
Eric F Crist

Things you will learn:

• Diagnose and remediate

authentication and authorization

problems in OpenVPN

• Overcome simple network and

startup script errors

• Learn OpenVPN log fi le format and

verbosity options

• Resolve operating system-specifi c

errors

• Discover various troubleshooting

techniques to resolve problems

in OpenVPN

• Improve performance and identify

bottlenecks in the network or

with hardware

• Determine external versus internal

network issues

Troubleshooting OpenVPN

Troubleshooting OpenVPN caters to

the OpenVPN user demonstrating

troubleshooting techniques for common

problems.

This book covers the most recent

versions of OpenVPN, ensuring the most

up to date issues and complexities are

covered. This book is a one-stop solution

for troubleshooting the most common

issues. This book starts by introducing

you to techniques such as packet sniffi ng,

log parsing, and OpenSSL. Overcoming

operating system specifi c issues is

illustrated. Later in the book, you will

learn about network and routing errors

by exploring concepts of IPv4 and IPv6.

Finally, the performance of your OpenVPN

deployment is analyzed and methods of

testing and improvement are explained.

By the end of this book, you will have

learned the best practices, tips, and tricks

to ensure smooth running of OpenVPN.

www.packtpub.com

$ 34.99 US
£ 28.99 UK

Prices do not include local sales
Tax or VAT where applicable

Tro
u

b
lesh

o
o

tin
g

 O
p

enV
P

N

E

ric F C
rist

Troubleshooting
OpenVPN

Get the solutions you need to troubleshoot any issue you
may face to keep your OpenVPN up and running

Troubleshooting OpenVPN

Get the solutions you need to troubleshoot any issue you may
face to keep your OpenVPN up and running

Eric F Crist

 BIRMINGHAM - MUMBAI

Troubleshooting OpenVPN

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2017

Production reference: 1150317

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78646-196-4

www.packtpub.com

http://www.packtpub.com

Credits

Author
Eric F Crist

Copy Editor
Dipti Mankame

Reviewer
Krzee King

Project Coordinator
Judie Jose

Commissioning Editor
Pratik Shah

Proofreader
Safis Editing

Acquisition Editor
Divya Poojari

Indexer
Pratik Shirodkar

Content Development Editor
Abhishek Jadhav

Graphics
Kirk D'Penha

Technical Editor
Gaurav Suri

Production Coordinator
Shantanu N. Zagade

About the Author

Eric F Crist hails from Cottage Grove, Minnesota, and he works as a product and systems
engineer for Abbott. He has a relatively wide range of professional and life experience
starting from physical security and access control as a low-voltage technician into software
development, system administration, and software development.

Eric has been a core member of the OpenVPN community since 2008 and helps manage the
open source online resources. He also wrote ssl-admin, and he is a lead for Easy-RSA, both
of which help manage Certificate Authorities and chains.

Eric collaborated with Jan Just Keisjer for the book, Mastering OpenVPN, in 2015, also for
Packt.

I would like to sincerely thank my wife, DeeDee, for encouraging me to write this book.
Without your prompting, encouragement, and motivation, I would have had a tremendous
amount of additional free time and sanity.

About the Reviewer

Krzee King is a self taught BSD/Linux user. He began helping in the OpenVPN community
in 2007, when he and the author Eric took control of the IRC channel, and later founded the
web forum with Eric and dougy. He believes very strongly in the importance of encryption,
and the need for strong encryption to be usable by all. He also had the pleasure of
reviewing OpenVPN 2 Cookbook by Jan Just Keijser.

Thanks to my lovely wife and my parents, for their endless support. I love you guys.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/178646196X.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/178646196X
https://www.amazon.com/dp/178646196X

Table of Contents
Preface 1

Chapter 1: Troubleshooting Basics 5

A recommended toolkit 6
Log search and filtering 6

grep 7
less, more, and most 7
Regular expressions 9

Network sniffing and analysis 12
tcpdump 12
traceroute 13
mtr 14
ping 15
Wireshark 16

X.509 verification and inspection 17
OpenSSL 17
Wireshark 18

Troubleshooting basics 21
Summary 22

Chapter 2: Common Problems 23

Narrowing the focus 24
Sample scenarios 24

Scenario 1–unable to access VPN 25
Scenario 2–cannot access external web when on VPN 26

Suspecting recent changes 29
Supported operating systems 30

Embedded devices 31
Semi-embedded systems 32
Virtual servers 33

IP addresses 33
Firewalls 37
Duplicate client certificates 38
Overcomplication 38
Summary 39

Chapter 3: Installing OpenVPN 40

Common installation problems 40

[ii]

Compiling OpenVPN 40
Packages and installers 45

The advantages of precompiled installers 46
Driver installation 47

Alternative clients 49
Summary 49

Chapter 4: The Log File 51

Logging options 51
Logging levels 58

Verbosity 0 60
Verbosity 1 62
Verbosity 4 64
Verbosity 7 68

Common log messages 72
Startup messages 72

Version and compile string 72
Option warnings 73
Configuration parameters 74

Operational messages 76
Certificate messages 77

Summary 81

Chapter 5: Client and Server Startup 82

File and process permissions 82
Privilege de-escalation 82
Networking privileges 83

Port assignment and use 84
Multiple daemons 84

Adapter and routing table changes 86
Chroot 87

Scripting 89
Up and down scripts 90
Connect and disconnect scripts 93

UDP troubleshooting 94
UDP and firewalls 95

Summary 95

Chapter 6: Certificates and Authentication 96

File permissions 97
Pre-shared keys 98
Certificate authentication 98

[iii]

Certificate chain overview 98
The Certificate Revocation List 101
System date and time 104

Authentication and plugins 106
Usernames and passwords 107
--ccd-exclusive 107

Summary 108

Chapter 7: Network and Routing 109

Connectivity 109
Inbound connection–server 109

Publicly addressed server 111
Privately addressed server with port forwarding 115

Outbound connection–client 119
Firewall filters and inspection 120
TLS authentication 120
Routing 123

Internal routing 126
External routing 126
Pushing routes 127

Routes behind clients 127
Kernel versus process routing 128
Route conflicts 129

Redirect gateway 129
General network concerns 130

Path MTU and MSS 130
Summary 135

Chapter 8: Performance 136

Networking 136
Rate limiting 137

Cryptographic performance 140
Library differences 140
Cipher and AES-NI 141
Result summary 141

Single thread 142
Summary 143

Chapter 9: External Problems 144

Inspection and filtering 144
Obfuscation 147
Encryption 148

[iv]

Geographic and source address exclusions 148
What can be done 149

Source IP address 150
DNS settings 151

Routing path performance 151
Summary 152

Useful links 152
Manual or man pages 153
Release notes 153
Support channels 154

Index 155

Preface
OpenVPN is arguably the best cross-platform secure networking technology currently
available. The development community is large and active every day of the year, with new
developers popping up regularly with patches and feature requests. It is not only used by
hobbyists, but also by for-pay VPN providers strewn about the Internet.

In Troubleshooting OpenVPN, we identify the most common problems and pitfalls in the
deployment of OpenVPN. We demonstrate where and how to use an assortment of
diagnostic and investigative tools, both common and lesser known.

By the end of this book, you should be able to understand and identify where a problem
resides, both within your VPN infrastructure and also from external causes. The log file is
fully detailed and you will be able to leverage the varying logging levels to suit your
troubleshooting efforts.

What this book covers
Chapter 1, Troubleshooting Basics, helps the reader break down problems into digestible
portions with related components. Some of the concepts discussed include generic
techniques useful in more than just OpenVPN problem solving.

Chapter 2, Common Problems, will identify the issues seen most frequently by both novice
administrators and experienced administrators alike.

Chapter 3, Installing OpenVPN, covers compilation and installation of OpenVPN on a
variety of platforms. Virtual network adapters, alternative client packages, and software
dependencies will be identified.

Chapter 4, The Log File, focuses heavily on the OpenVPN log file and how to adjust and
decipher the verbosity of the available messages. This is an extremely valuable resource
when identifying and correcting problems.

Chapter 5, Client and Server Startup, discusses software and system dependencies necessary
for process startup. Items like file permissions, scripting, and basic networking all
contribute to successfully running OpenVPN.

Chapter 6, Certificates and Authentication, illustrates the varying authentication paths and
where breakage can occur. System time, authentication backends and scripting are all
addressed.

Preface

[2]

Chapter 7, Network and Routing, shows where network topology and routing bring
complexity to the OpenVPN architecture. Conflicting routes, address inconsistency, and
subnetting will all be covered.

Chapter 8, Performance, was written to help you identify performance bottlenecks and
places where efficiencies can be improved.

Chapter 9, External Problems, covers where and when problems can exist outside your
OpenVPN infrastructure, and even entirely outside your network or control.

What you need for this book
This book was written with the VPN administrator in mind. Many of the examples within
leverage both the server and client sides of a connection, and lack of control at the server
end will prove frustrating. I am assuming you either have access to a server, or have the
means to create a functioning server, with your operating system of choice.

Examples within this book are focused primarily on Linux or BSD command-line tools, but
there are a number of Windows examples interspersed within the content. To make the
most of your time, try to have the following available:

An OpenVPN server, ideally running on Linux or FreeBSD
An OpenVPN client, running any operating system you choose
The ability to install software on and connect to the OpenVPN server without
OpenVPN running

Who this book is for
An OpenVPN server administrator is most likely to use this book to its potential.
Enterprising VPN users may also be able to use the techniques and applications described
within to their own benefit, however. Much of this title covers basic troubleshooting skills
that can be leveraged in nearly any situation, not just with OpenVPN.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Preface

[3]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The --
auth-user-pass-verify script is the last in a long chain of scripts that are run."

Any command-line input or output is written as follows:

author@example:~-> sudo openssl s_server -key key.pem –cert cert.pem -WWW -
accept 443

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "By going to Preferences |
Protocols | SSL, Wireshark provides a way to import the TLS key we created earlier."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

http://www.packtpub.com/authors

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Troubleshooting Basics

Troubleshooting a failed server or client deployment can be a daunting task, particularly for
a novice user. A vast number of users do not fall into the typical system administration role,
and they are either hobbyists or just venturing into virtual networking and cryptography.
By the end of this chapter, the tools' key to identifying and correcting problems will be
illustrated, and their utility will be demonstrated.

The general concepts of troubleshooting apply not only to fixing a problematic OpenVPN
client or server process but also to nearly everything encountered in day-to-day work. At its
most basic level, the idea of divide and conquer is the phrase of the day. Separating
components that are functional from those that are broken will quickly absolve the
administrator from needless work and investigation.

The book is structured progressively, and it aims to help you find solutions quickly. This
book will cover the following key topics surrounding fixing, identifying, and resolving
OpenVPN problems:

A troubleshooting toolkit is a key to gleaning all the data needed to focus on a
problem and resolve it.
Common OpenVPN issues are explored. Years of help supporting OpenVPN
administrators on the forums and in IRC have provided a plethora of data, and
the most common issues faced in the field are identified and solutions are
provided.
The OpenVPN installation on various operating systems is covered. The best
client for each operating system is identified, including mobile device options.
Where to go to obtain the installers and files needed.
Log files are the primary source of troubleshooting data. When to use what
verbosity level and how to search for the data within the log is explained.

Troubleshooting Basics

[6]

Startup and shutdown of the OpenVPN process for both the client and the server
can cause stress and anguish. OpenVPN packaging is explained, where to go for
help is shown, and how to troubleshoot those startup routines will be
demonstrated.
Routing and networking can be a difficult concept to comprehend. This is likely
the number one area of difficulty for beginning OpenVPN administrators.
We will discuss performance issues and how to correct performance-related
issues. Also, cipher suite, key size, compression, and routing optimization will be
illustrated.
Finally, problems external to OpenVPN will be explored. Such things include
local LAN address collisions and incorrect firewall filtering, both locally and at
an ISP.

A recommended toolkit
There are a number of common utilities needed to investigate network and public key
infrastructure (PKI) issues. The samples within this book will be from a variety of
operating systems. The server will be on FreeBSD 10.2, and we will show macOS X and
Windows 7 and 10.

The majority of diagnostics will be done at the server side of the connection, but there are
useful things to glean from client-side utilities. The tools listed here will be demonstrated,
but this book isn't a manual for their use. For full documentation, refer to the
documentation links provided.

Both the FreeBSD project and GNU have web interfaces for browsing man
pages. The main page for these can be found at the following paths:

FreeBSD: h t t p s ://w w w . f r e e b s d . o r g /c g i /m a n . c g i

GNU: http://www.gnu.org/manual/manual.en.html

Log search and filtering
Detailed logging is available from OpenVPN on both the client and server sides, which
allows configuration issues to be identified quickly. Having the ability to search these logs
for the pertinent information is vital to successfully correcting problems and verifying a
functional service. The utilities identified here will aid in these search tasks.

https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
https://www.freebsd.org/cgi/man.cgi
http://www.gnu.org/manual/manual.en.html

Troubleshooting Basics

[7]

grep
The grep utility is likely to be one of the first utilities learned by an aspiring Unix user.
Finding strings or keywords within a file or a set of files quickly is the first step in tracking
down entries in a log file or a configuration directive. grep allows you to search and
highlight specific lines, context around those lines, filenames, line numbers, and more. In
addition to finding lines of text, grep can also omit lines you do not want to see.

The #openvpn support channel on Freenode (irc.freenode.net) IRC as well as on the
OpenVPN forum (http://forums.openvpn.net), for example, request that users seeking
support omit comments and empty lines with the following command:

 grep -vE '^#|^;|^$' server.conf

Take a sample config file:

 ecrist@meow:~-> cat foo.conf
 # this is a comment
 ; this is also a comment

 # the line above is empty

 config argument

 ; another comment

If we pipe that through our grep filter:

 ecrist@meow:~-> grep -vE '^#|^;|^$' foo.conf
 config argument

less, more, and most
Paging applications are a common feature of Unix and Unix-like operating systems. These
tools allow the user to view a large amount of content, typically text, to be viewed one page
at a time. In general, there are three such common tools, less, more, and most.

The more utility is the most ubiquitous of the three, being installed by default on every
Unix, Linux, or other similar system I have used for the past 20 years. Being the first paging
utility, the more utility's general functionality is limited. When output from a file or pipe
contained more content than what could be displayed on a single screen, the content would
be paged.

http://irc.freenode.net
http://forums.openvpn.net

Troubleshooting Basics

[8]

Scrolling down through the content was possible either a line at a time, using a down arrow
key press, or a full page/window at a time with a press of the spacebar. Scrolling back up
was not supported:

In 1983, Mark Nudelman authored the less utility specifically for backward scroll
capability. It was released in May, 1985, via the newsgroup net.sources. Many features have
been added to less, including pattern match highlighting and vi-like movement through
the stream. To date, there have been over 450 released updates.

Modern Unix and Linux systems typically ship just the less utility now, with more being a
hard-link to the less binary. When executed this way, less operates in a compatibility
mode similar to more. This behavior can also be evoked by setting the environment variable
LESS_IS_MORE.

The final pager of note is most, which operates similar to less, but adds the capability for
multiple windows within a single terminal session. The most pager also appears to support
color escape sequences better than less. The following screenshot shows most displaying
two windows, one with the less man page and the other with the most man page:

Troubleshooting Basics

[9]

There are packages for most available for FreeBSD, macOS X, and Linux, but the latest
release of most was in 2007, and the development seems to have stalled entirely. The
windowed features can be replaced with other tools such as tmux and screen, which fall
outside the scope of this book.

Project pages for the less and most utilities can be found at the following
paths:

less: h t t p ://w w w . g r e e n w o o d s o f t w a r e . c o m /l e s s /

most: http://www.jedsoft.org/most/index.html

Regular expressions
Regular expression (regex) is a syntax that can be leveraged with string or pattern
matching. There are already troves of other books and online guides about constructing
quality regular expressions, but some basic syntax here will get you started in your
troubleshooting endeavors.

http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.greenwoodsoftware.com/less/
http://www.jedsoft.org/most/index.html

Troubleshooting Basics

[10]

This book will primarily use regular expressions in conjunction with the grep utility
described earlier. Coupling regex with grep will allow us to specifically grab or omit lines
from a log file. This is particularly useful when looking for specific client errors, or omitting
a slew of noisy log entries from the view.

Regular expressions are composed of a sequence of pattern matching characters and
character classes. Character classes are simply groups of characters or character types.

Some syntax characters to note are as follows:

Character Example Description and use

^ ^foo

Line must start with foo.
[^ab]

Excludes a and b.

Denotes the start of the line. Inside a
character class, denotes character
exclusion.

$ foo$

Line must end with foo.
Denotes the end of the line.

\ Hello\.

Line contains Hello followed by a
period.

Signifies the following character should
be interpreted literally. To match a \
character, escape itself: \\.

() (foobar)

Groups foobar together as a single
string.

Start and end of a group.

[] [0-9a-f]

Matches characters 0 through 9
and a through f.

Start and end of a character class.

\d [\da-f]

Matches characters 0 through 9
and a through f. Note similarity to
previous example.

Matches numeric characters. Same as
[0-9].

\w ^\d\w

Matches 0_foobar but not foobar
(line must start with digit).

Matches alphanumeric characters
including digits, letters, and the
underscore. Same as [0-9a-fA-F_].

\s and \t [\w\s]

 Matches any word, character, or
space character one time.

Matches space and tab, respectively.

Troubleshooting Basics

[11]

. foobar.

Matches foobar plus any other
character. (foobars, foobar1,
foobar_, and so on).

A period matches any character.

{min,
max}

[0-9a-f]{1,9}

Characters 0–9 or a–f must appear
at least once, and up to nine times.
[\d]{3}

Any digit must appear exactly
three times, does not have to be the
same digit.

Specifies the minimum and maximum of
the previous character or group. When
only a single quantity is defined, indicates
an exact count.

? (foobar)?

foobar may or may not appear.
The previous character or group may or
may not appear.

+ \w+

Matches any word character one or
more times.

Indicates the previous item (group,
character class, or character) must appear
at least once, or more.

| (ab)|(bc)

Both ab and bc match.
A separator, like a logical OR.

There are a few online tools that can be used to validate and test your regular expression
syntax. This is a good idea as they will demonstrate, graphically, how the changes to your
pattern affect what is matched within a string or series of strings. Some of the online tools
available online are as follows:

Regex Pal: http://www.regexpal.com
Regexr: http://regexr.com

For additional reading, I strongly suggest the book commonly referred to as the camel book
Programming Perl, 4th Edition, by Larry Wall. When I am stumped or need to understand
how a regular expression is functioning, I find it an invaluable resource and a common
reference.

You can also find tutorials and reading by navigating to
http://www.regular-expressions.info.

http://www.regexpal.com
http://regexr.com
http://www.regular-expressions.info

Troubleshooting Basics

[12]

Network sniffing and analysis
There will be times when log files and OpenVPN output alone are not enough to identify a
problem. It is possible that the issue resides outside of the OpenVPN process or the
configuration therein. This could mean that there is a protocol error for some program
being encapsulated within the tunnel or there is some upstream issue not readily apparent.

The tools listed here will provide an insight to the protocols and environment around and
consuming your OpenVPN setup.

tcpdump
The ultimate command-line network diagnostic tool is the venerable tcpdump. tcpdump is
used to capture network traffic on an interface, and it provides an interface to filter-specific
traffic, including unique destination addresses, ports, packet types, protocols, and more.
This tool can be used at a very low level to determine maximum transmission unit (MTU)
issues, protocol issues, and many others.

Depending on your level of networking experience, this tool may or may not be directly
useful, but packet captures can be sent to more experienced people.

Do not rule this tool out even if you do not fully understand it yourself.

The following screenshot shows a simple single ping from a test host to Google's 8.8.8.8
DNS resolver IP. We had to use sudo as the packet capture requires root privileges on the
network interface. Our first command line included option -A, which specifies ASCII
output and is the unintelligible at the end of each packet info line. The second example
shows the same ping without the -A option (same screenshot):

Troubleshooting Basics

[13]

A much more detailed introduction to tcpdump is available by going to Daniel Miessler's
blog at https://danielmiessler.com/study/tcpdump/.

traceroute
On Linux, BSD, and macOS X, traceroute, or on Windows tracert, knowing the path to
assorted destinations is a crucial tool. You can quickly ascertain whether traffic is departing
the default gateway or a VPN connection. As a bonus, response time to each hop along the
path is calculated, which may indicate slow points along the route.

Contrary to the popular belief, these commands are not for hacking or seeing how many
people are using a website; you will not improve your K/D ratio in Call of Duty®. These are
legitimate network diagnostic tools.

Check out the YouTube video by NextGenHacker101 for a quick laugh at h t

t p s ://w w w . y o u t u b e . c o m /w a t c h ?v =S X m v 8q u f _ x M .

https://danielmiessler.com/study/tcpdump/
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM
https://www.youtube.com/watch?v=SXmv8quf_xM

Troubleshooting Basics

[14]

For a quick change of pace, here is a screenshot of the tracert command from Windows 8.
From the output, we can see that there are eight hops between my test Windows 8 system
and Google's resolver:

mtr
My traceroute or mtr is a utility that combines the functionality of ping and
traceroute. This tool can help illustrate where along a network path latency or packet loss
occurs. I still prefer to use ping and traceroute individually at times, but use mtr to
quickly identify network connectivity issues.

Both tcpdump and tracert will stop, by default, after the last hop or a maximum of 30 has
been reached. mtr, on the other hand, will continue cycling until quit with a Ctrl + C. ping
on *nix system functions in a similar manner of pinging indefinitely.

Troubleshooting Basics

[15]

Here is a sample output from mtr between my test system and the Google website:

Notice the Snt column and that all list 20 apart from hop seven. I pressed Ctrl + C just as
the cycle hit hop seven, so the twentieth packet was never sent.

ping
Good ol' ping. This is usually the first tool in the network troubleshooter's toolbox. This is
generally the quickest way to determine if a remote system is alive or not. This tool is very
much cross-platform, and it is available on Linux, Unix, and Windows systems by default.
Only the most hostile or ill-managed corporate networks block this. The following
screenshot shows an example of ping:

Troubleshooting Basics

[16]

Wireshark
Coupled with the tcpdump utility, and sometimes on its own, Wireshark is arguably the
most powerful tool in our network troubleshooting toolbox. This tool provides a relatively
easy-to-use graphical interface to navigate packet captures. In addition, it provides a
filtering interface that allows you to isolate specific streams, protocols, and destinations.

One particular trick Wireshark can do is to decrypt TLS and SSL traffic, given the private
and public keys of a web server or server/client pair. This is analogous to the features of the
latest next-generation firewalls that do decryption at the border for corporate networks.

The following screenshot shows a short eight-packet transaction for a short IPv6 ping:

In my experience in the scope of OpenVPN, Wireshark is primarily used along side
tcpdump. Many OpenVPN servers and clients will have tcpdump readily available, already
installed, or easily installed when needed. Wireshark requires X11 or other graphical tools
and libraries that may not be as easy to install.

Troubleshooting Basics

[17]

It is easy to take a packet capture using tcpdump, save the capture to a file (see the -w
option for tcpdump), and transfer that capture to a system with Wireshark installed. The
observant reader may have noted the window title in the earlier screenshot: the packet
capture here is actually being read-in from a file.

