

Linux Networking Cookbook ™

Carla Schroder

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Linux Networking Cookbook™

by Carla Schroder

Copyright © 2008 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Sumita Mukherji
Copyeditor: Derek Di Matteo
Proofreader: Sumita Mukherji

Indexer: John Bickelhaupt
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Jessamyn Read

Printing History:

November 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The Cookbook series designations, Linux Networking Cookbook, the image of a
female blacksmith, and related trade dress are trademarks of O’Reilly Media, Inc.

Java™ is a trademark of Sun Microsystems, Inc. .NET is a registered trademark of Microsoft
Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-10248-8

ISBN-13: 978-0-596-10248-7

[M]

v

Table of Contents

Preface . xv

1. Introduction to Linux Networking . 1
1.0 Introduction 1

2. Building a Linux Gateway on a Single-Board Computer 12
2.0 Introduction 12
2.1 Getting Acquainted with the Soekris 4521 14
2.2 Configuring Multiple Minicom Profiles 17
2.3 Installing Pyramid Linux on a Compact Flash Card 17
2.4 Network Installation of Pyramid on Debian 19
2.5 Network Installation of Pyramid on Fedora 21
2.6 Booting Pyramid Linux 24
2.7 Finding and Editing Pyramid Files 26
2.8 Hardening Pyramid 27
2.9 Getting and Installing the Latest Pyramid Build 28

2.10 Adding Additional Software to Pyramid Linux 28
2.11 Adding New Hardware Drivers 32
2.12 Customizing the Pyramid Kernel 33
2.13 Updating the Soekris comBIOS 34

3. Building a Linux Firewall . 36
3.0 Introduction 36
3.1 Assembling a Linux Firewall Box 44
3.2 Configuring Network Interface Cards on Debian 45
3.3 Configuring Network Interface Cards on Fedora 48
3.4 Identifying Which NIC Is Which 50

vi | Table of Contents

3.5 Building an Internet-Connection Sharing Firewall on a Dynamic
WAN IP Address 51

3.6 Building an Internet-Connection Sharing Firewall on a Static
WAN IP Address 56

3.7 Displaying the Status of Your Firewall 57
3.8 Turning an iptables Firewall Off 58
3.9 Starting iptables at Boot, and Manually Bringing Your Firewall

Up and Down 59
3.10 Testing Your Firewall 62
3.11 Configuring the Firewall for Remote SSH Administration 65
3.12 Allowing Remote SSH Through a NAT Firewall 66
3.13 Getting Multiple SSH Host Keys Past NAT 68
3.14 Running Public Services on Private IP Addresses 69
3.15 Setting Up a Single-Host Firewall 71
3.16 Setting Up a Server Firewall 76
3.17 Configuring iptables Logging 79
3.18 Writing Egress Rules 80

4. Building a Linux Wireless Access Point . 82
4.0 Introduction 82
4.1 Building a Linux Wireless Access Point 86
4.2 Bridging Wireless to Wired 87
4.3 Setting Up Name Services 90
4.4 Setting Static IP Addresses from the DHCP Server 93
4.5 Configuring Linux and Windows Static DHCP Clients 94
4.6 Adding Mail Servers to dnsmasq 96
4.7 Making WPA2-Personal Almost As Good As WPA-Enterprise 97
4.8 Enterprise Authentication with a RADIUS Server 100
4.9 Configuring Your Wireless Access Point to Use FreeRADIUS 104

4.10 Authenticating Clients to FreeRADIUS 106
4.11 Connecting to the Internet and Firewalling 107
4.12 Using Routing Instead of Bridging 108
4.13 Probing Your Wireless Interface Card 113
4.14 Changing the Pyramid Router’s Hostname 114
4.15 Turning Off Antenna Diversity 115
4.16 Managing dnsmasq’s DNS Cache 117
4.17 Managing Windows’ DNS Caches 120
4.18 Updating the Time at Boot 121

Table of Contents | vii

5. Building a VoIP Server with Asterisk . 123
5.0 Introduction 123
5.1 Installing Asterisk from Source Code 127
5.2 Installing Asterisk on Debian 131
5.3 Starting and Stopping Asterisk 132
5.4 Testing the Asterisk Server 135
5.5 Adding Phone Extensions to Asterisk and Making Calls 136
5.6 Setting Up Softphones 143
5.7 Getting Real VoIP with Free World Dialup 146
5.8 Connecting Your Asterisk PBX to Analog Phone Lines 148
5.9 Creating a Digital Receptionist 151

5.10 Recording Custom Prompts 153
5.11 Maintaining a Message of the Day 156
5.12 Transferring Calls 158
5.13 Routing Calls to Groups of Phones 158
5.14 Parking Calls 159
5.15 Customizing Hold Music 161
5.16 Playing MP3 Sound Files on Asterisk 161
5.17 Delivering Voicemail Broadcasts 162
5.18 Conferencing with Asterisk 163
5.19 Monitoring Conferences 165
5.20 Getting SIP Traffic Through iptables NAT Firewalls 166
5.21 Getting IAX Traffic Through iptables NAT Firewalls 168
5.22 Using AsteriskNOW, “Asterisk in 30 Minutes” 168
5.23 Installing and Removing Packages on AsteriskNOW 170
5.24 Connecting Road Warriors and Remote Users 171

6. Routing with Linux . 173
6.0 Introduction 173
6.1 Calculating Subnets with ipcalc 176
6.2 Setting a Default Gateway 178
6.3 Setting Up a Simple Local Router 180
6.4 Configuring Simplest Internet Connection Sharing 183
6.5 Configuring Static Routing Across Subnets 185
6.6 Making Static Routes Persistent 186
6.7 Using RIP Dynamic Routing on Debian 187
6.8 Using RIP Dynamic Routing on Fedora 191
6.9 Using Quagga’s Command Line 192

viii | Table of Contents

6.10 Logging In to Quagga Daemons Remotely 194
6.11 Running Quagga Daemons from the Command Line 195
6.12 Monitoring RIPD 197
6.13 Blackholing Routes with Zebra 198
6.14 Using OSPF for Simple Dynamic Routing 199
6.15 Adding a Bit of Security to RIP and OSPF 201
6.16 Monitoring OSPFD 202

7. Secure Remote Administration with SSH . 204
7.0 Introduction 204
7.1 Starting and Stopping OpenSSH 207
7.2 Creating Strong Passphrases 208
7.3 Setting Up Host Keys for Simplest Authentication 209
7.4 Generating and Copying SSH Keys 211
7.5 Using Public-Key Authentication to Protect System Passwords 213
7.6 Managing Multiple Identity Keys 214
7.7 Hardening OpenSSH 215
7.8 Changing a Passphrase 216
7.9 Retrieving a Key Fingerprint 217

7.10 Checking Configuration Syntax 218
7.11 Using OpenSSH Client Configuration Files for Easier Logins 218
7.12 Tunneling X Windows Securely over SSH 220
7.13 Executing Commands Without Opening a Remote Shell 221
7.14 Using Comments to Label Keys 222
7.15 Using DenyHosts to Foil SSH Attacks 223
7.16 Creating a DenyHosts Startup File 225
7.17 Mounting Entire Remote Filesystems with sshfs 226

8. Using Cross-Platform Remote Graphical Desktops . 228
8.0 Introduction 228
8.1 Connecting Linux to Windows via rdesktop 230
8.2 Generating and Managing FreeNX SSH Keys 233
8.3 Using FreeNX to Run Linux from Windows 233
8.4 Using FreeNX to Run Linux from Solaris, Mac OS X, or Linux 238
8.5 Managing FreeNX Users 239
8.6 Watching Nxclient Users from the FreeNX Server 240
8.7 Starting and Stopping the FreeNX Server 241

Table of Contents | ix

8.8 Configuring a Custom Desktop 242
8.9 Creating Additional Nxclient Sessions 244

8.10 Enabling File and Printer Sharing, and Multimedia in Nxclient 246
8.11 Preventing Password-Saving in Nxclient 246
8.12 Troubleshooting FreeNX 247
8.13 Using VNC to Control Windows from Linux 248
8.14 Using VNC to Control Windows and Linux at the Same Time 250
8.15 Using VNC for Remote Linux-to-Linux Administration 252
8.16 Displaying the Same Windows Desktop to Multiple Remote Users 254
8.17 Changing the Linux VNC Server Password 256
8.18 Customizing the Remote VNC Desktop 257
8.19 Setting the Remote VNC Desktop Size 258
8.20 Connecting VNC to an Existing X Session 259
8.21 Securely Tunneling x11vnc over SSH 261
8.22 Tunneling TightVNC Between Linux and Windows 262

9. Building Secure Cross-Platform Virtual Private Networks
with OpenVPN . 265

9.0 Introduction 265
9.1 Setting Up a Safe OpenVPN Test Lab 267
9.2 Starting and Testing OpenVPN 270
9.3 Testing Encryption with Static Keys 272
9.4 Connecting a Remote Linux Client Using Static Keys 274
9.5 Creating Your Own PKI for OpenVPN 276
9.6 Configuring the OpenVPN Server for Multiple Clients 279
9.7 Configuring OpenVPN to Start at Boot 281
9.8 Revoking Certificates 282
9.9 Setting Up the OpenVPN Server in Bridge Mode 284

9.10 Running OpenVPN As a Nonprivileged User 285
9.11 Connecting Windows Clients 286

10. Building a Linux PPTP VPN Server . 287
10.0 Introduction 287
10.1 Installing Poptop on Debian Linux 290
10.2 Patching the Debian Kernel for MPPE Support 291
10.3 Installing Poptop on Fedora Linux 293
10.4 Patching the Fedora Kernel for MPPE Support 294
10.5 Setting Up a Standalone PPTP VPN Server 295

x | Table of Contents

10.6 Adding Your Poptop Server to Active Directory 298
10.7 Connecting Linux Clients to a PPTP Server 299
10.8 Getting PPTP Through an iptables Firewall 300
10.9 Monitoring Your PPTP Server 301

10.10 Troubleshooting PPTP 302

11. Single Sign-on with Samba for Mixed Linux/Windows LANs 305
11.0 Introduction 305
11.1 Verifying That All the Pieces Are in Place 307
11.2 Compiling Samba from Source Code 310
11.3 Starting and Stopping Samba 312
11.4 Using Samba As a Primary Domain Controller 313
11.5 Migrating to a Samba Primary Domain Controller from an

NT4 PDC 317
11.6 Joining Linux to an Active Directory Domain 319
11.7 Connecting Windows 95/98/ME to a Samba Domain 323
11.8 Connecting Windows NT4 to a Samba Domain 324
11.9 Connecting Windows NT/2000 to a Samba Domain 325

11.10 Connecting Windows XP to a Samba Domain 325
11.11 Connecting Linux Clients to a Samba Domain with

Command-Line Programs 326
11.12 Connecting Linux Clients to a Samba Domain with

Graphical Programs 330

12. Centralized Network Directory with OpenLDAP . 332
12.0 Introduction 332
12.1 Installing OpenLDAP on Debian 339
12.2 Installing OpenLDAP on Fedora 341
12.3 Configuring and Testing the OpenLDAP Server 341
12.4 Creating a New Database on Fedora 344
12.5 Adding More Users to Your Directory 348
12.6 Correcting Directory Entries 350
12.7 Connecting to a Remote OpenLDAP Server 352
12.8 Finding Things in Your OpenLDAP Directory 352
12.9 Indexing Your Database 354

12.10 Managing Your Directory with Graphical Interfaces 356
12.11 Configuring the Berkeley DB 358
12.12 Configuring OpenLDAP Logging 363

Table of Contents | xi

12.13 Backing Up and Restoring Your Directory 364
12.14 Refining Access Controls 366
12.15 Changing Passwords 370

13. Network Monitoring with Nagios . 371
13.0 Introduction 371
13.1 Installing Nagios from Sources 372
13.2 Configuring Apache for Nagios 376
13.3 Organizing Nagios’ Configuration Files Sanely 378
13.4 Configuring Nagios to Monitor Localhost 380
13.5 Configuring CGI Permissions for Full Nagios Web Access 389
13.6 Starting Nagios at Boot 390
13.7 Adding More Nagios Users 391
13.8 Speed Up Nagios with check_icmp 392
13.9 Monitoring SSHD 393

13.10 Monitoring a Web Server 397
13.11 Monitoring a Mail Server 400
13.12 Using Servicegroups to Group Related Services 402
13.13 Monitoring Name Services 403
13.14 Setting Up Secure Remote Nagios Administration with OpenSSH 405
13.15 Setting Up Secure Remote Nagios Administration with OpenSSL 406

14. Network Monitoring with MRTG . 408
14.0 Introduction 408
14.1 Installing MRTG 409
14.2 Configuring SNMP on Debian 410
14.3 Configuring SNMP on Fedora 413
14.4 Configuring Your HTTP Service for MRTG 413
14.5 Configuring and Starting MRTG on Debian 415
14.6 Configuring and Starting MRTG on Fedora 418
14.7 Monitoring Active CPU Load 419
14.8 Monitoring CPU User and Idle Times 422
14.9 Monitoring Physical Memory 424

14.10 Monitoring Swap Space and Memory 425
14.11 Monitoring Disk Usage 426
14.12 Monitoring TCP Connections 428
14.13 Finding and Testing MIBs and OIDs 429
14.14 Testing Remote SNMP Queries 430

xii | Table of Contents

14.15 Monitoring Remote Hosts 432
14.16 Creating Multiple MRTG Index Pages 433
14.17 Running MRTG As a Daemon 434

15. Getting Acquainted with IPv6 . 437
15.0 Introduction 437
15.1 Testing Your Linux System for IPv6 Support 442
15.2 Pinging Link Local IPv6 Hosts 443
15.3 Setting Unique Local Unicast Addresses on Interfaces 445
15.4 Using SSH with IPv6 446
15.5 Copying Files over IPv6 with scp 447
15.6 Autoconfiguration with IPv6 448
15.7 Calculating IPv6 Addresses 449
15.8 Using IPv6 over the Internet 450

16. Setting Up Hands-Free Network Installations of New Systems 452
16.0 Introduction 452
16.1 Creating Network Installation Boot Media for Fedora Linux 453
16.2 Network Installation of Fedora Using Network Boot Media 455
16.3 Setting Up an HTTP-Based Fedora Installation Server 457
16.4 Setting Up an FTP-Based Fedora Installation Server 458
16.5 Creating a Customized Fedora Linux Installation 461
16.6 Using a Kickstart File for a Hands-off Fedora Linux Installation 463
16.7 Fedora Network Installation via PXE Netboot 464
16.8 Network Installation of a Debian System 466
16.9 Building a Complete Debian Mirror with apt-mirror 468

16.10 Building a Partial Debian Mirror with apt-proxy 470
16.11 Configuring Client PCs to Use Your Local Debian Mirror 471
16.12 Setting Up a Debian PXE Netboot Server 472
16.13 Installing New Systems from Your Local Debian Mirror 474
16.14 Automating Debian Installations with Preseed Files 475

17. Linux Server Administration via Serial Console . 478
17.0 Introduction 478
17.1 Preparing a Server for Serial Console Administration 479
17.2 Configuring a Headless Server with LILO 483
17.3 Configuring a Headless Server with GRUB 485
17.4 Booting to Text Mode on Debian 487

Table of Contents | xiii

17.5 Setting Up the Serial Console 489
17.6 Configuring Your Server for Dial-in Administration 492
17.7 Dialing In to the Server 495
17.8 Adding Security 496
17.9 Configuring Logging 497

17.10 Uploading Files to the Server 498

18. Running a Linux Dial-Up Server . 501
18.0 Introduction 501
18.1 Configuring a Single Dial-Up Account with WvDial 501
18.2 Configuring Multiple Accounts in WvDial 504
18.3 Configuring Dial-Up Permissions for Nonroot Users 505
18.4 Creating WvDial Accounts for Nonroot Users 507
18.5 Sharing a Dial-Up Internet Account 508
18.6 Setting Up Dial-on-Demand 509
18.7 Scheduling Dial-Up Availability with cron 510
18.8 Dialing over Voicemail Stutter Tones 512
18.9 Overriding Call Waiting 512

18.10 Leaving the Password Out of the Configuration File 513
18.11 Creating a Separate pppd Logfile 514

19. Troubleshooting Networks . 515
19.0 Introduction 515
19.1 Building a Network Diagnostic and Repair Laptop 516
19.2 Testing Connectivity with ping 519
19.3 Profiling Your Network with FPing and Nmap 521
19.4 Finding Duplicate IP Addresses with arping 523
19.5 Testing HTTP Throughput and Latency with httping 525
19.6 Using traceroute, tcptraceroute, and mtr to Pinpoint Network

Problems 527
19.7 Using tcpdump to Capture and Analyze Traffic 529
19.8 Capturing TCP Flags with tcpdump 533
19.9 Measuring Throughput, Jitter, and Packet Loss with iperf 535

19.10 Using ngrep for Advanced Packet Sniffing 538
19.11 Using ntop for Colorful and Quick Network Monitoring 540
19.12 Troubleshooting DNS Servers 542
19.13 Troubleshooting DNS Clients 545
19.14 Troubleshooting SMTP Servers 546

xiv | Table of Contents

19.15 Troubleshooting a POP3, POP3s, or IMAP Server 549
19.16 Creating SSL Keys for Your Syslog-ng Server on Debian 551
19.17 Creating SSL Keys for Your Syslog-ng Server on Fedora 557
19.18 Setting Up stunnel for Syslog-ng 558
19.19 Building a Syslog Server 560

A. Essential References . 563

B. Glossary of Networking Terms . 566

C. Linux Kernel Building Reference . 590

Index . 599

xv

Preface

So there you are, staring at your computer and wondering why your Internet connec-
tion is running slower than slow, and wishing you knew enough to penetrate the
endless runaround you get from your service provider. Or, you’re the Lone IT Staffer
in a small business who got the job because you know the difference between a
switch and hub, and now you’re supposed to have all the answers. Or, you’re really
interested in networking, and want to learn more and make it your profession. Or,
you are already knowledgeable, and you simply have a few gaps you need to fill. But
you’re finding out that computer networking is a subject with reams and reams of
reference material that is not always organized in a coherent, useful order, and it
takes an awful lot of reading just to figure out which button to push.

To make things even more interesting, you need to integrate Linux and Windows
hosts. If you want to pick up a book that lays out the steps for specific tasks, that
explains clearly the necessary commands and configurations, and does not tax your
patience with endless ramblings and meanderings into theory and obscure RFCs, this
is the book for you.

Audience
Ideally, you will have some Linux experience. You should know how to install and
remove programs, navigate the filesystem, manage file permissions, and user and
group creation. You should have some exposure to TCP/IP and Ethernet basics, IPv4
and IPv6, LAN, WAN, subnet, router, firewall, gateway, switch, hub, and cabling. If
you are starting from scratch, there are any number of introductory books to get you
up to speed on the basics.

xvi | Preface

If you don’t already have basic Linux experience, I recommend getting the Linux
Cookbook (O’Reilly). The Linux Cookbook (which I authored) was designed as a
companion book to this one. It covers installing and removing software, user
account management, cross-platform file and printer sharing, cross-platform user
authentication, running servers (e.g., mail, web, DNS), backup and recovery,
system rescue and repair, hardware discovery, configuring X Windows, remote
administration, and lots more good stuff.

The home/SOHO user also will find some useful chapters in this book, and anyone
who wants to learn Linux networking will be able to do everything in this book with
a couple of ordinary PCs and inexpensive networking hardware.

Contents of This Book
This book is broken into 19 chapters and 3 appendixes:

Chapter 1, Introduction to Linux Networking
This is your high-level view of computer networking, covering cabling, routing
and switching, interfaces, the different types of Internet services, and the funda-
mentals of network architecture and performance.

Chapter 2, Building a Linux Gateway on a Single-Board Computer
In which we are introduced to the fascinating and adaptable world of Linux on
routerboards, such as those made by Soekris and PC Engines, and how Linux on
one of these little boards gives you more power and flexibility than commercial
gear costing many times as much.

Chapter 3, Building a Linux Firewall
Learn to use Linux’s powerful iptables packet filter to protect your network, with
complete recipes for border firewalls, single-host firewalls, getting services
through NAT (Network Address Translation), blocking external access to inter-
nal services, secure remote access through your firewall, and how to safely test
new firewalls before deploying them on production systems.

Chapter 4, Building a Linux Wireless Access Point
You can use Linux and a routerboard (or any ordinary PC hardware) to build a
secure, powerful, fully featured wireless access point customized to meet your
needs, including state-of-the-art authentication and encryption, name services,
and routing and bridging.

Chapter 5, Building a VoIP Server with Asterisk
This chapter digs into the very guts of the revolutionary and popular Asterisk
VoIP server. Sure, these days, everyone has pretty point-and-click GUIs for man-
aging their iPBX systems, but you still need to understand what’s under the
hood. This chapter shows you how to install Asterisk and configure Asterisk

Preface | xvii

from scratch: how to create user’s extensions and voicemail, manage custom
greetings and messages, do broadcast voicemails, provision phones, set up a dig-
ital receptionist, do PSTN (Public Switched Telephone Network) integration, do
pure VoIP, manage road warriors, and more.

Chapter 6, Routing with Linux
Linux’s networking stack is a powerhouse, and it includes advanced routing
capabilities. Here be recipes for building Linux-based routers, calculating
subnets (accurately and without pain), blackholing unwelcome visitors, using
static and dynamic routing, and for monitoring your hard-working little routers.

Chapter 7, Secure Remote Administration with SSH
OpenSSH is an amazing and endlessly useful implementation of the very secure
SSH protocol. It supports traditional password-based logins, password-less
public-key-based logins, and securely carries traffic over untrusted networks.
You’ll learn how to do all of this, plus how to safely log in to your systems
remotely, and how to harden and protect OpenSSH itself.

Chapter 8, Using Cross-Platform Remote Graphical Desktops
OpenSSH is slick and quick, and offers both text console and a secure X
Windows tunnel for running graphical applications. There are several excellent
programs (FreeNX, rdesktop, and VNC) that offer a complementary set of capa-
bilities, such as remote helpdesk, your choice of remote desktops, and Linux as a
Windows terminal server client. You can control multiple computers from a sin-
gle keyboard and monitor, and even conduct a class where multiple users view
or participate in the same remote session.

Chapter 9, Building Secure Cross-Platform Virtual Private Networks with OpenVPN
Everyone seems to want a secure, user-friendly VPN (Virtual Private Network).
But there is a lot of confusion over what a VPN really is, and a lot of commercial
products that are not true VPNs at all, but merely SSL portals to a limited num-
ber of services. OpenVPN is a true SSL-based VPN that requires all endpoints to
be trusted, and that uses advanced methods for securing the connection and
keeping it securely encrypted. OpenVPN includes clients for Linux, Solaris, Mac
OS X, OpenBSD, FreeBSD, and NetBSD, so it’s your one-stop VPN shop. You’ll
learn how to create and manage your own PKI (Public Key Infrastructure), which
is crucial for painless OpenVPN administration. And, you’ll learn how to safely
test OpenVPN, how to set up the server, and how to connect clients.

Chapter 10, Building a Linux PPTP VPN Server
This chapter covers building and configuring a Linux PPTP VPN server for
Windows and Linux clients; how to patch Windows clients so they have the nec-
essary encryption support, how to integrate with Active Directory, and how to
get PPTP through an iptables firewall.

xviii | Preface

Chapter 11, Single Sign-on with Samba for Mixed Linux/Windows LANs
Using Samba as a Windows NT4-style domain controller gives you a flexible,
reliable, inexpensive mechanism for authenticating your network clients. You’ll
learn how to migrate from a Windows domain controller to Samba on Linux,
how to migrate Windows user accounts to Samba, integrate Linux clients with
Active Directory, and how to connect clients.

Chapter 12, Centralized Network Directory with OpenLDAP
An LDAP directory is an excellent mechanism on which to base your network
directory services. This chapter shows how to build an OpenLDAP directory
from scratch, how to test it, how to make changes, how to find things, how to
speed up lookups with smart indexing, and how to tune it for maximum
performance.

Chapter 13, Network Monitoring with Nagios
Nagios is a great network monitoring system that makes clever use of standard
Linux commands to monitor services and hosts, and to alert you when there are
problems. Status reports are displayed in nice colorful graphs on HTML pages
that can be viewed on any Web browser. Learn to monitor basic system health,
and common servers like DNS, Web, and mail servers, and how to perform
secure remote Nagios administration.

Chapter 14, Network Monitoring with MRTG
MRTG is an SNMP-aware network monitor, so theoretically it can be adapted to
monitor any SNMP-enabled device or service. Learn how to monitor hardware
and services, and how to find the necessary SNMP information to create custom
monitors.

Chapter 15, Getting Acquainted with IPv6
Ready or not, IPv6 is coming, and it will eventually supplant IPv4. Get ahead of
the curve by running IPv6 on your own network and over the Internet; learn why
those very long IPv6 addresses are actually simpler to manage than IPv4
addresses; learn how to use SSH over IPv6, and how to auto-configure clients
without DHCP.

Chapter 16, Setting Up Hands-Free Network Installations of New Systems
Fedora Linux and all of its relatives (Red Hat, CentOS, Mandriva, PC Linux OS,
and so forth), and Debian Linux and all of its descendants (Ubuntu, Mepis,
Knoppix, etc.) include utilities for creating and cloning customized installations,
and for provisioning new systems over the network. So, you can plug-in a PC,
and within a few minutes have a complete new installation all ready to go. This
chapter describes how to use ordinary installation ISO images for network instal-
lations of Fedora, and how to create and maintain complete local Debian mirrors
efficiently.

Preface | xix

Chapter 17, Linux Server Administration via Serial Console
When Ethernet goes haywire, the serial console will save the day, both locally
and remotely; plus, routers and managed switches are often administered via the
serial console. Learn how to set up any Linux computer to accept serial
connections, and how to use any Linux, Mac OS X, or Windows PC as a serial
terminal. You’ll also learn how to do dial-up server administration, and how to
upload files over your serial link.

Chapter 18, Running a Linux Dial-Up Server
Even in these modern times, dial-up networking is still important; we’re a long
way from universal broadband. Set up Internet-connection sharing over dial-up,
dial-on-demand, use cron to schedule dialup sessions, and set up multiple dial-
up accounts.

Chapter 19, Troubleshooting Networks
Linux contains a wealth of power tools for diagnosing and fixing network
problems. You’ll learn the deep dark secrets of ping, how to use tcpdump and
Wireshark to eavesdrop on your own wires, how to troubleshoot the name and
mail server, how to discover all the hosts on your network, how to track prob-
lems down to their sources, and how to set up a secure central logging server.
You’ll learn a number of lesser-known but powerful utilities such as fping,
httping, arping, and mtr, and how to transform an ordinary old laptop into your
indispensible portable network diagnostic-and-fixit tool.

Appendix A, Essential References
Computer networking is a large and complex subject, so here is a list of books
and other references that tell you what you need to know.

Appendix B, Glossary of Networking Terms
Don’t know what it means? Look it up here.

Appendix C, Linux Kernel Building Reference
As the Linux kernel continues to expand in size and functionality, it often makes
sense to build your own kernel with all the unnecessary bits stripped out. Learn
the Fedora way, the Debian way, and the vanilla way of building a custom
kernel.

What Is Included
This book covers both old standbys and newfangled technologies. The old-time stuff
includes system administration via serial console, dial-up networking, building an
Internet gateway, VLANs, various methods of secure remote access, routing, and
traffic control. Newfangled technologies include building your own iPBX with Aster-
isk, wireless connectivity, cross-platform remote graphical desktops, hands-free
network installation of new systems, single sign-on for mixed Linux and Windows
LANs, and IPv6 basics. And, there are chapters on monitoring, alerting, and
troubleshooting.

xx | Preface

Which Linux Distributions Are Used in the Book
There are literally hundreds, if not thousands of Linux distributions: live distribu-
tions on all kinds of bootable media, from business-card CDs to USB keys to CDs to
DVDs; large general-purpose distributions; tiny specialized distributions for fire-
walls, routers, and old PCs; multimedia distributions; scientific distributions; cluster
distributions; distributions that run Windows applications; and super-secure distri-
butions. There is no way to even begin to cover all of these; fortunately for frazzled
authors, the Linux world can be roughly divided into two camps: Red Hat Linux and
Debian Linux. Both are fundamental, influential distributions that have spawned the
majority of derivatives and clones.

In this book, the Red Hat world is represented by Fedora Linux, the free community-
driven distribution sponsored by Red Hat. Fedora is free of cost, the core
distribution contains only Free Software, and it has a more rapid release cycle than
Red Hat Enterprise Linux (RHEL). RHEL is on an 18-month release cycle, is
designed to be stable and predictable, and has no packaged free-of-cost version,
though plenty of free clones abound. The clones are built from the RHEL SRPMs,
with the Red Hat trademarks removed. Some RHEL-based distributions include
CentOS, White Box Linux, Lineox, White Box Enterprise Linux, Tao Linux, and Pie
Box Linux.

Additionally, there are a number of Red Hat derivatives to choose from, like Man-
driva and PCLinuxOS. The recipes for Fedora should work for all of these, though
you might find some small differences in filenames, file locations, and package
names.

Debian-based distributions are multiplying even as we speak: Ubuntu, Kubuntu,
Edubuntu, Xandros, Mepis, Knoppix, Kanotix, and Linspire, to name but a few.
While all of these have their own enhancements and modifications, package manage-
ment with aptitude or Synaptic works the same on all of them.

Novell/SUSE is RPM-based like Red Hat, but has always gone its own way. Gentoo
and Slackware occupy their own unique niches. I’m not even going to try to include
all of these, so users of these distributions are on their own. Fortunately, each of
these is very well-documented and have active, helpful user communities, and
they’re not that different from their many cousins.

Downloads and Feedback
Doubtless this book, despite the heroic efforts of me and the fabulous O’Reilly team,
contains flaws, errors, and omissions. Please email your feedback and suggestions to
netcookbook@bratgrrl.com, so we can make the second edition even better. Be sure
to visit http://www.oreilly.com/catalog/9780596102487 for errata, updates, and to
download the scripts used in the book.

Preface | xxi

Conventions
Italic

Used for pathnames, filenames, program names, Internet addresses, such as
domain names and URLs, and new terms where they are defined.

Constant Width
Used for output from programs, and names and keywords in examples.

Constant Width Italic
Used for replaceable parameters or optional elements when showing a com-
mand’s syntax.

Constant Width Bold
Used for commands that should be typed verbatim, and for emphasis within
program code and configuration files.

Unix/Linux commands that can be typed by a regular user are preceded with a regu-
lar prompt, ending with $. Commands that must be typed as root are preceded with
a “root” prompt, ending with a #. In real life, it is better to use the sudo command
wherever possible to avoid logging in as root. Both kinds of prompts indicate the
username, the current host, and the current working directory (for example:
root@xena:/var/llibtftpboot #).

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Linux Networking Cookbook, by
Carla Schroder. Copyright 2008 O’Reilly Media, Inc., 978-0-596-10248-7.”

xxii | Preface

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596102487

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see the web site:

http://www.oreilly.com

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Preface | xxiii

Acknowledgments
Writing a book like this is a massive team effort. Special thanks go to my editor,
Mike Loukides. It takes unrelenting patience, tact, good taste, persistence, and an
amazing assortment of geek skills to shepherd a book like this to completion. Well
done and thank you. Also thanks to:

James Lopeman
Dana Sibera
Kristian Kielhofner
Ed Sawicki
Dana Sibera
Gerald Carter
Michell Murrain
Jamesha Fisher
Carol Williams
Rudy Zijlstra
Maria Blackmore
Meredydd Luff
Devdas Bhagat
Akkana Peck
Valorie Henson
Jennifer Scalf
Sander Marechal
Mary Gardiner
Conor Daly
Alvin Goats
Dragan Stanojevi -Nevidljvl

1

Chapter 1 CHAPTER 1

Introduction to Linux
Networking

1.0 Introduction
Computer networking is all about making computers talk to each other. It is simple
to say, but complex to implement. In this Introduction, we’ll take a bird’s-eye view
of Ethernet networking with Linux, and take a look at the various pieces that make it
all work: routers, firewalls, switches, cabling, interface hardware, and different types
of WAN and Internet services.

A network, whether it is a LAN or WAN, can be thought of as having two parts: com-
puters, and everything that goes between the computers. This book focuses on
connectivity: firewalls, wireless access points, secure remote administration, remote
helpdesk, remote access for users, virtual private networks, authentication, system and
network monitoring, and the rapidly growing new world of Voice over IP services.

We’ll cover tasks like networking Linux and Unix boxes, integrating Windows hosts,
routing, user identification and authentication, sharing an Internet connection, con-
necting branch offices, name services, wired and wireless connectivity, security,
monitoring, and troubleshooting.

Connecting to the Internet
One of the biggest problems for the network administrator is connecting safely to the
Internet. What sort of protection do you need? Do you need expensive commercial
routers and firewalls? How do you physically connect your LAN to the Internet?

Here are the answers to the first two questions: at a minimum, you need a firewall
and a router, and no, you do not need expensive commercial devices. Linux on ordi-
nary PC hardware gives you all the power and flexibility you need for most home and
business users.

2 | Chapter 1: Introduction to Linux Networking

The answer to the last question depends on the type of Internet service. Cable and
DSL are simple—a cable or DSL line connects to an inexpensive broadband modem,
which you connect to your Linux firewall/gateway, which connects to your LAN
switch, as Figure 1-1 shows.

In this introduction, I’m going to refer to the interface between your LAN and out-
side networks as the gateway. At a bare minimum, this gateway is a router. It might
be a dedicated router that does nothing else. You might add a firewall. You might
want other services like name services, a VPN portal, wireless access point, or remote
administration. It is tempting to load it up with all manner of services simply because
you can, but from security and ease-of-administration perspectives, it is best to keep
your Internet gateway as simple as possible. Don’t load it up with web, mail, FTP, or
authentication servers. Keep it lean, mean, and as locked-down as possible.

If you are thinking of upgrading to a high-bandwidth dedicated line, a T1 line is the
next step up. Prices are competitive with business DSL, but you’ll need specialized
interface hardware that costs a lot more than a DSL modem. Put a PCI T1 interface
inside your Linux gateway box to get the most flexibility and control. These come in
many configurations, such as multiple ports, and support data and voice protocols,
so you can tailor it to suit your needs exactly.

If you prefer a commercial router, look for bundled deals from your service provider
that include a router for free. If you can’t get a deal on a nice router, check out the
abundant secondhand router market. Look for a router with a T1 WAN interface

Choosing an ISP
Shop carefully for your ISP. This is not a place to pinch pennies, because a good pro-
vider will more than earn its fees. A bad one will cost you money. You need to be able
to depend on them for good service and advice, and to run interference for you with
the telcos and any other involved parties. Visit DSLReports (http://dslreports.com) as
a starting point; this site contains provider reviews and lots of technical information.
An alternative to hosting your own servers is renting rack space in a commercial data
center—you’ll save money on bandwidth costs, and you won’t have to worry about
providing backup power and physical security.

Figure 1-1. Broadband Internet connected to a small LAN

Internet

Broadband
modem

Linux firewall/
router

Switch

LAN

1.0 Introduction | 3

card and a Channel Service Unit/Data Service Unit (CSU/DSU). Don’t expect much
from a low-end router—your Linux box with its own T1 interface has a lot more
horsepower and customizability.

A typical T1 setup looks like Figure 1-2.

Beyond T1, the sky’s the limit on service options and pricing. Higher-end services
require different types of hardware LAN interfaces. A good service provider will tell
you what you need, and provide optional on-site services. Don’t be too proud to hire
help—telecommunications is part engineering and part voodoo, especially because
we started pushing data packets over voice lines.

Overview of Internet Service Options
The hardworking network administrator has a plethora of choices for Internet con-
nectivity, if you are in the right location. A wise (though under-used) tactic is to
investigate the available voice and data services when shopping for an office loca-
tion. Moving into a space that is already wired for the services you want saves money
and aggravation. Otherwise, you may find yourself stuck with nothing but dial-up or
ISDN, or exotic, overpriced, over-provisioned services you don’t want.

Cable, DSL, and Dial-Up
Cable, DSL, and dial-up are unregulated services. These are the lowest-cost and most
widely available.

Cable

Cable Internet is usually bundled with television services, though some providers
offer Internet-only service. Cable’s primary attraction is delivering higher download
speeds than DSL. Many providers do not allow running public services, and even
block common ports like 22, 25, 80, and 110. Some vendors are notorious for unreli-
able service, with frequent outages and long downtimes. However, some cable
providers are good and will treat you well, so don’t be shy about shopping around.
Beware restrictive terms of service; some providers try to charge per-client LAN fees,
which is as silly as charging per-user fees for tap water.

Figure 1-2. Connecting to a T1 line

Linux firewall
Switch

LAN

Router
Telco demarc
at your site

T1 line

4 | Chapter 1: Introduction to Linux Networking

DSL

DSL providers are usually more business-friendly. Some DSL providers offer busi-
ness DSL accounts with SLAs, and with bandwidth and uptime guarantees. DSL isn’t
suitable for mission-critical services because it’s not quite reliable enough for these,
but it’s fine for users who can tolerate occasional downtimes.

DSL runs over ordinary copper telephone lines, so anyone with a regular landline is a
potential DSL customer. It is also possible to get a DSL line without telephone ser-
vice, though this is usually expensive. DSL is limited by distance; you have to be
within 18,000 wire-feet of a repeater, though this distance varies a lot between pro-
viders, and is affected by the physical quality of the line. Residential accounts are
often restricted to shorter distances than business accounts, presumably to limit sup-
port costs.

With DSL, you’re probably stuck with a single telco, but you should have a choice of
ISP.

DSL comes in two primary flavors: symmetric digital subscriber line (SDSL) and
asymmetric digital subscriber line (ADSL). SDSL speeds are the same upstream and
downstream, up to a maximum of 3 Mbps. ADSL downstream speeds go as high as 9
Mbps, but upstream maxes out at 896 Mbps. ADSL2+, the newest standard, can
deliver 24 Mbps downstream, if you can find a provider. Keep in mind that no one
ever achieves the full speeds; these are theoretical upper limits.

Longer distances means less bandwidth. If you’re within 5,000 feet you’re golden,
assuming the telco’s wires are healthy. 10,000 is still good. The reliability limit of the
connection is around 18,000 feet—just maintaining connectivity is iffy at this
distance.

Dial-up

Good old dial-up networking still has its place, though its most obvious limitation is
bandwidth. It’s unlikely you’ll get more than 48 Kbps. However, dial-up has its place
as a backup when your broadband fails, and may be useful as a quick, cheap
WAN—you can dial in directly to one of your remote servers, for example, and do a
batch file transfer or some emergency system administration, or set it up as a VPN
for your users.

Cable, DSL, and dial-up gotchas

One thing to watch out for is silly platform limitations—some ISPs, even in these
modern times, are notorious for supporting only Microsoft Windows. Of course, for
ace network administrators, this is just a trivial annoyance because we do not need
their lackluster support for client-side issues. Still, you must make sure your Linux
box can connect at all, as a significant number of ISPs still use Microsoft-only

1.0 Introduction | 5

networking software. Exhibit A is AOL, which supports only Windows and Mac,
and replaces the Windows networking stack with its own proprietary networking
software. This causes no end of fun when you try to change to a different ISP—it
won’t work until you reinstall Windows networking, which sometimes works, or
reinstall Windows, which definitely works, and is almost as much fun as it sounds.

Regulated Broadband Services
Regulated services include broadband networking over copper telephone lines and
fiber optic cable. These are supposed to be more reliable because the network opera-
tors are supposed to monitor the lines and fix connectivity problems without
customer intervention. When there is a major service interruption, such as a wide-
spread power outage, regulated services should be restored first. As always in the real
world, it depends on the quality of your service provider.

T1, T3, E-1, E-3, DS1, and DS3 run over copper lines. T1/T3 and DS1/DS3 are the
same things. These are symmetrical (same bandwidth upstream and downstream)
dedicated lines. Because it’s an unshared line, even a T1 handles a lot of traffic satis-
factorily. OC-3–OC-255 run over fiber optic cable; these are the super-high capacity
lines that backbone providers use. Table 1-1 shows a sampling of the many available
choices, including European standards (prefixed with an E).

Other common options are frame relay and fractional services, like fractional T1,
fractional T3, and fractional OC-3. Frame relay is used point-to-point, for example,
between two branch offices. It’s shared bandwidth, and used to be a way to save
money when a dedicated T1 was too expensive. These days, it’s usually not priced
low enough to make it worthwhile, and the hardware to interface with frame relay is
expensive. DSL or T1 is usually a better deal.

Table 1-1. Regulated broadband service offerings

Service type Speed

T1/DS1 1.544 Mbps

T3/DS3 43.232 Mbps

OC-3 155 Mbps

OC-12 622 Mbps

OC-48 2.5 Gbps

OC-192 9.6 Gbps

OC-255 13.21 Gbps

E-1 2.048 Mbps

E-2 8.448 Mbps

E-3 34.368 Mbps

6 | Chapter 1: Introduction to Linux Networking

Fractional T1 is still an option for users on a budget, though DSL is often a good
lower-cost alternative. When you need more than a single T1, bonding two T1 lines
costs less than the equivalent fractional T3 because the T3 interface hardware costs a
mint. Linux can handle the bonding, if your interface hardware and service provider
support it. When you think you need more than two T1s, it’s time to consult with
your friendly service provider for your best options.

Always read the fine print, and make sure all fees are spelled out. The circuit itself is
often a separate charge, and there may be setup fees. If you’re searching online for
providers and information, beware of brokers. There are good ones, but as a general
rule, you’re better off dealing directly with a service provider.

Private Networks
As more service providers lay their own fiber optic networks, you’ll find interesting
options like Fast Ethernet WAN, even Gigabyte Ethernet WAN, and also high-speed
wireless services. Again, these depend on being in the right location. The nice part
about these private services is they bypass the Internet, which eliminates all sorts of
potential trouble spots.

Latency, Bandwidth, and Throughput
When discussing network speeds, there is often confusion between bandwidth,
latency, and throughput. Broadband means fat pipe, not necessarily a fast pipe. As us
folks out here in the sticks say, “Bandwidth is capacity, and latency is response time.
Bandwidth is the diameter of your irrigation line. Latency is waiting for the water to
come out.”

Throughput is the amount of data transferred per unit of time, like 100 Kbps. So, you
could say throughput is the intersection of bandwidth and latency.

Many factors affect latency, such as server speed, network congestion, and inherent
limitations in circuits. The ping command can measure latency in transit time
roundtrip:

$ ping oreilly.com
PING oreilly.com (208.201.239.37) 56(84) bytes of data.
64 bytes from www.oreillynet.com (208.201.239.37): icmp_seq=2 ttl=45 time=489 ms
64 bytes from www.oreillynet.com (208.201.239.37): icmp_seq=3 ttl=45 time=116 ms

Compare this to LAN speeds:

$ ping windbag
PING localhost.localdomain (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost.localdomain (127.0.0.1): icmp_seq=1 ttl=64 time=0.040 ms
64 bytes from localhost.localdomain (127.0.0.1): icmp_seq=2 ttl=64 time=0.039 ms

It doesn’t get any faster than pinging localhost. The latency in an Ethernet interface
is around 0.3 milliseconds (ms). DSL and cable are around 20 ms. T1/T3 have a
latency of about 4 ms. Satellite is the highest, as much as two seconds. That much

1.0 Introduction | 7

latency breaks IP. Satellite providers play a lot of fancy proxying tricks to get latency
down to a workable level.

Hardware Options for Your Linux Firewall/Gateway
There are a lot of hardware choices for your gateway box. Linux supports more hard-
ware platforms than any other operating system, so you don’t have to stick with x86.
Debian in particular supports a large number of hardware architectures: Alpha,
ARM, HPPA, i386, ia64, m68k, MIPS, MIPSEL, PowerPC, SPARC, and s/390, so you
can use whatever you like. (If you build one on an s/390, please send photos to
carla@bratgrrl.com!)

Of course, you have the option of purchasing a commercial appliance. These range
from little SOHO devices like the Linksys, Netgear, and SMC broadband routers for
sharing a DSL or cable Internet line for under $100, to rackmount units that end up
costing several thousand dollars for software licenses and subscriptions. A growing
number of these are Linux-based, so your Linux skills will serve you well.

But, it’s not necessary to go this route—you can get unlimited flexibility, and possi-
bly save money by purchasing the bare hardware, or reusing old hardware, and
installing your own favorite Linux distribution on it.

There are many choices for form factor and hardware types: small embedded boards
like Soekris and PC Engines, Mini-ITX, microATX, blade, rackmount, and more.
The smaller units use less power, take up less space, and are fanless for peace and
quiet. Larger devices are more configurable and handle bigger loads.

A plain old desktop PC makes a perfectly good gateway box, and is a good way to
keep obsolete PCs out of landfills. Even old 486s can do the job for up to a hundred
or so users if they are just sharing an Internet connection and not running public ser-
vices. Repurposed PCs may be a bit questionable for reliability just from being old,
and you may not be able to get replacement parts, so if you’re nervous about their
reliability, they still work great for training and testing. An excellent use for one of
these is as a fully provisioned backup box—if your main one fails, plug in the backup
for minimal downtime.

High-End Enterprise Routers
When do you need an elite, hideously expensive, top-of-the-line Cisco or Juniper
router? To quote networking guru Ed Sawicki: “You don’t need more performance
than what you need.” Unless you’re an ISP handling multimegabyte routing tables,
need the fastest possible performance, highest throughput, good vendor support,
and highest reliability, you don’t need these superpowered beasts.

The highest-end routers use specialized hardware. They are designed to move the
maximum number of packets per second. They have more and fatter data buses,
multiple CPUs, and TCAM memory.

8 | Chapter 1: Introduction to Linux Networking

TCAM is Ternary Content Addressable Memory. This is very different from ordinary
system RAM. TCAM is several times faster than the fastest system RAM, and many
times more expensive. You won’t find TCAM in lower-cost devices, nor will you find
software that can shovel packets as fast as TCAM.

Not-So-High-End Commercial Routers
The mid-range commercial routers use hardware comparable to ordinary PC
hardware. However, their operating systems can make a significant performance dif-
ference. Routers that use a real-time operating system, like the Cisco IOS, perform
better under heavy loads than Linux-based routers, because no matter how hard
some folks try to make Linux a real-time operating system, it isn’t one.

But, for the average business user this is not an issue because you have an ISP to do
the heavy lifting. Your needs are sharing your Internet connection, splitting a T1 line
for voice and data, connecting to some branch offices, offsite backups, or a data cen-
ter. Linux on commodity hardware will handle these jobs just fine for a fraction of
the cost.

Switches
Switches are the workhorses of networking. Collision domains are so last millen-
nium; a cheap way to instantly improve LAN performance is to replace any lingering
hubs with switches. Once you do this, you have a switched LAN. As fiber optic lines
are becoming more common, look for cabling compatibility in switches. (And rout-
ers and NICs, too.)

Switches come in many flavors: dumb switches that simply move packets, smart
switches, and managed switches. These are marketing terms, and therefore impre-
cise, but usually, smart switches are managed switches with fewer features and lower
price tags. Higher-end features have a way of falling into lower-priced devices over
time, so it no longer costs a scary amount to buy managed or smart switches with
useful feature sets. There are all kinds of features getting crammed into switches
these days, so here is a list of some that I think are good to have.

Management port

Because switches forward traffic directly to the intended hosts, instead of promiscu-
ously spewing them to anyone who cares to capture them, you can’t sniff a switched
network from anywhere on a subnet like you could in the olden hub days. So, you
need a switch that supports port mirroring, or, as Cisco calls it, SPAN. (An alterna-
tive is to use the arpspoof utility—use it carefully!)

1.0 Introduction | 9

Serial port

Most managed switches are configured via Ethernet with nice web interfaces. This is
good. But still, there may be times when you want to get to a command line or do
some troubleshooting, and this is when a serial port will save the day.

MDI/MDI-X (Medium Dependent Interfaces)

This is pretty much standard—it means no more hassles with crossover cables,
because now switches can auto-magically connect to other switches without needing
special uplink ports or the exactly correct crossover or straight-through cables.

Lots of blinky lights

Full banks of LEDs can’t be beat for giving a fast picture of whether things are working.

Jumbo frames

This is a nice feature on gigabit switches, if it is supported across your network. Stan-
dard frames are 1,500 bytes, which is fine for Fast Ethernet. Some Gigabit devices
support 9,000 byte frames.

Port trunking

This means combining several switch ports to create a fatter pipeline. You can con-
nect a switch to a switch, or a switch to a server if it has a NIC that supports link
aggregation.

VLANs

This is a feature that will have you wondering why you didn’t use it sooner. Virtual
LANs (VLANs) are logical subnets. They make it easy and flexible to organize your
LAN logically, instead of having to rearrange hardware.

QoS

Quality of Service, or traffic prioritization, allows you to give high priority to traffic
that requires low latency and high throughput (e.g., voice traffic), and low priority to
web-surfin’ slackers.

Per-port access controls

Another tool to help prevent intruders and snoopy personnel from wandering into
places they don’t belong.

10 | Chapter 1: Introduction to Linux Networking

Network Interface Cards (NICs)

With Linux, it’s unlikely you’ll run into driver hassles with PCI and PCI-Express
NICs; most chipsets are well-supported. New motherboards commonly have 10/
100/1000 Ethernet onboard. Just like everything else, NICs are getting crammed
with nice features, like wake-on-LAN, netboot, QoS, and jumbo frame support.

USB NICs, both wired and wireless, are good for laptops, or when you don’t feel like
opening the box to install a PCI card. But beware driver hassles; a lot of them don’t
have Linux drivers.

Server NICs come with nice features like link aggregation, multiple ports, and fiber
Gigabit.

Gigabit Ethernet Gotchas
As Gigabit Ethernet becomes more common, it’s important to recognize the poten-
tial choke points in your network. Now we’re at the point where networking gear has
outstripped PC capabilities, like hard drive speeds, I/O, and especially bus speeds.

The PCI bus is a shared bus, so more devices result in slower performance. Table 1-2
shows how PCI has evolved.

PCI-Express is different from the old PCI, and will probably replace both PCI and
AGP. It is backward-compatible, so you won’t have to chuck all of your old stuff.
PCI-E uses a point-to-point switching connection, instead of a shared bus. Devices
talk directly to each other over a dedicated circuit. A device that needs more band-
width gets more circuits, so you’ll see slots of different sizes on motherboards, like
PCI-Express 2x, 4x, 8x, and 16x. PCI-E x16 can theoretically move 8 Gbps.

USB 1.1 tops out at 11 Mbps, and you’ll be lucky to get more than 6–8 Mbps. USB 2.0
is rated at 480 Mbps, which is fine for both Fast and Gigabit wired Ethernet. You
won’t get full Gigabit speeds, but it will still be faster than Fast Ethernet.

32-bit Cardbus adapters give better performance on laptops than the old 16-bit
PCMCIA, with a data transfer speed of up to 132 Mbps.

Table 1-2. Evolution of PCI

Bits MHz Speed

32 33 132 Mbps

64 33 264 Mbps

64 66 512 Mbps

64 133 1 Gbps

1.0 Introduction | 11

Cabling
Ordinary four-twisted-pair Cat5 should carry you into Gigabit Ethernet comfortably,
though Cat5e is better. Chances are your Cat5 is really Cat5e, anyway; read the cable
markings to find out. Watch out for cheapie Cat5 that has only two twisted pairs.

Cat6 twisted-pair cabling, the next generation of Ethernet cabling, is a heavier gauge
(23 instead of Cat5’s 24), meets more stringent specifications for crosstalk and noise,
and it always has four pairs of wires.

Wireless Networking
Wireless networking gear continues to be a source of aggravation for admins of
mixed LANs, which is practically all of them. Shop carefully, because a lot of devices
are unnecessarily Windows-dependent. Wireless gear is going to be a moving target
for awhile, and bleeding-edge uncomfortable. Go for reliability and security over
promises of raw blazing speeds. As far as security goes, Wired Equivalent Privacy
(WEP) is not suitable for the enterprise. WEP is far too weak. Wi-Fi Protected Access
(WPA) implementations are all over the map, but WPA2 seems to be fairly sane, so
when you purchase wireless gear, make sure it supports WPA2. Also, make sure it is
Wi-Fi Certified, as this ensures interoperability between different brands.

Whatever you do, don’t run naked unprotected wireless. Unless you enjoy having
your network compromised.

12

Chapter 2vCHAPTER 2

Building a Linux Gateway
on a Single-Board
Computer

2.0 Introduction
Linux lends itself so readily to hacking on old hardware we often forget it is not
always the best hardware to use. While it is good to keep old PCs out of landfills,
there are disadvantages to using them as routers and firewalls. They’re big, they use a
lot of power, and they’re noisy, unless you have something of sufficient vintage to
run fanless. Old hardware is that much closer to failure, and what do you do if parts
fail? Even if you can find new parts, are they worth replacing?

Single-board computers (SBCs), like those made by Soekris Engineering (http://www.
soekris.com) and PC Engines (http://www.pcengines.ch/wrap.htm) are great for rout-
ers, firewalls, and wireless access points. They’re small, quiet, low-power, and
sturdy. You’ll find information on single-board computers and other small form-
factor computers at the LinuxDevices.com Single Board Computer (SBC) Quick
Reference Guide (http://www.linuxdevices.com/articles/AT2614444132.html).

This chapter will show you how to install and configure Pyramid Linux (http://
metrix.net/) on a Soekris 4521 board. There are many small distributions designed to
power routers and firewalls; see Chapter 3 for more information on these, and to
learn how to build an Internet-connection sharing firewall.

Despite their small size, the Soekris and PC Engines boards are versatile. PC Engines’
and similar boards all operate in pretty much the same fashion, so what you learn
here applies to all of them. A cool-sounding shortcut for these boards is to call them
routerboards.

You might look at the specs of our little 4521 and turn your nose up in scorn:

• 133 MHz AMD ElanSC520 CPU

• 64 MB SDRAM, soldered on board

• 1 Mb BIOS/BOOT Flash

• Two 10/100 Ethernet ports

2.0 Introduction | 13

• CompactFLASH Type I/II socket, 8 MB Flash to 4 GB Microdrive

• 1 DB9 Serial port

• Power, Activity, Error LEDs

• Mini-PCI type III socket

• 2 PC-Card/Cardbus slots

• 8 bit general purpose I/O 14-pins header

• Board size 9.2" x 5.7"

• Option for 5V supply using internal connector

• Power over Ethernet

• Operating temperature 0–60˚C

You’ll find more raw horsepower in a low-end video card. But don’t let the numbers
fool you. Combined with a specialized Linux, BSD, or any embedded operating
system, these little devices are tough, efficient workhorses that beat the pants off
comparable (and usually overpriced and inflexible) commercial routers. You get
complete control and customizability, and you don’t have to worry about nonsense
like hardcoded misconfigurations or secret backdoors that are known to everyone
but the end user. These little boards can handle fairly hostile environments, and with
the right kind of enclosures can go outside.

The 4521 can handle up to five network interfaces: two PCMCIA, two Ethernet, and
one wireless in the mini-PCI slot. Six, if you count the serial interface. So, with this one
little board, you could build a router, firewall, and wireless access point, and throw in
some DMZs as well. All of these kinds of boards come in a variety of configurations.

You probably won’t see throughput greater than 17 Mbps with the Soekris 45xx
boards. The 48xx and PC Engines WRAP boards have more powerful CPUs and
more RAM, so you’ll see speeds up to 50 Mbps. This is far faster than most users’
Internet pipelines. Obviously, if you are fortunate enough to have an Ethernet WAN
or other super high-speed services, you’ll need a firewall with a lot more horsepower.
As a general rule, a 45xx set up as a firewall and router will handle around 50 users,
though of course this varies according to how hard your users hammer the little guy.

Required Hardware
In addition the board itself, you’ll need a Compact Flash card or microdrive for the
operating system, and a reader/writer on a separate PC to install the OS on your CF
or microdrive. Or, you may install the operating system from a PXE boot server
instead of using a CF writer. Also required are a power supply and a null-modem
DB9 serial cable. A case is optional.

Complete bundles including an operating system are available from several vendors,
such as Metrix.net (http://metrix.net) and Netgate.com (http://netgate.com/).

14 | Chapter 2: Building a Linux Gateway on a Single-Board Computer

Software
Your operating system size is limited by the size of your CF card or microdrive. The
CPU and RAM are soldered to the board, and are not expandable, so the operating
system must be lean and efficient. In this chapter, we’ll go for the tiny gusto and use
a little 64 MB CF card, so we’ll need a suitably wizened operating system. Pyramid
Linux fits nicely. The stock image occupies a 60 MB partition, and uses about 49
MB. It uses stock Ubuntu packages, so even though it does not come with any pack-
age management tools, you can still add or remove programs.

What to Do with Old PCs?
Old PCs are still valuable as thin clients, test labs, and drop-in replacement boxes.
Keep some around configured and ready to substitute for a fried router, firewall, or
server.

2.1 Getting Acquainted with the Soekris 4521

Problem
You’re not familiar with these little boards, and aren’t sure where to start. How do
you talk to it? What do you do with it?

Solution
It’s easy. You will need:

• PC running Linux

• Null-modem serial cable

• Minicom installed on the Linux PC

Configure Minicom, connect the two machines, power up the Soekris, and you’re
ready.

Here are all the steps in detail. First, find out what physical serial ports your Linux
box has:

$ setserial -g /dev/ttyS[0123]
/dev/ttyS0, UART: 16550A, Port: 0x03f8, IRQ: 4
/dev/ttyS1, UART: unknown, Port: 0x02f8, IRQ: 3
/dev/ttyS2, UART: unknown, Port: 0x03e8, IRQ: 4
/dev/ttyS3, UART: unknown, Port: 0x02e8, IRQ: 3

This PC has only one, which is the one with a UART value. If you have more than
one, it will probably take a bit of trial and error to figure out which one is connected
to the Soekris board.

2.1 Getting Acquainted with the Soekris 4521 | 15

Now, set up Minicom:

minicom -s
------[configuration]-------
| Filenames and paths
| File transfer protocols
| Serial port setup
| Modem and dialing
| Screen and keyboard
| Save setup as dfl
| Save setup as..
| Exit
Exit from Minicom

Select “Serial port setup.” Your settings should look just like this, except you need to
enter your own serial port address. Soekris boards default to “Bps/Par/Bits 19200
8N1,” no flow control:

| A - Serial Device : /dev/ttyS0
| B - Lockfile Location : /var/lock
| C - Callin Program :
| D - Callout Program :
| E - Bps/Par/Bits : 19200 8N1
| F - Hardware Flow Control : No
| G - Software Flow Control : No
|
Change which setting?

Next, select the “Modem and dialing” option, and make sure the “Init string” and
“Reset string” settings are blank. Finally, select “Save setup as dfl” to make this the
default, and then “Exit.” This takes you back to the main Minicom screen:

Welcome to minicom 2.1

OPTIONS: History Buffer, F-key Macros, Search History Buffer, I18n
Compiled on Nov 5 2005, 15:45:44.

Press CTRL-A Z for help on special keys
Now power up the Soekris, and you'll see something like this:
comBIOS ver. 1.15 20021013 Copyright (C) 2000-2002 Soekris Engineering.

net45xx

0064 Mbyte Memory CPU 80486 133 Mhz

PXE-M00: BootManage UNDI, PXE-2.0 (build 082)

16 | Chapter 2: Building a Linux Gateway on a Single-Board Computer

Slot Vend Dev ClassRev Cmd Stat CL LT HT Base1 Base2 Int

0:00:0 1022 3000 06000000 0006 2280 00 00 00 00000000 00000000 00
0:16:0 168C 0013 02000001 0116 0290 10 3C 00 A0000000 00000000 10
0:17:0 104C AC51 06070000 0107 0210 10 3F 82 A0010000 020000A0 11
0:17:1 104C AC51 06070000 0107 0210 10 3F 82 A0011000 020000A0 11
0:18:0 100B 0020 02000000 0107 0290 00 3F 00 0000E101 A0012000 05
0:19:0 100B 0020 02000000 0107 0290 00 3F 00 0000E201 A0013000 09

4 Seconds to automatic boot. Press Ctrl-P for entering Monitor.

Boot into the comBIOS by pressing Ctrl-P:

comBIOS Monitor. Press ? for help.

>

Go ahead and hit ? to see the Help. You'll get a list of commands:

comBIOS Monitor Commands

boot [drive][:partition] INT19 Boot
reboot cold boot
download download a file using XMODEM
flashupdate update flash BIOS with downloaded file
time [HH:MM:SS] show or set time
date [YYYY/MM/DD] show or set date
d[b|w|d] [adr] dump memory (bytes/words/dwords)
e[b|w|d] adr value [...] enter bytes/words/dwords
i[b|w|d] port input from 8/16/32-bit port
o[b|w|d] port value output to 8/16/32-bit port
cmosread [adr] read CMOS RAM data
cmoswrite adr byte [...] write CMOS RAM data
cmoschecksum update CMOS RAM Checksum
set parameter=value set system parameter to value
show [parameter] show one or all system parameters
?/help show this help

Go ahead and set the time and date. Other than that, there’s not much to do until we
install the operating system.

If you do not have a CF card installed, a Soekris board will automatically boot to the
comBIOS menu.

Discussion
You don’t have to use a Linux machine as the serial terminal; using Hyperterminal
from a Windows machine works fine, too. Other Unix serial communication pro-
grams are cu, tip, and Kermit. Kermit is fun if you want a versatile program that does
everything except cook dinner. Mac OS X users might try Minicom, which is in Dar-
win Ports, or ZTerm.

2.3 Installing Pyramid Linux on a Compact Flash Card | 17

See Also
The documentation for your routerboard:

• Soekris Engineering: http://www.soekris.com

• PC Engines: http://www.pcengines.ch/wrap.htm

• LinuxDevices.com Single Board Computer (SBC) Quick Reference Guide:

http://www.linuxdevices.com/articles/AT2614444132.html

2.2 Configuring Multiple Minicom Profiles

Problem
You have a laptop set up as a portable serial terminal and all-around networking
troubleshooting tool, so you need multiple connection profiles in Minicom to con-
nect to different servers.

Solution
As root, set up a new Minicom configuration just like in the previous recipe. Then,
instead of selecting “Save as dfl,” select “Save as...” and type in the name of your
choice, such as pyramid. Now, any user can use this configuration with this command:

$ minicom pyramid

Discussion
Ordinary users cannot change the serial port setup settings in Minicom, except for
bits per second, and cannot save configurations.

See Also
• man 1 minicom

2.3 Installing Pyramid Linux on a Compact Flash
Card

Problem
There you are with your new single-board computer, and it looks very nice, but
you’re wondering how to get an operating system on it.

18 | Chapter 2: Building a Linux Gateway on a Single-Board Computer

Solution
The two most common methods are via a Compact Flash (CF) writer, or bootstrap-
ping the operating system from a PXE boot server. This recipe tells how to install
Pyramid Linux using the first method. You need:

• A Compact Flash writer

• The Pyramid Linux dd image

The most common CF writers cost around $20 and connect to a USB port. This is
the easiest kind to use. Linux automatically recognizes and mounts the device when
you plug it in.

A second option is an IDE CF writer. You’ll know if you have one of these because
they take up an IDE slot on your system and a front drive bay. A system with one of
these needs to be booted with the CF card in the reader, or it won’t see it.

First, download the latest dd image:

$ wget http://metrix.net/support/dist/pyramid-1.0b1.img.gz

Next, find the /dev name of your CF card with the fdisk -l command. A USB CF
writer looks like this:

fdisk -l
 Device Boot Start End Blocks Id System
/dev/sdb1 1 977 62512 83 Linux

An IDE CF writer looks like this:

 Device Boot Start End Blocks Id System
/dev/hdc1 * 1 977 62512 83 Linux

Copy the image to your CF card with these commands, using your own correct
image and /dev names. Do not use any partition numbers:

gunzip -c pyramid-1.0b1.img.gz | dd of=/dev/sdb bs=16k
3908+0 records in
3908+0 records out

And that’s all there is to it. Now it’s ready to go in your routerboard.

Discussion
This requires a bootable operating system image. You can’t just copy files to the
Flash card because it needs a boot sector. dd does a byte-by-byte copy, including the
boot sector, which most other copy commands cannot do. The maintainers of Pyra-
mid thoughtfully provide a complete image, which makes for a simple installation.

See Also
• Pyramid Linux home page: http://pyramid.metrix.net/

2.4 Network Installation of Pyramid on Debian | 19

2.4 Network Installation of Pyramid on Debian

Problem
You would rather install Pyramid Linux via PXE boot because you have several
routerboards to install, or you have onboard nonremovable Compact Flash, or you
just prefer to do it this way. Your installation server runs Debian.

Solution
No problem, you can do this because the Soekris boards (and PC Engines and all
their little cousins) support netbooting. While the HTTP, TFTP, and DHCP services
in this recipe can be on different machines, the examples here assume they are all on
a single PC. Any PC will do (e.g., a workstation, your special network administrator
laptop, anything).

To get started, first download the latest Pyramid dd image or tarball from http://
metrix.net/support/dist/ into the directory of your choice:

$ wget http://metrix.net/support/dist/pyramid-1.0b2.img.gz

Then, you need these services installed:

• DHCPD

• TFTP

• HTTP

• Subversion

You don’t need a big old heavyweight HTTP server like Apache. Lighttpd is great for
lightweight applications like this. Install them with this command:

apt-get install lighttpd lighttpd-doc tftpd-hpa dhcp3-server subversion

Copy this /etc/dhcp3/dhcpd.conf file exactly:

##/etc/dhcp3/dhcpd.conf
 subnet 192.168.200.0 netmask 255.255.255.0 {
 range 192.168.200.100 192.168.200.200;
 allow booting;
 allow bootp;

 next-server 192.168.200.1;
 filename "PXE/pxelinux.0";

 max-lease-time 60;
 default-lease-time 60;
}

next-server is the IP address of the boot server; it must be 192.168.200.1.

20 | Chapter 2: Building a Linux Gateway on a Single-Board Computer

Next, configure tftpd by editing /etc/default/tftpd-hpa like this:

##/etc/default/tftpd-hpa
RUN_DAEMON="yes"
OPTIONS="-a 192.168.200.1:69 -l -s -vv /var/lib/tftpboot/"

Change your working directory to /var/lib/tftpboot and download the PXE environ-
ment from Metrix’s Subversion repository:

root@xena:/var/lib/tftpboot # svn export http://pyramid.metrix.net/svn/PXE

This is about a 45 MB download.

Next, inside your httpd document root directory, /var/www, make a symlink to the
Pyramid tarball or image you downloaded and name it “os”:

root@xena:/var/www # ln -s /home/carla/downloads/pyramid-1.0b2.tar.gz os

Then, temporarily change the IP address of your installation server with this command:

ifconfig eth0 192.168.200.1 netmask 255.255.255.0 broadcast 192.168.200.255

Now, start all these services:

cd /etc/init.d
dhcp3-server start && lighttpd start && tftpd-hpa start

Install the CF card, then connect the serial and Ethernet cables to your Soekris
board, and fire up Minicom. It doesn’t matter if something is already installed on the
CF card. Power up the board, and enter the comBIOS by pressing Ctrl-P when
prompted. Then, enter boot F0:

comBIOS Monitor. Press ? for help.
> boot F0

You’ll see it acquire a DHCP lease, a quick TFTP blink, and then you’ll be in the
installation menu:

Choose from one of the following:
1. Start the automated Pyramid Linux install process via dd image file
2. Start the automated Pyramid Linux install process via fdisk and tarball
3. Boot the Pyramid Linux kernel with a shell prompt
4. Boot the Pebble Linux install process
5. Boot the Pebble Linux kernel with a shell
6. Install the latest snapshot

Select either 1 or 2, according to what you downloaded. Go have a nice healthy walk,
and in 10 minutes, you’ll have a fresh Pyramid installation all ready to go.

Finally, restore your server’s IP address with ifupdown:

ifdown eth0
ifup eth0

2.5 Network Installation of Pyramid on Fedora | 21

Discussion
A slick way to do this is to put it all on your special netadmin laptop. It’s portable,
and you can easily isolate it from the other servers on your network. You especially
don’t want to conflict with any existing DHCP servers. Just connect the routerboard
and laptop with a crossover Ethernet cable and null modem cable, and away you go.

If you’re using a LAN PC for this, you might want to configure the HTTP, DHCP,
and TFTP servers so that they do not automatically start at boot, especially the
DHCP server.

Pay close attention to your filepaths; this is the most common source of errors.

You should still have a CF writer handy in case of problems. For example, if a non-
Linux operating system is already installed on it, you’ll probably have to manually zero
out the Master Boot Record (MBR). So, you’ll need to be able to mount the card in a
CF writer, then use dd to erase the MBR. In this example, the Flash card is /dev/hdc:

dd if=/dev/zero of=/dev/hdc bs=512 count=1

Check your HTTP server configuration file for the location of the server’s documen-
tation root directory. On Apache, this is the DocumentRoot directive. Currently, you’ll
find this in /etc/apache2/sites-available/default. On Lighttpd, look for the server.
document-root directive in /etc/lighttpd/lighttpd.conf.

When your Pyramid image file or tarball is copied to your HTTP root directory, ver-
ify that it’s in the correct location by going to http://192.168.200.1/os. It should try to
download the file into your web browser, which will appear as a big gob of binary
gibberish.

See Also
• Pyramid Linux home page: http://pyramid.metrix.net/

• man 8 tftpd

• man 8 dhcpd

• /usr/share/doc/lighttpd-doc/

2.5 Network Installation of Pyramid on Fedora

Problem
You would rather install Pyramid Linux via PXE boot because you have several
boards to install, or you have onboard Compact Flash, or you just prefer to do it this
way. Your installation server runs Fedora Linux.

22 | Chapter 2: Building a Linux Gateway on a Single-Board Computer

Solution
No problem, you can do this because the Soekris boards (and PC Engines, and all
their little cousins) support netbooting. While the HTTP, TFTP, and DHCP services
in this recipe can be on different machines, the examples here assume they are all on
a single PC.

To get started, first download the latest Pyramid dd image or tarball from http://
metrix.net/support/dist/ into the directory of your choice:

$ wget http://metrix.net/support/dist/pyramid-1.0b2.img.gz

Then, you need these services installed:

• DHCPD

• TFTP

• HTTP

• Subversion

You don’t need a big old heavyweight HTTP server like Apache. Lighttpd is great for
lightweight applications like this. Install the necessary packages with this command:

yum install dhcp lighttpd tftp-server subversion

Copy this /etc/dhcpd.conf file exactly:

dhcpd.conf
 subnet 192.168.200.0 netmask 255.255.255.0 {
 range 192.168.200.100 192.168.200.200;

 allow booting;
 allow bootp;
 next-server 192.168.200.1;
 filename "PXE/pxelinux.0";

 max-lease-time 60;
 default-lease-time 60;
}

next-server is the IP address of the boot server; it must be 192.168.200.1.

Next, configure tftp-server. All you do is change two lines in /etc/xinetd.d/tftp. Make
sure they look like this:

disable = no
server_args = -svv /tftpboot -a 192.168.200.1:69

Change your working directory to /tftpboot, and download the PXE environment
from Metrix’s Subversion repository:

root@penguina:/tftpboot # svn export http://pyramid.metrix.net/svn/PXE

This is about a 45 MB download.

2.5 Network Installation of Pyramid on Fedora | 23

Next, in your httpd root directory, /srv/www/lighttpd/, make a symlink to the Pyra-
mid tarball or image you downloaded and name it “os”:

root@xena:/srv/www/lighttpd# ln -s /home/carla/downloads/pyramid-1.0b2.tar.gz os

Then, start all these services:

cd /etc/init.d/
xinetd start && lighttpd start && dhcpd start

Finally, connect the serial and Ethernet cables to your Soekris board, and fire up
Minicom. Your CF card must be installed. It doesn’t matter if a Linux distribution is
already installed on it. Power up the board and enter the comBIOS. Enter boot F0:

comBIOS Monitor. Press ? for help.
> boot F0

You’ll see it acquire a DHCP lease, a quick TFTP blink, and then you’ll be in the
installation menu:

Choose from one of the following:
1. Start the automated Pyramid Linux install process via dd image file
2. Start the automated Pyramid Linux install process via fdisk and tarball
3. Boot the Pyramid Linux kernel with a shell prompt
4. Boot the Pebble Linux install process
5. Boot the Pebble Linux kernel with a shell
6. Install the latest snapshot

Select either 1 or 2, according to what you downloaded. Go have a nice healthy walk,
and in a few minutes you’ll have a fresh Pyramid installation all ready to go.

Discussion
You should still have a CF writer handy in case of problems. For example, if a non-
Linux operating system is already installed on it, you should manually zero out the
Master Boot Record (MBR). To do this, use a CF writer to mount the card on a PC,
then use dd to erase the MBR. In this example, the Flash card is /dev/hdc:

dd if=/dev/zero of=/dev/hdc bs=512 count=1

fdisk -L will tell you the /dev name of the card.

You can verify that xinetd is controlling Lighttpd and listening on port UDP 69 like
it’s supposed to with this command:

netstat -untap | grep xinetd
udp 0 0 0.0.0.:69 0.0.0.0.* 4214/xinetd

See the Discussion in the previous recipe for more information on the configura-
tions, IP addressing, and verifying that everything is working correctly.

24 | Chapter 2: Building a Linux Gateway on a Single-Board Computer

See Also
• Pyramid Linux home page: http://pyramid.metrix.net/

• /usr/share/doc/lighttpd

• man 8 tftpd

• man 8 dhcpd

2.6 Booting Pyramid Linux

Problem
OK, so far so good—you have successfully installed Pyramid Linux on your Com-
pact Flash card and plugged it into your Soekris board. Now, how do you log in to
Pyramid and get to work?

Solution
You now have three ways to communicate with your Soekris board: serial link,
Ethernet, and Pyramid’s Web interface. The default login is root, password root.
Boot up with the serial terminal connected and Minicom running, and you’ll see a
nice GRUB boot screen:

 GNU GRUB version 0.95 (639K lower / 64512K upper memory)

 +---+
 | Metrix |
 | Shell |
 | |
 | |
 | |
 | |
 | |
 | |
 +---+
 Use the ^ and v keys to select which entry is highlighted.
 Press enter to boot the selected OS, 'e' to edit the
 commands before booting, or 'c' for a command-line.

By default, it will boot to Metrix, which is Pyramid Linux. Shell is for fixing filesys-
tem problems—it goes directly to a Bash shell without mounting any filesystems,
starting any services, or loading any network drivers.

On the Soekris 4521, eth0 is the Ethernet port immediately to the left of the serial
port. Pyramid’s default address for eth0 is 192.168.1.1. (If this doesn’t work with
your LAN addressing, you can easily change it via Minicom.)

SSH is enabled by default, so you can log in over SSH:

$ ssh root@192.168.1.1

2.6 Booting Pyramid Linux | 25

Fire up a web browser on any connected PC, point it to https://192.168.1.1, and
you’ll be greeted by the welcome screen.

Discussion
A common task you’ll boot to the Bash shell for is running the filesystem checker.
This command turns on verbosity and answers “yes” to all questions:

bash-3.00# /sbin/e2fsck -vy /dev/hda1

It’s safe to let it go ahead and fix any filesystem problems it finds. Run this when you
see this warning at boot: “EXT2-fs warning: mounting unchecked fs, running e2fsck
is recommended,” or a warning that your filesystem was shut down uncleanly.

The web GUI offers limited functionality; you need the command line for complete
control. Figure 2-1 shows the web login screen.

From here on out, it’s plain old Ubuntu Linux, the same old configuration files and
startup scripts.

Pyramid is easily hackable for noncoders because you can grab whatever Ubuntu
packages you want and install them. To keep it small, there are none of the usual
Ubuntu package-management tools: no apt, apt-get, nor even dpkg. Recipe 2.10 tells
how to add software without these.

Figure 2-1. Pyramid Linux’s web administration panel

26 | Chapter 2: Building a Linux Gateway on a Single-Board Computer

See Also
• Pyramid Linux home page: http://pyramid.metrix.net/

2.7 Finding and Editing Pyramid Files

Problem
The web GUI doesn’t do everything you want it to, or you just prefer editing text
configuration files. Can you edit Pyramid files directly? How do you search for files
without nice package-querying tools?

Solution
Pyramid is just a stripped-down Ubuntu Linux. If you know your way around an
Ubuntu or Debian system (Ubuntu is a Debian derivative), Pyramid should be famil-
iar ground.

Pyramid runs entirely in RAM. It mounts the filesystem read-only to extend the life
of your Flash card, and to improve performance. To remount the filesystem read/
write for editing, run this command:

pyramid:~# /sbin/rw

When you’re finished, remount the filesystem read-only:

pyramid:~# /sbin/ro

You don’t have Ubuntu’s usual package-management tools for querying your
installed packages, like dpkg, apt-cache, apt-get, Adept, or Synaptic. How do you find
things? With that old-fashioned standby, the find command. This example searches
the entire root filesystem for the file named iptunnel:

pyramid:~# find / -name iptunnel
/sbin/iptunnel

If you don’t remember the exact filename, you can do wildcard searches:

pyramid:~# find / -name iptun*
/sbin/iptunnel
pyramid:~# find / -name *ptunn*
/sbin/iptunnel

You can start your search in any directory, like so: find /sbin -name pppd. To search
the current directory, use a dot:

find . -name foo-config

Discussion
If you’re horrified at the thought of using the find command because you’re used to
it taking a long time, don’t worry—with less than 50 MB to search, all find searches
are quick.

2.8 Hardening Pyramid | 27

See Also
• man 1 find

2.8 Hardening Pyramid

Problem
You want your little routerboard to be as hardened as you can make it. What steps
can you take to make it as secure as possible?

Solution
Your first job is to change root’s password to something a little less obvious than
“root,” the default password. Run these commands:

pyramid:~# /sbin/rw
pyramid:~# passwd

Then, add an unprivileged user for remote logins over SSH:

pyramid:~# useradd -m alrac
pyramid:~# passwd alrac

You’ll need to set the setuid bit on the su command so that ordinary users can su to
root:

pyramid:~# chmod +s /bin/su

Next, harden OpenSSH: disable root logins over SSH, disable password logins, and
set up public-key authentication. Chapter 7 tells how to do all this.

Turn off unnecessary services and network interfaces. If you’re not going to use the
web interface or SSH login, turn them off. SSH is disabled by changing its startup
command to a kill command, like this:

pyramid:/etc/rc2.d# mv S20ssh K20ssh

The web GUI is disabled by commenting out this line in /etc/inittab:

Lighttpd (with FastCGI, SSL and PHP)
HT:23:respawn:/sbin/lighttpd -f /etc/lighttpd.conf -m /lib -D > /dev/null 2>&1

Pay close attention to your application security. Because this is a multihomed device,
configure your applications to use only the interfaces they need to, and allow only
authorized users. Keep your user accounts tidy, and don’t leave unused ones lying
around. Use good strong passwords, written down and stored in a safe place.

Run Netstat locally and Nmap remotely to see what services are listening, and to see
what the outside world sees.

When you’re finished, don’t forget to run /sbin/ro to set the filesystem back to read-
only.

28 | Chapter 2: Building a Linux Gateway on a Single-Board Computer

Discussion
That’s right, the same old basic steps for any Linux. They work.

See Also
• Chapter 7, “Starting and Stopping Linux,” in Linux Cookbook, by Carla Schroder

(O’Reilly) to learn how to manage services

• Chapter 8, “Managing Users and Groups,” in Linux Cookbook

• Chapter 17, “Remote Access,” in Linux Cookbook

2.9 Getting and Installing the Latest Pyramid Build

Problem
You want to try out the latest Pyramid build from Metrix’s Subversion repository,
instead of the official stable release. It has some features you want, or you want to
contribute to the project by testing new builds.

Solution
You’ll need a PXE boot installation server to make this work. Use the pyramid-
export.sh script available from http://pyramid.metrix.net/trac/wiki/GettingPyramid to
download the latest build and roll it into a tarball. Then, copy the tarball to your
HTTP document root directory, and run the PXE boot installation in the usual way.

Discussion
It’s about a 100 MB download, and Subversion can be slow, so don’t be in a hurry.

See Also
• Recipe 2.4

• Recipe 2.5

• Pyramid Linux home page: http://pyramid.metrix.net/

2.10 Adding Additional Software to Pyramid Linux

Problem
Pyramid doesn’t come with everything you want; how can you add more software? It
doesn’t have any of the usual Ubuntu package management tools, nor any package
management tools at all, so you’re at a bit of a loss.

2.10 Adding Additional Software to Pyramid Linux | 29

Solution
The process is a bit fiddly, but not that bad. You can add user-space applications,
kernel modules, and even customized kernels. You need an Ubuntu liveCD and a PC
to run it on. You don’t need to install it to a hard drive; just boot it up on any PC,
and then copy off any files you want. I know in Recipe 2.8 I said to disable root log-
ins over SSH, but for this task, you need to re-enable them, because the Ubuntu
liveCD does not include an SSH server.

Suppose you want to install the Fortune program. Fortune displays a random for-
tune every time you run it, like this:

$ fortune
You will gain money by a fattening action.

Fortune comes with a number of different fortune databases, and you can easily cre-
ate your own custom fortunes. It’s a nice way to display a different Message of the
Day every time users log in.

First boot up the Ubuntu liveCD. Then, find out what packages you need with the
dpkg command:

ubuntu@ubuntu:~$ dpkg -l| grep fortune
ii fortune-mod 1.99.1-3 provides fortune cookies on demand
ii fortunes-min 1.99.1-3 Data files containing fortune cookies

Next, find out what files are in the Fortune packages:

ubuntu@ubuntu:~$ dpkg -L fortune-mod
/.
/usr
/usr/games
/usr/games/fortune
/usr/bin
/usr/bin/strfile
/usr/bin/unstr
/usr/share
/usr/share/man
/usr/share/man/man6
/usr/share/man/man6/fortune.6.gz
/usr/share/man/man1
/usr/share/man/man1/strfile.1.gz
/usr/share/doc
/usr/share/doc/fortune-mod
/usr/share/doc/fortune-mod/README.Debian
/usr/share/doc/fortune-mod/copyright
/usr/share/doc/fortune-mod/changelog.gz
/usr/share/doc/fortune-mod/README.gz
/usr/share/doc/fortune-mod/changelog.Debian.gz
/usr/share/menu
/usr/share/menu/fortune-mod
/usr/share/man/man1/unstr.1.gz

30 | Chapter 2: Building a Linux Gateway on a Single-Board Computer

The only files you need are the executables and any libraries they depend on. Don’t
bother with manpages because Pyramid Linux has no manpage viewer. You may
omit all documentation and example files to save space.

For the Fortune program, all you need are fortune, strfile, and unstr. How do you
know? Because they are in /usr/bin. Anything in a /bin or /sbin directory is an execut-
able. Use the du command to see how big they are:

ubuntu@ubuntu:~$ du - /usr/games/fortune
21k /usr/games/fortune

The others are equally dinky, so there is no problem finding room on our little 60
MB Pyramid image.

We also need to know how much space the Fortune databases require. They are all
in a single directory, which is convenient:

ubuntu@ubuntu:~$ du -sh /usr/share/games/fortunes
127k /usr/share/games/fortunes

OK, now you know what files to copy. Next, configure the network card on Ubuntu,
using an address suitable for your own LAN addressing scheme:

ubuntu@ubuntu:~$ sudo ifconfig eth0 192.168.1.100 netmask 255.255.255.0 broadcast
192.168.1.255

Then, log in to Pyramid, and make the Pyramid filesystem writable:

ubuntu@ubuntu:~$ ssh root@pyramid
The authenticity of host '192.168.1.1 (192.168.1.1)' can't be established.
RSA key fingerprint is 6b:4a:6b:3c:5e:35:34:b2:99:34:ea:9d:dc:b8:b1:d7.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.1.1' (RSA) to the list of known hosts.
root@192.168.1.1's password:
pyramid:~# /sbin/rw

Now, you can copy files to Pyramid with the scp command. Open a second terminal
on Ubuntu, and run the scp command. Ubuntu does not come with an SSH server, so
you cannot log in to Ubuntu from Pyramid. This example copies the files to the /sbin
directory on Pyramid:

ubuntu@ubuntu:~$ scp /usr/games/fortune /usr/bin/strfile /usr/bin/unstr root@192.168.
1.1:/sbin/
root@192.168.1.1's password:
fortune 100% 18KB 17.8KB/s 00:00
strfile 100% 11KB 11.4KB/s 00:00
unstr 100% 5596 5.5KB/s 00:00

Mind your slashes and colons. Now, try running Fortune on Pyramid:

pyramid:~# fortune
fortune: error while loading shared libraries: librecode.so.0: cannot open shared
object file: No such file or directory

2.10 Adding Additional Software to Pyramid Linux | 31

This tells you that you need librecode.so.0. Find it with the locate command on
Ubuntu, then copy it over:

ubuntu@ubuntu:~$ locate librecode.so.0
/usr/lib/librecode.so.0.0.0
/usr/lib/librecode.so.0
ubuntu@ubuntu:~$ scp /usr/lib/librecode.so.0 root@192.168.1.1:/usr/lib/

Try it again:

pyramid:~# fortune
question = (to) ? be : ! be;
 -- Wm. Shakespeare

Remember to run /sbin/ro on Pyramid when you’re finished.

Discussion
Pyramid is mostly unmodified Ubuntu binaries, so sticking with Ubuntu binaries and
source files is the safest and easiest method for modifying it. As long as your Ubuntu
CD is the same release as your Pyramid installation (Breezy, Dapper, and so forth)
you shouldn’t experience any compatibility problems.

You can copy applications and they will work. All you need are all the relevant bina-
ries or scripts, and whatever libraries the applications depend on.

Run df -h / to see how much available space you have on Pyramid.

You can use ldd to see what libraries your application depends on before you start
copying files:

$ ldd /usr/games/fortune
 linux-gate.so.1 => (0xffffe000)
 librecode.so.0 => /usr/lib/librecode.so.0 (0xb7df7000)
 libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7cc8000)
 /lib/ld-linux.so.2 (0xb7f42000)

To see a new fortune every time you log in, place the Fortune command in your per-
sonal ~/.bash_profile, or the systemwide /etc/profile, like this:

fortune

That’s right, a single word on a line by itself. You may modify this with any of the
Fortune command’s options.

See Also
• man 6 fortune

• Tips and Tricks For Hardworking Admins:

http://www.enterprisenetworkingplanet.com/netsysm/article.php/10954_
3551926_2 (which includes a Fortune How-To)

32 | Chapter 2: Building a Linux Gateway on a Single-Board Computer

2.11 Adding New Hardware Drivers

Problem
You are using a network interface card (NIC) that is not supported in Pyramid, and
you want to install the driver.

Solution
You’ll need a loadable kernel module. The easy way is to boot up an Ubuntu liveCD,
find a module in /lib/modules/[kernel-version]/kernel/drivers/net, and copy it to the
same directory on Pyramid:

ubuntu@ubuntu:~$ scp /lib/modules/2.6.15-26-386/kernel/drivers/net \ root@192.168.1.
1:/lib/modules/2.6.15.8-metrix/kernel/drivers/net/

Then, on Pyramid, run:

pyramid:~# update-modules

To immediately load the module for testing use modprobe, like this example using
the fake nicdriver.ko module:

pyramid:~# modprobe nicdriver

Don’t use the file extension, just the module name. To load it automatically at boot,
place the module in /etc/modules with a comment telling what NIC it belongs to:

#driver for Foo wireless pcmcia
nicdriver

Discussion
What if Ubuntu does not include the module? If it’s a Linux kernel module, you’ll
have to build it from Ubuntu sources, then copy it to Pyramid. Use Ubuntu kernel
sources. If it’s a vendor module, follow their instructions for installation. But your
best option is to use an NIC that is well-supported in the Linux kernel.

See Also
• man 8 modprobe

• man 8 lsmod

• man 5 modules

• Appendix C

• Chapter 10, “Patching, Customizing, and Upgrading Kernels,” in Linux
Cookbook, by Carla Schroder (O’Reilly)

2.12 Customizing the Pyramid Kernel | 33

2.12 Customizing the Pyramid Kernel

Problem
You want to compile a custom kernel with everything built-in instead of hassling
with kernel modules. Your little routerboard runs only a limited set of hardware, and
it’s not something you’re going to be updating or modifying a lot. Additionally, this
will save a fair amount of storage space on your Compact Flash card.

Solution
No problem. You need a build environment on a PC, with kernel sources and build
tools. Build your kernel there, then copy it to your Pyramid board. Use Ubuntu ker-
nel sources with Ubuntu patches. Fetch Ubuntu kernel sources and build tools with
this command:

$ sudo apt-get install linux-source linux-kernel-devel

That should get you everything you need.

If you want to start with the existing Pyramid kernel configuration, copy the /proc/
config.gz file to your build machine:

pyramid:/# scp /proc/config.gz carla@192.168.1.10:downloads/

Unpack it using gunzip:

$ gunzip config.gz

Now you can build a new custom kernel and drop it into place on Pyramid. Remem-
ber to update /boot/grub/menu.lst with the new kernel name.

Discussion
Pyramid consists of mostly unmodified Ubuntu binaries, so sticking with Ubuntu
binaries and source files is the safest and easiest method for modifying it. As long as
your Ubuntu CD is the same release as your Pyramid installation (Breezy, Dapper,
and so forth), you shouldn’t experience any compatibility problems.

To see how much space /lib/modules occupies, use the du command:

pyramid:/# du --si -c /lib/modules/2.6.17.8-metrix
...
6.3M /lib/modules/2.6.17.8-metrix
6.3M total

The kernel itself will occupy around 1 MB.

Typically, these little boards are “set it and forget it,” so they are good candidates for
statically compiled kernels.

34 | Chapter 2: Building a Linux Gateway on a Single-Board Computer

See Also
• Chapter 10, “Patching, Customizing, and Upgrading Kernels,” in Linux Cook-

book, by Carla Schroder (O’Reilly)

2.13 Updating the Soekris comBIOS

Problem
The comBIOS on your Soekris board is old, so you have downloaded a newer
version. How do you install it? Is it safe? Will you turn your routerboard into a high-
tech doorstop?

Solution
Relax, it’s fast and easy. The only risk is if the power fails during the actual installa-
tion; if that happens, your board could indeed be rendered useless. The installation
takes a few seconds, so the risk is minute.

First, download the updated comBIOS to your PC from http://www.soekris.com/
downloads.htm.

Then, upload the file over the serial link to the Soekris board. To do this, enter the
comBIOS by pressing Ctrl-P before Pyramid boots. Next, at the BIOS command line,
enter the download - command (that’s download, space, hyphen). Then, hit Enter.

Next, press Ctrl-A, S (that’s Ctrl-A, release, S, release) to bring up Minicom’s down-
load menu. Select Xmodem from the list of protocols. Navigate to the upgrade file by
using the spacebar to select any directories you want to change to, and then the file
itself. (Sometimes it takes a couple of spacebar hits to change to a new directory.)
The file is small, but it takes a couple of minutes to upload. You’ll see something like
Figure 2-2.

When the file is finished downloading, and you are back at the BIOS command
prompt, type flashupdate:

> flashupdate
.Erasing Flash.... Programming Flash......... Verifying Flash.... Done.

>

Reboot, and that’s all there is to it.

Discussion
You’re using both comBIOS and Minicom commands to perform the upload. Press
Ctrl-A, Z at any time for Minicom help.

If you get a “Failure executing protocol” error, you need to install lrzsz on the PC
that you’re running Minicom from.

2.13 Updating the Soekris comBIOS | 35

If you are too slow, you’ll get a bunch of “Retry 0: NAK on sector” errors, and it will
time out. It’s rather impatient, so don’t dink around.

Read the changelog at http://www.soekris.com/downloads.htm for useful information.

See Also
• man 1 minicom

Figure 2-2. Downloading a file using the Xmodem protocol on Minicom

36

Chapter 3CHAPTER 3

Building a Linux Firewall

3.0 Introduction
In this chapter, you’ll learn how to build a Linux iptables firewall from scratch. While
the recipes are aimed at DSL and cable Internet users, they also work for T1/E1 cus-
tomers. In fact, a Linux box with a T1 interface card is a great alternative to expensive
commercial routers. If you’re a normal business user and not an ISP that needs Buick-
sized routers handling routing tables with hundreds of thousands of entries, then
Linux on good-quality x86 hardware will serve your needs just fine.

A Linux border firewall can provide security and share an Internet connection for a
whole LAN, which can contain Linux, Windows, Mac, and other PCs. A host
firewall protects a single PC. There are a multitude of hardware choices for your fire-
wall box, from small single-board computers, to recycled old PCs, to rackmount
units. Any Linux distribution contains everything you need to build a sophisticated,
configurable, reliable firewall on any hardware.

Definitions and roles get a bit blurry, as an iptables firewall does both packet filter-
ing and routing. You could call it a filtering router.

iptables is the key to making everything work. Having a solid understanding of how
iptables works and how to write custom rules will give you mighty network guru
powers. Please study Oskar Andreasson’s Iptables Tutorial (http://iptables-tutorial.
frozentux.net/) and Craig Hunt’s TCP/IP Network Administration (O’Reilly) to get a
deeper understanding of how iptables and TCP/IP work. Another excellent resource
is the Netfilter FAQ (http://www.iptables.org/documentation/index.html). At the least,
you should know what headers IP, TCP, UDP, and ICMP packets contain, and the
section “Traversing Of Tables and Chains” in the Iptables Tutorial is especially help-
ful for understanding how packets move through iptables. If you don’t understand
these things, iptables will always be mysterious.

3.0 Introduction | 37

Firewalls and routers are often combined on the same device, which is often called
an Internet gateway. Strictly speaking, a gateway moves traffic between networks that
use different protocols, such as NETBEUI and TCP/IP, which is not something we
see much anymore. These days, it means any network devices that connect networks.

Routers forward traffic between networks. You always need a router between your
LAN and other networks. You may also add intrusion detection, traffic control,
proxies, secure remote access, DNS/DHCP, and any other services you want, though
in my opinion, it’s better to limit your firewall to routing, firewalling, and traffic con-
trol. Other services should sit on separate boxes behind your Internet firewall,
though of course this is up to you. In small shops, it’s not uncommon for a single
box to host a multitude of services. The risks are that any successful intruder will
have a feast of yummy services to exploit, or you may simply overload the box to the
point that performance suffers.

Any computer or network device that is exposed to untrusted networks is called a
bastion host. Obviously, bastion hosts have special needs—they must be well-
hardened, not share authentication services with your LAN hosts, and must have
strict access controls.

Separating Private and Public
If you are going to run Internet-accessible services, you need to isolate your public
servers from your private LAN. If you are sharing a single Internet connection, the
simplest way is to build a tri-homed (three network interfaces) Linux router; one
NIC connects to the Internet, the second one connects to your LAN, and the third
one connects to your demilitarized zone (DMZ). A demilitarized zone is a neutral
zone between two opposing groups. In computer terms, it’s a separate subnet where
you segegrate your public servers from your private LAN hosts, and your DMZ hosts
are treated as only slightly less untrustworthy than the big bad Internet.

Simply placing your public servers on a different subnet adds a useful layer of protec-
tion. DMZ hosts are not able to initiate connections back into the private network
without being explicitly allowed to do so. If a DMZ server is compromised, an
attacker should not find a path into your private network.

It doesn’t matter if your DMZ hosts have public or private IP addresses. Never run
public services from inside your LAN. The last thing you want to do is introduce a
big fat Internet hole into your LAN.

If your servers have public routable IP addresses, then you may elect to connect them
directly to the Internet or on a separate Internet connection. Host firewalls are useful
for restricting traffic to the server and blocking the zillions of automated attacks that
infest the Internet. A nice thing is a standalone firewall in front of your public serv-
ers to filter out unwanted traffic before it hits them.

38 | Chapter 3: Building a Linux Firewall

Windows Security
While firewalls are useful, remember to give a lot of attention to your application-
level and OS security. Some admins recommend configuring your servers as though
you have no firewall, and that is a good strategy. Linux and Unix servers can be
hardened to the point where they really don’t need a firewall. Windows systems are
impossible to harden to this degree. Nor is a firewall a cure-all. A nice strong iptables
firewall is a good umbrella to place over Windows hosts, but a firewall will not pro-
tect them from email-borne malware, infected web sites, or the increasing hordes of
spyware, adware, Trojan horses, and rootkits that come in legitimate commercial
software products, or the inability of commercial security products to detect all the
bad stuff.

Iptables and NAT, SNAT, and DNAT
Our Linux-based iptables firewall is going to perform several jobs:

• Packet filtering

• Routing

• Network Address Translation (NAT)

Packet filtering is an extremely powerful, flexible mechanism that lets us perform all
manner of mojo even on encrypted transmissions because TCP/IP packet headers are
not encrypted. iptables rules filter on addresses, protocols, port numbers, and every
other part of a TCP/IP packet header; it does not perform any sort of data inspection
or filtering.

Having routing built-in a nice convenience that lets you pack a lot of functionality
into a single device and into a few iptables rules.

NAT is the magic that lets you share a single public IP address with a whole private
subnet, and to run public servers with private nonroutable addresses. Suppose you
have a typical low-cost DSL Internet account. You have only a single public IP
address, and a LAN of 25 workstations, laptops, and servers, protected by a nice
iptables NAT firewall. Your entire network will appear to the outside world as a sin-
gle computer. (Canny network gurus can penetrate NAT firewalls, but it isn’t easy.)
Source NAT (SNAT) rewrites the source addresses of all outgoing packets to the fire-
wall address.

It works the other way as well. While having public routable IP addresses is desir-
able for public services, like web and mail servers, you can get by on the cheap
without them and run public servers on private addresses. Destination NAT (DNAT)
rewrites the destination address, which is the firewall address, to the real server
addresses, then iptables forwards incoming traffic to these servers.

Someday, when IPv6 is widely implemented, we can say good-bye to NAT, except
for those times when we really want it. It is useful for stretching the limited pool of

3.0 Introduction | 39

IPv4 addresses, and unintentionally provides some security benefits. But, it also cre-
ates a host of routing problems. Protocols that have to traverse NAT, like FTP, IRC,
SMTP, and HTTP have all kinds of ingenious hacks built into them to make it possi-
ble. Peer protocols like BitTorrent, instant messaging, and session initiation protocol
(SIP) are especially challenging to get through NAT.

iptables and TCP/IP Headers
iptables reads the fields in packet headers, but not the data payload, so it’s no good
for content filtering.

When you’re studying the different protocols, you’ll run into conflicting terminol-
ogy. To be strictly correct, IP and UDP move datagrams, TCP exchanges segments,
and ICMP packets are messages. In the context of iptables, most admins just say
“packets,” though you run the risk of annoying pedantic network engineers. The
important part is understanding that every data transmission is broken into a series
of packets that travel independently over the network, often taking different routes.
Then, when they arrive at their destination, the TCP protocol reassembles them in
the correct order. Each packet contains in its headers all the information necessary
for routers to forward it to its destination. IP and UDP are unreliable protocols
because they do not have delivery confirmations, but this makes them very fast. TCP
takes care of delivery confirmations, sequence numbers, and error-checking, so it
incurs a bit of overhead, but gains reliability. TCP/IP together are extremely reliable.

If you have any questions about connecting to the Internet or networking hardware
basics, read the Introduction to this book.

When Is a Firewall Needed?
Do you even need a firewall? Short answer: if you connect to other networks, yes.
Ubuntu Linux, for one famous example, does not include a firewall configurator dur-
ing installation because it installs with no running services. No services means no
points of attack. But, I think this is missing an important point: things change, mis-
takes happen, and layered defenses are a standard best practice. Why let your hosts
be pummeled and your LAN congested by outside attacks, even if they are futile?
Head all that junk off at your firewall. Even public services benefit from being fire-
walled. For example, there’s no need to subject your web server to the endless SSH
attacks and MS SQL Server worms infesting the Internet, so you can block every-
thing but port TCP 80. The same goes for all of your hosts: reduce the load and
potential compromises by diverting unwanted traffic before it hits them.

You can take this a step further and fine-tune exactly where you allow incoming traf-
fic to come from. SSH is the poster child for this—if you’re not expecting legitimate
connection attempts from far-flung lands, write rules to allow only the address
ranges or specific addresses that you know are legitimate, and bitbucket the rest.

40 | Chapter 3: Building a Linux Firewall

iptables Overview
iptables is part of the Netfilter project. Netfilter is a set of Linux kernel hooks that
communicate with the network stack. iptables is a command and the table structure
that contains the rulesets that control the packet filtering.

iptables is complex. It filters packets by the fields in IP, TCP, UDP, and ICMP packet
headers. A number of different actions can be taken on each packet, so the key to
iptables happiness is simplicity. Start with the minimum necessary to get the job
done, then add rules as you need them. It’s not necessary to build vast iptables
edifices, and in fact, it’s a bad idea, as it makes it difficult to maintain, and will hurt
performance.

iptables Policies and Rules
Policies are the default actions applied to packets that do not match any rules. There
are three built-in tables: filter, NAT, and mangle. You will use the filter table the
most, the NAT table a little, and the mangle table perhaps not at all (it is for
advanced packet manipulation). Each table contains a number of built-in chains.
You may also create custom chains. A chain is a list of rules that defines the actions
applied to packets. Rules end with a target specification that tells what to do with the
packet. This is done with the jump (-j) command, like this simple example that per-
mits all loopback traffic with the ACCEPT target:

iptables -A INPUT -i lo -j ACCEPT

Once a packet reaches the ACCEPT target, that is the end of the road, and it does not
traverse any more chains. Rules can be run from the command line or put in a script.
This is what each part of this rule means:

• iptables = The iptables command

• No table is specified, so the default filter table is used

• -A INPUT = Append this rule to the built-in INPUT chain

• -i lo = Apply this rule to packets going to interface lo

• -j ACCEPT = Jump to the built-in ACCEPT chain, which moves packets to their final
destinations

iptables does stateful packet inspection, which is done via its connection tracking
mechanism. In other words, it knows if a packet is attempting to start a new connec-
tion or if it belongs to an existing one. Seeing packets in context is very powerful,
and makes it possible to do a lot of work with a few rules. If you are running no pub-
lic services, you can then easily block all outside attempts to create a connection,
because they have no legitimate reason to try to connect to you. When you do run
services such as SSH, FTP, or a web or mail server, iptables can allow only traffic
targeted for the services you are running, and reject all the rest. You might block all
outgoing traffic initiated from your servers because they’re only supposed to respond

3.0 Introduction | 41

to connection attempts from the outside, not initiate them. These things would be
difficult to do without stateful packet inspection.

iptables is extensible with the addition of custom kernel modules, so iptables features
vary by Linux distribution and user modifications. To see what your installation sup-
ports, check your /boot/config-* file. If you’re not thrilled by the notion of managing a
bunch of kernel modules (and iptables can use quite a few), build a custom kernel
with the iptables functions you want built-in.

