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Abstract

Low cost wireless routers are revolutionizing the way people connect to the Internet. The ease

of deployment on the one hand, and the freedom in the ability to connect on the other hand,

have made these wireless routers ubiquitous. Wireless mesh networks extend the connectivity

area of mobile devices beyond the limited range of a single access point. These networks can

be easily deployed inside a building, campus, on a large geographical area or at a disaster

site without requiring every access point to be physically connected to the Internet. They are

also very affordable when implemented with off-the-shelf low cost wireless routers.

This thesis is an effort of several years towards making mesh networks a reality. The

first part of the thesis introduces the architecture of the first high-throughput 802.11 wire-

less mesh network that provides seamless connectivity to mobile users using off-the-shelf

low cost routers. The second part of the thesis explores the realm of newly enabled mesh net-

works applications, presenting the architecture and protocols of the first robust Push-To-Talk

service for wireless mesh networks.

This work is part of the SMesh wireless mesh network developed in the Distributed Sys-

tems and Networks Lab at the Johns Hopkins University. SMesh is available as open-source

at http://smesh.org.
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Chapter 1

Introduction

“And so it begins...”

—Kosh, Babylon 5

Most wireless network installations today involve a set of access points with overlapping

coverage zones, each access point being connected to a wired network tap. Mesh networks are

a paradigm shift. They remove the wired connectivity requirement by having only a few of

the access points connected to a wired network, and allowing the others to forward packets

over multiple wireless hops. This thesis is in the area of wireless mesh networking.

Low cost wireless routers are changing the way people connect to the Internet. The ease of

deployment at home or office on one hand, and the freedom in the ability to connect that they

provide on the other hand, have made these wireless routers ubiquitous. Implementing mesh

networks using off-the-shelf low cost wireless routers makes these installations affordable

and very appealing. These networks can be easily deployed inside a building, campus, on

a large geographical area, or at a disaster site without requiring every access point to be

physically connected to the Internet.

A great deal of research have been conducted on wireless mesh networks. Channel as-

signment [64] [60] [56], network capacity analysis [52] [63], mobility protocols [61] [74],

1



Chapter 1. Introduction

handoff [62], security, audio and video streaming [73]—all these are frequent topics in mesh

networking conferences and journals. Some of them got extensive attention. However, turn-

ing research ideas and protocols into practical systems is not an easy task. Many times, the

difficulty of running real-world experiments limit the evaluation of wireless systems archi-

tectures and protocols to simulations. We tried to bridge this gap between theory and practice

by taking the challenge of building a real mesh system.

Typically, the systems that we currently see in academic world and in industry are either

experimental testbeds (tailored to evaluate special kind of protocols), they use expensive

hardware for mesh nodes, or have limited (or none) support for mobility. The model we chose

for a mesh network is the following. The network is comprised of mesh routers (mesh nodes),

which are stationary, and mesh clients, which can be mobile. Few of the mesh nodes are

connected to the Internet (Internet gateways), while the rest of the nodes rely on multi-hop

wireless paths to reach Internet connected nodes. In a practical setting, a mesh network

needs to:

i) Provide seamless access to its users.

ii) Maintain users connections and handoff them quickly from one access point to another

when users roam in the coverage area of the mesh.

iii) Be easy to deploy.

iv) Be robust and continue to operate even if part of the network is not available.

v) Be cost-effective, i.e., it must perform well using off-the-shelf low cost wireless routers.

These are the challenges that motivated this work. The SMesh system is the outcome of

several years of research. It went through several stages of development [65] and is available

as open source software [7]. We deployed the system in a 18-nodes testbed throughout three

2



Chapter 1. Introduction 1.1. Highlights & Contributions

buildings at Johns Hopkins University.

1.1 Highlights & Contributions

Off-the-shelf wireless routers provide good performance when functioning as regular access

points, however, their limited CPU capacity is a performance bottleneck when these routers

are part of a mesh infrastructure, as will be shown in Chapter 5. The reason is that a mesh

network requires routing services that are not natively supported by current operating sys-

tems. This lack of support limits the routing mechanisms that can be used in such networks

to user-level implementations. Routing the entire traffic through user space is very conve-

nient but becomes problematic for routers with limited processing power. It is widely known

that forwarding packets through user space results in higher CPU utilization when compared

to kernel space. The overhead can be attributed to two primary factors: memory copies and

context switches. Each routing node must copy the packets from kernel space to user space

in order to determine the next hop. After a routing decision is made, the packet must be

returned to kernel space where it is sent on the network. That is, the user-kernel boundary

must be crossed a minimum of two times per hop.

This thesis presents the architecture of the first high-throughput wireless mesh network

that provides seamless connectivity to mobile clients using off-the-shelf low cost wireless

routers. The design captures the flexibility of user-level based systems without the perfor-

mance degradation that is normally associated with using such systems on resource limited

devices. Specifically, the mesh packet routing is controlled from user space by an overlay

system, while the actual packet forwarding is done at the kernel level. To accomplish this

separation while preserving seamless mobility, we introduce a novel redundant multipath

routing mechanism. Our approach requires minimal additions to the kernel (essentially a

loadable kernel module), preserving portability, a very much desired property of overlay sys-

3



Chapter 1. Introduction 1.1. Highlights & Contributions

tems.

Internet access is the most common usage of wireless mesh networks today. However,

by taking advantage of the mesh infrastructure, mesh networks open the door to applica-

tions beyond the ones typically used in wired and wireless LANs. We explore the realm of

these applications by looking at Push-To-Talk, a half-duplex communication service between

multiple participants. While Push-To-Talk systems usually rely on centralized architectures,

implementing such a system in a distributed manner makes it very appealing for emergency

response workers. Many times, first responders need a rapid way to deploy a network infras-

tructure and an efficient way to communicate. Wireless mesh networks are an excellent way

to establish an instant infrastructure.

This thesis presents the architecture and protocols of the first robust distributed Push-

To-Talk service for wireless mesh networks. Collectively, the mesh nodes provide the illusion

of a single third party call controller (an entity that manages communication between two or

more parties in a telephone call), enabling clients to participate via any reachable mesh node.

Mesh users participate using a SIP-based VoIP phones (an actual device, or a soft-phone). In

addition, we allow cell phone users to join a Push-To-Talk group established in the mesh by

connecting to a SIP gateway.

In our approach, each Push-To-Talk group (also referred to as a PTT session) instanti-

ates its own logical floor control manager that arbitrates the order in which participants can

speak, based on their requests. Any of the mesh nodes in the network can play the control-

ling role for a session. To maintain high availability, each controller node is continuously

monitored by every mesh node with a participating PTT client and is quickly replaced if it

becomes unavailable due to a crash or network partition. The controller relinquishes its role

to another mesh node upon determining that this node is better situated (network-wise) to

control the PTT session, based on the current locations of the clients participating in the
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session.

A lesson learned from building such a Push-To-Talk system is that the distributed system

support provided by the mesh infrastructure plays an important role in building appealing

applications for wireless mesh networks.

1.2 Organization of the Dissertation

This thesis is organized as follows. Chapter 2 presents related work and overviews the cur-

rent efforts in making mesh networks a reality. Chapter 3 specifies the mesh network model

considered in this thesis and the main challenges of building a practical wireless mesh sys-

tem. Chapter 4 overviews the SMesh system, followed by an in-depth description of its rout-

ing architecture (Chapter 5). Finally, Chapter 6 presents the design, implementation and

evaluation of the Push-To-Talk service.
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Chapter 2

Related Work

This chapter presents several existing mesh networking systems and projects, coming both

from academic and industry worlds. Then it overviews a few ways of extending the routing

functionality of the current operating systems. In the end, it includes a brief background on

the Push-To-Talk application.

2.1 Wireless Mesh Networks

MIT Roofnet. This is a experimental multi-hop 802.11b network consisting of 50 nodes

deployed in volunteers’ apartments in Cambridge, MA [30] [25]. The nodes are off-the-shelf

desktop computers equipped with 8 dBi omni-directional antennas mounted outside. The

network cards are used in “Pseudo-IBSS” mode, a modification of the standard ad-hoc mode,

such that it does not suffer from the IBSS partioning problem. Few of the nodes are Inter-

net gateways. The testbed is used for providing Internet access, as a community network,

but also to carry on experiments that evaluate various routing protocols [26] and link-layer

measurements [10].

Microsoft Mesh Connectivity Layer (MCL). This is a loadable Windows driver developed

by Microsoft Research Lab that creates a virtual network adaptor used to form an ad-hoc

network between Windows computers. The routing system is based on the DSR (Dynamic
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Source Routing) protocol, which was extended to support link quality metrics. The system

was deployed in office buildings and a local apartment complex [1].

UCSB MeshNet. This is a 25 nodes experimental testbed deployed on the campus of Uni-

versity of California, Santa Barbara. Each mesh node consists of two Linksys WRT54G wire-

less routers strapped together. One of them is used to run the AODV (Ad-Hoc On-Demand

Distance Vector) routing protocol and the second one for out-of-band management. A gateway

node is a small desktop computer which runs Linux.

Stony Brook iMesh. This is a infrastructure-mode wireless mesh network designed to

provide seamless networking services to mobile users, both for last-mile access and for peer-

to-peer access [74]. The mesh nodes communicate via WDS (Wireless Distribution System)

links established using a neighbor discovery protocol. For routing iMesh uses OLSR (Op-

timized Link State Routing) protocol. The system is evaluated on a testbed of six Soekris

Engineering net4521 processor boards.

Metricom Ricochet. In mid 1990s, Ricochet Networks, owned by Metricom, was one of

the first wireless mesh networks in the United States deployed for generic public [14]. Its

goal was to provide wireless Internet access, emerging as an “always-on” replacement for the

popular, at that time, 28.8 Kbps telephone modems. Users’ traffic was forwarded by repeaters,

running in the 900 Mhz ISM band of the RF spectrum, to a wired access point. The system

was shut down in 2001 when Metricom filed for bankruptcy.

The Champaign-Urbana Community Wireless Project (CUWiN). This is an effort of inde-

pendent developers to build community-owned, not-for-profit mesh networks. CUWiN devel-

oped the Hazy-Sighted Link State (HSLS) routing protocol, a link-state protocol which uses

both proactive and reactive techniques to disseminate the link-state updates. The software,

called CUWiNware, is open source and supports radio chipset such as Intersil Prism, Atheros

and Hermes.

7



Chapter 2. Related Work 2.2. Routing Infrastructure

IEEE 802.11s. In the light of emerging mesh networking systems, IEEE formed a Task

Group whose goal is to develop a standard that allows inter-operability between proprietary

mesh systems. The aspects that are being discussed include path selection, security, and en-

hancements of the MAC (Medium Access Control) protocols. The existence of such a standard

is a good thing and could stimulate a large-scale adoption of mesh systems.

Although is still under development, with many aspects yet to be addressed, IEEE 802.11s

draft has already started to be adopted by industry. One of the most notable examples is the

One Laptop per Child project [3], which supports 802.11s draft on their OLPC XO computer.

Also, since version 2.6.26, there is a reference implementation in the wireless stack of the

Linux kernel.

2.2 Routing Infrastructure

Using inexpensive wireless access points as nodes in a mesh network requires additional

routing services. These services, such as anycast or redundant multipath routing, are neces-

sary for achieving efficient and robust routing in the mesh, in the presence of mobile clients.

Chapter 5 evaluates various methods for routing packets for mobile users in wireless

mesh networks, compares the performance of user-level and kernel-level forwarding, and

introduces a new routing architecture based on a redundant multipath mechanism. To be

supported, this mechanism requires only a few additions to the current Unix-based kernels.

As such, our work relates to previous work on extending the routing capabilities beyond what

the basic functionality offered by existing operating systems, as well as the use of redundant

multipath for mobility.

The routing process involves computing routes to a destination, usually taking into ac-

count the distributed and dynamic nature of the underlying network, and the actual forward-

ing of the packets. Packet routing is commonly performed in user space, allowing different
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protocols to be easily deployable and upgradable (OSPF [58], RIP [43]). Packet forwarding,

on the other hand, typically resides in the kernel to forward packets as fast as possible. Thus,

routing relies on the forwarding capabilities provided by the operating system. This approach

allows operating systems to be both flexible and efficient.

Software routers, such as the Click Modular Router [49] and Router Plugins [36], have

received much attention because they extend routing capabilities allowing the development

of a rich set of network protocols, routing platforms (e.g., XORP - eXtensible Open Router

Platform [42]), or wireless protocols (e.g., DIRAC system [76]). These kind of systems are

powerful and very appealing for networking research. However, they usually require com-

plex architectures (XORP codebase consists of more than half a million lines of C++ code) as

compared to those of more general forwarding solutions provided by regular Unix-like operat-

ing systems. Our focus is the on systems that can run on off-the-shelf wireless routers, where

the least changes of the operating system, the better. Changing the operating system at the

kernel level adds a lot of freedom in routing approaches, but it diminishes the portability of

the system because it needs to be kept up to date with the new kernel releases.

Another approach to extend routing services is to build user-level routers that forward

packets at the application level. RON [19] uses this approach to route packets through an

overlay network, increasing the reliability of the end-to-end path compared to using the un-

derlying direct path. End-System-Multicast [45] and Spines [15] systems also route through

an application router, providing services like multicast (in the overlay) without infrastruc-

ture support. Another interesting system is X-Bone [72], however, its focus is on building

and managing overlay networks over the existing IP infrastructure and not on providing

modularity and flexibility in extending the existing routing services.

Other work has looked into operating systems support for wireless ad-hoc routing proto-

cols. Allard et al. [11] describe a user level router that supports ad-hoc routing protocols.
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Complementary to our work, Chakeres and Belding showed in [29] an in-kernel design and

implementation of the ad-hoc AODV protocol using Netfilter modules, and showed perfor-

mance improvement compared to user-level ad-hoc protocols. Kawadia et al. [47] proposed

a complete architecture to support ad-hoc protocols in-kernel and a generic ad-hoc support

library for user-level programs to control different ad-hoc protocols.

Redundant multipath, or the ability to send packets through multiple paths simultane-

ously, is a necessary component in wireless infrastructures that provide seamless, lossless

and fast handoff (Chapter 5). In these networks, redundant multipath can be achieved by

multicasting packets to the access points handling the client during handoff. Several handoff

protocols that use multicast and/or signaling to control path redundancy have been proposed.

Seshan, Balakrishnan, and Katz [69] showed in the Daedalus project how low data loss can

be achieved during handoff on cellular wireless networks by using multicast to nearby base

stations. Helmy, Jaseemuddin, and Bhaskara [44] also show how fast handoff can be achieved

in wireless networks by requiring mobile clients to explicitly join a multicast group to which

packets are multicast-tunneled through the infrastructure.