X.509 verification and inspection
Cryptography and PKI are often difficult to understand and much more difficult to resolve
issues with. There are primarily two utilities, OpenSSL and Wireshark, that can aid with
peering into the cryptographic components of OpenVPN.

OpenVPN also supports PolarSSL (recently known as ARM® mbed™) as
a replacement for OpenSSL. The latest package, 2.2.1, includes some
rudimentary programs for certification creation, but it does not
include s_client and other utilities included with OpenSSL. More
information can be found on their website at h t t p ://t l s . m b e d . o r g .

OpenSSL
OpenSSL is the ubiquitous library for X.509 certificate PKI. OpenVPN has supported the use
of X.509 certificates for TLS connections since before 2002. The OpenSSL command-line
utilities allow certificate chain verification, outputting certificate details for inspection, build
Diffie-Hellman parameters, and even substantiating an SSL/TLS server or client instance.

I have used the s_client subcommand to fetch the full SSL certification chain for the
Google website. All three certificates are listed: the GeoTrust CA root certificate, the Google
Intermediate CA (they get to sign their own certificates), and the server certificate their
intermediate CA issued. See the following code:

 author@example:~-> openssl s_client -showcerts -connect openvpn.net:443

With this command, I manually copied each certificate block and saved them to individual
files, GoogleSrv.crt (certificate 0), GoogleCA.crt (certificate 1), and GeoTrustCA.crt
(certificate 2).

http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org
http://tls.mbed.org

Troubleshooting Basics

[18]

A certificate block looks like the following:

 -----BEGIN CERTIFICATE-----
 MIIDfTCCAuagAwIBAgIDErvmMA0GCSqGSIb3DQEBBQUAME4xCzAJBgNVBAYTAlVT
 [snip]
 NhGc6Ehmo21/uBPUR/6LWlxz/K7ZGzIZOKuXNBSqltLroxwUCEm2u+WR74M26x1W
 b8ravHNjkOR/ez4iyz0H7V84dJzjA1BOoa+Y7mHyhD8S
 -----END CERTIFICATE-----

Wireshark
Wireshark was discussed previously, but this is where that utility will demonstrate its
capability. In addition to the ability to decode and illustrate various (nearly all) protocol
streams, given the private and public keys available to a VPN admin, it can decipher SSL
and TLS encrypted streams, including OpenVPN streams.

To demonstrate the ability to decrypt a TLS session, we will use the OpenSSL s_server
command to create a generic HTTPS server. I have created a very simple web page that
simply reads, This content is encrypted. I used the following command to create the server.
Note that to start the daemon on port 443, you need to use root or sudo. To avoid
escalating privileges, you can use a port 1024, such as 4443.

To begin, create a certificate/key pair:

 author@example:~-> openssl req -x509 -newkey rsa:2048 -keyout
 key.pem -out cert.pem -days 365 -nodes

Then, we start our server:

 author@example:~-> sudo openssl s_server -key key.pem -cert
 cert.pem -WWW -accept 443

The s_server process will use the current working directory for its web root, so I placed
our web content there as index.html.

The preceding command used sudo because it opened a listening port on
a privileged port. All TCP/UDP ports numbered 1024 and lower are
considered privileged, and they require root or administrator permissions
to open.

Now, I will start Wireshark and set it to capture traffic on the loopback interface. Because
we are going to connect to the localhost address (127.0.0.1 or ::1), the traffic will use
this interface. If we connect to the actual system IP address, then capture traffic on the real
interface.

Troubleshooting Basics

[19]

Now, open a web browser to the system. In my case, this is the local machine. The URL I
will use https://localhost/index.html, if you changed the port, add it to the URL
such as https://localhost:4443/index.html.

If all the steps mentioned earlier were performed correctly, you should have a browser
window with a simple message and a Wireshark window with approximately 25 packets
captured:

In the packet capture, you will see some protocol data that is indicative of what is
happening. We will touch on the protocol exchanges later, but you can clearly see the TLS
handshake and cipher exchange taking place:

The lines in the capture have a black background, indicating the transmission carried
encrypted payload data. Next, we will take the certificate and the key we created earlier and
import those into Wireshark. This will allow us to view the transaction.

Before we do that, we will examine packets 17 and 19. Both of these are labeled with the
generic phrase Application Data and contain our actual HTML. These packets are
encrypted, and they examine them by clicking on them.

Troubleshooting Basics

[20]

By going to Preferences | Protocols | SSL, Wireshark provides a way to import the TLS key
we created earlier. On macOS X, the dialog resembles the following screenshot. You can
specify the port here, but it is optional. In my case, I simply listed the IP 127.0.0.1 and the
key file:

If we go back and inspect our packets now, we can see a new tab in the payload pane. The
first is labeled Frame, and the second is Decrypted SSL data:

Troubleshooting Basics

[21]

Click on the second tab for packet 19, and we can actually see the decrypted page content:

 <html>
 <head>
 <title>
 Hello!
 </title>
 </head>
 <body>
 <p>This content is encrypted.</p>
 </body>
 </html>

The ability to decrypt the OpenVPN TLS streams is significant enough that
the Wireshark wiki itself has a page specifically demonstrating this
capability: h t t p s ://w i k i . w i r e s h a r k . o r g /O p e n V P N .

Troubleshooting basics
The concept of breaking apart a problem in any system, whether it be electronic, software,
physical, or even behavioral, is a common principle. The phrase, divide and conquer is often
seen, and true to reality.

Readers of this book are likely familiar with the common light bulb. You may not realize it,
but there is a series of automatic troubleshooting steps performed.

Imagine the following scenario:

You walk into the office, many are already at work. You step into your office and flip on the
light, nothing happens. You flip the switch back and forth a couple times before sitting
down and turning on the computer in the dark.

You then pick up the handset on your Cisco IP phone, calling building maintenance. You
speak with someone at the other end, exclaiming that the bulbs are out in your office.

https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN
https://wiki.wireshark.org/OpenVPN

Troubleshooting Basics

[22]

What just happened?

A large number of things occurred that weren't directly acknowledged. Most of these steps
happened automatically without realization:.

Walking into the office. Nothing is out of the ordinary.1.

In reality, everyone else was working. There wasn't an uncomfortable silence or
notable lack of work or exceptional amount of generalized confusion.

You walk in and flip the light switch in your office; more than once.2.

You've tried to turn on the light. After the first failure to exhibit illumination,
you've automatically tested the switch by flipping it a couple times. Sure, it is not
overly scientific, but it's a general functional test.

You start working at your own computer, contacting support on your VOIP3.
phone.

Power works in your office. The computer works, and network PoE is
functioning.

You've ascertained the only thing not working is the light in your office.4.

What's neat about this generic situation is many people do so without realizing it. Some
have cars and do this when it starts or doesn't start, maybe on a cold morning. Maybe after
leaving the light on over night. We need to apply this concept and method to OpenVPN or
anything really.

Summary
This chapter touched on some of the most common tools used to identify and resolve
configuration or network issues within the scope of OpenVPN. Some subjects, such
as regular expressions, were identified; however, that may not be obviously useful to a
novice administrator.

Some extremely powerful capabilities were also demonstrated with Wireshark's ability to
decrypt SSL streams and tcpdump able to capture packets. Although these are most useful
to an experienced network administrator, they can still be leveraged by a new or novice
administrator. Having the ability to extract troubleshooting data is most critical when
seeking help from others.

2
Common Problems

There is a fairly consistent theme within the OpenVPN support channels, IRC, the web
forums, and the mailing list. The novice users of OpenVPN generally ask the same
questions. Most common issues can be resolved by simply dutifully reading the OpenVPN
manual (http://openvpn.net/man) and taking notes. Although this book aims to inform the
reader of additional techniques and tools, the man page is a considerable wealth of
knowledge, and the close scrutiny of its contents will be beneficial in the long run.

Based on questions found in IRC and on the forums, the novice OpenVPN administrator
struggles most with identifying the root cause of a problem and is generally lost with how
to find that cause. The vast majority of problems can be grouped pretty easily into a small
subset of issues, often quickly realized with initial configurations:

Certificate problems
Incompatible tun/tap configuration settings between a server and a client
IP range conflicts with VPN and remote local LAN
Routing misconceptions
Incorrect assumptions on utility and layer 4 integration

Outside the common areas mentioned earlier, easily addressed issues, lying just beyond the
OpenVPN program influence can confound even the most experienced system
administrator. Ensuring that the operating system that the server or client is attempting to
use is supported can prevent a configuration from working, right out the gate.

In this chapter, we will cover some of the most common problems associated with
OpenVPN server and client implementations. To that end, methods for segregating various
components of OpenVPN and identifying and validating those components that are
working will be covered. At the end of this chapter, we will prioritize assorted functions,
features, and processes to aid in quick problem resolution.

http://openvpn.net/man

Common Problems

[24]

Narrowing the focus
When your VPN fails to work the way it was expected, it's best to narrow down the cause of
the problem. In the simplest case, a VPN is used by a client wanting to talk to a resource
that exists on the VPN. Having a diagram or flow chart of your finished VPN topology,
including the VPN, the server-side LAN, and resources that will be exposed to the clients,
will help rule out working components.

Here is a sample network diagram depicting a simple corporate network with an OpenVPN
server. There are a number of internal components that are inaccessible to the general
Internet, an application server, and an internal website. Externally accessible are a public
website, the corporate e-mail server, and the OpenVPN server.

The dotted lines show our protected or internal traffic, and the solid lines show general
Internet routed traffic:

Example network diagram used in scenario 1 and 2

Sample scenarios
The utility of the diagram mentioned earlier are best demonstrated with some useful
scenarios. Having the ability to identify a specific component of the network as a potential
culprit to a problem, small or large, is important and easiest to understand in a simple,
nonproduction case.

Common Problems

[25]

In our following scenarios, we have a remote worker, also known as a road warrior. These
users have historically been sales staff but are increasingly becoming engineers and
executives.

Scenario 1–unable to access VPN
The remote worker has reported that she is unable to connect to the VPN. She has stated
that the OpenVPN client indicates that she is connected, but she cannot fetch e-mails or see
the internal corporate website. Normal web browsing is working. Here are the questions
you could ask the user:

Does the remote worker have an Internet access? We can assume so because she
has stated that normal web browsing works.
Does the client connect to the VPN server? The remote worker states that the
OpenVPN client shows that she is connected to the VPN. This, itself, isn't
necessarily telling, as the client can still have routing or other errors that will be
more apparent in the logs. The simplest log check is to look for the following in
the log on the client or server side:

 2016-04-10 10:11:19 Initialization Sequence Completed

Can the remote worker ping the VPN server's internal VPN IP address? We
have omitted IPs within the diagram earlier. The VPN server will have a LAN
address as well as a VPN address. Once connected to the VPN, you can look at
the tun or tap device or look in the logs. On Windows, this would be in the
normal Network Connections control panel; on a Unix system, using ifconfig
on the correct device is enough, in our case, utun1:

Successful ping of VPN server from the client.

Common Problems

[26]

We have now validated that the VPN is up and the client is connected. Troubleshooting
from here passes to other systems outside the direct control of OpenVPN. There could be a
faulty rule in the firewall, or the mail or web server could be offline.

In Chapter 4, The Log File, we will dig into the log file to ensure all aspects of the
configuration were accepted and properly configured. In later chapters, identifying,
routing, and other network issues will also be explained. For now, we have passed
troubleshooting on to the corporate firewall team because we have verified that actual
connectivity to the VPN itself is functional.

Scenario 2–cannot access external web when on VPN
Our hardworking remote worker is finally able to connect to the VPN. Checking e-mails is
working great, and all the internal company web resources are available to her. Quickly,
however, she realizes that browsing websites not belonging to the company is no longer
possible. She has tried some of the common web pages, and checking her personal e-mail
account also fails. Another call for support! Here are the questions to ask the user:

Does a normal function return after disconnecting? Having the client side
disconnected is useful in isolating the issue to the local LAN. If the problem goes
away, there is a good chance that some configuration property is the cause of the
issue.
Does the issue reoccur once reconnected to the VPN? Once the VPN connection
has been re-established, test that the failure case has returned. If so, we can assign
some blame to the VPN as the cause of the issue.
What route is the Internet-bound traffic taking? A common option used by
OpenVPN administrators is to route all traffic through the VPN (see the option -
-redirect-gateway).

Common Problems

[27]

Take the following diagram into consideration. We have the same corporate network we
had earlier, with some external resources, a web server and a personal e-mail server.
Without the --redirect-gateway option, the traffic flows might resemble the lines in this
diagram:

Normal Internet-bound traffic flow

When the --redirect-gateway option is added, the the web traffic is also routed through
the VPN gateway. Through finer, more specific routing table entries, the VPN effectively
overrides the client's default gateway, causing the path of Internet-bound traffic to flow
from the client, to the VPN server, and back out to the VPN server's default gateway.

If the gateway isn't configured correctly and the VPN is configured to route all traffic,
including Internet-bound traffic, it could be blocked. Some issues could include incorrect
Network Address Translation (NAT) or firewall rules. In this scenario, the LAN resources
are functional, but Internet browsing from the client would be dysfunctional.

Common Problems

[28]

The following diagram shows traffic passing to the VPN server which is sort of a dead end
there. Either the kernel of the operating system doesn't know what to do with it, or traffic is
being blocked by a firewall:

Internet traffic routed to VPN server, blocked at server

If NAT is properly configured, and the firewall rules necessary are defined, a traffic flow
should progress from a VPN client to a VPN server, and back out to the Internet. Based on
your requirements and configuration, the corporate firewall may come into play, both on
inbound and outbound traffic or only on one leg.

Note that the following diagram shows the VPN connection passing through the firewall
for both the inbound VPN connection and the outbound Internet traffic. This is subject to
the overall network configuration and is demonstrated as a typical example. Please don't
take this too literally:

Common Problems

[29]

Internet traffic routed to a VPN server: successful flow to Internet

This second scenario was much easier to troubleshoot with the aid of diagrams. Even if
you're just creating a VPN for your home network or a quick impromptu VPN at work, a
diagram or even a quick sketch will help to identify any problems that may arise.

Network diagrams and flowcharts can be quickly and easily created with a variety of
software and tools. Both Microsoft Visio and Gliffy (https://www.gliffy.com) are paid
options; Visio is used for the majority of diagrams in this book. A good free option is Dia
(http://dia-installer.de).

I attempted to use Gliffy for the diagrams in the book, initially. However, I found that
transparency, connection curves, and image setting were much more difficult or
unsupported. Overall, it's a good tool, and many of my difficulties were related to some of
the constraints I had to overcome authoring this book.

Suspecting recent changes
Once a VPN is up and running successfully, it's a good practice to document the
configuration of all aspects. This should include kernel changes such as sysctl, compiled
options, network interface values, firewall rules, and routing tables. Having a flow chart of
your authentication scheme is also useful.

https://www.gliffy.com
http://dia-installer.de

Common Problems

[30]

Any time a change is made to any of the components of the VPN, be sure to update your
documentation and keep copies of the old versions. Quite often, a seemingly innocuous
change will prove to be the culprit when there is a later failure. Solid documentation will
aid in identifying what, specifically, changes from your working state to your non-working
state.

One specific example from IRC involved a long time idler who is relatively knowledgeable
with OpenVPN and routinely helps other users. This user had a working OpenVPN setup
with Amazon Web Services (AWS) and switched to another provider, but both companies
provided Red Hat 6 VMs. The existing configuration files, certificate, and key would be
copied to the new host. The only change was to be the external IP address of the new VM.

I worked with this user for hours over the course of a few days analyzing firewall rules,
configuration, network settings, to no avail. Finally, another user was following our
dialogue and poked at the new provider's website and chimed in, Oh, they use OpenVZ. Did
they grant your VM tun/tap access?

Sure enough, the user was able to log in to the support portal to request the device access
and the VPN started working.

Supported operating systems
Arguably, the easiest thing to resolve is identifying an operating system that has proper
support for OpenVPN. If the tun or tap device is not supported, it quickly rules out
OpenVPN or limits the specific features of OpenVPN, but is often overlooked. Both iOS (all
versions as of this writing) and Android (also, all versions as of this writing) do not support
the tap device.

There are other operating systems that don't support virtualized network devices at all.
FreeBSD jails, for example, don't support the tun or tap devices without some significant
configuration and startup tricks. Many embedded operating systems, generally on routers
and switches, do not fully support OpenVPN. Even if your platform of choice claims to
support the virtual network devices, it's best to do some digging to ensure that OpenVPN
runs reliably.

Common Problems

[31]

Embedded devices
There is a long list of embedded devices that support OpenVPN. Snom VOIP phones have
the ability to support OpenVPN for secure telephony
(http://wiki.snom.com/Networking/Virtual_Private_Network_(VPN)) using a custom
firmware available on the Snom website. Some off-the-shelf (OTS) home routers, such as
Asus RT-AC5300, support OpenVPN right out of the box:

Many other router firmware packages support OpenVPN. OpenWrt
(https://openwrt.org), DD-WRT (http://www.dd-wrt.com/site/index), and Tomato
Firmware (http://www.polarcloud.com/tomato) are likely the most commonly known.
These firmware packages fully support OpenVPN and, most importantly, the required
virtual networking devices.

When evaluating an embedded firmware or platform, make certain that it supports either
the tap or tun virtual network devices. The latter is most important, as (you'll find out
later) it is the most common, and correct, device to use. Without one or the other, you can
safely rule out OS.

http://wiki.snom.com/Networking/Virtual_Private_Network_(VPN)
https://openwrt.org
http://www.dd-wrt.com/site/index
http://www.polarcloud.com/tomato

Common Problems

[32]

Most of these systems provide a web interface to help configure the OpenVPN server, often
with a limited feature set. The disadvantage with these is that some advanced features are
either missing entirely or confusing to set up. For the best troubleshooting and
configuration experience, I recommend you to find some way to access the underlying text
configuration or at a minimum, the command-line arguments passed on execution.

OpenVPN is a unique protocol in a family of SSL-based VPNs. OpenVPN will not work
with other protocols including other SSL VPNs, such as Cisco's AnyConnect or non-SSL-
based VPN protocols such as IPSec, Point-to-Point Tunneling Protocol (PPTP), or others.

Semi-embedded systems
There is a class of systems that I have termed semi-embedded. These systems run a firmware
that resides on a relatively normal PC or computer system, but is highly tailored to a
specific use. A couple of these systems including FreeNAS (http://freenas.org), an open
source network filer, and pfSense (http://pfsense.org), an open source firewall and
network gateway device, have OpenVPN plugins or modules. Some additional systems that
support OpenVPN in this category, both open source and closed, are:

ReadyNAS (via external package): http://readynas.com
TrueNAS (based on FreeNAS, similar packages
work): https://www.ixsystems.com/truenas/
Synolgoy: https://www.synology.com/en-us/
QNAP: https://www.qnap.com/

At the time of writing this, these systems support OpenVPN. It's important to note that
these systems can pull or remove support at any time, and may not support OpenVPN in
specific use case scenarios (lack of support for tap is common).

An administrator should evaluate if their use, either with a private network, or with a
particular version of firmware, supports the use of the correct virtual adapter or OpenVPN
software package.

The Transport Layer Security (TLS) list of supported ciphers will vary on these embedded
devices as well. Ciphers using Advanced Encryption Standard (AES) may perform well on
desktop systems, but will show a performance bottleneck over other ciphers on some
embedded systems. Most modern processors support AES New Instruction (AES-NI),
which offloads AES calculations to a subprocessor specifically designed for that workload.
Embedded systems tend to be low power and purpose built, so are likely to lack this
feature. Cipher differences will be further discussed in Chapter 8, Performance.

http://freenas.org
http://pfsense.org
http://readynas.com
https://www.ixsystems.com/truenas/
https://www.synology.com/en-us/
https://www.qnap.com/

Common Problems

[33]

Virtual servers
Virtual private servers (VPSs) are likely the most common point of pain for an aspiring
OpenVPN administrator. Particularly with Linux, there is a plethora of environments in
which a Linux system can be deployed virtually including Kernel-based Virtual Machine
(KVM), Quick EMUlator (QEMU), and OpenVZ (Virtuozzo Containers).

OpenVZ is particularly difficult to configure. When VPS is purchased from a larger
provider, cooperation is required from that provider. With OpenVZ, the container needs to
be specifically granted access to the tun and tap adapters. With FreeBSD jails, the routing
of VPN traffic actually takes place outside the jail in the host kernel.

OpenVZ is a very popular virtualization technology for Linux with
various hosting providers. The OpenVZ wiki has a good write-up on
working with OpenVPN and the changes needed to make it work at h t t p

://w i k i . o p e n v z . o r g /V P N _ v i a _ t h e _ T U N /T A P _ d e v i c e .

IP addresses
It is important to choose an IP address range that does not have or has goods odds against,
conflicting with remote client address pools. If VPN uses IP addresses from a range shared
by a remote client address pool, packets meant for the client LAN may attempt to traverse
the VPN to the wrong system or to a system that doesn't exist at all. Alternatively, the traffic
may never leave the client LAN and be routed to a local resource, instead.

The following diagram illustrates a fairly severe case of what I'm describing. There are
various resources identified with their associated LAN address on both sides.

On the left, there is a network where the VPN server resides. The LAN on the server
network uses the 10.4.0.0/24 subnet. For the VPN, the 10.8.0.0/24 subnet is used. This
will facilitate VPN traffic, and a route will be pushed for the server-side LAN subnet. There
are two internal servers for which the VPN was created. The first is an application server
using LAN IP 10.4.0.76 and an internal web server using IP 10.4.0.33.

http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device
http://wiki.openvz.org/VPN_via_the_TUN/TAP_device

Common Problems

[34]

On the right side of the diagram, we show the client network. The client network also uses
the 10.4.0.0/24 subnet. A laptop is on the network with a VPN address of 10.0.8.6 and
a LAN address of 10.4.0.76. There is also a local printer with IP 10.4.0.33:

Network diagram showing IP conflicts between network segments

There are quite a few problems with this setup. Generally, these can all be resolved by
changing one IP range or the other. If the VPN server pushes a route for the 10.4.0.0/24
subnet, the remote client will lose its connection to all local resources, such as the printer,
but also it's a default gateway. Once the default gateway is overridden, the client will drop
the VPN connection, beginning a vicious cycle of connecting, dropping, and reconnecting.

If the VPN server, instead, pushes the --redirect-gateway directive with def 1
arguments, then the client's local LAN and Internet routing will be overridden, but the
default gateway of the LAN will be preserved. This prevents the reconnect cycle, but will
render the local printer unusable.

Another solution would be to translate all of the corporate resource to VPN range IPs.
It involves creating a mapping from a VPN address to the remote corporate LAN address.
This allows the VPN clients to use VPN addresses for all remote services, negating
problems with IP conflict.

Common Problems

[35]

Using OpenBSD's pf syntax, all of the corporate resources have been NATed to VPN IPs
here:

 # PF NAT rules for corporate resources
 int_web = 10.4.0.33
 int_app = 10.4.0.76
 vpn_web = 10.8.0.200
 vpn_app = 10.8.0.201
 pass on eth0 from $int_web to any binat-to $vpn_web
 pass on eth0 from $int_app to any binat-to $vpn_app

While I prefer the OpenBSD packet filter, many users will be most familiar
with the Linux iptables. Karl Rupp has a detailed write-up of iptables on
Linux relating to NAT. Rather than rehashing his content, check it out at
http://www.karlrupp.net/en/computer/nat_tutorial!

