereas VMware promotes both VXLAN and STT.

STT [19] has a potential performance advantage in the software switch environment customary for

VMware. This advantage derives from STT’s ability to use the server NICs TCP hardware acceleration

to improve network speed and reduce CPU load.

As a board-level participant in the ONF, Microsoft is instrumental in driving the evolution of Open-

Flow. Microsoft’s current initiative and effort regarding SDN have been around the Azure public cloud

project. Similar to VMware, Microsoft has its own server virtualization software, called Hyper-V, and

is utilizing SDN via overlays to virtualize the network as well. Microsoft’s solution uses NVGRE [18]

as the tunneling protocol, providing multitenancy and the other benefits described in Section 7.3.2.

Big Switch Networks was founded in 2010 by Guido Appenzeller with Rob Sherwood as CTO of con-

troller technology, both members of our SDN hall of fame. Big Switch is one of the primary proponents

of OpenFlow and Open SDN. Big Switch has Open SDN technology at the device, controller and appli-

cation levels. The company created an open source OpenFlow switch code base called Indigo. Indigo is

the basis for Big Switch’s commercial OpenFlow switch software, which the vendor markets as Switch

Light. The Switch Light initiative is a collaboration of switch, ASIC, and SDN software vendors to create

a simple and cost-effective OpenFlow-enabled switch. Big Switch provides a version of Switch Light

intended to run as a virtual switch, called Switch Light for Linux, as well as one targeted for the white-box

hardware market, called Switch Light for Broadcom. We discuss white-box switch concept in Section 9.5.

Big Switch provides both open source and commercial versions of an SDN controller. The commercial

version is called Big Network Controller, which is based on its popular open source controller called

Floodlight. Big Switch also offers SDN applications, notably Big Virtual Switch, which provides network

virtualization through overlays using OpenFlow virtual and physical devices.

There are numerous software startups are minor players in the SDN space. Both Nicira and Big

Switch were startups. Nicira, as we have mentioned, was the target of a major VMware acquisition. Big

Switch has received a large amount of venture capital funding. Both of these companies have become

major forces on the SDN playing field. There are a number of other SDN software startups that have

received varying amounts of funding and in some cases have been acquired. Except for Nicira and Big

Switch, we do not feel that any of these have yet to become major voices in the SDN dialogue. Since

they have been influential in terms of being recipients of much venture capital attention and investment

and may in the future become major players in SDN, in Chapter 12 we discuss startups such as Insieme,

PLUMgrid, and Midokura and their business ramifications for SDN.

9.5 White-Box Switches

Earlier we defined a white-box switch as a hardware platform that is purpose-built to be easily loaded

with an OpenFlow device implementation such as Switch Light or OVS. The goal is to create a simple,

inexpensive device that can be controlled by an OpenFlow controller and the SDN applications that run

on top of it. The control software that network vendors typically put into their devices is largely absent

from a white-box switch.

The natural alliances in the white-box switch ecosystem are depicted in Figure 9.1. Enterprises that

spend fortunes on networking equipment are naturally drawn to a technology that would allow them
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to populate the racks of their mega data centers with low-cost switching gear. A company like Big

Switch that bets its future on the increasing demand for its SDN controller due to an explosion in the

number of OpenFlow-enabled switches clearly wants to foster the white-box model [10]. Merchant

silicon vendors and original device manufacturers (ODMs) form the nexus of the physical white-box

switch manufacturing ecosystem.

The merchant silicon vendors that make the switching chips are increasingly aligned with capabilities

in the OpenFlow standards. Traditionally, many of the hardware platforms sold by the major NEMs,

particularly lower-end devices, are actually manufactured by ODMs. The ODMs, in turn, are focused

on the most cost-effective manufacturing of hardware platforms whose hardware logic largely consists

of switching chips from the merchant silicon vendors plus commodity CPUs and memory. Industry

consolidation means that the hardware switching platforms look ever more similar. The major NEMs

have traditionally distinguished their products by control and management software and marketed those

features plus the support afforded by the large organization. Now that the control and management

software can be provided by software vendors such as Big Switch, the possibility exists for the marriage

of the general-purpose OpenFlow device software to be loaded onto a white-box device. As we explained

in Section 6.4, this situation is reminiscent of the PC, tablet, and smartphone markets where ODMs

manufacture the hardware platforms, and operating systems such as Windows and Linux are loaded

onto those platforms in a generic fashion.

Obviously, though this ecosystem intimately involves the merchant silicon vendors, the ODMs, and

the software vendors, the role of the traditional NEMs is diminished. It is important to recognize, though,

that the white-box switch concept does not readily apply to all networking markets. When the customer

is large and sophisticated, such as a major cloud services vendor like Google, the support provided

by the traditional NEM is of less value. However, many customers will continue to need the technical

support that comes from the traditional NEM, even if they choose to migrate to the OpenFlow model.

One example of a white-box ecosystem is the Switch Light Initiative formed by Big Switch. As the

originator of Switch Light, Big Switch offers its OpenFlow device software to switch manufacturers,

with the goal of developing a broader market for its OpenFlow controllers. Conceptually this switch

software can be adapted to run with any merchant silicon switching chips, but the initial merchant

silicon vendor involved is Broadcom, and there is now a version of the Switch Light software avail-

able called Switch Light for Broadcom, as we mentioned earlier. ODMs are a natural target for this

software, but the initial device partner for Switch Light is Extreme Networks, which is a traditional

NEM. Extreme Networks has an advantage over the ODMs in that it does have the support network

that we stated was necessary for many networking customers but not within the ODMs’ capacity to

deliver.

The startup Pica8’s entire business model is based on a white-box strategy wherein Pica8 pairs the

open source OpenFlow software with white-box hardware and sells the bundled package. Their operating

system and software run on white-box switching hardware available from multiple ODM partners, and

the switches are controlled using the OpenFlow-capable OVS open source switching code. We discuss

Pica8 further in Section 12.9.1.

Cumulus Networks is another startup that offers software ready-made for white-box hardware from

ODMs such as Accton and Quanta. The Cumulus idea, though, is more related to the idea of opening up

the device (introduced in Section 6.4) than to Open SDN. Although an OpenFlow-capable system can be

loaded on top of the Cumulus operating system, its system is not coupled to OpenFlow. Indeed, Cumulus
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touts that it is possible to use its system with white-box switches without using a centralized controller

at all.

9.6 Merchant Silicon Vendors

Merchant silicon vendors provide specialty chips that are assembled into finished hardware products

by NEMs or by ODMs, which then sell the bare-metal boxes to NEMs, which market the hardware

under their own brand, usually with their own software. Merchant silicon vendors are interested in any

new approach that increases the volume of chips that they sell, so a higher-volume, lower-cost model

for switching hardware is in their interests. To this end, merchant silicon vendors that make switching

chips that are compatible with OpenFlow have been naturally interested in SDN and, in particular, in

the white-box switch ecosystem. Two major merchant silicon vendors that have been particularly active

in the white-box switch arena are Intel and Broadcom.

Intel is a strong proponent of the white-box switch approach, as well as of network device and

server NICs that are designed to handle the flow-matching and processing needs of OpenFlow 1.1 and

beyond. Intel’s white-box strategy is focused on its Device Plane Development Kit (DPDK), which we

introduced in Section 6.4.

For many years Broadcom has been a vendor of switching chips that ODMs have used to build wired

switches. Broadcom’s dominance in this area is evidenced by the fact that Big Switch’s Switch Light cur-

rently comes in one version for hardware devices, and that version is called Switch Light for Broadcom.

A lesser-known player in merchant silicon for SDN is Mellanox. Long known for its InfiniBand

products, Mellanox has quietly tried to take the lead in OpenFlow-enabled switching silicon. Thus

far, there is not much evidence to document commercial success of the company’s product, but there

is certainly room in the marketplace for such technology. We explained in Section 5.7 that the most

recent versions of OpenFlow have surpassed the ability of extant silicon to support the full feature set

of those specifications. It is a widely held belief that the only real solution is to design switching chips

specifically to support OpenFlow rather than trying to adapt older designs to do something for which

they were not designed. Mellanox is attempting just that.

9.7 Original Device Manufacturers

ODMs are focused on the most cost-effective manufacturing of hardware platforms whose hardware

logic is mostly embodied in switching chips from the merchant silicon vendors and commodity CPUs

and memory. These companies largely tend to be Taiwanese, Korean, and Chinese low-cost manufac-

turers. They excel at high-volume, low-cost manufacturing. They have traditionally relied on their NEM

customers to provide end-customer support and to develop complex sales channels. For this reason, they

have been relegated to a relatively low-margin business of selling bare-metal hardware to NEMs that

brand these boxes and sell them through their mature marketing and support organizations. The ODMs

desire to move up the value chain and enter a higher-margin business model closer to the customer.

This process should be aided by customers who are less reliant on NEMs and would rather purchase

hardware directly from the ODMs with the expectation of lower CAPEX costs. Two examples of ODMs

that are particularly interested in the white-box switch model for SDN are Accton and Quanta.
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9.8 Enterprises

A significant amount of the momentum behind SDN has come from large customers who purchase

networking gear from the likes of Cisco, Juniper, Brocade, and others. These enterprises are interested

in stimulating the evolution of networking toward something more functional and cost-effective. As a

consequence, these companies have made significant contributions to SDN over the last few years.

There are two subcategories of these enterprises that have displayed the greatest interest in SDN:

cloud services and carriers. Cloud services companies such as Google started by providing public

Internet access to specialized data that was a target of wide consumer interest. The carriers traditionally

provided network infrastructure. Increasingly, though, both categories of enterprise offer Everything as a

Service (XaaS), providing large data centers that offer a vast number of tenants dynamic access to shared

compute, storage, and networking infrastructure. Such large data centers have provided the most fertile

ground for making SDN inroads. Hence, these two classes of enterprise have taken prominent roles in

the ONF. The synergy between the enterprise and the ONF, which we discuss further in Section 9.9.1,

was reflected in Figure 9.1.

Google has intense interest in improving the capabilities and lowering the cost of networking and

has thus created its own simplified set of networking devices that use OpenFlow and a controller to

manage their inter-data-center WAN connections. We described such an example of Google using SDN

in the WAN in Section 8.1.2.

NTT has long been involved in SDN and OpenFlow research. NTT has created its own SDN con-

troller called Ryu, which manages network devices using OpenFlow 1.0, 1.1, 1.2, and 1.3; a well-known

network configuration protocol called NETCONF [13]; and the OpenFlow Configuration and Manage-

ment Protocol (OF-config) [14]. As described in Section 8.2.3, Verizon has been involved in large SDN

proofs of concept related to cloudbusting Verizon has also been a leader in the related network func-

tions virtualization (NFV) technology, since the company chairs the NFV committee for the European

Telecommunications Standards Institute (ETSI), which is currently taking the lead in NFV research and

standardization [15]. Deutsche Telekom recently selected Tail-f as partner for its ongoing architectural

SDN-based project called TeraStream. Tail-f’s Network Control System (NCS) is designed to support

SDN functionality, including OpenFlow. NCS includes an OpenFlow controller called Tailflow, and

applications written for other OpenFlow controllers may be integrated into NCS. NCS works not only

with SDN and OpenFlow devices but also with legacy, non-SDN, and non-OpenFlow devices.

Other large enterprises such as banks run large data centers that also have significant interest in

SDN even though they are not part of either of the two major categories we’ve discussed. For example,

Goldman Sachs is on the board of the ONF and is very public about its support for OpenFlow.

9.9 Standards Bodies and Industry Alliances

For new technologies to become widely adopted, standards are required. In this section we discuss

two different kinds of organizations that produce standards related to SDN. The most obvious genre

is a true standards body, such as the IETF or IEEE. A less obvious sort is what we refer to here as an

open industry alliance. Such an alliance is a group of companies with a shared interest surrounding

a technology. A good historical example of an industry alliance and a standards body working on the
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same technology is the WiFi Alliance and the IEEE 802. The WiFi Alliance created important standards

documents (e.g., WPA, WPA2) but was an industry alliance first, not a standards body. In the instance

of SDN, it is the industry alliances that have taken the lead with standards, more so than the standards

bodies. The three alliances are the ONF, OpenDaylight, and OpenStack. The general idea of OpenStack

is to create an abstraction layer above compute, network, and storage resources. Though the network

component of this abstraction layer has led to a relationship between OpenStack and SDN, SDN is not

its primary focus, so we direct our attention first to the ONF and OpenDaylight, two industry alliances

that are indeed laser-focused on SDN.

The ONF and OpenDaylight look at SDN from two very different perspectives. The driving force

behind the ONF and the standards it creates are the board members, who represent enterprises such

as Deutsche Telekom, Facebook, Goldman Sachs, Google, Microsoft, NTT Communications, Verizon,

and Yahoo! There is not a single NEM on the board. OpenDaylight, on the other hand, was founded by

NEMs and looks at SDN as a business opportunity and/or a challenge. Figure 9.2 illustrates the striking

difference in board composition between the two bodies. The only company to hold a board seat on

both alliances is Microsoft.

It is easy to fall victim to the temptation of thinking that an alliance controlled by NEMs will favor

protecting its members’ business interests over innovating in a way that most helps their user community.

There are downsides to the enterprise-driven alliance as well, though. There is the real possibility

ONF Board of Directors OpenDayLight Board of Directors

Deutsche Telekom
Facebook
Goldman Sachs
Google
NTT Communications
Verizon
Yahoo!

Citrix
Red Hat
Brocade
Cisco
Ericsson
IBM
NEC
Juniper
Fujitsu

Microsoft

FIGURE 9.2

ONF vs. OpenDaylight board membership.
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that the standards that are created will be out of sync with the hardware capabilities of networking

devices. To a certain degree this has been true with OpenFlow 1.1, 1.2, and 1.3. This explains in part

vendors’ reluctance to implement these subsequent revisions of the OpenFlow standard. Conversely,

being unencumbered by vendor limitations has resulted in OpenFlow defining what the industry needs

rather than what the vendors can immediately provide. This is the genesis of the conflict between

OpenDayLight and ONF reflected in Figure 9.1.

9.9.1 Open Networking Foundation

The ONF occupies a preeminent place within the set of standards bodies contributing to SDN. The

ONF was created in 2011 with the stated purpose of the promotion and adoption of Software Defined

Networking (SDN) through open standards development [12]. The ONF is the owner of the OpenFlow

standards process. To date, OpenFlow is the most influential work produced by the ONF. The various

working groups active within the ONF as of this writing were listed in Table 3.2.

9.9.2 OpenDaylight

OpenDaylight’s mission is to facilitate a community-led, industry-supported open source framework,

including code and architecture, to accelerate and advance a common, robust Software Defined Net-

working platform [23]. The project is part of the Linux Foundation of Collaborative Projects and boasts

many major networking vendors as members (e.g., Brocade, Cisco, IBM, HP, Huawei, Intel, NEC,

VMware, and others).

OpenDaylight welcomes source code contributions from its members and has a fairly rigorous process

for software review and inclusion. As can be seen by the list of contributing engineers as well as the

OpenDaylight controller interface, much of the controller software comes from Cisco. In addition to the

many Cisco contributors, many other contributors have added software to the OpenDayLight open source

code base. Plexxi has provided an API allowing the controller and applications to collaborate using an

abstraction of the underlying network infrastructure that is independent of the particular switching

equipment used. Software to prevent distributed denial of service (DDoS) attacks has been contributed

by Radware. Ericsson and IBM collaborated with Cisco to provide OpenFlow plugins to the controller.

Pantheon has provided a version of OpenFlow 1.3. The basic OpenFlow functionality in the controller

is based on the Beacon open source OpenFlow controller.

OpenDaylight’s first release, code-named “Hydrogen”, was released in February 2014. Some appli-

cations have been ported onto the OpenDaylight controller, notably DOVE by IBM and Virtual Tenant

Networks by NEC, as mentioned earlier in this chapter.

The ONF focuses on defining a specific protocol (OpenFlow) between network devices and a con-

troller to move the control plane from those devices to the controller. OpenDaylight focuses not on

a single control protocol or mandating that network devices conform to that protocol. Rather, Open-

Daylight is focused on providing an open source network operating system, playing a role for SDN

controllers much like the role Linux plays in servers. We depict this very different focus between the

ONF and OpenDaylight consortia in Figure 9.3. Many different controller-to-device protocols are sup-

ported under this umbrella of open source functionality. Cisco remains a powerful driving force behind

OpenDaylight, and there remains some skepticism regarding OpenDaylight over concerns that it will

merely turn out to be a standardization of Cisco’s controller. Thus, we are left with an open question
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regarding whether the big tent of tolerance in OpenDaylight is really about providing as many options

as possible in an open source platform or about allowing incumbent NEMs to change only as much as

they want while purporting to be part of the evolution toward SDN. We leave this to the reader to decide.

9.9.3 OpenStack

The OpenStack project was started by Rackspace and the National Aeronautics and Space Adminis-

tration (NASA) in 2010 as an open source IaaS toolset. In a sense, OpenStack can be viewed as the

Linux of cloud computing. The interest in this open source project quickly grew, culminating in the

establishment in September 2012 of the nonprofit OpenStack Foundation. The mission of the Open-

Stack Foundation is to promote, protect, and empower OpenStack software and its community. As of

this writing, the foundation has more than 6,700 member companies spread over 83 countries. The

largest current deployment of OpenStack remains in one of its founding companies, Rackspace, which

is a major provider of cloud computing.

The general idea of OpenStack is to create an abstraction layer above compute, network, and storage

resources. This abstraction layer provides APIs that applications can use to interact with the hardware

below, independent of the source of that hardware. The interfaces for compute, storage, and network

present pools of resources for use by the applications above.

The OpenStack networking definition states that SDN is not required, but that administrators can

take advantage of SDN technology like OpenFlow to allow for high levels of multitenancy and massive
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scale [16]. The network virtualization component of OpenStack is called Neutron and thus is the

component most relevant to our discussion of SDN. Neutron was formerly called Quantum. Neutron

provides an application-level networking abstraction. It is intended to provide users of cloud computing

with the ability to create overlay networks that are easier for the cloud tenants to manage and understand

by abstracting the details of the underlying physical network devices. It attempts to provide networking

as a service by allowing the cloud tenants to interconnect virtual network interfaces (vNICs) [11]. The

actual mapping of these virtual network interfaces to the physical network requires the use of Neutron

plugins. This is where the relationship between OpenFlow and OpenStack exists. One Neutron plugin

could be an interface to an OpenFlow controller that would control physical switches [2]. We discuss

OpenStack architecture further in Section 11.10.

Although this link between OpenStack and SDN is thin, OpenStack’s impact as an industry alliance

means that it is an important SDN player despite the peripheral role played by SDN in the overall

OpenStack architecture.

9.9.4 IETF and IEEE

Although there are no current standardization efforts in the IETF directed solely at SDN, the IETF is

active in standards that are indirectly related to SDN, such as the existing standards for network virtual-

ization including VXLAN, NVGRE, and STT, which we discussed in Section 7.3 as SDN technologies

for overlays and tunneling. Others include the path computation element (PCE) [20] and network vir-

tualization overlays (nvo3) [21] standards.

The IEEE was not involved in the early days of SDN, but this important standards body is now

beginning work on aspects of SDN, so before long we expect to see SDN-related activity emanating

from the IEEE.

9.10 Conclusion

In the course of presenting the major players in SDN, this chapter reads somewhat like a Who’s Who

in networking. At times it does appear that the world is jumping on the SDN bandwagon in order

to not be left behind. We must temper this idea by saying that not every NEM or even every large

enterprise customer is certain that SDN lies in their future. As an example, for all the enthusiasm for

SDN emanating from Google and other cloud services enterprises, Amazon is notable by its absence

from any type of membership whatsoever in the ONF and by its relative silence about building its own

SDN solution. Amazon is a huge enterprise with large data centers and the need for the advances in

networking technology that have the rest of the industry talking about SDN, and one would expect the

company to have similar mega data center needs as Google and Yahoo! It is possible that Amazon is

indeed working on an SDN solution but doing so in stealth mode. It is also possible that Amazon is

working on a low-cost white-box switch solution that is not tied to SDN, such as the Cumulus solution.

Only time will tell whether Amazon and other SDN backbenchers turn out to be latecomers to the SDN

party or whether they were wise to be patient during the peak of unreasonable expectations that may

have occurred with respect to SDN.

We have stated more than once in this work that openness is a key aspect of what we define as SDN.

In formulating this chapter on the key players in SDN, however, it was not possible to talk about open
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source directly since it is not an entity, and thus it is not within the scope of this chapter. Indeed, many

of the SDN players we discussed here are significant largely because of their open source contributions

to SDN. In any event, openness and open source are key facets of SDN as we have defined it. Indeed,

Chapter 11 focuses entirely on open source software related to SDN. First, though, in the next chapter

we provide a tutorial on writing Open SDN applications.
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10
CHAPTER

SDN Applications

We now descend from the conceptual discussions about SDN use cases and take a deeper dive into how

SDN applications are actually implemented. This chapter focuses on SDN application development in an

Open SDN environment. Most SDN-via-overlay offerings today are bundled solutions that come ready-

made with a full set of functionality, generally without the ability to add applications to those solutions.

SDN-via-API solutions in general allow for some degree of user-level programming but do not provide

the network-wide view and abstraction layer afforded by the Open SDN controller. OpenDaylight is a

platform that forms the basis for hybrid application development, allowing applications to control non-

OpenFlow-enabled switches as well as OpenFlow-enabled switches. Many detailed functional block

diagrams are included in this chapter, as is a fair amount of sample source code that serves as helpful

examples for the network programmer.

10.1 Before You Begin

Before embarking on a project to build an SDN application, one must consider a number of questions.

Answering these questions will help the developer know how to construct the application, including

what APIs are required, which controller might be best suited for the application, and what switch

considerations should be taken into account. Some of these questions are:

• What is the basic nature of the application? Will it spend most of its time reacting to incoming

packets that have been forwarded to it from the switches in the network? Or will it typically set flows

proactively on the switches and only respond to changes in the network that require some type of

reconfiguration?

• What is the type and nature of network with which the application will be dealing? For example, a

campus network application geared toward access control will have a different design than a campus

application that is concerned with general network policies such as the prioritization of different

types of traffic.

• What is the intended deployment of the controller with respect to the switches it controls? A con-

troller that is physically removed from the switches it controls (e.g., in the cloud) will clearly not

be able to efficiently support an SDN application that is strongly reactive in nature because of the

latency involved in forwarding packets to the controller and receiving a response.

• Are the SDN needs purely related to the data center and virtualization? If so, perhaps an SDN

overlay solution is sufficient to meet current needs, and future needs related to the physical underlay

network can be met later, as OpenFlow-related technologies mature.

Software Defined Networks. http://dx.doi.org/10.1016/B978-0-12-416675-2.00010-3
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• Will the application run in a greenfield environment, or will it need to deal with legacy switches that

do not support SDN? Only in rare situations is one able to build an SDN application from the ground

up. Typically, it is required to use existing equipment in the solution. It is important to understand

whether the existing switches can be upgraded to have OpenFlow capability and whether or not they

will have hybrid capability, supporting both OpenFlow and legacy operation. If the switches do not

support OpenFlow, it is important to understand the level of SDN-via-APIs support that is available.

The answers to these and similar questions will help the developer understand the nature of the SDN

application. Assuming that an Open SDN application will be developed, the developer will need to

decide between two general styles of SDN applications: reactive or proactive.

10.2 Reactive versus Proactive Applications

Typically, in the case of reactive SDN applications, the communication between the switch and the

controller will scale with the number of new flows injected into the network. The switches may often have

relatively few flow entries in their flow tables, since the flow timers are set to match the expected duration

of each flow in order to keep the flow table size small. This results in the switch frequently receiving

packets that match no rules. In the reactive model, those packets are encapsulated in PACKET_IN

messages and forwarded to the controller and thence to an application. The application inspects the

packet and determines its disposition. The outcome is usually to program a new flow entry in the

switch(es) so that the next time this type of packet arrives, it can be handled locally by the switch itself.

The application will often program multiple switches at the same time so that each switch along the

path of the flow will have a consistent set of flow entries for that flow. The original packet will often be

returned to the switch so that the switch can handle it via the newly installed flow entry. The kind of

applications that naturally lend themselves to the reactive model are those that need to see and respond

to new flows being created. Examples of such applications include per-user firewalling and security

applications that need to identify and process new flows.

On the other hand, proactive SDN applications feature less communication emanating from the

switch to the controller. The proactive SDN application sets up the switches in the network with the

flow entries that are appropriate to deal with incoming traffic before it arrives at the switch. Events that

trigger changes to the flow table configurations of switches may come from mechanisms that are outside

the scope of the switch-to-controller secure channel. For example, some external traffic-monitoring

module will generate an event which is received by the SDN application, which will then adjust the

flows on the switches appropriately. Applications that naturally lend themselves to the proactive model

usually need to manage or control the topology of the network. Examples of such applications include

new alternatives to spanning tree and multipath forwarding.

Reactive programming may be more vulnerable to service disruption if connectivity to the controller

is lost. Loss of the controller will have less impact in the proactive model if the failure mode specifies that

operation should continue. (If the failure mode configuration is set to fail closed, then loss of controller

connectivity will cause the flow tables to be flushed independently of the style of the application.)

With the proactive model, there is no additional latency for flow setup, because they are prepopulated.

A drawback of the proactive model is that most flows will be wildcard-style, implying aggregated flows

and thus less fine granularity of control.
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We discuss these issues in more detail in the next subsections.

10.2.1 Terminology

To maintain consistency with the terminology used in the software libraries referenced in this section, the

term device always refers to an end-user node, and the term switch always refers to a networking node,

such as a wireless access point, switch, or router. In general in this book, the term SDN device includes

SDN switches. In the vernacular of the particular Java APIs discussed in this section, device refers to

the end-user node. Since we want to name the APIs faithfully to the actual source code implementation,

we adhere to this convention for the term device only in Sections 10.2, 10.3, and 10.4.

10.2.2 Reactive SDN Applications

Reactive applications need to be asynchronously notified of incoming packets that have been forwarded

to the controller from OpenFlow switches. In Section 6.2.3 we explained why RESTful APIs have

become a popular method for manipulating SDN networks. The type of asynchronous notification

required here is not performed via RESTful APIs, however. This is because a RESTful API is asymmet-

ric, with a requester (the application) and a responder (the controller). Under the RESTful paradigm, it

is not straightforward for the controller (responder) to asynchronously notify the application of an event

such as the arrival of a packet from a switch. To accomplish this sort of asynchronous notification via

a RESTful interface an additional, reverse-direction control relationship would need to be established,

with the controller being the requester and the application being the responder. Though this is feasible,

there is additional latency with this approach compared to the listener approach described below. With

the Java APIs one can register a listener and then receive callbacks from the controller when packets

arrive. These callbacks come with passed arguments including the packet and associated metadata,

such as which switch forwarded the packet and the port on which the packet arrived. Consequently,

reactive applications tend to be written in the native language of the controller, which, in the examples

in this chapter, is Java. Note that C and Ruby controllers are also available, and the same designs and

mechanisms described here apply to those languages as well.

Reactive applications have the ability to register listeners, which are able to receive notifications from

the controller when certain events occur. Some important listeners available in the popular Floodlight

and Beacon controller packages are:

• SwitchListener. Switch listeners receive notifications whenever a switch is added or removed or

has a change in port status.

• DeviceListener. Device listeners are notified whenever a device (an end-user node) has been added,

removed, or moved (attached to another switch) or has changed its IP address or VLAN membership.

• MessageListener. Message listeners get notifications whenever a packet has been received by the

controller. The application then has a chance to examine it and take appropriate action.

These listeners allow the SDN application to react to events that occur in the network and to take

action based on those events.

When a reactive SDN application is informed of an event, such as a packet that has been forwarded

to the controller, a change of port state, or the entrance of a new switch or device into the network,

the application has a chance to take some type of action. The most frequent event coming into the
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application would normally be a packet arriving at the controller from a switch, resulting in an action.