Some routing protocols are specific and should be handled by application level routers.

Redundant multipath is general in context and can assist a number of routing protocols. Mo-

bility is only one of several uses of redundant multipath. Other applications will be discussed

in Section 5.5.

2.3 Applications for Wireless Mesh Networks

2.3.1 Push-To-Talk

PTT allows half-duplex communication between multiple participants which request to speak

by pressing a button. On a PTT group only one user is granted permission to speak at a time,
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while all the other users listen. DaSilva et al. [34] provide a good survey about PTT technolo-

gies. Floor control (floor arbitration), an integral part of PTT, has been studied extensively

over the years [37, 50, 54]. Some approaches to decentralized floor control are presented

in [24]. A basic level of fault tolerance is built into some of these protocols to enable crash

recovery.

PTT is commonly used by law enforcement and public safety communities to efficiently

communicate between multiple users. Public safety agencies usually rely on trunked net-

works, known as Land Mobile Radio (LMR) systems, for voice and data communication [70].

The two major LMR systems are Project-25 [6], which is deployed over North America, and

Terrestrial Trunked Radio (TETRA), which is deployed over Europe. Stringent guidelines for

PTT, such as 500 ms one-way delay for voice packets to all listeners of a group, ensure that

the system operates with acceptable performance.

Cell phone users also benefit from PTT type services that are now offered by telecommu-

nication companies. A common standard, known as Push-To-Talk over Cellular (PoC) [12],

allows PTT from different cellular network carriers to inter-operate with one another. PoC

uses VoIP protocols (SIP, RTP, etc) between clients and the PoC server. A floor control mech-

anism, referred to as Talk Burst Control Protocol, arbitrates communication in each group.

The performance requirements of PoC are less demanding than those in LMR systems. For

example, the standard specifies that end-to-end delay should typically be no more than 1.6

seconds and that the turnaround time from the time a user releases the floor until it hears

another user speak should be no longer than 4 seconds. An initial evaluation on a GPRS

cellular network is shown in [23].

Balachandran et al. show a unifying system for bridging LMR and commercial wireless

access technologies [22]. Both LMR and commercial PTT solutions (PoC) rely on a central

point of arbitration and send a separate unicast voice stream to each member of the PTT
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group. On these networks, the inherent inefficiency of using multiple unicast streams is not

that costly over the wired backbone medium. Such a design would yield a multi-hop wireless

mesh network useless with just a few users, and therefore is not a good fit in our case.

A decentralized approach with a full-mesh conferencing model is presented by Lennox

and Schulzrinne in [53]. Florian Maurer [55] shows a decentralized scheme for PTT. Both ap-

proaches rely on all-to-all communication of control and voice packets between users. While

adequate for small conferences or PTT sessions, this approach does not scale well and does

not provide the robustness necessary to support node crashes and network partitions and

merges that may occur in a wireless environment.

Complementary to our work, some research has looked at optimizing routes for PTT data

traffic in wireless mesh networks. Kado et al. [46] propose a centralized tree-based routing

protocol that enables a root node to compute and arbitrate routes in the network. While we

also optimize routes by using multicast dissemination trees from each mesh node to each PTT

group in the system, our focus is on the fault tolerance and availability aspects for providing

a highly robust PTT system.
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Chapter 3

Practical Wireless Mesh Networks

This chapter describes the model used when we refer to a wireless mesh network in this

thesis. Different models are adopted in wireless research. We consider what we think is the

most simple and realistic way to look at a mesh network. The second part of the chapter

outlines the challenges one faces in designing and building such a wireless mesh system in

practice.

3.1 Model

802.11 single radio. While part of the research covered by this thesis is generic and it can

be applied to other kind of networks, we assume a mesh node is equipped with an 802.11 b/g

radio and omnidirectional antennas. Unless otherwise noted, each mesh node has a single

radio.

Some nodes are Internet connected. In a typical wireless LAN each access point is wired

either directly to the Internet (for very small networks) or to a WLAN hardware controller.

This makes such installations costly and difficult to extend in buildings and open places

where wired infrastructure in not readily available. Wireless mesh networks changes this

paradigm: only a small number of mesh nodes are connected to the Internet, sharing their

connection over the wireless links with the rest of the mesh nodes. We refer to the Internet
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connected nodes as Internet gateways.

Multi-hop networks. There is no single-hop connectivity between all the mesh nodes. As only

some of mesh nodes are wired, traffic from one non-Internet connected node is forwarded

over multiple hops to reach an Internet gateway. If we consider user-to-user communication,

a multi-hop path is essentially necessary between any two nodes in the mesh.

Multi-homed networks. A wireless mesh network can span a large geographical area. This

makes Internet gateways likely to reside in different network domains, effectively creating a

multi-homed wireless mesh network.

Mesh nodes are stationary. This is one of the main characteristics that sets mesh networks

apart from ad-hoc networks. While nodes in the ad-hoc networks are in general mobile, in

mesh networks, even though topology can change over time (nodes are added or removed),

they are stationary.

Mesh users are mobile. In a mesh network users are not part of the infrastructure. They

can connect and access the network from any location in the mesh. Once connected they can

roam in the network, moving from the coverage area of an access point to another. While

typically most of user traffic is with the Internet, peer-to-peer communication should also be

possible.

3.2 Challenges

Seamless access for mesh users. In a practical setting, a mesh network cannot assume

special software installed on user’s side. Neither can assume network driver modifications.

Any unmodified 802.11 device (laptop, PDA, smartphone, etc.) needs to be able to connect

and access the network transparently. In contrast, mesh nodes do not have such a challenge,

i.e., they can run any software as long as transparency with the clients is maintained.

Fast handoff for users that roam within the mesh. Mesh users must be able to freely roam
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within the area covered by the wireless mesh nodes. Their existing connections must be

maintained at all time while roaming, and users should not perceive any interruption in their

traffic. This is particularly important for interactive VoIP applications. This requirement

may seem obvious, as it is what a user expects to have in a cell phone network, however,

802.11 standard does not specify a mechanism for roaming. Cell networks achieve a smooth

handoff using signaling in their low-level protocols and sharing information between the

towers.

Rapid deployment. The ideal case for deploying a wireless network is to perform a site

survey and to carefully place access points in the most appropriate locations. This is also

what usually happens in planned academic testbeds. However, in a practical setting, mesh

networks are unplanned, nodes are placed in convenient places for the people who host the

routers, and not where the connectivity is the best. This poses a challenge on the mesh

network. It needs to dynamically self-organize, and establish mesh connectivity between all

the nodes in the mesh network. In addition, self-configuration of the nodes is important, as

it lowers network administration time and it makes really easy new nodes deployment.

Robustness. Due to the inherent instability of the wireless environment, network’s connec-

tivity changes over time. In a well-established network this may rarely happen, however, a

mesh network, especially one rapidly deployed on an emergency site, will often experience

such problems. Topology changes, like network partitions and merges, should not impede the

overall functionality of the network. If an Internet gateway crashes, no user should be left

out of service. Users traffic must be redirected to another Internet gateway.

Low cost. A mesh network is attractive in practice not only if it is easy to operate but also

if it is cost-effective. Using a full-fledged computer as a mesh node makes things easier but

also increases the deployment’s cost. Our goal is to build a mesh network using off-the-shelf

wireless routers. While these low cost routers provide good performance when functioning
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as regular access points, their limited CPU capacity can be a bottleneck when they are part

of a mesh infrastructure. This requires routing services that are not natively supported by

current operating systems, limiting the routing mechanisms that can be used to user-level

implementations, which can greatly degrade performance.

Security. Wireless networks’ security, and mesh networks in particular, is challenging for

multiple reasons. First, the way typically a WLAN provides authentication, authorization

and accounting for its users is using a centralized server, such as RADIUS1. This requires

planning, it does not scale well, and it is not suitable for mesh networks that are rapidly

established in an emergency situation. Secondly, mesh nodes cannot be physically secured,

and they can be compromised. In a multi-hop network this is very problematic as it may

disrupt the functionality of the entire network. Fortunately, a great deal of research has been

done on secure routing protocols. However, using such protocols in practice, and in general,

securing a mesh network in the proper way, is a challenging and interesting problem by itself.

For this reason, in this thesis we adopt an open access model, which is suitable and commonly

used in community wireless networks.

Applications support. Internet access is the most common usage of wireless mesh networks

today. However, by taking advantage of the mesh infrastructure, mesh networks enables

applications beyond the ones typically used in wired and wireless LANs, in areas such as

emergency response, remote monitoring and control, security surveillance. As an example

of such applications, Chapter 6 presents Push-To-Talk, a half-duplex communication service

between multiple participants. Implemented in a mesh network, this system is beneficial as

a robust communication service for first responders.

1Remote Authentication Dial-in User Service.
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Chapter 4

The SMesh Wireless Mesh Network

The SMesh system is the outcome of several years of research. It went through several stages

of development. This chapter provides a brief overview of the system, setting the stage for

Chapter 5, which describes in detail system’s routing architecture. An in-depth view of the

mobility protocols in SMesh is provided by [18].

4.1 System Overview

The entire handoff and routing logic in SMesh is provided solely by the access points, and

therefore connectivity is attainable for any 802.11 mobile device that supports DHCP, regard-

less of its vendor or architecture. In order to achieve this complete transparency to mobile

clients, our approach uses only standard MAC and IP protocols. The entire mesh network is

seen by the mobile clients as a single, omnipresent access point, giving the mobile clients the

illusion that they are stationary.

4.2 Architecture

The core of the SMesh system consists of two components (Figure 4.1): the Interface with

Mobile Client and the Communication Infrastructure. Together, these components cover the

routing logic, mobility protocols, and client management sub-system. There is also the Push-
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Figure 4.1: High-level view of the SMesh architecture.

To-Talk sub-system, which provides functionality for a half-duplex communication service

between multiple mesh users.

4.2.1 Communication Infrastructure

To allow any node to directly communicate with all the nodes within its range, SMesh uses

802.11 in IBSS mode (ad-hoc). Communication between the mesh nodes is necessary in order

to forward packets over multiple hops, to an Internet gateway.

Multi-hop communication in SMesh is achieved using the Spines messaging system [15]

[8]. This is a convenient tool for unicast, multicast, and anycast communication in an overlay

network. In SMesh we instantiate a Spines daemon in each node in the network and create

an overlay topology that maps to the mesh topology. The Spines daemon discovers nearby

nodes using periodic hello messages, and creates links between nodes when connectivity in

both directions is above a certain threshold. Virtual links are created between the nodes

connected on the wired network.

Spines uses a link-state protocol to disseminate link state updates in the entire network
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(flooding). To minimize the medium usage, these updates are incremental and are sent over

reliable links to a node’s direct neighbors. As the mesh nodes are stationary and mesh users,

which can be highly mobile, are not part of the mesh topology, most of time the protocol will

exchange very little link-state information.

Of particular interest to our system is Spines ability to provide overlay multicast and

anycast communication (multicast and anycast IP addresses are defined in the Spines vir-

tual address space, not in the actual IP address space of the network). We leverage this for

building mobility protocols that provide a seamless handoff for mobiles clients. Traffic on

multicast groups is routed according to multicast trees that are computed in a way similar

to MOSPF [57]. Whenever a node joins or leaves a multicast group the local Spines daemon

updates the rest of the network with a reliable flood. In experiments ran on regular desktop

machines Spines could handle several hundred thousand group members, being limited only

by the available memory to maintain its data structures. [33].

Topology formation. SMesh forms its topology in the following way. Each access point

periodically broadcasts hello messages, allowing the nodes in its coverage area to establish

direct links. All the nodes that are Internet gateways are connected with virtual links over

the wired infrastructure in a fully connected graph. This is achieved using an overlay multi-

cast group, called Internet Gateway Multicast Group (IGMG). An Internet gateway joins this

group and broadcasts its IP address, allowing other Internet gateways to connect.

Routing metric. SMesh topology is hybrid, including both wired and wireless links. Each

link has an actual cost (which can be latency for wired links or ETX [32] for wireless links)

that is adjusted in order to give preference to wired links when computing the cost of a path.

We do this in order to reduce the usage of wireless medium, and also because wired links are

much more reliable and have a higher bandwidth than wireless links. Therefore, even within

the mesh, packets between two source and destination nodes might be routed via hybrid
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paths, by short-cutting long wireless paths with Internet gateways. [18] explains in detail

how this metric is computed.

4.2.2 Interface with Mobile Client

In a practical mesh network a user must connect and access it without any special software

or network driver installed on the device. This constrain, combined with our aim of providing

a seamless and fast handoff between access points, led us to the following approach of inter-

facing with the client. To begin with, we rely on standard MAC and IP protocols, available

on any user’s networking stack. Then, SMesh provides the illusion of a single distributed ac-

cess point to mobile clients. This is achieved by providing connectivity information to clients

through DHCP [38] and by always giving the same information (IP address, netmask, and

default gateway) to the mobile client.

When a new client is requesting connection information, a special DHCP server running

on the mesh nodes provides an IP address by computing a hash function on the user’s device

hardware address. This is private a IP in the 10.0.0.0/8 address space (mesh nodes’ IP

address are assigned in the same address space). In addition, mesh nodes advertise a virtual

gateway IP address to the client in their DHCP offers and acknowledgments. The mobile

client sets its default gateway to this virtual IP address regardless of which access point he

is connected to. There is no node in SMesh with this IP address. Instead, SMesh makes

the client “believe” that this address is reachable by associating it to a mesh node hardware

address. This association between the virtual IP address and a hardware address is done

via gratuitous ARP packets sent by the mesh nodes. We detail this in [16]. This way, mobile

clients get the illusion of being connected to a single access point that follows them as they

move.
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4.3 Client Management

In SMesh, two multicast groups are associated with each mobile client.

Client Control Group. An access point in the vicinity of a client joins this multicast group

to coordinate with other mesh nodes in the client’s vicinity. This coordination is necessary for

sharing information required by the handoff protocols. Specifically, each node tracks its own

connection with the client, computes a link metric (using ARP packets sent every 4 seconds

and also packet RSSI1 and retransmit flag, if frame’s full 802.11 header is available), and

advertises the information periodically on this multicast group.

Client Data Group. This multicast group is used to deliver actual data packets to the

client. A mesh node joins the client Data Group if it believes it has the best connectivity with

the client based on the link quality metrics it receives from other nodes.