Tables Overview
There are three tables in iptables. Any rules or custom chains that you create will go
into one of these tables. The filter table is the default, and is the one you’ll use the
most. You can think of it as the firewalling portion of iptables. The filter table con-
tains these built-in chains:

INPUT
Processes incoming packets

FORWARD
Processes packets routed through the host

OUTPUT
Processes outgoing packets

The NAT table is used only to change the packet’s Source Address field or Destina-
tion Address field. If you have a single public, routable IP address in front of a LAN
that uses private addresses, which is common, NAT translates the source IP
addresses on outgoing packets to the public address. It doesn’t matter if you have a
hundred hosts sharing the connection—it will appear that all your traffic is coming
from a single host. Conversely, you may use it to enable access to public services
with private IPs. The NAT table has these built-in chains:

PREROUTING
Alters incoming packets before routing

OUTPUT
Alters locally-generated packets before routing

POSTROUTING
Alters packets after routing

The mangle table lets you alter packet headers as you like. This has a host of uses
that we will not cover in this book, but here are a few ideas for inspiration:

• Change the TOS field of packets for QoS (there are now better ways for manag-
ing QoS, but there it is)

• MARKing packets to collect statistics for filtering, logging, or routing

• Limit packet rate

42 | Chapter 3: Building a Linux Firewall

It has these built-in chains:

PREROUTING
Alters incoming packets before routing

OUTPUT
Alters locally generated packets before routing

INPUT
Alters packets destined for the local machine

FORWARD
Processes packets routed through the host

POSTROUTING
Alters packets on their way out, after routing

Packets coming into your network must first pass through the mangle table, then the
NAT table, and finally, the filter table.

User-defined chains can improve performance because packets traverse your rules
and chains in the order they are listed. Defining your own chains lets you create
shortcuts, so packets can jump directly to the chains you want them to traverse,
instead of passing through a bunch of irrelevant rules and chains first. Or, you may
save some configuration steps by building a custom chain to use over and over.

Specialized Linux Firewall and Routing Distributions
While you can customize any Linux distribution any way you like, there are a
number of specialized Linux distributions designed to serve as Internet routers and
firewalls. They are stripped-down to the essentials. Some are small enough to fit on a
floppy disk. Typically, these include iptables, DNS/DHCP servers, secure remote
access, intrusion detection, logging, port forwarding, and Internet connection shar-
ing. Here are a few of the more popular ones:

Freesco (http://www.freesco.org/)
The name means FREE ciSCO. It is a free replacement for commercial routers. It
supports up to 10 Ethernet/arcnet/Token Ring/arlan network cards, and up to
10 modems. It is easy to set up, and can be run from a single write-protected dis-
kette, or from a hard drive, if you want additional functionality.

IPCop (http://www.ipcop.org/)
An excellent prefab Internet gateway. It has a web-based administration inter-
face, supports SSH and console access, and, in addition to the usual gateway
services, it supports dial-up networking and DynDNS.

The Sentry Firewall CD (http://www.sentryfirewall.com/)
Sentry runs from a bootable CD, and stores configuration files on a diskette. Set
the diskette to read-only, and recovering from an intrusion is as easy as patching
the hole and rebooting.

3.0 Introduction | 43

Pyramid Linux (http://pyramid.metrix.net/)
Pyramid Linux, a descendant of the popular Pebble Linux, is maintained by
Metrix Communications, and is based on Ubuntu Linux. It is optimized for
wireless access points, and serves equally well as a wired-network firewall. The
stock installation occupies under 50 MB, so it’s perfect for single-board comput-
ers without expandable storage. Because it uses stock Ubuntu packages, you can
easily add applications by copying the binaries and any dependent libraries from
the Ubuntu liveCD.

Bering uClibc (http://leaf.sourceforge.net/bering-uclibc/)
Bering achieves its small size by using modified libraries. Because it is so custom-
ized, you have to rely on the Bering package repositories for additional application.
This shouldn’t be a problem for most admins, as they offer a large number of addi-
tional packages.

Voyage Linux (http://www.voyage.hk/software/voyage.html)
Based on Debian, Voyage can be shrunken to as small as 64 MB, or expanded as
desired. Optimized for wireless access points, routers, and firewalls.

Debian Router (http://gate-bunker.p6.msu.ru/~berk/)
This is a work in progress. It is an interesting Debian implementation that takes
a slimmed-down, stock Debian, and adapts it to boot from a flash drive and run
entirely in memory.

It is equally important to harden your systems, and a great tool for this is Bastille
Linux (http://www.bastille-linux.org/). Bastille is a set of scripts that walk you
through a number of steps to harden your entire system. It is designed to be educa-
tional and functional. You can run through it a couple of times without actually
changing anything, and it also has an undo feature so that you can practice without
running the risk of locking yourself out of your system. It examines almost every
aspect of your system, including file permissions, PAM settings, services, and remote
access.

Important Disclaimer
I cannot guarantee that the recipes in this chapter are crack-proof, or that they will
offer perfect protection. No one can make such a claim. Users clamor for easy, point-
and-click security, but there is no such thing. Security is an escalating arms race. The
well-armed network administrator studies the relevant RFCs, iptables documenta-
tion, and keeps up-to-date with important security news (e.g., the security bulletins
for their particular Linux distribution, Bugtraq mailing list, securityfocus.com, and
Bruce Schneier’s Crypto-Gram list).

44 | Chapter 3: Building a Linux Firewall

3.1 Assembling a Linux Firewall Box

Problem
You want to build your own Internet firewall box for your cable or DSL Internet line,
on ordinary x86 hardware, using your favorite Linux distribution. You want Internet
connection sharing and a firewall, and you need to know what hardware compo-
nents to use. You already have installation disks, or some other method of installing
the operating system.

Solution
The Linux distribution you want to use determines your hardware requirements.
Some distributions require more horsepower than others, so don’t assume you can
use some feeble old antique PC without checking. This chapter’s Introduction lists a
number of specialized firewall distributions.

You’ll need these items to build and set up your firewall box:

• A PC with at least two Ethernet interfaces

• A second PC and a crossover cable for testing

You’ll connect only the LAN interface until your firewall has been installed and
configured.

Go ahead and install your chosen Linux distribution, then follow the recipes in this
chapter to configure your network interfaces and firewall.

Install net-tools and Nmap because you will use them a lot in this chapter. They
should also be installed on a second PC for testing. Debian users will also need to
install the ifrename package.

Discussion
Repurposing old PCs saves money and keeps them out of landfills. They can be
customized any way you like. They also make dandy test-and-practice boxes. The
drawbacks are size, noise, power consumption, and the fact that they may not be
reliable, just from being old.

An excellent alternative to an old PC is a single-board computer like the PC Engine
WRAP boards or Soekris boards. These cost between $150 and $400, depending on
which features and accessories you get. They use little power, are small and silent,
and very sturdy. (See Chapter 2 to learn how to use one of these.)

WRAP and Soekris boards come in several different configurations. You’ll need a
minimum of two Ethernet ports. You’ll need three if you plan to run servers inside a
DMZ. Two Ethernet ports plus two PCMCIA slots and a mini-PCI slot will give you
the flexibility to mix-and-match wired and wireless in a number of different ways.

3.2 Configuring Network Interface Cards on Debian | 45

An inexpensive but powerful option is the Linksys WRT54G and its cousins, such as
the Buffalo WHR series, the ASUS WL-500 boxes, and other similar products. These
are little four-port broadband router and wireless access points targeted at home DSL
or cable users. You can find these for well under $100, and even under $50. They’re
not so hot with their stock firmwares, but when you turborcharge them with the
OpenWRT or DD-WRT firmwares, they perform like $500 commercial routers.

Cabling

Youngsters may not remember the olden days before auto-detecting MDI/MDI-X
(medium-dependent interface/crossover ports) on Ethernet switches, and even some
network interface cards, though these are rare. Back in the bad old days, network
admins had to deal with two types of Ethernet cabling: straight cables and crossover
cables. Straight cables connected PCs to hubs and switches, and crossover cables
were for PC-to-PC and hub-to-hub or switch-to-switch connections. In these modern
times, we still need crossover cables for PC-to-PC connections (with rare excep-
tions), but most hubs and switches can use either one.

Network interfaces

Ordinary Fast Ethernet interfaces are easiest, both PCI and onboard. You may use
ISA NICs, if that’s all you have. But that puts a greater load on the CPU, and the ISA
bus is very slow, around 8 Mb per second. This is still faster than the typical cable or
DSL Internet line, so use it as your WAN interface. (Yes, you can find 100BaseTX
ISA network cards, which is silly, because they’ll still be limited by the ISA bus
speed.)

Don’t use wireless interfaces unless you are a wireless guru. Wireless interfaces need
special handling, so I recommend sticking with plain old wired Ethernet until you
have your firewall running satisfactorily.

See Also
• Repairing and Upgrading Your PC, by Robert Bruce Thompson and Barbara

Fritchman Thompson (O’Reilly)

3.2 Configuring Network Interface Cards on Debian

Problem
You have installed Debian Linux on your firewall box, so you’re ready to configure
your network interface cards.

46 | Chapter 3: Building a Linux Firewall

Solution
In Debian, you’ll edit /etc/network/interfaces and /etc/iftab. /etc/iftab is part of the
ifrename package.

First, configure the LAN NIC with a static IP address appropriate for your private
addressing scheme. Don’t use DHCP to assign the LAN address. Configure the
WAN interface with the account information given to you by your ISP. These exam-
ples show you how to set a static local IP address and a dynamic external address.

Do not connect the WAN interface yet.

In this example, eth0 is the LAN interface, and eth1 is the WAN interface:

##/etc/network/interfaces

The loopback network interface
auto lo
iface lo inet loopback

#lan interface
auto eth0
iface eth0 inet static
 address 192.168.1.26
 netmask 255.255.255.0
 network 192.168.1.0
 broadcast 192.168.1.255

#wan interface
auto eth1
iface eth1 inet dhcp

If your WAN address is a static public routable IP address, configure the WAN inter-
face using the information supplied by your ISP. This should include your ISP’s
gateway address, and your static IP address and netmask, like this:

auto eth1
iface eth1 inet static
 address 1.2.3.4
 netmask 255.255.255.0
 gateway 1.2.3.55

Then, add your ISP’s DNS servers to /etc/resolv.conf (don’t do this for a DHCP WAN
address):

##/etc/resolv.conf
nameserver 1.2.3.44
nameserver 1.2.3.45

There is one more step just for Debian: nail down the interface names with ifrename.
First, find the MAC addresses of your interfaces with ifconfig -a:

3.2 Configuring Network Interface Cards on Debian | 47

$ ifconfig -a
eth0 Link encap:Ethernet HWaddr 00:0B:6A:EF:7E:8D
[...]

The MAC address is the HWaddr. Enter your two MAC addresses and interface names
in /etc/iftab:

##/etc/iftab
eth0 mac 11:22:33:44:55:66
eth1 mac aa:bb:cc:dd:ee:ff

If /etc/iftab does not exist, you must create it.

Discussion
The LAN address of your firewall is the gateway address you’ll be setting on all of
your LAN PCs, so don’t complicate your life by using a dynamically assigned
address.

Using ifrename is the easiest way to make sure your network cards keep the correct
configurations on Debian systems. Usually, interfaces will come up in the same
order, and the kernel will assign them the same names, but sometimes this can
change (e.g., after a kernel upgrade or adding another network card). Your nice
Linux firewall won’t work with the network interfaces mixed up, so it is best to nail
them down. An additional bonus is you can easily name your interfaces anything you
want with ifrename. You might give them descriptive names like “lan” and “wan,”
instead of eth0 and eth1.

Routers typically run headless, without a keyboard or monitor. If your Ethernet-
working gets all goofed up, and you cannot log in to your router, the serial console
will save the day. See Chapter 17 to learn how to set this up.

Configuration definitions

auto
Start the NIC when ifup -a is run, typically in boot scripts. Interfaces are
brought up in the order they are listed. You may bring interfaces up and down
manually with ifup and ifdown, like ifdown eth0 and ifup eth0.

iface
Name of the interface.

inet
The name of the address family; inet = IPv4. Other choices are ipx and inet6.

static
The name of the method used to configure the interface, either static or dhcp.
Other choices are manual, bootp, ppp, and wvdial. manual lets you pass in
configurations using scripts, or with the up and down commands. bootp receives
configurations from a remote boot server, and ppp and wvdial are for modems.

48 | Chapter 3: Building a Linux Firewall

See Also
• man 5 interfaces

• man 8 ifconfig

• man 8 ifrename

• Chapter 10, “Network Configuration,” of the Debian Reference Manual (http://
www.debian.org/doc/manuals/reference/), available in several languages

3.3 Configuring Network Interface Cards on Fedora

Problem
You have installed Fedora Linux on your firewall box, and now you’re ready to give
your network interface cards their final, working configurations.

Solution
Fedora gives each network interface a separate configuration file. You’ll be editing /etc/
sysconfig/network-scripts/ifcfg-eth0 and /etc/sysconfig/network-scripts/ifcfg-eth1.

First, configure the LAN interface with a static IP address appropriate for your
private addressing scheme. Don’t use DHCP to assign the LAN address.

Configure the WAN interface with the account information given to you by your ISP.

These examples show how to set a static local IP address and a dynamic external IP
address.

Do not connect the WAN interface yet.

In this example, eth0 is the LAN interface and eth1 is the WAN interface:

##/etc/sysconfig/network-scripts/ifcfg-eth0
#use your own MAC address and LAN addresses
DEVICE=eth0
HWADDR=11:22:33:44:55:66
BOOTPROTO=none
ONBOOT=yes
NETMASK=255.255.255.0
IPADDR=192.168.1.23
NETWORK=192.168.1.0
USERCTL=no

##/etc/sysconfig/network-scripts/ifcfg-eth1
#use your real MAC address
DEVICE=eth1
HWADDR=AA:BB:CC:DD:EE:FF
BOOTPROTO=dhcp
USERCTL=no

3.3 Configuring Network Interface Cards on Fedora | 49

How do you get the MAC addresses and interface names? Run ifconfig -a:

$ ifconfig -a
eth0 Link encap:Ethernet HWaddr 00:0B:6A:EF:7E:8D
[...]

And that’s all you need to do, because you’ll get all your WAN configurations from
your ISP’s DHCP server.

If your WAN address is a static IP address, configure the WAN NIC the same way as
the LAN address using the information supplied by your ISP. This should include
your ISP’s gateway address, and your static IP address and netmask. Then, add your
ISP’s DNS servers to /etc/resolv.conf:

##/etc/resolv.conf
nameserver 11.22.33.44
nameserver 11.22.33.45

Restart networking or reboot, and you’re ready for the next steps.

Discussion
The LAN IP address of your firewall is the gateway address you’ll be setting on all of
your LAN PCs, so don’t complicate your life by using a dynamically assigned
address.

Routers typically run headless, without a keyboard or monitor. If your Ethernet-
working gets all goofed up, the serial console will save the day. See Chapter 17 to
learn how to set this up.

Every Linux distribution comes with a number of graphical network configuration
tools. Feel free to use these, though it’s always good to understand the underlying
text configuration files and scripts.

When you have two NICs on a Linux box, they are usually brought up in the same
order on boot, and given the same names (e.g., eth0, eth1, etc.). But sometimes, the
order is reversed, which will render your nice firewall box useless, so binding the
device names to their MAC addresses ensures that the configurations always stay
put. That’s what the DEVICE directive is for.

You can even give your interfaces names of your own choosing, like “lan” and “wan.”
You may also rename the configuration file to help you remember, like /etc/sysconfig/
network-scripts/ifcfg-lan. You must use “ifcfg” in the filename, or it won’t work.

This is what the configuration options mean:

DEVICE
Name of the physical device.

HWADDR
The real MAC address of the NIC. Don’t confuse this with MACADDR, because
MACADDR assigns a new MAC address, overriding the existing one. Why would

50 | Chapter 3: Building a Linux Firewall

you want to change a MAC address? There aren’t many legitimate reasons,
though it is a good reminder to see how easy it is to spoof a MAC address, and
why you should not rely on MAC addresses as secure identifiers.

BOOTPROTO
Boot protocol, which is none, dhcp, or bootp.

ONBOOT
Bring the NIC up at boot, yes or no.

NETMASK
Address mask for your network. Unfortunately, CIDR addressing is not yet
supported.

IPADDR
The IP address that you choose for the NIC.

USERCTL
Allow unprivileged users to control the NIC, yes or no.

Broadcast addresses are automatically calculated with ifcalc, so it’s not necessary to
specify them.

See Also
• The Discussion in the previous recipe for more discussion of hardware

requirements

• man 8 ifconfig

• Red Hat maintains a complete archive of manuals online at http://www.redhat.com/
docs/manuals/; look for the Networking chapters in the Reference Guides

3.4 Identifying Which NIC Is Which

Problem
You have successfully installed two NICs in your new soon-to-be Linux firewall, but
you realize that you don’t know how to tell which physical card is eth0 and which
one is eth1.

Solution
The most reliable way is to connect one at a time to another PC and ping them from
the second PC. Once you know which one is which, label them. Using two different
interface cards with different drivers also helps to keep them sorted out, though it’s
not required.

3.5 Building an Internet-Connection Sharing Firewall on a Dynamic WAN IP Address | 51

Discussion
If your needs grow to where you need three or four Ethernet adapters, consider pur-
chasing two- or four-port Ethernet adapters. They are configured and managed in
exactly the same way as single-port cards, with the advantages of using fewer PCI
slots, and requiring fewer interrupts. They’re more expensive because they are
designed for server duties, so they are more robust, and come with more features.

Soekris single-board computers can have up to eight 10/100 Ethernet ports.

There is no instant method for identifying which NIC is eth0 or eth1 when you install
them for the first time, or afterward. It takes just a couple of minutes to do the ping
test and label them, and it will save many hassles down the road.

USB Ethernet adapters are worth considering if you shop carefully and purchase only
models with native Linux drivers. Don’t use ndiswrapper, which is a Linux wrapper
that lets you use the device’s binary Windows drivers on Linux. It is difficult to
install, difficult to upgrade, and using closed, binary device drivers leaves you at the
mercy of the vendor for bugfixes and security patches.

Be sure to get USB 2.0 devices, or you won’t see any speed at all, because USB 1.1
supports a maximum line speed of 12 Mbps. Most likely you’ll top out at 6–8 Mbps,
which in these modern times is slower than slow. USB 2.0 supports a theoretical
maximum of 480 Mbps. On an unshared USB 2.0 bus, you should hit data transfer
rates of around 320 Mbps or so, or around 40 MBps.

See Also
• man 8 ping

• Chapter 5, “Discovering Hardware from Outside the Box,” in Linux Cookbook,
by Carla Schroder (O’Reilly)

3.5 Building an Internet-Connection Sharing
Firewall on a Dynamic WAN IP Address

Problem
Your Linux firewall box is assembled and ready to go to work. But first, you must set
up a firewall and Internet connection sharing. You’re still on IPv4, and your LAN
uses mostly nonroutable private IP addresses, so you want a Network Address Trans-
lation (NAT) firewall. You have a dynamically assigned WAN address.

52 | Chapter 3: Building a Linux Firewall

Solution
It’s all done with iptables.

Don’t connect the WAN interface yet. Make sure there are no open ports on your
firewall machine. Test this by running netstat on the firewall box. This command
shows all listening and TCP and UDP sockets and established connections:

admin@firewall:~# netstat -untap

If you find any open ports, close them. Any services you want to run can be restarted
later, but for now, it’s safer to shut them off, with one exception: you need a DHCP
client running so the WAN interface will work correctly. DHCP clients run by
default on all Linux distributions, so you shouldn’t have to enable it.

Next, edit /etc/sysctl.conf so that it has these kernel parameters. The first one is the
most important because you must have it to enable sharing your Internet connection:

net.ipv4.ip_forward = 1
net.ipv4.icmp_echo_ignore_broadcasts = 1
net.ipv4.tcp_syncookies = 1
net.ipv4.conf.all.accept_source_route = 0

Next, copy the following script, call it /usr/local/bin/fw_nat, and make it read/write/
executable for root only, mode 0700:

#!/bin/sh
##/usr/local/bin/fw_nat
#iptables firewall script for sharing
#broadband Internet, with no public services

#define variables
ipt="/sbin/iptables"
mod="/sbin/modprobe"
LAN_IFACE="eth0"
WAN_IFACE="eth1"

#basic set of kernel modules
$mod ip_tables
$mod ip_conntrack
$mod iptable_filter
$mod iptable_nat
$mod iptable_mangle
$mod ipt_LOG
$mod ipt_limit
$mod ipt_state
$mod ipt_MASQUERADE

#add these for IRC and FTP
$mod ip_nat_ftp
$mod ip_nat_irc
$mod ip_conntrack_ftp
$mod ip_conntrack_irc

3.5 Building an Internet-Connection Sharing Firewall on a Dynamic WAN IP Address | 53

Flush all active rules and delete all custom chains
$ipt -F
$ipt -t nat -F
$ipt -t mangle -F
$ipt -X
$ipt -t nat -X
$ipt -t mangle -X

#Set default policies
$ipt -P INPUT DROP
$ipt -P FORWARD DROP
$ipt -P OUTPUT ACCEPT
$ipt -t nat -P OUTPUT ACCEPT
$ipt -t nat -P PREROUTING ACCEPT
$ipt -t nat -P POSTROUTING ACCEPT
$ipt -t mangle -P PREROUTING ACCEPT
$ipt -t mangle -P POSTROUTING ACCEPT

#this line is necessary for the loopback interface
#and internal socket-based services to work correctly
$ipt -A INPUT -i lo -j ACCEPT

#Enable IP masquerading
$ipt -t nat -A POSTROUTING -o $WAN_IFACE -j MASQUERADE

#Enable unrestricted outgoing traffic, incoming
#is restricted to locally-initiated sessions only
$ipt -A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
$ipt -A FORWARD -i $WAN_IFACE -o $LAN_IFACE -m state --state ESTABLISHED,RELATED -j
ACCEPT
$ipt -A FORWARD -i $LAN_IFACE -o $WAN_IFACE -m state --state NEW,ESTABLISHED,RELATED
-j ACCEPT

Accept important ICMP messages
$ipt -A INPUT -p icmp --icmp-type echo-request -j ACCEPT
$ipt -A INPUT -p icmp --icmp-type time-exceeded -j ACCEPT
$ipt -A INPUT -p icmp --icmp-type destination-unreachable -j ACCEPT

#Reject connection attempts not initiated from inside the LAN
$ipt -A INPUT -p tcp --syn -j DROP

Now, load the new sysctl settings and execute the fw_nat script as root:

/sbin/sysctl -p
fw_nat

Then, connect the WAN interface to your broadband modem, and bring up the
WAN interface:

/sbin/ifup eth1

You should see some messages from your DHCP client and see your new address.

54 | Chapter 3: Building a Linux Firewall

Now, connect a second PC to your LAN port, either with a switch or a crossover
cable. It needs a static address on the same network as the firewall’s LAN port, using
the firewall’s LAN address as the gateway.

You should be able to web surf, ping remote sites, and ping each other. Once every-
thing is working correctly, go to Recipe 3.9 to learn how to start your iptables script
at boot, and how to stop and restart your firewall.

Discussion
If running /sbin/ifup eth1 gives you this message:

ifup: interface eth1 already configured

run /sbin/ifdown eth1, then /sbin/ifup eth1.

A typical response to running /sbin/ifup eth1 looks like this:

ifup eth1
Internet Systems Consortium DHCP Client V3.0.2
Copyright 2004 Internet Systems Consortium.
All rights reserved.
For info, please visit http://www.isc.org/products/DHCP
sit0: unknown hardware address type 776
sit0: unknown hardware address type 776
Listening on LPF/eth1/00:01:02:03:04:05
Sending on LPF/eth1/00:01:02:03:04:05
Sending on Socket/fallback
DHCPDISCOVER on eth1 to 255.255.255.255 port 67 interval 3
DHCPOFFER from 1.2.3.4
DHCPREQUEST on eth1 to 255.255.255.255 port 67
DHCPACK from 1.2.3.4
bound to 1.2.3.44 -- renewal in 34473 seconds.

If none of this happens, make sure your cables are connected correctly. If they are,
try rebooting. It’s usually quicker than dinking around with the network starting/
stopping peculiarities of your particular Linux distribution.

The RELATED,ESTABLISHED rules are examples of the power of stateful packet filtering.
iptables’ connection tracking knows which TCP packets belong to an established
connection, so we can lock down incoming traffic tightly and still have unfettered
functionality with just a few rules.

The default policies apply when no specific rules apply to a packet. The NAT and
mangle tables should default to ACCEPT because packets traverse these tables before
the filter table. If your NAT and mangle policies are DROP, you will have to create
additional rules to allow packets to reach the filter table.

Setting OUTPUT ACCEPT as the default is somewhat controversial. Some admins advo-
cate locking this down with OUTPUT DROP, and writing allow rules only as needed. If
you use OUTPUT ACCEPT, see Recipe 3.18 for some tips on writing egress rules for
blocking known bad ports, and for adding some other basic precautions.

3.5 Building an Internet-Connection Sharing Firewall on a Dynamic WAN IP Address | 55

iptables does not run as a daemon, but operates at the kernel level. The rules are
loaded into memory by the iptables command. You may run all the commands in
the above script from the command line, which is one way of testing. However, they
will not survive a reboot. My preference is to script all rules even for testing; it’s easy
enough to edit and rerun the script. If things go excessively haywire, run the flush
script from Recipe 3.8 to delete all rules and reset everything to ACCEPT. If for some
reason that does not work, rebooting will clear out everything, provided you have no
firewall scripts that run at boot. Then, you need to reexamine your scripts to figure
out what went wrong.

Because iptables is implemented in the kernel, stock kernels vary in how many mod-
ules are built-in, and how many are loadable modules. Check your /boot/config-* file
to see how yours was built. It’s unnecessary to include kernel modules in your fire-
wall script that are built-in to the kernel, though it doesn’t hurt anything. You may
wish to build a custom kernel with all the iptables modules you need built-in to save
the hassle of managing modules. There are no performance differences either way,
it’s just a matter of personal preference.

It is common to see kernel parameters set in iptables scripts, like this:

echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts
echo 0 > /proc/sys/net/ipv4/conf/all/accept_redirects
echo 0 > /proc/sys/net/ipv4/conf/all/accept_source_route

I prefer to control these options with sysctl because that is what it is designed to
do, and I prefer that they operate independently of my iptables script. The echo
commands are nice for command-line testing, as they override configuration files.
They won’t survive a reboot, so any settings you want to keep permanently should
go in /etc/sysctl.conf.

A common point of confusion is dots and slashes. You may use either, like this:

net.ipv4.tcp_syncookies = 1
net/ipv4/tcp_syncookies = 1

See Also
• Recipe 3.10

• The Discussion in Recipe 3.15 to learn what the kernel parameters in /etc/sysctl.
conf mean

• ip-sysctl.txt in your kernel documentation

• man 8 iptables

• Chapter 1, “Overview of TCP/IP,” in TCP/IP Network Administration, by Craig
Hunt (O’Reilly)

• Oskar Andreasson’s Iptables Tutorial: http://iptables-tutorial.frozentux.net/

56 | Chapter 3: Building a Linux Firewall

3.6 Building an Internet-Connection Sharing
Firewall on a Static WAN IP Address

Problem
Your Linux firewall box is assembled and ready to go to work. But first, you must
configure a firewall and Internet connection sharing. You’re still on IPv4, and your
LAN uses mostly nonroutable, private IP addresses, so you want a NAT (Network
Address Translation) firewall. You have the type of Internet account that gives you a
static, public IP address.

Solution
The fw_nat script from the previous recipe needs one line changed. Find:

$ipt -t nat -A POSTROUTING -o $WAN_IFACE -j MASQUERADE

and replace it with:

$ipt -t nat -A POSTROUTING -o $WAN_IFACE -j SNAT --to-source 1.2.3.4

Use your own WAN IP address, of course.

Discussion
Static addresses are good candidates for being put in variables at the beginning of the
script, like this:

WAN_IP="1.2.3.4"

Then, your rule looks like this:

$ipt -t nat -A POSTROUTING -o $WAN_IFACE -j SNAT --to-source $WAN_IP

You could still use the MASQUERADE target, but that incurs more overhead because it
checks which IP address to use for every packet.

Source network address translation (SNAT) rewrites the source address of every
packet, leaving your network to the IP address of your firewall box. This is necessary
for hosts with private-class addresses to be able to access the Internet.

You can see your NAT-ed addresses with netstat-nat:

netstat-nat
Proto NATed Address Foreign Address State
tcp stinkpad.alrac.net:41435 64.233.163.99:www ESTABLISHED
tcp stinkpad.alrac.net:45814 annyadvip3.doubleclick.net:www TIME_WAIT
tcp stinkpad.alrac.net:45385 annymdnvip2.2mdn.net:www TIME_WAIT
tcp stinkpad.alrac.net:50392 63.87.252.186:www ESTABLISHED
udp stinkpad.alrac.net:32795 auth.isp.net:domain ASSURED
udp stinkpad.alrac.net:32794 auth.isp.net:domain ASSURED

netstat-nat is not the netstat command with a -nat option; it is a separate command.

3.7 Displaying the Status of Your Firewall | 57

Use the -n flag to display IP addresses instead of hostnames.

See Also
• man 8 iptables

• man 8 netstat

• Chapter 1, “Overview of TCP/IP,” in TCP/IP Network Administration, by Craig
Hunt (O’Reilly)

• Oskar Andreasson’s Iptables Tutorial: http://iptables-tutorial.frozentux.net/

3.7 Displaying the Status of Your Firewall

Problem
You want a quick way to check the status of your firewall so you can see if it’s up,
and what rules are active.

Solution
These iptables commands tell all:

/sbin/iptables -t filter -L -v -n --line-numbers
/sbin/iptables -t nat -L -v -n --line-numbers
/sbin/iptables -t mangle -L -v -n --line-numbers

You need to specify all three tables to see all rules. This is easy to script, like this /usr/
local/bin/fw_status script:

#!/bin/sh
##/usr/local/bin/fw_status script
#displays all active rules and chains

#define variables
ipt="/sbin/iptables"

echo "These are the currently active rules, chains, and packet and
bytecounts:"

$ipt -t filter -L -v --line-numbers
$ipt -t nat -L -v --line-numbers
$ipt -t mangle -L -v --line-numbers

Make it owned by root, mode 0700, and run it whenever you want to see what your
firewall is doing:

fw_status

Discussion
-L means “list rules,” -v is verbose, and --line-numbers makes line numbers. You
may wish to use -n to display IP addresses instead of hostnames.

58 | Chapter 3: Building a Linux Firewall

See Also
• man 8 iptables

• Chapter 1, “Overview of TCP/IP,” in TCP/IP Network Administration, by Craig
Hunt (O’Reilly)

• Oskar Andreasson’s Iptables Tutorial: http://iptables-tutorial.frozentux.net/

3.8 Turning an iptables Firewall Off

Problem
Turning on your firewall is easy, just run the fw_nat script. But you also want an easy
way to turn it off. This will allow you to quickly determine if a problem is caused by
the firewall, and to make and test changes easily.

Solution
Use the following script, which I call /usr/local/bin/fw_flush. This example deletes all
the rules in the filter, NAT, and mangle tables; all chains; and resets all packet and
byte counters to zero. It also resets all the default policies to ACCEPT (so that nothing
is blocked), and turns off forwarding. It’s like having no firewall at all:

#!/bin/sh
##/usr/local/bin/fw_flush
#flush script, which deletes all active rules
#and chains, and resets default policies to "accept"
#this is like having no firewall at all

#define variables
ipt="/sbin/iptables"

echo "The firewall is now being shut down. All policies are set to
ACCEPT, all rules and chains are deleted, all counters are set to zero."

#Set default policies to ACCEPT everything
$ipt -P INPUT ACCEPT
$ipt -P FORWARD ACCEPT
$ipt -P OUTPUT ACCEPT
$ipt -t nat -P OUTPUT ACCEPT
$ipt -t nat -P PREROUTING ACCEPT
$ipt -t nat -P POSTROUTING ACCEPT
$ipt -t mangle -P INPUT ACCEPT
$ipt -t mangle -P OUTPUT ACCEPT
$ipt -t mangle -P FORWARD ACCEPT
$ipt -t mangle -P PREROUTING ACCEPT
$ipt -t mangle -P POSTROUTING ACCEPT

3.9 Starting iptables at Boot, and Manually Bringing Your Firewall Up and Down | 59

#Zero out all counters
$ipt -Z
$ipt -t nat -Z
$ipt -t mangle -Z

Flush all rules, delete all chains
$ipt -F
$ipt -X
$ipt -t nat -F
$ipt -t nat -X
$ipt -t mangle -F
$ipt -t mangle -X

Remember to make this script owned by root only, mode 0700. Run this anytime you
want to turn your firewall off:

fw_flush
The firewall is now being shut down. All policies are set to ACCEPT, all rules and
chains are deleted, all counters are set to zero, and routing is turned off.

This leaves you wide open, so you should not be connected to untrusted networks.

Discussion
iptables is not a daemon, so turning off an iptables firewall is complicated. Rules are
loaded into memory. If you just flush all the rules, your default policies will still be
active, and as the default policy is usually DROP, no traffic will get through. So, the
easy way is to use a script like the one in this recipe, which flushes all rules and sets
the defaults to ACCEPT.

If you have no firewall scripts activated at boot, rebooting really turns the firewall
off—kernel modules are unloaded, and no iptables rules of any kind remain in
memory.

See Also
• man 8 iptables

• Oskar Andreasson’s Iptables Tutorial: http://iptables-tutorial.frozentux.net/

3.9 Starting iptables at Boot, and Manually Bringing
Your Firewall Up and Down

Problem
Your three new iptables scripts (see previous recipes) are tested and ready to be put
to work—you have fw_nat, a fw_status script, and the fw_flush script. You want
your firewall to start automatically at boot, and you want to start, stop, and check
iptables status manually like any other service. How do you do this?

60 | Chapter 3: Building a Linux Firewall

Solution
First, get rid of any existing firewall scripts, including any that came with your Linux
distribution. On Fedora Linux and all of its relatives, also remove the iptables-save
and iptables-restore scripts to prevent conflicts and accidental changes.

The different Linux distributions manage starting and stopping iptables in all sorts of
different ways. This init script, called firewall, is as simple as it gets, and it works on
any Linux. It calls the scripts used in the previous three recipes, so be sure you
already have those tested and ready to use:

#!/bin/sh
##/etc.init.d/firewall
simple start-stop init script for iptables
start builds the firewall, stop flushes
all rules and resets default policies to ACCEPT
restart runs the start and stop commands
status displays all active rules, and packet and byte counters
chkconfig: 2345 01 99

startfile="/usr/local/bin/fw_nat"
stopfile="/usr/local/bin/fw_flush"
statusfile="/usr/local/bin/fw_status"

case "$1" in
 start)
 echo "Starting $startfile: iptables is now starting up"
 /bin/sh $startfile start
 ;;

 stop)
 echo "Stopping $stopfile: iptables is now stopped, all rules and
 chains are flushed, and default policies are set to ACCEPT"
 /bin/sh $stopfile stop
 ;;

 status)
 /bin/sh $statusfile status
 ;;

 restart)
 /bin/sh $stopfile stop
 echo "The firewall has stopped."
 /bin/sh $startfile start
 echo "The firewall has now restarted."
 ;;
esac

Put this script in /etc/init.d, then use your distribution’s runlevel manager to start it at
boot. On Debian, use the updated-rc.d command to start it on runlevels 2, 3, 4, and
5, and stop it on runlevels 0, 1, and 6:

update-rc.d firewall start 01 2 3 4 5 . stop 99 0 1 6 .

3.9 Starting iptables at Boot, and Manually Bringing Your Firewall Up and Down | 61

On Fedora, use chkconfig:

chkconfig firewall --add
chkconfig firewall on

Now, you can manage it with the standard init.d-style commands:

/etc/init.d/firewall start|stop|status|restart

You may also run the scripts individually if you prefer. It’s a simple, flexible scheme
that is easy to customize.

Discussion
Give /etc/init.d/firewall the highest priority at startup, and lowest priority for shut-
down, because you want it to come up first and shut down last. Theoretically, if
networking started first, an attacker could exploit the unprotected milliseconds
before the firewall came up.

Keep in mind that you are not starting and stopping a daemon, but loading rules into
memory, then flushing rules out of memory and setting a default ACCEPT policy.
iptables works in the kernel—it’s not a service.

These scripts should work on any Linux, so you only need to learn one way to
manage iptables. They are as simple as possible to keep them understandable and
maintainable. Ace scripting gurus are welcome to add error and sanity checks, and
gussy them up as much as they like.

Every Linux distribution handles iptables a bit differently. Fedora and its ilk store the
rules in the /etc/sysconfig/iptables file, which is sourced from the /etc/init.d/iptables
script. The Red Hat manual teaches users to enter their iptables commands on the
command line, then use the /sbin/service iptables save command to write the rules
to the /etc/sysconfig/iptables file. This is a nice way to create, test, and edit new rules
if you are proficient enough to create them on the fly.

Debian Sarge has a different way of handling iptables. It does not use an /etc/init.d
script anymore, but instead expects the user to control iptables with ifupdown. This
means adding inline directives in /etc/network/interfaces, or placing scripts in the /etc/
network/*.d directories, and then iptables goes up or down with the network interfaces.

See Also
• man 8 iptables

• The Red Hat System Administration Manual: htpps://www.redhat.com/docs/

• Debian users read /usr/share/doc/iptables/examples/oldinitdscript.gz and /usr/share/
doc/iptables/README.Debian.gz

• Chapter 1, “Overview of TCP/IP,” in TCP/IP Network Administration, by Craig
Hunt (O’Reilly)

• Oskar Andreasson’s Iptables Tutorial: http://iptables-tutorial.frozentux.net/

62 | Chapter 3: Building a Linux Firewall

3.10 Testing Your Firewall

Problem
You want to be able to test your Linux firewall from inside your LAN and outside it
so you can see your network from both sides of your firewall. You especially want to
see your network the same way the big bad outside world sees it. What are some
good ways to do this?

Solution
Simply network with a second PC and run your tests. Assume your firewall box is
named firewall, with a WAN IP address of 172.16.0.10, and your PC is called testpc
at 192.168.2.10. Connect testpc to the WAN port of firewall with a crossover cable.
Then, give them temporary IP addresses and routes to each other:

root@testpc:~# ifconfig eth0 192.168.2.10 netmask 255.255.255.0 up
root@firewall:~# ifconfig eth0 172.16.0.10 netmask 255.255.255.0 up
root@testpc:~# route del default
root@testpc:~# route add -net 172.16.0.0/24 gw 192.168.2.10 eth0
root@firewall:~# route del default
root@firewall:~# route add -net 192.168.2.0/24 gw 172.16.0.10 eth0

Run ping to confirm connectivity.

Here are some quick tests you can run for debugging your new Linux firewall. These
commands, run on firewall, show your active iptables rules:

/sbin/iptables -t filter -L -v --line-numbers
/sbin/iptables -t nat -L -v --line-numbers
/sbin/iptables -t mangle -L -v --line-numbers

Nmap is an excellent tool for seeing what your firewall looks like from the outside:

root@testpc:~# nmap 172.16.0.10
root@testpc:~# nmap -P0 172.16.0.10

Run netstat on firewall to see what sockets are open and listening for new connections:

root@firewall:~# netstat -untap

This shows the listening interfaces and port numbers, the program names, and user
IDs. The safe thing to do is turn off all services until you are satisfied with your fire-
wall. Then, bring them back up one at a time, testing your rules until everything
works right. You really shouldn’t be running a lot of services on a firewall anyway—
keep it lean and mean.

For more extensive network testing and debugging, see Chapter 19.

3.10 Testing Your Firewall | 63

Discussion
To get completely outside of your network, get a shell account on a PC on a differ-
ent network. The remote PC needs to be equipped with Nmap, ping, traceroute, and
text web browsers. If you can’t do this, the next best thing is a dial-up Internet
account, because this still gets you outside of your local network.

My own preference is to use remote shell accounts kindly provided by friends for
external testing, because this is more like a “live fire” exercise, with all the complica-
tions that come with connecting over the Internet.

Here are some sample command outputs from testing an iptables NAT firewall. This
Nmap command run from a remote PC to the WAN IP address shows that iptables is
blocking all inbound connections except port 80, and that the web server is up and
accepting connections:

user@remotehost:~$ nmap 1.2.3.4
Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2007-10-01 07:11 = EST
Interesting ports on 1.2.3.4: (The 1662 ports scanned but not shown below are in
state: filtered)
PORT STATE SERVICE
80/tcp open http

According to Nmap, you should be able to point a web browser to http://1.2.3.4 and
hit a web page. Lynx (or its cousins links and elinks, or w3m) is good over ssh:

user@remotehost:~$ lynx 1.2.3.4

You cannot tell if the web server is on 1.2.3.4, or is sitting on a separate box some-
where behind the firewall, because to the world, a NAT-ed LAN looks like a single
computer. If you do not want to run a web server, this shows you better hunt it
down and turn it off.

Running Nmap from a neighboring LAN host on the LAN address shows a different
picture:

user@lanhost:~# nmap 192.168.1.10
Starting nmap 4.10 (http://www.insecure.org/nmap/) at 2007-10-01 13:51 =
PST
Interesting ports on 192.168.1.10:
(The 1657 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
22/tcp open ssh
631/tcp open ipp
MAC Address: 00:01:02:03:04:05 (The Linksys Group)
Nmap finished: 1 IP address (1 host up) scanned in 22.645 seconds

So now we see that the SSH daemon and CUPS are running on the firewall. (Look in
/etc/services to see which services are assigned to which ports.) Port 80 is not open, so

64 | Chapter 3: Building a Linux Firewall

this means the web server is on a different computer. If we run netstat on the firewall
itself, we can see which ports are open, and which interfaces they are listening to:

admin@firewall:~# netstat -untap
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State User Inode
PID/Program name
tcp 0 0 192.168.1.10:22 0.0.0.0:* LISTEN 0 44420 12544/sshd
tcp 0 0 0.0.0.0:631 0.0.0.0:* LISTEN 0 142680 22085/cupsd

So we see that the SSH daemon is listening to the LAN IP address on TCP port 22,
and the CUPS daemon is listening on all interfaces on TCP 631. TCP port 80 is not
open because it is on a different machine.

Now we have a good picture of what is happening on both sides of our firewall.

Application-level security

The netstat output illustrates an important point—application security is separate
from the border security provided by a firewall. The SSH server has been configured
to listen only to the LAN IP address, but cupsd is listening to all interfaces. Nmap
showed us that the firewall is blocking both of those at the WAN interface. Don’t
feel too safe with just a firewall; the best practice is to use border and application-level
security. iptables can keep the bad bits out, but if someone succeeds in penetrating
your firewall, you don’t want them to find a wide-open welcome into your servers.

All Linux services have access controls, and most of them also incorporate various
types of authentication controls. This example from /etc/ssh/sshd_config shows how
interface access controls are configured:

What ports, IPs and protocols we listen for
Port 22
Use these options to restrict which interfaces/protocols
sshd will bind to
ListenAddress 192.168.1.10

OpenSSH also restricts access by host, user, and domain, and gives the choice of sev-
eral different types of authentication. Security is a many-layered beast—don’t rely on
a firewall to be your entire security.

See Also
• Chapter 19 goes into detail on network testing and troubleshooting

• Chapter 7

• man 8 netstat

• man 1 nmap

• Chapter 14, “Printing with CUPS,” in Linux Cookbook, by Carla Schroder
(O’Reilly)

• Chapter 17, “Remote Access,” in Linux Cookbook

3.11 Configuring the Firewall for Remote SSH Administration | 65

3.11 Configuring the Firewall for Remote SSH
Administration

Problem
You want to SSH into your firewall to do remote administration. You might want to
log in from over the Internet, or you might want to restrict SSH to LAN access only.
You also want the option of restricting access to certain specific source IP addresses.

Solution
There are several ways to handle this. SSH has a number of access and authentica-
tion controls, so you should configure those first. Then, configure iptables to add
another layer of access controls.

To restrict SSH access to LAN hosts only, add this rule:

$ipt -A INPUT -i $LAN_IFACE -p tcp -s 192.168.1.0/24 --dport 22 --sport \
1024:65535 -m state --state NEW -j ACCEPT

Of course, you must use your own LAN address and SSH port. To allow SSH logins
via the WAN interface, use this rule:

$ipt -A INPUT -p tcp -i $WAN_IFACE --dport 22 --sport 1024:65535 \
-m state --state NEW -j ACCEPT

This rule accepts SSH logins on all interfaces:

$ipt -A INPUT -p tcp --dport 22 --sport 1024:65535 -m state --state NEW -j ACCEPT

Or, you may restrict SSH logins to a specific source IP address:

$ipt -A INPUT -p tcp -s 12.34.56.78 --dport 22 --sport 1024:65535 \
 -m state --state NEW -j ACCEPT

If there are additional source IP addresses you wish to allow, each one needs its own
separate rule.

Discussion
Let’s take a look at what these rules do:

-A INPUT -p tcp ! --syn -m state --state NEW -j DROP
A subtle iptables gotcha is that the NEW state will allow TCP packets through that
do not have the SYN flag set, so we must make sure that only SYN-flagged pack-
ets are allowed. SYN is always the first step in initiating a new TCP session, so if
it isn’t present, we don’t want to accept the packet.

-A INPUT -i $LAN_IFACE -p tcp -s 192.168.1.0/24 --dport 22 --sport 1024:65535 -m
state --state NEW -j ACCEPT

This accepts new SSH (TCP port 22) connections coming in on the LAN
interface and from the local subnet only, from high-numbered ports. Anything
originating from a privileged port is suspect.

66 | Chapter 3: Building a Linux Firewall

-A INPUT -p tcp -i $WAN_IFACE -p tcp --dport 22 --sport 1024:65535 -m state --state
NEW -j ACCEPT

This rule allows connections coming in on the WAN interface only, so LAN
access is not allowed.

-A INPUT -p tcp --dport 22 --sport 1024:65535 -m state --state NEW -j ACCEPT
This rule accepts all new SSH connections from any host anywhere. Again, the
new connection must come from an unprivileged port.

-A INPUT -p tcp -i $WAN_IFACE -s 12.34.56.78 --dport 22 --sport 1024:65535 -m state
--state NEW -j ACCEPT

This rule accepts incoming SSH on the WAN interface only, from the named IP
address; all others are dropped.

You don’t need to add the RELATED,ESTABLISHED states to the rules because there
already is a global rule for this.

See Also
• Chapter 5, “Serverwide Configuration,” in SSH, the Secure Shell: The Definitive

Guide, Second Edition, by Richard E. Silverman and Daniel J. Barrett (O’Reilly)

• Chapter 17, “Remote Access,” in Linux Cookbook, by Carla Schroder (O’Reilly)

• man 8 iptables

3.12 Allowing Remote SSH Through a NAT Firewall

Problem
You want to open up remote SSH administration to your LAN so you can log in
remotely and access various random LAN hosts. You have the OpenSSH server run-
ning on the machines you want to remotely administer, but there is a problem—they
use nonroutable private IPs, so they are all source NAT-ed to the firewall IP address.
How do you get past your NAT firewall?

Solution
The simplest method uses any of the SSH rules in the previous recipe (except, of
course, the LAN-only rule) without requiring any changes. SSH into your firewall,
then SSH from there into whatever LAN hosts you need to get into. Your sessions
will look like this example, which demonstrates logging from a remote host into the
firewall named windbag, and then opening an SSH session from windbag to stinkpad:

carla@remotehost:~$ ssh windbag.foo.net
carla@windbag.foo.net's password:
Linux windbag 2.6.12-10-386 #1 Mon Sep 28 12:13:15 UTC 2007 i686 GNU/Linux
Last login: Mon Aug 21 17:07:24 2007 from foo-29.isp.net
carla@windbag:~$ ssh stinkpad
carla@stinkpad's password:

3.12 Allowing Remote SSH Through a NAT Firewall | 67

Last login: Mon Sep 21 17:08:50 2007 from windbag.foo.net
[carla@stinkpad ~]$

Using this method avoids the problem of having to write additional iptables rules.

What if you have users who need remote SSH access to their PCs, and you deem them
worthy enough to have it? To use the two-step SSH login, they will need user accounts
on the firewall, which you may not want to allow. To avoid this, you can set up port
forwarding directly to LAN hosts. For example, you have host1 at 192.168.1.21, and
host2 at 192.168.1.22. Your remote users are at 12.34.56.78 and 12.34.56.79. You
accept remote SSH logins only from those IP addresses:

allow user@12.34.56.78 to ssh directly to work PC
$ipt -t nat -A PREROUTING -i $WAN_IFACE -s 12.34.56.78 --sport 1024:65535 \
-p tcp --dport 10001 -j DNAT--to-destination 192.168.1.21:22
$ipt -A FORWARD -p tcp -i $WAN_IFACE -o $LAN_IFACE -d 192.168.1.21 \
--dport 22 -j ACCEPT

allow user@12.34.56.79 to ssh directly to work PC
$ipt -t nat -A PREROUTING -i $WAN_IFACE -s 12.34.56.79 --sport \
1024:65535 -p tcp --dport 10002 -j DNAT --to-destination 192.168.1.22:22
$ipt -A FORWARD -p tcp -i $WAN_IFACE -o $LAN_IFACE -d 192.168.1.22 \
 --dport 22 -j ACCEPT

Then, your users simply need to specify the port number and the fully qualified
domain name or IP address of the firewall to log in:

user@12.34.56.78:~$ ssh windbag.foo.net:10001

or:

user@12.34.56.79:~$ ssh 1.2.3.4:10002

What if you or your users need access to more than one LAN host? See Recipe 3.13.

Discussion
I like the second method because it gives the admin the most control. Handing out
user accounts just for remote SSH access on your firewall is a bad idea. You should
also configure the excellent access and authentication controls in OpenSSH to
further batten the hatches, and consider using public-key authentication instead of
system passwords. Your user’s source IP addresses are specified in the rules because
you do not want to leave LAN hosts open to the entire Internet, and you especially
don’t want them logging in from public machines in libraries or Internet cafes (key-
stroke loggers, anyone?).

If your WAN IP address is dynamically assigned, then you’re going to collect a lot of
host keys because host keys are bound to IP addresses. So, every time the WAN
address changes, you’ll get a new host key. Dynamic WAN IPs cause all sorts of has-
sles if you want to do anything other than just have an Internet connection—running
services and remote administration is a heck of a lot easier on a static WAN IP address.

68 | Chapter 3: Building a Linux Firewall

See Also
• Chapter 7

• Chapter 17, “Remote Access,” in Linux Cookbook, by Carla Schroder (O’Reilly)

3.13 Getting Multiple SSH Host Keys Past NAT

Problem
You tried the second method in the previous recipe and it worked like a charm. Until
you tried to SSH into a second LAN host, that is. Because the remote SSH client sees
only a single IP address for your entire network, it freaks out when you try to log in
to a second host, displays this scary warning, and refuses to let you log in:

@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!@
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Every LAN host is going to have a different host key with the same IP address
because all outgoing traffic is source NAT-ed to the firewall address, so SSH is going
to think you’re trying to log in to a single PC that keeps changing the host key. What
are you going to do? Deleting the host key every single time doesn’t seem very practi-
cal, and you don’t want to turn off StrictHostKeyChecking.

Solution
Use OpenSSH’s elegant mechanism for managing multiple host keys that are bound
to the same IP address.

Create a ~/.ssh.config file on your remote PC. This example manages the host keys
for host1 and host2. The Host entry can be anything you like; some sort of descrip-
tive name is good. HostName is either the fully qualified domain name or IP address of
the firewall. Port is the port number from the corresponding iptables rule, and
UserKnownHostsFile is the name of file that you want to store the host key in:

Host host1
HostName firewall.domainname.net
Port 10001
UserKnownHostsFile ~/.ssh/host1

Host host2
HostName firewall.domainname.net
Port 10002
UserKnownHostsFile ~/.ssh/host2

Log in from the remote host like this:

$ ssh host1

3.14 Running Public Services on Private IP Addresses | 69

At the first login, it will ask you the usual:

The authenticity of host 'firewall.domainname.com (1.2.3.4)' can't be
established.
RSA key fingerprint is 00:01:02:03:04:05:00:01:02:03:04:05
Are you sure you want to continue connecting (yes/no)?

Type “yes,” and it will create ~/.ssh/host1 and copy the host key to it. Do the same
for all LAN hosts you want SSH access to, and both you and SSH will be happy and
will not generate scary warnings.

Discussion
This works for static and dynamic WAN IP addresses. Dynamic WAN IPs will
require a bit of extra work if you’re using the IP address as the HostName because,
obviously, when the address changes, you’ll need to change your remote ~/.ssh.config
HostName setting. One way to avoid this is to register a domain name and use Dyndns.
org’s dynamic DNS service, which will allow you to use your FQDN instead of the IP
address.

Even better, get a static routable public WAN IP address.

Some folks like to disable StrictHostKeyChecking in ~/ssh.conf, which means dis-
abling an important safety feature.

See Also
• Chapter 7

• Chapter 17, “Remote Access,” in Linux Cookbook, by Carla Schroder (O’Reilly)

3.14 Running Public Services on Private IP Addresses

Problem
You are running a public server on a private IP address, so it is not directly accessi-
ble to the Internet. So, you need to configure your iptables firewall to forward traffic
to your server.

Solution
First of all, you need to add a third network interface card to your firewall box. We’ll
call it eth2, and assign it a different subnet than the LAN interface. This is very
important—do not use the same subnet, or your networking will not work at all.

Let’s say the three interfaces have these addresses:

• eth0 192.168.1.10 (LAN)

• eth1 11.22.33.44 (WAN)

• eth2 192.168.2.25 (DMZ)

70 | Chapter 3: Building a Linux Firewall

You have one server in the DMZ with an IP address of 192.168.2.50.

Set up your firewall according to the previous recipes, so you have the four scripts: fw_
flush, fw_nat, fw_status, and the firewall init script. Add the new interface to fw_nat:

DMZ_IFACE="eth2"

Add FORWARD rules to allow traffic between the DMZ, and your WAN and LAN
interfaces:

$ipt -A FORWARD -i $LAN_IFACE -o $DMZ_IFACE -m state \
--state NEW,ESTABLISHED,RELATED -j ACCEPT
$ipt -A FORWARD -i $DMZ_IFACE -o $LAN_IFACE -m state \
--state ESTABLISHED,RELATED -j ACCEPT
$ipt -A FORWARD -i $DMZ_IFACE -o $WAN_IFACE -m state \
--state ESTABLISHED,RELATED -j ACCEPT
$ipt -A FORWARD -i $WAN_IFACE -o $DMZ_IFACE -m state \
--state NEW,ESTABLISHED,RELATED -j ACCEPT

Now, you need to route incoming HTTP traffic to your server with a PREROUTING rule:

$ipt -t nat -A PREROUTING -p tcp -i $WAN_IFACE -d 11.22.33.44 \
--dport 80 -j DNAT --to-destination 192.168.2.50

If you are using more than one port on your web server, such as 443 for SSL, or some
alternate ports for testing like 8080, you can list them all in one rule with the
multiport match:

$ipt -t nat -A PREROUTING -p tcp -i $WAN_IFACE -d 11.22.33.44 \
-m multiport --dport 80,443,8080 -j DNAT --to-destination 192.168.2.50

Other services work in the same way, so all you need to do is substitute their port
numbers and addresses.

Discussion
You may use DNAT to send traffic to a different port, like this:

$ipt -t nat -A PREROUTING -p tcp -i $WAN_IFACE -d 11.22.33.44 \
--dport 80 -j DNAT --to-destination 192.168.2.50:100

Because your web server has a private, nonroutable address, it needs to be rewritten
using Destination Network Address Translation (DNAT) to the publicly routable
address that the Internet thinks your web server has. Because this is really your
router’s WAN address, it needs to be rewritten and forwarded to your real server
address. Then, on the way out, it needs to rewritten back to the your WAN address.
Our SNAT rule takes care of this by rewriting all outgoing packets to the WAN
address.

Your LAN hosts will not be able to access your web server because DNAT makes a
hash of routing. The easy way to give them access is to have a separate LAN DNS
server that uses internal addresses, like our excellent Dnsmasq server in Chapter 4.
Another easy way is to have a physically separate DMZ that does not share your

3.15 Setting Up a Single-Host Firewall | 71

LAN router. The hard way is to write a bunch more iptables rules that do more
address rewriting, which will drive you nuts, cost you your job, and ruin your life.

See Also
• Chapter 2 explains the need for a DMZ

• man 8 iptables

• Oskar Andreasson’s Iptables Tutorial: http://iptables-tutorial.frozentux.net/.
Look for the section on DNAT to learn more about the issues associated with
DNAT-ing private addresses

• Chapter 22, “Running an Apache Web Server,” in Linux Cookbook, by Carla
Schroder (O’Reilly)

3.15 Setting Up a Single-Host Firewall

Problem
You want to know how to build a firewall on a Linux computer that is running no
public services. Just an ordinary PC that may be directly connected to the Internet, or
it may be a laptop that travels a lot. You’re careful with your application-level security
and internal services, but you wisely believe in layered security and want a firewall.

Solution
You need to create an iptables script, and to edit the /etc/sysctl.conf file.

First, copy this iptables script, substituting your own IP addresses and interface
names, and make it owned by root, mode 0700. In this recipe we’ll call it /usr/local/
bin/fw_host:

#!/bin/sh
##/usr/local/bin/fw_host
#iptables firewall script for
#a workstation or laptop
#chkconfig: 2345 01 99

#define variables
ipt="/sbin/iptables"
mod="/sbin/modprobe"

#Flush all rules, delete all chains
$ipt -F
$ipt -X
$ipt -t nat -F
$ipt -t nat -X
$ipt -t mangle -F
$ipt -t mangle -X

72 | Chapter 3: Building a Linux Firewall

#Zero out all counters
$ipt -Z
$ipt -t nat -Z
$ipt -t mangle -Z

#basic set of kernel modules
$mod ip_tables
$mod ip_conntrack
$mod iptable_filter
$mod iptable_nat
$mod iptable_mangle
$mod ipt_LOG
$mod ipt_limit
$mod ipt_state
$mod ipt_MASQUERADE

#optional for irc and ftp
#$mod ip_conntrack_irc
#$mod ip_conntrack_ftp

#Set default policies
#Incoming is deny all,
#outgoing is unrestricted
$ipt -P INPUT DROP
$ipt -P FORWARD DROP
$ipt -P OUTPUT ACCEPT
$ipt -t nat -P OUTPUT ACCEPT
$ipt -t nat -P PREROUTING ACCEPT
$ipt -t nat -P POSTROUTING ACCEPT
$ipt -t mangle -P PREROUTING ACCEPT
$ipt -t mangle -P POSTROUTING ACCEPT

#this line is necessary for the loopback interface
#and internal socket-based services to work correctly
$ipt -A INPUT -i lo -j ACCEPT

#Reject connection attempts not initiated from the host
$ipt -A INPUT -p tcp --syn -j DROP

#Allow return traffic initiated from the host
$ipt -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

Accept important ICMP packets
$ipt -A INPUT -p icmp --icmp-type echo-request -j ACCEPT
$ipt -A INPUT -p icmp --icmp-type time-exceeded -j ACCEPT
$ipt -A INPUT -p icmp --icmp-type destination-unreachable -j ACCEPT

Add this script to your desired runlevels. This command adds it to runlevels 2–5 on
Debian:

update-rc.d firewall start 01 2 3 4 5 . stop 99 0 1 6 .

On Fedora, use chkconfig:

3.15 Setting Up a Single-Host Firewall | 73

chkconfig firewall --add
chkconfig firewall on

Note that both of these commands turn off the firewall on runlevels 0, 1, and 6. This
is a standard practice, as typically networking is also shut down on these runlevels,
and only a bare set of services are started.

Now, add these kernel parameters to /etc/sysctl.conf:

net.ipv4.ip_forward = 0
net.ipv4.icmp_echo_ignore_broadcasts = 1
net.ipv4.tcp_syncookies = 1
net.ipv4.conf.all.rp_filter = 1
net.ipv4.conf.all.send_redirects = 0
net.ipv4.conf.all.accept_redirects = 0
net.ipv4.conf.all.accept_source_route = 0

If you are using dial-up networking or are on DHCP, add this parameter as well:

net.ipv4.conf.all.ip_dynaddr = 1

To activate everything without rebooting, run these commands:

firewall_host
/sbin/sysctl -p

And you now have a nice restrictive host firewall. See the previous recipes in this
chapter to learn how to start the firewall at boot, manually stop and start it, and dis-
play its current status. All you do is follow the recipes, replacing the fw_nat script
with fw_host.

Discussion
You may wish to add rules to allow various peer services such as instant messaging
or BitTorrent, or to allow SSH. Use this rule with the appropriate port ranges for the
protocol you want to allow incoming client requests from:

$ipt -A INPUT -p tcp --destination-port [port range] -j ACCEPT

Then, delete this rule:

#Reject connection attempts not initiated from the host
$ipt -A INPUT -p tcp --syn -j DROP

and add this one:

#Drop NEW tcp connections that are not SYN-flagged
$ipt -A INPUT -p tcp ! --syn -m state --state NEW -j DROP

To simplify maintaining the script, you may create whatever variables you like in the
#define variables section. Commands, network interfaces, and IP addresses are the
most common variables used in iptables scripts.

Flushing all the rules, deleting all chains, and resetting packet and byte counters to
zero ensures that the firewall starts up with a clean slate, and no leftover rules or
chains are hanging around to get in the way.

74 | Chapter 3: Building a Linux Firewall

Necessary kernel modules must be loaded. Check your /boot/config-* file to see if
your kernel was compiled with them already built-in, or as loadable modules, so you
don’t try to load modules that aren’t needed. It doesn’t really hurt anything to load
unnecessary modules; it’s just a bit of finicky housekeeping.

ip_tables and iptable_filter are essential for iptables to work at all. The ip_conntrack_irc
and ip_conntrack_ftp modules assist in maintaining IRC and FTP connectivity through
a NAT firewall. You can omit these if you don’t use IRC or FTP.

The default policies operate on any packets that are not matched by any other rules.
In this recipe, we have a “deny all incoming traffic, allow incoming as needed” pol-
icy combined with an unrestricted outbound policy.

The loopback interface must not be restricted, or many system functions will break.

The next two rules are where the real action takes place. First of all, because you’re
not running any public services, there is no reason to accept incoming SYN packets.
A SYN packet’s only job is to initiate a new TCP session. The next rule ensures that
you can initiate and maintain connections, such as web surfing, checking email, SSH
sessions, and so forth, but still not allow incoming connection attempts.

While some folks advocate blocking all ICMP packets, it’s not a good idea. You need
the ones listed in the firewall scripts for network functions to operate correctly.

The /etc/sysctl.conf directives are important kernel security measures. This is what
the kernel parameters in the file mean:

net.ipv4.ip_forward = 0
This box is not a router, so make sure forwarding is turned off.

net.ipv4.icmp_echo_ignore_broadcasts = 1
Don’t respond to ping broadcasts. Ping broadcasts and multicasts are usually an
attack of some kind, like a Smurf attack. You may want to use a ping broadcast
to see what hosts on your LAN are up, but there are other ways to do this. It is a
lot safer to leave this disabled.

net.ipv4.tcp_syncookies = 1
This helps to protect from a syn flood attack. If your computer is flooded with
SYN packets from different hosts, the syn backlog queue may overflow. So, this
sends out cookies to test the validity of the SYN packets. This is not so useful on
a heavily loaded server, and it may even cause problems, so it’s better to use it
only on workstations and laptops.

net.ipv4.conf.all.rp_filter = 1
This helps to maintain state and protect against source spoofing. It verifies that
packets coming in on an interface also go out on the same interface. Obviously,
this can confuse multihomed routers, which routinely forward packets from one
interface to another, so don’t use it on them.

3.15 Setting Up a Single-Host Firewall | 75

net.ipv4.conf.all.send_redirects = 0
Only routers need this, so all others can turn it off.

net.ipv4.conf.all.accept_redirects = 0
ICMP redirects are important to routers, but can create security problems for
servers and workstations, so turn it off.

net.ipv4.conf.all.accept_source_route = 0
Source-routed packets are a security risk because they make it all too easy to
spoof trusted addresses. The legitimate uses of source-routed packets are few;
they were originally intended as a route debugging tool, but their nefarious uses
far outweigh the legitimate uses.

It is common to see kernel parameters set in iptables scripts, like this:

echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts
echo 0 > /proc/sys/net/ipv4/conf/all/accept_redirects
echo 0 > /proc/sys/net/ipv4/conf/all/accept_source_route

I prefer to control these options with sysctl because that is what it is designed to do,
and I like that they operate independently of my firewall. This is a question of taste;
do it however you like.

Using the echo commands on the command line overrides configuration files, so
they’re great for testing. They go away with a reboot, which makes it easy to start
over.

A common point of confusion is dots and slashes. You may use either, like this:

net.ipv4.tcp_syncookies = 1
net/ipv4/tcp_syncookies = 1

See Also
• man 8 sysctl

• man 5 sysctl.conf

• Chapter 7, “Starting and Stopping Linux,” in Linux Cookbook, by Carla Schroder
(O’Reilly) for more information on what each runlevel is for, and how to manage
them

• man 8 iptables

• Chapter 1, “Overview of TCP/IP,” in TCP/IP Network Administration by Craig
Hunt (O’Reilly)

• Oskar Andreasson’s Ipsysctl Tutorial: http://ipsysctl-tutorial.frozentux.net/

76 | Chapter 3: Building a Linux Firewall

3.16 Setting Up a Server Firewall

Problem
You want to implement an iptables firewall on a server. You may have an external
firewall already, and you want to do the fine-tuning on the server, or you have a
server directly connected to the Internet. You pay careful attention to hardening your
server, and are confident it could survive without a firewall. This is an extra layer of
defense in case of mistakes. You want to drop all traffic that doesn’t belong on your
server, like all the automated brute-force attacks and worms that pummel the Inter-
net unceasingly.

Solution
This script allows only traffic destined for the correct ports, such as port 80 for a web
server, or port 25 for an SMTP server, and so on:

#!/bin/sh
##/usr/local/bin/fw_server
#for a server
#chkconfig: 2345 01 99
#define variables
ipt="/sbin/iptables"
mod="/sbin/modprobe"

#Flush all rules, delete all chains
$ipt -F
$ipt -X
$ipt -t nat -F
$ipt -t nat -X
$ipt -t mangle -F
$ipt -t mangle -X

#Zero out all counters
$ipt -Z
$ipt -t nat -Z
$ipt -t mangle -Z

#basic set of kernel modules
$mod ip_tables
$mod ip_conntrack
$mod iptable_filter
$mod iptable_nat
$mod iptable_mangle
$mod ipt_LOG
$mod ipt_limit
$mod ipt_state

#optional for irc and ftp
#$mod ip_conntrack_irc
#$mod ip_conntrack_ftp

3.16 Setting Up a Server Firewall | 77

#Set default policies
$ipt -P INPUT DROP
$ipt -P FORWARD DROP
$ipt -P OUTPUT ACCEPT
$ipt -t nat -P OUTPUT ACCEPT
$ipt -t nat -P PREROUTING ACCEPT
$ipt -t nat -P POSTROUTING ACCEPT
$ipt -t mangle -P PREROUTING ACCEPT
$ipt -t mangle -P POSTROUTING ACCEPT

#these lines are necessary for the loopback interface
#and internal socket-based services to work correctly
$ipt -A INPUT -i lo -j ACCEPT

#custom tcp allow chain
$ipt -N ALLOW
$ipt -A ALLOW -p TCP --syn -j ACCEPT
$ipt -A ALLOW -p TCP -m state --state ESTABLISHED,RELATED -j ACCEPT
$ipt -A ALLOW -p TCP -j DROP

#Accept important ICMP packets
$ipt -A INPUT -p icmp --icmp-type echo-request -j ALLOW
$ipt -A INPUT -p icmp --icmp-type time-exceeded -j ALLOW
$ipt -A INPUT -p icmp --icmp-type destination-unreachable -j ALLOW

Then, you need to add rules for the specific services you are running. For an FTP
server, you need to add the ip_conntrack_ftp and ip_nat_ftp modules. Next, add
these rules to allow incoming connections to your server, and the outgoing
responses:

#FTP control port
$ipt -A INPUT -p tcp --dport 21 -j ALLOW
#FTP data port
$ipt -A INPUT -p tcp --sport 20 -j ACCEPT

Passive FTP transfers are a bit of pain, because they use unpredictable high-
numbered ports. You may configure your FTP server to use only a limited range of
ports, then specify them in your iptables rule:

$ipt -A INPUT -p TCP --destination-port 62000:64000 -j ACCEPT

SSH looks like this:

$ipt -A INPUT -p tcp --dport 22 --sport 1024:65535 -j ALLOW

IRC servers need the ip_conntrack_irc module, and this rule:

$ipt -A INPUT -p tcp --dport 6667 --sport 1024:65535 -j ALLOW

This rule is for a web server:

$ipt -A INPUT -p tcp --dport 80 --sport 1024:65535 -j ALLOW

If you are using multiple ports, such as SSL or a test port, list them all with the multi-
port match:

$ipt -A INPUT -p tcp -m multiport --dport 80,443,8080 --sport 1024:65535 -j ALLOW

78 | Chapter 3: Building a Linux Firewall

Email servers can also use single or multiport rules, as these two examples show:

$ipt -A INPUT -p tcp --dport 25 --sport 1024:65535 -j ALLOW
$ipt -A INPUT -p tcp -m multiport --dport 25,110,143 --sport 1024:65535 -j ALLOW

DNS servers need these rules:

$ipt -A INPUT -p udp --dport 53 -j ACCEPT
$ipt -A INPUT -p tcp --dport 53 -j ALLOW

If your server needs to perform DNS lookups, add these rules:

$ipt -A OUTPUT -p udp --dport 53 -j ACCEPT
$ipt -A OUTPUT -p tcp --dport 53 -j ACCEPT

Discussion
The ALLOW chain accepts only TCP packets with the SYN flag set. A subtle iptables
gotcha is that the NEW state will allow TCP packets through that do not have the SYN
flag set, so we must make sure that only SYN-flagged packets are allowed. SYN is
always the first step in initiating a new TCP session, so if it isn’t present, we don’t
want to accept the packet.

Opening holes in a host firewall for services is easy, as you’re not hassling with NAT
or forwarding. Be sure of your port numbers, and whether you need UDP or TCP.
Most services have UDP and TCP ports reserved for them, but the majority only
need one or the other, so check the documentation of your server to make sure.

Connection requests almost always come from high-numbered source ports (i.e.,
1024:65535). Anything from a privileged port is suspect, so you don’t want to accept
those unless you are certain that your server is supposed to accept them, such as
FTP.

Be careful about getting the ACCEPT and ALLOW chains mixed up. Use the ALLOW chain
only for filtering incoming SYN packets, which doesn’t happen with the FTP data
ports or UDP datagrams.

See Also
• man 8 sysctl

• man 5 sysctl.conf

• man 8 iptables

• Chapter 1, “Overview of TCP/IP,” in TCP/IP Network Administration, by Craig
Hunt (O’Reilly)

• Oskar Andreasson’s Ipsysctl Tutorial: http://ipsysctl-tutorial.frozentux.net/

3.17 Configuring iptables Logging | 79

3.17 Configuring iptables Logging

Problem
You have tested your firewall scripts and everything works, and you understand
what all the rules do, and are confident of your firewall-editing skills. Now you want
to know how to configure some logfiles to help with debugging and monitoring.

Solution
iptables has a built-in logging target that is applied to individual rules. By default,
iptables messages are dumped into /var/log/kern.log. An easy way to see this in action
is to log one of the ICMP rules:

$ipt -A INPUT -p icmp --icmp-type echo-request -j LOG \
--log-level info --log-prefix "ping "
$ipt -A INPUT -p icmp --icmp-type echo-request -j ACCEPT

Ping the host a few times, then read /var/log/kern.log, or follow along with the tail
command:

$ tail -f /var/log/kern.log
Oct 3 17:36:35 xena kernel: [17213514.504000]ping IN=eth1 OUT= MAC=00:03:6d:00:83:
cf:00:0a:e4:40:8b:fd:08:00 SRC=192.168.1.12 DST=192.168.1.10 LEN=60 TOS=0x00
PREC=0x00 TTL=128 ID=4628 PROTO=ICMP TYPE=8 CODE=0 ID=512 SEQ=1280

Oct 3 17:36:36 xena kernel: [17213515.500000] ping IN=eth1 OUT= MAC=00:03:6d:00:83:
cf:00:0a:e4:40:8b:fd:08:00 SRC=192.168.1.12 DST=192.168.1.10 LEN=60 TOS=0x00
PREC=0x00 TTL=128 ID=4629 PROTO=ICMP TYPE=8 CODE=0 ID=512 SEQ=1536

If you create only one rule with a log target, the packets will be logged and dropped,
which is a safe way to test a new rule. To shoo the packets along to their final desti-
nation, create a second rule. The log target takes all the standard syslog levels: debug,
info, notice, warning, err, crit, alert, and emerg.

iptables uses Linux’s built-in syslog, which is pretty limited. The log target’s --log-prefix
is one way to make kern.log more parsable. A better way is to use syslog-ng, which is
more configurable, and has built-in networking support, so it makes an excellent log-
ging server.

Adding these lines to /etc/syslog-ng/syslog-ng.conf directs all iptables log messages to
/var/log/iptables.log. Note the match on "IPT="; this is what tells syslog-ng which
messages to put in /var/log/iptables.log. So, you will need to include IPT in all of your
--log-prefix options:

destination iptables { file("/var/log/iptables.log"); };
filter f_iptables { match("IPT="); };
log { source(src); filter(f_iptables); destination(iptables); };

80 | Chapter 3: Building a Linux Firewall

See Also
• man 8 syslogd

• man 5 syslog.conf

• man 8 syslog-ng

• man 8 iptables

• Chapter 1, “Overview of TCP/IP,” in TCP/IP Network Administration, by Craig
Hunt (O’Reilly)

• Oskar Andreasson’s Iptables Tutorial: http://iptables-tutorial.frozentux.net/

3.18 Writing Egress Rules

Problem
You prefer having an OUTPUT ACCEPT policy, and you want to add some egress
filtering rules to block traffic destined for known bad ports from leaving your net-
work. You also want to add some basic precautions, such as not allowing NetBIOS
traffic or private addresses to escape your network.

Solution
Here are some example egress filter rules that go with an OUTPUT ACCEPT policy.
You could add these to any of the firewall scripts in this chapter.

First, create variables containing your desired port numbers. EVILPORTS are port
numbers known to be used by various malware. GOODPORTS are for preventing
certain types of LAN traffic from escaping:

EVILPORTS="587,666,777,778,1111,1218"
GOODPORTS="23,137,138,139,177"

iptables doesn’t seem to like lists longer than 15 port numbers.

Now, you can use these in rules like these examples:

$ipt -A OUTPUT -i $LAN_IFACE -p --dport $EVILPORTS -j DROP
$ipt -A OUTPUT -i $LAN_IFACE -p --dport $GOODPORTS -j DROP

Or, you can specify source addresses instead of the interface name:

$ipt -A OUTPUT -s 192.168.2.0/24 -p all --dport $EVILPORTS -j DROP

The Discussion goes into more detail on what ports to block.

You can block specific addresses, or entire networks:

$ipt -A OUTPUT -i $LAN_IFACE -p -d 11.22.33.44 -j DROP
$ipt -A OUTPUT -i $LAN_IFACE -p -d 22.33.44.55/30 -j DROP

3.18 Writing Egress Rules | 81

RFC 1918 addresses, and broadcast and multicast addresses should not leak out of
your network:

$ipt -A OUTPUT -s 10.0.0.0/8 -j DROP
$ipt -A OUTPUT -s 172.16.0.0/12 -j DROP
$ipt -A OUTPUT -s 192.168.0.0/16 -j DROP
$ipt -A OUTPUT -s 224.0.0.0/4 -j DROP
$ipt -A OUTPUT -s 240.0.0.0/5 -j DROP
$ipt -A OUTPUT -s 127.0.0.0/8 -j DROP
$ipt -A OUTPUT -s 0.0.0.0/8 -j DROP
$ipt -A OUTPUT -d 255.255.255.255 -j DROP
$ipt -A OUTPUT -s 169.254.0.0/16 -j DROP
$ipt -A OUTPUT -d 224.0.0.0/4 -j DROP

Nor should traffic without the correct source address, which is your WAN address:

$ipt -A OUTPUT -o $WAN_INTERFACE -s !33.44.55.66 -j DROP

Discussion
Blocking potentially dangerous outgoing ports is what good netizens do. If you have
infected hosts on your network, you should do your best to prevent them from join-
ing the World Wide Botnet and spreading further contagion.

Deciding which destination ports to block is a moving target. You’ll need to figure
these out yourself, so check your favorite security sites periodically. A Web search
for “dangerous TCP/IP ports” is a good way to start.

Check /etc/services to decide which local services you want to keep fenced in. Here
are explanations for the partial list used for GOODPORTS:

23
telnet client. telnet is completely insecure because it transmits entirely in
cleartext.

137–139
Windows NetBIOS and Samba broadcasts go out on these ports.

177
The X Display Manager Control Protocol (XDMCP) is completely insecure. For
remote X sessions, tunnel X over SSH.

While iptables is useful for basic protections like these, it is a blunt tool for filtering
outgoing traffic. A lot of malware uses ports that are registered for legitimate
services, so blocking those ports means no access to those services. iptables can’t per-
form any content inspection, and doesn’t have access control lists. If you want a lot
of control over the traffic leaving your network and what your users can do, con-
sider using a proxy server like Squid.

See Also
• Squid: The Definitive Guide, by Duane Wessels (O’Reilly)

82

Chapter 4CHAPTER 4

Building a Linux Wireless
Access Point

4.0 Introduction
Wireless networking is everywhere. Someday, we’ll have built-in wireless receivers in
our heads. Meanwhile, times are improving for Linux wireless administrators, if you
shop carefully and buy wireless interface cards with good Linux support and WPA2
support. Using well-supported wireless interfaces means you’ll be able to dive
directly into configuring your network instead of hassling with funky driver prob-
lems. This chapter shows how to build a secure, flexible, robust combination
wireless access point/router/Internet firewall using Pyramid Linux on a Soekris
single-board computer. It supports wireless and wired Linux, Windows, and Mac OS
X clients sharing a broadband Internet connection and LAN services. Just one big
happy clump of wired and wireless clients together in harmony.

Why go to all this trouble? Because you’ll have more control, all the powerful fea-
tures you could ever want, and save money.

You don’t have to have an all-in-one-device. The recipes in this chapter are easy to
split apart to make separate devices, such as a dedicated firewall and a separate wire-
less access point.

I use Pyramid Linux, Soekris or PC Engines WRAP boards, and Atheros wireless
interfaces because they are battle-tested and I know they work well. See Chapter 2 to
learn how to use these excellent little routerboards.

The example configurations for the different services, such as DHCP, DNS, authenti-
cation, iptables, and so forth work fine on other Debian Linux-based distributions,
and any x86 hardware. Adapting them for other distributions means figuring out dif-
ferent ways of configuring network interface cards; configuring applications like
hostapd, dnsmasq, and iptables is pretty much the same everywhere.

Some folks are bit confused as to what “native Linux support” means. It doesn’t
mean using ndiswrapper, which is a Linux wrapper around Windows binary drivers.
I wouldn’t use it unless I were down to my last dime and couldn’t afford to buy an

4.0 Introduction | 83

interface card with native Linux support. It’s only good on the client side, doesn’t
support all devices or features, and extracting the Windows binary drivers is a fair bit
of work. Even worse, it rewards vendors who don’t support Linux customers.

Currently, the Linux-friendliest wireless chipset manufacturers, in varying degrees,
are Ralink, Realtek, Atheros, Intel, and Atmel. Then there are reverse-engineered
GPL Linux drivers for the popular Broadcom and Intersil Prism chips.

While all of these have open source drivers (http://opensource.org), the Atheros chips
require a closed binary Hardware Access Layer (HAL) blob in the Linux kernel.
Older Intel chips need a proprietary binary regulatory daemon in user-space, but the
current generation do not. Ralink and Realtek handle this job in the radio’s firm-
ware. Supposedly, this is to meet FCC requirements to prevent users from changing
frequencies and channels outside of the allowed range. Putting a closed blob in the
kernel makes writing and debugging drivers for Linux more difficult, as key parts of
the radio’s functions are hidden. Some additional concerns are that the binary blob
taints the kernel, a buggy kernel blob can cause a kernel panic, and only the vendor
can fix it. Buggy firmware is not as problematic because it just means the device
won’t work. The issue of the regulatory blob is a moving target and subject to
change. (Go to the See Also section for some interesting reading on these issues.)

I use the Wistron CM9 mini-PCI interface (based on the Atheros AR5213) in my
wireless access points because it gives full functionality: client, master, ad hoc, raw
mode monitoring, WPA/WPA2, and all three WiFi bands (a/b/g) are supported. On
the Linux client side, any of the supported wireless interfaces will work fine. Be care-
ful with USB WICs—some work fine on Linux, some don’t work at all. Get help
from Google and the resources listed at the end of this introduction.

Discovering the chipset in any particular device before purchase is a real pain—most
vendors don’t volunteer the information, and love to play “change the chipset”
without giving you an easy way to find out before making a purchase. To get up and
running with the least hassle, consult a hardware vendor that specializes in Linux-
supported wireless gear.

An inexpensive but powerhouse alternative to the Soekris and PC Engines router-
boards are those little 4-port consumer wireless broadband routers, like the Linksys
WRT54G series. There are many similar ones under various brand names, and you’ll
find some for under $50. You don’t get all the nice flexibililty that you get with the
bigger routerboards, but they’re a heck of a value and make excellent dedicated wire-
less access points. The key to converting these from mediocre home-user boxes into
$500 powerhouses is replacing the firmware with OpenWRT (http://openwrt.org/) or
DD-WRT (www.dd-wrt.com/). These are open source, free-of-cost (though sending a
bit of cash their way wouldn’t hurt any feelings) firmwares designed especially for
these little routers. With the new firmware, you can perform amazing feats of packet
filtering, bandwidth-shaping, wireless security, VLANs, name services, and much
more.

84 | Chapter 4: Building a Linux Wireless Access Point

Security
Security is extra important when you’re setting up wireless networking. Your bits are
wafting forth into the air, so it’s dead easy for random snoops to eavesdrop on your
network traffic. Unsecured wireless access points expose you to two different threats:

• LAN intrusions. Your data might get stolen, or your LAN hosts turned into
malware-spewing botnets, or used as rogue MP3 and porn servers.

• Loss of bandwidth. It’s nice to share, but why allow your network performance
to suffer because of some freeloader? Or worse, allow your bandwidth to be used
for ill purposes?

If you wish to provide an open access point for anyone to use, do it the smart way.
Wall it off securely from your LAN, and limit its bandwidth. One way to do this is to
use a second wireless interface, if your routerboard supports it, or a dedicated access
point, then use iptables to forward traffic from it to your WAN interface and block
access to your LAN. Pyramid Linux comes with the WiFiDog captive portal, which
you can use to remind your visitors of your generosity. Use the web interface to set it
up; it takes just a few mouse clicks.

Encrypting and authenticating your wireless traffic is your number one priority. How
do you do this? In the olden days, we had Wired Equivalent Privacy (WEP). Using
WEP is barely better than nothing—it is famously weak, and can be cracked in less
than 15 minutes with tools that anyone can download, like AirSnort and WEPCrack.
Don’t use WEP. Upgrade to devices that support Wi-Fi Protected Access (WPA).

There are two flavors of WPA: WPA and WPA2. WPA is an upgrade of WEP; both
use RC4 stream encryption. It was designed to be a transitional protocol between
WEP and WPA2. WPA is stronger than WEP, but not as strong as WPA2. WPA2
uses a new strong encryption protocol called Counter Mode with CBC-MAC Proto-
col (CCMP), which is based on Advanced Encryption Standard (AES). WPA2 is the
complete implementation of the 802.11i standard. See Matthew Gast’s excellent
book 802.11 Wireless Networks: The Definitive Guide (O’Reilly) for more informa-
tion on these. The short story is that using WPA2 gives the best protection.

Using modern wireless devices that support WPA2 makes it easy to encrypt and
authenticate all of your wireless traffic. WPA supports two different types of authen-
tication: WPA-PSK (aka WPA-Personal, which uses preshared keys) and WPA-EAP
(aka WPA-Enterprise, which uses the Extensible Authentication Protocol).

WPA-Personal is simple to set up. It depends on a shared key, which is a passphrase,
and which must be distributed to all authorized users. There is no built-in auto-
mated method to distribute the keys; you have to do it manually, or write a clever
script, or use something like cfengine. The obvious flaw in this scheme is everyone
has the same key, so anytime you need to change the key it has to be changed on all
clients. However, there is a way to give users unique keys—use hostapd, the host
access point daemon. It’s part of the HostAP suite of wireless drivers and utilities,

4.0 Introduction | 85

and it includes a simple mechanism for managing multiple keys. This is a slick, sim-
ple way to implement some good, strong security.

WPA-Enterprise requires an authentication server, most commonly a RADIUS
server. It’s more work to set up, but once it’s up, it’s easier to manage users and keys.
A RADIUS server is overkill if you’re running a single access point, but it’s a life-
saver if your network has several points of entry, such as dial-up, a VPN gateway,
and multiple wireless access points, because all of them can use a single RADIUS
server for authentication and authorization.

HostAP includes an embedded RADIUS server. Other access points can use it just
like a standalone RADIUS server.

wpa_supplicant handles the interaction between the client and the server. wpa_
supplicant is included in virtually all Linux distributions, though it may not be
installed by default. Mac OS X and Windows also have supplicants. The word
supplicant was chosen deliberately, with its connotations of humbly requesting per-
mission to enter your network.

See Also
These articles discuss the “binary blob” issue:

• “OpenBSD: wpi, A Blob Free Intel PRO/Wireless 3945ABG Driver”:

http://kerneltrap.org/node/6650

• “Feature: OpenBSD Works To Open Wireless Chipsets”:

http://kerneltrap.org/node/4118

For building your own wireless access points and getting product information in
plain English without marketing guff, check out specialty online retailers like:

• Metrix.net at http://metrix.net/metrix/ offers customized wireless access points
and accessories based on Pyramid Linux, and custom services

• Netgate.com: http://netgate.com/

• Mini-box.com: http://www.mini-box.com/

• Routerboard.com: http://www.routerboard.com

• DamnSmallLinux.org store: http://www.damnsmallinux.org/store/

These sites identify wireless chipsets by brand name and model number:

• MadWifi.org for Atheros devices: http://madwifi.org/

• Atheros.com: http://www.atheros.com/

• rt2x00 Open Source Project for Ralink devices:

http://rt2x00.serialmonkey.com/wiki/index.php?title=Main_Page

• FSF-approved wireless interface cards:

http://www.fsf.org/resources/hw/net/wireless/cards.html

86 | Chapter 4: Building a Linux Wireless Access Point

General wireless resources:

• Ralinktech.com: http://www.ralinktech.com/

• Linux on Realtek: http://rtl8181.sourceforge.net/

• Realtek.com: http://www.realtek.com.tw/default.aspx

• FS List of supported wireless cards: http://www.fsf.org/resources/hw/net/wireless/
cards.html

• Seattle Wireless, a great resource for all things wireless, and especially building
community networks: http://seattlewireless.net/

• LiveKiosk: http://www.livekiosk.com

• Wireless LAN resources for Linux, the gigantic mother lode of information for
wireless on Linux: http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/

4.1 Building a Linux Wireless Access Point

Problem
You don’t want to dink around with prefab commercial wireless access points.
They’re either too simple and too inflexible for your needs, or too expensive and
inflexible. So, like a good Linux geek, you want to build your own. You want a nice
quiet little compact customizable box, and you want to be able to add or remove
features as you need, just like on any Linux computer. For starters, you want every-
thing on a single box: authenticated wireless access point, broadband Internet
connection sharing, iptables firewall, and name services.

Solution
• Install Pyramid Linux on a Soekris or PC Engines WRAP single-board computer.

• Install an Atheros-based wireless mini-PCI card and connect an external
antenna.

• Configure and test LAN connectivity, and DHCP and DNS.

• Keep your router off the Internet until it’s properly hardened, firewalled, and
tested.

• Add Internet connectivity, and voilà! It is done.

Continue on to the next recipes to learn how to do all of these things.

Discussion
If you prefer separating out your services on different physical boxes, such as wire-
less access point, firewall, and nameserver, the recipes in this chapter are easy to
adapt to do this.

4.2 Bridging Wireless to Wired | 87

Soekris has two series of routerboards: 45xx and 48xx. Choose whatever model
meets your needs. At a minimum, you need 64 MB RAM, a Compact Flash slot, a
mini-PCI slot, and two Ethernet ports. More powerful CPUs and more RAM are
always nice to have. A second mini-PCI slot lets you add a second wireless interface.
PCMCIA slots give you more flexibility because these support both wired and wire-
less interfaces.

The 45xx boards have 100 or 133 MHz CPUs and 32 to 128 MB SDRAM. The 48xx
boards have 233 or 266 MHz processors and 128 to 256 MB SDRAM. You’ll see net-
work speeds top out on the 45xx boards around 17 Mbps, and the more powerful
48xx boards will perform at up to 50 Mbps. 17 Mbps is faster than most cable or
DSL Internet connections. For ordinary web surfing and email, the 45xx boards are
fine. If you’re running VoIP services, doing online gaming, serving more than 50
users, or running any peer protocols like BitTorrent, then go for the 48xx boards.

PC Engines WRAP boards are similar to the Soekris boards, and are usually a bit less
expensive. Both use Geode CPUs, are about the same size, and similarly featured.
Both vendors will customize the boards pretty much however you want.

See Also
• Chapter 2

• Chapter 17

• Soekris.com: http://www.soekris.com/

• MadWifi.org: http://madwifi.org/

4.2 Bridging Wireless to Wired

Problem
How do you integrate your wired and wireless clients so that they share an Internet
connection and LAN services all in one big happy subnet? You know that when you
have multiple Ethernet interfaces on the same box they cannot all be on the same
subnet, but must all have addresses from separate subnets. You want everyone all in
a single subnet, and don’t want a lot of administration headaches, so how will you
do this?

Solution
Your routerboard needs at least three network interfaces: your Atheros interface,
plus two Ethernet interfaces. ath0 is your wireless interface, eth0 is the LAN inter-
face, and eth1 is your WAN interface.

88 | Chapter 4: Building a Linux Wireless Access Point

What we will do is build an Ethernet bridge between ath0 and eth0. Copy this exam-
ple /etc/network/interfaces, substituting your own LAN addresses and your own
ESSID. Remember to run /sbin/rw first to make the Pyramid filesystem writable:

pyramid:~# /sbin/rw
pyramid:~# nano /etc/network/interfaces

##/etc/network/interfaces
wireless bridge configuration
auto lo
iface lo inet loopback

auto br0
iface br0 inet static
 address 192.168.1.50
 network 192.168.1.0
 netmask 255.255.255.0
 broadcast 192.168.1.255
 bridge_ports ath0 eth0
 post-down wlanconfig ath0 destroy
 pre-up wlanconfig ath0 create wlandev wifi0 wlanmode ap
 pre-up iwconfig ath0 essid "alrac-net" channel 01 rate auto
 pre-up ifconfig ath0 up
 pre-up sleep 3

You can test this now by networking with some LAN hosts that have static IP
addresses. First restart networking on the router:

pyramid:~# /etc/init.d/networking restart

This creates a wide-open wireless access point. Point your clients to 192.168.1.50 as
the default gateway, and you should be able to easily join any wireless clients to your
LAN, and ping both wired and wireless PCs. When you’re finished, remember to
return the filesystem to read-only:

pyramid:~# /sbin/ro

Discussion
This recipe is totally insecure, but it lets you test your bridge and wireless connectiv-
ity before adding more services.

Let’s review the options used in this configuration:

bridge_ports
Define the two interfaces to bridge.

post-down wlanconfig ath0 destroy
This command tears down the access point when the network interfaces go
down. wlanconfig is part of MadWiFi-ng. Use it to create, destroy, and manage
access points. With wlanconfig, you can have multiple access points on a single
device.

4.2 Bridging Wireless to Wired | 89

pre-up wlanconfig ath0 create wlandev wifi0 wlanmode ap
wifi0 is the name the kernel gives to your Atheros interface, which you can see
with dmesg. Next, wlanconfig creates the virtual access point, ath0, on top of
wifi0.

pre-up iwconfig ath0 essid "alrac-net" channel 01 rate auto
Assign the ESSID, channel, and bit-rate. To see the channels, frequencies, and
bit-rates supported by your interface card, use this command:

pyramid:~# wlanconfig ath0 list chan

How do you know which channel to use? If you have only one access point, channel
1 should work fine. If you have up to three, try using channels 1, 6, and 11. For more
complex networks, please refer to Matthew Gast’s excellent book, 802.11 Wireless
Networks: The Definitive Guide (O’Reilly):

pre-up ifconfig ath0 up
Bring up ath0 before the bridge comes up.

pre-up sleep 3
Brief pause to make sure that everything comes up in order.

You don’t have to build the bridge in the traditional way, by configuring eth0 with a
zero-IP address, or bringing it up before the bridge is built, because scripts in /etc/
network/if-pre-up.d handle that for you.

I’m sure some of you are wondering about ebtables. ebtables is like iptables for Ethernet
bridges. iptables cannot filter bridge traffic, but ebtables can. There are many ingenious
ways to use ebtables and Ethernet bridges in your network. In this chapter, I’m leaving
ebtables out on purpose because we will be running an iptables Internet firewall on our
access point. ebtables is not suitable for an Internet firewall, and trying to use both
on the same box is too complicated for this old admin.

See Also
• Pyramid Linux does not include manpages, so you should either install the appli-

cations in this chapter on a PC, or rely on Google

• wlanconfig is part of MadWiFi-ng

• man 8 brctl for bridge options

• iwconfig is part of the wireless-tools package

• man 8 iwconfig

• Pyramid Linux: http://pyramid.metrix.net/

• Recipe 3.2

• 802.11 Wireless Networks: The Definitive Guide, by Matthew Gast (O’Reilly)

90 | Chapter 4: Building a Linux Wireless Access Point

4.3 Setting Up Name Services

Problem
Your LAN is going to have a combination of hosts with static IP addresses and
DHCP clients that come and go, especially wireless clients. And, you want DHCP cli-
ents to automatically be entered into DNS so they can be accessed by hostname just
like the hosts with static IP addresses.

Solution
You don’t want much. Fortunately, you can have it all. Pyramid comes with
dnsmasq, which handles DHCP and DNS, and automatically enters DHCP clients
into DNS. This requires the clients to send their hostnames when they are request-
ing a DHCP lease. Windows clients do this by default. Most Linux clients do not, so
go to Recipe 4.5 to learn about client configuration.

Now, we’ll edit /etc/dnsmasq.conf on your Pyramid box. First make the filesystem
writeable by running /sbin/rw. Copy this example, using your own network name
instead of alrac.net, whatever DHCP range you prefer, and your own upstream
nameservers:

pyramid:~# /sbin/rw
pyramid:~# nano /etc/dnsmasq.conf

domain-needed
bogus-priv
local=/alrac.net/
expand-hosts
domain=alrac.net
interface=br0
listen-address=127.0.0.1

#upstream nameservers
server=22.33.44.2
server=22.33.44.3

dhcp-range=lan,192.168.1.100,192.168.1.200,12h
dhcp-lease-max=100

Next, add all of your hosts that already have static IP addresses to /etc/hosts on your
Pyramid box, using only their hostnames and IP addresses. At a minimum, you must
have an entry for localhost and your Pyramid router:

/etc/hosts
127.0.0.1 localhost
192.168.1.50 pyramid
192.168.1.10 xena
192.168.1.74 uberpc

4.3 Setting Up Name Services | 91

Restart dnsmasq:

pyramidwrap:~# killall dnsmasq

To test your new nameserver, ping your LAN hosts from each other:

$ ping pyramid
$ ping xena
$ ping uberpc

You should see responses like this:

PING pyramid.alrac.net (192.168.1.50) 56(84) bytes of data.
64 bytes from pyramid.alrac.net (192.168.1.50): icmp_seq=1 ttl=64 time=0.483 ms
64 bytes from pyramid.alrac.net (192.168.1.50): icmp_seq=2 ttl=64 time=0.846 ms

You should be able to ping both wired and wireless clients, and DHCP clients should
be entered automatically into the DNS table as well.

Finally, verify that their domain names are correctly assigned by DNS:

$ hostname
xena
$ hostname -f
xena.alrac.net
$ dnsdomainname
alrac.net

Discussion
Pyramid Linux mounts a number of files into a temporary, writeable filesystem,
like /etc/resolv.conf. You can see which ones they are by looking in /rw, or running
ls -l /etc to see which ones are symlinked to /rw. These are copied over from /ro
on boot. It’s designed to keep flash writes down. So, you can either edit /ro, or
make the files in /etc immutable.

dnsmasq.conf crams a lot of functionality into a few lines, so let’s take a closer look:

domain-needed
Do not forward requests for plain hostnames that do not have dots or domain
parts to upstream DNS servers. If the name is not in /etc/hosts or DHCP, it
returns a “not found” answer. This means that incomplete requests (for exam-
ple, “google” or “oreilly” instead of google.com or oreilly.com) will be cut off
before they leave your network.

bogus-priv
Short for “bogus private lookups.” Any reverse lookups for private IP ranges (such
as 192.168.x.x) are not forwarded upstream. If they aren’t found in /etc/hosts, or
the DHCP leases file, “no such domain” is the answer. Using domain-needed and
bogus-priv are simple options for practicing good Netizenship.

92 | Chapter 4: Building a Linux Wireless Access Point

local=/alrac.net/
Put your local domain name here so queries for your local domain will only be
answered from /etc/hosts and DHCP, and not forwarded upstream. This is a nice
bit of magic that lets you choose any domain name for your private network and
not have to register it. To make this work right, you also need the expand-hosts
and domain options.

expand-hosts
This automatically adds the domain name to the hostnames.

domain=alrac.net
expand-hosts looks here for the domain name.

interface
Define which interface dnsmasq should listen to. Use one line per interface, if
you have more than one.

listen-address=127.0.0.1
This tells dnsmasq to also use its own local cache instead of querying the
upstream nameservers for every request. This speeds up lookups made from the
router, and it also allows the router to use your local DNS. You can verify this by
pinging your LAN hosts from the router by their hostnames or FQDNs.

server
The server option is used for several different purposes; here, it defines your
upstream DNS servers.

dhcp-range=lan,192.168.1.100,192.168.1.200,12h
Define your pool of DHCP leases and lease time, and define a network zone
called “lan.” Using named zones lets you assign servers and routes to groups of
clients and different subnets; see Recipe 3.13 to see this in action.

dhcp-max-lease
Maximum limit of total DHCP leases. The default is 150. You may have as many
as your address range supports.

See Also
• Recipe 4.12 for an example of using named zones

• man 8 dnsmasq contains a wealth of helpful information about all the available
command-line options, many of which are also dnsmasq.conf options

• dnsmasq.conf is also a great help resource

• dnsmasq home page is where you’ll find mailing list archives and excellent help
documents: http://www.thekelleys.org.uk/dnsmasq/doc.html

• Chapter 24, “Managing Name Resolution,” in Linux Cookbook, by Carla Schroder
(O’Reilly)

4.4 Setting Static IP Addresses from the DHCP Server | 93

4.4 Setting Static IP Addresses from the DHCP Server

Problem
You want to manage your LAN computers from DHCP instead of configuring them
individually, so you don’t have to run around tweaking individual computers all the
time. You want to assign static and dynamic IP addresses, gateways, and servers all
via DHCP.

Solution
dnsmasq does it all. There are a couple of ways to assign static IP addresses from
dnsmasq.conf. One is to use the client’s MAC address as the client identifier, like
this:

dhcp-host=11:22:33:44:55:66,192.168.1.75

My favorite way is to set it by hostname:

dhcp-host=penguina,192.168.1.75

Make sure you do not have entries for these in /etc/hosts.

The only client configuration that’s necessary is the hostname, and for DHCP clients
to send the hostname to the DHCP server when they request a new lease. Once you
have that, you can control everything else from the server.

Remember to run killall dnsmasq every time you change dnsmasq.conf.

There are some tricky bits to client configuration, so see Recipe 4.5 for this.

Discussion
Changes in dnsmasq.conf are easy to test. After restarting dnsmasq, try the following
commands on your Linux clients.

ifupdown stops and restarts interfaces:

ifdown eth0
ifup etho

Sometimes, that doesn’t quite do the job, so you can also try:

/etc/init.d/network restart
/etc/init.d/networking restart

The first one is for Fedora, the second for Debian. You’ll see it acquire the address
you assigned it from the DHCP server, and it will write the correct DNS server or
servers to /etc/resolv.conf.

If those don’t work, reboot.

94 | Chapter 4: Building a Linux Wireless Access Point

Find MAC addresses with ifconfig for wired NICs, and iwconfig for wireless NICs.
ifconfig sees both, but it doesn’t differentiate them. iwconfig identifies only wireless
interfaces.

When you use the MAC address, don’t forget to change the entry in dnsmasq.conf if
you replace the client’s network interface card.

MAC addresses are unique, but hostnames are not, so you have to be careful not to
have duplicate hostnames. You can’t have duplicate hostnames, anyway.

MAC addresses are ridiculously easy to spoof, so don’t think you’re adding any secu-
rity by relying on them as secure, unique identifiers.

See Also
• man 8 dnsmasq contains a wealth of helpful information about all the available

command-line options, many of which are also dnsmasq.conf options

• dnsmasq.conf is also a great help resource

• dnsmasq home page (http://www.thekelleys.org.uk/dnsmasq/doc.html) is where
you’ll find mailing list archives and excellent help documents

• Chapter 24, “Managing Name Resolution,” in Linux Cookbook, by Carla Schroder
(O’Reilly)

4.5 Configuring Linux and Windows Static DHCP
Clients

Problem
What with having both Linux and Windows clients, and various Linux distributions
that like to do things their own way, you’re a bit befuddled as to how to configure
them to have dnsmasq give them static IP addresses.

Solution
The key to getting static IP addresses from DHCP is for the clients to send their host-
names to the DHCP server when they request a lease.

Windows 2000, 2003, and XP clients do this automatically. All you do is configure
them for DHCP in the usual manner.

First, on all Linux machines, make sure there is nothing in /etc/hosts other than the
localdomain entry.

Most Linux distributions are not configured to send the hostname by default. To fix
this, add one line to their DHCP client files. On Debian, this is the /etc/dhcp3/
dhclient.conf file. This example is for the computer named Penguina:

send host-name "penguina";

4.5 Configuring Linux and Windows Static DHCP Clients | 95

You must also enter the hostname in /etc/hostname:

penguina

Just the hostname and nothing else. Then, set up the normal DHCP configuration
in /etc/network/interfaces, like this:

##/etc/network/interfaces
auto lo
iface lo inet loopback

auto eth0
iface eth0 inet dhcp

On Fedora, each interface gets its own DHCP client file, like /etc/dhclient-eth1. You
may need to create this file. This takes the same send host-name "penguina"; entry.
Then, add this line to /etc/sysconfig/network-scripts/ifcfg-eth0:

DHCP_HOSTNAME=penguina

Make sure the HOSTNAME line in /etc/sysconfig/network is empty.