Such actions include:

• Packet-specific actions. The controller can tell the switch to drop the packet, to flood the packet, to

send the packet out a specific port, or to forward the packet through the NORMAL non-OpenFlow

packet-processing pipeline, as described in Section 5.3.4.

• Flow-specific actions. The controller can program new flow entries on the switch, intended to allow

the switch to handle certain future packets locally without requiring intervention by the controller.

Other actions are possible, some of which may take place outside the normal OpenFlow control path,

but the packet-specific and flow-specific actions constitute the predominant behavior of a reactive SDN

application.

Figure 10.1 shows the general design of a reactive application. Notice that the controller has a listener

interface that allows the application to provide listeners for switch, device, and message (incoming

packet) events. Typically, a reactive application will have a module to handle packets incoming to the

controller that have been forwarded through the message listener. This packet processing can then act

on the packet. Typical actions include returning the request to the switch, telling it what to do with the

packet (e.g., forward out a specific port, forward NORMAL or drop the packet). Other actions taken by

the application can involve setting flows on the switch in response to the received packet, which will

inform the switch what to do the next time it sees a packet of this nature.

For reactive applications, the last flow entry will normally be programmed to match any packet and

to direct the switch to forward that otherwise unmatched packet to the controller. This methodology

is precisely what makes the application reactive. When a packet not matching any existing rule is

encountered, it is forwarded to the controller so that the controller can react to it via some appropriate

action. A packet may also be forwarded to the controller in the event that it matches a flow entry and

the associated action stipulates that the packet be passed to the controller.

  Match: …, Action=CONTROLLER

  Match: …, Action=NORMAL

  Match: <else> Action=CONTROLLER
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In the reactive model, the flow tables tend to continually evolve based on the packets being processed

by the switch and by flows aging out. Performance considerations arise if the flows need to be repro-

grammed too frequently, so care must be taken to appropriately set the idle timeouts for the flows. The

point of an idle timer is to clear out flow entries after they have terminated or gone inactive, so it is

important to consider the nature of the flow and what constitutes inactivity when setting the timeout.

Unduly short idle timeouts will result in too many packets sent to the controller. Excessively long time-

outs can result in flow table overflow. Knowing an appropriate value to set a timeout requires familiarity

with the application driving the flow. As a rough rule of thumb, though, timeouts would be set on the

order of tens of seconds rather than milliseconds or minutes.

10.2.3 Proactive SDN Applications

Proactive applications can be implemented using either the native API (e.g., Java) or using RESTful

APIs. The reader should note that such RESTful APIs are not the ones resident in the switch that we

described as part of SDN via APIs in Section 6.2.3. The RESTful APIs we describe here reside on the

Open SDN controller and are called by the application. In contrast to reactive APIs, which are low-

level and deal almost directly with the OpenFlow protocol below them, these controller RESTful APIs

can operate at different levels, depending on the northbound API being used. They can be low-level,

basically allowing the application developer to configure flow entries on the switches themselves. These

RESTful APIs can also be high-level, providing a level of abstraction above the network switches so

that the SDN application interacts with network components such as virtual networks rather than with

the switches themselves.

Another difference between this type of application and a reactive one is that using RESTful APIs

means there is no need for listening functionality. In the reactive application the controller can asyn-

chronously invoke methods in the SDN application stimulated by events such as incoming packets

and switches that have been discovered. This type of asynchronous notification is not possible with a

unidirectional RESTful API, which is invoked on the controller by the application rather than the other

way around. It is conceivable to implement an asynchronous notification mechanism from the controller

toward a proactive application, but generally, proactive applications are stimulated by sources external

to the OpenFlow control path. The traffic monitor described in Section 10.14 is an example of such an

external source.

Figure 10.2 shows the general design of a purely proactive application. In such an application no

listeners are receiving from the controller events about switches, devices, and messages. Such listeners

are not a natural fit with a one-way RESTful API, wherein the application makes periodic calls to the API

and the API has no means of initiating communication back to the application. As shown in Figure 10.2,

proactive applications rely on stimulus from external network events. Such stimuli may originate from

a number of sources, such as traffic or switch monitors using SNMP or SNORT, or external applications

like a server virtualization service, which notifies the application of the movement of a virtual machine

from one physical server to another. As we explained in Section 10.2, applications that deal with the

network topology will be passed control protocol packets, such as DNS, DHCP, and BGP, by rules

programmed to do just that.

The RESTful APIs are still able to retrieve data about the network, such as domains, subnets,

switches, and hosts. RESTful APIs generally also provide an interface, often referred to as a flow

pusher, which allows the application to set flows on switches. Thus the proactive application has the
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▪  Match: …, Action=CONTROLLER
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Proactive application design.

same ability to program flows as the reactive application but will tend to use wildcard matches more

frequently.

As shown in Figure 10.2, the last flow entry will typically be to DROP unmatched packets. This is

because proactive applications attempt to anticipate all traffic and program flow entries accordingly.

As a consequence, packets that do not match the configured set of rules are discarded. We remind the

reader that the match criteria for flow entries can be programmed such that most arriving packet types

are expected and match some entry before this final DROP entry. If this were not the case, the purely

proactive model could become an expensive exercise in dropping packets!

As mentioned earlier, there will be hybrid reactive-proactive applications that utilize a language such

as Java for listeners and communicate via some external means to the proactive part of the application.

The proactive component would then program new flow entries on the switch. As applications become

more complex, this hybrid model is likely to become more common. The comment made previously

about arriving packets in a proactive application matching some flow entry before the final DROP

entry is also germane to the case of hybrid applications. The proactive part of such hybrid applications

will have programmed higher-priority flow entries so that only a reasonable number of packets match

the final DROP entry. In such a hybrid model, the final entry will send all unmatched packets to the

controller, so it is important to limit this number to a rate that the controller can handle.

10.3 Analyzing Simple SDN Applications

Proactive, RESTful-based applications can run either on the same system as the controller or on a remote

system, since HTTP allows that flexibility. In contrast, reactive applications are tightly bound to the

controller as they access the controller via the native APIs (e.g., Java or C), and they run in the same

container or execution space. In Section 10.12 we provide an example of proactive applications that

use the RESTful flow pusher APIs. First, though, in Section 10.4 we look in detail at the source code
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involved in writing a reactive SDN application. We use this example as an opportunity to walk through

SDN application source code in detail and explore how to implement the tight application-controller

coupling that is characteristic of reactive applications.

The application examples we provide in this chapter use the Floodlight controller. We have chosen

Floodlight because it is one of the most popular open source SDN controllers. It is possible to download

the source code [1] and examine the details of the controller itself. Floodlight also comes with a number

of sample applications, such as a learning switch and a load balancer, which provide excellent additional

examples for the interested reader. The core modules of the Floodlight controller come from the seminal

Beacon controller [2]. These components are denoted as org.openflow packages within the Floodlight

source code. Since Beacon is the basis of the OpenFlow functionality present in OpenDaylight and

other SDN controllers, the OpenFlow-related controller interaction described in the following sections

would apply to those Beacon-derived controllers as well. We provide further description of the Beacon

and Floodlight controllers in Sections 10.5 and 10.6.

10.4 A Simple Reactive Java Application

In the common vernacular, a blacklist is a list of people, products, or locations viewed with suspicion or

disapproval. In computer networking, a blacklist is a list of hostnames or IP addresses that are known

or suspected to be malicious or undesirable in some way. Companies may have blacklists that protect

their employees from accessing dangerous sites. A school may have blacklists to protect children from

attempting to visit undesirable web pages.

As implemented today, most blacklist products sit in the data path, examining all traffic at choke points

in the network while looking for blacklisted hostnames or IP addresses. This clearly has disadvantages

in terms of the latency it introduces to traffic as it all passes through that one blacklist appliance. There

are also issues of scalability and performance if the number of packets or the size of the network is

quite large. Cost would also be an issue, since provisioning specialized equipment at choke points adds

significant network equipment expense.

It would be preferable to examine traffic at the edge of the network, where the users connect. But

putting blacklist-supporting appliances at every edge switch is impractical from a maintenance and cost

perspective. A simple and cost-effective alternative is to use OpenFlow-supporting edge switches or

wireless access points (APs), with a Blacklist application running above the OpenFlow controller. In our

simple application, we examine both hostnames and IP addresses. We describe the application below.

10.4.1 Blacklisting Hostnames

We introduced an SDN solution to the blacklist problem in Section 8.3.3. We provide further details

of that solution here. The first part of the Blacklist application deals with hostnames. Checking for

malicious or undesirable hostnames works as follows:

• A single default flow is set on the edge switches to forward all DNS traffic to the OpenFlow controller.

(Note that this is an example of a proactive rule. Thus, though a blacklist is primarily a reactive

application, it does exhibit the hybrid reactive-proactive characteristic discussed in Section 10.2.3.)

• The Blacklist application running on the controller listens for incoming DNS requests that have been

forwarded to the controller.
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• When a DNS request is received by the Blacklist application, it is parsed to extract the hostnames.

• The hostnames are compared against a database of known malicious or undesirable hosts.

• If any hostname in the DNS request is found to be bad, the switch is instructed to drop the packet.

• If all hostnames in the DNS request are deemed to be safe, the switch is instructed to forward the

DNS request normally.

In this way, with one simple flow entry in the edge switches and one simple SDN application on the

controller, end users are protected from intentionally or inadvertently attempting to access bad hosts

and malicious websites.

10.4.2 Blacklisting IP Addresses

As described earlier in Section 8.3.3, websites sometimes have embedded IP addresses, or end users

will attempt to access undesirable locations by providing IP-specific addresses directly rather than a

hostname, thus circumventing a DNS lookup. Our simple Blacklist application works as follows:

• A single default flow is set on the edge switches, at a low priority, to forward all IP traffic that doesn’t

match other flows to the OpenFlow controller.

• The Blacklist application listens for IP packets coming to the controller from the edge switches.

• When an IP packet is received by the Blacklist application, the destination IP address is compared

against a database of known malicious or undesirable IP addresses.

• If the destination IP address is found to be bad, the switch is instructed to drop the packet.

• If the destination IP address in the IP packet is deemed to be safe, the switch or AP is instructed

to forward the IP packet normally, and a higher-priority flow entry is placed in the switch that will

explicitly allow IP packets destined for that IP address.

• The IP destination address flow entry was programmed with an idle-timeout, which will cause it to

be removed from the flow table after some amount of inactivity.

Note that a brute-force approach to the blacklist problem would be to explicitly program rules for

all known bad IP addresses such that any packet matching those addresses is directly dropped by the

switch. Though this solution works in principle, it is not realistic, because the number of blacklisted IP

addresses is potentially very large and, as we have pointed out, the number of available flow entries,

though varying from switch to switch, is limited.

There are three major components to this application:

• Listeners. The module that listens for events from the controller.

• Packet handler. The module that handles incoming packet events and decides what to do with the

received packet.

• Flow manager. The module that sets flows on the switches in response to the incoming packet.

Figure 10.3 provides a more detailed view of the Blacklist application introduced in Section 8.3.3. As

a reactive application, blacklist first programs the switch to forward unmatched packets to the controller.

The figure depicts three listeners for network events: the switch listener, the device listener, and the

message listener. We show the device listener because it is one of the three basic classes of listeners

for reactive applications, but since it has no special role in Blacklist, we do not mention it further here.

The message listener will forward incoming packets to the process packet module, which processes
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Blacklist application design.

the packet and takes the appropriate action. Such actions include forwarding or dropping the packet

and programming flow entries in the switch. We discuss the message listener and the switch listener in

greater detail in Section 10.4.3.

The flow entries depicted in the switch in Figure 10.3 show that DNS requests are always forwarded

to the controller. If the destination IP address returned by DNS has already been checked, the appli-

cation will program the appropriate high-priority flow entries. In our example, such entries are shown

as the two flow entries matching 1.1.1.5 and 1.1.9.2. The reader should understand that the flows for

destination 1.1.1.5 and 1.1.9.2 were programmed earlier by the controller when packets for these two

destinations were first processed. If the IP address on the incoming packet has not been seen earlier or

has aged out, there will be no flow entry for that address and the IP request will be forwarded to the

controller for blacklist processing.

Source code for the listener, packet handler, and flow manager components is provided in Appendix

B. Code snippets will also be provided throughout the following analysis. The reader should refer to the

appendix to place these snippets in context. We include in the appendix the SDN-relevant source code for

Blacklist, in part to illustrate that a nontrivial network security application can be written in just 15 pages

of Java, evidence of the relative ease and power of developing applications in the Open SDN model.

We now delve more deeply into the components of Blacklist.

10.4.3 Blacklist: Listeners

Our Blacklist application uses two important listeners. The first is the SwitchListener. The SwitchListener

receives notifications from the controller whenever a switch is discovered or when it has disconnected.

The SwitchListener also receives notifications when the switch’s port configuration has changed (e.g.,

when ports have been added or removed). The exact frequency of such notifications depends on the

particular switch’s environment. Once steady-state operation has been achieved, however, it is unlikely

that these notifications will occur more often than once every few seconds. The two most common SDN

switch-type entities in this example are wired switches and APs.
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When the application first learns that a switch has been discovered, the application programs it with

two default rules: one to forward DNS requests to the controller and the other a low-priority flow entry

to forward IP packets to the controller. For nonblacklisted IP addresses, this low-priority IP flow entry

will be matched the first time that IP destination is seen. Subsequently, a higher-priority flow is added

that allows packets matching that description to be forwarded normally, without involving the controller.

If that flow entry idle timer expires, the flow entry is removed and the next packet sent to that IP address

will once again be forwarded to the controller, starting this process anew.

Examination of the actual source code in Appendix B reveals that we add one other default flow for

ARP requests, which are forwarded normally. ARP requests pose no threat from the perspective of the

Blacklist application. So, by default, all new switches will have three flows: DNS (send to controller),

IP (send to controller), and ARP (forward NORMAL).

The other important listener is the MessageListener. The most important of the various methods

in this listener is the receive method. The receive method is called whenever a packet arrives at the

controller. The method then passes the packet to the Blacklist SDN application. When the PACKET_IN

message is received, our application invokes the PacketHandler to process the packet. In Section 5.3.5

we described how the switch uses the PACKET_IN message to communicate to the controller.

The code for the MessageListener module is listed in Appendix B.1. We examine part of that module

here. First, we see that our class is derived from the Floodlight interface called IOFMessageListener:

//------------------------------------------------------------
public class MessageListener implements IOFMessageListener
//------------------------------------------------------------

Next is the registration of our MessageListener method:

//------------------------------------------------------------
public void startUp()
{

// Register class as MessageListener for PACKET_IN messages.
mProvider.addOFMessageListener( OFType.PACKET_IN, this );

}
//------------------------------------------------------------

This code makes a call into Floodlight (mProvider), invoking the method addOFMessageListener

and telling it we want to listen for events of type PACKET_IN.

The next piece of code to consider is our receive method, which we provide to Floodlight to call

when a packet is received by the listener. We are passed a reference to the switch, the message itself,

and the Floodlight context reference.

//------------------------------------------------------------
@Override
public Command receive( final IOFSwitch ofSwitch,

final OFMessage msg,
final FloodlightContext context )

{
switch( msg.getType() )
{
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case PACKET_IN: // Handle incoming packets here

// Create packethandler object for receiving packet in
PacketHandler ph = new PacketHandler( ofSwitch,

msg, context);

// Invoke processPacket() method of our packet handler
// and return the value returned to us by processPacket
return ph.processPacket();

default: break; // If not a PACKET_IN, just return

}

return Command.CONTINUE;
}
//------------------------------------------------------------

In the preceding code, we see a Java switch statement based on the message type. We are only inter-

ested in messages of type PACKET_IN. Upon receipt of that message, we create a PacketHandler object

to process this incoming packet. We then invoke a method within that new object to process the packet.

10.4.4 Blacklist: Packet Handlers

In our application there is one PacketHandler class that handles all types of incoming packets. Recall that

our flow entries on the switches have been set up to forward DNS requests and unmatched IP packets to

the controller. The processPacket method of the PacketHandler shown in Figure 10.3 is called to handle

these incoming packets, where it performs the following steps:

1. IP packet. Examine the destination IP address and, if it is on the blacklist, drop the packet. Note

that we do not attempt to explicitly program a DROP flow for this bad address. If another attempt is

made to access this blacklisted address, the packet will be diverted to the controller again. This is

a conscious design decision on our part, though there may be arguments that support the approach

of programming blacklisted flows explicitly.

2. DNS request. If the IP packet is a DNS request, examine the hostnames, and if any are on the

blacklist, drop the packet.

3. Forward packet. If the packet has not been dropped, forward it.

4. Create IP flow. If it is not a DNS request, create a flow for this destination IP address. Note that

there is no need to set a flow for the destination IP address of the DNS server, because all DNS

requests are caught by the higher-priority DNS flow and sent to the controller.

In our Blacklist application, the Create IP flow step above will actually invoke a method in the

FlowMgr class that has a method for creating the Floodlight OpenFlow objects that are required to

program flow entries on the switches.

The source code for the PacketHandler class can be found in Appendix B.2. We describe some of

the more important portions of that code in the following paragraphs.
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PacketHandler is a Plain Old Java Object (POJO), which means that it does not inherit from any

Floodlight superclass. The object’s constructor stores the objects passed to it, including (1) references

to the switch that sent the packet, (2) the message itself (the packet data), and (3) the Floodlight context,

which is necessary for telling Floodlight what to do with the packet once we have finished processing it.

The first piece of code is the beginning of the processPacket method, which was called by the

MessageListener:

//------------------------------------------------------------
public Command processPacket()

{
// First, get the OFMatch object from the incoming packet
final OFMatch ofMatch = new OFMatch();
ofMatch.loadFromPacket( mPacketIn.getPacketData(),

mPacketIn.getInPort() );

//------------------------------------------------------------

This is our first look at the OFMatch object provided by Floodlight, which derives from the same

OpenFlow Java source code that can be found in Beacon and, thus, in OpenDaylight. In this code, we

create an OFMatch object, and then we load the object, from the packet that we have received. This

allows us to use our own ofMatch variable to examine the header portion of the packet we just received.

In different parts of processPacket we look at various portions of the incoming packet header. The

first example uses ofMatch.getNetworkDestination() to get the destination IP address, which is used to

compare against our IP blacklist:

//------------------------------------------------------------
IPv4.toIPv4AddressBytes( ofMatch.getNetworkDestination() ) );
//------------------------------------------------------------

The next example determines whether this is a DNS request:

//------------------------------------------------------------
if( ofMatch.getNetworkProtocol() == IPv4.PROTOCOL_UDP &&

ofMatch.getTransportDestination() == DNS_QUERY_DEST_PORT )
//------------------------------------------------------------

Much of the other code in the module in Appendix B.2 deals with doing the work of the Blacklist

application. This includes checking the destination IP address, parsing the DNS request payload, and

checking those names as well. The most relevant SDN-related code is the creation of an action list to

hand to the controller, which it will use to instruct the switch as to what to do with the packet that was

received. In forwardPacket() we create the action list with the following code:

//------------------------------------------------------------
final List<OFAction> actions = new ArrayList<OFAction>();
actions.add( new OFActionOutput( outputPort ) );
//------------------------------------------------------------

This code creates an empty list of actions, then adds one action to the list. That action is a Floodlight

object called OFActionOutput, which instructs the switch to send the packet out the given port.
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The FlowManager object is responsible for the actual interaction with Floodlight to perform both the

sending of the packet out of the port as well as the possible creation of the new flow entry. We describe

this object next.

10.4.5 Blacklist: Flow Management

The FlowMgr class deals with the details of the OpenFlow classes that are part of the Floodlight

controller. These classes simplify the process of passing OpenFlow details to the controller when our

application sends responses to the OpenFlow switches. These classes make it possible to use simpler Java

class structures for communicating information to and from the controller. However, there is considerable

detail that must be accounted for in these APIs, especially compared to their RESTful counterparts.

We now examine some of the more important Java objects that are used to convey information about

flows to and from the controller:

• IOFSwitch. This interface represents an OpenFlow switch and, as such, it contains information

about the switch, such as ports, port names, IP addresses, etc. The IOFSwitch object is passed to

the MessageListener when a packet is received, and it is used to invoke the write method when an

OpenFlow packet is sent back to the switch in response to the request that was received.

• OFMatch. This object is part of the PACKET_IN message that is received from the controller that

was originated by the switch. It is also used in the response that the application will send to the switch

via the controller to establish a new flow entry. When used with the PACKET_IN message, the match

fields represent the header fields of the incoming packet. When used with a reply to program a flow

entry, they represent the fields to be matched and may include wildcards.

• OFPacketIn and OFPacketOut. These objects hold the actual packets received and sent, including

payloads.

• OFAction. This object is used to send actions to the switch, such as NORMAL forwarding or FLOOD.

The switch is passed a list of these actions so that multiple items such as modify destination network

address and then NORMAL forwarding may be concatenated.

Code for the FlowMgr class can be found in Appendix B.3. Here we walk the reader through some

important logic from FlowMgr using the code snippets below. One of the methods in FlowMgr is

setDefaultFlows, which is called from the SwitchListener class whenever a new switch is discovered

by Floodlight.

//------------------------------------------------------------
public void setDefaultFlows(final IOFSwitch ofSwitch)
{

// Set the intitial ’static’ or ’proactive’ flows
setDnsQueryFlow( ofSwitch );
setIpFlow( ofSwitch );
setArpFlow( ofSwitch );

}
//------------------------------------------------------------

As an example of these internal methods, consider the code to set the DNS default flow. In the

following code, we see OFMatch and OFActionOutput, which were introduced in Section 10.4.4. The

OFMatch match object is set to match packets that are Ethernet, UDP, and destined for the DNS UDP port.
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//------------------------------------------------------------
private void setDnsQueryFlow( final IOFSwitch ofSwitch )
{

// Create match object to only match DNS requests
OFMatch ofMatch = new OFMatch();
ofMatch.setWildcards( allExclude( OFPFW_TP_DST,

OFPFW_NW_PROTO,
OFPFW_DL_TYPE ) )

.setDataLayerType( Ethernet.TYPE_IPv4 )

.setNetworkProtocol( IPv4.PROTOCOL_UDP )

.setTransportDestination( DNS_QUERY_DEST_PORT );

// Create output action to forward to controller.
OFActionOutput ofAction = new OFActionOutput(

OFPort.OFPP_CONTROLLER.getValue(),
(short) 65535 );

// Create our action list and add this action to it
List<OFAction> ofActions = new ArrayList<OFAction>();
ofActions.add(ofAction);

sendFlowModMessage( ofSwitch,
OFFlowMod.OFPFC_ADD,
ofMatch,
ofActions,
PRIORITY_DNS_PACKETS,
NO_IDLE_TIMEOUT,
BUFFER_ID_NONE );

}
//------------------------------------------------------------

The flow we are setting instructs the switch to forward the packet to the controller by setting

the output port to OFPort.OFPP_CONTROLLER.getValue(). Then we call the internal method

sendFlowModMessage. The code for that method is as follows:

//------------------------------------------------------------
private void sendFlowModMessage( final IOFSwitch ofSwitch,

final short command,
final OFMatch ofMatch,
final List<OFAction> actions,
final short priority,
final short idleTimeout,
final int bufferId )

{
// Get a flow modification message from factory.
final OFFlowMod ofm = (OFFlowMod) mProvider
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.getOFMessageFactory()

.getMessage(OFType.FLOW_MOD);

// Set our new flow mod object with the values that have
// been passed to us.
ofm.setCommand( command ).setIdleTimeout( idleTimeout )

.setPriority( priority )

.setMatch( ofMatch.clone() )

.setBufferId( bufferId )

.setOutPort( OFPort.OFPP_NONE )

.setActions( actions )

.setXid( ofSwitch
.getNextTransactionId() );

// Calculate the length of the request, and set it.
int actionsLength = 0;
for( final OFAction action : actions )

{ actionsLength += action.getLengthU(); }
ofm.setLengthU(OFFlowMod.MINIMUM_LENGTH + actionsLength);

// Now send out the flow mod message we have created.
try
{

ofSwitch.write( ofm, null );
ofSwitch.flush();

}
catch (final IOException e)
{

// Handle errors with the request
}

}
//------------------------------------------------------------

Items to note in the code above are:

• The OFFlowMod object is created and used to hold the information regarding how to construct the

flow, including items such as idle timeout, priority, match field, and actions.

• The length must still be calculated by this method. The length could be provided by the OpenFlow

package, but as of this writing it is not.

• The switch is sent the flow modification message using the write method.

There is additional code available for the reader to examine in Appendix B.3. For example, consider

the FlowMgr methods sendPacketOut and createDataStreamFlow for more examples of interacting

with the Floodlight controller.

The next section looks at some of the open source and commercial controllers that are available

today and examines the APIs that they make available to the SDN application developer.
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10.5 Background on Controllers

The Beacon controller is truly a seminal controller in that much of the basic OpenFlow controller code

in Floodlight and OpenDaylight was derived directly from Beacon. As we pointed out in Section 9.1.1,

Beacon itself was based on early work performed at Stanford by David Erickson and Rob Sherwood.

Both Beacon and Floodlight are based on OpenFlowJ for the core Java OpenFlow implementation.

Floodlight is maintained by engineers from Big Switch. The distributions of Beacon and Floodlight are

now distinct and different applications are packaged with each, but Beacon remains close enough to

Floodlight that we will not elaborate on it further at the detailed implementation level presented here.

We should point out that a number of other OpenFlow controllers are available. For example, the NOX

controller has been used in a considerable number of research projects. We provide basic information

about a number of open source controller alternatives in Section 11.6. The subset of controllers that we

present in this chapter represents those controllers that we feel an application developer today would

be most likely to use.

It is also important to note that as of this writing there is no standard for the northbound API to the

controller. The Java APIs that we have documented in the preceding sections may not be exposed to the

application programmers in every one of the controllers that we present in this chapter, including those

based on the original Beacon code. There may be a higher-level abstraction that is exposed that is not so

tightly coupled to the OpenFlow protocol. This appears to be the direction in which OpenDaylight may

be headed. The application API is an interface that may translate to a number of different southbound

APIs, OpenFlow being just one of them.

10.6 Using the Floodlight Controller

Floodlight is arguably the most prevalent open source SDN controller available today. It has a number

of packages denoted by org.openflow, which make up some of the core functionality. There are also

many packages from Floodlight that implement components such as the web GUI, the device manager,

link discovery, a learning switch, a load balancer, and even a virtual network package.

As we said earlier, the Floodlight controller is freely downloadable. The code and packages may be

viewed, and it is fairly straightforward to begin experimenting with it. Once it is configured and running

it will take control of the OpenFlow switches that have been configured to use it as their controller. By

default it will operate its Learning Switch SDN application, setting flow entries on switches to forward

packets across a layer two network, even one with loops and a mesh topology.

Floodlight provides both reactive Java APIs and proactive RESTful APIs. We look at these two

classes of APIs next.

10.6.1 Java APIs

In Section 10.4 we provided detailed examples of the Floodlight Java APIs. There are APIs to register

listeners for various events, such as switch and device changes, and to receive incoming packets. There

are the OpenFlow primitive classes and interfaces such as IOFSwitch, OFMatch, OFAction, and others.

These APIs are fundamentally the same in Floodlight, Beacon, and OpenDaylight. The Floodlight GUI

is extensible and can be used to incorporate one’s own application into the Floodlight GUI framework.
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10.6.2 RESTful APIs

Proactive Floodlight applications can use the RESTful APIs to gather data about the network, to program

flows in the network, and even to create virtual networks and manipulate a firewall. The following list

of RESTful APIs for Floodlight provides an indication of the functionality available:

• Switch provides APIs to retrieve statistics for all or for a single switch.

• Controller provides APIs to retrieve a list of all switches being managed by this controller.

