Scalable Mesh Networks

and
The Address Space Balancing Problem

Andrea Lo Pumo
Girton College

A dissertation submitted to the University of Cambridge
in partial fulfilment of the requirements for the degree of
Master of Philosophy in Advanced Computer Science

University of Cambridge
Computer Laboratory
William Gates Building
15 JJ Thomson Avenue
Cambridge CB3 0FD
UNITED KINGDOM

Email: al565Qcl.cam.ac.uk
May 31, 2010

Declaration

I Andrea Lo Pumo of Girton College, being a candidate for the M.Phil in Advanced
Computer Science, hereby declare that this report and the work described in it
are my own work, unaided except as may be specified below, and that the report
does not contain material that has already been used to any substantial extent for

a comparable purpose.

Total word count: 14980

Signed:

Date:

This dissertation is copyright (©2010 Andrea Lo Pumo.

All trademarks used in this dissertation are hereby acknowledged.

Abstract

Mesh network architectures are reliable and efficient. They maximize the network
throughput with multiple paths and adopt alternative routes when a component
fails. Moreover, network applications can optimize their performances by exploit-
ing updated routing informations.

Large scale versions of mesh networks are attractive both for ISPs, as a mean to
lower the management cost of their infrastructure, and also for communities, as
they can build and sustain city-wide wireless networks without requiring any third
party support.

Hierarchical routing protocols are natural candidates for implementing scalable
mesh networks. However, when the network is dynamic, the hierarchical topology
must be reconfigured after each event. In order to reduce the installation and
management costs of a hierarchical mesh network, we propose distributed proto-
cols for automatically creating and maintaining the routing architecture. Also, we
derive a set of rules for solving the address space balancing problem, we study
their behavior under different network conditions and evaluate their performance
as the network becomes larger and more dynamic. We find that, in the worst case,
the number of address changes is upper-bounded by O(N), but in a network with
a constant churn, the number of reconfigurations increases at least linearly as N
grows.

Acknowledgements

I would like to thank my supervisor Jon Crowcroft for always clarifying my doubts,
pointing interesting papers and encouraging me throughout the entire project. I
am also deeply in debt with Eiko Yoneki for listening to my long explanations of
how the little nodes migrate back and forth and for speeding up my simulations
with her 8-CPUs machine. Finally, my gratitude goes to Tim Griffin for his frank
advice and optimism.

Contents

1 Introduction
1.1 Methodology

2 Hierarchical Networks
2.1 Background and Related Works
2.2 Routing
2.3 Hierarchical Distributed Hash Table

3 Balancing the Address Space
3.1 Related Problems and Works
3.2 Dynamic Balance 0 o0
3.3 Last Minute and Preemptive Balancing

4 Distributed Balancing Rules
4.1 The Memory of a Group
4.2 Gnode Split
4.3 Network ID and Network Merging

5 The Cost of Balance
5.1 Number of Migrations
5.2 Simulation
5.2.1 First Experiment 0oL
5.2.2 Second Experiment
5.3 Bounds on the Number of Migrations

6 Conclusion and Future Research

15
15
17
23

28
28
30
31

33
34
42
43
48
02

55

Chapter 1
Introduction

Mesh network architectures are reliable and efficient: every node acts as an inde-
pendent router and when a path becomes broken due to a link or a node failure,
the network automatically adopts alternative routes. Moreover, nodes can increase

their throughput by exploiting the presence of multiple paths.

Thanks to the high availability of low-cost wireless devices, Wireless Mesh Net-
works (WMN) are becoming the prevalent form of mesh networks. Their appli-
cations are numerous and include broadband home LANSs, security surveillance
systems and metropolitan area networks for transportation systems|[!]. WMNs
are also effective for extending Internet access to remote rural areas[!| and for
combating the digital divide. Among the various application scenarios, commu-
nity WMNs spanning one or more city neighborhoods are the most interesting.
In fact, they support almost all kinds of common network services, such as web
servers, multiplayer games, file sharing systems and VOIP, and they can be viewed
as a localized small scale version of the Internet. Currently, two major commu-
nity WMNSs are the Athens Wireless Metropolitan Network[2], which reached 2000
nodes in 2008, and the Berlin Freifunk|3].

A large scale version of a mesh network would not only be similar to the current
Internet, it would be much better. In fact, in a mesh network each node is a router

and every network application can have access to and exploit the information

regarding the routing infrastructure. Thus, applications would be able to make
more informed decisions that would improve latency and throughput. For example,
multiple idle paths could be simultaneously utilized for increasing the bandwidth
between two nodes, or in the case of content distribution networks, the clients
themselves could decide what is the nearest replica that is accessible through
the least congested path. Routing informations would be particularly useful for
distributed services like P2P applications: the virtual links of overlays could be

directly replaced with physical optimal paths.

However, with current routing protocols, mesh networks are still not ready for
growing to truly large sizes. In fact, they face serious scalability problems: as the
number of nodes grows the demand imposed on routers increases rapidly, until a
point where they are forced to dedicate all their resources. As an example, in 2009,
the mesh network of Internet autonomous systems comprised 350 thousands nodes
and, in order to execute the BGP protocol, a router needed 400Mbytes of memory
and a 1.1Ghz processor [32]. WMNs are even more sensitive: routers are generally
small devices with constrained resources, f.e. Access Points with 32Mbytes of
memory and a 200Mhz processor. Additionally, in WMNs the overhead caused by

routing packets can heavily decrease the network’s throughput[5].

A classic approach for solving the problem of routing scalability is to structure the
network into a hierarchical topology. The aggregation induced by the hierarchy
allows to achieve routing tables with small size and to reduce the routing update
overhead. In this dissertation, our main concern will be the design of distributed
protocols for automatically creating and maintaining a hierarchical routing archi-
tecture. The automatic configuration of a hierarchical network presents several
benefits: first of all, the network installation and management costs are greatly
reduced, secondly the network can rapidly adapt to changes: nodes or links can
be easily added or removed and in the case of a global attack or a system update
the network can be quickly reconfigured from scratch. Furthermore, in the case
of WMNs, the ability to automatically configure the network becomes a necessity:
the network is dynamic, nodes may be added or removed frequently and the hi-
erarchical constraints may affect other nodes and force their reconfiguration. A

manual intervention will require a high cost and the response times will be too

slow for guaranteeing an appropriate continuity of service.

The dissertation is structured as follow: in Chapter 2, we will introduce the back-
ground and related works concerning wireless mesh networks. In Chapter 3, we
will derive a set of rules for solving the address space balancing problem and in
the next chapter, we will describe the protocols for implementing the rules in a
distributed way. Finally, in Chapter 5, we will evaluate the performance of the
balancing rules and study their behavior as the network becomes larger and more

dynamic.

In the next section, we present a concise summary of the work undertaken in the

course of the MPhil project.

1.1 Methodology

The fundamental research goal of the project was to verify to what extent hier-
archical architectures are applicable to large dynamic networks, such as city-wide
WDMNSs. To this end, we focused on designing distributed rules for automatically

reconfiguring the hierarchy after network changes and on evaluating their cost.

Initially, we decided to use some very simple and intuitive rules for obtaining a
first understanding of the dynamics involved in the topology maintenance and
for discovering their main issues. We wrote a high level simulator for aiding our
study of the rules on small topologies. As a result, we collected different examples
showing impossibility results and situations that were not correctly covered by a

naive approach.

The study of the simple rules helped us to exactly define our problem and to re-
formulate it in a more general form. After reviewing the literature, we understood
that it was strictly related to classic NP-complete problems of graph partition-
ing and clustering. However, since we needed distributed and non-reset based

protocols, we could not apply any known solution.

Before proceeding further in the design of the rules, we theoretically investigated

the problem space, trying to understand what were the fundamental limitations

that constrained our design choices. Next, for analyzing the complex dynamics
generated by rules, we independently studied the gnode split and the gnode sat-
uration problems. Our main intuition for analyzing the gnode split problem was
that a cluster could be approximated as a random graph® and that the expected
number of reconfigurations could be derived from the size of its giant connected
component. For the saturation problem, we analyzed the performance of the rules

on simple topologies first and then we generalized the results on arbitrary graphs.

For estimating the overall cost of the rules we derived a natural upper bound on
the number of reconfigurations due to dynamic network events. Obtaining a lower
bound was harder: the rules were too dependent on the underlying graphs and
it was not possible to obtain a meaningful estimate by theory alone. Thus, we
started to write a second simulator and designed an experiment for evaluating the
rules under churn conditions. This time, writing the software was simpler: we
proved that in order to get a lower bound it was sufficient to simulate the rules
only on the first level of the hierarchy. This simplification allowed us, not only to
get the lower bound, but also to study the behavior of the rules under different

network conditions.

Finally, writing the dissertation was a task in itself: we reassembled in a coherent

form all the notes written during the project.

'this intuition was later confirmed by simulations

4

Chapter 2
Hierarchical Networks

In a hierarchical network, the nodes are aggregated in groups (or clusters). Each
node knows a route to reach any node of its own group, but it does not store
all the routes required for reaching outside nodes. Routing update packets are
propagated as usual, but when they exit from a group they drop all its internal
information. This solution provides a marked saving in the routing table size and

in the overhead caused by routing updates.

2.1 Background and Related Works

Kleinrock and Kamoun[0] were the first to study the theoretical properties of
hierarchical networks. They showed that the introduced stretch® is sufficiently
small for networks where the average distance grows as NV, for a fixed v > 0 and

where N is the number of nodes in the network. This is the case for wireless

'the stretch of a network measures the distortion caused by a non-shortest path routing
protocol and is defined as is

max dR(xa y)
TH#Y d(x, y)

where dr(z,y) is the length of the shortest path from z to y returned by the routing protocol,
while d(z,y) is the length of the actual shortest path

networks in a two-dimensional space[3]: when the node density is constant, the

average distance is proportional to N 3.

The Internet itself is a hierarchical network of two levels where clusters are rep-
resented by Autonomous Systems, and —as observed by Krioukov [7]- almost all
proposals for a clean-slate design of a scalable Internet architecture are based,
sometimes implicitly, on the concept of hierarchical routing. Also in wireless net-
works the only routing protocols that have been able to scale are based on hierar-
chical concepts[9]. However, differently from wired networks, where the topology
is designed a priori, in a wireless network new nodes may be added or removed over
time and if the nodes are mobile, new links may be established or old ones may
become broken. For these reasons, the hierarchical topology must be dynamically
constructed and maintained. Moreover, since the routing addresses are automat-
ically assigned a separation between the location and the identity of a node is
introduced. The location of a node is a label used only for routing purposes, while
the node’s identity is the actual name that network users will have to refer to for

contacting the node.

There are two main approaches for automatically configuring a hierarchical topol-
ogy: defining clusters as neighborhoods of a restricted subset of nodes or creating
clusters as groups of nodes of bounded size. The first approach is adopted by single-
level or multi-level clustering protocols. In single-level protocols like LANMARJ10],
particular nodes called cluster heads are selected and their neighborhood of radius
r forms a cluster. Multi-level protocols[11],[12], go one step further by extending
the hierarchy recursively: among the level [cluster heads, some are elected as level
[+ 1 cluster heads.

The second approach for constructing hierarchical topologies is adopted by DART|
and Netsukuku[16]. Using a graph-partitioning protocol, nodes are merged in con-
nected groups of bounded size S and, recursively, groups are merged into higher
level groups. Since the size of a group is bounded, it is possible to associate to
each node a routing address that requires a minimum amount of space, namely
O(log N) bits. In comparison, the addresses assigned by multi-level protocols re-

quire O(log? N) bits. No virtual links are defined between the groups and distance

vector-like protocols are used for discovering pro-actively the routes.

In multi-level protocols the main difficulty arises in electing and maintaining
cluster-heads. When a cluster head dies, all the members of the cluster will have
to choose another cluster head as their leader. This is particularly severe when
the cluster head belongs to a high level, since all the nodes of that level will have
to change their address and update their identity — location mapping. The traf-
fic generated by mappings handoff has been estimated as the dominant overhead

factor in multi-level cluster networks[19].