The sure way to test your new configurations is to reboot, then run these commands:

$ hostname
penguina
$ hostname -f
penguina.alrac.net
$ dnsdomainname
alrac.net

Ping will look like this:

carla@xena:~$ ping penguina
PING penguina.alrac.net (192.168.1.75) 56(84) bytes of data.
64 bytes from penguina.alrac.net (192.168.1.75): icmp_seq=1 ttl=128 time=8.90 ms
carla@penguina:~$ ping penguina
PING penguina.alrac.net (192.168.1.75) 56(84) bytes of data.
64 bytes from penguina.alrac.net (192.168.1.75): icmp_seq=1 ttl=64 time=0.033 ms

Discussion
The most common cause of problems with this is not configuring the hostname cor-
rectly. Check all of your pertinent configuration files.

Here is a complete example Fedora configuration for eth0:

##/etc/sysconfig/network-scripts/ifcfg-eth0
DEVICE=eth0
ONBOOT=yes
BOOTPROTO=dhcp
HWADDR=11.22.33.44.55.66
DHCP_HOSTNAME=penguina
TYPE=wireless
PEERDNS=yes
MODE=managed
RATE=auto

96 | Chapter 4: Building a Linux Wireless Access Point

Either edit Fedora configuration files directly, or use the graphical network configu-
rator, but don’t use both because the graphical tool overwrites your manual edits.

dnsmasq automatically enters DHCP clients into DNS. This is a great convenience,
and when you deploy IPv6, it will be more than a convenience—it will be a neces-
sity, unless you’re comfortable with remembering and typing those long IPv6
addresses.

dnsmasq combines a lot of complex functions into a short configuration file, and can
be used in conjunction with BIND, djbdns, MaraDNS, and other nameservers. Use
dnsmasq for your private LAN services, and one of the others for a public authorita-
tive server. This makes it easy to keep the two completely separate, as they should
be. Remember the number one DNS server rule: keep your authoritative and cach-
ing servers strictly separated, which means using two physically separate network
interfaces and different IP addresses. Authoritative servers do not answer queries for
other domains; that is the job of a caching resolver like dnsmasq. Maintaining two
separate servers might sound like more work, but in practice, it’s easier and safer
than trying to configure a single server to handle both jobs.

See Also
• man 5 dhclient

• dnsmasq.conf is a great help resource

• dnsmasq home page (http://www.thekelleys.org.uk/dnsmasq/doc.html) is where
you’ll find mailing list archives and excellent help documents

• Chapter 24, “Managing Name Resolution,” in Linux Cookbook, by Carla Schroder
(O’Reilly)

4.6 Adding Mail Servers to dnsmasq

Problem
You have some local mail servers that you want your LAN hosts to know about.
How do you do this with dnsmasq?

Solution
dnsmasq has a special record type for mailservers. You need these three lines:

mx-host=alrac.net,mail.alrac.net,5
mx-target=mail.alrac.net
localmx

The mx-host line needs the domain name, server name, and MX priority. The mx-target
line is the server name. localmx means all local machines should use this server.

4.7 Making WPA2-Personal Almost As Good As WPA-Enterprise | 97

Discussion
A priority number of 5 means the server is higher priority than servers with larger
numbers, typically 10 and then multiples of 10. If you have only one mail server, you
should still give it a priority to keep clients happy.

See Also
• man 5 dhclient

• dnsmasq.conf is also a great help resource

• dnsmasq home page (http://www.thekelleys.org.uk/dnsmasq/doc.html) is where
you’ll find mailing list archives and excellent help documents

• Chapter 24, “Managing Name Resolution,” in Linux Cookbook, by Carla Schroder
(O’Reilly)

4.7 Making WPA2-Personal Almost As Good As
WPA-Enterprise

Problem
You’re nervous about sitting there with an unsecured wireless access point, and you
really want to lock it up before you do anything else. You’ve made sure that all of
your wireless network interfaces support WPA2, so you’re ready to go. You don’t
want to run a RADIUS authentication server, but using the same shared key for all
clients doesn’t seem very secure. Isn’t there some kind of in-between option?

Solution
Yes, there is. Pyramid Linux comes with hostapd, which is a user space daemon for
access point and authentication servers. This recipe will show you how to assign dif-
ferent pre-shared keys to your clients, instead of everyone using the same one. And,
we’ll use a nice strong AES-CCMP encryption, instead of the weaker RC4-based
ciphers that WPA and WEP use.

First, run /sbin/rw to make the Pyramid filesystem writeable, then create or edit the
/etc/hostapd.conf file:

##/etc/hostapd.conf
interface=ath0
bridge=br0
driver=madwifi
debug=0
ssid=alrac-net
macaddr_acl=0
auth_algs=3

98 | Chapter 4: Building a Linux Wireless Access Point

wpa=1
wpa_psk_file=/etc/hostapd_wpa_psk
wpa_key_mgmt=WPA-PSK
wpa_pairwise=CCMP

Next, create /etc/hostapd_wpa_psk, which holds the shared plaintext passphrase:

00:00:00:00:00:00 waylongpassword

Then, edit /etc/network/interfaces so that hostapd starts when the br0 interface comes
up. Add these lines to the end of your br0 entry:

up hostapd -B /etc/hostapd.conf
post-down killall hostapd

Run /sbin/ro, then restart networking:

pyramid:~# /etc/init.d/networking restart

Now, grab a Linux client PC for testing. On the client, create an /etc/wpa_
supplicant.conf file with these lines, using your own ESSID and super-secret passphrase
from /etc/hostapd_wpa_psk:

##/etc/wpa_supplicant.conf
network={
 ssid="alrac-net"
 psk="waylongpassword"
 pairwise=CCMP
 group=CCMP
 key_mgmt=WPA-PSK
}

Shut down the client’s wireless interface, then test the key exchange:

ifdown ath0
wpa_supplicant -iath0 -c/etc/wpa_supplicant.conf -Dmadwifi -w
 Trying to associate with 00:ff:4a:1e:a7:7d (SSID='alrac-net' freq=2412 MHz)
 Associated with 00:ff:4a:1e:a7:7d
 WPA: Key negotiation completed with 00:ff:4a:1e:a7:7d [PTK=CCMP GTK=CCMP]
 CTRL-EVENT-CONNECTED - Connection to 00:2b:6f:4d:00:8e

This shows a successful key exchange, and it confirms that the CCMP cipher is being
used, which you want to see because it is much stronger than the RC4 stream
encryption used by WEP. Hit Ctrl-C to end the key exchange test. So, you can add
more clients, giving each of them a unique key. All you do is line them up in /etc/
hostapd_wpa_psk, and match their passphrases to their MAC addresses:

00:0D:44:00:83:CF uniquetextpassword
00:22:D6:01:01:E2 anothertextpassword
23:EF:11:00:DD:2E onemoretextpassword

Now, you have a good strong AES-CCMP based encryption, and if one user compro-
mises her key, you don’t have to change all of them. Revoking a user’s access is as
easy as commenting out or deleting their key.

4.7 Making WPA2-Personal Almost As Good As WPA-Enterprise | 99

You can make it permanent on the clients by configuring their wireless interfaces to
call wpa_supplicant when they come up. On Debian, do this:

##/etc/network/interfaces
auto ath0
iface ath0 inet dhcp
pre-up wpa_supplicant -iath0 -Dmadwifi -Bw -c/etc/wpa_supplicant/wpa_supplicant.conf
post-down killall -q wpa_supplicant

On Fedora, add this line to /etc/sysconfig/network-scripts/ifup-wireless:

wpa_supplicant -ieth0 -c/etc/wpa_supplicant/wpa_supplicant.conf -Dmadwifi -Bw

Make sure your filepath to wpa_supplicant.conf is correct, that you specify the
correct interface with -i, and that you specify the correct driver for your wireless
interface with the -D option.

Discussion
When you test the key exchange, you need to specify the driver for your WIC (in the
example, it’s - Dmadwifi). man 8 wpa_supplicant lists all options. The wext driver is a
generic Linux kernel driver. You’ll see documentation recommending that you use
this. It’s better to try the driver for your interface first, then give wext a try if that
causes problems.

The example passphrases are terrible, and should not be used in real life. Make yours
the maximum length of 63 characters, no words or names, just random jumbles of
letters and numbers. Avoid punctuation marks because some Windows clients don’t
handle them correctly. There are all kinds of random password generators floating
around if you want some help, which a quick web search will find.

Windows XP needs SP2 for WPA support, plus client software that comes with your
wireless interfaces. Older Windows may be able to get all the necessary client soft-
ware with their wireless interfaces. Or maybe not—shop carefully.

It takes some computational power to encrypt a plaintext passphrase, so using
plaintext passphrases could slow things down a bit. You can use wpa_password to
encrypt your passphrases, then copy the encrypted strings into place:

$ wpa_passphrase alrac-net w894uiernnfif98389rbbybdbyu8i3yenfig87bfop
network={
 ssid="alrac-net"
 #psk="w894uiernnfif98389rbbybdbyu8i3yenfig87bfop"
 psk=48a37127e92b29df54a6775571768f5790e5df87944c26583e1576b83390c56f
}

Now your clients and access point won’t have to expend so many CPU cycles on the
passphrase. Encrypted keys do not have quotation marks in wpa_supplicant.conf;
plaintext passphrases do.

In our original example, 00:00:00:00:00:00 means “accept all MAC addresses.”

100 | Chapter 4: Building a Linux Wireless Access Point

You can see your keys in action with the iwlist ath0 key command on the access
point and clients.

Your access point supports virtually all clients: Linux, Mac OS X, Windows, Unix,
the BSDs...any client with a supplicant and support for the protocols will work.

NetworkManager and Kwlan are good graphical network management tools for
Linux clients. NetworkManager is designed for all Linux desktops and window man-
agers, and comes with Gnome; Kwlan is part of KDE. Both support profiles, key
management, and easy network switching.

When you’re using an Ethernet bridge, make sure that you enter your wireless and
bridge interfaces in /etc/hostapd.conf.

hostapd.conf supports access controls based on MAC addresses. You’re welcome to
use these; however, I think they’re a waste of time because MAC addresses are so
easy to spoof your cat can do it.

HostAP was originally a project that supported only Prism wireless chips, but now it
supports these drivers:

• Host AP driver for Prism2/2.5/3

• madwifi (Atheros ar521x)

• Prism54.org (Prism GT/Duette/Indigo)

• BSD net80211 layer

See Also
• Pyramid Linux does not include manpages, so you should install the applica-

tions in this chapter on a PC to get the manpages, or rely on Google

• wlanconfig is part of MadWiFi-ng

• man 8 wlanconfig

• The default hostapd.conf is full of informative comments

• The default wpa_supplicant.conf is helpful

• 802.11 Wireless Networks: The Definitive Guide, by Matthew Gast (O’Reilly)

• MadWiFi.org: http://madwifi.org/

4.8 Enterprise Authentication with a RADIUS Server

Problem
The previous recipe is a slick hack for giving your wireless clients individual keys, but
it’s still not a proper Public Key Infrastructure (PKI), which is better for larger deploy-
ments, and better for security. You have decided it’s worth running a standalone
RADIUS server for your wireless authentication because it offers more security and

4.8 Enterprise Authentication with a RADIUS Server | 101

more flexibility. You’ll be able to use it for all network authentication if you want to,
not just wireless, and you can scale up at your own pace. So, how do you use a
RADIUS server for wireless authentication?

Solution
Use FreeRADIUS together with OpenSSL. There are four steps to this:

1. Install and configure the FreeRADIUS server

2. Create and distribute OpenSSL server and client certificates

3. Configure your wireless access point

4. Configure client supplicants

Your WAP becomes a Network Access Server (NAS) because it passes along the job
of user authentication to the FreeRADIUS server.

To ensure the least hair loss and lowest blood pressure, use your distribution’s pack-
age manager to install FreeRADIUS. If you prefer a source installation, refer to the
INSTALL document in the source tarball.

This recipe requires a PKI using Extensible Authentication Protocol-Transport Layer
Security (EAP-TLS) authentication, which means the server and client must authenti-
cate to each other with X.509 certificates. So, you’ll need:

• Your own certificate authority

• Server private key and CA-signed certificate

• A unique private key and a CA-signed certificate for each client

This is the strongest authentication you can use. See Recipe 9.5 to learn how to do this
the easy way, with OpenVPN’s excellent helper scripts. If you don’t have OpenVPN,
you can get the scripts from OpenVPN.net (http://openvpn.net/).

There are two things you will do differently. First, use password-protected client
certificates:

./build-key-pass [client hostname]

And, you will have to create PK12 certificates for Windows clients:

./build-key-pkcs12 [client hostname]

In this recipe, the certificate authority, private server key, and public server key are
kept in /etc/raddb/keys. This directory should be mode 0750, and owned by root and
the FreeRADIUS group created by your Linux distribution. On Debian, this is root:
freerad. On Fedora, root:radiusd. You’ll be editing these FreeRADIUS files:

/etc/raddb/clients.conf
/etc/raddb/users
/etc/raddb/eap.conf
/etc/raddb/radiusd.conf

102 | Chapter 4: Building a Linux Wireless Access Point

Debian users, look in /etc/freeradius instead of /etc/raddb.

First, tell FreeRADIUS about your wireless access point or points in clients.conf,
using one section per WAP. You can start over with a clean new file instead of add-
ing to the default file:

##/etc/raddb/clients.conf
client 192.168.1.50 {
 secret = superstrongpassword
 shortname = wap1
 nastype = other
 }

Then, make a list of authorized users’ login names in the users file, and a nice reject
message for users who are not in this file. The usernames are the Common Names on
their client certificates. Add them to the existing users file:

##/etc/raddb/users
"alrac sysadmin" Auth-Type := EAP
"terry rockstar" Auth-Type := EAP
"pinball wizard" Auth-Type := EAP

DEFAULT Auth-Type := Reject
 Reply-Message = "I hear you knocking, but you can't come in"

Now, create two files containing random data, which EAP needs to do its job. These
must be owned by root and the FreeRADIUS group, and readable only to the file
owners:

openssl dhparam -check -text -5 512 -out /etc/raddb/dh
dd if=/dev/random of=/etc/raddb/random count=1 bs=128
chown root:radiusd /etc/raddb/dh
chown root:radiusd /etc/raddb/random
chmod 0640 /etc/raddb/dh
chmod 0640 /etc/raddb/random

Make sure you use the correct RADIUS group for your distribution.

eap.conf is where you configure the EAP module. Find and edit these lines in your
existing file, using your own filenames:

##/etc/raddb/eap.conf
default_eap_type = tls
tls {
 private_key_password = [your password]
 private_key_file = /etc/raddb/keys/xena.crt
 certificate_file = /etc/raddb/keys/xena.key
 CA_file = /etc/raddb/keys/ca.crt

 dh_file = /etc/raddb/keys/dh2048.pem
 random_file = /etc/raddb/keys/random
 fragment_size = 1024
 include_length = yes
}

4.8 Enterprise Authentication with a RADIUS Server | 103

radiusd.conf is huge and replete with helpful comments, so I will show just the bits
you may need to change. In the Authorization module, make sure the eap line is
uncommented:

##/etc/raddb/radiusd.conf
Authorization. First preprocess (hints and huntgroups files),
authorize {
...
eap
...
}

Then, in the Authentication module, make sure the eap line is uncommented:

Authentication.
authenticate {
...
eap
...
}

Finally, make sure these lines are uncommented and the correct user and group are
entered. These vary, so check your own distribution:

user = radiusd
group = radiusd

Shut down FreeRADIUS if it is running, then run these commands to test it:

freeradius -X
...
"Ready to process requests"
radtest test test localhost 0 testing123

The first command starts it in debugging mode. The second command sends it a fake
authentication test, which should fail. What you want to see is FreeRADIUS
responding to the test. Debugging mode emits reams of useful output, so if there are
any errors in your configurations, you’ll be able to track them down.

Discussion
The trickiest bit is getting your certificates right, but fortunately, the Easy-RSA
scripts make the process easy. A good alternative is the excellent graphical PKI man-
ager TinyCA (http://tinyca.sm-zone.net/).

A slick FreeRADIUS feature is that you don’t need to use a Certification Revocation
List (CRL), though nothing’s stopping you if you want to because revoking a user is
as simple as removing them from the users file.

The various Linux distributions handle the FreeRADIUS user and group in different
ways. Some use nobody. Debian creates a freerad user and group. It’s important to
run FreeRADIUS as an unprivileged user, so make sure that the user and group lines
in radiusd.conf are configured correctly.

104 | Chapter 4: Building a Linux Wireless Access Point

If you have several WAPs, you may control access by subnet instead of individual
WAP:

##/etc/raddb/clients.conf
client 192.168.0.0/24 {
 secret = superstrongpassword
 shortname = wap_herd
 nastype = other

This is less secure because it uses the same secret for all access points, but it’s easier
to manage.

See Also
• man 1 openssl

• man dhparam

• The default eap.conf, radiusd.conf, clients.conf, and users files are excellent help
references

• RADIUS, by Jonathan Hassell (O’Reilly) for a good in-depth tour of running a
RADIUS server

• The FreeRADIUS Wiki: http://wiki.freeradius.org/

• TinyCA (http://tinyca.sm-zone.net/) is a nice graphical tool for creating and man-
aging PKIs, and for importing and exporting certificates and keys

• Recipe 9.5

4.9 Configuring Your Wireless Access Point to Use
FreeRADIUS

Problem
OK, setting up FreeRADIUS was fun, now what do you do to make your WAP use it?

Solution
Your nice Pyramid Linux-based WAP needs but a few lines in /etc/hostapd.conf. In
this example, the IP address of the FreeRADIUS server is 192.168.1.250:

##/etc/hostapd.conf
interface=ath0
bridge=br0
driver=madwifi
debug=0
ssid=alrac-net
ieee8021x=1

4.9 Configuring Your Wireless Access Point to Use FreeRADIUS | 105

auth_algs=0
eap_server=0
eapol_key_index_workaround=1

own_ip_addr=192.168.1.50
nas_identifier=pyramid.alrac.net
auth_server_addr=192.168.1.250
auth_server_port=1812
auth_server_shared_secret=superstrongpassword

wpa=1
wpa_key_mgmt=WPA-EAP
wpa_pairwise=TKIP
wpa_group_rekey=300
wpa_gmk_rekey=640

Edit /etc/network/interfaces so that hostapd starts when your LAN interface comes
up. Add these lines to the end of your LAN interface stanza:

pre-up hostapd -B /etc/hostapd.conf
post-down killall hostapd

Restart networking:

pyramid:~# /etc/init.d/networking restart

And you’re almost there. See the next recipe for client configuration.

Discussion
All the different wireless access points are configured in different ways. The three
things common to all of them are:

• FreeRADIUS Server IP Address

• FreeRADIUS Port: 1812 is the default

• FreeRADIUS Key: shared secret

Remember, you don’t have to worry about keys and certificates on the access point.
It’s just a go-between.

See Also
• RADIUS, by Jonathan Hassell (O’Reilly) for a good in-depth tour of running a

RADIUS server

• The FreeRADIUS Wiki: http://wiki.freeradius.org/

• The example hostapd.conf

106 | Chapter 4: Building a Linux Wireless Access Point

4.10 Authenticating Clients to FreeRADIUS

Problem
Now that you have your access point and FreeRADIUS server ready to go to work,
how do your clients talk to it?

Solution
All clients need a copy of ca.crt. Mac and Linux clients get their own [hostname].crt
and [hostname].key files. Windows clients use [hostname].p12.

Your Windows and Mac clients have built-in graphical tools for importing and manag-
ing their certificates, and configuring their supplicants. What do you do on Linux? I
haven’t found anything that makes the job any easier than editing plain old text files.
Go back to Recipe 4.7, and start with the configuration for /etc/wpa_supplicant.conf.
Change it to this:

/etc/wpa_supplicant.conf
network={
 ssid="alrac-net"
 scan_ssid=1
 key_mgmt=WPA-EAP
 pairwise=CCMP TKIP
 group=CCMP TKIP
 eap=TLS
 identity="alice sysadmin"
 ca_cert="/etc/cert/ca.crt"
 client_cert="/etc/cert/stinkpad.crt"
 private_key="/etc/cert/stinkpad.key"
 private_key_passwd="verysuperstrongpassword"
}

The value for identity comes from /etc/raddb/users on the FreeRADIUS server. Certifi-
cates and keys can be stored anywhere, as long as wpa_supplicant.conf is configured
correctly to point to them.

Continue with the rest of Recipe 4.7 to test and finish configuring wpa_supplicant.

Discussion
Be sure that .key files are mode 0400, and owned by your Linux user. .crt files are
0644, owned by the user.

You can have multiple entries in wpa_supplicant.conf for different networks. Be sure
to use the:

network{
}

format to set them apart.

4.11 Connecting to the Internet and Firewalling | 107

NetworkManager (http://www.gnome.org/projects/NetworkManager/) is the best Linux
tool for painlessly managing multiple network profiles. It is bundled with Gnome, and
is available for all Linux distributions.

See Also
• man 8 wpa_supplicant

• man 5 wpa_supplicant.conf

4.11 Connecting to the Internet and Firewalling

Problem
It’s high time to finish up with these LAN chores and bring the Internet to your
LAN. Your wireless is encrypted, your LAN services are working, and your users
want Internet. So you’re ready to configure your WAN interface and build a nice
stout iptables firewall.

Solution
Easy as pie. First, configure your WAN interface, then set up an iptables firewall. (See
Chapter 3 to learn how to do these things.) You’ll need to make some simple
changes to /usr/local/bin/fw-nat to enable traffic to flow across your bridge. Add these
two lines:

$ipt -A INPUT -p ALL -i $LAN_IFACE -s 192.168.1.0/24 -j ACCEPT
$ipt -A FORWARD -p ALL -i $LAN_IFACE -s 192.168.1.0/24 -j ACCEPT

Use your own subnet, of course. Then, change the value of LAN_IFACE to br0:

LAN_IFACE="br0"

Restart and test everything according to Chapter 3, and you are set.

Discussion
Ethernet bridges join subnets into a single broadcast domain, with broadcast traffic
going everywhere at once. A bridge is easy to set up and is transparent to your users.
Your subnets function as a single network segment, so LAN services work without
any additional tweaking, such as network printing, Samba servers, and Network
Neighborhood. You can move computers around without having to give them new
addresses.

Bridging is inefficient because it generates more broadcast traffic. So, it doesn’t scale
up very far. An Ethernet bridge operates at the data link layer (layer 2) of the OSI
Model. It sees MAC addresses, but not IP addresses. Bridge traffic cannot be filtered
with iptables; if you want to do this, use ebtables, which is designed for bridging
firewalls.

108 | Chapter 4: Building a Linux Wireless Access Point

Routing gives more control over your network segments; you can filter traffic any
way you like. It’s more efficient than bridging because it’s not spewing broadcasts all
over the place. Routing scales up indefinitely, as demonstrated by the existence of
the Internet. Its main disadvantage in the LAN is it’s a bit more work to implement.

See Recipe 4.12 to learn how to use routing instead of bridging on your wireless
access point.

See Also
• Chapter 6

4.12 Using Routing Instead of Bridging

Problem
You would rather use routing between your two LAN segments instead of bridging
because it gives better performance and more control. For example, you might set up
a separate link just to give Internet access to visitors and easily keep them out of your
network. Or, you want some separation and different sets of LAN services for each
network segment. You know it’s a bit more work to set up, but that doesn’t bother
you, you just want to know how to make it go.

Solution
The example access point in this chapter has three Ethernet interfaces: ath0, eth0,
and eth1. Instead of bridging ath0 and eth0 to create the br0 LAN interface, ath0 and
eth0 are going to be two separate LAN interfaces, and eth1 will still be the WAN
interface. iptables will forward traffic between ath0 and eth0, and dnsmasq.conf will
need some additional lines to handle the extra subnet.

This recipe assumes you are using either WPA-PSK or WPA-Enterprise with a separate
RADIUS server. (See the previous recipes in this chapter to learn how to configure
encryption and authentication.) You may create an open access point for testing by
commenting out the two lines that control hostapd:

##/etc/network/interfaces
auto lo
iface lo inet loopback

auto ath0
iface ath0 inet static
 address 192.168.2.50
 network 192.168.2.0
 netmask 255.255.255.0
 broadcast 192.168.2.255
 post-down wlanconfig ath0 destroy

4.12 Using Routing Instead of Bridging | 109

 pre-up wlanconfig ath0 create wlandev wifi0 wlanmode ap
 pre-up iwconfig ath0 essid "alrac-net" channel 01 rate auto
 pre-up ifconfig ath0 up
 pre-up sleep 3
 up hostapd -B /etc/hostapd.conf
 post-down killall hostapd

auto eth0
iface eth0 inet static
 address 192.168.1.50
 network 192.168.1.0
 netmask 255.255.255.0
 broadcast 192.168.1.255

auto eth1
iface eth1 inet static
 address 12.169.163.241
 gateway 12.169.163.1
 netmask 255.255.255.0

##/etc/dnsmasq.conf
domain-needed
bogus-priv
local=/alrac.net/
expand-hosts
domain=alrac.net
listen-address=127.0.0.1
listen-address=192.168.1.50
listen-address=192.168.2.50
server=12.169.174.2
server=12.169.174.3

dhcp-range=lan,192.168.1.100,192.168.1.200,255.255.255.0,12h
dhcp-range=wifi,192.168.2.100,192.168.2.200,255.255.255.0,12h
dhcp-lease-max=100

#default gateway
dhcp-option=lan,3,192.168.1.50
dhcp-option=wifi,3,192.168.2.50

#DNS server
dhcp-option=lan,6,192.168.1.50
dhcp-option=wifi,6,192.168.2.50

#assign static IP addresses
dhcp-host=stinkpad,192.168.2.74,net:wifi
dhcp-host=penguina,192.168.2.75,net:wifi
dhcp-host=uberpc,192.168.1.76,net:lan
dhcp-host=xena,192.168.1.10,net:lan

You’ll need to add a batch of iptables rules to your firewall script. See the Discussion
for a complete example iptables firewall script.

110 | Chapter 4: Building a Linux Wireless Access Point

Discussion
This iptables example forwards all traffic freely between your two LAN segments,
and makes name services available to all. This is a liberal configuration with no
restrictions.

Remember that broadcast traffic does not cross routes, and some network protocols
are nonroutable, such as Samba and other NetBIOS traffic. All routable traffic, such
as SSH, ping, mail and web servers, and so forth will travel between your subnets
with no problems.

By routing between your wired and wireless network segments, your options are
legion: limit the services available to either network segment, filter on individual
hosts, do some fine-grained traffic shaping—anything you want to do is possible.

dnsmasq.conf uses RFC 2132 numbers to represent servers, so refer to it for a com-
plete list. Some common servers are:

dhcp-option=2,[offset]
Time offset from UTC (Coordinated Universal Time). You’ll have to manually
adjust this twice per year if you are afflicted with daylight saving time. But at
least you’ll control everything from the server. For example, pacific standard
time is written as dhcp-option=2,-28800, which equals UTC -8 hours.

dhcp-option=3,[IP address]
Send clients the default route. Use this when dnsmasq is not on the same box as
your router.

dhcp-option=7, [IP address]
Syslog server.

dhcp-option=33, wifi, [destination IP address, router address]
Assign a static route to the “wifi” group. You may list as many routes as you
want. Each route is defined by a pair of comma-separated IP addresses.

dhcp-option=40, [domain]
NIS domain name.

dhcp-option=41,[IP address]
NIS domain server.

dhcp-option=42,[IP address]
NTP server.

dhcp-option=69,[IP address]
SMTP server.

dhcp-option=70,[IP address]
POP server.

dhcp-option=72,[IP address]
HTTP server.

4.12 Using Routing Instead of Bridging | 111

Because our LAN routes pass through an iptables firewall with a default DROP policy,
permitted traffic must be explicitly accepted and forwarded.

If you followed Chapter 3 to build your iptables firewall, don’t forget you can use /etc/
init.d/firewall/stop|start|restart when you’re testing new rules.

Here is a complete example /usr/local/bin/fw-nat that gives the wired and wireless
subnets nearly unlimited access to each other:

#!/bin/sh
#iptables firewall script for sharing a cable or DSL Internet
#connection, with no public services

#define variables
ipt="/sbin/iptables"
mod="/sbin/modprobe"
LAN_IFACE="eth0"
WAN_IFACE="eth1"
WIFI_IFACE="ath0"

#load kernel modules
$mod ip_tables
$mod iptable_filter
$mod iptable_nat
$mod ip_conntrack
$mod ipt_LOG
$mod ipt_limit
$mod ipt_state
$mod iptable_mangle
$mod ipt_MASQUERADE
$mod ip_nat_ftp
$mod ip_nat_irc
$mod ip_conntrack_ftp
$mod ip_conntrack_irc

Flush all active rules and delete all custom chains
$ipt -F
$ipt -t nat -F
$ipt -t mangle -F
$ipt -X
$ipt -t nat -X
$ipt -t mangle -X

#Set default policies
$ipt -P INPUT DROP
$ipt -P FORWARD DROP
$ipt -P OUTPUT ACCEPT
$ipt -t nat -P OUTPUT ACCEPT
$ipt -t nat -P PREROUTING ACCEPT
$ipt -t nat -P POSTROUTING ACCEPT
$ipt -t mangle -P PREROUTING ACCEPT
$ipt -t mangle -P POSTROUTING ACCEPT

112 | Chapter 4: Building a Linux Wireless Access Point

#this line is necessary for the loopback interface
#and internal socket-based services to work correctly
$ipt -A INPUT -i lo -j ACCEPT

#Allow incoming SSH from the wired LAN only to the gateway box
$ipt -A INPUT -p tcp -i $LAN_IFACE -s 192.168.1.0/24 --dport 22 \
-m state --state NEW -j ACCEPT

#Enable IP masquerading
$ipt -t nat -A POSTROUTING -o $WAN_IFACE -j SNAT --to-source 12.34.56.789

#Enable unrestricted outgoing traffic, incoming
#is restricted to locally-initiated sessions only
#unrestricted between WIFI and LAN
$ipt -A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
$ipt -A FORWARD -i $WAN_IFACE -o $LAN_IFACE -m state --state \
ESTABLISHED,RELATED -j ACCEPT
$ipt -A FORWARD -i $LAN_IFACE -o $WAN_IFACE -m state --state \
NEW,ESTABLISHED,RELATED -j ACCEPT
#$ipt -A FORWARD -i $LAN_IFACE -o $WIFI_IFACE -m state --state \
NEW,ESTABLISHED,RELATED -j ACCEPT
#$ipt -A FORWARD -i $WIFI_IFACE -o $LAN_IFACE -m state --state \
NEW,ESTABLISHED,RELATED -j ACCEPT
#$ipt -A FORWARD -i $WIFI_IFACE -o $WAN_IFACE -m state --state \
NEW,ESTABLISHED,RELATED -j ACCEPT
#$ipt -A FORWARD -i $WAN_IFACE -o $WIFI_IFACE -m state --state \
ESTABLISHED,RELATED -j ACCEPT

#Enable internal DHCP and DNS
$ipt -A INPUT -p udp -i $LAN_IFACE -s 192.168.1.0/24 --dport 53 -j ACCEPT
$ipt -A INPUT -p tcp -i $LAN_IFACE -s 192.168.1.0/24 --dport 53 -j ACCEPT
$ipt -A INPUT -p udp -i $LAN_IFACE --dport 67 -j ACCEPT
$ipt -A INPUT -p udp -i $WIFI_IFACE -s 192.168.2.0/24 --dport 53 -j ACCEPT
$ipt -A INPUT -p tcp -i $WIFI_IFACE -s 192.168.2.0/24 --dport 53 -j ACCEPT
$ipt -A INPUT -p udp -i $WIFI_IFACE --dport 67 -j ACCEPT

#allow LAN to access router HTTP server
$ipt -A INPUT -p tcp -i $LAN_IFACE --dport 443 -j ACCEPT
$ipt -A INPUT -p tcp -i $WIFI_IFACE --dport 443 -j ACCEPT

Accept ICMP echo-request and time-exceeded
$ipt -A INPUT -p icmp --icmp-type echo-request -j ACCEPT
$ipt -A INPUT -p icmp --icmp-type time-exceeded -j ACCEPT
$ipt -A INPUT -p icmp --icmp-type destination-unreachable -j ACCEPT

#Reject connection attempts not initiated from inside the LAN
$ipt -A INPUT -p tcp --syn -j DROP

echo "The firewall has now started up and is faithfully protecting your system"

4.13 Probing Your Wireless Interface Card | 113

See Also
• Chapter 3

• man 5 dhclient

• dnsmasq.conf is a great help resource

• dnsmasq home page (http://www.thekelleys.org.uk/dnsmasq/doc.html) is where
you’ll find mailing list archives and excellent help documents

• Chapter 24, “Managing Name Resolution,” in Linux Cookbook, by Carla Schroder
(O’Reilly)

4.13 Probing Your Wireless Interface Card

Problem
Your wireless interface card came in a colorful box and wads of multilanguage docu-
mentation. But none of it gives you the technical specs that you really want, such as
supported channels, encryption protocols, modes, frequencies—you know, the use-
ful information.

Solution
Both wlanconfig, which is part of the MadWiFi driver package, and iwlist, which is
part of wireless-tools, will probe your wireless card and tell you what it can do, like
this command that displays what protocols the card supports:

pyramid:~# wlanconfig ath0 list caps
ath0=7782e40f<WEP,TKIP,AES,AES_CCM,HOSTAP,TXPMGT,SHSLOT,SHPREAMBLE,\
TKIPMIC,WPA1,WPA2,WME>

This means this is a nice modern card that supports all of the important encryption
and authentication protocols, and it can serve as an access point.

This command shows all of the channels and frequencies the card supports:

pyramid:~# wlanconfig ath0 list chan

Find out what kind of keys your card supports:

pyramid:~# iwlist ath0 key

Which card functions are configurable:

pyramid:~# iwlist ath0 event

This particular card supports variable transmission power rates:

pyramid:~# iwlist ath0 txpower

114 | Chapter 4: Building a Linux Wireless Access Point

What bit-rates are supported?

pyramidwrap:~# iwlist ath0 rate

The iwconfig command shows the card’s current configuration:

pyramidwrap:~# iwconfig ath0

Discussion
What does this output mean?

ath0=7782e40f<WEP,TKIP,AES,AES_CCM,HOSTAP,TXPMGT,SHSLOT,SHPREAMBLE,\
TKIPMIC,WPA1,WPA2,WME>

It means this particular card supports WEP encryption, Temporal Key Integrity Pro-
tocol (TKIP), Advanced Encryption Standard with Counter Mode with CBC-MAC
Protocol (AES and AES_CCM), can function as an Access Point, has variable
transmission power, supports TKIP Message Identity Check, WPA/WPA2, frame
bursting, and Wireless Media Extensions.

SHSLOT and SHPREAMBLE stand for “short slot” and “short preamble,” which have to do
with faster transmission speeds. Matthew Gast’s 802.11 Wireless Networks: The
Definitive Guide (O’Reilly) tells you all about these.

See Also
• Pyramid Linux does not include manpages, so you should install the applica-

tions in this chapter on a PC to obtain them, or rely on Google

• wlanconfig is part of MadWiFi-ng

• man 8 iwlist

• man 8 wlanconfig

• 802.11 Wireless Networks: The Definitive Guide, by Matthew Gast (O’Reilly)

4.14 Changing the Pyramid Router’s Hostname

Problem
Pyramid is a nice name, but you really want to change it to something else. You tried
editing /etc/hostname, but the name reset to Pyramid after reboot. Arg! How do you
make it what you want?

Solution
The files listed in /etc/rw/ are mounted in a temporary writeable filesystem, and are
copied from /etc/ro at boot. /etc/hostname is symlinked to /rw/etc/hostname:

pyramid:~# ls -l /etc/hostname
lrwxrwxrwx 1 root root 18 Oct 30 2006 /etc/hostname -> ../rw/etc/hostname

4.15 Turning Off Antenna Diversity | 115

So, you can make /etc/hostname immutable (remove the symlink to /rw/etc/
hostname), or edit /ro/etc/hostname.

Discussion
The filesystem is set up this way to reduce writes, because Compact Flash supports a
limited number of writes.

You can use find to see which files in /etc are symlinks:

pyramid:~# find /etc -maxdepth 1 -type l -ls
 6051 0 lrwxrwxrwx 1 root root 14 Oct 4 2006 /etc/mtab -> ../proc/
mounts
 6052 0 lrwxrwxrwx 1 root root 21 Oct 4 2006 /etc/resolv.conf -> ../
rw/etc/resolv.conf
 6079 0 lrwxrwxrwx 1 root root 30 Dec 31 2006 /etc/localtime -> /usr/
share/zoneinfo/US/Pacific
 6081 0 lrwxrwxrwx 1 root root 18 Oct 4 2006 /etc/hostname -> ../rw/
etc/hostname
 6156 0 lrwxrwxrwx 1 root root 15 Oct 4 2006 /etc/issue -> ../rw/
etc/issue
 6195 0 lrwxrwxrwx 1 root root 17 Oct 4 2006 /etc/zebra -> ../usr/
local/etc/
 6227 0 lrwxrwxrwx 1 root root 16 Oct 4 2006 /etc/resolv -> ../rw/
etc/resolv
 6426 0 lrwxrwxrwx 1 root root 19 Oct 4 2006 /etc/issue.net -> ../
rw/etc/issue.net
 6427 0 lrwxrwxrwx 1 root root 17 Oct 4 2006 /etc/adjtime -> ../rw/
etc/adjtime

See Also
• man 1 find

• man 1 ls

4.15 Turning Off Antenna Diversity

Problem
Your wireless interface supports using two antennas, but you’re using just one. You
know that this means half of your broadcast and unicast packets are hitting a dead
end, which can hurt performance. How do you send power only to one antenna?

Solution
Set Pyramid’s filesystem to read/write, then add the following lines to /etc/sysctl.conf:

dev.wifi0.diversity = 0
dev.wifi0.rxantenna = 1
dev.wifi0.txantenna = 1

116 | Chapter 4: Building a Linux Wireless Access Point

Then, load the new configuration:

pyramid:~# /sbin/sysctl -p

If the antenna is connected to the second port, just change 1 to 2 and reload sysctl.

Discussion
The Linux kernel sees the wireless interface as wifi0, which you can see by running
dmesg | grep wifi. The MadWiFi driver creates a virtual interface named ath0.

Using two antennas might improve the quality of your wireless service, or it might
not. Only one is used at a time, the one with the stronger signal.

Polarization diversity is when one antenna receives a stronger signal because it is
lined up differently than the other one. Spatial diversity refers to distance between
two antennas. A few inches might make a difference because of reflections, fading,
physical barriers, and interference.

The radio hardware evaluates the signal strength at the beginning of the transmis-
sion and compares both antennas. Then, it selects the stronger antenna to receive the
rest of the transmission. The only user-configurable options are to turn diversity on
or off.

Multiple-input/multiple-output (MIMO) technology promises higher data rates and
better performance by using both antennas at the same time. Different vendors
mean different things when they say MIMO.

Some are referring to multiple data streams, while others use it to mean plain old
channel bonding. The goal is the same: more bandwidth and reliability for deliver-
ing video, VoIP, and other high-demand applications.

There is considerable controversy and endless arguments over antenna placement,
what kind of antennas to use, and how many. Pointless arguments can be fun; when
that gets dull, whip out your 802.11 network analyzer and collect some useful data
to help you figure it out.

See Also
• Chapter 16, “802.11 Hardware,” in 802.11 Wireless Networks: The Definitive

Guide, Second Edition, by Matthew Gast (O’Reilly)

• Chapter 24, “802.11 Network Analysis,” in 802.11 Wireless Networks: The
Definitive Guide, Second Edition

4.16 Managing dnsmasq’s DNS Cache | 117

4.16 Managing dnsmasq’s DNS Cache

Problem
You know that dnsmasq automatically creates a local DNS cache. How do you know
it’s working? How do you see what’s in it, and how do you flush it when you’re mak-
ing changes to DNS and want to be sure it’s caching fresh data?

Solution
It’s easy to see if it’s working. From any Linux client or from your Pyramid server,
query any Internet site with the dig command twice:

$ dig oreilly.com
<snip much output>
;; Query time: 75 msec
;; SERVER: 192.168.1.50#53(192.168.1.50)
$ dig oreilly.com
<snip much output>
;; Query time: 3 msec
;; SERVER: 192.168.1.50#53(192.168.1.50)

The second request is answered from your local dnsmasq cache, so it is faster. This
also verifies that your clients are querying the correct DNS server.

What if you want to flush dnsmasq’s cache? Just restart it:

pyramid:~# killall dnsmasq

dnsmasq is controlled from /etc/inittab, so it will automatically restart.

To view the contents of the cache, first open /etc/inittab and comment out the line
that starts dnsmasq:

pyramid:~# /sbin/rw
pyramid:~# nano /etc/inittab
dnsmasq. This should always be on.
DN:23:respawn:/sbin/dnsmasq -k > /dev/null 2>&1

Tell init to reread inittab, stop the active dnsmasq process, then start dnsmasq in
debugging mode:

pyramid:~# telinit q
pyramid:~# killall dnsmasq
pyramid:~# dnsmasq -d

This runs it in the foreground, so the next thing you need to do is open a second SSH
session, or log in on the serial console, and run this command:

pyramid:~# killall -USR1 dnsmasq

118 | Chapter 4: Building a Linux Wireless Access Point

This dumps the cache contents to your first screen. You should see just your localhosts.
This line tells you your cache is empty:

dnsmasq: cache size 150, 0/0 cache insertions re-used unexpired cache entries.

Start dnsmasq again, visit some web sites from client PCs to generate some cache
entries, then dump the cache again to see what they look like. You should see a lot
more entries now. When you’re finished, put /etc/inittab back the way it was, and
rerun telinit q and /sbin/ro.

Discussion
It’s unlikely that you’ll ever have to do anything with your dnsmasq cache because
it’s pretty much self-maintaining. There are three options in /etc/dnsmasq.conf for
configuring cache behavior:

local-ttl
The default is zero, which means do not cache responses from /etc/hosts and
your DHCP leases. This ensures fresh local data all the time. If your network is
stable and doesn’t have DHCP clients popping in and out a lot, you can set a
Time To Live (TTL) value to speed up local look ups.

no-negcache
Do not cache negative responses. Caching negative responses speeds up perfor-
mance by caching “no such domain” responses, so your clients don’t wait for
additional lookups to fail. dnsmasq handles negative caching well, so you
shouldn’t disable negative caching unless it causes problems.

cache-size
The default is 150 names. The maximum is around 2,000. Because the cache is
stored in RAM, having a too large cache will hurt router performance without
appreciable gain. 150 is just fine for most sites; I wouldn’t go over 300.

You are at the mercy of the administrators of the authoritative servers for domains
that you visit. If they make changes to their DNS without setting short TTL values,
stale data will be cached all over the Internet until their TTLs expire. It can be help-
ful to flush your dnsmasq cache when you’re debugging DNS and trying to figure out
if a DNS problem is local or remote.

Here are some examples of the output you’ll see. This is an empty cache showing
only local DNS:

pyramidwrap:~# dnsmasq -d
dnsmasq: started, version 2.23 cachesize 150
dnsmasq: compile time options: IPv6 GNU-getopt ISC-leasefile no-DBus
dnsmasq: DHCP, IP range 192.168.1.100 -- 192.168.1.200, lease time 10h
dnsmasq: using local addresses only for domain alrac.net
dnsmasq: read /etc/hosts - 4 addresses
dnsmasq: reading /etc/resolv.conf
dnsmasq: using nameserver 12.169.174.3#53
dnsmasq: using nameserver 12.169.174.2#53

4.16 Managing dnsmasq’s DNS Cache | 119

dnsmasq: using local addresses only for domain alrac.net
dnsmasq: cache size 150, 0/0 cache insertions re-used unexpired cache entries.
dnsmasq: Host Address Flags Expires
dnsmasq: stinkpad.alrac.net 192.168.1.102 4FRI H
dnsmasq: localhost 127.0.0.1 4F I H
dnsmasq: xena.alrac.net 192.168.1.10 4FRI H
dnsmasq: pyramid.alrac.net 192.168.1.50 4FRI H
dnsmasq: stinkpad 192.168.1.102 4F I H
dnsmasq: xena 192.168.1.10 4F I H
dnsmasq: localhost.alrac.net 127.0.0.1 4FRI H
dnsmasq: pyramid 192.168.1.50 4F I H

This is a snippet from a populated cache:

dnsmasq: cache size 150, 0/178 cache insertions re-used unexpired cache entries.
dnsmasq: Host Address Flags Expires
dnsmasq: stinkpad.alrac.net 192.168.1.102 4FRI H
dnsmasq: localhost 127.0.0.1 4F I H
dnsmasq: i.cnn.net 64.236.16.137 4F Wed Jan 24 15:36:42
2007
dnsmasq: i.cnn.net 64.236.16.138 4F Wed Jan 24 15:36:42
2007
dnsmasq: bratgrrl.com 67.43.0.135 4F Wed Jan 24 17:45:49
2007
dnsmasq: a.tribalfusion.com 204.11.109.63 4F Wed Jan 24 15:29:08
2007
dnsmasq: a.tribalfusion.com 204.11.109.64 4F Wed Jan 24 15:29:08
2007
dnsmasq: ad.3ad.doubleclick.net 216.73.87.52 4F Wed Jan 24 15:27:29
2007
dnsmasq: ads.cnn.com 64.236.22.103 4F Wed Jan 24 16:21:41
2007

Table 4-1 shows what the flags mean.

• Both F and R may be set for names from DHCP or /etc/hosts.

Table 4-1. dnsmasq cache flags and their meanings

Flag Meaning

4 IPv4 address

6 IPv6 address

C CNAME

F Forward (name ➝ address) mapping

R Reverse (address ➝ name) mapping

I Immortal (no expiry time)

D Originates from DHCP

N Negative (name known not to have address)

X No such domain (name known not to exist)

H Originates from /etc/hosts

120 | Chapter 4: Building a Linux Wireless Access Point

See Also
• man 8 dnsmasq contains a wealth of helpful information about all the available

command-line options, many of which are also dnsmasq.conf options

• dnsmasq.conf is also a great help resource

• dnsmasq home page (http://www.thekelleys.org.uk/dnsmasq/doc.html) is where
you’ll find mailing list archives and excellent help documents

• Chapter 24, “Managing Name Resolution,” in Linux Cookbook, by Carla Schroder
(O’Reilly)

4.17 Managing Windows’ DNS Caches

Problem
You know that Windows 2000, XP, and 2003 Server include DNS resolver caches by
default. Which is a big surprise to most Windows users, who sometimes get stuck
with stale data and don’t understand why some addresses are not resolving correctly.
Most of the time you don’t even have to think about it, but when you’re making
changes, you want to be sure that your clients are receiving fresh DNS information.
How do you handle this?

Solution
On Windows clients, open a DOS window and run this command to see the con-
tents of the cache:

C:\> ipconfig /displaydns | more

This command clears the cache:

C:\> ipconfig /flushdns

The default TTL is 86,400 seconds, or one day, for positive responses. Answers to
negative queries are stored for 300 seconds (5 minutes). You may change these val-
ues, or disable caching entirely by editing the Windows Registry. On Windows 2000,
open the Registry Editor and change the TTL for positive entries by creating or modi-
fying the DWORD value in:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Dnscache\Parameters
DWORD: MaxCacheEntryTtlLimit
Value: 14400

14,400 seconds is four hours, which is typical for most ISPs these days. 0 disables all
caching. Be sure you enter your values as Decimal Base, not Hexadecimal Base.

Disable negative answers with this key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Dnscache\Parameters
DWORD: NegativeCacheTime
Value: 0

4.18 Updating the Time at Boot | 121

On Windows XP and 2003, change the TTL for positive entries with a different
DWORD:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\ Services\Dnscache\Parameters
DWORD: MaxCacheTtl
Value: 14400

Turn off negative caching with this one:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Dnscache\Parameters
DWORD: MaxNegativeCacheTtl
Value: 0

You may disable caching entirely by setting both values to zero. Reboot, as always, to
activate the changes.

Discussion
Linux clients do not activate their own DNS caches by default; you have to set these
up on purpose. Client-side caching is a nice thing that speeds up lookups. All those
caches cause problems only when DNS is changed and the caches get stale.

See Also
• The documentation for your particular flavors of Windows; a quick Google

search on “windows dns cache” should get you all the information you need

4.18 Updating the Time at Boot

Problem
You have one of those newfangled routerboards that doesn’t have a CMOS battery.
BIOS settings are written to nonvolatile RAM, but the time and date are lost with
every power-cycle. How do you make it set the time correctly at boot?

Solution
With good ole ntpdate. First, edit /etc/default/ntp-servers so that it points to pool.ntp.org:

/sbin/rw
nano /etc/default/ntp-servers
NTPSERVERS="pool.ntp.org"

Then create a startup link so it will run at boot:

ln /etc/init.d/ntpdate /etc/rc2.d/S90ntpdate

Now every time you boot up your routerboard, it will set the correct time. You can
verify this with the date command:

date
Mon Jan 29 20:52:50 UTC 2007

122 | Chapter 4: Building a Linux Wireless Access Point

Discussion
If you are familiar with the NTP documentation, you’re aware that the fine NTP
folks keep trying to get rid of ntpdate and replace it with the nptd -g command. How-
ever, ntpdate still works best for large time corrections.

See Also
• man 1 ntpdate

• Chapter 19, “Keeping Time with NTP,” in Linux Cookbook, by Carla Schroder
(O’Reilly)

123

Chapter 5 CHAPTER 5

Building a VoIP Server with
Asterisk

5.0 Introduction
This chapter introduces Asterisk, the Private Branch eXchange (PBX) implemented
entirely in software. Asterisk is the hot new darling of the telephony set; it’s both a
replacement for existing outmoded and overpriced PBX systems, and it’s a doorway
to the future. Our current telephone system (at least in the U.S.) is excellent because
it’s pretty much the same technology invented by Mr. Bell. It has been extensively
refined over the years, but hasn’t seen much in the way of invention. We won’t see
videophones, video conferencing, or integration with all manner of software and por-
table devices on the old-fashioned public switched telephone network (PSTN).
That’s coming with Voice-over-Internet-Protocol (VoIP), packet-switched networks,
and broadband Internet.

Asterisk is a PBX and a powerful IP telephony server. Asterisk supports multiple tele-
phony protocols (including SIP, IAX, and H.323), integrates the PSTN with VoIP,
and allows you to mix-and-match services and devices (analog, digital, wired, wire-
less, IP). You may use it as little more than a glorified answering machine, or as a
local PBX that is integrated with your existing telephone service, or as part of a wide-
area IP telephone network that spans continents. Anywhere the Internet goes,
Asterisk goes.

This chapter covers installing and configuring Asterisk 1.4. We’ll set up basic
business PBX functions: voicemail, a digital receptionist, Internet call services, inte-
gration with analog phone service, user management, conferencing, and customizing
hold music and voice prompts. The example configurations in this chapter are as
stripped-down and simple as possible. They are fully functional, but needless com-
plexities are left out. Don’t let the other geeks pressure you into thinking you have to
over-complicate your Asterisk configurations because that is the path to instability
and madness. Figuring out dialplan logic is the hard part; once you have that down,
you’ll be able to easily expand on the recipes in this chapter to accommodate more
users and functions.

124 | Chapter 5: Building a VoIP Server with Asterisk

Asterisk is free in two ways: free of cost and licensed under the GPL. Don’t let the
word free steer you in the wrong direction. VoIP call processing requires a substan-
tial amount of processing power, so don’t look to Asterisk as a way to keep old 486s
in service. You’ll want good-quality hardware and network bandwidth sufficient to
handle your workload. How much capacity do you need? There are so many variables
involved in calculating this that I’m going to dodge the question entirely, and refer you
to the Asterisk support page (http://www.asterisk.org/support) and the Voip-info.org
Wiki (http://voip-info.org/wiki/). These are the mother lodes of Asterisk help and
information.

Test-lab Hardware and Software
Asterisk’s flexibility is its strength and main drawback—there are so many options
that you can easily get lost. You can put together a three-node test lab for practically
no money, if you have some old PCs lying around. We’ll build one in this chapter
consisting of an Asterisk server running on Linux, and two client PCs running
software IP phones (softphones). You’ll need a switch to connect the three PCs,
sound cards, and sets of speakers and microphones or headsets. If you get USB head-
sets you won’t need sound cards, speakers, or microphones.

You’ll need a broadband Internet connection to place calls over the Internet. VoIP
calls consume 30–90 Kbps each way. T1/E1 gives the best call quality. DSL is a
decent option, especially if you have a dedicated DSL line just for VoIP. Even better
is symmetric DSL instead of the usual ADSL, if you can get it. Cable Internet also
works well, if you have a good service provider, and can get adequate upstream
bandwidth.

Production Hardware and Software
Asterisk was designed to take advantage of all the cheap power we get in x86 hard-
ware. Asterisk is CPU and memory-intensive, so don’t skimp on these. The alternative
is much-more-expensive specialized digital sound-processing hardware, so if you find
yourself wishing for interface cards that take some of the load off your system’s CPU,
just remember that they cost more than a PC upgrade.

The types of IP phones you choose can either make your life easy or make it heck
because they have a big effect on call quality. Hardware IP phones (hardphones) have
Ethernet ports and plug directly into your network. Good ones start around $100,
and offer all manner of options: speakerphones, headset ports, wireless, and multi-
ple lines. They smooth out echo and jitter, and look and operate like normal office
phones.

Headsets combined with softphones (software phones that run on a PC) can save
some money because a lot of softphones are free of cost, or less expensive than hard-
phones. They also save on Ethernet ports and wiring. You’ll have the option of
wired or wireless headsets, and many different softphones to choose from. You’ll

5.0 Introduction | 125

want to test them first because there are considerable differences in call quality and
usability. A common flaw in many of them is a tiny, cluttered, nonresizable inter-
face. Another factor to watch out for is putting them on underpowered or
overworked PCs—it takes a fair number of CPU cycles to process VoIP calls, so the
computer must be able to handle call-processing and whatever other jobs the user
needs to do.

If you have analog phones you can’t bear to part with, you can get individual analog
telephone adapters (ATA), or PCI adapters that install in the Asterisk server, like the
Digium, Sangoma, or Rhino PCI analog interface cards. You can even get channel
banks to handle large numbers of analog phones. There are a wealth of standalone
multiport analog adapters with all manner of bells and whistles. These are nice and
easy, but watch out for high prices and protocol support. Many of them do not sup-
port Inter-Asterisk Exchange (IAX), which is a useful and efficient native Asterisk
protocol. Everything should support Session Initiation Protocol (SIP), which has
become the most popular VoIP protocol.

Visit the Asterisk and AstLinux user list archives to get information on specific
brands and models.

Call Quality
The debate over which type of IP phone to use rages on endlessly, but the reality is
there are more differences between brands than between types of phones. In general,
hardphones sound and perform the best. Good softphones coupled with decent-
quality sound gear perform well. Analog phones require adapters, and have problems
with echo. Analog adapter cards should have hardware echo cancellation, and
Digium also offers a software High Performance Echo Canceller (HPEC). This is free
to Digium customers, and $10 per channel for users of other PCI analog adapters.

Latency is the enemy of VoIP, so you need to ensure that your LAN is squeaky-clean:
no hubs, because collision domains kill call quality, and are so last-millennium
anyway; no antique cabling, incorrect cabling, flaky NICs, or virus-infected hosts
clogging the wires with mass quantities of contagion.

You cannot control what happens when your VoIP bits leave your network. Talk to
your ISP to see what it can do to help with your VoIP. It might even offer a service-
level agreement with guarantees.

Digium, Asterisk, and the Zapata Telephony Project
Mark Spencer, the inventor of Asterisk, wanted an affordable, flexible PBX for his
small business. There was no such thing at the time, so he invented his own. Mr.
Spencer sat down and started coding, and implemented PBX functionality in soft-
ware that runs on Linux on ordinary x86 hardware. But it still couldn’t do all that
much, because Asterisk had no way to interface with ordinary telephony hardware.

126 | Chapter 5: Building a VoIP Server with Asterisk

That gap was filled when Jim Dixon of the Zapata Telephony Project invented an
interface card to do just that. That first card was called Tormenta, or hurricane.

Asterisk and Zapata came together like chocolate and peanut butter and became
Digium, Inc. The Tormenta card evolved into the Digium line of T1/E1 cards.
Digium also supplies analog adapters for analog telephone lines and analog
telephones.

Digium is not the only supplier of interface cards and adapters; a brief Google search
will find all sorts of VoIP hardware vendors.

There are recipes in this chapter for recording your own voice prompts. Digium will
also sell you professionally recorded custom voice prompts in English, French, or
Spanish. English and Spanish voice prompts are recorded by Allison Smith. You can
hear her voice in the sound files that come with Asterisk. French and English record-
ings are made by June Wallack.

Asterisk Implementations
AsteriskNOW (http://www.asterisknow.org/) is a software appliance that includes
Asterisk, an rPath Linux-based operating system, and excellent web-based adminis-
tration interfaces for both Asterisk and rPath Linux. It is freely available from
Digium.

Asterisk Business and Enterprise Editions (http://www.digium.com/) are the commer-
cially-supported versions available from Digium. These are closer to turnkey than the
free edition, and Digium’s support is good.

Trixbox (http://www.trixbox.org) is another popular Asterix bundle. This comes with
everything: the CentOS operating system, a graphical management console, MySQL
database backend, SugarCRM, HUDLite, and many more nicely integrated goodies.
This is a large package—you’ll need a couple of gigabytes of drive space just for the
installation. The latest release has a modular installer that lets you choose which bits
you want to install.

AstLinux (http://www.astlinux.org/) is a specialized Linux distribution that contains
the operating system and Asterisk in about 40 MB, which makes it a perfect candi-
date to run on single-board computers like Soekris, PC Engines WRAP boards, and
Gumstix Way Small Computers. It also runs fine on small form-factor boxes like Via,
and ordinary PC hardware.

FreePBX (http://www.freepbx.org/) is a web-based graphical management interface to
Asterisk. It used to be called AMP (Asterisk Management Portal), and is included in
Trixbox.

The Asterisk Appliance Developer’s Kit (http://www.digium.com/en/products/hardware/
aadk.php) includes application development tools and a specialized hardware appliance

5.1 Installing Asterisk from Source Code | 127

for developing customized embedded PBXs. It’s a complete package that includes an IP
phone, all manner of documentation and training, and even Asterisk memorabilia.
This is targeted at resellers, and businesses that have the in-house talent to develop a
customized appliance.

Using Asterisk
You can have a test lab up and running in a couple of hours. Asterisk has a rather
steep learning curve, so you’ll pick it up more quickly if you have both telephony and
Linux networking experience. But don’t let a lack of experience stop you. Make a lit-
tle test lab and learn your way around it before trying to build a production system.
It’s fun, it’s endlessly flexible, and having control over your own systems is always
good.

While you can compile and run Asterisk on any operating system (or try to), Asterisk
works best on Linux. Asterisk is such a fast-moving target that by the time you read this
it might run perfectly on all operating systems, so check the current documentation.

AsteriskNOW is an excellent Asterisk implementation that claims it will have you up
and running in 30 minutes. See Recipes 5.22 and 5.23 near the end of this chapter for
a good introduction to using AsteriskNOW.

See Also
• The History of Zapata Telephony and How It Relates to the Asterisk PBX:

http://www.asteriskdocs.org/modules/tinycontent/index.php?id=10

5.1 Installing Asterisk from Source Code

Problem
You’re not sure what the best way to install Asterisk is—should you install from your
distribution’s packages, or do a source install?

Solution
Currently, there are packages only for Debian, and they are behind the current sta-
ble release. In this chapter, we’re going to install Asterisk on CentOS 5.0. CentOS is
a Red Hat Enterprise Linux clone. It’s very stable, and Asterisk runs well on it.

See Recipe 5.2 for apt-getting your way to Asterisk on Debian.

Hardware requirements are the minimum suggested for a test system. Asterisk needs
a lot of horsepower. Your Asterisk server must be a dedicated server—don’t try to
run other services on it.

128 | Chapter 5: Building a VoIP Server with Asterisk

Hardware requirements:

• A PC with at least a 500 MHz CPU

• 256 MB RAM

• CD drive

• 10 GB hard drive

• Sound card and speakers, or a USB headset

• An Internet connection for downloading additional sound files during the instal-
lation (optional)

Software requirements:

The standard Linux build environment, which includes gcc, automake, glibc-devel,
glibc-headers, glibc-kernheaders, binutils, doxygen, and kernel-devel. Grab all of them
at once by installing the Development Tools package group:

yum groupinstall "Development Tools"

Then, install these packages to satisfy Asterisk dependencies:

yum install ncurses ncurses-devel openssl openssl-devel zlib zlib-devel newt newt-
devel

Now, download the current releases of the three main source tarballs from Asterisk.org
(http://www.asterisk.org/downloads) into the /usr/src directory. This example uses the
1.4.4 release:

[root@asterisk1 src]# wget http://ftp.digium.com/pub/asterisk/releases/asterisk-1.4.
4.tar.gz \
http://ftp.digium.com/pub/zaptel/releases/zaptel-1.4.3.tar.gz \
http://ftp.digium.com/pub/libpri/releases/libpri-1.4.0.tar.gz

Unpack them:

[root@asterisk1 src]# tar zxvf asterisk-1.4.4.tar.gz
[root@asterisk1 src]# tar zxvf zaptel-1.4.3.tar.gz
[root@asterisk1 src]# tar zxvf libpri-1.4.0.tar.gz

As always, look in each source directory for READMEs, installation notes, and other
important information, and review them before starting installation.

The three Asterisk packages must be installed in order. First, enter the Zaptel direc-
tory, and run these commands:

cd zaptel-1.4.3
make clean
./configure
make
make install

Then, change to the libpri directory and install it:

cd ../libpri-1.4.0
make clean

5.1 Installing Asterisk from Source Code | 129

make
install

Now comes the big fun—installing Asterisk:

cd ../asterisk-1.4.4
make clean
./configure
make menuselect

make menuselect is a good place to spend a bit of time reviewing your options. This is
where you customize Asterisk, unlike previous versions that came in monolithic blobs:

 Asterisk Module Selection

 Press 'h' for help.
---> 1. Applications
 2. Call Detail Recording
 3. Channel Drivers
 4. Codec Translators
 5. Format Interpreters
 6. Dialplan Functions
 7. PBX Modules
 8. Resource Modules
 9. Voicemail Build Options
 10. Compiler Flags
 11. Module Embedding
 12. Core Sound Packages
 13. Music On Hold File Packages
 14. Extras Sound Packages

Navigate with these commands:

scroll => up/down arrows
(de)select => Enter
select all => F8
deselect all => F7
back => left arrow
quit => q
save and quit => x

In the Module Selection menu, XXX means dependencies have not been met.
menuselect tells you what you need to satisfy missing dependencies, as this example
shows:

 Asterisk Module Selection

 Press 'h' for help.
 [*] 1. codec_adpcm
 [*] 2. codec_alaw
 [*] 3. codec_a_mu
 [*] 4. codec_g726
 [*] 5. codec_gsm

130 | Chapter 5: Building a VoIP Server with Asterisk

 [*] 6. codec_ilbc
 [*] 7. codec_lpc10
 XXX 8. codec_speex
 [*] 9. codec_ulaw
 [*] 10. codec_zap

Speex Coder/Decoder
Depends on: speex

In this example, I need to install the speex-devel package to satisfy the dependency.
(Speex is great little patent-free compression format designed especially for voice
communications.) These must be installed before Asterisk. To save time, go through
all the menuselect options and note what packages, if any, you need to install. You
want the -devel packages, which in this example is speex-devel. Install them all at
once, then rerun make clean, ./configure, and make menuselect.

menuselect is a bit overwhelming, so if you don’t understand all the options, accept
the defaults. You can always redo it later.

Then run these commands:

make
make install
make config
make progdocs

You’re all finished, and ready to start learning how to run your Asterisk server.

Discussion
If you are used to Asterisk 1.2, please note that the installation procedure is differ-
ent. Now there are ./configure options for the Zaptel drivers and Asterisk, which you
can view with ./configure --help.

Soundfiles are installed differently than in 1.2. The Asterisk 1.4 tarball package
includes English prompts in GSM format and the FreePlay MOH (Music-on-Hold)
files in WAVE format. You may select more from menuselect. You might elect to
install only the defaults, then add others later because some of the tarballs are huge.
For example, asterisk-extra-sounds-en-wav-1.4.1.tar.gz is 144 MB.

It might seem unnecessary to run make clean on a new installation, but there are
often the odd object files and other random leftover bits floating around. make clean
ensures that you start with a clean slate.

Asterisk helpfully makes it clear when an installation command has succeeded, and
tells you what to do next:

 +--------- Asterisk Build Complete ---------+
 + Asterisk has successfully been built, and +
 + can be installed by running: +
 + +
 + make install +
 +---+

5.2 Installing Asterisk on Debian | 131

It is important to read the READMEs and other informational files in the source trees.

Zaptel drivers control the Digium interface cards, so you might think you don’t need
to bother with the drivers if you’re not using Digium hardware. But you still need a
timing device for functions like music on hold and conferencing. The ztdummy mod-
ule provides this. In 2.6 kernels, it interacts directly with the system’s hardware
clock. In 2.4 kernels, it took its timing from the usb-uhci kernel module. Documents
that refer to the usb-uhci module are outdated. You should be running Asterisk on a
Linux distribution with a 2.6 kernel in any case. See the README in the Zaptel
source directory to see which modules go with which hardware.

To see a list of the package groups on CentOS, use Yum:

$ yum grouplist

This command displays a list of packages in a group:

$ yum groupinfo "Development Tools"

See Also
• Asterisk Documentation Project: http://www.asteriskdocs.org/modules/news/

• Asterisk Support: http://www.asterisk.org/support

• Chapter 2, “Installing and Managing Software on RPM-Based Systems,” in Linux
Cookbook, by Carla Schroder (O’Reilly)

5.2 Installing Asterisk on Debian

Problem
You want to run your Asterisk server on Debian. Can you use apt-get? What are the
package names?

Solution
Asterisk installs nicely on Debian with apt-get, with one exception: you still need to
compile the Zaptel modules manually. And even that is easy, thanks to the module-
assistant utility. First, install Asterisk with these commands:

apt-get install asterisk asterisk-sounds-main asterisk-sounds-extra asterisk-config
asterisk-doc zaptel

Then, you will have to compile the Zaptel drivers from sources. The easy way is to
use module-assistant. This is a slick little program that pulls in everything you need
to compile and build kernel modules. Run these commands to install module-
assistant, and then build and install the Zaptel drivers:

apt-get install module-assistant
module-assistant prepare
module-assistant auto-install zaptel

132 | Chapter 5: Building a VoIP Server with Asterisk

This takes a short time if you already have a build environment on your PC; longer if
module-assistant needs to download a lot of packages. When it’s finished, run this
command:

update-modules

The last step is to configure Asterisk to start at boot, with the update-rc.d command:

update-rc.d asterisk start 40 2 3 4 5 . stop 60 0 1 6 .

And that’s it. Now you can start learning your way around your Asterisk server.

Discussion
What are these Zaptel thingies for, anyway? Zaptel drivers control the Digium inter-
face cards, so you might think you don’t need to bother with the drivers if you’re not
using Digium hardware. But, you still need a timing device for functions like music
on hold and conferencing.

The ztdummy module provides this. In 2.6 kernels, it interacts directly with the sys-
tem’s hardware clock. In 2.4 kernels, it took its timing from the usb-uhci kernel mod-
ule. Documents that refer to the usb-uhci module are outdated.

Debian packages are usually a bit behind the Asterisk releases, especially in Stable.
To get newer Asterisk releases, you’ll want Testing or Unstable.

Or, you can build Asterisk from the official Asterisk tarballs on Debian just like any
other distribution.

See Also
• Asterisk Documentation Project: http://www.asteriskdocs.org/modules/news/

• Asterisk Support: http://www.asterisk.org/support

• man 8 module-assistant

• Chapter 2, “Installing and Managing Software on Debian-Based Systems,” in
Linux Cookbook, by Carla Schroder (O’Reilly)

• Chapter 7, “Starting and Stopping Linux,” in Linux Cookbook

5.3 Starting and Stopping Asterisk

Problem
What is the best way to stop and start Asterisk? Does it need to be restarted when
you change configuration files, or can you reload changes without disrupting service?

5.3 Starting and Stopping Asterisk | 133

Solution
There are several ways to stop and start Asterisk, depending on what you want to do.
You’ll have two different command interfaces to use: the Linux command line, and
the Asterisk command console. You should use the Asterisk console to control Asterisk.

After installing Asterisk, first reboot the system, then check to see if it is running with ps:

$ ps ax | grep asterisk

It should be, if you ran the make config command during installation, because this
creates the files necessary to start up automatically at boot.

Then, all you do is attach to the running Asterisk server and open the console with
this command:

[root@asterisk1 ~]# asterisk -rvvv
Asterisk 1.4.4, Copyright (C) 1999 - 2007 Digium, Inc. and others.
Created by Mark Spencer <markster@digium.com>
Asterisk comes with ABSOLUTELY NO WARRANTY; type 'show warranty' for details.
This is free software, with components licensed under the GNU General Public
License version 2 and other licenses; you are welcome to redistribute it under
certain conditions. Type 'show license' for details.
===
 == Parsing '/etc/asterisk/asterisk.conf': Found
 == Parsing '/etc/asterisk/extconfig.conf': Found
Connected to Asterisk 1.4.4 currently running on asterisk1 (pid = 31461)
Verbosity was 0 and is now 3

You can exit from the Asterisk console and return to the Linux Bash shell with the
quit or exit commands.

Type help to see a list of Asterisk commands. The list is probably too long for your
screen, so page up and down by holding down the Shift key and pressing Page Up/Page
Down.

Type help [commandname] to get information on specific commands:

asterisk1*CLI> help stop gracefully
Usage: stop gracefully
 Causes Asterisk to not accept new calls, and exit when all
 active calls have terminated normally.

Asterisk installs with the usual startup files, and is controlled from the Linux com-
mand line with these commands:

/etc/init.d/asterisk start
/etc/init.d/asterisk restart
/etc/init.d/asterisk stop
/etc/init.d/asterisk status

134 | Chapter 5: Building a VoIP Server with Asterisk

These are all right to use in testing, but they disrupt service so they’re not appropri-
ate for a production system. Use the Asterisk console commands to reload changes
in the following configuration files without interrupting active calls:

sip.conf, sip_notify.conf
reload chan_sip.so

iax.conf, iaxprov.conf
reload chan_iax2.so

extensions.conf
dialplan reload

dnsmgr.conf
dnsmgr reload

extensions.ael
ael reload

Reload all configuration files
reload

Changes in zaptel.conf are reloaded with this command:

!/sbin/ztcfg

The exclamation point is used to execute external Linux commands from the Aster-
isk console. You can also open a Linux shell inside the Asterisk console:

*CLI> !
[root@asterisk1 ~]#

Type exit to return to Asterisk.

There are several ways to shutdown Asterisk:

restart gracefully
Stop accepting new calls and cold-restart when all active calls have ended.

restart now
Restart Asterisk immediately, callers be danged.

restart when convenient
Restart Asterisk when there is no activity.

stop gracefully
Stop accepting new calls and cold-restart when all active calls have ended.

stop now
Shut down Asterisk immediately.

stop when convenient
Stop Asterisk when there is no activity.

abort halt
Change your mind and cancel a shutdown.

5.4 Testing the Asterisk Server | 135

Discussion
Making and loading configuration changes on a running server with a minimum of
disruption is one of Asterisk’s nicer features, as cutting off callers in mid-stream
won’t win you any friends. However, on a busy system, you might find yourself wait-
ing a long time for a graceful shutdown, so stop now is a useful option.

If you don’t have startup files for Asterisk, or don’t want it to start at boot, use this
command to start up the Asterisk server:

asterisk -cvvv

See Also
• Asterisk Documentation Project: http://www.asteriskdocs.org/modules/news/

• Asterisk Support: http://www.asterisk.org/support

5.4 Testing the Asterisk Server

Problem
You’re ready to start using your Asterisk server and learning your way around it.
Where is a good starting point?

Solution
Start at the Asterisk console on the server (previous recipe). Don’t change any config-
uration files yet. If you have a headset or microphone and speakers, you can test all
functions. With a USB headset, you won’t even need a sound card.

First, listen to the introductory message:

asterisk1*CLI> dial 1000

This will walk you through the basic calling features: calling a remote server at
Digium, performing an echo test, and recording and retrieving voicemail. Use the
dial, console answer, and console hangup commands to simulate using a telephone.

Typing help in the Asterisk console displays all the Asterisk commands.

Discussion
Time spent practicing on the Asterisk console is time well-spent because you can run
an Asterisk server completely from the console and never touch a configuration file.
This is not practical, but testing new configurations on the command line might save
a bit of time and find errors before committing them to files.

136 | Chapter 5: Building a VoIP Server with Asterisk

See Also
• Asterisk Documentation Project: http://www.asteriskdocs.org/modules/news/

• Asterisk Support: http://www.asterisk.org/support

5.5 Adding Phone Extensions to Asterisk and Making
Calls

Problem
Playing around on the Asterisk server is fun, but you’re ready to set up some user
accounts and make real phone calls. How do you set this up?

Solution
First, we’ll set up some local user accounts including voicemail, and test them on the
server. (In Recipe 5.6, we’ll set up some softphones for some real calling.) You’ll be
editing these files on the Asterisk server:

• /etc/asterisk/sip.conf

• /etc/asterisk/extensions.conf

• /etc/asterisk/voicemail.conf

The default files are huge and full of helpful comments, but rather a chore to edit, so
let’s move them out of the way:

mv sip.conf sip.conf.old
mv extensions.conf extensions.conf.old
mv voicemail.conf voicemail.conf.old

We’ll create three users: Ellen Ripley, Sarah Connor, and Dutch Schaeffer. Create a
new sip.conf with these entries. Note that semicolons are used to comment out lines,
not hash marks:

;;/etc/asterisk/sip.conf;;
[general]
context=default
port=5060
bindaddr=0.0.0.0
disallow=all
allow=gsm
allow=ulaw
allow=alaw

[ellenr]
;Ellen Ripley
type=friend
username=ellenr

5.5 Adding Phone Extensions to Asterisk and Making Calls | 137

secret=4545
host=dynamic
context=local-users

[sarahc]
;Sarah Connor
type=friend
username=sarahc
secret=5656
host=dynamic
context=local-users

[dutchs]
;Dutch Schaeffer
type=friend
username=dutchs
secret=6767
host=dynamic
context=local-users

Then, create a new extensions.conf with these entries:

;;/etc/asterisk/extensions.conf;;
[general]
autofallthrough=yes
clearglobalvars=yes

[globals]
CONSOLE=Console/dsp

[default]
;no entries yet

[local-users]
exten => 250,1,Dial(SIP/ellenr,10)
exten => 250,2,VoiceMail(250@local-vm-users,u)

exten => 251,1,Dial(SIP/sarahc,10)
exten => 251,2,VoiceMail(251@local-vm-users,u)

exten => 252,1,Dial(SIP/dutchs,10)
exten => 252,2,VoiceMail(252@local-vm-users,u)

;Internal users can call each other directly with their 3-digit extensions:
exten => _2XX,1,Dial(SIP/${EXTEN},30)
exten => _2XX,n,Voicemail(${EXTEN})
exten => _2XX,n,Hangup

;retrieve messages by dialing ext. 550
exten => 550,1,VoiceMailMain(@local-vm-users)

Finally, set up voicemail boxes in voicemail.conf:

;;/etc/asterisk/voicemail.conf;;
[general]

138 | Chapter 5: Building a VoIP Server with Asterisk

format=wav49
skipms=3000
maxsilence=10
silencethreshold=128
maxlogins=3

[local-vm-users]
;mailbox number, password, username
250 => 1234,Ellen Ripley
251 => 3456,Sarah Connor
252 => 4567,Dutch Schaeffer

Load the new configurations, then make some calls:

asterisk1*CLI> reload
asterisk1*CLI> dial 250@local-vm-users
asterisk1*CLI> console hangup

You’ll see a lot of console output between these commands, and hear voice prompts
that tell you what to do. Leave some voicemail messages, then retrieve them like this
example for Ellen, who is at extension 250. You will be prompted for the mailbox
number and password:

asterisk1*CLI> dial 550
asterisk1*CLI> dial 250
asterisk1*CLI> dial 1234
asterisk1*CLI> console hangup

Follow the prompts to listen to the messages. Remember, you have to use the dial
command every time you need to enter some numbers. When everything works,
you’re ready to install and use some softphones.

Discussion
Type help at the Asterisk CLI to see the current command set. The READMEs,
changes, and UPGRADE.txt files in the source tarballs are full of useful information,
and will tell you what has changed between releases.

A verbosity of 3 (asterisk -rvvv) is just right for monitoring call activities on the
server. If there are any errors, you can see them live. Console output and /var/log/
asterisk/messages are the same.

sip.conf

This file defines all the SIP channels you’ll be using. This is where you set up inter-
nal users and external trunks. It also contains options for selecting hold music, NAT
firewall tweaks, codecs, jitter buffering, and proxies.

The [general] section includes global constants.

port=5060 is the standard SIP port. Don’t change this.

5.5 Adding Phone Extensions to Asterisk and Making Calls | 139

bindaddr=0.0.0.0 means listen on all interfaces. You may change this if your Aster-
isk server has more than one network interface.

Codecs (coder/decoders) convert analog signals to digital formats. In sip.conf and
iax.conf, you must first deny all codecs with disallow=all, then specify the ones you
wish to allow in order of preference. Which ones do you allow? This depends on
what people calling your network use, what your service provider requires (if you
have one), and your own requirements for your network. Any incoming call that uses
a codec your server does not support will be transcoded into a format that your
server does support. This incurs a CPU hit, and might cause some voice-quality
problems. It’s most efficient to use the same codec from endpoint to endpoint,
though that may not always be possible.

This list shows the most commonly used Asterisk-supported voice codecs and the
correct configuration file syntax:

Codec name = configuration file entry
G.711u ulaw = ulaw
G.711a alaw = alaw
G.726 = g726
G.729 = g729
GSM = gsm
iLBC = ilbc
LPC10 = lpc10
Speex = speex

VoIP codecs are compromises between bandwidth and CPU usage. Compressed
codecs require less bandwidth, but at a cost of more CPU cycles. Less compression =
less CPU and more bandwidth:

G.711u/a
G.711 ulaw is used in the U.S. and Japan, while G.711 alaw is used the rest of
the world. It is a high-quality companded codec; this is the native language of
the modern digital telephone network, and is almost universally supported in
VoIP networks and devices. A T1 trunk carries 24 digital PCM (Pulse Code Mod-
ulation) channels, and the European E1 standard carries 30 channels. It requires
less CPU power, but consumes more bandwidth. It runs at a fixed bitrate of 64
Kbps per call each way, plus around 20 Kbps for packet headers. G.711 has an
open source license, and delivers the best voice quality and least latency.

G.726
G.726 runs at several different bitrates: 16, 24, or 32, and don’t forget an addi-
tional 20 Kbps or so for headers. 32 Kbps is the most common, and the only one
supported by Asterisk. It’s easy on CPU usage, has good voice quality, and has
an open source license. G.726 is becoming more popular and is supported on
most VoIP devices.

140 | Chapter 5: Building a VoIP Server with Asterisk

G.729
A high-quality compressed proprietary codec that is easy on bandwidth, with a
bitrate of 8 Kbps. (Add about 20 Kbps for headers.) The price for this is more
CPU cycles. For example, AstLinux on a Soekris 48xx board can handle about
eight concurrent G.711 calls, but only two G.729 calls. Plus, there are patent
encumbrances—using G.729 on Asterisk requires a licensing fee of $10 per
channel, which you can purchase from Digium.

GSM
GSM stands for Global System for Mobile communications, which is a cellular
phone system standard. It includes a voice codec, and that is the bit that Aster-
isk uses. It is proprietary, but royalty-free, so anyone can use it. It has a bitrate of
13 Kbps, and uses about 30 Kbps total. GSM delivers acceptable voice quality.
(GSM is also the file format of the free voice prompts included with Asterisk.)
There are three flavors of the GSM codec. The royalty-free edition is also known
as GSM Full-Rate. There are two newer versions that are patent-encumbered:
Enhanced Full Rate (EFR) and Half Rate (HR).

iLBC
iLBC is designed for low-bandwidth high-packet loss networks. It has better
voice quality than G.729 for about the same computational price, and it uses a
total of about 20–30 Kbps per call each way. Its special strength is graceful deg-
radation over poor-quality networks, so even with packet losses as high as 10
percent, it still sounds good. It is free of cost, and comes with a liberal license
that allows modifications.

LPC-10
This delivers low but clear voice quality, or, as the sample iax.conf files says
“disallow=lpc10; Icky sound quality...Mr. Roboto.” Developed by the U.S.
Department of Defense, its main virtue is very low bandwidth and CPU require-
ments; it uses as little as 2.5 Kbps per call, and you can stuff up to three times as
many calls over the wires as you can with GSM. So, don’t forget that Asterisk
supports it—you just may find yourself in a situation where it will be useful.
(OK, so most desert islands don’t have Internet. But you never know.)

Speex
Speex is a high-quality, BSD-style licensed, dynamically variable bitrate codec
that was developed as an alternative to restrictive patent-encumbered codecs. It
is very flexible, and can be manually fine-tuned in /etc/asterisk/codecs.conf. Its
one drawback is it’s the most computationally expensive of the codecs. It has an
active developer and user community, and is finding widespread acceptance, so
it’s bound to continue to improve.

The default sip.conf uses phone names instead of people names for the human user
extensions. I prefer to name them for the users. There are three types of users: Peers,
Users, and Friends. Peers and Users have different sets of privileges, and Friends get
all privileges. See the default extensions.conf for details.

5.5 Adding Phone Extensions to Asterisk and Making Calls | 141

“Username” and “secret” are the login and password that users will use in their soft-
phone configurations to register the phone with the server.

Using host=dynamic tells the server that the phone needs to be registered. This hap-
pens every time you start or restart your phone. Then, a timeout is negotiated each
time a device registers, usually 3,600 seconds (60 minutes). The device must reregis-
ter, or Asterisk removes the registry entry.

You need to name a default context for each user; this tells Asterisk where to start in
the dialplan to process calls for each user. This is a nice mechanism for providing dif-
ferent sets of privileges for different groups of users.

Dialplans

extensions.conf is the heart of your Asterisk server because it contains your dialplan.
A dialplan has four elements—extensions, contexts, priorities, and applications:

Extensions
The word extensions is a bit unfortunate because it sounds like plain old num-
bered telephone extensions. But Asterisk extensions are sturdy little workhorses
that do all kinds of things. Extension syntax looks like this:

exten => name,priority,application()

Names can be words or numbers. Usually, multiple extensions are required to
handle a single call; these are called contexts.

Contexts
Named groups of extensions are called contexts. Each context is a separate unit,
and does not interact with other contexts unless you configure it to do so, with
the include directive.

Priorities
You must always specify a number one priority; this is the first command Aster-
isk follows when processing a call.

Applications
Asterisk comes with a large assortment of applications; these are built-in Asterisk
commands. You can see a list of applications by running the core list applications
command on the Asterisk console.

The extensions.conf file has these sections:

[general]
[globals]
[contexts]

[general] and [globals] are special reserved words, so don’t change them. [contexts]
are named whatever you want.

142 | Chapter 5: Building a VoIP Server with Asterisk

The [general] context contains system-wide variables. In this recipe,
autofallthrough=yes terminates calls with BUSY, CONGESTION, or HANGUP in case the con-
figuration is not clear on what the next step is supposed to be.

clearglobalvars=yes means that variables will be cleared and reparsed on an
extensions reload or Asterisk reload. Otherwise, global variables will persist through
reloads, even if they are deleted from extensions.conf.

Global constants are set in the [globals] section, such as dialplan and environment
values. CONSOLE=Console/dsp sets the default sound device.

Now, we get into the good stuff: user-defined contexts. Contexts define call routing
and what users can do. The [local-users] context in this recipe defines the exten-
sion numbers for our users, and does their call routing. These examples are as simple
as they can be—dial the extension numbers, and if no one answers, you are sent to
the appropriate voicemail context. The u voicemail option means “play the unavail-
able message when no one answers.”

The underscores in extensions mean wildcards ahead. In the example that allows
users to call each other by their three-digit extensions, the first number dialed must
be 2, then the next two numbers dialed are matched to existing extensions. EXTEN is a
channel variable that passes in the numbers you dial.

Sequence in contexts is very important—the steps must be numbered or listed in
order (you can use “n” for “next” to do so). Using numbered priorities lets you jump
around to different priorities, as you’ll see later in this chapter.

Extension 550 is configured in the recipe to be the number users dial to retrieve
voicemail. You may use any number you want. The recipe uses the VoiceMailMain
application, which is Asterisk’s built-in voicemail retrieval application, and points to
the appropriate voicemail context. When you have more than one voicemail con-
text, you need to specify the correct one, like in the recipe with @local-vm-users:

voicemail.conf
The [general] section defines global constants.

format
The options for this are wav49, gsm, and wav. Voicemails will be recorded in as
many formats as you name here. Asterisk will choose the optimum format for
playback. If you want to attach voicemail messages to email, use wav49. wav49 is
identical to gsm; the difference is it has Microsoft Windows-friendly headers,
which makes the file readable to virtually all client software. It creates files about
one-tenth the size of WAVE files.

WAVE files are huge because they are uncompressed, but they deliver the best sound
quality.

5.6 Setting Up Softphones | 143

See Also
• Asterisk config sip.conf:

http://www.voip-info.org/wiki-Asterisk+config+sip.conf

• Asterisk config extensions.conf:

http://www.voip-info.org/wiki/view/Asterisk+config+extensions.conf

• Asterisk config voicemail.conf:

http://www.voip-info.org/wiki-Asterisk+config+voicemail.conf

• Asterisk cmd VoiceMailMain:

http://www.voip-info.org/wiki/index.php?page=Asterisk+cmd+VoiceMailMain

• Asterisk cmd Dial:

http://www.voip-info.org/wiki/index.php?page=Asterisk+cmd+Dial

• The default extensions.conf, sip.conf, and voicemail.conf

5.6 Setting Up Softphones

Problem
You’re ready to connect some software telephones and do some real IP telephony in
your test lab, using Windows and Linux PCs. Where do you find some good soft-
phones, and how do you set them up?

Solution
There are many softphones you can try. This recipe uses the Twinkle softphone for
Linux, and the X-Lite softphone for Windows. Both are free of cost. Twinkle is open
source, X-Lite is not. Twinkle runs on Linux only, while X-Lite runs on Windows,
Linux, and Mac OS X.

Twinkle has a good feature set, a nice easy-on-the-eyes interface, is easy to use, and
has good documentation. X-Lite is a bit squinty to read and rather convoluted to
configure. But it is very configurable, sound quality is good, and it has volume con-
trols right on the main interface.

You will need the user’s login name and password from /etc/asterisk/sip.conf, and the
IP address of the Asterisk server, as Figure 5-1 for Twinkle shows.

You’ll find this screen in Edit ➝ User Profile. When you change settings in Twinkle,
hit Registration ➝ Register to activate the new settings.

144 | Chapter 5: Building a VoIP Server with Asterisk

In X-Lite, go to the Main Menu ➝ System Settings ➝ SIP Proxy ➝ Default, like
Figure 5-2.

Be sure to set Enabled:Yes.

Figure 5-1. Twinkle configuration

Figure 5-2. X-Lite configuration

5.6 Setting Up Softphones | 145

Close X-Lite, then reopen it to activate the changes.

Now, you can try out all the tests you did in the last recipe on the Asterisk console,
plus have the two extensions call each other. You can even call the outside world. To
do this, copy the [demo] context in the sample /etc/asterisk/extensions.conf into your
working extensions.conf. Then, add it to the [local-users] context like this:

[local-users]
include => demo

Reload the changes in the Asterisk console:

asterisk1*CLI> dialplan reload

Dial 1000 on your softphone to play the Asterisk demonstration. This will walk you
through a number of different tasks: an echo test, calling Digium’s demonstration
server, and testing voicemail. The voicemail test won’t work without the default
voicemail.conf, but because you already tested this in Recipe 5.4 and successfully set
up your own voicemail.conf, it should be good to go.

Discussion
You’ll probably want to test some different softphones, as they vary a lot in usability
and sound quality. You’ll especially want decent sound gear. Good headsets like
Plantronics sound warm and natural, block background noise, and have mute but-
tons and volume controls. USB headsets don’t need sound cards, but contain their
own sound-processing circuitry.

Watch out for branded softphones that are customized for a vendor (like Vonage, for
example), and can’t be used as you like without some serious hacking.

On Linux systems, it’s important to use only the Advanced Linux Sound Architecture
(ALSA) soundsystem. Don’t use aRtsd (the KDE sound server) or the Enlightened
Sound Daemon (ESD), which comes with the Gnome desktop. Disable them because
they create latency, and latency is the enemy of VoIP sound quality. Additionally,
don’t use Open Sound System (OSS) because it is obsolete. ALSA provides an OSS
emulator for applications and devices that think they need OSS, like the Asterisk
console.

See Also
• The documentation for your softphones

• man 1 alsactl

• man 1 alsamixer

• ALSA project: http://www.alsa-project.org/

146 | Chapter 5: Building a VoIP Server with Asterisk

5.7 Getting Real VoIP with Free World Dialup

Problem
You want to get your Asterisk server up and running and connected to the outside
world as quickly as you can. So, you want to start off with some basic VoIP services
and start making calls over the Internet.

Solution
Connect your Asterisk server to Free World Dialup (FWD). With Free World Dialup,
you can make free calls to other FWD users, and to the users on the networks that
FWD peers with. (A notable exception is the party pooper Vonage, which does not
wish to associate with other VoIP networks.)

First, go to Free World Dialup (http://www.freeworlddialup.com/) and sign up for an
account. When you receive your welcome email, log in and change your password.

Then, go to the Extra Features link and enable IAX because you’ll be setting up an
IAX trunk for FWD.

Now, fire up your trusty text editor and configure /etc/asterisk/iax.conf and etc/
asterisk/extensions.conf. We’ll use /etc/asterisk/sip.conf and /etc/asterisk/voicemail.conf
from Recipe 5.5.

In these examples, the FWD login is asteriskuser, password 67890, FWD phone
number 123456. Incoming FWD calls are routed to Ellen Ripley at extension 250.

;;iax.conf;;
[general]
context=default
port=4569
bindaddr=0.0.0.0
disallow=all
allow=gsm
allow=ulaw
allow=alaw
register => 123456:67890@iax2.fwdnet.net

[fwd-trunk]
 type=user
 context=fwd-iax-trunk
 auth=rsa
 inkeys=freeworlddialup

;;extensions.conf;;

[general]
autofallthrough=yes
clearglobalvars=yes

5.7 Getting Real VoIP with Free World Dialup | 147

[globals]
CONSOLE=Console/dsp

;free world dialup settings
FWDNUMBER=123456
FWDCIDNAME=asteriskuser
FWDPASSWORD=67890
FWDRINGS=SIP/ellenr

[default]

include => fwd-iax-trunk

[local-users]
include => default
include => outbound

exten => 250,1,Dial(SIP/ellenr,10)
exten => 250,2,VoiceMail(250@local-vm-users,u)

exten => 251,1,Dial(SIP/sarahc,10)
exten => 251,2,VoiceMail(251@local-vm-users,u)

exten => 252,1,Dial(SIP/dutchs,10)
exten => 252,2,VoiceMail(252@local-vm-users,u)

;Internal users can call each other directly with their 3-digit extensions:
exten => _2XX,1,Dial(SIP/${EXTEN},30)
exten => _2XX,n,Voicemail(${EXTEN})
exten => _2XX,n,Hangup

;retrieve messages by dialing ext. 550
exten => 550,1,VoiceMailMain(@local-vm-users)

[fwd-iax-trunk]
;incoming Free World Dialup
exten => ${FWDNUMBER},1,Dial,${FWDRINGS}

[outbound]
;outgoing FWD
exten => _393.,1,SetCallerId,${FWDCIDNAME}
exten => _393.,2,Dial(IAX2/${FWDNUMBER}:${FWDPASSWORD}@iax2.fwdnet.net/${EXTEN:3},60)
exten => _393.,3,Congestion

Load the new dialplan:

asterisk1*CLI> dialplan reload

Configure your firewall to allow port UDP 4569 traffic. Then, dial the FWD echo
test at 393613. You’ll be able to talk to yourself. Next, go to your your FWD account
profile (my.FWD) and click the Callme button. The FWD server will call you and
invite you to join a nonexistent conference. Now you know your setup is correct and
working.

148 | Chapter 5: Building a VoIP Server with Asterisk

Discussion
This gives you an easy way to practice setting up an IAX trunk, and to make and
receive pure VoIP calls. Friends and associates can call your FWD number with a SIP
or IAX phone and avoid toll charges.

Because Ellen doesn’t want to play receptionist forever, Recipe 5.9 tells how to set up
a digital receptionist to route incoming calls.

Asterisk 1.4 comes with an encryption key for Free World Dialup in /var/lib/asterisk/
keys/freeworlddialup.pub. If you have any problems with the key, download a fresh
one from FWD.

This recipe shows how to use user-defined variables in Asterisk. These go in the
[globals] section of extensions.conf.

See Also
• The Discussion in Recipe 5.5 for explanations of configuration options

• Recipe 5.9

• Recipe 5.21

5.8 Connecting Your Asterisk PBX to Analog Phone
Lines

Problem
You’re running a small shop with fewer than 10 analog phone lines. You’re not quite
ready to give up your nice reliable analog phone service, but you do want to set up
an Asterisk server for your local PBX, and to integrate some VoIP services. Your first
job is connecting Asterisk to your analog lines—how do you do this?

Solution
First, follow the previous recipes to install and test Asterisk’s basic functions. In this
recipe, we’ll route incoming and outgoing calls through Asterisk. Incoming calls will
be routed to our existing extension 250, which is probably not how you want to set
up your system permanently, but it’s fine for testing. Later in this chapter, we’ll set
up a proper digital receptionist.

Let’s assume you have three analog phone lines. You’ll need an Asterisk server, and
the Digium TDM400P analog interface PCI card with three FXO ports. You’ll also
need to load the appropriate Zaptel driver, which for this card is the wctdm kernel
module.

5.8 Connecting Your Asterisk PBX to Analog Phone Lines | 149

Install the TDM400P in your Asterisk server. Then, you’ll edit /etc/zaptel.conf and /etc/
asterisk/zapata.conf. First, make a backup copy of the original /etc/zaptel.conf:

mv zaptel.conf zaptel.conf-old

Then, make a new zaptel.conf file with these lines in it. Use your own country
code—you’ll find a complete list in the zonedata.c file in the Zaptel source tree:

 ;zaptel.conf
 loadzone = us
 defaultzone=us
 fxsks=1,2,3

Now, load the wctdm module and verify that it loaded:

modprobe wctdm
lsmod
Module Size Used by
wctdm 34880 0

To ensure that the Zaptel module loads automatically at boot, go back to the Zaptel
source directory and install the configuration and startup files:

cd /usr/src/zaptel-1.4.3
make config

The next file to edit is /etc/asterisk/zapata.conf. Back up the original:

mv zapata.conf zapata.conf.old

Then, enter these lines in a new empty zapata.conf:

zapata.conf
[channels]
context=pstn-test-in
signalling=fxs_ks
language=en
usecallerid=yes
echocancel=yes
transfer=yes
immediate=no
group=1
channel => 1-3

Now, add the line TRUNK=Zap/g1 to the [globals] section of /etc/asterisk/extensions.conf.

Then, create a new [pstn-test-in] context in /etc/asterisk/extensions.conf. This
example routes all incoming calls to the existing extension 250:

[pstn-test-in]
;incoming calls go to ext. 250
exten => s,1,Dial(SIP/250,30)
exten => s,n,Voicemail(250)
exten => s,n,Hangup

Now, create an [outbound] context so your local users can dial out:

[outbound]
ignorepat => 9

150 | Chapter 5: Building a VoIP Server with Asterisk

exten => _9NXXXXXX,1,Dial(TRUNK/${EXTEN:1})
exten => _91NXXNXXXXXX,1,Dial(TRUNK/${EXTEN:1})
exten => 911,1,Dial(TRUNK/911)
exten => 9911,1,Dial(TRUNK/911)

Add the [pstn-test-in] context to the [default] context:

include => pstn-test-in

Add the [outbound] context to the [local-users] context.

include => outbound

Load the new configurations:

asterisk1*CLI> dialplan reload

Now, give it a test drive. You should be able to make calls in the usual way: dial 9 for
an outside line, then dial your normal 7-digit local numbers or 10-digit long-distance
numbers. This is normal for the U.S., at any rate; you can adapt this as you need for
different calling areas.

Discussion
ignorepat (ignore pattern) means keep playing a dial tone after dialing whatever num-
ber or numbers you specify.

In zapata.conf, we lumped all three channels into a single hunt group, group 1. This
means that callers will always be routed to the first available line.

All the Zaptel modules are loaded when you use the default configuration files. This
doesn’t hurt anything, but you can configure your system to load only the module
you need. On CentOS (and Fedora and Red Hat), comment out all the unnecessary
modules in /etc/sysconfig/zaptel (on Debian, it’s /etc/default/zaptel).

A fundamental security measure is to never include an outbound context in any
inbound context because you don’t want to provide toll calling services to the world.

If you’re trying to make sense of this FXS/FXO stuff, you’re noticing that the
TDM400P has three FXO modules, but the configurations specify FXS signaling.
Think of it this way: it accepts and translates FXO signaling on incoming calls, but
has to transmit FXS signaling.

Office users are usually accustomed to dialing 9 for an outside line. With Asterisk,
it’s not necessary, so you don’t have to set it up this way. In the example, 911 is pro-
grammed to work both ways, so users don’t have to remember which is which. This
line shows how to configure dialing out without pressing 9 first:

exten => _NXXXXXX,1,Dial(TRUNK/${EXTEN})

911 service can be a problem with VoIP. If your Asterisk server is down, you won’t
be able to call 911. Some fallbacks to consider are keeping an analog line or two
independently of your Asterisk server, or having your server in a location where you
can quickly unplug an analog line from the server and connect it to a telephone.

5.9 Creating a Digital Receptionist | 151

Because faxing over VoIP is still a big pain, keeping an ordinary analog fax machine
with an attached telephone would solve two problems.

See Also
• The sample extensions.conf, sip.conf, and voicemail.conf

• Asterisk Variables:

http://www.voip-info.org/wiki/index.php?page=Asterisk+Variables

• Asterisk config zapata.conf:

http://www.voip-info.org/wiki-Asterisk+config+zapata.conf

• Asterisk config zaptel.conf:

http://www.voip-info.org/wiki/index.php?page=Asterisk+config+zaptel.conf

• Asterisk config extensions.conf:

http://www.voip-info.org/wiki/view/Asterisk+config+extensions.conf

5.9 Creating a Digital Receptionist

Problem
So far, our incoming calls are routed to extension 250, Ellen Ripley. Ellen has been
gracious at playing receptionist, but she has her own work to do. How do you con-
figure Asterisk to take over as a reliable, always courteous digital receptionist?

Solution
Instead of routing all incoming calls to Ellen, program your dialplan to route calls
according to an interactive menu, and then record suitable greetings and instruc-
tions. (See the next recipe to learn how to use Asterisk to record custom prompts.)

Fire up your trusty text editor and open /etc/asterisk/extensions.conf. Change the
[pstn-test-in] context to look like this:

[pstn-test-in]
;interactive menu for incoming calls
exten => s,1,Answer()
exten => s,2,Set(TIMEOUT(digit)=5)
exten => s,3,Set(TIMEOUT(response)=15)
exten => s,4 Background(local/main-greeting)

;user extensions
exten => 1,1,Goto(local-users,250,1)
exten => 2,1,Goto(local-users,251,1)
exten => 3,1,Goto(local-users,252,1)

;send the caller back to the beginning
;if they enter an invalid option

152 | Chapter 5: Building a VoIP Server with Asterisk

exten => i,1,Playback(local/invalid-option)
exten => i,2,Goto(s,2)

;hangup if the timeouts are exceeded
exten => t,1,Hangup

Now, record the greetings that will be played for callers. The first one is main-
greeting, which says something like “Thank you for calling Excellence Itself, Limited.
Please press 1 to speak to Ellen Ripley. Press 2 for Sarah Connor, or press 3 for
Dutch Schaeffer.”

invalid-option responds to incorrect key presses with “I’m sorry, that is not a valid
option. Please listen to the available options and try again.”

Reload the new dialplan:

asterisk1*CLI> dialplan reload

Call your server from an outside line and take your new digital receptionist for a test
drive.

Discussion
There’s a whole lot going on here in a few lines:

Set(TIMEOUT(digit)=5)
Set(TIMEOUT(response)=15)

Asterisk will hang up if the user takes too long to enter key presses, or too long to
respond at all. The defaults are 5 seconds and 10 seconds.

The Background command plays a soundfile, then stops playing the soundfile when it
is interrupted by a key press from the caller and goes to the next step in the dialplan.

The t, or timeout extension is a special extension that tells Asterisk what to do when
timeouts are exceeded.

The i, or invalid extension handles incorrect input from callers.

When a caller is routed to a valid user’s extension, that’s the end of the road. Then,
someone either picks up the call, or it goes to voicemail.

See Also
• Asterisk config extensions.conf:

http://www.voip-info.org/wiki/view/Asterisk+config+extensions.conf

• The sample extensions.conf, sip.conf, voicemail.conf

5.10 Recording Custom Prompts | 153

5.10 Recording Custom Prompts

Problem
You’ve done a bit of research on how to create your own custom prompts for Aster-
isk, and you know that Digium will sell you nice, professionally recorded custom
prompts for a reasonable fee. You know that you can go nuts with recording gear
and do it yourself. Both sound like nice options, but for now, you just want quick
and cheap.

Solution
You can have quick and cheap. You’ll need sound support on your Asterisk server.
This can be a sound card plus a microphone and speakers, or a sound card and head-
set, or a USB headset. (A USB headset replaces a sound card, microphone, and
speakers.) Or, call into your server from a client’s phone. Then you’ll create a con-
text in Asterisk just for recording custom prompts.