• Counter provides APIs to retrieve a list of traffic counters per switch.

• Memory provides APIs to retrieve the current memory usage by the controller.

• Topology provides APIs to retrieve a list of interswitch links, external switch links, and switch

clusters.

• Device provides APIs to retrieve a list of all devices.

• StaticFlowPusher provides APIs to add or remove static flows from switches and to retrieve a list

of static flows on a switch.

• Network Service (aka Virtual Network) provides APIs to create, modify, or remove a virtual

network, to attach or remove a host from a virtual network, and to retrieve a list of virtual networks

and their hosts.

The extensible RESTful API uses the Restlet framework [3] and includes a small web server that

allows external applications and GUIs to communicate with the SDN application. Adding a RESTful

interface to the SDN application is straightforward:

• Add the RESTful API and the associated class for handling calls to the API by instantiating a

RestRoutable object, identifying the RESTful URL and the handling class.

• Create the RESTful resource handler class by extending the ServerResource class.

• Use Jackson [4] or a similar tool to translate back and forth between the data portions (often in JSON

[5] format) of the RESTful requests and replies.

Since the resource handler is part of the Floodlight application, it has access to the rest of the

application and its data. In addition, there are a number of Floodlight modules that can be used for

various purposes. For example, Floodlight has information about the OpenFlow switches and devices

(which are hosts or end nodes in the Floodlight jargon). It is possible to query the switch to find out

about its ports and to query the devices about their attachment point (switch and port) to the network.

A fine example of how to write a Floodlight application is provided in [6], which should be of

assistance in creating one’s own application to control a network of OpenFlow switches.

10.7 Using the OpenDaylight Controller

OpenDaylight is a project intended to produce a common controller to be used as a basis for SDN

applications for vendors and enterprises alike. At the time of this writing, the OpenDaylight controller

is in prerelease form. The OpenFlow functionality in the OpenDaylight controller is derived from the

Beacon code. The lion’s share of the controller was contributed to the project by Cisco. This can be

confirmed by inspection of the packages documented in [7], which reveals a small number of the

org.openflow packages discussed earlier and a large number of org.opendaylight.controller packages,

most of which have come from Cisco.
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There is a Java API in the controller for performing both OpenFlow and non-OpenFlow management

of the network and the switches. Like Floodlight, there is also a RESTful API available.

10.7.1 Java APIs

The OpenFlow functionality provided by the OpenFlow packages in the Floodlight, Beacon, and Open-

Daylight controllers is essentially the same. Applications that run on Floodlight run with little modifi-

cation on Beacon and OpenDaylight.

OpenDaylight provides an additional abstraction called the Service Abstraction Layer (SAL). SAL

purportedly allows network programmers to write applications similarly to the way they would be written

calling the OpenFlow Java APIs, with the advantage that SAL can translate the API requests into either

OpenFlow or another non-OpenFlow API mechanism that may be available on the target switch. It should

thus be possible to write applications that work with both OpenFlow and non-OpenFlow switches.

10.7.2 RESTful APIs

The RESTful APIs for OpenDaylight provide functionality that is similar to that provided by Floodlight

and other controllers. Here is a summary of the categories of API:

• Topology provides APIs to retrieve the interswitch links in the network.

• Host Tracker provides APIs to retrieve the hosts (end nodes) in the network.

• Flow Programmer provides APIs for reading and writing flows on specific switches in the network.

• Static Routing provides APIs for reading and writing static routes (e.g., next-hop rules) on switches

in the network.

• Statistics provides APIs for retrieving statistics for flows, ports, tables, and switches.

• Subnets provides APIs for retrieving information about subnets.

• Switch Manager provides APIs for retrieving information about switches.

10.8 Using the Cisco XNC Controller

We have mentioned that the bulk of the OpenDaylight controller implementation has come from Cisco.

The Cisco Extensible Network Controller (XNC) was originally known as the Cisco ONE controller.

The XNC controller is Cisco’s commercial SDN controller, and there is considerable overlap between

XNC and OpenDaylight. For example, the user interfaces for OpenDaylight and for Cisco XNC are

very similar. However, there is some functionality that is part of the Cisco XNC controller that is not

available with OpenDaylight. We list those next.

10.8.1 RESTful APIs

The APIs available in OpenDaylight are also available in XNC. In addition, two categories of RESTful

APIs available with Cisco’s XNC controller that are not part of OpenDaylight are:

• Slices. Slices addresses the need for administrative domains that provide different views, depending

on the administrator that is using the controller. This allows the network to be partitioned into
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separate domains based on the administrator’s role or based on the network entities that are under

the control of specific administrators.

• Topology Independent Forwarding (TIF). The TIF functionality in the Cisco controller allows an

administrator to create paths between two endpoints without taking into consideration the interme-

diate hops between one end and the other.

10.9 Using the Hewlett-Packard Controller

HP is an important vendor to SDN not only because of its networking products but also because it has a

large share of the server market for data centers. HP has a major portion of the services market as well,

expanding significantly with its purchase of Electronic Data Systems (EDS) in 2008. HP will likely

have a significant SDN presence due to SDN’s projected impact in data centers, where HP servers and

services are prevalent.

HP’s controller is expected to be released in late 2013. Early indications of the controller are that it

will have both Java and RESTful APIs.

10.9.1 Java APIs

The HP Java API has diverged from what was prevalent in the earlier controllers (Beacon, Floodlight,

etc.), in order to provide support for OpenFlow 1.3, including multiple tables, TLVs, and the like and

to provide a richer software development environment.

10.9.2 RESTful APIs

The HP RESTful API includes functionality such as the following:

• Nodes retrieves information about end nodes in the networks.

• Datapaths retrieves information about switches in the network and for setting flows on these devices.

• Clusters retrieves information about groups of switches that form a broadcast domain.

• Regions retrieves information about groups of clusters.

• Forward Path returns the shortest path between a source and destination switch.

• Teams retrieves information about groups of controllers working in concert for high availabil-

ity (HA).

10.10 Switch Considerations

One of the most important considerations in building an SDN application is the nature of the switches

that are to be controlled by the application. Some of the relevant questions are:

• Do all the switches support OpenFlow? What version of OpenFlow do they support? How much of

that version do they in fact support?

• Is there a mix of OpenFlow and non-OpenFlow switches? If so, will some non-OpenFlow mechanism

be used to provide the best simulation of an SDN environment? For example, do the non-OpenFlow

switches support some type of SDN API that allows a controller to configure flows in the switch?
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• For OpenFlow-supporting switches, are they hardware or software switches, or both? If both, what

differences in behavior and support will need to be considered?

• For hardware OpenFlow switches, what are their hardware flow-table sizes? If the switches are

capable of handling flow table overflow in software, at what point are they forced to begin processing

flows in software, and what is the performance impact of doing so? Is it even possible to process

flows in software? What feature limitations are introduced because of the hardware?

• What is the mechanism by which the switch-controller communications channel is secured? Is this

the responsibility of the network programmer?

Hardware switches vary in their flow capacity, feature limitations, and performance, and these should

be considerations in creating an SDN application. The major issue regarding flow capacity is how many

flow entries the hardware ASIC is capable of holding. Some switches support fewer than 1,000 flow

entries, whereas other, such as the NEC PF5240 [8], support greater than 150,000. Note that for some

switches the maximum number of flows depends on the nature of the flows supported. For example, the

NEC PF5820 switch [9] can support 80,000 layer-two-only flows but only 750 full 12-tuple flows. (We

described matching against the basic 12-tuple of input fields in Section 5.3.3.) A layer two flow entry

only requires matching on the MAC address, so the amount of logic and memory occupied per flow

entry is much less. Some applications, such as a traffic prioritization application or a TCP port-specific

application, may use relatively few flow table entries. Others, such as an access control application or

a per-user application, will be much more hungry for flow entries. The topological placement of the

application logic may have a bearing on the maximum number of flow entries as well. For example, an

access control application being applied in a switch or AP at the user edge of the network will require

far fewer flow entries per device than the same application controlling an upstream or core switch.

Hardware implementations often have feature limitations because, when the OpenFlow specification

is mapped to the capabilities of the hardware, generally some features cannot be supported. For example,

some ASICs are not able to perform NORMAL forwarding on the same packet that has had its header

modified in some way. Although it is true that the list of features supported by the device can be learned

via OpenFlow Features Request and Features Reply messages (see Section 5.3.5), this does not tell

you the specific nuances and limitations that may be present in any one switch’s implementation of

each feature. Unfortunately, this information must often be discovered via trial and error. Information

about these issues may be available on the Internet sites of interested SDN developers. The application

developer must be aware of these types of limitations before designing a solution.

Some hardware switches will implement some functions in hardware and others in software. It is wise

to understand this distinction so that an application does not cause unexpected performance degradation

by unknowingly manipulating flows such that the switch processes packets in software.

In general, software implementations of OpenFlow are able to implement the full set of functionality

defined by the OpenFlow specification and can implement flow tables in standard computer memory.

Thus, the feature limitations and table size issues we have described above are not a major concern for

application developers. However, performance will still be a consideration, since implementations in

hardware will generally be faster.

We now provide a number of high-level designs for some additional simple applications relevant

to several different environments. These include the data center, the campus, and service provider

environments. We restrict ourselves to high-level design issues in the following sections. It is our hope
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that the reader will be able to extend the detailed source code analyis performed for the Blacklist

application in Section 10.4 and apply those learnings to the cases we cover here.

10.11 Creating Network Virtualization Tunnels

As explained in Section 7.3, data center multitenancy, MAC-table overflow, and VLAN exhaustion

are being addressed with new technology making use of tunnels, the most common being the MAC-

in-IP tunnels provided by protocols such as VXLAN, NVGRE, and STT. Figure 10.4 shows a possible

software application design for creating and managing overlay tunnels in such an environment. We see

in the figure the switch, device, and message listeners commonly associated with reactive applications.

This reactive application runs on the controller and listens for IP packets destined for new IP destination

addresses for which no flow entries exist. When the message listener receives such an unmatched packet,

the application’s tunnel manager is consulted to determine which endpoint switch is responsible for this

destination host’s IP address.

The information about the hosts and their tunnel endpoints is maintained by the application in the

associated host and tunnel databases. The information itself can be gathered either outside the domain

of OpenFlow or it could be generated by observing source IP addresses at every switch. Whichever way

this is done, the information needs to be available to the application.

When a request is processed, the tunnel information is retrieved from the database and, if the tunnel

does not already exist, it will be created. Note that there may be other hosts communicating between

these same two switches acting as tunnel endpoints, so there may be a tunnel already in existence. The
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tunnel creation can be done in a number of ways, all of which are outside the scope of the OpenFlow

specification. The tunnel creation is performed on the OpenFlow device and a mapping is established

between that tunnel and a virtual port, which is how tunnels are represented in flow entries. These

methods are often proprietary and specific to a particular vendor. For the reader interested in configuring

VXLAN or NVGRE tunnels on the OVS switch, a useful guide can be found in [10].

Once the tunnel is either created or identified, the tunnel application can set up flows on the local

switch to direct traffic heading toward that destination IP address into the appropriate tunnel. Once the

virtual port exists, it is straightforward to create flow entries such as those shown in the figure, where we

see the tunneled packets directed to virtual ports TUNNEL-23 and TUNNEL-12. The complementary

flow will need to be set on the switch hosting the remote tunnel endpoint as well.

Note that the preceding high-level design is unicast-centric. It does not explain the various mech-

anisms for dealing with broadcast packets such as ARPs. These could be dealt with by a global ARP

service provided by the controller. The idea behind such a controller-based service is that the switch

learns IP-MAC relationships by listening to ARP replies and, when it has already cached the answer to

an ARP request, it does not forward the ARP request but instead replies automatically, thus suppressing

ARPs from using up broadcast bandwidth. This process is fairly easy to embody in the SDN controller

because it learns the IP and MAC address of unmatched packets, which by default are forwarded to

the controller. Thus, the controller is often able to trap ARP requests and provide the reply without

propagating the broadcast.

There are also ways of handling these requests via VXLAN, NVGRE, and STT protocols. The

methods of dealing with broadcasts and multicasts in the tunneling protocols are specific to each protocol

and beyond the scope of this book. For details we refer the reader to the references we have previously

provided for these three protocols.

10.12 Offloading Flows in the Data Center

One of the major problems in data centers is the elephant flows, which we introduced in Section 8.7.1.

Such flows consume huge amounts of bandwidth, sometimes to the point of starving other flows of

bandwidth. Figure 10.5 depicts a high-level design of an offload application. This proactive application

uses RESTful APIs to communicate with the controller. The general overview of the operation of such

an application is as follows:

• There is a flow monitor that monitors flows and detects the beginning of an elephant flow. (This is a

nontrivial problem in itself. In Section 8.7.1 we provided simple examples as well as references for

how elephant flows can be scheduled, predicted, or detected.)

• Once an elephant flow is detected, the flow monitor sends a notification message (possibly using

the application’s own REST API) to communicate details about the flow. This includes identifying

the two endpoint ToR switches where the flow begins and ends as well as the IP addresses of the

starting (1.1.1.5) and ending (2.2.2.10) hosts.

• The offload application has been previously configured with the knowledge of which ports on the

ToR switches connect to the offload switch.

• Armed with this topology information, the offload application is able to set flows appropriately on

the ToR switches and the offload switch.
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Offload application design.

• As shown in Figure 10.5, a new flow rule is added in this ToR switch. This is the flow shown in

bold in the figure. It is important that this be a high-priority flow and match exactly on the source

and destination host addresses. The next lower-priority flow entry matches on the network address

2.2.2.0/24, but, since that is a lower-priority entry, packets belonging to the elephant flow will match

the higher-priority entry first, and those packets will be directed out port six to the optical offload

switch. Note that traffic other than the elephant flow will match the lower-priority entries and will

be transmitted via the normal port.

• On the optical offload switch, flow rules are programmed that connect the two ports that will be

used to forward this elephant flow between the switches involved. For the sake of simplicity, we will

assume that an elephant flow is unidirectional. If there is bulk traffic in both directions, the steps we

describe here can be duplicated to instantiate a separate OTN flow in each direction.

• Once the elephant flow ceases, the offload application will be informed by the flow monitor and the

special flows will be removed.

10.13 Access Control for the Campus

In Section 8.3.1 we introduced the idea of an SDN network access control (NAC) application for the

campus. Figure 10.6 shows a high-level design of a campus NAC application. It should be apparent from

the diagram that this application is a reactive application because it needs to be notified of unauthenticated
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NAC application design.

users attaching to the network. The initial state of the switch is to have flows that allow ARP and DNS

but that forward DHCP requests and responses to the controller. The DHCP responses will be used to

build a database of MAC and IP addresses for the devices attaching to the network.

When the DHCP response is observed, if this is a new user, the NAC application adds the user to

the database and the user’s state is unauthenticated. The application then programs a flow entry in the

switch based on the user’s MAC address. This flow in the non-underlined italics text in Figure 10.6 is

programmed to forward the user’s HTTP requests to the controller. Thus, when a user opens a browser,

in typical captive portal behavior, the application will cause the HTTP request to be forwarded to the

captive portal web server where user authentication takes place. This is easily achieved by modifying

the destination IP address (and possibly the destination MAC address as well) of the request so that

when the switch forwards the packet, it will go to the captive portal registration web server shown in

Figure 10.6 rather than to the intended destination.

Normal captive portal behavior is to force an HTTP redirect, which sends the user’s browser to

the desired captive portal registration, authentication, or guest login page. The controller will have

programmed the switch with flows that will shunt HTTP traffic to the captive portal. No other traffic

type needs to be forwarded, since the authentication takes place via the user’s web browser. Thus the user

engages in an authentication exchange with the captive portal. This could entail payment, registration,

or some related mechanism. When complete, the captive portal informs the NAC application that

the user is authenticated. Note that the registration server uses the application’s RESTful APIs to

notify the NAC application of changes in the user’s status. At this point the application removes the
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nonunderlined italics flow entry shown in Figure 10.6 and replaces it with the two bold underlined flow

entries, thus allowing the user unfettered access to the network. When the user later connects to the

network, if he is still registered, he will be allowed into the network without needing to go through the

registration/authentication step unless these flow entries have timed out.

The reader should note that in this example and in the accompanying Figure 10.6, we stop part-way

through the complicated process of HTTP redirection. The full process entails sending an HTTP 302

message back to the user to redirect the user’s browser to the registration server. These details are not

germane to our example, so we exclude them here.

10.14 Traffic Engineering for Service Providers

In Section 8.2.1 we explained how traffic engineering is a key tool for service providers to optimize

their return on investment in the large networks they operate for their customers. Figure 10.7 shows a

simplified design for a proactive traffic engineering application that takes traffic monitoring information

into account. As shown in the figure, the flow rules in the router(s) are very simple. Likewise, the design

of the application is simple. The complexity resides inside the path computation manager component

doing the path calculations and optimizing traffic over the available links.

This problem can also be addressed using reactive application design. Figure 10.8 reveals a high-level

design of such an approach. The key difference between this design and the proactive one lies in the flow

tables on the routers, which feature a final flow entry that forwards unmatched packets to the controller.

In this solution, initially there are no flows on the switch except for the CONTROLLER flow. The
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Traffic engineering reactive application design.

routers are not pre-configured with any specific flows other than to forward unmatched packets to the

controller, as is typical for a reactive application. When these packets are received at the controller, the

application’s listener passes them to the path control manager. The path control manager then calculates

the best path to the destination, given the current traffic loads. Thus the flows are established in an

on-demand manner. When traffic to that destination eventually stops, the flow is removed. The flow

could be removed implicitly by aging out, or an external traffic-monitoring function could explicitly

inform the application that the flow has stopped and then the flow could be deleted by the application.

10.15 Conclusion

In this chapter we bridged the OpenFlow specifics of Chapter 5 with the conceptual use cases of

Chapters 7 and 8, grounded with concrete design and programming examples. Our examples are all

based on applications of Open SDN. Certainly, network programmers familiar with SDN via APIs or

SDN via overlays would be able to use their respective technologies to address some of the scenarios

presented in this chapter. However, it is unlikely, in our opinion, that those technologies would be so

easily and simply adapted to the full spectrum of applications presented in this chapter. Having said that,

the viability of a technology depends not only on its extensibility from a programmer’s perspective but

on other factors as well. Such issues include (1) the cost, sophistication, and availability of ready-made

solutions, (2) the market forces that push and pull on various alternatives, and (3) how rapidly needed

future innovations are likely to emerge from different alternatives. We spend the final three chapters of

this book addressing these three aspects of SDN.
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11
CHAPTER

SDN Open Source

In Chapter 5 we presented an overview of OpenFlow, ostensibly the single most important and fully

open component of the SDN framework. The OpenFlow standard is developed by the Open Networking

Foundation (ONF); however, the ONF does not provide a working implementation of either the switch

or the controller. In this chapter we provide an inventory of a number of open source components that

are available for use in research, including source code for OpenFlow itself. Some of these are available

under licenses that make them suitable for commerical exploitation. Many of these initiatives will speed

the standardization and rate of adoption of SDN. This chapter provides a survey of these initiatives and

explains their relationship and roles within the broader SDN theme.

We have noted in earlier chapters that accepted use of the term SDN has grown well beyond its

original scope. Indeed, the definition of SDN has blurred into most of the current work on network

virtualization. Much of this work, though, particularly in Open SDN, has occurred in the academic world.

As such, there is a significant library of open source available for those who want to experiment or build

commercial products in the areas of SDN and network virtualization. Beyond academic contributions,

many companies are contributing open source to SDN projects. Some examples that were mentioned

in earlier chapters are Big Switch’s Indigo, VMware’s Open vSwitch (OVS), and the many companies

cited in Section 9.9.2 contributing to OpenDaylight. This survey of SDN-related open source projects

was greatly aided by the compilations already performed by SDN Central [3] and others [16,12].

In Figure 11.1 we map this wide selection of open source to the various network components. The

major components, from the bottom up, are:

• OpenFlow device

• OpenFlow controller

• Applications

• Network virtualization

• Test and simulation

The last category, test and simulation, is shown to the side of the diagram because it does not fit

neatly into a bottom-to-top hierarchy. For each of these categories we show in the callout ovals the

notable available open source that contributes to that category. In the sections that follow we provide

an inventory of this software. Some of these have surfaced as the basis for commercial deployments

of network virtualization and SDN, and we explore that open source product in greater depth. As we

move through the different network components in Sections 11.4–11.10, we encourage the reader to

look back at Figure 11.1 to place those open source projects in the context of the SDN ecosystem.

The manner in which open source software may be commercially exploited is dependent on the

nature of the open source license under which it is provided, and these licenses are by no means created

Software Defined Networks. http://dx.doi.org/10.1016/B978-0-12-416675-2.00011-5
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FIGURE 11.1

SDN open source landscape.

equal. So, before discussing the software modules themselves, let’s discuss the prevalent types of open

source licenses in use today.

11.1 Chapter-Specific Terminology

In this chapter we introduce a term commonly used by the open source development community: forking.

If we view a source code base as the trunk of a tree, there are development branches in different locations
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around the world where innovation and experimentation occur. In many cases, successful and important

innovations are contributed back to the evolving master copy of the code and appear in a future release

higher up on the trunk of the source code tree, to continue with the analogy. When a new code base is

forked from an existing release, it cuts the connection back to the trunk. This means that the continuing

innovation on that fork will not be contributed back to the original code base.

11.2 Open Source Licensing Issues

Unless a person has been intimately involved in building a commercial product that incorporates open

source software, it is unlikely that he or she understands the complexity of this field of open source

licensing. A large number of different open source licenses is extant today. At the time of this writing,

gnu.org [4] lists a total of 88 free software licenses.

There are many nuances between these free software licenses that may seem arcane to a nonlaw

professional. Slight differences about permissions or requirements about using the name of the originator

of the license or requirements about complying with U.S. export laws may be some of the only differences

between them. Enterprises that offered free source code in the past did so with their organization’s name

in the license, where the name itself may be the only substantive difference between one company’s

license and another already existing license. We provide a brief description of the different licenses

under which the source mentioned in this chapter has been released, paying particular attention to

the business ramifications of choosing to incorporate the software under each of these licenses in a

commercial product.

An accepted common denominator of open source is that it is source code provided without charge

and that you may use and modify for a defined set of purposes. There is open source available that

only allows non-commercial use. We believe that this greatly limits the impact that such software will

have, so we do not discuss this further here. Even when commercial use is allowed, however, there are

significant differences in the obligations implicit in the use of such software.

Some major categories of open source licensing in widespread commercial use today are the GNU

General Public License (GPL), BSD style, and Apache. There are different organizations that opine on

whether a given license is truly open source. These groups include the Free Software Foundation (FSF)

and the Open Source Initiative. They do not always agree.

GPL is an extremely popular licensing form. The Linux operating system is distributed under the GPL

license. It allows users to copy and modify the software for virtually any purpose. For many companies,

though, GPL is too restrictive in one major facet. It incorporates the notion of copyleft, whereby if

any derivative works are distributed, they must be distributed under the same license. From a practical

standpoint, this means that if a commercial company extends a GPL open source code base to provide

some new function that it wants to offer to the market, the modifications that are made must be made

freely available to the open source community under GPL terms. If the feature in question here embodies

core intellectual property that is central to that company’s value proposition, this is rarely acceptable.

If the function provided by the GPL open source can be used with little added intellectual property,

GPL code may be suitable in commercial products. Ensuring that this distinction is kept clear can have

massive consequences on the valuation that a startup receives from investors. For this reason, GPL open

source is used with caution in industry. Nonetheless, GPL remains the most widely used free software

license. There is a GPL V.2 and GPL V.3 that are somewhat more restrictive than the initial version.
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The BSD-family licensing model is more permissive. This style of license was first used for the

Berkeley Software Distribution (BSD), a Unix-like operating system. There have been a number of

variants of this original license since its first use; hence we use here the term BSD family of licenses.

Unlike GPL code, the user is under no obligation to contribute derivative works back to the open

source community. This makes it much less risky to incorporate BSD-licensed open source into com-

mercial products. In some versions of this style of license there is an advertising clause. This clause

was originally required to acknowledge the use of U.C. Berkeley code in any advertisement of the

product. Although this requirement has been eliminated in the latest versions of the BSD license,

there are still many free software products licensed with a similar restriction. An example is the

widely used OpenSSL encryption library, which requires acknowledgment of the author in product

advertising.

The Apache license is another permissive license form for open source. The license was developed

by the Apache Software Foundation (ASF) and is used for software produced by the ASF as well as

some non-ASF entities. Software provided under the Apache license is unrestricted in use except for the

requirement that the copyright notice and disclaimer be maintained in the source code itself. Because

this restriction has minimal impact on potential commercialization of such software, many commercial

entities build products freely incorporating Apache-licensed source code today.

The Eclipse Public License (EPL) [7] can be viewed as a compromise between the strong copyleft

aspects of the GPL and the commercially friendly Apache license. Under certain circumstances, using

EPL-licensed source code can result in an obligation to contribute one’s own modifications back to the

open source community. This is not a universal requirement, though, so developers can often incorporate

this software into commercial products without risk of being forced to expose their own intellectual

property to the entire open source community. The requirement comes into effect when the modifications

are not a separate software module but contain a significant part of the EPL-licensed original and are

thus a derivative work. Even when the requirement to release extensions to the original is not in effect,

the user is required to grant a license to anyone receiving their modification to any patent the user may

hold over those modifications.

The Stanford University Free and Open Source Software (FOSS) license [8] is noteworthy in the

manner in which it attempts to address the common problem with commercial use of GPL-licensed

source code due to its copyleft provision. Stanford’s motivation in developing this concept was to avoid

the situation where developers would hesitate to develop applications for the Beacon controller (see

Section 11.6). Because of the way in which applications interface with the Beacon controller, if it were

licensed under GPL without the FOSS exception, such developers would be obliged to contribute their

work as GPL open source. This license is specific to the Beacon controller, though the concept can be

applied more generally. In essence, Stanford wants to release the Beacon controller code under the terms

of GPL. FOSS specifies that a user of the code must continue to treat the Beacon code itself under the

terms of GPL, but the code they write as a Beacon application can be released under any of a number

of approved FOSS licenses.

These approved licenses are the most common of the open source licenses discussed in this chapter.

Notably, an open source application can be released under a license that is more commercially friendly,

such as Apache, which does not require that the derivative works on the application code be released

to the open source community, thus allowing the developer to guard his newly generated intellectual

property.
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11.3 Profiles of SDN Open Source Users

When judging the relevance of open source to the SDN needs of one’s own organization, the answer will

be highly dependent on the role to which the organization aspires on the SDN playing field. To be sure,

the early SDN adopters were almost exclusively researchers, many of whom worked in an academic

environment. For such researchers, keeping flexibility and the ability to continually tinker with the code

is always paramount compared to concerns about support or protection of intellectual property. For this

reason, open source OpenFlow controllers and switch code were and continue to be very important in

research environments. Similarly, a startup hoping to build a new OpenFlow switch or controller will

find it very tempting to leverage the work present in an existing open source implementation, provided

that does not inhibit the development and commercial exploitation of the company’s own intellectual

property. If one is a cloud computing operator, tinkering with the OpenFlow controller is far less

important than having a reliable support organization that one can call in the event of network failure.

Thus, we propose three broad categories of likely users of SDN-related open source software:

• Research

• Commercial developers

• Network operators

Assuming that a given piece of open source software functionally meets a user’s requirements, each

of these user classes will have a different overriding concern. A developer in a commercial enterprise will

focus on ensuring that he/she does not incorporate any open source that will limit his/her company’s abil-

ity to exploit its products commercially and ensuring that it will protect its intellectual property. The GPL

is often problematic when the open source will be modified, and the modifications must thus be made

publicly available under GPL. Generally, researchers have the greatest flexibility and simply desire that

the source code be available free of charge and can be modified and distributed for any purpose. Often,

though, researchers are also strong proponents of the growth of open source and, thus, may prefer a copy-

left license that obliges the users to contribute their modifications back to the open source community.