Additional work would be needed for the solution to fully function. Pushing custom DNS
servers with VPN-specific DNS views would allow VPN clients to resolve
http://internal.example.org to 10.8.0.200 instead of the normal 10.4.0.33, for
example. The NAT rules allow the traffic to flow from the VPN to the internal corporate
network without having to push the corporate network subnet to the VPN clients.

Fortunately, there are a lot of options out there. The Internet Engineering Task Force
(IETF) at http://ietf.org has defined a Request For Comments (RFC), RFC 1918
(https://www.ietf.org/rfc/rfc1918.txt). For IPv4, this RFC clearly defines the IP ranges
that should be used for private network subnets, and there is a relatively large set of
subnets defined:

10.0.0.0 – 10.255.255.255 (10/8 prefix)
192.168.0.0 – 192.168.255.255 (192.168/16 prefix)
172.16.0.0 – 172.31.255.255 (172.16/12 prefix)

Of the preceding three groups, there has been a trend in utilization that can be easily
worked around in individual deployments. This is not a hard and fast rule or regulation.
Any network administrator can define whatever subnets they chose:

10.0.0.0: Used primarily on large corporate networks for the LAN.
192.168.0.0: Home and consumer routers, specifically 192.168.0.0/24 and
192.168.1.0/24. The remainder of the /16 is up for grabs!
172.16.0.0: Corporations typically use this for DMZs and VPN subnet ranges.

http://www.karlrupp.net/en/computer/nat_tutorial
http://ietf.org
https://www.ietf.org/rfc/rfc1918.txt

Common Problems

[36]

If we convert our client-side LAN range to the common 192.168.0.0/24 subnet, we find a
very different traffic path. Both servers on the VPN side have a clear route and path from
the client:

There is a similar RFC for IPv6 private address ranges, RFC 4193. You can
read more details about it on the IETF website:
https://tools.ietf.org/html/rfc4193

The OpenVPN HOWTO (https://openvpn.net/howto) uses the 10.8.0.0/24 network in
the examples presented. This is a somewhat random subnet within the 10/8 class-a subnet,
but there is a chance, with large corporations, that this will conflict.

There is an even better chance, however, that this will remain unused for most home users.
Ensure that your VPN IP range selection is thought out and properly engineered with
regard to the likely client networks, and the known server-side network.

Setting up a VPN at home, it is recommended to avoid the 192.168.0.0/24 and
192.168.1.0/24 subnet ranges. These two are most common on home routers as the
default. While it will work fine from remote offices, connecting from other routers with
these default configurations will result in conflicting address space.

https://tools.ietf.org/html/rfc4193
https://openvpn.net/howto

Common Problems

[37]

Many corporate networks use 10.0.0.0/8 or some subnets within that range. For this
reason, it is also a good idea to avoid these addresses. It seems to be common to use
172.16.0.0/12 for VPNs and DMZs in corporate environments, so it's likely safe to use
this range for your own VPN as well.

Firewalls
Incorrectly configured firewalls are one of the most prevalent problem areas, particularly
for new users. Experienced users are also apt for misunderstanding how firewall rules
apply to OpenVPN routed packets. In the past, firewalls were relatively monolithic devices
at or near a network edge. Today, however, firewalls exist on client devices, network
devices, all along the path of a network packet. Any switch in the path can have ACLs
preventing or permitting traffic. This can include both the client- and server-side LANs. The
OpenVPN likely has a firewall element for translation or routing traffic, and also for
preventing or permitting said traffic.

The monolithic firewall also still exists and can be a pain point when troubleshooting traffic
flow. The current high-end firewalls also permit deep packet inspection, SSL decryption,
and what some vendors term zero-day patching. The latter generally requires SSL decryption
be configured and permits the firewall vendor to detect vulnerable applications or protocols
and modify the traffic real time. In my experience with both Palo Alto Networks and
Sophos products, OpenVPN will not function through these decryption profiles.

The SSL decryption capabilities will generally work fine for normal web
browsing traffic, but other applications that use TLS will break when they
pass through such a firewall with this feature enabled. Apart from
OpenVPN, both Bomgar and Dell KACE are also functionally broken
when passing through one of the firewalls.

The simplest method for troubleshooting firewall rules is to disable filtering for your VPN
traffic and work to re-enable rules until the problem filter has been identified.

Common Problems

[38]

Duplicate client certificates
By default, OpenVPN expects each remote client to connect using a unique certificate for
identification and encryption purposes. The common name (CN), is used to generate
configuration options, identify a persistent IP (--ifconfig-pool-persist), and CCD (--
client-config-dir) entries. In addition, startup scripts may use the CN to generate
dynamic routes, firewall rules, and other access policies.

For the majority of general road-warriors, special routing, and firewall rules are not the
norm. In this scenario, the user connects to the VPN, is given an IP address from the server,
and they will then have access to the resources of the corporate network. More advanced
configurations may provide differing pushed routes or IP assignments in varying subnets.

Overcomplication
It is important to have the intended use of your VPN well defined before starting your
troubleshooting endeavors. Understanding how the system is meant to be accessed and
used will rule out unrelated problems quickly. I have encountered a plethora of aspiring
administrators with gross misconceptions for how OpenVPN should behave, who are
pulling their hair out in frustration.

You might want to start simple and get a basic VPN operational before rolling in all the
custom routes, authentication mechanisms, reporting, and so on. Following a simple how to
and reading the man pages will get you off on the right foot.

Break up complicated configurations into smaller components when attempting to identify
the root cause of a failure. Analyze general network settings and deployed configurations
first, then move on to more complex components. Assigning static IPs, client-specific
configuration components, and firewall rules can come second. As you progress through
your setup and verify that a given element is functioning as desired, add it back in to the
mix.

Common Problems

[39]

Summary
Some of the most common configuration and deployment scenarios were covered in this
chapter. In addition to identifying specific potential problems, we've demonstrated how to
properly document your OpenVPN network and use diagrams for easier troubleshooting
once problems occur. Preferably, identify the entire installation base and your configuration
components prior to publishing your VPN to your customers or clients.

We have also helped to identify firewalls, IP address ranges, and operating system
incompatibilities as potential problem areas.

3
Installing OpenVPN

There is a multitude of clients available to connect to an OpenVPN server. This chapter
helps the administrator troubleshoot client installation errors. We will cover both the open
source clients as well as a few commercial alternatives. This chapter will cover these topics
and help the administrator resolve common problems.

Common installation problems
OpenVPN installation problems can be classified into a few major categories: adapter or
driver problems, lack of necessary permissions, and broken installers. It is also possible that
the existing packages for your chosen operating system either do not exist or are greatly out
of date.

Compiling OpenVPN
On Linux and Unix systems, compiling from source can sometimes be the only way to get
OpenVPN installed. There are packages available for the majority of operating system
releases, but there are custom systems (Raspberry Pi, BeagleBone, OpenWrt, and so on) that
may not have the latest version of OpenVPN available. Given a proper development
environment, the OpenVPN installation should be pretty straightforward.

The required development environment basically consists of the following software
components:

autoconf (http://www.gnu.org/software/autoconf/)
automake (http://www.gnu.org/software/automake/)
C code compilers, such as gcc, clang, msvc, and cc, should all work

http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/

Installing OpenVPN

[41]

To demonstrate a software built on a nontypical system, we will compile the OpenVPN
2.3.11 source code on Raspbian, which is a Debian distribution compiled for the Raspberry
Pi. In our case, we're using Raspberry Pi B+.

First, download the source code. Links for downloading can be found on the OpenVPN
community web page at https://openvpn.net/index.php/open-source/downloads.html.
Once downloaded, extract the GZIP-compressed .tar file:

OpenVPN source download and extraction

Before open source software packaging was so common, software was downloaded in
source form. To install these software distributions, it needed to be compiled. Tools like
those mentioned earlier (autoconf and automake) made this process much easier by
breaking the process down into the three steps, namely using configure, make, and make
install.

However, in the case of our Raspbian OpenVPN installation, we discover that the
./configure step fails due to missing SSL libraries (see the second to the last line of
output in the screenshot here):

https://openvpn.net/index.php/open-source/downloads.html

Installing OpenVPN

[42]

/configure failure at the end – ssl libraries are missing

OpenSSL has been the de facto standard of SSL libraries for quite a few years, but a relative
new comer is also supported by OpenVPN: mbed TLS.

Here, we back up one directory, download the mbed TLS source package, extract, and
compile. A simple make command is all that is needed to build mbed TLS once the software
is extracted. Note that running compile on a small embedded system such as Raspberry Pi
will take considerably longer than it would on a more robust desktop or server system. In
our test case, the mbed TLS (PolarSSL) make process took approximately 20 minutes.

PolarSSL changed their name to mbed TLS in 2016 when ARM acquired
the project. OpenVPN 2.3.11 and earlier need to use the older 1.3.x
libraries, which are still named PolarSSL. The name and references were
changed in 2.3.12 and later (2.3-master, as of this writing).

Installing OpenVPN

[43]

Download and extraction of the mbed TLS software bundle

The default SSL library for OpenVPN is OpenSSL, so using mbed TLS requires an option for
configure. Note the configure command in the associated option in the following
screenshot. For a full list of configure options, run configure with --help:

The configuration is complete without additional errors

Installing OpenVPN

[44]

After installing the PolarSSL libraries, I needed to export two environment
variables, LDFLAGS and CFLAGS, to tell configure where to find the new libraries. Once
done, I was able to successfully complete the configure operation:

 root@raspberrypi:/home/pi/openvpn-2.3.11# export CFLAGS=
 -I/home/pi/polarssl-1.3.9/include root@raspberrypi:/home/pi/
 openvpn-2.3.11# export LDFLAGS=-L/home/pi/polarssl-1.3.9/library
 root@raspberrypi:/home/pi/openvpn-2.3.11# ./configure --with-crypto
 -library=polarssl --disable-lzo

Two additional libraries missing were found on our Raspbian installation
besides the SSL libraries. We opted to disable the LZO compression
algorithm for expediency, but needed to install the libpam-dev package
using apt-get:

apt-get install libpam-dev

Now that the build environment has been configured, thanks to autoconf, the OpenVPN
software can be compiled and installed. It is easiest to do this in a single command
operation:

 root@raspberrypi:/home/pi/openvpn-2.3.11# make && make install

The final screenshot in this section shows a successful software-build and installation. The
which Unix command shows that the openvpn binary has been installed in
/usr/local/bin/. Running openvpn with the --version option shows the build date,
compile time options, and supporting libraries.

Installing OpenVPN

[45]

Most notably, we've built OpenVPN with the PolarSSL 1.3.9 libraries on ARM:

Successful build, OpenVPN 2.3.11 with PolarSSL 1.3.9 built on June 29, 2016 on ARM architecture

Packages and installers
The OpenVPN project members release and maintain a few operating system packages
directly, namely Windows, Debian, Ubuntu, and FreeBSD. All other packages or installers
are generated and maintained by third-party developers, not generally associated with the
OpenVPN development team.

Build-errors do occur, even with the official installers and software packages. These
generally occur when changes are made to the project-build structure and are quickly
identified by the developers or reported by users. A fix for such issues is usually published
within a couple of days or less.

Installing OpenVPN

[46]

The advantage of the official packages is that the developers of OpenVPN are responsible
for the installers. They will know about configure and build option changes, so they will
be able to adjust the package build accordingly. In addition, the common support flow from
end users will go to the OpenVPN developers first, who can then make the corrections.

When the installer or package is not directly maintained by an OpenVPN developer, the
flow of support can be a bit disjointed from the user base. As mentioned earlier, the users of
OpenVPN will first reach out to the developer team when an issue is identified. Whether it
be via IRC, the e-mail list, or the forums, correcting the broken component may not be
possible due to the lack of repository access or unfamiliarity with the given distribution's
packaging methods or policies. The general advice with these situations is to contact the
package maintainer directly. This isn't to say third-party packages are bad, but there are just
extra steps required when the support is needed.

Linux and other OS distributions will test their packages or installers prior to release. It's
usually a safe assumption that these released versions will be functional. The primary
complaint seen in the support channels is about out of date software packages. The
OpenVPN project covers a wide swathe of different operating systems, which leaves some
less common ones to fend for their own installers. In these cases, our suggestion is to simply
build from source.

The advantages of precompiled installers
There are a few notable advantages of using precompiled installers or packages. The key
advantage is the startup and shutdown routines. OpenVPN, for the near future, will be
capable of starting with a fairly simple command line akin to the screenshot here, even on
Windows, which is notoriously graphical-interface centric:

The command-line example of OpenVPN startup using a configuration file

This startup meets the most basic needs, but does not integrate well with modern operating
systems. The upcoming 2.4 OpenVPN release is purported to support an OpenVPN service
that would allow non-administrators to start OpenVPN sessions without escalating
privileges. This would be a multifaceted approach to loading a daemon, and interfacing
with that daemon, including authentication and authorization, and triggering the startup of
a given profile. This is far more complex than the simple command-line example.

Installing OpenVPN

[47]

Red Hat Linux (and others) are supporting a centralized system control daemon known as
systemd. With systemd, a unit file defines a service, and systemd will start or stop a given
service based on the properties within the service's unit file.

The added complication of these newer mechanisms makes the bar to entry much higher,
resulting in an increased likelihood of errors and failed startup or shutdown. While newer
and more complex, if you stick to the OS-distributed release, these complexities will be
handled for you. Deviating from that release to the base source distribution may result in
some headache. The disadvantage is many OS package releases lag behind the project
release cycle, sometimes, by a month or longer.

Driver installation
OpenVPN uses virtual network adapters to create point-to-point tunnels with remote
systems. The tun and tap adapters are used, based on what type of network traffic is
required to flow across the network. Layer 2 (data link) traffic in the OSI model requires the
tap adapter. This is useful for various routing protocols and applications or games that
depend on broadcast traffic. More commonly, layer 3 (network) traffic is all that is required,
which uses the tun adapter.

Further details about the Open Systems Interconnection (OSI) model can
be found at Wikipedia (https://en.wikipedia.org/wiki/OSI_model) or
the International Organization for Standardization
(http://standards.iso.org/ittf/PubliclyAvailableStandards/s02026
9_ISO_IEC_7498-1_1994(E).zip) websites.

On the majority of Linux and Unix platforms, there will be two distinct virtual network
adapters, tun and tap. Linux aliases the bridging Ethernet pseudo adapter to tap and
bond, with a distinct tun kernel module. FreeBSD, on the other hand, includes both the tun
and tap functionality in the if_tap.ko kernel module.

On Windows, the OpenVPN project provides the TAP-Windows virtual network adapter.
The OpenVPN GUI installer will normally install the driver for you, but the installer is
available separately. The driver is available in two forms: NDIS 5 (TAP-Windows, version
9.9.x) for Windows XP and NDIS 6 (TAP-Windows6, 9.21.x) for Windows Vista and higher.

https://en.wikipedia.org/wiki/OSI_model
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip

Installing OpenVPN

[48]

If more than a single OpenVPN instance will be running at once, an additional TAP-
Windows adapter device will need to be installed. Fortunately, OpenVPN provides the
tools needed to create additional interfaces. There are two distinct methods to install
additional virtual network adapters:

The tapinstall.exe utility
The Control Panel new hardware wizard

The first method involves using the tapinstall.exe utility provided with current
versions of OpenVPN. The binary can be found in C:\Program Files\TAP-
Windows\bin. This tool can be used to query what adapters are currently installed, as well
as adding or removing devices:

Installing OpenVPN

[49]

The preceding screenshot shows a full cycle using the utility, displaying the list of adapters
(just one), installing an additional adapter, removing all adapters, and reinstalling a new
adapter. More information about the tool can be found with the /? command-line option or
by going to the TAP-Windows adapter wiki page at h t t p s ://c o m m u n i t y . o p e n v p n . n e t /o p e

n v p n /w i k i /M a n a g i n g W i n d o w s T A P D r i v e r s .

The device drivers for the TAP-Windows adapter reside in the C:\Program Files\TAP-
Windows\driver directory. This is where you should point the new hardware wizard
when attempting option two, mentioned earlier.

I recommend using this second method, particularly, if you are not comfortable on the
Windows command line. Also, the tapinstall.exe utility is fairly indiscriminate when
removing the adapter: it's all or nothing. The Device Manager option easily allows you to
add or remove specific adapters. This becomes more important once you become dependent
on specifically named adapters for more complex routing scenarios.

Alternative clients
From an open source project perspective, the only supported application is a build of the
open source project code. In practice, however, there are a multitude of exceedingly useful
alternative builds. Some of these builds are for commercial VPN providers, and support not
just the OpenVPN protocol, but may include support for PPTP, IPSec, or AnyConnect, or
any other protocol. These applications usually provide a single, simple, user interface, and
couple with a custom configuration provided by the author or provider.

Because of the added features or controls that may be built into the third-party application,
it's likely easiest to troubleshoot a non-working OpenVPN connection by reverting back to
the open source client. This helps to rule out the additional features.

There are a few circumstances where an official application does not exactly exist. Mobile
platforms, for instance, do not have a native OpenVPN open source build. The Android
OpenVPN client, while using the majority of the OpenVPN base source, still requires a
frontend GUI to manipulate the connection.

There is an application (OpenVPN Connect), provided by the commercial venture of James
Yonan, but that currently uses a large amount of experimental and out-of-band source that
isn't shared with the community. James has put in quite a bit of effort to make it compatible,
but there are known limitations and certain incompatibilities between the commercial
application and other applications.

https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers
https://community.openvpn.net/openvpn/wiki/ManagingWindowsTAPDrivers

Installing OpenVPN

[50]

Summary
In this chapter, we discussed how OpenVPN is installed and compiled, including some of
the benefits of using software packages distributed by your operating system of choice.
There are many places where a compilation or installation of OpenVPN can turn sour, and
being cognizant of those will help you create a successful and maintainable VPN.

I think the hardest market today is the mobile market, primarily due to the lockdown of
some application marketplaces and the restrictions placed on the environment and
ecosystem. Being aware of these as well as some of the limitations of a given platform
should set up correct and workable expectations.

In the next chapter, we dig into the log file, helping you identify problems and recognize
some of the solutions indicated in the log messages. The previous chapters primarily
covered the bases of how OpenVPN functions, how it's built, but only works on functional
setups.

4
The Log File

Logs become irreplaceable resources when problems arise in almost anything. Meeting
notes, registration sheets, visitor comment cards, and Syslog entries are all signs of logs that
can be used to track down problem trends and identify troublesome changes that may have
occurred.

OpenVPN has a multitude of logging capabilities that allow the system administrators to
track active connections, session setup and negotiation, authentication, and more. In
addition, the level of verbosity can be adjusted by making the logs more useful during
changes and reducing disk consumption when the VPN is stable.

This chapter will describe the various logging options in OpenVPN. The ability to mute
repetitive log entries, build responsive logging and usage interfaces, and tune the logs for
the state of the VPN, such as recent changes, new features, or problematic clients, are all
possible with well-tuned configuration options.

Logging options
The best source of information when troubleshooting OpenVPN connection and
configuration problems is the log file, whether it is on the server or the client. OpenVPN
provides a multitude of logging options, allowing an administrator to best gather the data
necessary to resolve a problem. This book may be the first comprehensive guide to what is
logged by OpenVPN and how best to respond to the messages in that log.

The Log File

[52]

In order to successfully tune the logging of your OpenVPN client or server, it's important to
understand what the available logging options are and what impact they will have on the
available troubleshooting data. This section will provide a detailed description of every
logging option found in the 2.3.11 release of OpenVPN. The following command defines the
file where log data will be written out:

 --log file

It is suggested the entire path be included, but if --cd is used, or when applying the option
from the command line, it's reasonable to use a relative path instead. It should be noted that
if the file already exists, it will be truncated upon startup. If the file does not exist, it will be
created, assuming the user executing the process has sufficient permissions.

Demonstrating –log and the log file truncate behavior

The Log File

[53]

In the preceding screenshot, we ran a simple OpenVPN connection in the active terminal
tab. We monitored the /tmp/test.log file in the inactive tab for connection initialization,
so we would know when we could press Ctrl + C and terminate the session.

Here, you can see that messages are properly written to /tmp/test.log and upon closing,
that log has 313 lines. When we rerun the connection, the log is truncated and the second
connection results in 313 lines written to the file. The --log-append option works nearly
identically to the --log option, except that the file, if it already exists, will be appended to,
rather than truncated:

 --log-append file

If you are writing to a log file, it is suggested that you use this option:

Demonstrating–log-append no longer truncates the log

The Log File

[54]

In the previous screenshot, --log-append is used on the command line instead of --log
(verb 4 is present within the testing configuration file). We removed the previous log file
to avoid confusion and demonstrate that the log file is created and, like before, we have 313
lines in the log after a successful connect and disconnect cycle.

We run the connection a second time, and we are left with 627 lines in the log. Both
execution logs now remain. We noted that 627 is not the same as 313 x 2, so we dug into the
log and discovered that our second execution resulted in a repeated PUSH_REQUEST, likely
due to a packet retransmission.

When using the --daemon option, and lacking any --log or --log-append option, output
will be redirected to the default Syslog file. Any of the other log options will supersede the
--daemon option's Syslog call:

 --daemon [program_name]

If the [program_name] option is specified, program_name will be prepended to all Syslog
lines related to OpenVPN. If you have multiple OpenVPN instances on a single system or
you send your Syslog entries to a remote system, the [program_name] option may help
differentiate between the various instances:

Syslog output with program_name defined

The Log File

[55]

Much like the --daemon option, the --syslog option allows us to send logs to the system
Syslog:

 --syslog [program_name]

This option is redundant when using --daemon, but becomes useful when running
OpenVPN on the command line while still allowing logs to be directed to the system
logging daemon. As with --daemon, the other logging directives will override the --
syslog option.

The --verb option has a great impact on logging usefulness when it comes to
troubleshooting:

 --verb n

Set correctly, a working VPN can confirm correct functionality with confidence, while also
presenting useful information when a VPN experiences issues.

The higher the number passed to this directive ([n]), the more verbose the logging. The
next section, Logging levels, goes further in depth and provides the examples of both
working logs as well as some logs with errors.

The following option prevents OpenVPN from prepending timestamps to the output log
lines:

 --suppress-timestamps

I suggest this option not be used as it makes pinpointing where and when a problem
actually occurred.

The --mute directive prevents OpenVPN from repeating more than [n] log messages of
the same mute category:

 --mute [n]

The mute category of a log entry does not directly follow the verbosity level defined in the
table mentioned earlier, but it is a relatively close correlation.

The Log File

[56]

For detailed information about mute categories, refer to the errlevel.h file linked earlier.
The mute level is the second number defined for each entry. The following screenshot
shows some of the mute categories and verbosity levels:

Contents of errlevel.h showing verbosity levels and mute category definitions

The --mute directive can be very useful on embedded devices where log
storage is at a premium, or disk writes are considered expensive tasks. It is
generally recommended to remove or omit it, however, when debugging a
problematic VPN setup.