4.4 Mobility Support

The Client Control Group and Client Data Group provide the basic mechanisms for achieving

a fast intra-domain handoff. In contrast to the roaming mechanisms employed by 802.11

devices2, in SMesh the handoff is controlled from the mesh infrastructure and it relies on

sending data through multiple paths to the mobile client while it transitions from one access

point to another. The access points continuously monitor the connectivity quality of any client

in their vicinity and efficiently share this information with other access points in the vicinity

of that client to coordinate which of them should serve the client. During a handoff, multiple

access points may believe they have the best connectivity with the mobile client, and data

packets to the client will be duplicated by the system in the client’s vicinity. Using multiple

access points during the handoff minimizes the packet loss, allowing real-time applications
1Received Signal Strength Indicator.
2IEEE 802.11 standard does not specify a roaming mechanism, which led to various (and proprietary) techniques

being employed by the manufactures.
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such as VoIP. During stable connectivity times the mobile clients are handled by a single

access point. Our protocol guarantees that, at all times, there is at least one member in the

Data Group of each client, such that the client will be served by at least one mesh node [18].

A fast inter-domain handoff is achieved by using multicast groups through the wired net-

work to coordinate decisions and seamlessly transfer connections between Internet gateways

as mobile clients move between access points. The idea is to make new connections always

use the closest Internet gateway at the time of their creation, while existing connections are

forwarded through the wired infrastructure to the Internet gateway where they were orig-

inally initiated. In this way the data is routed optimally to the closest Internet gateway,

without breaking existing connections (as clients are in a private address space, a NAT op-

eration is performed at each Internet gateway). We treat UDP and TCP traffic separately.

As opposed to the intra-domain handoff protocol, the coordination now is between the In-

ternet connected nodes, and is performed over the wired links. [17] explains in detail how

is the routing agreement between Internet gateways reached and how are the connections

transferred to the appropriate nodes.

While duplicating packets and tightly coordinating access points in a client’s vicinity may

seem to incur high overhead, we quantified the overhead and demonstrated it is negligible

compared to data traffic [18].

4.5 SMesh Testbed

Because of the difficulty of conducting experiments on real-world wireless networks, very of-

ten wireless research relies on simulations to evaluate various protocols. While simulations

play a very important role in testing network protocols, most of these simulations are based

on simplifying assumptions. Kotz et al. summarize in [51] the most important “mistaken ax-

ioms” that make wireless simulations unrealistic: “The world is flat.”, “A radio’s transmission
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Figure 4.2: View of the SMesh testbed, with the approximative locations of the nodes. A
node’s color indicates the floor on which the node is located. Three of the nodes are Internet
gateways.

area is circular.”, “All radios have equal range.”, “If I can hear you, you can hear me (symme-

try).”, “If I can hear you at all, I can hear you perfectly.”, “Signal strength is a simple function

of distance”. While efforts have been made to build more realistic simulation tools (e.g., ns-2,

OpNet), real radios and wireless environments are very complex and remain hard to model.

From the very beginning we aimed at building a real system, and understand the practical

problems that such a system experiences. This resulted in a 18-node testbed deployed over

three buildings at Johns Hopkins University, Homewood campus.

In terms of hardware we used off-the-shelf Linksys WRT54G wireless routers. They are

equipped with 802.11b/g Broadcom BCM947XX radios, omnidirectional antennas, 16 MB

RAM, 4 MB flash memory, 200 Mhz CPU speed. Our choice of the router was motivated

by its low cost and because it provides a simple Linux environment. We re-flashed each

router with the open source OpenWrt firmware [4], and used a MIPS cross-compiler to build

our system, written in C.

Nodes’ locations slightly changed over the years. Figure 4.2 shows a map with their ap-

proximative locations, in the most current configuration. Three of these nodes are Internet
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gateways.

Our efforts of deploying and maintaining a real-world testbed payed off, as we gained a

lot of insight on the problems that wireless mesh networks encounter in practice.
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Chapter 5

Routing Architecture

Low cost wireless routers are revolutionizing the way we connect to the Internet, becoming

very popular both because of the easiness to deploy, and because of the freedom in the abil-

ity to connect from everywhere they provide. These routers are a revolution from another,

less known perspective: They are very cheap, albeit quite limited, Linux boxes (around $50

a piece). These attributes make them very attractive and convenient for developers to imple-

ment their own applications.

In a mesh network, as opposed to a network of independent access points, a wireless

router must participate in a hybrid wireless-wired, multi-hop, routing mechanism to allow

Internet access from any point in the mesh. In addition, special mechanisms are required

to allow users to seamlessly roam in the network. These kind of routing services must be

built using the native routing capabilities offered by router’s existing operating systems. To

extend routing capabilities without requiring special operating system support, developers

often resort to user-level overlay routing systems, such as the ones overviewed in Chapter 2.

The limitation of resources (in terms of processing power) of a mesh node that uses such user-

level systems impacts the performance, in terms of throughput, of the routing mechanisms

employed in the mesh.

SMesh routing architecture captures the flexibility of user-level overlay systems without
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the performance degradation associated with using such systems on resource-constraint de-

vices. This chapter first describes our high-throughput routing architecture, followed by the

key elements that facilitated the implementation of this architecture in Linux, and it ends

with the evaluation of the system using 17 nodes from our testbed.

5.1 Design

Redundant multipath routing (i.e., the ability to simultaneously send the same packet over

multiple routes) is an essential service for increasing the reliability of wireless mesh net-

works. As mobile clients (laptops, smartphones) roam throughout the area covered by the

mesh network, their access point must change to avoid loss of connectivity. Redundant mul-

tipath can help achieve uninterrupted connectivity during handoff by:

i) Sending packets through multiple access points to the mobile client, to deal with unex-

pected client movements, until the access point with the best connectivity is chosen.

ii) Avoiding loss while route changes take place in the wireless mesh.

Related work has looked into these benefits in wireless environments ( [69], [44], [16]).

Other applications can also benefit from redundant multipath routing (Section 5.5). However,

redundant multipath is not a routing service provided by current operating systems. There

are several different approaches we could take in designing our routing architecture, without

changing the operating system’s networking stack:

(1) Use unicast forwarding to route packets to one of the access points handling the mobile

client during handoff. This approach benefits from kernel-routing performance, but loses

messages during handoff due to the usage of a single path.

(2) Use IP multicast to achieve redundancy by reaching several destinations with one trans-

mission. It efficiently transmits packets but suffers from lower reliability due to lack of
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Figure 5.1: SMesh routing architecture.

802.11 link-layer retransmissions.

(3) Use IP multicast with unicast tunnels on each hop to take advantage of wireless link-

layer retransmission. However, this approach incurs additional space and processing

overhead on each node.

(4) Use user-level overlay routing to provide redundant multipath by routing packets through

user space, at the expense of higher CPU utilization.

Each of these alternatives is described in Section 5.4 and a discussion of the tradeoffs

between them is included in Section 5.4.1.

We adopted a hybrid design, where packet routing is managed in user space but packet

forwarding is efficiently performed at the kernel level. Figure 5.1 gives a high level view of

our routing architecture. There are two main types of communication in mesh networks: be-

tween the client and the Internet, and between clients connected to the mesh (peer-to-peer).
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We direct the packets destined to the Internet to the closest Internet gateway. This is accom-

plished by routing packets using an anycast group in which all the Internet gateways join.

The membership of this group is conveniently maintained in user-space and is translated

into a unicast routing table at the kernel level.

On the other hand, traffic directed to the mobile client requires multipath communication,

which cannot be translated directly into a unicast routing table in the kernel.

Entry point based routing. Traffic to a client may originate from different source nodes in

the mesh network. This is because, first, in any non-trivial network there will be more than

one Internet gateway (a multi-homed wireless mesh network [17]), any of which may need to

forward packets to the client. And second, since clients may communicate with other clients

in the mesh network, virtually every access point could possibly be a source of packets in the

mesh. To provide optimal redundant multipath routing in these networks, each node must

consider the mesh source, in addition to the destination of each packet1 in order to determine

the appropriate forwarding rule for that packet. We refer to this node as the packet’s entry

point.

This becomes more evident if we analyze the scenario from Figure 5.2. The mobile client

is experiencing a handoff and the traffic from Internet must be directed to both nodes (access

points) 6 and 7. We show how packets are routed from two different sources: node 1 and

node 2. Note that these mesh nodes are not the actual sources of the packets. Rather, they

are the entry points of the packets in the mesh network, either from Internet, or from clients

directly connected to these nodes, in case of peer-to-peer communication. Router 5 must

forward the packets differently depending on the entry point (either to node 6, if the source

is node 1 or to both node 6 and 7, if the source is node 2).
1Traditional routing is destination based, that is, the destination address will determine which outgoing link is

used by a router when forwarding that packet.
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1 2

6

5

3

4

7

Node 5 routing rules

Source Destination Next−Hop(s)

Node 1

Node 2

Client 1

...

Client 1

....

6

...

6, 7

...

Client 1

Figure 5.2: The routes to a mobile client when redundant multipath routing is used for mobil-
ity support. Client 1 is experiencing a handoff between node 6 and 7, thus, the traffic towards
him must be forwarded to both nodes. Router 5 forwards packets differently depending on
the entry point.

Therefore, during the routing process, a mesh node must decide what are the next hops

for a packet based on the mesh entry point as well as the destination address of the packet.

However, the entry point cannot be determined by just looking at the packet destined to the

client (the source address in the IP header is not the address of the mesh entry point, but

the actual address of the sender, which can be another mesh client or an Internet address).

One solution to keep track of the entry point is to tunnel each packet from the entry point in

the mesh to the mobile client. However, to maintain client access transparency, we need to

instruct the kernel to remove the tunnel in the last hop, right before sending the packet to

the client. That requires new kernel functionality. Otherwise, the mobile client may discard

these packets. Another, less obvious approach, is to encode the mesh entry point in some of

the existing space in the IP header of the packet. Specifically, we encode the IP address of the

entry point into the identification field from the packet’s IP header (also referred to as IPID).

This is a 16-bit field used to identify the fragments of the IP datagrams. Together with the

offset field, it is used by the IP layer to reassemble the fragmented datagrams. We discuss
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the implications of using this field, in the presence of fragmentation, in Section 5.3.2.

Multiple routing tables. For a given multicast group associated with a client (referred to

as Client’s Data Group in Chapter 4), there is one multicast tree for each possible entry point

in the network (Figure 5.2). That is, in the most general case, we need to maintain N multi-

cast routing trees for each client, where N is the number of mesh nodes in the network. This

led as to the following approach. We define a routing table in the kernel for each access point

in the mesh and include in each table an entry for each existing multicast group (Figure 5.1).

When a packet comes in, we first choose what routing table to use, and then we forward it

according to the entry that has the client address as the destination.

For the example presented in the Figure 5.2, router 5 will use forwarding table 1 if the

packets come from entry 1 and table 2 when the packets come from entry 2.

In addition to these routing tables the routing daemon space needs to maintain one ad-

ditional routing table that corresponds to the anycast group used to route traffic from the

clients to the closest Internet gateway.

Multiple next-hops. The last key element of our design refers to the routing rules that

populate the aforementioned routing tables. These rules differ from the ones we see in tra-

ditional unicast routing. Instead of a single next-hop, a rule may have multiple next-hops.

This is because our rules reflect a routing tree and not a single path.

In a nutshell, our routing architecture can be summarized as follows:

i) Maintain multiple routing tables, one for each node in the mesh network (or at least for

each Internet gateways is peer-to-peer communication is not considered).

ii) In each table add a route entry for each possible destination, i.e., for each client. This

entry may include multiple next-hops, depending on the multicast trees determined by

the routing daemon.

30



Chapter 5. Routing Architecture 5.2. Implementation

iii) Encode the entry point in each packet’s IP header when the packet is first seen in the

mesh network. Every node along the path uses this information to select what routing

table to use in routing that packet.

iv) Finally, forward the packet at the kernel level, according to the entry that has the client

address as the destination in the previously selected routing table.

5.2 Implementation

We implemented this routing architecture in Linux, using Netfilter [2] modules, and deployed

it on Linksys WRT54G routers running the open source OpenWrt firmware [4]. We present

here the main elements that enabled this implementation in a Linux-based system. While

the architecture is generic in nature, the implementation is operating system specific, thus,

other operating systems may require slightly different mechanisms.

5.2.1 Packet Marking

As we have seen, as a packet travels along the path to the mobile client, it is being routed

based on the entry point in the mesh, which is encoded in packet’s IP header. Specifically, at

the entry node in the mesh, if the destination of a packet is a client, then the identification

field (IPID) is set to be the last byte from the IP address of the corresponding mesh entry

node.

To alter the IPID field of the IP header, we wrote a Netfilter target module (ipt IPID).

However, only the entry point of the mesh network modifies this field—intermediate routers

must leave it unchanged. To make a distinction between the original sender and the rest of

the routers along the path we use a bit from the Differentiated Services Code Point (DSCP)

field to indicate if the IPID field was already overwritten at the entry point, or not. Specifi-
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cally, we use the second bit from the DSCP field. If the bit is unset then a router will update

both IPID and DSCP fields, otherwise it will not.

Going into more details, altering the packet header is done with the following iptables

rule:

# iptables -A PREROUTING -t mangle
-d $MESH˙NET/8
-m tos --tos 0
-j IPID --set-ipid $MESH“˙NODE“˙ID

(The rule can be translated to: “If the destination address of the packet is inside the mesh

network mask (i.e., a client), and the TOS (the old name for DSCP field) is not set, then alter

the IPID field to be the current node’s identifier”.)

At the kernel level, the selection itself of which routing table to use, given the IP encoded

in IPID, is done using fwmark, a tag carried by the kernel as the packet travels through the

kernel networking stack. This tag is exposed by the packet filtering mechanism from the

Linux kernel. We set this tag to reflect the IPID value from the IP header. The following

iptables rule tags a packet whose IPID is 35 with fwmark 35.

# iptables -A PREROUTING -t mangle
-m u32 --u32 ”2&0xFFFF=35”
-j MARK --set-mark 35

(u32 is an existing Netfilter module that facilitates checking any bytes from the packet

against certain values. In translation: “Grab 4 bytes starting with byte 2, apply a mask of

0xFFFF and check the result against value 35. If it matches, set fwmark to value 35”.)

Note that these Netfilter rules that set fwmark are added/deleted at run-time since all

possible entry-points are not known in advance.
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5.2.2 Policy Routing

One of the key elements of our design is the use of multiple tables in the packet forwarding

process. Fortunately, since version 2.2, the Linux kernel permits defining multiple routing

tables and has support for policy routing (a.k.a. rule based routing), which allows selecting

different routing tables based on criteria other than the packet destination address. One of

these criteria is the tag carried by the packet in the kernel, fwmark.