Finally, the network operator will be most concerned about maintaining the network in an operational

state and therefore will focus on how the open source product will be supported and how robust it is.

Because of the fundamental noncommercial nature of open source, it will always be a challenge

to identify whom to hold responsible when a bug surfaces. This will give rise to companies that will

effectively commercialize the open source, where the value they add is not development of new features

but to provide well-tested releases and configurations as well as a call desk for support. Some operators

will simply fall back on the old habit of purchasing technology from the mainstream NEMs. Whether

or not their NEM provider uses open source is almost irrelevant to the operators, since they really

are purchasing equipment plus an insurance policy and it matters little where the NEM obtained this

technology. On the other hand, whereas a cloud operator may not want to assume responsibility for

support of its switching infrastructure, the open source applications, test, or monitoring software might

serve as useful starting points for locally supported projects.

In terms of the software projects discussed in this chapter, some examples of how different user types

might use some of the software include:

• A hardware switch company that wants to convert a legacy switch into an OpenFlow-enabled switch

may use the OpenFlow switch code presented in Section 11.5 as a starting point.
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• A company that wants to offer a commercial OpenFlow controller might start its project with one

of the OpenFlow controllers we list in Section 11.6, add features to it, and harden the code.

• A cloud operator might use an open source SDN application such as those we describe in Section 11.7

to begin to experiment with OpenFlow technology prior to deciding to invest in this technology.

As we review several different categories of software projects in the following sections, for each we

list which of these three classes of users are likely to adopt a given software offering. We now provide

an inventory of some of the SDN-specific open source that is used by researchers, developers, and

operators. Since the number of these open source projects is quite large, we group them into the basic

categories of switches, controllers, orchestration, applications, and simulation and test, as depicted in

Figure 11.1. We summarize the different open source contributions in each of these categories in a

number of tables in the following sections. Only in an instance where the particular project has played

an unusually important role in the evolution of SDN do we describe it in further detail.

11.4 OpenFlow Source Code

As Figure 11.2 shows, both the switch and controller implementations can leverage an implementation

of the OpenFlow protocol. There are multiple open source implementations of OpenFlow. We use a

format of two paired tables to provide a succinct description of these implementations. In Table 11.1

we provide a basic description of available implementations; in Table 11.2 we list detailed information

regarding the provider of the code, the type of license, the source code in which it is written (where

relevant), and the likely class(es) of users. We have assigned these target classes of users using a number

of criteria, including: (1) the nature of the license, (2) the maturity of the code, and (3) actual users,

FIGURE 11.2

Applications of OpenFlow source.
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Table 11.1 Open Source Implementations of OpenFlow: Description

Product Name Description

OpenFlow Reference Reference code base that tracks the specification.

OpenFaucet Source code implementation of OpenFlow protocol 1.0, used in both controllers

and switches.

OpenFlowJ Source code implementation of OpenFlow protocol. Both Beacon and FlowVisor

incorporate this code.

Table 11.2 Open Source Implementations of OpenFlow: Details

Product Name Source License Language Target User

OpenFlow Reference Stanford BSD-style C Research

OpenFaucet Midokura Apache Python Research

OpenFlowJ Stanford Apache Java Research

when known. OpenFlowJ is notable in that the Beacon controller, itself the fount of a number of other

controller implementations, uses the OpenFlowJ code.

We continue to use this format of pairing two tables to provide the description of notable open source

projects in each of the major categories we discuss in this chapter. In some cases the license or language

may not be known. We indicate this by placing a hyphen in the corresponding table cell. We also mark

the table cell with a hyphen for languages in the event that the project uses multiple languages.

11.5 Switch Implementations

In this section we discuss some of the more important available open source SDN switch implementa-

tions. The open source SDN switch implementations are summarized in Tables 11.3 and 11.4. Looking

back at Figure 11.1 we can see that the open source switch implementations can potentially apply

both to OpenFlow hardware device implementations as well as software-based virtual switches. In the

following paragraphs we examine the two most widely discussed switch implementations, OVS and

Indigo, as well as the only OpenFlow wireless access point code base listed, Pantou.

As of this writing, OVS is the most mature and feature-complete open source implementation of the

switch side of an OpenFlow implementation. OVS has been used as the control logic inside genuine

hardware switches as well as a virtual switch running within a hypervisor to implement network virtual-

ization. It is in the latter context that the developer of OVS, Nicira, has been for some time shipping OVS

with its NVP product. Since the acquisition of Nicira by VMware, the NVP product is now marketed

under the name NSX. OVS uses OpenFlow for control of flows and OVSDB for configuration. OVS uses

the sFlow protocol for packet sampling and monitoring. The code has been ported to multiple switching

chipsets and has thus found a home in several hardware switches as well. Earlier, in Section 6.6.3, we

presented an example of OVS being used for SDN via hypervisor-based overlays.
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Table 11.3 Open Source OpenFlow Switches: Description

Project Description

Open vSwitch Production-quality multilayer virtual switch designed for programmatic network automation

using standard management interfaces as well as OpenFlow. Also called OVS.

Indigo OpenFlow switch implementation designed to run on physical switches and use their

ASICs to run OpenFlow at line rates. Note that Switch Light is Big Switch’s commercial

switch software product and is based on the second generation of the Indigo platform.

LINC OpenFlow 1.2 Softswitch.

OFSS OpenFlow 1.1 Softswitch.

of13softswitch User-space OpenFlow 1.3 Softswitch. Based on Ericsson TrafficLabs 1.0 softswitch code.

Pantou Wireless router implementation based on OpenWRT with OpenFlow capabilities (see

Section 6.4 for more information about OpenWRT.)

Table 11.4 Open Source OpenFlow Switches: Details

Product Name Source License Language Target User

Open vSwitch Nicira Apache 2.0 C Researchers

Developers

Indigo Big Switch EPL — Developers

LINC Infoblox Apache 2 Erlang Developers

OFSS Ericsson BSD-like C Research

of13softswitch CPqD BSD-like C Research

Pantou Stanford — — Research

Big Switch Networks offers the Indigo switch code base under the Eclipse public license. This was

a natural move for Big Switch in its desire to create an ecosystem of hardware switches that work well

with its commercial OpenFlow controller product, Big Network Controller. Like OVS, Indigo is targeted

for use both on physical switches as well as an OpenFlow hypervisor switch for network virtualization

environments. In particular, this code can be used to convert a legacy layer two or three switch into

an OpenFlow switch. By making this code base available to switch manufacturers, especially smaller

manufacturers that may lack the means to develop their own OpenFlow switch-side control code, Big

Switch hopes to expand the market for its controller.1 Because Indigo is integrated with Ethernet switch

ASICs, it is possible to switch flows under the OpenFlow paradigm at line rates. Another distinction

between OVS and Indigo is that Indigo is implemented specifically to support OpenFlow, whereas

OVS can support other control mechanisms such as OVSDB. In addition, OVS has broader support for

affiliated network virtualization features than Indigo and includes richer contributions from the open

source community. Nevertheless, after OVS, Indigo remains a more likely candidate for an open source

starting point for a commercial OpenFlow physical switch than the alternatives discussed in this section.

From a feature-set point of view, OVS seems to be a superset of Indigo’s features.

1Big Switch is now marketing a commercial version of Indigo called Switch Light for this express purpose.
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Pantou is actually designed to turn commodity APs into an OpenFlow-enabled AP. This is accom-

plished by integrating the NOX OpenFlow implementation with OpenWRT. We explained in Section

6.4 that OpenWRT is an open source project that applies the SDN principle of opening up the device to

a wide selection of low-cost consumer AP hardware. This union of OpenFlow with basic wireless AP

functionality available on low-cost hardware is a boon to researchers who want to experiment with the

largely virgin field of SDN applied to 802.11 networks.

11.6 Controller Implementations

In this section we discuss some of the more important available open source SDN controller implemen-

tations. The open source SDN controller implementations are summarized in Tables 11.5 and 11.6.

The Beacon [8] controller was based on OpenFlowJ, an early open source implementation of Open-

Flow in Java. The OpenFlowJ project is hosted at Stanford University. Beacon is a highly influential

controller, both for the large amount of early OpenFlow research and development that was done on that

controller as well as being the code base from which the Floodlight controller source code was forked.

Beacon is a cross-platform, modular OpenFlow controller [8]. At the time of this writing, Bea-

con has been successfully deployed in an experimental data center consisting of 20 physical switches

and 100 virtual switches. It runs on many different platforms, including high-end Linux servers.

Table 11.5 Open Source Controllers: Description

Project Description

NOX The first OpenFlow controller, used as the basis for many subsequent

implementations.

POX Python version of NOX.

Beacon Java-based OpenFlow controller that is multi-threaded, fast, and modular; uses

OpenFlowJ.

Floodlight Java-based OpenFlow controller derived from Beacon, supported by large developer

community.

Ryu Network controller with APIs for creating applications; integrates with OpenStack.

Manages network devices not only through OpenFlow but alternatives such as

NETCONF and OF-Config. More than just a controller, it is sometimes referred to as

a network operating system.

OpenDaylight This controller attempts to be the all-purpose SDN controller. It supports numerous

southbound interfaces, including OpenFlow, and provides a generic network

abstraction for applications in its northbound API.

FlowER OpenFlow Controller (still in development).

Jaxon Thin Java Interface to NOX controller.

Mul SDN Controller OpenFlow Controller.

NodeFlow OpenFlow Controller.

Trema OpenFlow Controller, integrated test and debug. Extensible to distributed controllers.
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Table 11.6 Open Source Controllers: Details

Product Name Source License Language Target User

NOX ICSI GPL C++ Research,

operators

POX ICSI GPL Python Research

Beacon Stanford University GPLv2 Java Research

Stanford FOSS

Exception v1.0

Floodlight Big Switch Networks Apache Java Research,

developers,

operators

Ryu NTT Communications Apache 2.0 Python Research,

developers,

operators

OpenDaylight OpenDaylight EPL — Developers

FlowER Travelping GmbH MIT License Erlang Operators

Jaxon University of Tsukuba GPLv3 Java Research

Mul SDN Kulcloud GPLv2 C Operators

NodeFlow Gary Berger — Javascript Research

Trema NEC GPLv2 Ruby,C Research

As mentioned earlier, though the core controller code is protected with GPL-like terms, the FOSS

license exception allows developers to extend the controller with applications that may be licensed

under more commercially favorable terms. Beacon’s stability [6] distinguishes it from other controllers

used primarily for research purposes. Modules of Beacon can be started, stopped, and even installed

while the other components of Beacon continue operating. Evidence of the impact that this code base has

had on the OpenFlow controller industry is found in the names of the two most influential open source

controllers being used by industry today, Floodlight and Open Daylight, both echoing the illumination

connotation of the name Beacon. In Sections 10.5–10.7, we discussed the use of Beacon, Floodlight,

and OpenDaylight when developing SDN applications.

Floodlight was forked from Beacon prior to Beacon being offered under the current GPL/FOSS

licensing model [9]. Because Floodlight itself is licensed under the Apache 2.0 license, it is not subject

to the copyleft provisions of the Beacon license, and the source is thus more likely to be used by recipients

of the code who need to protect the intellectual property of their derivative works on the code base.

Floodlight is also integrated with OpenStack (see Section 11.10). A number of commercial OpenFlow

controllers are being developed using Floodlight as the starting point. This includes Big Switch’s own

commercial controller, Big Network Controller. Big Switch’s business strategy [5] surrounding the open

source controller is complex. The company offers a family of applications that work with the Floodlight

controller. Though its commercial controller will not be open source, the company promises to maintain

compatibility at the interface level between the commercial and open source versions. This reflects a

fairly classical approach to building a software business, which is to donate an open source version of
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functionality in order to bootstrap a community of users of the technology, hoping that it gains traction,

and then offer a commercial version that can be upsold to well-heeled users that require commercial

support and extended features. Big Switch joined the Open Daylight project, donating its Floodlight

controller to the effort in hopes that this action would further propagate Floodlight. These hopes were

ultimately not realized, as we explain below. Indeed, as of this writing, Big Switch has tweaked this

original business strategy. We discuss the company’s big pivot in Section 12.9.1.

The OpenDaylight project [10] was formed in early 2013 to provide an open source SDN framework.

The platinum-level sponsors included Cisco, Brocade, Ericsson, Citrix, Microsoft, and Big Switch

Networks. Unlike the ONF, OpenDaylight only considers OpenFlow to be one of many alternatives to

provide software control of networking gear. Part of the OpenDaylight offering includes an open source

controller, which is why we include OpenDaylight in this section. As we mentioned, Big Switch initially

joined and donated its Floodlight controller to OpenDaylight, anticipating that Floodlight would become

the key OpenFlow component of the project. This expectation was quickly shattered as OpenDaylight

decided to make the Cisco Open Networking Environment (ONE) controller the centerpiece and to

merely add Floodlight technology to that core. (Cisco now markets a commercial version of the ONE

controller as the Extensible Network Controller, or XNC.) Subsequent to this, Big Switch reduced its

involvement in the OpenDaylight project and ultimately withdrew completely [1]. The XNC controller

[13] may use a variety of methods to control network devices. Whereas OpenFlow is one such method, it

supports others, including RESTful APIs and Cisco’s Open Network Environment Platform Kit (onePK).

It is thus noteworthy that both SDN via APIs and Open SDN are present in the same XNC controller.

The facts that Big Switch stepped back from its commitment to OpenDaylight, there is a total lack of

coordination between the ONF and OpenDaylight, and the platinum sponsors are almost all incumbent

network equipment manufacturers have all led to a growing skepticism [11] about the compatibility of

OpenDaylight with the ONF. When one considers how alternative definitions of SDN have deviated

from the initial Open SDN precepts and that OpenFlow remains tightly coupled to those founding

precepts, it is not surprising that such schisms arise.

So, despite the recurring theme of illumination used in the names of the most prominent open source

controller implementations, the future of the Beacon, Floodlight, and OpenDaylight controllers remains

murky.

11.7 SDN Applications

Chapter 10 was dedicated to an analysis of how Open SDN applications are designed and how they

interact with controllers and provided a number of sample designs of different SDN applications. If

the reader wants to actually embark on the journey of writing his own SDN application, it is clearly

advantageous to have a starting point that can be used as a model for new work. To that end, in this

section we present some of the more important available open source SDN applications. The open source

SDN applications are summarized in Tables 11.7 and 11.8. The term applications by its very nature

is general, so it is not possible to list all the possible categories of SDN applications. Nevertheless,

four major themes surface that have attracted the most early attention to SDN applications. These are

security, routing, network management, and network functions virtualization (NFV).

In Table 11.7 there are three examples related to routing: the BIRD; Quagga, which is a general-

purpose open source routing implementation that is suitable for use in SDN environments; and Routeflow,
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Table 11.7 Open Source SDN Applications: Description

Product Name Description

Routeflow Integrates IP routing with OpenFlow controller; based on the earlier Quagflow

project (see Section 11.11).

Quagga Provides IP routing protocols (e.g., BGP, OSPF).

Avior Management Application for Floodlight.

OSCARS On-Demand Secure Circuits and Advance Reservation system used for optical channel

assignment by SDN; predates SDN.

The BIRD Provides IP routing protocols (e.g., BGP, OSPF).

FlowScale Traffic load balancer as a service using OpenFlow.

Frenetic Provides language to program OpenFlow controller abstracting low-level details

related to monitoring, specifying, and updating packet-forwarding policies.

FortNOX Security Framework, originally coupled with NOX controller, now integrated in

SE-Floodlight; extends OpenFlow controller into a security mediation service. Can

reconcile new rules against established policies.

FRESCO Security application integrated with FortNOX; provides security-specific scripting

language to rapidly prototype security detection and mitigation modules.

Table 11.8 Open Source SDN Applications: Details

Product Name Source License Language Target Users

Routeflow CPqD (Brazil) — — Research,

developers

Quagga Quagga Routing Project GPL C Research,

developers

Avior Marist College MIT License Java Research

OSCARS Energy Services Network New BSD Java Research

(U.S. Department of Energy)

The BIRD CERN GPL — Research

FlowScale InCNTRE Apache 2.0 Java Research

Frenetic Princeton University GPL Python Research

FortNOX SRI International — — Research

FRESCO SRI International — — Research

which is SDN-specific. In Section 11.11 we describe a specific example of open source being used to

implement a complete SDN network where Routeflow and Quagga are used together. Avior is a network

management application for the Floodlight controller. OpenFlow has great potential to provide the next

generation of network security [15]. The two relevant examples in Tables 11.7 and 11.8 are FortNOX

and Fresco. As we described in Section 8.6.1, NFV applications constitute the class of applications that

virtualize a network services function that is performed by a standalone appliance in legacy networks.
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Examples of such devices are traffic load balancers and intrusion detection systems. FlowScale is an

NFV application that implements a traffic load balancer as an OpenFlow controller application.

Some of the open source applications covered in this section are OpenFlow applications, where

domain-specific problems are addressed through applications communicating with the OpenFlow con-

troller via its northbound interface. Not all SDN applications are OpenFlow applications, however.

11.8 Orchestration and Network Virtualization

We introduced the concept of orchestration in Section 3.2.3. There are many compute, storage, and

networking resources available in the data center. When virtualization is applied to these resources, the

number of assignable resources explodes to enormous scale. Assigning these resources to the tenants

of the data center in an efficient and manageable fashion is a complex technology unto itself. This

technology is called orchestration. In this section we list some of the more important open source

implementations that provide orchestration functionality. Network orchestration is directly related to

network virtualization. The term orchestration came into use as it became clear that virtualizing the

networking portion of a complex data center, already running its compute and storage components

virtually, involved the precise coordination of many independent parts. Unlike legacy networking, where

the independent parts function in a truly distributed and independent fashion, network virtualization

required that a centralized entity coordinate their activities at a very fine granularity—much like a

conductor coordinates the exact timing of the thundering percussion interlude with the bold entry of a

brass section in a symphony orchestra. The open source SDN orchestration and network virtualization

solutions are summarized in Tables 11.9 and 11.10.

11.9 Simulation, Testing, and Tools

In this section we discuss some of the more important open source implementations related to network

simulation, test, and tools pertinent to SDN. The open source SDN solutions available in this area are

summarized in Tables 11.11 and 11.12. Some of these projects offer software that may have relevance

in nonresearch environments, particularly Cbench, OFLOPS, and OFTEST. Although we have not seen

Table 11.9 Open Source Orchestration Solutions: Description

Product Name Description

FlowVisor Creates slices of network resources; delegates control of each slice, that is, allows

multiple OpenFlow controllers to share a set of physical switches.

Maestro Provides interfaces for network control applications to access and modify a network.

OESS Provides user-controlled VLAN provisioning using OpenFlow switches.

NetL2API Provides generic API to control layer two switches via vendors’ CLIs, not OpenFlow;

useable for non-OpenFlow network virtualization.

Neutron OpenStack’s operating system’s networking component that supports multiple network

plugins, including OpenFlow.
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Table 11.10 Open Source Orchestration Solutions: Details

Product Name Source License Language Likely Users

FlowVisor ON.LAB — Java Research

Maestro Rice University Lesser GPL Java Research

OESS Internet2 Apache 2.0 — Research

Indiana University

NetL2API Locaweb Apache Python Research,

developers,

operators

Neutron OpenStack Foundation Apache — Operators

Table 11.11 Open Source Test and Simulation: Description

Product Name Description

Cbench OpenFlow Controller benchmarker. Emulates a variable number of switches, sends

PACKET_IN messages to controller under test from the switches, and observes

responses from controller.

OFLOPS OpenFlow switch benchmarker. A standalone controller that sends and receives

messages to/from an OpenFlow switch to characterize its performance and observes

responses from the switch.

MiniNet Simulates large networks of switches and hosts. Not SDN-specific, but widely used by

SDN researchers who simulate OpenFlow switches and produce traffic for OpenFlow

controllers.

OFTest Tests switch compliance with OpenFlow protocol versions up to 1.2.

Table 11.12 Open Source Test and Simulation: Details

Product Name Source License Language Likely Users

Cbench Stanford University GPL V.2 C Research,

developers,

operators

OFLOPS Stanford University Stanford License C Research,

developers,

operators

MiniNet Stanford University Stanford License Python Research

OFTest Big Switch Networks Stanford License Python Research,

developers,

operators
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Mininet used in a commercial setting, this tool has seen wide use by SDN researchers to emulate the

large networks of switches and hosts and the traffic that can cause a controller, such as an OpenFlow

controller, to create, modify, and tear down large numbers of flows.

11.10 OpenStack

We introduced the OpenStack Foundation in Section 9.9.3. The OpenStack open source is a broad

open source platform for cloud computing, released under the Apache license. We show the role of

OpenStack as well as its components in Figure 11.3. OpenStack provides virtualization of the three

main components of the data center: compute, storage, and networking. The compute function is called

Nova. Nova works with the major available hypervisors to manage pools of virtual machines. Examples

of the hypervisors that can be used with OpenStack include KVM, XenServer, and VMware, among

others. The storage functions are Swift and Cinder. Swift provides redundant storage such that storage

servers can be replicated or restored at will, with minimum dependency on the commodity storage drives

that provide the actual physical storage. Cinder provides OpenStack compute instances with access to file

and block storage devices. This access can be used with most of the prevalent storage platforms found in

Physical Hardware

Hypervisors

OpenStack 

Networking Compute Storage

Neutron

OpenStack

Management

Nova
Swift,

Cinder
Horizon

Shared Services

Keystone,

Glance

FIGURE 11.3

Openstack components and roles.
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cloud computing today. Horizon provides a dashboard to access, provision, and manage the cloud-based

resources in an OpenStack environment. There are two shared services, Keystone and Glance. Keystone

provides a user authentication service and can integrate with existing identity services such as LDAP.

Glance provides the ability to copy and save a server image such that it can be used to replicate compute

or storage servers as services are expanded. It also provides a fundamental backup capability for these

images. The network virtualization component of OpenStack is provided by Neutron and, thus, is the

component most relevant to our discussion of SDN. Note that Neutron was formerly known as Quantum.

Architecturally, Neutron’s role in OpenStack is embodied as a number of plugins that provide the

interface between the network and the balance of the OpenStack cloud computing components. Though

OpenStack is not limited to using Open SDN as its network interface, Open SDN is included as one

of the networking options. Looking back at Figure 11.1 we see that the Neutron plugin can interface

to the northbound API of an OpenFlow controller. Neutron can thus provide the network abstraction

layer for an OpenFlow-enabled network. Just as OpenFlow can work with many different network-

control applications via a northbound API, so can OpenStack’s Neutron have many different kinds

of network plugins. Thus, OpenStack and OpenFlow may be married to provide a holistic network

solution for cloud computing, but neither is exclusively tied to the other. As shown in Figure 11.4,

OpenStack can use Neutron plugins to control legacy network devices, an OpenFlow controller that

controls OpenFlow-enabled physical switches, or virtual switches such as OVS [2]. The implementation

Neutron RESTful API

Neutron

Plugin

Neutron

Plugin

Neutron

Plugin

Legacy Switch OVS Controller

OpenFlow

Switch

OpenFlow
Switch

OpenFlow
Switch

FIGURE 11.4

Openstack plugins.
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of the OVS interface, for example, consists of the plugin itself, which supports the standard Neutron

northbound APIs, and an agent that resides on the Nova compute nodes in the OpenStack architecture.

An OVS instance runs locally on that compute node and is controlled via that agent.

OpenStack exposes an abstraction of a virtual pool of networks. This is closely related to the virtual

networks abstraction we discussed in relation to the SDN via overlays solution. So, for example, with

OpenStack one could create a network and use that for one specific tenant, which maps quite well to the

SDN via overlays solutions concept. OpenStack has plugins for many of the existing Overlay solutions.

11.11 Example: Applying SDN Open Source

The RouteFlow project [14] provides an excellent use case for open source SDN code. The RouteFlow

project has developed a complete SDN test network using only open source software. The goals of the

RouteFlow project are to demonstrate:

• A potential migration path from traditional layer three networks to OpenFlow-based layer three

networks

• A pure open source framework supporting different aspects of network virtualization

• IP Routing-as-a-Service

• Legacy routing equipment interoperating with simplified intra- and interdomain routing implemen-

tations

Figure 11.5 depicts the network topology the project uses to demonstrate their proposed migration

path from networks of legacy routers to OpenFlow. This is particularly important because it demonstrates

a practical method of integrating the complex world of routing protocols with the OpenFlow paradigm.
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RouteFlow network topology (Courtesy of CPqD).
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Today’s Internet is utterly dependent on this family of routing protocols, so, without a clean mechanism

to integrate the information they carry into an OpenFlow network, the use of OpenFlow will remain

constrained to isolated data center deployments. In Figure 11.5 we see the test network connected to

the Internet cloud with BGP routing information injected into the test network via that connection.

The test network itself includes one legacy layer two/layer three switch, which communicates routing

information to the OpenFlow part of the test network via OSPF. In the test network, we see a cloud of four

OpenFlow-enabled switches under the control of an OpenFlow controller. This OpenFlow controller is

connected to the RouteFlow server. The RouteFlow server, in turn, collects routing table information

from the virtual switches in the adjacent cloud. Figure 11.6 shows these same components in a system

architecture view. It is significant that all of the components presented in Figure 11.6 are derived from

open source projects, though not all are SDN-specific.

The major components described in the figure are listed below, along with the source of the software

used to build the component:

• Network (OpenFlow) controller: NOX, POX, Floodlight, Ryu

• RouteFlow server: Developed in RouteFlow Project

• Virtual topology RouteFlow client developed in RouteFlow Project

• Virtual topology routing engine: Quagga routing engine, XORP

• Virtual topology switches: OVS
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• OpenFlow-enabled hardware switches: For example, NetFPGA

• VMs in virtual topology: Linux virtual machines

The virtual routers shown in Figure 11.6 correspond to the VMs in Figure 11.5. Each virtual router

comprises an OVS instance that forwards routing updates to the routing engine in the VM. This routing

engine processes the OSPF or BGP updates in the legacy fashion and propagates the route and ARP

tables in that VM accordingly. The key to the RouteFlow solution is the RouteFlow client that runs

on the same VM instance that is in each virtual router. As shown in Figure 11.6, the RouteFlow client

gathers the routing information in its local VM routing tables and communicates this to the RouteFlow

server via the RouteFlow protocol. The RouteFlow server thus maintains global knowledge of the

individual distributed routing tables in each of the virtual routers and can use this information to map

flows to the real topology of OpenFlow-enabled switches. This information is communicated from the

RouteFlow server to the RouteFlow proxy, which is an OpenFlow controller application running on the

same machine as the OpenFlow controller. At this point, the routing information has been translated to

OpenFlow tuples, which can be programmed directly into the OpenFlow switches using the OpenFlow

protocol. The process results in the OpenFlow-enabled hardware switches forwarding packets just as

they would if they followed local routing tables populated by local instances of OSPF and BGP running

on each switch, as is the case with legacy layer three switches. RouteFlow is an example of the sort of

proactive application that we described in Section 10.2. The flows are programmed proactively as the

result of external route information. We contrast this to a hypothetical reactive version of RouteFlow,

wherein an unmatched packet would be forwarded to the controller, triggering the determination of the

correct path for that packet and the subsequent programming of a flow in the switch.

We have presented this test network showing OpenFlow-enabled hardware switches. RouteFlow

additionally supports software switches such as Mininet and OVS for use with network virtualization

applications. That is, whereas we described switches depicted in Figure 11.5 as OpenFlow-enabled

hardware switches, the RouteFlow project has also demonstrated that these switches may be a soft

switch that runs in the ToR alongside a hypervisor.