The Log File

[57]

Apart from the normal event log, OpenVPN provides a separate log file used to indicate the
current set of connected clients along with some connection details:

 --status file [n]

This log is useful to help identify OpenVPN internal routes, connection time, remote and
VPN IP addresses, and more.

The book Mastering OpenVPN includes some detailed examples of how to track connections
and store them in a database in the seventh chapter named Scripting and Plugins.

OpenVPN status log output

There are three distinct versions of the --status-file, the default being version
one (shown earlier). Version two includes additional data fields while retaining the comma
separation of the version one file. The version three file includes the same data as version
two, but replaces the comma separator with a tab delimiter:

 --status-version [n]

The Log File

[58]

Logging levels
The ability to vary the verbosity of log output is useful when switching between a
troubleshooting session and a normal operational session. The default logging level of 1
provides some useful informational logging level of 1 provides some useful informational
logs along with the fatal errors indicative of a problem.

As of this writing, there are 108 different logging defines in the source, covered through 11
distinct verbosity levels. The majority of troubleshooting at an administrative level I've seen
has not needed to go past verbosity 4 though there are exceptions, like when a firewall issue
is suspected.

The following table provides a brief description of each level and provides the primary key
log messages provided at that level. After the table, log samples showing a few different
key levels are provided to illustrate the level of detail:

[n] Included messages at verbosity level

0 Only fatal errors are logged.

1 Informational messages are also logged. Most critical task errors are link, tls,
resolver, and push.

2 Additional informational messages: handshake, socket/interface close, and proxy errors.

3 Additional informational messages: routes, auth, plugin, --port-share messages,
ifconfig, and filter data, management console debugging information.

4 Additional informational messages: runtime parameters, options compatibility, DHCP
options, filter dropped packets, some maximum transmission unit (MTU) data.
Verbosity level 4 is the most useful in the majority of troubleshooting scenarios.

5 R and W characters are written to the log for each packet that is sent and received. Lower
case r and w characters are used for TUN/TAP packets.

6 Like verbosity 5, but READ and WRITE are used for TCP/UDP packets and lower case
characters are used for TUN/TAP packets. Client NAT and TAP-Windows adapter debug
information is included.

7 Crypto and tunnel debug information. Channel keys and entropy, compression
debugging information, verbose routing information, much more.

8 Most process and schedule debugging, reliable routing debugging information.

9 Detailed tunnel and crypto data. Packet content prior to and post encryption is written,
PKCS#11, TCP stream debug.

The Log File

[59]

10 Traffic shaping debug information.

11 Win32 registry debugging, OpenSSL lock information.

The complete list of verbosity levels and the messages logged is available in the OpenVPN
source code in src/openvpn/errlevel.h.

You can view the source on GitHub at h t t p s ://g i t h u b . c o m /O p e n V P N /o p e n v p n /b l o b /m a s t

e r /s r c /o p e n v p n /e r r l e v e l . h .

For our examples here, we're using the following configurations. We have created a
demonstration CA and certificates needed already:

Server:

dh dh1024.pem
dev tun
server 192.168.80.0 255.255.255.0
ca ca.crt
cert tshoot-server.crt
key tshoot-server.key
topology subnet
status /var/log/openvpn-status.log 5
keepalive 10 60

Client:

client
dev tun
proto udp
port 1194
remote 192.168.19.37

<ca>
-----BEGIN CERTIFICATE-----
CA PAYLOAD REMOVED
-----END CERTIFICATE-----
</ca>
<cert>
-----BEGIN CERTIFICATE-----
CERTIFICATE PAYLOAD REMOVED
-----END CERTIFICATE-----
</cert>
<key>
-----BEGIN PRIVATE KEY-----
KEY PAYLOAD REMOVED
-----END PRIVATE KEY-----
</key>

https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h
https://github.com/OpenVPN/openvpn/blob/master/src/openvpn/errlevel.h

The Log File

[60]

These same configurations, with noted option changes, will be used throughout this book.
As above, certificate and key payload data will be omitted elsewhere for brevity.

For the screenshots given later, any changes to configuration of the client or server will be
evident in the command-line options used and will be provided. Also, both screenshots will
be taken after the server has started up and the client has connected. Deviations from this
will be described, as in the case of attempting a connection to a known offline server for the
purposes of demonstration.

Verbosity 0
Verbosity level 0 will only include messages deemed fatal. These will be errors that will
prevent the VPN from functioning properly or may indicate severe security problems.

Server:

 author@server:~-> openvpn --config openvpn.conf --verb 0

The preceding command gives the following output:

The preceding logs displayed show a warning for the permissions set on the private key for
the X.509 certificate used by the OpenVPN server. The OpenVPN process wants Unix
permissions of 500 or 600, and we have 644. Also logged is the defining of the route to our

The Log File

[61]

VPN with the kernel (we used 192.168.80.0/24).

Notably absent from the output is any indication that a client has connected. As evident
later, however, we did connect a client.

Client:

 author@client:~-> sudo openvpn/openvpn --config config.ovpn --verb 0

The preceding command gives the following output:

The client log is also rather sparse. We get a security-related warning about certificate
verification method not being set (see --ns-cert-type and --remote-cert-tls for
further details). We also see an error about a failed ifconfig command execution. Further
details about what command was run and the results of the failure are not apparent at this
level, we will need further details.

Finally, as with the server log, we see the setting of the route for the VPN within the kernel.

The Log File

[62]

Verbosity 1
Increasing the verbosity from a 0 to the default of 1 reveals considerably more log entries in
our sample connection. Information about OpenVPN version, compilation options, and SSL
library version information is displayed.

The screenshots and console output will show author@client or
author@server. In most cases, this is a cosmetic affect for the sake of this
book, and privileges are likely root and sudo are unnecessary.

Server:

 author@server:~-> openvpn --config openvpn.conf --verb 1

The preceding command gives the following output:

The Log File

[63]

From the server logs, we can still see our security warning about permissions on the private
key file. We also see more detailed information about the device used (/dev/tun0), the IP
address assignment to the virtual interface, and a final startup message, Initialization
Sequence Completed. This phrase in both the client and server logs indicates that the
OpenVPN is up and running and is generally capable of passing traffic.

Once the server process was initialized, we connected the client. The server log show the
evidence of the remote IP address from which the client connected and the common
name (CN) of the client certificate.

The final line of the log is an informational message about the safe capacity for the
PUSH_REPLY message from the client. This message may possibly come in handy when
troubleshooting MTU problems:

The Log File

[64]

As with the server log, the previous error of the missing certificate verification method is
listed at the increased verbosity. The IP and port of the remote server is listed along with
the local virtual interface (utun0, the client is a Mac).

Like the certificate error, the failed ifconfig message is still present; only this time we see
the reason. OpenVPN attempts to remove the old interface if it already exists. In our case,
that interface is not present, so the ifconfig command naturally fails. The subsequent log
message states this failure is not a problem.

Finally, the functional ifconfig command is parroted, the kernel routing entry add is
displayed, and the Initialization Sequence Completed message is outputted. This
line in both the server and client context means that the VPN tunnel has been created and is
functional. Note that this does not mean all options and arguments were successfully
implemented, just that there were no fatal errors. Routes may not be set, or there may be
other setup issues.

Verbosity 4
Setting verbosity up to 4 greatly increases the volume of messages sent to the log. Upon
execution, OpenVPN parses all of the configuration options and prints the list of options
and functional arguments.

Server:

 author@server:~-> openvpn --config openvpn.conf --verb 4

The preceding command gives the following output:

The Log File

[65]

The Log File

[66]

With OpenVPN 2.3.11, the client startup produced 275 lines of options entries and the
server startup produced 226 lines. Those lines are omitted from the following screenshots to
discuss the more useful lines that follow.

The startup of the OpenVPN server process looks very similar at verbosity 4 as it does at
level 1, apart from the appearance of the runtime options and configuration. Once the client
actually connects, however, there is a significant amount of details provided.

Upon client connection, remote and local options are compared and messages are displayed
about compatibility. If there are differences, such as tun versus tap, the errors will show up
here. Also listed, are encryption cipher details. We can see that BF-CBC (see
https://en.wikipedia.org/wiki/Blowfish_(cipher) for further details) with a 160 bit
SHA1 message hash for HMAC authentication for the data channel. Finally, the control
channel is using TLSv1.2 with DHE-RSA-AES256-GCM-SHA384 with a 1024 bit RSA key.

Upon termination of the OpenVPN process, messages about closing the device, socket, and
destruction of the interface are indicated. Also, the reason for the exit is shown, in our case a
SIGINT, caused by my Ctrl + C on the console.

Client:

 author@client:~-> sudo openvpn/openvpn --config config.ovpn --verb 4

The client logs also show quite a bit of certificate detail at verbosity level 4. Within the log,
we can see the same data channel encryption setup using BF-CBC with 128-bit keys, HMAC
message hash using 160-bit SHA1. As indicated on the server, the control channel is using
TLSv1.2 with DHE-RSA-AES256-GCM-SHA384 and a 1024-bit RSA key.

https://en.wikipedia.org/wiki/Blowfish_(cipher)

The Log File

[67]

Further through the negotiation, we can see the details of PUSH REQUEST/PUSH REPLY and
the interface and routing setup. We also still see the ifconfig command failure (which still
isn't a problem):

The Log File

[68]

One indicator of a firewall problem is the RWRW pattern, or lack of, in the log file. For
example, a working ping transaction between two systems will show both R and W in the log
file. When the remote endpoint is blocking the traffic, you will only see W in the log file and
can identify a notable lack of the R entries.

Verbosity 7
When we increase the verbosity once more from 4 up to 7, we get much of the same details
on startup we're accustom to at 4 and below. In addition, we will see some notably dense
information surrounding cryptographic activities, including encryption and decryption
keys used (server log only).

Server:

 author@server:~-> openvpn --config openvpn.conf --verb 7

The detail at --verb 7 is too great to show in full via a screenshot, so the part of the
information deemed most useful is shown here. The full log for both the client and server
will be available on the Packt website.

As you can see in the illustration later, there is quite a bit of private information that should
be protected. The keys displayed can be used to later decrypt the traffic that used those
keys.

It should not be necessary to use this level of debugging information unless you are testing
new and/or as-yet unsupported cryptographic ciphers or actually working on OpenVPN
development. The typical system administrator will likely not have much use for the
amount of data available:

The Log File

[69]

A subset of logging output at –verb 7 showing actual cryptographic keys and seed data

The Log File

[70]

Client:

 author@client:~-> sudo openvpn/openvpn --config config.ovpn --verb 7

The preceding command gives the following output:

The Log File

[71]

When I ran the client, I noted that an error was displayed right away. The client I'm using to
write this is the Tunnelblick (https://tunnelblick.net) build, which lacks debug support.
The message was:

Tue Aug 2 22:19:05 2016 NOTE: debug verbosity (--verb 7) is enabled but this build lacks debug
support.

Looking into the OpenVPN source, the options.c file (https://git.io/v6kse) on line
4885 indicates that either ENABLE_SMALL or ENABLE_DEBUG need to be enabled at compile
time:

#if !defined(ENABLE_DEBUG) && !defined(ENABLE_SMALL)
 /* Warn when a debug verbosity is supplied when built
 without debug support */
 if (options->verbosity >= 7)
 msg (M_WARN, "NOTE: debug verbosity (--verb %d) is enabled
 but this build lacks debug support.",
 options->verbosity);
#endif

Examining the output of ./configure --help, the first step to building OpenVPN, it is
revealed that debug is enabled by default, but the Tunnelblick-supplied build was compiled
with --disable-debug:

./configure –help output showing –disable-debug

The full output is considerably longer than what is shown. There are roughly 36 compile
options, in addition to setting numerous options in order to set environment variables.

Strange problems can arise if the client and server are using significantly
different compile-time options.

https://tunnelblick.net
https://git.io/v6kse

The Log File

[72]

Common log messages
Understanding the most common log messages present at --verb 4 allows you to quickly
scan the log file for errors while also comprehending the events taking place. The messages
described here are a mix of both affirmative (good) messages, as well as the most common
messages indicating errors.

Startup messages
OpenVPN will evoke a number of messages upon startup. Some of these messages are
informational, others are warnings of perhaps new options, or options that are potentially
dangerous if used or omitted.

Version and compile string
The first line to explore is the OpenVPN version string. This string will indicate the actual
release of the software used along with some important build and compile-time
information. The first two examples show OpenVPN version 2.3.11 compiled with
OpenSSL, LZO, PKCS11, MH (extended IP packet information), and IPv6.

The second piece of the string lists the processor platform and additional data about the
system that performed the compile. Our first example shows a 64-bit system (x86_64), on
an Apple system, with darwin as the indicated kernel version:

OpenVPN 2.3.11 x86_64-apple-darwin [SSL (OpenSSL)] [LZO] [PKCS11] [MH]
[IPv6] built on Jul 18 2016

The second example is also 64-bit (amd64, see note, later), built with the FreeBSD ports
system (packager), with kernel from freebsd10.1:

OpenVPN 2.3.11 amd64-portbld-freebsd10.1 [SSL (OpenSSL)] [LZO] [MH] [IPv6] built on Jul 26
2016

If we look back to our compiled Raspberry Pi build on page six of Chapter 3, Installing
OpenVPN, we can see a slightly different list of options. In this case, PolarSSL was used for
the SSL library and EPOLL was enabled. What is missing from earlier is the LZO and PKCS11
support. This system was compiled on a generic Linux system on arm6l (low-power ARM).
Note that these differences don't yet indicate a real problem. These can help us identify
where to start looking or which messages to seek out further into the logs:

OpenVPN 2.3.11 arm6l-unknown-linux-gnueabihf [SSL (PolarSSL)] [EPOLL] [MH] [IPv6] built on
Jun 29 2016

The Log File

[73]

The 64-bit architecture is referred to by many different monikers,
determined generally by the time frame or initial system upon which
development was started. All of the following are equivalent in meaning:
x86-64, x86_64, x64, and amd64. The Itanium 64 architecture (ia_64), is
a different architecture. Read more on Wikipedia at h t t p s ://e n . w i k i p e d i

a . o r g /w i k i /X 86- 64.

Option warnings
There are a few specific options OpenVPN looks for when starting up. For the clients, the
first option defines the server certificate verification method. This is accomplished with the
--remote-cert-tls [server|client] option. Without this option, OpenVPN will be
unable to protect against a valid client certificate being used as a server certificate. Since
they are all children of the same CA, it would be possible to use one client certificate to
create a server instance posing as the official server, creating a man-in-the-middle (MITM)
vulnerability:

WARNING: No server certificate verification method has been enabled. See
http://openvpn.net/howto.html#mitm for more information.

Another set of option warnings is presented when --script-security is set to level 2 or
3. At level 2, user-defined scripts can be called from within the configuration or command-
line arguments:

NOTE: the current --script-security setting may allow this configuration to call user-defined scripts

At level 3, user credentials, including passwords, are made available in the environment to
the scripts defined:

WARNING: the current --script-security setting may allow passwords to be passed to scripts via
environmental variables

Finally, if a script is defined (in --up, --down, or others), and --script-security has not
been set to allow user-defined scripts, the following message will be logged:

NOTE: starting with OpenVPN 2.1, '--script-security 2' or higher is required to call user-defined
scripts or executables

OpenVPN will alert you if there is an unrecognized option present within the configuration
file or on the command line. Note that the application will exit immediately upon the first
instance of an invalid configuration option.

https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64

The Log File

[74]

In the following screenshot, we have added an invalid parameter, fake-option, to the
openvpn.conf configuration file. In the first execution attempt, the application recognizes
the option and outputs the file and line number: openvpn.conf:10, which is line 10 of the
openvpn.conf file:

Showing output when invalid options are applied

The second execution applies the option fake2 on the command line, before the
configuration file is indicated. Instead of a file name, [CMD-LINE] is stated. The number 1
can be ignored as everything will be on line 1 for the command-line arguments.

Configuration parameters
There are a few messages displayed during initialization of the software that can later aid in
troubleshooting. Some of these messages illustrate the effect settings used, as in the case of
MTU data. Other messages are indicative of connection and setup progress.

There are two MTU-specific startup messages: one for the control channel and another for
the data channel. The latter is the most common source of headache, as it's the channel used
to transmit and encapsulate the actual traffic the VPN is used for:

Control Channel MTU parms [L:1541 D:1212 EF:38 EB:0 ET:0 EL:3]

The control channel is used to communicate between the OpenVPN instances at the local
and remote ends. Configuration parameters such as push and key negotiation, all take
place over this channel:

Data Channel MTU parms [L:1541 D:1450 EF:41 EB:12 ET:0 EL:3]

The Log File

[75]

The fields present are useful to identify where the breakdown of communication occurs
later. The fields are described in the table here. If you want full details about the data within
the log message, and what it really means, you can find it at h t t p ://b u i l d . o p e n v p n . n e t /d

o x y g e n /h t m l /s t r u c t f r a m e . h t m l :

Field name Description

Link MTU (L)
link_mtu

Maximum packet size to be sent over the external interface. This is
the physical interface (outside of OpenVPN's tun or tap device).

Link MTU Dynamic (D)
link_mtu_dynamic

The dynamic MTU value for the external network interface. This is
generally the usable packet size.

Extra Frame (EF)
extra_frame

The maximum number of bytes that all processing can add to the
frame header.

Extra Buffer (EB)
extra_buffer

The maximum number of bytes processing may add to the internal
work buffer.

Extra Tun Bytes (ET)
extra_tun

The maximum number of bytes in excess of the TUN/TAP device
MTU that may be read or written.

Extra Link Bytes (EL)
extra_link

The maximum number of bytes in excess of the external interface
MTU that may be read or written.

Arguably the most useful data points in the data is the Link MTU (L) and Dynamic MTU
(D). More details on troubleshooting MTU path issues, see Chapter 7, Network and Routing.

LZO compression must be either enabled or disabled at both ends of the OpenVPN
connection. If the following line is present on the server or the client, and missing from the
other, the connection will ultimately fail:

LZO compression initialized

During a connection initialization, the both endpoints perform a remote options hash to
determine compatibility of the other side in the context of configuration. When looking at
the logs, the hash should match between both side.

Immediately, prior to the options has comparison, the expected remote and local
configuration parameters are briefly listed. The parameters here can be used to quickly
identify configuration mismatches between the two sides of the tunnel.

http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html
http://build.openvpn.net/doxygen/html/structframe.html

The Log File

[76]

Server:

Local Options String: 'V4,dev-type tun,link-mtu 1541,tun-mtu 1500,proto
UDPv4,cipher BF-CBC,auth SHA1,keysize 128,key-method 2,tls-server'Expected
Remote Options String: 'V4,dev-type tun,link-mtu 1541,tun-mtu 1500,proto
UDPv4,cipher BF-CBC,auth SHA1,keysize 128,key-method 2,tls-client'Local
Options hash (VER=V4): '239669a8'Expected Remote Options hash (VER=V4):
'3514370b'

Client:

Local Options String: 'V4,dev-type tun,link-mtu 1541,tun-mtu 1500,proto
UDPv4,cipher BF-CBC,auth SHA1,keysize 128,key-method 2,tls-client'Expected
Remote Options String: 'V4,dev-type tun,link-mtu 1541,tun-mtu 1500,proto
UDPv4,cipher BF-CBC,auth SHA1,keysize 128,key-method 2,tls-server'Local
Options hash (VER=V4): '3514370b'Expected Remote Options hash (VER=V4):
'239669a8'

The final important message is the essential all clear from the startup routine. This message
does not guarantee that you have a working and useful VPN, OpenVPN doesn't truly
understand your entire routing table and the entirety of devices involved. This message
simply illustrates that the OpenVPN process at both ends has successfully negotiated
cryptographic keys, option parsing, and is prepared and ready to start doing the things
you've asked of it:

Initialization Sequence Completed

Operational messages
During the use of the VPN, there will be a number of messages displayed, particularly at
the higher verbosity levels. Routing errors, certificate verification, and other errors become
apparent here.

The Log File

[77]

Certificate messages
Particularly on the server, certificate messages will be displayed throughout the course of a
running tunnel. Verification, Certificate Revocation List (CRL), and validity are performed
upon each handshake. Both the server and client support the use of CRLs, but they are
typically only used on the server side.

In the following screenshot, the highlighted text demonstrates a CRL check with a valid
client certificate:

The Log File

[78]

I've also created a separate certificate and revoked it, providing the updated crl.pem file to
the OpenVPN process. When the client attempts to connect with the revoked certificate, we
can see the certificate authority (CA) if validated (the first CRL CHECK OK) followed by the
CRL CHECK FAILED for the tshoot-revoke certificate:

Unlike the OpenVPN configuration file, the CRL file is reread on every
client connection and each time the TLS keys are renegotiated. The
OpenVPN process is not aware, however, of when the file is updated, so
clients that are revoked will need to be either killed via the management
console, or they will be disconnected at the next re-key.

The Log File

[79]

Apart from CRL-related messages, both the OpenVPN server and client will verify the
certificate chain to ensure the remote side is using a valid certificate. In our test scenario, the
certificate chain is pretty basic with a CA, and all signed certificates directly below it:

A sample certificate chain used for Troubleshooting OpenVPN

The first VERIFY log line indicates the depth as 1. This depth is from the view of the
presented certificate by the server because this is the client log. The verification will proceed
from the deepest certificate first, which is the signing authority.

Both sides have access to the CA certificate (via the --ca parameter), so can validate the
signature. In this case, the validity is confirmed:

VERIFY OK: depth=1, C=US, ST=Minnesota, L=St Paul, O=Trouble Shooting OpenVPN,
CN=Trouble Shooting OpenVPN, emailAddress=ecrist@secure-computing.net

This process repeats all the way through the certificate chain to the server certificate (or the
client certificate, in the case of the server performing the validation):

VERIFY OK: depth=0, C=US, ST=Minnesota, O=Trouble Shooting OpenVPN, CN=tshoot-server,
emailAddress=ecrist@secure-computing.net

You can see which certificate is being validated by looking at the CN= portion of the string.
In our sample chain, I used Trouble Shooting OpenVPN for the certificate authority and
tshoot-server for the server certificate.

The Log File

[80]

When --tls-remote-cert is applied, additional log messages are printed, showing the
verification of certificate usage. The first screenshot (note highlighted messages) displays a
successful connection to a server with the extended key usage for server applied:

Valid EKU applied to the server certificate

The screenshot here shows a server without the server EKU applied to the certificate. In this
case, there is a cascading list of TLS errors displayed following the failed EKU verification.
These occur due to the tear-down of the TLS exchange once an error is discovered.

The Log File

[81]

These samples are from the view of the OpenVPN client. Similar messages will be present
when the server is expecting the client certificates define the EKU for client:

Summary
OpenVPN has powerful logging capability suited well for the end user, the system
administrator, and the software developer. Detailed information can be displayed from
high-level networking and configuration options down to very low-level cryptographic
components information.

Understanding the log file and the various affirmative and warning messages allows you to
quickly and reliably determine the cause of a fault or to confirm a working setup. There are
still some configuration parameters in which errors will not be apparent within the log file,
and those will be covered in later chapters.

5
Client and Server Startup

As illustrated in Chapter 4, The Log File, many of problems with OpenVPN arise during the
server or client startup procedure. These problems can involve networking, virtual network
adapters, and differing configuration options between the two endpoints. This chapter will
bring to light the common sources of startup problems and identify the fixes for those.