The following command defines a rule that routes all packets marked with value 35 (i.e.,

packets with IPID set to 35) via routing table number 35:

# ip rule add fwmark 35 table 35

As before, these rules are added at run-time, as all possible entry points are not known in

advance.

5.2.3 MULTIHOP Kernel Module

Normally, a routing table specifies a single forwarding action to be taken in a deterministic

manner for a given packet. The CONFIG IP ROUTE MULTIPATH option in the kernel configu-

ration permits specifying several alternative paths to a destination. If no weight if given, the

kernel considers all these paths to be of equal cost and chooses in a non-deterministic way

which one to use when a packet arrives. Instead, we would like to send the packet to multiple

nodes simultaneously, if the multicast tree indicates that.

We wrote a Netfilter target module (ipt MULTIHOP), which sends a copy of the packet to

each next-hop found in the routing rule for a given destination. Consider the following rule

to the mobile client:

# ip route add 10.233.59.169/32 table 35
nexthop via 10.0.11.32 dev eth1
nexthop via 10.0.11.33 dev eth1
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(Which can be read as: “Using routing table number 35, set mesh nodes 10.0.11.32 and

10.0.11.33 as the next-hops for the packets whose final destination is client 10.233.59.169.”)

In this case the MULTIHOP module duplicates the packet and sends it to the next-hops not

chosen by the kernel in the routing process. That is, the native kernel routing process sends

the packet to one of the next-hops, while the MULTIHOP sends to all additional ones. The

general steps performed by the module for each next-hop found in the routing table, are the

following:

(1) If the next-hop is the one chosen by the kernel, then stop and go to the next next-hop.

(2) Create a copy of the packet.

(3) Search for the next-hop IP address in the neighbor cache maintained by the Address

Resolution Protocol (ARP) to get the hardware address (MAC) of the next-hop.

(4) If found: copy to the packet buffer and send the packet.

(5) If not found: send an ARP request and queue the packet in the device queue, unless

the next-hop is a tunnel, in which case the packet is sent directly using the device send

function.

In order to use the module, one needs to recompile the kernel to export a function required

to access the routing table (fib lookup). Other than this, no changes are required in the

kernel. The module is available for download at http://smesh.org.

5.2.4 Path of a Packet Through the Linux Kernel

Figure 5.3 shows the path of a packet through the Linux kernel and the places where it in-

teracts with our scheme. Immediately after the packet enters the network, the entry-point

of the mesh must change the IPID field and set the DSCP bit. Both the entry-point and
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Entry point: set IPID

                     set TOS

All routers : set fwmark
fwmark MULTIHOP
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NF_IP_LOCAL_IN NF_IP_LOCAL_OUT

NF_IP_POST_ROUTINGNF_IP_FORWARDNF_IP_PRE_ROUTING

Figure 5.3: The actions performed on a packet while it travels through the Linux networking
stack. The entry point alters the IPID and TOS fields. The rest of the routers tag the packet
using the encoded entry point and use this tag to select the appropriate routing table. Be-
fore leaving the network interface, the packet is processed by the MULTIHOP module, which
creates additional copies if necessary.

any intermediate router set the fwmark when processing a packet for routing We use the

NF IP PRE ROUTING Netfilter hook to do these modifications. The packet is then passed

back to the kernel networking stack, where it goes into the routing mechanism in which

the fwmark is used to choose the appropriate routing table. After the routing decision is

taken, but before leaving the interface, the packet reaches the MULTIHOP module. Additional

copies of the packet are created if there is more than one next-hop in the route. The mod-

ule will simply exit if there is only one next-hop. We register the MULTIHOP module at the

NF IP POST ROUTING Netfilter hook, such that there will be no routing decisions afterwards.

Note that if the destination of the packet is in the network’s private space address2 (i.e., a

mobile client), the packet is not routed as above; instead it follows the default route from the

main routing table, as described in Section 5.1.
2We consider here the packet as it is after the network address translation (NAT) is performed by the Internet

gateway. A P2P packet does not need address translation, as the destination is inside the same network.
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5.3 Other Considerations

5.3.1 Multiple Gateways

In large wireless multi-hop networks, having multiple Internet connected nodes is a neces-

sity. To minimize the usage of wireless links but also to reduce latency and increase routing

stability, the wired links are utilized whenever possible. We describe here how the existence

of multiple Internet gateways impacts the peer-to-peer communication between mesh clients

in our system.

Figure 5.4 shows the path of a packet from client 10.A.B.C to client 10.X.Y.Z (private

addresses in our mesh network). The packet is generated by the first client, having an IPID

assigned by its own networking stack, and the TOS bit unset. As soon as the packet acquired

by the access point, the IPID is changed to the value of the router ID and the TOS bit set. This

will prevent any intermediate router to alter these values. Eventually, the packet arrives at

Internet Gateway 1. In order to maintain the destination address of the IP header, we set

up an IP tunnel between gateways, so that an additional IP header is used for the packet

to be transported to Gateway 2. When the packet arrives at Internet Gateway 2, the tunnel

header is removed and the packet continues its trip to the final destination (as specified

in the original IP header), using the multicast tree indicated by its IPID. Therefore, the

modifications done on the IP header only affects packets inside the mesh, without interfering

with the Internet traffic.

The additional overhead caused by IP tunneling only affects the wired part of the network,

which is likely to have higher capacity than the wireless mesh.
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Figure 5.4: Changes in the header of a packet that travels between two clients in the
mesh, when two Internet gateways are used to shortcut a wireless path. GW=Gateway,
IR=Intermediate Router, AP=Access Point.

5.3.2 Fragmentation

Even if very convenient, modifying the IPID of the packets in order to encode the entry point

in the network interferes with fragmented traffic. However, current studies show that IP

packet fragmentation is not commonly used today, and it amounts to 1% to 2% [27] of the

overall traffic. While advocating for or against the use of fragmentation [48] [31] is outside the

scope of this work, we choose to ignore the mesh entry-point when the packet is fragmented,

and forward it through a single path.

Other solutions, that allows both fragmentation and the of mesh-entry points, are possi-

ble. For example, a practical workaround is the following. Instead of using all 16 bits from

the IP identification field, we could utilize only the most significant 8 bits (or less) to encode

the entry point. The remaining bits will continue to represent the fragment identifier of the

packet, specifically the 8 least significant bits. This will allow the correct reassembly of the

packets, since the same operation is performed on all the fragments of the packet. On the

down side, the identifier wraps around every 256 packets instead of the regular 65, 536. How-
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ever, considering the small amount of fragmented traffic, we believe this is a practical way to

support it alongside our system.

5.3.3 Limitations

A restriction one needs to be aware of is that the Linux kernel currently allows specifying

up to 255 routing tables when policy routing is used. This limits the number of mesh entry

points to 254 (one routing table is reserved for driving the traffic from the clients towards the

Internet). In large-scale mesh networks, a practical approach to overcome this limitation is to

maintain routing tables only for the Internet connected mesh nodes. This makes peer-to-peer

communication between two clients sub-optimal, because the clients will communicate with

each other via their closest Internet gateways instead of a multi-hop wireless path. On the

up side, if the clients are not very close to each other, then the optimal path is actually via

the Internet gateways.

The maximum number of clients supported by our architecture is limited only by the

internal memory of the routers. We maintain one entry in each routing table per client,

which requires a total of 32 x N bytes in kernel memory, where N is the number of nodes

in the mesh network. As an example, the Linksys WRT54G wireless router has 16 MB of

RAM, and assuming only 5 MB is available to be used for the routing, we could theoretically

support at least 9,000 mobile clients. In reality, this number is much greater because an

entry is added in a routing table only if the router is on the path towards that client. As

the size of the mesh network increases, more routing tables need to be maintained; however,

as the clients are likely to be spread evenly throughout the network, the number of entries

maintained by each router does not significantly grow.
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Figure 5.5: The routes to a mobile client when unicast forwarding is used. Client 1 is ex-
periencing a handoff between node 6 and 7, however, packets are delivered only to one of
them.

5.4 Alternative Approaches Using Current Operating
System Support

Kernel-level unicast routing. Due to the limitation of using only one outgoing link, unicast

forwarding cannot, in fact, route through multiple redundant paths. That is, with unicast

forwarding we can forward packets only to one of the access points serving the mobile client.

Figure 5.5 examines the same scenario as in Figure 5.2 and shows the unicast routes that

could be used to forward the packets flowing from node 1 and node 2 to the mobile client. For

both streams sonly one of the access points nearby the client (6 or 7) will receive the packets,

and not both, as intended. In addition, router 5 always forwards the packets to router 6,

regardless of the entry point. For efficiency, we forward packets to the closest AP handling

the client. Other ways to compute the routes are possible, but the routing protocol must

carefully consider the race conditions that may arise.

Although unicast forwarding benefits from any performance improvement that kernel
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Link # Multicast Multicast with Unicast Unicast with
background background

traffic traffic
1 52 108 0 0
2 134 249 0 1
3 114 678 0 77
4 16 94 0 0
5 158 246 0 1

Table 5.1: Number of lost packets on different links when transmitting unicast and multi-
cast packets on 802.11 radios, with and without background traffic. The background traffic
consisted of a 1 Mbps stream covering the complete mesh.

routing may provide, it can only send to one of several destinations. This limitation can

result in loss during handoff for two reasons. First, route disruptions will occur while the

network is converging to a new route and in-transit packets will likely loop and be dropped

by the network. Second, the signal quality of the mobile client may drop off rapidly from one

of the APs used during handoff. Any packets forwarded from this AP to the mobile client will

likely be lost.

Kernel-level IP multicast routing. IP multicast is a communication primitive commonly

supported by Unix-like operating systems that allows a sender to efficiently send a packet

to several destinations simultaneously. Redundant multipath routing can be provided with

native IP multicast by making the access point(s) handling a client members of an multicast

group (not only in the overlay, but also at the kernel level multicast routing table).

Natively, IP multicast reaches all destinations that reside in the same LAN or are within

wireless range with a single transmission. In 802.11 networks, however, multicast packets

do not benefit from link-layer retransmission mechanism. Due to the lossy nature of the

wireless medium, especially in a mesh network for mobile clients where collisions are more

likely to occur, the number of lost multicast packets can be much greater than the number of

lost unicast packets.

The impracticability of multicast in wireless networks can be seen in our testbed. Table
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5.1 shows the number of lost packets at different links when using unicast and IP multicast

to transmit packets. We sent 1,000 packets on different links at different times, with and

without background traffic in the network. The wireless routers had default retransmit limit

of 4 for unicast packets. As we can see, the loss rate for multicast streams varies between 1%

and 67% while unicast streams experience at most 7% loss.

Kernel-level IP multicast routing with unicast tunnels. Some IP multicast protocols are ca-

pable of using unicast tunnels on each link. These protocols, overviewed in [13], were mainly

developed to support multicast on wide area networks. Achieving redundant multipath with

these protocols requires two levels of indirection per packet. First, since the destination of the

packet is the IP of the actual mobile client, we must create a mesh end-to-end tunnel with the

mesh-node that first sends the packet as the source and the multicast address that is used

to manage the client as the destination. Then, another unicast tunnel, commonly known as

virtual interface, must be created for each link in the mesh. Both tunnel headers must be

stripped out before sending the original packet to the mobile client, thus allowing seamless

end-to-end communication. Managing these tunnels adds unwanted complexity to the sys-

tem, requires modifications of the packet at each hop (replacement of one tunnel header with

another one), and also increases the packet size with two tunnel headers.

User-level overlay routing. User-level overlay routing allows users to implement any

protocol without requiring any special support from the kernel. In early stages of develop-

ment, SMesh routing architecture used an user-level overlay system. While very convenient,

routing the entire traffic through user space is challenging for resource-constraint devices.

In Section 5.6 we evaluate the performance of user-level routing using off-the-shelf Linksys

WRT54G routers, and show that even on a single hop, using only a wired connection, the

maximum forwarding throughput achieved is about 2.1 Mbps due to CPU saturation.
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5.4.1 Discussion of Tradeoffs

Table 5.2 summarizes the tradeoffs of the routing mechanisms we presented in previous sec-

tion. We compare them in terms of performance, packet overhead, and amount of kernel mod-

ifications required to implement them. Since we focus on wireless mesh networks, we also

consider wireless reliability (the ability to take advantage of the 802.11 link-layer retrans-

missions) and path redundancy for mobility among the metrics. As we show in Section 5.5,

generic redundant multipath support may be useful in other kinds of applications, therefore,

we include this feature in the comparison, too.

Among the kernel-based routing mechanisms, unicast routing (first alternative) seems

to be the easiest approach but it gives up the redundancy in favor of using kernel unicast

forwarding to achieve high throughput. It does not add any overhead per packet and it can

provide good performance depending on mesh topology and client movements.

The first IP multicast-based approach, while providing redundancy, cannot be a viable op-

tion for wireless environments where the loss rate, even between two adjacent access points,

is high. In addition, this method requires one tunnel header in which the entry point in the

mesh network is encoded. For generic applications such as those presented in Section 5.5,

this method cannot provide path redundancy because a tree is not a good abstraction for

these situations3. This drawback is also shared by the second type of multicast-based proto-

cols, those in which we can use an additional hop-by-hop tunnel to trigger 802.11 link-layer

retransmissions. This tunnel header must be replaced at each hop along the path of a packet.

The user-space overlay routing, while adding an overlay header per packet, is advanta-

geous when processing power of the routers is not an issue. As it is based on unicast hop-by-

hop forwarding, it benefits from 802.11 link-layer retransmissions, thus providing wireless
3It is however for mobility in wireless mesh networks, where the access points can join a multicast group to

receive the packets.
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reliability. Fully implemented in user-space, this approach does not require any special ker-

nel support and can run over a large set of platforms. However, when low-cost routers come

into play, the performance hit is quite significant. In our tests, one-hop throughput degraded

from about 10 Mbps to 2 Mbps.

Our redundant multipath approach aims to address the drawbacks associated with pre-

vious solutions by combining the benefits of both user-space and kernel-space. The approach

does not add overhead per packet and achieves high performance by taking advantage of

kernel routing. However, unlike all previous options, it does require minimal kernel modifi-

cations. Specifically, one function from the routing subsystem needs to be exported, and two

new kernel modules need to be installed. The rest of the implementation is in the routing

daemon (user space). While some minimal processing overhead is associated with this ap-

proach, the difference in performance over native unicast kernel routing is not significant,

as experiments will show. Similar to the overlay approach, it provides a generic redundant

multipath support for various applications.