In DART and Netsukuku the groups do not depend on the existence of a single
node. However, in some situations a group may become saturated and new nodes
will not be able to join the network. In [15], the authors pose the problem of
designing a mechanism for avoiding the saturation of groups, but they leave it as
an open problem, which we call the address space balancing problem. This is the
focus of our project. In essence, it is necessary to balance the clusters each time
an upper bound is imposed on their size. For example, in MMWN[12] the authors
fix a preferred cluster size and for this reason they are forced to split a cluster in

two when its size becomes too big.

The hierarchical model that we will adopt assumes a multi-level topology with L
levels and groups of bounded size S. The only constraint imposed on the logical
topology is the connectivity constraint: all groups of all levels must be internally
connected. This model is strictly related to the DART /Netsukuku hierarchical
architecture, but it can be easily adapted to any other with connected groups of

bounded size.

We will now give a formal description of the hierarchical model.

Definition 2.1.1. Let G = (V, E) be a connected graph representing the network.
Suppose that the maximum number of nodes that can ever join the network is
Nuax = S, that is |V| < Npax, with S, L positive integers and S > 2. Then we
can assign to each node x an address T of the form

To.L1....X—1

where 0 <z, < S—-1Vi=1,...,L—1.

For routing purposes, we can allow situations where a node has more than one
address but we cannot assign the same address to different nodes. In other words,
a proper address assignment is a partial surjective function o : S* — V.

Define the following equivalence relation on V:

Y~z = Ysi = 2

where x>, = ;... 21

that is, we are identifying nodes with the same [-suffix. We can represent the
equivalence class [y]; of y as follow:

Note that [y]lo = {y} and [y], = V.

For each level [and address z, we can then consider the subgraph of G induced
by the nodes of [x];, which is is the subgraph of G formed by all the nodes that
have the same [-suffix of z. We will call [z]; the network at level | of x.

By contracting the nodes of [z]; that have the same (I — 1)-suffix we obtain the
graph called the group node (gnode) of z of level I:

g(z) = (Vi(z), Ei(z))
Vile) = 2/ ~ci= {lyhia ly e o} = {rpmra . cop € V]| 0< gy <5 -1}
Y, 12, ,€BElz) & Wely,,elz],_,: v/eFE

In other words, we subdivide the network in groups and then we recursively
proceed to subdivide each group (see figure 2.1). An alternative representation of
the group nodes can be given using the language of trees: each g;(x) is a vertex
of a tree T" and the elements of g;(z) are its children, or in other words, the nodes
with an address of the form .y, ...y _1 are children of the node *.y; 1 ...9y7 1.

We will continue to call an element x € g; a node, while we will call single nodes
the elements of the original graph G.

A group node g is of level [if there exists a node x such that g = g;(z). We define
lvl(g) = I. The graph formed by all the gnodes of level [is:

Gl = 2l

The links in [G]; are those induced by the single nodes, i.e. g,h € [G]; are linked
if a single node x € g is linked to a single node y € h. With I';(g) we indicate the

/ - .32 \.

* 1 * * 3

NN N\

*1.1 *2.1*3.1 *13 *23%*33 *13 *23*33

Figure 2.1: A hierarchical topology represented as a tree and as nested groups.
The figure represents the first two highest levels (L — 1, L — 2). The group size is
set to S = 3.

neighborhood of g in the graph [G];:

I'i(g) = {h € [G]; | g, h are linked}

It will be sometimes useful to consider a further level L by fixing for all nodes =,
xr := 1, where 7 is a constant called network id. The group g, (z), called network
group, is equal for all the nodes and contains all the group nodes of level L — 1.

The size of level m < [of a group g; is the number of m-level groups contained in
g, that is:

sizel(gl) =1
sizeg(g) = Z sizey(Y)
Yeg

With size(g;) we indicate sizeg(g;), i.e. the number of single nodes contained in g;.
Since m-level nodes in g;(x) have addresses of the form *.y,, . Y1 - - - Y—1.21 - . . Tp_1,
it follows that size,,(¢;) < S™™ and in particular size(g;) < S

We say that g; is full if size(g;) = S'. g, is free if size(g;) = 0.

If h =xy;...yr_1, then all the gnodes *.y;...yr_1, with ¢« > [, will be called the
higher gnodes of h. We define up(h) = *.y;41...yr—1. Analogously, we will talk
of lower gnodes of h and, by abuse of notation, sometimes we will write y € h to
indicate that y is any lower gnode of h.

A node y € h is called a border node of h if it is linked to at least one node z € A/,
with A" # h and Wvl(h) = IVI(h'). For example, in figure 2.1, the node %.2.2 is a
border node of *.3. The set bnode(h, h’) contains the border nodes in h that are
linked to &'. Notice that g, h € [G]; are linked iff bnode(g, k) # 0.

We will say that an address assignment forms a wvalid hierarchical topology if for
all levels the graph of each group node is connected. For this reason, we will call
this requirement the connectivity constraint for group nodes.

We will now proceed to describe the main components required for a complete
implementation of the above hierarchical network architecture. Later on we will
focus on the problem of constructing a valid address assignment for creating a
self-configuring network.

2.2 Routing

The main benefit of the connectivity constraint comes from the following proposi-
tion

Proposition 2.2.1. When the network is full, the routing table of each single node
contains at most LS = Slogg N entries.

Proof: Before proceeding, we give the following definition: let z, y be two nodes,
then

hdl(l’,y) = min {0 S) S L—-1 S | T>141 = Zzl+1}
If | = hdl(x,y), then g1 1(z) = gi11(y) is the lowest gnode where both x and y
belongs. In the language of trees, g;41 is the nearest common ancestor of x and y.

For all levels [= 0,1,..., L — 1, and for each group g of level [, run a distributed

route discovery algorithm on the graph of g, in such a way that at the end of the
discovery, each route starting from a gnode ¢’ and contained in up(g’) is known

10

and stored by all the single nodes of ¢’. Moreover, for each [> 1 and h € T';(z),
must also know at least one border node b € bnode(g;(z), h).
With the above protocol a packet can be correctly routed to any destination:
suppose x wants to forward a message to z. Let [= hdl(x,z). Both x and z
belong to ¢ = gi11(z) = ¢1+1(2). By the connectivity constraint, ¢ is connected
and there is a path (g;(z),y,...,9(2)) in g connecting g;(z) to g;(z). Since the
routing protocol has explored all the gnodes of the networks, and in particular g,
the route (g;(z), 1, gi(2)) has been discovered and x knows it. Now, the problem
of routing the packet from x to z has been reduced to the problem of routing a
packet from x to any node of the group y; and then to z. To reach y;, x will
forward the message to its known border node b € bnode(g;(x), ;).
We now count how many entries a single node x = x; ...z _; stores in its routing
table. With the above routing protocol, x stores a routing entry for each 1 <1 < L
and y € *.x;...x,. When the network is full, each gnode *.z; ...z has .S elements,
thus the total number of entries becomes
\{(l,yl_l.xl...x,;) | 1 SZSL, Ogyl_l SS—1}| =LS
The space required for storing the routing table is thus
SL*log, S

bits. Note that in order to mark a node as a border node, x needs only an

additional bit.
O

We now give some remarks on how to implement such a routing protocol.

Any Distance Vector or Link-State routing protocol can be converted into a hier-
archical version as follow: when a node x = ...z 1 receives a route (x,y, z),
where y is a neighbor of x and z is the destination, x will install the following
entry in its routing table:

gateway =y, destination = *.2;.2;41 ... 211
where [=min{0 <[<L —-1< |&>41 = 25141}

Distance Vector routing protocols do not require any further modification. In-
stead, Link State protocols are more complicated to implement, as they require an
appropriate definition for the weight of the virtual link that connects two groups.

With a hierarchical topology it is also possible to prevent loops of flooding packets
in a simple way: each time a node forwards a routing discovery packet, it appends
its address at the end of the packet. A node will discard a packet if it finds its
address in the appended list. There is no risk that the list will become too large:
when the packet exits from a group node, all its internal addresses are discarded,

11

i.e. when the packet contains a list of the form

1
* Xy Lj41 .- - T -1,

2
* Xp.Lyj41 .- Tp—1

m
* T X411 .- Tp—1

* YY1 Ly .. - T

it 1s rewritten to

* Ljy1..-Tp—1

* Y Y4142 - - T

This means that once a packet exits from a group node, it will not return inside.
A gnode can have a maximum of S nodes, thus its diameter is also bounded by S.
It follows that in the worst case the list appended in a packet will contain (S —1)L
entries.

2.3 Hierarchical Distributed Hash Table

The addresses of the hierarchical topology are used to encode connectivity infor-
mation and are thus not arbitrary. For this reason, a separated mechanism is
needed in order to give an identity to nodes.

An easy way to solve the problem is to set up a classic Domain Name System
where few single nodes function as DNS servers. A much better way is instead
to exploit the hierarchical topology and build a Distributed Hash Table (HDHT)
that will store the associations between names and addresses.

We now describe how to construct a HDHT. Let S” be the address space, V; the set
of nodes of the network at time ¢ and o, : S* — V; the address assignment at time
t. Let K be the key space, which we can assume to be larger than the address space
(SECK). The aim of a DHT is to maintain at each time ¢ a function d; : K — D,
where D is the data space, f.e. strings of few bytes. The function d; is distributed
among the nodes of the network: each node stores in its memory a subset of d,, i.e.
a small set of mappings {ki — dy(k1), ko — di(ke), ..., kp — di(kn)}. Also, d;
varies through time: a node might request to change the mapping k& — d(k) to
k — d'. The basic idea for building the HDHT is to let the node ay(h(k)) store
the mapping k — d(k), where h : K — ST is a hash function. Thus, in order to

12

retrieve such a mapping or to change it, the nodes will contact the node «;(h(k)).
However, if the network is not full (V; € S), a; might be a partial function not
fully defined on S’ i.e. some addresses might not be assigned to any node. This
matter is solved with another dynamic function H, : S* — dom(cy). Given an
address x, H; returns another address H;(z) that has been already assigned to a
node. H; can be implemented in a distributed way as follow:

1. define H;(z) as the nearest address to associated to an alive node:
Hi(r) = mMinarg, cjom(a,) abs(r — ')

(note?) x, 2" are considered as vectors and are compared using the lexico-
graphic order where the most significant digit is the last one (z7_1). abs is
defined component-wise.

2. anode does not need to have the complete knowledge of dom(cy), i.e. it does
not need to know if for an address there’s a corresponding alive node in the
network. A node y =y ...yr_1, by looking at its routing table constructed
with the routing protocol described above, knows what are the alive nodes
of yy VIl =1,...,L (note). If y,_; € y; is an alive node, then there is an
alive single node with an address of the form *.y,_y. Let dom, () be the set
of all the alive nodes known by y.

When a packet has to be sent to Hy(x), it will be routed to Hy(x) using a
greedy algorithm: when y receives the packet, it forwards it to the group
node with address

HY(x) = minarg, cqom, (a,) abs(z —)

In sum, the node associated to a key k is oy (Hy(h(k)).

Notice that a HDHT is more efficient than a classical DHT like CHORD[!17]. In
fact, in DHT's, the request is forwarded multiple times between nodes. For instance,
CHORD requires O(log N) forwardings. Instead, a HDHT is built on top of the
routing infrastructure of the network. Each read/write request is directly routed
to the correct node, so that the number of required forwardings is 1.

The latency for querying and updating a mapping can be further optimized by
extending the HDHT: suppose the single node z wants to read or update a mapping
k — d, where k is the key and d is the data. Instead of querying directly the node
h(k), z will do the following:

2there can be two addresses ’, 7" that minimize abs(z — '), in this case we pick min {z’, 2’}
3y, = n is the network group

13

1. let h(k’) = ho R hL—l and z = Z1...2—1-
2. z will query in order:

hO-Zl NN |

ho.hl.ZQ R . |

ho-hy ... hi_1 = h(k)

With the above schema, the HDHT is sliced in levels: a node will initially query
nodes in its same group of level 1, then nodes in its same group of level 2 and so
on, until it finds a result. Each time it goes up of one level, the destination node
may be potentially located farther, in terms of routing distance, and vice-versa,
finding an answer in lower levels may be more profitable.