Some network configuration will be addressed, but Chapter 7, Network and Routing, will
have a comprehensive explanation of network troubleshooting and core network and
routing concepts.

File and process permissions
For OpenVPN to be effective, the user running the OpenVPN process will need to have the
necessary privileges and access to the system, networking, and filesystem. This includes
access to writing log files, modifying network adapter settings and the system routing
tables, and executing scripts or programs.

Privilege de-escalation
As stated earlier, to make many of the network and routing changes, OpenVPN will need
some initial privileges in excess of a typical user. Once these changes have been made, there
is usually no need to retain these administrative rights. Using the --user and --group
configuration parameters, the administrator can instruct OpenVPN that unprivileged user
to operate as once the initialization process has completed.

Client and Server Startup

[83]

There are caveats to dropping to an unprivileged user, however. First, all files that the
OpenVPN process needs to use during normal operation must be readable and/or writable
by the unprivileged user. This includes --client-config-directory and the files
within, and any connect or disconnect scripts.

The permissions of the Certificate Revocation List (CRL) is an easy one to forget, with the
certificate key being a close second. There is a configuration option (--persist-key),
which keeps the key resident in memory, preventing the process from having to re-read the
file from disk during SIGUSR1 or restart caused by --ping-restart.

In the following screenshot, all files are owned by the user nobody and the group nobody,
except the tshoot-server.key file, which is still owned by the user root and the group
wheel:

A key file owned by root : wheel, inaccessible to the “nobody” user

If we were to apply the --user nobody and --group nobody options, a soft restart of the server
would fail because the key is unreadable.

Networking privileges
Changes to the system routing tables, adding IP addresses to interfaces, and changing the
state of network interfaces typically require root or administrative privileges.

Client and Server Startup

[84]

Port assignment and use
As a general rule, processes attempting to bind to TCP or UDP ports below 1024 require
root permission. This prevents a normal, unprivileged user, from standing a daemon up on
a port where a common system process normally runs and mimicking an official process.

For example, on a server where SSH was not running, without this privileged port check, a
user could start their own SSH daemon that was customized (or compromised) in some way
to sniff or track user credentials or session traffic. An administrator could unwittingly
connect to the SSH daemon, log in, and run system commands.

In November, 2004, the Internet Assigned Numbers Authority (IANA) reserved port 1194
for OpenVPN, for both the TCP and UDP protocols. Prior to this assignment, OpenVPN
defaulted to using port 5000; OpenVPN 2.0-beta17 and later default to the IANA assigned
port. With the new and old ports, OpenVPN falls outside the lower 1024 privileged port
reservation, making the root requirement at this stage moot. It is required for other parts,
which are described later.

It is possible to override the default port by specifying the --port option in the OpenVPN
server or client configuration. The port used locally and remotely is expected to be the same
unless the --lport and --rport options are used. These should be mirror images of each
other if used and only apply to a static key setup; OpenVPN will use a dynamic (random)
outbound port from a client with --tls-client is used.

Multiple daemons
If multiple OpenVPN process is going to be used, the listen address of each must be
different. If you attempt to start another OpenVPN process using a port that is already in
use, an error will appear in the logs. In addition, all the major operating systems provide a
utility named netstat to help identify what ports are in use on your system. The exact
syntax varies across Windows, BSD, and Linux, but the command name is the same on all
three.

Client and Server Startup

[85]

To demonstrate its use, the following screenshot shows the first page of output on Windows
7:

The output of netstat -a on Windows 7

This system has an IIS 7 server running, which shows up as the first entry in the table. The
command I used for this was:

 netstat -a | more

The address of 0.0.0.0 denotes that the entry is valid for all IPs on the system and :80
that follows is the port number (the www port). The State column indicates the system as
LISTENING. This is used to identify services that are awaiting a connection.

If we were to scroll further down in the output, active connections (whether inbound or
outbound) will be denoted with the state ESTABLISHED. If cmd.exe is executed with
administrative privileges, you can add the -b and -o options to netstat and it will display
the process name and process ID (the PID column). Note that IIS does not show the
W3P.exe process name as a security precaution; however, you can see other example
process names:

Client and Server Startup

[86]

netstat -a on run with elevated privileges

Adapter and routing table changes
Making changes to the networking configuration and system network interfaces almost
always requires administrator or root permissions. For interactive user sessions, there are
utilities such as sudo that allow temporary one-off escalation of privileges. This can be
tedious to maintain and difficult to implement for an application such as OpenVPN that
provides no mechanism in order to instruct it to leverage sudo outside the scripted
components.

Another more recent advent is polkit, which allows the Linux administrator to instruct the
system that certain users or groups of users can perform specific actions. polkit can be
used to provide a normal user to make interface and routing table changes.

Client and Server Startup

[87]

Chroot
An established concept on UNIX and Linux systems is a chroot environment. This
environment segregates a process or set of processes from the rest of the system by setting a
new root path. Both the causes of problems with chroot, as well as the benefit of using it are
the same: the process can only access files that reside within this new root path.

From a command line, you can run any command within a chroot environment by simply
running the chroot command. To use this environment with OpenVPN, the similarly
named --chroot option is provided. When this option is used, everything needed must
reside within this chroot path, including any dependent commands and files. Some
examples include the following:

--client-connect and --client-disconnect script files
OpenVPN certificates and keys
On the server, the CRL file
--client-config-dir

The following screenshot shows what happens when we attempt to simply add the --
chroot directive to our known working configuration file. In this case, we defined our
chroot environment as /usr/local/etc/openvpn/, which has the default configuration
location on FreeBSD for OpenVPN. The immediate failures are the pathing to our CRL and
a valid temporary directory:

Failed startup with –chroot due to incorrect relative paths

Client and Server Startup

[88]

Even if we fix these errors by removing the line to our CRL and creating the tmp directory
in /usr/local/etc/openvpn, there will be additional errors, at the very least at
shutdown. Without dependent programs, such as /sbin/ifconfig, destroying the
interface fails.

Any other commands will need to be copied in to the chroot environment with correct
pathing. With a well-built environment, you will end up with a directory that mimics a
normal root file system.

Writing to log files will continue to work since the file descriptor is opened prior to the
chroot command. This makes it possible to put the log and status file outside the chroot
environment.

Missing ifconfig command causes failed interface shutdown

There are additional caveats to these restricted environments that are outside the scope of
this book. Varying operating systems handle device files differently, and commands such
as ifconfig will require access to the device in a known location. Some make this easy by
allowing you to mount the /dev filesystem within the chroot environment, others may not.

The key to remember here is that everything you intend to manipulate (files, interfaces,
commands, scripts, and so on) must reside within the scope of the chroot path. You can
test this most easily by putting yourself in that environment and attempting to execute the
same commands.

Client and Server Startup

[89]

This can be a hairy path, too, as you can see later. In addition to many of the executables,
you will find various shared libraries are missing that must be copied in to the
environment:

Assorted shared libraries/objects may be required, depending on the utility run inside the chroot environment

Scripting
For many years, I worked for a small company and most projects where completed in an ad
hoc manner. We identified a problem and went straight away to writing a script or making
a software change.

A few years ago, I obtained a systems engineering role for a much larger organization. At
the new company, there was a much more formal software development environment that
included an exhaustive process:

A problem report must be filed, indicating the specific bug or feature needing1.
work. Many times, it might be the developer him/herself entering the issue in the
database.
The issue is discussed in the next team meeting at what is named an Software2.
Change Control Board (SCCB). This team, consisting of many stakeholders,
dispositions each issue and determines whether it is accepted for work.
Once an issue is accepted, any requirements changes or additions is considered.3.
The software requirements help drive formal software testing and acceptance
later.

The issue and the requirement is assigned to the developer doing the work. Any4.
changes related to the initial issue or bug are made.

Client and Server Startup

[90]

The software changes are routed to a code review system where managers and5.
senior developers can comment, reject, or ultimately accept the changes for
commit.
Automated and manual tests are written against the requirement that was6.
changed or created. These tend to be strict and literal to the wording of the
requirement. For example, a requirement that reads:

Username shall contain alphanumeric characters from letter a through letter z and
number 0 through 9.

This will specifically also exclude anything else.

Finally, the tests are executed against the software and further changes to either7.
meet requirements or changes to requirements to more closely match software
needs are made.

Rinse and repeat.

Many corporate development teams follow a similar model, and increasing numbers of
open source software development teams are, as well. The OpenVPN team also follows a
similar development cycle, though not quite as formal.

The most important part of this cycle, from a smaller scope, is the requirement definition. I
find it is much easier to contain my scripting to a given task if I take some time, even a small
amount, to define what, exactly, I expect from the program once complete.

Defining a requirement or set of requirements, for an OpenVPN script can not only help
with writing the code to do what is necessary, but will ultimately aid in troubleshooting,
either during development or when problems occur later.

Up and down scripts
There are many moving parts with client- and server-side --up scripts. The server
side tends to be relatively static, and there is only a single configuration. Client side,
however, there are as many different configurations as there are unique client computers.

Because of these differences, assumptions made within a client-side script may be incorrect.
These may include virtual adapter device names, local network addresses and routing, and
commands. Also, the scripts written for a Windows client will not function correctly on a
Linux system and vice versa.

Client and Server Startup

[91]

In my experience, if the start up script is working, it is relatively simple to apply the same
logic, in reverse, to create a working --down script. All the permission, pathing, and
naming idiosyncrasies will be hashed out during development of the start up routine.

During development and troubleshooting, I find it is easiest to start an OpenVPN process,
and include some debugging messages in the --up or --down script. For the first test, we
can use the following script:

 #!/bin/sh

 # Test OpenVPN --up script

 set -x
 exec 2>&1
 printenv > /tmp/ovpn-env.$$

 logger -p local3.notice -t LOGTEST "Hello world! From: `whoami`"

This will add a simple log entry in /var/log/messages with text such as:

Dec 25 10:23:09 tshoot-srvr LOGTEST: Hello world! From: nobody

The three highlighted lines are excellent to debug scripts. The first line will cause each
executed statement to print in the OpenVPN log file. This shows variable expansion and
actual command use, helping identify errors in variable names and command pathing.

The second highlighted line will cause both STDERR and STDOUT to output the same,
showing error output that may be hidden from the log file.

Finally, the third highlighted line will cause it to print out the entire environment variable
list and their values to a file at /tmp/ovpn-env.<PID> where <PID> is replaced with the
script process ID. This is useful when debugging, so you can ensure the values you are
receiving are what you are expecting.

I've saved this file as /usr/local/etc/openvpn/up.sh and set it to be executable by
everyone, and I've added the --up up.sh parameter to our openvpn.conf file. The user
name printed after From: will be the effective user running the OpenVPN process.

Our first attempt at running OpenVPN shows a serious error; I've forgotten to add the --
script-security option to the configuration, which would allow the execution of
external scripts. I've highlighted the errors in the following screenshot:

Client and Server Startup

[92]

The execution of the –up script fails due to missing –script-security parameter

Once the --script-security 2 setting is defined, the VPN is initialized, and I can see the
log entry in /var/log/messages. Note that both my test log entry, when I ran as user
nobody, as well as the entry from root are displayed here:

Log entries appear from the execution of the –up script

Client and Server Startup

[93]

Now, to extend our script a bit, we can show the context in which it is being
executed. You'll notice in the first screenshot at our --up script attempt, the first line of the
highlighted content shows our script being executed, along with a series of parameters. You
can use these parameters in your script to change the script behavior in addition to a list of
environment variables. We can use $script_type to change the output of our log
message:

 #!/bin/sh

 # Test OpenVPN combined --up/--down script

 # this should just added a log entry in /var/log/messages

 logger -p local3.notice -t LOGTEST "OpenVPN running as
 `whoami` for $script_type script."

I've added --down up.sh to the openvpn.conf file. Running a quick startup and
shutdown of OpenVPN again, we can now see that our updated message shows up for both
--up and --down:

Log message changes for $script_type environment variable

Connect and disconnect scripts
The --client-connect and --client-disconnect scripts are very similar to the --up
and --down scripts, but are only used on the server side. These scripts are typically used for
logging, reporting, or local configuration that is unique to a given client. Troubleshooting
these is all but impossible if you are a client on a remote OpenVPN server unless you have
direct server access.

The connect script is capable of authorization and route assignments, and it could be
suspected if a client is having some odd connectivity issues.

Client and Server Startup

[94]

UDP troubleshooting
As a general rule, UDP is a better option for VPN traffic than TCP. TCP works very hard to
ensure that every single packet makes it across the wire (or any other medium) uncorrupted
and in order. For some things, such as SSH, file transfers, and web traffic, this is a good
thing; we expect the resulting content to be legible and generally in its original form.

When connectivity is reliable with relatively little packet loss, TCP can function just fine for
VPN. When that link drops packets and becomes unreliable, the problem can be amplified
dramatically when the encapsulated traffic is also using TCP. The resulting traffic includes
retransmit from both the OpenVPN processes at either end and the encapsulated traffic at
both ends. This results in potentially four times the packet count.

By its nature, UDP is a connectionless protocol. UDP is great for data where it is acceptable
to receive packets out of order or when packets can go missing. The out-of-order packets
are typically discarded since the application has likely already moved on to processing the
later packets and processing earlier packets would be disruptive.

Voice over Internet Protocol (VoIP) is one good example of this scenario. In a voice or
video conversation with someone, we are listening and/or viewing the conversation in real
time. It would be undesirable to hear words or see facial expression out of order. The
conversation quickly would become incomprehensible; it is much preferable to simply
ignore a dropped consonant or see a short hang in the video stream. On a smaller scale,
rendering a portion of a frame or part of a word that is a second or more old is of little use.

Traffic across a VPN is similar. The encapsulated traffic is already going to be engineered to
handle either transmission assurance (TCP) or packet loss and delay in a graceful manner.
So, using UDP for the overall VPN traffic, we allow the application transiting the VPN to
handle any connection quality issues.

Sometimes using TCP for a VPN tunnel is unavoidable, but do so if you
can. The community support staff often references two links for why TCP
within TCP is a bad idea:
http://sites.inka.de/~bigred/devel/tcp-tcp.html and
http://www.openvpn.net/papers/BLUG-talk/14.html.

Because of this connectionless state of a UDP tunnel, neither the client or server truly know
when the link to the other end has gone away or failed. To help deal with lost connections,
OpenVPN has the --ping and --ping-restart options.

If you are using UDP for your OpenVPN tunnel and traffic periodically stops working,
adding the --ping-restart option will help OpenVPN detect connection failures and
reconnect the tunnel to a useful state.

http://sites.inka.de/~bigred/devel/tcp-tcp.html
http://www.openvpn.net/papers/BLUG-talk/14.html

Client and Server Startup

[95]

UDP and firewalls
Because UDP is connectionless, another hurdle for this traffic is the border firewall. Some
firewalls will attempt to perform a fake keep-state on the traffic pattern with some level of
default timeout when no further traffic witnessed.

Using the --ping option, OpenVPN will spend periodic ping packets across VPN to the
remote endpoint to keep these fake keep-state sessions active. Without this, the firewall may
determine no further traffic is expected and shut down the session. This will not prevent
traffic from leaving the firewall, but will block the other side from talking in to that
endpoint.

This can potentially happen for either side, but it is typically a client-side problem. The
server side will normally have an explicit rule in the firewall that allows the inbound UDP
traffic, whereas the client side uses a random high-numbered port.

If the client is having connection problems, there may be a large delay on the server side
before that system is listed as disconnected. This will delay updates to things such as the --
status log or the execution of --client-disconnect. There is a client-side option
available named --explicit-exit-notify, which will cause the client system to notify
the remote OpenVPN server that it is exiting.

Summary
This chapter was much less about what an administrator can do to fix a problem and more
about identifying specific causes of a given problem. Some possibly new tools, such
as netstat, were introduced. Permissions at multiple levels were also examined, from
process level to the filesystem.

6
Certificates and Authentication

There are many methods of authentication available within OpenVPN. At its introduction,
OpenVPN supported only a simple pre-shared key but today supports X.509 certificate
chains, user and password authentication, and third-party authentication plugins and
scripts. Each of these can be used separately, or they can be combined to form a robust
authentication and authorization framework.

Along with robustness, complexity creates potential confusion and adds difficulty in
troubleshooting authentication issues, understanding how the individual components affect
the connection process and where logic is applied in accepting or rejecting a client or user.

Mismanagement of your PKI can have great consequences, whether your PKI is relatively
local in scope (a single organization or hobbyist's systems), or global, such as a public
certificate authority (CA) providing certificates to customers. There were two cases in 2016
of trusted CAs that lost trust with various web browser vendors. Both WoSign and
StartCom lost Apple's (Safari) trust as of September 30, 2016, and Mozilla (Firefox) and
Google (Chrome) as of October 21, 2016. This was due to poor signing practices and poor
key management.

You can read more about these events at eWeek
(http://www.eweek.com/security/why-browser-vendors-chose-to-dist
rust-2-certificate-authorities.html) or at The Register
(http://www.theregister.co.uk/2016/11/02/google_punts_wosign_sta
rtcom_from_good_guy_certificate_club/).

http://www.eweek.com/security/why-browser-vendors-chose-to-distrust-2-certificate-authorities.html
http://www.eweek.com/security/why-browser-vendors-chose-to-distrust-2-certificate-authorities.html
http://www.theregister.co.uk/2016/11/02/google_punts_wosign_startcom_from_good_guy_certificate_club/
http://www.theregister.co.uk/2016/11/02/google_punts_wosign_startcom_from_good_guy_certificate_club/

Certificates and Authentication

[97]

File permissions
Best practice often dictates that once operations requiring escalated privileges have been
completed, a daemon or process should drop to an unprivileged user. Many of the
OpenVPN how-to documents illustrate this by calling the --user and --group
configuration parameters. These same instructions, along with other guidance suggest that
your configuration, certificates, keys, and other related files have root ownership. This
practice prevents an unprivileged user or process from surreptitiously changing keys,
routes, and other parameters.

Once OpenVPN reduces its running privileges, it will be unable to re-read the configuration
files, certificates, and keys without some additional options. This may be the desired
behavior, and it is the more secure configuration though it is not very resilient. When an
option such as --ping-restart is used, the OpenVPN process will attempt to restart
itself, requiring a re-read of the certificate, keys, and configuration. If privileges have been
dropped to a user that does not have read access to these files or paths, the restart will fail
and OpenVPN will exit.

To accommodate this scenario, there are a pair of options that allow the OpenVPN process
to reuse or retain data that was read before privileges were dropped. The --persist-tun
option instructs OpenVPN to reuse the existing tun or tap device and to not re-execute the
--up or --down scripts. Without this option, the process would require special permissions
within the operating system to modify or change the virtual network adapter, its settings,
and routing. Finally, the --persist-key option instructs OpenVPN not to re-read key files
during SIGUSR1 or --ping-restart.

Be certain to always protect your certificate key files. Although it may be a minor
inconvenience to configure OpenVPN to execute and operate as an unprivileged user, there
is great benefit in the long run. Certificates are shared clear, over the wire, and the public
portion of the exchange. If your private keys become available or are easy to read, a client or
other (OpenVPN, LDAP, mail, and so on) server could potentially be impersonated. If your
CA key is exposed, there is potential for rogue-signed certificates that your existing systems
would trust.

Certificates and Authentication

[98]

Pre-shared keys
Using pre-shared key (PSK) is where OpenVPN started. The static key how-to on the
OpenVPN website is often the first place aspiring VPN administrators begin. Problems with
PSKs are relatively easy to identify as the VPN will simply fail to operate.

There are two scenarios where PSKs are used, in a static key point-to-point VPN and with
the --tls-auth directive in the more commonly deployed client-server topology. This
section will specifically cover the prior, static key, scenario. The latter, the --tls-auth
scenario, is specifically covered in depth in Chapter 7, Network and Routing. The advice
listed there equally applies to VPNs using PSKs for the data channel, as well. Pay close
attention to --key-direction, if used.

Certificate authentication
Since the release of OpenVPN 2.x, certificate authentication has been the most prolific
deployment of OpenVPN in the wild. The earlier static key only supported two remote
endpoints, neither really being a client nor a server. This is not useful when more than a
single remote client is desired.

Certificate chain overview
X.509 is a notable standard for Public Key Infrastructure (PKI), defining a hierarchical
topology of CAs and their signed child certificates. The general concept is that, at that root
of the chain, is an authority certificate, the CA. This CA certificate can be used to sign child
certificates. Anyone (or thing, system, and so on) that trusts the root, inherently trusts the
child certificates.

CA has the ability to sign child certificates with varying capabilities. Some will have
differing key usage or KU; others might have subordinate CA rights. With cascading trust,
subordinate CAs are generally given the same trust as their parent CA in a given trust store.

The screenshot given later shows the certificate chain for the OpenVPN community web
server. In this case, there is a parent CA certificate, Go Daddy Root Certificate Authority –
G2, a subordinate CA certificate, Go Daddy Secure Certificate Authority – G2, and the
OpenVPN wildcard certificate, *.openvpn.net.

Certificates and Authentication

[99]

The chain of trust starts from the presented server or client certificate, in our case, the
*.openvpn.net certificate. In this example, the Safari web browser is the client agent, and it
will look up the certificate chain in the local trust store based on the information and
additional certificates presented by the web server. If Safari and my Mac have the
subordinate CA in the key store, trust will be dispositioned based on the settings within
that trust store. In our example here, Go Daddy Root Certificate Authority – G2 is present
and trusted in the local certificate store. The web server presented both the server certificate,
*.openvpn.net, as well as the intermediate CA certificate, Go Daddy Secure Certificate
Authority – G2:

In nearly every OpenVPN configuration I have seen deployed, the CA is going to be a self-
signed unit that will not pre-exist in the operating system trust store. Some larger
corporations might have a large PKI deployed, so may have several CAs deployed on client
workstations, but this is likely an exception to the rule.

For this reason, OpenVPN client packages will contain, at a minimum, a configuration file
and the CA certificate. These can be combined using inline certificates, which embed the CA
certificate data within the configuration file. If this data is not embedded, it will need to be
bundled as a separate file. Most clients will require many pieces of certificate data: the CA
certificate, the client certificate, and the client key. All of these can be embedded inline:

Certificates and Authentication

[100]

Embedded CA certificate payload within OpenVPN client configuration file (some content truncated at the bottom)

Regardless of how you develop your certificate chain, it is important that the clients and
server be given all the necessary certificates to establish a full chain of trust. Missing
components within the chain will result in validation and verification errors, preventing
successful connections. It is not enough to include only the topmost root CA certificate;
intermediate/sub CAs must also be included.

Using the OpenVPN community server certificate, we can leverage the OpenSSL verify
command to verify a certificate chain. This is pretty simple with a single root certificate and
a single client certificate, but gets more complicated when an intermediate CA is involved.

I downloaded the certificate chain via the SSL Labs interface, but there are many ways to
download the chain. The certificate details will be available from the Packt website at
https://www.packtpub.com/networking-and-servers/troubleshooting-openvpn. I ended
up with three files after separating the details.

https://www.packtpub.com/networking-and-servers/troubleshooting-openvpn

Certificates and Authentication

[101]

It required two commands to fully verify this chain. First, OpenSSL expects the certificate
that is passed with CA file to be a self-signed CA certificate (all root CAs are actually self-
signed). It will not recognize the intermediate certificate as a CA file, since it is not self-
signed, but signed by the root CA.