Routing Performance Redundant Generic Wireless Packet Kernel
Mechanism Multipath Redundant Reliability Overhead Modifications

for Mobility Multipath

Unicast (Shortest Path) high, kernel level no no yes no no
Multicast 1 high, kernel level yes no no one tunnel header no
Multicast 2 high, kernel level yes no yes two tunnel headers no

User-Space Overlay limited, user level yes yes yes overlay header no
Redundant Multipath high, kernel level yes yes yes no very little

Table 5.2: Tradeoffs between several routing mechanisms using existing operating system
support.

5.5 Additional Applications for Redundant Multipath
Routing

Traditionally, redundancy is equivalent to resiliency, allowing the entire system to function

as a whole when some of its components fail. In the case of routing, protocols are in general
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Figure 5.6: Generic redundant multipath. The packets between the source and the destina-
tion nodes can be routed with different levels of resilience (R). The resilience level is encoded
in the header of the packet.

self-healing, in the sense that, upon detection of a route failure, they will search and/or estab-

lish a new routing path if one exists. The challenge lies in the process of detecting the failure,

which usually involves a timer to expire after a relatively large amount of time. While re-

ducing these timeouts is not desirable in routing protocols, as they may generate dangerous

oscillations, we believe that using redundant multipath forwarding in case of uncertainty

offers a viable solution for resilient routing.

Using the principles of our routing architecture, wireless networks could route packets

with different levels of resilience, on a per-packet basis. Consider the network shown in Fig-

ure 5.6. The source can reach the destination via multiple paths. These paths may be disjoint

and the number of paths may depend on the current state of the network and the levels of

resilience needed. The graph shows the paths for three possible levels of redundancy. Simi-

lar to our architecture, different routing tables can have entries that correspond to different

levels of redundancy. Then, each packet can carry its desired reliability level in its IPID so

that each router is able to forward the packet using the appropriate forwarding table.

Redundant multipath can also be used to send time-sensitive information in hostile en-

vironments where nodes may be compromised by an adversary. While existing Byzantine
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routing protocols [21] try to detect bad links and avoid routing through compromised nodes,

this detection will take some time. With redundant multipath, the redundancy level of pack-

ets can be based on the importance of the data as well as on the current threat level in the

working environment.

Wide area networks can benefit from generic support of path redundancy in several ways.

Andersen et al. [20] evaluated the benefits of redundant multipath on the RON overlay net-

work, and concluded that 40% of the losses observed were avoidable. Zhao et al. introduced

constrained multicast [77] which sends packets through multiple outgoing links when enter-

ing a lossy region on a peer-to-peer overlay network. Redundant multipath is also used by

Castro et al. [28] in developing a secure routing protocol for structured peer-to-peer overlay

networks.

Path redundancy has been shown beneficial in various wireless protocols. Pan et al. [59]

proposed an end-to-end smooth handoff scheme for streaming media which sends packets

through multiple paths while adapting the streaming data rate to the available bandwidth

of the new connection. Gabrielyan and Hersch [39] showed how Forward Error Correction

benefits from redundant multipath to increase reliability of real-time streams where there is

a constraint on the buffer size of the receiver. Path redundancy has also been used in wireless

sensor networks to disseminate critical information with the desired reliability [35].

5.6 Experimental Results

5.6.1 Setup

We evaluate our kernel redundant multipath scheme using low-cost Linksys WRT54G wire-

less routers running with a third-party OpenWrt firmware [4]. As this firmware was initially

built using Linux kernel 2.4, we implemented our kernel modules for this version of Linux.
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Some of the experiments were performed using only wired connections, showing the CPU lim-

itation in routers’ performance, while other were performed using 17 nodes from our SMesh

testbed. In these experiments, the transmit power is set to 50 mW, the short retransmission

limit to 7 and long retransmission limit to 4.

In the first set of experiments we show the CPU limitation of both overlay and kernel

routing methods, and how it affects the loss rate of the packets as the sending rate increases.

Then, we evaluate the maximum TCP throughput that can be achieved by both methods in

a multi-hop network, as the number of hops increases. Finally, using our deployment, we

show throughput and packet latency that can be achieved in our mesh network deployment,

in both kernel and overlay schemes.

5.6.2 Measurements

Overlay vs Kernel CPU Test

This experiment demonstrates the CPU limitation and its effect on the packet loss rate, for

both overlay and kernel methods, as the transmission rate increases.

A client computer was connected to a router that was setup as an Internet gateway. Pack-

ets were routed to and from the client computer. To avoid losses caused by the wireless link-

layer contention, we performed this test connecting the client to the router with a network

cable.

In the first part of the experiment, we sent 1,400-byte UDP packets from the Internet

to the client with various transmission rates: 100 Kbps, 500 Kbps, 1, 2, 3, 4, 5, 10 and

20 Mbps. In the second part, we sent 160-byte UDP packets, emulating VoIP streams, at

rates corresponding to an increasing number of full-duplex VoIP streams between the client

and the Internet. Each (one-way) stream has a rate of 64 Kbps. In both cases we monitored
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Figure 5.7: CPU load and loss rates while sending a stream of 1400-byte UDP packets with
transmission rates varying from 100 Kbps to 20 Mbps. The top x-axis shows the correspond-
ing number of packets/sec.
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Figure 5.8: CPU load and loss rates while sending an increasing number of full-duplex
streams of 160-byte UDP packets. The top x-axis shows the corresponding number of pack-
ets/sec.
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the average CPU load (Figures 5.7(a) and 5.8(a)) and the loss rate (Figures 5.7(b) and 5.8(b)).

The top x-axis shows the corresponding number of packets/sec.

In the 1, 400-byte test, overlay routing consumes about 67% of the CPU at 1 Mbps and it

goes up to 100% at 2 Mbps. However, the packets continue to be delivered at 3 Mbps, while at

4 Mbps (about 350 packets/s) the loss rate is already 16% and continues to grow quickly after

that. In kernel multicast implementation, we do not see a noticeable increase in CPU load.

In contrast, in the 160-byte test, kernel routing shows an increase in CPU load and be-

comes saturated when the number of VoIP streams sent by one side is 50, while with overlay

routing this happens at only 4 VoIP streams.

To understand better the overhead of our kernel approach, we included an additional sce-

nario: kernel routing without the overhead of iptables rules required by our scheme. We

can see that with the overlay implementation, the CPU starts to be saturated at 400 pkts/s

(4 one-way VOIP streams, or 512 Kbps), in our kernel implementation at 5,000 pkts/s

(50 streams or aprox 6.4 Mbps) while in kernel “native kernel routing” implementation at

6,000 pkts/s (60 streams or aprox 7.6 Mbps). In each of these three scenarios, after a while,

the loss rate starts to be non-zero: less than 8 streams (1 Mbps) for overlay, 51 streams

(11 Mbps) for kernel and 64 streams (13 Mbps) for kernel “native kernel routing” routing4.

Overlay vs Kernel Throughput Test

This experiment evaluates the maximum throughput that can be achieved in a multi-hop

wireless network. We connected 5 Linksys WRT54G routers in a simple “line” topology, and

measured the TCP throughput while sending traffic from Internet to the client. Note that this

continues to be a very controlled test. We only use one client, and we do not use background
4When we refer to the number of VoIP streams, it is the number of streams in one direction, but we send the same

amount of traffic in both directions, and the number of packets/second and the throughput is presented as a sum of
those.
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Figure 5.9: The average TCP throughput between the Internet and a client situated at dif-
ferent hops away from the Internet gateway. The routers are in a simple “line” topology.

traffic to influence our results, as our goal is to obtain the throughput upper bound. In

the experiment we did not use the RTS/CTS mechanism for collision avoidance, as previous

studies show that it does not provide a higher TCP throughput [25] [75].

We performed tests with the client placed 1, 2, 3, 4 and 5 hops away from the Internet

gateway. The throughput results are presented in Figure 5.9. We also measured the round

trip time (RTT) for both, overlay and kernel routing (Figure 5.10).

With the overlay implementation, the maximum throughput was about 2.1 Mbps for 1 hop

and it slowly decreased to 1.7 for 5 hops. In the kernel scheme we obtained a throughput of

10.1 Mbps for 1 hop, which decreased by half, to about 5.1 Mbps for 2 hops. We believe this

is due to the influence of inter-hop interference. We notice that even if our scheme yields

quite bit of improvement when the number of hops is low, at 5 hops away from the Internet

gateway, the difference between overlay and kernel methods is relatively small (2.1 Mbps for

kernel versus 1.75 Mbps for overlay). Placing multiple Internet gateways in an wireless mesh

network will prevent having a very low throughput by decreasing the number of wireless hops
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Figure 5.10: The average RTT between the Internet and a client situated at different hops
away from the Internet gateway. The routers are in a simple “line” topology.

to the clients.

The round-trip times are averaged over the duration of each test (Figure 5.10). In the

overlay implementation, the RTT increases from 59 ms for 1 hop to 71 ms for 5 hops, while

in the kernel implementation, it increases from 13 ms to 64 ms for 5 hops. In both situations,

we also show the RTT when no traffic is present. We notice again the influence of link-layer

collisions, which cause packet loss, trigger 802.11 retransmissions, and increase the packet

latency. The round-trip latency from overlay is more than 3 times the one from kernel for

1 hop, and even at 4 hops it is much above the kernel implementation.

Overlay vs Kernel in deployed testbed

This experiment evaluates the TCP throughput and packet latency for a mobile client walking

throughout our deployed testbed of 17nodes.

TCP throughput. Figures 5.11 and 5.12 present the TCP throughput achieved over time in

both overlay and kernel modes. In order to see how far we are from the Internet gateway, we

plot with a dotted line the access point that currently services the client. The horizontal lines

mark when the number of hops increases by one. To simplify the graphs, we included only
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Figure 5.11: TCP throughput of a client
moving in the network when user space over-
lay routing is used. The top line tracks the
access point that currently serves the client.
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of hops increases by one.
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Figure 5.13: CDF of the one-way latency of the packets delivered to a client moving through-
out the mesh. The traffic is a full-duplex 64 Kbps UDP stream.

the routers that were involved in handling the client.

With the overlay routing, the throughput is just above 2 Mbps if the client is 1 or 2 hops

away from the Internet gateway (routers 31 and 32, 33 and 36). This is consistent with the

throughput reported in the previous test. As the number of hops increases, the throughput

drops to 1 Mbps and even lower. In the kernel routing, the throughput was about 8.5 Mbps

for 1 hop access points, 4.3 Mbps for 2 hops and it drops to 1 Mbps when the client is 6 hops

away from the gateway (router 28). In both cases, the wireless link losses prevented us from

achieving the throughput obtained in the controlled test (Figure 5.9).

UDP latency. We compare the improvement of packets latencies when routing in overlay and

in kernel modes. We use a full-duplex UDP traffic, consisting in 160-byte packets sent every

20 ms at a rate of 64 Kbps, for 5 minutes. We focused on a VoIP-like traffic as a representative

application that poses severe latency requirements. As opposed to the RTT presented in the

controlled test (Figure 5.10), we measure the one-way latencies. Figure 6.12 shows a CDF
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of the packets latency. We can see that about 80% of the packets were delivered in under

10.5 ms using the overlay while in the kernel implementation they arrived within 3.7 ms.
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Application: Push-To-Talk Service for First
Responders

Push-To-Talk (PTT) is a well known service in the law enforcement and public safety commu-

nities, where coordination and spectral efficiency are key for efficient communication. Some

cell phone companies offer a similar service in the commercial world. However, core differ-

ences in motivation drive these two sectors. Cellular phone systems are designed for the

busiest hour, as outages impact revenue, while public safety systems are designed for worst

case scenarios, as outages impact lives.

Unfortunately, first responders cannot always rely on pre-existing ground communication

infrastructure. For example, the White House report on hurricane Katrina [9] states that

1,477 cell towers were incapacitated, leaving millions unable to communicate. The report con-

cludes that “The complete devastation of the communications infrastructure left emergency

responders and citizens without a reliable network across which they could coordinate.”

Wireless mesh networks have emerged as a viable technology that allows for rapid deploy-

ment of instant infrastructure [71]. In these networks, mobile clients can roam throughout

the area covered by the mesh and seamlessly handoff between access points while utilizing

real-time applications such as VoIP [16, 40]. These attributes make wireless mesh networks

an appealing technology for first responders. While centralized solutions for providing PTT
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service exist (e.g., POC [12]), there are currently no solutions for a robust and efficient PTT

service that can be applied in much more dynamic environments such as wireless mesh net-

works.

Because it relies on half-duplex communication, a PTT system requires an arbitration

mechanism (also known as floor control), which determines the order in which participants

speak. All participants that wish to communicate with each other form a PTT group. As the

name suggests, they request to talk by pressing a button. In contrast to peer-to-peer VoIP

systems, data must be disseminated from the speaker to all the participants in a given PTT

group.

Building a robust and practical Push-To-Talk system for the wireless mesh environment

is challenging for several reasons. First, it requires the ability to coordinate communication

between users even when part of the infrastructure is unavailable (mesh node crashes) or

when there is intermittent connectivity between nodes (network partitions and merges). This

rules out traditional approaches such as POC, where arbitration is assured by a centralized

point. Second, it must operate correctly when users join and leave the network, when they

are partitioned away, lose their connectivity, or move from one access point to another. Third,

it must use the wireless medium efficiently and should provide low transfer times between

users’ requests. Last but not least, an important property for first responders is the ability

to integrate regular PSTN (Public Switched Telephone Network) and cellular phone users,

allowing them to seamlessly participate in the PTT sessions conducted by the wireless mesh

PTT service at a disaster site.

We present here the first architecture and protocol of a robust distributed PTT service

for wireless mesh networks. Collectively, the mesh nodes provide the illusion of a single

third party call controller (3pcc), enabling clients to participate via any reachable mesh node.

Mesh users with SIP-based VoIP phones participate by connecting to an IP address that
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Figure 6.1: Overview of the Push-To-Talk system. Mesh users connect to the system using
a SIP-based VoIP application. Phone users connect via the PSTN network to a SIP gateway
that routes their calls to the mesh network.

corresponds to the virtual 3pcc server address. In addition, regular phone and cell phone

users dial a phone number that connects to the mesh network through a SIP gateway that

routes the call to the mesh (Figure 6.1).

In our approach, each PTT group (also referred to as a PTT session) instantiates its own

logical floor control manager that is responsible for keeping track of the floor requests of the

participants and for issuing Permission-To-Speak when a participant releases the floor. Any

of the mesh nodes in the network can play the controlling role for a session. To maintain high

availability, each controller node is continuously monitored by every mesh node with a partic-

ipating PTT client and is quickly replaced if it becomes unavailable due to a crash or network

partition. The controller relinquishes its role to another mesh node upon determining that

this node is better situated (network-wise) to control the PTT session, based on the current

locations of the clients participating in the session. In addition to improved performance, this

migration increases the availability of the service in the face of network partitions because it

keeps the controller in the “center of gravity” of the clients in the PTT session.