11.12 Conclusion

SDN’s roots are squarely aligned with the open source movement. Indeed, what we call Open SDN in

this book remains closely linked with the open source community. In addition to reviewing the better-

known SDN-related open software projects, we have provided insight into the many variants of open

source licenses in common use. Different open source licenses may be more or less suitable for a given

organization. We have defined three broad classes of users that have very different requirements and

goals when they use open source software, and we have explained why certain open source licenses

might be inappropriate for certain classes of users. Depending on the class of user with which our

readers associate themselves, we hope that it is now clear where these readers might find open source

applicable for their SDN project. Whatever the commercial future of open source software is within

the expanding SDN ecosystem, it is clear that the cauldron of creativity that spawned SDN itself could

never have existed without open source software and the sharing of new ideas that accompanies it.

The open source movement may be a powerful one, but as the potential financial ramifications of

SDN have become more apparent, other very strong forces have arisen as well. Some of these may be
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in concert with the open source origins of SDN; others may be in discord. In the next chapter we look

at how those other forces are shaping the future of SDN.
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Business Ramifications

The fact that the very definition of SDN is vague confounds any attempt to assess the full business impact

of SDN. If we narrow our focus to Open SDN, the business impact so far is minimal. The largest financial

transactions to date, however, have revolved around technologies that only fall under broader definitions

of SDN. This larger SDN umbrella encompasses any attempt to perform networking in a novel way

that involves separation of control and data planes, unlike classical layer two and three switching. By

casting this wider net, we include companies and technologies that are often totally proprietary and

whose solution is tightly focused on a specific network problem, such as network virtualization in the

data center. But as the saying goes, this has been where the money has gone, so this is where the greatest

business impact has been.

There seems to be a growing consensus in the networking business community that SDN is here to stay

and that its impact will be significant. This is supported by the sheer number of venture capital companies

that have invested in SDN startups over the past six years, the magnitude of those investments, as well as

the size of the acquisitions that have occurred since 2012 in this space. Unusually in the networking field,

this particular paradigm shift does not hinge on any breakthroughs in hardware technology. In general,

SDN is a software-based solution. This means that technical hurdles are more easily overcome than

having to pass some gate-density or bits-per-second threshold. Customers generally view the advent

of SDN with excitement and the hope of more capable networking equipment for lower costs. At first,

entrenched NEMs may view it with trepidation because it is a disruptive force, then usually find a way to

jump on the SDN bandwagon by incorporating some form of the technology into their product offering.

We look at the dynamics of these various trends in this chapter.

12.1 Everything as a Service

Figure 12.1 shows that the ratio of capital expenditures (CAPEX) to operational expenditures (OPEX)

on network equipment will decrease as we move through the first few years of SDN deployments.

This is because the growth of SDN coincides with a fundamental shift in the way that data centers and

other large IT consumers will pay for their network equipment and services. New licensing models,

subscription-based models, and even usage-based models are all becoming increasingly common. The

rapid expansion of new service delivery models such as Software as a Service (SaaS) and Infrastructure

as a Service (IaaS) is testimony to this shift. The old model of enterprises purchasing network boxes

from NEMs, amortizing them as a capital expense, and then repeating the cycle with forklift upgrades

every few years was a great business model for the NEMs, but it is gradually disappearing. These new

models, where virtually every aspect of the networking business is available as a service and treated as

an operational expense, will likely continue to displace the traditional network spending patterns.

Software Defined Networks. http://dx.doi.org/10.1016/B978-0-12-416675-2.00012-7

© 2014 Elsevier Inc. All rights reserved.
259

http://dx.doi.org/10.1016/B978-0-12-416675-2.00012-7


260 CHAPTER 12 Business Ramifications

Changes in Spending Behavior

During Early SDN Deployments
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FIGURE 12.1

CAPEX on network equipment migrates to OPEX.

12.2 Market Sizing

The net impact of a move to SDN technology will be influenced more than anything by the total available

market (TAM) for SDN. At this early stage, forecasts are notoriously unreliable, but some effort has

been expended to try to quantify what the total opportunity may be. Based on the studies reflected in

[22], though SDN revenues in 2012 were less than $200 million, they are likely to grow to more than

$35 billion by 2018. This is forecast to derive 60% from layer two and layer three SDN equipment sales

and 40% from services equipment (layers four through seven). This growth will be primarily driven by

a growth in network virtualization. It does not represent new growth in networking expeditures due to

SDN but rather the displacement of other network spending on SDN technology. Another study [18]

predicts the SDN market will grow sixfold between 2014 and 2018, with SDN-enabled switches and

appliances comprising the bulk of that revenue.

12.3 Classifying SDN Vendors

Network virtualization is happening, and the term SDN is being blurred with this concept, for better or

worse. The kind of company that dominates network virtualization remains an open question, though.

Certainly, there are at least three major classes of companies that are well positioned to make this

transition. First, the NEMs themselves are well positioned, since by definition they already dominate

the network equipment business. Second, since the server virtualization companies such as VMware and

Citrix already have a firm grasp on compute and storage virtualization, it is possible for them to make

a horizontal move into network virtualization. Finally, since success in this area will likely depend on

being successful at a SaaS business model, it would be wrong to discount the possibility of a software
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giant such as Microsoft dominating here. At this time, though, it appears that the battle for network

virtualization will be fought between the titans of the network equipment industry and those of server

virtualization. We take a deeper look at the impact of SDN on incumbent NEMs in Section 12.4. Now

let’s look at the server virtualization companies most likely to be impacted by SDN.

12.3.1 Server Virtualization Incumbents and SDN

Since so much of the focus on SDN has been related to network virtualization in the data center, it is

probable that incumbents that have traditionally been involved in compute and server virtualization will

be drawn to extend their offerings to include network virtualization. The most salient example, VMware,

has already surfaced many times earlier in this book. Already the world leader in server virtualization,

VMware extended its reach into network virtualization with the acquisition of Nicira. Other companies

that could follow suit include HP’s server division, NEC, and Citrix, among others. Not unusually,

HP is a wildcard here. HP is already both a major server manufacturer as well as a leading network

equipment manufacturer. Of the larger incumbent NEMs, HP seems to be embracing Open SDN more

enthusiastically than some of its competitors. Since HP’s server division is already a powerful force in

compute and storage servers, it would seem that HP was particularly well positioned to bring these two

divisions together in a comprehensive networking-compute-storage virtualization story. HP will have

to execute on this better than it has on most of its recent major initiatives, so it is impossible to predict

what the outcome will be here.

12.3.2 Value-Added Resellers

One class of vendor that must not be neglected in this discussion is the value-added reseller (VAR).

Such companies, including well-known examples such as Presidio and Compucom as well as numer-

ous smaller companies, have long played a critical role in providing the customer face for the NEM.

From a revenue perspective, this was possible because the network equipment sold had sufficient mar-

gins that the VAR could run a viable business based on its share of those margins. As illustrated in

Figure 12.1, part of the premise of SDN is that the hardware boxes become a smaller percentage of

the overall network expenditure. Also, the box sale will not involve as much customer touch as it has

traditionally, and therefore the traditional value added by the VAR is not available to be added. It thus

seems likely that in order to survive in an increasingly SDN world, these VARs will have to evolve into

a service model of business. Indeed, their value was always in the service that they provided to their

customers, but now this service will not be at the box level but at the network or service level. This prob-

lem will be exacerbated as the NEMs such as Cisco, due to the thinner margins, increasingly sell their

boxes directly to customers. SingleDigits and SpotOnNetworks are classic examples of companies that

will need to shift with this change in business model. With SDN, such VARs will have the opportunity

to innovate in specific markets of interest to their customer base, not merely sell the features that are

provided to them by the NEMs.

The companies most likely to be heavily impacted by a major transition to SDN are the incumbent

NEMs.
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12.4 Impact on Incumbent NEMs

Incumbent NEMs are extremely astute marketing organizations. When they intuit that a tectonic shift

in network purchasing patterns is about to occur, they generally will find a way to redefine themselves

or the problem set so that their current solutions are in lockstep with the paradigm shift. In some cases,

this will be just an instance of slide-ware; in many other cases, there will be genuine shifts within the

NEMs to align themselves in some way with the new paradigm.

This transition will not come without pain. There are already signs within some NEMs of belt-

tightening, attributed to market shifts related to SDN. For example, in early 2013, Cisco laid off 500

employees, partly in an effort to realign with the advent of SDN [1]. The growth of SDN, along with

network virtualization, will reduce the demand for legacy purpose-built routers and switches that have

been the mainstay of the large NEMs’ revenues for many years.

12.4.1 Protect Market Share

Large, entrenched NEMs, such as Cisco and Juniper, have to walk a fine line between protecting their

market share and missing out on a new wave of innovation. For example, the high valuation given Nicira

by VMware, shown in Table 12.2 later in this chapter, can clearly put Cisco, Juniper, and their ilk on

the defensive. The NEMs are extremely competent in both technical and marketing terms, and they

have the financial resources to make sure they have a competitive answer to the network virtualization

offering from VMware.

When an incumbent has a large war chest of cash, one defensive answer to a new, competing

technology is to simply purchase one of the startups offering it and incorporate that product into its

solutions. However, if this is not done carefully, this can actually erode market share. Although the

startup has the luxury of being able to tout disruptive technology as a boon to consumers, the incumbent

must somehow portray that technology as complementary to its existing offerings. Failing to respond

in this way, the company runs the risk of reducing sales of the traditional product line while the nascent

technology is still gaining a foothold.

12.4.2 Innovate a Little

Although an established NEM can readily incorporate adjacent technologies into its product line and

even gain market share as a result, doing so with a directly confrontational, paradigm-shifting technology

such as SDN is a much more delicate proposition. To avoid getting left behind, the incumbent will need

to ostensibly adopt the new technology, especially in name. An incumbent can provide a solution that

is competitive to the paradigm shift by adhering to the following model:

• Purport to solve the same problem (e.g., network virtualization)

• Remain based on the incumbent’s then-current technology

• Innovate by layering some aspects of the new technology on top of the existing technology

• Employ widespread use of the buzzwords of the new technology in all marketing materials (e.g.,

SDN washing).
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The SDN-via-APIs approach, which we discussed in detail in Section 6.2, epitomizes the layering of

the new approach on top of legacy technology. We recall that the underlying switching hardware of the

leading NEMs has been optimized by custom hardware designs over many years. These hardware plat-

forms may have inherent performance advantages over low-cost, white-box switches. If the incumbent

provides a veneer of SDN over its already superior switching hardware, this may present formidable

competition to a new SDN paradigm of a separate and sophisticated control plane controlling low-cost

commodity switches. Indeed, it is possible that from a pure performance metric such as packets switched

per second, the pure SDN model may suffer compared to high-end legacy switches. This veneer of SDN

need not be just a stop-gap measure. As this situation evolves over time it can have the very positive

effect of providing technologies that help their customers evolve to SDN. This can provide many of the

benefits of SDN, albeit on proprietary technology. Most customers simply will not tolerate a forklift

upgrade being imposed on them.

Following this model is a virtual necessity for large, established NEMs. This model provides them

with margin preservation during a time of possibly great transition. If the new paradigm truly does

become dominant, they will be able to ride the coattails of its success while slowing down the transition

such that they are able to maintain robust margins without interruption. As we mentioned, they have the

technical and marketing know-how to manage favorably this kind of transition. They also have something

else, which may be even more important: the bulk of the enterprise customers. Such customers do not

shift their mission-critical compute, storage, or networking vendors willy-nilly unless there are drastic

technical shortcomings in their product offerings. By managing their customers’ expectations carefully

and innovating just enough, NEMs’ advantage of owning the customer may be unbeatable.

12.5 Impact on Enterprise Consumers

Inevitably, some of this book may read like a sort of SDN evangelist’s bible. The vast potential benefits

of SDN have been inventoried and explained. It is easy to underestimate the risks that enterprises will

run by severing their historic umbilical cords with the NEMs. These umbilical cords have been unwieldy

and expensive, to be sure, but the security that comes with this safety net has undoubtedly provided

countless IT managers with many a good night’s sleep. We, the authors, are in fact SDN evangelists

and believe that, at least in certain parts of networking infrastructure, SDN’s power to innovate and to

mitigate costs will indeed be a historically positive force. Nonetheless, it would be naïve to trivialize

the birthing pains of a major paradigm shift in such a highly visible area. In this section we present

an overview of both the positive business ramifications of this new technology paradigm (e.g., reduced

costs, faster innovation) and the downside of diluted responsibility when the network goes down.

The most prevalent solution described in the SDN context is network virtualization, which we have

discussed at length throughout this book. Although many of the solutions for network virtualization

are not based on Open SDN, it is likely that the bulk of the enterprise budgets targeted for SDN

technology will be spent on network virtualization. One challenge is that though these same customers

understand compute and storage virtualization, for many network virtualization remains a snappy catch-

phrase. Customers need considerable sophistication to understand how network virtualization will work

for them.
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12.5.1 Reduced Equipment Costs

In the situation of an existing data center, the hoped-for reduction in equipment costs by migrating to

SDN may prove elusive or at least delayed. A solution such as VMware’s NSX touts the fact that its

separate control plane can achieve network virtualization without switching out the legacy networking

equipment. Though this is desirable in the sense that it produces less equipment churn in the data

center racks, it does nothing to lower the money being spent on the switching equipment itself. Under

this scenario, the customer continues to pay for highly capable and costly layer two and layer three

switches but only uses them as dumb switches. It is hard to see a fast path to reduced equipment costs

in this scenario. Over the longer term and as the legacy switching equipment becomes fully amortized,

the opportunity will arise to replace that legacy underlay network with lower-cost OpenFlow-enabled

switches.

In a greenfield environment, the Open SDN model prescribes intelligent software control of low-cost,

OpenFlow-enabled switches. This scenario is conceivable, but that division of the control and data plane

brings with it a concomitant dilution of responsibilities. In the past, when your data center network went

down, the IT department could usually point their finger at their primary NEM, whether Cisco, Juniper,

HP, or another. In a perfect, pure SDN world, the white-box switches are just hardware devices that

perform flawlessly according to the programming received from their SDN controller. No one with

operational experience with a big network would believe that things will actually play out according

to that script. The customer will still want one throat to choke, as the colloquial saying goes. Getting

one company to offer up that single throat to choke may be difficult when the network is instantiated

on virtual and physical switches as well as a controller, all running on hardware purchased from three

different vendors.

12.5.2 Avoiding Chaos

Who are you going to call … (when the network goes down)? When it boils down to a CIO or IT

manager making the decision to migrate any major part of the network from the legacy gear to SDN,

the hype about greater ease and granularity of control, higher equipment utilization rate, and the other

pro-SDN arguments will run into a brick wall if that decision maker fears that network reliability may

be jeopardized by making the transition. For that reason, it is a virtual certainty that any migration to

SDN in typical enterprise customers will be a slow and cautious one. NEMs may incorporate fully

integrated SDN-based solutions into their product portfolios, much like what has occurred with Linux

in the world of servers. This will still provide the proverbial throat to choke while using SDN to meet

specific customer needs.

We note that certain immense enterprises such as Google and Yahoo! are outliers here in that they

may have as much networking expertise as the large NEMs themselves. This explains why these orga-

nizations, along with selected research universities, have been at the forefront of OpenFlow innovation.

As we explained in Section 9.9, this is evidenced by the composition of the board of the ONF. There

are no NEMs on that board, but Yahoo! and Google are represented. For the more typical enterprise,

however, this transition to SDN will be viewed with much more caution. Experiments will be done

carefully with non-mission-critical parts of the network.
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In general, we should assume that large-scale transition to SDN will take much longer than some

pundits have claimed. This will provide more time for incumbent NEMs to adapt in order to avoid a

real shake-up in the networking industry.

12.6 Turmoil in the Networking Industry

12.6.1 Fewer and Fewer Large NEMs

One of the advantages of an ecosystem in which a small number of NEMs make huge profits off a

market they dominate was that the huge profits did in fact drive continued innovation. Each NEM tried

to use the next generation of features to garner market share from its competitors. Generally, this next

generation of features addressed real problems that NEMs’ customers faced, and innovation proceeded

apace. A precept of Open SDN is that since users, via the open source community, will be able to

directly drive this innovation, it will be both more pertinent and less expensive. However, this thesis

has yet to be proven in practice. That is, will the creativity of the open source community be able to

match the self-serving creativity of the NEMs themselves? The NEMs’ ability to generate huge profits

through innovation has resulted in much of the progress in data networking that our society has enjoyed

over the past two decades, so the answer to this question is not an obvious one. The NEMs will strive to

perform a balancing act between innovating sufficiently to retain their market control and their desire

to maintain the status quo.

12.6.2 Migration to Cloud Computing

If we take as a given that the need for network virtualization in large data centers is the prime driver

behind SDN, we must acknowledge that the growth of cloud computing is one of the major factors that

has forced those data centers to grow ever larger and more complex. From the end user’s perspective,

cloud computing has grown more relevant due to transitions in a number of related elements:

• Usage-based payment models

• Digital media and service providers

• Digitial media access and sharing providers

• Online marketplaces

• Mobile phone network providers

• Web hosting

More and more enterprises avail themselves of the cloud computing capabilities of Google and

Amazon for a variety of applications. Apple’s iCloud takes local management of your smartphone,

tablets, and laptops and handles it in the cloud. Sharing services such as DropBox and GoogleDocs

offer media sharing via the cloud. Google offers a plethora of business applications via the cloud.

Amazon Data Services offers web hosting on an unprecedented scale. As more users depend on the

cloud for an ever-increasing percentage of their applications needs, both the quantity and reliability of

data centers are under constant pressure to increase. This force creates the pressure on the data center

providers and the vendors that supply equipment to them to innovate and keep up with this relentless
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growth. The nature of the networks in these data centers is virgin soil for a new networking paradigm

in network virtualization if it can help manage this growth in a controlled fashion.

IaaS provides networking capacity via the OPEX payment model. The growing popularity of this

model in itself contributes to the turmoil in the networking industry, where networking capacity has

traditionally been obtained by purchasing equipment. Many of the SDN startups discussed in this chapter

hope to displace incumbent technology by offering their solutions via some kind of subscription model.

12.6.3 Channel Dynamics

Among the consequences of the migration to cloud computing are radical changes to the way that cus-

tomers purchase networking capabilities and to the companies that traditionally had the direct customer

touch in those sales. Networking operating systems and applications will be bundled with a mix of

private and public cloud offerings. A new set of vendors skilled at cloud-based orchestration solutions

will customize, deploy, and manage compute, storage, and networking virtualization functions. Based

on the enterprise’s migration to cloud services, network solution providers will migrate from selling

networking boxes to offering networking services. The VARs that now focus on reselling and supporting

network hardware design and implementations will likely consolidate into larger and more comprehen-

sive IT services companies. IT services companies will hire, train, and acquire skilled resources that

understand how to design, implement, and manage Web operations functions (WebOps) on behalf of

enterprise customers.

12.7 Venture Capital

It is no coincidence that a significant amount of venture capital (VC) investments have been placed in

SDN startups in the past four years. It is the nature of venture capital firms to seek out groups of bright

and ambitious entrepreneurs who have aspirations in a space that is likely to see rapid growth within a

well-bounded time horizon. Depending on the field, the distance to that time horizon can vary greatly.

In the field of medical startups, this horizon may be more than 10 years after the initial investments.

In data networking, however, the time horizons tend to be shorter, between three and five years. SDN

technology is the perfect contemporary fit for the VC firm with a history of investing in networking

startups. The market, at least in the data center, is clamoring for solutions that help them break what

is perceived as a stranglehold by the large incumbent NEMs. The amount of money available to be

spent on upgrades of data center networks in the next few years is enormous. SDN’s time horizon and

the corresponding TAM is like a perfect storm for VCs. SDN may be the largest transformation in the

networking world in the past three decades [8]. This is not merely a U.S.-based phenomenon, either.

Some other countries, notably Japan and China, see SDN as a means to thwart the multidecade-long

hegemony that U.S. NEMs have had on switching innovation. In these countries, both adoption by

customers as well as offerings by local NEMs are likely to heavily influence the uptake of SDN in the

coming years. In Table 12.1 we list VC firms that have been the earliest and most prominent investors

in SDN startups.

These investors have furnished the nest from which many companies have been hatched. Some of

these companies are still in startup mode; others have been acquired. As of this writing, none of the

investments listed in Table 12.1 have resulted in initial public offerings (IPOs). In the next two sections
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Table 12.1 Major VCs Investing in SDN Startups as of 2013

Venture Capital Company Invested In

Khosla Ventures Big Switch

Redpoint Ventures Big Switch

Goldman Sachs Big Switch

Intel Capital Big Switch

Benhamou Global Ventures ConteXtream

Gemini Israel Funds ConteXtream

Norwest Venture Partners ConteXtream, Pertino

Sofinnova Ventures ConteXtream

Comcast Interactive Capital ConteXtream

Verizon Investments ConteXtream

Lightspeed Venture Partners Embrane, Pertino, Plexxi

NEA Embrane

North Bridge Venture Partners Embrane, Plexxi

Innovation Network Corporation of Japan Midokura

NTT Group’s DOCOMO Innovations Midokura

Innovative Ventures Fund Investment (NEC) Midokura

Jafco Ventures Pertino

Hummer Winblad Plumgrid

U.S. Venture Partners Plumgrid

Vantage Point Capital Pica8

Battery Ventures Cumulus

Matrix Partners Plexxi

we take a look at what has happened with both the major acquistions that have resulted from these

investments and those companies still striving to determine their future.

12.8 Major SDN Acquisitions

One of the most visible signs of major transformations in a given market is a sudden spate of large

acquisitions of startups, all purporting to offer the same new technology. Certainly 2012 was such a

year for SDN startups. The size of the acquisitions and the concentration of so many in such a relatively

short calendar period was an extraordinary indicator of the momentum that SDN had gathered by 2012.

Table 12.2 provides a listing of the largest SDN-related acquisitions that took place in 2012–2013. It is

rare to see so many related acquisitions of such large dollar value in so short a period of time. If SDN did

not already serve as the honey to attract investors, it surely did by 2012. Most of the companies listed in

Table 12.2 were already either major players in the SDN landscape at the time of their acquisition or are

now part of large companies that plan to become leaders in SDN as a result of their acquisition. In this
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Table 12.2 Major SDN Acquisitions in 2012–2013

Company Founded Acquired By Year Price Investors

Nicira 2007 VMware 2012 $1.26B Andreessen Horowitz

Lightspeed Ventures

Meraki 2006 Cisco 2012 $1.2B Google

Felicis Ventures

Sequoia Capital

DAG Ventures

Northgate Capital

Contrail 2012 Juniper 2012 $176M Khosla Ventures

Juniper

Cariden 2001 Cisco 2012 $141M Not Available

Vyatta 2006 Brocade 2012 Undisclosed JPMorgan

Arrowpath Venture Partners

Citrix Systems

HighBAR Partners

Insieme 2012 Cisco 2013 $863M Cisco

section, we attempt to explain the perceived synergies and market dynamics that led to the acquisition

of each.

12.8.1 VMware

Nicira’s technology and the success the company has enjoyed have been a recurring theme in this

book. VMware’s acquisition of Nicira stands out as the largest dollar-value acquisition purporting to be

primarily about SDN. VMware was already a dominant force in the business of compute and storage

software in large data centers. Prior to the acquisition, VMware was largely leaving the networking

part of the data center to the NEM incumbents, most notably Cisco [10], with which VMware had

partnered on certain data center technologies such as VXLAN. Since SDN and the growing acceptance

of the need for network virtualization were demonstrating that a shift was forthcoming in data center

networking, it made perfect sense for VMware to use this moment to make a major foray into the

networking part of the data center. Nicira provided the perfect opportunity for that. The explosive

growth of cloud computing has created challenges and opportunities for VMware as a leader in the

compute and storage virtualization space [2]. VMware needed a strategy to deal with cloud networking

alternatives, such as OpenStack and Amazon Web Services, and Nicira provides that. This competitive

landscape is fraught with fuzzy boundaries, though. Though VMware and Cisco have worked closely

together in the past and Nicira and Cisco collaborated on OpenStack, it is hard not to imagine the battle

for control of network virtualization in the data center pitting VMware and Cisco against one another

in the future.
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12.8.2 Juniper

Juniper was an early investor in Contrail [5]. This deal falls into the spin-in category of acquisition.

Juniper recognized that it needed to offer solutions to address the unique East-West traffic patterns

common in the data center but atypical for its traditional WAN networking customers. By acquiring

Contrail, Juniper obtained network virtualization software as well as network-aware applications that

help address these data-center-specific problems. Juniper additionally gained the Contrail management

team, which consisted of senior managers from Google and Aruba as well as others with outstanding

pedigrees that are targeted to help Juniper bring SDN solutions to enterprise customers. The Contrail

solution has an orchestration component that supports existing protocols, notably BGP and XMPP. It

also uses the OpenStack standard for network virtualization. Thus, support for OpenStack is a common

thread among Cisco, VMware, and now Juniper. It is difficult to predict at this time whether these

companies will use this standard as a platform for collaboration and interoperability or look elsewhere

to distinguish their network virtualization offerings from one another.

12.8.3 Brocade

Brocade needed a virtual layer three switch to connect virtual network domains for cloud service

providers [4]. Brocade believes it has found the solution to this missing link in its acquisition of Vyatta.

Vyatta delivers a virtualized network infrastructure via its on-demand network operating system. The

Vyatta operating system is able to connect separate groupings of storage and compute resources. Vyatta’s

solution works both with traditional network virtualization techniques such as VLANs as well as newer

SDN-based methods [4].

12.8.4 Cisco

Not surprisingly, in total dollar terms, the biggest SDN-acquirer in 2012 was Cisco. As shown in

Table 12.2, Cisco acquired both Cariden and Meraki in 2012. Both of these acquisitions are considered

in the networking literature [5,7] to be SDN-related acquisitions, though the Meraki case may be

stretching the definition of SDN somewhat. Cariden was founded in 2001, well before the term SDN

came into use. Cariden was respected as the developer of IP/MPLS planning and traffic engineering

software. It is easy to envision how Cariden’s pre-SDN MPLS traffic engineering was able to grow

into its work on SDN [3], since easier mapping of flows to MPLS LSPs and VLANs is a major step in

the transition to SDN. Cisco hopes to use Cariden’s software for managing networks to help achieve

the industry-wide goal of being able to erect virtual networks with the same ease as instantiating a

new virtual machine. As for Meraki, the value of the acquisition indicates the importance that Cisco

places on this new member of the Cisco family. What distinguishes Meraki from Cisco’s pre-acquisition

technologies is that Meraki offers cloud-based control of the wireless APs and wired switches that it

controls. This web-centric approach to device management fills a gap in Cisco’s portfolio [7], providing

it with a midmarket product in a space vulnerable to a competitive SDN-like offering. We believe that

Meraki is really an outlier in terms of the classical definition of an SDN company, but the fact that its

device control is separated from the data plane on the devices and implemented in the cloud supports

the company’s inclusion here as a major SDN acquisition.

Insieme was founded by Cisco in 2012 with plans to build application-centric infrastructure [25].

Insieme is a Cisco spin-in that received over $100 million in seed funding from Cisco. SDN is a
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game-changing technology that can be disconcerting to the largest incumbent in the field, Cisco. Though

Cisco has brought to market a family of SDN-related products revolving around its commercial XNC

controller, those actions had not convinced the market that Cisco had truly embraced SDN. The Insieme

acquisition changed this situation. The high valuation given to the Insieme acquisition is affirmation of

the importance Cisco is now giving to SDN. Understandably, the Insieme product offering attempts to

pull potential SDN customers in a purely Cisco direction. Though the new products may be configured

to interoperate with other vendors’ SDN products, they may also be configured in a Cisco-proprietary

mode that purportedly works better. Significantly, the Insieme product line does represent a break with

Cisco’s legacy products. The new router and switch line from Insieme will not smoothly interoperate

with legacy Cisco routers [6].