For the first step, I verified the intermediate certificate against the CA. The second step
listed the intermediate using the -untrusted option followed by the final server certificate.
In the following output, you can see the list of files and the result of the verification
commands:

OpenSSL certificate chain verification

The Certificate Revocation List
Thus far, we have only talked about trusting certificates and the overall chain of that trust.
Another important component and feature of the X.509 standard is the Certificate
Revocation List (CRL). The purpose of the CRL is to provide affirmative information to
interested systems about which certificates should no longer be trusted. Querying the CRL
or refusing to trust certificates contained within the CRL is ultimately determined by the
client.

There are many reasons to revoke a particular certificate. For global PKI systems, a server
certificate key may have been exposed or lost, or the operator may have needed to change
the common name (CN) of the certificate.

In the case of OpenVPN, a user certificate may be added to the local CRL because the
employee left the company, or perhaps a given OpenVPN server has been decommissioned
so that server certificate is no longer required.

Certificates and Authentication

[102]

It is best practice to deploy the CRL with OpenVPN on the server side. Technically
speaking, it is possible to deploy the CRL on the client side, as well, but the utility is limited
and the logistics of pushing an updated CRL to clients is difficult. There is talk of OpenVPN
3.0 adding support for CRL Distribution Points (CDPs) that would allow the client to
query a special URL, LDAP, or other source to pull on-the-fly CRL data.

When the OpenVPN server is deployed with CRL, it will be queried every time a client
connects or the certificate handshake reoccurs. The following screenshots show the client
side of a connection that was initiated with a revoked client certificate. As of OpenVPN
2.3.13, there is no message passed to the client indicating a connection failure is due to a
revoked certificate. Instead, the connection dies with an interrupted system call message:

Client side: connected with revoked certificate – no CRL error listed

Certificates and Authentication

[103]

On the server side, however, we are given a very clear CRL error (highlighted content):

Server side: client CRL error with revoked certificate

In the preceding message, OpenVPN indicates that a CRL check failed and calls out the
serial number of the certificate. We can verify this by querying the CRL file directly using
the OpenSSL command-line utility with the following command:

 author@server:/usr/local/etc/openvpn-> openssl crl
 -noout -text -in ../ssl-admin/prog/crl.pem

The command option earlier puts OpenSSL in the CRL mode, does not output a file,
outputs the CRL in text form, and reads in the CRL file from ../ssl-
admin/prog/crl.pem. Finally, in the output, we can see the presence of serial number
(03), the timestamp of the revocation, and the signature of the certificate:

Certificates and Authentication

[104]

Inspecting the CRL and identifying serial number 03

System date and time
An important piece of data within an X.509 certificate is the timestamp indicated when a
certificate becomes valid and when it expires. Outside the time frame specified with the
certificate, it is to be untrusted or invalid. If the time is incorrect on a client system, the
OpenVPN server, or the system that generated the signed certificates, then the certificate
validity could be negatively impacted.

The following screenshot shows the OpenVPN community website's SSL certificate. The
highlighted section illustrates the start and stop of validity with Not Valid Before and Not
Valid After. In the case of this example, the certificate begins validity on Monday, February
29, 2016 at 12:06:39 Central Standard Time-0600.

Certificates and Authentication

[105]

This certificate is considered invalid after Sunday, March 5, 2017 at 12:22:38 Central
Standard Time-0600:

Since I took this screenshot within this time frame (Wednesday, November 16, 2016 at
05:32:23 CST), the certificate shows as valid. If I change the time on my laptop by jumping a
year ahead, the validity changes. In this case, my laptop considered the date and time to be
Thursday, November 16, 2017 at 05:41:44 and the certificate is marked as expired:

Similarly, if we set the date on the local machine to a date and time prior to when the
certificate is valid, we get a message indicating that it is not yet valid:

Certificates and Authentication

[106]

It is recommended that all systems participating in PKI utilize Network Time Protocol
(NTP) or some other trusted mechanism to keep the system time current and in sync.
National Institute of Standards and Technology (NIST) maintains a list of publicly
accessible NTP servers. You can view their list by navigating to
http://tf.nist.gov/tf-cgi/servers.cgi. The NTP Pool Project also maintains a large
pool of publicly available NTP servers around the world. More information and server
addresses are available at http://www.pool.ntp.org/en/.

It is just as important for the system signing and issuing certificates to have the correct time
as it is for the client.

Further details of the X.509 standard, including PKI, certificates, and
CRLs can be found in the two IETF documents: RFC 2459
(https://tools.ietf.org/html/rfc2459) and RFC 5280
(https://tools.ietf.org/html/rfc5280).

Authentication and plugins
Apart from X.509 tools, OpenVPN provides a mechanism to use authentication plugins
along with client connection scripts. It is possible to remove the requirement for client
certificates using --client-cert-not-required (deprecated in 2.4, removed in 2.5 in
favor of --verify-client-cert). In this case, authentication rests solely upon the --
auth-user-pass-verify option.

If --client-config-dir is still desired without client certificates, you will need to
leverage --username-as-common-name. Of course, if you're going to require usernames
and passwords, it is necessary to add the --auth-user-pass option to all the client
configuration files.

The --auth-user-pass-verify script is the last in a long chain of scripts that are run.
The majority of environment details are available to all of these scripts, including the CN. If
you are troubleshooting problems with this script, ensure that the connection is not being
killed due to logic in other script routines prior to reaching your authentication script.

http://tf.nist.gov/tf-cgi/servers.cgi
http://www.pool.ntp.org/en/
https://tools.ietf.org/html/rfc2459
https://tools.ietf.org/html/rfc5280

Certificates and Authentication

[107]

Usernames and passwords
OpenVPN can read usernames and passwords from a file, preventing a prompt on the
client side. Early versions of the OpenVPN GUI were compiled with this option disabled.
The compile was changed with the first 2.2 release candidate in February of 2011. This is
used with the --auth-user-pass <file> option where <file> is the path to a file
containing the username and password on separate lines.

--ccd-exclusive
The --client-config-dir option is often used to apply client-specific configuration and
routing. OpenVPN provides a related option, --ccd-exclusive, which will prevent client
connections from clients who do not have a file in the client-config directory. When this
option is present, even an empty file named to match the CN is sufficient to meet this
constraint.

Unlike some of the certificate errors, failing this check does at least provide an
authentication error to the client, though it is somewhat generic:

Client side: AUTH_FAILED is apparent in the log file

The server-side log, however, does contain the reason for the authentication error
(highlighted). Also, further down, you can see the push command for the AUTH_FAILED
message to the client:

Certificates and Authentication

[108]

Server side: authentication error with cause identified

Summary
This chapter has helped to illustrate some of the inner workings of the X.509 standard. My
goal was to demystify certificate chains and the revocation list by providing tools and real-
world command examples and allowing an OpenVPN administrator to identify connection
and authentication problems.

Due to some limitations of how OpenVPN implemented these standards, useful clues are
not always present in the client-side logs. Some of the most common and difficult-to-
diagnose problems have been identified with solutions or explanation of how the logic is
executed within the OpenVPN binary.

7
Network and Routing

Building a network is the core functionality OpenVPN provides. The complexity of the
network is up to the administrator, but I have seen this range from a simple client/server
with a few resources on a local network to VPN chaining, client-side routing, and the
encapsulation of other network streams.

In order to build a quality virtual private network, it is necessary to understand how to
troubleshoot issues. In addition, it is useful to understand how some of these network
topologies relate to OpenVPN. This chapter will help with all of these concepts.

Connectivity
The first step in connecting to a remote VPN server is actually having the ability to connect
outbound from the current network, whether that is from home, a coffee shop, a corporate
network, or via your favorite mobile hotspot. If the outbound connection is blocked, none of
the other configurations will matter.

Inbound connection–server
On the server side, connectivity can prove a bit more difficult. The OpenVPN server needs
to either reside directly on the public network, or port-forwarding rules need to be applied
to deliver the traffic to the correct system. All servers used across the general Internet will
require some form of routable or public IP address.

Network and Routing

[110]

I will cover both a simple public address case in addition to the slightly more complicated
port-redirection case. It is good to keep in mind that many corporate networks will seldom
place the VPN server directly on the public Internet. Instead, they will usually use multiple
layers of firewalls, intrusion detection system (IDS), and intrusion prevention
system (IPS). The following illustration demonstrates one of these more complicated
scenarios:

Corporate deployment using DMZ and multiple firewalls and IDS/IPS

The arrows in the preceding image demonstrate the path traffic would take from a potential
client system. Note that both public traffic (that is, traffic destined for hosts available on the
general Internet) and the VPN traffic to internal systems traverse the IDS/IPS system(s) and
the DMZ firewall. Then, the OpenVPN traffic must traverse the server and the LAN firewall
before finally reaching the internal systems.

The method most commonly used for addressing these systems involves multiple routes
and some network address translation (NAT). The systems within a demilitarized zone
(DMZ) will normally have a real public IP associated with them, generally hosted on either
the firewall or IDS/IPS system, often known as a virtual IP (VIP).

Network and Routing

[111]

VIPs will be publicly routable addresses. The hosting system will forward traffic, after
inspection and rule checks, to the internal system within the DMZ. Traffic will then flow
from the DMZ-hosted system to the next destination. In the case of our OpenVPN server, it
will forward that traffic into LAN after some final firewall policy checks by the LAN
firewall.

This configuration is much more secure than most typical OpenVPN setups where the
server resides directly on the Internet. These configurations, however, are complex, and can
be much more complicated than the server administrator requires or even understands.

Publicly addressed server
Having the ability to assign a public IP address directly on your OpenVPN is the easiest
method of hosting a server. Hosting an OpenVPN server at a VPS provider is likely the
simplest deployment method. Advantages of this include commercial-quality uplinks,
server and hardware reliability, and you can run these virtual servers at a multitude of
providers in geographically convenient locations. This allows the administrator to place the
VPN server closer to the users of that system and lowers latency and potential bandwidth
bottlenecks:

An example of geographically located OpenVPN servers (Map source: https://commons.wikimedia.org/wiki/File:Winkel_triple_projection_SW.jpg)

Network and Routing

[112]

Multiple OpenVPN --remote options can be specified in client
configuration files, and they will be tried in the order listed. Some
OpenVPN service providers allow users to generate their configuration
file based on their geographical location, resulting in a series of --remote
entries optimized for that user's location.

Fortunately for the novice or aspiring VPN administrator, the majority of VPS providers
place the system directly on the public Internet. Depending on the operating system and
VPS provider, some systems may come preconfigured with some basic firewall rules.
Tweaking and verifying these is covered in a later section.

There are a couple of things you can do, however, to ensure the OpenVPN process is
listening for new connections. Both Unix and Windows systems use the netstat command
to list open ports. This command, depending on the arguments, will display both outbound
connections as well as ports opened by listening services. On Unix, you can use the grep
command to filter the results, looking for the listening port. On Windows, you can filter
with the findstr filter.

The following screenshots show what this would look like for both a Windows and a
FreeBSD server. Linux or other *nix flavors will behave similarly:

Identifying the listening OpenVPN process on Windows

The -aon command-line options specify to list all sockets, numerically, and by process ID.
If you have administrative privileges, you can add the -b option, which will identify the
process name:

Network and Routing

[113]

Showing the listening port for OpenVPN on FreeBSD

You can use the netcat or nmap utilities to verify that the port is open from a remote
system. A remote verification helps to ensure that all the necessary firewall rules are in
place to allow the traffic:

nmap output testing UDP port 1194 on OS X

On *nix operating systems, the nmap command requires root privileges to scan UDP ports.
The UDP protocol is a best-effort dispatch meaning that the sender will not wait for a
confirmation before sending the next packet. TCP, on the other hand, will respond with
packet reception data and request retransmission of lost or corrupt packets.

Network and Routing

[114]

Because of this behavior, nmap requires extra privileges to intercept ICMP messages from
the kernel as UDP does not provide the data needed alone:

netcat does not require root and serves the necessary role

The ncat (or netcat or nc) command does not require root permissions. On Windows,
neither the nmap nor netcat tools require administrative permissions. As a regular user, I
was able to run both without escalated privileges. The Windows tools provide a nice
graphical interface, but the overall end result and command syntax proves identical to the
*nix version of the tool.

The command shown in the following screenshot is identical to what you would run on the
Linux command line:

Network and Routing

[115]

Both tools are available across both the *nix and Windows platforms though are seldom
part of the base distribution. You can download them both by going to
http://nmap.org/download.html for netcat and nmap. The single Windows setup will, by
default, install both utilities, along with some other useful ones not covered here.

Privately addressed server with port forwarding
Hosting an OpenVPN server on a home network connection provides its own benefits and
complications. This is most often deployed when someone wants to access resources at
home remotely. Some examples include network file servers hosting photos and movies or
a home printer or a DVR.

The primary complication with hosting on a typical home or consumer Internet connection
is the single IP address, which is most often not a static address. In this case, the customer
premises equipment (CPE) will hold the public IP address. Often, CPE is an ISP-provided
piece of equipment that offers a limited subset of configuration options and capabilities.
This could also be an off-the-shelf system such as an Apple AirPort, an OpenWrt device, or
any other home router.

Common functionality should include some firewalling capabilities along with some
rudimentary port forwarding. High-end units will allow the configuration of Dynamic
DNS (DynDNS) registration. For the purposes of this example, we will only focus on port
forwarding. In addition, we will assume a static IP address. The majority of providers
charge extra for a truly static IP address, but it is common according to Internet testimonials
to retain the same public IP for a single CPE for many months or even beyond a year.

With port forwarding, an administrator will take a port on a publicly accessible system, in
our case our CPE, and forward that connection to an internal system. The default port for
SSH, for example, is 22. If we wanted to host an SSH server on a couple of internal systems,
we could forward port 22 from our CPE to internal system 1. The second system, however,
would have to be a separate port (any arbitrary port) since 22 is now used.

http://nmap.org/download.html

Network and Routing

[116]

In the earlier-mentioned scenario, let us assume the public IP address is 192.0.2.5. Our
internal network is using 172.31.0.0/24, with our two SSH servers at 172.31.0.9 and
172.31.0.43. We can redirect port 22 from our CPE to server 1 (x.9), but we need to use
another port, 774 (or any arbitrary port), with our second server (x.43):

A relationship of internal hosts to CPE in port-forwarding setup

Our SSH session initiation would look as follows:

author@client:~-> ssh -p 22 user@192.0.2.5
user@172.31.0.9:~->

 author@client:~-> ssh -p 774 user@192.0.2.5
 user@172.31.0.43:~->

Note that, in both cases, the external IP is identical, but the port number changes. Also, the
internal host we connect to changes, but the SSH process on each host remains on the
default tcp/22. I will touch on it further in the firewall section later in this chapter, but it is
important that those internal hosts have outbound access to hosts connecting in order to
establish those connections.

For testing our port-forwarding rule for udp/1194 on a typical home network, we are
forwarding udp/1194 on our public interface on a Ubiquiti EdgeMAX router to our internal
OpenVPN server on 192.168.19.37:

Network and Routing

[117]

Ubiquiti EdgeMAX port-forwarding configuration

The configuration on this device takes a few details, including the following:

Internal IP address: 192.168.19.37
Internal port: 1194
Protocol: UDP
External IP address: Your actual public IP (the test here used a real port forward
over the Internet; our public IP is blurred)
External port: 1194 (this does not need to match; internal and external can be
whatever you choose)

For the inbound interface, I selected pppoe0 since this is the interface that holds the publicly
routable IP address. Once the configuration is saved, it is live and ready to be used.

Network and Routing

[118]

To test the new rule, we will use the netcat utility, without starting up the OpenVPN
process. This allows for a simple test where we are sending raw text across the port. On the
server, shut down the OpenVPN process if it is running, and execute the following
command:

 author@server:-~> nc -ukl 1194

This command opens udp/1194 and listens for incoming connections. The -k option keeps
netcat listening for additional connections. Because we are using UDP, there is no real
concept of a stateful connection, so every packet is a new connection.

Next, from outside the network, again using netcat, make an outgoing connection to the
public IP and port combination used for your port-forwarding rule. On the external test
system, run the following command:

 author@external:-~> nc -u 203.0.113.9 1194

With both windows open, you should be able to type into the external window and see the
message appear on the OpenVPN server console after each press of the enter key. If you do
not see your messages on the server console, there is either a problem with your port-
forwarding rule, or there may be a firewall somewhere in the path that is blocking the
traffic.

Here is our console session on the internal OpenVPN server after our successful test, as
described earlier. The communication for this test is only one-way, so typing a message on
the server console will not send a message back to the test client:

Internal OpenVPN server with test UDP listening running

Network and Routing

[119]

The following screenshot shows the messages sent by simply typing into the window and
pressing Enter. All the messages show up on the server, but note the message typed on the
server did not show up in the client window; this is normal:

External test system with open connection to public IP on udp/1194

Outbound connection–client
Much of the testing demonstrated in the previous section properly illustrates testing
outgoing connections during the testing of the incoming connections. It should be readily
apparent that if an outgoing connection fails, the incoming connection on the other end
would not succeed.

It needs to be pointed out that testing for open UDP ports can be problematic. The netcat
tool, for example, gives frequent false positives, depending on the remote operating system
and firewall policies.

In all of our examples, we have used udp/1194, which is the OpenVPN IANA-assigned port.
If we use netcat to test udp/1000, for which we do not have a listening daemon, the remote
FreeBSD system, combined with the netcat tool's internal logic, lists the port as open.

Network and Routing

[120]

If we use nmap, however, we can see that the port is correctly identified as closed:

Demonstrating differing results between nmap and netcat for a closed port

Digital Internals has a decent write-up discussing the false positives at
http://www.digitalinternals.com/unix/unix-linux-netcat-check-port-open/511/.

Firewall filters and inspection
Some service providers block the default port 1194 (both TCP and UDP) from some client
networks. Corporate networks, as an easy example, block most inbound traffic to the
network, preventing a rogue service like a web server or OpenVPN server. On a much
larger scale, one infamous blockade for the OpenVPN service is the Great Firewall of China
(see https://openvpn.net/archive/openvpn-devel/2004-11/msg00028.html for more
information).

TLS authentication
OpenVPN provides a mechanism using a set of pre-shared keys to cryptographically sign
every packet between the server and client. The mechanism for this is the same secret key
used for a static-key OpenVPN setup, as was the original release.

http://www.digitalinternals.com/unix/unix-linux-netcat-check-port-open/511/
https://openvpn.net/archive/openvpn-devel/2004-11/msg00028.html

Network and Routing

[121]

The advantage to this signature is two-fold. First, it helps prevent any sort of denial of
service attack using cryptographic routines within TLS to overload an OpenVPN server.
The OpenVPN process will quite simply drop any packet without a valid signature before
the CPU-intensive handshake and key exchange operations take place.

As a second advantage, --tls-auth aids in preventing keying material disclosure. This is
specifically helpful for vulnerabilities such as Heartbleed or DROWN. If a cipher is
completely broken, it is possible to still snoop the traffic from OpenVPN because --tls-
auth doesn't provide any additional cryptographic layers.

You can read more about the Heartbleed and DROWN OpenSSL
vulnerabilities by going to the following links:

Heartbleed (CVE-2014-0160): h t t p s ://w e b . n v d . n i s t . g o v /v i e
w /v u l n /d e t a i l ?v u l n I d =C V E - 2014- 0160

DROWN (CVE-2016-0800):
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-20
16-0800

While being an added layer of protection for your VPN, --tls-auth can also cause
connectivity problems. If the key direction is incorrect, or the pre-shared keys are out of
sync, your VPN clients will be unable to connect, and the errors will manifest as
connectivity issues.

The OpenVPN manual suggests that the key direction should not be defined in the server
and client configuration for simplicity. In this scenario, only one key is used for packet
signatures on both sides of the connection. If set, the values can be only either 1 or 0, with
the server set to one value, and all clients set to the other value.

The --tls-auth key can either be expressed inline to the configuration or be written to a
file like the certificates. When using a file, the configuration will resemble the following:

tls-auth /path/to/file.key 0

The preceding example provides a path to the key file, and specifies a key direction of 0. If
this was for the server, we would want to ensure the client side was set to 1. Either side can
be either value as long as the opposite end is the other value.

When using an inline tls-auth key, it would look like the following example. Notice that
to specify the key direction, there is a distinct --key-direction parameter value present:

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-0800
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-0800

Network and Routing

[122]

key-direction 0
<tls-auth>
#
2048 bit OpenVPN static key
#
-----BEGIN OpenVPN Static key V1-----
5f6a01fc8ed629aad7b26e6c6b474e5b
4a5446d3c81df9fd619d0a685b56a4c7
2997d8e5906a152687441a89742604cb
a2eb51e68ef260507d6681b04e5932d4
f35699b1fce29269dc75199df9281ac0
bd85ac8f4d097e2b2abfd03854d91466
d026c72f0ebd14b76cd3688e52dd1475
8be2996a577b97c198c8130c4824e97c
dd82dde648203f26a172385e4a36cc1d
b8633c1f0bb8c7954db540357cb88f75
571a21c4dae02e4cea767abb36713d3e
1b863b6dc479cf4081e3929e0f3f26d3
fa503629b587e5be01c95bd16cd8ae70
abd902bb8b95dfdcbd2dc552ef3f3e9a
01bdbc0e8df849aa6fc0aed7de6ce718
f15b696eaf0daad496bbaf7b78c4f00a
-----END OpenVPN Static key V1-----
</tls-auth>

If the secret keys do not match or the key direction parameter is not set correctly, both set to
0, for example, there will be TLS key errors present in both the server- and client-side logs.
On the client side, the error will look like the following:

TLS Error: local/remote TLS keys are out of sync: [AF_INET]192.168.19.37:1194 [0]

On the server side, you will see two messages, one identifying the packet error and another
identifying the offending peer:

Authenticate/Decrypt packet error: packet HMAC authentication failed TLS Error: incoming packet
authentication failed from [AF_INET]192.168.19.104:1194

Note that modification by inline network intrusion systems that change values to the packet
headers may introduce problems because the packet signatures will not validate. If you are
seeing this behavior and are confident that your configuration is correct, try completely
removing these parameters and see if the problem goes away. If so, there may be a device in
the line tampering with packets.

Network and Routing

[123]

Routing
OpenVPN provides powerful routing capabilities allowing the network administrator to
direct traffic from clients where it needs to go. These routes can place entire subnets behind
specific client connections, through other routers on the server side, or out to the Internet.
There are two distinct zones when discussing routing and VPNs. I like to classify them as
internal and external.

Regardless of which bucket your routes go into, it is vitally important to consider that both
endpoints in the route need to know how to reach the other. There are varying techniques
for accomplishing this: static routes, dynamic routes, NAT/PAT, and so on. Failure to
ensure that there is a return path will prevent useful traffic from flowing.