The main contributions of this work are:

i) The first robust Push-To-Talk service for wireless mesh networks that can withstand

connectivity changes such as node crashes, network partitions, and network merges.
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ii) Novel use of multicast for localized access points coordination to share PTT client state,

such that the entire network appear to the client as a single call controller.

iii) Novel decentralized floor control protocol that maintains a different logical controller for

each PTT session and adaptively migrates it to the most suitable node in the network.

iv) The first architecture that allows regular PSTN phones users (e.g., cell phone users) and

unmodified VoIP SIP phones to seamlessly participate in PTT sessions.

We implemented this Push-To-Talk architecture and protocol within the SMesh system

and evaluated using a set of 14 nodes from our testbed. In our tests, users experienced less

than 150 ms interruption while the system switches between speakers. We show how the

system scales to tens of clients, with an overhead of under 1 Kbps per client with 42 clients

in the mesh. Then, we show that in our testbed, the system scales to 18 simultaneous PTT

groups when dual-radio and packet aggregation are used. Lastly, an elaborate scenario with

40 clients divided among 10 different PTT sessions demonstrates that the system remains

highly available during mesh network connectivity changes.

6.1 Push-To-Talk System Architecture

The mesh topology changes when wireless connectivity between the mesh nodes changes,

when mesh nodes crash or recover, or when additional mesh nodes are added to expand the

wireless coverage. These changes may create network partitions and merges in the wireless

mesh.

Push-To-Talk users are regular mesh clients, that is, unmodified 802.11 devices. We do not

assume any specific drivers or hardware capabilities present on the clients. Clients connect

to the mesh by associating with the wireless-mesh 802.11 SSID. A client should be able to

participate with any compliant VoIP application. Therefore, any regular unmodified mobile
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Figure 6.2: Push-To-Talk system architecture.

device should be able to connect to the mesh and use our PTT service transparently.

Regular phones from the Public Switched Telephone Network (PSTN) such as home phones,

and cell phones, connect to the mesh by dialing a regular phone number, in our case 1-877-

MESH-PTT. The call is routed by the PSTN to a SIP gateway that is connected to the Inter-

net (Figure 6.1). Normally, a regular VoIP client registers with the SIP gateway in order to

receive incoming calls. In our architecture, the mesh Internet gateway registers as an end-

client with the SIP gateway and routes messages between the mesh and the phones in the

PSTN. We do not make any changes to SIP, therefore our protocol integrates with already

deployed SIP gateways without any changes.1

Figure 6.2 illustrates the software architecture of our PTT system. It includes the inter-
1For the SIP gateway we used a service provided by Vitelity (http://vitelity.com), which redirects the packets from

the telephone network to our mesh gateway.
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face with the mobile client, the mesh PTT session manager for the mobile client, and the

mesh PTT controller for each PTT session in the wireless mesh network. Various multicast

groups, over which communication takes place, are shown. We benefit from the underly-

ing routing infrastructure, which provides us with overlay group management to effectively

communicate on a group-based abstraction.

Each of these components is described in detail in the next sections.

6.2 Interface with Mobile Clients

A mobile client should be oblivious to the heavyweight protocols employed in the mesh net-

work. Further, we want to allow any 802.11 client, as well as PSTN clients, to use the PTT

service without changing any of the standards. To do so, our architecture interacts with

clients by using well established VoIP protocols.

VoIP applications use the Session Initiation Protocol (SIP [67]), to establish, modify, and

terminate a VoIP session. During the SIP session establishment, the Session Description

Protocol (SDP [41]) is used to describe the content of the session (i.e., voice), the underlying

transport protocol (i.e., RTP2), the media format, and how to send the data to the client

(address, port, etc). Data is then sent using the designated transport protocol between the

parties.

A third party call control (3pcc) server is normally used to inter-connect multiple parties

together through a rendezvous point. Conference call managers are one type of 3pcc. Good

practices for SIP-based VoIP 3pcc servers are specified in RFC 3725 [66]. In essence, from an

end-client point of view, the 3pcc server looks exactly the same as another end-client.

In our architecture, all mesh nodes act as a single 3pcc server and share the state of

the SIP connection with every other mesh node in the vicinity of the client (between mesh
2Real-time Transport Protocol (RTP) is a standard protocol (RFC 3550) that provides end-to-end delivery services

for data with real-time characteristics, such as interactive audio and video.
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nodes that can hear the client). This is key for the system to scale as it efficiently shares

information only between nodes that can potentially need the state of the SIP connection as

the client moves throughout the mesh, or in case the client’s mesh node crashes.

To participate in the mesh PTT session, the user specifies in its VoIP application the IP

address of our virtual SIP server (i.e., “sip:ptt@192.168.1.10”). This IP is the same throughout

the mesh. Every mesh node intercepts packets sent to this address and follows the SIP

protocol to connect the client to the mesh. Therefore, the mesh network provides the illusion

of a single 3pcc to the client.

Once a SIP connection is established, the user can start using the mesh PTT service by

simply dialing the PTT group that it wishes to join. Each dialed key generates a Dial-Tone

Multi-Frequency (DTMF [68]) signal that is sent over the RTP channel (by default, this signal

is repeatedly sent over multiple RTP packets to ensure that the end-node receives it). In our

approach, we intercept DTMF signals for control purposes between the end-client and the

mesh. For example, a client dials “#12#” to join PTT group 12. In the same way, every time

a user wishes to speak, pressing “5” or any pre-defined key combination will be interpreted

as a “Request-To-Speak” control message. Once the system determines that it is the user’s

turn, it sends an audio signal (“beep-beep”) to let the user know that it can start to speak.

While other means for signaling control information are possible, DTMF is supported by

most communication networks such as PSTN, allowing us to seamlessly support users from

these networks.

RTP data is then sent from the client to the 3pcc virtual IP address through the client’s

access point (mesh node), which forwards the packets to every mesh node that has a PTT

client on that group using a source-based multicast tree. Finally, each receiving mesh node

forwards the packets to its corresponding end-clients.
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6.3 Push-To-Talk Protocol

Providing a robust and scalable way to coordinate client communication is the essence of the

Push-To-Talk protocol. There are several ways to approach it. One possibility is to have a

unique point of management in the network that every mesh node needs to contact in order

to register a request and get permission to speak. Such a protocol is easy to design and im-

plement and is appropriate for deployment in certain environments. However, this approach

is not a good choice for networks that require high availability. For example, if a partition

occurs in the mesh, all the clients connected to nodes that cannot reach the arbitration point

will be left out of service. At the opposite extreme is the approach of total decentralization

in which there is no unique entity that arbitrates the communication. Instead, the nodes in

the mesh must coordinate and collectively decide on the order of serving the clients. While

more complex, such a protocol is very resilient to infrastructure failures, at the expense of

a continuous communication overhead in order to maintain a consistent view between the

mesh nodes in the network.

Our PTT architecture uses a hybrid protocol that shares characteristics with both ap-

proaches. As in the centralized approach, each PTT session is managed by a controller node

which is responsible for keeping track of floor requests and for issuing Permission-To-Speak

after a participant releases the floor. However, each PTT session has is own controller node

and any of the mesh nodes in the network can play the controlling role for any session. The

controller node is continuously monitored by other nodes and rotated when a more suitable

node (i.e., a node with a better geographical position in the network) becomes available.

In addition, we completely separate floor control from data dissemination. While the

arbitration is left to the best node to be the controller, the data is routed optimally to all

participants through source-based multicast trees. This allows the system to be efficient and
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controllerchange

Figure 6.3: The multicast groups maintained by the system to manage a client (Control) and
its PTT session (CMonitor, Data, Controller).

scalable.

The details of our protocol are presented below. We start by describing how a mobile

client is managed by a mesh node and how a PTT session is managed by a controller. We

then present the floor arbitration mechanism. Finally, we show how the protocol withstands

node crashes and connectivity changes such as network partitions and merges.

6.3.1 Client Management

For a PTT client, the entire mesh network behaves as a single 3pcc server. This is achieved

by maintaining the state of the client on the mesh nodes in the vicinity of that client, such

that any node that becomes the client’s access point (the client is mobile) has the appropriate

SIP and PTT information. A virtual IP is assigned to the 3pcc server, and is used by the client

VoIP application to connect to.

Specifically, in order to service a client, the system requires information such as the SIP

call identifier, SIP sequence number, RTP port, PTT group, PTT state (e.g., the client requests

permission to speak, or has permission to speak). We chose to maintain client’s state locally
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for several reasons. First, there is no single node responsible for the state. Instead, any node

that can hear the client maintains a state for it. Thus, the state is preserved even when

the client’s access point crashes. Second, as the state is maintained in the vicinity of the

client, the overhead is localized in the part of the network where the client is located. Finally,

the client state is decoupled from the controller node, allowing the clients’ requests to be

recovered when the controller node crashes (or is partitioned away), as we discuss below.

Client Control Group. To share the client state between mesh nodes that can reach a

client, we associate with each client an overlay multicast group. Specifically, any node that

can hear the client (that is, not only its current access point) joins and periodically advertises

the client state on the Client Control Group (Figure 6.3). In our experiments, we share this

information every four seconds. Note that the system is not synchronized and different nodes

may see different states for a client at a given time. We use a combination of client times-

tamps (available in the SIP and RTP packets) and controller logical timestamps to correctly

identify the most recent state of a client. This multicast group is an extension of the Client

Control Group introduced in Section 4.3.

Using a localized multicast group per client has another benefit: The client is mobile and

it can freely move from one access point to another. When the client is granted permission

to speak, the controller node uses this group to reach and notify the client, without actually

having to keep track of its current access point (a node can send a message to a multicast

group without being a member of the group).

6.3.2 Session Management

A client joins a PTT session by initiating a VoIP conversation with the virtual 3pcc server as

described in Section 6.2, independently of its network location. In our protocol a PTT session
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is coordinated by a controller node, whose presence is continuously monitored by other nodes.

The controller relinquishes its role to another mesh node upon determining that this node is

better situated (network-wise) to control the PTT session, based on the current location of

the clients participating in the session. Three multicast groups are used to manage a PTT

session in a distributed manner.

PTT Controller Group (PTT CONTROLLER). For each PTT session, there is a single mesh

node, the controller, responsible for managing the floor at a given moment in time. It receives

and arbitrates requests and grants the right to speak. In our architecture, when a node

becomes the controller for a PTT session, it joins an overlay multicast group associated with

that session. Maintaining an overlay multicast group with the controller as the only member

allows any mesh node in the network to reach the controller node without actually knowing

its identity. Unicast communication with the controller is used by the protocol, however, only

in response to a message previously received from the controller. All client floor requests

are sent by their access points (mesh nodes) to this group and are stored by the controller

in a FIFO queue. Periodically, the controller checks whether another mesh node is more

appropriate to manage the PTT session. In such a case, it initiates a procedure to migrate

the control to that node.

PTT Controller Monitoring Group (PTT CMONITOR). This overlay multicast group is used

to monitor the controller node. A mesh node joins the monitoring group of a PTT session if

it is the access point of a client that participates in that session. In addition, the controller

joins this group to detect the presence of another controller during a network merge. A ping

message is periodically sent by the controller to this group, allowing its members to monitor

controller’s presence and take action if the controller is no longer available.

PTT Data Group (PTT DATA). This multicast group is used to deliver the actual voice data

to the clients. A mesh node joins the PTT Data Group of a session if it is the access point
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of a client in that session. Thus, we completely separate floor arbitration, coordinated by a

single controller node, from data dissemination. This allows us to optimally route data from

the sender node to all the participants in a PTT session.

To simplify the management of names for these three multicast groups, we generate their

IP multicast addresses using a hash function of the PTT session identifier, such that any

mesh node in the network knows which groups are associated with each PTT session without

coordination. Similarly, the Client Control Group is generated as a hash of the client IP

address.

6.3.3 Floor Control

Requests handling

Figure 6.4 describes how the controller arbitrates the floor such that only one user speaks at

a time, while all other users listen.

When a PTT client requests the floor, a REQUEST FLOOR message is sent by its access

point to the PTT CONTROLLER group. The controller queues the request and sends back an

acknowledgment. Since the messages are not reliable, the access point will retransmit the

request until it receives an acknowledgment from the controller, or until the client cancels its

request. Note that the acknowledgment is sent on unicast, to the access point of the client.

Release floor requests are sent to the controller in a similar manner. When a

RELEASE FLOOR is received, the controller node grants the right to speak to the next client

in the queue by sending a PTS (Permission-To-Speak) message. This message is sent to the

client via the Client Control group. We do this because during the life of a PTT session,

the client location can change, and it may no longer be associated with the access point that

initially issued the request to speak. If the client is no longer available, a simple timeout
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PTT node Controller node

Receive floor request
from a client

Queue the request

REQUEST_FLOOR (client)PTT_CONTROLLER group

REQUEST_ACK (client)

unicast

timeout
retry

Receive floor release
from a client

Handle the next 
request from the queue

RELEASE_FLOOR (client) or
time exceededPTT_CONTROLLER group

RELEASE_ACK (client)

unicast

timeout
retry

Permission-to-Speak

client CONTROL group

Send PTS voice
signal to the client PTS_ACK (client)unicast

timeout
retry [3 times]

Client unreachable
Handle next client 
in the queue

Figure 6.4: The sequences of steps performed by the mesh node and the controller node in
order to service user requests. The first part shows how an user requests to speak, while
second part shows how the user is notified when its permission to speak is granted.
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Controller PTT node

A better controller is 
available

Stop queueing and 
handling requests

Join PTT_CMONITOR 
(if not already there) and 
PTT_CONTROLLER 
groups

Start queuing and 
handling requests

INVITE (group, Queue)unicast

INVITE_ACK (group)

unicast

timeout
retry [3 times]

Controller change 
failed

Start queueing and 
handling requests

Controlled change 
succeeded

Leave PTT_CMONITOR
(if needed) and  
PTT_CONTROLLER 
groups

Figure 6.5: The sequence of steps and actions performed to migrate the controller. The mi-
gration process is initiated by the current controller, based on existing network conditions.

mechanism allows the controller to move to the next request in its queue.