14

Chapter 3

Balancing the Address Space

In this chapter, we will discuss how to construct and maintain a proper address

assignment that structures the network in a hierarchical topology.

3.1 Related Problems and Works

The problem of constructing a proper address assignment from scratch is not
easy, in fact, it is strictly related to the Bounded-Connected-Graph-Partitioning
(BCGP(G, M, k)) problem: given a graph G = (V, E') and two integers M, k > 0,
decide if there is a partition of its vertices V = VjU...UV,, such that

1. m<M
2. each component V; is connected
3.1<|V| <k Vi=1...m

When £ is fixed to 4, the above problem is called Bounded Component Spanning
Forest (BCSF) and it is known to be NP-Complete[!].
Proposition 3.1.1. Given a graph G = (V, E) and S > 0, the problem of deciding

if there is a proper address assignment o : S* — V such that
1. L=min{L >1]|V| <S5}

2. each node has no more than one address

15

3. the number of gnodes of level 1 is no more than M

18 NP-hard.

Proof: With an assignment as above and S = k, the nodes are partitioned in
connected groups of level 1 and |g| < S =k Vg € [G];. Thus, it is possible to
decide if BCGP(G, M, k) is true or not. O

Different solutions and heuristics have been proposed for constructing a solution
to the BCGP problem or one of its variations. The solution presented in [21]
selects a spanning tree rooted at a random vertex. By traversing the tree from
the leafs, vertices are aggregated in connected components. The authors show
that in the case of Random Geometric Graphs their algorithm can achieve a small
number of common vertices between two components. The distributed version of
the algorithm works by creating the tree with flooding. Finally, their algorithm
is reset based: there are some cases where it is necessary to rebuild the clustering
from scratch.

By requiring that the size of all components is almost the same (0 < |V, — V| <
1 Vi, j), the BCGP becomes closely related to the problem of Graph Partitioning,
which has been extensively studied for applications such as VLSI circuit layout,
image processing and matrix computations[22]. For generating an initial partition,
graph partitioning algorithms generally resort to either spanning tree techniques
or to graph growing. Graph growing algorithms initially form groups of size one
by selecting a random subset of vertices (seeds), afterwards neighboring vertices
are iteratively added, enlarging the groups. If a group becomes too large, the

procedure is recursively applied to the group.

Unlike the above works, in this project we are interested in an incremental, dis-
tributed solution to the address assignment problem: as the network evolves the
address assignment must be updated and the nodes must be able to change their
address without having a global knowledge of the network. Also, as explained in

Chapter 5, the update has to minimize the number of address changes.

16

3.2 Dynamic Balance

In a distributed implementation of a self-configuring network, the nodes have to
choose their own addresses. For this reason, from now on, we will view the task of
finding a proper address assignment as an evolving distributed process. We will
say that a node joins a group node ¢;(y) when it chooses an address x such that
x ~; y. Analogously, a node can leave a group and can migrate from a group to
another. Further, we say that x creates or allocates a gnode g, if x joins g; and it
is its unique node, i.e. g = {z}.

The connectivity requirement for having a valid hierarchical topology is a strong
constraint and it is the cause of the gnode split and of the address space balancing
problems.

The first problem arises while trying to maintain a proper address assignment.
The removal of a node or a link may disconnect a gnode ¢; in multiple connected
components g, = AjU...UA,, (gnode split). When this happens, the connectivity
constraint is not satisfied anymore. See figure 3.1 for an example.

o~
3" I
A

1

Figure 3.1: The removal of a link disconnects the group node A in two connected
component. The nodes of one component will have to change their membership
by migrating into another gnode B.

Notice that a split of a group *.g;...gr_1 may induce a split of one of its higher
gnodes *.gy ...gr, — 1, with I’ > [. This happens when g; is an articulation point!
in Gi+1, VZZZ,,Z/—l

la vertex x of a connected graph is an articulation point if there are two distinct nodes such

that all the paths that connect them pass through x

17

The only solution to the gnode split problem is to promptly repair the address
assignment: the single nodes of the components A,, ..., A,, are forced to change
their address and to migrate into other groups.

The address space balancing problem arises when a new node joins the network:
Proposition 3.2.1. As a consequence of the connectivity constraint, there are
some configurations where a new node cannot join to a gnode g;, even if sizey(q;)
1s not full. In this case we say that g; is saturated.

Moreover, the address space of the whole network can be saturated with just (S —
1)L + 1 nodes.

Proof: Let g, = *.y;...yr—1 and suppose that size;(g;) is full, i.e. g, contains

all the possible gnodes of level 1, or in other words, *.4".y>...y;_1 has at least

one node, V0 <y’ < S — 1. Suppose further that a gnode h = *.y}.y2...yr_1 is

full. Finally, suppose that a node x is linked to nodes of h only. Since h is full,

in order to preserve the uniqueness of addresses, z cannot join to h. Moreover, by

the connectivity constraint, x will not be able to choose any other address of g,

i.e. it will not be able to join to any *.y.ys...yr 1, with 0 <y < § — 1.

The whole network g;, can be saturated as described above, however we need much

less than |size;(g)] = S¥~! nodes. In fact, we can saturate it as follow:

1. First, turn on only S — 1 nodes and to each of them assign an address of the
form *.y, with 1 <y < .S — 1. Ensure also that they are connected.

2. Consider other S — 1 nodes and ensure that they form a connected graph. Let
them join the network, using an address of the form *.y.0, with 1 <y < 5 — 1.

3. continue recursively: *.y.0.0, *.7.0.0.0,. .., until adding the nodes 3.0.0...0.

4. finally, add the node 0.0....0

In this network, a node x that is only linked to nodes of the gnode *.0.0...0, will

not be able to join. O

In order to avoid network saturation, we need to balance the address space: the
address assignment has to be updated over time in order to let any new node
acquire a proper address if the network is not full.

The requirement of having a valid address assignment restricts the choice of how
a balancing protocol reconfigures the network.

Proposition 3.2.2. Consider the situation described in Proposition 3.2.1, where
there are no more free gnodes left and a node x is forced to join to a full group
h. In this case, if there is a proper address assignment, then we have only two
solutions:

1. either a node migrates from h

2. or a gnode g is emptied

18

With solution 1., x is then able to join to h, instead, with solution 2., x can re-
create the gnode g.

Let My be the minimum number of migrations required for applying the solution
2., and My that required for applying only the solution 1., then we have:

1. M; = min {length(P) — 1 | P is a migration path starting from h }
where a migration path s defined in the proof below
2. My > min{lg| | g gnode}

Proof: Consider any new proper assignment and let yy,...,ys be the nodes in
the group h of the old assignment. Let g(y;) = up(y;). In the new assignment we
have two cases: either Vi, j ¢g(y;) = g(y;), or not.
In the former case, x has necessarily joined to a gnode g different from h. However,
since x is only linked to nodes of h, by the connectivity constraint x is the only
node of g. In other words, x has created g. By hypothesis, all the groups were
not free, thus the old nodes of g have migrated, i.e. g has been emptied and = has
re-created it.
In the latter case, at least one node has migrated from h.
The number of migrations required in the former case is at least |g|. It can be
larger, f.e. if the migrations from ¢ force other migrations. Thus, we have

M, > min{|g| | g gnode}

Call a path P starting from h a migration path if
P=(p1,....,pm), p1=nh,
Vi<m—1 p;isfull, p;isa gnode linked to p;i1, WVl(p;) = IvI(h),
Pm is not full, vl(p,,) > vi(h)

If solution 2. is forbidden, we do not have any other choice than to repeatedly
apply solution 1.. That is, a migration path is selected and at least a node migrates
from p; to p;y1, for all i < m — 1. As we will see in Prop. 3.2.11, we can force the
migration of exactly one node from p; to p;y;. Thus, the number of migrations
required is length(P) — 1 and it is minimized by the shortest migration path. [

Remark 3.2.3. Between the two solutions presented in Prop. 3.2.2, we prefer to
adopt the first, for two main reasons:

1. The second solution forces all the nodes of a gnode g to migrate. This
implies that some other gnodes will increase their size. As a consequence,
the network may reach the saturation point quicker.

2. In a distributed implementation where a group does not know the size of
the other groups, the first solution requires less communication overhead: in

19

order to find a shortest migration path, the gnode h queries its surrounding
gnodes using a BFS2-like exploration, which is stopped as soon as a shortest
path is found. Instead, in the second solution, at least the size of all group
nodes has to be discovered?.
Remark 3.2.4. In Proposition 3.2.2, we described what are the necessary solutions
for fixing a saturated network. However, instead of fixing the network at the last
minute, we might try to avoid to fill up a group, unless it is strictly necessary,
and try to always keep the network saturation-free. Also in this case, we do not
have much choice on how to reach a new address assignment. In fact, we cannot
predict in what group the new nodes will join, i.e. we must assume that any group
can increase its size. Thus at some point, we must decide if the size of a group
is too large, and force at least one node of the group to migrate. This means
that we have to use a condition p(|g|) that depends on the size of the group g,
and possibly on other parameters. When p(|g|) is true, a border node of g will be
forced to migrate. The simplest condition is obtained by fixing

p(lgl) = (gl > 5)

In this case, a migration will occur only when g is full and a new node x joins. If
x joins to g only when it is forced to do so, then this becomes the same solution
1. of Prop. 3.2.2. Instead, by fixing

p(lgl) = 3h = |g| = |h[+2)

a migration will occur only if ¢ is bigger than one other gnode*. This condition
is the opposite of the previous one: as soon as possible a node will migrate.

We will later see in more details the above two balancing rules.

Notice that, in any case, the migration of a node from g can make p(|g|) false, but
p(|h|) true, for some other gnode h. Thus, in order to avoid infinite back and forth
migrations from g to h and from h to g again, migration paths become a necessity.

2Breadth First Search

3We say “at least”, because finding the group ¢ that minimizes the number of migration is
not just a matter of knowing its size. In fact, in Prop. 3.2.2, min{|g| | g gnode} is a lower
bound of M.

4if size(g) > |h| + 1 is used instead, a loop can occur: a node may endlessly migrate back and
forth from g to h

20

They are redefined as follow:

P is a migration path < P = (p1,...,pm), p1 =h, p;is a gnode linked to p;41
Vi<m—1 p(|pi]) is true
p(|pm|) is not true

Proposition 3.2.5. Suppose that all the lower gnodes of h are allocated, then it
is possible to change the address of a node x € h, only if x is a border node of h.

Proof: In fact, by the connectivity constraint, a node y € h linked only to nodes
of h is forced to remain in h. Thus the only nodes that can migrate are the border
nodes. The vice-versa does not always hold, because even if y is a border node, if
all its neighboring gnodes are full, then it cannot join them. O

The migration of a border node b may affect the topology of the higher levels. For
example, suppose that b is the unique border node in bnode(g, h). If b migrates
to f # h, then g will become linked to f but will loose its link with h. In general,
the following proposition holds:

Proposition 3.2.6. Let g,h € [G];. If a border node b migrates from g to h and
lg| > 2, the resulting gnodes ¢', h' satisfy:

1 < Ti(g")] < Ti(g)]
0 < [Ty(h)] < [Ty(R)]

Also, g may lose one of its links and up(g) may become split, but [G]; remains
connected.

Proof: Since |g| > 2 and b € g, the connectivity constraint implies that b is
linked to at least one other node x € g. Thus when b migrates, x will become a
border node and |I';(¢’)| > 1.

Since the border node b is a new node in A/, it follows that |I';(h')| > |I;(h)].
Equality holds when h was already linked to all the neighboring gnodes of b.
Finally, if A was the unique border node in bnode(g,), then ¢’ is no more linked
to h'. Thus, [I'(¢")] < [T'(g)].

Let I'(g) = {h1,..., hm}, with h = h;. [G]; remains connected because a broken
link (g, h;) can be replaced by the path (g, hi, h;). However, if h; ¢ up(g), then
(g, h1, h;) is not a path contained in up(g). If this was the only path connecting g
to h;, then up(g) becomes split.]

We have a result similar to the previous proposition in the case of gnodes migration:
Proposition 3.2.7. Suppose that a gnode g of level | migrates, then the graph
[G],—1 does not change, and the new |G, is isomorphic to the old one.