First, create two new directories:

mkdir /var/lib/asterisk/sounds/local
mkdir /var/lib/asterisk/sounds/tmp

Then, create this context for recording your custom prompts in /etc/asterisk/
extensions.conf:

[record-prompts]
;record new voice files
exten => s,1,Wait(2)
exten => s,2,Record(tmp/newrecord:gsm)
exten => s,3,Wait(2)
exten => s,4,Playback(tmp/newrecord)
exten => s,5,wait(2)
exten => s,6,Hangup

;record new messages
exten => 350,1,Goto(record-prompts,s,1)

Reload the dialplan:

asterisk1*CLI> dialplan reload

Now, dial 350. You will hear only a beep—start talking after the beep, then hit the
pound key when you’re finished. It will replay your new message, then hang up. The
first file you’re going to record should be an instructional file that says something
like, “Wait for the beep to begin recording a new message, then press pound when
you are finished.”

154 | Chapter 5: Building a VoIP Server with Asterisk

Next, move the file from the tmp/ folder to local/, and rename it to whatever you
want. In this example, it is called r-make-new-recording:

mv /var/lib/asterisk/sounds/tmp/newrecord.gsm \
/var/lib/asterisk/sounds/local/r-make-new-recording.gsm

Now, record a second message that says, “If you are satisfied with your new recording,
press 1. If you wish to record it again, press 2,” and rename it r-keep-or-record.gsm.

Record a third message that says, “Thank you, your new recording has been saved.
Press 2 to record another message, or 3 to exit.” Call this one r-thank-you-message-
saved.gsm.

Then, revise your dialplan to use the new soundfiles:

[record-prompts]
;record new voice files
exten => s,1,Wait(1)
exten => s,2,Playback(local/r-make-new-recording)
exten => s,3,Wait(1)
exten => s,4,Record(tmp/znewrecord:gsm)
exten => s,5,Wait(1)
exten => s,6,Playback(tmp/znewrecord)
exten => s,7,Wait(1)
exten => s,8,Background(local/r-keep-or-record)

;copy file to local/ directory and give unique filename
exten => 1,1,System(/bin/mv /var/lib/asterisk/sounds/tmp/znewrecord.gsm /var/lib/
asterisk/sounds/local/${UNIQUEID}.gsm)
exten => 1,2,Background(local/r-thank-you-message-saved)

exten => 2,1,Goto(record-prompts,s,2)

exten => 3,1,Playback(goodbye)
exten => 3,2,Hangup

Add this to the [local-users] context:

;record new messages
exten => 350,1,Goto(record-prompts,s,1)

Reload the dialplan:

asterisk1*CLI> dialplan reload

Now, give it a try by dialing extension 350. This lets you listen to and rerecord your
new soundfile until you are satisfied with it, and to record several new soundfiles in a
single session without redialing.

Discussion
If you record soundfiles at the Asterisk console instead of from an IP phone on a cli-
ent PC, you need to specify the context like this:

asterisk1*CLI> dial 350@record-prompts

5.10 Recording Custom Prompts | 155

Let’s take a quick walk through the new [record-prompts] context. The s (start)
extension is a special extension that kicks in when a specific destination is not
named. I think of it as Asterisk answering the call personally, instead of handing it
off to a user.

The soundfile names can be anything you want. I prefix them with r- to indicate that
they are used for recording. znewrecord.gsm puts the temporary sound file last alpha-
betically in case I get confused and want to find it in a hurry. Asterisk has hundreds
of soundfiles, so it’s helpful to have a naming convention that keeps them somewhat
sorted.

The Goto application jumps to different parts of the dialplan, and to different contexts.
If you’re an ace programmer, you probably don’t think much of Goto, but for Asterisk,
it’s a simple way to reuse contexts. Without it, dialplans would be unmanageable.

Goto syntax takes a number of options:

exten => 100,1,Goto(context,extension,priority)

At a minimum, you need a priority. The default is to go to the extension and priority
in the current context. I like to make it explicit and spell out everything.

The Playback application plays a soundfile. The default Asterisk soundfile directory
is /var/lib/asterisk/sounds/. So, Asterisk assumes that tmp/ and local/ are subdirecto-
ries of /var/lib/asterisk/sounds/.

The Background application plays soundfiles that can be interrupted by keypresses,
so this is where you use the “press 1, press 2” instruction soundfiles.

Playback and Background don’t need the soundfile extension specified because
Asterisk will automatically select the most efficient file available.

Using the colon with the Record command, as in znewrecord:gsm, means record a
new sound file named znewrecord in the GSM format. You may also use the formats
g723, g729, gsm, h263, ulaw, alaw, vox, wav, or WAV. WAV is wav49, which is a GSM-
compressed WAVE format. wav49 and GSM files are about one-tenth the size of
WAVE files. For recording voice prompts, gsm or wav49 work fine, and save a lot of
disk space. GSM is the format for the free prompts that come with Asterisk.

This recipe should help make clear why the different parts of a dialplan are called
contexts. The numbers that you dial operate according to context. The familiar
“press 1, press 2” dance works because pressing 1 and 2 work differently in different
contexts, so you can use the same numbers over and over for different jobs.

The Wait values are in seconds, and can be adjusted to suit. You can leave them out
if you like; they give you a chance to take a breath and get ready to talk.

When you hit 1 to tell Asterisk you are satisfied with your recording, it will be cop-
ied to /var/lib/asterisk/sounds/local/ and given a unique filename based on the
UNIQUEID variable. You’ll want to rename the files something descriptive.

156 | Chapter 5: Building a VoIP Server with Asterisk

See Also
• Asterisk commands:

http://www.voip-info.org/wiki-Asterisk+-+documentation+of+application+commands

• Asterisk variables:

http://www.voip-info.org/wiki-Asterisk+variables

5.11 Maintaining a Message of the Day

Problem
You have certain greetings that need to be changed a lot, like the welcome greeting
that callers first hear, a greeting that tells your schedule, an inspirational message of
the day for staffers—whatever it is, they need to be changed often, so you want an
easy way to change them, and you want to restrict who can change them.

Solution
Create a context for listening to and recording each message, then password-protect it.

Start by creating a directory to store your custom prompts in, like /var/lib/asterisk/
sounds/local/. Then, record some instructional prompts using the context created in
the previous recipe. Suppose your message tells callers your hours and holiday sched-
ule, and you have named it store-schedule.gsm. You’ll need instructions like these:

r-schedule-welcome.gsm
“Welcome to the store schedule management menu. Please enter your password.”

r-listen-or-record.gsm
“To listen to the current store schedule, press 1. To go directly to the recording
menu press 2.”

r-record-at-tone.gsm
“To record a new store schedule message, begin speaking after the beep. When
you’re finished, press the pound key.”

r-accept-or-do-over.gsm
“To rerecord your message, press 2. If you are finished, press 3.”

r-thankyou-newschedule.gsm
“Thank you for updating the store schedule, and have a pleasant day.”

r-invalid-option.gsm
“I’m sorry, that is not a valid option, so I’m sending you back to the beginning.”

r-thankyou-new-schedule.gsm
“Thank you for updating the store schedule. Good-bye.”

5.11 Maintaining a Message of the Day | 157

This is a complete example [record-schedule] context:

[record-schedule]
;log in and review existing message
exten => s,1,Wait(1)
exten => s,2,Playback(local/r-schedule-welcome)
exten => s,3,Set(TIMEOUT(digit)=5)
exten => s,4,Set(TIMEOUT(response)=15)
exten => s,5,Authenticate(2345)
exten => s,6,Background(local/r-listen-or-record)
exten => s,7,Background(local/r-accept-or-do-over)

exten => 1,1,Wait(1)
exten => 1,2,Playback(local/store-schedule)
exten => 1,3,Goto(s,6)

;record store-schedule
exten => 2,1,Wait(1)
exten => 2,2,Playback(local/r-record-at-tone)
exten => 2,3,Wait(1)
exten => 2,4,Record(local/store-schedule:gsm)
exten => 2,5,Wait(1)
exten => 2,6,Playback(local/store-schedule)
exten => 2,7,Wait(1)
exten => 2,8,Goto(s,7)

;accept the new message
exten => 3,1,Playback(local/r-thankyou-new-schedule)
exten => 3,2,Hangup

;hangup if the timeouts are exceeded
exten => t,1,Hangup

;send the caller back to the beginning
;if they enter an invalid option
exten => i,1,Playback(local/r-invalid-option)
exten => i,2,Goto(s,2)

Put it in your [local-users] context:

;record new store schedule
exten => 351,1,Goto(record-schedule,s,1)

Now, any of your local-users who have the password can update the store schedule.

Discussion
Contexts can be password-protected with the Authenticate command.

Remember to run the dialplan reload command from the Asterisk CLI every time
you make a change to extensions.conf.

158 | Chapter 5: Building a VoIP Server with Asterisk

See Also
• Asterisk commands:

http://www.voip-info.org/wiki-Asterisk+-+documentation+of+application+commands

5.12 Transferring Calls

Problem
You want your users to be able to transfer calls.

Solution
Just add the t option to their extensions in extensions.conf, like this:

exten => 252,1,Dial(SIP/dutchs,10,t)

To transfer a call, press the pound key on your telephone, then enter the extension
number. Asterisk will say “transfer” after you press the pound key, then play a dial
tone until you dial the extension number.

Discussion
Giving your users mighty transfer powers is a nice thing, especially when they’re
helping a customer. Forcing a caller who has gotten lost to call back and navigate
your digital receptionist a second time isn’t a very nice thing to do.

See Also
• Asterisk cmd Dial:

http://www.voip-info.org/wiki/index.php?page=Asterisk+cmd+Dial

5.13 Routing Calls to Groups of Phones

Problem
You want callers to be directed to departments, instead of individuals, where they
will be answered by whoever picks up first. Or, you have more than one phone, like
a desk phone and cell phone, and you want your incoming calls to ring all of them.

Solution
Create ring groups. This is a simple configuration that assigns a group of extensions
to a single extension, like this:

5.14 Parking Calls | 159

[tech-support]
exten => 380,1,Dial(SIP/604&SIP/605&SIP/606,40,t)
exten => 380,2,VoiceMail(220@local-vm-users)

The caller dials extension 380. The listed extensions all ring at the same time. If no
one answers it within 40 seconds, it goes to voicemail. Extensions 604, 605, and 606
must already exist, and a voicemail box configured. Transferring is enabled with the
lowercase t.

This example is for ringing a desk phone and a cell phone sequentially:

[find-carla]
exten => 100,1,Dial(SIP/350,20,t)
exten => 100,2,Dial(Zap/1/1231234567,20,t)
exten => 100,3,VoiceMail(350@local-vm-users)

If there is no answer at the first number, Asterisk tries the second number. If Carla is
slacking and doesn’t answer that one either, it goes to voicemail.

Both phones can be configured to ring at the same time:

exten => 100,1,Dial(SIP/350&Zap/1/1231234567,20)
exten => 100,2,VoiceMail(350@local-vm-users)

Discussion
This recipe demonstrates that extension numbers and voicemail boxes don’t need to
be the same.

The Dial command will dial anything that you can dial manually—whatever your
Asterisk server supports, Dial can dial it. Well, technically it’s not dialing. Funny
how old terminology hangs on, isn’t it?

See Also
• Asterisk cmd Dial:

http://www.voip-info.org/wiki/index.php?page=Asterisk+cmd+Dial

5.14 Parking Calls

Problem
You’re a mobile kind of worker. Sometimes you get a question that you have to go to
a different room to answer, which means your caller is sitting on hold for a long
time. Wouldn’t it be nice if you could transfer the call and pick it up at your new
location?

160 | Chapter 5: Building a VoIP Server with Asterisk

Solution
Yes, it would, and you can. Asterisk has 20 reserved parking slots, 701–720. Activate
parking by adding the parkedcalls context to your desired internal context, such as
the [local-users] context used in this chapter:

[local-users]
include => parkedcalls

Make sure you have mighty transfer powers with the t option:

exten => 252,1,Dial(SIP/dutchs,10,t)

Enabling parked calls requires a server restart:

asterisk1*CLI> restart gracefully

Test it by calling your extension. An easy way to do this is to have a second soft-
phone on your test PC configured with a different user account. Cell phones are also
great for testing Asterisk.

Transfer the call to extension 700, and Asterisk will automatically park it in the first
empty slot. It will tell you the number of the parked extension—to resume the call,
pick up another extension, and dial the parked extension number.

If it times out, it will ring the extension originally called, where it will be treated like
any call, and go to voicemail if it’s not answered.

The lowercase t option allows only the person receiving the call to transfer it. This
means you can park a call only once. If you add an uppercase T, like this:

exten => 252,1,Dial(SIP/dutchs,10,tT)

then you can make transfers whether you’re on the receiving or the calling end. So,
when you un-park a call, you can park and transfer it yet again.

Discussion
Call parking is configured in /etc/asterisk/features.conf. While there are a number of
configurable options, the only one that really matters to most folks is the parkingtime
option, which sets the timeout value.

The default is 45 seconds, which means if you don’t pick up within 45 seconds, the
call will ring back to your original extension.

See Also
• The sample /etc/asterisk/features.conf

5.16 Playing MP3 Sound Files on Asterisk | 161

5.15 Customizing Hold Music

Problem
You want to add your own custom tunes to the hold music that comes with Aster-
isk, or replace it entirely.

Solution
Easy as falling asleep. Just plunk your own WAVE- or GSM-formatted soundfiles
into the /var/lib/asterisk/moh directory. Then, configure /etc/asterisk/musiconhold like
this:

[default]
mode=files
directory=/var/lib/asterisk/moh
random=yes

Next, set up a test context for testing your hold music:

exten => 1000,1,Answer
exten => 1000,n,SetMusicOnHold(default)
exten => 1000,n,WaitMusicOnHold(30)
exten => 1000,n,Hangup

Changes to hold music require a server restart:

asterisk1*CLI> restart gracefully

Then, dial 1000 to hear your music. It will play for 30 seconds, then hang up.

Discussion
Hold music is enabled globally by default, so you don’t need to explicitly turn it on.

See Also
• Asterisk cmd Musiconhold:

http://www.voip-info.org/wiki/index.php?page=Asterisk+cmd+Musiconhold

5.16 Playing MP3 Sound Files on Asterisk

Problem
You want to use music on hold in MP3 format, rather than WAVE or GSM. But,
they don’t work—how do you make them go?

162 | Chapter 5: Building a VoIP Server with Asterisk

Solution
Download the asterisk-addons package to get Asterisk’s format_mp3 player. Follow
the instructions in the /usr/src/asterisk-addons-1.4.[version]/format_mp3/README to
install format_mp3.

Now, your MP3 files will play just fine.

MP3 files eat more CPU cycles than WAVE or GSM, so don’t use them on marginal
systems. MP3 files can easily be converted to WAVE format with lame:

$ lame --decode musicfile.mp3 musicfile.wav

Do this to batch-convert all the MP3 files in the current directory:

$ for i in *.mp3; do lame --decode $i `basename $i .mp3`.wav; done

See Also
• man lame

5.17 Delivering Voicemail Broadcasts

Problem
You want to broadcast inspirational messages to your entire staff with a single call.
Or, you might have important information to deliver. At any rate, you want the abil-
ity to set up voicemail groups to receive voicemail broadcasts.

Solution
With Asterisk, it’s easy. First, create a mailbox group in /etc/asterisk/voicemail.conf:

;broadcast mailbox
375 => 1234,StaffGroup

Then, create an extension in /etc/asterisk/extensions.conf that contains all the mail-
boxes that belong to the group:

;broadcast voicemail extension
exten => 300,1,VoiceMail(375@local-vm-users&250@local-vm-users&251@local-vm-
users&252@local-vm-users)

Now, all you do is call extension 375, record your stirring communiqué, and it will
copied to all the mailboxes in the group.

A useful option is to delete the master voicemail after it has been sent to the group,
like this:

375 => 1234,StaffGroup,,,delete=1

5.18 Conferencing with Asterisk | 163

Discussion
Voicemail contexts have four fields:

extension_number => voicemail_password,user_name,user_email_address,user_pager_email_
address,user_options

The minimum needed to set up a voicemail box is extension_number => voicemail_
password,user_name. Any field that you skip needs a comma placeholder, as in this
example that sends the user a copy of the voicemail attached to email:

103 => 1234,John Gilpin,john@gilpinsride.com,,attach=yes

If you use more than one user option, separate them with a pipe symbol:

103 => 1234,John Gilpin,john@gilpinsride.com,,attach=yes|delete=1

If your users want voicemails emailed to them, you’ll want to use the compressed
wav49 soundfile format. It’s one-tenth the size of uncompressed WAVE files.

See Also
• Asterisk config voicemail.conf:

http://www.voip-info.org/wiki/index.php?page=Asterisk+config+voicemail.conf

• The sample voicemail.conf

5.18 Conferencing with Asterisk

Problem
One of the reasons you’re using Asterisk is to get inexpensive, easy conferencing.
The commercial conferencing services cost a lot, and trying to do it yourself with tra-
ditional PBX systems is usually difficult. So, how do you set up conferencing with
Asterisk?

Solution
There are two types of conferences: local conferences inside your LAN, and confer-
ences with people outside your organization.

Using conferencing (or meetme, as it’s often called), inside the LAN is as easy as
falling asleep. This is a sample /etc/asterisk/meetme.conf configuration that sets up
three conference rooms:

;;/etc/asterisk/meetme.conf
[general]

[conferences]
; Usage is conf => [conference number][,pincode]
; Pincodes are optional

164 | Chapter 5: Building a VoIP Server with Asterisk

conf => 8000,1234
conf => 8001,4567
conf => 8002,7890

Create extensions for the conference rooms in the [local-users] context in /etc/
asterisk/extensions.conf:

;conference rooms 8000, 8001, 8002
exten => 8000,1,Meetme(${EXTEN})
exten => 8001,1,Meetme(${EXTEN})
exten => 8002,1,Meetme(${EXTEN},,7890)

Do the usual:

asterisk1*CLI> dialplan reload

And give your new conference rooms a test-drive. You’ll be greeted by the voice of
Allison Smith, who will ask you for the pincode and tell you how many people are
present in the conference. The example for room 8002 enters the pincode for you.

What if you want people outside of your LAN to join the conference? As long as they
have the conference number and pincode, and your incoming context includes the
conference room extension, all they do is call your office the normal way, then enter
the extension and passcode.

Discussion
The extension that you set up to dial the conference room doesn’t have to be the
same as the conference room number because the room number is an option for the
MeetMe application, like this:

exten => 100,1,Meetme(8000)

Another way to set up conference rooms is to create a single extension for all confer-
ence rooms, like this:

exten => 8000,1,Meetme()

You can use this single extension for all conference rooms because users will be
prompted for both the room number and the pincode. You can limit access further
with contexts. For example, you could have two separate user contexts, and each
group gets its own conference room:

[developers]
exten => 8001,1,Meetme(${EXTEN})

[accounting]
exten => 8002,1,Meetme(${EXTEN})

See Also
• The sample meetme.conf

• Asterisk cmd MeetMe:

http://www.voip-info.org/wiki/index.php?page=Asterisk+cmd+MeetMe

5.19 Monitoring Conferences | 165

5.19 Monitoring Conferences

Problem
You want to keep an eye on conferences, and have mighty administrator powers to
mute or even kick users out of the conference.

Solution
Use the meetme command on the Asterisk CLI. You can see all the options with the
help command:

asterisk1*CLI> help meetme
Usage: meetme (un)lock|(un)mute|kick|list [concise] <confno> <usernumber>
 Executes a command for the conference or on a conferee

This command shows all running conferences:

asterisk1*CLI> meetme
Conf Num Parties Marked Activity Creation
8001 0002 N/A 00:01:10 Static
* Total number of MeetMe users: 2

This command lists the users in a conference:

asterisk1*CLI> meetme list 8001
User #: 01 250 Ellen Ripley Channel: SIP/ellen-08d6dc20
(unmonitored) 00:01:58
User #: 02 dutch dutch schaeffer Channel: SIP/dutch-08d86350
(unmonitored) 00:01:46
2 users in that conference.

meetme lock prevents any new users from joining.

To kick or mute a user, use the conference and user numbers:

asterisk1*CLI> meetme kick 8001 02

Discussion
Hopefully, your users won’t need this sort of babysitting, and you’ll only need it to
correct technical problems, like a channel not hanging up when the user leaves the
conference.

See Also
• The sample meetme.conf

• Asterisk cmd MeetMe:

http://www.voip-info.org/wiki/index.php?page=Asterisk+cmd+MeetMe

166 | Chapter 5: Building a VoIP Server with Asterisk

5.20 Getting SIP Traffic Through iptables NAT
Firewalls

Problem
You’re having fits with SIP traffic because it’s difficult to get it past NAT firewalls.
You could put your Asterisk server in your DMZ, if you have a spare routable public
IP address. Or, you could use some kind of a SIP proxy, but those come with a differ-
ent kind of pain. Can’t you just schlep those SIP packets through your NAT-ed
iptables firewall with connection tracking?

Solution
Yes, you can, thanks to the shiny new iptables SIP connection-tracking module. It
comes with the 2.6.18 Linux kernel, or, you can use Netfilter’s Patch-O-Matic to
apply it to older kernels. If you have a 2.6.18 kernel or newer, look in /boot/config-
[kernel version] to see if SIP connection tracking is already enabled. Look for:

CONFIG_IP_NF_NAT_SIP=y
CONFIG_IP_NF_SIP=y

If you see those magic words, then all you need are a few iptables rules in your
iptables script, and to load the kernel modules. This example is for a standalone NAT
firewall and router that forwards your SIP traffic to a separate Asterisk server with a
private IP address of 192.168.1.25, and follows the conventions in Chapter 3:

$ipt -t nat -A PREROUTING -p tcp -i $WAN_IFACE --dport 5060 -j DNAT --to-destination
192.168.2.25:5060
$ipt -A FORWARD -p tcp -i $WAN_IFACE -o $DMZ_IFACE -d 192.168.2.25 --dport 5060 -j
ACCEPT

These rules are for an Asterisk server with a public IP address that is directly exposed
to the Internet:

$ipt -A INPUT -p udp --dport 5060 -j ACCEPT
$ipt -A FORWARD -o eth0 -p udp --dport 5060 -j ACCEPT

Put this in your iptables script to load the modules:

modprobe ip_conntrack_sip
modprobe ip_nat_sip

Reload your iptables rules, and you’re in business.

Discussion
If you don’t have kernel support already, you can patch kernels back to version 2.6.11.
You need complete kernel sources (not just headers), a 2.6.11 kernel or newer, and
iptables sources. I’m going to skip how to set up a kernel build environment; please
visit the See Also section for kernel building references.

5.20 Getting SIP Traffic Through iptables NAT Firewalls | 167

Once you have a kernel build environment ready to go, fetch the current stable
iptables source tarball from Netfilter.org (http://netfilter.org/projects/iptables/
downloads.html). Verify the md5sum, and unpack the tarball into whatever directory
you want.

Then, download the latest Patch-O-Matic (ftp://ftp.netfilter.org/pub/patch-o-matic-ng/
snapshot/ snapshot). Verify the md5sum. Unpack the tarball into a directory of your
choice, and change to its top-level directory. Apply the sip-conntrack-nat patch to the
kernel sources with this command. You’ll need to tell it the filepaths to your kernel
and iptables sources:

$./runme sip-conntrack-nat
/home/carla/lib/iptables/
Hey! KERNEL_DIR is not set.
Where is your kernel source directory? [/usr/src/linux]
Hey! IPTABLES_DIR is not set.
Where is your iptables source code directory? [/usr/src/iptables]
Welcome to Patch-o-matic ($Revision$)!

You’ll get some informational output, and then:

The SIP conntrack/NAT modules support the connection tracking/NATing of
the data streams requested on the dynamic RTP/RTCP ports, as well as mangling
of SIP requests/responses.

Do you want to apply this patch [N/y/t/f/a/r/b/w/q/?]

Type y, and the patch is applied.

Now, you must compile a new kernel. When you configure your kernel, be sure to
select the SIP support option in Networking ➝ Networking support ➝ Networking
options ➝ Network packet filtering ➝ IP: Netfilter Configuration.

Install the new kernel, make and reload your iptables rules, and you’re in business.

You may install iptables sources with Yum on CentOS:

yum install iptables-devel

On Debian, run:

apt-get install iptables-dev

See Also
• Every Linux distribution has its own kernel-building tools—Debian users can

follow Chapter 7 of the Debian Reference Manual (http://www.debian.org/doc/
manuals/reference/ch-kernel.en.html); CentOS (and Red Hat and Fedora) users
can refer to the instructions in their release notes

• Chapter 10, “Patching, Customizing, and Upgrading Kernels,” in Linux Cook-
book, by Carla Schroder (O’Reilly)

• Appendix C

168 | Chapter 5: Building a VoIP Server with Asterisk

5.21 Getting IAX Traffic Through iptables NAT
Firewalls

Problem
You need to know what rules to use to let IAX traffic through iptables firewalls.

Solution
Use these rules for an Asterisk server that sits behind a standalone iptables firewall
and router:

$ipt -t nat -A PREROUTING -p tcp -i $WAN_IFACE --dport 4569 -j \
DNAT --to-destination 192.168.2.25:4569
$ipt -A FORWARD -p tcp -i $WAN_IFACE -o $DMZ_IFACE -d 192.168.2.25 \
 --dport 4569 -j ACCEPT

These rules are for an Asterisk server with a public IP address that is directly exposed
to the Internet, and is running iptables:

$ipt -A INPUT -p udp --dport 4569 -j ACCEPT
$ipt -A FORWARD -o eth0 -p udp --dport 4569 -j ACCEPT

Reload your rules, and you’re in business.

These examples follow the conventions in Chapter 3.

Discussion
IAX is a native Asterisk protocol that is efficient, firewall friendly, and able to carry a
number of SIP calls over a single IAX trunk.

See Also
• Chapter 3

5.22 Using AsteriskNOW, “Asterisk in 30 Minutes”

Problem
You’re not afraid of the command line or of editing text files, but it seems like a lot of
work to administer an Asterisk server this way, with a lot of complexity and room for
errors. Isn’t there a good, clean, graphical administration interface for Asterisk? One
that doesn’t install with a lot of lard, and lets you make changes from the GUI and
the text configuration files without conflicts?

5.22 Using AsteriskNOW, “Asterisk in 30 Minutes” | 169

Solution
There is indeed, and it is a product of Digium itself. AsteriskNOW is a software
appliance that includes the operating system, Asterisk, and good web-based graphi-
cal interfaces for the Asterisk server and the operating system.

Visit AsteriskNOW.org (http://www.asterisknow.org/) to download the installation
image. You’ll have a choice of several different images, including x86-32 and x86-64,
a Xen guest image, a VMWare guest image, and a liveCD image.

The installer will look for a DHCP server. Log on to the server to find its IP address
with the username admin, password password. It should tell you the IP address right
on the console. If it doesn’t, because gosh knows Asterisk is evolving faster than sci-
ence fiction critters, use the ifconfig command.

Alt-F9 takes you to the familiar Asterisk CLI, and Alt-F1 takes you back to the
console menu.

Then, log in to the web administration interface from a neighboring PC. Fire up a
Firefox web browser, and go to https://[ip address]. You’ll get a bunch of scary warn-
ings about the server certificate. Accept the certificate, and continue. Log in with
admin, password. This is not the same admin user as on the server console, but the
web GUI admin user. You’ll be required to change the password, then relog in and
run a setup wizard before you can do anything else. You can quickly skip through
the setup wizard if you want to get right into exploring the interface.

On the top right of the AsteriskNOW web GUI, click System Configuration to get
into the rPath Linux control panel. This has yet a third separate admin user.

An SSH server runs by default, so you can log in remotely this way:

$ ssh admin@[ip address]

AsteriskNOW does not come with a root password. You can use sudo for most
chores, but you should still have a root password on the server. On the Asterisk-
NOW console, create one this way:

[admin@localhost ~]$ sudo passwd root

Discussion
Using sudo in the way AsteriskNOW has it setup is convenient. You only have to
remember one password, and all sudo commands are logged. But, you still need a
real root password. Not all commands work with sudo because some commands and
scripts don’t know how to handle sudo asking for a password. And, perhaps more
importantly, the Ext3 filesystem reserves 5 percent of the filesystem exclusively for
the root user. This makes it possible for root to recover a system when user processes
have have gone berserk and completely filled up the filesystem.

170 | Chapter 5: Building a VoIP Server with Asterisk

AsteriskNOW comes with one-click purchase and provisioning of Polycom IP phones,
one-click setup with VoicePulse, and you can upgrade from the free AsteriskNOW to
the supported Asterisk Business Edition. Watch for more integration with hardware
and service vendors with new AsteriskNOW releases and upgrades.

See Also
• Here be Wikis, forums, and all manner of usefulness:

AsteriskNOW support: http://www.asterisknow.org/support

5.23 Installing and Removing Packages on
AsteriskNOW

Problem
Even though AsteriskNOW runs on Linux, it’s not the Linux you know. It looks
somewhat like Red Hat, but there are no RPM or Yum commands for installing and
removing packages. It uses the familiar Bash shell, and /bin and /sbin contain all the
familiar Linux commands. So, how do you manage the software?

Solution
AsteriskNOW uses rPath Linux, which is a specialized Linux distribution designed
for building software appliances like AsteriskNOW. It’s designed to be easily cus-
tomizable and efficient, containing only the packages needed to run your appliance.
It uses the Conary build system, which includes custom package repositories and
commands.

These commands show short and extended help lists:

[admin@localhost ~]$ conary
[admin@localhost ~]$ conary help

You can see a list of all packages installed on your system:

[admin@localhost ~]$ conary query | less

grep helps you find a specific installed program:

[admin@localhost ~]$ conary query | grep speex
speex=1.1.10-2-0.1

Get information on an installed package:

admin@localhost ~]$ conary q speex --info

Conary calls dependencies and related packages troves. View installed troves with
this command:

admin@localhost ~]$ conary q speex --troves

5.24 Connecting Road Warriors and Remote Users | 171

This command shows all troves, including those that are not installed:

[admin@localhost ~]$ conary q speex --all-troves

This command displays dependencies:

[admin@localhost ~]$ conary q speex --deps

You can see what is available to install:

[admin@localhost ~]$ conary rq | less

This command installs a new package or updates an installed package:

[admin@localhost ~]# conary update [packagename]

This command removes a package:

[admin@localhost ~]# conary erase [packagename]

This command updates the whole system:

[admin@localhost ~]# conary updateall

Discussion
The rPath web control panel controls network configuration, backups, system
updates, admin password, and the time and date. You’ll need the CLI commands for
everything else.

See Also
• You’ll find a complete administration manual at Conary system administration:

http://wiki.rpath.com/wiki/index.php/Conary:User

5.24 Connecting Road Warriors and Remote Users

Problem
You want your traveling staff to be able to log in to your Asterisk server from wher-
ever they may roam, or you have far-flung friends and family that you wish to share
your server with so you can keep in touch and avoid toll charges.

Solution
They will need SIP or IAX accounts on your server, broadband Internet, and your
server must be Internet-accessible. Then they will need either a soft IP phone, an ana-
log telephone adapter like Digium’s IAXy (pronounced eek-see) or the Linksys Sipura
SPA-1001, or a hard IP phone. The IAXy and SPA-1001 are finicky to configure, but
easy for your users.

172 | Chapter 5: Building a VoIP Server with Asterisk

Using softphones means your users will need their own computers with sound gear
and access to broadband Internet. And, if they are behind firewalls, they’ll need
those configured to allow their VoIP traffic. Follow Recipe 5.6. Make sure your
server has a proper, publicly routable IP address.

The IAXy and the SPA-1001 are very small, so users can easily travel with them.
They’ll need analog phones and broadband Internet to use these. The IAXy uses the
IAX protocol, and costs around $100. The SPA-1001 is a SIP device, and is about
$70. Both come with good configuration instructions. Your Asterisk server supports
IAX and SIP, so either device works fine.

Good-quality hard phones start around $100. These are usually big, multiline desk
phones, and not very portable for road warriors. But, they might be nice for Mom and
Dad. They’ll be easy to use, and have good sound quality. Not many hardphones sup-
port IAX, so you’ll probably have to set up a SIP account for Mom and Dad.

Discussion
You’ll want to configure these remote accounts carefully, so that you are not expos-
ing internal or outbound calling services to the world. If you have PSTN termination
on your server, your remote users will have your local calling area for free, and any
other services you give them access to. The recipes in this chapter show you how to
separate services and privileges.

See Also
• Search VoIP-info.org (http://voip-info.org/wiki/) and the Asterisk mailing lists

(http://www.voip-info.org/wiki-Asterisk+Mailing+Lists) for information and user
reviews on specific products

• These are some sites to get you started on shopping:

VoIP Supply: http://www.voipsupply.com
Telephonyware.com: http://www.telephonyware.com/

173

Chapter 6 CHAPTER 6

Routing with Linux

6.0 Introduction
Linux on ordinary commodity hardware can handle small to medium routing needs
just fine. The low- to mid-range commercial routers use hardware comparable to
ordinary PC hardware. The main difference is form factor and firmware. Routers that
use a real-time operating system, like the Cisco IOS, perform a bit better under heavy
loads than Linux-based routers. Big companies with large, complex routing tables
and ISPs need the heavy-duty gear. The rest of us can get by on the cheap just fine.
You don’t want poor-quality hardware; that’s always a bad idea. You just don’t need
to spend the moon for simple routing like this chapter covers.

The highest-end routers use specialized hardware that is designed to move the maxi-
mum number of packets per second. They come with multiple fat data buses, multiple
CPUs, and Ternary Content Addressable Memory (TCAM) memory. TCAM is several
times faster than the fastest system RAM, and many times more expensive. TCAM is
not used in lower-cost devices, and no software can shovel packets as fast as TCAM.

But, for the majority of admins, this is not an issue because you have an ISP to do the
heavy lifting. Your routing tables are small because you’re managing only a few net-
works that are directly under your care.

In this chapter, we’re going to perform feats of static routing using the route and ip
commands, and dynamic routing using two interior routing protocols, Routing Infor-
mation Protocol (RIP) and Open Shortest Path First (OSPF).

How do you know which one to use? RIP is the simplest to implement. Every 30 sec-
onds it multicasts its entire routing table to your whole network, and all RIP routers
update their routing tables accordingly. RIP is known as a distance-vector routing
algorithm because it measures the distance of a route by the number of hops, and it
calls the path to the next hop a vector. RIP is limited to 15 hops; if any destination is
farther than that, RIP thinks it is unreachable.

174 | Chapter 6: Routing with Linux

RIP works fine for managing stable, less-complex networks.

OSPF is a link-state algorithm, which means a router multicasts its information when
changes have occurred, and routine updates every 30 minutes. Each OSPF router
contains the entire topology for the network, and is able to calculate on its own the
best path through the network.

As your network grows, it becomes apparent that updates are the bottlenecks. When
you’re riding herd on 50 or 100 or more routers, they’re going to spend a lot of time
and bandwidth talking to each other. OSPF solves this problem by allowing you to
divide your network into areas. These must all be connected to a common back-
bone, and then the routers inside each area only need to contain the topology for
that area, and the border routers communicate between each area.

Exterior Protocols
You’ve probably heard of exterior routing protocols like Border Gateway Protocol
(BGP) and Exterior Gateway Protocol (EGP). Quagga supports BGP. We’re not
going to get into these in this chapter because if you need BGP, you’ll have a service
provider to make sure you’re set up correctly. When do you need BGP? When you’re
a service provider yourself, or when you have two or more transit providers, and you
want them configured for failover and redundancy. For example, ISPs boast of things
like “four Tier-One Internet connectivity providers...multiple connections, man-
aged with Border Gateway Protocol to optimize routing across connections, ensures
low-latency delivery to users worldwide.”

If you’re in a situation where you need high-availability and no excuses, you might
first consider using a hosting service instead of self-hosting. Then someone else has
all the headaches of security, maintaining equipment, providing bandwidth, and
load-balancing.

There are all kinds of excellent specialized router Linux distributions. See the Intro-
duction to Chapter 3 for a partial list.

Linux Routing and Networking Commands
You’ll need to know several similar methods for doing the same things. The net-tools
package is the old standby for viewing, creating and deleting routes, viewing infor-
mation on interfaces, assigning addresses to interfaces, bringing interfaces up and
down, and viewing or setting hostnames. The netstat command is a utility you’ll use
a lot for displaying routes, interface statistics, and showing listening sockets and
active network connections. These are the commands that come with net-tools:

• ifconfig

• nameif

6.0 Introduction | 175

• plipconfig

• rarp

• route

• slattach

• ipmaddr

• iptunnel

• mii-tool

• netstat

• hostname

Debian puts hostname in a separate package. dnsdomainname, domainname,
nisdomainname, and ypdomainname are all part of hostname.

In fact, the different Linux distributions all mess with net-tools in various ways, so
yours may include some different commands.

iproute2 is supposed to replace net-tools, but it hasn’t, and probably never will.
iproute2 is for policy routing and traffic shaping, plus it has some nice everyday fea-
tures not found in net-tools, and it has the functionality of net-tools. It includes these
commands:

• rtmon

• ip

• netbug

• rtacct

• ss

• lnstat

• nstat

• cbq

• tc

• arpd

ip and tc are the most commonly used iproute2 commands. ip does the same jobs as
route, ifconfig, iptunnel, and arp. Just like net-tools, iproute2 varies between distribu-
tions. tc is for traffic-shaping.

It would be lovely to have to know only one of these, but you’re going to encounter
both, so you might as well get familiar with all of them.

176 | Chapter 6: Routing with Linux

6.1 Calculating Subnets with ipcalc

Problem
You often see documentation with instructions like “you must use different subnets
for this to work,” or “be sure your hosts are all on the same network.” But, you’re a
bit hazy on what this means, and how to make the address calculations—is there a
tool to help you?

Solution
There is indeed: ipcalc. This is a standard program available for any Linux. This
command shows you everything you need to know for a single network:

$ ipcalc 192.168.10.0/24
Address: 192.168.10.0 11000000.10101000.00001010. 00000000
Netmask: 255.255.255.0 = 24 11111111.11111111.11111111. 00000000
Wildcard: 0.0.0.255 00000000.00000000.00000000. 11111111
=>
Network: 192.168.10.0/24 11000000.10101000.00001010. 00000000
HostMin: 192.168.10.1 11000000.10101000.00001010. 00000001
HostMax: 192.168.10.254 11000000.10101000.00001010. 11111110
Broadcast: 192.168.10.255 11000000.10101000.00001010. 11111111
Hosts/Net: 254 Class C, Private Internet

So, here you see the old-fashioned dotted-quad notation, the newfangled CIDR nota-
tion, the available host address range, the number of hosts you can have on this
network, and the binary addresses. ipcalc shows the network portion of the address,
which is 192.168.10, and the host portion, which is 1–254. And it’s a nice visual aid
for understanding netmasks.

On Fedora, ipcalc is very different, and not nearly as helpful as the real
ipcalc. You can install the real ipcalc from source, which you can
download from http://freshmeat.net/projects/ipcalc/, or try whatmask.
whatmask is similar to ipcalc, and it is in the Fedora repositories, so
you can install it with yum install whatmask.

You need to specify the netmask if it’s not /24 (or 255.255.255.0). The more
common CIDR netmasks are:

/8
/16
/24

Or, their dotted-quad equivalents:

255.0.0.0
255.255.0.0
255.255.255.0

6.1 Calculating Subnets with ipcalc | 177

Use netmasks to differentiate the network part of the address and the host address
part. These are the private IPv4 private address ranges:

10.0.0.0–10.255.255.255
172.16.0.0–172.31.255.255
192.168.0.0–192.168.255.255

The first one, 10.0.0.0–10.255.255.255, gives you the most possible addresses. If you
use the first quad for the network address, and the last three for host addresses,
you’ll have 16,777,214 addresses to play with, all in one giant network, which you
can see for yourself:

$ ipcalc 10.0.0.0/8
Address: 10.0.0.0 00001010. 00000000.00000000.00000000
Netmask: 255.0.0.0 = 8 11111111. 00000000.00000000.00000000
Wildcard: 0.255.255.255 00000000. 11111111.11111111.11111111
=>
Network: 10.0.0.0/8 00001010. 00000000.00000000.00000000
HostMin: 10.0.0.1 00001010. 00000000.00000000.00000001
HostMax: 10.255.255.254 00001010. 11111111.11111111.11111110
Broadcast: 10.255.255.255 00001010. 11111111.11111111.11111111
Hosts/Net: 16777214 Class A, Private Internet

A 16,777,214-host network all in one subnet probably isn’t what you want, so you
can whittle it down into smaller subnets. This example show three subnets that use
the first two quads (in bold) for the network portion of the address:

$ ipcalc 10.1.0.0/16
$ ipcalc 10.2.0.0/16
$ ipcalc 10.3.0.0/16

You could number these all the way up to 10.255.0.0/16. You can make even smaller
subnets with a bigger netmask:

$ ipcalc 10.1.1.0/24
$ ipcalc 10.1.2.0/24
$ ipcalc 10.1.3.0/24

All the way up to 10.255.255.0/16.

The host address portions number from 1–254. Remember, the broadcast address is
always the highest in the subnet.

ipcalc has one more excellent trick: calculating multiple subnets with one command.
Suppose you want to divide a 10.150.0.0 network into three subnets for 100 total
hosts. Just tell ipcalc your netmask, and how many hosts you want in each segment:

$ ipcalc 10.150.0.0/16 --s 25 25 50

ipcalc then spells it all out for you, and even shows your unused address ranges.

178 | Chapter 6: Routing with Linux

Discussion
ipcalc has a few simple options, which you can see by running:

$ ipcalc --help

Classless Inter-Domain Routing (CIDR) notation is compact, and lets you slice and
dice your networks finely, all the way down to a single host, which is /32. It is
supposed to replace the old dotted-quad netmask notation, but you’ll find you need
to know both because there are applications that still don’t support CIDR.

See Also
• man 1 ipcalc

• RFC 1597—Address Allocation for Private Internets

6.2 Setting a Default Gateway

Problem
You’re a bit confused on the concepts of gateways and default gateways. When do
you need them? What are they for? How do you configure them?

Solution
Gateways forward traffic between different networks, like different subnets, or your
local network and the Internet. Another way to think of them is next hop routers.
The default gateway contains the default route out of your network. Any host that is
allowed access outside of the local network needs a default gateway.

Suppose your network is set up like this:

• Your LAN is on 10.10.0.0/24

• You have a single shared Internet connection with a static WAN address of 208.
201.239.36

• Your ISP has assigned you a default gateway of 208.201.239.1

You’ll need to configure two gateways: from your individual LAN hosts to your
router, and then from your router to your ISP. Figure 6-1 illustrates this network
configuration.

There are several different ways of configuring gateways on your LAN hosts. One
way is with route:

route add default gw 10.10.0.25

Another way is with iproute2:

ip route add default via 10.10.0.25

6.2 Setting a Default Gateway | 179

If your PC has more than one network interface, you can specify a single one:

route add default gw 10.10.0.25 eth2
ip route add default via 10.10.0.25 dev eth2

But, these will not survive a reboot. Debian users have /etc/network/interfaces for per-
manent network configurations. For hosts with static IP addresses, add a gateway
line to your interface stanzas:

gateway 10.10.0.25

Fedora users have individual configuration files for each interface in /etc/sysconfig/
network-scripts, like ifcfg-eth0:

gateway 10.10.0.25

Your router then needs a gateway 208.201.239.1 statement in the configuration for its
WAN interface to get Internet access.

Use these commands to remove gateways:

route del default
route del default gw 10.10.0.25
ip route del default
ip route del default via 10.10.0.25

ip will not let you set more than one default gateway, which route will let you do.
There can be only one.

Discussion
Gateways cannot have addresses outside of their own networks. The example used in
this recipe demonstrates this—the WAN interface, 208.201.239.36, is on the same
network as the ISP, 208.201.239.1. The LAN gateway interface is on the LAN
network.

How do you decide which route to make your default gateway? By the number of
routes it serves. Your Internet gateway leads you to hundreds of thousands of routes,
while you’re going to have just a few local routes.

Figure 6-1. LAN, router, and ISP gateway

Lan switch

Your border
router

ISP gateway
208.201.239.1

eth0
10.10.0.25

eth1
208.201.239.36

LAN
10.10.0.0/24

180 | Chapter 6: Routing with Linux

Using route or ip is great for testing because you can set up and tear down routes as
fast as you can type.

Computers do not need routes or default gateways to access other hosts in their own
subnet. You can test this easily by deleting your default gateway and running some
ping tests.

Any hosts that need access outside their own subnet must have default gateways. A
computer may have many routes, but it can have only one default gateway. This
keeps your routing tables manageable because then you don’t need routes for every
possible destination.

TCP/IP routing can be thought of as a series of hops. You’ll see the term next hop a
lot. All it means is any router only needs to know the next router to forward packets
to. It doesn’t have to know how to get all the way to the final destination.

The word gateway encompasses a number of meanings. It’s the entrance to a net-
work, and it’s a translator between different protocols or codecs. In the olden days,
you would have needed a gateway between incompatible networking protocols like
Token Ring, IPX/SPX, and Ethernet. TCP/IP and Ethernet are pretty much it these days,
and most computers support multiple protocols. Voice over IP often requires transcod-
ing of various VoIP protocols, so we have specialized media gateways to do this.

See Also
• Chapter 4 to learn how to configure DHCP and DNS using dnsmasq

• man 8 ip

• man 8 route

6.3 Setting Up a Simple Local Router

Problem
You have a single shared Internet connection, and your LAN is divided into a num-
ber of subnets. You want your subnets to be able to communicate with each other.
What do you have to do to make this magic occur?

Solution
Not much. All it takes is a single router, and all of your subnets connected to it.
Suppose you have these three subnets:

• 10.25.0.0/16

• 172.32.0.0/16

• 192.168.254.0/24

6.3 Setting Up a Simple Local Router | 181

You router needs to have three network interfaces with one address on each net-
work segment:

• eth0 = 10.25.0.10

• eth1 = 172.32.12.100

• eth2 = 192.168.254.31

Each subnet has its own switch, which is connected to your router, like Figure 6-2.

Then, turn on IP forwarding on your router. You can do this from the command line:

echo 1 > /proc/sys/net/ipv4/ip_forward

This does not survive a reboot, so you can set it permanently in /etc/sysctl.conf, and
then start it immediately:

##/etc/sysctl.conf
net.ipv4.ip_forward = 1

sysctl -p

Next, assign these three addresses as the default gateways for the hosts on each net-
work. All computers in the 10.25.0.0/16 will use 10.25.0.10 as their default gateway,
and I think you can extrapolate what the other two networks will use for their
default gateways.

Once this is done, your three networks will be able to pass TCP/IP traffic back and
forth with ease.

Figure 6-2. Local subnets connected to a single router

Router

Switches

192.168.254.0/24

172.32.0.0/16

10.25.0.0/16

182 | Chapter 6: Routing with Linux

Discussion
You don’t have to use addressing from completely different private address ranges like
the ones used in this recipe. I used those to make it easier to see the different net-
works. You can use any nonconflicting addressing scheme, such as in these examples:

10.25.0.0/16
10.26.0.0/16
10.27.0.0/16

or:

172.16.1.0/24
172.16.2.0/24
172.16.3.0/24

You must not have duplicate addresses anywhere. Don’t be shy about using ipcalc—
it’s a lifesaver.

When you turn on IP forwarding on the router, it automatically forwards packets
between between all of its interfaces. This works fine for two types of networks:

• Networks using private addressing

• Networks using public routable addresses

It does not work when you want to share an Internet connection with networks
using private addressing because the private address ranges are not routable over the
Internet. You need Network Address Translation (NAT) to make this work. Suppose
your multihomed router is attached to two local networks using private addresses, and
has one public routable IP address on an Internet-connected interface. Your private
networks will see each other just fine, but they won’t have Internet access until you
configure NAT.

Strictly speaking, the private address ranges are routable, as you can see on your
local networks, but most ISPs filter out any that find their way on to the Internet and
won’t forward them. Because, obviously, we can’t have random hordes of duplicate
private addresses gumming up the Internet.

See Recipe 6.4 to learn a simple way to use NAT to share an Internet connection.

See Also
• man 8 sysctl

• Recipes 3.2 and 3.3 to learn how to configure network interfaces

6.4 Configuring Simplest Internet Connection Sharing | 183

6.4 Configuring Simplest Internet Connection
Sharing

Problem
You want to enable Internet connection sharing on your Linux router. You have one
or more networks behind your router using private address ranges. You don’t want
to set up a firewall because you’re taking care of that elsewhere, or you just want to
do some testing, so you want plain old simple Internet connection sharing.

Solution
Use this iptables script, which follows the conventions used in Chapter 3:

#!/bin/sh
##/usr/local/bin/nat_share
#minimal iptables script for
#sharing an Internet connection

#define variables
ipt="/sbin/iptables"
mod="/sbin/modprobe"
WAN_IFACE="eth1"

#load kernel modules
$mod ip_tables
$mod iptable_filter
$mod iptable_nat
$mod ip_conntrack
$mod iptable_mangle
$mod ipt_MASQUERADE
$mod ip_nat_ftp
$mod ip_nat_irc
$mod ip_conntrack_ftp
$mod ip_conntrack_irc

#Flush all active rules and delete all custom chains
$ipt -F
$ipt -t nat -F
$ipt -t mangle -F
$ipt -X
$ipt -t nat -X
$ipt -t mangle -X

#Set default policies
$ipt -P INPUT ACCEPT
$ipt -P FORWARD ACCEPT
$ipt -P OUTPUT ACCEPT
$ipt -t nat -P OUTPUT ACCEPT

184 | Chapter 6: Routing with Linux

$ipt -t nat -P PREROUTING ACCEPT
$ipt -t nat -P POSTROUTING ACCEPT
$ipt -t mangle -P PREROUTING ACCEPT
$ipt -t mangle -P POSTROUTING ACCEPT

#always have an entry for interface lo
$ipt -A INPUT -i lo -j ACCEPT
$ipt -A OUTPUT -i lo -j ACCEPT

#rewrite source addresses to WAN address
$ipt -t nat -A POSTROUTING -o $WAN_IFACE -j SNAT --to-source 22.33.44.55

Of course, you must substitute your own interface name and WAN address. If you
don’t have a static WAN address, but get it from DHCP, use this line instead:

#Enable IP masquerading
$ipt -t nat -A POSTROUTING -o $WAN_IFACE -j MASQUERADE

This script offers zero protection—it does no packet filtering at all, but only handles
the job of rewriting your private addresses to your WAN address and back again.

Discussion
You’re probably looking at this script and wondering “what is so simple about this
giant script?” But it really is. All those kernel modules are required. You could get rid
of that part of the script by building them into a custom kernel instead of using load-
able modules. You could leave out the next section, the part that flushes existing
rules and chains, by using a separate script to do this, such as fw_flush from
Chapter 3. It’s important to give iptables a clean start so you’re not getting
interefence from leftover rules or chains. Finally, you have to have the correct poli-
cies, or you might get unexpected results. The last line makes it possible to share
your Internet connection.

This is a completely insecure setup. Why would you want to use this? It’s good for
testing, and for when you want to place your firewall somewhere else. For example,
you might want to use a separate firewall for each network segment, or one firewall
for a DMZ, and another one for your private networks.

There is a lot of overlap between routers and iptables, so don’t make yourself crazy
trying to over-complicate your routers. For example, ip also has options for configur-
ing NAT. It’s a bit of a pain, and full of perilous pitfalls. iptables gives you much finer
control and fewer traps. As a general rule, leave routing to your routers, and packet-
filtering and mangling to iptables.

See Also
• Chapter 3 to learn more about iptables

• To learn about NAT and iproute2, see Martin Brown’s excellent “Guide to IP
Layer Network Administration with Linux”: http://linux-ip.net/html/index.html

6.5 Configuring Static Routing Across Subnets | 185

6.5 Configuring Static Routing Across Subnets

Problem
You have several private subnets to traverse, and they are not all connected to the
same physical router, so how do you give them access to each other?

Solution
There is an easy way and a hard way. The hard way is to create static routes from
router to router. Suppose you have three subnets and three routers, like Figure 6-3
shows.

Each router will need two routes. For example, you would set the routes on Router C
like this:

route add -net 192.168.10.0/24 gw 172.24.0.25 eth1
route add -net 172.16.5.0/24 gw 172.24.0.25 eth1

Then, Router B:

route add -net 192.168.10.0/24 gw 172.16.5.125 eth1
route add -net 172.24.0.0/24 gw 172.16.5.125 eth1

And, Router A:

route add -net 172.16.5.0/24 gw 192.168.10.100 eth1
route add -net 172.24.0.0/24 gw 192.168.10.100 eth1

Now, hosts on all three subnets can communicate with each other. Deleting routes is
done like this:

route del -net 192.168.10.0/24

Figure 6-3. Three subnets and three routers

10.0.0.0/24

eth1
192.168.10.100

eth0
10.0.0.1

eth1
172.16.5.125

eth0
10.0.1.1

eth1
172.24.0.25

eth0
10.0.2.1

10.0.1.0/24 10.0.2.0/24

186 | Chapter 6: Routing with Linux

This is a fair bit of work; you have to know netmasks, and be very careful not to
make typos. The easy way is to put all three routers on the same network, like in
Figure 6-4.

Now, you don’t need to set routes at all.

Discussion
You may also use ip to set and remove routes:

ip route add 172.16.5.0/24 via 192.168.10.100
ip route del 172.16.5.0/24

It doesn’t take long for the charm of setting static routes to wear off. The other easy
way is to use dynamic routing, which we’ll get to starting with Recipe 6.7.

See Also
• man 8 route

6.6 Making Static Routes Persistent

Problem
You don’t want to have to retype all those route commands every time there’s a
power blip, or when you make hardware changes. Aren’t there some nice configura-
tion files for permanently enshrining your static routes?

Figure 6-4. Three routers on the same network

10.0.0.0/24

eth1
192.168.10.100

eth0
10.0.0.1

eth1
192.168.10.101

eth0
10.0.1.1

eth1
192.168.10.102

eth0
10.0.2.1

10.0.1.0/24 10.0.2.0/24

6.7 Using RIP Dynamic Routing on Debian | 187

Solution
Of course there are. On Debian, add them to /etc/network/interfaces in the stanza for
their corresponding interface:

auto eth1
iface eth1 inet static
address 192.168.10.100
netmask 255.255.255.0
gateway 22.33.44.55
broadcast 192.168.10.255

up route add -net 172.16.5.0/24 gw 192.168.10.100 eth1
up route add -net 172.24.0.0/24 gw 192.168.10.100 eth1
down route del -net 172.24.0.0/24
down route del -net 172.16.5.0/24

On Fedora, create a /etc/sysconfig/network-scripts/route-* file, like this:

##/etc/sysconfig/network-scripts/route-eth1
192.168.10.0/24 via 172.24.0.25
172.16.5.0/24 via 172.24.0.25

This uses ip command-type syntax. It is important to use the correct filename, with
your correct device name, or it won’t work. Take the device name from its own con-
figuration file, like /etc/sysconfig/network-scripts/ifcfg-eth1.

Discussion
On Fedora, don’t use /etc/network/static-routes. That was deprecated several releases
ago, and no longer works.

Your routers will need a default gateway if there is another route out of your net-
work, like an Internet connection. If there is no Internet or link to another separate
network, they won’t need default gateways.

See Also
• man 5 interfaces (Debian)

• man 8 ifup (Debian)

• man 8 ip

6.7 Using RIP Dynamic Routing on Debian

Problem
Your networks aren’t all that complex, but you don’t want to hassle with manually
configuring routes. Isn’t this the kind of work that computers should be doing, the
repetitive boring stuff? Your routers are Debian-based.

188 | Chapter 6: Routing with Linux

Solution
Indeed, this is the sort of drudgery that computers excel at handling. There are two
categories of dynamic routing protocols: interior and exterior. In this recipe, we shall
look at Routing Information Protocol, the simplest interior routing protocol. RIP is
included in the Quagga suite of routing protocols.

Installation is boringly easy:

aptitude install quagga

Now, you must edit some configuration files. Start with /etc/quagga/daemons, and
enable zebra and ripd:

##/etc/quagga/daemons
zebra=yes
bgpd=no
ospfd=no
ospf6d=no
ripd=yes
ripngd=no
isisd=no

Next, create /etc/quagga/zebra.conf:

!/etc/quagga/zebra.conf
hostname router1
password bigsecret
enable password bigsecret
service advanced-vty
log file /var/log/quagga/zebra.log
!
!administrative access controls- local machine only
!
access-list localhost permit 127.0.0.1/32
access-list localhost deny any
!
line vty
 access-class localhost

Now, create /etc/quagga/ripd.conf:

!/etc/quagga/ripd.conf
hostname router1
password moresecret
enable password moresecret
router rip
network eth1
redistribute static
redistribute connected
service advanced-vty
log file /var/log/quagga/ripd.log
!
!administrative access controls- local machine only
!

6.7 Using RIP Dynamic Routing on Debian | 189

access-list localhost permit 127.0.0.1/32
access-list localhost deny any
!
line vty
 access-class localhost

And now, set correct ownership and file permissions:

chown quagga:quagga ripd.conf zebra.conf
chown :quaggavty vtysh.conf

Add these lines to /etc/services:

zebrasrv 2600/tcp # zebra service
zebra 2601/tcp # zebra vty
ripd 2602/tcp # RIPd vty

Finally, add this line to /etc/environment:

VTYSH_PAGER=more

Now, fire it up:

/etc/init.d/quagga start

Do this on all of your routers, and you’re finished.

Give it a couple of minutes, then fire up your favorite command to view your rout-
ing table:

$ /sbin/route
$ ip route show
$ netstat -rn

Discussion
Quagga’s configuration files use exclamation marks for comments.

All of the Quagga daemons are controlled from a single startup file:

/etc/init.d/quagga {start|stop|restart|force-reload| [daemon]}

You could do no more than this recipe and be content. Each Quagga daemon broad-
casts its routing table every 30 seconds via multicast to your other RIP-enabled routers,
and so you don’t have to hassle with creating static routes all over the place.

Debian, by default, limits vty access to the local machine in /etc/quagga/debian/conf,
and Fedora uses /etc/sysconfig/quagga. See Recipe 6.10 to learn how to enable remote
logins.

Some definitions for ripd.conf:

hostname
This is arbitrary, and has nothing to do with the router’s Linux hostname. It
controls the hostname you see displayed on the vtysh or telnet command line.

190 | Chapter 6: Routing with Linux

router rip
Specify the rip routing protocol here. The default is to send v2 and receive 1 and
2. Other protocol options are ripng, ospf, ospf6, and bgp, which of course you
would use in their respective configuration files.

network eth1
Which interface or interfaces ripd should listen on. Name additional interfaces
on separate lines.

redistribute static
Share any static routes; these are listed in zebra.conf.

redistribute connected
Share directly connected routes. For example, your router is connected to the
10.0.0.1/24 network, so it will tell your other routers how to get to it.

service advanced-vty
Enables advanced vty functions such as command history and tab-completion.

access-list
The two access-list lines define a new class, localhost. The class name can be
anything you want; it doesn’t have to be localhost. After defining the class, the

line vty
 access-class localhost

lines mean “only allow vty logins on the local machine. No remote logins
allowed.”

The default logging level is debugging, which creates the most output. You may spec-
ify any of the following loglevels: emergencies, alerts, critical, errors, warnings,
notifications, information, or debugging, like this:

log file /var/log/quagga/ripd.log warnings

If you don’t have a logfile, a crash will generate a /var/tmp/quagga.[daemon name].
crashlog file. This must be deleted to allow new crashlog files to be generated.

RIP has two versions. RIPv1 is pretty limited, and should be avoided if possible. It
does not support classless network notation, and is slow to respond to changing con-
ditions such as a down router. RIPv2 understands classless notation, doesn’t get
stuck in low gear, and uses triggered updates for quick responses to changes. It is
compatible with RIPv1, in case you’re stuck with some really old gear. The default is
to send v2 and to receive 1 and 2. The version 2 option tells it to send and receive v2
only.

RIP is limited to 15 hops, so it’s no good for large complex networks.

Quagga includes five routing daemons: ripd, ripngd, ospfd, ospf6d, and bgpd, and one
manager daemon, zebra. zebra must always be started first. Each daemon has its own
port that it listens on:

6.8 Using RIP Dynamic Routing on Fedora | 191

zebrasrv 2600/tcp
zebra 2601/tcp
ripd 2602/tcp
ripngd 2603/tcp
ospfd 2604/tcp
bgpd 2605/tcp
ospf6d 2606/tcp
ospfapi 2607/tcp
isisd 2608/tcp

See Also
• Quagga documentation: http://www.quagga.net/docs/docs-info.php

• /usr/share/doc/quagga/README.Debian

• man 8 ripd

• man 8 zebra

• Recipe 6.9

• Recipe 6.10

6.8 Using RIP Dynamic Routing on Fedora

Problem
Your networks aren’t all that complex, but you don’t want to hassle with manually
configuring routes. Isn’t this the kind of work that computers should be doing, the
repetitive boring stuff? Your routers are Fedora-based.

Solution
RIP is configured in exactly the same way on Fedora as it is in Debian (see Recipe 6.7).
The one difference is the daemons are started differently. Fedora has a separate con-
trol file for each daemon.

Configure zebra.conf, ripd.conf, and vtysh.conf just like in the previous recipe, and
give them the same permissions and ownership.

Next, turn on the startup files for zebra and ripd:

chkconfig --add zebra
chkconfig --add ripd

Then, you may use the standard Fedora control commands:

/etc/init.d/zebra {start|stop|restart|reload|condrestart|status}

192 | Chapter 6: Routing with Linux

Discussion
When you see a line like:

chkconfig: - 16 84

in a startup file on Fedora, that means you can run the chkconfig command without
having to manually specify the runlevels and priorities.

See Also
• Quagga documentation: http://www.quagga.net/docs/docs-info.php

• /usr/share/doc/quagga-*

• man 8 ripd

• man 8 zebra

6.9 Using Quagga’s Command Line

Problem
You like to run commands from a command shell, and not always have to edit con-
figuration files. How do you do this with Quagga?

Solution
Quagga comes with its own command shell, the Virtual TeletYpe shell vtysh. With
vtysh, you can interact with all Quagga daemons on the local machine. You may also
communicate directly with each routing daemon with telnet.

First, you need to edit or create /etc/quagga/vtysh.conf:

!/etc/quagga/vtysh.conf
hostname router1
username root nopassword

On Debian, add this line to /etc/environment:

VTYSH_PAGER=more

Now, open up a new terminal, and fire it up as the root user:

root@xena:~# vtysh

Hello, this is Quagga (version 0.99.4).
Copyright 1996-2005 Kunihiro Ishiguro, et al.

router1#

vtysh has two modes: normal and enable. In normal mode, you can view system sta-
tus; in enable mode, you can edit configurations and run commands. vtysh opens in
normal mode. These two commands show both sets of available commands:

6.9 Using Quagga’s Command Line | 193

router1# ?
router1# list

You can view all current configurations with one command:

router1# write terminal

To run any routing commands, or to change configurations, change to configure
mode:

router1# configure terminal
router1(config)#

The same commands display all the available commands:

router1(config)# ?
router1(config)# list

exit closes each session in turn. vtysh will run even when no Quagga daemons are
running.

A second option is to use telnet. telnet can talk to only one daemon at a time, like this
example for ripd:

carla@xena:~$ telnet localhost 2602
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

Hello, this is Quagga (version 0.99.4).
Copyright 1996-2005 Kunihiro Ishiguro, et al.

User Access Verification

Password:
router1>

Any user who knows the daemon’s password can log in from telnet.

Just like vtysh, this opens a session in normal mode. Use the enable command to
switch to enable mode, then configure terminal to run configuration commands:

router1> enable
router1# configure terminal
router1(config)#

exit, end, or quit get you out of there; ? and list show commands.

Discussion
The username root nopassword line is necessary for vtysh to even start. The user
named here does not need a password to open a vtysh session. You may substitute
any user you like. Make sure this file is readable and writable only by the user named
in the file, and keep in mind there is no way to set a password.

194 | Chapter 6: Routing with Linux

If you get a blank screen with (END) in the bottom-left corner, add VTYSH_PAGER=more
to your environment variables, either in your own .profile, or globally in /etc/
environment.

The hostname can be anything you want, so you could give each routing daemon a
different hostname to help you keep track.

See Also
• Quagga documentation: http://www.quagga.net/docs/docs-info.php

• /usr/share/doc/quagga

• man 8 ripd

• man 8 zebra

6.10 Logging In to Quagga Daemons Remotely

Problem
You understand that Quagga allows telnet logins, and that telnet is completely inse-
cure because it sends all traffic in cleartext. But you feel pretty safe on your own
network, so you want to be able to log in and run your routers remotely. Not over
the Internet, which would be suicidal, but just on your own LAN.

Solution
You’ll need to configure your daemons to listen on all interfaces, and then configure
access controls in each daemon’s configuration file.

On Debian, edit /etc/quagga/debian.conf to allow your daemons to listen to all interfaces:

vtysh_enable=yes
zebra_options=" --daemon"
ripd_options=" --daemon"

Do the same thing in Fedora, in /etc/sysconfig/quagga.

Then, add these lines to the daemon’s configuration files, like this example for zebra.
conf:

access-list localhost permit 127.0.0.1/32
access-list localhost deny any
access-list lan1 permit 192.168.1.0/24
access-list lan1 deny any
access-list lan2 permit 192.168.2.0/24
access-list lan2 deny any
!
line vty
 access-class localhost
 access-class lan1
 access-class lan2

6.11 Running Quagga Daemons from the Command Line | 195

That allows logins from localhost and two local subnets, and no one else. Each one is
given a separate class; this lets you disable access by commenting out an access-
class line.

Then, on Debian, restart Quagga:

/etc/init.d/quagga restart

On Fedora, restart each daemon individually:

/etc/init.d/zebra restart
/etc/init.d/ripd restart

Now, you should be able to telnet in from your LAN neighbors by specifying the IP
address or hostname and port number:

terry@uberpc:~$ telnet xena 2601

Discussion
The access-list names, which in this example are localhost, lan1, and lan2, are
whatever you want them to be.

The example in this recipe is fairly complex, and controls access per subnet. You
could simplify it by lumping everything into a single access list:

access-list allowed permit 127.0.0.1/32
access-list allowed permit 192.168.1.0/24
access-list allowed permit 192.168.2.0/24
access-list allowed deny any
!
line vty
 access-class allowed

See Also
• Quagga documentation: http://www.quagga.net/docs/docs-info.php

• /usr/share/doc/quagga

• man 8 ripd

• man 8 zebra

6.11 Running Quagga Daemons from the Command
Line

Problem
Do you have to edit configuration files? Can’t you write them from the Quagga com-
mand line, or do commands on the fly?

196 | Chapter 6: Routing with Linux

Solution
Yes, you may do all of those things from both vtysh and telnet. The commands are
exactly the same on the command line as they are in configuration files, so you can
write all of your configurations from the command line if you wish. Here is a simple
example for zebra.conf:

carla@xena:~$ telnet localhost 2601
router1> enable
router1> write terminal
router1# configure terminal
router1(config)# hostname zebra2
zebra2(config)# password zebra
zebra2(config)# enable password zebra
zebra2(config)# log file /var/log/quagga/zebra.log
zebra2(config)# write file
Configuration saved to /etc/quagga/zebra.conf
zebra2(config)# write terminal

This does not completely overwrite your existing configuration file. It changes exist-
ing options and adds new ones, but does not delete any. write terminal shows your
current configuration, so if you wish to delete existing options, you can first see what
they are, then remove them with the appropriate no command:

zebra2(config)# write terminal

Current configuration:
!
hostname zebra2
password zebra
enable password zebra
log file /var/log/quagga/zebra.log
!
interface eth0
 ipv6 nd suppress-ra
!
interface eth1
 ipv6 nd suppress-ra
!
interface lo
!
interface sit0
 ipv6 nd suppress-ra
!
access-list localhost permit 127.0.0.1/32
access-list localhost permit 192.168.1.0/24
access-list localhost permit 192.168.2.0/24
access-list localhost deny any
!
!
line vty
 access-class localhost

6.12 Monitoring RIPD | 197

!
end

zebra2(config)# no access-list localhost
zebra2(config)# no log file /var/log/quagga/zebra.log
zebra2(config)# write file
Configuration saved to /etc/quagga/zebra.conf

Rerun write terminal to view your changes.

You can’t do just any old thing with the no command; run the list command to see
what no commands are available.

Discussion
A nice bonus of writing configuration files this way is the file permissions are han-
dled automatically for you.

When you configure zebra.conf from the command line, it automatically adds ipv6
nd suppress-ra lines for every interface on your system. This means “don’t advertise
IPv6 routes.” If you don’t want these, you’ll have to delete them directly from zebra.
conf. If you’re not using IPv6, it does no harm to leave them in place.

See Also
• Quagga documentation: http://www.quagga.net/docs/docs-info.php

• /usr/share/doc/quagga

6.12 Monitoring RIPD

Problem
How do you see what RIPD is doing in real time?

Solution
Open a telnet session, and run the built-in RIPD-watching commands:

$ telnet localhost 2602
ripd1> show ip rip
ripd1> show ip rip status
ripd1> show work-queues

There are a number of helpful debugging commands as well:

ripd1> enable
ripd1# debug rip zebra
ripd1# debug rip events

198 | Chapter 6: Routing with Linux

Discussion
The first three commands show routes and all manner of statistics, and the commu-
nications between routers. The debug commands show probably more details than
you’ll ever need to know, but when you’re tracking down a problem, they usually
pinpoint it quickly.

See Also
• Quagga documentation: http://www.quagga.net/docs/docs-info.php

• /usr/share/doc/quagga

6.13 Blackholing Routes with Zebra

Problem
You are getting hit hard by a spammer or other pest, and you would like to drop all
traffic from them at your router, instead of hassling with content or packet filters.

Solution
You can set null routes in zebra.conf with ip:

ip route 22.33.44.55/24 null0

You may also do this in a telnet session:

$ telnet localhost 2601
router1> enable
router1# configure terminal
router1(config)# ip route 22.33.44.55/24 null0

Another way to do the same thing is with this command:

router1(config)# ip route 22.33.44.55/24 blackhole

A variation on this is to use the reject option instead, which sends a “Network is
unreachable” error:

router1(config)# ip route 22.33.44.55/24 reject

Change your mind with a no command:

router1(config)# no ip route 22.33.44.55/24 reject

Discussion
This blocks everything in the netblock that you specify, so you run the risk of block-
ing wanted traffic as well as unwanted if you cast your net too widely. Use ipcalc to tell
you exactly which addresses you are blocking. CIDR notation lets you whittle it finely;
for example, 22.33.44.55/32 is a single host address. 22.33.44.55/31 is two hosts, and

6.14 Using OSPF for Simple Dynamic Routing | 199

22.33.44.55/29 is six hosts. (Yes, ipcalc even calculates fake addresses.) 22.33.44.55/24
means you’re blocking 254 addresses, and /8 is 16,777,214 addresses.

The incoming packets are not blocked; instead, nothing is sent back to the sender to
tell them “neener neener, you’re being dev-nulled.” Or, to put it in more technical
terms, the blackhole option allows in SYN packets, but prevents SYN/ACK packets
from being sent in return. So, the sender is ringing the doorbell, but you’re pretend-
ing you’re not home. The connection eventually times out. Using reject closes the
connection immediately.

I prefer using iptables to do this because iptables prevents the unwanted bits from
entering your network at all. Additionally, iptables lets you fine-tune packet filtering
in ways that routing can’t. But, blackholing routes is still a useful tool in your net-
work admin arsenal.

See Also
• Quagga documentation: http://www.quagga.net/docs/docs-info.php

• man 8 zebra

• /usr/share/doc/quagga

• Chapter 3

6.14 Using OSPF for Simple Dynamic Routing

Problem
Your network is growing in size and complexity, and you don’t feel that ripd is doing
the job for you anymore. You’re riding herd on a growing number of routers, and
performance is suffering. Now what?

Solution
This sounds like a job for ospfd. ospfd is more complex to administer, but it will con-
tinue to grow as your site grows, and not fail you.

This is a simple /etc/quagga/ospfd.conf configuration that does about the same job as
ripd:

!/etc/quagga/ospfd.conf
hostname ospfd1
password bigsecretword
enable password bigsecretword
log file /var/log/quagga/ospfd.log
!
router ospf
 ospf router-id 33.44.55.66
 network 0.0.0.0/0 area 0

200 | Chapter 6: Routing with Linux

 redistribute connected
 redistribute static
!
!administrative access controls- local machine only
!
access-list localhost permit 127.0.0.1/32
access-list localhost deny any
!
line vty
 access-class localhost

This forwards all routes, with no filtering or restrictions. It’s good for testing, but for
production systems, you should add authentication and name specific routes:

!/etc/quagga/ospfd.conf
hostname ospfd1
password bigsecretword
enable password bigsecretword
log file /var/log/quagga/ospfd.log
!
interface eth0
 ip ospf authentication message-digest
 ip ospf message-digest-key 1 md5 bigsecretword
!
router ospf
 ospf router-id 33.44.55.66
 network 192.168.10.0/0 area 0
 redistribute connected
 redistribute static
 area 0.0.0.0 authentication message-digest
!
!administrative access controls- local machine only
!
access-list localhost permit 127.0.0.1/32
access-list localhost deny any
!
line vty
 access-class localhost

ospfd is more efficient than ripd, so this could serve your needs for a long time with-
out needing more complex configurations.

On Debian systems, remember to change /etc/quagga/daemons to read ospfd=yes.
Then, restart Quagga:

/etc/init.d/quagga restart

On Fedora, just start ospfd:

/etc/init.d/ospfd start

And remember, zebra is the manager daemon, so it must always start first.

6.15 Adding a Bit of Security to RIP and OSPF | 201

Discussion
Give your routers a couple of minutes, then use your favorite routing command to
see your new routing table:

$ /sbin/route
$ ip route show
$ netstat -rn

Here are some definitions:

ospf router-id
Use this to create an arbitrary, unique 32-bit ID number for each router. An IP
address works fine.

passive interface
Do not use ospfd on this interface. Use this for interfaces that are not on a net-
work with your other routers, and on interfaces that lead outside of your
network.

See Also
• Quagga documentation: http://www.quagga.net/docs/docs-info.php

• man 8 zebra

• /usr/share/doc/quagga

6.15 Adding a Bit of Security to RIP and OSPF

Problem
All this stuff is going in cleartext between your routers—can’t you at least add a
password or something, so that the routers must authenticate to each other, and not
allow any old host claiming to be a router to mess up your routing tables?

Solution
You can set MD5-hashed passwords on your routers. Add these lines to enable
encrypted passwords for ripd in /etc/quagga/ripd.conf:

key chain localnet
 key 1
 key-string bigsecretword

interface eth1
 ip rip authentication mode md5
 ip rip authentication key-chain localnet

Replace bigsecretword with your own password, localnet with whatever name you
want, and make sure you’re specifying the correct network interface.

202 | Chapter 6: Routing with Linux

ospfd uses a slightly different syntax. Add these lines to /etc/quagga/ospfd.conf:

interface eth0
 ip ospf authentication message-digest
 ip ospf message-digest-key 1 md5 bigsecretword

router ospf
 network 172.16.5.0/24 area 0.0.0.1
 area 0.0.0.1 authentication message-digest

Use your own password, interface name, and network address. You can create multi-
ple keys for multiple interfaces, numbering them sequentially.

Discussion
Remember to restart your routing daemons after making configuration changes.

RIPv1 does not support any form of authentication. There are two ways to deal with
this. One way is to allow only RIPv2 on your network by adding this line to ripd.conf:

version 2

If you must allow RIPv1 support, ripd handles this by allowing RIPv1 and other
unauthenticated devices to receive routing information, but not to make any changes
to the routing tables.

See Also
• Quagga documentation: http://www.quagga.net/docs/docs-info.php

• man 8 ospfd

• man 8 ripd

• /usr/share/doc/quagga

6.16 Monitoring OSPFD

Problem
How do you monitor ospfd in real time to see system status and activity, or debug
problems?

Solution
Use ospfd’s built-in monitoring and debugging commands:

$ telnet localhost 2604
ospfd1> show ip ospf
ospfd1> show ip ospf interface
ospfd1> show ip ospf database
ospfd1> show ip ospf database self-originate

6.16 Monitoring OSPFD | 203

ospfd1> show ip ospf route
ospfd1> enable
ospfd1# debug ospf zebra
ospfd1# debug ospf lsa
ospfd1# debug ospf ism

show ip ospf interface displays information on all network interfaces. You may spec-
ify one like this:

ospfd1> show ip ospf interface eth2

Discussion
In addition to these, don’t forget your old reliable Linux standbys such as netstat,
route, traceroute, ping, and ip. See Chapter 19 for more information on finding and
fixing problems.

See Also
• Quagga documentation: http://www.quagga.net/docs/docs-info.php

• man 8 ospfd

204

Chapter 7CHAPTER 7

Secure Remote
Administration with SSH

7.0 Introduction
In this chapter and the next, we’ll look at some of the ways Linux offers to adminis-
ter a server and access your workstation remotely. Linux gives users great flexibility
and functionality. You may have command-line only or a full graphical desktop, just
as though you were physically present at the remote machine.

OpenSSH is the tool of choice for remote command-line administration. It’s secure,
and easy to set up and use. It’s also good for running a remote graphical desktop
because you can tunnel X Windows securely over SSH. This works well over fast
local links. However, it’s less satisfactory over a dial-up or Internet connection
because you’ll experience significant lag.

Rdesktop is a simple Linux client for connecting to Windows Terminal Servers, and
to the Windows XP Professional Remote Desktop. This is useful for some system
administration tasks, and for accessing Windows applications from Linux.

For dial-up users who want a remote graphical desktop over dial-up, FreeNX is just
the ticket. It is designed to deliver good performance over slow links. Currently, you
can use it to access a Linux PC from Linux, Windows, Mac OS X, and Solaris.

VNC is the reigning champion of cross-platform remote graphical desktops. With
VNC, you can do all sorts of neat things: run several PCs from a single keyboard,
mouse, and monitor, mix and match operating systems, and do remote technical
support.

In this chapter, we’ll look at how to use OpenSSH. The next chapter is devoted to
Rdesktop, FreeNX, and VNC.

7.0 Introduction | 205

OpenSSH
OpenSSH is the Free Software implementation of the SSH protocol, licensed under a
modified BSD license that pretty much lets you do whatever you want with it,
including modifying and redistributing it, as long as you include the copyright
notices.

OpenSSH is used to foil eavesdropping and spoofing on network traffic by encrypt-
ing all traffic during a session, both logins and data transfer. It performs three tasks:
authentication, encryption, and guaranteeing the integrity of the data transfer. If
something happens to alter your packets, SSH will tell you.

There are two incompatible SSH protocols: SSH-1 and SSH-2. OpenSSH supports
both of them, but I do not recommend using SSH-1 at all. If you have to log in to
remote systems under someone else’s control that are still using SSH-1, consider exer-
cising some tough love and telling them you are not willing to risk your security any
more, and they must upgrade. SSH-1 was great in its day, but that was then. It has a
number of flaws that are fixed by upgrading to SSH-2. See “CA-2001-35” (http://www.
cert.org/advisories/CA-2001-35.html) for more information, and don’t forget to review
the list of references at the end of the article.

SSH Tunneling
You may use SSH port forwarding, also called tunneling, to securely encapsulate non-
secure protocols like wireless and VNC, which you’ll see in various recipes in this
book.

OpenSSH supports a number of strong encryption algorithms: 3DES, Blowfish, AES,
and arcfour. These are unencumbered by patents; in fact, the OpenSSH team has
gone to great lengths to ensure that no patented or otherwise encumbered code is
inside OpenSSH.

OpenSSH Components
OpenSSH is a suite of remote transfer utilities:

sshd
The OpenSSH server daemon.

ssh
Stands for secure shell, though it doesn’t really include a shell, but provides a
secure channel to the command shell on the remote system.

scp
Secure copy; this provides encrypted file transfer.

206 | Chapter 7: Secure Remote Administration with SSH

sftp
Secure file transfer protocol.

ssh-copy-id
Nice little program for installing your personal identity key to a remote
machine’s authorized_keys file.

ssh-keyscan
Finds and collects public host keys on a network, saving you the trouble of hunt-
ing them down manually.

ssh-keygen
Generates and manages RSA and DSA authentication keys.

ssh-add
Add RSA or DSA identities to the authentication agent, ssh-agent.

ssh-agent
Remembers your passphrases over multiple SSH logins for automatic authentica-
tion. ssh-agent binds to a single login session, so logging out, opening another
terminal, or rebooting means starting over. A better utility for this is keychain,
which remembers your passphrases for as long you don’t reboot.

Using OpenSSH
OpenSSH is very flexible, and supports different types of authentication:

Host-key Authentication
This uses your Linux login and password to authenticate, and your SSH keys
encrypt the session. This is the simplest, as all you need are host keys. An SSH
host key assures you that the machine you are logging in to is who it claims to be.

Public-key Authentication
Instead of using your system login, authenticate with an SSH identity key. Iden-
tity keys authenticate individual users, unlike host keys, which authenticate
servers. It’s a bit more work to set up because you need to create and distribute
identity keys in addition to host keys. This is a slick way to log in to multiple
hosts with the same login, plus it protects your system login because the identity
key has its own passphrase. Simply distribute copies of your public key to every
host that you want to access, and always protect your private key—never share
it.

Passphrase-less Authentication
This works like public-key authentication, except that the key pair is created
without a passphrase. This is useful for automated services, like scripts and cron
jobs. Because anyone who succeeds in thieving the private key can then easily
gain access, you need to be very protective of the private key.

7.1 Starting and Stopping OpenSSH | 207

Using a passphrase-less key carries a bit more risk, because then anyone who obtains
your private key can masquerade as you. One way to use passphrases with auto-
mated processes is to use ssh-agent or the keychain utility. These remember your
passphrases and authenticate automatically. Their one weakness is they do not sur-
vive a reboot, so every time you reboot you have to reenter all of your passphrases.
See Chapter 17 of Linux Cookbook (O’Reilly) for recipes on how to use these excel-
lent utilities.

Key types

There are two different uses for authentication keys: host keys, which authenticate
computers, and identity keys, which authenticate users. The keys themselves are the
same type of key, either RSA or DSA. Each key has two parts: the private and the
public. The server keeps the private key, and the client uses the public key. Trans-
missions are encrypted with the public key, and decrypted with the private key. This
is a brilliantly simple and easy-to-use scheme—you can safely distribute your public
keys as much as you want.

Server and client are defined by the direction of the transaction—the server must
have the SSH daemon running and listening for connection attempts. The client is
anyone logging in to this machine.

7.1 Starting and Stopping OpenSSH

Problem
You installed OpenSSH, and you configured it to start or not start at boot, according
to your preference. Now, you want to know how to start and stop it manually, and
how to get it to reread its configure file without restarting.

Solution
The answer, as usual, lies in /etc/init.d.

On Fedora, use these commands:

/etc/init.d/sshd {start|stop|restart|condrestart|reload|status}

On Debian systems, use these:

/etc/init.d/ssh {start|stop|reload|force-reload|restart}

If you elected to not have the SSH daemon run automatically after installing
OpenSSH on Debian, you will need to rename or delete /etc/ssh/sshd_not_to_be_run
before it will start up. Or, you can run dpkg-reconfigure ssh.

The OpenSSH configuration file, sshd.conf, must be present, or OpenSSH will not
start.

208 | Chapter 7: Secure Remote Administration with SSH

Discussion
Port 22, the default SSH port, is a popular target for attack. The Internet is infested
with automated attack kits that pummel away at random hosts. Check your firewall
logs—you’ll see all kinds of garbage trying to brute-force port 22. So, some admins
prefer to start up the SSH daemon only when they know they’ll need it. Some run it
on a nonstandard port, which is configurable in /etc/ssh/ssh_config, for example:

Port 2022

Check /etc/services to make sure you don’t use an already-used port, and make an
entry for any nonstandard ports you are using. Using a nonstandard port does not
fool determined portscanners, but it will alleviate the pummeling a lot and lighten
the load on your logfiles. A nice tool for heading off these attacks is the DenyHosts
utility; see Recipe 7.15.

Red Hat’s condrestart, or conditional restart, restarts a service only if it is already
running. If it isn’t, it fails silently.

The reload command tells the service to reread its configuration file, instead of
completely shutting down and starting up again. This is a nice, nondisruptive way to
activate changes.

If you like commands such as condrestart that are not included with your distribu-
tion, you may copy them from systems that use them and tweak them for your
system. Init scripts are just shell scripts, so they are easy to customize.

See Also
• Chapter 7, “Starting and Stopping Linux,” in Linux Cookbook, by Carla Schroder

(O’Reilly)

• Recipe 7.15

7.2 Creating Strong Passphrases

Problem
You know that you will need to create a strong passphrase every time you create an
SSH key, and you want to define a policy that spells out what a strong passphrase is.
So, what makes a strong passphrase?

Solution
Use these guidelines for creating your own policy:

• An SSH passphrase must be at least eight characters long.

• It must not be a word in any language. The easy way to handle this is to use a
combination of letters, numbers, and mixed cases.

7.3 Setting Up Host Keys for Simplest Authentication | 209

• Reversing words does not work—automated dictionary attacks know about this.

• A short sentence works well for most folks, like “pnt btt3r l*vz m1 gUmz” (pea-
nut butter loves my gums).

• Write it down and keep it in a safe place.

Discussion
Whoever convinced hordes of how-to authors to teach “Don’t write down pass-
words” should be sent to bed without dessert. It doesn’t work. If you don’t want to
believe me, how about a security expert like Bruce Schneier? From his essay “Write
Down Your Password” (http://www.schneier.com/blog/archives/2005/06/write_down_
your.html):

I recommend that people write their passwords down on a small piece of paper, and
keep it with their other valuable small pieces of paper: in their wallet.

Easily remembered passwords are also easily guessed. Don’t underestimate the
power and sophistication of automated password-guessers. Difficult-to-remember
passwords are also difficult to crack. Rarely used passwords are going to evaporate
from all but the stickiest of memories.

I use a handwritten file kept in a locked filing cabinet, in a cunningly labeled folder
that does not say “Secret Passwords In Here,” plus my personal sysadmin notebook
that goes with me everywhere. If any thief actually searches hundreds of files and can
decode my personal shorthand that tells what each login is for, well, I guess she
deserves to succeed at breaking into my stuff!

7.3 Setting Up Host Keys for Simplest Authentication

Problem
You want to know how to set up OpenSSH to log in to a remote host, using the sim-
plest method that it supports.

Solution
Using host-key authentication is the simplest way to set up remote SSH access. You
need:

• OpenSSH installed on the machine you want to log into remotely

• The SSH daemon to be running on the remote server, and port 22 not blocked

• SSH client software on the remote client

• A Linux login account on the remote server

• To distribute the public host key to the clients

210 | Chapter 7: Secure Remote Administration with SSH

Your OpenSSH installer should have already created the host keys. If it didn’t, see
the next recipe.

First, protect your private host key from accidental overwrites:

chmod 400 /etc/ssh/ssh_host_rsa_key

Next, the public host key must be distributed to the clients. One way is to log in
from the client, and let OpenSSH transfer the key:

foober@gouda:~$ ssh reggiano
The authenticity of host 'reggiano (192.168.1.10)' can't be established.
RSA key fingerprint is 26:f6:5b:24:49:e6:71:6f:12:76:1c:2b:a5:ee:fe:fe
Are you sure you want to continue connecting (yes/no)?
Warning: Permanently added 'reggiano 192.168.1.10' (RSA) to the list of known hosts.
foober@reggiano's password:
Linux reggiano 2.6.15 #1 Sun June 10 11:03:21 PDT 2007 i686 GNU/Linux
Debian GNU/Linux
Last login: S Sun June 10 03:11:49 PDT 2007 from :0.0
foober@reggiano:~$

Now, Foober can work on Reggiano just as if he were physically sitting at the
machine, and all traffic—including the initial login—is encrypted.

The host key exchange happens only once, the first time you log in. You should
never be asked again unless the key is replaced with a new one, or you change your
personal ~/.ssh/known_hosts file.

Discussion
The public host key is stored in the ~/.ssh/known_hosts file on the client PC. This file
can contain any number of host keys.

It is a bad idea to log in as root over SSH; it is better to log in as an ordinary user,
then su or sudo as you need after login. You can log in as any user that has an
account on the remote machine with the -l (login) switch:

foober@gouda:~$ ssh -l deann reggiano

Or, like this:

foober@gouda:~$ ssh deann@reggiano

Don’t get too worked up over client and server—the server is whatever machine you
are logging in to, and the client is wherever you are logging in from. The SSH dae-
mon does not need to be running on the client.

There is a small risk that the host key transmission could be intercepted and a forged
key substituted, which would allow an attacker access to your systems. You should
verify the IP address and public key fingerprint before typing “yes.” Primitive meth-
ods of verification, like writing down the fingerprint on a piece of paper, or verifying
it via telephone, are effective and immune to computer network exploits.

7.4 Generating and Copying SSH Keys | 211

For the extremely cautious, manually copying keys is also an option; see Recipe 7.4.

See Also
• Chapter 17, “Remote Access,” in Linux Cookbook by Carla Schroder (O’Reilly)

• man 1 ssh

• man 1 ssh-keygen

• man 8 sshd

7.4 Generating and Copying SSH Keys

Problem
Your OpenSSH installation did not automatically create host keys, or you want to
generate new replacement host keys. Additionally, you don’t trust the usual auto-
matic transfer of the host’s public key, so you want to manually copy host keys to the
clients.

Solution
Should you create RSA or DSA keys? Short answer: it doesn’t matter. Both are cryp-
tographically strong.

The main difference to the end user is RSA keys can be up to 2,048 bits in length,
while DSA is limited to 1,024 bits, so theoretically, RSA keys are more future-proof.
The default for either type of key is 1,024 bits.

This example generates a new key pair, using the default host key name from /etc/
ssh/sshd_config. Never create a passphrase on host keys—just hit the return key
when it asks for one:

cd /etc/ssh/
ssh-keygen -t dsa -f ssh_host_dsa_key
Generating public/private dsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /etc/ssh/ssh_host_dsa_key.
Your public key has been saved in /etc/ssh/ssh_host_dsa_key.pub.
The key fingerprint is:
26:f6:5b:24:49:e6:71:6f:12:76:1c:2b:a5:ee:fe:fe root@windbag

You may wish to be extra cautious and copy the public key manually via floppy disk,
USB key, or scp over an existing OpenSSH connection to avoid any possible hijack-
ing in transit. You need to modify the key if you’re going to copy it manually. Here is
the original public host key:

212 | Chapter 7: Secure Remote Administration with SSH

ssh-dss
AAAAB3NzaC1kc3MAAACBALeIrq77k20kUAh8u3RYG1p0iZKAxLQZQzxJ8422d+uPRwvVAARFnriNajoJaB9L7
qu5D0PCSNCOuBMOIkkyHujfXJejQQnMucgkDm8AhMfO8TPyLZ6pG459M+bfwbsBybyWav7eGvgkkTfZYDEd7H
mQK6+Vkd9SYqWd+Q9HkGCRAAAAFQCrhZsuvIuZq5ERrnf5usmMPXlQkQAAAIAUqi61+T7Aa2UjE40hnO8rSVf
FcuHE6BCmm0FMOoJQbD9xFTztZbDtZcna0db5l+6AYxtVInHjiYPj76/hYST5o286/28McWBF8+j8Nn/
tHVUcWSjOE8EJG8Xh2GRxab6AOjgo/
GAQli1qMxlJfCbOlcljVN8VDDF4XtPzqBPHtQAAAIBn7IOv9oM9dUiDZUNXa8s6UV46N4rqcD+HtgkltxDm+t
RiI68kZsU5weTLnLRdZfv/o2P3S9TF3ncrS0YhgIFdGupI//
28gH+Y4sYvrUSoRYJLiDELGm1+2pI06wXjPpUH2Iajr9TZ9eKWDIE+t2sz6lVqET95SynXq1UbeTsDjQ==
root@windbag

Delete the hostname at the end of the file, and prefix the key with the fully qualified
domain name and IP address. Make sure there are no spaces between the FQDN and
address, and there is one space after the IP address:

windbag.carla.com,192.168.1.10 ssh-dss
AAAAB3NzaC1kc3MAAACBALeIrq77k20kUAh8u3RYG1p0iZKAxLQZQzxJ8422d+uPRwvVAARFnriNajoJaB9L7
qu5D0PCSNCOuBMOIkkyHujfXJejQQnMucgkDm8AhMfO8TPyLZ6pG459M+bfwbsBybyWav7eGvgkkTfZYDEd7H
mQK6+Vkd9SYqWd+Q9HkGCRAAAAFQCrhZsuvIuZq5ERrnf5usmMPXlQkQAAAIAUqi61+T7Aa2UjE40hnO8rSVf
FcuHE6BCmm0FMOoJQbD9xFTztZbDtZcna0db5l+6AYxtVInHjiYPj76/hYST5o286/28McWBF8+j8Nn/
tHVUcWSjOE8EJG8Xh2GRxab6AOjgo/
GAQli1qMxlJfCbOlcljVN8VDDF4XtPzqBPHtQAAAIBn7IOv9oM9dUiDZUNXa8s6UV46N4rqcD+HtgkltxDm+t
RiI68kZsU5weTLnLRdZfv/o2P3S9TF3ncrS0YhgIFdGupI//
28gH+Y4sYvrUSoRYJLiDELGm1+2pI06wXjPpUH2Iajr9TZ9eKWDIE+t2sz6lVqET95SynXq1UbeTsDjQ==

Starting with AAAAB, the file must be one long unbroken line, so be sure to do this
in a proper text editor that does not insert line breaks.

You may also use the hostname, or just the IP address all by itself.

If you manually copy additional host keys into the known_hosts file, make sure there
are no empty lines between them.

Discussion
How much of a risk is there in an automatic host key transfer? The risk is small; it’s
difficult to launch a successful man-in-the-middle attack, but not impossible. Verify-
ing the host IP address and public key fingerprint before accepting the host key are
simple and effective precautions.

It really depends on how determined an attacker is to penetrate your network. The
attacker would first have to intercept your transmission in a way that does not draw
attention, then possibly spoof the IP address (which is easy) and public-key finger-
print of your trusted server, which is not so easy to do. Because most users do not
bother to verify these, most times it’s not even necessary. Then, when you type “yes”
to accept the key, you get the attacker’s host key. To avoid detection, the attacker
passes on all traffic between you and the trusted server while capturing and reading
everything that passes between you and the trusted server.

7.5 Using Public-Key Authentication to Protect System Passwords | 213

How hard is it to hijack Ethernet traffic? On the LAN, it’s easy—check out the
arpspoof utility, which is part of the Dsniff suite of network auditing and penetra-
tion-testing tools. How trustworthy are your LAN users? Over the Internet, the
attacker would have to compromise your DNS, which is possible, but not easy,
assuming your DNS is competently managed. Or, be in a position of trust and a
place to wreak mischief, such as an employee at your ISP.

In short, it’s a small risk, and the decision is yours.

See Also
• man 1 ssh-keygen

7.5 Using Public-Key Authentication to Protect
System Passwords

Problem
You are a bit nervous about using system account logins over untrusted networks,
even though they are encrypted with SSH. Or, you have a number of remote servers to
manage, and you would like to use the same login on all of them, but not with system
accounts. In fact, you would like your remote logins to be decoupled from system log-
ins, plus you would like to have fewer logins and passwords to keep track of.

Solution
Give yourself a single login for multiple hosts by using public-key authentication,
which is completely separate from local system accounts. Follow these steps:

Install OpenSSH on all participating machines, and set up host keys on all participat-
ing machines. (Host keys always come first.)

Then, generate a new identity key pair as an ordinary unprivileged user, and store it
in your ~/.ssh directory on your local workstation. Be sure to create a passphrase:

$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/carla/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/carla/.ssh/id_rsa.
Your public key has been saved in /home/carla/.ssh/id_rsa.pub.
The key fingerprint is:
38:ec:04:7d:e9:8f:11:6c:4e:1c:d7:8a:91:84:ac:91 carla@windbag

Protect your private identity key from accidental overwrites:

$ chmod 400 id_rsa

214 | Chapter 7: Secure Remote Administration with SSH

Now, copy your new public key (id_rsa.pub) to all of the remote user accounts you’ll
be using, into their ~/.ssh/authorized_keys2 files. If this file does not exist, create it.
Using the ssh-copy-id utility is the secure, easy way:

$ ssh-copy-id -i id_rsa.pub danamania@muis.net

Discussion
ssh-copy-id copies identity keys in the correct format, makes sure that file permis-
sions and ownership are correct, and ensures you do not copy a private key by
mistake.

The authorized_keys2 file may be named something else, like authorized_keys, or freds_
keys, or anything you want; just make sure it agrees with the AuthorizedKeysFile line in
/etc/ssh/sshd.conf.

Always put a passphrase on human-user authentication keys—it’s cheap insurance.
If someone manages to steal your private key, it won’t do them any good without the
passphrase.

Using public-key authentication combined with sudo is a good way to delegate
admin chores to your underlings, while limiting what they can do.

Ordinary users may run SSH, which wise network admins know and have policies to
control because all manner of forbidden services can be tunneled over SSH, thereby
foiling your well-crafted firewalls and network monitors.

See Also
• man 1 ssh-copy-id

• man 1 ssh

• man 1 ssh-keygen

• man 8 sshd

• Recipe 8.21, “Granting Limited Rootly Powers with sudo,” in Linux Cookbook,
by Carla Schroder (O’Reilly)

7.6 Managing Multiple Identity Keys

Problem
You want to use different identity keys for different servers. How do you create keys
with different names?

7.7 Hardening OpenSSH | 215

Solution
Use the -f flag of the ssh-keygen command to give keys unique names:

[carla@windbag:~/.ssh]$ ssh-keygen -t rsa -f id_mailserver

Then, use the -i flag to select the key you want to use when you log in to the remote
host:

$ ssh -i id_mailserver bart@192.168.1.11
Enter passphrase for key 'id_mailserver':

Discussion
You don’t have to name your keys “id_” whatever, you can call them anything you
want.

See Also
• man 1 ssh-copy-id

• man 1 ssh

• man 1 ssh-keygen

• man 8 sshd

7.7 Hardening OpenSSH

Problem
You are concerned about security threats, both from the inside and the outside. You
are concerned about brute-force attacks on the root account, and you want to restrict
users to prevent mischief, whether accidental or deliberate. What can do you to
make sure OpenSSH is as hardened as it can be?

Solution
OpenSSH is pretty tight out of the box. There are some refinements you can make;
take a look at the following steps and tweak to suit your needs. First, fine-tune /etc/
sshd_config with these restrictive directives:

ListenAddress 12.34.56.78
PermitRootLogin no
Protocol 2
AllowUsers carla foober@bumble.com lori meflin
AllowGroups admins

You may want the SSH daemon to listen on a different port:

Port 2222

216 | Chapter 7: Secure Remote Administration with SSH

Or, you can configure OpenSSH to disallow password logins, and require all users to
have identity keys with this line in /etc/sshd_config:

PasswordAuthentication no

Finally, configure iptables to filter traffic, blocking all but authorized bits (see
Chapter 3).

Discussion
Specifying the interfaces that the SSH daemon is to listen to and denying root logins,
are basic, obvious precautions.

Protocol 2 means your server will only allow SSH-2 logins, and will reject SSH-1.
SSH-1 is old enough, and has enough weaknesses, that it really isn’t worth the risk of
using it. SSH-2 has been around for several years, so there is no reason to continue
using the SSH-1 protocol.

AllowUsers denies logins to all but the listed users. You may use just the login names,
or restrict them even further by allowing them to log in only from certain hosts, like
foober@bumble.com.

AllowGroups is a quick way to define allowed users by groups. Any groups not named
are denied access. These are normal local Linux groups in /etc/group.

If you prefer, you may use DenyHosts and DenyGroups. These work the opposite of the
Allow directives—anyone not listed is allowed to log in. Do not mix Allow and Deny
directives; only use one or the other.

Changing to a nonstandard port will foil some of the SSH attacks that only look for
port 22. However, determined portscanners will find out which port your SSH dae-
mon is listening to, so don’t count on it as a meaningful security measure—it’s just a
way to keep your logfiles from filling up too quickly.

See Also
• man 1 passwd

• man 5 sshd_config

• Recipe 17.13, “Setting File Permissions on ssh Files,” in Linux Cookbook, by
Carla Schroder (O’Reilly)

7.8 Changing a Passphrase

Problem
You want to change the passphrase on one of your private keys.

7.9 Retrieving a Key Fingerprint | 217

Solution
Use the -p switch with the ssh-keygen command:

$ ssh-keygen -p -f ~/.ssh/id_dsa
Enter old passphrase:
Key has comment '/home/pinball/.ssh/id_dsa'
Enter new passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved with the new passphrase.

Discussion
Passphrases are not recoverable. If you lose a passphrase, your only option is to cre-
ate a new key with a new passphrase.

See Also
• man 1 ssh-keygen

7.9 Retrieving a Key Fingerprint

Problem
You are sending a public host key or identity key to another user, and you want the
user to be able to verify that the key is genuine by confirming the key fingerprint.
You didn’t write down the fingerprint when the key was created—how do you find
out what it is?

Solution
Use the ssh-keygen command:

[carla@windbag:~/.ssh]$ ssh-keygen -l
Enter file in which the key is (/home/carla/.ssh/id_rsa): id_mailserver
1024 ce:5e:38:ba:fb:ec:e7:80:83:3e:11:1a:6f:b1:97:8b id_mailserver.pub

Discussion
This is where old-fashioned methods of communication, like telephone and sneaker-
net, come in handy. Don’t use email, unless you already have encrypted email set up
with its own separate encryption and authentication because anyone savvy enough to
perpetrate a man-in-the-middle attack will be more than smart enough to crack your
email. Especially because the vast majority of email is still sent in the clear, so it’s
trivial to sniff it.

See Also
• man 1 ssh-keygen

218 | Chapter 7: Secure Remote Administration with SSH

7.10 Checking Configuration Syntax

Problem
Is there a syntax-checker for sshd_config?

Solution
But of course. After making your changes, run this command:

sshd -t

If there are no syntax errors, it exits silently. If it find mistakes, it tells you:

sshd -t
/etc/ssh/sshd_config: line 9: Bad configuration option: Porotocol
/etc/ssh/sshd_config: terminating, 1 bad configuration options

You can do this while the SSH daemon is running, so you can correct your mistakes
before issuing a reload or restart command.

Discussion
The -t stands for “test.” It does not affect the SSH daemon, it only checks /etc/sshd_
config for syntax errors, so you can use it anytime.

See Also
• man 5 sshd_config

• man 8 sshd

7.11 Using OpenSSH Client Configuration Files for
Easier Logins

Problem
You or your users have a collection of different keys for authenticating on different
servers and accounts, and different ssh command options for each one. Typing all
those long command strings is a bit tedious and error-prone. How do you make it
easier and better?

Solution
Put individual configuration files for each server in ~/.ssh/, and select the one you
want with the -F flag. This example uses the configuration file mailserver to set the
connection options for the server jarlsberg.