Migrating the controller

While there is a single controller node for a PTT session at a given time, the system may

change the controller over time, depending on participants’ placement in the network. The

idea is to avoid situations such as when a majority of the clients in a PTT session are localized

in some part of the network while the controller node is in another. Placing the controller

closer to where most participants are reduces the latency and the amount of control traffic in

the network. In addition to improved performance, this migration increases the availability

of the service in the face of network partitions because it keeps the controller in the “center

of gravity” of the clients in the PTT session. Specifically, the system computes the cost that

68



Chapter 6. Application: Push-To-Talk Service for First Responders 6.3. Push-To-Talk Protocol

each node would incur if it was the controller as the sum of the costs to reach each member

of PTT DATA group. In our experiments we computed this cost every minute. By cost we refer

to a wireless metric that may incorporate latency or the number of hops, for example3. Note

that any node in the mesh network can be chosen to be a controller, regardless if it services

PTT clients.

The sequence of steps performed for migrating the controller are as follows: First, the

current controller enters a block state, in which it does not respond to any floor requests or

releases and does not grant the right to speak to any client. Next, the controller sends an

INVITE message to the selected node—the one with the lowest cost to be a controller—which

includes the queue of the pending requests. Upon receiving such a message, the invited node

joins the PTT CMONITOR group—in case it was not already a member—and also joins the

PTT CONTROLLER group. It now has the queue of requests and can safely begin controlling

the session, queuing new requests and issuing PTS. An acknowledgment is sent back to the

initial controller so that it can leave the PTT CONTROLLER group. In case of a timeout during

this process, the original controller unblocks and continues to manage the PTT session.

6.3.4 Protocol Robustness

Due to the inherent instability of the wireless environment, it is possible for the network to

partition and merge. While in a well-established mesh network this should rarely happen,

a rapidly deployed network during an emergency is likely to experience such problems. In

addition, any node in such a network can crash. The PTT service must continue to operate

even if it experiences a few seconds of interruption. Below we explain how the protocol is

resilient to these conditions.
3Additional functionality from was added to retrieve topology and membership information from the link-state

and group-state updates, which in turn allows a controller to compute the Euclidean distance from every node to a
given PTT group.
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Network Controller
PING_CMON

PTT_CMONITOR group

Controller lost

Join PTT_CONTROLLER 
(if lowest IP)

Start queueing and handling 
requests

timeout

PTS_PING (client)

PTT_CONTROLLER group
Sending node

Sending node lost

Handle the next client
in the queue

timeout

Sending client
Voice

Client not responding
Send RELEASE

timeout

monitors monitors monitors

Figure 6.6: Mechanisms that ensure the protocol robustness. The critical components (the
controller nodes and sending nodes) are continuously monitored and re-instantiated if the
connectivity is lost because of a node crashes or the network partitions.

To operate correctly, there must be a controller and a sending node (that is, a node with a

client with permission to speak) for each PTT session. If one of these is missing, either there

is nobody to arbitrate the floor or nobody is currently speaking as the system waits for a node

which is no longer available. Thus, we introduce the following mechanisms to monitor the

operation of each of these two nodes (Figure 6.6). Note that asymmetric links are eliminated

by the routing protocol.

Controller node monitoring

The controller node periodically sends a keep-alive message (PING CMON) to the PTT CMONITOR

group, allowing other nodes that service PTT clients for that session to monitor its presence.

When the controller crashes or is partitioned away, the node with the lowest IP address on the

PTT CMONITOR group volunteers to be the controller by joining the PTT CONTROLLER group.

However, its queue of requests is empty. We use a special flag in the subsequent PING CMON

messages to notify everybody that a new controller was instantiated. All the nodes with

pending PTT requests must re-send their requests as if they were new. This is possible be-

cause the user requests are part of the user state which is maintained and shared via the

Client Control Group. Thus, the controller’s queue is reconstructed in a best-effort way, with

the requests from the current partition. Note, however, that the order of the requests in the
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Controller PTT node

Controller lost

Join PTT_CONTROLLER 
(if lowest IP)

Start queueing and 
handling requests

timeout

PING_CMONPTT_CMONITOR group

Figure 6.7: The controller is considered lost when its presence messages sent on the moni-
toring group timeout. The node with the lowest IP address becomes the new controller of the
session.

new queue may be different than the one from the original controller. With minimal changes,

the protocol can be adapted to recover part of the original order established by the previous

controller.

Another situation from which we have to recover is when there are multiple controllers in

the network. This occurs after a network merge but also when the controller is lost and mul-

tiple nodes decide to control the session (unlikely but possible, as the nodes can temporary

have a different view of the network’s topology). Figure 6.8 shows the mechanism to recover

from this situation. Since the controller node is the only one sending keep-alive messages

on the PTT CMONITOR group, receiving a keep-alive that is not its own indicates to the con-

troller that there is at least one additional controller in the network. Once this situation is

detected, the node with the lowest IP address remains the controller, while the other(s) must

leave the controller’s group. A redundant controller sends a LEAVE REQUEST message to the

PTT CONTROLLER group with the content of its queue as it leaves the group. Upon receiving

such a message, the controller with the lowest IP appends the queue to its own, removing

duplicate requests if necessary, and acknowledges the leave.
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Controller
(lower IP address)

Controller
(higher IP address)

Another controller is 
available

Stop queueing and 
handling requests

Leave 
PTT_CMONITOR 
(if needed) and  
PTT_CONTROLLER 
groups

LEAVE_REQUEST_ACK (group)unicast

LEAVE_REQUEST (Queue)

PTT_CONTROLLER

timeout Attempt to leave 
failed

Start queueing and 
handling requests

Merge queues

PING_CMONPTT_CMONITOR group

Figure 6.8: Sequence of steps and actions taken to detect and recover from the situation when
there are multiple controllers in the network. This happens whenever two partitions of the
network merge, or because the nodes may temporary have a different view on the network’s
topology.
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Sending node monitoring

While the members of PTT CMONITOR group monitor the controller, the controller in turn is

responsible for monitoring the sending node (Figure 6.6). The sending node periodically is-

sues a keep-alive message (PTS PING - Permission-To-Speak Ping) on the PTT CONTROLLER

group. This allows the controller to quickly move to the next client in the queue in case of

a timeout. An alternative to this approach would be to simply wait for the maximum allot-

ted time per speaker to expire; however, system responsiveness is important in emergency

situations, ruling this option out.

Sending node Controller

Speaker node lost

Handle the next client
in the queue

timeout

PTS_PING (client)PTT_CONTROLLER group

Figure 6.9: The sending node is considered lost when its presence messages sent on the
PTT CONTROLLER group timeout. In this situation the controller will immediately move to
the next request in the pending queue.

When two or more network partitions merge, there will be multiple controllers, but also

multiple sending nodes in the network. The controller of the newly established network

withdraws the right to speak to all additional clients by sending a REVOKE message to their

access points (mesh nodes), which in turn notify their associated clients.

Table 6.1 presents a summary of the messages handled by the controller node, including

the frequency of the PING CMON and PTS PING messages.
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Type Sent by Sent to When

REQUEST FLOOR mesh node PTT CONTROLLER group client requests floor
RELEASE FLOOR mesh node PTT CONTROLLER group client releases floor
REQ REL ACK controller mesh node
PTS controller CLIENT CONTROL group
PTS ACK node controller
INVITE controller mesh node controller changes
INVITE ACK node controller
LEAVE REQUEST controller controller multiple controllers
LEAVE REQUEST ACK controller controller multiple controllers
REVOKE controller node multiple speakers
PING CMON controller PTT CMONITOR group every second
PTS PING node PTT CONTROLLER group every second when client

has PTS

Table 6.1: Types of messages sent and received by the controller node.

6.4 Experimental results

6.4.1 Setup

We implemented the Push-To-Talk protocol within the open source SMesh wireless mesh sys-

tem and evaluated using 14 nodes from the SMesh testbed, consisting of Linksys WRT54G

wireless routers deployed across several floors in three buildings at Johns Hopkins Univer-

sity.

Each of the mesh nodes is equipped with one radio configured in ad-hoc mode. The data

rate was set to 18 Mbps, the transmission power to 50 mW, and the 802.11 link-layer retrans-

mission limit to 7. Unless specified, the topology of the mesh, depicted in Figure 6.10, was

stable.

In all experiments, when a client is granted permission to speak it transmits a 64 Kbps

VoIP stream as 160 bytes UDP packets every 20 ms.

Some experiments require a large number of simultaneous clients. To support such ex-

periments, we implemented a client emulator that generated the appropriate control and

data traffic associated with the emulated client. From the 802.11 network and from the PTT
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Figure 6.10: The wireless mesh network testbed used in the Push-To-Talk experiments.

system perspective, there was no difference between an emulated client and a real client in

terms of control and data traffic. Each client is instantiated on a mesh node, and packets

between the emulated client and its access point are always transmitted over the wireless

medium. In spite of generating the appropriate amount of traffic in the network, our metrics

(such as latency and loss rate) are reported from the mesh nodes perspective. A real client

should perceive slightly higher values. Despite this shortcoming, we resort to this method

in order to evaluate our system in a real testbed, with a large number of users. In our opin-

ion, though it requires more work and complete implementation, this method is significantly

more realistic than simulations, e.g., using ns-2 or OpNet.

6.4.2 Measurements

We present four types of experiments. First, we demonstrate the system’s normal operation

with a small number of clients. Second, we demonstrate the ability of the system to scale

with the number of clients in a PTT group. Third, we demonstrate the ability of the system

to scale with the number of PTT groups. Last, we demonstrate the robustness of the system

through its ability to handle network partitions and merges correctly while PTT sessions are
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in progress.

Normal Operation

This experiment involves four mobile clients, each of them connected to a different mesh node

in the network (nodes 1, 2, 12, and 14 in Figure 6.10). All four clients join a PTT session and

continuously request to talk. When a client is granted the floor, it immediately speaks for

20 seconds, releases the floor, and then renews its request. Thus, the PTT session’s queue of

requests is never empty.

Figure 6.11 depicts the VoIP data throughput and our protocol overhead, as seen by

node 1. The overhead includes the control traffic of the PTT protocol as well as the SMesh

traffic associated with maintaining the mesh and the multicast groups. This overhead ranges

between 1.5 Kbps and 5.8 Kbps, with an average of 3.4 Kbps, which is reasonable considering

that each VoIP session is 64 Kbps.

Figure 6.11 also includes a view with the arrival time of each VoIP packet. The figure

shows a turnaround time of 137 ms from the moment the last packet from a client is received

to the moment the first packet from the next client’s voice stream arrives. This demonstrates

that only a small part of the time is consumed for synchronizing the PTT clients.

Scaling with the number of clients in a PTT session

To test the scalability of our system, we gradually increase the number of clients participating

in a single PTT session. Each client connects to one of the 14 mesh nodes in the network

according to a round-robin order of their identifiers (i.e., the first client connects to node 1,

the second to node 2, . . . , the 14th to node 14, the 15th to node 1, etc.) and requests to

speak. Upon acquiring the floor, each client speaks for 10 seconds, releases the floor, waits
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Throughput

Time (s)

Sender node 2
Sender node 12
Sender node 14
Overhead
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(a) Data as seen by node 1. Every 20 seconds the permission to speak is granted to
a different user.

Packet Arrival time (s)

21.7 21.8 21.9 22.0 22.1 22.2 22.3 22.421.7 21.8 21.9 22.0 22.1 22.2 22.3 22.4

Sender node 2 Sender node 12

(b) Packets received by node 1 while the system transitions between users connected
to nodes 2 and 12. The time between the last packet from node 2 and the first from
node 12 was 137 ms.

Figure 6.11: Experiment showing the normal operation of the system. Four users are con-
nected to four random nodes in the 14-node testbed.
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for another 10 seconds, and requests to speak again. Therefore, at any point, some client is

authorized to speak.

We considered three scenarios:

1) Each mesh node is equipped with a single radio.

2) Each mesh node is equipped with dual radios. The first radio is used for communication

with other mesh nodes, while the second is used for communication with the users. In this

way the mesh traffic does not interfere with the mesh-to-client traffic, as the radios can be

set on non-interfering channels. We emulated this dual-radio scenario in our single-radio

environment by generating the client’s messages locally on the corresponding mesh nodes

and by avoiding sending data packets from the mesh nodes towards the clients.

3) Each mesh node is equipped with a single radio and the mobile clients have no PTT sup-

port. In our system, one can simply participate in a PTT session using a standard VoIP

phone or application. If using G.711, a well supported VoIP codec, a duplex voice stream is

transmitted regardless of the data content. By PTT support we refer to the ability of the

user’s device to control the flow of outgoing packets, e.g, a button to suppress sending un-

necessary data when the user is not allowed to speak in the session. A silence suppression

technique employed by the codec, on the user’s device, would also be a good alternative to

reduce unnecessary data.

For the case where clients have no PTT support, there are two main disadvantages that

considerably affect performance. First, such clients continuously send VoIP packets, even

when not having the floor. These packets are dropped by the mesh node serving the client,

except for the durations when the client has acquired the floor. This case incurs considerable

overhead as clients send unnecessary packets in their vicinity. The second disadvantage is

that a node needs to send individual packets to all the clients directly connected to it, even
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Figure 6.12: Average latency of the packets received by the nodes when the number of clients
in a PTT group increases from 2 to 42 (3 clients connected to each of the 14 access points.)
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Figure 6.13: Average loss rate of the packets received by the nodes when the number of
clients in a PTT group increases from 2 to 42 (3 clients connected to each of the 14 access
points.)
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if they are on the same PTT session. In contrast, with PTT support clients can use the same

multicast address and local port, allowing a single stream of multicast packets to be sent by

the mesh node to all of them.

The quality of the PTT service is affected by several factors, the most important being

latency, jitter (which influences the responsiveness of the system), and the loss rate of the

packets. While the half-duplex nature of the PTT communication makes it much more latency

tolerant compared to an interactive VoIP conversation, the loss rate has a direct impact on

the voice quality. It needs to be maintained at low levels. [citation needed].

To evaluate the quality of the voice data we use the one-way latency of the packets, and

the loss rate. As the clients used in our experiments are emulated on the mesh nodes, both

metrics are measured from the mesh nodes perspective.

Figures 6.12 and 6.13 summarize this entire experiment, showing the average latency

and loss rate of the VoIP packets received by the mesh nodes, in each of the above three

scenarios, averaged over 10-minute tests. In the single radio setup, the average latency of

the nodes increases from 15.97 ms for 4 clients to 28.42 ms for 42 (three clients connected

to each mesh node). In dual radio setup the latency is slightly lower, varying from 16.59 ms

for 4 clients to 25.52 ms for 42. With single radio and no PTT support setup, the latency

was significantly higher, because of the large number of packets competing for the medium.

With only 28 clients the average latency was 114 ms. Increasing the number of clients in the

system beyond this point resulted in a high loss rate (above 1%).