21

Proof: This follows directly on how the gnodes migrate. Let g = *.g;...gr_1.
When ¢ migrates, it will assume another address of the form *.g;...¢7_,, thus
a node of level [— 1 will change its address from x = *.g;_1.¢;...gr—1 to 2’ =
*.01-1.9; - - - g5, 1If a single node was a member of z it will still be a member of
2’'. In other words, the “inside” of g;_; has not changed. Thus, the links between
*.g;—1 the others x.h;_; € [G];_1 are still the same. (What could have changed are
the links between *.g;,1 and another x.h;,;.)

Finally, [G]; is isomorphic to [G']; because their only difference is the name of the
gnode *.g;, which has been changed to *.g;. m

It is not always possible to solve the address balancing problem, i.e. in some cases,
some nodes of the network will not be able to join:
Example 3.2.8. Not all graphs admit a proper address assignment.

Proof: Consider the string topology formed by N = S¥ > 1 nodes, that is, if
the nodes are vy,...,vy, then v;u,.1 Vi =1,..., N — 1 are all the edges. Now,
attach a dangling node ¢q to vg, i.e. vgq is a link. Then this network does not have
a proper address assignment, in fact, suppose by contradiction that it has one.
First observe that since the network is full (N = S%); all the gnodes of any level
are full too, i.e. all the addresses have been used and

lgl =S Vg gnodes (1)

This means that vg € g for some gnode g of level 1. Let j be such that
j=min{i=1,...,5| v € g}
Consider the case where 7 > 1. We have,
V1y-0-5 V51 ¢ g (2)

Let HC {v1,...,v,_1} be a maximal subset such that Vz,y : ¢1(z) = ¢1(y), that
is all the elements in H are in the same level 1 gnode and all the other v; ¢ H are
not. Since |H| < j—1< S, by (1) it follows that H cannot be a complete gnode,
that is
Jw¢ H: gi(w)=gi(z) Ve € H

H is by definition maximal = w ¢ {vy,...,v,_1} = w =10v,4
it is not possible that w = v;, otherwise ¢;(H) = ¢1(v;) = ¢ and this is in contrast
with (2)

= W = Vjyn, h >0

so, we have found a w which is in the same group of the elements in H, but is
not linked to any of them. This contradicts the connectivity constraint.

Consider now the case where j = 1. Since |g| = S, we have

{vi,...vsb=9g (3
Now recall that the dangling node ¢ is linked only to wvg, thus by the connec-

22

tivity constraint, the only gnode where it can belong to is g = ¢1(vg). But this
contradicts (3).

In any case, we have shown a contradiction. Therefore no proper address assign-
ment is possible. O

Example 3.2.9. Reaching a valid assignment is sometime impossible through
local address changes.

Proof: Consider the case where a group g has only one border node b with a
group h. Suppose also that b is forced to migrate to h. If b is an articulation point
of g, then its migration will disconnect g. Suppose h is full, then one component
of g might not be able to follow b and migrate to h and it will remain completely
disconnected from the network. m

Definition 3.2.10. Clearly, the problems exposed in the above two examples can
be solved at the cost of increasing the parameter S. Another workaround is to add
new links: suppose a migrating node b splits a group g, then wvirtual links will be
established between the old neighbors of b belonging to ¢g. In this way, g remains
connected. A virtual link between x,y € g is removed when z or y leaves g, or
when a new link reconnects g.

Creating virtual links in g can be still seen as changing the parameter S, but only
locally to g: when the node b migrates from g to h, it assumes two addresses and
belongs at the same time to g and h. In g, b is seen as a virtual node, with a non
standard address of the form & = *.(S + k).g;41...9r—1. The virtual node b’ does
not act as a border node, i.e. it does not maintain links with nodes outside g,
and when its neighbors leave g or g becomes reconnected, it is removed from the
network.

With the use of virtual links, the following proposition holds.
Proposition 3.2.11. If one node migrates from a group, the group will not be
disconnected and no other migrations will occur.

Although, there are pathological cases where an arbitrary number of virtual nodes
are added, we will later see in simulations that their use is rarely needed for random
networks with L = 1.

3.3 Last Minute and Preemptive Balancing

The two balancing rules presented in Remark 3.2.4 adopt two different strategies,

1. Last-Minute: the addresses of some nodes are changed only if the network is
saturated and a new node cannot join,

23

2. Preemptive: at each network event, the addresses of some nodes are changed
so that a new node can immediately join without requiring a further recon-
figuration of the network.

The Preemptive strategy seems attractive because the network is constantly kept
saturation-free, however it also requires a migration each time a new node joins,
while the Last-Minute rule will force one migration only when necessary.

We will now describe the Preemptive Balancing rule (PB-rule) and later the (LM-
rule). The protocols for ensuring their distributed implementation are presented
in Chapter 4.

The PB-rule works as follow:

1. At first fix [= L — 1, and iteratively apply the following procedure, lowering
[by one each time it ends, until [= 1.

2. For any gnode h of level [(h € [G];), let T'(h) = T';(h).
3. If all the neighbors y € T'(h) are such that |h| < |y|, then stop. Otherwise,

4. if there’s any neighbor y such that |h| > |y| + 2, then consider ¥/ s.t.
/ : .
y' = minarg|y|, where y ranges in {y € I'(h) | |h| > |y| + 2}

let exactly one node migrate from A to y and stop. Otherwise,

5. if there is a neighbor y € I'(h) s.t. |h| = |y| + 1, then let ¢ in [G]; be any of
the nearest gnodes to h such that |h| = |g| + 2. If such a g does not exist,
stop. Otherwise, let h = py,p2,...,pm = g be a shortest path connecting h
to g. Notice that by definition of g, we have

pr—1l=ps=-=pp1=pn+1

Finally, for each i = 1,2,...,m — 1, let exactly one node from p; migrate to
pivr1. After the migrations, the new configuration will be such that

1] = |p2| = -+ = |pm]

Remark 3.3.1. When the PB-rule has selected a migration path py,...,p.,, the
migrations have to happen in the order p; — po, ps — ps,...,. Otherwise,
suppose p;11 — pir2 happens before p; — p;y1, then the link p; — p;;1 could
become broken if the unique border node connecting p;; with p; has migrated to
Dit2.

Remark 3.3.2. Steps 3., 4. and 5. can be replaced by a single step: substitute in
step 5. the condition |h| = |y| + 1, |h| = |g| +2 with |h| > |y|+ 1, |h| > |g| +2. In

24

this way the migration path pq,...,p, can be of length m =1, m =2 or m > 3.
From a global point of view, we can restate the PB-rule as follow: for any level [,
find a shortest migration path with a smallest gnode at its end.

Remark 3.3.3. The non-deterministic steps of the PB-rule (4. and 5.) can be made
deterministic by applying different heuristics:

1. suppose that the group g has more than one border node that can migrate.
In this case, the border node whose removal does not induce a split of the
gnode g is preferred.

2. Suppose that x can join to more than one gnode ¢y, ..., ¢,,. When it decides
to join to g;, it becomes one of its border nodes and some routes may use
xr as a gateway to reach nodes in g;. Thus, in order to reduce the latency
stretch, the node z will prefer to join/migrate to the gnode g; such that
max, ., d(z,y) is minimized.

The main reason for using the Path Balancing rule is that it constantly keeps the
network saturation-free by satisfying the following property:
Proposition 3.3.4. When the PB-rule terminates at level [,

Vg,h € (Gl 0 <abs(|g| - [h]) <1

Or in other words, the gnodes in [G]; have almost the same size.
Proof: Consider the set of all the shortest migration paths in [G];:
NonlncrPaths([G];) = {(p1, - .., Pm) | pi is linked to p;q in [G];, |pi| > |piya| Vi}
MigrPaths([G];) =
= {p € NonlncrPaths([G];) | |p1| > [Pengtn(p)| + 2,
length(p) = min length(NonlnerPaths([G];)) }

If MigrPaths([G];) is empty, then
Vg, h € [Gl; 0 <abs(lg] —[n]) <1 (1)
is true and the PB-rule terminates.
Suppose that MigrPaths([G];) is not empty. Define the imbalance of [G]; as:

I= > Ip
peMigrPaths([G];)

where I(p) = max{pi — Piength(p) — 1,0}
Notice that

G finite = | MigrPaths([G];)| < oo = I < 0
I() >0< ‘pl‘ > ’plength(p)‘ + 2
I =0 < MigrPaths([G];) =0

25

The PB-rule selects one path p € MigrPaths([G];) and, thanks to Prop. 3.2.11, it
makes exactly one node migrate from p; to p;x1 Vi =1,...,length(p) — 1. Thus,
I(p) and I decrease. Since I is finite, eventually, it becomes 0. O

Corollary 3.3.5. If in the network there is a non full gnode in [G);, with 1 <1 <
L — 1, then any new single node will be able to join.

Proof: Suppose that the new node x is linked to a node y € h of level I’ < [. We
have two cases. In the first, h € [G]; is not full. Then, = can directly join to h by
taking an address of the form *.x;_1.h;...hy_1.hy. The connectivity constraint is
satisfied because x is linked to y and thus also to h; Vi > 1.

In the second case, h; is full Vi > [, but by hypothesis, there is a non full
gnode g € [G];. In this case, let = assume a temporary address of the form
*.2;_1.h ... hp_1, with ;_; > S (note®). This will change the size of h; to
|hj] = || +1 =S+ 1. Since the PB-rule applies at all levels, when it termi-
nates we have that

0<abs([f|=lgl) <1 VfelGh =z [fI<S VfelGh (2)
lgl<s
After the migrations = belongs to some f and by (2) it can can now assume a

proper address, with 0 < z; 1 < § — 1. O]

We now proceed to describe the Last Minute rule (LM-rule). We will later see
that it is more efficient that the PB-rule.

Consider the procedure of the PB-rule, then the LM-rule’s procedure is obtained
by substituting the size | - | operation with the following:

-1 (X <5
X1 =
| X —|S] else

(note®) In this way, we have
|h| < S, gl =S, [b| =5 +h = [b]| > |lg|| > [

and a gnode will apply the balancing rule only when it becomes full.

The Corollary 3.3.5 still holds with the due changes, thus also the LM-rule avoids
saturation.
Remark 3.3.6. The LM-rule is a generalization of the PB-rule. In fact, if S in the

5
6

we are temporary violating the constraint of using an address in {0,1,...,5 — l}L
we are improperly stating that the size of a gnode can become larger than .S. What we really
mean is that if a gnode X is full and h nodes want to join in X, then |X| =S+ h.

26

definition of || - || is replaced by a parameter Sy, then with Sy = 0 we obtain the
PB-rule.

We end this chapter with the description of the rules that allow a new node to
join the network.

Definition 3.3.7. Suppose that a node z is turned on. If x is now connecting
multiple disconnected networks, then x will prefer to join to the largest one. x has
two strategies for joining to a network:

1. (Dispersive-rule) if there is a free gnode of level L — 1, then x will create it.
Otherwise, let A\, be the length of the migration path that is created by the
balancing rules when x joins to g. Then, z joins to the neighbor g € T'(x)
that minimizes \,, where [is the maximum level s.t. [G]; contains a non-full
gnode.

2. (Aggregative-rule) even if there is a free gnode that = can create, x prefers
to join to a neighboring gnode, as described above.

Intuitively, the Aggregative rule is more costly because it moves the configuration
toward saturation. We will later see that simulations confirm this intuition.

27

Chapter 4

Distributed Balancing Rules

The balancing rules can be naturally translated to a distributed version: the only
information required for constructing a migration path is the size of the groups,
which can be known from the routing tables of their nodes. Moreover, the migra-
tion paths starting from a given group can be locally discovered using a BFS-like
exploration. The BFS search does not flood all the single nodes because a group
can be visited by selecting only one of its nodes. The discovery of migration paths
is started by border nodes: when b € bnode(g, h) receives a routing update and
notices that ||g|| has become too large (or too small) with respect to ||A||, it will
try to create a migration path and migrate.

In the section below, we will see that the actions of multiple border nodes can be
coordinated with atomic distributed locks. Next, we will describe how the nodes
can repair a gnode split and how two separated networks can be merged once they
become connected.