[carla@windbag:~/.ssh]$ ssh -F mailserver jarlsberg

7.11 Using OpenSSH Client Configuration Files for Easier Logins | 219

If you are logging in over the Internet, you’ll need the fully qualified domain name of
the server:

[carla@windbag:~/.ssh]$ ssh -F mailserver jarlsberg.carla.net

IP addresses work, too.

Discussion
Using custom configuration files lets you manage a lot of different logins sanely. For
example, ~/.ssh/mailserver contains these options:

IdentityFile ~/.ssh/id_mailserver
Port 2222
User mail_admin

It’s easier and less error-prone to type ssh -F mailserver jarlsberg than ssh -i id_
mailserver -p 2222 -l mail_admin jarlsberg.

Don’t forget to configure your firewall for your alternate SSH ports, and check /etc/
services to find unused ports.

You may open up as many alternate ports as you want on a single OpenSSH server.
Use netstat to keep an eye on activities:

netstat -a --tcp -p | grep ssh
tcp6 0 0 *:2222 *:* LISTEN 7329/sshd
tcp6 0 0 *:ssh *:* LISTEN 7329/sshd
tcp6 0 0 ::ffff:192.168.1.1:2222 windbag.localdoma:35474 ESTABLISHED7334/
sshd: carla
tcp6 0 0 ::ffff:192.168.1.11:ssh windbag.localdoma:56374 ESTABLISHED7352/
sshd: carla

Remember, /etc/sshd_config controls the SSH daemon. /etc/ssh_config contains the
global SSH client settings.

You may have any number of different SSH client configuration files in your ~/.ssh/
directory.

The SSH daemon follows this precedence:

• Command-line options

• User’s configuration file ($HOME/.ssh/config)

• System-wide configuration file (/etc/ssh/ssh_config)

User’s configuration files will not override global security settings, which is fortu-
nate for your sanity and your security policies.

See Also
• man 1 ssh

• man 5 ssh_config

220 | Chapter 7: Secure Remote Administration with SSH

7.12 Tunneling X Windows Securely over SSH

Problem
OK, all of this command-line stuff is slick and easy, but you still want a nice graphi-
cal environment. Maybe you use graphical utilities to manage your headless servers.
Maybe you want to access a remote workstation and have access to all of its applica-
tions. You know that X Windows has built-in networking abilities, but it sends all
traffic in cleartext, which of course is unacceptably insecure, plus it’s a pain to set
up. What else can you do?

Solution
Tunneling X over SSH is simple, and requires no additional software.

First, make sure this line is in /etc/ssh/sshd_config on the remote machine:

X11Forwarding yes

Then, connect to the server using the -X flag:

[carla@windbag:~/.ssh]$ ssh -X stilton
Enter passphrase for key '/home/carla/.ssh/id_rsa':
Linux stilton 2.6.15-26-k7 #1 SMP PREEMPT Sun Jun 3 03:40:32 UTC 2007 i686 GNU/Linux
Last login: Sat June 2 14:55:10 2007
carla@stilton:~$

Now, you can run any of the X applications installed on the remote PC by starting
them from the command line:

carla@stilton:~$ ppracer

SSH sets up an X proxy on the SSH server, which you can see with this command:

carla@stilton:~$ echo $DISPLAY
localhost:10.0

Discussion
The X server runs with the offset specified in /etc/sshd.conf:

X11DisplayOffset 10

This needs to be configured to avoid colliding with existing X sessions. Your regular
local X session is: 0.0.

The remote system only needs to be powered on. You don’t need any local users to
be logged in, and you don’t even need X to be running. X needs to be running only
on the client PC.

7.13 Executing Commands Without Opening a Remote Shell | 221

Starting with version 3.8, OpenSSH introduced the -Y option for remote X sessions.
Using the -Y option treats the remote X client as trusted. The old-fashioned way to do
this was to configure ssh_config with ForwardX11Trusted yes. (The ForwardX11Trusted
default is no.) Using the -Y flag lets you keep the default as no, and to enable trusted X
forwarding as you need. Theoretically, you could find that some functions don’t work
on an untrusted client, but I have yet to see any.

The risk of running a remote X session as trusted matters only if the remote machine
has been compromised and an attacker knows how to sniff your input operations (e.g.,
keystrokes, mouse movements, and copy-and-paste). Also, anyone sitting at the remote
machine can do the same thing. Old-timers from the pre-SSH days like to reminisce
about their fun days of messing with other user’s X sessions and causing mischief.

It is possible to tunnel an entire X session over SSH, and run your favorite desktop or
windows manager, like Gnome, KDE, IceWM, and so forth. However, I don’t rec-
ommend it because there are easier and better ways to do this, as you will see in the
next chapter.

Don’t use compression over fast networks because it will slow down data transfer.

See Also
• man 1 ssh

• man 5 ssh_config

7.13 Executing Commands Without Opening a
Remote Shell

Problem
You have a single command to run on the remote machine, and you think it would
be nice to be able to just run it without logging in and opening a remote shell,
running the command, and then logging out. After all, is it not true that laziness is a
virtue for network admins?

Solution
And, you shall have what you want because OpenSSH can do this. This example
shows how to restart Postfix:

$ ssh mailadmin@limberger.alrac.net sudo /etc/init.d/postfix restart

This shows how to open a quick game of Kpoker, which requires X Windows:

$ ssh -X 192.168.1.10 /usr/games/kpoker

You’ll be asked for a password, but you’ll still save one whole step.

222 | Chapter 7: Secure Remote Administration with SSH

Discussion
You have to use sudo when you need root privileges with this command, not su,
because you can’t use su without first opening a remote shell. This is also a handy
way to script remote commands.

And yes, laziness is a virtue, if it leads to increased efficiency and streamlined meth-
ods of getting jobs done.

See Also
• man 1 ssh

7.14 Using Comments to Label Keys

Problem
You have a lot of SSH keys, and you would like a simple way to identify the public
keys after they are transferred to your known_hosts and authorized_keys2 files.

Solution
Use the comment option when you create a key to give it a descriptive label:

$ ssh-keygen -t rsa -C "mailserver on jarlsberg"

The key looks like this:

ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAIEAoK8bYXg195hp+y1oeMWdwlBKdGkSG8UqrwKpwNU9Sbo+uGPpNxU3iAjRa
LYTniwnoS0j+Nwj+POU5s9KKBf5hx+EJT/
8wl70KyoyslPghsQAUdODoEwCzNFdIME8nm0vxzlAxS+SO45RxdXB08j8WMdC92PcMOxIB1wPCIntji0=
mailserver on jarlsberg

This is helpful when you have a lot of keys in known_hosts and authorized_keys2
because even though you can give the keys unique names, the keynames are not
stored in these files.

Discussion
OpenSSH ignores the comment field; it’s a convenience for human users.

See Also
• man 1 ssh-keygen

7.15 Using DenyHosts to Foil SSH Attacks | 223

7.15 Using DenyHosts to Foil SSH Attacks

Problem
The Internet is full of twits who have nothing better to do than to release automated
SSH attacks on the world. You have taken all the sensible security precautions, and
feel like your security measures are adequate, but your logfiles are overflowing with
this junk. Isn’t there some way to head these morons off at the pass?

Solution
Indeed, yes. The excellent DenyHosts utility will take care of you. DenyHosts parses
your auth log, and writes entries to /etc/hosts.deny to block future intrusion attempts.

DenyHosts is a Python script, so you need Python 2.3 or newer. Find your Python
version this way:

$ python -V
Python 2.4.2

DenyHosts can be installed with Aptitude or Yum. To install from sources, simply
unpack the tarball in the directory where you want to store DenyHosts. This comes
with denyhosts.cfg.dist, which is a model configuration file. Edit it, then save it as /etc/
denyhosts.conf. (See Recipe 7.16 to learn how to configure a startup script.)

Next, create a whitelist in /etc/hosts.allow; in other words, add all the important
hosts that you never want blocked.

This sample configuration is moderately stern. Make sure the filepaths are correct for
your system:

WORK_DIR = /var/denyhosts/data
SECURE_LOG = /var/log/auth.log
HOSTS_DENY = /etc/hosts.deny
BLOCK_SERVICE = sshd
DENY_THRESHOLD_INVALID = 3
DENY_THRESHOLD_VALID = 5
DENY_THRESHOLD_ROOT = 1
LOCK_FILE = /tmp/denyhosts.lock
HOSTNAME_LOOKUP=NO
SUSPICIOUS_LOGIN_REPORT_ALLOWED_HOSTS=YES
AGE_RESET_VALID=1d
AGE_RESET_ROOT=25d
AGE_RESET_INVALID=
DAEMON_PURGE = 1h
DAEMON_SLEEP = 30s
DAEMON_LOG_TIME_FORMAT = %b %d %H:%M:%S
ADMIN_EMAIL = carla@kielbasa.net

224 | Chapter 7: Secure Remote Administration with SSH

The default configuration file tells you the required options, optional settings, and
other useful information.

Discussion
DenyHosts can be run manually, as a cron job, or as a daemon. I prefer daemon
mode—set it and forget it. To run it manually for testing, simply run the DenyHosts
script:

python denyhosts.py

Read the denyhosts.py script to see the available command options.

This is what the options mean:

BLOCK_SERVICE = sshd
You may use DenyHosts to protect SSH, or all services with BLOCK_SERVICE
= ALL.

DENY_THRESHOLD_INVALID = 2
Login attempts on nonexistent accounts get two chances before they are
blocked. Because the accounts do not exist, blocking them won’t hurt anything.

DENY_THRESHOLD_VALID = 5
Login attempts on legitimate accounts get five chances. Adjust as needed for fat-
fingered users.

DENY_THRESHOLD_ROOT = 1
Root logins get one chance. You should log in as an unprivileged user anyway,
then su or sudo if you need rootly powers.

HOSTNAME_LOOKUP = Yes
DenyHosts will look up hostnames of blocked IP addresses. This can be dis-
abled if it slows things down too much with HOSTNAME_LOOKUP = NO.

SUSPICIOUS_LOGIN_REPORT_ALLOWED_HOSTS
Set this to YES, then monitor your DenyHosts reports to see if this is useful. It
tattles about suspicious behavior perpetrated by hosts in /etc/hosts.allow, which
may or may not be useful.

AGE_RESET_VALID=1d
Allowed users are unblocked after one day, if they went all fat-fingered and got
locked out.

AGE_RESET_INVALID=
Invalid blocked users are never unblocked.

DAEMON_PURGE = 3d
Delete all blocked addresses after three days. Your /etc/hosts.deny file can grow
very large, so old entries should be purged periodically.

7.16 Creating a DenyHosts Startup File | 225

DAEMON_SLEEP = 5m
How often should the DenyHosts daemon run? It’s a low-stress script, so
running it a lot shouldn’t affect system performance. Adjust this to suit your sit-
uation—if you are getting hammered, you can step up the frequency.

Time values look like this:

s: seconds
m: minutes
h: hours
d: days
w: weeks
y: years

See Also
• The DenyHosts FAQ: http://denyhosts.sourceforge.net/faq.html

7.16 Creating a DenyHosts Startup File

Problem
You installed DenyHosts from the source tarball, so you need to know how to set up
an init script to start it automatically at boot, and for starting and stopping it manually.

Solution
daemon-control-dist is the model startup file; you’ll need to edit it for your particular
Linux distribution. Only the first section needs to be edited:

###
Edit these to suit your configuration
###

DENYHOSTS_BIN = "/usr/bin/denyhosts.py"
DENYHOSTS_LOCK = "/var/lock/subsys/denyhosts"
DENYHOSTS_CFG = "/etc/denyhosts.cfg"

Make sure the filepaths and filenames are correct for your system. Then give the file
a name you can type reasonably, like /etc/init.d/denyhosts.

Configuring DenyHosts to start at boot is done in the usual manner, using chkconfig
on Red Hat and Fedora, and update-rc.d on Debian:

chkconfig denyhosts --add
chkconfig denyhosts on

update-rc.d start 85 2 3 4 5 . stop 30 0 1 6 .

226 | Chapter 7: Secure Remote Administration with SSH

Manually stopping and starting DenyHosts is done in the usual manner:

/etc/init.d/denyhosts {start|stop|restart|status|debug}

Fedora users also have this option:

/etc/init.d/denyhosts condrestart

This restarts DenyHosts only if it already running; otherwise, it fails silently.

Discussion
When you create a new init script on Fedora, you must first add it to the control of
chkconfig with the chkconfig --add command. Then, you can use the chkconfig foo
on/off command to start or stop it at boot.

See Also
• The DenyHosts FAQ: http://denyhosts.sourceforge.net/faq.html

• Chapter 7, “Starting and Stopping Linux,” in Linux Cookbook, by Carla Schroder
(O’Reilly)

7.17 Mounting Entire Remote Filesystems with sshfs

Problem
OpenSSH is pretty fast and efficient, and even tunneling X Windows over OpenSSH
isn’t too laggy. But sometimes, you want a faster way to edit a number of remote
files—something more convenient than scp, and kinder to bandwidth than running a
graphical file manager over SSH.

Solution
sshfs is just the tool for you. sshfs lets you mount an entire remote filesystem and
then access it just like a local filesystem.

Install sshfs, which should also install fuse. You need a local directory for your
mountpoint:

carla@xena:~$ mkdir /sshfs

Then, make sure the fuse kernel module is loaded:

$ lsmod|grep fuse
fuse 46612 1

If it isn’t, run modprobe fuse.

Next, add yourself to the fuse group.

7.17 Mounting Entire Remote Filesystems with sshfs | 227

Then, log in to the remote PC and go to work:

carla@xena:~$ sshfs uberpc: sshfs/
carla@uberpc's password:
carla@xena:~$

Now, the remote filesystem should be mounted in ~/sshfs and just as accessible as
your local filesystems.

When you’re finished, unmount the remote filesystem:

$ fusermount -u sshfs/

Discussion
Users who are new to sshfs always ask these questions: why not just run X over SSH,
or why not just use NFS?

It’s faster than running X over SSH, it’s a heck of a lot easier to set up than NFS, and
a zillion times more secure than NFS, is why.

See Also
• man 1 sshfs

228

Chapter 8CHAPTER 8

Using Cross-Platform
Remote Graphical Desktops

8.0 Introduction
Tunneling X over SSH (covered in the previous chapter) is one good way to run a
remote graphical desktop. Like everything else, the Linux world has several good
variations on the same theme. In this chapter, we’ll look at some more programs for
running remote graphical desktops in different ways, such as cross-platform
networking and remote helpdesk work. It’s a lot easier to take control of a user’s
computer remotely and fix problems than to talk a poor user through a diagnosis and
repair over the telephone. (I’m still puzzled at how anyone ever thought that was a
good idea.)

The Linux world offers several ways to get a remote graphical desktop with decent
performance, and across different platforms, especially Linux and Windows. In this
chapter, we’ll look at three different applications: rdesktop, FreeNX, and VNC.

rdesktop
rdesktop is a Linux client that uses the Remote Desktop Protocol (RDP) to connect to
Windows Terminal Services on Windows NT/2000/2003 servers, and Remote Desk-
top Connection on Windows XP Pro. rdesktop can attach to an existing session or
start a new one.

FreeNX
FreeNX runs graphical desktops over low-speed, high-latency connections (e.g., dial-
up) at satisfying speeds. So far, it is for logging in to Linux boxes only, from Linux,
Windows, Solaris, and Mac OS X clients. It has built-in encryption, and lets you con-
figure any desktop or window manager to use for the remote session. It supports new
independent X sessions only, so you cannot attach to an existing X session.

8.0 Introduction | 229

FreeNX has some rough edges. It requires the free-of-cost Linux client from
NoMachine, which depends on some very old libraries. (The commercial NXServer
uses the same client.) The client version and server version must match, which
becomes a problem when NoMachine distributes only the latest clients, and you
can’t get updated FreeNX server packages. Once you get it up and running, the basic
functions work fine, but selecting the desktop you want doesn’t always work, and
there are problems with file and printer sharing.

NoMachine also distributes a freebie NX server for Linux users, if you can’t get the
open source FreeNX working the way you want. Like the client, it also depends on
some very old libraries that you will likely have to hunt down and install. When it
works, it’s fast, and the built-in encryption is nice.

In my opinion, VNC and its many derivatives are preferable. It’s open source, very
flexible, and it’s well-maintained and reliable. Need encryption? Tunnel it over SSH.

VNC
Virtual Network Computing (VNC) is the grandmother of cross-platform remote
desktops, and the most flexible. It comes in many variations, and supports most
operating systems: Mac OS X, Linux, various Unixes, and Windows, so you can
remotely log in to anything from anything. On Linux, you may create new indepen-
dent login sessions, or attach to an existing X session with x11vnc. A unique VNC
feature is controlling any two computers with a single keyboard and mouse.

VNC has been around long enough to spawn a host of knockoffs and forks. If reli-
ability is what you’re after, stick with the established, stable versions:

• TightVNC (http://www.tightvnc.com/) is a fast fork of RealVNC. Runs well over
slow connections, especially with the new DFMirage video driver for Windows.

• RealVNC (http://www.realvnc.com/) offers good free and commercial versions.

• UltraVNC (http://ultravnc.sourceforge.net/) is good for Windows-to-Windows
remote administration. It has a number of Windows-specific tweaks, such as a mir-
ror video driver similar to DFMirage, encryption, user monitoring, and the ability
to log in as any user.

• MSRC4 DSM plug-in (http://home.comcast.net/~msrc4plugin/) is an open source
encryption plug-in for UltraVNC.

• OS X VNC (http://www.redstonesoftware.com/VNC.html) is a VNC server for
Mac OS X.

• Chicken of the VNC (http://sourceforge.net/projects/cotvnc/) is a VNC viewer for
Mac OS X. And a really bad pun.

• Win2VNC (http://fredrik.hubbe.net/win2vnc.html) is a Windows VNC server for
sharing a mouse and keyboard with a second PC.

230 | Chapter 8: Using Cross-Platform Remote Graphical Desktops

• x2vnc (http://fredrik.hubbe.net/x2vnc.html) is a Linux server for sharing a mouse
and keyboard with a second PC.

• x11vnc (http://www.karlrunge.com/x11vnc/) lets you attach to an existing X ses-
sion, instead of starting a new one. This is great for roaming users who like to
wander from PC to PC, and for remote helpdesk work.

There are a large number of VNC forks for other platforms. Here is a partial list:

• VNC server for MorphOS: http://binaryriot.com/dreamolers/vncserver/

• MorphVNC, VNC client for MorphOS: http://bigfoot.morphos-team.net/files/

• TwinVNC, a VNC client for MorphOS and AmigaOS: http://twinvnc.free.fr/

• J2ME VNC client for Java™-enabled cell phones: http://j2mevnc.sourceforge.net/

• PocketPC VNCViewer VNC client: http://www.cs.utah.edu/~midgley/wince/vnc.html

• PocketPC VNCServer and WindowsCE.NET server: http://www.pocketvnc.com/
pocketVNC.aspx

• PalmVNC Palm OS client: http://palmvnc2.free.fr/

Built-in Remote Desktop Sharing in KDE and Gnome
Both KDE and Gnome come with remote desktop sharing built-in. On KDE, it’s
called KDE Remote Desktop Connection; you can start it from the command line
with the krdc command. KRDC supports both VNC and RDP (Remote Desktop Pro-
tocol), the Windows remote desktop sharing protocol.

Gnome’s Remote Desktop Sharing is based on Vino, a VNC server for Gnome. It
does not support RDP, just VNC. Both implementations are nicely done and easy to
use.

8.1 Connecting Linux to Windows via rdesktop

Problem
You want to log into a Windows NT/2000/2003 server or Windows XP Pro worksta-
tion from your Linux workstation. You want to see your own Windows desktop, use
your applications, or manage services. You don’t want to install additional software
on the Windows box to enable remote access, you just want your Linux box to be a
Windows Terminal Services client.

Solution
Use rdesktop, the open source Remote Desktop Protocol client. Remote Desktop
Protocol is the protocol behind Windows Terminal Services. rdesktop is a standard
package that should come with your Linux distribution.

8.1 Connecting Linux to Windows via rdesktop | 231

Follow these steps to get rdesktop up and running:

• Install rdesktop on Linux.

• Set up Terminal Services on your NT/2000/2003 server, or on XP Professional,
set up Remote Desktop Sharing.

• Make sure the accounts that you want to log in to require login passwords.

• Your Windows machine must be booted up, but users do not need to be logged
in.

• Log in from Linux, and go to work.

This example shows how to log in to Windows using the IP address and specifying a
window size:

$ rdesktop -g 1024x768 192.168.1.22

You’ll see your familiar Windows login box.

rdesktop supports full-screen mode. Hit Ctrl-Alt-Enter to toggle between full-screen
and windowed mode. Figure 8-1 shows fine art being created over rdesktop.

Figure 8-1. Fine art via rdesktop

232 | Chapter 8: Using Cross-Platform Remote Graphical Desktops

And that’s all there is to it. When you’re finished, select Start ➝ Logoff or Start ➝

Disconnect to end your session. Logoff closes all applications; Disconnect leaves
them running, so you can pick up where you left off the next time you connect.

Discussion
If you are already logged in to Windows, rdesktop will attach to your existing session
and lock out local access.

You may log in from all manner of different locations, and pick up where you left off
if you remember to Logoff rather than Disconnect. Keep in mind that leaving appli-
cations running uses more server resources.

If your Windows Terminal Server is configured to use a different port than 3389,
specify a different port at login like this:

$ rdesktop -g 1024x768 192.168.1.22:3000

And of course, make sure that the port is not blocked by a firewall.

There are some limitations to using Windows Terminal Services and rdesktop. It only
works on Windows XP Professional, and Windows NT/2000/2003 servers. Termi-
nal Server usually needs to be installed separately on Windows NT and 2000 servers.
It is built-in to Windows 2003 and Windows XP Professional. On Windows servers,
multiple clients may access the server simultaneously, provided the requisite number
and type of licenses are purchased. On XP Professional, only one user may log in at a
time, and the desktop is locked to prevent accidental mischief.

System administration is somewhat limited. Installing applications can run into
permissions problems because Windows sees the remote administrator user as a dif-
ferent user than the local administrator, and remote configuration could mean you’ll
end up with two sets of configuration files and Registry entries.

TightVNC is good for running any version of Windows from Linux, and UltraVNC is a
good choice for Windows-to-Windows remote administration that works on any ver-
sion of Windows. Neither one cares about client access or terminal server licenses.

See Also
• man 1 rdesktop

• Learning Windows Server 2003 by Jonathan Hassell (O’Reilly), and Securing
Windows NT/2000 Servers for the Internet by Stefan Norberg (O’Reilly) have
good chapters on Windows Terminal Services

• Microsoft Knowledge Base article 247930: “Cannot Install Some Programs in a
Terminal Services Client Session”

• Search for “Troubleshooting Terminal Server Licensing Problems” on http://
www.microsoft.com

• NoMachine: http://nomachine.com/

8.3 Using FreeNX to Run Linux from Windows | 233

8.2 Generating and Managing FreeNX SSH Keys

Problem
You went to FreeNX (http://freenx.berlios.de/download.php) to get the FreeNX server
and installed it. It came with a set of default SSH keys. Because everyone in the world
gets those, how do you make new ones?

Solution
Use /usr/bin/nxkeygen to generate a new key pair. Then, do not forget to copy the
new /var/lib/nxserver/home/.ssh/client.id_dsa.key to your client PCs, or they will not
be able to log in. On Windows, they go in the \Program Files\NX Client for Windows\
Share\ directory. On Linux, Mac OS X, and Solaris they go into /usr/NX/share/.

Discussion
Mismatched server and client keys are the most common cause of login failures.

See Also
• NX Server System Administrator’s Guide:

http://www.nomachine.com/documentation/admin-guide.php

8.3 Using FreeNX to Run Linux from Windows

Problem
You want the ability to remotely access a Linux box from your Windows PC. You
have some Linux applications you want to use that are not available on Windows, or
there are times when all you have is a Windows box to do your remote Linux admin-
istration from.

Additionally, you want a full graphical session to run satisfactorily over a slow link,
even dial-up, and you want to be able to use the Linux desktop or window manager
of your choice.

Solution
You don’t want much! Fortunately, FreeNX was designed just to fulfill these needs.
Follow these steps to get up and running.

Set up the server

Install the FreeNX server on the Linux box you want to log in to remotely.

234 | Chapter 8: Using Cross-Platform Remote Graphical Desktops

Next, add authorized users to the FreeNX server. You must create the login name
and password separately. The FreeNX users must already have Linux accounts on
the server:

nxserver --adduser pinball
NX> 100 NXSERVER - Version 1.5.0-50 OS (GPL)
NX> 1000 NXNODE - Version 1.5.0-50 OS (GPL)
NX> 716 Public key added to: /home/pinball/.ssh/authorized_keys2
NX> 1001 Bye.
NX> 999 Bye
nxserver --passwd pinball
NX> 100 NXSERVER - Version 1.5.0-50 OS (GPL)
New password:
Password changed.
NX> 999 Bye

Strangely enough, you only get one chance to enter the password, so be careful.

Then, make sure the OpenSSH daemon is running on the FreeNX server, and port 22
is not blocked by your firewall.

Get the client

Go to NoMachine.com (http://www.nomachine.com/) to download a free client for your
Windows box. Make sure it has the same major and minor version numbers as the
FreeNX server. You can find the FreeNX server version number with this command:

nxserver --version
NX> 100 NXSERVER - Version 1.5.0-50 OS (GPL)

So, your client needs to be version 1.5.x. If you cannot find a matching client, please
see the Discussion.

Once you have a matching client, you can set up your login from Windows.

Set up the connection

Click on NX Client For Windows to open the Connection Wizard, as Figure 8-2
shows.

Enter a name for this configuration on the Session line; for example, let’s call our
new session windbag1.

Enter the hostname or IP address of the server on the Host line.

Select your type of connection, and click Next.

On the Desktop window, select Unix. Then, select the Linux desktop you want to
see on your remote session, and the size of the window, as in Figure 8-3.

Check the Enable SSL box to encrypt all traffic, then click Next.

8.3 Using FreeNX to Run Linux from Windows | 235

Figure 8-2. NoMachine client setup wizard

Figure 8-3. Configuring the desktop settings

236 | Chapter 8: Using Cross-Platform Remote Graphical Desktops

Check “Create shortcut on desktop” and Nxclient will make a shortcut called
windbag1. Make sure your login name has the correct case, type in your password,
click to log in, and there you are. Figure 8-4 shows an active session.

To close your FreeNX session, log out from your remote desktop in the usual man-
ner. You may also click the Close button on the Nxclient window. This brings up a
dialog that asks you if you want to Suspend or Terminate. Suspend does not close
running applications, so you can log in later and pick up where you left off; Termi-
nate closes all applications.

Discussion
If you try to connect to the server and get the error message: “Unable to create the X
authorization cookie,” it means Nxclient is looking in the incorrect location for the
xauth program. Fix this by creating a symlink:

cd /usr/X11R6/bin
ln -sf /usr/bin/xauth

Figure 8-4. See the pretty Linux desktop on Windows

8.3 Using FreeNX to Run Linux from Windows | 237

When NoMachine released its 2.0 versions, it left FreeNX behind. FreeNX 1.5
doesn’t work with NoMachine 2.0 clients without a bit of tweaking, and even then,
it may not work reliably. At the time this was written, you could download older
NoMachine clients from Industrial-Statistics.com: http://www.industrial-statistics.
com/info/nxclients?IndStats=47ebcaa422e76eba8af14a1b6f31d971.

Another option is to modify FreeNX 1.5 to work with the NoMachine 2.0 client. See
FreeNX FAQ/Problem Solving: http://openfacts.berlios.de/index-en.phtml?title=FreeNX_
FAQ/Problem_Solving.

Nxclient, by default, enters the name of the current Windows user on the Nxclient
login screen, with the first letter capitalized. Linux logins are case-sensitive, so
beware. You may log in as any FreeNX user; it doesn’t matter which Windows login
is active.

You may save your password in the Nxclient login; this is convenient, but an obvi-
ous security risk.

Enabling SSL encrypts all traffic, and is good to use all the time.

You’ll probably want to increase the font size used in the logfiles; the default is
nearly unreadable. Do this on the Environment tab; open “NX Client For Win-
dows,” then click the Configure button to get to all the configuration tabs.

You may use any desktop environment or window manager, as long as it is installed
on the FreeNX server. However, when this was written, selecting anything other than
KDE or Gnome didn’t work correctly.

When a new user is added to the FreeNX server, the user key is copied from /etc/
nxserver/users.id_dsa.pub to /home/user/.ssh/authorized_keys2.

FreeNX user’s passwords are hashed and stored in /etc/nxserver/passwords.

See Also
• NoMachine’s download page:

http://www.nomachine.com/download.php

• nomachine.com’s Support Center:

http://www.nomachine.com/support.php

• NX Server System Administrator’s Guide:

http://www.nomachine.com/documentation/admin-guide.php

238 | Chapter 8: Using Cross-Platform Remote Graphical Desktops

8.4 Using FreeNX to Run Linux from Solaris, Mac OS X,
or Linux

Problem
You don’t want to remotely access your nice Linux box from Windows—you have a
Solaris, Mac OS X, or Linux PC that you want to use. How do you set them up as
FreeNX clients?

Solution
Just the same as on Windows, as in the previous recipe. After setting up the FreeNX
server, download and install the appropriate client from NoMachine’s download
page (http://www.nomachine.com/download.php).

Start the NX Connection Wizard with the /usr/NX/bin/nxclient --wizard command.

Configure it in exactly the same way as for Windows; the client interface looks the
same on all platforms.

There is one important difference: when you copy the client key, it goes into /usr/
NX/share/keys/. Otherwise, it’s all the same.

Debian users, if you get an error message saying that you need libstdc++2.10-glibc2.2
and libpng.so when you try to install nxclient, it means you need to track down these
old libraries and install them. They should be in the Debian Woody repositories.

Fedora users need the compat-libstdc++-296 package.

Discussion
When NoMachine released its 2.0 versions, it left FreeNX behind. FreeNX 1.5
doesn’t work with NoMachine 2.0 clients without a bit of tweaking, and even then it
may not work reliably. At the time this was written, you could download older
NoMachine clients from Industrial-Statistics.com (http://www.industrial-statistics.
com/info/nxclients?IndStats=47ebcaa422e76eba8af14a1b6f31d971).

Another option is to modify FreeNX 1.5 to work with the NoMachine 2.0 client. See
FreeNX FAQ/Problem Solving (http://openfacts.berlios.de/index-en.phtml?title=FreeNX_
FAQ/Problem_Solving).

You may be asking why use FreeNX on Unix platforms, when tunneling X over
OpenSSH is standard and easy? Because FreeNX offers significantly faster perfor-
mance, especially over slow links. Kurt Pfeifle, one of the primary FreeNX developers,
says that “a full-screen KDE 3.2 session start-up sequence transfers 4.1 MB of data
over the wire, if it is run over a plain vanilla remote X connection...if run over NX, the
second startup data transfer volume drops down to 35 KB, due to the combined
compression, cache and minute differential effects of NX,” (Linux Journal online,
“The Arrival of NX, Part 4” at http://www.linuxjournal.com/node/8489/).

8.5 Managing FreeNX Users | 239

So, this means that users on a dial-up link of at least 40 Kbps will experience little
perceptible lag. Using a lightweight window manager like IceWM or Xfce will see
even better performance—if you can get them to work.

See Also
• NoMachine’s download page:

http://www.nomachine.com/download.php

• NoMachine’s Support Center:

http://www.nomachine.com/support.php

• NX Server System Administrator’s Guide:

http://www.nomachine.com/documentation/admin-guide.php

8.5 Managing FreeNX Users

Problem
You want to know how to list, add, and delete FreeNX users.

Solution
Use these commands, as root, to list, add, or delete users. We’ll use our favorite user
pinball to demonstrate in these examples:

/usr/bin/nxserver --listuser
/usr/bin/nxserver --adduser pinball
/usr/bin/nxserver --deluser pinball

You can change users’ passwords, and users can change their own passwords with
the --passwd option:

/usr/bin/nxserver --passwd pinball

Discussion
Remember, FreeNX users must first be Linux users—they must have accounts to log
in to.

See Also
• Run /usr/bin/nxserver --help as root to see all server commands

• NoMachine’s Support Center:

http://www.nomachine.com/support.php

• NX Server System Administrator’s Guide:

http://www.nomachine.com/documentation/admin-guide.php

240 | Chapter 8: Using Cross-Platform Remote Graphical Desktops

8.6 Watching Nxclient Users from the FreeNX Server

Problem
You want a central management console to keep an eye on who is logged in to your
FreeNX server. You want to be able to terminate sessions, view user histories, and
send vitally important messages to users.

Solution
Use /usr/bin/nxserver. You can see who is currently logged in:

nxserver --list
NX> 100 NXSERVER - Version 1.5.0-50 OS (GPL)
NX> 127 Sessions list:

Display Username Remote IP Session ID
------- --------------- --------------- --------------------------------
1003 carla 192.168.1.17 1D0FB6F2759E350067E911D245E9
1001 pinball 192.168.1.19 64A6BBAE7E9BDD8BC79EE5FCAB
NX> 999 Bye

View user history:

nxserver --history pinball
NX> 100 NXSERVER - Version 1.5.0-50 OS (GPL)
NX> 127 Session list:

Display Username Remote IP Session ID Date
Status
------- --------------- --------------- -------------------------------- ------------
------- -----------
1000 pinball 192.168.1.17 B5870BA4DF456E9126B0561402 2006-12-14 04:25:06
Finished
1001 pinball 192.168.1.17 64A6BBAE7E9BDB1C79EE5FCAB 2006-12-18 09:56:12
Running
NX> 999 Bye

pinball is being a pain, so you want to kick her off the server. You may terminate a
single session, using the session ID:

nxserver --terminate 64A6BBAE7E9BDB1C79EE5FCAB

Or, you can knock all of pinball’s sessions offline with her username:

nxserver --terminate pinball

You may send messages to single users, or to all users:

nxserver --send pinball "Save your work, I'm disconnecting you in five seconds"
nxserver --broadcast "Save your work, I'm disconnecting you in five seconds and
then we're going out for treats"

This is a useful command for cleaning up stray sessions leftover after a power outage:

nxserver --cleanup

8.7 Starting and Stopping the FreeNX Server | 241

Discussion
This is also useful if you have problems with your own remote FreeNX sessions. For
example, if you have logged in from a number of different locations, you can SSH in
to the FreeNX server and run the nxserver commands to see how many active ses-
sions you have, and shut them down.

See Also
• Run /usr/bin/nxserver --help as root to see all server commands

• NoMachine’s Support Center:

http://www.nomachine.com/support.php

• NX Server System Administrator’s Guide:

http://www.nomachine.com/documentation/admin-guide.php

8.7 Starting and Stopping the FreeNX Server

Problem
You don’t see an nx or FreeNX daemon running anywhere, yet it works—how do
you stop and start it, and how do you check the status?

Solution
With these three commands:

/usr/bin/nxserver --start
/usr/bin/nxserver --stop
/usr/bin/nxserver --status

FreeNX uses services provided by ssh, so you won’t see any sort of FreeNX daemon
running. However, stopping FreeNX won’t affect ssh or other login services at all.

Discussion
Here is what your command output should look like:

nxserver --status
NX> 100 NXSERVER - Version 1.5.0-50 OS (GPL)
NX> 110 NX Server is running
NX> 999 Bye
nxserver --stop
NX> 100 NXSERVER - Version 1.5.0-50 OS (GPL)
NX> 123 Service stopped
NX> 999 Bye
nxserver --status
NX> 100 NXSERVER - Version 1.5.0-50 OS (GPL)
NX> 110 NX Server is stopped
NX> 999 Bye

242 | Chapter 8: Using Cross-Platform Remote Graphical Desktops

nxserver --start
NX> 100 NXSERVER - Version 1.5.0-50 OS (GPL)
NX> 122 Service started
NX> 999 Bye

FreeNX is pretty low-maintenance, and usually doesn’t need configuration tweaks.
The main configuration file is /etc/nxserver/node.conf. /usr/bin/nxserver is just a big
old shell script, if you have a desire to hack at it.

See Also
• Run /usr/bin/nxserver --help as root to see all server commands

• NoMachine’s Support Center:

http://www.nomachine.com/support.php

• NX Server System Administrator’s Guide:

http://www.nomachine.com/documentation/admin-guide.php

8.8 Configuring a Custom Desktop

Problem
The Connection Wizard only gives you four choices for your remote desktop: KDE,
Gnome, CDE, and Custom. You don’t want KDE, Gnome, or CDE, you want some-
thing else like IceWM or Xfce, so Custom is the obvious choice. How do you configure
a custom desktop?

Solution
First, make sure the desktop you want to use is installed on your FreeNX server.
Then, fire up the Connection Wizard on the client.

On the Desktop tab of the Connection Wizard, click Custom, then Settings.

On the Settings window, click “Run the following command,” and type in the com-
mand to start up your chosen desktop.

Check “New virtual desktop.”

Finish the rest of the setup, and you’re done. See Figure 8-5 for an example.

Discussion
You may or may not be able to get a custom desktop to work; currently, there are
some problems with these.

8.8 Configuring a Custom Desktop | 243

Make sure your server and client versions match, or your remote desktops might get
garbled, or even be unusable. They must have the same major and minor version
numbers, so the server version 1.5.0-50 must be paired with a client version starting
with 1.5.

Gnome and KDE run well even over slow links. To get even better performance, try
lightweight window managers like IceWM or Xfce. These are fully featured, but a lot
less resource-hungry. However, FreeNX is so efficient, you probably won’t notice a
lot of difference.

Be sure to check the documentation for your window manager or desktop to find the
correct start command. Some need only to execute the binary, some have a startup
script. Table 8-1 lists some examples.

Figure 8-5. Configuring a custom desktop

244 | Chapter 8: Using Cross-Platform Remote Graphical Desktops

You won’t need the full path as long as these commands are in your $PATH on your
FreeNX server.

See Also
• XWinman (http://xwinman.org/) for information on all kinds of window managers

• Run /usr/bin/nxserver --help as root to see all server commands

• NoMachine’s Support Center:

http://www.nomachine.com/support.php

• NX Server System Administrator’s Guide:

http://www.nomachine.com/documentation/admin-guide.php

8.9 Creating Additional Nxclient Sessions

Problem
You have several remote Linux machines that you want to log in to. How do you set
up additional Nxclient sessions?

Solution
Run the NX Connection Wizard every time you want to create a new session. On
Windows, run Start ➝ NX Client For Windows ➝ NX Connection Wizard.

On Linux, Solaris, and Mac OS X, run /usr/NX/bin/nxclient --wizard.

You can create a new desktop shortcut for each one, and it will also populate the
drop-down menu in the Nxclient login screen with the name of each new session.

Table 8-1. Startup commands for popular window managers

Window manager Startup command

Afterstep afterstep

Enlightenment enlightenment

FVWM fvwm2

Gnome gnome-session

IceWM icewm

KDE startkde

TWM twm

Xfce startxfce4

8.9 Creating Additional Nxclient Sessions | 245

Discussion
Nxclient comes with all the fixings to create menu and desktop icons, even on Linux.
Whether they will actually be installed depends on your chosen Linux distribution.

See Also
• Run /usr/bin/nxserver --help as root to see all server commands

• NoMachine’s Support Center:

http://www.nomachine.com/support.php

• NX Server System Administrator’s Guide:

http://www.nomachine.com/documentation/admin-guide.php

• Monitoring Nxclient Sessions With NX Session Administrator

Problem
You want to monitor and control your Nxclient sessions—start new ones, stop exist-
ing ones, view logs, collect statistics, and monitor performance. How do you do this?

Solution
Use the NX Session Administrator, which comes with Nxclient. On Windows cli-
ents, look for the NX Session Administrator shortcut.

On Linux, Mac OS X, and Solaris, run /usr/NX/bin/nxclient --admin.

Using it is self-explanatory; just check out the different menus. The Session menu is
interesting—here, you can see all the logs, statistics, and see for yourself how band-
width-efficient FreeNX really is.

Discussion
KDE and Gnome are both working toward integrating FreeNX and Nxclient, so keep
your eyes peeled for KDE and Gnome-specific utilities.

See Also
• Run /usr/bin/nxserver --help as root to see all server commands

• NoMachine’s Support Center:

http://www.nomachine.com/support.php

• NX Server System Administrator’s Guide:

http://www.nomachine.com/documentation/admin-guide.php

246 | Chapter 8: Using Cross-Platform Remote Graphical Desktops

8.10 Enabling File and Printer Sharing, and
Multimedia in Nxclient

Problem
You have Samba set up already for file and printer sharing, and CUPS is your print-
ing subsystem. You want to share files and printers through FreeNX, instead of
running a separate Samba client, or messing with CUPS. And, you noticed that
sound effects don’t play on your Nxclient, but they do play on the host PC. How do
you get the sound effects to work remotely?

Solution
On Microsoft Windows, open NXclient For Windows; on Linux, Mac OS X, and
Solaris, run /usr/NX/bin/nxclient.

Click the Configure button, and go to the Services tab. Here are all the checkboxes to
enable multimedia, shared printing, and file sharing.

Discussion
You must have Samba and CUPS already configured and working. Nxclient automati-
cally finds all available shares—all you do is select the ones you want from a drop-down
list.

See Also
• Chapters 14, 15, and 23 in Linux Cookbook, by Carla Schroder (O’Reilly) to

learn how to set up CUPS and Samba

• Run /usr/NX/bin/nxclient --help to see all available commands

8.11 Preventing Password-Saving in Nxclient

Problem
You want to tighten up the client-side a bit by not allowing users to be able to save
passwords in the Nxclient login screen.

Solution
Create an empty file on the client named /usr/NX/share/nopasswd:

touch /usr/NX/share/nopasswd

On Windows clients, create \Program Files\NX Client for Windows\Share\nopasswd.

This disables saving the login and password.

8.12 Troubleshooting FreeNX | 247

Discussion
If you have chronically roaming users, or users sharing Windows PCs, or generic
public terminals, it is wise to disable login and password saving.

Obviously, you must make sure that the nopasswd file is read-only by the user. On
Linux, this is easy:

chown root:root nopasswd
chmod 644 nopasswd

On Windows, it isn’t so easy. Windows NT, 2000, 2003, and XP Pro running the
NTFS filesystem let you tweak individual file permissions; just right-click on the file
icon, and go to the Security tab to set ownership and access permissions.

However, any Windows running the FAT32 filesystem does not have ACLs. Win-
dows XP Home does not include an ACL-capable filesystem, nor does Windows XP
Pro in Simple File Sharing mode.

Simple File Sharing is on in XP Pro by default; to turn it off, open My Computer
➝ Tools ➝ Folder Options ➝ View ➝ Advanced Settings, and uncheck “Use simple
file sharing (Recommended).”

You should do this as Administrator because Simple File Sharing is enabled/disabled
per user. So, make sure the boss has control, however feeble. You can also make
nopasswd a hidden file, for a wee bit of extra obscurity.

See Also
• Run /usr/bin/nxserver --help as root to see all server commands

• NoMachine’s Support Center:

http://www.nomachine.com/support.php

• NX Server System Administrator’s Guide:

http://www.nomachine.com/documentation/admin-guide.php

8.12 Troubleshooting FreeNX

Problem
You cannot connect—help!

Solution
Check the server logfile first, /var/log/nxserver.log. If the logfile is not detailed
enough, go into /etc/nxserver/node.conf, and bump up the logging level. Available lev-
els are 0–7. Level 6 is usually sufficient:

NX_LOG_LEVEL=6

248 | Chapter 8: Using Cross-Platform Remote Graphical Desktops

Nxclient has its own log viewer in the NX Session Administrator, at Session ➝ View
session log.

The logfiles don’t always tell you what you need to know. Here are a number of
common problems that are easy to remedy:

• Make sure TCP port 3389 is not blocked on the clients.

• Make sure TCP port 22 is not blocked on the server.

• Make sure you are using the correct hostname or IP address of your FreeNX
server.

• Make sure that you have distributed the correct client keys—probably the most
common error is creating a new key pair when installing the server, and forget-
ting to distribute the client key.

• Check filepaths in /etc/nxserver/node.conf and in the NX Clients.

See Also
• NoMachine’s Support Center:

http://www.nomachine.com/support.php

• NX Server System Administrator’s Guide:

http://www.nomachine.com/documentation/admin-guide.php

8.13 Using VNC to Control Windows from Linux

Problem
You want to control your Windows workstation or server remotely from your Linux
box. Or, you want to be able to remotely control user’s Windows PCs for helpdesk
chores or remote administration.

Solution
Virtual Network Computing (VNC) is just what you need. There are several variants
of VNC; in these recipes, we’ll use TightVNC. VNC has two parts: the server and the
client (which is called the viewer).

Install the TightVNC server and the DFMirage driver on Windows (see TightVNC,
http://www.tightvnc.com/).

Install any VNC viewer on Linux. Chances are, one is already installed by default.
The TightVNC viewer includes a Java viewer, so any Java-enabled web browser can
be a VNC viewer.

The Windows installer will take you through a number of steps. The main question
is, do you want TightVNC to run as a service or in application mode? You can

8.13 Using VNC to Control Windows from Linux | 249

change this at any time with the “Install VNC Service” or “Remove VNC Service”
commands. Use application mode for occasional use, and run it as a service for fre-
quent use.

These configuration options are important:

• On the Server tab, be sure to enable Accept Socket Connections.

• Make sure there are passwords for Primary Password and View-Only Password.
Passwords may not be more than eight characters.

• On the Administration tab, check Disable Empty Passwords.

• To enable using a web browser as a client, check Enable built-in HTTP server.

• Enable logging; it’s not necessary to turn on debugging unless you’re having
problems.

Now, you can connect from any VNC viewer on any operating system by entering
the IP address or hostname of the Windows box. Figure 8-6 shows the Xvnc4viewer
login screen.

You may use any VNC-capable viewer, like the KDE Remote Desktop Connection,
the Gnome remote desktop, jtightvncviewer, vncviewer, or xvnc4viewer.

To close out your remote session, just close the window.

To open a VNC session in a web browser, type http://[hostname-or-IP-address]:5800
in the address bar.

Please note that all transmissions are sent in the clear, and authentication is weakly
protected, so you do not want to use this over untrusted networks.

Discussion
On Debian, the TightVNC Java viewer is a separate package, tightvnc-java.

You can encrypt a VNC session by tunneling VNC over SSH (see Recipe 8.21). This
works on any platforms that support SSH and VNC.

Figure 8-6. Xvnc4viewer login screen

250 | Chapter 8: Using Cross-Platform Remote Graphical Desktops

Unlike rdesktop, VNC works for any version of Windows.

Because the TightVNC server has its own password, you can log in to any active
Windows session; it doesn’t matter which Windows user is logged in.

In application mode, you need a Windows user already logged in on the Windows
PC to enable remote logins. When it’s running as a service, you don’t.

Only Windows users with administrative privileges can make any changes to the
TightVNC server configuration when it runs as a service. This prevents remote users
from shutting down the VNC server or changing its settings.

When the TightVNC server runs in application mode, then any Windows user can
run it as they please, and remote users can change VNC settings, and even shut it
down. This is a nice convenience for users, and also a potential security hole.

See Also
• RealVNC:

http://www.realvnc.com/

• TightVNC:

http://www.tightvnc.com/

• UltraVNC for Windows-to-Windows remote administration:

http://ultravnc.sourceforge.net/

8.14 Using VNC to Control Windows and Linux at the
Same Time

Problem
You need to use a Windows PC and a Linux PC a lot. Sure, you get some exercise
hopping back and forth from chair to chair, or scooting your chair about, but it
would be nice to control both from a single keyboard and mouse, and you would
rather not spend money on a hardware switch.

Solution
As usual, the Linux world provides an abundance of useful goodies. In addition to a
Windows VNC server (see the previous recipe), you’ll need the x2vnc program.

Of course, Linux must be in charge, and will control both computers. First, install
x2vnc on Linux.

Make sure the Windows VNC server is running and accepting connections.

8.14 Using VNC to Control Windows and Linux at the Same Time | 251

Then, fire up x2vnc:

$ x2vnc 192.168.1.28:0 -west
x2vnc: VNC server supports protocol version 3.7 (viewer 3.3)
Password:
x2vnc: VNC authentication succeeded
x2vnc: Desktop name "powerpc-w2k"
x2vnc: Connected to VNC server, using protocol version 3.3
x2vnc: VNC server default format:

And there you are. -west means left, so you can move your cursor to the left off the
edge of your Linux screen, and it will reappear on your Windows screen. Now, you
control both computers with the same keyboard and mouse.

Discussion
You’ll notice that this is quite a bit peppier than a regular VNC session because you
are running native sessions on each computer, rather than creating virtual graphics
servers.

This can only be used to control Windows from Linux. If you want to run your pri-
mary session from a Windows PC, use Win2VNC on Windows, and the VNC server
of your choice on Linux.

Running two Linux PCs requires x11vnc for the VNC server.

x2vnc works by creating a one-pixel-wide trigger window at the edge of the screen,
which causes x2vnc to take control and send mouse movements and keystrokes to
the Windows PC.

Here are some useful options:

-resurface
This keeps the trigger window on top, so it can’t be covered by another window.

-edgewidth 3
If you have problems with the trigger window, you can try making it wider. Set-
ting it to 0 disables it entirely, if you would rather use the hotkey to switch back
and forth.

-debug
If you are having problems, crank up the verbosity.

-hotkey
A common error message is “Warning: Failed to bind x2vnc hotkey, hotkey dis-
abled.” Use the -hotkey option to specify which hotkey you want, like this:

$ x2vnc -hotkey F12 192.168.1.28:0 -west

Hitting F12 switches the cursor back and forth between your two screens. The
default is Ctrl-F12; you may use any combination of meta keys that you like.

See Also
• man 1 x2vnc

252 | Chapter 8: Using Cross-Platform Remote Graphical Desktops

8.15 Using VNC for Remote Linux-to-Linux
Administration

Problem
You want to use VNC to control other Linux PCs from your Linux box.

Solution
Install the VNC server and viewers of your choice on both Linux PCs. In this recipe,
we’ll use TightVNC. Fire up the VNC server on the first PC. This example shows a
first-time startup that creates the server’s configuration files and password:

carla@windbag:~$ tightvncserver
You will require a password to access your desktops.
Password:
Verify:
New 'X' desktop is windbag:1
Creating default startup script /home/carla/.vnc/xstartup
Starting applications specified in /home/carla/.vnc/xstartup
Log file is /home/carla/.vnc/windbag:1.log

Then, it exits. Start it up again:

carla@windbag:~$ tightvncserver
New 'X' desktop is windbag:2
Starting applications specified in /home/carla/.vnc/xstartup
Log file is /home/carla/.vnc/windbag:2.log

Notice that it helpfully tells you everything you need to know: the connection
parameters, configuration file, and logfile locations.

Now, run over to Linux PC number two, open a VNC viewer, and connect with the
hostname:

windbag:2

Or, use the IP address:

192.168.1.28:2

It will ask for a password, and there you are.

You can shutdown tightvncserver sessions on the server like this, specifiying the ses-
sion number:

$ tightvncserver -kill :2
Killing Xtightvnc process ID 24306

Note that you must append a session number because Linux supports running multi-
ple VNC servers at the same time.

8.15 Using VNC for Remote Linux-to-Linux Administration | 253

Discussion
If you configured the server to use a different port number than the default 5800 (for
HTTP) or 5900 (VNC viewer), you’ll need to specify the port number in the client,
like this for port 6000:

windbag:6002

VNC adds the session number to the port number, so session 3 is 6003, and so forth.

You’ll notice this is quite a bit faster than using VNC to run Windows from Linux.
This is because VNC only needs to handle X Windows, which was designed from the
start to support networking. So, all VNC needs to do is transmit keyboard and
mouse input over TCP/IP, rather than replicating the entire screen like it does with
Windows, which uses an entirely different graphical subsystem. In effect, VNC must
repeatedly screen scrape and transmit a copy of the Windows display.

You may run as many VNC servers on a single Linux PC as you like. Just open new
instances of the VNC server, and it will automatically assign a new display:

$ tightvncserver
New 'X' desktop is windbag:3
Starting applications specified in /home/carla/.vnc/xstartup
Log file is /home/carla/.vnc/windbag:3.log

You can go nuts and connect back and forth as much as you like, or daisy-chain sev-
eral VNC sessions by connecting to other PCs from inside the remote sessions.

Run ps ax | grep vnc to see how many servers you have running locally:

18737 pts/1 S 0:00 Xtightvnc :1 -desktop X -httpd /usr/share/tightvnc-java -
auth /home/carla/.Xauthority -geometry 1024x768 -depth 24 -rfbwait 120000 -rfbauth /
home/carla/.vnc/passwd -rfbport 5901 -fp /usr/share/X11/fonts/misc,/usr/share/X11/
fonts/cyrillic,/usr/share/X11/fonts/100dpi/:unscaled,/usr/share/X11/fonts/75dpi/:
unscaled,/usr/share/X11/fonts/Type1,/usr/share/X11/fonts/CID,/usr/share/X11/fonts/
100dpi,/usr/share/X11/fonts/75dpi,/var/lib/defoma/x-ttcidfont-conf.d/dirs/TrueType,/
var/lib/defoma/x-ttcidfont-conf.d/dirs/CID -co /usr/X11R6/lib/X11/rgb

19479 pts/5 S 0:00 Xtightvnc :2 -desktop X -httpd /usr/share/tightvnc-java -
auth /home/carla/.Xauthority -geometry 1024x768 -depth 24 -rfbwait 120000 -rfbauth /
home/carla/.vnc/passwd -rfbport 5902 -fp /usr/share/X11/fonts/misc,/usr/share/X11/
fonts/cyrillic,/usr/share/X11/fonts/100dpi/:unscaled,/usr/share/X11/fonts/75dpi/:
unscaled,/usr/share/X11/fonts/Type1,/usr/share/X11/fonts/CID,/usr/share/X11/fonts/
100dpi,/usr/share/X11/fonts/75dpi,/var/lib/defoma/x-ttcidfont-conf.d/dirs/TrueType,/
var/lib/defoma/x-ttcidfont-conf.d/dirs/CID -co /usr/X11R6/lib/X11/rgb

Run killall Xtightvnc to stop all of them.

Don’t run Xtightvnc directly, because tightvncserver is a wrapper script that per-
forms sanity checks and emits useful error messages.

254 | Chapter 8: Using Cross-Platform Remote Graphical Desktops

See Also
• RealVNC:

http://www.realvnc.com/

• TightVNC:

http://www.tightvnc.com/

• UltraVNC for Windows-to-Windows remote administration:

http://ultravnc.sourceforge.net/

8.16 Displaying the Same Windows Desktop to
Multiple Remote Users

Problem
You want to run a remote demo to several of your users, or conduct a class, or other-
wise set it up so that several people can share the same remote Windows desktop.

Solution
TightVNC supports multiple concurrent users. Anyone with a VNC viewer can
connect: Linux, Mac, or other Windows users.

First, configure the TightVNC server on Windows to accept multiple connections.
Double-click the systray VNC icon, or open Start ➝ TightVNC ➝ Show User Set-
tings. Go to the Administration tab, and check “Automatic shared sessions.”

Now, your users can log in to Windows in the usual manner by entering the hostname
or IP of the Windows PC in their VNC clients. In VNC viewers, the port number is
5900. In the KDE Remote Desktop Connection (KRDC) viewer, it looks like Figures
8-7 and 8-8.

Now, imagine what happens when all of your users are connected—do you want
them to have control of the mouse and keyboard, or do you wish to lock them out?
Do you want to allow remote control only when the local Windows user is idle?
Configure these options on the Server tab under Input handling.

Discussion
TightVNC does not have any sort of user-monitoring tools—the only way it shows
client connections is that the systray icon changes color. There are a couple of useful
client-management options when you right-click the systray icon. You can block new
users from connecting, or kick off the entire lot of connected clients.

8.16 Displaying the Same Windows Desktop to Multiple Remote Users | 255

Figure 8-7. Login screen

Figure 8-8. Back home at the ranch

256 | Chapter 8: Using Cross-Platform Remote Graphical Desktops

You may also view the session in a Java-enabled web browser. Enter the connection
parameters in standard URL form, plus the port number:

http://powerpc:5800

Or, use the IP address:

http://192.168.1.28:5800

On Debian, you need the tightvnc-java package installed on the server. The TightVNC
server RPMs and source tarballs include the Java component.

See Also
• RealVNC:

http://www.realvnc.com/

• TightVNC:

http://www.tightvnc.com/

• UltraVNC for Windows-to-Windows remote administration:

http://ultravnc.sourceforge.net/

8.17 Changing the Linux VNC Server Password

Problem
How do you change the Linux VNC server password?

Solution
Use the vncpasswd command:

$ vncpasswd
Password:
Verify:

Discussion
Remember to inform users when you change the password. You may do without
passwords entirely, if you really really want to.

See Also
• man 1 vncpasswd

• RealVNC: http://www.realvnc.com/

• TightVNC: http://www.tightvnc.com/

• UltraVNC for Windows-to-Windows remote administration:

http://ultravnc.sourceforge.net/

8.18 Customizing the Remote VNC Desktop | 257

8.18 Customizing the Remote VNC Desktop

Problem
The default VNC remote desktop on Linux is little better than a plain vanilla SSH
session—all you get is some barebones window manager like TWM or Metacity, and
an Xterm. How do you get the window manager or desktop of your choice?

Solution
Edit your ~/.vnc/xstartup file on the server. This is the default:

#!/bin/sh
xrdb $HOME/.Xresources
xsetroot -solid grey
x-terminal-emulator -geometry 80x24+10+10 -ls -title "$VNCDESKTOP Desktop" &
x-window-manager &

If there is no ~/.Xresources file, comment that line out.

Simply replace -window-manager with the startup command for the window manager
of your choice, like this:

icewm &

Whenever you make changes in this file, you need to stop and restart the server:

$ tightvncserver -kill :1
$ tightvncserver

Then, log in again from your remote PC.

Table 8-2 lists some startup commands for various window managers, which must
be installed on the server if you want to use them.

Table 8-2. Startup commands for popular window managers

Window manager Startup command

Afterstep afterstep

Enlightenment enlightenment

FVWM fvwm2

Gnome gnome-session

IceWM icewm

KDE startkde

TWM twm

Xfce startxfce4

258 | Chapter 8: Using Cross-Platform Remote Graphical Desktops

Discussion
Check the logfiles in ~/.vnx first if you have problems making this work.

You’ll find all sorts of misinformation on the Internet about how to do this. The
VNC documentation isn’t exactly helpful, either. Which is too bad, because custom-
izing your remote environment is easy. All you do is edit the ~/.vnc/xstartup file, as
this example shows:

#!/bin/sh
xsetroot -gray
kwrite &
konqueror &
icewm &

xsetroot sets the background color of your window manager.

List any applications you want to start automatically, one per line, and be sure to end
each line with the & operator. If you don’t, your apps will be locked in place and
nothing will work. The & operator tells Bash to continue parsing each line; other-
wise, it stops and waits for the first command to complete before proceeding.

See Also
• man 1 vncserver

8.19 Setting the Remote VNC Desktop Size

Problem
Your custom VNC desktop works fine, except it’s too big. How do you change this?

Solution
The default remote desktop size is 1024 × 768. You can change this on the command
line when you start the server:

$ tightvncserver -geometry 800x600

Be sure to use standard values only, or applications will look all wrong, or not work
at all. The standard values are:

1600 × 1200
1280 × 1024
1024 × 768
800 × 600
640 × 480

8.20 Connecting VNC to an Existing X Session | 259

You can set the desktop size in a configuration file, either system-wide in /etc/vnc.conf
or per-user in ~/.vncrc. User settings override global settings, and the command line
overrides all. For example, to set the default desktop size to 800 × 600, use this line:

geometry = "800x600";

The default /etc/vnc.conf contains a lot of sample options and shows the correct syntax.

Discussion
There are so many ways to do this on Linux and on Windows from Cygwin that it
gets a bit mind-boggling. For example, you could log in to your VNC server via SSH
and start up the VNC server with customized options. Or, edit its configuration files
and restart it. You can get a pretty good hall-of-mirrors effect going.

See Also
• man 1 vncserver

• man 5 vnc.conf

8.20 Connecting VNC to an Existing X Session

Problem
You want to be able to connect to your Linux workstation remotely, and you want to
attach to your existing X session instead of starting a new independent one. You
want to be able to roam about and log in from other locations, picking up where you
left off. Or, you want to use this as a helpdesk tool so you can take control of user’s
Linux PCs remotely and fix problems yourself, instead of spending way too much
time trying to talk users through a diagnosis and repair over the telephone.

Solution
Easy as pie with x11vnc. You need x11vnc on the remote server, and a VNC viewer
on your local Linux workstation. After installing x11vnc, create a login password. In
this example, it is stored in /home/carla/x11vnc/passwd. Make sure it is readable only
by the user:

carla@windbag:~/x11vnc$ x11vnc -storepasswd 'password' passwd
stored passwd in file passwd
carla@windbag:~/x11vnc$ chmod 0600 passwd

Now, create a ~/.x11vncrc file. This is the user-specific configuration file that x11vnc
will automatically look for. Put a line in this file pointing to your password file:

rfbauth /home/carla/x11vnc/passwd

260 | Chapter 8: Using Cross-Platform Remote Graphical Desktops

Then, start up x11vnc:

$ x11vnc
07/01/2007 21:25:12 passing arg to libvncserver: -rfbauth
07/01/2007 21:25:12 passing arg to libvncserver: /home/carla/x11vnc/passwd
[...]
Using X display :0
Read initial data from X display into framebuffer.

07/01/2007 18:51:01 Using X display with 16bpp depth=16 true color
07/01/2007 18:51:01 Autoprobing TCP port
07/01/2007 18:51:01 Autoprobing selected port 5900
07/01/2007 18:51:01 screen setup finished.
07/01/2007 18:51:01 The VNC desktop is stinkpad:0
PORT=5900

Next, start the VNC viewer on the other PC, like this:

$ vncviewer stinkpad:0

Enter the password on the login screen, and you are logged in.

x11vnc automatically exits after a single log in, so you won’t be able to log in again
without restarting it. To leave it running continuously, use the -forever and -bg
options:

$ x11vnc -forever -bg

-bg sends it into the background.

Discussion
A common desire is to make x11vnc to run as a service, surviving reboots. It is diffi-
cult, and in my opinion dangerous, as its authentication is weakly protected, data are
sent in the clear, and it requires configuring X Windows, which is just as insecure. I
recommend starting it up only when you want to use it. A safer method is to log in to
remote PCs with OpenSSH first, then start up x11vnc. Even better is to tunnel
x11vnc over SSH, which the next recipe tells you how to do.

See Also
• x11vnc has dozens of options; to see all of them, run:

$ x11vnc -opts

• This command gives long descriptions for each one:
$ x11vnc -help

• x11vnc home page: http://www.karlrunge.com/x11vnc

8.21 Securely Tunneling x11vnc over SSH | 261

8.21 Securely Tunneling x11vnc over SSH

Problem
x11vnc is great for remote helpdesk and roaming users, but you’re not comfortable
with sending everything in cleartext. You want to tunnel x11vnc over SSH for secure
encryption, so how is this done?

Solution
This example shows you how to tunnel x11vnc over SSH, establishing the tunnel and
starting x11vnc with one command. No remote user intervention is needed at all,
providing that sshd is running on their PC. Windbag is the local PC, and Stinkpad is
the remote machine:

carla@windbag:~$ ssh -L 5900:windbag:5900 stinkpad 'x11vnc -localhost -display :0'

Then, open a second command shell on the local machine, and connect with this
command:

carla@windbag:~$ vncviewer localhost:0

Just like VNC, you may run as many x11vnc sessions as you want. They are num-
bered sequentially.

If you don’t want to keep your password in a configuration file, and would rather
enter it on the command line, use the -passwd flag:

$ x11vnc -passwd [password] -bg

x11vnc is a stateless connection, so you can log in, log out, wander around, and log
in again, picking up where you left off.

x11vnc has many dozens of options; to see a list of them, run:

$ x11vnc -opts

This command gives long descriptions for each one:

$ x11vnc -help

Discussion
This should work for any version of VNC.

See Also
• x11vnc home page: http://www.karlrunge.com/x11vnc

262 | Chapter 8: Using Cross-Platform Remote Graphical Desktops

8.22 Tunneling TightVNC Between Linux and
Windows

Problem
You’re not comfortable with VNC’s lack of data encryption and its weak authentica-
tion, so you want to know how to add strong security, especially for traffic over
untrusted networks. And, you want something that works cross-platform (for exam-
ple, when you administer Windows PCs from your Linux workstation).

Solution
Tunnel VNC over SSH.

We’ll assume the following for this recipe:

• You have a Windows 2000 machine or greater capable of running Cygwin and
TightVNC.

• You have a Linux machine with the vncviewer program installed on it.

• The Windows PC is named “cygwin” and the Linux PC is named “linux.”

To install Cygwin and OpenSSH on Windows, go to Cygwin.com (http://cygwin.
com), and hit “Install Cygwin Now.” This downloads a tiny setup.exe file; double-
click this file to bring up the Cygwin installation menu.

The default installation will work fine, except you need to add OpenSSH. You’ll find
this in the Net submenu. Throw in ping for good measure; it will save you the hassle
of opening a DOS window when you need to use ping while you’re running Cygwin.

After installation, open a Cygwin bash shell (there should be a menu command
“Cygwin Bash Shell”), then run:

$ ssh-host-config

This generates new SSH keys and configuration files. Say “yes” to:

• Privilege separation

• Create a local user “sshd”

• Install sshd as a service

Then, add the CYGWIN=ntsec tty environment variables.

Next, start up the ssh daemon:

$ net start sshd
The CYGWIN sshd service is starting.
The CYGWIN sshd service was started successfully.

8.22 Tunneling TightVNC Between Linux and Windows | 263

Download TightVNC from tightvnc.com (http://www.tightvnc.com/download.html),
and install it onto your Win32 machine and reboot. You can access the Current User
Properties by double-clicking on the VNC icon in the system tray. Do this to set a
password, and then click the Advanced button. In the next menu, check “Allow
Loopback Connections.”

Test that you can get to the VNC server with the password you specified in the previ-
ous step from the Linux machine by running the vncviewer cygwin command from
the Linux machine, or vncviewer [windows-IP-address].

Next, let’s generate a passwordless DSA key on the Linux PC. Accept the defaults for
all questions by hitting Enter for each one:

carla@linux:~ $ ssh-keygen -t dsa
Generating public/private dsa key pair.
Enter file in which to save the key (/home/carla/.ssh/id_dsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/carla/.ssh/id_dsa.
Your public key has been saved in /home/carla/.ssh/id_dsa.pub.
The key fingerprint is:
2b:cb:9a:df:f8:34:2d:2f:0c:29:76:5c:c6:52:43:92

Then, on the Windows machine, back at the Cygwin command line, copy the key
from the Linux box:

$ scp carla@linux:.ssh/id_dsa.pub .$ cat id_dsa.pub >> .ssh/authorized_keys

Finally, test that the key allows you to log in to Windows without a password:

carla@linux:~$ ssh user@cygwin
Last login: Sun Sep 24 15:42:48 2006 from 192.168.1.15

So, you can create the SSH tunnel from the Linux host to the Windows host with the
following command:

carla@linux:~$ ssh -L 5900:localhost:5900 user@cygwin
Last login: Sun Jun 3 20:59:54 2007 from 192.168.1.15
Carla@cygwin ~
$

Now that you are logged in, open a second terminal on your Linux machine, and fire
up VNC:

carla@linux:~$ vncviewer localhost

You should be prompted for a password to the VNC server, make the connection,
and just like in a bad movie, yell, “I’m in!”

Future logins will be easy—just create the tunnel, then run VNC.

264 | Chapter 8: Using Cross-Platform Remote Graphical Desktops

Discussion
It’s easy to test that your VNC session is running over the SSH tunnel. Just log out
from the SSH session, and VNC will go away.

SSH tunneling works with any operating system that runs SSH; it works great for
Linux-on-Linux sessions, and is a must for connecting over the Internet. SSH is effi-
cient, so you shouldn’t see a performance hit.

You don’t need to do anything different to VNC, just configure and use it as you
normally would. Once the tunnel is established, use all the ordinary VNC commands.

Let’s take a look at the command that created the tunnel:

ssh -L 5900:windbag:5900 user@cygwin

The -L switch tells SSH to forward everything sent to the specified local port onward
to the remote port and address. So, any traffic sent to TCP 5900 will be forwarded,
not just VNC. (The VNC port is specified in the VNC server configuration.) You
may, of course, use IP addresses instead of hostnames.

If you’re tunneling over the Internet, be sure to use fully qualified domain names:

$ ssh -L 5900:homepc.pinball.net:5900 cygwin.work.com

The second command:

vncviewer windbag

must be directed to the local machine instead of the remote machine because the
entrance to the tunnel is on the local PC.

The CYGWIN=ntsec environment variable creates more Unix-like file permissions on
Windows NTFS filesystems.

The CYGWIN=tty environment variable enables Bash job control.

Cygwin environment variables are in C:\cygwin.bat, which you may edit to suit.

See Also
• Chapter 7

• Chapter 2, “Setting Up Cygwin,” in Cygwin’s User Guide:

http://www.cygwin.com/cygwin-ug-net/cygwin-ug-net.html

265

Chapter 9 CHAPTER 9

Building Secure Cross-
Platform Virtual Private

Networks with OpenVPN

9.0 Introduction
Granting safe, controlled access to your company network for road warriors, tele-
commuters, and branch offices isn’t difficult when you use OpenVPN. OpenVPN is
a great Secure Sockets Layer-based Virtual Private Network (SSL VPN) program that
is free of cost, open source, easy to administer, and secure. OpenVPN is designed to
be as universal as possible, so it runs on Linux, Solaris, Windows, Mac OS X, and
several other platforms. It runs as a client or server from the same installation, so cli-
ent setup is a breeze. There are no hassles with vendor compatibility or finding a
decent client, as there are with other VPN products.

In this chapter, we’re using OpenVPN 2.0.7. (Use the command openvpn --version
to see what yours is.) Don’t use anything older; it’s free, and it’s easy to install and
upgrade, so there’s no point in using old mold. If you’re not experienced with Open-
VPN, try out the recipes in order, or at least run the first two recipes before you try
anything else. These will help you understand how OpenVPN works.

The subject of VPNs is muddled by misleading marketing and incorrect information
about SSL VPN products, IPSec VPNs, what they can do, and what they actually do,
so first let’s discuss some basics.

To start out, let’s define a VPN—it is an encrypted network-to-network virtual
tunnel that connects trusted endpoints. Both the VPN server and client must authen-
ticate to each other. It is a secure extension of your network that makes all the same
services available to remote workers, such as telecommuters and road warriors, that
local users have. Think of it as a secure Ethernet cable that extends your network
through hostile territory. A VPN connects two networks, like branch offices, or lone
remote users to the office.

SSL VPNs rely on SSL/TLS for security. Secure Sockets Layer (SSL) is the predeces-
sor to Transport Layer Security (TLS). The terms are used interchangeably; the two
are very similar. These are cryptographic protocols used to protect transmissions

266 | Chapter 9: Building Secure Cross-Platform Virtual Private Networks with OpenVPN

over untrusted networks. They aim to prevent eavesdropping, tampering, message
forgery, and to provide authentication.

An alarming number of commercial SSL VPN products treat your network like a
shopping web site: in other words, all clients are trusted. This works fine for online
shopping, but can be disastrous for remote LAN access. These are not real VPNs, but
application portals. What makes a VPN strong is trusted endpoints. You don’t want
your users logging in from arbitrary machines, and especially not from coffee shops
or other public terminals. Sure, it’s convenient not to have to install and configure
client software and copy encryption keys. But, that is shortsighted—the last thing
you need is users logging in from random PCs infected with keyloggers and spyware,
and then being given a warm welcome into your LAN. Prevention is more conve-
nient than cleaning up after a successful intrusion. Any SSL VPN product that prom-
ises “Easy clientless configuration!” should be viewed with a large dose of skepticism.
A real VPN is not an SSL-enabled web browser with pretty icons. A real VPN doesn’t
need a web browser. Don’t trust your security to prettified web browsers.

What About IPSec?
To further complicate the issue, some IPSec proponents claim that IPSec is superior
and that SSL VPNs are not worthy. IPSec, especially in IPv4 networks, has a number
of problems. It is complex and difficult to administer, which are not good traits for
security products. It is tightly coupled to the kernel, which means a failure can bring
down your whole system, or a flaw opens a root door to an intruder. If you really
want to use an IPSec VPN, try OpenBSD. It comes with a great IPSec implementa-
tion that is easy to get up and running. Its one weakness is on the client side—you’re
on your own for hunting down IPSec clients.

As IPv6 is implemented, IPSec may become easier because it is integrated into IPv6,
rather than bolted-on as it is for IPv4.

OpenVPN
OpenVPN is, I think, the best VPN product available. OpenVPN creates a true VPN,
an encrypted extension of your network that requires a mutual trust to be estab-
lished between the server and the client. The first step to setting this up is creating
your own Public Key Infrastructure (PKI), which means using OpenSSL to create
your own Certificate Authority (CA), and server and client keys and certificates. Hav-
ing your own CA simplifies certificate management considerably. The server doesn’t
need to know anything about the individual client certificates because the CA
authenticates them. If a client is compromised, its certificate can be revoked from the
server. OpenVPN comes with a batch of scripts that make managing your PKI easy.

OpenVPN’s encryption process is complex. First, the SSL/TLS handshake authenti-
cates both ends, then four different new keys are generated: Hashed Message
Authentication Code (HMAC) send and receive keys, an encrypt/decrypt send key,

9.1 Setting Up a Safe OpenVPN Test Lab | 267

and an encrypt/decrypt receive key. This is all delightfully complex, and happens in
an eyeblink; the result is that any attacker is going to have a very hard time getting
anywhere. To learn about this in detail, read Charlie Hosner’s excellent paper, “Open-
VPN and the SSL Revolution” (http://www.sans.org/reading_room/whitepapers/vpns/
1459.php?portal=c7da694586dcdad815fd41098461e495).

Client configuration is the easiest of any VPN. OpenVPN runs as either client or
server on Linux, Solaris, OpenBSD, Mac OS X, FreeBSD, NetBSD, and Windows
2000 and up, so you don’t have to hunt for client software, or suffer the pain of test-
ing poor-quality client software. Configuration files are pretty much the same on all
platforms. Just remember that slashes lean in the wrong direction on Windows.

OpenVPN runs as a user-space daemon. It uses TAP/TUN drivers to manage
network access. TAP/TUN drivers are standard on most operating systems; these
provide a way for user-space applications to access network interfaces without need-
ing root privileges. The TAP driver provides low-level kernel support for IP tunneling,
and the TUN driver provides low-level kernel support for Ethernet tunneling. You’ll
see this on Linux and Unix systems as character devices named /dev/tapX and /dev/
tunX. In ifconfig, they will appear as tunX and tapX. Use the TUN driver when your
VPN tunnel is routed, and the TAP driver when it’s bridged. You’ll configure this in
openvpn.conf.

In an ideal world, your remote users only log in from PCs that have been carefully
screened by your ace security staff, and your users are wise and careful, and don’t let
other people use their computers. In the real world, it’s messier, of course. But using
OpenVPN is a strong security measure that prevents many ills.

OpenVPN is a standard package on most Linux-based firewall distributions, such as
Shorewall, IPCop, Pyramid, Open WRT, Bering uClibc, and DD-WRT. On others,
it’s just a yum install openvpn or apt-get install openvpn away, and of course, you
may build it from sources if you prefer.

9.1 Setting Up a Safe OpenVPN Test Lab

Problem
You don’t want to be messing around with trying to test OpenVPN over the Inter-
net; you want a safe, controlled environment for testing before you deploy it.

Solution
Not a problem. Just build a little test lab with three computers. One acts as the
remote PC, the second one is the OpenVPN server and router, and the third one rep-
resents your LAN. The PC acting as the OpenVPN server and router needs two
Ethernet interfaces. With this setup, you can test OpenVPN configurations and
firewall rules safely, and in a realistic manner. These should be in physical proximity

268 | Chapter 9: Building Secure Cross-Platform Virtual Private Networks with OpenVPN

to each other because when you start messing with networking, you’re going to lose
connectivity. You should use Ethernet cables and a switch; don’t try this with wire-
less unless you enjoy introducing more problems.

Before you do anything else, install OpenVPN on the remote PC and the machine that is
going to be your OpenVPN server. In this recipe, all three computers are running Linux.
(We’ll get to other clients later in the chapter.) OpenVPN is included in most Linux dis-
tributions, so it’s just a yum install openvpn or aptitude install openvpn away.

Setting up routes can get a bit confusing, especially if you still rely on cheat sheets for
calculating subnets (like I do), and have to draw network diagrams even for simple
setups (which I must also do), so take it slowly and follow these steps exactly. You
can always change addresses and routes later. Your test network should look like
Figure 9-1.

Connect the remote PC to the server directly with a crossover cable. In this recipe,
I’ll use Xena as the name of the OpenVPN server, Stinkpad as the remote client, and
Uberpc represents the rest of the LAN.

Xena and Stinkpad need to be on different subnets, so our network addressing looks
like this:

Stinkpad
eth0

address 192.168.2.100

netmask 255.255.255.0

broadcast 192.168.2.255

Xena
eth0- LAN interface

address 192.168.1.10

netmask 255.255.255.0

broadcast 192.168.1.255

Figure 9-1. OpenVPN test lab

OpenVPN serverRemote PC

LAN

Switch

9.1 Setting Up a Safe OpenVPN Test Lab | 269

eth1- “Internet” interface

address 192.168.3.10

netmask 255.255.255.0

broadcast 192.168.3.255

Uberpc
eth0

address 192.168.1.76

netmask 255.255.255.0

broadcast 192.168.1.255

default gateway 192.168.1.10

It doesn’t matter what network configurations your PCs already have because we’ll
set them temporarily for testing, so you don’t need to touch any configuration files.
Set their IP addresses with these commands:

root@stinkpad:~# ifconfig eth0 192.168.2.100 netmask 255.255.255.0 up
root@xena:~# ifconfig eth0 192.168.1.10 netmask 255.255.255.0 up
root@xena:~# ifconfig eth1 192.168.3.11 netmask 255.255.255.0 up
root@uberpc:~# ifconfig eth1 192.168.1.76 netmask 255.255.255.0 up

Now, create some static routes, and turn on forwarding on Xena, so that the bits
may flow freely:

root@stinkpad:~# route del default
root@stinkpad:~# route add -net 192.168.3.0/24 gw 192.168.2.100 eth0
root@xena:~# route del default
root@xena:~# route add -net 192.168.2.0/24 gw 192.168.3.10 eth1
root@xena:~# echo 1 > /proc/sys/net/ipv4/ip_forward
root@uberpc:~# route del default
root@uberpc:~# route add default gw 192.168.1.10 eth0

View your routes with the route command. If you make a mistake, routes are deleted
this way, using your own network address, of course:

route del -net 192.168.3.0/24

Stinkpad and Uberpc should now be able to ping each other. Once ping is working,
you can go to the next recipe to start testing OpenVPN.

Discussion
If you get hopelessly messed up, simply reboot and start over.

This is designed to mimic the Internet. A real Internet connection would have rout-
ers between Stinkpad and Xena, so to emulate this, Stinkpad must be its own router
and gateway. Stinkpad only needs to be routed to Xena; routing into the LAN behind
Xena will be handled by the OpenVPN server, which we’ll get to later in this chapter.

270 | Chapter 9: Building Secure Cross-Platform Virtual Private Networks with OpenVPN

You may add more computers if you wish—just remember to put them on the same
LAN as Stinkpad (192.168.1.0/24), and make Stinkpad’s LAN IP address their
default gateway.

If you set two default gateways on a computer, you can select which one to delete,
like this:

route del default gw 192.168.1.25

There can be only one default gateway. It’s not necessary to have default gateways
during testing, but you should on production machines.

It is possible to have a large number of routes, and to have your usual Internet con-
nectivity if you configure everything correctly. Feel free to be as much of a routing
guru as you like; I prefer to keep it as simple as possible for easier debugging. That is
why the default routes are deleted, so they aren’t hanging around to confuse you. If
you have other routes that do not pertain to testing OpenVPN, get rid of them, too.

Stinkpad (the remote PC), must connect directly to the router, Xena, because differ-
ent broadcast domains need routing between them. (Or bridging, which we’ll get to
later.)

See Also
• man 8 route

• man 8 ifconfig

9.2 Starting and Testing OpenVPN

Problem
You followed the previous recipe and your little test lab works, and you’re ready to
start running OpenVPN. Now what?

Solution
First, check both OpenVPN machines to see if OpenVPN is already running:

$ ps ax | grep vpn

If it is, stop it:

killall openvpn

Then, open a quick, insecure tunnel between the remote PC and your OpenVPN
server with these commands:

root@xena:~# openvpn --remote 192.168.2.100 --dev tun0 \
--ifconfig 10.0.0.1 10.0.0.2
root@stinkpad:~# openvpn --remote 192.168.3.10 \
--dev tun0 --ifconfig 10.0.0.2 10.0.0.1

9.2 Starting and Testing OpenVPN | 271

This message shows success, and should be seen on both sides of the connection:

Wed Feb 14 12:53:45 2007 Initialization Sequence Completed

Now, open some new terminals, and try pinging your new virtual IP addresses:

carla@xena:~$ ping 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.421 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.314 ms
carla@stinkpad:~$ ping 10.0.0.1
PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.
64 bytes from 10.0.0.1: icmp_seq=1 ttl=64 time=0.360 ms
64 bytes from 10.0.0.1: icmp_seq=2 ttl=64 time=0.317 ms

You may also specify which interface for ping to use:

carla@xena:~$ ping -I tun0 10.0.0.2
carla@stinkpad:~$ ping -I tun0 10.0.0.1

Go ahead and give your tunnels a test drive by opening SSH sessions everywhere:

carla@xena:~$ ssh 10.0.0.2
carla@stinkpad:~$ ssh 10.0.0.1

Exit your SSH sessions, and hit Ctrl-C to shut down OpenVPN and close the tunnels.

Discussion
What you did here was create an unencrypted tunnel between a remote PC, Stink-
pad, and Xena, which is functioning like a border router. Stinkpad and Xena can
exchange TCP and UDP traffic, but the LAN behind Xena is not yet accessible to
Stinkpad. Because these are routed connections, broadcast traffic like Samba will not
cross the router.

If you see UDPv4 [ECONNREFUSED]: Connection refused (code=111), it means only one
tunnel endpoint has been created, so you still need to create the other end.

The message TCP/UDP Socket bind failed on local address [ip-address]:1194: Address
already in use means OpenVPN is already running.

The --ifconfig option first sets the local tunnel endpoint address, then the remote
tunnel endpoint. These can be pretty much anything you want, as long as they are
different from your other subnets. (Subnets and broadcast domains are the same
things.) You don’t have to use completely different address classes; for example, you
could stick to using IPv4 class C addresses for everything, which is 192.168.0.0–
192.168.255.255.

Use ifconfig to see the new tun0 interface:

$ /sbin/ifconfig -i tun0
tun0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
 inet addr:10.0.0.2 P-t-P:10.0.0.1 Mask:255.255.255.255
 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

272 | Chapter 9: Building Secure Cross-Platform Virtual Private Networks with OpenVPN

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Use route to see your new routes:

carla@xena:~$ /sbin/route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
10.0.0.2 * 255.255.255.255 UH 0 0 0 tun0
192.168.3.0 * 255.255.255.0 U 0 0 0 eth1
192.168.2.0 192.168.3.10 255.255.255.0 UG 0 0 0 eth1
192.168.1.0 * 255.255.255.0 U 0 0 0 eth0
carla@stinkpad:~$ /sbin/route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
10.0.0.1 * 255.255.255.255 UH 0 0 0 tun0
192.168.3.0 192.168.2.100 255.255.255.0 UG 0 0 0 eth0
192.168.2.0 * 255.255.255.0 U 0 0 0 eth0
default 192.168.2.100 0.0.0.0 UG 0 0 0 eth0

See Also
• man 8 route

• man 8 ifconfig

• man 8 openvpn

• OpenVPN How-to: http://openvpn.net/howto.html

9.3 Testing Encryption with Static Keys

Problem
Now you want to test using encryption keys with OpenVPN, and you want the
simplest method for testing possible.

Solution
Use shared static keys. This is less secure than creating a proper Public Key Infra-
structure (PKI), but is easy to set up for testing. Follow these steps:

1. Follow the previous recipes.

2. Generate a special static encryption key, and copy the static key to the server and
client.

3. Create simple configuration files on both of your test PCs.

4. Fire up OpenVPN from the command line to test it.

9.3 Testing Encryption with Static Keys | 273

In this recipe, the OpenVPN server is again Xena at IP address 192.168.3.10, and the
client is Stinkpad at 192.168.2.100. First, create the shared static key on the Open-
VPN server with this command:

root@xena:~# openvpn --genkey --secret static.key

Then, copy it to the client PC:

root@xena:~# scp static.key 192.168.2.100:/etc/openvpn/keys/

Now, create the server configuration file. I call it /etc/openvpn/server1.conf; you can
call it anything you like. Use IP addresses that are on a different subnet than your
server. Xena is at 192.168.3.10, so let’s make Xena’s tunnel endpoint address 10.0.0.1:

openvpn server1.conf
dev tun
ifconfig 10.0.0.1 10.0.0.2
secret /etc/openvpn/keys/static.key
local 192.168.3.10

Then, create the client configuration file on Stinkpad. Stinkpad’s tunnel endpoint
address is 10.0.0.2:

openvpn client1.conf
remote 192.168.3.10
dev tun
ifconfig 10.0.0.2 10.0.0.1
secret /etc/openvpn/keys/static.key

Make sure that OpenVPN is not already running on the client or server, then start it
up on both with these commands:

root@xena:~# openvpn /etc/openvpn/server1.conf
root@stinkpad:~# openvpn /etc/openvpn/client1.conf

Just like in the previous recipe, you’ll see Initialization Sequence Completed when
the tunnel is completed, and both machines can ping each other:

carla@xena:~$ ping 10.0.0.2
terry@stinkpad:~$ ping 10.0.0.1

Hit Ctrl-C on both tunnel endpoints to shut it down.

Discussion
Watch your messages when you establish the tunnels. When you set up the unen-
crypted tunnel, the warning:

 ******* WARNING *******: all encryption and authentication features disabled -- all
data will be tunnelled as cleartext

was displayed. That should be gone now.

This isn’t quite good enough for production machines; see the next recipe to learn a
better setup for the real world.

274 | Chapter 9: Building Secure Cross-Platform Virtual Private Networks with OpenVPN

The problem with using static keys is that you lose perfect forward secrecy because
your static key never changes. If an attacker found a way to sniff and capture your
network traffic, and then captured and cracked your encryption key, the attacker
could then decrypt everything, past and future. OpenVPN supports using PKI, which
is more complex to set up, but ensures perfect forward secrecy. OpenVPN’s PKI uses
a complex process that generates four different encryption keys, including separate
encrypt/decrypt send and encrypt/decrypt receive keys, which are changed every
hour. So, at best, a successful attacker can decrypt one hour’s worth of traffic at a
time, and then has to start over. See Charlie Hosner’s excellent paper, “OpenVPN
and the SSL Revolution” (http://www.sans.org/reading_room/whitepapers/vpns/1459.
php?portal=c7da694586dcdad815fd41098461e495), for more details on how this works.

See Also
• man 8 openvpn

• OpenVPN How-to: http://openvpn.net/howto.html

9.4 Connecting a Remote Linux Client Using Static
Keys

Problem
You followed the previous recipes and everything works. Now, what do you do for a
production VPN server? You want to set it up so that you can connect to your work
network from your home Linux PC. Your work Internet account has a static,
routable IP address. Your home PC has no overlapping addresses with your work
network or your OpenVPN addressing. Your OpenVPN server is on your border
router.

Solution
Again, keep in mind that using a static key is less secure than using a proper Public
Key Infrastructure (PKI).

Follow the previous recipe to generate and distribute the shared static key. Then,
you’ll need more options in your configuration files, and to configure your firewall to
allow the VPN traffic.

Your setup should look something like Figure 9-2.

Next, copy these client and server configurations, using your own IP addresses and
domain names. The local IP address must be your WAN address. These files have
different names than in the previous recipe, which speeds up testing as you will see:

9.4 Connecting a Remote Linux Client Using Static Keys | 275

openvpn server2.conf
dev tun
proto udp
ifconfig 10.0.0.1 10.0.0.2
local 208.201.239.37
secret /etc/openvpn/keys/static.key
keepalive 10 60
comp-lzo
daemon

Next, the client configuration file:

openvpn client2.conf
remote router.alrac.net
dev tun
ifconfig 10.0.0.2 10.0.0.1
route 192.168.1.0 255.255.255.0
secret /etc/openvpn/keys/static.key
keepalive 10 60
comp-lzo

Then, you’ll need to allow the VPN traffic through your work firewall through UDP
port 1194. If you’re using a nice stout iptables firewall, use these rules:

iptables -A INPUT -p udp --dport 1194 -j ACCEPT
iptables -A INPUT -i tun+ -j ACCEPT
iptables -A FORWARD -i tun+ -j ACCEPT

Now, start OpenVPN manually and test it, just like we did in previous recipes:

root@xena:~# openvpn /etc/openvpn/server2.conf
root@stinkpad:~# openvpn /etc/openvpn/client2.conf

Discussion
This is a nice simple setup when you control your work and home networks. Don’t
do this for others—just for yourself.

What if your work site does not have a static IP address, but a dynamically assigned
address? Use the free dynamic DNS (DDNS) service at DynDns.com (http://www.
dyndns.com/) to give it a persistent address.

The route option in client2.conf lets your remote client access the whole LAN.

Figure 9-2. Remote user logging in over VPN from home

Work firewall/
router/VPN server

Switch

Office LANInternet

Home firewall/
routerHome PC

192.168.4.100 208.201.239.37 192.168.1.0/24

276 | Chapter 9: Building Secure Cross-Platform Virtual Private Networks with OpenVPN

keepalive 10 60 keeps the connection alive by sending a ping every 10 seconds. If
there is no response after 60 seconds, OpenVPN assumes the connection is broken.

comp-lzo compresses your traffic. This option must be present in server and client
configuration files.

daemon runs OpenVPN in listening mode. As soon as you run the openvpn /etc/
openvpn/server2.conf command, it drops into the background and returns you to the
command prompt.

The plus mark in the iptables rules is a wildcard, so tun+ means “all tun devices.”

Using a proper PKI is only a little more work than using static keys, and many times
more secure. See the next recipe to learn how to do this.

See Also
• man 8 openvpn

• OpenVPN How-to: http://openvpn.net/howto.html

• Chapter 3

9.5 Creating Your Own PKI for OpenVPN

Problem
You want to run OpenVPN as securely as possible, so you’re ready to set up a proper
Public Key Infrastructure.

Solution
This isn’t hard at all, and is many times more secure than using static keys. Follow
these steps:

1. Create your own Certificate Authority (CA) certificate.

2. Create an OpenVPN server certificate.

3. Generate client certificates.

OpenVPN comes with a batch of scripts that make this easy. First, find the easy-rsa/2.0
directory, and copy it to /etc/openvpn:

cp /usr/share/doc/openvpn/examples/easy-rsa/2.0 /etc/openvpn/easy-rsa/2.0

Change to the 2.0 directory:

cd /etc/openvpn/easy-rsa/2.0

Open the vars file, and assign your own values to these lines. Don’t leave any blank.
Use NA if you don’t want to assign your own value:

9.5 Creating Your Own PKI for OpenVPN | 277

export KEY_SIZE=2048
export KEY_COUNTRY=US
export KEY_PROVINCE=NA
export KEY_CITY=Linuxville
export KEY_ORG="Alrac.net-test"
export KEY_EMAIL="carla@alrac.net"

Then, run these commands just as they are shown, and follow their prompts. After
the leading dot in . ./vars there is a space.

. ./vars
./clean-all
./build-ca

When it asks you for a Common Name, use something descriptive, like vpn-ca.
Then, run this command to create the server certificate, naming it with your own
server name:

./build-key-server xena

Use the fully qualified domain name, like xena.alrac.net, for the Common Name.
Answer yes to “Sign the certificate? [y/n]” and “1 out of 1 certificate requests certi-
fied, commit? [y/n].”

Next, create unique keys for all of your clients. This example generates a passphrase-
less key pair for the laptop named Stinkpad:

./build-key stinkpad

Or, you may wish to password-protect the client key. Use this command instead:

./build-key-pass stinkpad

The user will be asked for the password every time they initiate a connection. Use the
hostname for the Common Name. Now, generate the Diffie-Hellman parameters:

./build-dh

Finally, create a TLS-AUTH key. The server and all clients need a copy of this key:

cd keys/
openvpn --genkey --secret ta.key

You should now have something like this in your keys directory:

01.pem
02.pem
ca.crt
ca.key
dh2048.pem
index.txt
index.txt.attr
index.txt.attr.old
index.txt.old
serial
serial.old

278 | Chapter 9: Building Secure Cross-Platform Virtual Private Networks with OpenVPN

stinkpad.crt
stinkpad.csr
stinkpad.key
ta.key
xena.crt
xena.csr
xena.key

For your own sanity, keep your certificate-creation directory separate. It can even be
on a separate PC. Create a new keys directory, and move your new server keys and
certificates into it. These commands are all run from /etc/openvpn/easy-rsa/2.0:

mkdir -m 0700 /etc/openvpn/keys
cp ca.crt ../../keys
mv dh2048.pem ta.key xena.crt xena.key ../../keys

stinkpad.key, stinkpad.crt, and copies of ta.key and ca.crt must be moved to the
appropriate directory on Stinkpad. You must create a unique key pair for each addi-
tional client.

See the next recipe to learn how to configure your server and clients to use your nice
new PKI.

Discussion
You can read your X509 certificates with this command:

$ openssl x509 -in [certificate name] -text

Anything ending in .key is a private key, which must be carefully protected and never
shared. .crt is a public certificate, and can be shared. ca.key is your private root certif-
icate authority key.

The most paranoid way is to do all this on a PC that is never connected to any
network, and use USB flash devices or directly connected crossover cables to transfer
them to their appropriate hosts. Secure copy over your LAN works, too, assuming
you have SSH set up on your systems:

scp stinkpad.crt stinkpad:/etc/openvpn/keys/

Generating a certificate/key pair for every client is a bit of work, but that’s the magic
bit that makes your OpenVPN tunnel secure. If you’ve ever created key pairs from
scratch using OpenSSL instead of OpenVPN’s excellent scripts, you will appreciate
how much the OpenVPN developers have streamlined the process.

Consider requiring password-protected client certificates on all laptops. Any client
PCs outside of the office are at risk for theft and misuse, especially laptops.

Use the Common Name to create a unique name for each key pair. I like to use the
convention of vpnserver and vpnclient because they are different types of keys, which
you can see by reading the build-key scripts. Using the hostname as the key name is a
quick way to see what belongs where. It’s easy to get confused when you’re rolling
out a batch of these; smart naming will keep you on track.

9.6 Configuring the OpenVPN Server for Multiple Clients | 279

The Diffie-Hellman parameter is the encryption mechanism that allows two hosts to
create and share a secret key. Once the OpenVPN client and server authenticate to
each other, additional send and receive keys are generated to encrypt the session.

See Also
• See Charlie Hosner’s excellent paper, “OpenVPN and the SSL Revolution,” for

more details on how this works: http://www.sans.org/reading_room/whitepapers/
vpns/1459.php?portal=c7da694586dcdad815fd41098461e495

• man 8 openvpn

• OpenVPN How-to: http://openvpn.net/howto.html

9.6 Configuring the OpenVPN Server for Multiple
Clients

Problem
You have your PKI (Public Key Infrastructure) all set up, and clients keys copied to
your clients. Now, how do you configure your server and clients?

Solution
Follow these examples:

server3.conf
local 192.168.3.10
port 1194
proto udp
dev tun
daemon
server 10.0.0.0 255.255.255.0
push "route 192.168.1.0 255.255.255.0"
push "dhcp-option DNS 192.168.1.50"
max-clients 25

ca /etc/openvpn/keys/ca.crt
cert /etc/openvpn/keys/xena.crt
key /etc/openvpn/keys/xena.key
dh /etc/openvpn/keys/dh1024.pem
tls-auth /etc/openvpn/keys/ta.key 0

cipher BF-CBC
comp-lzo
keepalive 10 120
log-append /var/log/openvpn.log
status /var/log/openvpn-status.log
ifconfig-pool-persist /etc/openvpn/ipp.txt

280 | Chapter 9: Building Secure Cross-Platform Virtual Private Networks with OpenVPN

mute 20
verb 4

client3.conf
client
pull
dev tun
proto udp
remote 192.168.3.10 1194

ca /etc/openvpn/keys/ca.crt
cert /etc/openvpn/keys/xena.crt
key /etc/openvpn/keys/xena.key
tls-auth /etc/openvpn/keys/ta.key 1

cipher BF-CBC
comp-lzo
verb 4
mute 20
ns-cert-type server

Fire up OpenVPN in the usual way:

root@xena:~# openvpn /etc/openvpn/server3.conf
root@stinkpad:~# openvpn /etc/openvpn/client3.conf

Copy the client configuration file to as many Linux clients as you want and try con-
necting. Your OpenVPN server should welcome all of them.

Discussion
You now have an excellent, strong, genuine Virtual Private Network up and running.
Now, your remote clients can access your network almost as if they were physically
present. There are a few limitations: remote clients cannot see each other, and broad-
cast traffic, with Samba being the most famous example, cannot cross a router.

I like to keep different versions of configuration files, like server2.conf and server3.conf,
for quick and easy testing different setups. You are welcome to call them anything you
want.

Let’s take a quick cruise over the configuration options. The manpage is thorough,
so we’ll hit the high points.

The server line tells OpenVPN to run in server mode, and to automatically configure
routing and client addressing. The syntax is server network netmask. The server assigns
itself the .1 address for its end of the tunnel, automatically reserves a pool of client
addresses, and pushes out the correct VPN route to clients. You can see this when you
run the route command on the clients.

The push "route" option sends the correct route so that VPN clients can access the
LAN behind the OpenVPN server.

9.7 Configuring OpenVPN to Start at Boot | 281

push "dhcp-option DNS" tells your remote clients where your DNS server is, which is a
very nice thing for them to know.

The ns-cert-type server option in client files prevents clients from connecting to a
server that does not have the nsCertType=server designation in its certificate. The
build-key-server script does this for you. It’s an extra bit of prevention that helps
prevent man-in-the-middle attacks.

To add another layer of verification, use the tls-remote option in client configura-
tion files. This takes the Common Name from the server certificate, like this:

tls-remote xena.alrac.net

If the client doesn’t see the correct Common Name, it won’t connect.

See Also
• man 8 openvpn

• OpenVPN How-to: http://openvpn.net/howto.html

9.7 Configuring OpenVPN to Start at Boot

Problem
You don’t want to start your OpenVPN server manually, but want it to start at boot,
like any other service.

Solution
First, edit edit /etc/init.d/openvpn, and make sure this line points to your configura-
tion directory:

CONFIG_DIR=/etc/openvpn

Then, make sure that you have only one configuration file in there. The startup file
looks for files ending in .conf, and tries to start all of them. The newest versions of
OpenVPN handle multiple tunnels, but for now, we’ll run just one.

Debian creates startup files automatically, so Debian users can go to the next recipe.

On Fedora, run chkconfig --add openvpn to create the startup files.

On Debian and Fedora systems, OpenVPN can be controlled with the usual /etc/
init.d/openvpn start|stop|restart commands.

You probably don’t want to set up most clients this way. For your intrepid Linux
road warriors, create either a command-line alias or a nice deskstop icon to launch
their OpenVPN tunnel. Create a command alias this way:

$ alias opensesame='openvpn /etc/openvpn/client3.conf'

282 | Chapter 9: Building Secure Cross-Platform Virtual Private Networks with OpenVPN

Now, typing opensesame opens a VPN session. To see your aliases, use alias -p. Run
unalias alias name to delete individual aliases.

Creating desktop icons depends on which desktop environment or window manager
they use. In KDE, right-click the K Menu icon, and open the menu editor. Paste in the
whole command; don’t use aliases. In Gnome, use the nice new Alacarte menu editor.

Discussion
Obviously, this presents some security concerns because anyone with access to the
remote computer has access to your network. Laptops get stolen all the time; home
computers are savaged by family members. There are a number of possible methods
that aim to prevent the wrong people from logging in to your network. Using the build-
key-pass script to create passphrase-protected keys adds a useful extra layer of security.
You might consider requiring that all laptops use some form of disk encryption.

OpenVPN gives you one powerful tool for protection from mishaps—using PKI gives
you the power to revoke certificates, which prevents the user from logging in at all.
See the next recipe to learn how to do this.

See Also
• man 8 openvpn

• OpenVPN How-to: http://openvpn.net/howto.html

• man 1 bash

9.8 Revoking Certificates

Problem
Your OpenVPN setup is working perfectly, and everyone is happy. You’ve just got-
ten the news that an employee has left the company, or perhaps one of your road
warriors has lost a laptop. At any rate, you need to terminate a user’s access. How is
this done?

Solution
Change to the /etc/openvpn/easy-rsa/ directory on the server, and run these two com-
mands, using the name of the client certificate you need to revoke:

. ./vars
./revoke-full stinkpad
Using configuration from /etc/openvpn/easy-rsa/openssl.cnf
DEBUG[load_index]: unique_subject = "yes"
Revoking Certificate 01.

9.8 Revoking Certificates | 283

Data Base Updated
Using configuration from /etc/openvpn/easy-rsa/openssl.cnf
DEBUG[load_index]: unique_subject = "yes"
stinkpad.crt: /C=US/ST=NA/O=Alrac.net-test/CN=openvpnclient-stinkpad/
emailAddress=carla@alrac.net
error 23 at 0 depth lookup:certificate revoked

error 23 means your revocation was successful. You’ll see a new file, /etc/openvpn/
easy-rsa/keys/crl.pem, that contains your control revocation list.

Now, you need to add this line to your server configuration file:

crl-verify /etc/openvpn/easy-rsa/crl.pem

Restart the OpenVPN server:

/etc/init.d/openvpn restart

You’re done, and the user is locked out. For future revocations, you don’t need to
restart the server. If the user is connected, OpenVPN will kick them off in an hour
anyway when it negotiates new send and receive keys.

Or, you can send a SIGHUP, and kick them off immediately:

/etc/init.d/openvpn reload

This flushes all clients, but they shouldn’t notice any disruption. Except the one you
kicked off.

Discussion
When a user forgets their passphrase, you can revoke their certificate, then create a
new one using the same common name.

Make sure that crl.pem is world-readable.

You should also add these lines to your server configuration:

ping-timer-rem
persist-tun

ping-timer-rem doesn’t start clocking ping timeouts until clients actually connect.

persist-tun keeps the tunnel open even when SIGHUPs or ping restarts occur.