Figures 6.14 and 6.15 illustrate the variation of these average latencies and loss rates

of each node. For an easier visualization we used different ranges for the Y-axis, in each of

the three setups. For each experiment we show a boxplot, i.e., the 1st and 3rd quartile, the

median, the lowest and the highest value. The variation of the latency in general increases

with the number of clients in the system, the maximum difference between the highest and
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Figure 6.14: Boxplots with the average latency of the packets received by the nodes when the
number of clients in a PTT session increases. Note that the Y-axis has different ranges in all
three scenarios.
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Figure 6.15: Boxplots with the average loss rate of the packets received by the nodes when
the number of clients in the PTT session increases. Note that the Y-axis has different ranges
in all three scenarios, and its maximum value is 100%.
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lowest average latency being less 10 ms. For loss rates (Figure 6.15), the deviation from the

average is higher. With 28 clients in the single radio setup, the maximum average loss rate

of node was 0.5%, while the average was only 0.19%. The same wide range of loss rates is

visible in all three setups.

The latencies we used so far are the average latency of all the packets received by a

node, regardless of the sending node. It is expected that in an unplanned mesh network the

connectivity between nodes may vary, both in terms of latency and loss rate. Many times the

links between nodes are not symmetric. Moreover, the length of the multi-hop paths between

the sending and the receiving node has a direct impact on the packet latency. We provide

now a more detailed view of this experiment by looking at the pairwise latencies between the

nodes.

For every node we compute the average latency of the packets received from each other

node (Figures 6.16 and 6.17). If the number of clients is less than the number of nodes in

the network, we show only the nodes that actually handle at least one PTT client. The graph

is plotted as a heatmap, that is, the lighter colors correspond to a lower latency, while the

darkest color corresponds to a latency of 50 ms or above. The diagonal line is not defined (the

sender is the receiving node), and we used by convention value 0. By analyzing the single

and dual radio setups we can see that for a given receiving node the latency per sending

node is far from being uniform. For example, in the experiment with 28 clients in the single

radio setup, the average latency for node 14 is 16 ms when the sending node is 2, and 42 ms

when the sending node is 5. This is expected as the paths from the sending to the receiver

node vary. Vice-versa, for a given sender, the packet latency perceived by the receiver nodes

spans over a wide range. When node 14 was the sender, the minimum latency was 24.57 ms

latency for node 2 and 56.39 ms for node 5. We can also see that, based on the location in

the network, some sending nodes are better than others. For instance, the average latencies
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Figure 6.16: Average latency of the received packets for all sending nodes, in the single radio
setup. The lighter colors correspond to a lower latency, while the darkest color corresponds
to a latency of 50 ms or above. The diagonal line is by convention zero.

for all receiving nodes are lower when node 13 is sending data, compare to when node 14 is

sending data, in the experiment with 42 clients. Therefore, it is likely that a PTT user will

experience a change in the quality of the voice stream both when he roams from one access

point to another, or when a different user acquires the floor.

In terms of the symmetry of the links, they are not perfectly symmetric, but the values

are fairly close. The maximum difference in the latency between a pair of nodes was 10.9 ms

for single radio and 12.38 ms for the dual radio setup.

Similar patterns can be observed in the pairwise loss rates (Figures 6.18 and 6.19). Here

there is an even more variation between the receiving nodes. Nodes 3, 4, 5 and 6 experienced

a lower loss rate for the same senders (nodes 3, 4, 5, 6, 10, and 11) in the single radio setup

with 28 clients. Also, node 7’s loss rate was very high regardless of the sender, in the same

setup. As for the symmetry of the links’ loss rates, the maximum difference was 0.97% for

single radio and 0.4% for dual radio.
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Figure 6.17: Average latency of the received packets for all sending nodes, in the dual radio
setup. The lighter colors correspond to a lower latency, while the darkest color corresponds
to a latency of 50 ms or above. The diagonal line is by convention zero.

Figure 6.20 presents the Cumulative Distribution Function (CDF) of the latency for each

mesh node in the experiment with 14 clients, in a single radio scenario. We can see that

95% of the packets are received within 50 ms. Note that the numbers for end-to-end client

communication will be somewhat higher as each client is one wireless hop away from a mesh

node. The experiment shows that all nodes received most packets within 50 ms. Note that

for PTT applications, latencies as high as 400 ms are considered acceptable in PTT systems

built for first responders [6].

Figure 6.21 presents the overhead traffic, as seen by a single mesh node (node 1 in Fig-

ure 6.10). This overhead depends on the distribution and the density of the clients in the net-

work. For better analysis, we separate the overhead into three distinct components: (1) mesh

control traffic (i.e., link state updates generated by topology changes and control traffic for

managing multicast groups). The amount of this traffic is very small, less than 1 Kbps.

(2) Control traffic generated by our PTT protocol (e.g., requests, releases, ping messages, ac-
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Figure 6.18: Average loss rate of the received packets for all sending nodes, in the single radio
setup. The lighter colors correspond to a lower loss rate, while the darkest color corresponds
to a loss rate of 0.2% or above. The diagonal line is by convention zero.

knowledgments, etc.) Since the size of these messages is very small, this overhead is also low,

less than 1 Kbps on average in our experiments. (3) Traffic required to locally share clients’

PTT state (i.e., traffic on the Client Control groups). This represents the majority of the over-

head, increasing from 1.3 Kbps for 2 clients to 27 Kbps for 42. This overhead depends on the

density of the mesh (how many mesh nodes can hear a client) and the number of clients. The

experiment shows that the overhead of the system as the number of clients grows is minimal,

below 1 Kbps per client.

To sum up, this experiment shows how the system scales and demonstrates that when

utilizing a PTT enabled phone or a dual-radio configuration, the system can scale to at least

42 clients in the mesh network with minimal impact on latency and loss rate.
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Figure 6.19: Average loss rate of the received packets for all sending nodes, in the dual radio
setup. The lighter colors correspond to a lower loss rate, while the darkest color corresponds
to a loss rate of 0.2% or above. The diagonal line is by convention zero.

Scaling with the number of PTT sessions

To test the scalability of our system in another dimension, we gradually increase the number

of simultaneous PTT sessions in the system. Each PTT session includes four clients connected

to random mesh nodes in the network. Each PTT session contributes a single VoIP stream

(50 packets per second, total of 64 Kbps).

Figures 6.22 and 6.23 show the latency and loss rate as the number of PTT groups in-

creases. We first compute the latency of the packets received by all the nodes that handle

PTT users in a given group. The average of these values represent the group average la-

tency. Then we average these values for all the groups and obtain the average latency for the

experiment.

With a single radio, the system scales to 6 PTT groups, while with dual-radio, the sys-

tem scales to 8 PTT groups. Noting that the scalability of the system was impaired by the
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Figure 6.20: CDF of the latency of the packets received by each of the mesh nodes, in the
experiment with 14 clients, in a single radio scenario.
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Figure 6.21: Overhead traffic as seen by node 1 when the number of clients in a PTT group
increases from 2 to 42 (3 clients connected to each of the 14 access points.)
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Figure 6.22: Average latency of the packets received by the nodes when the number of PTT
groups increases from 1 to 20. There are 4 clients in each PTT group.
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89



Chapter 6. Application: Push-To-Talk Service for First Responders 6.4. Experimental results

high overhead associated with sending small packets in 802.11 networks, we tested the same

two scenarios with packing 160 ms of VoIP packets into one network packet at the mesh

node. This approach allows us to trade some latency (20 ms x 7 packets = 140 ms) for an

8 fold reduction in the number of packets in the mesh. Note that PTT systems used by

first-responders [6] employ a slightly higher packing scheme of 180 ms. Packet aggregation

allowed us to support up to 18 PTT sessions before the latency jumped to over 500 ms.

To better understand the quality of the service perceived by the users, we now analyze the

variation of the latency and loss rate on each group. Figures 6.24 and 6.25 show a boxplot

for each experiment, as we increase the number of PTT groups in the system, for each setup

(single radio, single radio with packing, dual radio, dual radio + packing). As before, for each

setup we use different ranges for the Y-axis. Notice that the variation of the latency in the

setups without packing is much higher than if packing is used: 65-493 ms (6 groups, single

radio), 107-784 ms (8 groups, dual radio), compared to 31-47 ms (8 groups, single radio with

packing), and 68-305 ms (18 groups, dual radio with packing). The corresponding ranges

for loss rates are: 0.19% − 0.6% (6 groups, single radio), 0.6% − 4.19% (8 groups, dual radio),

0.88% − 4.59% (8 groups, single radio with packing), and 1 − 5% (18 groups, dual radio with

packing). Latencies for each individual PTT group are shown in Figure 6.26. Groups are

sorted in the increasing order of their average latencies. This is still a high level view on

the system, as a group latency is computed as an average over the latencies of the four users

communication on that group. Therefore, depending on their position in the network, users

experience very different latencies.

To sum up, this experiment shows that it pays to trade some latency with scalability in

order to support a larger number of PTT groups.
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Figure 6.24: Boxplots with the average latency of the packets received on each group when
the number of PTT groups increases from 1 to 20. There are 4 clients in each PTT group.
Note that the Y-axis has different ranges in all four scenarios.
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Figure 6.25: Boxplots with the average loss rate of the packets received on each group when
the number of PTT groups increases from 1 to 20. There are 4 clients in each PTT group.
Note that the Y-axis has different ranges in all four scenarios.
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Robustness test

This experiment demonstrates the system’s behavior when there is a partition and a merge

in the wireless mesh network.

We first present a small-scale scenario with 4 clients (A, B, C and D) joining the network in

4 different places (node 1, node 5, node 9 and node 10), with A and B in one “side” of network,

and C and D in the other side, as illustrated by Figure 6.27. In the beginning, the controller

of the PTT session is node 1 and client A is granted permission to speak. We then partitioned

the network, such that node 9 and node 10 became unreachable from node 1 and node 5’s side

of the network. Figure 6.27 shows the voice traffic as received by client B in the first partition

and by client D in the second one. We can see that in the first partition the data packets

are generated by client A, and this does not change, as expected, even after the partition

occurs (around second 60). However, the right side of the partition lost the controller. After

approximately 7 seconds, a new controller is generated (node 9), the requests are recovered,

and client C is granted permission to speak, as shown by the second partition’s view in Figure

6.27. This demonstrates that the system gracefully handles network partitions.

Next, we started with the network partitioned, with node 1 and node 5 in one partition

and node 9 and node 10 in the other, as shown in Figure 6.28. Each of the partitions has its

own controller, node 1 and node 9, respectively. We then merged the network by connecting

a mesh node that is the only connection between the two sides of the network. We analyze

the voice data received by clients B and C (Figure 6.28, partition views). We can see that

before the merge the data is sent by client A in the first partition and by client D in the

second. As the network begins to merge, both B and C start getting voice traffic from both

senders. Shortly after the network routes became stable, the controllers detected each other

and client A’s right to speak is revoked by node 9, the newly established controller. Thus,
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Figure 6.27: Traffic before and after a network partition, as seen by client B in the first
partition and by client D in the second partition. A new controller is generated in the second
partition.
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Figure 6.28: Traffic before and after a network merge, as seen by client B in the first partition
and by client C in the second partition. For 686 ms the client’s voice traffic is corrupted, due
to multiple voice streams. After the merge there is only one controller and one sending node.
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the one-to-many communication is reinforced. Clients’ voice traffic was corrupted—due to

multiple voice streams—for about 686 ms (35 packets). This demonstrates that the system

gracefully handles network merges, quickly eliminating redundant controllers.

Large-scale scenario

Finally, we benchmark the system in a large scale partition and merge scenario, with 40

participants in 10 simultaneous PTT sessions. Partition was performed by disconnecting one

of the routers. Similar to the scalability experiment, the sending client in each group changes

every 10 seconds. Figure 6.29 shows the overall traffic in the vicinity of node 1 (as observed

by setting node 1 in promiscuous mode and counting all the packets in its vicinity). To better

understand the system’s behavior, we present in Figure 6.29(a) both the data and overhead

traffic, and separately, in Figure 6.29(b), two components of the overhead traffic: routing

control traffic (link state, multicast group management) and PTT protocol control traffic. For

clarity, we do not show the overhead traffic associated with sharing the state of a client within

his vicinity, as it was already shown in Figure 6.21.

Following the overhead traffic, we can see the route updates that are generated when

clients join the network (point A), as well as the overhead related to clients joining a PTT

group and asking for permission to speak (point B). The system operates normally until sec-

ond 265 (point D), when the network partitions. Then, many of the sessions in node 1’s parti-

tion lose their speaker or their ability to route to some PTT members. When the connectivity

stabilizes, new speakers are granted permission to speak (point E). Note that the amount of

VoIP traffic is smaller, as some PTT sessions no longer have members in the current parti-

tion, or do not have to route through node 1’s vicinity PTT session messages. Around second

310 (point F), the network merges, causing a spike in both data and overhead traffic. Shortly

after that, network routes stabilize and normal operation is resumed. Lastly, around second
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Figure 6.29: Network partition and merge in a large-scale experiment with 40 clients on 10
PTT groups. (A) clients join, (B) clients request to speak, (C) regular operation, (D) network
partitions, (E) network stabilizes after the partition, (F) network merges, (G) clients stop
speaking. The marks indicate approximately the middle of each stage.

380 (point G), all the clients stop speaking and the data rate drops to zero. Since clients did

not leave their PTT groups, the overhead associated with maintaining PTT sessions remains

constant through the end of the experiment. This elaborate scenario demonstrates the ro-

bustness of the system to network connectivity changes while supporting a large number of

distinct PTT sessions.
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Chapter 7

Conclusions

In an effort to make them a reality, this dissertation looks at the practical aspects of the wire-

less mesh networks and introduces the first high-throughput 802.11 wireless mesh system

that provides seamless connectivity to mobile users using off-the-shelf low cost routers.

Our design is both efficient and flexible by using an overlay approach that maintains

the control of the mesh in user space but forwards the data at the kernel-level. Redundant

multipath routing, the mechanism that enabled this separation while preserving seamless

mobility, is a general concept that could be beneficial in other types of networks.

While Internet access is the most dominant usage of mesh networks today, the distributed

support that mesh networks can provide enables new applications. This dissertation looks at

Push-To-Talk as an example of such an application. It includes the architecture and protocols

that allow the entire mesh network to act a single distributed point of coordination between

PTT users. The system is robust in the face of connectivity faults, such as network partitions

and merges, and node crashes. The architecture seamlessly integrates regular and cell phone

users, allowing them to connect via a gateway to the mesh network, and participate in locally

established PTT sessions.

I enthusiastically look forward to see appealing applications and a wider adoption of wire-

less mesh networks in the years to come.
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