4.1 The Memory of a Group

There are various situations where events need to be serialized:

1. when two or more nodes want to simultaneously join to the same group they
cannot act independently, otherwise there is the risk that they will choose
the same address;

2. the migration of a group node of level [> 1 is not instantaneous: its single
nodes change address one by one. Suppose that g decided to migrate because
a condition () was true. While the migration process runs, the condition ¢

28

might become false and the remaining nodes in ¢ will not have any reason
for continuing the migration. For example, a condition) can be) =“the
group GG has become split”.

Also, if g is full, it cannot accept new nodes and this is true also when it is
migrating. However, since during the migration its size gradually decreases,
a new node might believe that ¢ is not full and may join to it.

A solution to the above problems is to take one step further in viewing group nodes
of level | as nodes belonging to groups of level [+ 1. We define the memory of a
gnode as the atomic distributed memory formed by its single nodes.

There are different ways for forming an atomic distributed memory. A simple one
is the following: let 1o(g) = min g be the single node in g with the lowest address.
Then the memory of ¢ is identified with the memory of pg(g) and atomicity is
achieved using simple locking mechanisms. Nodes in g are able to contact py(g)
with the same greedy routing adopted by the HDHT, i.e. they will contact in
order py_1(9), pr—2(9), ..., pno(g). However, this solution relies on a single node:
when the address min g changes, the memory of g remains in an inconsistent state
until all its nodes discover the new min g propagated by the routing updates. We
suggest that at the cost of an increased communication cost, it should be possible to
realize a fault tolerant atomic distributed memory by applying the Paxos consensus
protocol[2] and the ideas presented in Etna[25]. We now briefly describe what
its main components would be: pg(g) becomes the primary memory of g and it
serves and serialize the read/write requests. k nodes of g are elected as replicas,
each of them fetches and maintains a copy of the primary memory. In order to
ensure a uniform spatial distribution, the replicas are selected across the hierarchy
with the following function:

(g, k) :
If Ivl(g) =0, return {g}
else g is a gnode with elements g = {hl, ceey h|g|}, with h; < h; 1 Vi
If k& < |g|, return {po(hy),. .., po(he)}, where ug(h;) = min h;
else let r = kmod|g|, d=k/|g|
return p(hy,d+1)U ... U p(hy,d+1) U p(heyr, d)U. .. Up(hyg, d)

Each time a read/write request is issued to the memory of g, the primary node
verifies the memory consistency by querying the replicas with the Paxos protocol.
If it receives more than (k+1)/2 ACKs from the replicas it will accept the request.
Using a counter mechanism, in the case of concurrent writes only the most up to
date write commits are accepted by the replicas. Every time the primary node

29

changes, i.e. pg(g) points to another node z, the Paxos protocol populates the
primary memory by collecting from the majority of replicas the most up to date
version.

Finally, we describe how we can solve our serialization problems:

1. a node x that wants to join to g = *.¢;...g;_1 by taking an address g =
*.21_1.0; - . - gr—1 Will try to set to 1 the z;_;-th bit of the memory of g;. Since
its memory is atomic, no other node will be able to simultaneously set to 1
the x;_1-th bit, and thus join to g;.

2. similarly as above, a bit is set to 1 until the condition @ is true. In this way,
the nodes can atomically check if () is true or not.

4.2 Gnode Split

Suppose a gnode h splits into connected components Hy, ..., H,. Then in order
to satisfy the connectivity constraint of group nodes, all but one Hy,..., H,, will
have to change address.

A node x € H; can recognize the splitting of h after the routing updates occur:
there will be a missing path to reach a node of another component. Using the
routing table the node z can deduce the number of nodes of its component. Also,
x can know min H;, the smallest address of the nodes in H;. If x is a border node of
h, it acts as follow: if min H; # min h, x leaves H; and migrate. After completing
the migration, it also tells its old neighbors in H; to do the same. In this way, the
only component that does not migrate is the one that contains min h.

Notice that if H; does not contain any border node, then H; has been completely
disconnected from the network. In this case, nodes in H; do not have to change
addresses.

We can optimize the above rule by minimizing the number of migrations, as follow:
for each component Hi,..., H,,, the node min H; sends to a rendezvous node not
in h the size |H;| along with its address min H;. The rendezvous node acts as a
hub and forwards each message to all the nodes min H;, ¢ = 1,..., m. The node
min H; will in turn forward the received message to the border nodes of H;. In
this way, the border nodes know the size of all components and the new condition
for migration becomes min H; # min H;, where H; is the component such that

By = max |
1<i<m
min H; > min Hy, Vk s.t. |Hy| = |Hj|

30

In other words, H; is the component with the maximum size and with the maxi-
mum min //; among the components of maximum size.

It follows that the only component that will not migrate is one of those with the
largest size.

4.3 Network ID and Network Merging

Up to now we have considered the whole network G as a connected network. How-
ever, for a complete distributed implementation we have to consider the general
case of a disconnected network. That is, G will be formed by the union of con-
nected networks G, ..., G,,. Lets consider the case where m = 2. Since G, G, are
disconnected, the nodes in each network have no way for coordinating the choice
of their addresses, thus a node in G; can choose the same address of a node in GS.
If later on G1, G5 become connected, then the resulting network G1UG4 will have
an address collision.

There are two ways for solving this problem:

1. Use an out of band communication between GGy and G, for coordinating the
address assignment.

With this solution we are effectively creating virtual links between G; and
(G5 and we can always assume that the original network is connected.

2. Assign a unique ID to each distinct network.

This solution can be viewed as extending the address y; ...y, _1 of each node
to y1 . ..yr_1.n, where 7 is the network ID (netid).

All the nodes with the same netid will form a connected network. In other
words, the netid can be effectively viewed as a group node of level L.

We now analyze in more details how to assign a network ID to each node.

1. Each node v chooses a random number 7y(v), with sufficiently many bits
such the probability that two nodes have the same 7,(v) is negligible. Notice
that the netid will not be used for routing purposes and thus the number of
bits can be chosen more freely.

2. The network ID of a connected network GG is then

n(Gy) = min 1o(v)

31

The nodes of G; can know 7n(G4) in a single flooding round: at first, each
node v sets 1n(G1) := no(v), secondly it broadcasts its current known n(G)
to its neighbors. After a node w receives a broadcast 7, it sets n(Gy) =
min {n(G1),n}. If n(Gy) has changed, w retransmits it to its other neighbors.

3. With the above procedure, if G; is a connected network, then all its nodes
will agree on a unique 7(G7). Suppose now the two networks G; and Gs
become connected. Suppose also that the nodes know an estimate of the
size of their original network. Then instead of choosing min {n(G;), n(G2)},
the nodes will prefer the netid of the smaller network. In this way, the
number of flooded nodes will be minimized. In particular, this is a necessary
optimization when (G is formed by a single node x, i.e. when zx joins the
network Gl.

4. Suppose that the node x € G with the minimum netid 7y(z), i.e. no(z) =
n(G), leaves the network. A node will participate in a new round of netid-
discovery, only after it receives the routing update regarding the departure

of 1o(z).

This rule handles the case when the network G becomes disconnected into
components G1,...,G,,, due to a link or node failure. The nodes in the
components where x is missing will change their netid, so that at the end of
the netid-discovery each network G; will have a distinct netid.

The above solution presents a drawback: when the node z with ny(z) = 7(G)
dies, then a new netid-discovery round will occur and the entire network will be
flooded. By assuming that nodes can synchronize their clocks, we can damp this
problem with the following heuristic: the node with the highest uptime will be the
least likely to leave the network. To apply the heuristic, it suffices to change the
definition of ny(z) as follow:

no(x) = (Time when x has been turned on, Random Number)

two pairs (t,7), (¢',r") will be compared using the lexicographic order.

Finally, suppose that two separated networks G, Gy become linked and that G,
is the one that will change netid. The two networks have also to resolve all the
address collisions. This is possible because the nodes bridging the two networks
will exchange their routing table. If they notice that two gnodes of level L — 1
have the same address, then the one in G will be alerted and its nodes will start
to migrate.

32

Chapter 5

The Cost of Balance

The main cost associated to the balancing rules is the number of migrations that
occur while the network evolves.

Each time a single node migrates, it has to advertise its new address by updating
the name— address mapping stored in the HDHT. Moreover, if the node is storing
some mappings of the HDHT, it has to transfer them to the most appropriate
node. Assuming that the HDHT equally distributes the mappings and that at
most a constant number of them are registered by each node, a location update
requires the transfer of O(log N) stored mappings'. Thus if M is the total number
of migrations, O(M log N') mappings will be transferred.

Also, the change of the routing address of a node affects higher layer transmission
protocols: a TCP connection between a node and a migrating node will break.
Thus additional countermeasures such as virtual circuits are required.

Finally, when a node z migrates from a group ¢ to a group h, new routing updates
are necessary for discovering the paths connecting x to the other nodes of h.
Depending on the routing protocol implementation, it may be necessary to update
the routing tables of the higher levels, for example when x affects the route stretch

introduced by the groups ¢g and h.

For all the above reasons, our ultimate aim is to understand what is the behav-

ior of the balancing rules when the network evolves and estimate the number of

'the log N term derives from the extended HDHT where a same mapping is stored in L =
logg N nodes

33

migrations.

Remark 5.0.1. It is possible to trade the handoff overhead caused by migrations
of high level gnodes with an increased communication cost for the HDHT. The
read /write procedure of the HDHT becomes the following: a node z = ¢ ... x4
stores its name — address mapping only to the nodes with address h, ;(name) =
ho...hjxit1...xp 1 Yo < [, where | < L — 1. The mapping stored at node
h,i(name) points to the partial address of the form zy...z;. In this way, does
not need to update the mapping when one of its higher gnodes *.z;...x_1, with
i > [, migrates. Thus, the S"** mapping updates required by the migration of a
full gnode of level [+ h are saved. However, in order to retrieve the address of x,
a node y that does not belong to *.x;...x_; will have to query all the possible
nodes with an address of the form hg...hj_1.%

We now give some results on the performance of the balancing rules. Then we will
proceed in an experimental evaluation through simulation.

5.1 Number of Migrations

Remark 5.1.1. In the case of node removal the PB-rule induces new migrations
when a gnode becomes too small in comparison with other gnodes, i.e. when the
condition of Proposition 3.3.4 does not hold anymore. Instead, the LM-rule does
not force any migration when the size of a gnode decreases.

We now examine what happens when new nodes are added in the network.
Proposition 5.1.2. Suppose that all the gnodes in [G]; have the same size a, with
S —12>a>1. Suppose s nodes join to a gnode g € [G];, where s < (S —a)N,

N = |[Gli]-
The number of migrations caused by a balancing rule (PB or LM rule) is:

!

[}ilj—l il(j—l)Dj%—m’r’

34

where

m’:max{m | (smod D) Z } :(smodD)—ZDk,
k=1

= [[GTil

D =) D;=SN, N=|T(g)
i=1
m = max d(g,y), where d(z,y) is the hop distance

y€[G]
D; = SyE;, E;=|{he[G];|d(g,h)=1}|
1 PB-rule
So =
{S —a LM-rule

For the LM-rule the formula becomes simpler:

Notice that the LM formula does not depend on m, while the PB formula does.