See Also
• man 8 openvpn

• OpenVPN How-to: http://openvpn.net/howto.html

• man 7 signal

284 | Chapter 9: Building Secure Cross-Platform Virtual Private Networks with OpenVPN

9.9 Setting Up the OpenVPN Server in Bridge Mode

Problem
You want to run your OpenVPN server in bridged mode because you aren’t support-
ing a lot of users. You’re trading the slower performance of an Ethernet bridge for its
ease of administration. You’ve made sure your VPN clients do not have conflicting
addresses with your LAN.

Solution
First, make sure you have the bridge-utils package installed. Then, fetch the example
bridge-start script. If your distribution does not include it, you’ll find it in the
OpenVPN source tarball, or online at OpenVPN.net (http://openvpn.net/bridge.
html#linuxscript). Edit the first section to include your own bridge address, tap
address, and your own IP address:

Define Bridge Interface
br="br0"

Define list of TAP interfaces to be bridged,
for example tap="tap0 tap1 tap2".
tap="tap0"

Define physical ethernet interface to be bridged
with TAP interface(s) above.
eth="eth0"
eth_ip="192.168.1.10"
eth_netmask="255.255.255.0"
eth_broadcast="192.168.1.255"

Next, copy it to /usr/sbin/openvpn, along with bridge-stop, which needs no changes.

Now, change two lines in your server configuration, which we’ll call /etc/openvpn/
server-bridge.conf. Change dev tun to dev tap0, then comment out your server and
push lines, and replace them with this:

server-bridge 192.168.1.10 255.255.255.0 192.168.1.128 192.168.1.254

This configures server-bridge with your own gateway, netmask, client IP-range-start,
and client IP-range-end.

VPN clients also need dev tun changed to dev tap0.

To test it manually, run these commands:

bridge-start
openvpn /etc/openvpn/server-bridge.conf

9.10 Running OpenVPN As a Nonprivileged User | 285

Test your connectivity. You should see Samba shares and everything. When you’re
finished testing, hit Ctrl-C to stop OpenVPN, then run the bridge-stop script to tear
down the bridge.

To make everything start and stop automatically, add these lines to server-bridge.conf:

up /usr/sbin/openvpn/bridge-start
down /usr/sbin/openvpn/bridge-stop

Discussion
If you have an iptables firewall, use these rules to move VPN traffic across the bridge:

$ipt -A INPUT -i tap0 -j ACCEPT
$ipt -A INPUT -i br0 -j ACCEPT
$ipt -A FORWARD -i br0 -j ACCEPT

Ethernet bridging is simpler than routing in some ways, but you pay a performance
penalty because you have broadcast traffic crossing your bridge from both sides. It
works fine for smaller networks, and saves a bit of routing hassles.

See Also
• man 8 openvpn

• OpenVPN How-to: http://openvpn.net/howto.html

9.10 Running OpenVPN As a Nonprivileged User

Problem
On many Linux distributions, you already have the nobody user and group. All you
need to do to configure OpenVPN to run as the nonprivileged user nobody user is
add user nobody and group nobody to the server configuration file. Or, your Linux dis-
tribution may have created a unique OpenVPN user and group. But Debian doesn’t
have a nobody user or group, nor does it create unique users. What do you do?

Solution
No problem whatsoever. Just create an openvpn user and group, and use them:

groupadd openvpn
useradd -d /dev/null -g test -s /bin/false openvpn

Then, add these lines to your OpenVPN configuration files:

user openvpn
group openvpn
persist-key

Do this for both servers and clients.

286 | Chapter 9: Building Secure Cross-Platform Virtual Private Networks with OpenVPN

Discussion
The nobody user tends to get a bit overburdened, so you should create a unique user
for OpenVPN and not use nobody.

persist-key keeps the connection up even after OpenVPN has dropped to the
unprivileged openvpn user, which cannot read private keys or other root-only files.

See Also
• man 8 openvpn

• OpenVPN How-to: http://openvpn.net/howto.html

• man 8 useradd

9.11 Connecting Windows Clients

Problem
You want to equip your remote Windows users with OpenVPN. How do you set up
Windows as an OpenVPN client?

Solution
First of all, you need Windows 2000, 2003, or XP. Older versions of Windows won’t
work.

It’s not all that different from running it on Linux. Download and install the Win-
dows version of OpenVPN. You need Administrator rights to do this. Then, create
the \Program Files\OpenVPN\keys directory, and copy over the client key to it.

Next, go to \Program Files\OpenVPN\sample-config\client.ovpn and edit it just like
the Linux clients in Recipes 9.4 and 9.5. Save it as \Program Files\OpenVPN\config\
client.ovpn. Then, right-click on the file icon, and click “Start OpenVPN on this
config file.” You can then drag it to the desktop, or copy it to your user’s Desktop
directories for their convenience.

Discussion
Windows doesn’t have the user or group nobody, so ignore those options in client.ovpn.
You can control OpenVPN like any other service on the Services control panel, though
you probably want users starting OpenVPN when they need it, and not leaving it
running all the time.

See Also
• man 8 openvpn

• OpenVPN How-to: http://openvpn.net/howto.html

287

Chapter 10 CHAPTER 10

Building a Linux PPTP VPN
Server

10.0 Introduction
Point-to-Point Tunneling Protocol (PPTP) is often used on Windows networks to
create Virtual Private Networks (VPNs). Setting up a Windows PPTP server means
shoveling out money for Windows server licenses. If you already have a Windows
server, then you have a built-in VPN via its Routing and Remote Access Server
(RRAS), so you might as well use that. But if you don’t, you can set up a nice PPTP-
based VPN server for no more than the cost of the hardware using Linux and the
Poptop pptpd server. It will need at least two network interfaces, as it will be acting
as a router and forwarding traffic.

Where does your VPN server belong in your network? A common practice is to put a
VPN gateway on border routers. If you have a nice Linux-based border router, then
this is easy-peasy. For other circumstances, you might want a standalone VPN gate-
way, which would sit behind a border router like Figure 10-1 shows.

PPTP was created in the days of dial-up networking, so you’ll still see a lot of refer-
ences to dial-up in documentation and on your Windows clients. You may use it
over any type of network: dial-up, Ethernet, ISDN, Internet, whatever.

A PPTP-based VPN is a weak VPN. It is Point-to-Point Protocol (PPP) over a Generic
Routing Encapsulation (GRE) tunnel, neither of which was designed with security in
mind. PPTP adds single-factor authentication, requiring only a login and password

Figure 10-1. Standalone VPN server

Border router/
firewall

Lan switch

LANBig bad Internet
Branch

office or road
warrior

pptpd server

288 | Chapter 10: Building a Linux PPTP VPN Server

from the client. Microsoft’s implementation relies on Microsoft Challenge Handshake
Authentication (MS-CHAP V2) for authentication, and Microsoft Point-to-Point
Encryption (MPPE) for encryption. MPPE uses the RC4 algorithm to generate a 128-bit
encryption and decryption key, which is derived from the cleartext authentication pass-
word of the user. The same key is used at both ends of the tunnel. The tunnel itself is
trusted from the start, and needs no authentication. An attacker needs only to capture
a chunk of the datastream, and then brute-force the password offline at leisure. Once
the password is cracked, the attacker owns the works.

Contrast this with how OpenVPN (see Chapter 9) uses a proper Public Key Infra-
structure (PKI) and several levels of encryption. So, why use a PPTP-based VPN,
when OpenVPN is free of cost, cross-platform, and far stronger? Because you may
not have a choice; because PPTP is quick and easy; because all versions of Windows
already have clients (sort of); or because you may be stuck with legacy networking
gear that does not support Windows’ IPSec implementation, and PPTP is your only
common VPN option.

You can easily set up a good test lab with three PCs; just follow Recipe 9.1.

Windows Client Necessary Updates
Windows 9x and ME need the MSDun 1.4 update. Windows 2000 requires install-
ing the Windows 2000 High Encryption Pack. This enables 128-bit encryption.
These are free downloads from http://microsoft.com.

PPTP Security
Your best defense is to enforce a very strong password policy. The maximum is 20
characters, so why not use them all? Don’t use words or names, but random charac-
ters like 9/'wx1$)E6^bB-L3%=sP. Your users are probably going to tick the “remember
this password” button in their clients anyway, so they don’t have to be memorable.
Change them periodically. Remember how OpenVPN limits the damage from suc-
cessful intrusions by changing the encryption/decryption keys hourly? Your PPTP
keys are only going to be changed when you change the passwords.

If you need help generating passwords, there are all kinds of password generator pro-
grams and web sites to help you.

IPSec VPN
Windows also supports L2TP/IPsec-based VPNs. L2TP/IPsec-based VPNs require a
PKI, so they are more work to set up, but significantly stronger.

L2TP means Layer 2 Tunneling Protocol. L2TP is a blend of the best features of
Microsoft’s original PPP and Cisco’s Layer 2 Forwarding (L2F).

IPSec is Internet Protocol Security. It is a suite of protocols for encrypting and
authenticating network traffic. Microsoft, for reasons that must seem good to them,

10.0 Introduction | 289

combine L2TP and IPSec almost inseparably, which considerably complicates client
support on non-Windows platforms, and hurts compatibility with other VPN gear.
IPSec alone works fine, and is widely supported.

Server and client support for the three protocols varies in the extended Windows
family:

PPTP-based RAS (Remote Access Server)
 NT4 Server

PPTP and L2TP/IPsec RRAS (Routing and Remote Access Server)
Windows 2000 server and 2003 Server

PPTP and L2TP/IPsec single-connection RAS
Windows 2000 Professional, XP Professional, and Vista

PPTP and L2TP/IPsec client
Windows 98, ME, NT4, 2000, 2003, XP, and Vista

The single-connection RAS is used to open up a remote VPN to your PC. It is config-
ured in the Incoming Connections part of the Network Connections folder.

Windows 95 only supports a PPTP client. Windows 98 and ME did not ship with
PPTP clients, but should have received them through routine updates, along with
L2TP/IPsec client support. They’ll want the MSdun1.4 update.

Router-to-router L2TP/IPSec connections are possible only with:

• A Windows server running RRAS.

• A third-party VPN router that supports L2TP/IPSec.

Windows NT4 Server does not support L2TP/IPSec.

As a rather amusing side note, Microsoft is developing SSTP, or Secure Socket Tun-
neling Protocol, which is based on HTTP over SSL, just like the many SSL-based
“VPNs” by Cisco, Juniper, Nortel, and so forth. It is scheduled to be included in
Longhorn server. Please refer to Charlie Hosner’s excellent paper “OpenVPN and the
VPN Revolution” (http://www.sans.org/reading_room/whitepapers/vpns/) for a discus-
sion of what is a real VPN and what isn’t.

Linux Requirements
The easy way is to use a Linux distribution with a kernel newer than 2.6.15-rc1, and to
make sure you have the exactly correct ppp version. With Poptop pptpd versions 1.3.0
to 1.3.4, this is ppp 2.4.3. At the time this was written, most newer Linux distribution
releases were shipping with ppp 2.4.4. Debian users can rest easy—it works fine with-
out any hassles. Fedora users should download the matching ppp RPM along with the
pptpd RPM from the Poptop download site. Ubuntu users may have some difficul-
ties, which are addressed in Recipe 10.10.

290 | Chapter 10: Building a Linux PPTP VPN Server

Older kernels need to be patched to get MPPE support; visit Poptop (http://www.
poptop.org/) for more information.

Is PPTP Really Easier?
In my opinion, this is debatable. The main argument for PPTP over stronger VPNs is
that it’s easier because you don’t have to install client software, which is only partly
true—Windows 2000 requires an update to support 128-bit encryption, and older
Windows versions require updates to get PPTPD clients and 128-bit support. If you
have kept your systems upgraded, you’re in good shape. If you have to install client
software, consider using OpenVPN instead. For the same amount of work, you get a
much stronger system.

See Also
• PPTP Security: http://pptpclient.sourceforge.net/protocol-security.phtml

10.1 Installing Poptop on Debian Linux

Problem
You have a gaggle of Windows clients on your LAN, and no available Windows serv-
ers or nice VPN gateways, so you want to set up a Debian Linux-based VPN server
running Poptop to allow remote access to your LAN.

Solution
On Debian, it’s as easy as falling over. First, verify that you have ppp-2.4.3 or newer,
and a kernel newer than 2.6.15-rc1:

$ apt-show-versions ppp
ppp/etch uptodate 2.4.4

$ uname -r
2.6.17-10

Then, confirm that your kernel has the necessary Microsoft Point-to-Point Encryp-
tion (MPPE) support:

modprobe ppp-compress-18 && echo success
success

Now, go ahead and install pptpd in the usual manner:

aptitude install pptpd

The pptp daemon will automatically start at boot, and is controlled in the usual man-
ner with /etc/init.d/pptpd [start|stop|restart]. One gotcha to look out for is
restart will not close any existing sessions, so to completely restart it you must stop,
then start it.

10.2 Patching the Debian Kernel for MPPE Support | 291

Now, you’re ready to configure your server.

Discussion
If loading the ppp-compress-18 module fails, you’ll see this message:

FATAL: Module ppp-compress-18 not found

This is very unlikely, however, as long as you have the correct kernel version or have
an older kernel that is patched.

See Also
• man 8 aptitude

• man 8 modprobe

10.2 Patching the Debian Kernel for MPPE Support

Problem
Oops, you have an older (pre-2.6.15-rc1) kernel on your Debian system, so you need
to build the MPPE kernel module. How do you do this?

Solution
Follow these steps. First, download the necessary tools, kernel sources, and MPPE
patch:

apt-get install gcc bin86 libc6-dev bzip2 kernel-package kernel-patch-mppe

Find your kernel version:

uname -r
2.6.8

Then, download, unpack, and prepare the kernel source package:

apt-get install kernel-source-2.6.8
cd /usr/src
tar xfj kernel-source-2.6.8.tar.bz2
cd kernel-source-2.6.8
make-kpkg clean

Copy over your existing kernel configuration file to use for building your new kernel:

cp /boot/config-2.6.8 ./.config-2.6.8

Finally, build your new kernel package:

cd /usr/src/kernel-source-2.6.8
 # make-kpkg \
 --added-patches mppe \
 --append-to-version -mppe \
 --config oldconfig \

292 | Chapter 10: Building a Linux PPTP VPN Server

 --initrd \
 kernel_image

When you’re configuring the new kernel, be sure to enable CONFIG_PPP_MPPE as a
module:

PPP MPPE compression (encryption) (PPP_MPPE) [N/m/?] (NEW) m

When that’s all finished, and the kernel is compiling, you might as well go take a
walk because it will take a few minutes. Maybe a lot of minutes, depending on what
type of machine it’s compiling on. When it’s all finished, install the new kernel:

dpkg --install /usr/src/kernel-image-2.6.8-mppe_10.00.Custom_all.deb

Reboot to load the new kernel, then test for MPPE support:

modprobe ppp-compress-18 && echo success
success

Hurrah! All finished, and now you can configure your Poptop server.

Discussion
A build environment needs a bit of elbow room; give yourself a couple of gigabytes.
You can set up a PC as a build machine, then copy your new kernel image to its final
destination. You’ll want to be careful to tailor it for the hardware it’s going to run on.

Debian offers up a limited number of official kernel versions:

• kernel-source-2.4.27

• kernel-source-2.6.8

• linux-source-2.6.18

• linux-source-2.6.20

You can find more kernel versions at the Debian snapshot site (http://snapshot.
debian.net/), but as the site warns you, there could be problems with the packages
archived here.

When Debian Etch was released, Debian moved to a new kernel-package naming
convention. The old convention for source packages was kernel-source-[version],
and binary packages were named kernel-image-[version]. In anticipation of some-
day supporting other kernels, such as the Hurd, the new naming conventions are
linux-source-[version] and linux-image-[version].

See Also
• Debian MPPE HOWTO patch your own kernel:

http://pptpclient.sourceforge.net/howto-debian-build.phtml

10.3 Installing Poptop on Fedora Linux | 293

10.3 Installing Poptop on Fedora Linux

Problem
You have a gaggle of Windows clients on your LAN, and no available Windows serv-
ers or nice VPN routers, so you want to set up a Fedora Linux-based VPN server
running Poptop to allow remote access to your LAN.

Solution
The easy way is to use Fedora 5 or newer. Then, you’ll have kernels with MPPE
support already, so you can get down to the business of installing and running your
Poptop server.

Make sure you have MPPE support:

modprobe ppp-compress-18 && echo success
success

Check your ppp version:

$ rpm -q ppp
ppp-2.4.4-1.fc6

Oops. This won’t work, and must be replaced with a 2.4.3 version. Remove it:

yum remove ppp

Then, download and install the matching RPMs from Poptop’s download site on
Sourceforge.net (http://sourceforge.net/project/showfiles.php?group_id=44827). The cur-
rent releases are ppp-2.4.3-5 and pptpd-1.3.4.

Then, configure pptpd to start at boot in the usual way with chkconfig:

chkconfig pptpd on

Note that the pptpd daemon is controlled with the usual /etc/init.d/pptpd
[start|stop|restart|status|condrestart] commands. A small gotcha is only stop will
completely shut it down and close all sessions, so you must stop and start it for a
complete restart.

Now, you’re ready to move on to configuration.

Discussion
You must have the correct ppp version, or your pptp server will not work. At the time
this was written, the documentation was a bit unclear on this, and different Linux
distributions did not package pptp with a dependency on the correct version of ppp.
For more information, see Recipe 10.10.

294 | Chapter 10: Building a Linux PPTP VPN Server

See Also
• Poptop, The PPTP Server for Linux: http://www.poptop.org/

10.4 Patching the Fedora Kernel for MPPE Support

Problem
Oops, you have an older (pre-2.6.15-rc1) kernel on your Fedora, Red Hat, CentOS,
or Red Hat-like system. You don’t want to upgrade, so you need to build the MPPE
kernel module. How do you do this?

Solution
The fine Poptop maintainers use Dynamic Kernel Module Support (DKMS) to gener-
ate the MPPE kernel module, which is much easier than the traditional way. First,
test for MPPE support:

modprobe ppp-compress-18 && echo ok
FATAL: Module ppp-compress-18 not found.

Then, you need to build a new kernel module. Follow these steps. First, find your
kernel version:

uname -r
2.6.11-1.1369.fc6

Then, download the matching kernel-devel package. First, list the available versions:

yum search kernel-devel
[...]
kernel-devel.i586 2.6.11-1.1369.fc6 core
Matched from:
kernel-devel
[...]

If there is more than one, install the one that matches your kernel:

yum install kernel-devel-2.6.11-1.1369_fc4.i586

If there is only one, save yourself some typing:

yum install kernel-devel

Now, install the DKMS package, which is a great tool that simplifies building new
kernel modules:

yum install dkms

Finally, download and install the MPPE module builder RPM (currently dkms-2.0.10-1)
from Poptops’s Sourceforge download site (http://sourceforge.net/project/showfiles.
php?group_id=44827). Reboot, then try loading the MPPE module:

10.5 Setting Up a Standalone PPTP VPN Server | 295

modprobe ppp-compress-18 && echo success
success

Very good! Now you can move on to installing and running your pptpd server.

Discussion
Another way to install the kernel-devel package is to hunt down and download the
RPM, then use Yum to install it this way:

yum localinstall kernel-devel-2.6.11-1.1369_FC4.i686.rpm

This is an option if you can’t find a kernel-devel package with Yum to match your
installed kernel. They must match, or your new kernel module might not work.

See Also
• man 8 yum

• man 8 modprobe

10.5 Setting Up a Standalone PPTP VPN Server

Problem
You have a small gaggle of Windows clients on your LAN, and no Windows servers, so
you want to set up a Linux VPN server running Poptop to allow remote access to your
LAN. You’ve already installed Poptop on your favorite Linux distribution on a machine
with at least two network interfaces. Networking is configured and ready to go.

Solution
Your Windows clients should have all received their necessary updates. (See the
chapter Introduction to learn more about these.)

Now, you will edit three files:

/etc/pptpd.conf
/etc/ppp/pptpd-options (Debian)
/etc/ppp/options.pptpd (Fedora)
/etc/ppp/chap-secrets

Here are complete examples of all three:

##/etc/pptpd.conf
option /etc/ppp/pptpd-options
logwtmp
localip 192.168.0.10
remoteip 192.168.0.100-254

296 | Chapter 10: Building a Linux PPTP VPN Server

##/etc/ppp/pptpd-options/- /etc/ppp/options.pptpd
name pptpd
refuse-pap
refuse-chap
refuse-mschap
require-mschap-v2
require-mppe-128
proxyarp
nodefaultroute
debug
dump
lock
nobsdcomp
novj
novjccomp
nologfd

##/etc/ppp/chap-secret
a single client for testing
client server secret IP addresses
foober pptpd password *

Copy these exactly, with these exceptions:

/etc/pptpd.conf
Use your own addressing for localip and remoteip. These values are arbitrary.
They must be on different networks from your LAN.

/etc/ppp/chap-secrets
This file holds your usernames and passwords. The server name comes from the
name line in /etc/ppp/pptpd-options.

Now, start up your pptpd server:

/etc/init.d/pptpd stop
/etc/init.d/pptpd start

Confirm that it’s running with netstat or ps:

netstat -untap | grep pptpd
tcp 0 0 0.0.0.0:1723 0.0.0.0:* LISTEN 4167/pptpd
$ ps ax | grep pptpd
 4167 ? Ss 0:00 /usr/sbin/pptpd

Add this line to /etc/sysctl.conf to turn on IP forwarding:

 net.ipv4.ip_forward = 1

Then, run this command to load the new setting:

sysctl -p

Make sure that ports TCP 47 and TCP 1723 are not blocked, and you’re ready to
connect clients.

10.5 Setting Up a Standalone PPTP VPN Server | 297

Discussion
You’ll need to configure these items in your Windows clients to be able to connect to
your pptpd server:

• client, server, and password from /etc/ppp/chap-secret

• The “real” IP address of the pptpd server (not the localip)

• The correct type of encryption: MS-Chapv2, 128-bit only

Restarting pptp does not shut it down and close any existing tunnels, so when you
want a complete restart, you must stop it, then start it. Here are some configuration
options explained:

logwtmp
This tracks client connections so you can use the who and last commands to see
who is currently logged in, and a history of client logins.

localip
You may use either a single IP address or a range of addresses. This assigns an
address to the server end of the tunnel. You may use a single address or a range
of addresses. If you define a range of addresses, each client will be assigned a dif-
ferent server IP address. There’s no advantage to either method; use what suits
you. The localip is arbitrary and has no relationship to the server’s real IP
address.

remoteip
Client addresses are assigned from the range that you define here.

name
An arbitrary name for your PPTPD server; just like localip, it has no relation-
ship to the server’s real hostname.

refuse-pap, refuse-chap, refuse-mschap, require-mschap-v2, require-mppe-128
Allow only the strongest encryption.

proxyarp
Add the pptpd tunnel endpoints to the local ARP table, so that they all appear to
be on the local network.

nodefaultroute
Don’t replace the local system’s default route.

debug, dump
Turn these on during testing and whenever you have problems. debug goes into
/var/log/debug, dump goes into /var/log/messages.

novj, novjccomp
Disable Van Jacobson compression; this may or may not help with Windows
2000 client connection problems. It doesn’t seem to hurt anything to enable
these. This mailing list thread hosted on The Aims Group site (http://marc.
theaimsgroup.com/?t=111343175400006&r=1&w=2) tells more about it.

298 | Chapter 10: Building a Linux PPTP VPN Server

See Also
• Poptop, The PPTP Server for Linux: http://www.poptop.org/

• man 5 pptpd.conf

• man 8 pptpd

10.6 Adding Your Poptop Server to Active Directory

Problem
You have an Active Directory domain under your care, and you want your Linux
pptp server to be an Active Directory member, so you want to manage it just like any
other AD object. Your DNS house is in order, and you already have a Kerberos Key
Distribution Center (KDC).

Solution
Use Samba, Winbind, and Kerberos on your Linux Poptop server to become a full
Active Domain member. See Recipe 11.6 to learn how to do this.

Then, configure your Poptop server according to the previous recipes, and add these
lines to /etc/ppp/options.pptpd:

##/etc/ppp/options.pptpd
[...]
#if you are using MS-DNS, enter the server IP address
ms-dns 1.2.3.5
#if you use a WINS server, enter the IP address
ms-wins 1.2.3.4
plugin winbind.so
ntlm_auth-helper "/usr/bin/ntlm_auth --helper-protocol=ntlm-server-1"

Start it up, and make sure it’s running with netstat or ps:

/etc/init.d/pptpd stop
/etc/init.d/pptpd start
netstat -untap | grep pptpd
tcp 0 0 0.0.0.0:1723 0.0.0.0:* LISTEN 4167/pptpd
$ ps ax | grep pptpd
 4167 ? Ss 0:00 /usr/sbin/pptpd

Now, connect some Windows clients, and life should be good. Windows 2000 cli-
ents and up can use Active Directory authentication, and don’t need entries in /etc/
ppp/chap-secrets.

Discussion
Put your plug-ins at the end of the /etc/ppp/options.pptpd file; this helps to avoid any
possible conflicts.

/usr/bin/ntlm_auth is part of Winbind.

10.7 Connecting Linux Clients to a PPTP Server | 299

See Also
• Poptop, the PPTP Server for Linux: http://www.poptop.org/

• PPTP Client: http://pptpclient.sourceforge.net/

10.7 Connecting Linux Clients to a PPTP Server

Problem
You want to connect your Linux PC to a Windows or Linux PPTP server.

Solution
No problem, just install the pptp client, and away you go. On Debian:

aptitude install pptp-linux

On Fedora:

yum install pptp

Your /etc/ppp/options.pptp file should have these options:

##/etc/ppp/options.pptp
lock
noauth
refuse-eap
refuse-chap
refuse-mschap
nobsdcomp
nodeflate
require-mppe-128

Then, enter your password and login in /etc/ppp/chap-secrets:

##/etc/ppp/chap-secrets
client server secret IP addresses
foober server1 tuffpassword *

If you are authenticating to a Windows RAS server, you’ll need the domain name:

alrac.net\\foober server1 tuffpassword *

Next, create a /etc/ppp/peers/$TUNNEL file. In this example, the tunnel name is server1:

##/etc/ppp/peers/server1
pty "pptp rasserver --nolaunchpppd"
name alrac.net\\foober
remotename server1
require-mppe-128
file /etc/ppp/options.pptp
ipparam server1

Using the venerable old pon/poff commands starts and stops the tunnel manually:

$ pon server1
$ poff server1

300 | Chapter 10: Building a Linux PPTP VPN Server

The pon command with these options makes it run in the background:

$ pon provider updetach && pon server1 updetach

You can alias this to save a bit of typing:

$ alias vpn1on='pon provider updetach && pon server1 updetach'
$ alias vpn1off='poff server1'

Now, typing vpn1 will get you connected, and vpn1off closes the connection.

Discussion
All Linux window managers and desktops have ways to attach a custom command
to a menu icon so you can start and stop your VPN connection with a mouse click.

You can also download a nice graphical client, pptpconfig, from PPTP Client (http://
pptpclient.sourceforge.net). Another good one is KVpnc (http://home.gna.org/kvpnc/en/),
a KDE client for all VPNs.

See Also
• PPTP Client: http://pptpclient.sourceforge.net

• KVpnc: http://home.gna.org/kvpnc/en/

10.8 Getting PPTP Through an iptables Firewall

Problem
How do you configure your iptables firewall to pass your Poptop VPN traffic?

Solution
It depends if the Poptop pptp server is running on your border firewall, or on a separate
server behind it. If it’s on the firewall, use these rules, which follow the conventions
used in Chapter 3:

$ipt -A INPUT -p tcp –dport 1723 -j ACCEPT
$ipt -A INPUT -p 47 -j ACCEPT

If you have a restrictive OUTPUT policy, add these rules to allow outgoing packets:

$ipt -A OUTPUT -p tcp –sport 1723 -j ACCEPT
$ipt -A OUTPUT -p 47 -j ACCEPT

Use these rules on a NAT iptables firewall to forward traffic to a separate pptp
server, substituting your own interface names and network addresses. In this exam-
ple, 172.16.1.10 is the address of the pptp server, and 2.3.4.5 is the WAN address:

$ipt -t nat -A PREROUTING -i $WAN_IFACE -p tcp -d 2.3.4.5 --dport 1723 -j DNAT \
 --to-destination 172.16.1.10
$ipt -t nat -A PREROUTING -i $WAN_IFACE -p gre -d 2.3.4.5 -j DNAT \
 --to-destination 172.16.1.10

10.9 Monitoring Your PPTP Server | 301

$ipt -A FORWARD -i $WAN_IFACE -o $LAN_IFACE -p tcp --dport 1723 -d 172.16.1.10 -m \
 state --state NEW,ESTABLISHED,RELATED -j ACCEPT
$ipt -A FORWARD -i $WAN_IFACE -o $LAN_IFACE -p gre -d 172.16.1.10 -m state \
 --state NEW,ESTABLISHED,RELATED -j ACCEPT

If you have a restrictive FORWARD policy, these rules will let your VPN packets out:

$ipt -A FORWARD -i $LAN_IFACE -o $WAN_IFACE -p tcp -s 172.16.1.10 --sport 1723 \
 -m state --state ESTABLISHED,RELATED -j ACCEPT
$ipt -A FORWARD -i $LAN_IFACE -o $WAN_IFACE -p gre -s 172.16.1.10 -m state \
 --state ESTABLISHED,RELATED -j ACCEPT

Discussion
Refer to your /etc/protocols file for a short list of IP protocols. The Nmap package
comes with a much longer list. gre and 47 are the same thing; all protocols also have
a number designation.

See Also
• Chapter 3

10.9 Monitoring Your PPTP Server

Problem
How do you keep track of who is logged in to your Poptop server?

Solution
This is easy: use the who and the last commands. who shows you who is currently
logged in, and last shows a history of logins:

$ who
[...]
carla :0 2007-05-03 08:02
foober ppp0 2007-05-03 10:09 (1.2.3.4)
arlene ppp0 2007-05-03 10:17 (2.3.4.5)
$ last
foober ppp0 1.2.3.4 Thu May 3 10:09 still logged in
arlene ppp0 2.3.4.5 Thu May 3 10:17 still logged in
carla :0 Thu May 3 08:02 still logged in
reboot system boot 2.6.17-10-generi Thu May 3 08:02 - 10:10 (02:08)
wtmp begins Tue May 1 22:31:38 2007

Discussion
Don’t forget grep for weeding out the extraneous entries:

$ last |grep ppp
foober ppp0 1.2.3.4 Thu May 3 10:09 still logged in
arlene ppp0 2.3.4.5 Thu May 3 10:17 still logged in

302 | Chapter 10: Building a Linux PPTP VPN Server

See Also
• man 1 who

• man 1 last

10.10 Troubleshooting PPTP

Problem
You’re having trouble establishing a connection from a Windows client to your
Linux Poptop server. What do you do?

Solution
First, make sure your pptp server is running with the netstat command:

netstat -untap | grep pptp
tcp 0 0 0.0.0.0:1723 0.0.0.0:* LISTEN 12893/pptpd

Then, use the good old ping command to test connectivity. When that’s established,
your Windows client error messages can be helpful. Figure 10-2 shows what it looks
like on Windows XP when the server is unreachable.

You can take the number of the error message and look it up online, because Win-
dows uses the standard Remote Access Server (RAS) error codes.

Next, make sure your firewall isn’t blocking your VPN. The easy but scary way is to
turn it off. Another way to do this for an iptables firewall is to run the fw_status script
(see Chapter 3), and look for lines like these:

Chain PREROUTING (policy ACCEPT 74530 packets, 7108K bytes)
num pkts bytes target prot opt in out source destination
1 0 0 DNAT tcp -- eth1 any anywhere foo.net tcp dpt:1723 to:192.168.1.10
2 0 0 DNAT gre -- eth1 any anywhere foo.net to:192.168.1.10
7 0 0 ACCEPT tcp -- eth1 eth0 anywhere xena.alrac.net tcp dpt:1723 state
NEW,RELATED,ESTABLISHED
8 0 0 ACCEPT gre -- eth1 eth0 anywhere xena.alrac.net state
NEW,RELATED,ESTABLISHED

You can check your destination address, state matches, interfaces name, and proto-
col matches.

Enabling the dump and debug options in /etc/pptpd.conf generates bales of helpful
output in /var/log/debug and /var/log/messages.

This particular error plagues Ubuntu Edgy Eft users, and possibly users of some
other Debian-derived distributions as well.

10.10 Troubleshooting PPTP | 303

April 17 08:19:31 router3 pptpd[6762]: CTRL: Starting call (launching pppd, opening
GRE)
April 17 08:19:31 router3 pppd[6763]: Plugin /usr/lib/pptpd/pptpd-logwtmp.so is for
pppd version 2.4.3, this is 2.4.4
April 17 08:19:31 router3 pptpd[46762]: GRE: read(fd=6,buffer=6808440,len=8196) from
PTY failed: status = -1 error = Input/output error, usually caused by unexpected
termination of pppd, check option syntax and pppd logs

Your clients won’t be able to establish a connection, and typically will get various
unhelpful error messages. The problem is a version mismatch between ppp and
logwtmp. A quick fix is to comment it out in /etc/pptpd.conf:

#logwtmp

But then, you won’t be able to monitor your pptp server with the who and last com-
mands. To fix it, you need to download the source code for pptpd, edit a header file,
then compile and install the new binary. It’s really not hard, just change to the root
user, and follow these steps:

cd
apt-get install libwrap0-dev debhelper
apt-get source pptpd
cd pptpd-1.3.0/plugins

Figure 10-2. Windows XP cannot find the PPTP server

304 | Chapter 10: Building a Linux PPTP VPN Server

Open the patchlevel.h file with your favorite editor and change this line:

#define VERSION "2.4.3"

to:

#define VERSION "2.4.4"

Save the file and exit. Then, run these commands:

cd ../..
apt-get -b source pptpd
dpkg -i pptpd_1.3.0-1ubuntu1_i386.deb
dpkg -i bcrelay_1.3.0-1ubuntu1_i386.deb

And that’s all there is to it. Double-check your configurations, which should not
have been touched, and everything should work.

Discussion
Hopefully, this version mismatch will not exist by the time you read this.

Here are some other things to look for:

• Windows host firewalls.

• Passwords over 20 characters in length.

• Wrong server name or address.

• Wrong password.

• Windows clients without 128-bit encryption support. Remember, 9x clients
require the MSDun 1.4 updates; Windows 2000 requires the High Encryption
Pack.

See Also
• The mailing lists at Poptop: http://www.poptop.org/

305

Chapter 11 CHAPTER 11

Single Sign-on with Samba
for Mixed Linux/Windows

LANs

11.0 Introduction
As delightful as it would be to have a job where you have to deal only with nice reli-
able Linux boxes, the reality is that mixed networks are more usual. The real world
demands that we know how to integrate multiple platforms, primarily Windows,
Linux, and Unix, with occasional dashes of Mac OS X and Classic Mac. This chap-
ter tells you how to integrate Linux and Windows, as those are the dominant
platforms. Unix and Mac OS X are similar enough to Linux that you can figure them
out pretty easily. If you need help with other platforms, or with running a Windows
domain, please see Appendix A for good reference materials.

We’ll approach the problem of integrating Windows and Linux from two angles: you
have a Windows Active Directory domain that you want to add some Linux hosts to,
or you have a Linux network that you want to add some Windows hosts to. There
are several possible roles for Samba:

• Login server/domain controller

• Fileserver

• Printer server

• Domain client for both workstations and servers

Linux machines can tuck in nicely just about anywhere, and thanks to Samba and
Winbind, they can even become fully fledged Active Directory objects. Samba is the
key to making all of this work; you’ll need it on all participating Linux hosts.

Replacing an NT4 Domain Controller
If you’re running a Windows NT4 domain controller and thinking of upgrading,
consider replacing it with Samba. Samba works great as a drop-in replacement for an
NT domain controller. A Linux server running Samba handles a bigger load, and is
more stable and secure. It does not replace a Windows 2000/2003 server running
Active Directory, because Active Directory comes with user and resource management

306 | Chapter 11: Single Sign-on with Samba for Mixed Linux/Windows LANs

tools that Samba does not provide. But, as a straight-across NT4-type domain control-
ler, Samba excels. It has these advantages:

• Easily integrates Linux hosts into your LAN

• Saves you from expensive, Byzantine licensing schemes and fear of the license
police

• Greater stability, reliability, and performance

• Multiple choices of database backends

• Community and commercial support

• Secure remote administration via SSH

• Reliable, efficient synchronization of backup Samba servers via rsync

If you start out with Samba as your domain controller, and then decide you want to
upgrade to Active Directory, no problem. Samba 3 fits right into Active Directory
with a few configuration tweaks, unlike NT4, which requires a complete reinstalla-
tion to change its role from a domain controller to a domain member.

Samba makes a great file and print server for mixed Windows/Linux LANs, so once
you learn any part of Samba, you can continue to build on your knowledge.

With Linux, there are no artificial distinctions between server and workstation ver-
sions. Any Linux can be customized to serve whatever role you wish; you won’t find
yourself wrestling with crippled editions designed solely to extract more money from
you.

Hardware Requirements
Calculating how much horsepower and storage you need is an imprecise endeavor,
but we can cobble up some useful guidelines. For 50 users or fewer, any old Pentium
II or better with at least 128 MB of RAM and enough disk space will do the job just
fine. If you’re running X Windows, make it 256 MB of RAM. Of course, much
depends on how hard your users pummel the server, how many users you have, how
much file storage is on the server, and how many programs you have running on the
server.

As your userbase grows, you can calculate memory requirements, as this simple illus-
tration for 100 users shows:

Application Memory per User User
 Name (MBytes) Total

Samba (nmbd) 16.0 16
Samba (winbind) 16.0 16
Samba (smbd) 4.0 400
Basic OS 128 128
total 167.5 560

11.1 Verifying That All the Pieces Are in Place | 307

Samba spawns a process for every user. As your userbase grows, having adequate
memory and a fast disk subsystem improve performance more than having a fast
CPU.

In addition to shared files, users have private home directories on the server. You can set
quotas on users in the ordinary manner to keep storage under control, using the quota
command (see Recipe 8.22, “Using Disk Quotas,” in Linux Cookbook [O’Reilly]).

11.1 Verifying That All the Pieces Are in Place

Problem
You are ready to integrate some Linux and Windows hosts. You want a single cen-
tral authentication mechanism for all users. You have chosen Samba because you’re
not ready to start migrating to an LDAP backend, or because it is fairly simple to
implement, and you’re already familiar with it. You want to know what software you
need to install.

Solution
You will need some or all of these programs installed. Each recipe in this chapter tells
you which ones you’ll need:

• Samba 3.0.20 or newer

• MIT Kerberos 1.4 or newer

• OpenLDAP

• Winbind 3.0.20 or newer (part of Samba, but may be packaged separately)

Sanity Quest
Searching for sanity in Windows networking is a bit of a quest. Windows XP Home
cannot join any domain—neither a Windows domain, nor a Samba domain. Windows
NT 3.x, Windows 95 pre-OSR2, and Windows NT 4 pre-Service Pack 3 do not support
encrypted passwords, which Samba uses by default, so you cannot join these to a
normal Samba domain. You can download a patch to enable encrypted passwords in
Windows 95, Vrdrupd.exe. Search the Microsoft Knowledge Base for kb 165403 to find
the download and instructions. Windows 9x/ME introduce a number of potential
security holes because they do not support the more secure NTFS filesystem. The best
choices for domain clients are Windows NT, 2000, 2003, and XP Pro, running on the
NTFS filesystem. Vista also works with Samba; there are some authentication issues
we’ll cover in the Vista recipe.

308 | Chapter 11: Single Sign-on with Samba for Mixed Linux/Windows LANs

Then, you need support for these compiled into Samba:

• Kerberos

• LDAP

• Winbind

• Active Directory

Debian and Fedora keep their binary packages fairly up-to-date and built with the
options you need, so you’ll be fine using Aptitude or Yum to install Samba.

Discussion
Debian tends to split programs into a lot of little packages, so finding all the pieces
you want can be a bit of a chore. For Samba, you’ll need these: samba, samba-
common, samba-doc, smbclient, and winbind.

Fedora users need samba, samba-client, and samba-common.

Find the installed Samba version information with these commands:

$ /usr/sbin/smbd --version
Version 3.0.23-Debian
$ /usr/sbin/winbindd --version
Version 3.0.23-Debian

On Debian, check your Kerberos version with dpkg:

$ dpkg -l | grep krb5
ii libkrb53 1.4.4-etch MIT Kerberos runtime libraries

On Fedora, use rpm:

$ rpm -q krb5-workstation
krb5-workstation-1.5-21

Samba comes with a great little command that shows all of its compiled options:

$ /usr/sbin/smbd -b

However, that spits out pages of output, so you should narrow your search with
grep:

$ smbd -b | grep -i ldap
HAVE_LDAP_H
HAVE_LDAP
HAVE_LDAP_DOMAIN2HOSTLIST
...
$ smbd -b | grep -i krb5
HAVE_KRB5_H
HAVE_ADDRTYPE_IN_KRB5_ADDRESS
HAVE_KRB5
...
$ smbd -b | grep -i ads
WITH_ADS
WITH_ADS

11.1 Verifying That All the Pieces Are in Place | 309

$ smbd -b | grep -i winbind
WITH_WINBIND
WITH_WINBIND

You’ll see more output than is printed here. This shows you are ready to proceed to
the rest of the recipes in this chapter.

A blank line indicates that support for that particular item is not compiled into
Samba, which means you’ll have to recompile it yourself. See Recipe 11.2 to learn
how to do this.

If you are familiar with Heimdal Kerberos, that works just fine. Some admins prefer
it, as it is outside of the United States’ export controls. The examples in this chapter
will use MIT Kerberos.

Fedora users need krb5-workstation, containing client utilities, and krb5-libs for the
server. Debian splits it up into several smaller packages, as you can see from searching
the Debian packages list (http://www.us.debian.org/distrib/packages), or searching your
own local package list:

$ apt-cache search krb5
libpam-krb5 - PAM module for MIT Kerberos
krb5-admin-server - MIT Kerberos master server (kadmind)
krb5-clients - Secure replacements for ftp, telnet and rsh using MIT Kerberos
krb5-config - Configuration files for Kerberos Version 5
krb5-doc - Documentation for krb5
krb5-ftpd - Secure FTP server supporting MIT Kerberos
krb5-kdc - MIT Kerberos key server (KDC)
krb5-user - Basic programs to authenticate using MIT Kerberos
libkrb53 - MIT Kerberos runtime libraries
ssh-krb5 - Secure rlogin/rsh/rcp replacement (OpenSSH with Kerberos)

For this chapter, you’ll need krb5-config, krb5-doc, krb5-admin-server, krb5-kdc, and
krb5-user.

Fedora users need these packages to get OpenLDAP: openldap, openldap-servers, and
openldap-clients.

On Debian, you’ll need ldap-utils, ldapscripts, libldap2, and slapd.

See Also
• man 8 rpm

• man 8 dpkg

• Chapters 2, 3, and 4 in Carla Schroder’s Linux Cookbook (O’Reilly) go into
detail on installing, updating, and removing Linux software

310 | Chapter 11: Single Sign-on with Samba for Mixed Linux/Windows LANs

11.2 Compiling Samba from Source Code

Problem
Your Linux distribution did not compile support for all the options you need into
Samba (see the previous recipe), so you need to rebuild it from scratch and ensure
that it has everything you need built-in. Or, you just prefer source installations.

Solution
Follow these steps.

First, make sure you have the necessary development tools installed on your system.
Debian users need:

• build-essential

• autoconf

• autogen

• libkrb5-dev

• krb5-user

• gnugpg

Fedora users need:

• autoconf

• autogen

• krb5-workstation

• krb5-libs

• krb5-devel

• gnugpg

The command yum groupinstall 'Development Tools' installs all of the basic Linux
development tools that you need for a source build on Fedora.

Obtain the Samba source code tarball from samba.org, the signature file, and the
GPG key. Verify the filenames before downloading, making sure you have the latest
stable versions:

$ wget http://us1.samba.org/samba/ftp/samba-3.0.25a.tar.asc
$ wget http://us1.samba.org/samba/ftp/samba-pubkey.asc
$ wget http://us1.samba.org/samba/ftp/samba-3.0.25a.tar.gz

Uncompress the tarball into a directory where you have write permissions, like in
your home directory:

$ gunzip -d samba-3.0.25a.tar.gz

11.2 Compiling Samba from Source Code | 311

Import the GPG key into your GPG keyring:

$ gpg --import samba-pubkey.asc
gpg: key F17F9772: public key "Samba Distribution Verification Key <samba-bugs@samba.
org>" imported
gpg: Total number processed: 1
gpg: imported: 1

Then, verify the uncompressed tarball:

$ gpg --verify samba-3.0.25a.tar.asc
gpg: Signature made Wed Oct 12 19:20:25 2005 PDT using DSA key ID F17F9772
gpg: Good signature from "Samba Distribution Verification Key
<samba-bugs@samba.org>"
Primary key fingerprint: 2FD9 BC31 99F3 AEB0 8D30 2233 A037 FC69 F17F 9772

Now, you can unpack the tarball:

$ tar xvf samba-3.0.25a.tar

Next, change to the directory in the Samba source tree that contains the autogen.sh
script, and run the script:

$ cd samba-3.0.25b/source
$./autogen.sh
./autogen.sh: running script/mkversion.sh
./script/mkversion.sh: 'include/version.h' created for Samba("3.0.25a")
./autogen.sh: running autoheader
./autogen.sh: running autoconf

To see a complete list of build options, run:

$./configure --help

Select these options to support Active Directory, Kerberos, Winbind, and LDAP:

$./configure --with-ldap --with-ads --with-krb5=/usr --with-winbind

Make sure that --with-krb5 points to the directory containing your Kerberos librar-
ies. Additionally, these build options are also useful:

--with-automount -with-smbmount --with-pam --with-pam_smbpass \
 --with-ldapsam --with-syslog --with-quotas --with-sys-quotas

Then su to root, build, and install Samba:

$ su
make
make install

The final steps are configuring Samba to start automatically at boot. See Recipe 11.3.

Discussion
There are all manner of build options, as ./configure --help shows. You can control
installation directories, fine-tune debugging output, and make platform-specific
tweaks. The default installation directory is /usr/local/samba/, which makes it easy to
wipe out a troublesome installation and start over.

312 | Chapter 11: Single Sign-on with Samba for Mixed Linux/Windows LANs

The Samba tarball includes files and instructions for building packages for Debian,
Red Hat, Solaris, and many others; see the packaging/ directory in the Samba tarball.

You’ll need a build environment for compiling programs from source code. The tools
you need are standard on all Linux distributions, though they may not be installed,
depending on what sort of installation you choose:

• GNU coreutils

• GNU binutils

• gcc

• gunzip

• bunzip2

• GNU tar

• make

See Also
• Chapter 4, “Installing Programs from Source Code,” in Linux Cookbook by Carla

Schroder (O’Reilly)

11.3 Starting and Stopping Samba

Problem
You want to know how to make Samba start automatically at boot, and you need to
know the commands for manually starting, stopping, and restarting Samba.

Solution
Samba has two daemons: smbd and nmbd. If you installed Samba from packages
(RPM or deb), startup scripts will have been created for you in /etc/init.d. Debian
starts it up automatically. On Fedora, you need to run chkconfig:

chkconfig --add samba

Manually stopping and starting Samba is done on Fedora systems with these
commands:

/etc/init.d/smb {stop|start|restart|reload|condrestart}

On Debian, use these commands:

/etc/init.d/samba {stop|start|restart|reload|force-reload}

Check to see if it is running with this command:

$ ps ax | grep mbd
 5781 ? Ss 0:00 /usr/sbin/nmbd -D
 5783 ? Ss 0:00 /usr/sbin/smbd -D

11.4 Using Samba As a Primary Domain Controller | 313

If you installed Samba from source code, you’ll find init scripts for various distribu-
tions in the packaging directory in the source tarball.

Discussion
condrestart is a conditional restart; it only restarts Samba if it’s already running.

reload rereads smb.conf rather than restarting the smbd and nmbd daemons.

Samba rereads smb.conf periodically, so it’s not strictly necessary to restart or reload
with every change.

See Also
• man 8 chkconfig

• man 8 update-rc.d

• Chapter 7, “Starting and Stopping Linux,” in Linux Cookbook, by Carla Schroder
(O’Reilly) for recipes on managing runlevels and controlling services

11.4 Using Samba As a Primary Domain Controller

Problem
You want a central login and authentication server on your network; you have either
Windows hosts, or a mixed LAN of Windows and Linux hosts. You may also want
this server to provide access to network resources, such as file shares and printers.
You do not have a Windows domain controller or existing password server, but a
mish-mash of peer networking plus sneakernet, or just shared Internet, so you are
starting from scratch.

Solution
There are seven steps to building a Samba domain controller:

1. Install Samba.

2. Configure /etc/samba/smb.conf.

3. Create a Samba root user.

4. Create a group for machine accounts.

5. Join all Windows NT/200x/XP/Vista computers in the domain to the Samba
server.

6. Create user accounts on both Linux and Samba.

7. Fire it up and connect clients for testing.

314 | Chapter 11: Single Sign-on with Samba for Mixed Linux/Windows LANs

Here is a complete, basic /etc/samba/smb.conf for your new domain controller.
Substitute your own workgroup name (which is the name of the primary domain),
NetBIOS name, server string, and network IP:

[global]
 workgroup = bluedomain
 netbios name = samba1
 server string = Samba PDC
 domain master = yes
 os level = 64
 preferred master = yes
 domain logons = yes
 add machine script = /usr/sbin/useradd -s /bin/false -d /dev/null -g machines '%u'

 passdb backend = tdbsam
 security = user
 encrypt passwords = yes
 log file = /var/log/samba/log
 log level = 2
 max log size = 50
 hosts allow = 192.168.1.
 wins support = yes

[netlogon]
 comment = Network Logon Service
 path = /var/lib/samba/netlogon/
 browseable = No
 writable = No

[homes]
 comment = Home Directories
 valid users = %S
 browseable = No
 writable = Yes

Create /var/lib/samba/netlogon/ if it does not already exist:

mkdir -m 0755 /var/lib/samba/netlogon/

Create a netlogon.bat script containing these lines to automatically mount shares on
user’s Windows PCs, and put it in /var/lib/samba/netlogon/, mode 0644. You may use
any drive letter you like, as long it doesn’t conflict with user’s existing drives:

netlogon.bat
REM NETLOGON.BAT
net use z: \\linux\samba /yes

Save and close smb.conf, then run testparm to check for syntax errors:

testparm
Load smb config files from /etc/samba/smb.conf
Loaded services file OK.
Server role: ROLE_DOMAIN_PDC
Server role: ROLE_DOMAIN_PDC is the line you want to see.

11.4 Using Samba As a Primary Domain Controller | 315

Fix syntax errors, if any, then restart Samba. (See Recipe 11.3 to learn how to start
and stop Samba.)

Next, create a Samba root user account with smbpasswd. Do not use the same pass-
word as the Linux root user:

smbpasswd -a
New SMB password:
Retype new SMB password:
Added user root.

Then create a machines group:

groupadd -g machines

You must now make the first domain logins from the Windows NT/200x/XP/Vista
PCs as the Samba root user. Don’t forget to do this, or your Windows NT/200x/XP/
Vista users will not be able to log in to the domain. Log in as soon as possible to
synchronize with the server, and to prevent someone else from possibly hijacking the
account.

Finally, create Linux accounts on the Samba box for all users in the domain. This
example disables Linux logins, so that users can access their home directories on the
server only via Samba:

useradd -m -s /bin/false foober

Then, use the Samba smbpasswd command to create Samba user accounts:

smbpasswd -a foober
New SMB password:
Retype new SMB password:
Added user foober.

Be sure to give foober his new password. Yes, it’s tedious. (Check the See Also sec-
tion for tips for easing the process.)

Finally, start or restart Samba.

Discussion
wins support = yes means Samba is the WINS server. You don’t have to do anything
other than add this line to smb.conf, and it will automatically keep a list of all Net-
BIOS names registered with them, acting as a DNS server for NetBIOS names.
Remove it if there is already a WINS server on the network, because having two
causes problems.

Users will have two home directories: one on their local PCs, and one on the Samba
server. You can limit user’s storage space on the Samba server in the usual manner,
with the quota command. You may do away with home directories on the server
entirely, but then you run the risk of some things not working right, like Kerberos if
you ever implement it, or joining Samba to an Active Directory domain.

316 | Chapter 11: Single Sign-on with Samba for Mixed Linux/Windows LANs

Machine Trust Accounts are user accounts owned by a single computer. The
password of a Machine Trust Account acts as the shared secret for secure communi-
cation with the Domain Controller. This prevents an unauthorized machine from
masquerading the NetBIOS name and gaining access. A Windows 9x/ME host can-
not possess a Machine Trust Account, so this opens a potential security hole in your
domain (among many other potential security holes, such as the fact that multiple
users on a Windows 9x/ME machine can freely access each other’s files, and by
default it caches passwords).

The add machine script directive simplifies creating machine accounts. Creating them
manually is done this way, using the host “tinbox” as an example:

useradd -g machines -d /dev/null -s /bin/false tinbox$
smbpasswd -a -m tinbox

Note that the machine account is created with no login shell and a locked password,
so it is impossible to log in to Linux using the machine account. This is an impor-
tant security measure.

You can easily add file and printer shares as you need, just like for any Samba server.

These are the directives that tell Samba it is a primary domain controller:

domain master = yes
os level = 64
preferred master = yes
domain logons = yes

The passdb backend = tdbsam directive selects the tdbsam database for storing user
account information, rather than the default smbpasswd. The Samba team recom-
mends using tdbsam over smbpasswd, which is being phased out. Don’t confuse the
smbpasswd database with the smbpasswd command—the smbpasswd command is
used to manage user accounts with tdbsam and other supported databases.

Any users that you add with smbpasswd must already have system accounts on the
Samba server. If they are not in /etc/passwd, you will get this error:

Failed to initialise SAM_ACCOUNT for user foo.
Failed to modify password entry for user foo

Remember, There Can Be Only One—don’t put two primary domain controllers
(PDCs) on the same domain, or nothing will work right. You may have multiple
Samba servers, but only one PDC.

See Also
• man 8 useradd

• man 1 passwd

• man 5 smb.conf is thorough and understandable—keep it close to your Samba
server; be sure to review it for the configuration defaults

11.5 Migrating to a Samba Primary Domain Controller from an NT4 PDC | 317

• Recipes 8.17, 8.18, and 8.19 in Linux Cookbook, by Carla Schroder (O’Reilly)
explain how to automate adding Linux system users. Be sure to check out the
wonderful mass_useradd and mass_passwd scripts

• Chapter 23, “File and Printer Sharing, and Domain Authentication with Samba,”
in Linux Cookbook

• Chapter 4, “Domain Control,” in The Official Samba-3 HOWTO and Reference
Guide (http://www.samba.org/samba/docs/man/Samba-HOWTO-Collection/)

11.5 Migrating to a Samba Primary Domain Controller
from an NT4 PDC

Problem
Microsoft’s support for Windows NT4 ended December 31, 2004. You have an NT4
domain controller or controllers, and are wondering what to do next—keep them?
Upgrade to Windows 2003 with Active Directory, which is expensive, has a learning
curve, and probably means buying new computers as well? Find something else
entirely?

Solution
Find something else entirely—a nice Linux system running Samba 3 makes a dandy
drop-in NT4 PDC replacement. Your users will never know the difference, except
perhaps in better performance.

Follow these steps:

1. Do some housecleaning first—get rid of unused and duplicate accounts on the
NT4 PDC.

2. Make a Backup Domain Controller (BDC) account for Samba using NT Server
Manager.

3. Configure Samba.

4. Join the Samba BDC to your NT4 domain.

5. Migrate user and machine accounts.

6. Shut down the NT4 domain controller.

7. Promote Samba to a PDC.

This is a simple /etc/samba/smb.conf designed just for migration from NT4. The
workgroup name is the existing domain name—do not change it! The netbios name
can be anything you want, and you must use the real IP of your WINS server:

[global]
 workgroup = reddomain
 netbios name = samba11

318 | Chapter 11: Single Sign-on with Samba for Mixed Linux/Windows LANs

 passdb backend = tdbsam
 security = user
 domain master = No
 domain logons = Yes
 os level = 33
 add user script = /usr/sbin/useradd -m '%u'
 delete user script = /usr/sbin/userdel -r '%u'
 add group script = /usr/sbin/groupadd '%g'
 delete group script = /usr/sbin/groupdel '%g'
 add user to group script = /usr/sbin/usermod -G '%g' '%u'
 add machine script = /usr/sbin/useradd -s /bin/false -d /dev/null '%u'
 wins server = 192.168.1.30

Run testparm to check syntax:

$ testparm
Load smb config files from /etc/samba/smb.conf
Loaded services file OK.
Server role: ROLE_DOMAIN_BDC
Press enter to see a dump of your service definitions

Start or restart Samba, then join it to the domain using the IP address or NetBIOS
name of the NT4 PDC, and the NT4 Administrator login, or any NT4 user with
administrative rights:

net rpc join -S ntpdc -U Administrator%password
 Joined domain REDDOMAIN.

Now comes the fun part; this is where you get to vampire your accounts from the
NT4 box to Samba:

net rpc vampire -S ntpdc -W reddomain -U Administrator%password
 Fetching REDDOMAIN database
 SAM_DELTA_REDDOMAIN_INFO not handled
 Creating unix group: 'Domain Admins'
 Creating unix group: 'Domain Users'
 Creating unix group: 'Domain Guests'
 Creating unix group: 'Web_team'
 Creating unix group: 'Sysadmins'
 ...
 Creating account: Administrator
 Creating account: Guest
 Creating account: NTSERVER$
 Creating account: 'carla'
 Creating account: 'foober'
 ...

Verify that your user accounts moved over by running pbdedit to show a list of
migrated accounts:

pdbedit -L
powerpc-w2k$:1010:POWERPC-W2K$
stinkpad$:1012:STINKPAD$

11.6 Joining Linux to an Active Directory Domain | 319

alrac:1013:
root:0:root
foober5:1007:
...

Finally, promote Samba to Primary Domain Controller by reworking /etc/samba/smb.
conf to look just like the example in Recipe 11.4. Restart Samba, and your users
should be able to log in without a hitch.

Shut down your old NT4 domain controller and find it another job, perhaps as a nice
Samba file or printer server.

Discussion
If you change the domain name you’re committed to starting over, and will have to
enter all user accounts manually, so don’t.

See Also
• man 8 pdbedit

• man 5 smb.conf

• Chapter 8, “Managing Users and Groups,” in Linux Cookbook, by Carla Schroder
(O’Reilly)

• Chapter 23, “File and Printer Sharing, and Domain Authentication with Samba,”
in Linux Cookbook

11.6 Joining Linux to an Active Directory Domain

Problem
You are running a Windows network managed by an Active Directory domain. You
know you can stick Linux hosts on the network and make them accessible to Win-
dows hosts, but what you really want is for the Linux boxes to be full members of
your Active Directory domain. This allows you to manage them just like any other
AD object, have a unified login for all hosts, and manage Linux users from Active
Directory. Your DNS house is in order, and you already have a Kerberos Key Distri-
bution Center (KDC).

Solution
You need all Samba, Winbind, and the Kerberos client packages installed, and sup-
port for Kerberos, LDAP, Active Directory, and Winbind compiled into Samba.
Please see Recipe 11.1 to learn exactly what you need.

Also needed are accounts for the Linux users and computers already present in
Active Directory.

320 | Chapter 11: Single Sign-on with Samba for Mixed Linux/Windows LANs

These are the steps to follow:

1. Make sure you have a reliable Network Time Protocol (NTP) server available to
your LAN, and that all hosts are synchronized.

2. Delete all .tdb files to get rid of stale data: /etc/samba/secrets.tdb (which may not
exist) and in /var/lib/samba. Keep backup copies, though you probably won’t
need them.

3. Stop the Samba and Winbind daemons.

4. Create a Linux group for machine accounts.

5. Configure /etc/hosts.

6. Configure /etc/resolv.conf.

7. Configure Samba.

8. Configure NSS.

9. Configure PAM.

10. Restart all daemons and test.

When the first two steps are accomplished, stop the Samba and Winbind daemons.
On Fedora:

/etc/init.d/smb stop
/etc/init.d/winbind stop

On Debian, use these commands:

/etc/init.d/samba stop
/etc/init.d/winbind stop

Then, create a Linux group to hold Machine Trust Accounts:

groupadd machines

Next, add important hosts to /etc/hosts as a fallback:

/etc/hosts
192.168.1.25 samba1.bluedomain.com samba1
192.168.1.20 windows1.bluedomain.com windows1

Also, make sure that /etc/resolv.conf contains your DNS server:

nameserver 192.168.1.21

Now, test connecting to the KDC. It should report no errors:

kinit fredfoober@BLUEDOMAIN.COM
Password for fredfoober@BLUEDOMAIN.COM:

Edit /etc/samba/smb.conf to authenticate against Active Directory, using your own
domain name, NetBIOS name, server string, and Kerberos realm. This is a complete
example file:

[global]
 workgroup = bluedomain
 netbios name = samba1

11.6 Joining Linux to an Active Directory Domain | 321

 realm = BLUEDOMAIN.COM
 server string = Samba server one
 security = ADS
 encrypt passwords = yes

 idmap uid = 10000-20000
 idmap gid = 10000-20000
 winbind use default domain = yes
 winbind enum users = Yes
 winbind enum groups = Yes
 winbind separator = +

 log file = /var/log/samba/log
 log level = 2
 max log size = 50
 hosts allow = 192.168.1.

[homes]
 comment = Home Directories
 valid users = %S
 read only = No
 browseable = No

Now, edit /etc/nsswitch.conf to include these lines:

passwd: files winbind
group: files winbind
shadow: files

Start up Samba and Winbind. Join the Linux PC to the Active Directory domain, and
set up a machine trust account, using the Administrator account on the AD server, or
any administrative user:

net ads join -U Administrator%password
Using short domain name -- BLUEDOMAIN
Joined 'SAMBA1' to realm 'BLUEDOMAIN.COM.'

You should now see a new computer account with the NetBIOS name of your Linux
machine (samba1) in Active Directory, under Users and Computers in the Comput-
ers folder.

Finally, you need to configure Pluggable Authentication Modules (PAM) to allow
authentication via Winbind. First, make a backup copy:

cp /etc/pam.d/login /etc/pam.d/login-old

Edit /etc/pam.d/login to include the Winbind modules, and the pam_mkhomedir.so
module:

auth requisite pam_securetty.so
auth requisite pam_nologin.so
auth required pam_env.so
auth sufficient pam_winbind.so
auth required pam_unix.so nullok use_first_pass

322 | Chapter 11: Single Sign-on with Samba for Mixed Linux/Windows LANs

account requisite pam_time.so
account sufficient pam_winbind.so
account required pam_unix.so

session required pam_unix.so
session optional pam_lastlog.so
session optional pam_motd.so
session optional pam_mail.so standard noenv
session required pam_mkhomedir.so skel=/etc/skel umask=0027

Your existing /etc/pam.d/login may look a lot different than this; see the Discussion
for more information and more sample configurations.

Now, it’s time to test everything. Reboot your Linux box, and try to log in to the
domain. If that works, you’re all finished.

Discussion
This may seem like a lot of steps, but don’t be fooled—it really is complex because
by design, Windows hinders interoperability. Fortunately, heroic Linux coders like
the Samba team make interoperability and mixed networks possible.

The pam_mkhomedir.so directive creates home directories for users on the fly, at
their first login.

In a more complex network, you may specify a particular Kerberos realm to join:

kinit fredfoober@BLUEDOMAIN.COM
net ads join "Computers\TechDept\Workstations" \
 -U Administrator%password

Because user accounts are managed on the Active Directory server, and are made
available to Linux via Winbind and PAM, you do not need to create duplicate user
accounts on the Linux PC. However, you may still have local accounts on the Linux
machine; these are invisible to Active Directory, and allow administrative users to
freely access the server either locally, or remotely via SSH. And, you must have at
least a local root account—don’t depend on a remote login server for everything, or
you could get locked out.

A lot of documentation tells you to edit /etc/krb5.conf to point to your KDC server.
This isn’t necessary if Active Directory and your Microsoft DNS server are correctly
configured because AD automatically creates SRV records in the DNS zone kerberos.
_tcp.REALM.NAME for each KDC in the realm. Both the MIT and Heimdal Ker-
beros automatically look for these SRV records so they can find all available KDCs.
And /etc/krb5.conf only lets you specify a single KDC, rather than allowing auto-
matic selection of the first available KDC. If you are not using Microsoft DNS, you’ll
have to enter these DNS records manually.

If for whatever reason Kerberos cannot find the KDC via DNS, this simple example
/etc/krb5.conf works for most setups, using your own domain names, of course:

11.7 Connecting Windows 95/98/ME to a Samba Domain | 323

 [libdefaults]
 default_realm = BLUEDOMAIN.COM
[realms] BLUEDOMAIN.COM = {
 kdc = windows1.bluedomain.com
 }

[domain_realms]
 .carla.com = BLUEDOMAIN.COM

Once you have your Samba setup debugged and working, simply replicate it for any
Linux host that needs to be an Active Directory member.

See Also
• man 5 smb.conf

11.7 Connecting Windows 95/98/ME to a Samba
Domain

Problem
You set up a new Samba primary domain controller (PDC) like in Recipe 11.4, and
you did not have a domain controller before, so your clients are not configured to log
in to a domain. How do you log in from a Windows 95/98/ME client?

Solution
First, confirm that Windows networking is set up correctly: TPC/IP and Client For
Microsoft Networks must be installed, in Start ➝ Settings ➝ Control Panel ➝ Network.

Then, go to Control Panel ➝ Network ➝ Client for Microsoft Networks ➝ Properties.
Check “Logon to NT Domain.” Enter the domain name.

Check “Logon and restore network connections.” Click OK. It may ask you for your
Windows CD, and then you must reboot to activate the changes.

After reboot, you can log in to the domain; you’ll be presented with a login screen
with the domain name.

To boot up Windows without logging in to the domain, hit the Cancel button.

Discussion
Even though you can set up multiple users on Windows 95/98/ME, there is no real
separation or security. Everyone may access everyone’s files, all the applications are
configured globally, and the only user-unique features are the desktop decorations.

324 | Chapter 11: Single Sign-on with Samba for Mixed Linux/Windows LANs

See Also
• Recipe 23.4, “Enabling File Sharing on Windows PCs,” in Linux Cookbook, by

Carla Schroder (O’Reilly) for more information on configuring Windows
networking

• Chapter 3, “Configuring Windows Clients,” in Using Samba, Second Edition, by
Jay Ts et al. (O’Reilly)

11.8 Connecting Windows NT4 to a Samba Domain

Problem
You have set up a new Samba primary domain controller (PDC) like in Recipe 11.4,
and you did not have a domain controller before, so your clients are not configured
to log in to a domain. How do you login from a Windows NT4 client?

Solution
First, confirm that Windows networking is set up correctly: TPC/IP and Client For
Microsoft Networks must be installed, and the appropriate network settings in place,
which you’ll find in Start ➝ Settings ➝ Network and Dial-up Connections.

Then, go to Control Panel ➝ Network ➝ Identification ➝ Change. Select the Domain
button and enter the domain name, which is the workgroup name in smb.conf.

Reboot and log in to the domain.

Discussion
You’ll initiate logins with Ctrl-Alt-Del. Note that you can either log in to the domain,
or to the local machine without logging in to a domain by clicking the Options but-
ton to expose a drop-down menu listing your login choices.

See Also
• Recipe 23.4, “Enabling File Sharing on Windows PCs,” in Linux Cookbook, by

Carla Schroder (O’Reilly) for more information on configuring Windows
networking

• Chapter 3, “Configuring Windows Clients,” in Using Samba, Second Edition, by
Jay Ts et al. (O’Reilly)

11.10 Connecting Windows XP to a Samba Domain | 325

11.9 Connecting Windows NT/2000 to a Samba
Domain

Problem
You have set up a new Samba primary domain controller (PDC) like in Recipe 11.4,
and you did not have a domain controller before, so your clients are not configured
to log in to a domain. How do you login from a Windows 2000 client?

Solution
First, confirm that Windows networking is set up correctly: TPC/IP and Client For
Microsoft Networks must be installed, and the appropriate network settings in place,
which you’ll find in Start ➝ Settings ➝ Network and Dial-up Connections.

Then, right-click My Computer, click Properties, Network Identification Tab, and
click the Network ID button. This will open the Network Identification Wizard,
which will take you through all the necessary steps.

Discussion
You’ll intitiate logins with Ctrl-Alt-Del. Note that you can either log in to the
domain, or to the local machine without logging in to a domain, by clicking the
Options button to expose a drop-down menu listing your login choices.

See Also
• Recipe 23.4, “Enabling File Sharing on Windows PCs,” in Linux Cookbook, by

Carla Schroder (O’Reilly) for more information on configuring Windows
networking

• Chapter 3, “Configuring Windows Clients,” Using Samba, Second Edition, by
Jay Ts et al. (O’Reilly)

11.10 Connecting Windows XP to a Samba Domain

Problem
You have set up a new Samba primary domain controller (PDC) like in Recipe 11.4,
and you did not have a domain controller before, so your clients are not configured
to log in to a domain. How do you log in from a Windows XP client?

326 | Chapter 11: Single Sign-on with Samba for Mixed Linux/Windows LANs

Solution
First, confirm that Windows networking is set up correctly: TPC/IP and Client For
Microsoft Networks must be installed, and the appropriate network settings in place,
which you’ll find in Start ➝ Control Panel ➝ Network Connections.

Then, right-click My Computer, click Properties, Network Identification Tab, and
click the Network ID button. This will open the Network Identification Wizard,
which will take you through all the necessary steps.

Discussion
You’ll intitiate logins with Ctrl-Alt-Del. Note that you can either log in to the
domain, or to the local machine without logging in to a domain, by clicking the
Options button to expose a drop-down menu listing your login choices.

See Also
• Recipe 23.4, “Enabling File Sharing on Windows PCs,” in Linux Cookbook, by

Carla Schroder (O’Reilly) for more information on configuring Windows
networking

• Chapter 3, “Configuring Windows Clients,” in Using Samba, Second Edition, by
Jay Ts et al. (O’Reilly)

11.11 Connecting Linux Clients to a Samba Domain
with Command-Line Programs

Problem
Your shiny new Samba domain controller is in service and ready to rock. Your Win-
dows clients are successfully logging in and finding shares just like they’re supposed
to. How do your Linux PCs join the party using command-line utilities?

Solution
These command-line tools are for browsing, logging in, and mounting Samba shares:

smbtree
Browses the network and displays all domains, servers, and shares in a tree
structure. It is part of the Samba suite.

smbclient
Network browser and file manager. smbclient displays domains, servers, and
shares, and uses FTP-type commands to transfer files. You don’t need to mount
the shares to get access to the files. Also part of the Samba suite.

11.11 Connecting Linux Clients to a Samba Domain with Command-Line Programs | 327

smbmount/smbumount
These commands are for mounting and unmounting Samba shares. Part of the
smbfs package.

Discussion
Linux does not see domains the same way that Windows does, which is no surprise
because the domain structure is a Windows convention. Linux sees filesystems that it
has either permission to access or no permission to access. Unlike Windows, which can
either log in to a domain or log in locally, but not both, Linux users log in first to their
local systems in the normal fashion, then log in to domain shares as needed. Domain
shares can be configured to auto-mount in /etc/fstab, just like any other filesystem.

To browse the network and see all the domains, servers, and shares with smbtree,
run it with the -N (no password) switch. This will not show nonbrowseable shares,
such as user’s home directories:

$ smbtree -N
REDDOMAIN
 \\STINKPAD thinkpad r32
 \\SAMBA11 Samba PDC
 \\SAMBA11\HP6L HP6L b&w laser printer
 \\SAMBA11\ADMIN$ IPC Service (Samba PDC)
 \\SAMBA11\IPC$ IPC Service (Samba PDC)
 \\SAMBA11\share1 testfiles

You may also browse by either hostname, IP address, or NetBIOS name. In this
example, windbag is the hostname, and samba11 is the NetBIOS name as specified in
smb.conf:

$ smbtree -N windbag
$ smbtree -N samba11

But not the domain name, because the domain name is not a resolvable name.

You may see nonbrowseable shares that are accessible to you by using your user-
name and password:

$ smbtree -U foober
Password:
REDDOMAIN
 \\STINKPAD thinkpad r32
 \\STINKPAD\C$ Default share
 \\STINKPAD\ADMIN$ Remote Admin
 \\STINKPAD\F$ Default share
 \\STINKPAD\print$ Printer Drivers
 \\STINKPAD\SharedDocs
 \\STINKPAD\IPC$ Remote IPC
 \\SAMBA11 Samba PDC
 \\SAMBA11\foober Home Directories
 \\SAMBA11\HP6L HP6L
 \\SAMBA11\ADMIN$ IPC Service (Samba PDC)
 \\SAMBA11\IPC$ IPC Service (Samba PDC)
 \\SAMBA11\share1 testfiles

328 | Chapter 11: Single Sign-on with Samba for Mixed Linux/Windows LANs

When you see the share you want, mount the share on your system with smbmount,
using a directory already created for this purpose, and mind your slashes. In this
example, user foober mounts his Samba home directory in the local directory samba:

$ mkdir samba
$ smbmount //samba11/foober samba
$ password:

The smbumount command unmounts the share:

$ smbumount samba

You may use smbclient to access file shares without having to mount the shares.
Instead, smbclient uses FTP-like commands to transfer files. This command shows
you how to browse the network. You must specify the hostname or NetBIOS name;
this shows the hostname:

$ smbclient -N -L windbag
Anonymous login successful
Domain=[REDDOMAIN] OS=[Unix] Server=[Samba 3.0.10-Debian]

 Sharename Type Comment
 --------- ---- -------
 share1 Disk testfiles
 IPC$ IPC IPC Service (Samba PDC)
 ADMIN$ IPC IPC Service (Samba PDC)
 HP6L Printer HP6L
Anonymous login successful
Domain=[REDDOMAIN] OS=[Unix] Server=[Samba 3.0.10-Debian]

 Server Comment
 --------- -------
 SAMBA11 Samba PDC

 Workgroup Master
 --------- -------
 REDDOMAIN SAMBA11

You can find your home directory by browsing with your login:

$ smbclient -L samba11 -U carla
Password:
Domain=[REDDOMAIN] OS=[Unix] Server=[Samba 3.0.10-Debian]

 Sharename Type Comment
 --------- ---- -------
 share1 Disk testfiles
 IPC$ IPC IPC Service (Samba PDC)
 ADMIN$ IPC IPC Service (Samba PDC)
 HP6L Printer HP6L
 carla Disk Home Directories
...

11.11 Connecting Linux Clients to a Samba Domain with Command-Line Programs | 329

Use this command to connect to your home share:

$ smbclient -U carla //samba11/carla
Password:
Domain=[REDDOMAIN] OS=[Unix] Server=[Samba 3.0.10-Debian]
smb: \>

When you are at the smb: \> prompt, type ? to show a commands list:

smb: \> ?
? altname archive blocksize cancel
case_sensitive cd chmod chown del
dir du exit get hardlink
help history lcd link lowercase
...

See? Same old familiar Linux commands. The following commands list files, then
transfer the foo directory from the server to the local working directory, and renames
it to foo-copy:

smb: \> ls
smb: \> get foo foo-copy
getting file \foo of size 2131 as foo-copy (1040.5 kb/s) (average 1040.5 kb/s)
smb: \>

Uploading files to the Samba share is done with the old familiar put command:

smb: \> put foo-copy
putting file foo-copy as \foo-copy (0.0 kb/s) (average 0.0 kb/s)

To close your connection to the share:

smb: \> quit

The smbmount and smbumount commands call smbmnt. If you run into permissions
problems, such as “smbmnt must be installed suid root for direct user mounts,”
make smbmnt SUID with chmod:

chmod +s /usr/bin/smbmnt

If you are nervous about using SUID, set up sudo for authorized smbmnt users.

See Also
• Chapter 8, “Managing Users and Groups,” in Linux Cookbook, by Carla Schroder

(O’Reilly) to learn how to configure sudo

• man 8 smbmount

• man 8 smbumount

• man 1 smbtree

• man 1 smbclient

330 | Chapter 11: Single Sign-on with Samba for Mixed Linux/Windows LANs

11.12 Connecting Linux Clients to a Samba Domain
with Graphical Programs

Problem
You or your users prefer a nice graphical interface to find and connect to Samba
shares. You want to know what is available for Gnome and KDE, and also if there
are any standalone programs to use in any X Windows environment.

Solution
Here are the four best graphical utilities for network browsing and connecting to
Samba shares:

• The Konqueror file manager, in KDE

• The Nautilus file manager, in Gnome

• Smb4k, a nice add-on for Konqueror

• LinNeighborhood, a standalone program than works in any X Windows
environment

Discussion
Each program has its quirks. Let’s look at how to use each one:

Konqueror

To browse the network, type smb:/ in the Location bar.

To browse specific hosts, type smb://netbios name or hostname.

You can open and edit documents directly, and save them back to the share.

Nautilus

To browse the network, type smb: in the Location bar.

To go directly to a share, type smb://servername/sharename, like smb://samba11/
carla.

Nautilus browses only. It does not mount shares, and it does not permit you to edit
files directly. What you have to do is open a file, save it to a local drive, edit it, and
then drag-and-drop a copy of the file back to the Samba share.

Smb4k

Smb4k is the easiest one to use, and has the best feature set. When you start it up, it
automatically scans the network and lists all shares, and shows a nice graphic of
available space on the shares. When you click on a share, it is automatically mounted

11.12 Connecting Linux Clients to a Samba Domain with Graphical Programs | 331

in your /home/smb4k/ directory. You may configure this, as well as a number of other
useful tasks, like automatically logging you in, selecting a specific server for retriev-
ing a browse list, and configuring a list of hosts and shares that use different logins.

LinNeighborhood

LinNeighborhood is a nice, standalone LAN browser that runs in any Linux graphi-
cal environment. LinNeighborhood usually requires a bit of configuration. Open
Edit ➝ Preferences. Then, under the Scan tab, enter either the hostname or NetBIOS
name of your master browser, which in this chapter is “windbag” or “samba11.”

Start a new network scan with Options ➝ Browse Entire Network.

On the Miscellaneous tab, you can enter a default username and select your default
mount directory. This should be a file that already exists in your home directory,
something like /home/carla/samba.

On the Post Mount tab, configure your default file manager. Be sure to hit Save on
every tab, and after you close the Preferences menu, click Edit ➝ Save Preferences.

You can bring up a menu for logging in as different users on different shares simply
by clicking on the share you want.

See Also
• Chapter 8, “Managing Users and Groups,” in Linux Cookbook, by Carla Schroder

(O’Reilly)

• Smb4K, A SMB share browser for KDE: http://smb4k.berlios.de/

• LinNeighborhood: http://www.bnro.de/~schmidjo/

• Konqueror: http://www.konqueror.org/

• Nautilus: http://www.gnome.org/projects/nautilus/

332

Chapter 12CHAPTER 12

Centralized Network
Directory with OpenLDAP

12.0 Introduction
I believe that knowing how to administer a Lightweight Directory Access Protocol
(LDAP) directory server has become an essential skill for a network administrator.
An LDAP directory is your key to network simplicity. It is your universal directory
across all platforms and applications, supporting simplified network authentication
and a centralized company data store. The LDAP protocol is cross-platform,
network-aware, and standards-based. There are a large number of LDAP implemen-
tations; in this chapter, we’ll use the excellent free-of-cost, free-software OpenLDAP.

LDAP is widely supported by applications; for example, most email clients come
with LDAP clients. Additionally, various databases, Content Management Systems
(CMS), groupware and messaging servers, authentication servers, customer manage-
ment applications, and application servers can all speak to an LDAP server.

Some folks like to argue about whether LDAP is a database. Strictly speaking, it is a
protocol, not a database. It accesses a special kind of database that is optimized for
very fast reads. Use it for relatively static information, such as company directories,
user data, customer data, passwords, asset tracking, and security keys. OpenLDAP
uses the Sleepycat Berkeley DB.

Why not use an ordinary relational database like PostgreSQL, Oracle, or MySQL?
You can if you like, but then you’ll lose the advantages of LDAP, which are:

• Very fast reads

• Flexible data types

• Nearly universal application support

• Fine-grained control over access to data

• Distributed storage and replication

• No need for elite database guru admins

• No need for custom APIs

12.0 Introduction | 333

You don’t want to use OpenLDAP for for a retail or web site backend, for example,
or any application that needs fast, frequent changes. That’s where you want an
RDBMS.

The structure of the Sleepycat BDB is different from a relational database. Rather
than storing information in columns and rows, and having a rigid set of indexes and
fields, data are stored in attribute-type/attribute-value pairs. This structure offers
great flexibility in designing records. A particular user record, for example, can have
new types of data added without having to redesign the entire database. You can
store any kind of text or binary data. Because it is simple like a large flat file, adding
new entries is easy—just tack them on. OpenLDAP supports a distributed architec-
ture, replication, and encryption.

LDAP Directory Structure
Let’s take a run through the basic concepts and structure of an LDAP directory. This
is more important than having an encyclopedic knowledge of configuration options,
because if you don’t have a clear idea of what you need and how everything fits
together, LDAP will remain a mysterious mess. But it’s not really all that mysterious;
once you grasp the basics, you’ll be in fine shape. As coaches always say, first master
the fundamentals. An LDAP directory can be pictured as a standard upside-down
tree structure, with the root portrayed as being the top, and the branches flowing
downward. Figure 12-1 is a hierarchical namespace; it is also called the directory
information tree (DIT).

Figure 12-1. An example of an LDAP hierarchy

c=us

s=or

ou=alrac's

cookies

ou=qa ou=devs

ou=terryjones

334 | Chapter 12: Centralized Network Directory with OpenLDAP

The root of this example directory is the country entry. The next stop is the state
entry, then the organizational unit (OU) entry, which is the company’s name. This
branches off into different company entries, which are also called organizational
units. The lefthand branch terminates at a user ID (UID). The Quality Assurance
(QA) OU could hold many more users than just the one in the example.

Now comes the important bit: Terry Jones has a distinguished name (DN), which
consists of Terry’s Relative Distinguished Name (RDN), which in this example is the
UID, plus tacking on all the ancestor entries: uid=terryjones, ou=qa, ou=alrac's
cookies, ou=or, c=us. Any attribute can be the RDN; it must be unique within the
level that the entry belongs to. The UID is usually unique because it is a common
practice to make it the user’s login, but you could use any other attribute. Obvi-
ously, a little common sense goes a long way here; for example, there are many
duplicate surnames, so using the SN attribute would cause problems. The most com-
mon RDN for people is a UID or common name (CN).

The basic unit of your directory is an entry. An entry is also called a record or
directory object. Terry Jones’ entry contains a number of attributes, such as name,
phone number, email address, and so forth. You can’t just invent attributes out of
thin air; these must be already defined in OpenLDAP. An easy way to view them is
with the GQ LDAP client (http://sourceforge.net/projects/gqclient/). You may also see
them in the files in /etc/ldap/schema (on Fedora, /etc/openldap/schema) in the
objectClass definitions.

You may create your own custom objectClass definitions and attribute types. I don’t
recommend this unless you absolutely need something that’s not included. The
default schema are extensive, and a lot of effort has gone into making them univer-
sal; there’s no need to reinvent the wheel. On the other hand (there is always another
hand, isn’t there), this makes OpenLDAP flexible and extensible, and it’s easy to
share custom schema.

Each attribute is made up of an attribute type and an attribute value. Attributes can
have multiple values. For example, Terry Jones’ entry could look like this:

uid=terryjones
cn=Terry Jones
gn=Terry
sn=Jones
telephoneNumber=123-456-7890
telephoneNumber=123-456-7891
mail=tjones@alrac.com

This shows a couple of duplicate attributes. You may use as many as you like. A
common use for duplicate attributes is for people’s names, like this:

12.0 Introduction | 335

cn=Terry Jones
cn=T. Jones
cn=Terry "codefiend" Jones
cn=Codefiend

The result of this is a search on any of these attribute values will succeed, so Terry
Jones has nowhere to hide.

The suffix or naming context is the top of your LDAP hierarchy. In our simple exam-
ple, the suffix is c=us. A common approach these days is to use your company’s
domain name, like dc=alrac,dc=net. DC stands for domain component.

Schemas, objectClasses, and Attributes
When you create an entry in a DIT, its data are contained in attributes. These belong
to objectClasses. Schemas can be thought of as big bags of organized objectClasses.
So, when you hear someone talking about OpenLDAP schemas, you know they are
referring to the files that define the organization and types of data that go into an
OpenLDAP directory. In OpenLDAP, some schema are hardcoded into slapd itself.

An objectClass is part of an objectClass hierarchy. It inherits all the properties of its
parents. For example, the inetOrgPerson objectClass is one you’ll use a lot. If you
look inside /etc/ldap/schema/inetorgperson.schema, you’ll find this definition:

objectclass (2.16.840.1.113730.3.2.2
 NAME 'inetOrgPerson'
 DESC 'RFC2798: Internet Organizational Person'
 SUP organizationalPerson
 STRUCTURAL

This snippet shows that the long objectClass number is an official Object ID (OID)
number. All of the LDAP OIDs are globally unique; you can’t just make them up.
This only matters when you create a custom schema and need some new OIDs.
Then, find a registrar to assign some to you, such as Internet Assigned Numbers
Authority (IANA).

The SUP (superior) organizationalPerson line tells you that its parent objectClass is
organizationalPerson, which is a child of person, which is a top-level objectClass.
The objectClass defines the required and optional attributes of all of its children,
which you can read in any LDAP browser.

STRUCTURAL means this objectClass can be used to create entries in your DIT. You’ll
also see AUXILARY objectClasses; these cannot stand alone, but must be used along-
side a STRUCTURAL objectClass.

An objectClass is also an attribute.

Don’t worry if this doesn’t make a lot of sense right now. After you create a simple
directory, you’ll see how it all fits together.

336 | Chapter 12: Centralized Network Directory with OpenLDAP

The “Secret” RootDSE
One more thing you should know about: the rootDSE. This is one of those clever
self-referential geek names: DSE stands for DSA Specific Entry, and DSA means
Directory System Agent. This is the invisible topmost entry in your LDAP hierarchy;
the built-in attributes of your LDAP server. To see these, run these two commands
on your LDAP server:

$ ldapsearch -x -s base -b "" +
extended LDIF
#
LDAPv3
base <> with scope baseObject
filter: (objectclass=*)
requesting: +
#

#
dn:
structuralObjectClass: OpenLDAProotDSE
configContext: cn=config
namingContexts: dc=alrac,dc=net
supportedControl: 2.16.840.1.113730.3.4.18
supportedControl: 2.16.840.1.113730.3.4.2
[...]
supportedFeatures: 1.3.6.1.4.1.4203.1.5.4
supportedFeatures: 1.3.6.1.4.1.4203.1.5.5
supportedLDAPVersion: 3
supportedSASLMechanisms: DIGEST-MD5
supportedSASLMechanisms: CRAM-MD5
supportedSASLMechanisms: NTLM
entryDN:
subschemaSubentry: cn=Subschema

search result
search: 2
result: 0 Success

numResponses: 2
numEntries: 1

All those long numbers are official Object Identifiers (OIDs). To learn more about
these, visit http://www.alvestrand.no/objectid/. This includes a searchable database, so
you can see what a particular OID means.

This shows the same output, plus a bale of subschema:

$ ldapsearch -x -s base -b "cn=subschema" objectclasses
[...]
Subschema
dn: cn=Subschema
objectClasses: (2.5.6.0 NAME 'top' DESC 'top of the superclass chain' ABSTRAC
 T MUST objectClass)

12.0 Introduction | 337

objectClasses: (1.3.6.1.4.1.1466.101.120.111 NAME 'extensibleObject' DESC 'RF
 C2252: extensible object' SUP top AUXILIARY)
objectClasses: (2.5.6.1 NAME 'alias' DESC 'RFC2256: an alias' SUP top STRUCTU
 RAL MUST aliasedObjectName)
objectClasses: (2.16.840.1.113730.3.2.6 NAME 'referral' DESC 'namedref: named
 subordinate referral' SUP top STRUCTURAL MUST ref)
objectClasses: (1.3.6.1.4.1.4203.1.4.1 NAME ('OpenLDAProotDSE' 'LDAProotDSE'
) DESC 'OpenLDAP Root DSE object' SUP top STRUCTURAL MAY cn)
objectClasses: (2.5.17.0 NAME 'subentry' SUP top STRUCTURAL MUST (cn $ subtr
 eeSpecification))
[...]

That’s all the same information you have in /etc/ldap/schema. You don’t need to do
anything with the rootDSE; this is just to show it’s there, and what it looks like. The
rootDSE is sometimes confused with the root DN, but they are not the same thing.
The rootDSE is your bare OpenLDAP server; i.e., the schema and supported proto-
cols. You’ll see root DN in a lot of documentation as your suffix name, or the base
name of your data hierarchy. I avoid using the term root DN; it’s too confusing. Oh,
and then there is the rootdn. That’s your directory superuser; the rootdn and rootpw
directives go in slapd.conf. Yes, it is a bit confusing. The rootdn is all-powerful; many
admins prefer to not have a rootdn at all, but instead create some sort of admin user
that is defined inside the directory itself.

Deciding How Deep Your Directory Is
You’re trying to plan for the future, and you want to design your DIT so smartly that
it will seamlessly expand as your organization grows. It’s a noble goal, for sure! So,
you’re wondering if you should structure it widely and shallowly, or more narrowly
and deeply. This is the problem that all LDAP administrators face, and as always, the
definitive answer is “it depends.” My own preference is toward a shallower directory
structure because it’s easier to maintain, and because LDAP is optimized for searches
along a level, rather than up and down the hierarchy.

Figure 12-2 shows a DIT with three OUs.

Figure 12-2. The DIT sprouts limbs

dc=foo,
dc=com

ou=downstairs
ou=upstairs ou=inside

338 | Chapter 12: Centralized Network Directory with OpenLDAP

This seems all nice and organized, doesn’t it? Three separate departments each with
their own OU, which feels all satisfying, like a tidy filing cabinet. But think about
it—what if Jenn from Upstairs gets moved to Downstairs? You’ll have remove her
entry from Upstairs and create a new one in Downstairs, which is several steps, no
matter how efficient you are.

Now, take a look at Figure 12-3.

All users are lumped into the People OU. How do we know what departments they
belong to? By giving them an extra OU attribute, like this:

dn: cn=Jenn Dancer,ou=people,dc=foo,dc=com
objectClass: inetOrgPerson
cn: Jenn Dancer
ou=Upstairs
[...]

Jenn wants to move Downstairs? Piece of cake. All I do is run ldapmodify or a graphi-
cal LDAP browser to change ou=Upstairs to ou=Downstairs, and anything else that
changes (e.g., phone number and title). This is less than half the work of moving her
entry to a new OU, which requires these steps:

• Export the existing entry to an LDIF file with ldapsearch.

• Delete the record with ldapdelete.

• Edit the LDIF file.

• Add it to the new OU with ldapadd.

You might also think in terms of delegating responsibility to junior admins, or figuring
out how to protect sensitive data. This might mean storing some data in different sub-
trees or separate databases, which makes administration a bit more complex, but gives
you more control over who has read and write access.

This is never an easy subject, and if you ask five other LDAP admins for their advice,
you’ll get eight different opinions. LDAP System Administration, by Gerald Carter
(O’Reilly), is especially helpful with figuring out your directory topology.

Figure 12-3. The DIT is amputated

dc=foo,
dc=com

ou=people

12.1 Installing OpenLDAP on Debian | 339

12.1 Installing OpenLDAP on Debian

Problem
You’re ready to go to work and get your OpenLDAP server up and running. What’s
the best way to install it on Debian?

Solution
Just fire up Aptitude and install these packages:

aptitude install slapd ldap-utils gq db4.3-doc db4.2-util

You will be asked to create an LDAP admin password. Debian will then create the
LDAP admin user, and take your existing domain name as the suffix, or naming
context.

Then, run this simple search to make sure the server is running and responding to
requests:

ldapsearch -xb '' -s base '(objectclass=*)' namingContexts
[...]
dn:
namingContexts: dc=alrac,dc=net
[...]

Run this command to show the admin user:

$ ldapsearch -xb 'dc=alrac,dc=net'
[...]
admin, alrac.net
dn: cn=admin,dc=alrac,dc=net
objectClass: simpleSecurityObject
objectClass: organizationalRole
cn: admin
description: LDAP administrator
[...]

Very good! This shows success. Now, you are ready to move on to the next steps.

Discussion
Debian creates a bare-bones configuration, creates an openldap user, which you can
see in /etc/passwd, creates startup files and starts it at boot, and gives all the files the
correct ownership and permissions. It also creates the OpenLDAP admin user, which
is not a system user like openldap, but a user in the OpenLDAP directory.

You’ve probably seen OpenLDAP How-tos that create a rootdn and rootpw in slapd.conf.
The rootdn is the database superuser, just like our admin user, and rootpw is the rootdn’s
password. This is necessary for the initial creation of your directory, and you may prefer
to configure your database superuser this way. rootdn automatically has unrestricted
access to everything, and does not need access controls, which our admin user does.

340 | Chapter 12: Centralized Network Directory with OpenLDAP

Some admins don’t want the rootpw in slapd.conf for security reasons. Some admins
don’t want the superuser in the directory, like our admin user, for security reasons. If
you do keep it in slapd.conf, make triple-sure that file is protected—make it readable
only by the owner and group owner, and turn on write access only when you need to
make changes.

OpenLDAP depends on the Sleepycat Berkeley DB for its backend database. Apti-
tude should pull in the version you need. The db4.2-util package includes essential
commands for managing the BDB.

The db4.3-doc package contains the complete Sleepycat BDB manual. It’s targeted at
programmers, but it contains a lot of helpful information for server administrators, too.
(There is no db4.2-doc package, but the package version mismatch doesn’t matter.)

Get the version of db4.*-util that matches your Berkeley DB version. If you don’t know
which package name to look for, dpkg shows you what is installed on your system:

$ dpkg -l | grep db4
ii libdb4.2 4.2.52+dfsg-2 Berkeley v4.2 Database Libraries [runtime]
ii libdb4.3 4.3.29-8 Berkeley v4.3 Database Libraries [runtime]
ii libdb4.4 4.4.20-8 Berkeley v4.4 Database Libraries [runtime]

You’ll probably have multiple versions because a lot of applications use Berkeley DB
for their backends. Find the correct version that goes with slapd with apt-cache:

$ apt-cache depends slapd | grep db4
Depends: libdb4.2

You can see your suffix, which is the base name of your directory, in /etc/ldap/slapd.conf:

The base of your directory in database #1
suffix "dc=alrac,dc=net"

This is what the ldapsearch options mean:

-x
Bind to the directory with plaintext authentication.

-b
Start the search here.

-s
Define the scope of the search. Your choices are base, one, or sub. base means
search the base object, one searches the immediate children of an entry and does
not include the entry itself, sub is search the whole subtree and the entry. The
default is sub.

You may install from sources if you really really want to. Please visit OpenLDAP.org
(http://www.openldap.org/) for instructions.

12.3 Configuring and Testing the OpenLDAP Server | 341

See Also
• man ldapsearch

• OpenLDAP.org: http://www.openldap.org/

• LDAP Directories Explained: An Introduction and Analysis, by Brian Arkills
(Addison-Wesley)

12.2 Installing OpenLDAP on Fedora

Problem
You’re ready to go to work and get your OpenLDAP server up and running. What’s
the best way to install it on Fedora?

Solution
Fire up Yum, and install these packages:

yum install openldap openldap-servers openldap-clients db4-utils gq

Discussion
Fedora’s OpenLDAP implementation does little hand-holding. You’ll have to config-
ure it from scratch, correct some file ownerships, and create a database configuration
file, which we’ll get to in the next recipe. It does create startup files and an ldap system
user, and Yum handles dependencies.

You may install from sources if you really really want to. Please visit OpenLDAP.org
(http://www.openldap.org/) for instructions.

See Also
• OpenLDAP.org: http://www.openldap.org/

• LDAP Directories Explained: An Introduction and Analysis, by Brian Arkills
(Addison-Wesley)

12.3 Configuring and Testing the OpenLDAP Server

Problem
Installing your OpenLDAP server went fine; now what do you do to start and test it?

Solution
Debian users don’t need to follow this recipe because the Debian installer does all
this, but it might be useful to review it anyway.

342 | Chapter 12: Centralized Network Directory with OpenLDAP

Fedora users, copy this example: /etc/openldap/slapd.conf. Substitute your own
domain name (any one will do, even example.com) in the brackets, and invent your
own rootpw:

###
Global Directives:

Schema and objectClass definitions
include /etc/ldap/schema/core.schema
include /etc/ldap/schema/cosine.schema
include /etc/ldap/schema/nis.schema
include /etc/ldap/schema/inetorgperson.schema

pidfile /var/run/slapd/slapd.pid
argsfile /var/run/slapd/slapd.args

Read slapd.conf(5) for possible values
loglevel -1

Where the dynamically loaded modules are stored
modulepath /usr/lib/ldap
moduleload back_bdb

The maximum number of entries that is returned for a search operation
sizelimit 500

The tool-threads parameter sets the actual amount of cpus that is used
for indexing.
tool-threads 1

###
Specific Backend Directives for bdb:
Backend specific directives apply to this backend until another
'backend' directive occurs
backend bdb
checkpoint 512 30

###
Specific Directives for database #1
database bdb
suffix "dc=[alrac],dc=[net]"
rootdn "cn=admin,dc=[alrac],dc=[net]"
rootpw [password]

Where the database file are physically stored for database #1
directory "/var/lib/ldap"

Indexing options for database #1
index objectClass eq

12.3 Configuring and Testing the OpenLDAP Server | 343

Save the time that the entry gets modified, for database #1
lastmod on

admin can read/write all passwords
users can change their own passwords
access to attrs=userPassword,shadowLastChange
 by dn="cn=admin,dc=alrac,dc=net" write
 by anonymous auth
 by self write
 by * none

many applications need read access to the rootDSE
especially to read supported SASL mechanisms
this restricts them to the rootDSE; they cannot read past this level
access to dn.base="" by * read

admin gets unlimited read/write access to database
everyone else read-only
access to *
 by dn="cn=admin,dc=alrac,dc=net" write
 by * read
###

Then, make sure that the files in /var/lib/ldap are owned by the ldap user:

chown -R ldap:ldap /var/lib/ldap

If there is no /var/lib/ldap/DB_CONFIG file, create an empty one:

touch /var/lib/ldap/DB_CONFIG

Next, run the slaptest command to check /etc/ldap/slapd.conf:

slaptest
config file testing succeeded

Now, start it up:

/etc/init.d/ldap start
Checking configuration files for slapd: config file testing succeeded
 [OK]
Started slapd: [OK]

Finally, run this simple search to make sure the server is running and responding to
requests:

ldapsearch -x -b '' -s base '(objectclass=*)' namingContexts
[...]
dn:
namingContexts: dc=alrac,dc=net
[...]

Very good! This shows success. Now, you are ready to move on to the next steps.

344 | Chapter 12: Centralized Network Directory with OpenLDAP

Discussion
Debian users don’t need rootpw or rootdn; these will go away in the next recipe
anyway.

loglevel -1 means log everything, and this can add up to megabytes dumped into the
syslog in a hurry. See Recipe 12.12 for more information.

See the Discussion in Recipe 12.1 for an explanation of the ldapsearch options.

When you run slaptest, you may see warnings. slapd should run anyway, but you
should always fix whatever is causing the warnings. Some common errors on Fedora
are caused by:

• Incorrect file permissions or ownership

• A missing /var/lib/ldap/DB_CONFIG

Following the steps in this recipe should prevent any errors. For example, if the files
in /var/lib/ldap are not owned by the ldap user, you’ll get “permission denied” errors.
If DB_CONFIG is missing, you’ll get a warning, but slapd will still run.

DB_CONFIG contains options to tune the Berkeley DB backend. See Recipe 12.11 to
learn how to configure it.

This is a bare setup just to test the basics; having a rootpw password in slapd.conf
isn’t the best thing to do from a security perspective, and we haven’t really built a
directory yet. But we are getting there.

See Also
• man ldapsearch

• OpenLDAP.org: http://www.openldap.org/

• LDAP Directories Explained: An Introduction and Analysis, by Brian Arkills
(Addison-Wesley)

12.4 Creating a New Database on Fedora

Problem
Your Fedora OpenLDAP installation does not yet include an administrative user, nor
any users at all. You need to create an admin user to manage your directory, and you
also need to define your suffix.

Solution
There are three steps:

1. Create an LDIF file with the new information.

12.4 Creating a New Database on Fedora | 345

2. Use the ldapadd command to add the new entries to Berkeley DB.

3. Configure read-write permissions in slapd.conf.

First, create the LDAP Data Interchange Format (LDIF) file, which in this example is
named first.ldif. Substitute your own domain name, company name, description, and
password. Trim all leading and trailing spaces. A blank line separates entries, com-
ments must go on their own lines, and there must be one space after each colon:

##first.ldif
root dn entry
dn: dc=alrac,dc=net
objectclass: dcObject
objectclass: organization
o: Alrac's Fine Cookies and Beer
dc: alrac

directory administrator
dn: cn=admin,dc=alrac,dc=net
objectClass: simpleSecurityObject
objectClass: organizationalRole
cn: admin
userPassword: bigsecretword
description: LDAP administrator

Second, run this ldapadd command. You’ll be asked for the rootpw password you
entered in slapd.conf:

ldapadd -x -D "cn=admin,dc=alrac,dc=net" -W -f first.ldif
Enter LDAP Password:
adding new entry "dc=alrac,dc=net"
adding new entry "cn=admin,dc=alrac,dc=net"

Let us admire the new entries:

$ ldapsearch -x -b 'dc=alrac,dc=net'
[...]
alrac.net
dn: dc=alrac,dc=net
objectClass: dcObject
objectClass: organization
o: Alrac's Fine Cookies and Beer
dc: alrac

admin, alrac.net
dn: cn=admin,dc=alrac,dc=net
objectClass: simpleSecurityObject
objectClass: organizationalRole
cn: admin
userPassword: fji8Hu11hs
description: LDAP administrator
[...]

346 | Chapter 12: Centralized Network Directory with OpenLDAP

Comment out the rootpw and rootdn entries in slapd.conf. Then, restart OpenLDAP,
and view the directory entries again:

/etc/init.d/ldap restart
$ ldapsearch -x -b 'dc=alrac,dc=net'

Now, the admin user has complete control of the database.

Discussion
Mind the whitespace in your LDIF files. A blank line delimits each entry. A single
leading space on a line means it is a continuation of the previous line, commas
delimit each name/value pair, and any literal commas must be escaped, like this
example shows:

dn: uid=twhale,ou=people,ou=factory,ou=bluecollars,
 o=widgets\, inc.,c=au,dc=widgets,dc=com

The admin user can have any name, such as db-admin, or ldapgoddess, or whatever
you like. You’ll see the Manager user in a lot of LDAP documentation, which is the
same as our admin user.