In the following example image, the OpenVPN server resides behind a port-forwarding
network gateway. The LAN gateway, nor the LAN file server, however, know how to route
the 10.8.0.0/24 network. The OpenVPN client is able to send traffic via the OpenVPN
server to the file server on LAN. That file server then responds via the default gateway
because it does not have a more specific route for the VPN subnet. At this point, the
gateway will either drop it (It is bad practice to forward RFC 1918 traffic out to the Internet)
or forward it, only to be discarded upstream as unreachable (see
https://tools.ietf.org/html/rfc1918, section 3, paragraph 8):

A missing return path causes overall communication failure

The simplest solution is to install a static route pointing the VPN subnet, 10.8.0.0/24,
back to the VPN server at 192.168.19.5 on the LAN file server. If we are only dealing
with a single or small handful of hosts, this might be the best option. In a corporate
environment, where there are many hosts, however, this quickly becomes cumbersome.

https://tools.ietf.org/html/rfc1918

Network and Routing

[124]

The second option is to install the same route to the VPN subnet on the LAN gateway. This
is generally less desirable, as it will cause the gateway to send an ICMP redirect message
informing the LAN file server of the more direct route (via the VPN server). For a simple
home network, this may be sufficient as some gateways may not have the routing features
enabled to set static routes in a way accessible to the end user (homeowner/subscriber).

Another solution to return-path routing is to NAT VPN traffic from the VPN subnet out to
the VPN server LAN address. This NAT method will result in all of the LAN systems only
seeing the VPN server's LAN address, which they already know how to route because it is
local. In the majority of cases, this should be sufficient. This does not work, however, if
there are VPN resources that LAN clients want to access directly. We will discuss this in a
later section.

One last method for resolving return-path routing is if the OpenVPN server is also the LAN
gateway device. This is possible with only a few off-the-shelf residential gateways, and also
a few commercial gateways, but there are some alternate firmware for some devices that
allow for this. OpenWrt and pfSense are two examples of gateway devices firmware that
embed OpenVPN.

When troubleshooting routing, the following flow chart is often referenced, and we
consider it a gold standard for troubleshooting with regard to OpenVPN. The flowchart is
designed to help troubleshoot routing when there are remote LANs/networks behind an
OpenVPN client:

Network and Routing

[125]

Network and Routing

[126]

ICMP redirect (type 5) messages are sent when the next-hop for a routed
packet is via the same interface on which the packet was received. Overall,
this type of routing is inefficient, and it is better to route those packets
directly to the proper host. More information about this is available at
http://www.cisco.com/c/en/us/support/docs/ip/routing-information

-protocol-rip/13714-43.html or at
https://ask.wireshark.org/questions/35826/what-does-icmp-redirec

t-redirect-for-host-mean.

Internal routing
The internal routes are those that will stay inside the VPN. These do not pass outside the
general context of OpenVPN or remain very close. In some configurations, the only thing
the VPN clients will communicate with are either the VPN server (or some services hosted
on the machine) or other VPN clients.

There are a few things that can go wrong with a simple setup like this. For example, let us
set up an Apache server and run that on our OpenVPN server. Normally, users would
connect to this web server over the normal system IP address (LAN or WAN is irrelevant).

With the server also running an OpenVPN server, however, the VPN clients must access the
web server over the VPN IP or they could run into split routing. The server's public IP
cannot be routed over the VPN. Access rules may allow additional privileges for VPN
clients or provide virtual hosts that only reside within the VPN subnet.

There are no specific steps to verifying internal routing issues, but make sure the service
you are trying to connect to is:

Listening on the VPN IP address
Providing the necessary access to the VPN clients

Database servers, protected web paths, and other similar services
use IP addresses as one component to determine access rules

External routing
External routes are those that pass on to other networks whether they remain within the
LAN/WAN or extend beyond out to the Internet. I see the external routes as the more
complicated of the two as they generally involve cooperation of some sort from the other
network.

http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13714-43.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13714-43.html
https://ask.wireshark.org/questions/35826/what-does-icmp-redirect-redirect-for-host-mean
https://ask.wireshark.org/questions/35826/what-does-icmp-redirect-redirect-for-host-mean

Network and Routing

[127]

A common use for passing external routes is to bypass geographical limitations enforced by
various video streaming providers. Due to content licensing, translation, and local laws or
regulations, access to various content is restricted for use based on their perceived
geographical location based on the IP address. Many geolocation services attempt to place
ranges of IPs within a physical location, often based on registration data (ARIN, APNIC,
and others). Another more modern method is locating Wi-Fi access points based on GPS-
enabled cellular phone records.

By connecting to a VPN server in a remote location, a user can appear (and functionally
does) to originate from a different location than where they physically reside. Some of these
content providers have gone to great lengths recently to restrict known VPN providers from
access at all.

Pushing routes
When the admin wants VPN clients to connect to more than other VPN clients, it is
generally necessary to push additional routes to those clients. These routes can be both
internal and external to the VPN and can even include other OpenVPN processes. System
administrators, for example, may connect to a different set of VPN servers than normal
users.

Routes can reside behind other clients, static systems on the server LAN, external to the
server LAN, or even be a new default route.

Routes behind clients
Through --iroute statements, OpenVPN can be made aware of routes behind clients,
creating a route in the internal routing table. This is useful when you have a central office
and one or more remote offices, for example. Each office should have its own subnet. The
gateway device or a router behind it will have a VPN process that may act as a client to the
central office's OpenVPN server.

The --iroute statement must be placed in a client-specific configuration file within --
client-config-dir or CCD. If you place this directive in the general server
configuration, it will be applied to all clients connected, rather than the single, correct,
client. If the intent is to only have VPN clients route these subnets, there is no reason to add
this to the kernel routing table (mentioned later).

Network and Routing

[128]

Applying the --push route "..." to clients, along with --iroute in the correct CCD
file, you can successfully traverse the VPN in to remote client subnets, without affecting the
OpenVPN server itself. It is important to remember that the OpenVPN server can push
routes to clients, but there is nothing to push those routes to the OpenVPN server. It is a
good rule of thumb that for every pushed route, there should be a route in the server
configuration, and vice versa.

Kernel versus process routing
There are two distinct routing tables on an OpenVPN server: the OpenVPN process internal
routing table and the kernel routing table. Normally, in a simple OpenVPN setup with no
additional routes, there is an interface route within the kernel routing table for the VPN
subnet.

Both the --route and --iroute configuration arguments create routing table entries. The
former propagates those routes to the kernel routing table, whereas the latter only tracks the
routes internal to the OpenVPN process. The distinction is that if the kernel is unaware of a
given route, LAN clients behind that OpenVPN system will be unable to reach those
subnets. Likewise, a route can be placed within the kernel routing table, which will pass
that route to the OpenVPN system, but the process needs to know to which client that goes
in order to process it.

There are three primary steps to establish a full route within OpenVPN:

Establish process-specific routes (--iroute).1.
Apply necessary kernel routes (--route).2.
Push routes to clients (--push "route ...").3.

In order for kernel routes that route across interfaces to be honored, IP forwarding needs to
be enabled. This allows the system kernel to forward packets from one interface to another.
Without this set, traffic routing will stop dead at the kernel. Both *nix and Windows have
the concept of IP forwarding.

Modern Linux and Unix systems have sysctls or system controls that define some runtime
kernel options. Most will use a separate IPv4 and IPv6 setting, net.inet.ip.forwarding
and net.inet6.ip6.forwarding. These will vary somewhat, but good bet to find them
shown here:

Network and Routing

[129]

For Windows, there is a similar mechanism within the system registry. You can find the
necessary keys in
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters as
the value IPEnableRouter. You can reference
https://support.microsoft.com/EN-US/kb/230082 for further details.

Route conflicts
Be careful when selecting the IP range to use for your VPN. There are a couple of common
home network subnets (192.168.0.0/24 and 192.168.1.0/24) that should never be
used for a VPN. Other corporate ranges should also be avoided, like anything in the 10/8
subnet. Most importantly, make sure that whatever you're using doesn't conflict with what
you want to connect to.

Redirect gateway
Many VPN providers will push a new default route to their client systems. Some third-
party OpenVPN client GUIs will even go so far as to provide an option that notifies the user
if the apparent external IP doesn't change once connected to a VPN.

Routes are followed by the most specific route and then by the routing metric. In general,
OpenVPN routes all will have the same metric, so specificity matters. If OpenVPN actually
replaced the core default route, the client would be unable to talk to the gateway, causing
the connection to drop.

To push a new default gateway to OpenVPN clients, the --redirect-gateway
configuration directive is provided. With the def1 flag, all network traffic except local LAN
traffic will be routed to the VPN server, even Internet-bound traffic such as web browsing.

https://support.microsoft.com/EN-US/kb/230082

Network and Routing

[130]

This directive does two primary things to create a new default route. First, it creates a static
route for the OpenVPN server, pointing to the current default gateway. Second, it creates
two less-specific routes functionally providing a new default, without deleting the original
route.

As I stated earlier, the routing table will follow the most specific route first. The normal
default route is defined with the subnet 0.0.0.0/0. This subnet includes all IPs.
OpenVPN, to create more specific routes, applies 0.0.0.0/1 and 128.0.0.0/1. These
define the first half of the IPv4 address space, then the second half of the IPv4 address
space.

Because these two routes are more direct than the initial default, they are chosen in favor,
causing all traffic to flow to the OpenVPN server. The server still needs to route traffic from
the clients to the general Internet.

Routing VPN traffic from clients out to the general Internet is often hidden behind a single
IP address. The technique is named NAT. This masquerades all outbound traffic, regardless
of origin, to a set of external IPs. Since your VPN will be composed of RFC 1918 addresses,
they would be dropped by upstream routers. Besides this, many networks share the same
common subnets, so the Internet routers would be confused and uncertain about where to
send that traffic.

The OpenVPN server needs to NAT the VPN client traffic, and IP forwarding needs to be
enabled.

General network concerns
Apart from routing, there are a few additional networking components that tend to trip up
even some advanced server administrators.

Path MTU and MSS
Maximum transmission unit (MTU) problems are some of the most difficult problems to
identify. In part, this is due to the odd symptoms that arise when an MTU incompatibility is
present. During such a condition, some traffic will seem to function without a problem,
whereas other traffic will inexplicably fail.

Network and Routing

[131]

MTU is the largest packet that can traverse a network link intact. In the event that a larger
packet transfer is attempted, it will either fail to reach the remote endpoint, or a
fragmentation request will be sent back to the sender. This request tells the previous hop
that the packet was too big and specifies how big the next packet should be:

In general, when MTU problems exist, traffic with typically small packets will work without
any issue. SSH, for example, sends many small packets during console sessions, often only a
few keystrokes in an encrypted format. In my simple test, for example, the text a\n (the
letter a followed by a newline) shows up across the wire as a 2-byte data segment. The same
traffic generates 72 bytes of encrypted data:

Note the relatively small amount of space used by the SSH packet

Because these packets have so little real data, there is little risk of exceeding the MTU, even
if it is relatively small. Larger transfers, like using SCP to send a file to a remote system,
however, will use much more of the data segment. If the file being transferred is larger than
the MTU, packets carrying file data will generally max out the data segment:

Data packet is too large for the available packet space

Network and Routing

[132]

On normal Ethernet networks, the MTU is most commonly defined as 1500 bytes. All of the
packet header data and application data must fit inside one of these packets. In the case of
application data, larger chunks may be broken up across multiple packets:

The same 2000 byte data split between two separate packets

There is inherent cost to processing packets for a switch or a router, as each packet must
have its headers analyzed, a decision made on routing, and then outputting that packet
where it needs to go.

With OpenVPN, additional encapsulation is added, which reduces the useful size of the
overall data space in a given packet. The following diagram is simplified slightly from the
real world, but the concept applies. When a packet is encapsulated within another, the
entire child packet, including headers, must fit within the application data space:

VPN data space is reduced per packet compared with a local network packet

Fortunately, OpenVPN comes prepacked with a tool you can leverage to identify the proper
MTU for your VPN, --mtu-test. By adding the --mtu-test option to your configuration
or passing it on the command line, OpenVPN will attempt to calculate the largest packet
your VPN is capable of processing.

Network and Routing

[133]

The ping command can be very useful in determining MTU, but there are a lot of different
implementations of ping across different platforms. Essentially, using the following
examples, depending on your OS of choice, you can send varying ping packets until a size
is reached that begins to emit fragmentation needed or packet too large messages.

The BSD (on both OS X and FreeBSD) ping has some sweeping options for the packet size
argument. This allows you to, without the need for an external for-loop, gradually
increase the packet size until one begins to fail:

Using a ping on OS X to find the usable MTU

In this case, the command provides a maximum sweep (-G) we set to 1500, a minimum
sweep (-g) set to 1350, the increase interval (-h) set to 10 bytes, and an option to set the Do
Not Fragment bit. At a spacing of 10 bytes, our largest usable MTU would be 1470 (1478 –
8-bit ICMP header).

Network and Routing

[134]

On Linux systems, you could write a for-loop to increase packet size for your selected
bounds. Such a script might look like the following shell script:

Linux shell script looping through various packet sizes to find MTU

Finally, on Windows, we use a simple manual increment and run the ping command until it
fails:

Windows manual test, incrementing until packet failure

Network and Routing

[135]

Now that we know our magic number is 1478, we can use the --fragment and --mssfix
configuration parameters to resolve packet size problems. The --fragment option forces
the OpenVPN process to handle packet fragmentation for UDP packets. In our case, if we
were experiencing packet loss for larger payloads, we would add --fragment 1472 to our
configuration. We can also add --mssfix to notify TCP connections of our reduced MTU,
which will offload the packet fragmentation to the application or client system, reducing the
load on the OpenVPN process.

Summary
This chapter covered some deep details about how to troubleshoot core network issues.
Some tools, including Wireshark and netcat, were demonstrated, and the reader should be
able to use these tools with some confidence. Like any tool, practice makes perfect, so I
encourage you to use these for troubleshooting, investigation, and learning.

This chapter also provided some knowledge and reasoning behind how these technologies
work. By understanding some of the theory behind the technology, it's my hope that you
will be better prepared when finding and resolving a problem.

8
Performance

In a perfect scenario, your VPN users will have high-speed, dedicated connections over
some sort of hard line to reach your server. Not only that, these same users will have top-end
systems, equipped with an exorbitant amount of RAM, and high clock-speed CPUs
equipped with the latest crypto-offload chipsets.

In reality, however, there are a variety of remote locations and devices that users will
leverage to connect to a VPN. Some of these are out of necessity, such as a high-latency
satellite connection, and others are out of convenience, such as using a mobile device. For
the majority of your users, you should be able to provide sufficient cryptographic
protections while still maintaining a comfortable performance level.

Networking
Network components on the client and server LAN can greatly affect the overall
performance of the client-server connection. If the client is used in --iroute, other client
connections to the distant LAN will also be affected.

Physical problems, such as improperly terminated fiber connections, poorly crimped RJ45
ends, and frayed or split Ethernet cables can introduce noise, resulting in packet
transmission errors.

Network congestion from other LAN systems or uplink usage will not be readily apparent
from within the VPN.

Performance

[137]

Rate limiting
Prior to around 2010, Internet connections were considered more or less a simple pipe in the
consumer world. If you were given a 10 Mbps (megabits per second) connection, you were
allowed to use the entirety of that connection for the duration of the month (or billing
cycle). Commercial connections have long been treated in an entirely different manner.

For commercial connection, hosting, or uplink, the bandwidth has been metered in some
regard for quite some time. There are a couple of ways you can purchase this bandwidth.
First, you can purchase a dedicated pipe, which allows you to fully use that connection for
the entire billing period. If you're paying for 10 Mbps, you can use all 10 Mbps, 24 hours per
day, every day.

Another metering method, named 95th percentile, can also be used. In this scenario, a
business may order a 10 Mbps uplink, but pay a rate based on 1 Mbps. This means that the
customer can use 1 Mbps the entire time, with no additional charge. Because the pipe is
larger than 1 Mbps, this customer may burst to faster speeds for a potentially added rate.
This burstability is where the 95th percentile measurement comes from; the top 5% of traffic
is lopped off/ignored, and the customer is billed for everything less.

For the consumer market, Internet service providers have opted, instead, to institute
bandwidth caps that are based on an aggregate of consumed transfer. This allows the
consumer to use the full or maximum speed available when it is needed. This bandwidth
cap started with cellular data plans. Once it was reached, the provider would rate limit the
customer to a slower speed, typically around 144 Kbps (also known as 3G speeds), until the
next billing cycle.

Rate limiting is an artificial limit to the physical or technical capabilities of a specific
platform or system. These limits can be difficult to diagnose because there is nothing
informing the user of this state. In the case of a VPN connection, the link can go quite
suddenly from a satisfactory speed down to an unusable speed or one that is considered
unusable by many people by today's standards.

There are tools that, if used sporadically over a period of time, can help identify when rate
limiting has kicked in. This will only work when there is a change of rate limiting and not
when it is a state common to every-day traffic.

Performance

[138]

First, there are sites such as Speedtest (h t t p ://s p e e d t e s t . n e t) that allows you, using only
a standard web browser, to determine your real-world transfer speeds. I tend to think of
this as a good test since it shows a real transfer between a client system somewhere on the
Internet out to another test system somewhere else on the Internet. In this case, the data
transfer traverses your ISP and the ISP of the server host, demonstrating an end-to-end
transfer.

There are other, similar tests available to customers of various ISPs. CenturyLink, for
example, provides a supposedly more-direct test to your ISP's hosted test server. Running
this test from the Speedtest server, a Slashdot server, and the CenturyLink server show odd
results. The test is for my own personal home Internet connection, and it is executed outside
a VPN. The purpose of this test is to see what the performance of the uplink is before we
add the complexity of a VPN.

The first test is executed from the Speedtest website, which actually uses a server hosted on
CenturyLink's network. This test results in an abysmal 30.66 Mb/s download speed and a
491.71 Mb/s upload speed. Neither is close to my paid for speed of 1 Gbps:

Speedtest result

http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net
http://speedtest.net

Performance

[139]

The second result is a courtesy of http://Slashdot.org/speedtest/ and shows marginally
better results. I see a 347 Mbps download speed, 11 times faster, and 197 Mbps upload, 40%
of the Speedtest result:

Slashdot result

Disappointingly, and despite a wired connection to my home router, I'm unable to realize
the full potential of the connection I pay for. Based on these tests, I plan on reaching out to
CenturyLink to identify the bottleneck. I have been told by various network engineers that
the oversubscribed rate is about 12-1. Knowing that, I shouldn't expect to see my full billed
rate 100% of the time, but I think it should be better than 50%:

CenturyLink speed test result

http://Slashdot.org/speedtest/

Performance

[140]

Cryptographic performance
Cryptographic algorithms are complex mathematical formulas that require powerful
microprocessors and good entropy (random data). The more advanced and complex an
algorithm is, the more complex calculation will become. Older, slower processors will take
substantially longer than newer and faster processors.

Library differences
Both OpenSSL and mbed TLS are constantly making improvements to both security and
performance. While writing this book, I was using my MacBook Pro with the latest version
of macOS (10.12.2) and I was going to show performance numbers for the AES cipher set
using the openssl speed -evp aes-128-cbc command. The purpose is to show a
reproducible performance metric on various platforms.

As you can see in the following screenshot, my Mac has OpenSSL version 0.9.8zh installed.
OpenSSL included support for AES-NI with version 1.0, and the performance gains are
evident in the first set of table entries (in the Result summary section, given later).

Performance results for mbed TLS are not included here since there are no easy-to-use
cross-platform utilities available:

Performance

[141]

Cipher and AES-NI
In 2008, Intel and AMD released an extension to the x86 instruction set that improved
encryption and decryption workloads that used Advanced Encryption Standard (AES).

You can read additional information about AES-NI on Wikipedia at
https://en.wikipedia.org/wiki/AES_instruction_set. If you are
looking for more specific information about the instruction set, take a look
at the development information available on Intel's website, h t t p s ://s o f t

w a r e . i n t e l . c o m /e n - u s /b l o g s /2012/01/11/a e s - n i - i n - l a y m e n s - t e r m s .

Result summary
I've published some results for the aes-128-cbc cipher test with a few versions of
OpenSSL and highlighted the highest performers for overall. This is by no means a scientific
test, and I encourage you to perform your own testing to determine what cipher works best
for your hardware systems.

The numbers in the results indicate how many iterations were completed in a three-second
loop for a given block size of data. Using the first row as an example, the Core i7 processor
with 0.9.8zh OpenSSL processed a 64-byte block of data 119,176 k (119,176,000) times in
three seconds:

Processor OpenSSL AES-NI 64b 256b 1024b 8192b

Core i7 0.9.8zh No 199176k 200787k 200551k 202035k

1.1.0c No 155980k 167962k 164110k 169149k

1.1.0c Yes 850780k 881499k 870568k 791729k

Xeon E5620 1.0.1p No 74303k 76464k 159140k 161211k

Xeon E5-2667 (VM) 1.0.1s No 148654k 150422k 320264k 272821k

1.0.1s Yes 713594k 689075k 628269k 606528k

Xeon E5-2667 1.0.1t No 118538k 120478k 129010k 121615k

1.0.1t Yes 575961k 778077k 799980k 669006k

Xeon E5-2620 1.0.1s No 114402k 116569k 117204k 117861k

1.0.1s Yes 568017k 579300k 583670k 584672k

Xeon E5420 1.0.1s No 78946k 80695k 169830k 174044k

https://en.wikipedia.org/wiki/AES_instruction_set
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms
https://software.intel.com/en-us/blogs/2012/01/11/aes-ni-in-laymens-terms

Performance

[142]

1.0.1s Yes 208732k 215091k 217418k 217629k

Xeon E5-2640 v3 1.0.1e No 148663k 152249k 152971k 153944k

1.0.1e Yes 350461k 354483k 357717k 356810k

There are a few notable results in the preceding table. First, the Xeon E5-2620 through
VMware with a FreeBSD 10.3 system. Despite the virtualization involved, the raw
throughput was right on par with the performance of bare-metal systems. For the Xeon
E5-2667 results, I have posted data for both virtualized and bare-metal. The results are so
close, it is difficult to tell if the performance delta is due to virtualization or the minor
version difference between the VM and host system.

Single thread
A final, significant item to note is that OpenVPN is single-threaded (inclusive of OpenVPN
2.4). Regardless of how many processors or threads provided by the CPU, OpenVPN will be
limited to a single thread. In various tests in recent years, a realistic limit of about 200 client
connections is considered the maximum before performance falls off considerably.

It is possible to work around this limitation using load balancing across multiple OpenVPN
server instances. These scenarios are more complicated as they require the administrator do
additional configuration to ensure the two (or more) instances are able to communicate and
clients are able to connect to the appropriate server(s).

The inclusion of AES-NI helps with this single-threading, as the cryptographic operations
can be offloaded, speeding up the processing of each packet. On slow systems and those
systems that do not include crypto-offloading, performance will be significantly slower.

Performance

[143]

Summary
There are a number of different factors that can affect the performance of your VPN. Some
of these components will affect the client or server independently, but the overall VPN
functionality will be influenced. Network conditions on the hosting Internet service
provider, CPU and resource availability, and transport technology are but a few things to
look at when troubleshooting performance problems.

In this chapter, I have illustrated some tools that can help determine performance as well as
provided hints as to what can lead to performance degradation. At this juncture, you
should be able to identify these items, along with many that were not mentioned.

Your troubleshooting should concentrate on the things you can quantitatively test and
measure, followed by those components or variables you have control of.