Proof: Let’s fix Sy = 1 and consider the PB-rule first.
By Rem. [3.3.2,pg.24], each time one node is added in g, a shortest migration path
is selected, i.e. for each addition 1 < < s we have a path

Pl = (pl, . pmz)
length(P") =
pL=g Vi

35

We prove by induction on ¢ that if ¢ < D, then
l.i>1=m;_1 <m; <m;_1+1
2.
20 pl =g
21 |pil=a+1Vv2<j<m;—1
2.2 after the migrations of P’, we have |g| = a + 1
3. Before the i-th node is added, we have
3.0 |py,| =a
after, we have:
3.1 pl.l=a+1
32 fi:{P"|k<i} — {h €G] ||h| =a+1} is a bijection:
P*=(ph,....ph,) b,
33 i=|{P*|k<i}|=[{helCl|h=at1}]
4. M*=m; — 1 is the number of migrations caused by the addition of the i-th node

If i = 1, the new size of g is a4 1. The size of all the other gnodes is still a. Thus,
Pl =(g,) and m; =1, M' = 0. Also, 3. is true.
Consider the case i + 1. Let P! be any shortest migration path. By induction,
before adding the new i + 1-th node, the size of a gnode is either a or a + 1 and
lg| = a+ 1.
By definition of migration path, we have:

nt=g, lgl=a+2

P =a+1 Vi <miy -1

| il =a (0)
Such a P! exists: if, by contradiction, all the nodes have size a+ 1, then each of
them has been already reached by a migration path, i.e. by 3. we have i = |[G],],

but

1+ 1 < D=i<|[G]] -1
~~
by hypothesis
which contradicts i = |[G];|.
By 2.,3.0,3.1 and (0), the gnode pif{iil cannot be any of the gnodes reached by
previous migration paths, so
{PFlk<i+1}|=[{P"|k<i}|+1=i+1

36

After adding the new node, the migrations occur and we have:
nt=g lgl=a+1

P =a+1 V) <mig —1

i+1
]pﬁ,‘;r J=a+1
At least, m;.1 — 1 migrations have occurred to let one node migrate from p}“ to
p;ill Vj < m;s1 — 1. Finally, by Prop. 3.2.11, these are the only migrations that
have occurred, thus no other gnode apart from pj';il has increased its size. Thus,

2.,3.,4. are true. We now prove that also 1. is true,

U B e MU
|pj7L7;+171‘ - a+ 1\:>/3‘ ‘P] * p]mj _pininl? Wlth j S [/
3.2
P! is a shortest migr. path = m; > mipq — 1
m; > m; = mip1 — 1= mi+12>mip
~—

j<i, inductive Hp
It is impossible that m,,; < m;, otherwise P’ is not a shortest migr. path =

= m; S mii1

tD>i> 23:1 D; the number of migration paths of length j < ¢ is equal to

Dj (1):
let f be the restriction of f; to {Pk |k <i, my = j}

I {Pk |k <i, my=j} — Dj is a bijection:
lgl=a+1, YVhe[G], a<|h|<a+1
P* is a shortest migration path
= P"is a shortest path = f(P*) =p}, € Dy, = D;
f is injective = f injective
from ¢ > zq: D; and 1.,3.3, it follows that f is surjective

j=1
By 4., the number of migrations after the s-th node has been added is:

M(s) = 3 (mi 1) (5)

i=1
If s < D, with (1) we can collect the terms in (5) by length:
M(s) =Y (j—1)D; + ((m' +1) = 1)/
j=1
Wherem’:max{m'§m|S—ZDZ'ZO}, r’:s—ZDk
k=1 k=1
Z;’il(j — 1)D; are the migrations required to increase the size of all the gnodes

37

reachable in at most m’ hops. Each time we add a node in one of these gnodes,
we are using a path of length j and thus the required migrations are j — 1. 7’ is
the number of gnodes reachable in m’ + 1 hops that we can still enlarge.

Finally, notice that if s = D = |[G],],

s:D:ZD,c
k=1

m' = m = max length(Path([G];)), »" =0
M(s) =) (j—1)D;
j=1
and, after the migrations, all the gnodes have size a + 1. Thus, the same initial
situation has been reached again. In the case of any new addition, we can reapply
the same reasoning. So, if s = ¢D is a multiple of D:

M(s) = QZ(J' - 1)D;

In general, considering the remainder r of s/D, we have:

M(s) = | 5] D26 =D+ 36 = DD, + (' +1) = 1)

Jj=1

o
where m’ = max {m’ | r— ZDi > 0}
k=1
o’
r=r— Z Dy,
k=1

The formula for the LM-rule, can be derived with a similar reasoning. The main
difference is that we can think of adding S — a nodes each time. Another way
to derive it is to notice that the LM-rule is equivalent to an application of the
PB-rule on the graph obtained from [G]; by substituting a gnode h # g with S —a
identical copies (i.e. nodes with the same edges of h). In the new graph, EPV is
equal to (S —a)EM Vi=1,... ,m.

Finally, the simplification of the LM formula is derived as follow: we cannot add
more than (S — a)|[G];| = (S — a)N = D nodes, thus we have s < D, and

s/D] =0, r=s

m/

M(s) =Y (j — 1)D; +m'r
j=1
m’:max{m'|S—ZDiZO}, r':s—ZDk
k=1 k=1

38

O
Corollary 5.1.3. Consider two different address assignments such that [G]; and

(G]; are two different graphs. Suppose also that all the gnodes, both in [G]; and in

[G];, have the same number of nodes a, with S —1 > a > 1. As in Prop. 5.1.2,
add s nodes in a gnode g € [G]; and in a gnode g € [G);. Let M(s) be the number
of migrations induced in [G]; and M(s) those in [G);.

If in [G); there are more shortest paths than in [G];, we have M(s) < M(s). More
precisely, using the same notations of Prop. 5.1.2, suppose

E;=FE;+h; Vi=1,... max{m,m}

j
h; € Z, Zhi >0 Vj < max{m,m}
i=1

N=N

then

M(s) < M(s)

In other words, if |G, is more connected than [G];, it will induce less migrations.

The intuitive explanation is that the migration paths in [G]; are shorter and cause
less migrations than the equivalent paths in [G];.

Proof: Recall from the previous proof that if s < IV,
M(s) = (m;i—1)
i=1
length(P") =m; <myy <m; +1 Vi=1,...,5—1
Since s < N = N, the same is true for M and m;.

By induction on ¢, we prove that m; > m; Vi =1,...,N. This suffices to show
that M(s) < M(s), also when s > N.
Base case:

—1 - o
Pl:(ga)apz(g7):>m1:1:ml

Suppose m; > m; is true. Since m; < my; 1 < m; + 1 we have two cases
CASE: Mir1 = My

M1 =My < my < Mg
CASE: mi 1 =m; + 1

39

Since 1 =my <y < --- <y and m;1; < m; + 1, we have

where 7; = | {k < ¥ | mz = j} |, pla.i) = | {h < i | M=)

and analogously,
m;—1

i= Y v+ p(mii)
j=1

where v; = | {k < N |my = j} |, pla,)) = | {k <i | my=g}]

Notice that
Vm, > p(mia 2)
Recall that the number of all migration paths of length j is equal to the
number of gnodes of [G]; reachable in j hops:
vj = Ej
Analogously for G:
Dj :Ej:Ej+hj:Vj+hj

We are under the hypothesis m; 1 = m; + 1, thus
mi+1—1 m;

itl= > wpmait) =) v +pmnitl) >) 7=
J=1 Jj=1 > j=1
IS SES SNE
j=1 j=1 j=1
——
>0

m;y1 > m; > m;, and it’s impossible that m;,; = m; in fact:

m; miy1 mip1—1
(x) J=1 mip1=m; Jj=1 J=1

i+1>7+1 contradiction
thus m;1 > my; +1 =M
O]

Corollary 5.1.4. When adding s nodes in [G];, the mazimum number of migra-
tions is reached when |G|, is a linear path and all the nodes are added at one of
the two extremes. This is true both for the LM-rule and for the PB-rule.

Proof: Corollary 5.1.3 0

Proposition 5.1.5. Under the hypotheses of Prop. 5.1.2, suppose that [G]; is a
linear path and g is one of the two extremes. Then, the number of migrations

40

caused by the PB rule 1s:

M(s) =

r(r—1)
2 + 2

N

|:Si|N(N—1)

r =smod N

and by the LM rule is:

! !
—1
m (m2) e

m' = {Sio] , "' =smod S,

SQ:S—G

MLM(S) = So

1800

1600

1400

1200 ¢

1000 -

Mis)

800

BO0 |

400

200

"PB-rule

LM-rule

0

20 40 a0 &0 100 120 140 160

g

180

Figure 5.1: Number of migrations of the LM-rule and the PB-rule when [G]; is a
linear path (Proposition 5.1.5). The parameters are N = 20,5 = 10,a = 1.

Proof: This follows directly from Prop. 5.1.2, because [G]; is a linear path of N

nodes and we have

m=N
D = SyN

In the case of the PB-rule we have Sy = 1 and
m' =max{m' |r—m'>0}=r, '=r—r=0

41

Instead, for the LM-rule,

m' =max{m'|s—m'Sy >0} = {S] , r'=s—m'Sy = (smodSp)

So
S():S—CL

5.2 Simulation

The scenario of the simulation is based on a city wireless mesh network where each
node is located in a house and the density allows the coverage of the whole city,
i.e. the resulting network graph is connected.

Random Geometric Graphs (RGG) are the simplest model of wireless mesh net-
works. In a RGG the nodes are uniformly distributed in the unit square [0, 1]? and
a link is established between two nodes 7,7 if d(7,7) < 7.

However, the geometric topology of a city wireless network is very different from
the unit square. If a node places its antenna behind a window, then at least half
of its coverage is shadowed by the building. Also, the height of buildings may vary
and antennas placed on the roofs may be shadowed by taller buildings.

In order to simplify the matter, while still taking into account the obstacles of a
city wireless network, we will assume that the links of a RGG are removed with a
fixed probability 1 —p.. We will call the resulting graph a City Random Geometric
Graph (CRGG).

If p. =1, a CRGG is still a RGG, instead if p. < 1, we can approximate it with a
classic random graph where an edge is established between two nodes with a fixed
probability p. For this reason, in our simulations we will resort to random graphs
only.

Proposition 5.2.1. Let G be a CRGG with radius ro and link probability p., then

1. If p.=1, G is a RGG

2. If p. < 1 and we ignore nodes near the border of the unit square, G is a
random graph with link probability p.mrd

Proof:
P(zy are linked) = P(zy | d(x,y) < ro)P(d(z,y) < ro) = pe Area(l,,(z)) = perrg
O]

Note: a further generalization of CRGGs are the Random Distance Graphs studied
in [28].

Notice that the assumption of having a constant probability of link establishment

42

is justified by the fact that wireless links between fixed nodes can become broken
only due to new obstacles and in a city we can consider this an infrequent event.
As a consequence, once the network has been formed, nodes addition and removal
will be the only network events occurring in the network. In other words, at a
given time a node can be either On or Off:

1 node z is On at time ¢
)‘x(t) =
0 else

Under the above assumptions, we performed two different experiments.

5.2.1 First Experiment

For comparing various properties of the balancing rules we considered a simple
network evolution that induce all kinds of migrations, namely migrations caused
by splits, by network merging and by new joining nodes.

In details, the first experiment runs as follow:

1. A connected random graph G is generated with link probability p and Nyax
nodes. We ensure that GG is connected by repeatedly generating p-random
graphs with the NetworkX Python library[30] until a connected graph is
found. A connected random graph will be found quickly if p is greater than
the critical threshold 1/N of random graphs. In fact, with high probability
the size of the giant component of a random graph increases exponentially
as p > 1/N increases and it becomes the full graph when p > In(N)/N [27],

[29].

2. Only the first level of the hierarchy is considered and the maximum number
of level 1 gnodes is set to ceil(Npax/S), where S is the gnode size.

3. At the start of the simulations, all the nodes are turned Off.

4. Sequentially, each node is turned On, the balancing rules are executed and
the number of migrations is counted.

5. When the number of On-nodes is Ny, i.e. all the nodes joined the network,
we start the turn-Off phase: at each step we turn Off a node and count the
number of migrations.

In figure 5.2, we can see how a simulation of the first experiment evolves.
The network starts with 0 nodes, at each step a new node is added. On the Y

43

axis is reported the total number of migrations. When at step 1000 the network
becomes full, the simulation proceeds by removing a node at each step.

800

700

600

500 |

400

300

Total Number of Migrations

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Steps

Figure 5.2: Evolution of the first experiment, with parameters Np.. = 1000,
Nmin = 17 b= 6/Nmaxa S = 20.

Migrations and Link Probability

In another simulation we varied the probability of link formation p = d/Nyax,
where d is the average degree of the graph. As shown in the figure 5.3, as p in-
creases, the number of migrations decreases. This is not surprising: as p increases,
nodes are more connected. A joining node is then linked to a greater number of
groups and it has a greater chance of finding a non-full group as a neighbor. Thus,
less migrations occur because the LM-rule enforces a migration only when a node
as no other choice than to join into a full group.