The first.ldif file contains two separate entries. The first one defines our suffix. That’s
the root of our directory tree. The second entry defines the admin user, who is given
read/write access to the entire database in slapd.conf. All other users are given read
access only. They can change their own passwords, and they cannot see anyone
else’s password.

Each entry requires its own unique DN. Remember, these are made by combining
the Relative Distinguished Name (RDN) with all of its ancestors. (See this chapter’s
Introduction for more information.)

Your LDIF files don’t have to use the .ldif file extension. It’s probably less confusing
to keep it, though.

Why replace the rootdn and rootpw in slapd.conf? The rootdn is the database
superuser, just like our admin user, and rootpw is the rootdn’s password. This is nec-
essary for the initial creation of your directory, and you may prefer to configure your
database superuser this way. Some admins don’t want a rootdn in slapd.conf for secu-
rity reasons. Some admins don’t want the superuser in the directory, like our admin
user, for security reasons. If you do keep it in slapd.conf, make triple-sure that file is
protected—make it readable only by the owner and group owner, and turn on write
access only when you need to make changes.

The admin ACLs we created in the previous recipe in slapd.conf are not necessary if
you choose to keep rootdn in slapd.conf. rootdn does not need explicit access rules.

12.4 Creating a New Database on Fedora | 347

ObjectClasses and attributes

Fire up a graphical LDAP browser like gq to see the available attributes for each
objectClass. This is an easy way to see what your choices are. You may also look in
the schema files in /etc/ldap/schema/ (/etc/openldap on Fedora). inetOrgPerson is one
you’ll use a lot. /etc/ldap/schema/inetorgperson.schema defines what attributes are
required, and which ones are optional:

inetOrgPerson
The inetOrgPerson represents people who are associated with an
organization in some way. It is a structural class and is derived
from the organizationalPerson which is defined in X.521 [X521].
objectclass (2.16.840.1.113730.3.2.2
 NAME 'inetOrgPerson'
 DESC 'RFC2798: Internet Organizational Person'
 SUP organizationalPerson
 STRUCTURAL
 MAY (
 audio $ businessCategory $ carLicense $ departmentNumber $
 displayName $ employeeNumber $ employeeType $ givenName $
 homePhone $ homePostalAddress $ initials $ jpegPhoto $
 labeledURI $ mail $ manager $ mobile $ o $ pager $
 photo $ roomNumber $ secretary $ uid $ userCertificate $
 x500uniqueIdentifier $ preferredLanguage $
 userSMIMECertificate $ userPKCS12)
)

As this shows, all of them are optional. The simpleSecurityObject is less complex; it
has only a single required attribute:

objectclass (0.9.2342.19200300.100.4.19 NAME 'simpleSecurityObject'
 DESC 'RFC1274: simple security object'
 SUP top AUXILIARY
 MUST userPassword)

See Also
• man 1 ldapsearch

• OpenLDAP.org: http://www.openldap.org/

• LDAP Directories Explained: An Introduction and Analysis, by Brian Arkills
(Addison-Wesley)

• LDAP System Administration, by Gerald Carter (O’Reilly)

348 | Chapter 12: Centralized Network Directory with OpenLDAP

12.5 Adding More Users to Your Directory

Problem
You’re ready to start stuffing more users into your OpenLDAP directory. How do
you do this?

Solution
Make sure your OpenLDAP server is running. Next, create an LDIF file containing your
new user entries, then use ldapadd to export them into your OpenLDAP directory.

We’re going to expand our directory structure a bit, because right now it’s just a
plain old one-level directory. We want to be organized and not just dump everything
into the top level, so we’re going to add a people Organizational Unit (OU). Our
directory now looks like Figure 12-4.

You can see our admin user hanging out there all alone. (It’s lonely at the top.)

This example users.ldif file adds the new OU and two human users. Mind your
whitespace! Comments must be on separate lines, there must be one space after each
colon, and a blank line separates entries:

##/etc/ldap/ldif/users.ldif
dn: ou=people,dc=alrac,dc=net
ou: people
description: All people in organisation
objectClass: organizationalUnit

dn: uid=cschroder,ou=people,dc=alrac,dc=net
objectClass: inetOrgPerson

Figure 12-4. Adding one new OU with users

dc=alrac,
dc=net

cn=admin

people

12.5 Adding More Users to Your Directory | 349

cn: Carla Schroder
sn: Schroder
uid: cschroder
userPassword: password
telephoneNumber: 444-222-3333
homePhone: 555-111-2222
mail: carla@bratgrrl.com
mail: carla@gmail.com
description: indescribable

dn: uid=thanson,ou=people,dc=alrac,dc=net
objectClass: inetOrgPerson
cn: Terry Hanson
sn: Hanson
uid: thanson
userPassword: password
telephoneNumber: 222-333-4455
homePhone: 112-334-5678
mail: terry@bratgrrl.com
mail: terry@gmail.com
description: absolutely fabulous

Now, add the new entries to the database:

ldapadd -x -D "cn=admin,dc=alrac,dc=net" -W -f users.ldif
Enter LDAP Password:
adding new entry "ou=people,dc=alrac,dc=net"
adding new entry "uid=cschroder,ou=people,dc=alrac,dc=net"
adding new entry "uid=thanson,ou=people,dc=alrac,dc=net"

Then, run the usual ldapsearch command to verify your entries:

$ ldapsearch -x -b 'dc=alrac,dc=net'

To add more users, you need to create a new .ldif file, or overwrite the old one. You
can’t just add new entries to your existing file, because when ldapadd finds an exist-
ing entry, it stops and does not read the rest of the file.

Discussion
ldapadd requires a running server; it won’t work if slapd is not running. All com-
mands that start with “ldap” operate on a running server. The “slap” commands, like
slapcat and slapadd, require that slapd is not running. See the Discussion in the previ-
ous recipe to learn the finer points of creating LDIF files.

See Also
• man 1 ldapsearch

• OpenLDAP.org: http://www.openldap.org/

• LDAP Directories Explained: An Introduction and Analysis, by Brian Arkills
(Addison-Wesley)

• LDAP System Administration, by Gerald Carter (O’Reilly)

350 | Chapter 12: Centralized Network Directory with OpenLDAP

12.6 Correcting Directory Entries

Problem
Users changed, or you made a mistake, so you want to change an existing directory
entry. How do you do this?

Solution
One way is using ldapmodify. You’ll need to create a new LDIF file in a special for-
mat. This example adds a title, changes the email address, and adds a photograph:

##/etc/ldap/modfile.ldif
dn: uid=thanson,ou=people,dc=alrac,dc=net
changetype:modify
add:title
title:Fire Marshal
-
replace:mail
mail:terry@wolfgrrl.com
-
add: jpegphoto
jpegphoto:< file:///filename.jpg

Next, use the LDIF file this way:

ldapmodify -x -D "cn=admin,dc=alrac,dc=net" -W -f modfile.ldif
Enter LDAP Password:
modifying entry "cn=Terry Hanson,ou=people,dc=alrac,dc=net"

Then, verify it with ldapsearch:

$ ldapsearch -xtb 'dc=alrac,dc=net' 'cn=terry hanson'
[...]
Terry Hanson, people, alrac.net
dn: cn=Terry Hanson,ou=people,dc=alrac,dc=net
objectClass: inetOrgPerson
cn: Terry Hanson
sn: Hanson
uid: thanson
telephoneNumber: 333.444.4545
homePhone: 222-333-5555
description: burning down the house
title: Fire Marshal
mail: terry@wolfgrrl.com
jpegPhoto:< file:///tmp/ldapsearch-jpegPhoto-Sx11P8
[...]

Discussion
For changes to a small number of entries, a graphical LDAP browser (see Recipe 12.10)
is usually faster and easier. Using LDIFs is usually faster for bulk changes and for ace
scripting gurus.

12.6 Correcting Directory Entries | 351

Note the new -t option to ldapsearch. This tells ldapsearch to store photos, audio
files, or other noncharacter data in temporary files. If you don’t use this, you’ll get
masses of encoding, like this:

fdtvWuJG2BwGFzjms1d7eTubLmBp5EFktAAPZfvNUzNVthoyz6sMbkgtSAd6dj3mqudjOCW6QxUAItBmSbQw
638J7W+NQArNTIZ4wNQbkdXh3sATNVnpSns2yveXHeYU5+1o46yelp6pu02LGcYBKimkNyRuq/j+/QUGJBp
3mdwf3q2PTbca2gFkCkkKVRixIltTMw4m3+91vTmZYaGy5Ktbxnq0

When you’re adding a JPEG photograph, it must be available, or ldapmodify will
return with the message ldapmodify: invalid format. That is a long way from “I can’t
find the file,” but that’s what it means. JPEGs are imported into the database in base-
64 MIME encoding. If you’re going to include ID photographs of people, make sure
they are small in physical and file size, or they’re going to look strange in your LDAP
clients.

OpenLDAP is finicky about the format and syntax of a changefile. Start with the DN
to identify the entry, then the keyword changetype followed by the type of change:
add, modify, modrdn, or delete. Deleting an entry requires only two lines:

dn: cn=Terry Hanson,ou=people,dc=alrac,dc=net
changetype:delete

The syntax for the jpegPhoto and audio attributes is fussy:

jpegphoto:< file:///filename.jpg

There must be no space between :<, and then one space. file:// has two slashes,
then the filename.

When you’re modifying an existing entry, your possible keywords are add, replace,
or delete. replace is all-or-nothing; for example, if the entry has three email
addresses, and your LDIF file contains:

replace: mail
mail: thanson@foosite.com

It will delete the three old addresses, and then add the one new one.

delete can be all-or-nothing, or selective. If your entry has three homePhone attributes,
and you use:

delete: homephone

then all three will be deleted. To delete a single attribute, do this:

delete: homephone
homePhone: 222-333-5555

See Also
• OpenLDAP.org: http://www.openldap.org/

• LDAP Directories Explained: An Introduction and Analysis, by Brian Arkills
(Addison-Wesley)

• LDAP System Administration, by Gerald Carter (O’Reilly)

352 | Chapter 12: Centralized Network Directory with OpenLDAP

12.7 Connecting to a Remote OpenLDAP Server

Problem
You’re not always going to be sitting at your physical server, or you want to run it
headless, so you need to know how to administer your OpenLDAP server remotely.

Solution
All of the OpenLDAP commands use the same -H option to connect to a remote host,
like this example for a local network that uses the server’s hostname:

ldapsearch -H ldap://xena -xtb 'dc=alrac,dc=net'

Or, you may use the fully qualified domain name:

ldapsearch -H ldap://xena.alrac.net -xtb 'dc=alrac,dc=net'

Or, specify the port. You don’t need to do this unless you’re using an alternate port:

ldapsearch -H ldap://xena.alrac.net:389 -xtb 'dc=alrac,dc=net'

Discussion
A lot of documentation still refers to using the lowercase -h, but this has been depre-
cated, and someday will go away for good.

You don’t have to use just the options in the example commands; any OpenLDAP
command can be run remotely (e.g., searches, making changes, etc.).

See Also
• man 1 ldapsearch

• man 1 ldapmodify

• OpenLDAP.org: http://www.openldap.org/

• LDAP Directories Explained: An Introduction and Analysis, by Brian Arkills
(Addison-Wesley)

• LDAP System Administration, by Gerald Carter (O’Reilly)

12.8 Finding Things in Your OpenLDAP Directory

Problem
Your directory is growing, and you want to know how to fine-tune your searches so
you can pluck out just the information you want, and not have to wade through a
bunch of irrelevant stuff.

12.8 Finding Things in Your OpenLDAP Directory | 353

Solution
The ldapsearch command comes with a host of options for searching on every imag-
inable attribute. This command searches for a specific user by common name (CN):

$ ldapsearch -xtb 'dc=alrac,dc=net' 'cn=carla'

If you’re not quite sure what to look for, you can use wildcards. This example
searches for UIDs that end in schroder:

$ ldapsearch -xtb 'dc=alrac,dc=net' 'uid=*schroder'

Maybe you want all the entries with a certain phone prefix:

$ ldapsearch -xtb 'ou=people,dc=alrac,dc=net' '(telephoneNumber=333*)'

You might want a list of attributes only, without the values:

$ ldapsearch -xtb 'dc=alrac,dc=net' 'cn=carla' -A

You can start from a different level in your DIT:

$ ldapsearch -xtb 'ou=people,dc=alrac,dc=net' 'cn=carla'

You can limit the size of your search, like this example that searches for entries with
photos, and limits the results to 10 entries:

$ ldapsearch -z 10 -xtb 'ou=people,dc=alrac,dc=net' '(jpegPhoto=*)'

This command makes a list of objectClasses used in your directory:

$ ldapsearch -xb 'dc=alrac,dc=net' '(objectclass=*)' dcObject

Or, search for entries with specific objectClasses:

$ ldapsearch -xb 'dc=alrac,dc=net' '(objectclass=simpleSecurityObject)'

Combine attributes to narrow searches, such as users with a certain phone prefix and
mail domain:

$ ldapsearch -xtb 'dc=alrac,dc=net' '(&(mail=*domain.com)(telephoneNumber=333*))'

Or, list all users at a specific mail domain except the ones with the specified phone
prefix (mind your parentheses):

$ ldapsearch -xtb 'dc=alrac,dc=net' '(&(mail=*domain.com)(!(telephoneNumber=333*)))'

Discussion
If you’re thinking, “Forget this, I’m making a beeline to those nice graphical LDAP
clients,” slow down. Those nice graphical interfaces still require a knowledge of the
OpenLDAP commands.

Here are some examples of the syntax for various search expressions:

Match this value
(attribute=value)

(objectclass=name)

354 | Chapter 12: Centralized Network Directory with OpenLDAP

Approximately match this value; this requires an approx index; see Recipe 12.9 for
more information

(attribute~=value)

Match all these values
(&(exp1)(exp2)(exp3))

Match any of these values; exp1 OR exp2 OR exp3
(|(exp1)(exp2)(exp3))

Exclude this value
(!(exp1))

Exclude both of these values
(&(!(exp1))(!(exp2)))

Exclude either of these values
(|(!(exp1))(!(exp2)))

There are some other available search types, though I haven’t found them to be useful
because these depend on the attribute having an ordering rule, and most of them don’t:

Match results that are greater than
(attribute>=value)

Match results that are less than
(attribute<=value)

See Also
• man 1 ldapsearch

• OpenLDAP.org: http://www.openldap.org/

• LDAP Directories Explained: An Introduction and Analysis, by Brian Arkills
(Addison-Wesley)

• LDAP System Administration, by Gerald Carter (O’Reilly)

12.9 Indexing Your Database

Problem
You noticed there are some indexing options in slapd.conf—what’s that all about?
Will they make your directory go faster?

Solution
Indeed they will. Indexing attributes that are frequently searched for will speed up
performance. Here are some sample indexes for different uses:

#always have this one
index objectClass eq

12.9 Indexing Your Database | 355

#for common name searches
index cn,sn,uid pres,eq,sub

#email address searches
index mail pres,eq

These go into slapd.conf.

Discussion
If you change the index settings while slapd is running, an internal task will automat-
ically run and generate the new indexes. You don’t need to explicitly regenerate the
indexes. However, if slapd is stopped before the indexing task is finished, you’ll have
to manually generate the new indexes with the slapindex command:

/etc/init.d/slapd stop (Debian)
/etc/init.d/ldap stop (Fedora)
slapindex

When it’s finished, restart OpenLDAP. If you have a large directory, this process will
take a few minutes.

Indexing increases the size of your id2entry file. The larger your database and the more
indexes you have, the bigger this file will grow. This post from the OpenLDAP-devel
list (http://www.openldap.org/lists/openldap-devel/200510/msg00131.html) says:

For my test database with 360 MB input LDIF and 285,000 entries and 15 indexed
attributes, using a 512 MB BDB cache.... The resulting id2entry database is about 800
MB; with all indexing the total size is around 2.1 GB.

The syntax for indexing is:

index [attributes] [index type]

Multiple attributes and index types are comma-delimited. These are the most useful
index types:

pres
Match on the attribute type, rather than the value of the attribute. For example,
search for attributes like (objectclass=inetOrgPerson) or (attribute=mail).

eq
Match the exact attribute value, like (cn=fred) returns only exact “fred”
matches.

sub
Indexes for wildcard searches, like (cn=lisa*). There are several variations on sub.
For example, subinitial is optimized for (cn=lisa*)-type searches, subfinal is
optimized for (cn=*smith)-type searches, and subany is optimized for (cn=*isa*).

Creating unnecessary indexes will hurt performance. Unindexed searches will always
succeed; your goal is to index the most common searches, and not worry about infre-
quent search types. Smart indexing will boost performance noticeably. Watch your

356 | Chapter 12: Centralized Network Directory with OpenLDAP

logfiles to see what your users or applications are looking for; that’s your best guide
to deciding what to index. See Recipe 12.12 for more information.

See Also
• man 8 slapindex

• OpenLDAP.org: http://www.openldap.org/

• LDAP Directories Explained: An Introduction and Analysis, by Brian Arkills
(Addison-Wesley)

• LDAP System Administration, by Gerald Carter (O’Reilly)

12.10 Managing Your Directory with Graphical
Interfaces

Problem
You want some nice graphical tools for managing your LDAP directory.

Solution
There are quite a number of graphical LDAP directory viewers and managers in
varying degrees of usefulness and polish. You still need to know the OpenLDAP
commands, but a good graphical interface can make you more efficient. Here are
some nice open source applications:

GQ (http://gq-project.org/)
This is a fairly simple standalone LDAP client. It is a browser and an editor. You
can easily browse schema details, and see your directory structure as Figure 12-5
shows. You may also authenticate to create or edit entries.

Web browsers
Konqueror and Internet Explorer include simple LDAP viewers. You can see
your directory, but not edit it. Enter a URL containing your suffix, like ldap://
localhost:389/dc=alrac,dc=net, and you’ll see something like Figure 12-6.

LAT, LDAP Administration Tool (http://dev.mmgsecurity.com/projects/lat/)
A nice, fully featured viewer and editor (see Figure 12-7). It includes tools for
Samba and Active Directory integration, a good search tool, LDIF imports and
exports, and other essential management features.

Web-based LDAP managers
phpLDAPadmin (http://phpldapadmin.sourceforge.net/) and Gosa (https://www.
gosa-project.org/) are two popular web-based LDAP managers. They’re rather
complex, as PHP applications tend to be, because they depend on HTTP serv-
ers, PHP, and various modules and libraries. So, they both have learning curves,
but the advantages are attractive interfaces, universal clients, and the fact that
any PHP coder can extend and customize them.

12.10 Managing Your Directory with Graphical Interfaces | 357

Discussion
Like all good Linux admins, you don’t want to run X Windows on your LDAP
server, and with any of these applications, you won’t need to because they all sup-
port secure remote access.

Figure 12-5. GQ’s view of our LDAP directory

Figure 12-6. Our little LDAP directory in Konqueror

358 | Chapter 12: Centralized Network Directory with OpenLDAP

See Also
• OpenLDAP.org: http://www.openldap.org/

• LDAP Directories Explained: An Introduction and Analysis, by Brian Arkills
(Addison-Wesley)

• LDAP System Administration, by Gerald Carter (O’Reilly)

12.11 Configuring the Berkeley DB

Problem
You know that you need to use the /var/lib/ldap/DB_CONFIG file to configure the
database backend to your LDAP directory (Berkeley DB) so that it will perform pep-
pily and not get all bogged down. How do you know what options and values to use?

Solution
We’ll start off with some reasonable values for starters, and then learn how to make
some calculations to fine-tune them.

Be sure to check your slapd.conf for duplicate BDB entries and get rid of them. They
can go in either file, but it’s best to keep them all in DB_CONFIG. You don’t want
duplicates or conflicting entries.

Figure 12-7. LAT’s view of the directory

12.11 Configuring the Berkeley DB | 359

First, make sure there is a cachesize entry in slapd.conf:

cachesize 5000

Then, enter these options and values into /var/lib/ldap/DB_CONFIG:

##/var/lib/ldap/DB_CONFIG
set_cachesize 0 1048576 0
set_lk_max_objects 1500
set_lk_max_locks 1500
set_lk_max_lockers 1500
#
#logging settings
set_lg_regionmax 1048576
set_lg_bsize 32768
set_lg_max 131072
set_lg_dir /var/log/openldap

The set_cachesize value is in bytes, and must be a power of 2, so the example is one
megabyte. How do you know how much to use? Use the db4.2_stat command on
Debian, and the db_stat command on Fedora to generate statistics from id2entry.bdb
and dn2id.bdb, which are the two main database files:

db4.2_stat -d /var/lib/ldap/id2entry.bdb
53162 Btree magic number.
9 Btree version number.
Flags: little-endian
2 Minimum keys per-page.
16384 Underlying database page size.
1 Number of levels in the tree.
6 Number of unique keys in the tree.
6 Number of data items in the tree.
0 Number of tree internal pages.
0 Number of bytes free in tree internal pages (0% ff).
1 Number of tree leaf pages.
12374 Number of bytes free in tree leaf pages (24% ff).
0 Number of tree duplicate pages.
0 Number of bytes free in tree duplicate pages (0% ff).
0 Number of tree overflow pages.
0 Number of bytes free in tree overflow pages (0% ff).
0 Number of pages on the free list.

db4.2_stat -d /var/lib/ldap/dn2id.bdb
53162 Btree magic number.
9 Btree version number.
Flags: duplicates, little-endian
2 Minimum keys per-page.
4096 Underlying database page size.
1 Number of levels in the tree.
13 Number of unique keys in the tree.
19 Number of data items in the tree.
0 Number of tree internal pages.
0 Number of bytes free in tree internal pages (0% ff).
1 Number of tree leaf pages.
3378 Number of bytes free in tree leaf pages (18% ff).

360 | Chapter 12: Centralized Network Directory with OpenLDAP

0 Number of tree duplicate pages.
0 Number of bytes free in tree duplicate pages (0% ff).
0 Number of tree overflow pages.
0 Number of bytes free in tree overflow pages (0% ff).
0 Number of pages on the free list.

You can see that each id2entry.bdb page requires 16 KB, and dn2id.bdb needs 4 KB
per page, and the number of internal pages each one is using. So, you can use this
formula to calculate a bare minimum memory requirement:

((50+1) * 4096) + ((12+1) * 16384)) = 421,888 bytes

This does not take into account other library overhead or indexing. As a shortcut,
double this figure for decent performance. So, for this example, we could round it up
to a whopping 1 MB of RAM.

How do you know what values to assign to set_lk_max_objects 1500, set_lk_max_
locks 1500, and set_lk_max_lockers 1500? Use the db4.2_stat -c (db_stat on Fedora)
command:

cd /var/lib/ldap
db4.2_stat -c
100 Last allocated locker ID.
2147M Current maximum unused locker ID.
9 Number of lock modes.
1500 Maximum number of locks possible.
1500 Maximum number of lockers possible.
1500 Maximum number of lock objects possible.
3 Number of current locks.
11 Maximum number of locks at any one time.
12 Number of current lockers.
19 Maximum number of lockers at any one time.
3 Number of current lock objects.
8 Maximum number of lock objects at any one time.
1170 Total number of locks requested.
1167 Total number of locks released.
0 Total number of lock requests failing because DB_LOCK_NOWAIT was set.
0 Total number of locks not immediately available due to conflicts.
0 Number of deadlocks.
0 Lock timeout value.
0 Number of locks that have timed out.
0 Transaction timeout value.
0 Number of transactions that have timed out.
552KB The size of the lock region..
0 The number of region locks granted after waiting.
2579 The number of region locks granted without waiting.

1500 is a reasonable starting point for a smaller directory; use your db4.2_stat -c
output to decide if you need to increase it. When usage hits 85 percent of your
allocated values, increase them. Look at your Number of current values outputs,
timeouts, and failures.

12.11 Configuring the Berkeley DB | 361

For OpenLDAP versions 2.3 and above, all you need to do after changing DB_CONFIG
is restart slapd:

/etc/init.d/slapd restart (Debian)
/etc/init.d/ldap restart (Fedora)

However, this doesn’t always work, so if slaptest returns errors, and is on 2.2 and
older, Debian users need to use the database recovery command:

/etc/init.d/slapd stop
db4.2_recover -h /var/lib/ldap
/etc/init.d/slapd start

Fedora users have slightly different commands:

/etc/init.d/ldap stop
db_recover -h /var/lib/ldap
/etc/init.d/ldap start

Then, run this command to verify your new cache size. These examples are based on
a value of 16777216 in DB_CONFIG. As usual, the Debian command is first, Fedora
second:

db4.2_stat -h /var/lib/ldap -m | head -n 2
20MB 1KB 604B Total cache size.
1 Number of caches.
db_stat -h /var/lib/ldap -m | head -n 2

Now, keep an eye on the performance while slapd is running. Change to the direc-
tory your database is stored in:

cd /var/lib/ldap
db4.2_stat -m (Debian)
db_stat -m (Fedora)

This displays complete cache statistics.

Discussion
cachesize defines the number of entries that the LDAP backend will keep in mem-
ory. For best performance, this number is equal to the number of entries in your
directory, but it can be smaller. This is not the BDB cache, but OpenLDAP’s own
internal cache. The default is 1000.

Watch your disk I/O—iostat is a good tool for this—and keep an eye on the
Requested pages found in the cache value, which you get from running db_stat -m in
your database directory. You want this to be as close to 100 percent as possible, and
the pages forced from the cache should be 0. If it falls under 95 percent, increase
your set_cachesize value. You want requests to be answered from the memory cache
as much as possible; you don’t want a lot of disk thrashing.

set_cachesize has three fields: <gbytes>, <bytes>, and <ncache>. If you want to cre-
ate a 2 GB cache, it looks like set_cachesize 2 0 0. You may combine both gigabytes

362 | Chapter 12: Centralized Network Directory with OpenLDAP

and bytes. The maximum is 4 GB. Don’t make your cache larger than your total
system memory. Any cache size less than 500 MB is automatically increased by 25
percent to account for buffer pool overhead.

ncache tells BDB if it should use one contiguous section of memory, or more than
one. 0 or 1 means one segment; a larger number means create that number of
segments. Modern Linux kernels support 1–3 GB per user process on 32-bit x86 sys-
tems, and don’t forget that the kernel needs a good-sized chunk as well. This
example splits a 2 GB cache across two segments:

set_cachesize 2 0 2

On 64-bit systems, theoretically your whole memory space, except the bit reserved
for the kernel, can be used by a single process.

Creating a too-big set_cachesize value can hurt overall system performance, but it
won’t hurt OpenLDAP, so you can set a generous value if you have abundant RAM.
If you need to be frugal with your available RAM, check the See Also section for
detailed references on making finer calculations.

The set_lk_max_locks, set_lk_max_lockers, and set_lk_max_objects set the maxi-
mum number of locks, lockers, and locked objects, respectively. If the values are
too small, requests for locks will fail. If the values are too large, the locking sub-
system will use more resources than it really needs. It’s safer to have too much. Run
db4.2_stat -c (db_stat -c in Fedora) in your database directory to keep tabs on this.

The locking subsystem keeps reads and writes in order. Anything that is writing to
the BDB gets an exclusive lock on the object it is writing to. Reads are shared.

Configuring logging will also affect performance. This is what the examples mean:

set_lg_regionmax
The maximum memory cache in bytes for database file name caching. Increase
this value as the number of database files increases. Every attribute that you con-
figure for indexing uses one file to store its index, plus id2entry and dn2id which
always exist.

set_lg_bsize
The size of the memory cache for logging data, in bytes. When the cache is full,
it will be flushed to disk.

set_lg_max
Maximum size of logfile, in bytes. When it reaches the limit, the file is rotated.
This should be a minimum of four times set_lg_bsize.

set_lg_dir
Directory for the logfiles. For best performance, store logfiles on a separate disk,
or remote network share.

slapd -V
Gives the OpenLDAP server version.

12.12 Configuring OpenLDAP Logging | 363

See Also
• OpenLDAP Performance Tuning:

http://www.openldap.org/faq/data/cache/190.html

• Getting Started with Berkeley DB:

http://www.oracle.com/technology/documentation/berkeley-db/db/gsg/C/index.html

• Chapter 4 of Getting Started with Berkeley DB XML Transaction Processing (http://
www.oracle.com/technology/documentation/berkeley-db/xml/gsg_xml_txn/java/
blocking_deadlocks.html); see the section, “Locks, Blocks, and Deadlocks”

12.12 Configuring OpenLDAP Logging

Problem
OpenLDAP’s default setup dumps logging into the syslog, and you would rather it
have its own separate logfile. How do you do this?

Solution
First, we’ll create a separate directory and an empty logfile:

mkdir /var/log/openldap
touch /var/log/openldap/ldap.log

Then, add these lines to /etc/syslog.conf:

#Logging for openldap
local4.* /var/log/openldap/ldap.log

And set your desired logging level in slapd.conf, in the Global section:

loglevel 256

Now, restart both OpenLDAP and the syslog daemon:

/etc/init.d/slapd restart (Debian)
/etc/init.d/ldap restart (Fedora)
/etc/init.d/sysklogd restart (Debian)
/etc/init.d/syslog restart (Fedora)

Run some searches to generate some activity, then check your logfile. It should be
full of entries like this:

May 22 11:53:32 xena slapd[7686]: conn=5 fd=11 ACCEPT from IP=127.0.0.1:33643 (IP=0.
0.0.0:389)
May 22 11:53:32 xena slapd[7686]: conn=5 op=0 BIND dn="" method=128
May 22 11:53:32 xena slapd[7686]: conn=5 op=0 RESULT tag=97 err=0 text=
May 22 11:53:32 xena slapd[7686]: conn=5 op=1 SRCH base="dc=alrac,dc=net" scope=2
deref=0 filter="(objectClass=*)"

364 | Chapter 12: Centralized Network Directory with OpenLDAP

Discussion
The available logging levels for OpenLDAP are a bit complicated. man 5 slapd.conf
lists all of them. The default is 256, which logs statistics like connections, operations,
and results. -1 logs everything, so beware! A busy OpenLDAP server will generate
megabytes of logfiles at this level in no time. Some admins disable logging entirely
with the 0 option, and turn it on periodically for analysis or troubleshooting. Some
high-priority messages are logged regardless of your logging level, so you should still
route them to a separate file.

Logging can bog down performance noticeably, so one tweak you can make is to use
the minus prefix in syslog.conf:

local4.* -/var/log/openldap/ldap.log

This tells the syslog daemon to not synchronize the file after every write. The risk is
you could lose some data if the system crashes, but it makes a noticeable difference
in performance on a heavily loaded server.

Each logging level is not a different verbosity, but a different subsystem. So, you can
combine them like this to log different activities:

256 + 32 + 8

Using a remote logging server takes a lot of the load away from your OpenLDAP
server. See Chapter 19 for recipes on setting up a logging server using Syslog-ng.

See Also
• man 5 slapd.conf

• OpenLDAP.org: http://www.openldap.org/

• LDAP Directories Explained: An Introduction and Analysis, by Brian Arkills
(Addison-Wesley)

• LDAP System Administration, by Gerald Carter (O’Reilly)

12.13 Backing Up and Restoring Your Directory

Problem
Is there a special way to back up and restore your OpenLDAP directory, or can you
use standard Linux utilities like rsync?

Solution
You can copy your database files just like any other files, so go ahead and include
them in your normal system backup. The directory option in slapd.conf defines the
database directory. You should also use the two special OpenLDAP commands for
backups and restores: slapcat and slapadd.

12.13 Backing Up and Restoring Your Directory | 365

slapcat exports the contents of your database (which is defined in slapd.conf) into an
LDIF-formatted file. If you have only one database, first stop your server, then run
slapcat:

/etc/init.d/slapd stop (Debian)
/etc/init.d/ldap stop (Fedora)
slapcat -l backupfile.ldif

If you have more than one, you should dump them separately. Use the -b option to
select them by suffix:

slapcat -b 'dc=alrac,dc=net' -l backupfile.ldif

Restoring your data is done with slapadd. First, delete or move the existing database
files from /var/lib/ldap, or wherever you are keeping them, then run this command:

slapadd -l backupfile.ldif

Just like slapcat, use the -b option to select a specific database to restore to:

slapadd -b 'dc=alrac,dc=net' -l backupfile.ldif

Start up your OpenLDAP server, and you’re back in business.

You may also use slapadd to build a brand-new database.

Want to automate your backups? Try this script:

#!/bin/sh
##/usr/local/bin/ldap-backup.sh
BACKUPDIR=/root/ldap.backup
ROTATION=30

mkdir -p $BACKUPDIR

/etc/init.d/slapd stop

#append the date to the filename
#and compress the file
FILENAME=$BACKUPDIR/ldap.backup.$(date +%Y%m%d)
/usr/sbin/slapcat | gzip --best >${FILENAME.new.gz
mv -f ${FILENAME.new.gz ${FILENAME.gz

/etc/init.d/slapd start

Delete old copies after 30 days
OLD=$(find $BACKUPDIR/ -ctime +$ROTATION -and -name 'ldap.backup.*')
[-n "$OLD"] && rm -f $OLD

Stick it in /etc/crontab; this runs it every morning at 1 a.m.:

m h dom mon dow user command
00 1 * * * root /usr/local/bin/ldap-backup.sh

366 | Chapter 12: Centralized Network Directory with OpenLDAP

Discussion
There are a number of potential problems with automating slapcat. You have to shut
down the directory, and the time it takes is unpredictable. Even the best script
doesn’t always succeed in restarting daemons. So, consider this script as a starting
point for adding your own error checks and refinements.

LDIF files have several advantages over the binary database files. They are in plain-
text, version-independent, and platform-independent, so they can be imported into
virtually any LDAP directory. Plaintext files are editable, so you can clean them up or
copy selected bits, or mangle them with the usual Unix tools like Perl, grep, sed, and
awk to pick out selected bits. Whether you make your dumps manually or automati-
cally, you should always keep current slapcat dumps of your OpenLDAP directory.

See Also
• man 8 slapcat

• man 8 slapadd

• OpenLDAP.org: http://www.openldap.org/

• LDAP Directories Explained: An Introduction and Analysis, by Brian Arkills
(Addison-Wesley)

• LDAP System Administration, by Gerald Carter (O’Reilly)

12.14 Refining Access Controls

Problem
Right now, your directory is read-only for everyone, and read/write for the admin
user. Is there a way to allocate access controls more finely?

Solution
Of course there is. Let’s start with our simple example DIT, the one with the suffix of
dc=alrac,dc=net, and its single second-level ou=people:

dc=alrac,dc=net
 |
ou=people

Let’s say we have a number of users in people with the following attributes:

objectClass:
cn:
sn:
uid:
title:

12.14 Refining Access Controls | 367

jpegPhoto:
telephoneNumber:
homePhone:
homePostalAddress:
mail:
description:

It would be nice to let users control some of their own data, such as passwords,
email addresses, and telephone numbers. But, not everything: UIDs, titles, CNs, and
such should be protected from mischievous users. So, let’s take our access controls
from Recipe 12.4 and add to them. The new entries are in bold, and our ACLs are
now numbered so we can keep track more easily:

#ACL 1
access to attrs=userPassword,shadowLastChange
 by dn="cn=admin,dc=alrac,dc=net" write
 by anonymous auth
 by self write
 by * none

#ACL 2
access to attrs=homePostalAddress,homePhone,telephoneNumber,mail
 by dn="cn=admin,dc=alrac,dc=net" write
 by self write
 by * none

#ACL 3
access to dn.base="" by * read

#ACL 3
access to *
 by dn="cn=admin,dc=alrac,dc=net" write
 by * read

Save your changes, run slaptest, and restart slapd; then fire up an LDAP client, and
verify that users can make their own changes:

$ ldapmodify -xD "uid=cschroder,ou=people,dc=alrac,dc=net" -W
Enter LDAP Password:
dn: uid=cschroder,ou=people,dc=alrac,dc=net
changetype: modify
replace:mail
mail: newmail@newmail.com

modifying entry "uid=cschroder,ou=people,dc=alrac,dc=net"

Hit the return key twice to write your changes, and Ctrl-D to exit.

Now for some trickier stuff. Maybe you want select other persons to have write
access to user’s entries, such as human resources. We can do this with groups. Cre-
ate a new OU just for them, like Figure 12-8 shows.

368 | Chapter 12: Centralized Network Directory with OpenLDAP

Create a new LDIF file to add these to your directory:

##groups.ldif
dn: ou=groups,dc=alrac,dc=net
objectclass:organizationalUnit
ou: groups
description: special administrative groups

dn: ou=hr,ou=groups,dc=alrac,dc=net
objectclass: groupOfNames
ou: hr
cn: Human Resources
description: Human Resources staff
member: uid=thanson,ou=people,dc=alrac,dc=net
member: uid=ajones,ou=people,dc=alrac,dc=net

Add these new entries to the directory:

ldapadd -xD "cn=admin,dc=alrac,dc=net" -W -f groups.ldif

Now, add this as ACL #3 to slapd.conf:

ACL 3
access to dn.one="ou=people,dc=alrac,dc=net"
 by dn="cn=admin,dc=alrac,dc=net" write
 by group.exact="ou=hr,ou=groups,dc=example,dc=com" write
 by users read
 by * none

Let’s do one more. This lets human resources people edit all of their own data:

ACL 4
access to *
 by dn="cn=admin,dc=alrac,dc=net" write
 by self write
 by group.exact="ou=hr,ou=groups,dc=alrac,dc=net" write
 by users read
 by * none

Figure 12-8. The new groups and HR OUs

ou=people ou=groups

dc=alrac,
dc=net

ou=hr

12.14 Refining Access Controls | 369

Discussion
Order is important. As soon as a match is found, it is executed. As a rule of thumb,
the most specific rules come first, and more general rules later.

ACLs are real power tools, and they can drive you nuts. Please study man 5 slapd.
access; it’s not the most riveting reading, but it is the most accurate and detailed.

These are the most common user matches:

*
Any connected user, including anonymous binds.

self
The current user, who has successfully authenticated. The ldapmodify example
in this recipe demonstrates this.

anonymous
Nonauthenticated user connections.

users
Authenticated user connections.

These are the access levels:

write
Can do any kind of search and make changes.

read
Can search and read complete entries.

search
Can search and read whatever attributes permission is given for.

compare
Compare attributes, but not search for them.

auth
Permission to authenticate; this means anonymous users have to provide a DN
and password, or some other credential.

none
I hear you knocking, but you can’t come in.

See Also
• man 5 slapd.access

• OpenLDAP.org: http://www.openldap.org/

• LDAP Directories Explained: An Introduction and Analysis, by Brian Arkills
(Addison-Wesley)

• LDAP System Administration, by Gerald Carter (O’Reilly)

370 | Chapter 12: Centralized Network Directory with OpenLDAP

12.15 Changing Passwords

Problem
How do you change your own password?

Solution
Use ldappasswd with your own DN:

$ ldappasswd -xD "uid=cschroder,ou=people,dc=alrac,dc=net" -WS
New password:
Re-enter new password:
Enter LDAP Password:
Result: Success (0)

If you leave off the -S flag, it will create a new password for you:

$ ldappasswd -xD "uid=cschroder,ou=people,dc=alrac,dc=net" -W
Enter LDAP Password:
New password: MzJiHq8n
Result: Success (0)

ldapwhoami is a great way to test logins:

$ ldapwhoami -x -D "uid=cschroder,ou=people,dc=alrac,dc=net" -W
Enter LDAP Password:
dn:uid=cschroder,ou=people,dc=alrac,dc=net
Result: Success (0)

Discussion
Naturally, if you prefer a graphical LDAP client, it’s usually easier and faster. You
should still be familiar with ldappasswd and ldapwhoami for troubleshooting because
using graphical clients still requires a knowledge of OpenLDAP commands.

By default, ldappasswd hashes passwords with SSHA. You may choose a different
mechanism with the -Y flag: SHA, SMD5, MD5, CRYPT, or CLEARTEXT. You may also set a
different default in slapd.conf, like this:

password-hash {MD5}

See Also
• man 1 ldappasswd

• man 1 slapd.conf

• man 1 ldapwhoami

• OpenLDAP.org: http://www.openldap.org/

• LDAP Directories Explained: An Introduction and Analysis, by Brian Arkills
(Addison-Wesley)

• LDAP System Administration, by Gerald Carter (O’Reilly)

371

Chapter 13 CHAPTER 13

Network Monitoring with
Nagios

13.0 Introduction
In this chapter, you’ll learn how to install and configure Nagios to monitor network
services, host processes, and hardware. Nagios is so flexible it would take a couple of
books to detail everything it can do, so we’re going to focus on the most common
functions to build a good foundation that will let Nagios grow as your network
grows.

In this chapter, you will learn how to:

• Monitor services like HTTP, SSH, name services, and mail services

• Monitor system processes and hardware usage

• Receive alerts when there are problems

Why Nagios, when the FOSS world offers a multitude of good network monitors?
You could probably choose one with a coin toss and be happy with it. Nagios’
strength is its modular design, which permits the greatest flexibility and room for
growth. The grunt work is done with plug-ins. You may use or modify the official
Nagios plug-ins, try some of the many third-party plug-ins, or write your own. Plug-
ins make Nagions future-proof; for example, as more devices become SNMP-aware,
you may wish to add or write SNMP plug-ins.

One caveat about plug-ins: Nagios is Free Software, licensed under GPL2. Third-
party plug-ins are released under all manner of licenses, so you’ll want to be careful
and not assume they are also GPL.

Nagios sees your network as hosts or services. Host checks are simple pings. Service
checks encompass everything, including the usual services such as HTTP, DNS, SSH,
as well as processes such as numbers of users, CPU load, disk space, and logfiles.
Host checks are done only as required—Nagios knows that as long as its services are
running, the host is fine, so host checks are run only when services fail.

372 | Chapter 13: Network Monitoring with Nagios

We’ll install Nagios from source code because the Nagios packages in most Linux
distributions are several releases behind. If you prefer a package installation, such as
Aptitude or Yum, the recipes will still work; files will be in different places, and you
shouldn’t have to hassle with creating the Nagios user and group, or tweaking file
ownership and permissions.

See Also
• Nagios.org: http://www.nagios.org/

• Nagios Exchange (http://www.nagiosexchange.org/) is a central plug-in repository
and trading post

13.1 Installing Nagios from Sources

Problem
You prefer to build Nagios from source code so that you can control the compile-
time options. You also want to get the latest version because the packages in your
Linux distribution are several versions behind. What additional libraries do you
need?

Solution
You need an HTTP server such as Apache or Lighttpd, the usual Linux build envi-
ronment, plus libraries to support the statusmap, trends, and histograms. Nagios
uses a lot of Common Gateway Interface (CGI) scripts (these are scripts used by web
servers to generate pages), so it needs the GD libraries and their dependencies. On
Fedora, install these packages:

• The Development Tools package group (yum install 'Development Tools')

• libgd

• libgd-devel

• libpng

• libpng-devel

• libjpeg

• libjpeg-devel

• zlib

• zlib-devel

On Debian, you need these packages:

• build-essential

• libgd2

13.1 Installing Nagios from Sources | 373

• libgd2-dev

• libpng12-0

• libgd2-dev

• libjpeg62

• libjpeg62-dev

• zlib1g

• zlib1g-dev

There are four Nagios tarballs. These are the versions that were current when this
was written:

• nagios-2.9.tar.gz

• nagios-plugins-1.4.8.tar.gz

• nrpe-2.8.1.tar.gz

• nsca-2.7.1.tar.gz

The first two contain the core Nagios framework and plug-ins. With these, you can
perform host and service checks without installing any client software. The second
two require you to install and configure Nagios on the client computers. nrpe per-
forms additional checks, such as CPU status and other hardware checks. ncsa adds
all kinds of encryption and security. These might be useful for monitoring important
Linux or Unix servers; in this chapter, we’re going to focus on configuring only the
Nagios server, and setting up the service and host checks that do not require client
software.

Installing Nagios from sources is more complex than for most applications, so fol-
low these steps to achieve Nagios nirvana. First, download the two current stable
nagios and nagios-plugins tarballs from Nagios.org (http://www.nagios.org/download)
into the directory of your choice. Compare the md5sums, which are posted on the
download page:

$ md5sum nagios-2.9.tar.gz
bb8f0106dc7f282c239f54db1f308445 nagios-2.9.tar.gz

Then, unpack them:

$ tar zxvf nagios-2.9.tar.gz
$ tar zxvf nagios-plugins-1.4.8.tar.gz

Create a nagios group and user, and create /usr/local/nagios as its home directory:

groupadd nagios
useradd -g nagios -md /usr/local/nagios nagios

Now, create an external command group. First find out which user Apache runs as.
On Fedora, use this command:

$ grep 'User ' /etc/httpd/conf/httpd.conf
User apache

374 | Chapter 13: Network Monitoring with Nagios

On Debian, use this command:

$ grep 'User ' /etc/apache2/apache2.conf
User www-data

The rest of the steps are the same for both. Create a nagioscmd group, and add the
Apache user and nagios user to it:

groupadd nagioscmd
usermod -G nagioscmd [your Apache user]
usermod -G nagioscmd nagios

Next, enter the nagios-2.9 directory, and run the configure script with the options
shown here. Then, install Nagios and the Nagios helpers:

$ cd nagios-2.9
$./configure --with-cgiurl=/nagios/cgi-bin --with-htmurl=/nagios \
--with-nagios-user=nagios --with-nagios-group=nagios \
--with-command-group=nagioscmd
$ make all
make install
make install-init
make install-commandmode
make install-config

Now, enter the nagios-plugins-1.4.8 directory and install the plug-ins:

cd ../nagios-plugins-1.4.8
./configure
make
make install

The plug-ins will be installed in /usr/local/nagios/libexec.

Nagios will not start until you create a basic working configuration. You can now
view the Nagios HTML documentation at /usr/local/nagios/share/index.html, as
Figure 13-1 shows. You can read the help docs even though Nagios is not running.

The next recipe tells you how to configure Apache to serve up the Nagios pages.

If you need to start over and recompile Nagios, be sure to run the make devclean com-
mand first to clean up leftover object files and get a fresh start.

Discussion
On small networks, you can get away with using your HTTP server to run Nagios
and a bunch of other services, but it’s better to use a dedicated HTTP plus Nagios
installation.

That takes care of installing your basic Nagios framework. The source install puts
everything in /usr/local/nagios. Of course, you may customize the file locations with
configure options; run configure --help to see all the available options.

The installation options for Nagios version 2.9 are mostly self-explanatory, except
for these two:

13.1 Installing Nagios from Sources | 375

--with-cgiurl=
Defines the web directory where the Nagios CGI scripts will go.

--with-htmurl=
Defines the URL for the Nagios web interface.

This is what the Makefile targets do:

make all; make install
Compile and install Nagios.

make install-init
Install the start-up script.

make install-commandmode
Set appropriate file permissions.

make install-config
Install sample configuration files.

Review the INSTALLING and README files in the Nagios tarball, and the
INSTALL and REQUIREMENTS files in nagios-plugins for current options and
requirements. Look in /usr/local/nagios/share for the HTML documentation.

Figure 13-1. A fresh Nagios installation

376 | Chapter 13: Network Monitoring with Nagios

See Also
• Nagios.org: http://www.nagios.org/

• Chapter 8, “Managing Users and Groups,” in Linux Cookbook, by Carla Schroder
(O’Reilly)

• Chapter 4, “Installing Programs from Source Code,” in Linux Cookbook

13.2 Configuring Apache for Nagios

Problem
You can read the Nagios HTML docs in a local web browser or HTML-enabled file
browser like Konqueror, but Apache doesn’t seem to know they exist. Nagios needs
Apache support to be fully functional and to display all the status pages and com-
mand pages. How do you make it go?

Solution
You need to use Apache’s access controls. First, create an Apache password for the
Nagios user:

cd /usr/local/nagios/etc/
htpasswd -c htpasswd.users nagios
New password:
Re-type new password:
Adding password for user nagios

Then, make the password file owned and readable/writable only by the HTTP user:

chown HTTP user htpasswd.users
chmod 0600 htpasswd.users

On Fedora, add this directive to your /etc/httpd/conf/httpd.conf file:

Include /etc/httpd/conf.d

Next, create /etc/httpd/conf.d/nagios. On Debian. create /etc/apache2/conf.d/nagios. Add
these directives to the file, using your own subnet on the line Allow from 192.168.1.:

conf.d/nagios
ScriptAlias /nagios/cgi-bin /usr/local/nagios/sbin
<Directory "/usr/local/nagios/sbin">
 Options ExecCGI
 AllowOverride None
 Order allow,deny
 HostnameLookups On
 Allow from localhost
 Allow from 127.0.0.1
 Allow from 192.168.1.
 AuthName "Nagios Access"
 AuthType Basic

13.2 Configuring Apache for Nagios | 377

 AuthUserFile /usr/local/nagios/etc/htpasswd.users
 Require valid-user
</Directory>

Alias /nagios /usr/local/nagios/share
<Directory "/usr/local/nagios/share">
 Options None
 AllowOverride None
 Order allow,deny
 HostnameLookups On
 Allow from localhost
 Allow from 127.0.0.1
 Allow from 192.168.1.
 AuthName "Nagios Access"
 AuthType Basic
 AuthUserFile /usr/local/nagios/etc/htpasswd.users
 Require valid-user
</Directory>

Restart Apache on Fedora with this command:

/etc/init.d/httpd restart

This command restarts it on Debian:

/etc/init.d/apache2 restart

Now, enter this URL in a web browser on the Nagios server:

http://localhost/nagios

It should pop up a login window. Log in as nagios, using the password you just cre-
ated, and there you are, just like in Figure 13-1, shown in the previous recipe.

http://127.0.0.1/nagios and the IP address and hostname of the server should all work
as well. Try logging in from a neighboring PC using the IP address or hostname of
your Nagios server.

You have successfully enabled using and administering Nagios on your LAN only,
and blocked it from the outside world.

Discussion
Apache is not required; you may use any HTTP server. You should consider using an
HTTP server dedicated only to Nagios, and not running other services. You’ll get
better performance, and it’s easier to manage.

To find the name of your HTTP user, search your main Apache configuration file.
Use this command on Fedora:

$ grep 'User ' /etc/httpd/conf/httpd.conf
User apache

On Debian, use this command:

$ grep 'User ' /etc/apache2/apache2.conf
User www-data

378 | Chapter 13: Network Monitoring with Nagios

You may call the htpasswd.users file anything you like. If you wish to add more
Nagios admins, use the htpasswd command without the -c option because -c means
“create a new file:”

htpasswd /usr/local/nagios/etc/htpasswd.users admin-user2

At this point, Nagios is not running. All you can do is read the user manual, and
click on the links to see exciting error messages like “Whoops! Error: Could not
open CGI config file ‘/usr/local/nagios/etc/cgi.cfg’ for reading!” There is no basic con-
figuration framework set up yet, and Nagios will not run without one.

Apache’s Basic authentication isn’t particularly strong. Passwords are stored
encrypted in a plaintext file, and all traffic goes across the wires unencrypted, includ-
ing the encrypted password. Anyone on your LAN could sniff the encrypted
password and try to crack it, or just snoop on the data traffic. You definitely do not
want to run unencrypted Nagios sessions over the Internet. An easy way to add
encryption is to tunnel your Nagios sessions over SSH; see Recipe 13.14 to learn
how. Another option is to add SSL support. Unlike SSH, this doesn’t require you to
log in to a user account on the Nagios server. See Recipe 13.15 to learn how to do
this.

See Also
• “Setting up the web interface” section of your local Nagios documentation:

http://localhost/nagios

• Nagios.org: http://www.nagios.org/

• Chapter 22, “Running an Apache Web Server,” in Linux Cookbook, by Carla
Schroder (O’Reilly)

13.3 Organizing Nagios’ Configuration Files Sanely

Problem
You’re looking at the sample configuration files in /usr/local/nagios/etc and studying
the documentation, and you realize that you’re going to be managing a whole lot of
interdependent files. How are you going to keep track of everything?

Solution
A simple hack to keep your sanity is to use a single directory to store all configura-
tion files—with three exceptions, which we’ll get to in a moment—and then use the
cfg_dir option in nagios.cfg instead of the cfg_file option to include them. cfg_dir
means “use all the files in this directory,” so you can easily control which files Nagios
uses by simply adding or removing them. This is easier than keeping track of a herd
of individual cfg_file options.

13.3 Organizing Nagios’ Configuration Files Sanely | 379

This is what the default /usr/local/nagios/etc directory looks like after following the
previous recipes:

$ cd /usr/local/nagios/
$ tree etc
etc
|-- cgi.cfg-sample
|-- commands.cfg-sample
|-- htpasswd.users
|-- localhost.cfg-sample
|-- nagios.cfg-sample
`-- resource.cfg-sample

|-- bigger.cfg-sample
|-- cgi.cfg-sample
|-- commands.cfg-sample
|-- minimal.cfg-sample
|-- misccommands.cfg-sample
|-- nagios.cfg-sample
`-- resource.cfg-sample

I like to organize them like this:

$ tree --dirsfirst etc
etc
|-- lan_objects
| |-- commands.cfg
| |-- contacts.cfg
| |-- hosts.cfg
| |-- commands.cfg
| |-- services.cfg
| `-- timeperiods.cfg
|-- sample
| |-- cgi.cfg-sample
| |-- commands.cfg-sample
| |-- localhost.cfg-sample
| |-- nagios.cfg-sample
| `-- resource.cfg-sample
|-- cgi.cfg
|-- htpasswd.users
|-- nagios.cfg
`-- resource.cfg

How do all those files get there? First, move all the sample files into the sample/ direc-
tory. Then, enter the sample/ directory and copy these files into etc/ and lan_objects/:

$ cd etc
mkdir lan_objects
mkdir sample
mv *sample sample
cd sample
cp cgi.cfg-sample ../cgi.cfg
cp resource.cfg-sample ../resource.cfg
cp commands.cfg-sample ../lan_objects/commands.cfg

380 | Chapter 13: Network Monitoring with Nagios

The rest will be created as we need them in the next few recipes.

See the next recipe to learn how to configure Nagios to use your nice new directory
organization, and to get started monitoring the local system.

Discussion
All Nagios configuration files must end in .cfg.

You are perfectly welcome to use a graphical file manager to shuffle everything
around. It’s easier and faster.

cgi.cfg, nagios.cfg, and resource.cfg are the primary Nagios configuration files, so they
don’t go with the others. htpasswd.users must be in the same directory as nagios.cfg.

The files in the lan_object/ directory are called object files. A Nagios object is a single
unit, such as a host, a command, a service, a contact, and the groups they belong to.
These objects are inheritable and reusable, which simplifies administration.

See Also
• man 1 tree

• man 1 cp

13.4 Configuring Nagios to Monitor Localhost

Problem
You’ve successfully installed Nagios, configured Apache, and set up your configura-
tion files in an orderly manner as outlined in the previous recipe. Reading the local
Nagios documentation at http://localhost/nagios is nice, but you really want to get
going on setting up Nagios to keep an untiring eye on your network. What’s the next
step?

Solution
Nagios is best set up in small steps, so we’ll start with monitoring five basic func-
tions on the Nagios server: ping, disk usage, local users, total processes, and CPU
load. This is a long recipe, but when you’re finished, you’ll have your basic Nagios
framework constructed.

Copy the following five configuration files exactly as shown, except where it says to
use your own information, and put them in the directories as outlined in the previ-
ous recipe:

• /usr/local/nagios/etc/nagios.cfg

• /usr/local/nagios/etc/lan_objects/timeperiods.cfg

• /usr/local/nagios/etc/lan_objects/contacts.cfg

13.4 Configuring Nagios to Monitor Localhost | 381

• /usr/local/nagios/etc/lan_objects/hosts.cfg

• /usr/local/nagios/etc/lan_objects/services.cfg

Obviously, retyping all this is the path to madness, so please visit http://www.oreilly.
com/catalog/9780596102487 to download them.

First, create nagios.cfg:

################
nagios.cfg
main Nagios configuration file
################
log_file=/usr/local/nagios/var/nagios.log
cfg_dir=/usr/local/nagios/etc/lan_objects
object_cache_file=/usr/local/nagios/var/objects.cache
resource_file=/usr/local/nagios/etc/resource.cfg
status_file=/usr/local/nagios/var/status.dat

nagios_user=nagios
nagios_group=nagios

check_external_commands=1
command_check_interval=-1
command_file=/usr/local/nagios/var/rw/nagios.cmd

comment_file=/usr/local/nagios/var/comments.dat
downtime_file=/usr/local/nagios/var/downtime.dat
lock_file=/usr/local/nagios/var/nagios.lock
temp_file=/usr/local/nagios/var/nagios.tmp
event_broker_options=-1

log_rotation_method=d
log_archive_path=/usr/local/nagios/var/archives
use_syslog=1
log_notifications=1
log_service_retries=1

log_host_retries=1
log_event_handlers=1
log_initial_states=0
log_external_commands=1
log_passive_checks=1

service_inter_check_delay_method=s
max_service_check_spread=30
service_interleave_factor=s
host_inter_check_delay_method=s
max_host_check_spread=30

max_concurrent_checks=0
service_reaper_frequency=10
auto_reschedule_checks=0
auto_rescheduling_interval=30
auto_rescheduling_window=180

382 | Chapter 13: Network Monitoring with Nagios

sleep_time=0.25
service_check_timeout=60
host_check_timeout=30
event_handler_timeout=30
notification_timeout=30

ocsp_timeout=5
perfdata_timeout=5
retain_state_information=1
state_retention_file=/usr/local/nagios/var/retention.dat
retention_update_interval=60

use_retained_program_state=1
use_retained_scheduling_info=0
interval_length=60
use_aggressive_host_checking=0
execute_service_checks=1

accept_passive_service_checks=1
execute_host_checks=1
accept_passive_host_checks=1
enable_notifications=1
enable_event_handlers=1

process_performance_data=0
obsess_over_services=0
check_for_orphaned_services=0
check_service_freshness=1
service_freshness_check_interval=60

check_host_freshness=0
host_freshness_check_interval=60
aggregate_status_updates=1
status_update_interval=15
enable_flap_detection=0

low_service_flap_threshold=5.0
high_service_flap_threshold=20.0
low_host_flap_threshold=5.0
high_host_flap_threshold=20.0
date_format=us

p1_file=/usr/local/nagios/bin/p1.pl
illegal_object_name_chars=`~!$%^&*|'"<>?,()=
illegal_macro_output_chars=`~$&|'"<>
use_regexp_matching=0
use_true_regexp_matching=0

admin_email=nagios
admin_pager=pagenagios
daemon_dumps_core=0

13.4 Configuring Nagios to Monitor Localhost | 383

Now, create timeperiods.cfg:

Time periods
All times are valid for all
checks and notifications

define timeperiod{
 timeperiod_name 24x7
 alias 24 Hours A Day, 7 Days A Week
 sunday 00:00-24:00
 monday 00:00-24:00
 tuesday 00:00-24:00
 wednesday 00:00-24:00
 thursday 00:00-24:00
 friday 00:00-24:00
 saturday 00:00-24:00
 }

Next, create contacts.cfg. The contact_name must be a Nagios user with a Nagios
login in htpasswd.users, and an email account:

################
Contacts- individuals and groups
################
define contact{
 contact_name nagios
 alias Nagios Admin
 service_notification_period 24x7
 host_notification_period 24x7
 service_notification_options w,u,c,r
 host_notification_options d,r
 service_notification_commands notify-by-email
 host_notification_commands host-notify-by-email
 email nagios@alrac.net
 }

contact groups
Nagios only talks to contact groups, not individuals
members must be Nagios users, alias and contact_group
are whatever you want

define contactgroup{
 contactgroup_name admins
 alias Nagios Administrators
 members nagios
 }

Next, create hosts.cfg:

################
Hosts file- individual hosts and host groups
################
Generic host definition template - This is NOT a real host, just a template!

define host{
 name generic-host

384 | Chapter 13: Network Monitoring with Nagios

 notifications_enabled 1
 event_handler_enabled 1
 flap_detection_enabled 1
 failure_prediction_enabled 1
 process_perf_data 1
 retain_status_information 1
 retain_nonstatus_information 1
; DONT REGISTER THIS DEFINITION - ITS NOT A REAL HOST, JUST A TEMPLATE!
 register 0
 }
local host definition

define host{
 use generic-host
 host_name localhost
 alias Nagios Server
 address 127.0.0.1
 check_command check-host-alive
 max_check_attempts 10
 check_period 24x7
 notification_interval 120
 notification_period 24x7
 notification_options d,r
 contact_groups admins
 }

##############
Host groups
##############

Every host must belong to a host group

define hostgroup{
 hostgroup_name test
 alias Test Servers
 members localhost
 }

Finally, create services.cfg:

################
Services
################

Generic service definition template - This is NOT a real service, just a template!

define service{
 name generic-service
 active_checks_enabled 1
 passive_checks_enabled 1
 parallelize_check 1
 obsess_over_service 1
 check_freshness 0
 notifications_enabled 1
 event_handler_enabled 1

13.4 Configuring Nagios to Monitor Localhost | 385

 flap_detection_enabled 1
 failure_prediction_enabled 1
 process_perf_data 1
 retain_status_information 1
 retain_nonstatus_information 1
; DONT REGISTER THIS DEFINITION - ITS NOT A REAL SERVICE, JUST A TEMPLATE!
 register 0
 }

Define a service to "ping" the local machine

define service{
 use generic-service
 host_name localhost
 service_description PING
 is_volatile 0
 check_period 24x7
 max_check_attempts 4
 normal_check_interval 5
 retry_check_interval 1
 contact_groups admins
 notification_options w,u,c,r
 notification_interval 960
 notification_period 24x7
 check_command check_ping!100.0,20%!500.0,60%
 }

Define a service to check the disk space of the root partition
on the local machine. Warning if < 20% free, critical if
< 10% free space on partition.

define service{
 use generic-service
 host_name localhost
 service_description Root Partition
 is_volatile 0
 check_period 24x7
 max_check_attempts 4
 normal_check_interval 5
 retry_check_interval 1
 contact_groups admins
 notification_options w,u,c,r
 notification_interval 960
 notification_period 24x7
 check_command check_local_disk!20%!10%!/
 }

Define a service to check the number of currently logged in
users on the local machine. Warning if > 20 users, critical
if > 50 users.

define service{
 use generic-service
 host_name localhost
 service_description Current Users

386 | Chapter 13: Network Monitoring with Nagios

 is_volatile 0
 check_period 24x7
 max_check_attempts 4
 normal_check_interval 5
 retry_check_interval 1
 contact_groups admins
 notification_options w,u,c,r
 notification_interval 960
 notification_period 24x7
 check_command check_local_users!20!50
 }

Define a service to check the number of currently running procs
on the local machine. Warning if > 250 processes, critical if
> 400 users.

define service{
 use generic-service
 host_name localhost
 service_description Total Processes
 is_volatile 0
 check_period 24x7
 max_check_attempts 4
 normal_check_interval 5
 retry_check_interval 1
 contact_groups admins
 notification_options w,u,c,r
 notification_interval 960
 notification_period 24x7
 check_command check_local_procs!250!400
 }

Define a service to check the load on the local machine.

define service{
 use generic-service
 host_name localhost
 service_description Current Load
 is_volatile 0
 check_period 24x7
 max_check_attempts 4
 normal_check_interval 5
 retry_check_interval 1
 contact_groups admins
 notification_options w,u,c,r
 notification_interval 960
 notification_period 24x7
 check_command check_local_load!5.0,4.0,3.0!10.0,6.0,4.0
 }

OK, we’re almost there! Make all the files in lan_objects/ owned and writable by the
nagios user:

chown nagios:nagios /usr/local/nagios/etc/lan_objects/*
chmod 0644 /usr/local/nagios/etc/lan_objects/*

13.4 Configuring Nagios to Monitor Localhost | 387

Adjust these file ownerships and modes as shown:

chown nagios:nagios /usr/local/nagios/etc/nagios.cfg
chmod 0644 /usr/local/nagios/etc/nagios.cfg
chown nagios:nagios /usr/local/nagios/etc/resource.cfg
chmod 0600 /usr/local/nagios/etc/resource.cfg
chown nagios:nagios /usr/local/nagios/etc/cgi.cfg
chmod 0644 /usr/local/nagios/etc/cgi.cfg

Now, you can run Nagios’ syntax checker. You need to do this as root:

/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

You should see a lot of output ending in these lines:

Total Warnings: 0
Total Errors: 0
Things look okay - No serious problems were detected during the pre-flight check

If there are any errors, it will tell you exactly what you need to fix. When you get a
clean run, start up the Nagios daemon:

/etc/init.d/nagios start

Now, log in to the Nagios web interface at http://localhost/nagios, and start clicking
on various links in the left navigation bar. The Service Detail page should look like
Figure 13-2.

Figure 13-2. Service Detail page on a fresh Nagios installation

388 | Chapter 13: Network Monitoring with Nagios

This means you have successfully gotten Nagios up and running and monitoring
localhost. Congratulations!

Discussion
You may name Nagios configuration files whatever you want, as long they have the
.cfg extension—this is required.

You won’t be able to access all of the Nagios web interface pages yet; you’ll get an “It
appears as though you do not have permission to view the information you
requested...” error on some of them because we haven’t set the correct CGI permis-
sions yet. See the next recipe to learn how to do this.

During its initial run, my Nagios system couldn’t run the “Total Processes” check.
The error message was check_procs: Unknown argument—(null). This means that
either one of the options in the command definition (commands.cfg) was incorrect,
or the service definition (services.cfg) was incorrect. I used the default files, so
chances are you fine readers might encounter the same error. A quick comparison
showed a mismatch between the two:

commands.cfg
'check_local_procs' command definition
define command{
 command_name check_local_procs
 command_line $USER1$/check_procs -w $ARG1$ -c $ARG2$ -s $ARG3$
 }

services.cfg
define service{
 use generic-service
 host_name localhost
 service_description Total Processes
<...>
 check_command check_local_procs!250!400!
 }

Compare the command_line and check_command lines. The check_local_procs com-
mand wants three arguments, but the service definition check_local_procs!250!400!
only defined two. Because all I want is to keep track of the total number of running
processes, the first two arguments are sufficient. Deleting -s $ARG3$ and restarting
Nagios fixed it.

When the total number of running processes reaches 250, Nagios sends a warning.
400 is critical.

The exclamation points simply separate the two alert values; they don’t mean you
need to get excited.

13.5 Configuring CGI Permissions for Full Nagios Web Access | 389

See Also
• Local Nagios documentation: http://localhost/nagios

• For definitions of the options in object definition files, which are all the files in
lan_objects/, start at “Template-Based Object Configuration”: http://localhost/
nagios/docs/xodtemplate.html

• For nagios.cfg and resources.cfg, see “Main Configuration File Options”: http://
localhost/nagios/docs/configmain.html

• For cgi.cfg, see “CGI Configuration File Options” (http://localhost/nagios/docs/
configcgi.html) and “Authentication And Authorization In The CGIs” (http://
localhost/nagios/docs/cgiauth.html)

• Nagios.org: http://www.nagios.org/

13.5 Configuring CGI Permissions for Full Nagios Web
Access

Problem
You have followed all the steps so far, but when you log in to the Nagios web inter-
face, you can’t access all of the pages. Instead, you get this error: “It appears as
though you do not have permission to view information you requested.... If you
believe this is an error, check the HTTP server authentication requirements for
accessing this CGI and check the authorization options in your CGI configuration
file.” How do you fix this?

Solution
Uncomment these lines in /usr/local/nagios/etc/cgi.cfg, and make sure the correct
Nagios user is named, which in this chapter is nagios:

authorized_for_all_services=nagios
authorized_for_all_hosts=nagios
authorized_for_system_commands=nagios
authorized_for_configuration_information=nagios
authorized_for_all_service_commands=nagios
authorized_for_all_host_commands=nagios

Make sure this line is uncommented and set to 1:

use_authentication=1

This requires all CGI scripts to use authentication. Disabling this opens a great big
security hole; for example, any random person on your LAN could write whatever
they want to your command file.

Save the changes, and try again. Now, your nagios user should have full access to all
pages on the Nagios web interface, including the ability to run commands.

390 | Chapter 13: Network Monitoring with Nagios

Discussion
At the end of the file, you can activate some sound alerts if you really really want to.

It is better to administer Nagios as an unprivileged user, rather than as the system’s
root user. You may add more authorized users in a comma-delimited list. These aren’t
very fine-grained access controls, but you do get a little bit of flexibility. Each Nagios
user must be added to htpasswd.users; see the next recipe to learn how to do this.

This a complete sample cgi.cfg:

example cgi.cfg that gives complete administrative
powers to 'nagios' user
main_config_file=/usr/local/nagios/etc/nagios.cfg
physical_html_path=/usr/local/nagios/share
url_html_path=/nagios
show_context_help=0
use_authentication=1

authorized_for_system_information=nagios
authorized_for_configuration_information=nagios
authorized_for_system_commands=nagios
authorized_for_all_services=nagios
authorized_for_all_hosts=nagios

authorized_for_all_service_commands=nagios
authorized_for_all_host_commands=nagios
default_statusmap_layout=5
default_statuswrl_layout=4
ping_syntax=/bin/ping -n -U -c 5 $HOSTADDRESS$
refresh_rate=90

See Also
• Local documentation at “Configuring authorization for the CGIs” (http://

localhost/nagios/docs/cgiauth.html) and “CGI Configuration File Options” (http://
localhost/nagios/docs/configcgi.html)

• Nagios.org: http://www.nagios.org

13.6 Starting Nagios at Boot

Problem
Nagios created a nice start/stop script for itself in /etc/init.d, but it doesn’t start auto-
matically on boot, and you want it to do this.

13.7 Adding More Nagios Users | 391

Solution
You need to set this up yourself. On Fedora, use chkconfig:

chkconfig --level 2345 nagios on
chkconfig --level 016 nagios off

Confirm that it worked:

chkconfig --list nagios
nagios 0:off 1:off 2:on 3:on 4: on 5: on 6:off

On Debian, use update-rc.d:

update-rc.d nagios start 99 2 3 4 5 . stop 01 0 1 6 .

Discussion
Both of these commands start Nagios on runlevels 2, 3, 4, and 5, and stop it on run-
levels 0, 1, and 6. The Debian start priority is 99, and the stop priority is 01, so it’s
low priority to start, and high priority to stop. Nagios is not an essential system ser-
vice, so these priorities are appropriate. Of course, you may adjust them to suit.

See Also
• Chapter 7, “Starting and Stopping Linux,” in Linux Cookbook, by Carla Schroder

(O’Reilly)

13.7 Adding More Nagios Users

Problem
You don’t want to be stuck with administering Nagios all by yourself, but you want
to add some junior admins to help out.

Solution
Your new admins must have system accounts on the Nagios server, and passwords in
htpasswd.users:

useradd -m -G nagioscmd admin2
passwd admin2
htpasswd /usr/local/nagios/etc/htpasswd.users admin2

Then, you need to configure access to whatever Nagios functions you want them to
have in cgi.cfg, using comma-delimited lists like this example shows:

authorized_for_all_services=nagios,admin2
authorized_for_all_hosts=nagios,admin2

Restart Nagios to activate the changes:

/etc/init.d/nagios restart

392 | Chapter 13: Network Monitoring with Nagios

Discussion
Do not have any user in the nagios group but nagios.

These aren’t the most fine-grained access controls, but they do let you limit what
your underlings can do:

authorized_for_system_information
View Nagios process information.

authorized_for_configuration_information
View all configuration information, both hosts and commands.

authorized_for_system_commands
Shutdown, restart, and put Nagios on standby.

authorized_for_all_services, authorized_for_all_hosts
View information for all hosts and services. By default, Nagios users can only
view hosts or services they are named as contacts for.

authorized_for_all_service_commands, authorized_for_all_host_commands
Issue service or host commands. By default, Nagios users can only run com-
mands for the hosts or services they are named as contacts for.

See Also
• “CGI Configuration File Options”: http://localhost/nagios/docs/configcgi.html

• “Authentication And Authorization In The CGIs”:

http://localhost/nagios/docs/cgiauth.html

• Nagios.org: http://www.nagios.org/

13.8 Speed Up Nagios with check_icmp

Problem
You’ve seen on some Nagios forums or mailing lists that you should use the check_
icmp plug-in instead of check_ping because it is faster and more efficient. So, you’ve
tried it, but it doesn’t work; you get a check_icmp: Failed to obtain ICMP socket:
Operation not permitted error. This doesn’t seem like an improvement—now what?

Solution
The check_icmp plug-in needs root permissions to work, so you need to set the SUID
bit to allow unprivileged users to run it with root privileges.

First, replace all instances of check_ping in your configuration files with check_icmp.
Use the grep command to find them:

grep -r check_ping /usr/local/nagios/etc/

13.9 Monitoring SSHD | 393

Then, set the SUID bit on check_icmp, and make it a member of the nagios group:

cd /usr/local/nagios/libexec
chown root:nagios check_icmp
chmod 4711 check_icmp

Now, it will work without complaints.

Discussion
check_ping calls the external /bin/ping, while check_icmp is an internal Nagios com-
mand. Nagios uses ICMP echo request and ICMP echo reply a lot, so this adds up to
a nice performance enhancement.

See Also
• The FAQ in the nagios-plugins source tree, plus the README and

REQUIREMENTS

• Chapter 8, “Managing Users and Groups,” in Linux Cookbook, by Carla Schroder
(O’Reilly)

13.9 Monitoring SSHD

Problem
You use the SSH daemon on all of your servers for secure remote administration, so
you want to set up Nagios to monitor SSH and alert you if it becomes unavailable.
You also want to be able to add new servers for monitoring easily.

Solution
Start by setting it up for one server. You’ll create a command definition, a host defi-
nition, and a service definition by editing commands.cfg, hosts.cfg, and services.cfg.
Then, you’ll be able to add new servers simply by creating new host definitions, and
adding the server names to the service definition.

The default commands.cfg does not contain a command definition for SSH, so add
this to commands.cfg:

'check_ssh' command definition
define command{
 command_name check_ssh
 command_line $USER1$/check_ssh -H $HOSTADDRESS$
 }

Next, add a host definition to hosts.cfg, using your own hostname and IP address:

SSH servers
define host{
 use generic-host

394 | Chapter 13: Network Monitoring with Nagios

 host_name server1
 alias backup server
 address 192.168.1.25
 check_command check-host-alive
 max_check_attempts 10
 check_period 24x7
 notification_interval 120
 notification_period 24x7
 notification_options d,r
 contact_groups admins
 }

Add your new server to an existing group, or create a new group for it, as this exam-
ple shows:

define hostgroup{
 hostgroup_name misc_servers
 alias Servers
 members server1
 }

Now, define the SSH service in services.cfg:

Define a service to monitor SSH
define service{
 use generic-service
 host_name server1
 service_description SSH
 is_volatile 0
 check_period 24x7
 max_check_attempts 4
 normal_check_interval 5
 retry_check_interval 1
 contact_groups admins
 notification_options w,u,c,r
 notification_interval 960
 notification_period 24x7
 check_command check_ssh
 }

Run the syntax checker, then restart Nagios:

/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg
/etc/init.d/nagios restart

Refresh the Nagios web interface, and you’ll see the new entry’s status listed as
PENDING. In a few minutes, Nagios will run the new service check, and it will no
longer be PENDING, but displaying status information. If you don’t want to wait, go
to Service Detail ➝ SSH ➝ Reschedule Next Service Check, and run it immediately.

Discussion
If you are using ports other than port 22, use the -p option to specify the correct
port.

13.9 Monitoring SSHD | 395

You can use this recipe as a copy-and-paste template for most services.

Look in /usr/lib/nagios/libexec to view your available plug-ins. Run [plugin-name] --
help to see the available options.

Host and service definitions have several required fields; see “Template-Based Object
Configuration” (http://localhost/nagios/docs/xodtemplate.html) in your local Nagios
documentation for details.

Command definitions

The check_ssh command demonstrates the most basic Nagios command definition.
All Nagios command definitions must have a command_name and a command_line. The
command_name can be anything you want. The command_line must be the name of a
plug-in, followed by options.

$USER1$ is a special macro defined in resource.cfg; this is a shortcut for the path to the
plug-in. You may have up to 32 $USERx$ macros. Nagios automatically expands the
macro before it runs the command. $USERx$ macros can also store passwords and
usernames. This is a nice shortcut when you’re managing groups of complex config-
uration files.

-H means “hostname or address,” and $HOSTADDRESS$ is a built-in macro that takes
the IP address from the host definition. You can use hostnames with the $HOSTNAME$
macro, but adding DNS lookups to your monitoring can slow it down, and it adds a
point of failure.

Run the plug-in from the command line to see help and options:

root@xena:/usr/local/nagios/libexec# ./check_ssh -h

Most plug-ins have the -h or --help option.

It is best to keep your command definitions generic with macros, and to use explicit
values in the service definitions.

Host definitions

Every host needs its own host definitions. Host definitions tell Nagios where to find
your servers, and define basic monitoring and alerting behaviors.

check_command check-host-alive is a special ping command. It is used only when
other services on the host do not respond. Nagios knows that as long as the services
are up, it doesn’t need to ping the host to see if it is alive.

notification_options d,r means send a notification when the host is down, or has
recovered from a down state and is now OK. Here are other options you can use:

u
Send notifications on an unreachable state.

396 | Chapter 13: Network Monitoring with Nagios

f
Send notifications when the host starts and stops flapping, which is changing
state very rapidly.

n
Send no notifications.

Service definitions

These are similar to Host Definitions, with one large difference: they are reusable.
Once you create a service definition, you can add more hosts to it, rather than creat-
ing a new service definition every time you need to add a new machine. Just add
more servers on the host_name line in a comma-delimited list:

host_name stinkpad,uberpc,xena

Another option is to create a hostgroup for your servers, then use the hostgroup_name
directive instead:

hostgroup_name backup_servers

The notification_options are a bit different:

w
Send notifications on a warning state.

u
Send notifications on an unknown state.

c
Send notifications on a critical state.

r
Send notifications on recoveries.

f
Send notifications when the service starts and stops flapping.

See Also
• “Using Macros In Commands” (http://localhost/nagios/docs/macros.html) in your

local Nagios documentation for a list of built-in macros

• For definitions of the options in object definition files, which are all the files in
lan_objects/, start at “Template-Based Object Configuration”: http://localhost/
nagios/docs/xodtemplate.html

• For nagios.cfg and resources.cfg, see “Main Configuration File Options”: http://
localhost/nagios/docs/configmain.html

• “Flapping”: http://localhost/nagios/docs/flapping.html

• Nagios.org: http://www.nagios.org/

13.10 Monitoring a Web Server | 397

13.10 Monitoring a Web Server

Problem
You have a web server you want Nagios to monitor. You want to make sure that the
server is alive, and that HTTP and SSH are functioning. If one of the services stops,
or the server goes down, you want to receive an alert.

Solution
Create a new host definition for the server, and an HTTP service definition. Then,
add the new server to the existing SSH service definition (see previous recipe).
Restart Nagios, and you’re done.

This is a sample host definition in hosts.cfg, using the host apache1 with an IP
address of 192.168.1.26. Use your own hostname and IP address, of course:

HTTP servers
define host{
 use generic-host
 host_name apache1
 alias Apache web server
 address 192.168.1.26
 check_command check-host-alive
 max_check_attempts 10
 check_period 24x7
 notification_interval 120
 notification_period 24x7
 notification_options d,r
 contact_groups admins
 }

Add your new server to an existing group, or create a new group for it, as this exam-
ple shows:

define hostgroup{
 hostgroup_name apache_servers
 alias Web Servers
 members apache1
 }

Next, define the HTTP service in services.cfg:

Define a service to monitor HTTP
define service{
 use generic-service
 host_name apache1
 service_description HTTP
 is_volatile 0
 check_period 24x7
 max_check_attempts 4
 normal_check_interval 5
 retry_check_interval 1

398 | Chapter 13: Network Monitoring with Nagios

 contact_groups admins
 notification_options w,u,c,r
 notification_interval 960
 notification_period 24x7
 check_command check_http
 }

Add the new server to the SSH service definition:

Define a service to monitor SSH
define service{
 use generic-service
 host_name server1,apache1
 service_description SSH
 is_volatile 0
 check_period 24x7
 max_check_attempts 4
 normal_check_interval 5
 retry_check_interval 1
 contact_groups admins
 notification_options w,u,c,r
 notification_interval 960
 notification_period 24x7
 check_command check_ssh
 }

Run the syntax checker, then restart Nagios:

/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg
/etc/init.d/nagios restart

Refresh the Nagios web interface, and you’ll see the new entries listed as PENDING,
as Figure 13-3 shows.

In a few minutes, Nagios will run the new service checks; then, they will no longer be
PENDING, and instead display status information.

Figure 13-3. New pending service checks

13.10 Monitoring a Web Server | 399

Discussion
check_http takes a number of options. It checks normal (HTTP) and secure (HTTPS)
connections, and reports if SSL certificates are still valid. You can test it on the com-
mand line first. This shows your command options:

root@xena:/usr/local/nagios/libexec# ./check_http -h

Use it this way to give you 30 days’ notice on expiring SSL certificates:

./check_http www.yourdomain.com -C 30

The -p option specifies the port number, when you’re using a nonstandard port:

./check_http www.yourdomain.com -p 8080

Using the -w and -c options lets you test response time, in seconds:

./check_http -w 5 -c 10

That issues a warning if there is no response after 5 seconds, and it goes critical after
10 seconds.

Use the -ssl option to connect to SSL-enabled servers:

./check_http --ssl www.yourdomain.com

Once you get the initial Nagios framework configured, adding new servers and ser-
vices is fairly simple. Just copy and paste existing entries and modify them for the
new hosts and services.

Using hostgroups is a simple way to control groups of related servers. Use the
hostgroup_name option in services.cfg instead of host_name, and simply add or remove
servers from the hostgroup.

See Also
• “Using Macros In Commands” (http://localhost/nagios/docs/macros.html) in your

local Nagios documentation for a list of built-in macros

• For definitions of the options in object definition files, which are all the files in
lan_objects/, start at “Template-Based Object Configuration”: http://localhost/
nagios/docs/xodtemplate.html

• For nagios.cfg and resources.cfg, see “Main Configuration File Options”: http://
localhost/nagios/docs/configmain.html

• “Flapping”: http://localhost/nagios/docs/flapping.html

• Nagios.org: http://www.nagios.org/

400 | Chapter 13: Network Monitoring with Nagios

13.11 Monitoring a Mail Server

Problem
You want to know how to use Nagios to monitor your mail server. You want it to
keep an eye on SMTP, POP, SSH, and IMAP services.

Solution
Add new host and service definition entries to the hosts.cfg and services.cfg files. You
may also need some new command definitions in commands.cfg.

First, make sure these entries exist in commands.cfg:

'check_pop' command definition
define command{
 command_name check_pop
 command_line $USER1$/check_pop -H $HOSTADDRESS$
 }

'check_smtp' command definition
define command{
 command_name check_smtp
 command_line $USER1$/check_smtp -H $HOSTADDRESS$
 }

'check_imap' command definition
define command{
 command_name check_imap
 command_line $USER1$/check_imap -H $HOSTADDRESS$
 }

'check_ssh' command definition
define command{
 command_name check_ssh
 command_line $USER1$/check_ssh -H $HOSTADDRESS$
 }

Next, create a host definition for the server:

define a Mail server host
define host{
 use generic-host
 host_name postfix1
 alias mail server1
 address 192.168.1.27
 check_command check-host-alive
 max_check_attempts 10
 check_period 24x7
 notification_interval 120
 notification_period 24x7
 notification_options d,r
 contact_groups admins
 }

13.11 Monitoring a Mail Server | 401

Add your new server to an existing group; or, create a new group for it, as this example
shows:

define hostgroup{
 hostgroup_name mail_servers
 alias Mail Servers
 members postfix1
 }

Next, define the four services (POP, IMAP, SMTP, and SSH) in services.cfg. Each ser-
vice requires a separate definition. The easy way is to copy and paste the following
example, replacing only the hostname, service_description, and check_command values:

Define a service to monitor POP/SMTP/IMAP/SSH
define service{
 use generic-service
 host_name postfix1
 service_description POP
 is_volatile 0
 check_period 24x7
 max_check_attempts 4
 normal_check_interval 5
 retry_check_interval 1
 contact_groups admins
 notification_options w,u,c,r
 notification_interval 960
 notification_period 24x7
 check_command check_pop
 }

If any of these services are already defined, all you do is add the hostnames or host-
groups to the existing service definition:

host_name postfix1,postfix2,exim1

or:

hostgroup_name mail_servers

Run the syntax checker, then restart Nagios:

/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg
/etc/init.d/nagios restart

Refresh the Nagios web interface, and you’ll see the new entries listed as PENDING.
In a few minutes, Nagios will run the new service checks, and they will no longer be
PENDING, but will display status information.

Discussion
Reuse and recycle are the keys to Nagios sanity. Remember:

commands.cfg contains your command definitions. Each command definition only
needs to be created once.

Each new host needs its own host definition in hosts.cfg.

402 | Chapter 13: Network Monitoring with Nagios

Service definitions are created once per service in services.cfg, then simply add addi-
tional host_name or hostgroup_name entries.

Using hostgroups is one way to organize related servers; another way is by using ser-
vicegroups. Servicegroups let you group related services in the Nagios web interface.
See the next recipe to learn how to do this.

See Also
• “Using Macros In Commands” (http://localhost/nagios/docs/macros.html) in your

local Nagios documentation for a list of built-in macros

• For definitions of the options in object definition files, which are all the files in
lan_objects/, start at “Template-Based Object Configuration”: http://localhost/
nagios/docs/xodtemplate.html

• For nagios.cfg and resources.cfg, see “Main Configuration File Options”: http://
localhost/nagios/docs/configmain.html

• “Flapping”: http://localhost/nagios/docs/flapping.html

• Nagios.org: http://www.nagios.org/

13.12 Using Servicegroups to Group Related Services

Problem
Some of your servers are running multiple services, and on the Nagios web interface,
you want to see related services grouped together (e.g., SSH, FTP, HTTP, and any-
thing you have running on multiple servers).

Solution
Create servicegroups. You can group together any host or service combinations you
like. This example shows an SSH servicegroup:

ssh servicegroup
define servicegroup{
 servicegroup_name ssh
 alias all ssh servers
 members uberpc,SSH,stinkpad,SSH
}

The members must already have service definitions in services.cfg. You may group
together any combination of host/service pairs.

When you’re finished, run the syntax-checker, and restart Nagios:

/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg
/etc/init.d/nagios restart

13.13 Monitoring Name Services | 403

Then, click on the various “Servicegroup” links on the Nagios web interface to see
them.

Discussion
The services don’t have to all be the same; you can group any services you want. The
members definitions are case-sensitive, so make sure they match their host and ser-
vice definitions.

See Also
• “Template-Based Object Configuration” (http://localhost/nagios/docs/

xodtemplate.html) in your local Nagios documentation

• Nagios.org: http://www.nagios.org/

13.13 Monitoring Name Services

Problem
You want Nagios to monitor your DNS and DHCP servers.

Solution
Add the DNS and DHCP command definitions to commands.cfg if they do not
already exist, then create new host and service definitions just like we did in Recipes
13.9 through 13.12.

DNS uses an ordinary command definition:

commands.cfg
'check_dns' command definition
define command{
 command_name check_dns
 command_line $USER1$/check_dns -H $ARG1$
 }

Then, define your DNS query parameters in the service definition, specifying a
domain or hostname to use for testing the server:

check_command check_dns!host.domain.com

DHCP is bit more work to set up because the check_dhcp plug-in requires root privi-
leges to get full access to the network interface. Give it the SUID bit, owned by root,
in the nagios group:

chown root:nagios check_dhcp
chmod 4750 check_dhcp

404 | Chapter 13: Network Monitoring with Nagios

To query DHCP functionality on the network, don’t specify any options:

'check_dhcp' command definition
define command{
 command_name check_dhcp
 command_line $USER1$/check_dhcp
 }

Add the -s option to specify a server to check:

$USER1$/check_dns -s $ARG1$

Then, specify the server in the service definition:

check_command check_dhcp!12.34.56.78

Discussion
check_dns requires that you specify a hostname to check. This can be a local host or
a remote host that you can reasonably expect to be up, such as Google, Yahoo, or
your ISP. Be nice—don’t bombard other people’s servers. By default, check_dns que-
ries the servers in /etc/resolv.conf. Use the -s option to specify a specific nameserver,
like this example:

$USER1$/check_dns -H $ARG1$ -s $ARG2$

Then, the service definition specifies the hostname to resolve and the nameserver:

check_command check_dns!host.domain.com!ns1.domain.net

You can take this a step further and specify the IP address that the hostname should
resolve to:

$USER1$/check_dns -H $ARG1$ -s $ARG2$ -a $ARG3$
check_command check_dns!host.domain.com!ns1.domain.net!12.34.56.78

check_dhcp works by sending a standard DHCP-DISCOVER broadcast request via
UDP 67. When the server replies with DHCPOFFER, check_dhcp says thank you and
does not pester the server further.

See Also
• “Using Macros In Commands” (http://localhost/nagios/docs/macros.html) in your

local Nagios documentation for a list of built-in macros

• For definitions of the options in object definition files, which are all the files in
lan_objects/, start at “Template-Based Object Configuration”: http://localhost/
nagios/docs/xodtemplate.html

• Nagios.org: http://www.nagios.org/

13.14 Setting Up Secure Remote Nagios Administration with OpenSSH | 405

13.14 Setting Up Secure Remote Nagios Administration
with OpenSSH

Problem
You’re not comfortable with running remote Nagios sessions over HTTP because all
transmissions are sent in the clear. You could set up SSL, but that seems like a big
hassle because you’ll have to create a certificate and configure Apache to use SSL. So,
why not just set up a nice, easy, secure OpenSSH tunnel?

Solution
No reason why not. OpenSSH is an amazingly flexible, useful program. Setting a tun-
nel on your LAN is easy. Our two example hosts are nagiospc and neighborpc. You
need system accounts on both hosts. Run a command like this from neighborpc to set
up a tunnel to your Nagios server:

user@neighborpc:~$ ssh user@nagiospc -L 8080:nagiospc:80

Now, fire up a Web browser on neighborpc, and go to http://localhost:8080/nagios.
The entire session will be safely tucked inside an SSH tunnel, and safe from snoopers.

To run a Nagios session over the Internet, see Chapter 7 to learn how to get SSH tun-
nels past your NAT firewall.

Discussion
When logging in over SSH, don’t use the nagios user, because by default it has no
password and cannot log in. Instead, log in as some other unprivileged user, then
authenticate in the usual manner on the Nagios web interface.

The command syntax can be a little confusing, so let’s break it into bite-sized
chunks. The first part is the same as any remote SSH login: user@remote_host.

The -L flag means “create a tunnel.”

8080, or whatever port you select, is the outgoing port on your local PC. Be sure to
choose an unused, high-numbered (higher than 1024) port.

nagiospc:80 is the remote server and port. So, you’ll always need to know which port
the service you want to tunnel is using.

See Also
• Chapter 7

• Chapter 17, “Remote Access,” in Linux Cookbook, by Carla Schroder (O’Reilly)

406 | Chapter 13: Network Monitoring with Nagios

13.15 Setting Up Secure Remote Nagios Administration
with OpenSSL

Problem
Remote Nagios logins over SSH are OK, but you would like it to be even easier. Just
fire up a web browser, log in to Nagios, and be done with it. You know you can do
this with OpenSSL. How do you set it up?

Solution
On Fedora, it’s as easy as falling over. Simply install Apache’s SSL module with this
command:

yum -y install mod_ssl

To restrict all access to HTTPS only, make sure these lines exist in httpd.conf:

#Listen 80
Listen 443

On Debian, it’s a few more steps. Run these commands:

apt-get install apache2.2-common
a2enmod ssl
cp /etc/apache2/sites-available/default /etc/apache2/sites-available/ssl
ln -s /etc/apache2/sites-available/ssl /etc/apache2/sites-enabled/ssl

Then, create a new self-signed SSL certificate with the apache2-ssl-certificate
script, which is part of apache2-common:

/usr/sbin/apache2-ssl-certificate -days 365

Now, edit /etc/apache2/sites-enabled/ssl. Replace the first three lines with these lines,
using your own server name or IP address:

NameVirtualHost *:443
<VirtualHost *:443>
ServerName windbag.alrac.net
SSLEngine On
SSLCertificateFile /etc/apache2/ssl/apache.pem

Put these lines in /etc/apache2/ports.conf:

#Listen 80
Listen 443

Restart Apache with a force-reload:

/etc/init.d/apache2 force-reload
* Forcing reload of apache 2.0 web server... [ok]

13.15 Setting Up Secure Remote Nagios Administration with OpenSSL | 407

Now, fire up a web browser and try http://localhost/nagios and https://localhost/
nagios. Only the second one should work. The first time you connect, your browser
will ask you if you want to accept the certificate. You can view it to make sure it’s the
right one.

Discussion
Managing SSL with Apache changed a lot between Apache 1.3 and Apache 2. Keep
in mind you want mod_ssl for Apache 2, not apache_ssl.

Debian’s apache2-ssl-certificate script is a small wrapper to the standard OpenSSL
certificate-creation commands. It defaults to a 30-day expiration, which is probably
too short for most circumstances.

See Also
• Apache HTTP Server Documentation: http://httpd.apache.org/docs/

408

Chapter 14CHAPTER 14

Network Monitoring with
MRTG

14.0 Introduction
MRTG, the Multi-Router Traffic Graph, was originally designed to collect SNMP
traffic counters of routers, log the data, and convert the data to graphs. These graphs
are embedded in web pages, and can be read from any web browser. Because MRTG
is based on SNMP, you may use it to graph practically any device or service that is
SNMP-enabled. This also means you need to pay attention to SNMP, because if
SNMP doesn’t work, MRTG doesn’t work.

MRTG builds daily, weekly, monthly, and yearly graphs, so it’s a great tool for see-
ing trends at a glance. “A picture is worth a thousand words” is especially true when
you’re riding herd on a network.

MRTG only collects data and creates graphs; it does not send alerts. It stores data in
its own logfiles, which helpfully manage themselves. MRTG automatically consoli-
dates its logs, so you don’t have to worry about them ballooning out of control. It
keeps data for two years.

MRTG also depends on an HTTP server. In this chapter, we’ll use Lighttpd because
it is a fast, lightweight HTTP server that is well-suited for MRTG. Of course, you
may use whatever you like.

There are three versions of SNMP: SNMPv1, SNMPv2, and SNMPv3. SNMPv1 is the
most widespread, and probably will be for some time to come. The main objection
to v1 is the lack of security; all messages are sent in cleartext. v2 was developed to
add security, but it seems that development got a bit out of hand, and we ended up
with four versions:

• SNMPv2p

• SNMPv2c

• SNMPv2u

• SNMPv2 “star” or SNMPv2*

14.1 Installing MRTG | 409

Only the first three are documented in RFCs, as a proper standard should be. Though
in the case of SNMP, having RFCs may not be all that helpful because there are dozens
upon dozens of the things. v2 also includes some new features and functionality that
adds complexity, so it’s a bit confused. It is backward compatible with v1.

SNMPv3 is supposed to restore order and sanity, and it is a nice implementation that
has real security, so over time it may replace v1 and v2. In this chapter, we’ll stick
with v1 and v2c because they are the most widely deployed and the simplest to use.
SNMPv3 encrypts all traffic and requires authentication from all hosts, so it’s more
work to set up and maintain, and a lot of devices still don’t support it. Because
MRTG only reads data, we’ll create a simple read-only SNMP configuration in this
chapter. Nobody will need any write permissions. If you want all the encryption and
authentication goodies, Essential SNMP, Second Edition, by Douglas Mauro and
Kevin Schmidt (O’Reilly) has an excellent chapter on using SNMPv3.

14.1 Installing MRTG

Problem
You’re all ready to get MRTG up and running. What’s the best way to install it—
from sources, or with your nice easy dependency-resolving installers like Aptitude
and Yum?

Solution
There isn’t much to be gained from a source install, other than control over file loca-
tions and build options, so using the easy way is perfectly OK. You need snmp, an
HTTP server, and MTRG. On Debian, install it this way:

aptitude install snmp snmpd mrtg lighttpd

On Fedora, install it with this command:

yum install net-snmp-utils net-snmp mrtg lighttpd

And that’s all there is to it. See the next recipes to get up and running.

Discussion
Even in this modern era of sophisticated dependency-resolving package managers like
Aptitude and Yum, we are still at the mercy of our distribution maintainers for keep-
ing binary packages up-to-date, and built with useful options. So sometimes a source
build is the better option, even though it means more difficult updates and patching.
Fortunately, MRTG is popular and well-maintained on most Linux distributions.

The Debian and Fedora packages are based on net-snmp, which contains an SNMP
agent, command-line management tools, and a Management Information Browser
(MIB).

410 | Chapter 14: Network Monitoring with MRTG

MRTG depends on SNMP and requires an HTTP server. I like Lighttpd because it is
a nice, lightweight HTTP server that is perfect for chores like this, when you don’t
need all the bells and whistles of Apache. Of course, you may use any HTTP server
you like.

See Also
• Net-SNMP: http://net-snmp.sourceforge.net/

• Tobi Oetiker’s MRTG: http://oss.oetiker.ch/mrtg/

• Lighttpd: http://www.lighttpd.net/

14.2 Configuring SNMP on Debian

Problem
You need to make sure SNMP is operating correctly before you configure MRTG.
What’s a good basic configuration, and how do you test it?

Solution
You need to first make sure that snmpd is running. The installer should have auto-
matically started it. Check snmpd with this command:

$ snmpwalk -v 2c -c public localhost system
SNMPv2-MIB::sysDescr.0 = STRING: Linux xena 2.6.20-16-generic #2 SMP Thu Jun 7 20:19:
32 UTC 2007 i686
SNMPv2-MIB::sysObjectID.0 = OID: NET-SNMP-MIB::netSnmpAgentOIDs.10
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (359297) 0:59:52.97
SNMPv2-MIB::sysContact.0 = STRING: Root <root@localhost> (configure /etc/snmp/snmpd.
local.conf)
SNMPv2-MIB::sysName.0 = STRING: xena
[...]

Now, we’ll move the default snmpd.conf file out of the way, and replace it with our
own bare bones edition:

cd /etc/snmp
mv snmpd.conf snmpd.conf-old
chmod 0600 snmpd.conf
chmod 0666 snmpd.conf-old

The last command is optional; it makes the default file available to ordinary users for
study and reference. Our new snmpd.conf consists of just a few lines. Replace
password with your own choice for a password. Don’t use public or private, the
default snmp passwords:

###/etc/snmp/snmpd.conf
sec.name source community
======== ====== =========
com2sec local localhost password
com2sec lan 192.168.1.0/24 password

14.2 Configuring SNMP on Debian | 411

Access.group.name sec.model sec.name
================= ========= ========
group ROGroup_1 v1 local
group ROGroup_1 v1 lan
group ROGroup_1 v2c local
group ROGroup_1 v2c lan

MIB.view.name incl/excl MIB.subtree mask
============== ========= =========== ====
view all-mibs included .1 80

MIB
group.name context sec.model sec.level prefix read write notif
========== ======= ========= ========= ====== ==== ===== =====
access ROGroup_1 "" v1 noauth exact all-mibs none none
access ROGroup_1 "" v2c noauth exact all-mibs none none

Make sure this file is owned and readable only by root. Then, restart snmpd:

/etc/init.d/snmpd restart

Next, try the snmpwalk command again:

$ snmpwalk -v 2c -c public localhost system
Timeout: No Response from localhost

Now, try it with your new password, which in SNMP lingo is called the community
string:

$ snmpwalk -v 2c -c password localhost system
SNMPv2-MIB::sysDescr.0 = STRING: Linux xena 2.6.20-16-generic #2 SMP Thu Jun 7 20:19:
32 UTC 2007 i686
SNMPv2-MIB::sysObjectID.0 = OID: NET-SNMP-MIB::netSnmpAgentOIDs.10
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (105655) 0:17:36.55
SNMPv2-MIB::sysContact.0 = STRING: root
SNMPv2-MIB::sysName.0 = STRING: xena
[...]

OK then! It works.

snmpd is controlled via the usual Debian init commands:

/etc/init.d/snmpd {start|stop|restart|reload|force-reload}

Discussion
Let’s take a look at what we did. There are four keywords that we’re using for set-
ting up access controls: com2sec, view, group, and access.

com2sec
com2sec, or community-to-security, defines a security name (sec.name), which is
a combination of the community string and source IP address.

412 | Chapter 14: Network Monitoring with MRTG

view
Defines which parts of the MIB tree are available to view. This example allows
access to the entire tree.

group
This creates named groups and maps them to their security names.

access
This specifies who has access to which bits of the MIB tree. This example lets
everyone in the Read-only Group (ROGroup_1) read all MIBs, using SNMP v1 or
v2c. ROGroup_1 is an arbitrary name; you may call it anything you want.

There is a simpler way to do the same thing:

rocommunity password

That single line replaces the entire example file. You’re welcome to use this if you
prefer; it’s simpler and makes debugging easier. Using and understanding the longer
file will help you later as you create more complex snmpd.conf configurations.

snmpwalk syntax is pretty simple:

snmpwalk [options] community hostname [OID]

This is what the options mean:

-v
Selects which SNMP protocol to use. Your choices are v1, v2c, and v3 (the
default).

-c
Set the community string, which is the same as a password. The default snmp.
conf creates two default community strings: public and private. Because every-
one in the world knows these, we got rid of them.

localhost
Specify which device you’re querying.

system
system is a shortcut name for all the OIDs under the 1.3.6.1.2.1.1 hierarchy.
snmpwalk -v 1 -c password localhost .1.3.6.1.2.1.1 returns the same results. In
the examples, I use system just to reduce the quantity of output. Leave it off, and
you’ll see lots more.

See Also
• ASN.1 Information: http://asn1.elibel.tm.fr/en/index.htm

• Net-SNMP: http://net-snmp.sourceforge.net

• man snmpd.conf

14.4 Configuring Your HTTP Service for MRTG | 413

14.3 Configuring SNMP on Fedora

Problem
You need to make sure SNMP is operating correctly before you configure MRTG.
What’s a good basic configuration, and how do you test it?

Solution
Start it manually with this command:

/etc/init.d/snmpd start

To have it start automatically at boot, use chkconfig:

chkconfig snmpd on
chkconfig --list snmpd
snmpd 0:off 1:off 2:on 3:on 4:on 5:on 6:off

snmpd is controlled via the usual startup scripts:

/etc/init.d/snmpd {start|stop|status|restart|condrestart|reload}

Now, you can go back to the previous recipe, and follow the steps there.

Discussion
This is a bare bones SNMP configuration that allows you to get MRTG up and run-
ning with a minimum of fuss, and to reduce the number of potential complications.
See the Discussion in Recipe 14.2 for information on configuration options.

See Also
• Net-SNMP: http://net-snmp.sourceforge.net

• man snmpd.conf

14.4 Configuring Your HTTP Service for MRTG

Problem
You installed Lighttpd to serve up your MRTG pages. What do you have to do to
prepare it for MRTG?