9
External Problems

OpenVPN, by itself, can be a complex system, with given certificates, keys, configuration,
scripts, hardware, and so on. The previous eight chapters of this book have touched on
troubleshooting techniques and points on where to look within OpenVPN to address
problems. However, once all the internal problems have been addressed, there are still
several external influencers that can create additional hassles for your VPN.

Troubleshooting external factors for many things can be a difficult endeavor. In most cases,
you'll be looking into a veritable black box for which you don't have a key. By setting up a
VPN server, you are relying upon your Internet Service Provider (ISP) to allow transit for
your VPN traffic on both the server and client side of the connection.

Inspection and filtering
Whether you are operating a server as a corporate tool or setting up a system to escape a
hostile environment, there may be network policies in place that may prevent the successful
operation of an OpenVPN connection. If you are a user on a large corporate or government
network, it may be against usage policy to create a VPN tunnel and technology may be
deployed to actively thwart such a tunnel.

External Problems

[145]

Both corporate network administrators and many governments around the world are doing
something named Deep Packet Inspection (DPI). A traditional firewall will only look at
what the protocol and port traffic is using and allow or deny the traffic. This method will
not prevent someone from moving a service that is blocked to an allowed port to
circumvent the firewall.

A firewall or border gateway enabled with DPI is able to look beyond just the protocol and
port and actually look at what the traffic is. In some cases, this can be to ensure TLS traffic is
actually taking place. The inspection can go further, looking for prohibited patterns of data
such as social security or credit card numbers, password hashes, and more. The Great
Firewall of China (aka Golden Shield Project) is a well-known example of DPI at a national
scale, and is known to filter according to strict rules.

OpenVPN does not do anything to obfuscate, or hide, tunnel traffic. The encapsulated data
is secure, but someone looking at the traffic will know there is an encrypted tunnel in place.
Wireshark even has an OpenVPN protocol filter (see the Wireshark Wiki at
https://wiki.wireshark.org/OpenVPN for additional information). The simplest analogy I
can use is that of a locked tractor trailer. You know someone is transporting goods, of some
sort, between two places, but without the key, you don't know what is inside the trailer.

There are a few unique ways an ISP or other transit provider may filter OpenVPN. First,
many OpenVPN tunnels use the Internet Assigned Numbers Authority (IANA) assigned
port of 1194. The simplest firewall can simply restrict udp/1194 and tcp/1194 (or not allow
them, in the case of default-deny policies).

To illustrate some of the traffic inspection capabilities, we can see in the following
screenshot how Wireshark is able to identify the OpenVPN traffic in the data stream:

https://wiki.wireshark.org/OpenVPN

External Problems

[146]

Wireshark recognizing the OpenVPN protocol and HMAC headers

If you suspect that your traffic is a victim of DPI, you can do a few things to test the theory.

The simplest test is to simply change the server port number away from the known
OpenVPN ports (1194 and the older 5000). Initially, I suggest retaining the current protocol
you're using, whether it be UDP or TCP. If your traffic begins working, it's possible that
there is an explicit block of the OpenVPN ports. It may be useful to open a support ticket to
request the port be opened or unblocked.

External Problems

[147]

The next step in troubleshooting OpenVPN filtering is to attempt to piggy back on the
outbound tcp/443 firewall rule. Many organizations do not currently possess the means to
perform full DPI, so we allow outbound HTTPS connections. In my experience, even some
systems that do full inspection fail to follow the HTTPS stream so ignore, but do not block,
the traffic.

The intent of this section is not to encourage rogue network traffic or to
enable a user to bypass normal security controls. In a hostile environment,
this behavior may trigger other alerts however, attracting the attention of
the network operator and further scrutiny.

Obfuscation
There is an apparent misunderstanding about the differences of encrypting data and hiding
or anonymizing that data. These are two separate, distinct, concepts, and I feel that it needs
to be cleared up for many novice VPN users.

First, let's discuss obfuscation.

obfuscate: 1. to make dark or obscure 2. Confuse
 – The Merriam-Webster dictionary. Eleventh edition.
2004. Print.

The concept of obfuscation is to confuse, misdirect, or hide, VPN traffic. The idea here is to
make the traffic blend in to the background in such a way as it appears as other, normal
traffic. The end goal of these solutions is to completely hide the fact that a VPN is running
at all.

In the wild, projects such as obfsproxy
(https://www.torproject.org/docs/pluggable-transports.html.en) encapsulate VPN or
other traffic inside an HTTPS tunnel, making it appear as normal web browsing. You can
read more on using obfsproxy with OpenVPN on the community Wiki page at
https://community.openvpn.net/openvpn/wiki/TrafficObfuscation.

https://www.torproject.org/docs/pluggable-transports.html.en
https://community.openvpn.net/openvpn/wiki/TrafficObfuscation

External Problems

[148]

Encryption
Now that we have defined obfuscation, we can move on to understanding encryption.
Encryption is the act of coding something in such a way that only the sender and receiver
understand the intended message, even if other parties can view, or overhear, the coded
message.

encrypt: 1: ENCIPHER
encipher: to convert (a message) into cipher
cipher: 2a: a method of transforming a text in order to conceal its meaning
 b: a message in code
 – The Merriam-Webster website

OpenVPN provides the encryption via the OpenSSL or PolarSSL libraries. Making use of
static keys or certificate/key pairs provides a method to encode data within the tunnel in
such a way that only the two endpoints can decrypt the data.

Anonyproz has a decent write up about disguising OpenVPN traffic as
HTTPS on their website at
https://www.anonyproz.com/supportsuite/index.php?_m=knowledgebas

e&_a=viewarticle&kbarticleid=174.

Geographic and source address exclusions
In the past couple of years, some online music and video streaming services have been
known to block users based on their geographic location (geo-blocking). This blocking is
accomplished using tools that lookup the known physical location of IP addresses, either
via Wi-Fi router mapping (Google Maps, for example) or through registrar lookup data
when more specific details are unknown.

Distribution licenses or agreements and local laws help determine where a distributor may
want to make content available, even when the user base has a differing opinion on the
matter. Almost as soon as geo-blocking was invented, users began using VPNs to work
around these restrictions.

https://www.anonyproz.com/supportsuite/index.php?_m=knowledgebase&_a=viewarticle&kbarticleid=174
https://www.anonyproz.com/supportsuite/index.php?_m=knowledgebase&_a=viewarticle&kbarticleid=174

External Problems

[149]

Services such as StrongVPN and HideMyAss popped up to defeat these blockages,
promising users while traveling, or users that reside outside a distribution region, access to
that content:

Netflix when attempting to bypass geo-blocking

What can be done
Fortunately, many hobbyists and home users will not see a problem with streaming services
getting blocked when using a private VPN. There are a few things these providers look for
to determine connection proxying.

External Problems

[150]

Source IP address
The first thing that is looked at is the IP from where a streaming session is requested. Using
GeoIP services, the provider will look up the known or assumed geographical location and
base filtering on that data.

Through the use of a VPN, the user can change the apparent requesting IP to a location
favorable for the desired content. For example, a user in Canada can bounce or route
through a VPN system hosted in Dallas, Texas, to access USA-locked content, as shown in
the following graphic:

Routing streaming traffic through a VPN in another region

External Problems

[151]

With a small number of users, this will likely work, where things will go
sideways. However, if too many users begin using the same single IP address for streaming,
the service provider will likely realize this behavior and begin blocking the content.

DNS settings
Content providers and Content Distribution Networks (CDNs) alike use DNS, along with
some tricks using BGP, to point systems to a local cache server. This saves on transit costs,
overall, for both the CDN as well as the ISP hosting the cache.

In my failed attempt, described previously, I used only a DNS provider to change my
apparent location and the Netflix servers were able to see my apparent proxy. This was due
to my DNS query result differing from my IP route.

When using geographically sensitive DNS queries, ensure that the DNS queries originate
from the locations that will be requesting the data.

Routing path performance
Another component that is generally outside the control of a network operator is the overall
network path. Peering agreements between upstream providers will determine the final
path traffic with traverse. This path will often be weighted toward monetary cost and not
always network path cost.

For many years, I ran the network for a small company in Minneapolis, MN, with the
majority of our customers being local to Minneapolis. On occasion, I would receive
complaints of slow performance of our network as customers attempted to communicate
with our systems.

After troubleshooting, we would identify a slow hop in the path between their systems and
our systems. The most frustrating part was, physically, our facilities were only 10 or so
miles apart (16 km), but the network path would go approximately 400 miles (645 km) to
Chicago and another 400 miles back.

At the time, due to our hosting situation, we did not have the tools or agreements in place
to change the network routing. Eventually, we were able to make an agreement with the
Midwest Internet Cooperative Exchange (http://micemn.net). Using this exchange, other
ISPs connected to the exchange, large and small, would keep local traffic local.

http://micemn.net

External Problems

[152]

As a VPN administrator, it may be useful to consider the geographic needs of the business
or use and route traffic sensibly. Some useful tools, such as mtr, were presented in Chapter
1, Troubleshooting Basics. Knowing how traffic is routed for your customers and clients will
reduce potential performance problems.

Summary
The most basic VPN tunnel, like the one created using the Static Key Mini-Howto
(https://openvpn.net/index.php/open-source/documentation/miscellaneous/78-stati
c-key-mini-howto.html), involves only a few components and can be relatively easy to
troubleshoot. As functionality and capability is added, however, additional components are
leveraged, which will require their own set of troubleshooting techniques. By writing
Troubleshooting OpenVPN, it was my goal to provide two specific, unique, sets of
information.

The first tool is the OpenVPN specific knowledge and known issues presented here. This
spans the breadth of issues identified by users on Internet Relay Chat (IRC), the web
forums (https://forums.openvpn.net), and the mailing list
(http://sourceforge.net/p/openvpn/mailman/). These are the most common occurring
problems or sticking points encountered by both experts and novices, alike.

The second tool I tried to provide is a more general technique for troubleshooting. This
techniques applies to anything from fixing a broken lamp to a complex OpenVPN
deployment. Throughout the book, I demonstrated splitting a failure into the functional
components, how to identify what is working, and how to tackle the non-working piece.

As I'm finishing this book, the developers are working hard on the final release for
OpenVPN 2.4 (as this is written, 2.4 release candidate 2 is already out). The new release has
a long list of new features and enhancements. While exciting, these will all present their
own troubleshooting and deployment challenges. You can check the release notes for 2.4
at https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn24.

Useful links
In case they were missed throughout the book, here's a list of some useful links related to
the OpenVPN project.

https://openvpn.net/index.php/open-source/documentation/miscellaneous/78-static-key-mini-howto.html
https://openvpn.net/index.php/open-source/documentation/miscellaneous/78-static-key-mini-howto.html
https://forums.openvpn.net
http://sourceforge.net/p/openvpn/mailman/
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn24

External Problems

[153]

Manual or man pages
The manual or man pages provide the detailed documentation of the various configuration
parameters and limitations for configuration of OpenVPN. These documents will illustrate
each given version's capabilities and how to use them. The man pages should be a first-
resort reference. The various man pages are as follows:

2.0:
https://openvpn.net/index.php/open-source/documentation/manuals/openvp
n-20x-manpage.html

2.1:
https://openvpn.net/index.php/open-source/documentation/manuals/openvp
n-21.html

2.2: https://community.openvpn.net/openvpn/wiki/Openvpn22ManPage
2.3: https://community.openvpn.net/openvpn/wiki/Openvpn23ManPage
2.4: https://community.openvpn.net/openvpn/wiki/Openvpn24ManPage

Release notes
For each release, the OpenVPN developers publish a change list and a set of release notes.
Typically, these will document the most notable changes between the previous release and
the current release. When upgrading, it is recommended to read through the entirety of
release notes between your current version and the version to which you are upgrading.
The various release notes are as follows:

2.0:
https://openvpn.net/index.php/open-source/documentation/release-notes.
html

2.1:
https://openvpn.net/index.php/open-source/documentation/change-log/cha
ngelog-21.html

2.2:
https://openvpn.net/index.php/open-source/documentation/change-log/45-
open-source/change-log/425-changelog-for-openvpn-22.html

2.3: h t t p s ://c o m m u n i t y . o p e n v p n . n e t /o p e n v p n /w i k i /C h a n g e s I n O p e n v p n 23

2.4: https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn24

https://openvpn.net/index.php/open-source/documentation/manuals/openvpn-20x-manpage.html
https://openvpn.net/index.php/open-source/documentation/manuals/openvpn-20x-manpage.html
https://openvpn.net/index.php/open-source/documentation/manuals/openvpn-21.html
https://openvpn.net/index.php/open-source/documentation/manuals/openvpn-21.html
https://community.openvpn.net/openvpn/wiki/Openvpn22ManPage
https://community.openvpn.net/openvpn/wiki/Openvpn23ManPage
https://community.openvpn.net/openvpn/wiki/Openvpn24ManPage
https://openvpn.net/index.php/open-source/documentation/release-notes.html
https://openvpn.net/index.php/open-source/documentation/release-notes.html
https://openvpn.net/index.php/open-source/documentation/change-log/changelog-21.html
https://openvpn.net/index.php/open-source/documentation/change-log/changelog-21.html
https://openvpn.net/index.php/open-source/documentation/change-log/45-open-source/change-log/425-changelog-for-openvpn-22.html
https://openvpn.net/index.php/open-source/documentation/change-log/45-open-source/change-log/425-changelog-for-openvpn-22.html
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn23
https://community.openvpn.net/openvpn/wiki/ChangesInOpenvpn24

External Problems

[154]

Support channels
There are a few different sources of support available to you for the open source (aka
community) version of OpenVPN. The mailing list is probably the most commonly used
medium, but there can be a delay, like the forums, due to the asynchronous communication
method. Often, however, you will receive a thoughtful and detailed reply. IRC offers the
most real-time support option, but active users, versus those only idling, varies by time of
day. Use whichever of the following you are most comfortable with:

IRC: https://freenode.net, #openvpn and #openvpn-devel
Web forum: https://forums.openvpn.net
Mailing list: https://sourceforge.net/p/openvpn/mailman/
Bug tracker: http://community.openvpn.net/openvpn/report/1
Source/contributions: https://github.com/openvpn/

https://freenode.net
https://forums.openvpn.net
https://sourceforge.net/p/openvpn/mailman/
http://community.openvpn.net/openvpn/report/1
https://github.com/openvpn/

Index

A
Advanced Encryption Standard (AES) 141
AES-NI
 about 141
 references 141
alternative clients 49
Amazon Web Services (AWS) 30
authentication plugins
 about 106
 CCD exclusive 107
 password 107
 username 107

C
CenturyLink 138
certificate authentication
 about 98
 certificate chain, overview 98
 Certificate Revocation List (CRL) 101, 103
 system date 104, 105
 system time 104, 105
certificate chain
 overview 99
certificate messages 77, 79, 81
Certificate Revocation List (CRL) 83, 87, 101, 103
chroot environment 87, 88, 89
Cipher 141
common log messages
 about 72
 operational messages 76
 start-up messages 72
common name (CN) 101
compile string 72
connectivity
 about 109
 inbound connection - server 109

 outbound connection - client 119
CRL Distribution Points (CDP) 102
Cryptographic algorithms 140
Cryptographic performance
 about 140
 AES-NI 141
 Cipher 141
 library differences 140
 result, summarizing 141
customer premise equipment (CPE) 115

D
Deep Packet Inspection (DPI) 145
demilitarized zone (DMZ) 111
disconnect scripts 93
DNS settings 151
down scripts 90, 91, 93
driver installation 47
DROWN OpenSSL
 reference link 121
duplicate client certificates 38
Dynamic DNS (DynDNS) 115

E
embedded devices 31
encryption 148
entropy 140
external routes 126

F
file permissions
 about 82, 97
 chroot environment 87
 networking privileges 83
 privilege de-esca 83
firewall filters 120

[156]

firewalls 37, 95
FreeBSD
 reference link 6
Freenode
 URL 7

G
general network concerns
 about 130
 path maximum transmission unit (MTU) 130,

132, 134
 path MSS 130, 132, 134
geographic 148
 DNS settings 151
 source IP address 150, 151
 streaming services 149
GNU
 reference link 6
grep utility 7

H
Heartbleed
 reference link 121

I
inbound connection - server
 about 109
 privately addressed server, with port forwarding

115, 118
 publicly addressed server 111, 113, 114
inspection 120
internal routes 126
Internet Assigned Numbers Authority (IANA) 84,

145

Internet Service Provider (ISP) 144
Intrusion Detection Systems (IDS) 110
IP addresses 36

K
kernel routing
 versus process routing 128

L
less utility
 about 8
 reference link 9
library differences 140
log
 filtering 6
 grep utility 7
 less utility 7
 more utility 7
 most utility 8
 regular expression (regex) 10
 search 6
logging levels 58
 verbosity level 0 60, 61
 verbosity level 1 62, 64
 verbosity level 4 64
 verbosity level 7 68
logging options 51, 53, 54

M
man-in-the-middle (MITM) 73
maximum transmission unit (MTU) 12, 130
megabits per second (Mbps) 137
Midwest Internet Cooperative Exchange
 reference link 151
more utility 7
most utility
 about 7
 reference link 9
MSS 131
my traceroute (mtr) 14

N
National Institute of Standards and Technology

(NIST) 106
netcat
 reference link 120
network address translation (NAT) 27, 110
Network Time Protocol (NTP) 106
network
 analysis 12
 my traceroute (mtr) 14, 15
 ping tool 15

[157]

 sniffing 12
 tcpdump tool 12
 traceroute 13, 14
 Wireshark tool 16, 17
networking privileges
 about 83
 adapter 86
 port, assignment 84
 port, usage 84
 routing table changes 86
networking
 about 136
 rate limiting 137, 138

O
obfsproxy
 references 147
obfuscation 147
OpenSSL 17
OpenVPN
 about 5
 compiling 40, 42, 44
 driver installation 47
 encryption 148
 filtering 144, 145, 147
 geographic exclusions 148, 149
 inspection 144, 145, 147
 installation, issues 40
 installers 45
 obfuscation 147
 packages 45
 precompiled installers, advantages 46
 references 7
 source address exclusions 148, 149
OpenVZ 33
operating system
 embedded devices 31
 semi-embedded systems 32
 supporting 30
 virtual private servers (VPSs) 33
operational messages 76
 certificate messages 77, 79, 81
option warnings 73
outbound connection - client 119
overcomplication 38

P
parameters
 configuring 74, 76
path performance
 routing 151, 152
ping tool 15
port
 assignment 84
 Multiple daemons 84, 85
 usage 84
pre-shared keys (PSK) 98
privately addressed server
 with port forwarding 115, 118
privilege de-escalation 82, 83
process permissions 82
public key infrastructure (PKI) 6, 98, 106
publicly addressed server 111, 113, 114
pushing routes 127
 kernel routing, versus process routing 128
 route conflicts 129
 routes behind clients 127

R
rate limiting 137, 138
redirect gateway 129
Regex Pal
 URL 11
Regexr
 URL 11
regular expression (regex) 9
route conflicts 129
routes behind clients 127
routing
 about 123, 124
 external routes 126
 internal routes 126
 pushing routes 127
 redirect gateway 129

S
sample network diagram
 about 24
 cannot access external web on VPN scenario 26,

27, 29

 scenarios 24, 25
 suspect recent changes 29, 30
 unable to access VPN scenario 25, 26
scripting
 about 89, 90
 connect scripts 93
 disconnect scripts 93
 down scripts 90, 91, 93
 up scripts 90, 91, 93
semi-embedded systems 32
single thread 142
Slashdot server
 about 138
Software Change Control Board (SCCB) 89
source address exclusions 148
Speedtest
 about 138
 URL 138
start-up messages
 about 72
 compile string 72
 option warnings 73
 parameters, configuring 74, 76
 version string 72
suspect recent changes 29, 30

T
tcpdump tool 12
 reference link 13
TLS authentication 120, 121, 122
traceroute 13
troubleshooting toolkit
 about 6
 log, filtering 6
 log, search 6

 network, analysis 12
 network, sniffing 12
 X.509 certificate, inspection 17
 X.509 certificate, verification 17
troubleshooting
 basics 21, 22

U
UDP
 firewalls 95
 troubleshooting 94
up scripts 90, 91, 93

V
verbosity level 0 60, 61
verbosity level 1 62, 64
verbosity level 4 64
verbosity level 7 68
version string 72
virtual IP (VIP) 111
virtual private servers (VPSs) 33
Voice over IP (VoIP) 94

W
Wireshark tool
 about 16, 18, 21
 reference link 145

X
X.509 certificate
 about 98, 101
 inspection 17
 OpenSSL 17, 18
 verification 17
 Wireshark tool 18, 20, 21

	Cover

	Copyright

	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Troubleshooting Basics

	A recommended toolkit
	Log search and filtering
	grep
	less, more, and most
	Regular expressions

	Network sniffing and analysis
	tcpdump
	traceroute
	mtr
	ping
	Wireshark

	X.509 verification and inspection
	OpenSSL
	Wireshark

	Troubleshooting basics
	Summary

	Chapter 2: Common Problems

	Narrowing the focus
	Sample scenarios
	Scenario 1–unable to access VPN
	Scenario 2–cannot access external web when on VPN

	Suspecting recent changes

	Supported operating systems
	Embedded devices
	Semi-embedded systems
	Virtual servers

	IP addresses
	Firewalls
	Duplicate client certificates
	Overcomplication
	Summary

	Chapter 3: Installing OpenVPN

	Common installation problems
	Compiling OpenVPN
	Packages and installers
	The advantages of precompiled installers

	Driver installation

	Alternative clients
	Summary

	Chapter 4: The Log File

	Logging options
	Logging levels
	Verbosity 0
	Verbosity 1
	Verbosity 4
	Verbosity 7

	Common log messages
	Startup messages
	Version and compile string
	Option warnings
	Configuration parameters

	Operational messages
	Certificate messages

	Summary

	Chapter 5: Client and Server Startup

	File and process permissions
	Privilege de-escalation
	Networking privileges
	Port assignment and use
	Multiple daemons

	Adapter and routing table changes

	Chroot

	Scripting
	Up and down scripts
	Connect and disconnect scripts

	UDP troubleshooting
	UDP and firewalls

	Summary

	Chapter 6: Certificates and Authentication

	File permissions
	Pre-shared keys
	Certificate authentication
	Certificate chain overview
	The Certificate Revocation List
	System date and time

	Authentication and plugins
	Usernames and passwords
	--ccd-exclusive

	Summary

	Chapter 7: Network and Routing

	Connectivity
	Inbound connection–server
	Publicly addressed server
	Privately addressed server with port forwarding

	Outbound connection–client

	Firewall filters and inspection
	TLS authentication
	Routing
	Internal routing
	External routing
	Pushing routes
	Routes behind clients
	Kernel versus process routing
	Route conflicts

	Redirect gateway

	General network concerns
	Path MTU and MSS

	Summary

	Chapter 8: Performance

	Networking
	Rate limiting

	Cryptographic performance
	Library differences
	Cipher and AES-NI
	Result summary

	Single thread
	Summary

	Chapter 9
: External Problems
	Inspection and filtering
	Obfuscation
	Encryption
	Geographic and source address exclusions
	What can be done
	Source IP address
	DNS settings

	Routing path performance
	Summary
	Useful links
	Manual or man pages
	Release notes
	Support channels

	Index