Secondly, since it becomes more difficult to disconnect a group with a node re-
moval, the number of migrations due to a gnode split decreases too.

For these reasons, in all successive simulations we preferred to study networks with
low connectivity, by choosing 2/N < p < In(NN)/N.

44

300

250

200 -

150

Mumber of Migrations

100 %%%

%%%

{‘H

50 | %%%%%%%%%% |
i%%ii%ggigg

0 20 40 B0 an 100 120 140 160 180 200

Average degree

Figure 5.3: The number of migrations as a function of the probability of link

formation of the generated random graphs. The parameters for this simulation
are Npax = 100, S =6, Npim = 1.

PB and LM Rules Comparison

For comparing the PB-rule against the LM-rule, we repeatedly run the first ex-
periment with parameters in the ranges 80 < Npax < 100, 3/Npax < p < 4/Npax,
6 <S5 <20.

For each generated graph, we used both the PB-rule and the LM-rule. In all
simulations, the number of migrations caused by the LM-rule (M) was never

greater or equal than those caused by the PB-rule (Mpg) and on average, My,
was 45 + 11% less than Mppg.

These results show that the LM-rule is more efficient than the PB-rule. Note: in
all subsequents simulations we used the LM-rule only .

Aggregative and Dispersive Rules Comparison

Similarly as before, we compared the Aggregative-rule (A-rule) with the Dispersive-
rule (D-rule) (see section 3.3.7). As we expected, the A-rule is more costly. On
average, the D-rule generates 37 4+ 24% less migrations of the A-rule and only in
8% of all simulations, the D-rule caused more migrations than the A-rule.

45

Group Size

The maximum size S of a group node is a tradeoff parameter between the size
of the routing table and the latency stretch, but it also influences the number of
migrations M.

From the left figure 5.4, we can observe that when the size of a group becomes
larger than half of the number of nodes (100), the migrations begin to decrease. In
fact, it becomes increasingly difficult to disconnect a group due to a node removal
(we will explain why in the next section). Also, the migration paths decrease in
length.

140 T T T T T T T T T 550
120 F 500 -

450 +
100 -

|
;:; iy, gggJHW

-20

400 -

Mumber of Migrations

Number of Internal Migrations

Q éO ;0 éO éO 160 120 1;0 1;0 150 200 Q éO ;0 éO éO 160 1;0 1;0 1;0 150 200
Size of a group Size of a group

Figure 5.4: On the left, the plot represents the number of migrations as a function

of the group size. On the right, the same data is reported, but the migrations due

to network merging are also counted. The parameters for this simulation are:
Nmax = 2007 Nmin = 17 b= 4/Nmax‘

However, if we also take into account the migrations due to network merging
(Chapter 4.3), M reaches a minimum when the group size is 2 and then increases
until a point where it becomes almost constant (right figure 5.4).

Small values of S have a drawback: the number of established virtual addresses
becomes higher when S is small. This is shown in figure 5.5.

Groups are Random Graphs

We repeated the simulation for 5000 times by varying the group size S and counted
how many edges E were contained in a full group node at the end of the network
formation. In figure 5.6, we can see the edge ratio p’ = - plotted as a function

(2)

46

50

45 +

20 k

Virtual Addresses

15 -

10 F

| HHH%H

0+ % % % % % E Y

0 20 40 60 80 100 120 140 160 180 200
Size of a group

Figure 5.5: The number of established virtual addresses depends on the size of the
group nodes. Smaller sizes force the creation of more virtual addresses.

of S. As S becomes larger, p’ tends to the probability p of link formation of the
network graph. For S > 20, the relative error on all points is < 1.5%, while on
70% of points it is < 0.25%.

Since the error is small, p’ depends mainly on the size S and not on the underlying
process that generates the groups. For this reason, we can consider large groups
of size S as random graphs G'g (s

We also notice that for all points p’ > p, p'S < pN (except 5 points) and p'S has
an increasing behavior as S grows. This can explain why larger groups are harder
to split: when h nodes are removed with a fixed probability from a random graph
G's,, the remaining nodes form a G's_j, graph and the expected size of its giant
connected component monotonically depends on its average degree p'(S — h).

Virtual Addresses and Average Path Length

By considering all the data acquired from simulations, we counted how many
migrations force the creation of virtual addresses: of 157-10° simulated migrations
only 0.87% established new virtual addresses. We also observed that the average
migration path length is short: on average it is 2.00 £ 0.03 hops long. This is
not surprising: the average path length in random graphs is ~ In N, thus only

47

T T T T T T T Edgé rotin
} d/Hmax

0.7

0.5 ,{

Group Edge Ratio
[a=]
=y
-

o3t

+ +
+ +
e o T S S
n N ! ! 1 i i i

0 20 40 B0 an 100 120 140 160 180 200

Group Size

Figure 5.6: Each point indicates the edge ratio of a full group with size S. The
parameters of the network graph are Npy.x = 200, p = 3/Npax. The bottom
constant line is y = p.

with large scale simulations it should be possible to notice higher migration path
lengths.

5.2.2 Second Experiment

In the second experiment, we studied the behavior of the balancing rules as the
network becomes more and more chaotic. N;, nodes are considered stable, while
the other Ny.x — Nmin nodes are marked as churn nodes. During the simulation
the churn nodes are turned on and off with a fixed probability and the migrations
are counted. In details,

1. A connected random graph G is generated as in the first experiment.

2. Npin nodes are turned on and the balancing rules are applied until the net-
work reaches a stable configuration. The migrations of this step are not
counted.

3. For MazSteps times the following procedure is repeated: each churn node is
turned off with probability 1 — p. or on with probability p.. The LM-rule is
applied and the number of migrations are counted.

48

Npin and p. affect directly the number of migrations. As shown in figure 5.7,

190000000000 000srroeeesenee
AN A NN NNERENNENNENRENERNERNSSEHNRHNRJHERJN}RE}R;E
sro00000OCOOOOOONOOONOODS 1
Al R E R NN NENNERNNERHNN:EHN;

0
60

: 50
CEFr OO0 OBOBOBENOIBDOEBOLOLDS 1 40

£
-
2
= S5reo0es0oessesenne 1 30
~
e 410000000000 0BOMOMODS 1 20

10
C3re 00000 ROOROORNOOROIORBBRDS

A R AR RN R ENENENNENENENENNERENNENRNERNHNEHRI~:
0.1 998000000000 0000000000000
140 120 100 80 60O 40 20
Mmin

Figure 5.7: At each simulation step, each of the Np,.x — Npnin churn nodes is turned
on and off with probability Pr Churn. The gray intensity indicates the average
number of migrations per step (Migrations / MaxSteps) obtained at the end of the
simulation. The parameters used for this simulation are: Ny, = 200,5 = 20,p =
4/Npax-

the migrations increase when p. gets near 1/2 and Ny, decreases. In fact, Ny,
determines the percentage of churn nodes in the network. Also, the probability
of having k alive churn nodes at each step follows a binomial distribution and the
expected number of churn nodes that will change their status from one step to the
next is:

Nmax_Nmin

E(At) =K (Z Ixt) = 2(Nrnax - Nmin)pc(l _pc>

=1
where I, = |AEFD — X!,
M =1 & node x is On at time ¢
P(I;=1)= PO\, =1,\"" =0) + P\, =0, A\ = 1) = 2p.(1 — p.)

Thus at p. = 1/2 and Np,;, = 0, there is the maximum expected number of On/Off
switches.

M as a function of N,
We repeated the experiment by varying the number of nodes N, and by setting

Nuin = Nmax/k, for a fixed k& > 0. Notice that in this way the ratio of churn
nodes is equal t0 (Npax — Nmin)/Nmax = 1 — 1/k. As shown in figure 5.8, M

49

100

T T T T T
Mmax/Mmin 10

a0 |- NmaxiMmin 3
NmaxMmin 2

a0 - —

70 -

60 |-

50 : -

a0 |- —

Average Migrations per Chumn

30 -

| aa{iw

1

0 1 1 1

H
|
0 100 150 200 250 300 350 400

MNmax

Figure 5.8: Each point represents the average number of migrations M per step of
a network with Ny, nodes. Each line is obtained by fixing a different Np,ax/Nmin
ratio. The parameters used for the simulation are: p = (In(Npax) —1)/Nmax, S =
20, MaxSteps = 100,

increases almost linearly as Ny, grows. This is also evident from their correlation
coefficient (see table below), which is almost 1.

k = Niax/Numin | 2 | 3 | 45] 6 | 78] 910
Correlation Coefficient | 0.90 | 0.94 | 0.97 | 0.97 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99
Linear Best Fit Error | 3.01 | 4.68 | 4.68 | 4.45 | 4.00 | 3.23 | 3.16 | 3.06 | 2.93

M as a function of E(A,)

In a next simulation, we calculated the average number of migrations M as a
function of the expected number of network changes E(A;). By choosing p. = 1/2,
E(A;) becomes (Npax — Nmin)/2 and we can vary it linearly by changing Nyy,.

In the figure 5.9, we can observe that M increases sublinearly as the number of
stable nodes decreases. In other words, the addition of a new churn node influences
little the network.

When Ny, > 240 (< 20% of churn nodes), the standard deviation of each data
point is < 2. In this case, M depends lightly on the underlying graph and on the

20

30

Average Miérations perlTimefstep e

g0
0+
60 |
a0

a0 |

] HHHHHW

Migrations

10

=]

;ﬁeﬁ%h%iﬂ%%%ﬂﬂ%% H(

0 50 100 150 200 250 300

Mmax-Mmin

Figure 5.9: Average number of migrations as a function of the expected number
of network changes E(4A;). The parameters used for the simulation are: Ny, =
300, S =20, p. = 1/2, MaxSteps = 100

particular nodes that switch their On/Off status. Instead, when the percentage of
churn nodes grows, the variance of M grows too. In other words, with high churn
the peculiar features of the underlying graph begin to matter more.

Gnode Split Migrations

There are two types of migrations: those caused by new nodes joining the network
and those caused by gnode splits induced by old nodes that leave the network.
Intuitively, the latter type is more costly: the number of migrations caused by a
new node is equal to the length of a migration path, which on average is —as we
have seen— rather short. Instead, a gnode split can force the migration of a large
part of a group.

In a next simulation, we counted the number of migrations occurring due to a
gnode split (Mg). In figure 5.10, we can see that when Ny, < 250 (> 17% of
churn nodes), more than 60% of migrations are due to gnode splits only. When
Nuin > 200, even though the average percentage Mg/M decreases, the variance
increases notably.

51

120

100 -

| R

40 | 7

20

Fercentage of Migrations by Split

=20

0 50 100 150 o0 250 300

Mmin

Figure 5.10: The Y axis represents the percentage of migrations due to gnode
splits: %100, where M is the number of migrations per step. The parameters
used for the simulation are: Ny, = 300, S =20, p. = 1/2, MaxSteps = 100

5.3 Bounds on the Number of Migrations

In the previous simulations, we have considered a network subdivided in ceil(N/S)
groups of single nodes, ignoring the borders formed by levels higher than 1. This
gives an under-estimate of the actual number of migrations:

Proposition 5.3.1. Let M be the total number of migrations occurring in a net-
work after a sequence of events, using either the PB-rule or the LM-rule. Under
the same events, consider an application of the chosen balancing rule to [G]; only,
or in other words let only single nodes migrate. Let M’ be the relative number of
migrations.

We have:

M <M

Proof: We omit the proof for space constraints. The main idea is to notice that,
without the higher levels, nodes have more freedom for creating group nodes and
there are no higher gnodes can become split. O

Proposition 5.3.2. Consider a hierarchical network G with L levels, groups of
size S and Ny.e = ST. Let M be the number of migrations caused by some network
events occurred at the same instant.

52

M is upper bounded as follow:
M < 20LNyax

where 0 is the diameter of the network after the events.