12.9 SDN Startups

The frenzy of customer interest in SDN, combined with investors’ willingness to provide capital for

new business ventures, results in the unsurprisingly long yet inevitably incomplete list of SDN startups

as of 2013, which we present in Table 12.3. SDN entrepreneurs are arriving so fast on the scene that

we cannot claim that this is an exhaustive list. Rather than attempt to cite every SDN startup, we hope

to describe a succinct set of different markets that might be created or disrupted by SDN startups. For

each of these, we provide one or more examples of a new business venture approaching that market.

The general categories we define are:

• OpenFlow stalwarts

• Network virtualization for the data center

• Network virtualization for the WAN

• Network functions virtualization

• Optical switching

• Mobility and SDN at the network edge

In deference to SDN purists, we begin with companies squarely focused on products compliant with

the OpenFlow standard. Although this may represent to SDN purists the only true SDN, it has not

had the financial impact that non-OpenFlow-focused network virtualization solutions have had. Indeed,

network virtualization represents the bulk of investments and acquisition dollars expended thus far in

SDN. For this reason, we treat network virtualization in the two separate subcategories listed above. We

conclude with some markets peripheral to the current foci in SDN that may have considerable future

potential.

12.9.1 OpenFlow Stalwarts

One of the tenets of SDN is that by moving the intelligence out of the switching hardware into a general-

purpose computer, the switching hardware will become commoditized and thus low cost. Part of the

tension created by the emergence of SDN is that such a situation is not favorable to the incumbent

NEMs, accustomed to high margins on their switches and routers. OpenFlow zealots generally respond

that lower-cost original device manufacturers (ODMs) will fill this space with inexpensive, OpenFlow-

compatible white-box switches. This, of course, opens the door for startups that view providing the

white-box switches as a “virgin soil” opportunity.
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Table 12.3 Startup Landscape in 2013

Company Founded Investors Product Focus Differentiator

Big Switch 2010 Khosla Ventures OpenFlow-based software
Redpoint Ventures
Intel Capital
Goldman Sachs

ConteXtream 2007 Benhamou Global
Ventures

Network virtualization in the
data center

Grid computing

Gemini Israel Funds
Norwest Venture Prt.
Sofinnova Ventures
Verizon Investments
Comcast Interactive
Cap.

Cumulus 2010 Battery Ventures White-box switch software
Embrane 2009 Lightspeed Venture Prt.

NEA
Network virtualization in the
data center

Network appliances
via SDN

North Bridge Venture
Prt.

Midokura 2009 Innovation Network
Corp. of Japan

Network virtualization for
cloud computing

IaaS

NTT Investment Prt.
Nuage 2012 Alcatel-Lucent Network virtualization
Pertino 2011 Norwest Venture Prt. Network virtualization for the

Lightspeed Venture Prt. WAN
Jafco Ventures

Pica8 2009 Vantage Point Capital White-box switch software OpenFlow 1.2
OVS

Plexxi 2010 North Bridge Venture
Prt.

Ethernet-optical switch
orchestration controller

SDN control of
optical switches

Matrix Prt.
Lightspeed Venture Prt.

Plumgrid 2011 Hummer Winblad Network virtualization No OpenFlow
U.S. Venture Prt.

Pluribus 2010 Menlo Ventures Physical switch Integrated controller
New Enterprise Assoc.
Mohr Davidow Ventures
China Broadband Cap.

Tallac 2012 – Cloud-based SDN WiFi
providing multitenant
services

Open API to enable
NFV services for
vertical market
applications

Vello 2009 – Network operating OpenFlow support
system (controller) optical
switches, white-box Ethernet
switches
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As we described in Section 9.5, this is the basis of the strategy of Chinese-based startup Pica8 [9].

Pica8 provides a network operating system and reference architectures to help its customers build SDN

networks from low-cost switches, the Pica8 operating system, and other vendors’ OpenFlow-compatible

products. Through its white-box ODM partners Accton and Quanta, Pica8 offers four Gigabit Ethernet

switch platforms based on OVS that currently support OpenFlow 1.2. One wonders, though, if there is

a way to turn this into a high-margin business.

Big Switch also now has a business strategy centered on working with white-box switch ODMs.

Though Big Switch continues to put OpenFlow support at the cornerstone of its strategy, the company

performed what it termed a big pivot in 2013 [27]. We described some of Big Switch’s history, as

one of the major players in the ecosystem, in Section 9.4. The company continues to offer the same

set of commercial application, controller, and switch software products that it has all along. The pivot

relates to selling them as bundles that white-box switches can download and self-configure. Big Switch’s

original product strategy included getting a number of switch vendors to become OpenFlow-compatible

by facilitating this migration with the free switch code, thus creating a southbound ecosystem of switch

vendors compatible with its controller. Big Switch also encouraged application partners to develop

applications to the northbound side of its controller. Such applications could be in the areas of firewalls,

access control, monitoring, network virtualization, or any of a long list of other possibilities. The amount

of investments Big Switch received [10,11] indicates that it was very successful at convincing others

that its business model is viable.

After a rocky experience in trying to get production networks configured with different vendors’

switches to interoperate with its controller and applications, Big Switch concluded that it needed to

make the rollout of the solution much easier than what it was experiencing with all but its most sophis-

ticated customers. Big Switch concluded that by partnering instead with white-box ODMs rather than

established switch vendors like Juniper, Arista, and Brocade, it could better control the total user expe-

rience of the solution. This new approach, or pivot, has Big Switch’s customers purchasing white-box

switches from Big Switch’s ODM partners. These white-box switches will be delivered with a boot

loader that can discover the controller and download Big Switch’s Switch Light OpenFlow switch code

[26]. The notion is to sell the customer an entire bundle of switch, controller, and application code that

is largely autoconfigured and that provides a particular solution to the customer. There were two initial

solution bundles offered at the time of the pivot: a network monitoring solution and a cloud fabric for

network virtualization. Significantly, the cloud fabric solution is not based on an overlay strategy but

instead on replacing all the physical switches with white-box switches running Big Switch’s software.

Big Switch is betting that by replacing the physical network with the low-cost white-box switches and

by having Big Switch stand behind the entire physical and virtual network as the sole provider, the

company will have created a compelling alternative to the many overlay alternatives being offered for

network virtualization.

12.9.2 Non-OpenFlow White-Box Ventures

Cumulus Networks takes the white-box boot loader concept and generalizes it one step further than Big

Switch. As of this writing, Cumulus offers the product closest to the concept of opening up the device,

described in Section 6.4. As we pointed out in our discussion of white-box switches in Section 9.5, any

switching code, OpenFlow or non-OpenFlow, controller-based or not, can be loaded into the Cumulus
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switches if written to be compatible with the Cumulus bootloader. Cumulus is a switch-centric company

and does not offer the broad portfolio of controller and application software, as does Big Switch.

12.9.3 An OpenFlow ASIC?

Another OpenFlow hardware opportunity is to create a switching ASIC that is specifically designed to

support OpenFlow 1.3 and beyond. Implementers have found it challenging to fully implement some

parts of the advanced OpenFlow specifications in existing ASICs. One such challenge is supporting

multiple, large flow tables. Since there is growing industry demand for the feature sets offered by

OpenFlow 1.3, this creates an opportunity for semiconductor manufacturers to design an OpenFlow

chip from scratch. Some of the incumbent switching chip manufacturers may be slow to displace their

own advanced chips, but this is an inviting opportunity for a startup chip manufacturer. In Section 9.6

we described work being done at Mellanox that may be leading to such an advanced OpenFlow-capable

ASIC. Intel has also announced switching silicon [28] that is explicitly designed to handle the multiple

OpenFlow flow tables.

12.9.4 Data Center Network Virtualization

The team at ConteXtream has used its grid-computing heritage as the basis for its distributed network

virtualization solution [12]. This is being touted as an SDN product, since the routing of sessions in the

data center is controlled by a distributed solution with global knowledge of the network. This solution

is very different from the classical OpenFlow approach of centralizing the network routing decisions

to a single controller with a small number of backup controllers. In the ConteXtream approach, the

control is pushed down to the rack level. If a control element fails, only a single rack fails, not the entire

network. This per-rack control element is added to the TOR server. Admittedly, this architecture deviates

significantly from the more classical SDN approaches of Big Switch or Nicira. In fact, a distributed

algorithm with global knowledge of the network sounds similar to the definition of OSPF or IS-IS. The

ConteXtream solution does differ significantly from classical routing in that (1) it can perform switching

at the session level, (2) network devices such as firewalls and load balancers can be virtualized into their

software, and (3) the network administrators have explicit control over the path of each session in the

network.

As shown in Table 12.3, PLUMgrid has also received a sizable investment to develop network

virtualization solutions. PLUMgrid offers an SDN-via-overlays solution that is designed for data centers

and integrates with VMware ESX as well as with Kernel-based Virtual Machine (KVM). PLUMgrid

does not use OpenFlow for directing traffic through its VXLAN tunnels but instead uses a proprietary

mechanism. It also uses a proprietary virtual switch implementation rather than using OVS or Indigo.

PLUMgrid indicates that OpenFlow might be supported in the future [15].

Midokura [16] is another well-funded startup attacking the network virtualization market. Midokura

currently integrates with OpenStack and in the future plans to include support for other cloud-software

platforms such as CloudStack. Like other network virtualization companies, Midokura’s product,

MidoNet, creates virtual switches, virtual load balancers, and virtual firewalls. MidoNet is an SDN-

via-overlays product that runs on existing hardware in the data center. MidoNet claims to allow data

center operators to construct public or private cloud environments through the creation of thousands of

virtual networks from a single physical network. Since managing this plethora of virtual networks using
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traditional configuration tools is a huge burden, MidoNet provides a unified network management capa-

bility that permits simple network and service configurations of this complex environment. As shown in

Table 12.3, Midokura’s lead investors are large Japanese institutions, and some of the senior managers

are battle-hardened data communications veterans. Midokura is further evidence of the enthusiasm in

Japan for SDN, as is reflected by the incumbents NTT and NEC’s interest in this technology [20,21].

12.9.5 WAN Network Virtualization

Pertino’s offering is very different from the aforementioned data center-focused companies. Pertino

believes that there is a large market for SDN via cloud. Pertino offers a cloud service that provides WAN

or LAN connectivity to organizations that want to dynamically create and tear down secure private

networks for their organizations [17]. The term SDN via cloud is another stretch from the original

meaning of the term SDN, but, indeed, this concept truly is a Software Defined Network in the sense

that software configuration changes in Pertino’s cloud spin up and spin down its customers’ private

networks through simple configuration changes. The only technical requirement for the individual

users of these virtual networks is that they have Internet connectivity. A handful of branch offices from

a small enterprise can easily obtain a secure, private network via the Pertino service as long as each of

those branch offices has Internet connectivity. Such a private network can be brought online or offline

very easily under the Pertino paradigm. Pertino also attempts to make this service easy to use from a

business perspective. This is another IaaS proposition. The company’s business model is a usage-based

service charge, where the service is free for up to three users and after that there is a fixed monthly fee

per user.

12.9.6 Network Functions Virtualization

Embrane has a distributed software platform for NFV that runs on commodity server hardware. The

company’s focus is to virtualize load balancers, firewalls, VPNs, and WAN optimization through the use

of distributed virtual appliances (DVAs) [14]. Considering that a typical physical server in a data center

hosts multiple customers with a pair of firewalls for each customer, the number of physical devices that

can be removed by deploying the Embrane product, called Heleos, is significant [13]. The company

emphasizes that Heleos functions at network layers four through seven, unlike the OpenFlow focus on

layers two and three. Although Heleos does work with OpenFlow, it is not required. Indeed, Heleos

integrates virtualization technology from any hypervisor vendor. One of Embrane’s goals is to allow

Heleos to coexist with existing network appliances to permit a gradual migration to the virtualized

appliance model. In keeping with the growth of IaaS, in addition to the standard annual subscription

fee, Embrane supports a usage-based model that charges an hourly rate for a certain amount of available

bandwidth.

Pluribus’s offering is based on its server-switch hardware platform along with its NetVisor network

operating system. The company’s target market is network virtualization of public and private clouds.

The Pluribus product, like that of others mentioned above, provides services such as load balancing and

firewalls that formerly required independent devices in the data center [15]. The Pluribus SDN controller

is integrated with its server switches such that the company’s solution is completely distributed across

the Pluribus hardware. The Pluribus solution also provides interoperability with OpenFlow controllers

and switches by interfacing with the integrated Pluribus SDN controller. It also is compatible with the
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VMware NSX controller. The combination of the NetVisor network operating system and the company’s

proprietary server switches attempts to provide a complete fabric for handling the complex cloud

environment that requires coordination among applications, hypervisors, and the compute virtualization

layer [17].

12.9.7 Optical Switching

Optical switches have been around for more than a decade now. They offer extremely high-bandwidth

circuit-switching services but have been comparatively unwieldy to reconfigure for dynamic networking

environments. The SDN concept of moving the layer two and layer three control plane to a separate

controller translates readily to the layer one control plane appropriate for optical switches. A couple

of SDN startups, Plexxi and Vello, are attempting to leverage this natural SDN-optical synergy into

successful business ventures. Plexxi has a dual-mode switch that is both an Ethernet and an optical

switch. The optical ports interconnect the Plexxi switches. The fact that each Plexxi switch is actually an

optical switch allows extremely high-bandwidth, low-latency direct connections between many Plexxi

switches in a data center. The Plexxi controller platform provides SDN-based network orchestration.

This controller has been used to configure and control pure optical switches from other manufacturers

such as Calient [19]. In this combined offering, the Plexxi switch’s Ethernet ports are used for short,

bursty flows, and the Plexxi optical multiplexing layer is used for intermediate-sized flows. High-volume,

persistent flows (elephant flows) are shunted to the dedicated Calient optical switch.

Vello also offers Ethernet and optical switches. The Vello products are OpenFlow-enabled themselves

and can interface to other vendors’ OpenFlow-compatible switches [15]. Though Vello, like most of the

other startups discussed above, addresses network virtualization, it focuses on use cases and applications

related to storage devices.

12.9.8 Mobility and SDN at the Network Edge

Current SDN efforts have focused primarily on the data center and carrier WAN, but Tallac Networks

is expanding that focus with an emphasis on the wireless access network. Tallac technology offers a

new approach called software defined mobility (SDM), which enables wireless operators to connect

mobile users to the network services they demand. One powerful aspect of OpenFlow is the ability

to virtualize a network so it can be easily shared by a diverse set of network services. In the context

of WiFi-as-a-Service (WaaS), this means creating a multitenant WiFi environment. The fine-grained

control of the OpenFlow protocol allows network connections and secure tunnels to be provisioned

dynamically. Through a set of technologies combining OpenFlow, embedded application containers for

dynamic execution environments and standards-based Hotspot 2.0 (Passpoint), Tallac delivers an SDN-

enabled, multitenant, service-oriented WiFi network as the next-generation hotspot for any wireless

LAN operator. Combined with WaaS business frameworks, these new standards help wireless operators

embrace the never-before-seen diversity of mobile users, and they help mobile users connect effortlessly

to never-before-seen wireless networks. The current set of standards, however, assumes that wireless

operators will forge and maintain complex agreements with multiple service providers in order to

allow the providers’ customers to access their services over WiFi. The unique combination of Tallac

technology with Hotspot 2.0 will simplify this process and allow on-demand service provisioning.
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12.10 Career Disruptions

Most of this chapter has focused on the potential disruption SDN is likely to cause to the incumbent

NEMs as well as the opportunities it affords startup enterprises. We need to remember that the driving

force inspiring this new technology was to simplify the tasks of the network administrators in the data

center. Most of the marketing materials for the startups discussed in this chapter declare that the current

network administration environment in the ever-more-complex data center is spiraling out of control.

One consequence of this complexity has been a seemingly endless demand for highly skilled network

administrators capable of the black art of data center network management. If any of the SDN hype

presented in this chapter proves to be real, one certain outcome is that there will be less need for highly

skilled, technology-focused network engineers to manually reconfigure network devices than there

would be without the advent of SDN [13]. For example, consider that one of the highly sought-after

professional certifications today is that of the Cisco Certified Internetwork Expert (CCIE). This sort

of highly targeted, deep networking knowledge will become less and less necessary as SDN gains a

larger foothold in the data center [14]. In [23], the author cites the VLAN provisioning technician as an

example of a particularly vulnerable career as SDN proliferates.

However, there will be a growing need in the data center for the kind of professional capable of

the sort of agile network service planning depicted in Figure 12.2. Much like the Agile Development

Methodology that has turned the software development industry on its head in recent years, the network

professionals in an SDN world will be required to rapidly move through the never-ending cycles of

plan, build, release, and run shown in Figure 12.2 in order to keep pace with customers’ demands

for IaaS. DevOps is the term now commonly used for this more programming-aware IT workforce

that will displace the traditional IT network engineer. This new professional will possess a stronger
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development operations background than the traditional CLI-oriented network administrator [24]. Since

SDN increases how much innovation IT professionals will be able to apply to the network, professionals

working in this area today need to embrace that change and ensure that their skills evolve accordingly.

12.11 Conclusion

There is a historical pattern with new Internet technologies whereby the hype surrounding the possibil-

ities and financial opportunities reaches a frenzy that is out of proportion to its actual impact. We have

seen this happen numerous times over the past two decades. FDDI and WIMAX are but two examples of

this trend. Though it may be likely that the current hype surrounding SDN is probably near its peak [4],

it does seem inevitable that some form of SDN will take root. In particular, de-embedding the control

plane from the physical switch for data center products seems to be an unstoppable trend. The technical

underpinnings of this idea are very sound, and the amount of investment that has poured into this area

in the past few years is ample evidence of the confidence in this technology. The big question from a

business ramification standpoint is whether or not there will be a sea change in the relationship between

vendors and customers, or will the degree of vendor lock that the large NEMs enjoy today persist in a

slightly modified form? Idealistic SDN proponents proselytize that the adoption of SDN will take the

power from the NEMs and put it in the hands of customers. Whether or not this happens largely hinges

on whether or not openness is truly a mandatory part of the SDN paradigm. In the business world today

there is no consensus on that, and we acknowledge that separation of control plane from data plane need

not be performed in an open manner. It is entirely possible that proprietary incarnations of this concept

end up dominating the market. This is still an open question, and the answer to it will undoubtedly be

the biggest determinant of the business ramifications of SDN.

In the next and final chapter we attempt to synthesize the current state of SDN research with current

market forces to forecast where SDN is headed in the future.

References
[1] Duffy J. Cisco lays off 500: company realigning operations, investments on growth areas. Net-

work World; March 27, 2013. Retrieved from <www.networkworld.com/news/2013/032713-cisco-

layoffs-268165.html>.

[2] Williams A. VMware buys Nicira for $1.26 billion and gives more clues about cloud strategy. Techcrunch;

July 23, 2012. Retrieved from <techcrunch.com/2012/07/23/vmware-buys-nicira-for-1-26-billion-

and-gives-more-clues-about-cloud-strategy>.

[3] Hesseldahl A. Cisco keeps up acquisition pace with $141 million cariden buy. All Things D; Novem-

ber 29, 2012. Retrieved from <allthingsd.com/20121129/cisco-keeps-up-acquisition-pace-with-141-million-

cariden-buy>.

[4] Hachman M. Brocade buys Vyatta for SDN Tech. Slashdot; November 6, 2012. Retrieved from <slash-

dot.org/topic/datacenter/brocade-buys-vyatta-for-sdn-tech>.

[5] Higginbotham S. Juniper to buy SDN startup contrail in deal worth $176M. Gigaom; December 12, 2012.

Retrieved from <gigaom.com/2012/12/12/juniper-to-buy-sdn-startup-contrail-in-deal-worth-176m>.

[6] Bort J. Cisco launches its secret startup insieme, then buys it for $863 million. Business Insider; November

6, 2013. Retrieved from <www.businessinsider.com/cisco-buys-insieme-for-863-million-2013-11>.

http://www.networkworld.com/news/2013/032713-cisco-layoffs-268165.html
http://techcrunch.com/2012/07/23/vmware-buys-nicira-for-1-26-billion-and-gives-more-clues-about-cloud-strategy
http://allthingsd.com/20121129/cisco-keeps-up-acquisition-pace-with-141-million-cariden-buy/
http://slashdot.org/topic/datacenter/brocade-buys-vyatta-for-sdn-tech
http://gigaom.com/2012/12/12/juniper-to-buy-sdn-startup-contrail-in-deal-worth-176m/
http://www.businessinsider.com/cisco-buys-insieme-for-863-million-2013-11


278 CHAPTER 12 Business Ramifications

[7] Malik O. Here is why Cisco bought Meraki for $1.2 billion in cash. Gigaom; November 18, 2012. Retrieved

from <gigaom.com/2012/11/18/cisco-buys-meraki-for-1-2-billion-in-cash-here-is-why>.

[8] Heavy reading rates the 10 most promising SDN startups. InvestorPoint; October 29, 2012. Retrieved from

<www.investorpoint.com/news/MERGERAC/55405881>.

[9] Rath J. Pica8 launches open data center framework data center knowledge; April 15, 2013. Retrieved from

<www.datacenterknowledge.com/archives/2013/04/15/pica8-launches-open-data-center-framework>.

[10] Williams A. Big switch raises $6.5M from Intel Capital, gains attention for next generation net-

working, challenges Cisco. Techcrunch; February 8, 2013. Retrieved from <techcrunch.com/2013/02/

08/big-switch-raises-6-5m-from-intel-capital-gains-attention-for-next-generation-networking-challenges-

cisco>.

[11] Wauters R. OpenFlow startup big switch raises $13.75M from index, Khosla ventures. TechCrunch;

April 22, 2011. Retrieved from <techcrunch.com/2011/04/22/openflow-startup-big-switch-raises-13-75m-

from-index-khosla-ventures>.

[12] Higginbotham S. ConteXtream joins the software defined networking rush. Gigaom; December

13, 2011. Retrieved from <gigaom.com/2011/12/13/contrextream-joins-the-software-defined-networking-

rush>.

[13] Higginbotham S. Embrane’s virtual network appliances for an SDN world. Gigaom; December 11, 2011.

Retrieved from <gigaom.com/2011/12/11/embranes-virtual-network-appliances-for-an-sdn-world>.

[14] Berndtson C. Startup embrane looks beyond the SDN trend. CRN; July 20, 2012. Retrieved from

<www.crn.com/news/networking/240004082/startup-embrane-looks-beyond-the-sdn-trend.htm>.

[15] Guis I. SDN start-ups you will hear about in 2013: snapshots of Plexxi, Plumgrid, Pluribus and

Vello. SDN Central; January 24, 2013. Retrieved from <www.sdncentral.com/companies/sdn-start-ups-

you-will-hear-about-in-2013-pt-2/2013/01>.

[16] Etherington D. Midokura scores $17.3M series a to ramp up its network virtualization offer-

ing on a global scale. Techcrunch; April 1, 2013. Retrieved from <techcrunch.com/2013/04/01/

midokura-scores-17-3m-series-a-to-ramp-up-its-network-virtualization-offering-on-a-global-scale>.

[17] Clancy H. Pertino serves up small-business networks in the cloud. ZDNet; March 29, 2013. Retrieved from

<www.zdnet.com/pertino-serves-up-small-business-networks-in-the-cloud-7000013277>.

[18] Burt J. SDN market to grow sixfold over 5 years: Dell’Oro. eWeek; November 4, 2013. Retrieved from

<mobile.eweek.com/blogs/first-read/sdn-market-to-grow-six-fold-over-5-years-delloro.html>.

[19] Lightwave Staff. Calient, Plexxi bring SDN to large-scale data center networks. Lightwave; March 19, 2013.

Retrieved from <www.lightwaveonline.com/articles/2013/03/calient–plexxi-bring-sdn-to-large-scale-data-

center-networks.html>.

[20] Pica8 partners with NTT data for end-to-end SDN solutions. BusinessWire; April 2, 2013. Retrieved

from <www.businesswire.com/news/home/20130402005546/en/Pica8-Partners-NTT-Data-End-to-End-

SDN-Solutions>.

[21] NEC displays SDN leadership at PlugFest. InCNTRE, Indiana University; October 12, 2012. Retrieved from

<incntre.iu.edu/featured/NEC-displays-SDN-leadership-at-PlugFest>.

[22] Palmer M. SDNCentral exclusive: SDN market size expected to reach $35B by 2018. SDN Central; April 24,

2013. Retrieved from <www.sdncentral.com/market/sdn-market-sizing/2013/04>.

[23] Pepelnjak I. SDN’s casualties. ipSpace; June 12, 2013. Retrieved from <blog.ioshints.info/2013/

06/response-sdns-casualties.html>.

[24] Knudson J. The ripple effect of SDN. Enterprise networking planet; October 22, 2013. Retrieved from

<www.enterprisenetworkingplanet.com/netsysm/the-ripple-effect-of-sdn.html>.

[25] Burt J. Cisco may Unveil Insieme SDN Technology November 6. eWeek; September 24, 2013. Retrieved

from <www.eweek.com/blogs/first-read/cisco-may-unveil-insieme-sdn-technology-nov.-6.html>.

http://gigaom.com/2012/11/18/cisco-buys-meraki-for-1-2-billion-in-cash-here-is-why/
http://www.investorpoint.com/news/MERGERAC/55405881/
http://www.datacenterknowledge.com/archives/2013/04/15/pica8-launches-open-data-center-framework/
http://techcrunch.com/2013/02/08/big-switch-raises-6-5m-from-intel-capital-gains-attention-for-next-generation-networking-challenges-cisco/
http://techcrunch.com/2011/04/22/openflow-startup-big-switch-raises-13-75m-from-index-khosla-ventures
http://gigaom.com/2011/12/13/contrextream-joins-the-software-defined-networking-rush/
http://gigaom.com/2011/12/11/embranes-virtual-network-appliances-for-an-sdn-world/
http://www.crn.com/news/networking/240004082/startup-embrane-looks-beyond-the-sdn-trend.htm
http://www.sdncentral.com/companies/sdn-start-ups-you-will-hear-about-in-2013-pt-2/2013/01
http://techcrunch.com/2013/04/01/midokura-scores-17-3m-series-a-to-ramp-up-its-network-virtualization-offering-on-a-global-scale/
http://www.zdnet.com/pertino-serves-up-small-business-networks-in-the-cloud-7000013277/
http://mobile.eweek.com/blogs/first-read/sdn-market-to-grow-six-fold-over-5-years-delloro.html
http://www.lightwaveonline.com/articles/2013/03/calient-plexxi-bring-sdn-to-large-scale-data-center-networks.html
http://www.businesswire.com/news/home/20130402005546/en/Pica8-Partners-NTT-Data-End-to-End-SDN-Solutions
http://incntre.iu.edu/featured/NEC-displays-SDN-leadership-at-PlugFest
http://www.sdncentral.com/market/sdn-market-sizing/2013/04/
http://blog.ioshints.info/2013/06/response-sdns-casualties.html
http://www.enterprisenetworkingplanet.com/netsysm/the-ripple-effect-of-sdn.html
http://www.eweek.com/blogs/first-read/cisco-may-unveil-insieme-sdn-technology-nov.-6.html


References 279

[26] Kerner S. Big switch switches SDN direction, staying independent. Enterprise Networking Planet; Septem-

ber 11, 2013. Retrieved from <www.enterprisenetworkingplanet.com/datacenter/big-switch-switches-sdn-

direction-staying-independent.html>.

[27] Duffy J. Big switch’s big pivot. Network World; September 11, 2013. Retrieved from <www.networkworld.

com/community/blog/big-switchs-big-pivot>.