If G is a random graph Gn,,..p and p > 1/Npax, on average we have

1n2(NmaX)
M < 2 max
= In(pNmax) In(S)

Additionally, if pNmax > € and S > e, we have:
M = O(Nmax In*(Niax))

Proof: The balancing rules are applied at all levels, thus
L—1
M= "M,
i=1
M; = Mj; + Mg
where M; is the number of single nodes that migrate for balancing [G];, M,
are the migrations caused by new nodes joining the network, while Mg, are those
caused by gnode splits.
Recall that for each migration of a node a migration-path P is established and the
number of migrations is length(P) — 1.
If Pis a path in [G];, with ¢ > 1, its length is upper bounded by the diameter of

[G];. Also, [G]; can be viewed as a contraction of the original graph G, so
length(P) < §([G];) < §(G) (1)

If at level i there is still a non-full gnode g (Ivl(g) =i, |g| < S), a new joining single
node will cause a migration path in [G];. When [G]; becomes full, i.e. |[G];| = ST,
any further addition of nodes will cause migration paths in lower levels only. Thus,
at each level i at most ST~% migration paths can be established. Each migrating
group has at most S? single nodes, thus by (1) we have

Mjy; <688 = Npmay V1<i<L-—1

L—-1
M= Mj; < (L—1)6Npax
=1

When a gnode g € [G]; is split all the single nodes not belonging to the largest
component will migrate. The maximum number of single nodes of ¢ is S*. In the

23

worst case, [G]; is full and all its groups are split, thus

Ms; < S'[Gli]6 < 'SP 76 = ONmaxy VI<i<L-—1

L—-1
Mg = Ms; < (L= 1)0Npax
=1

In sum we have:

M= Mj;+ Mg < 20LNyax
Finally, the expected diameter of a random graph Gy, » is[29]:
In(Nmax)

5 —
M (N)

and since L = In(Npax)/ In(S), we have

1n2(NmaX)
M <2 Ninax
= In(pNmax) In(5)

]

Remark 5.3.3. The results of the second experiment (section 5.2.2) suggest that, if
S is fixed, in a network with a constant churn the number of level 1 migrations is
Q(Npax). Therefore, using proposition Proposition 5.3.1 we may conjecture that
in general M = Q(Nyay). Finally, by the previous proposition we can conclude
that for connected random graphs:

Q(Nmax) = M = O(Niax)

o4

Chapter 6

Conclusion and Future Research

A hierarchical topology simplifies routing and name management: the routing
tables are small and distributed hash tables can be overlaid in a natural way.
However, when the network is dynamic, the task of constantly maintaining a co-
herent hierarchy becomes complicated. Not only nodes have to change addresses
when a group becomes disconnected, but also additional measures are required
when new nodes enter the network. In this dissertation, we have studied what are
the necessary rules that have to be enforced in order to incrementally update the
hierarchy and what protocols can realize their distributed implementation. We
have analyzed the behavior of the rules under different network conditions. As
expected, well connected and not very dynamic networks are easy to manage. In
the worst case, the number of address changes is upper-bounded by O(N), where
N is the size of the network. However, with a constant churn, the number of

migrations increases at least linearly as N grows.

There are two directions for continuing the research on scalable mesh networks.
In the first one, we can try to optimize the hierarchical architecture by exploring
various tradeoffs. For example, as explained in Remark 5.0.1, the handoff overhead
caused by migrations can be reduced at the cost of increasing the communication
cost of the HDHT. Another tradeoff arises while trying to minimize the latency
stretch and the number of migrations: groups may be formed in such a way to
minimize the introduced latency stretch. However, the formation of group nodes

becomes dependent not only on the connectivity properties of the nodes, but also

95

on the weight of their links. Thus, when the links’ weight changes new migrations

may be required.

The second direction is to relax the connectivity constraint: instead of requiring a
group node to be internally connected through physical paths, we allow the use of
virtual circuits, or in another words, group nodes are created on a routing overlay
imposed on the physical network. Relaxing the connectivity constraint simplifies
many dynamics of the topology maintenance. However, if the overlay is not care-
fully constructed, the latency stretch may increase rapidly.

The approach of creating unconnected group nodes that minimize the latency
stretch is strictly related to a current research field called Name-independent Com-
pact Routing[31][32]. The Compact Routing problem is to construct a routing
scheme that minimize both the latency stretch and the routing tables size.

One scheme that is similar to our relaxed hierarchical architecture is “Generalized
routing scheme for O(N'/?) space”, presented in [31].

We note, however, that the current compact routing algorithms do not solve the
original objective of constructing self-configuring scalable mesh networks. In fact,
they assume that the network is static. The design of an efficient dynamic scheme
that is updated incrementally as the network evolves is currently an open problem,
even though some lower bounds for the involved communication cost are already

known[306],[37].

26

Bibliography

1]

2]

[10]

LF. Akyildiz, X. Wang and W. Wang, Wireless mesh networks: a survey,
Computer Networks Journal 47 (2005) (4), pp. 445-487.

Fotios A. Elianos, Georgia Plakia, Pantelis A. Frangoudis and George C.
Polyzos (2009) Structure and Evolution of a Large-Scale Wireless Community
Network

http://mm.aueb.gr/publications/2009-WOWMOM-WCN. pdf

B. Milic and M. Malek. Analyzing large scale real-world wireless multihop
network. IEEE Communication Letters, 2007

G. Bernardi, P. Buneman, and M. K. Marina. Tegola Tiered Mesh Network
Testbed in Rural Scotland. In WiNS-DR’08, San Francisco, CA, USA, Septem-
ber 2008.

S. Srivathsan, N. Balakrishnan, and S.S. Iyengar Scalability in Wireless Mesh
Networks. Guide to Wireless Mesh Networks, pp. 325-437, Springer

L. Kleinrock and F. Kamoun, Hierarchical routing for large networks. Com-
puter Networks, Vol. 1, No. 3, pp. 155-174.

D. Krioukov and kc claffy. Toward compact interdomain routing.
arXiv:cs.NI/0508021.

L. Kleinrock and J. Sylvester, Optimum transmission radii for packet radio
networks or why six is a magic number, Proc. IEEE National Telecommuni-
cations Conference, Birmingham, AL, December 1978, pp. 4.3.1-4.3.5.

Jakob Eriksson, Michalis Faloutsos, Srikanth Krishnamurthy. Routing Scala-
bility in MANETs, University of California, Riverside.

G. Pei, M. Gerla, and X. Hong. Lanmar: Landmark routing for large scale
wireless ad hoc networks with group mobility. In ACM MobiHOC’00, 2000.

o7

http://mm.aueb.gr/publications/2009-WOWMOM-WCN.pdf

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. Du, A. Khan, S. PalChaudhuri, A. Post, A.K. Saha, P. Druschel, D.B.
Johnson, and R. Riedi, Safari: A Self-Organizing Hierarchical Architecture
for Scalable Ad Hoc Networking, Ad Hoc Networks J., 2007

R. Ramanathan and M. Steenstrup, Hierarchically-organized, multihop mobile
wireless networks for quality-of-service support, ACM/Baltzer Mobile Net-
works and Applications, Vol. 3 (1998), pp. 101-119.

A.D. Amis, R. Prakash, T.H.P. Vuong, and D.T. Huynh, Max-Min D-Cluster
Formation in Wireless Ad Hoc Networks, Proc. IEEE Infocom, pp. 32-41,
2000

J. Eriksson, M. Faloutsos, and S. Krishnamurthy. Scalable ad hoc routing: The
case of dynamic addressing. In Proc. IEEE INFOCOM, Hong Kong, China,
Mar 2004.

J. Eriksson, M. Faloutsos, and S. Krishnamurthy, Dart: dynamic address
routing for scalable ad hoc and mesh networks, IEEE/ACM Transactions on
Networking, vol. 15, no. 1, pp. 119132, 2007.

Andrea Lo Pumo, Netsukuku topology,
http://netsukuku.freaknet.org/doc/main_doc/topology.pdf

I. Stoica, R. Morris, D. Lieben-Nowell, D. Karger, M. Kaashoek, F. Dabek, H. Bal-
akrishnan Chord: a scalable peer-to-peer lookup protocol for Internet applications,
IEEE Transactions on Networks, 11(1) 17-32, 2003

Michael Garey and David Johnson, Computers and Intractability - A Guide to the
Theory of NP-completeness; Freeman, 1979.

John Sucec, Ivan Marsic. Hierarchical routing overhead in mobile ad hoc networks.
Mobile Computing, IEEE Transactions on, 3, Jan 2004

F. G. Nocetti, J. S. Gonzalez, 1. Stojmenovic, Connectivity based k-hop clustering
in wireless networks, Telecommunication Systems 22 (2003) 1-4, 205-220, 2003.

S. Banerjee and S. Khuller, A Clustering Scheme for Hierarchical Control in Multi-
hop Wireless Networks, in Proceedings of IEEE INFOCOM, April 2001.

Bradford L. Chamberlain. Graph Partitioning Algorithms for Distributing Work-
loads of Parallel Computations. Technical Report UW-CSE-98-10-03, University of
Washington, October 1998.

W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
The Bell System Technical Journal, 49:291-307, February 1970.

Leslie Lamport, Pazos made simple. ACM SIGACT News (Distributed Computing
Column) 32 (2001) 18-25

o8

http://netsukuku.freaknet.org/doc/main_doc/topology.pdf

[25]

[26]

[33]

[34]

Muthitacharoen Athicha, Gilbert Seth, Morris Robert. Etna: a Fault-tolerant Al-
gorithm for Atomic Mutable DHT Data, CSAIL Technical Report

J. Sucec and I. Marsic, Location management handoff overhead in hierarchically
organized mobile ad hoc networks, Proc. Workshop on Parallel and Distributed
Computing Issues in Wireless Networks and Mobile Computing, 19 April 2002.

P. Erdos and A. Rényi, Publ. Math. Debrecen 6, 290 1959.

Chen Avin, Distance graphs: from random geometric graphs to Bernoulli graphs
and between, Proceedings of the fifth international workshop on Foundations of
mobile computing, August 18-21, 2008, Toronto, Canada

Albert R. and Barabasi A.-L., Statistical mechanics of complex networks, Rev. Mod.
Phys. 74, 47-97 (2002).

NetworkX Python library http://networkx.lanl.gov/

Dima Krioukov, kc claffy, Kevin Fall, and Arthur Brady. On Compact Routing for
the Internet. ACM SIGCOMM Computer Communication Review (CCR), Vol. 37,
No. 3, 2007.

Papadimitriou, D. and NV, A.L.B. Compact Routing: Challenges, Perspectives,
and Beyond.

http://streaming.info.ucl.ac.be/data/grascomp/pdf/
TFISS09-Papadimitriou.pdf

I.Abraham, C.Gavoille, D.Malkhi, N.Nisan, and M.Thorup. Compact name-
independent routing with minimum stretch. ACM SPAA, 2004.

Arias M., Cowen L. J., Laing K. A., Rajaraman R., and Taka O. Compact routing
with name independence. In Proceedings of the 15th annual ACM Symposium on
Parallel Algorithms and Architectures. 2003. ACM, New York, 184192

M. Thorup and U. Zwick. Approximate distance oracles. In Proc. 33rd ACM Symp.
on Theory of Computing, pp. 183-192, May 2001.

Y.Afek, E.Gafni, and M.Ricklin, Upper and lower bounds for routing schemes in
dynamic networks, In Proc. of FOCS, 1989.

A.Korman and D.Peleg, Dynamic routing schemes for general graphs, In Proc. of
ICALP 2006, Part I, LNCS 4051, pp. 619-630, Springer-Verlag Berlin Heidelberg
2006.

29

http://networkx.lanl.gov/
http://streaming.info.ucl.ac.be/data/grascomp/pdf/TFISS09-Papadimitriou.pdf
http://streaming.info.ucl.ac.be/data/grascomp/pdf/TFISS09-Papadimitriou.pdf

	Introduction
	Methodology

	Hierarchical Networks
	Background and Related Works
	Routing
	Hierarchical Distributed Hash Table

	Balancing the Address Space
	Related Problems and Works
	Dynamic Balance
	Last Minute and Preemptive Balancing

	Distributed Balancing Rules
	The Memory of a Group
	Gnode Split
	Network ID and Network Merging

	The Cost of Balance
	Number of Migrations
	Simulation
	First Experiment
	Second Experiment

	Bounds on the Number of Migrations

	Conclusion and Future Research