[28] Ozdag R. Intel ethernet switch FM6000 series: software defined networking. Intel white paper. Retrieved from

<www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-

paper.pdf>.

http://www.enterprisenetworkingplanet.com/datacenter/big-switch-switches-sdn-direction-staying-independent.html
http://www.networkworld.com/community/blog/big-switchs-big-pivot
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf


This page is intentionally left blank



13
CHAPTER

SDN Futures

An accurate forecast of the future of any nascent technology calls for a better crystal ball than what is

usually available. To attempt such a look into the future requires that we first lift ourselves up out of the

details of SDN on which we have focused in the latter half of this book and view the current state of

SDN affairs with a broader perspective. We need to consider what lies in store for SDN as a whole as

well as individually for each of the SDN alternatives described in Chapter 6. We are optimistic about

the future of SDN. Our optimism for the future of SDN is partly founded on the belief that there are

many potential areas of application for the technology that have yet to be seriously explored. For that

reason, we dedicate a significant part of this chapter to exploring just a few of the novel use cases and

research areas for Open SDN that are beginning to attract attention. Before that, however, we should

acknowledge that not all the 2013 press releases about SDN were filled with unbridled optimism. In the

next section, we look at the turbulence and some of the pessimism surrounding SDN.

13.1 Current State of Affairs

The turbulence that has surrounded the SDN movement during these early years has closely tracked the

well-known Gartner Hype Cycle [1]. We depict a generic version of this hype cycle in Figure 13.1. For

SDN, the technology trigger was the birth of OpenFlow and the coining of the term Software Defined

Networks in 2009.1 The MAC table and VLAN ID exhaustion we have discussed in earlier chapters

were manifesting themselves in the data center in the years leading up to 2012. This provided hard

evidence that networking was at the breaking point in the data center. The fact that SDN provides a

solution to these problems added fuel to the SDN fire. The peak of inflated expectations was reflected

in the flurry of acquisitions in 2012 and the sizable VC investments preceding and coinciding with that.

The trough of disillusionment, in our opinion, occurred in early 2013.

Big Switch’s fate leading up to 2013 and then in the first half of that year mirrored these trends.

The company’s withdrawal first from board status of the OpenDaylight consortium and subsequent

total exit reflected its feeling that forces other than a commitment to Open SDN were influencing that

organization’s choice of controller technology. That was followed by Big Switch’s big pivot, which was

an admission that its early strategy of open platforms needed to be retooled to be plug-and-play solutions

for a broader customer base (see Section 12.9.1). Big Switch’s moves during 2013 were reflective of a

more general fragmentation of the SDN movement.

1When we refer to the first use of the term Software Defined Networks, we mean in the specific context in which it is used in

this book and in conjunction with the work surrounding OpenFlow at Stanford University. The term itself was used previously

in patents in the 1980s.

Software Defined Networks. http://dx.doi.org/10.1016/B978-0-12-416675-2.00013-9

© 2014 Elsevier Inc. All rights reserved.
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Gartner hype cycle. ((Courtesy Gartner, Inc.) [1]).

Many industry watchers feel that the degree of SDN washing that now occurs means that SDN can

mean anything to anyone. Indeed, one of the founding fathers of SDN listed in Section 9.1.1, Martin

Casado, was quoted in April 2013 as saying, “I actually don’t know what SDN means anymore, to be

honest” [2]. If this is the feeling of one of the core group that coined the very term SDN, then one might

reasonably fear that SDN has lost much of its original focus.

The Gartner Hype Cycle does not end with the trough of disillusionment, however, nor does Open

SDN’s story begin to fall apart in 2013. Just as the Hype Cycle predicts that disillusionment is followed

by the slope of enlightenment and then by the plateau of productivity, so do we now begin to see

realistic assessments for where SDN will be applied. We believe that this slope of enlightenment in

SDN’s future reflects a middle ground between the extremes of belief that it will totally unseat the

incumbent NEMs and traditional switching technology and the belief that it is largely an academic

exercise with applicability restricted to the 1% of customers sophisticated enough to grapple on their

own with the technological change. As an example, Big Switch’s pivot has moved the company toward a

strategy based on OpenFlow-enabled white-box switches. Thus, whereas Big Switch’s strategy is more

tactical than it had been, the company is still betting on the long-term future of OpenFlow. Furthermore,

SDN has already established a beachhead in the data center that demonstrates that it is there to stay.

SDN experts from HP, Dell, and NEC debating the future of SDN in [3] caution against impatience with

the rate of penetration of SDN. They point out that server virtualization in the data center has existed

for over a decade and only now is reaching 50% market penetration.

We believe that for SDN to transition from the slope of enlightenment to the plateau of productivity,

we must first see evidence of an entirely new generation of switching ASICs that have been purposely
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built with SDN and OpenFlow in mind. Switch ASICs may take two years or more to mature and reach

production. Perhaps the amount of flow table space required will mandate new silicon geometries, and

the time to availability may be even longer.

The integration of SDN into the work being performed by the IEEE and other important forums is

further evidence of its growing acceptance. Nonetheless, the exact forms of SDN that are here to stay

are still debated. In this chapter we discuss some of the areas of research and experimental use cases

that provide evidence of the totally unique ways that SDN can address networking problems. The slope

of enlightenment embodies a recognition that SDN solves certain networking problems better than any

other known technology and that it will indeed be disruptive there. This is a strong vindication of SDN

but falls short of being the death knell for traditional networking, as some have argued. It is likely that the

reduction in hype will reduce the appeal of applying the SDN moniker to every new networking variant,

and the different versions of SDN that gain market traction, though not all OpenFlow-based by any

means, will tend increasingly to those characteristics that we used to define Open SDN in Section 4.1.

Among those basic characteristics, one wildcard is that of openness. Openness means different things

to different members of the networking ecosystem. For an academic researcher, it means open source

available to all. On the other extreme, openness to a NEM may mean exposing certain APIs to your

product in order to allow user-written applications to fine-tune external control knobs that the NEM

exposes. (These two extremes reflect our earlier definitions of Open SDN versus SDN via APIs.) A

recent special report [17] on the history and demise of the Open Systems Interconnection (OSI) standards

concluded with the following remark: “Perhaps the most important lesson is that ‘openness’ is full of

contradictions. OSI brought to light the deep incompatibility between idealistic visions of openness

and the political and economic realities of the international networking industry. And OSI eventually

collapsed because it could not reconcile the divergent desires of all the interested parties.” This lesson,

learned the hard way for OSI, should not be lost on Open SDN evangelists. Too strict an interpretation

of openness in the definition of SDN could result in a similar fragmentation of interests between the

open source community and industry. If major parts of industry cannot align behind the Open SDN

movement, the movement will morph into something that is synergystic with industry’s goals or it will

be relegated to the halls of academia. This is the realpolitik of the Internet.

13.2 Potential Novel Applications of Open SDN

There is considerable active research related to SDN as well as many novel use cases being proposed

that illustrate potential new areas where SDN can be applied or improved. In this section we present a

sampling of some of the areas that promise to increase the scope of applications of Open SDN and thus

broaden the foundation of its future.

A full survey of SDN-related research is beyond the scope of this work. A number of recent confer-

ences have focused on SDN research, including [14,15]. The proceedings of these conferences provide

a good review of current research trends in this area. The survey of the past, present, and future of SDN

found in [16] may also provide the reader with broader coverage of current research directions in this

field.

Here we have selected a number of areas of potential application of Open SDN with the intent of

giving the reader a flavor of the areas of application that radically depart from those that we have
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described during the bulk of this work. It is our hope that this discussion will underscore that this new

network programming paradigm opens the doors to many possibilities, only a few of which have already

been explored.

13.2.1 Managing Nontraditional Physical Layer Links

There is growing interest in using OpenFlow to control devices that have flows but are not traditional

packet switches. The two most promising areas involve flows over optical and wireless links. In Section

8.7.1 we presented a use case in which SDN was used for offloading elephant flows onto optical devices.

This represents one example of the general area of using OpenFlow to manage flows over physical layers

that are outside the domain of classical LANs and WANs. In addition to the example in Section 8.7.1 and

in Section 12.9.7, we mentioned two startups, Plexxi and Vello, that have brought products to market

that marry optical switching with OpenFlow.

In [5], the researchers formalize the study of how to map big data applications to an OpenFlow

network. An elephant flow is an example of a big data application. The authors propose mechanisms

to build on the existing Hadoop2 job-scheduling method to optimize how and when to schedule jobs

over the optical links. They point out that unlike the more classical SDN use cases of cloud network

provisioning and WAN traffic engineering, such as those discussed in Chapters 7 and 8, such big-data

jobs require more rapid and frequent updates of the flow tables on the switches. They conclude that

current OpenFlow switches are capable of handling their predicted number and frequency of flow table

changes. They believe that there may be challenges in keeping the various flow tables across the network

switches synchronized with this rate of flow table changes. This is important because one of the problems

in traditional networks that we described in Section 1.5.3 was the relatively slow convergence time in

the face of routing changes. At the fine granularity of flow table changes being made to route these

big-data flows, slow convergence times may be an issue for optical offload.

Because of the ease of installing wireless backhaul links to bring mobile traffic back to the core

from radio access network (RAN) cells, wireless backhaul is becoming increasingly popular. One of

the challenges in doing this is that the effective bandwidth of a wireless link is not constant, as in its

wired counterpart. In [4, Section 8.4], OpenFlow is proposed as a mechanism to segregrate traffic from

different providers and different types into separate flows that are then transmitted over a single shared

wireless backhaul medium. In the example, the wireless backhaul technology is 802.16. Although the

segregation of different traffic types for differential QoS treatment is well established, in the example

the wireless backhaul link is potentially shared by a number of different colocated RAN technologies

(e.g., LTE, 3G, WiFi) that may be offered by several different operators. The wireless backhaul provider

may have different SLAs with each of those operators and for each operator different levels of service,

depending on the terminating RAN technology, traffic type, or business agreement. Since the wireless

backhaul bandwidth capability itself may vary due to environmental conditions, the process of satisfying

all of the various SLA commitments becomes far more complex and can benefit from OpenFlow’s ability

to segregate the traffic into different flows and route or police those flows dynamically with the changing

wireless conditions.

2Hadoop is open source software that enables the distributed processing of large data sets across clusters of commodity

computers.



13.2 Potential Novel Applications of Open SDN 285

13.2.2 Applying Programming Techniques to Networks

One of the themes of this work has been that the greater network programmability inherent in OpenFlow

provides benefits in the richness of policies and in the fine-grained control it offers the network pro-

grammer. To be fair, though, when a programming environment gives the programmer a lot of power,

the probability of misprogramming the network is likely greater than the legacy situation where the

network engineer was constrained by control knobs of limited functionality. Thus, part of the ultimate

success of OpenFlow is the development of tools that will aid in detecting such programming flaws.

More formally, in [18] the author suggests that Open SDN provides a proper abstraction of the network

that allows us to address networking challenges more efficiently. The author draws an anology to the

difference between programming a CPU in today’s high-level languages and application development

environments versus programming in machine language. A corollary is that the network abstraction

allows other advanced programming methodologies to be applied, including debuggers, analysis tools,

network simulation, verification tools, and others. These tools have enabled tremendous progress in the

development of software because of formal analysis and the application of theory. No equivalents have

been practical in the networking space due to lack of the abstraction as described in [18]. We consider

here some of the tools that are enabled by this new way of looking at networking.

Network Debugger (ndb)

In Section 4.1.3 we drew an analogy between the control plane of networks and computer languages

and CPUs. We explained that we no longer work at the level of assembly language because high-level

languages provide us with efficient abstractions to program the CPUs effectively. We argued that the

network needs a similar evolution toward a high-level abstraction of network programming, and we

suggested that OpenFlow is a good example of such an abstraction. Following this same analogy, if

OpenFlow provides us with a way of programming the network as a single entity, can we now consider

other advanced programming techniques and tools for application in the network? For example, if we

view the network as a vast distributed computer, can we envision a debugger for that computer? This is

precisely what the work performed in [6] attempts. The authors propose a network debugger (ndb) that

will implement basic debugger functionality at the packet level. They aspire to implement a full set of

debugger actions, including breakpoint, watch, backtrace, single-step, and continue. In [6] the authors

describe an example whereby they have implemented both breakpoints and packet backtraces. For

instance, a breakpoint could be set in a network switch such that when a packet matches no flow entry in

that switch, the breakpoint is hit. At that point the network programmer could request a packet backtrace

showing which flow entries were matched by which switch that led to the packet arriving to this switch

where no flow entry matched. The fact that such technology can even be contemplated underscores the

more deterministic network behavior possible under the centralized programming model of Open SDN.

No Bugs in Controller Execution (NICE)

It is also naïve to believe that a controller programming a large set of switches that are in a constant

state of forwarding packets is an entirely deterministic system. The architecture of OpenFlow does not

tightly synchronize the programming of multiple switches when the controller must simultaneously

program flow entries in several switches. Due to the entropy involved in this process, it might not be

possible to ensure that all flow entries are in place before the packets belonging to that flow begin to
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arrive. Thus, race conditions and even routing loops are possible for short periods of time. Although it

is likely impossible to completely eliminate this hysteresis during rapid network reprogramming, a tool

that could model the effects of a particular controller program (i.e., an application) could help minimize

such occurrences and ensure that their effects are short lived. In [7] the authors propose No Bugs in

Controller Execution (NICE), a tool for modeling the behavior of OpenFlow applications to ensure their

correctness, including detecting forwarding loops and black holes. Advanced modeling techniques are

used to create input scenarios that test all possible execution paths within the application while taking

account of variability of the state of the network switches and links. In [7] the authors modeled and

debugged three sample applications: a MAC-learning switch, an in-network server load balancer, and

energy-efficient traffic engineering.

Veriflow

Although there is great appeal to checking for OpenFlow application correctness offline and before

deployment, it may be necessary or desirable to perform real-time formal checking for correct network

behavior. In [8] the authors describe Veriflow, a system that resides between the controller and the

switches and verifies the correctness of each flow entry update before it is applied. One advantage of the

approach described in [8] is that it does not require knowledge of all the network programs themselves,

since, it verifies correctness based on observations of flow rules as they are sent from the controller to

the switches. One of the biggest challenges faced in this study is to keep the latency of the correctness

checks low enough to avoid becoming a bottleneck in the path between the controller and the switches.

Such speed is not possible if one were to take a brute-force approach to reflecting the global network

state, which is very complex and changes rapidly. The authors claim to have developed algorithms

that allow such checks to be performed at hundred-microsecond granularity, which is sufficiently fast

to avoid adversely affecting network performance. Their novel work is related to how to represent the

portion of network state that could possibly be affected by a given rule change and to develop algorithms

that reduce the search space such that the effect of a rule change on network state can be ascertained in

real time.

13.2.3 Security Applications

Hiding IP Addresses

Many network attacks are based on identifying active IP addresses in a targeted domain. Protecting

hosts by making it impossible for an attacker to identify a host’s IP address would be an effective

countermeasure. In [9] the authors propose that each protected host be assigned a virtual IP address

that is the one exposed to the outside world by DNS lookups. In this method, the OpenFlow controller

randomly and at high frequency assigns the virtual IP address to the protected hosts, maintaining the

temporary mapping of virtual to physical IP addresses. Earlier systems based on DHCP and NAT exist

to change the physical IP address of hosts, but these mechanisms change the IP address too infrequently

to be a strong defense. In [9] only authorized hosts are allowed to penetrate through to the physical IP

address. The translation from the virtual IP address to the physical IP address happens at an OpenFlow

switch immediately adjacent to the protected hosts. The unpredictability and speed of the virtual IP

address mutation is key to thwarting the attacker’s knowledge of the network and the planning of the
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attacks. Although this approach could conceivably be implemented using specialized appliances in a

conventional network, OpenFlow provides a flexible infrastructure that makes this approach tractable.

Segregating IPSec Traffic in Mobile Networks

Wireless providers using LTE secure the user and control data between the base station (eNB) and their

network core using IPSec tunnels. These tunnels terminate in the core at a secured gateway (S-GW).

As currently specified, there is a single IPSec tunnel encrypting all services. IPSec tunneling carries

significant overhead, and significant efficiency gains are possible if traffic that does not require the

security afforded by IPSec can be sent in the clear. In two separate proposals [4, Section 8.12] and

[4, Section 8.5] the authors suggest using OpenFlow to map between different traffic types and the

appropriate level of IPSec security. In [4, Section 8.5] the focus is on making the mapping of individual

flows to different IPSec tunnels. In [4, Section 8.12] the emphasis is on distinguishing those traffic types

requiring security and to only tunnel those. The authors suggest that YouTube videos, social media, and

software updates are examples of traffic that does not require IPSec encryption and can thus be sent in the

clear. Though the authors do not describe how such traffic types would be detected, one possible means

of doing so that avoids the deep packet inspection problem is to base the decision on server addresses that

belong to YouTube, Facebook, Microsoft software updates, and so on. An additional possible benefit

of providing flow-specific treatment to these other traffic types is that it is not always necessary to send

separate copies of this kind of traffic from the network core. By inserting a deduplication processor

closer to the mobile users, this redundant traffic can be cached at that location, and a twofold bandwidth

savings is realized by eliminating the round trip to the S-GW. By providing the operators control over

which flows are tunneled and which are not, this system allows operators to monetize their investment

by offering different plans with different levels of security.

13.2.4 Roaming in Mobile Networks

Mobile Traffic Offload

In Chapter 8 we presented a number of SDN applications involving traffic steering, where flows are

directed toward security systems or load balanced among a set of similar-function servers. In the multi-

radio environment common for today’s mobile operators, a new SDN application is possible in the area

of mobile traffic offload. Mobile offload means moving a client mobile node (MN) from one RAN to

another. This might make sense for a number of reasons, but the one most often offered is to shunt the

traffic to a RAN where the spectrum is more available or less expensive than the one currently used by the

MN. Such offloading has been contemplated for some time by mobile operators, but existing approaches

have not provided the flexible, fine-grained control offered by Open SDN. In [4, Section 8.3] a use case

is described where OpenFlow switches are used in key gateways in the 3GPP architecture. Based on

observing flow-related criteria and the location of the MN, an OpenFlow application can redirect the

MN’s access connection from 3G to a WiFi hotspot, for example. If the MN needs to roam from WiFi

to a cellular radio technology, the same mechanism may be used. This approach allows operators to

flexibly and dynamically apply offloading policies rather than static policies that are not able to adapt

to changing network conditions. For example, if a user is currently connected to a heavily loaded WiFi

hotspot and located within a lightly loaded LTE cell, it may make sense to do reverse offload and move

the user from WiFi back to LTE. Such a decision hinges on observing rapidly changing conditions and
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could not be put into effect based on static policies. Note that though the basic traffic steering inside the

3GPP packet network is native to OpenFlow, the control signaling related to the RF aspects of the roam

would have to be coordinated with the appropriate 3GPP signaling functions, since those are outside

the current scope of OpenFlow.

Media-Independent Handovers

IEEE 802.21 is an established protocol for media-independent handovers between 802-family points of

access (PoAs). Examples of PoAs are 802.11 access points and 802.16 base stations. The 802.21 point

of service (PoS) is responsible for the messaging to the PoAs to accomplish either make-before-break or

break-before-make handovers (roams). A significant part of accomplishing such handovers is to redirect

the traffic flow from an MN such that it enters and exits the network from the new PoA. This, combined

with the fact that OpenFlow is natively media-independent, leads to a natural overlap between the role

defined for the 802.21 PoS and an OpenFlow controller. This synergy is discussed in [4, Section 8.6]

and a proof of concept is proposed to design a system whereby an OpenFlow controller uses the 802.21

protocol messages to control roaming between 802.11 access points. The authors suggest that extensions

to OpenFlow may be necessary, however.

Infrastructure-Controlled Roaming in 802.11 Networks

In [10] the authors present Odin, an SDN-based framework to facilitate AAA, policy, mobility, and

interference management in 802.11 networks. The fact that in 802.11 the client makes the decision

regarding with which AP to associate at any given time has presented a major challenge to giving the

network explicit control over with which AP a client associates. Controlling the choice and timing of

the client-AP association in 802.11 is fundamental to roaming, RF interference, and load-balancing

solutions. The Odin master function, which is an SDN application, controls Odin agents in each of the

APs. These agents implement light virtual access points (LVAPs) that appear as physical APs to the

client. Each client is assigned a unique LVAP, giving each client a unique BSSID. Since LVAPs may

be instantiated on any of the APs under the control of the controller, the client may physically roam to

another physical AP by the controller moving its LVAP instantiation to that new physical AP. OpenFlow

is used to move the user data flows in accordance with such roaming.

13.2.5 Traffic Engineering in Mobile Networks

Dynamic Assignment of Flows to Fluctuating Backhaul Links

In Section 8.2.2 we presented an example of Open SDN being used for traffic engineering in MPLS

networks. In mobile networks, there is a novel opportunity to apply traffic engineering to wireless

backhaul infrastructure links. Unlike the backhaul example in Section 13.2.1, the wireless links we

refer to here connect switching elements that may carry the traffic of multiple base stations (eNBs).

The appeal of wireless backhaul links is growing as the number of base stations grows, the locations of

the switching elements becomes more dynamic, and new backhaul capacity is brought online to a more

freely chosen set of locations. A downside of wireless backhaul is that the bandwidth of the wireless

backhaul is both more limited and, more important, less stable than in its wired counterparts. Current
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resource management practices are static and do not redirect load dynamically based on short-term

fluctuations in wireless capacity.

In [4, Section 8.2] the authors propose that an OpenFlow controller be enabled to be aware of the

current available bandwidth on the set of wireless links it is managing. It may be managing a hybrid

set of wired and wireless backhaul links. If OpenFlow is responsible for assigning user flows to that set

of backhaul links, that assignment can be made as a function of the SLAs specific to each flow. High

SLA (higher guarantees) traffic can be steered over wired links, and low SLA traffic can be steered

over a wireless link. If one wireless link is experiencing temporary spectrum perturbation, OpenFlow

can shunt the traffic over a currently stable wireless link. Note that this proposal requires a mechanism

by which the SDN application on the OpenFlow controller be made aware of changes in the wireless

bandwidth on each of the wireless links it is managing.

Sharing Wireless Backhaul Across Multiple Operators

The IEEE has chartered a group to study how to enable an Open Mobile Network Interface for omni-

Range Access Networks (OmniRAN). The omni-Range aspect implies a unified interface to the multiple

radio access network types in the 802 family. These include 802.11 and 802.16, among others. The

business model behind this idea is that multiple operators offering a range of RAN technologies in

a well-defined geographic area could benefit from a common backhaul infrastructure shared by all

the operators for all the different radio technologies. The cost savings of this approach compared to

separate backhaul networks for each (operator, RAN) pair are significant. In [4, Section 8.16] the authors

argue that since both OpenFlow and OmniRAN are media-independent, there is a natural synergy in

applying OpenFlow as the protocol for controlling and configuring the various IEEE 802 nodes in this

architecture as well as using OpenFlow for its native benefits of fine-grained control of network flows

and implementation network policy. This effort would require extension to OpenFlow for controlling

and configuring the IEEE 802 nodes.

An OpenFlow Switch on Every Smartphone!

Today’s smartphones generally have multiple radios. For example, it is common to see LTE, WiFi,

and 3G radios on the same mobile phone. In the existing model, the MN chooses which radio to use

based on a static algorithm. This algorithm normally routes voice traffic over the best available cellular

connection and data over a WiFi connection if it is available. If no WiFi connection is available, data

is sent via the cellular connection. This is a fairly inefficient and brute-force use of the available radio

spectrum. For example, if a functioning WiFi connection is poor, it may be much more efficient to

route data over a functioning LTE connection. If multiple radios are available, it may be wise to use

more than one radio simultaneously for different data flows. Expanding the horizon for OpenFlow

applications to a bold new level, in [4, Section 8.8] there is a proposal to install an instance of Open

vSwitch (OVS) on every mobile device. This virtual switch would direct flows over the radio most

appropriate for the type and volume of traffic as well as the current spectrum availability for the

different radio types. The controller for this OVS instance resides at a gateway in the 3GPP architecture

and uses its global knowledge of network state to steer flows in the mobile phone over the most

appropriate radio according to the bandwidth and current loading of that particular radio spectrum in that

time/location.
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13.2.6 Energy Savings

When asked about their vision for the future role of SDN, members of an expert panel [3] from HP, Dell,

and NEC indicated that energy savings are an important area where SDN can play an increasing role.

Data centers incur enormous OPEX costs in keeping their massive data warehouses cooled and fully

and redundantly powered. Companies that produce compute and storage servers now tout their energy

savings relative to their equivalents of only a few years ago. There have been significant improvements in

the energy efficiency of servers, but the corresponding gains in networking equipment have been smaller.

Between the cooling and the energy consumed by the compute and storage servers, it is estimated

[11] that about 70% of the power is allocated to those resources. Beyond that, however, it is estimated

that approximately 10% to 20% of the total power is spent to power networking gear. Considering

the vast sums spent on electric bills in data centers, making a dent in this 10–20% would represent

significant savings.

ElasticTree

One approach to applying OpenFlow to energy savings in the data center, called ElasticTree, is described

in [11]. The premise of that work is that data centers’ networking infrastructure of links and switches

is designed to handle an anticipated peak load and is consuming more power than necessary during

normal operation. If a means could be found to only power the minimum necessary subset of switches

at any moment, there is an opportunity for significant energy savings. The assertion in [11] is that during

periods of less than peak load, OpenFlow can be used to shunt traffic around switches that are candidates

for being powered off. Such a system assumes an out-of-band mechanism whereby switches may be

powered on and off via the OpenFlow application. Such systems exist and are readily integrated with an

OpenFlow application. The authors suggest that by varying the number of powered-on switches, their

system can provide the ability to fine-tune between energy efficiency, performance, and fault tolerance.

The novel work in [11] is related to determining what subset of network switches and links need to be

powered on to meet an established set of performance and fault-tolerance criteria.

Dynamic Adjustment of Wireless Transmit Power Levels

A related use case is proposed for wireless backhaul for mobile networks in [4, Section 8.8]. In this

case, the mobile operator has the ability to vary the amount of power consumed by the wireless links

themselves by varying the transmission power levels. For example, relatively lower traffic loads over a

microwave link may require less bandwidth, which may be achieved with a lower transmission power

level. If no traffic is flowing over a wireless link, the transmission power may be turned off entirely. As

with ElasticTree, the proposal is to use OpenFlow to selectively direct traffic flows over the wireless

links such that transmission power levels may be set to globally optimal settings.

More Energy Efficient Switching Hardware

A more direct approach to energy savings in an SDN environment is to directly design more energy-

efficient switches. Well-known methods of reducing power consumption used on servers are already

being applied to switch design. At some point, use of electronic circuitry consumes energy, though. One

of the most power-hungry components of a modern switch capable of flow-based policy enforcement

is the TCAM. In [12] the authors propose prediction circuitry that allows flow identification of a high
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percentage of packets in order to avoid the power-hungry TCAM lookup. The prediction logic uses a

memory cache that exploits temporal locality of packets. This temporal locality refers to the fact that

numerous packets related to the same application flow often arrive at a switch ingress port close to one

another. Each TCAM lookup that can be circumvented lowers the switch’s cumulative power consump-

tion. A different approach to such TCAM-based energy savings is proposed in [13], where the authors

suggest organizing the TCAM into blocks such that the search space is segmented in accordance with

those blocks. When a particular lookup is initiated by the switch, it is possible to identify that subset of

internal blocks that may be relevant to the current search and only power on that subset of the TCAM

during that search.

13.2.7 SDN-Enabled Switching Chips

In Section 12.9.3 we described two ongoing commercial efforts to build chips that are designed from

the ground up to support advanced OpenFlow capability. We asserted in Section 13.1 that the plateau of

productivity would likely remain elusive until such chips become commercially available. In addition

to the commercial efforts mentioned above, this is also an active area of research. For example, in [20]

the authors show a model of a 256-core programmable network processing unit. This chip is highly

programmable and would support the nature and size of flow tables that will be required to exploit

the features of OpenFlow 1.3. The main argument of [20] is that such a programmable network pro-

cessor can be produced and still have the high-throughput characteristics more commonly associated

with purpose-built, nonprogrammable Ethernet chips. It is reasonable to believe that such a 256-core

chip will be commercially available in the not-too-distant future. In [19] the authors describe an exist-

ing progammable networking processor with 256 cores. Though this is a general-purpose processing

unit, it provides evidence of the scale that multicore SDN-specific ASICs are likely to achieve in the

near future.

In Section 13.2.6 we described a modified ASIC design that would be more energy efficient than

existing switching ASICs in performing the flow table lookups required in SDN flow processing. Another

advancement is proposed in [21], where the combination of an SDN-enabled ASIC and local general-

purpose CPU and memory could be programmed to handle current and yet unanticipated uses of per-flow

counters. This is an important issue, since maintaining and using counters on a per-flow basis is a key

part of SDN programming, yet the inability to anticipate all future applications of these counters makes

it difficult to build them all into ASIC designs. In [21] the authors describe a hybrid approach whereby

the hardware counters on the ASIC are programmable and may be assigned to different purposes and

to different flows. The counter information combines the matching rule number with the byte count of

the matched packet. This information is periodically uploaded to the local CPU, where the counters

are mapped to general-purpose OpenFlow counters. Such a system can enable some of the high-level

network programming we describe in Section 13.2.2 whereby complex software triggers based on a

counter value being reached can be programmed directly into the general-purpose CPU.

13.3 Conclusion

Ironically, one advantage of SDN washing is that it leads to an easy conclusion that SDN is on a path

to a permanent and important part of networking technology for decades to come. This is true simply
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because the term SDN can be stretched to apply to any networking technology that involves a modicum of

software control. Virtually all networking technologies involve software to some degree; hence, they are

all SDN. This flippant analysis is actually not far removed from what appears in some NEM marketing

materials. Thus, interpreted that way, SDN’s solid hold on the future of networking is ascertained.

Taking a step in a more serious direction, SDN via overlays has had such success in the data center that

we conclude that this technology, in one form or another, is here for the long run. SDN via opening up the

device is so nascent, with so little track record, that any prediction about its future is pure speculation. We

feel that SDN via APIs is really a stopgap approach designed to prolong the life of existing equipment

and, thus, will not be long-lived. To the extent that the APIs evolve and permit a remote and centralized

controller to directly program the data plane of the switch, then SDN via APIs begins to approach

Open SDN. It is significant that such API evolution is not merely a matter of developing new software

interfaces. Direct programming of the data plane depends on an evolution of the data plane itself.

The API evolution, then, is irrevocably caught up in the much longer delays customary with ASIC

design cycles.

The founding precepts of the SDN movement are embodied in Open SDN. As we have admitted

previously, we, the authors, are indeed Open SDN evangelists, and we want to conclude this work with

a serious look at its future. We begin our answer by retreating to the analogy of Open SDN compared

to the relationship of Linux with the entrenched world of the PC industry, dominated by the incumbent

Microsoft and, to a much smaller degree, Apple. Linux has actually enjoyed tremendous success, but it

has not come close to displacing the incumbents from their predominant market. Linux’s most striking

success has come instead in unexpected areas. The incumbents continue to dominate the PC operating

system market, notwithstanding the few zealots who prefer the freedom and openness of Linux. (How

many people do you know who run Linux on their laptops?) Linux has enjoyed great success, however,

in the server and embedded OS markets. The amazing success of the Android operating system is, after

all, based on Linux. Thus, Linux’s greatest success has come in areas related to but orthogonal to its

original area of application.

In our opinion, the most likely scenario for Open SDN is to follow that Linux trajectory. For a variety

of reasons, it will not soon displace the incumbent NEMs in traditional markets, as was posited in

2009 through 2012. It will maintain and expand its beachhead in spaces where its technical superiority

simply trumps all alternatives. Whether that beachhead remains restricted to those very large and very

sophisticated customers for whom technical superiority of the Open SDN paradigm trumps the safety

of the warm embrace of the established NEMs or it expands to a larger market because some NEMs

manage to adopt Open SDN without sacrificing profits, it is too early to tell. There will be applications

and use cases such as those cited in Section 13.2 where Open SDN solves problems for which no good

solution exists today. In those areas, Open SDN will surely gain traction, just as Linux has tranformed

the world of operating systems.

A Chinese proverb states, “May you live in interesting times.” For better or worse, due to data

centers, cloud, mobility, and the desire to simplify and reduce costs, networking today is in the midst

of such “interesting times.” How it all plays out in the next few years is up for debate—but whatever

the outcome, Software Defined Networking is certain to be in the middle of it.
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A
APPENDIX

Acronyms and Abbreviations

The acronyms and abbreviations are sorted alphabetically based on the acronym or abbreviation, not

their expansions. In the event that the acronym describes a particular company’s product or is only

meaningful in the context of another entity, we cite that company or entity in parentheses.

AAA Authentication, Authorization, and Accounting

AC Access Controller

ACL Access Control List

ACS Auto-Configuration Server

AP (Wireless) Access Point

API Application Programmer Interface

AR Access Router

ARP Address Resolution Protocol

ARPANET Advanced Research Projects Agency Network

ASF Apache Software Foundation

ASIC Application-Specific Integrated Circuit

BSD Berkeley Software Distribution

B-VID Backbone VLAN ID

BYOD Bring Your Own Device

CAM Content-Addressable Memory

CAPEX Capital Expense

BOM Bill of Materials

CE Control Element

CE Customer Edge

CLI Command-Line Interface

COPS Common Open Policy Service

COS Class of Service

COTS Common Off-the-Shelf

CPE Customer Premises Equipment

CPU Central Processing Unit

CSMA/CD Carrier-Sense Multiple-Access/Collision Detect

C-VID Customer VLAN ID

DCAN Devolved Control of ATM Networks

DDoS Distributed Denial of Service

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System
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DoS Denial of Service

DOVE Distributed Overlay Virtual Ethernet (IBM)

DPDK Data Plane Development Kit (Intel)

DPI Deep Packet Inspection

DSCP Differentiated Services Code Point

DSL Digital Subscriber Loop (aka Digital Subscriber Line)

DVR Digital Video Recorder

ECMP Equal-Cost Multipath

EPL Eclipse Public License

ETSI European Telecommunications Standards Institute

EVB Edge Virtual Bridging

FE Forwarding Element

FDDI Fiber Distributed Data Interface

ForCES Forwarding and Control Element Separation

FOSS Free and Open Source Software

FSF Free Software Foundation

Gbps Gigabits Per Second

GPL General Public License

GSMP General Switch Management Protocol

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

IaaS Infrastructure as a Service

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

InCNTRE Indiana Center for Network Translational Research and Education

IP Internet Protocol

IPS Intrusion Prevention System

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

ISG Industry Specification Group (ETSI)

I-SID Service Instance VLAN ID

IS-IS Intermediate System to Intermediate System

ISP Internet Service Provider

IT Information Technology

ITU International Telecommunications Union

KVM Kernel-Based Virtual Machine

LAG Link Aggregation

LAN Local Area Network

LIFO Last-In/First-Out

LSP Label Switched Path

MAC Media Access Control

Mbps Megabits Per Second
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MIB Management Information Base

MPLS Multiprotocol Label Switching

MPLS-TE MPLS Traffic Engineering

MSTP Multiple Spanning Tree Protocol

MTU Maximum Transmission Unit

NAC Network Access Control

NAT Network Address Translation

NE Network Element

NEM Network Equipment Manufacturer

NETCONF Network Configuration Protocol

NIC Network Interface Card

NFV Network Functions Virtualization

nvo3 Network Virtualization Overlays

NVP Network Virtualization Platform (Nicira)

NVGRE Network Virtualization using Generic Routing Encapsulation

ODM Original Device Manufacturer

OEM Original Equipment Manufacturer

ONE Open Networking Environment

onePK Open Networking Environment Platform Kit

ONF Open Networking Foundation

ONRC Open Networking Research Center

OOOD Out-of-Order Delivery

OPEX Operational Expense

OTN Optical Transport Network

OSI Open Systems Interconnection

OVS Open vSwitch

OVSDB Open vSwitch Database Management Protocol

PAN Personal Area Network

PCE Path Computation Element

PE Provider Edge

PE-VLAN Provider Edge VLAN

PBR Policy-Based Routing

PHY Physical Layer and Physical Layer Technology

PaaS Platform as a Service

PKI Public Key Infrastructure

PoA Point of Access

PoC Proof of Concept

POJO Plain Old Java Object

PoS Point of Service

QoS Quality of Service

RAN Radio Access Network

RFC Request for Comments

REST Representational State Transfer
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RISC Reduced Instruction Set Computing

ROI Return on Investment

RSTP Rapid Spanning Tree Protocol

RSVP Resource Reservation Protocol

SaaS Software as a Service

SAL Service Abstraction Layer

SDH Synchronous Digital Hierarchy

SDM Software Defined Mobility

SDN Software Defined Networking

SDN VE Software Defined Network for Virtual Environments

SIP Session Initiation Protocol

SLA Service-Level Agreement

SNMP Simple Network Management Protocol

SONET Synchronous Optical Networking

SPAN Switch Port Analyzer

SPB Shortest-Path Bridging

STP Spanning Tree Protocol

STT Stateless Transport Tunneling

S-VID Service Provider VLAN ID

TAM Total Available Market

TCAM Ternary Content-Addressable Memory

TLV Type-Length-Value

TL1 Transaction Language 1

ToR Top of Rack

ToS Type of Service

TRILL Transparent Interconnection of Lots of Links

TSO TCP Segmentation Offload

TTL Time to Live

VAR Value-Added Reseller

VEPA Virtual Edge Port Aggregator

VLAN Virtual Local Area Network

VoIP Voice over IP

VTEP Virtual Tunnel Endpoint or VXLAN Tunnel Endpoint

VXLAN Virtual Extensible Local Area Network

WaaS WiFi as a Service

Wintel Refers to the collaboration of Microsoft (through its Windows OS) with Intel

(through its processors) in creating a de facto standard for a personal computer

platform

WLAN Wireless Local Area Network

XaaS Everything as a Service

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

XNC Extensible Network Controller
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Blacklist Application

The source code included in this appendix may be downloaded from www.tallac.com/SDN/get-started/.

B.1 MessageListener

//================================================================
// MessageListener class for receiving openflow messages
// from Floodlight controller.
//================================================================

public class MessageListener implements IOFMessageListener
{

private static final MessageListener INSTANCE =
new MessageListener();

private static IFloodlightProviderService mProvider;

private MessageListener() {} // private constructor

public static MessageListener getInstance() {
return INSTANCE;

}

//--------------------------------------------------------------
public void init(final FloodlightModuleContext context)
{

if( mProvider != null ) throw new RuntimeException(
"BlackList Message listener already initialized" );

mProvider = context.getServiceImpl(
IFloodlightProviderService.class );

}

//-------------------------------------------------------------
public void startUp()
{

Software Defined Networks. http://dx.doi.org/10.1016/B978-0-12-416675-2.00024-3

© 2014 Elsevier Inc. All rights reserved.
299

http://www.tallac.com/SDN/get-started/
http://dx.doi.org/10.1016/B978-0-12-416675-2.00024-3


300 APPENDIX B

// Register class as MessageListener for PACKET_IN messages.
mProvider.addOFMessageListener( OFType.PACKET_IN, this );

}

//--------------------------------------------------------------
@Override
public String getName() { return BlackListModule.NAME; }

//--------------------------------------------------------------
@Override
public boolean isCallbackOrderingPrereq( final OFType type,

final String name )
{

return( type.equals( OFType.PACKET_IN ) &&
( name.equals("topology") ||

name.equals("devicemanager") ) );
}

//--------------------------------------------------------------
@Override
public boolean isCallbackOrderingPostreq( final OFType type,

final String name )
{

return( type.equals( OFType.PACKET_IN ) &&
name.equals( "forwarding" ) );

}

//--------------------------------------------------------------
@Override
public Command receive( final IOFSwitch ofSwitch,

final OFMessage msg,
final FloodlightContext context )

{
switch( msg.getType() )
{
case PACKET_IN: // Handle incoming packets here

// Create packethandler object for receiving packet in
PacketHandler ph = new PacketHandler( ofSwitch,

msg, context);

// Invoke processPacket() method of our packet handler
// and return the value returned to us by processPacket
return ph.processPacket();

default: break; // If not a PACKET_IN, just return
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}

return Command.CONTINUE;
}

}

B.2 PacketHandler

//================================================================
// PacketHandler class for processing packets receives
// from Floodlight controller.
//================================================================

public class PacketHandler
{

public static final short TYPE_IPv4 = 0x0800;
public static final short TYPE_8021Q = (short) 0x8100;

private final IOFSwitch mOfSwitch;
private final OFPacketIn mPacketIn;
private final FloodlightContext mContext;
private boolean isDnsPacket;

//------------------------------------------------------------
public PacketHandler( final IOFSwitch ofSwitch,

final OFMessage msg,
final FloodlightContext context )

{
mOfSwitch = ofSwitch;
mPacketIn = (OFPacketIn) msg;
mContext = context;
isDnsPacket = false;

}

//------------------------------------------------------------
public Command processPacket()
{

// First, get the OFMatch object from the incoming packet
final OFMatch ofMatch = new OFMatch();
ofMatch.loadFromPacket( mPacketIn.getPacketData(),

mPacketIn.getInPort() );

// If the packet isn’t IPv4, ignore.
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if( ofMatch.getDataLayerType() != Ethernet.TYPE_IPv4 )
{

return Command.CONTINUE;
}

//---- First handle all IP packets -----------------------
// We have an IPv4 packet, so check the
// destination IPv4 address against IPv4 blacklist.
try
{

// Get the IP address
InetAddress ipAddr = InetAddress.getByAddress(

IPv4.toIPv4AddressBytes(
ofMatch.getNetworkDestination() ) );

// Check the IP address against our blacklist
if( BlacklistMgr.getInstance()

.checkIpv4Blacklist( ipAddr ) )
{

// It’s on the blacklist, so update stats...
StatisticsMgr.getInstance()

.updateIpv4Stats( mOfSwitch,
ofMatch,
ipAddr );

// ... and drop the packet so it doesn’t
// go through to the destination.
FlowMgr.getInstance().dropPacket( mOfSwitch,

mContext,
mPacketIn );

return Command.STOP; // Done with this packet,
// don’t let somebody else
// change our DROP

}

}

catch( UnknownHostException e1 )
{

// If we had an error with something, bad IP or some
return Command.CONTINUE;

}

//---- Now handle DNS packets ----------------------------

// Is it DNS?
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if( ofMatch.getNetworkProtocol() == IPv4.PROTOCOL_UDP &&
ofMatch.getTransportDestination()

== FlowMgr.DNS_QUERY_DEST_PORT )
{

// Prepare data structure to hold DNS hostnames
// we extract from the request
final byte[] pkt = mPacketIn.getPacketData();
Collection<String> domainNames;

isDnsPacket = true;

// Get the domain names from the DNS request
try
{

domainNames = parseDnsPacket( pkt );
}
catch( IOException e ) // Got here if there was an

// exception in parsing the
// domain names.

{
return Command.CONTINUE; // Just return and

// allow other apps
// to handle the
// request.

}

// If there were not any domain names,
// no checking required, just forward the
// packet and return.
if( domainNames == null ) {

forwardPacket();
return Command.STOP;

}

// If there are domain names, process them.
for( String domainName : domainNames )
{

// If the current domainName is in
// the blacklist, drop the packet and return.
if( BlacklistMgr.getInstance()

.checkDnsBlacklist( domainName ) )
{

// Update statistics about the dropped packet.
StatisticsMgr.getInstance()

.updateDnsStats( mOfSwitch,
ofMatch,
domainName );
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// Drop the packet.
FlowMgr.getInstance().dropPacket( mOfSwitch,

mContext,
mPacketIn );

return Command.STOP; // Note that we are
// dropping the whole
// DNS request, even if
// only one hostname is bad.

}
}

}

// If we made it here, everything is okay, so call the
// method to forward the packet and set up flows for
// the IP destination, if appropriate.
forwardPacket();
return Command.STOP;

}

//------------------------------------------------------------
private void forwardPacket()
{

// Get the output port for this destination IP address.
short outputPort = FlowMgr.getInstance()

.getOutputPort( mOfSwitch, mContext, mPacketIn );

// If we can’t get a valid output port for this
// destination IP address, we have to drop it.
if( outputPort == OFPort.OFPP_NONE.getValue() )

FlowMgr.getInstance().dropPacket( mOfSwitch,
mContext,
mPacketIn );

// Else if we should flood the packet, do so.
else if( outputPort == OFPort.OFPP_FLOOD.getValue() ) {

FlowMgr.getInstance().floodPacket( mOfSwitch,
mContext,
mPacketIn );

}

// Else we have a port to send this packet out on, so do it.
else
{

final List<OFAction> actions = new ArrayList<OFAction>();

// Add the action for forward the packet out outputPort
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actions.add( new OFActionOutput( outputPort ) );

// Note that for DNS requests,
// we don’t need to set flows up on the switch.
// Otherwise we must set flows so that subsequent
// packets to this IP dest will get forwarded
// locally w/o the controller.
if( !isDnsPacket )

FlowMgr.getInstance().createDataStreamFlow( mOfSwitch,
mContext,
mPacketIn,
actions );

// In all cases, we have the switch forward the packet.
FlowMgr.getInstance().sendPacketOut( mOfSwitch,

mContext,
mPacketIn,
actions );

}

}

//------------------------------------------------------------
private Collection<String> parseDnsPacket(byte[] pkt) throws IOException
{

// Code to parse DNS are return
// a collection of hostnames
// that were in the DNS request

}

}

B.3 FlowManager

//================================================================
// FlowManager class for handling interactions with Floodlight
// regarding setting and unsetting flows
//================================================================

public class FlowMgr
{

private static final FlowMgr INSTANCE = new FlowMgr();
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private static IFloodlightProviderService mProvider;
private static ITopologyService mTopology;

public static final short PRIORITY_NORMAL = 10;
public static final short PRIORITY_IP_PACKETS = 1000;
public static final short PRIORITY_DNS_PACKETS = 2000;
public static final short PRIORITY_IP_FLOWS = 1500;
public static final short PRIORITY_ARP_PACKETS = 1500;

public static final short IP_FLOW_IDLE_TIMEOUT = 15;
public static final short NO_IDLE_TIMEOUT = 0;
public static final int BUFFER_ID_NONE = 0xffffffff;

public static final short DNS_QUERY_DEST_PORT = 53;

//------------------------------------------------------------
private FlowMgr()
{

// private constructor - prevent external instantiation
}

//------------------------------------------------------------
public static FlowMgr getInstance()
{

return INSTANCE;
}

//------------------------------------------------------------
public void init( final FloodlightModuleContext context )
{

mProvider = context.getServiceImpl(IFloodlightProviderService.class);
mTopology = context.getServiceImpl(ITopologyService.class);

}

//------------------------------------------------------------
public void setDefaultFlows(final IOFSwitch ofSwitch)
{

// Note: this method is called whenever a switch is
// discovered by Floodlight, in our SwitchListener
// class (not included in this appendix).

// Set the intitial ’static’ or ’proactive’ flows
setDnsQueryFlow(ofSwitch);
setIpFlow(ofSwitch);
setArpFlow(ofSwitch);

}
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//------------------------------------------------------------
public void sendPacketOut( final IOFSwitch ofSwitch,

final FloodlightContext cntx,
final OFPacketIn packetIn,
final List<OFAction> actions)

{
// Create a packet out from factory.
final OFPacketOut packetOut = (OFPacketOut) mProvider

.getOFMessageFactory()

.getMessage(OFType.PACKET_OUT);

// Set the actions based on what has been passed to us.
packetOut.setActions(actions);

// Calculate and set the action length.
int actionsLength = 0;
for (final OFAction action : actions)

{ actionsLength += action.getLengthU(); }
packetOut.setActionsLength((short) actionsLength);

// Set the length based on what we’ve calculated.
short poLength = (short) (packetOut.getActionsLength()

+ OFPacketOut.MINIMUM_LENGTH);

// Set the buffer and in port based on the packet in.
packetOut.setBufferId( packetIn.getBufferId() );
packetOut.setInPort( packetIn.getInPort() );

// If the buffer ID is not present, copy and send back
// the complete packet including payload to the switch.
if (packetIn.getBufferId() == OFPacketOut.BUFFER_ID_NONE)
{

final byte[] packetData = packetIn.getPacketData();
poLength += packetData.length;
packetOut.setPacketData(packetData);

}

// Set the complete length of the packet we are sending.
packetOut.setLength( poLength );

// Now we actually send out the packet.
try
{

ofSwitch.write( packetOut, cntx );
ofSwitch.flush();

}
catch (final IOException e)
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{
// Handle errors in sending packet out.

}
}

//------------------------------------------------------------
public void dropPacket( final IOFSwitch ofSwitch,

final FloodlightContext cntx,
OFPacketIn packetIn)

{
LOG.debug("Drop packet");

final List<OFAction> flActions = new ArrayList<OFAction>();
sendPacketOut( ofSwitch, cntx, packetIn, flActions );

}

//------------------------------------------------------------
public void createDataStreamFlow(

final IOFSwitch ofSwitch,
final FloodlightContext context,
final OFPacketIn packetIn,

List<OFAction> actions)
{

final OFMatch match = new OFMatch();
match.loadFromPacket( packetIn.getPacketData(),

packetIn.getInPort() );

// Ignore packet if it is an ARP, or has not source/dest, or is not IPv4.
if( ( match.getDataLayerType() == Ethernet.TYPE_ARP) ||

( match.getNetworkDestination() == 0 ) ||
( match.getNetworkSource() == 0 ) ||
( match.getDataLayerType() != Ethernet.TYPE_IPv4 ) )
return;

// Set up the wildcard object for IP address.
match.setWildcards( allExclude( OFMatch.OFPFW_NW_DST_MASK,

OFMatch.OFPFW_DL_TYPE ) );

// Send out the data stream flow mod message
sendFlowModMessage( ofSwitch,

OFFlowMod.OFPFC_ADD,
match,
actions,
PRIORITY_IP_FLOWS,
IP_FLOW_IDLE_TIMEOUT,
packetIn.getBufferId() );
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}

//------------------------------------------------------------
private void deleteFlow( final IOFSwitch ofSwitch,

final OFMatch match )
{

// Remember that an empty action list means ’drop’
final List<OFAction> actions = new ArrayList<OFAction>();

// Send out our empty action list.
sendFlowModMessage( ofSwitch,

OFFlowMod.OFPFC_DELETE,
match,
actions,
PRIORITY_IP_FLOWS,
IP_FLOW_IDLE_TIMEOUT,
BUFFER_ID_NONE );

}

//------------------------------------------------------------
public void floodPacket(final IOFSwitch ofSwitch,

final FloodlightContext context,
final OFPacketIn packetIn)

{
// Create action flood/all
final List<OFAction> actions = new ArrayList<OFAction>();

// If the switch supports the ’FLOOD’ action...
if (ofSwitch.hasAttribute( IOFSwitch.PROP_SUPPORTS_OFPP_FLOOD) )
{

actions.add(new OFActionOutput(
OFPort.OFPP_FLOOD.getValue()));

}
// ...otherwise tell it to send it to ’ALL’.
else
{

actions.add( new OFActionOutput(
OFPort.OFPP_ALL.getValue() ) );

}

// Call our method to send the packet out.
sendPacketOut( ofSwitch,

context,
packetIn,
actions );

}



310 APPENDIX B

//------------------------------------------------------------
public short getOutputPort( final IOFSwitch ofSwitch,

final FloodlightContext context,
final OFPacketIn packetIn )

{
// return the output port for sending out the packet
// that has been approved

}

//------------------------------------------------------------
private static int allExclude(final int... flags)
{

// Utility routine for assistance in setting wildcard

int wildcard = OFPFW_ALL;
for( final int flag : flags ) { wildcard &= ˜flag; }

return wildcard;
}

//------------------------------------------------------------
private void sendFlowModMessage( final IOFSwitch ofSwitch,

final short command,
final OFMatch ofMatch,
final List<OFAction> actions,
final short priority,
final short idleTimeout,
final int bufferId )

{
// Get a flow modification message from factory.
final OFFlowMod ofm = (OFFlowMod) mProvider

.getOFMessageFactory()

.getMessage(OFType.FLOW_MOD);

// Set our new flow mod object with the values that have
// been passed to us.
ofm.setCommand( command ).setIdleTimeout( idleTimeout )

.setPriority( priority )

.setMatch( ofMatch.clone() )

.setBufferId( bufferId )

.setOutPort( OFPort.OFPP_NONE )

.setActions( actions )

.setXid( ofSwitch
.getNextTransactionId() );

// Calculate the length of the request, and set it.
int actionsLength = 0;
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for( final OFAction action : actions )
{ actionsLength += action.getLengthU(); }

ofm.setLengthU(OFFlowMod.MINIMUM_LENGTH + actionsLength);

// Now send out the flow mod message we have created.
try
{

ofSwitch.write( ofm, null );
ofSwitch.flush();

}
catch (final IOException e)
{

// Handle errors with the request
}

}

//------------------------------------------------------------
private void setDnsQueryFlow( final IOFSwitch ofSwitch )
{

// Create match object to only match DNS requests
OFMatch ofMatch = new OFMatch();
ofMatch.setWildcards( allExclude( OFPFW_TP_DST,

OFPFW_NW_PROTO,
OFPFW_DL_TYPE ) )

.setDataLayerType( Ethernet.TYPE_IPv4 )

.setNetworkProtocol( IPv4.PROTOCOL_UDP )

.setTransportDestination( DNS_QUERY_DEST_PORT );

// Create output action to forward to controller.
OFActionOutput ofAction = new OFActionOutput(

OFPort.OFPP_CONTROLLER.getValue(),
(short) 65535 );

// Create our action list and add this action to it
List<OFAction> ofActions = new ArrayList<OFAction>();
ofActions.add(ofAction);

sendFlowModMessage( ofSwitch,
OFFlowMod.OFPFC_ADD,
ofMatch,
ofActions,
PRIORITY_DNS_PACKETS,
NO_IDLE_TIMEOUT,
BUFFER_ID_NONE );

}

//------------------------------------------------------------
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private void setIpFlow( final IOFSwitch ofSwitch )
{

// Create match object to only match all IPv4 packets
OFMatch ofMatch = new OFMatch();
ofMatch.setWildcards( allExclude( OFPFW_DL_TYPE ) )

.setDataLayerType( Ethernet.TYPE_IPv4 );

// Create output action to forward to controller.
OFActionOutput ofAction = new OFActionOutput(

OFPort.OFPP_CONTROLLER.getValue(),
(short) 65535 );

// Create our action list and add this action to it.
List<OFAction> ofActions = new ArrayList<OFAction>();
ofActions.add(ofAction);

// Send this flow modification message to the switch.
sendFlowModMessage( ofSwitch,

OFFlowMod.OFPFC_ADD,
ofMatch,
ofActions,
PRIORITY_IP_PACKETS,
NO_IDLE_TIMEOUT,
BUFFER_ID_NONE );

}

//------------------------------------------------------------
private void setArpFlow( final IOFSwitch ofSwitch )
{

// Create match object match arp packets
OFMatch ofMatch = new OFMatch();
ofMatch.setWildcards( allExclude(OFPFW_DL_TYPE) )

.setDataLayerType( Ethernet.TYPE_ARP );

// Create output action to forward normally
OFActionOutput ofAction = new OFActionOutput(

OFPort.OFPP_NORMAL.getValue(),
(short) 65535 );

// Create our action list and add this action to it.
List<OFAction> ofActions = new ArrayList<OFAction>();
ofActions.add(ofAction);

// Send this flow modification message to the switch.
sendFlowModMessage( ofSwitch,

OFFlowMod.OFPFC_ADD,
ofMatch,
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ofActions,
PRIORITY_ARP_PACKETS,
NO_IDLE_TIMEOUT,
BUFFER_ID_NONE );

}

}
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