Solution
There is hardly anything to this, because MRTG comes with a script to create its own
root web directory. So, all you need to do is configure the Lighttpd startup files. The
Debian installer creates startup files, and starts up the HTTP daemon for you. On
Fedora, you need to do this yourself:

/etc/init.d/lighttpd start

414 | Chapter 14: Network Monitoring with MRTG

To have it start automatically at boot, use chkconfig, and confirm that it worked:

chkconfig lighttpd on
chkconfig --list lighttpd
lighttpd 0:off 1:off 2:on 3:on 4:on 5:on 6:off

Then, check by opening a web browser to http://localhost/. This should display the
default HTTP server page, like Figure 14-1 shows.

lighttpd is controlled on Fedora via the usual startup script commands:

/etc/init.d/lighttpd {start|stop|status|restart|condrestart|reload}

Debian’s are little bit different:

/etc/init.d/lighttpd {start|stop|restart|reload|force-reload}

Discussion
This works for any HTTP server; just substitute the correct name in the commands.

Figure 14-1. The default Lighttpd page

14.5 Configuring and Starting MRTG on Debian | 415

See Also
• Lighttpd: http://www.lighttpd.net/

14.5 Configuring and Starting MRTG on Debian

Problem
OK already, enough with the preliminaries. Your SNMP and HTTP daemons are
installed and running, and you want to get going with MRTG and start making nice
network graphs like everyone else. What do you do now?

Solution
First, we’ll have MRTG monitor all the up network interfaces on our server.

Run this command to create the initial MRTG configuration file. password is what-
ever SNMP community string you set:

cfgmaker --output=/etc/mrtg.cfg \
--global "workdir: /var/www/mrtg" -ifref=ip \
--global 'options[_]: growright,bits' \
password@localhost

Then, start it manually:

mrtg /etc/mrtg.conf

ERROR: Mrtg will most likely not work properly when the environment
 variable LANG is set to UTF-8. Please run mrtg in an environment
 where this is not the case. Try the following command to start:

 env LANG=C /usr/bin/mrtg /etc/mrtg.cfg

So, do that:

env LANG=C mrtg /etc/mrtg.cfg

If your default is already LANG=C, then you won’t see that message. If you get “Rateup
WARNING” error messages, repeat the command until they go away. This usually
takes three tries.

Run this command to create the HTML index file:

indexmaker --output=/var/www/mrtg/index.html /etc/mrtg.cfg

Now, point a web browser to localhost (http://localhost/mrtg/), and you should see
nice graphs tracking all of your up interfaces, like in Figure 14-2.

416 | Chapter 14: Network Monitoring with MRTG

Click on any graph to view detailed statistics, as shown in Figure 14-3.

This shows that it is working correctly.

Discussion
Let’s take a look at what we did in the command:

--output=/etc/mrtg.cfg
This tells the cfgmaker command where to create the MRTG configuration file.

--global "workdir: /var/www/mrtg" -ifref=ip
This setting goes in the global section of mrtg.cfg, and defines the directory
where the HTML files are stored. -ifref=ip tells MRTG to track your network
interfaces by IP address.

--global 'options[_]: growright,bits'
This means your graphs will expand to the right, and network traffic will be
measured in bits.

password@localhost
The community string (password) for snmpd.

Debian installs a crontab for MRTG in /etc/cron.d/mrtg that updates the graphs every
five minutes, so you don’t need to take any additional steps to keep it running.

Running env LANG=C mrtg /etc/mrtg.cfg commonly emits error messages like this:

Rateup WARNING: /usr/bin/rateup could not read the primary log file for localhost_
192.168.1.10
Rateup WARNING: /usr/bin/rateup The backup log file for localhost_192.168.1.10 was
invalid as well

Figure 14-2. MRTG graphs of two active local network interfaces

14.5 Configuring and Starting MRTG on Debian | 417

Rateup WARNING: /usr/bin/rateup Can't remove localhost_192.168.1.10.old updating log
file
Rateup WARNING: /usr/bin/rateup Can't rename localhost_192.168.1.10.log to localhost_
192.168.1.10.old updating log file

It’s just complaining about routine business. Ignore it, and keep running the com-
mand until it doesn’t emit any more error messages; three times usually does the job.

See Also
• man 1 cfgmaker

• man 1 mrtg-reference

• MRTG home page: http://oss.oetiker.ch/mrtg/

Figure 14-3. Detailed interface statistics

418 | Chapter 14: Network Monitoring with MRTG

14.6 Configuring and Starting MRTG on Fedora

Problem
OK already, enough with the preliminaries. Your SNMP and HTTP daemons are
installed and running, and you want to get going with MRTG and start making nice
network graphs like everyone else. What do you do now?

Solution
First, we’ll have MRTG monitor all the up network interfaces on our server.

Run this command to create the initial MRTG configuration file. password is what-
ever SNMP community string you set:

cfgmaker --output=/etc/mrtg/mrtg.cfg \
--global "workdir: /var/www/mrtg" -ifref=ip \
--global 'options[_]: growright,bits' \
password@localhost

Then, start it manually:

mrtg /etc/mrtg/mrtg.cfg

ERROR: Mrtg will most likely not work properly when the environment
 variable LANG is set to UTF-8. Please run mrtg in an environment
 where this is not the case. Try the following command to start:

 env LANG=C /usr/bin/mrtg /etc/mrtg.cfg

So, do that:

env LANG=C mrtg /etc/mrtg/mrtg.cfg

If your default is already LANG=C, then you won’t see this message.

Run this command to create the HTML index file:

indexmaker --output=/var/www/mrtg/index.html /etc/mrtg/mrtg.cfg

Now, point a web browser to localhost (http://localhost/mrtg/) and you should see
nice graphs tracking all of your up interfaces, like in Figures 14-2 and 14-3 in the pre-
vious recipe. This shows that it is working correctly.

Discussion
Fedora installs a crontab for MRTG in /etc/cron.d/mrtg that updates the graphs every
five minutes, so you don’t need to take any additional steps to keep it running.

See the Discussion in the previous recipe for explanations of the command options.

14.7 Monitoring Active CPU Load | 419

See Also
• man 1 cfgmaker

• man 1 mrtg-reference

• MRTG home page: http://oss.oetiker.ch/mrtg/

14.7 Monitoring Active CPU Load

Problem
You want to use MRTG to keep an eye on CPU performance. cfgmaker only sets up
graphs for your network interfaces. Now what?

Solution
You’ll need to edit mrtg.cfg by hand. Don’t use cfgmaker anymore because it will
overwrite your changes. This recipe monitors system, user, and nice values, and adds
them up to give a snapshot of CPU load.

Add this line to the Global Config Options section:

Global Config Options
LoadMIBs: /usr/share/snmp/mibs/UCD-SNMP-MIB.txt,/usr/share/snmp/mibs/TCP-MIB.txt

Then, add this section at the bottom of the file:

monitor CPU load
#
Target[xena.cpu]: ssCpuRawUser.0&ssCpuRawUser.0:password@localhost + ssCpuRawSystem.
0&ssCpuRawSystem.0:password@localhost + ssCpuRawNice.0&ssCpuRawNice.0:
password@localhost
Title[xena.cpu]: Xena CPU Load
RouterUptime[xena.cpu]: password@127.0.0.1
PageTop[xena.cpu]: <H1>CPU System, User and Nice stats for Xena</H1>
MaxBytes[xena.cpu]: 100
ShortLegend[xena.cpu]: %
YLegend[xena.cpu]: CPU Usage
Legend1[xena.cpu]: Current CPU percentage load
LegendI[xena.cpu]: Used
LegendO[xena.cpu]:
Options[xena.cpu]: growright,nopercent
Unscaled[xena.cpu]: ymwd

While you’re there, you might as well delete the entry for the loopback device, as
you’re not going to use it anyway. Now, run mrtg manually three times, or until it
stops complaining, and mind your filepaths:

env LANG=C mrtg /etc/mrtg.cfg

Then, generate a new index.html page:

indexmaker --output=/var/www/mrtg/index.html /etc/mrtg.cfg

420 | Chapter 14: Network Monitoring with MRTG

Now, you should see something like Figures 14-4 and 14-5.

Discussion
These aren’t very exciting graphs because they’re on a test system with little activity.
But, they do show what the entries in mrtg.cfg make the graphs look like. Let’s take a
tour of the configuration:

LoadMIBs
You have to tell MRTG which MIB files from /usr/share/snmp/ to load. You’ll see
them cached in /var/www/mrtg/oid-mib-cache.txt. Using the LoadMIBs option
means you’ll be able to use the symbolic names of the OIDs, rather than having
to use their numbers.

Target[xena.cpu]: ssCpuRawUser.0&ssCpuRawUser.0:password@localhost...
The syntax for this line is Keyword[graph name]: value. The Target keyword
defines what you want monitored. The value is a list of OID pairs joined by the
ampersand, &. The graph name is anything you want, and it must be unique.
MRTG only knows how to measure pairs of values, so when you’re plotting a
single value, just repeat the target definition. Whitespace must surround each
target definition. This example contains three target definitions, connected with
the plus sign. The plus sign means “add these together.”

Title
This is the title of the detailed HTML page.

Figure 14-4. New index page showing CPU load graph

14.7 Monitoring Active CPU Load | 421

RouterUptime
Use this to display the system uptime on the detail page.

PageTop
The headline of the detail page.

MaxBytes
This is either a value in bytes, or it behaves as a percentage.

ShortLegend
The units string used for Max, Average, and Current. The default is b/s, bits per
second.

Figure 14-5. Detail page for the CPU load graph

422 | Chapter 14: Network Monitoring with MRTG

YLegend
The Y-axis, or vertical axis, which is for the label of the graph. If you make it too
long, it will be silently ignored.

Legend1 (and 2, 3, and 4)
Strings for the color legends.

LegendI (and O)
Input and output. Because the different values in this graph are added up to a
single sum, and each OID pair is the same OID rather than two OIDs, we’re only
using LegendI.

Options
growright means expand the graph to the right, and nopercent means don’t print
percentage values. For our CPU graphs printing percentages would be redundant
because we already have percentage displays. Without the nopercent option the
graph legends it would display like this: Used 65.0 % (65.0%) 35.0 % (35.0%) 6.0 %
(6.0%).

Unscaled
The default is scaled, which means MRTG will adjust the graph to make small
data more visible. The unscaled option creates a fixed-size graph. ymwd repre-
sents year, month, week, day.

man 1 mrtg-reference is your primary configuration reference.

See Also
• man 1 mrtg-reference

• MRTG home page: http://oss.oetiker.ch/mrtg/

14.8 Monitoring CPU User and Idle Times

Problem
The previous recipe gives a useful snapshot of CPU activity over time, but you would
like to see separate rather than aggregate values, such as idle time and user pro-
cesses, or system and user processes, or perhaps one of these alone.

Solution
Try adding this to mrtg.cfg:

monitor CPU user and idle loads
#
Target[xena2.cpu]: ssCpuRawUser.0&ssCpuRawIdle.0:password@localhost
RouterUptime[xena2.cpu]: password@localhost
MaxBytes[xena2.cpu]: 100
Title[xena2.cpu]: User and Idle CPU usage- Xena

14.8 Monitoring CPU User and Idle Times | 423

PageTop[xena2.cpu]: <H1>User and CPU Load- Xena</H1>
ShortLegend[xena2.cpu]: %
YLegend[xena2.cpu]: CPU Usage
Legend1[xena2.cpu]: User CPU in % (Load)
Legend2[xena2.cpu]: Idle CPU in % (Load)
LegendI[xena2.cpu]: User
LegendO[xena2.cpu]: Idle
Options[xena2.cpu]: growright,nopercent
Unscaled[xena2.cpu]: ymwd

Make sure that LoadMIBs: /usr/local/share/snmp/mibs/UCD-SNMP-MIB.txt is in the Glo-
bal Config Options section. Run these commands to load the changes:

env LANG=C mrtg /etc/mrtg.cfg
indexmaker --output=/var/www/mrtg/index.html /etc/mrtg.cfg

Mind your filepaths because they vary on different Linux distributions, and remember
to run the first command until it quits emitting error messages, which should take no
more than three tries.

So, point your web browser to localhost (http://localhost/mrtg), and admire your new
graphs, which are now tracking two values:

 Max Average Current
User 9.0 % 8.0 % 6.0 %
Idle 92.0 % 79.0 % 93.0 %

Discussion
There are two important changes in this example from the previous recipe. One is
the target line—note that the OID pair are two different OIDs. The other change is
the graph name. Every graph name must be unique.

You can tweak this in a number of ways. Here are the four main CPU object variables:

ssCpuRawUser
This tracks CPU usage by nonprivileged applications.

ssCpuRawNice
Tracks the CPU usage of nonpriority applications.

ssCpuRawSystem
CPU usage by privileged applications.

ssCpuRawIdle
Measures idle time.

You may use these singly or in combination. To track single values, remember that
you still need to specify an OID pair, so you use the same one twice:

Target[xena2.cpu]:ssCpuRawIdle.0&ssCpuRawIdle.0:password@localhost

And, remember to tweak your Legends and page titles accordingly.

424 | Chapter 14: Network Monitoring with MRTG

See the Discussion in Recipe 14.7 for more information on configuration options,
and man 1 mrtg-reference for detailed information.

See Also
• man 1 mrtg-reference

• MRTG home page: http://oss.oetiker.ch/mrtg/

14.9 Monitoring Physical Memory

Problem
You need to keep an eye on physical memory usage, and you want to track how
much is free. How do you do this with MRTG?

Solution
Try this in mrtg.cfg:

Monitoring Free Physical Memory
#
Target[xena.mem]: memAvailReal.0&memAvailReal.0:password@localhost
Title[xena.mem]: Free Memory In Bytes- Xena
PageTop[xena.mem]: <H1>Free Memory In Bytes- Xena</H1>
MaxBytes[xena.mem]: 512000
YLegend[xena.mem]: Free Memory in Bytes
ShortLegend[xena.mem]: bytes
LegendI[xena.mem]: Free Memory
LegendO[xena.mem]:
Legend1[xena.mem]: Free memory, not including swap, in bytes
options[xena.mem]: growright,gauge,nopercent
Unscaled[xena.mem]: ymwd

Don’t forget to enter your total amount of system memory for the MaxBytes option.

Make sure that LoadMIBs: /usr/local/share/snmp/mibs/UCD-SNMP-MIB.txt is in the
Global Config Options section. Run these commands to load the changes:

env LANG=C mrtg /etc/mrtg.cfg
indexmaker --output=/var/www/mrtg/index.html /etc/mrtg.cfg

Mind your filepaths, because they vary on different Linux distributions, and remem-
ber to run the first command until it quits emitting error messages, which should
take no more than three tries.

Discussion
Use the free command to see how much RAM you have installed. This doesn’t have
be a precise number for the MaxBytes option because all it does is set the upper limit
of what the graph will display, so you can round it up a bit.

14.10 Monitoring Swap Space and Memory | 425

Perhaps you would rather see a percentage than bytes. Do this by changing the tar-
get line, and then adjusting your legends:

Target[xena2.mem]: (memAvailReal.0&memAvailReal.0:password@localhost) * 100 / (
memTotalReal.0&memTotalReal.0:password@localhost)
RouterUptime[xena2.mem]: password@localhost
Title[xena2.mem]: Free Memory By Percentage- Xena
PageTop[xena2.mem]: <H1>Free Memory By Percentage- Xena</H1>
MaxBytes[xena2.mem]: 512000
YLegend[xena2.mem]: Memory %
ShortLegend[xena2.mem]: Percent
LegendI[xena2.mem]: Free
LegendO[xena2.mem]:
Legend1[xena2.mem]: % Free Memory
options[xena2.mem]: growright,gauge,nopercent

Remember that whitespace must surround each target definition.

This example does not use the Unscaled option because the amount of free memory
was so small on my test system that it was barely visible. The MRTG default is scaled
graphs, which adjusts the size of the graph to make the data more visible, so when
you want this, all you do is leave off the unscaled option.

See Also
• man 1 mrtg-reference

• MRTG home page: http://oss.oetiker.ch/mrtg/

14.10 Monitoring Swap Space and Memory

Problem
You want MRTG to graph your physical memory and swap space, so you can see
your total memory usage.

Solution
Try this in mrtg.cfg:

Monitoring Memory and Swap Space

Target[xena.memswap]:memAvailReal.0&memAvailSwap.0:password@localhost
RouterUptime[xena.memswap]: password@localhost
Title[xena.memswap]: Free Memory and Swap - Xena
PageTop[xena.memswap]: <H1>Free Memory and Swap - Xena</H1>
MaxBytes[xena.memswap]: 650624
YLegend[xena.memswap]: total free memory
ShortLegend[xena.memswap]: bytes
LegendI[xena.memswap]: Free Memory
LegendO[xena.memswap]: Free Swap
Legend1[xena.memswap]: Free physical memory in bytes

426 | Chapter 14: Network Monitoring with MRTG

Legend2[xena.memswap]: Free swap in bytes
options[xena.memswap]: growright,gauge,nopercent
Unscaled[xena.memswap]: ymwd

For MaxBytes, enter whichever is the larger value—swap or RAM.

Make sure that LoadMIBs: /usr/local/share/snmp/mibs/UCD-SNMP-MIB.txt is in the
Global Config Options section. Run these commands to load the changes:

env LANG=C mrtg /etc/mrtg.cfg
indexmaker --output=/var/www/mrtg/index.html /etc/mrtg.cfg

Mind your filepaths because they vary on different Linux distributions, and remem-
ber to run the first command until it quits emitting error messages, which should
take no more than three tries.

Discussion
Use the free command to see how much RAM and swap space your system has. This
doesn’t have be a precise number because all it does is set the upper limit of what the
graph will display, so you can round it up a bit.

This is a useful graph to watch over time, so you can see if your installed RAM is
adequate.

See Also
• man 1 mrtg-reference

• MRTG home page: http://oss.oetiker.ch/mrtg/

14.11 Monitoring Disk Usage

Problem
You want to keep an eye on some of your disk partitions and see how full they are
getting.

Solution
First, you need to edit snmpd.conf, adding the partitions you wish to monitor:

/etc/snmp/snmpd.conf
disk /var
disk /home

Then, restart snmpd:

/etc/init.d/snmpd restart

Try this in mrtg.cfg:

Monitor disk usage of /var and /home partitions
#
Target[server.disk]: dskPercent.1&dskPercent.2:password@localhost

14.11 Monitoring Disk Usage | 427

Title[server.disk]: Disk Partition Usage
PageTop[server.disk]: <H1>Disk Partition Usage /var and /home</H1>
MaxBytes[server.disk]: 100
ShortLegend[server.disk]: % Y
Legend[server.disk]: % used
LegendI[server.disk]: /var
LegendO[server.disk]: /home
Options[server.disk]: gauge,growright,nopercent
Unscaled[server.disk]: ymwd

Make sure that LoadMIBs: /usr/local/share/snmp/mibs/UCD-SNMP-MIB.txt is in the
Global Config Options section. Run these commands to load the changes:

env LANG=C mrtg /etc/mrtg.cfg
indexmaker --output=/var/www/mrtg/index.html /etc/mrtg.cfg

Mind your filepaths, because they vary on different Linux distributions, and remem-
ber to run the first command until it quits emitting error messages, which should
take no more than three tries.

Discussion
This only works on disk partitions—you cannot select just any old directory.

Give MRTG an hour or so, then check your work with the df -h command:

$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/hda1 14G 2.3G 11G 17% /
/dev/hda3 5G 1.8G 3.2G 36% /usr
/dev/sda1 31G 6.5G 24G 22% /home
/dev/hda2 4.5G 603M 3.7G 14% /var

MRTG should agree with df. If it doesn’t, MRTG is wrong.

There is a bit of trickiness with selecting your dskPercent OIDs. They follow the
order they are listed in within snmpd.conf. Suppose you have four disk partitions
listed like this:

disk /
disk /usr
disk /var
disk /home

Then, for /var and /home, you need to use dskPercent.3 and dskPercent.4.

The computing world likes to cause confusion by numbering some things from zero,
and some things from 1. Disk partitions on Linux start at 1.

See Also
• man 1 mrtg-reference

• man 1 df

• MRTG home page: http://oss.oetiker.ch/mrtg/

428 | Chapter 14: Network Monitoring with MRTG

14.12 Monitoring TCP Connections

Problem
You’re running a fairly busy web server, so you want to keep an eye on how many
new TCP connections are hitting your server.

Solution
This example measures the number of new TCP connections per minute:

LoadMIBS: /usr/share/snmp/mibs/TCP-MIB.txt
#
New TCP Connections per minute
#
Target[server.http]: tcpPassiveOpens.0&tcpActiveOpens.0:password@webserver1
RouterUptime[xena1.swap]: password@localhost
Title[server.http]: New TCP Connections- Webserver1
PageTop[server.http]: <h1>New TCP Connections per minute - Webserver1</h1>
MaxBytes[server.http]: 1000000000
ShortLegend[server.http]: c/s
YLegend[server.http]: Connections/Min
LegendI[server.http]: Incoming
LegendO[server.http]: Outgoing
Legend1[server.http]: New inbound connections
Legend2[server.http]: New outbound connections
Options[server.http]: growright,nopercent,perminute

Run these commands to load the changes:

env LANG=C mrtg /etc/mrtg.cfg
indexmaker --output=/var/www/mrtg/index.html /etc/mrtg.cfg

Mind your filepaths, because they vary on different Linux distributions, and remem-
ber to run the first command until it quits emitting error messages, which should
take no more than three tries.

Discussion
This is a nice graph for keeping an eye on how hard visitors are pummeling your web
server. tcpPassiveOpens.0 counts the incoming connections, and tcpActiveOpens.0
measures how many connections are being initiated by the server. Netstat shows the
same data, but not in a pretty graph:

$ netstat -s | egrep '(passive|active)'
 211 active connections openings
 230581 passive connection openings

See Also
• man 1 mrtg-reference

• man 8 netstat

• MRTG home page: http://oss.oetiker.ch/mrtg/

14.13 Finding and Testing MIBs and OIDs | 429

14.13 Finding and Testing MIBs and OIDs

Problem
All of this MIB and OID stuff is a bit mysterious. How do you find them? How do
you know what to use? How do you verify that you have the correct ones?

Solution
When you see an error like this from starting MRTG:

env LANG=C mrtg /etc/mrtg.cfg
SNMP Error:
Received SNMP response with error code
 error status: noSuchName
 index 2 (OID: 1.3.6.1.4.1.2021.9.1.9.3)
[...]

It means either the OID does not exist, or you did not enter the correct file for the
LoadMIBs option in mrtg.cfg. The first thing to do is query the numerical OID:

$ snmpwalk -v 1 -c password localhost 1.3.6.1.4.1.2021.9.1.9.3
UCD-SNMP-MIB::dskPercent.3 = INTEGER: 22

This shows that you have the correct OID, so you need to correct your LoadMIBs
entry. snmpwalk shows you the correct MIBs file. If you don’t know what directory
your MIBs files are in, the locate command will tell you:

$ locate UCD-SNMP-MIB
/usr/share/snmp/mibs/UCD-SNMP-MIB.txt

So, LoadMIBs needs to look like this:

LoadMIBs: /usr/share/snmp/mibs/UCD-SNMP-MIB.txt

Then, rerun mrtg, and you’re in business.

This command lists all OIDs on your system:

$ snmpwalk -v 1 -c password localhost

There are thousands of them:

$ snmpwalk -v 1 -c password localhost | wc -l
1824

systemis actually a symbolic name; the real OID name is a number that you can see
with the -On option:

$ snmpwalk -On -v 1 -c password localhost system
.1.3.6.1.2.1.1.1.0 = STRING: Linux xena 2.6.20-16-generic #2 SMP Thu Jun 7 20:19:32
UTC 2007 i686
.1.3.6.1.2.1.1.2.0 = OID: .1.3.6.1.4.1.8072.3.2.10
[...]

430 | Chapter 14: Network Monitoring with MRTG

So, .1.3.6.1.2.1.1 is the same as system, and it has a hierarchy of OIDs under it.
These two commands are the same:

$ snmpwalk -v 1 -c password localhost system
$ snmpwalk -v 1 -c password localhost .1.3.6.1.2.1.1

It’s more common with commercial routers to use the OIDs in your MRTG configu-
ration, rather than having the luxury of a symbolic name.

Discussion
How do you find out which ones you want in the first place? This is more
complicated. You can dig up OIDs for some trial-and-error testing with the usual
Linux search tools:

$ grep -ir tcp /usr/share/snmp/mibs/
/usr/share/snmp/mibs/TCP-MIB.txt:TCP-MIB DEFINITIONS ::= BEGIN
/usr/share/snmp/mibs/TCP-MIB.txt:tcpMIB MODULE-IDENTITY
/usr/share/snmp/mibs/TCP-MIB.txt: "The MIB module for managing TCP implementations.
/usr/share/snmp/mibs/TCP-MIB.txt:-- the TCP base variables group
[...]

You’re probably better off looking for documentation specific to the devices and ser-
vices you want to monitor, especially commercial routers such as Cisco, Juniper,
NetGear, and so forth. In an ideal world, all vendors would make complete informa-
tion available, and many vendors are good at keeping up-to-date information and
helpful documentation on their web sites.

If you can’t get what you need from the vendor, try these sites:

Alvestrand (http://www.alvestrand.no/objectid/)
Everything you could ever want to know about MIBs and OIDs is here.

MIB Depot (http://www.mibdepot.com/index.shtml)
This site is a good resource for vendor-specific information.

See Also
• Net-SNMP: http://net-snmp.sourceforge.net

• man snmpd.conf

• Essential SNMP, Second Edition, by Douglas Mauro and Kevin Schmidt
(O’Reilly)

14.14 Testing Remote SNMP Queries

Problem
You want your MRTG server to monitor a number of remote devices, such as other
servers or routers. How do you test to make sure that SNMP is going to work cor-
rectly? Because if SNMP queries fail, so will MRTG.

14.14 Testing Remote SNMP Queries | 431

Solution
Test this with snmpwalk just like you did for localhost, substituting the hostname or
IP address of the remote host, and using whatever OID you like, or no OID at all:

$ snmpwalk -v 2c -c password uberpc interfaces

What if you get the common and vexing “Timeout: No Response from uberpc” error
message? This is the standard response to a lot of errors, such as:

• Wrong password (community string).

• Firewall is blocking port UDP 631.

• tcpwrappers is blocking port UDP 631.

• snmpd is listening to a different port.

• snmpd is not accepting queries from outside of localhost.

Port UDP 631 needs to be open on all SNMP hosts, and snmpd needs to be listening
to 0.0.0.0:161, which you will see by running netstat -untap. On Debian, snmpd is
restricted to localhost by default. You will see this with netstat and ps:

$ netstat -untap
udp 0 0 127.0.0.1:161 0.0.0.0:*
$ ps ax|grep snmpd
 9630 ? S 0:01 /usr/sbin/snmpd -Lsd -Lf /dev/null -u snmp -I -smux -p /var/run/
snmpd.pid 127.0.0.1

This is controlled in /etc/default/snmpd with this line:

SNMPDOPTS='-Lsd -Lf /dev/null -u snmp -I -smux -p /var/run/snmpd.pid 127.0.0.1'

Delete 127.0.0.1, restart snmpd, and you’ll be fine. We’re using snmpd.conf for access
controls, so this is unnecessary.

This iptables rule allows traffic going to UDP port 631 to pass:

$ipt -A INPUT -p udp --dport 631 -j ACCEPT

Discussion
On mailing lists and forums, the most common suggestion for the “Timeout: No
Response” error is to check tcpwrappers and make sure it is not blocking SNMP que-
ries. This is rather unhelpful advice because modern Linux distributions don’t use
tcpwrappers very much. It’s still installed on most stock installations, and it’s easy
enough to check—see if you have /etc/hosts.allow or /etc/hosts.deny, and if they are
present, check to see if they are gumming up your SNMP queries. Chances are the
files won’t even exist on your system.

The most common causes are misconfiguring your SNMP access controls. See Rec-
ipe 14.2 or 14.3 to learn more about SNMP access controls.

432 | Chapter 14: Network Monitoring with MRTG

See Also
• Chapter 3

• Net-SNMP: http://net-snmp.sourceforge.net

• man 1 snmpd.conf

• man 1 snmpwalk.conf

14.15 Monitoring Remote Hosts

Problem
All of this monitoring of your local system is OK, but what you really want to do is
set up an MRTG server to monitor remote servers and routers. How do you do this?

Solution
The hosts you wish to monitor either need to have built-in SNMP agents, or they
must have Net-snmp installed. Virtually all modern networking devices have built-in
SNMP agents. Linux and Unix servers need Net-snmp.

For configuring your Linux hosts, follow Recipes 14.2, 14.3, and 14.14.

Then, in mrtg.cfg, you need to change the Target line to point to your remote host,
like this:

Target[uberpc.disk]: dskPercent.2&dskPercent.3:password@uberpc

And of course, fiddle with the legends and page titles so you know what graph
belongs to what.

Discussion
Be sure to review the SNMP Recipes to learn how to test and troubleshoot MRTG’s
SNMP queries, because if SNMP doesn’t work, MRTG won’t work.

You only need an SNMP agent on your remote hosts; they don’t need an HTTP
server or MRTG.

See Also
• Net-SNMP: http://net-snmp.sourceforge.net

• man 1 snmpd.conf

• man 1 snmpwalk.conf

• man 1 mrtg-reference

• MRTG home page: http://oss.oetiker.ch/mrtg/

14.16 Creating Multiple MRTG Index Pages | 433

14.16 Creating Multiple MRTG Index Pages

Problem
Your MRTG server is humming along happily, but you have a problem—your index
page is growing out of control. How do you bring some organization to the MRTG
index?

Solution
You might create separate index pages. You may choose to organize by hosts, ser-
vice, or any way you want. In this recipe, we’ll create a separate MRTG index page
for the Linux server Uberpc, following these steps:

First, create a mrtg-uberpc.cfg file, and populate it with your chosen monitors. We’re
past the training wheels stage, so we won’t bother with cfgmaker, but we will create
the file from scratch. Be sure to specify the correct workdir:

workdir: /var/www/mrtg/uberpc

Then, create the /var/www/mrtg/uberpc directory and the logfile directory:

mkdir /var/www/mrtg/uberpc
mkdir /var/log/mrtg/mrtg-uberpc.log

Next, run the two graph and index page creation commands:

env LANG=C mrtg /etc/mrtg-uberpc.cfg
indexmaker --output=/var/www/mrtg/uberpc/index.html /etc/mrtg-uberpc.cfg

Run env LANG=C mrtg /etc/mrtg-uberpc.cfg three times, until it stops emitting error
messages.

Finally, add a new cron job for the new configuration in /etc/cron.d/mrtg. This exam-
ple copies the default Debian cron configuration for MRTG:

xena
*/5 * * * * root if [-d /var/lock/mrtg]; then if [-x /usr/bin/mrtg] && [-
r /etc/mrtg.cfg]; then env LANG=C /usr/bin/mrtg /etc/mrtg.cfg >> /var/log/mrtg/mrtg.
log 2>&1; fi else mkdir /var/lock/mrtg; fi

uberpc
*/5 * * * * root if [-d /var/lock/mrtg]; then if [-x /usr/bin/mrtg] && [-
r /etc/mrtg-uberpc.cfg]; then env LANG=C /usr/bin/mrtg /etc/mrtg-uberpc.cfg >> /var/
log/mrtg/mrtg-uberpc.log 2>&1; fi else mkdir /var/lock/mrtg; fi

Finally, point your web browser to localhost (http://localhost/mrtg/uberpc/), and
enjoy your new MRTG pages.

434 | Chapter 14: Network Monitoring with MRTG

Discussion
Depending on how powerful your MRTG server is, running all those cron jobs will
eventually bog it down. Running MRTG as a daemon is more efficient; see Recipe
14.17 for more information.

See Also
• man 1 mrtg-reference

• MRTG home page: http://oss.oetiker.ch/mrtg/

14.17 Running MRTG As a Daemon

Problem
You know that running MRTG from cron consumes more system resources because
it loads and parses the configuration file or files every time it starts. So, you want to
run it as a daemon. How do you do this?

Solution
It takes a number of steps, so roll up your sleeves and follow along:

Create a user and group just for running MRTG:

groupadd mrtg
useradd -d /dev/null -g mrtg -s /bin/false mrtg

Hunt down and change all files that the mrtg user must have write permissions for,
and change them:

chown -R mrtg:mrtg /var/www/mrtg
chown -R mrtg:mrtg /var/log/mrtg/

Add these lines to the Global section of mrtg.cfg:

RunAsDaemon: Yes
Interval: 5

Delete all existing cron jobs, or just move them out of the way in case you want them
back:

mv /etc/cron.d/mrtg ../mrtg

Create a lockfile, and start MRTG from the command line:

mkdir /var/lock/mrtg/
chown -R mrtg:mrtg /var/lock/mrtg/
env LANG=C mrtg --daemon --user=mrtg --group=mrtg /etc/mrtg.cfg
Daemonizing MRTG ...

14.17 Running MRTG As a Daemon | 435

If you have more than one configuration file, line ’em up:

env LANG=C mrtg --daemon --user=mrtg --group=mrtg /etc/mrtg.cfg /etc/mrtg-uberpc.
cfg

Check with the ps command:

$ ps ax|grep mrtg
26324 ? Ss 0:00 /usr/bin/perl -w /usr/bin/mrtg --daemon --user=mrtg --group=mrtg /
etc/mrtg.cfg

And that shows we are successful!

To start it automatically at boot, you’ll need a file in /etc/init.d, and startup links on
the runlevels you want to use. An init file can be as simple as this:

#!/bin/sh
/etc/init.d/mrtg
chkconfig 2345 90 30
#
mkdir /var/lock/mrtg/
chown -R mrtg:mrtg /var/lock/mrtg/
this must be one unbroken line
env LANG=C mrtg --daemon --user=mrtg --group=mrtg /etc/mrtg.cfg \
/etc/mrtg-uberpc.cfg

Make it executable:

chmod +x /etc/init.d/mrtg

Then, create your startup links on Debian with update-rc.d:

update-rc.d mrtg start 90 2 3 4 5 . stop 30 0 1 6

Fedora uses chkconfig:

chkconfig --add mrtg

Discussion
You really need a better init file than the example. Debian users can use /etc/init.d/
skeleton as a model for creating new startup files.

This is a basic startup script that should work anywhere:

#! /bin/sh
/etc/init.d/foo
#
most apps need a lockfile
touch /var/lock/foo

start 'er up
 case "$1" in
 start)
 echo "Starting script foo "
 echo "optional other things here"
 ;;
 stop)

436 | Chapter 14: Network Monitoring with MRTG

 echo "Stopping script foo now"
 echo "optional other things here"
 ;;
 *)
 echo "Usage: /etc/init.d/foo {start|stop}"
 exit 1
 ;;
esac
exit 0

See Also
• man 1 mrtg-reference

• MRTG home page: http://oss.oetiker.ch/mrtg/

437

Chapter 15 CHAPTER 15

Getting Acquainted with
IPv6

15.0 Introduction
IPv6 has far more to recommend it than merely providing a vastly larger pool of IP
addresses. Here are some handy bullet-pointed highlights:

• Network autoconfiguration (say goodbye to DHCP)

• No more private address collisions

• Better multicast routing

• The newfangled anycast routing

• Network Address Translation (NAT) becomes an option, rather than a necessity

• Simplified, more efficient routing and smaller routing tables

• Genuine quality of service (QoS)

• Good-quality streaming media delivery

In short, it promises to make the life of the network administrator significantly eas-
ier, and to make a whole new generation of high-quality on-demand streaming audio
and video services a reality.

In this chapter, you’ll learn the basics of using IPv6: network addressing, autoconfig-
uration, network interface configuration, ad-hoc IPv6 LANs, and how to calculate
IPv6 addresses without needing hundreds of fingers to count on.

IPv6 adoption is proceeding slowly in the U.S., but it is inevitable. It doesn’t cost
anything but a bit of time to get acquainted with it in your test lab. Linux has
supported IPv6 since the later 2.1.x kernels, and most of the important Linux net-
working utilities now support IPv6.

438 | Chapter 15: Getting Acquainted with IPv6

Most of the pieces are in place: most networking hardware (e.g., switches, inter-
faces, routers) supports IPv6 now. Cameras, cell phones, PDAs, and all manner of
devices now support IPv6. Growing numbers of Internet service providers offer
native IPv6, and you can set up an IPv6-over-IPv4 tunnel that works over existing
networks, which is good for practice and testing. Standards and protocols are pretty
much hammered out and in place.

The two final pieces that are needed are first, application support (because net-
worked applications must explicitly support IPv6), and second, service providers
actually migrating to native IPv6. Some network engineers predict that the majority
of ISPs will not get serious about it until the day they call up their Regional Internet
Registry (RIR) to get more IPv4 addresses, and their RIR regretfully informs them
that there aren’t any more.

Barriers to Adoption
The barriers to faster IPv6 adoption are the usual suspects: cost, inertia, and lack of
knowledge. The scarcity of IPv4 addresses means they are nice little revenue-generators
because ISPs typically charge extra for static, routable addresses. This will change with
IPv6—I will let the numbers speak for themselves. There are theoretically:

4,294,967,296

IPv4 addresses available because IPv4 uses a 32-bit address space. In contrast, there
are theoretically:

340,282,366,920,938,463,463,374,607,431,768,211,456

addresses available under IPv6 because it is a 128-bit address space. In practice,
because of reserved addresses and the way in which blocks of IPv4 addresses are
allocated, the usable pool of IPv4 addresses is reported as 3,706,650,000, or about
three-fourths of the theoretical total. The U.S. owns nearly 60 percent of these. (For
details, see the “BGP Expert 2006 IPv4 Address Use Report” at http://www.
bgpexpert.com/addrspace2006.php.)

The actual number of available IPv6 addresses is somewhat smaller than the theoreti-
cal number, but not enough to matter here on planet Earth. If we ever expand to a
galaxy-wide Internet, then we’ll need more addresses, but we’ll cross that bridge
when we come to it.

Interestingly, while the U.S. hogs the IPv4 address space, it lags considerably behind
other countries in IPv6 adoption and affordable high-speed broadband. Many U.S.
ISPs do dominate in one area: silly terms of service that forbid running servers, shar-
ing your Internet connection, or supporting any operating system other than
Microsoft Windows (which we know is ridiculous—favoring the most notoriously

15.0 Introduction | 439

porous operating system, with all of its well-known security flaws and tens of thou-
sands of Internet-clogging botnets is a policy direct from the planet Bizarro). Trying to
control how many users share a single Internet connection is like charging per-user for
tap water.

So, IPv6 uptake is more motivated in countries outside the U.S. Japan and the Euro-
pean Union lead in IPv6 adoption, and also in advanced broadband and wireless
services.

IPv6 is not backward-compatible with IPv4. We’re going to have IPv4 and IPv6 run-
ning side-by-side for some time, with all the added complexity and overhead that
comes with that. But eventually, IPv4 is going to go away.

Anatomy of IPv6 Addresses
IPv6 addresses contain eight dotted quads totaling 128 bits, as this example of a glo-
bal unicast address shows:

2001:0db8:3c4d:0015:0000:0000:abcd:ef12

An IPv6 global unicast address is like a static, publicly routable unicast IPv4 address,
such as 208.201.239.36 (one of oreilly.com’s addresses). These are globally unique
addresses controlled by a central registrar. (For a list of regional registrars, see
ICANN.org at http://aso.icann.org/rirs/index.html.)

In the IPv4 world, the provider’s prefix can consume up to the first three dotted
quads. whois shows us that the service provider’s prefix eats up three-fourths of the
oreilly.com address:

$ whois 208.201.239.36
[...]
SONIC.NET, INC. UU-208-201-224 (NET-208-201-224-0-1)
 208.201.224.0 - 208.201.255.255

If O’Reilly wants more addresses, it has to get them assigned from its upstream ser-
vice provider. IPv4 addresses are doled out in a miserly fashion; a small customer
might get lucky and get five, and a bigger customer can, with a bit of luck, get a
larger number. It is unlikely that either one will receive enough to provision their
whole organization, but either one will have to use nonroutable private addresses
behind NAT. But, no matter how generous the service provider is, they can’t come
close to a typical IPv6 assignment, which is 2^64 active hosts per subnet. Spelled
out, that totals:

18,446,744,073,709,551,616

That is a pool of globally unique, routable addresses just for you, times your number
of subnets, which can be as many as 65,536. This should be sufficient to meet your
needs.

440 | Chapter 15: Getting Acquainted with IPv6

Let’s dissect our example IPv6 global unicast address:

2001:0db8:3c4d:0015:0000:0000:abcd:ef12
______________|____|________________ _ _ _
global prefix subnet Interface ID

Each quad is 16 bits. The global prefix is assigned by an ISP to its customers. Typi-
cally, this is /48 bits, as shown here, but it can vary; a large company might get /32,
and a small company /56. This portion is not something you can arbitrarily change
because it is assigned to you by your service provider. So, the network portion of the
address is the first 64 bits, and the host portion is the remaining 64 bits. Even though
it is a larger number, this is simpler than remembering all of those different IPv4
address classes and many ways to make subnets.

The next quad is for your own use for subnetting. With 16 bits to play with, this
means you can have 65,536 subnets all for your very own.

The final 64 bits is the interface ID, or the network interface’s address. This is often
derived from the 48-bit MAC address of the network interface card, but this is not a
requirement. Just like the subnet portion, you may use this however you want. So,
under IPv6 you won’t be a beggar any more, but truly the lord of your own domain.

IPv6 address types and ranges

These are the address ranges you’ll be most concerned with. These are assigned by
the Internet Assigned Numbers Authority (IANA) http://www.iana.org/assignments/
ipv6-address-space. All the other addresses are reserved:

IPv6 Prefix Allocation

0000::/8 Reserved by IETF
2000::/3 Global Unicast
FC00::/7 Unique Local Unicast
FE80::/10 Link Local Unicast
FF00::/8 Multicast

These blocks are reserved for examples and documentation:

3fff:ffff::/32
2001:0DB8::/32 EXAMPLENET-WF

The loopback address and IPv6 addresses with embedded IPv4 addresses come from
the 0000::/8 address block. Your Linux system probably comes with IPv6 addressing
already enabled:

$ ifconfig
eth0 Link encap:Ethernet HWaddr 00:03:6D:00:83:CF
 inet addr:192.168.1.10 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fe80::203:6dff:fe00:83cf/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 [...]

15.0 Introduction | 441

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 [...]

Scope:Link, or the Link Local Unicast address for eth0 means this is a private, non-
routable IPv6 address that operates only within a single subnet. Link Local addresses
are for easily throwing together ad-hoc networks, such as for conferences or meet-
ings, and on most Linux distributions are created automatically.

Scope:Host for lo is the loopback address, which means packets from this address
never leave the host.

Unique Local Unicast addresses are similar to Link Local Unicast addresses. They are
meant to be routable locally, but not over the Internet. Link Local addresses may not
always be unique, so you have a risk of address collisions; Unique Local Unicast
addresses have a globally unique prefix, and are independent of any service provider,
so they give you a unique private class of addresses to use internally.

Multicast in IPv6 is similar to the broadcast address in IPv4, with some useful differ-
ences. A packet sent to a multicast address is delivered to every interface in a defined
group. So, it is targeted—only hosts who are members of the multicast group receive
the multicast packets. Routers will not forward multicast packets unless there are
members of the multicast groups to forward the packets to, which pretty much spells
the end of broadcast storms. They always start with ff.

Where are these multicast groups defined? For a complete listing, see “IPv6 multi-
cast addresses” at http://www.iana.org/assignments/ipv6-multicast-addresses.

An anycast address is a single address assigned to multiple nodes. A packet sent to an
anycast address is then delivered to the first available node. This is a great way to
provide both load-balancing and automatic failover. Several of the DNS root servers
use a router-based anycast implementation. Anycast addresses can only be used as
destination addresses, and not source addresses. Anycast addresses come from the
unicast address space, so you can’t tell from the prefix that they are anycast
addresses.

You’ve probably seen 3FFE::/16 addresses in various How-tos. These were for the
6Bone test network that shut down in June 2006, so they don’t work anymore.

Counting in Hexadecimal
IPv6 addresses are not dotted-decimal like IPv4, but base-16 numbers expressed in
hexadecimal. So, you count like this:

0 1 2 3 4 5 6 7 8 9 A B C D E F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

442 | Chapter 15: Getting Acquainted with IPv6

When your lefthand digit gets to 9, you roll over to letters to keep going:

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

IP addresses start out as binary numbers. We use hexadecimal notation for conve-
nience. Don’t worry about managing these larger addresses because ipv6calc will do
the calculating for you.

Mac and Windows IPv6 Support
Mac OS X has excellent IPv6 support, which should work out of the box.

Support for IPv6 in Microsoft Windows is a bit of a hodgepodge. Windows Vista,
Windows Server 2008, Windows Server 2003, Windows XP with Service Pack 2, Win-
dows XP with Service Pack 1, Windows XP Embedded SP1, and Windows CE .NET
include native IPv6 support.

Windows 2000 admins can try the MS Tech Preview IPv6 stack. It’s not intended for
production systems, but for testing:

• tpipv6-001205-SP2-IE6.zip, SP2

• tpipv6-001205-SP3-IE6.zip, SP3

• tpipv6-001205-SP4-IE6.zip, SP4

Instructions are at http://msdn.microsoft.com/downloads/sdks/platform/tpipv6/start.asp.

Admins of Windows 95/98/ME and NT systems can try Trumpet Winsock v5.0.

For the least hassle and hair loss, you’ll want the later Windows editions with native
IPv6 suppport.

15.1 Testing Your Linux System for IPv6 Support

Problem
How do you know if your Linux system supports IPv6 and is ready to use it?

Solution
There are a few basic tests you can run to check your system for IPv6 readiness.

First, check kernel support:

$ cat /proc/net/if_inet6
00000000000000000000000000000001 01 80 10 80 lo
fe8000000000000002036dfffe0083cf 02 40 20 80 eth0

The file /proc/net/if_inet6 must exist, and this example shows two up interfaces with
IPv6 addresses. You can also see if the IPv6 kernel module is loaded:

15.2 Pinging Link Local IPv6 Hosts | 443

$ lsmod |grep -w 'ipv6'
ipv6 268960 12

Now, ping6 localhost:

$ ping6 -c4 ::1
PING ::1(::1) 56 data bytes
64 bytes from ::1: icmp_seq=1 ttl=64 time=0.047 ms
64 bytes from ::1: icmp_seq=2 ttl=64 time=0.049 ms
64 bytes from ::1: icmp_seq=3 ttl=64 time=0.049 ms
64 bytes from ::1: icmp_seq=4 ttl=64 time=0.049 ms

--- ::1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3000ms
rtt min/avg/max/mdev = 0.047/0.048/0.049/0.007 ms
All systems are go for IPv6.

As the output says, you are good to go.

Discussion
All Linux distributions from this century should support IPv6 without needing any
extra configuration. If yours doesn’t, which would be very unusual, you’ll need to
use the documentation for your distribution to figure out what to do. Peter
Bieringer’s “Linux IPv6 HOWTO” (http://tldp.org/HOWTO/Linux+IPv6-HOWTO/
index.html) should also be helpful.

See Also
• Peter Bieringer’s “Linux IPv6 HOWTO”:

http://tldp.org/HOWTO/Linux+IPv6-HOWTO/index.html

15.2 Pinging Link Local IPv6 Hosts

Problem
You want to start with the basics—testing your IPv6 connectivity with ping. Can you
even do this?

Solution
Of course you can, with the ping6 command, which should be included in all mod-
ern Linux distributions. This is how you ping6 localhost, and your Link Local
addresses:

$ ping6 -c2 ::1
PING ::1(::1) 56 data bytes
64 bytes from ::1: icmp_seq=1 ttl=64 time=0.045 ms
64 bytes from ::1: icmp_seq=2 ttl=64 time=0.048 ms

444 | Chapter 15: Getting Acquainted with IPv6

--- ::1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 0.045/0.046/0.048/0.007 ms

$ ping6 -c2 -I eth0 fe80::203:6dff:fe00:83cf
PING fe80::203:6dff:fe00:83cf(fe80::203:6dff:fe00:83cf) from fe80::203:6dff:fe00:83cf
eth0: 56 data bytes
64 bytes from fe80::203:6dff:fe00:83cf: icmp_seq=1 ttl=64 time=0.046 ms
64 bytes from fe80::203:6dff:fe00:83cf: icmp_seq=2 ttl=64 time=0.051 ms

--- fe80::203:6dff:fe00:83cf ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.046/0.048/0.051/0.007 ms

When you ping6 the link local address, you must specify your network interface with
the -I switch, even if you have only a single interface on your system. If you don’t do
this, you’ll get a “connect: Invalid argument” error.

Now, how about pinging other hosts on your LAN? First, you must discover them by
pinging the Link Local Multicast address:

$ ping6 -I eth1 ff02::1
PING ff02::1(ff02::1) from fe80::203:6dff:fe00:83cf eth0: 56 data bytes
64 bytes from fe80::203:6dff:fe00:83cf: icmp_seq=1 ttl=64 time=0.049 ms
64 bytes from fe80::214:2aff:fe54:67d6: icmp_seq=1 ttl=64 time=2.45 ms (DUP!)
64 bytes from fe80::20d:b9ff:fe05:25b4: icmp_seq=1 ttl=64 time=9.68 ms (DUP!)
[...]

Keep going until you see the same addresses repeating. ping6 helps you by shouting
(DUP!). Now you can ping6 them:

$ ping6 -I eth0 fe80::214:2aff:fe54:67d6

Now you know that your IPv6 Link Local addresses work.

Discussion
How do you know what your Link Local address is? ifconfig tells you:

$ /sbin/ifconfig
eth0 Link encap:Ethernet HWaddr 00:03:6D:00:83:CF
 inet addr:192.168.1.10 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fe80::203:6dff:fe00:83cf/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 [...]

See Also
• man 8 ping

15.3 Setting Unique Local Unicast Addresses on Interfaces | 445

15.3 Setting Unique Local Unicast Addresses on
Interfaces

Problem
You don’t want to use just the Link Local addresses, but you would like to know
how to add and remove your own IPv6 addresses, and you want to experiment with
Unique Local Unicast addresses, so you can test routing.

Solution
The ip command is the tool for this job. Use these commands to set some Unique
Local Unicast addresses on two connected PCs:

root@xena:~# ip -6 addr add FC01::1/64 dev eth0
root@stinkpad:~# ip -6 addr add FC01::2/64 dev eth0

Now, you can ping6 each other:

root@xena:~# ping6 FC01::2
PING FC01::2(fc01::2) 56 data bytes
64 bytes from fc01::2: icmp_seq=1 ttl=64 time=7.33 ms

root@stinkpad:~# ping6 FC01::1
$ ping6 FC01::1
PING FC01::3(fc01::1) 56 data bytes
64 bytes from fc01::1: icmp_seq=1 ttl=64 time=6.06 ms

And each host can ping6 its own shiny new address. You don’t need to specify the
interface when you’re pinging Unique Local Unicast addresses like you do for Link
Local addresses.

These addresses are removed when you reboot, or you can use ip:

ip -6 addr del FC01::1/64 dev eth0

Discussion
This is purely a technical exercise, and not useful for production systems. Unique
Local Unicast addresses are supposed to be globally unique. How to achieve this
without using a central registry? RFC 4193 “Unique Local IPv6 Unicast Addresses”
offers some suggestions for methods for generating unique addresses, but they’re
intended for programmers to create nice address-generating utilities, not network
administrators.

What you can do with this is simply increment the Interface ID portion of the
address as you assign Unique Local Unicast addresses to additional hosts and use
these for testing routing, name services, and other basic network functions.

446 | Chapter 15: Getting Acquainted with IPv6

Why bother with these, when you’ll be able to get more global unicast addresses
from your service provider than you’ll ever be able to use? Because:

• They are independent of any service provider, so you can be just as arbitrary as
you want.

• They have a well-known prefix to allow for easy filtering at border routers.

• If they accidentally leak outside your network, they shouldn’t conflict with any
other addresses.

The simple examples in this recipe demonstrate some shortcuts for expressing IPv6
addresses. FC01::1 is shorthand for FC01:0000:0000:0000:0000:0000:0000:0001.
The required structure of the address looks like this:

| 7 bits |1| 40 bits | 16 bits | 64 bits |
+--------+-+------------+-----------+----------------------------+
| Prefix |L| Global ID | Subnet ID | Interface ID |
+--------+-+------------+-----------+----------------------------+

IPv6 allows you to collapse quads full of zeros. FC01::1 could also be written as
FC01:0:0:0:0:0:0:1. We’ll discuss this more in Recipe 15.7.

See Also
• man 8 ping

• RFC 4193 “Unique Local IPv6 Unicast Addresses”

15.4 Using SSH with IPv6

Problem
Can you do remote administration with SSH using IPv6?

Solution
Of course you can, like this:

$ ssh fe80::214:2aff:fe54:67d6%eth0
carla@fe80::214:2aff:fe54:67d6%eth0's password:
Linux uberpc 2.6.20-15-generic #2 SMP Sun Apr 15 07:36:31 UTC 2007 i686
Last login: Wed Jun 6 18:51:46 2007 from xena.alrac.net
carla@uberpc:~$

Note that for Link Local addresses you must specify your network interface and pref-
ace it with the percent sign. You can log in as a different user this way:

$ ssh user@fe80::214:2aff:fe54:67d6%eth0

If you’re using unicast addresses, you don’t need to specify the interface:

$ ssh user@FC01::1

15.5 Copying Files over IPv6 with scp | 447

Copying files with scp is a pain because you have to enclose the address in brackets
and then escape the brackets:

$ scp filename.txt \[FC01::2\]:
carla@fc01::2's password:
filename.txt

Discussion
This isn’t all that useful in the real world because it’s likely you’ll be relying on DNS
more than IPv6 addresses. But it is helpful for testing and troubleshooting.

If you have access controls set up on your SSH server, you may need to change some
options to permit logins via IPv6:

AddressFamily
The default is any. You may also use inet for IPv4, or inet6.

ListenAddress
The default is any. If you are restricting access by IP addresses, you’ll need to add
the local IPv6 address.

See Also
• man 1 ssh

• man 5 sshd_config

• man 1 scp

15.5 Copying Files over IPv6 with scp

Problem
SSH works fine for logging in to remote PCs using IPv6 addresses, but when you try
to copy files with scp, it doesn’t work. You are rewarded with the unhelpful message:

ssh: fe80: Name or service not known
lost connection

Now what?

Solution
scp requires some strange syntax that you have to get just right, as this example
shows:

$ scp filename carla@\[fe80::203:6dff:fe00:83cf%eth0\]:

The IPv6 address must be enclosed in brackets, which must then be escaped. If
you’re logging in as a different user, the username goes outside the braces. And you

448 | Chapter 15: Getting Acquainted with IPv6

must specify the local interface with the percent sign for Link Local addresses, just
like with OpenSSH.

Discussion
As this was written, neither the scp nor the OpenSSH manpages described the special
IPv6 syntax, so you read it here first.

See Also
• man 1 ssh

• man 1 scp

15.6 Autoconfiguration with IPv6

Problem
You keep hearing about this wonderful autoconfiguration in IPv6. How do you do
this?

Solution
Make it easy on yourself, and use the radvd, the router advertising daemon. This sim-
ple example /etc/radvd.conf uses the addressing from Recipe 15.3:

##/etc/radvd.conf
interface eth0 {
 AdvSendAdvert on;
 MinRtrAdvInterval 3;
 MaxRtrAdvInterval 10;
 prefix FC00:0:0:1::/64 {
 AdvOnLink on;
 AdvAutonomous on;
 AdvRouterAddr on;
 };
};

Save your changes, and restart radvd:

/etc/init.d/radvd restart
Restarting radvd: radvd.

radvd will advertise itself, and clients will automatically pick up new addresses, as
the ip command will verify:

$ ip -6 addr show eth0
2: eth0: <BROADCAST,MULTICAST,UP,10000> mtu 1500 qlen 1000
 inet6 fc00::1:214:2aff:fe54:67d6/64 scope global dynamic

15.7 Calculating IPv6 Addresses | 449

Discussion
radvd is meant to be simple, so that is really all there is to it. When you’re playing
around on your test network, you may use any IPv6 address range you want (see the
Introduction for more information on these). Just keep in mind that the prefix is the
first 64 bits, or the first four quads, and the host portion is also 64 bits. You leave the
host portion blank in radvd.conf because the daemon will assign that part.

See Also
• man 8 radvd

• man 5 radvd.conf

15.7 Calculating IPv6 Addresses

Problem
Calculating IPv4 addresses was enough fun, and now you have these gigantic IPv6
addresses to manage. Is there a tool like ipcalc to help you make sure you get your
addressing right?

Solution
Yes, there is—ipv6calc. It’s easy to use, as the following examples show.

This command analyzes whatever address you give it, both IPv4 and IPv6:

$ ipv6calc --showinfo -m FC00:0:0:1::
No input type specified, try autodetection...found type: ipv6addr
No output type specified, try autodetection...found type: ipv6addr
IPV6=fc00:0000:0000:0001:0000:0000:0000:0000
TYPE=unicast,unique-local-unicast
SLA=0001
IPV6_REGISTRY=reserved
IID=0000:0000:0000:0000
EUI64_SCOPE=local

This example compresses an IPv6 address:

$ ipv6calc --addr_to_compressed fc00:0000:0000:0001:0000:0000:0000:0000
fc00:0:0:1::

This example partly uncompresses an IPv6 address:

$ ipv6calc --addr_to_uncompressed fc00:0:0:1::
fc00:0:0:1:0:0:0:0

This example spells it out completely:

$ ipv6calc --addr_to_fulluncompressed fc00:0:0:1::
fc00:0000:0000:0001:0000:0000:0000:0000

450 | Chapter 15: Getting Acquainted with IPv6

ipv6calc will figure out your DNS PTR records for you, so you can copy-and-paste
them into your BIND zone files:

$ ipv6calc --out revnibbles.arpa fc00:0:0:1::
No input type specified, try autodetection...found type: ipv6addr
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.c.f.ip6.arpa.

You can convert IPv6 prefixes to IPv4, and the reverse:

$ ipv6calc -q --action conv6to4 --in ipv4 192.168.1.10 --out ipv6
2002:c0a8:10a::
$ ipv6calc -q --action conv6to4 --in ipv6 2002:c0a8:aeb:: --out ipv4
192.168.10.235

Discussion
Calculating subnets is easier in IPv6 because you only have a single field in the
address to worry about, and even though there are several different address ranges
(see the chapter Introduction for a table of address ranges and types), the structure of
the addresses is the same for every one. The first 64 bits, or four quads, are always
the network prefix and subnet. The last 64 bits are always the interface address.

You can test using IPv6 over the Internet by signing up with a 6to4 tunnel broker.
These are service providers that provide special routing to carry IPv6 traffic over IPv4
networks. Your IPv4 address is converted to hexadecimal format, and embedded in
your IPv6 tunnel prefix. 6to4 addresses always start with 2002:

2002:nnnn:nnnn::1

See Also
• man 8 ipv6calc

15.8 Using IPv6 over the Internet

Problem
All of this playing around on the LAN is OK, but you really want to do some serious
Internet testing. Do you need a special ISP, or can you do it yourself?

Solution
You do need a special service provider. You have two options: an ISP that offers
native IPv6 networking, which would be wonderful, or a broker that offers a 6to4
tunnel, which uses special routing that encapsulates IPv6 traffic inside of IPv4. ISPs
and brokers give you a block of IPv6 addresses, just like a native IPv6 provider, and
also offer DNS services. You may connect a single host, or set up a gateway for your
LAN.

15.8 Using IPv6 over the Internet | 451

6to4 tunneling is transitional, and will eventually disappear in favor of native IPv6
networks. Here is a list of tunnel brokers, and doubtless a web search will find more:

• Hexago.com (http://www.hexago.com)

• SixXs.net (https://noc.sixxs.net/)

• Hurricane Electric (http://www.tunnelbroker.net/)

• BT Exact (https://tb.ipv6.btexact.com/start.html)

• AARNet IPv6 Migration Broker (http://broker.aarnet.net.au/)

Discussion
Each provider offers different tools for managing your service, so you’ll need to fol-
low their instructions for getting connected. Most of these offer free services, and it’s
a great way to get experience managing an IPv6 network.

See Also
• Deepspace6 (http://www.deepspace6.net/) is a good resource for Linux IPv6

admins

452

Chapter 16CHAPTER 16

Setting Up Hands-Free
Network Installations of
New Systems

16.0 Introduction
Rolling out new Linux installations over the network and reimaging old ones is easy,
once you have the necessary servers in place and have your clients set up to network-
boot. It’s a bit complicated on x86 hardware because the x86 platform was not
originally designed for network booting, so even now, network booting x86 clients is
rather hit-or-miss. Of course, Linux gives you a number of boot options, so you can
make it work one way or another:

• Boot from a CD-ROM

• Boot from a USB flash drive

• Use PXE boot

Debian and Fedora Linux provide network-booting images for CD-ROM and USB
devices. They also support Preboot Execution Environment (PXE) booting, which
means you don’t need a CD-ROM or USB drive—all you need is a network interface
and a PC BIOS that support PXE booting, and a PXE boot server.

If your BIOS or NIC do not support PXE booting, then go to the
Etherboot project site (http://www.etherboot.org). Download a boot
image, copy it to a floppy disk, configure the system to boot from the
diskette, and you’re good to go.

PXE Boot
If you’re putting together a network with older gear, it might not support PXE boot;
however, you might be able to to upgrade it without too much hassle. The first thing
to check is the BIOS. Anything older than 2000 or so probably won’t support PXE
booting, but you might be able to flash-upgrade the BIOS and get support for PXE
booting and other modern features.

16.1 Creating Network Installation Boot Media for Fedora Linux | 453

Once the BIOS is squared away, check your network interface. Some network cards
support PXE boot out of the box; this is the best and easiest way. Some have an
empty socket designed to hold an add-on boot ROM chip.

Some just plain won’t support PXE booting at all. You can purchase programmed
ROM chips for around $18. You can also buy blank ROMs to put your own boot
code on, which seems like a lot of work, but if that’s what you want to do, then the
Etherboot project (http://www.etherboot.org) will help you.

Or, again, avoid all this, and use an Etherboot diskette.

USB Boot
Booting from a USB drive, whether it’s a large hard drive or a little USB pen drive, is
also hit-or-miss. Newer machines should support it, though there are a few gotchas to
look out for. Your USB drive must be plugged in before you power up the machine.
Then, check your BIOS settings to make sure that all possible USB support options are
enabled.

Next, check to see if it has a “boot to an alternate device” option; for example, on a
newer Phoenix BIOS, you press F11 to get an alternate boot device menu. This saves
the hassle of setting the boot order in the BIOS settings.

If there is not a specific “boot to USB flash drive” setting, try all available USB
devices, such as USB-Zip or USB-HDD.

Installation
Once a client system is booted and on the network, the rest of the installation pro-
ceeds just as if you were using ordinary installation CDs or DVDs. Even better, you
can set up customized automated installations so that once the installer is booted,
and the client is connected to the installation server, you don’t have to lift a finger.

16.1 Creating Network Installation Boot Media for
Fedora Linux

Problem
Fedora Linux has gotten huge! Downloading the ISOs requires five CDs or a single
DVD. BitTorrent or no, this is a huge download, and even the most compact installa-
tion requires packages from multiple disks. Can’t you just install a minimal boot
image on a CD or a USB stick, and then have the installer fetch the rest from a
Fedora mirror?

454 | Chapter 16: Setting Up Hands-Free Network Installations of New Systems

Solution
You can indeed, and in fact have always been able to; however, it has not been well-
publicized, so not many users know about it. You can copy a minimal boot image
either to a CD or USB flash drive, boot the system, select a Fedora mirror, and then
perform the installation completely over the Internet.

First, download the CD boot image or the USB media image, which you will find in
the os/ directory rather than the iso/ directory of your chosen Fedora download mir-
ror, as this example for Fedora 7 shows:

ftp://mirrors.kernel.org/fedora/releases/7/Fedora/i386/os/images

The CD boot image is boot.iso, and the USB media image is diskboot.img.

Use your favorite CD-writing program, like K3b, to create a boot CD from the .iso
image.

Use dd to copy diskboot.img to your USB stick. Warning: this overwrites the whole
device. Make sure your USB stick is unmounted first, and then transfer the boot
image with this command, using the correct /dev name for your own device:

dd if=diskboot.img of=/dev/sdb
24576+0 records in
24576+0 records out
12582912 bytes (13 MB) copied, 3.99045 seconds, 3.2 MB/s

Mount it to verify that the files copied correctly. You should see something like this:

$ ls /media/disk
boot.msg initrd.img ldlinux.sys param.msg splash.jpg vesamenu.c32
general.msg isolinux.bin options.msg rescue.msg syslinux.cfg vmlinuz

Booting from removable media is controlled by your system’s BIOS. When you try to
boot from the CD or USB key, look for a “Press this key to select an alternate boot
device” option. If your system does not have this option, you’ll have to change boot
options in your BIOS settings.

Discussion
Visit the Fedora mirrors page (http://fedora.redhat.com/download/mirrors.html) to
find a mirror close to you.

Booting from a USB device is a relatively new-fangled feature, so don’t be surprised if
some of your PCs don’t support it. It doesn’t always work even on some systems that
say they support booting from USB devices. So, don’t make yourself crazy—if it’s
going to work, it will just work.

16.2 Network Installation of Fedora Using Network Boot Media | 455

How do you know the /dev name of your USB device? Try using the ls command:

$ ls -l /dev/disk/by-id/
[...]
lrwxrwxrwx 1 root root 9 2007-07-17 12:25 usb-LEXAR_JD_FIREFLY_106A6405142831060606-
0:0 -> ../../sdb

The lsscsi command should also identify it for you.

If you’re wondering about using a 3.5” boot diskette, the answer is no. Fedora does
not supply installation images for diskettes anymore because they’re too small.

See Also
• man 1 dd

• The installation manual for your version of Fedora from Fedoraproject.org: http://
fedoraproject.org/

• Always read the Release Notes before you start your installation

16.2 Network Installation of Fedora Using Network
Boot Media

Problem
You created your Fedora boot CD or USB stick, and now you’re ready to start your
installation. What next?

Solution
Before you boot the installer, have a second Internet-connected computer handy. Or,
first visit the Fedora mirrors page (http://fedora.redhat.com/download/mirrors.html),
and write down some mirrors that are close to you. You’ll need the complete file-
path to the installation directory, for example:

ftp://mirrors.kernel.org/fedora/releases/7/Fedora/i386/os

Next, pop in your boot media, and boot up the system. Your first choice is to start
the installer using either graphical mode or text mode. The main difference is you
won’t have a mouse in text mode. The graphical installer requires a minimum of 192
MB of RAM.

Go through the initial screens; there is nothing dramatic here, just the usual
keyboard, language, and networking setup. The fun begins when you get to the
“Installation Method” screen. Select either FTP or HTTP. Figure 16-1 shows the FTP
screen.

456 | Chapter 16: Setting Up Hands-Free Network Installations of New Systems

Entering the correct site name and Fedora directory is the same for FTP and HTTP.
On the site name line, enter the top-level domain name, such as ftp://mirrors.kernel.
org. On the Fedora Core directory line, enter the filepath, such as /fedora/releases/7/
Fedora/i386/os, then hit OK. If you did it right, the next screen will say “Retrieving
images/minstg2.img....” This is a 34 MB image, which you can see for yourself by
poking around on the download mirror you selected.

Now, it’s just like any other Fedora installation—you’ll partition your drive, select
packages, and do all the usual installation chores.

Discussion
You should run yum update immediately after installation to bring your system up to
date.

This is a nice method for installing Fedora on a single PC, and for downloading and
testing a new release. It’s not suitable for mass customized rollouts, but we’ll get to
that in the next few recipes.

It doesn’t matter if you select FTP or HTTP transfer; either one works fine. If you
don’t get your filepaths correct, Fedora’s Anaconda installer will give you as many
do-overs as you need until you get it right.

Figure 16-1. Selecting your FTP installation mirror

16.3 Setting Up an HTTP-Based Fedora Installation Server | 457

The installer image must fit in RAM, so only systems with more than 192 MB of
RAM can use the graphical installer. Systems with less RAM will fall back to using
the text-based installer automatically.

Fedora has a mediacheck feature for checking the integrity of installation CDs.
Sometimes, it reports good CDs as being defective. To make it work correctly, boot
the installer with the linux ide=nodma option.

If the installation fails partway through, try booting with linux acpi=off.

See Also
• Always read the Release Notes before you start your installation

• The Fedora mirrors page: http://fedora.redhat.com/download/mirrors.html

• The installation manual for your version of Fedora from Fedoraproject.org: http://
fedoraproject.org/

16.3 Setting Up an HTTP-Based Fedora Installation
Server

Problem
You want your own local Fedora installation server so you can plug-in and provision
new systems with a minimum of fuss, and you prefer running an HTTP server.

Solution
First, download the Fedora DVD ISO. Visit fedoraproject.org (http://fedoraproject.org/
get-fedora.html) to find a download site. If you use BitTorrent, it will verify file integrity
for you; otherwise, be sure to compare the checksum manually when the download is
finished:

$ sha1sum F-7-i386-DVD.iso
96b13dbbc9f3bc569ddad9745f64b9cdb43ea9ae F-7-i386-DVD.iso

The correct checksum is posted in the same download directory as the ISO.

You may write the ISO to a DVD as a backup, but you won’t need the DVD to oper-
ate your installation server, just the ISO.

Install the Lighttpd HTTP server to power your nice installation server. On Debian,
install it with this command:

aptitude install lighttpd lighttpd-doc

On Fedora:

yum install lighttpd

458 | Chapter 16: Setting Up Hands-Free Network Installations of New Systems

You can store your Fedora ISO anywhere on this server, but you need to mount it in
a web directory, such as /var/www/fedora. Use the loopback device to mount it; for
example:

mount -o loop F-7-i386-DVD.iso /var/www/fedora

You should now see files in here, instead of a single giant file:

$ ls /var/www/fedora
Fedora isolinux RPM-GPG-KEY RPM-GPG-KEY-fedora-test
fedora.css README-BURNING-ISOS-en_US.txt RPM-GPG-KEY-beta RPM-GPG-KEY-rawhide
GPL RELEASE-NOTES-en_US.html RPM-GPG-KEY-fedora stylesheet-images
images repodata RPM-GPG-KEY-fedora-rawhide TRANS.TBL

Now, you can use the installation boot media we created in the previous recipes and
install new systems from your own local Fedora installation server.

Discussion
This is a quick way to make a single copy of Fedora Linux available to your net-
work, which should be a lot faster than an installation over the Internet, and kinder
to the official download mirrors.

Make sure your Fedora directory is world-readable, but writable only by the owner.
It’s not necessary for root to own this directory, so you can make it owned by your
HTTP user.

Your clients should run yum update immediately after installation to bring their sys-
tems up-to-date.

See Also
• Always read the Release Notes before you start your installation

• Lighttpd: http://www.lighttpd.net/

• The Fedora mirrors page: http://fedora.redhat.com/download/mirrors.html

• The installation manual for your version of Fedora from Fedoraproject.org: http://
fedoraproject.org/

16.4 Setting Up an FTP-Based Fedora Installation
Server

Problem
You want your own local Fedora installation server so you can plug-in and provision
new systems with a minimum of fuss, and you prefer running an anonymous FTP
server.

16.4 Setting Up an FTP-Based Fedora Installation Server | 459

Solution
First, download the Fedora DVD ISO. Visit Fedoraproject.org (http://fedoraproject.
org/get-fedora.html) to find a download site. If you use BitTorrent, it will verify file
integrity for you; otherwise, be sure to compare the checksum manually when the
download is finished:

$ sha1sum F-7-i386-DVD.iso
96b13dbbc9f3bc569ddad9745f64b9cdb43ea9ae F-7-i386-DVD.iso

The correct checksum is posted in the same download directory as the ISO.

You may write the ISO to a DVD as a backup, but you won’t need the DVD to oper-
ate your installation server, just the ISO.

Install vsftpd, the Very Secure FTP server, to power your nice installation server. On
Debian, install it with this command:

aptitude install vsftpd

On Fedora:

yum install vsftpd
chkconfig vsftpd on

Debian uses /etc/vsftpd.conf and Fedora uses /etc/vsftpd/vsftpd.conf. This configura-
tion allows simple anonymous read-only access. Users may download files, but not
upload:

##vsftpd.conf
listen=YES
anonymous_enable=YES
ftpd_banner=Welcome to your friendly Fedora installation server
#Debian users default directory
anon_root=/home/ftp/fedora
#Fedora users default directory
anon_root=/var/ftp/fedora

Debian users must create a directory to store their Fedora installation tree:

mkdir /home/ftp/fedora

Fedora users do this:

mkdir /var/ftp/fedora

You can store your Fedora ISO anywhere on this server, but you need to mount it in
the anon_root directory. That is the default directory that users see when they con-
nect to the server. Use the loopback device to mount it in this directory:

mount -o loop F-7-i386-DVD.iso /var/ftp/fedora

You should see files in here, instead of a single giant ISO file:

$ ls /var/ftp/fedora
Fedora isolinux RPM-GPG-KEY RPM-GPG-KEY-fedora-test
fedora.css README-BURNING-ISOS-en_US.txt RPM-GPG-KEY-beta RPM-GPG-KEY-rawhide

460 | Chapter 16: Setting Up Hands-Free Network Installations of New Systems

GPL RELEASE-NOTES-en_US.html RPM-GPG-KEY-fedora stylesheet-images
images repodata RPM-GPG-KEY-fedora-rawhide TRANS.TBL

Next, restart the server, which is the same command on both Debian and Fedora:

/etc/init.d/vsftpd restart

Connect to the server with your favorite FTP client, and you’re in business.

Now, you can use the installation boot media we created in the previous recipes and
install new systems from your own local Fedora installation server.

Discussion
You can test your server with telnet:

$ telnet stinkpad 21
Trying 192.168.2.74...
Connected to stinkpad.alrac.net.
Escape character is '^]'.
220 Welcome to your friendly Fedora installation server

listen=YES
Run vsftpd in daemon mode.

anonymous_enable=YES
Allow anonymous logins. ftp and anonymous are recognised as anonymous logins.

ftpd_banner=
Your message here.

anon_root=
The default FTP data directory that will be displayed when users log in. This can
go anywhere you want.

This is a quick way to make a single copy of Fedora Linux available to your net-
work, which should be a lot faster than an installation over the Internet, and kinder
to the official download mirrors.

Your clients should run yum update immediately after installation to bring their sys-
tems up-to-date.

See Also
• Always read the Release Notes before you start your installation

• man 5 vsftpd.conf

• The Fedora mirrors page: http://fedora.redhat.com/download/mirrors.html

• The manual for your version of Fedora from Fedoraproject.org:

http://fedoraproject.org/

16.5 Creating a Customized Fedora Linux Installation | 461

16.5 Creating a Customized Fedora Linux Installation

Problem
You want to create a customized version of Fedora Linux for multiple local installa-
tions. You want to select a standard set of packages, and then have an easy way to
install it for new users.

Solution
Kickstart (Fedora’s customization tool) and your own local installation server are just
what you need. A Kickstart file is created automatically at installation, so you can see
one at /root/anaconda-ks.cfg on any Fedora system. This file answers all the ques-
tions asked by the installer, so all you do is point the installer to the Kickstart file and
let it do the rest.

One way to create a Kickstart file is to perform a custom installation: select exactly
the packages you want, set up partitioning and filesystems, and then use the
automatically generated Kickstart file for new installations. This is also a great way to
create an example file for reference.

Another way to is install the Kickstart configurator:

yum install system-config-kickstart

This gives you a nice, easy-to-use graphical configurator, as Figure 16-2 shows.

Figure 16-2. The Kickstart configuration tool

462 | Chapter 16: Setting Up Hands-Free Network Installations of New Systems

Just go through the tabs in order, and when you’re finished, you’ll have a ks.cfg file.
You may use it as-is, or edit it manually to add further refinements.

Discussion
The Kickstart configurator has some limitations. You may select only package
groups, not individual packages. You cannot configure Linux Volume Manager
(LVM) with it. However, because it is a plaintext file, you can easily edit it to add any
missing bits.

It has four sections: the command section and the %packages section, which are
required and must be in that order, and the %pre and %post sections, which are not
required, and do not have to be in any order.

Individual packages are listed under the %packages section of ks.cfg, like this:

%packages
@gnome-desktop
@graphical-internet
gimp
firefox
openoffice.org-writer

Package groups are prefaced with the ampersand; individual packages are not.

%post options are more common than %pre options. Both enable you to run any kind
of script or command. After installation, I like to make sure that certain services are
turned off for good, and that yum update runs to bring the system up-to-date:

%post
chkconfig isdn off
chkconfig pcmcia off
chkconfig bluetooth off
chkconfig portmap off
chkconfig apmd off
yum update

If you have ever installed Fedora, the Kickstart configurator will be familiar territory.
There are a few potentially tricky bits, though:

• On the Partition Information screen, you have the option to specify the type of
drive, either sda or hda. This could be useful on systems that have both. Or, if
you have sda and sdb, for another example, you could put the root filesystem on
one, and /home on the other. If you don’t specify a particular drive or partition,
the installer will select the first drive in the BIOS order.

• Video configuration may need to be tweaked after installation because you have to
select a color depth and resolution, such as 16 × 1024 × 768. However, the installer
will probe the graphics adapter and monitor, and install the drivers automatically.

• All kinds of ingenious admins have tried to figure out how to use Kickstart to
assign ordinary user accounts. In my opinion, the easiest way is to add them
manually after installation.

16.6 Using a Kickstart File for a Hands-off Fedora Linux Installation | 463

Complete Kickstart options are described in the Red Hat Enterprise Linux Installa-
tion Manual.

See Also
• Red Hat Enterprise Linux manuals:

https://www.redhat.com/docs/manuals/enterprise/

16.6 Using a Kickstart File for a Hands-off Fedora
Linux Installation

Problem
You have created your perfect ks.cfg file, and now you want to use it to control a new
Fedora Linux installation.

Solution
You have several options:

• Store it on your installation server

• Store it on a 3.5" diskette

• Store it on a USB stick

• Store it on a CD-ROM

Installation server
This is the easiest way. Then, boot up the PC with a Fedora boot medium, such
as a CD or USB stick, using this boot command:

linux ks=http://server/directory/ks.cfg

You may store several different Kickstart files this way, and specify which one to
use:

linux ks=http://server.name.net/directory/devstation-ks.cfg
linux ks=http://server.name.net/directory/fileserver-ks.cfg

3.5" diskette
It must be in the top-level directory, and it must be named ks.cfg. Boot up the PC
with a Fedora boot medium, using this boot command:

linux ks=floppy

If you want to use several different Kickstart files, such as workstation, web
server, file server, and so on, you can specify the different filenames:

linux ks=floppy:/apache-ks.cfg
linux ks=floppy:/workstation-ks.cfg

Fedora no longer supports booting from a diskette, but you can still use them to
hold Kickstart files.

464 | Chapter 16: Setting Up Hands-Free Network Installations of New Systems

USB stick
The filesystem must be vfat or ext2; I recommend vfat for the fewest hassles.
Boot up the PC with a Fedora boot medium with this boot command, using your
own /dev name and filepath:

linux ks=hd:sda1:/websrv-ks.cfg

You may add a Kickstart file to your Fedora boot USB stick; first, copy the boot
image, then copy your Kickstart file to the device. Use the same boot command
as above.

CD-ROM
Kickstart files on a CD-ROM are booted with this command:

linux ks=cdrom:/directory/ks.cfg

Discussion
All kinds of ingenious admins have tried to figure out how to use Kickstart to assign
ordinary user accounts. In my opinion, the easiest way is to add them manually after
installation.

Assigning hostnames can be automated by configuring your DHCP server to assign
hostnames by MAC address. In Dnsmasq, use a line like this:

dhcp-host=11:22:33:44:55:66,arnold

If you’re using the ISC DHCP server, add lines like this to dhcpd.conf:

host mrhaney {
 hardware ethernet 08:00:07:26:c0:a5;
}

See Chapter 4 for some good recipes on configuring a Dnsmasq DHCP/DNS server.

See Also
• Red Hat Enterprise Linux manuals:

https://www.redhat.com/docs/manuals/enterprise/

• Chapter 24, “Managing Name Resolution,” in Linux Cookbook, by Carla Schroder
(O’Reilly)

16.7 Fedora Network Installation via PXE Netboot

Problem
You want to netboot your installation, instead of using some sort of physical boot
media. Your PCs have network interfaces that support netbooting or Etherboot dis-
kettes, and you have configured the appropriate BIOS settings, so your clients are
ready. You have your Fedora-based FTP or HTTP server all set up with a Fedora
installation tree. What else do you need to do?

16.7 Fedora Network Installation via PXE Netboot | 465

Solution
You need a DHCP server and a TFTP server. In this recipe, we’ll put them all on the
installation server.

Install these packages on your Fedora-based installation server:

yum install tftp-server syslinux dhcp

Use this example dhcpd.conf with your own network addressing. next-server is the
address of the TFTP server:

##dhcpd.conf
allow booting;
allow bootp;

subnet 192.168.1.0 netmask 255.255.255.0 {
 option subnet-mask 255.255.255.0;
 option broadcast-address 192.168.1.255;
 range dynamic-bootp 192.168.1.175 192.168.1.240;
 next-server 192.168.1.40;
 filename "pxelinux.0";
}

Next, copy the boot files pxelinux.0, vmlinuz, and initrd.img to the tftpboot direc-
tory. If you followed Recipe 16.3, vmlinuz and initrd.img are in /var/www/fedora:

cp /usr/lib/syslinux/pxelinux.0 /tftpboot
cp /var/www/fedora/isolinux/vmlinuz /tftpboot
cp /var/www/fedora/isolinux/initrd.img /tftpboot

If you set up an FTP-based installation server according to Recipe 16.4, your boot
files are in /var/ftp/fedora.

Create a minimal tftpboot/pxelinux.cfg file:

DEFAULT pxeboot
TIMEOUT 50
LABEL pxeboot
 KERNEL vmlinuz
 APPEND initrd=initrd.img
ONERROR LOCALBOOT 0

Now, start up everything. Go into /etc/xinetd.d./tftp and change:

disable = yes

to:

disable = no

Then, run these commands:

chkconfig xinetd on
/etc/init.d/xinetd start
chkconfig tftp on

466 | Chapter 16: Setting Up Hands-Free Network Installations of New Systems

Now, you can test it. Install the tftp client on a neighboring PC, and try to connect to
the TFTP server:

$ tftp stinkpad
tftp> status
Connected to stinkpad.alrac.net.
Mode: netascii Verbose: off Tracing: off
Rexmt-interval: 5 seconds, Max-timeout: 25 seconds

Type a question mark, ?, to see a list of commands. This shows it’s running and
ready to go.

Power up a PXE-enabled client, which will automatically broadcast DHCPDISCOVER
packets extended with PXE-specific options to port UDP 67, and within a few sec-
onds, you should see the familiar Fedora installation screen.

Discussion
You may use any Linux distribution to power your installation server. You’ll have
different file locations and package names, but the contents of the configuration files
will be the same.

The example dhcpd.conf contains just the options necessary to serve PXE clients. You
may add them to your existing DHCP server configuration.

ONERROR LOCALBOOT 0 in pxelinux.cfg means “boot to the local drive if the network boot
fails.”

You could try the system-config-netboot utility for configuring netbooting, if you pre-
fer a graphical interface. It creates subdirectories under /tftpboot, so you’ll have some
different file locations.

See Also
• Syslinux and PXELinux: http//syslinux.zytor.com/pxe.php

• man 5 dhcpd.conf

• man 8 tftpd

16.8 Network Installation of a Debian System
Debian Linux is the largest Linux distribution that exists, supporting more applica-
tions and hardware platforms than any other Linux distribution. Currently, a
complete download requires 21 CDs or 3 DVDs. Of course, you don’t need all those
disks to do a basic installation, but it’s still a big old beast. You prefer to boot with a
small installation image, and then perform the rest of the installation over the net-
work, rather than trying to download gigabytes of ISOs. How do you this?

16.8 Network Installation of a Debian System | 467

Solution
Debian has long supported network installations. You can get boot images for CD-
ROM and USB flash drive. It also supports PXE netbooting, which we’ll get to in the
next recipe. Visit Debian.org (http://www.us.debian.org/distrib/netinst) to download
network installation images for CD-ROM.

You need dial-up, wired Ethernet, or a wireless interface with native Linux support.
Don’t even bother with a wireless interface that requires ndiswrapper to run on
Linux; it won’t work for the installer.

The netinst image contains the base Debian installation and weighs in at about 160
MB.

The businesscard image is about 32 MB, and has just the bare necessities for starting
the installation.

The official file integrity checksums are posted on the download page. Always con-
firm the checksum before using the downloads:

$ sha1sum debian-40r0-i386-businesscard.iso
641e67f6968ca08217f52f6fbe7dda1a8e6072ec debian-40r0-i386-businesscard.iso

Use your favorite CD-writing software, such as K3b, to write your installation images
to CD.

To create a bootable USB flash drive, you need at least a 256 MB drive. Then, down-
load the hd-media/boot.img.gz file from your favorite Debian mirror. Make sure the
drive is unmounted, and copy it to the drive with this command:

zcat boot.img.gz > /dev/sda

 How do you know the /dev name of your USB device? Try using the ls command:

$ ls -l /dev/disk/by-id/

The lsscsi command should also tell the tale:

$ lsscsi
[2:0:0:0] disk LEXAR JUMPDRIVE 1.10 /dev/sdb

To start the installation, boot your chosen media. You’ll do the usual keyboard,
language, and network settings, and then you’ll have a drop-down list of Debian mir-
rors to choose from. After that, it’s business as usual—select your packages, then go
do something else while the operating system installs itself.

Discussion
This is a good way to perform a single installation, but not so good when you have
several machines to install. For that, you should set up a local installation server,
which we’ll get to in the next recipe.

468 | Chapter 16: Setting Up Hands-Free Network Installations of New Systems

See Also
• Getting Debian: http://www.debian.org/distrib/

• Debian releases, manuals, and downloads: http://www.debian.org/releases/

16.9 Building a Complete Debian Mirror with
apt-mirror

Problem
You want to provision your Debian hosts over the network from a local server, and
you want a complete local mirror for this. How do you do this?

Solution
You need a Debian-based HTTP server to do this. There are two Debian applica-
tions for creating a local mirror: apt-mirror, which creates a complete mirror, and
apt-proxy, which creates a partial mirror. In this recipe, we’ll make a complete mir-
ror with apt-mirror.

You will need anywhere from 40–120 GB of storage, according to which releases you
want and how many CPU architectures. First, install apt-mirror in the usual Debian
manner, plus Lighttpd:

aptitude install apt-mirror lighttpd

Then, edit /etc/apt/mirror.list to include your chosen repositories. You want to use
Debian mirrors that are close to you, which you will find at the mirror list page (http://
www.debian.org/mirror/list). They may not be geographically close, but you should run
some ping and tcptraceroute tests to get an idea of which ones perform well. This
example uses the mirror at http://linux.csua.berkeley.edu/debian:

/etc/apt/mirror.list
############# config ##################
#
set base_path /var/spool/apt-mirror
set mirror_path $base_path/mirror
set skel_path $base_path/skel
set var_path $base_path/var
set cleanscript $var_path/clean.sh
set defaultarch
set nthreads 20
set tilde 0
#
############# end config ##############

debian Etch (stable)
deb http://linux.csua.berkeley.edu/debian etch main contrib non-free
deb-src http://linux.csua.berkeley.edu/debian etch main contrib non-free
deb http://linux.csua.berkeley.edu/debian etch main/debian-installer

16.9 Building a Complete Debian Mirror with apt-mirror | 469

#debian Lenny (testing)
deb http://linux.csua.berkeley.edu/debian lenny main contrib non-free
deb-src http://linux.csua.berkeley.edu/debian lenny main contrib non-free
deb http://linux.csua.berkeley.edu/debian lenny main/debian-installer

#debian Sid (unstable)
deb http://linux.csua.berkeley.edu/debian sid main contrib non-free
deb-src http://linux.csua.berkeley.edu/debian sid main contrib non-free
deb http://linux.csua.berkeley.edu/debian sid main/debian-installer

Now, run this command to start downloading files:

apt-mirror /etc/apt/mirror.list
Downloading 66 index files using 20 threads...
Begin time: Sun Jul 22 22:43:46 2007
[20]... [19]... [18]... [17]... [16]... [15]... 14]... [13]... [12]... [11]... [10]..
. [9]... [8]... [7]... [6]... [5]... [4]... [3]... [2]... [1]... [0]...
End time: Sun Jul 15 22:57:52 2007

Proceed indexes: [SSSSPPPPPPP]

52.7 GiB will be downloaded into archive.
Downloading 81257 archive files using 20 threads...
Begin time: Sun Jul 15 22:58:37 2007

Packages download into /var/spool/apt-mirror/mirror/, and this is obviously going to
take some time, so you might as well find something else to do. Like configure
Lighttpd. First, create a directory in your HTTP root:

mkdir /var/www/debian

Then, link your package mirror to this directory:

ln -s /var/spool/apt-mirror/mirror/linux.csua.berkeley.edu/debian \
 /var/www/debian

You could also set up a cron job to update the server every night. apt-mirror installs
/etc/cron.d/apt-mirror, so all you have to do is uncomment the command line:

0 1 * * * apt-mirror /usr/bin/apt-mirror > /var/spool/apt-mirror/var/cron.
log

This runs it every day at 1 a.m.

Discussion
The nice thing about having your own Debian mirror is that it’s always current.
Once the initial download is completed, subsequent downloads will be small.

It doesn’t hurt to run apt-mirror /etc/apt/mirror.list a few times after the initial
download is completed, just to be thorough.

Security updates are not cached on the server in this recipe, though you could do this
if you wanted to. Some admins prefer to configure each client to download them
directly to ensure they get fresh security updates.

470 | Chapter 16: Setting Up Hands-Free Network Installations of New Systems

You could also run apt-mirror on a different Linux distribution, such as Fedora or
Slackware, or whatever you like. Download and install it from the source tarball, and
then you’ll have to create the directory structure and configure cron yourself.

See Also
• apt-mirror on SourceForge: http://apt-mirror.sourceforge.net/

• Debian releases, manuals, and downloads: http://www.debian.org/releases/

16.10 Building a Partial Debian Mirror with apt-proxy

Problem
While maintaining a local Debian mirror with apt-mirror doesn’t sound too bad, you
really don’t need the whole works. Can’t you just cache and share the packages that
your local systems actually use?

Solution
You can, with apt-proxy. Install it on a server with at least 30 GB of free storage space:

aptitude install apt-proxy

Then, configure /etc/apt-proxy/apt-proxy-v2.conf to point to three different Debian
mirrors:

address = 192.168.1.101
port = 9999
min_refresh_delay = 1s
debug = all:4 db:0
timeout = 15
cache_dir = /var/cache/apt-proxy
cleanup_freq = 1d
max_age = 120d
max_versions = 3
;; Backend servers
backends =
 http://us.debian.org/debian
 http://linux.csua.berkeley.edu/debian
 http://mirrors.geeks.org/debian
 http://debian.uchicago.edu/debian

Now, configure a client PC to point to your apt-proxy server:

/etc/apt/sources.list
debian Etch (stable)
deb http://192.168.1.75/debian etch main contrib non-free
deb-src http://192.168.1.75/debian etch main contrib non-free

deb http://security.debian.org/ etch/updates main contrib non-free
deb-src http://security.debian.org/debian-security etch/updates main \
contrib non-free

16.11 Configuring Client PCs to Use Your Local Debian Mirror | 471

Run aptitude update on the client to initialize the server. If your server already has a
good-sized package cache, you can import it into apt-proxy with this command:

apt-proxy-import /var/cache/apt/archives

Now, every time a client computer installs new software, apt-proxy will cache it and
serve additional requests from the cache. All you have to do in the way of maintenance
is keep an eye on how much drive space apt-proxy is using.

Discussion
apt-proxy replicates the Debian mirror structure, and automatically purges old pack-
ages when newer versions become available. Using at least three different Debian
mirrors for backend servers builds in failover; if one is not available, it automatically
goes to the next one.

Visit the mirror list page (http://www.debian.org/mirror/list) to find available mirrors
near you.

See Also
• man 8 apt-proxy

• man 5 apt-proxy.conf

• man 8 apt-proxy-import

• apt-proxy on SourceForge: http://apt-proxy.sourceforge.net/

• Debian releases, manuals, and downloads: http://www.debian.org/releases/

16.11 Configuring Client PCs to Use Your Local Debian
Mirror

Problem
You made a nice local Debian mirror using apt-mirror or apt-proxy, and now you
need to know how to configure your local Debian clients to use it.

Solution
Edit /etc/apt/sources.list on your client computers to point to the address or host-
name of your server:

/etc/apt/sources.list
debian Etch (stable)
deb http://192.168.1.75/debian etch main contrib non-free
deb-src http://192.168.1.75/debian etch main contrib non-free

deb http://security.debian.org/debian-security etch/updates main contrib non-free
deb-src http://security.debian.org/debian-security etch/updates main contrib non-free

472 | Chapter 16: Setting Up Hands-Free Network Installations of New Systems

This example is for a PC running Debian Etch. Of course you may configure your
PCs to use whatever Debian release you prefer.

Run aptitude update on the clients to update their local package lists, and you’re in
business.

Discussion
This example has the client getting security updates directly from Debian.org,
instead of from a local server cache. You may cache security updates on the server if
you prefer. Some admins think it is safer and fresher to have the clients fetch their
own security updates directly.

Debian’s security updates are never mirrored, and are only available from security.
debian.org.

See Also
• man 5 sources.list

• Debian releases, manuals, and downloads: http://www.debian.org/releases/

16.12 Setting Up a Debian PXE Netboot Server

Problem
You want a Debian boot server so you can perform network installations without an
installation CD or USB flash device. Your PCs have network interfaces that support
netbooting, or they have Etherboot diskettes, and you have configured the appropri-
ate BIOS settings, so your clients are ready. You have your local Debian mirror all set
up and ready to go.

What else do you need to do?

Solution
Your Debian mirror server needs to be PXE-netboot enabled. You’ll need these
packages:

aptitude install tftpd-hpa dhcp3-server

Next, download netboot/netboot.tar.gz from your favorite Debian mirror into /var/lib/
tftpboot, and unpack it there:

wget http://debian.uchicago.edu/debian/dists/etch/main/installer-\
i386/current/images/netboot/netboot.tar.gz
tar zxvf netboot.tar.gz

16.12 Setting Up a Debian PXE Netboot Server | 473

You must edit /etc/default/tftpd-hpa to say:

RUN_DAEMON="yes"

And, you need a simple configuration in /etc/dhcp3/dhcpd.conf:

##dhcpd.conf
allow booting;
allow bootp;

subnet 192.168.1.0 netmask 255.255.255.0 {
 option subnet-mask 255.255.255.0;
 option broadcast-address 192.168.1.255;
 range dynamic-bootp 192.168.1.175 192.168.1.240;
 next-server 192.168.1.40;
 filename "pxelinux.0";
}

Start up the new servers like this:

/etc/init.d/dhcp3-server start
/etc/init.d/tftpd-hpa start

Now, power up a PXE netboot-enabled client, and in a few moments, you should see
the Debian installation menu:

- Boot Menu -
=============

etch_i386_install
etch_i386_linux
etch_i386_expert
etch_i386_rescue

Discussion
If you’re running Dnsmasq instead of dhcpd, you need to add only a single line in
dnsmasq.conf to enable netbooting:

dhcp-boot=pxelinux.0,cracker,192.168.1.40

Then, restart Dnsmasq:

/etc/init.d/dnsmasq restart

If you’re running some other Debian release than Etch, you’ll need to use the
netboot.tar.gz that is specific to that release.

See Also
• Debian releases, manuals, and downloads: http://www.debian.org/releases/

474 | Chapter 16: Setting Up Hands-Free Network Installations of New Systems

16.13 Installing New Systems from Your Local Debian
Mirror

Problem
Your Debian mirror is all set up and ready to go to work, and your clients are all pre-
pared: you have your CD-ROM or USB installation boot media (see Recipe 16.8) all
set up and ready to go. How do you tell them to use your local Debian mirror?

Solution
Start up your systems with your installation boot media. Go through the usual key-
board, language, and network configuration screens. When you get to the Mirror
Country screen, as Figure 16-3 shows, select “enter information manually.” Then,
enter the hostname of your server, like cracker.alrac.net; and then on the next screen,
enter the archive directory, which is /debian/. Continue the rest of the installation in
the usual manner.

Figure 16-3. Selecting your local mirror

16.14 Automating Debian Installations with Preseed Files | 475

Discussion
This is all very nice and not that hard to set up, but you really want to know how to
customize and automate your Debian installations. See the next recipe to learn how
to do this with a preseed file.

See Also
• Debian releases, manuals, and downloads: http://www.debian.org/releases/

16.14 Automating Debian Installations with Preseed
Files

Problem
You want a fairly simple way to automate network installation of new Debian PCs,
and to create custom installations for different roles, such as web servers, worksta-
tions, file servers, and so forth.

Solution
Create a preseed, or preconfiguration file, that answers the installer questions, and
does your package selections for you. First, study the example preseed file at http://
d-i.alioth.debian.org/manual/example-preseed.txt. Then, create one from your own
Debian system by running these two commands:

debconf-get-selections --installer > preseed.txt
debconf-get-selections >> file preseed.txt

Your own preseed.txt is going to look different from the example-preseed.txt; it’s
messier and has a lot more entries. You can’t use your own preseed.txt as-is, but you
can see exactly what was done on your system, and you can copy anything you want
to duplicate to example-preseed.txt.

The tasksel command selects package groups. You can see a list of these:

$ tasksel --list-tasks
u desktop Desktop environment
i web-server Web server
u print-server Print server
u dns-server DNS server
[...]

u means uninstalled, and i means installed. Display individual packages with this
command:

476 | Chapter 16: Setting Up Hands-Free Network Installations of New Systems

$ tasksel --task-packages desktop
twm
gimp-print
xresprobe
openoffice.org
[...]

Use tasksel to select package groups in your preseed file like this:

#tasksel tasksel/desktop multiselect kde-desktop, xfce-desktop
#tasksel tasksel/first multiselect standard, kde-desktop

This means when the desktop task is selected, install kde-desktop and xfce-desktop
instead of the default selections. Individual packages are selected with pkgsel, like
this:

d-i pkgsel/include string openvpn tftpd-hpa dnsmasq

I like to automate creating the root login, and disable the creation of a normal user
account (because I do it later manually):

passwd passwd/root-password password 1AiJg3$GHlS8/vqkSgBj9/1EKPUv0
passwd passwd/root-password-again password 1AiJg3$GHlS8/vqkSgBj9/1EKPUv0
passwd passwd/make-user boolean false

Keeping cleartext passwords around is a bad idea, so you can encrypt them first
with:

$ grub-md5-crypt
Password:
Retype password:
1AiJg3$GHlS8/vqkSgBj9/1EKPUv0

This command checks the format of your preseed file to make sure it is valid:

$ debconf-set-selections -c preseed.txt

After you have fine-tuned your preseed file and debconf-set-selections approves, how
do you use it? With PXE netboot clients, copy your preseed file to /var/lib/tftpboot.
Then, edit the auto boot stanza in /var/lib/tftpboot/pxelinux.cfg/default to point to the
file:

LABEL auto
 kernel debian-installer/i386/linux
 append auto=true priority=critical vga=normal \
preseed/url=http://host/path/to/preseed.cfg \
initrd=debian-installer/i386/initrd.gz --

You can copy your preseed file to the top-level directory on your USB flash drive and
then enter this boot command:

linux preseed/file=/dev/sdb/preseed.cfg debconf/priority=critical

Or, you can park your preseed file on a network server and then, for both CD and
USB boot media, enter the URL:

linux preseed/url=http://servername/filename

16.14 Automating Debian Installations with Preseed Files | 477

Discussion
Debian’s preseed files are not as easy as Fedora’s Kickstart. But, it is one of the easier
methods for creating customized Debian autoinstalls. See the Debian-Gnu Installa-
tion Guide (http://d-i.alioth.debian.org/manual/en.i386/index.html) for a detailed
discussion of preseed and boot options.

See Also
• Debian releases, manuals, and downloads: http://www.debian.org/releases/

478

Chapter 17CHAPTER 17

Linux Server
Administration via Serial
Console

17.0 Introduction
In these modern times, the hardworking admin might be tempted to turn her back
on the Old Ways and indulge in increasingly exotic methods of interfacing with serv-
ers: Ethernet, USB, Firewire, Wireless, Infrared, KVM switches—next stop: direct
neural implants.

There is one old-timer that still has a useful place in the network admininstrator’s
toolkit: the serial console. It’s simple and cheap—you don’t need to install drivers or
expansion cards, it’s just there. It’s the lowest-level means of interfacing with your
system. Configure your servers to accept serial logins, set up a laptop as a portable
console, and you have an instant cheap rescue device when everything else fails.

Your portable serial console will also serve you well when you need it to connect to
routers and switches.

When you’re troubleshooting headless systems, it saves the hassle of hooking up a
keyboard and monitor. You can capture kernel and logging messages that otherwise
would be lost, reboot the system and get a boot menu, edit network settings and
stop/start networking, restart or tweak SSH, and tweak network card settings.

I don’t recommend it as your sole means of server administration—Ethernet is a lot
faster. But, when nothing else works, the serial console will save the day.

There are a number of ways to make the physical connection. You can connect a
hardware-controller modem, the kind old-timers fondly refer to as real modems, and
do remote administration via dial-up. It couldn’t be any simpler, just dial direct. This
makes a nice inexpensive backup for Ethernet failures. Or, grab a null modem cable,
connect to a laptop or a nearby workstation, and you have a directly connected serial
console. (See Recipe 19.1 to learn about turning a laptop into a portable network
diagnostic and repair tool.) You can turn any feeble old PC into a perfectly good
serial console.

17.1 Preparing a Server for Serial Console Administration | 479

Users of x86 hardware, which is the majority of the Linux universe, must deal with
the limitations of the x86 PC BIOS. Unlike real Unix hardware, it was not designed
to support a serial console. This means you can’t use the serial port to poke around
in the BIOS to make changes or check the settings, and you don’t see the Power On
Self-Test (POST) messages. The Unix BIOS and bootloaders come with a lot of neat
features not available in x86. They can do diskless netbooting, hard resets, reboots,
suspend the boot process and then restart it, walk step-by-step through the boot pro-
cess, and reconfigure the BIOS—all remotely. It’s like having a little computer to
jump-start and control the big computer.

There are some ways to get around these limitations. One is to purchase x86 server
hardware with an advanced BIOS. For example, rackmount and blade units are usu-
ally equipped for serial port administration, and come with advanced management
features, just like real Unix hardware. Another way is to purchase an expansion card
like the PC Weasel. The PC Weasel is a PCI or ISA expansion card that emulates an
attached video and keyboard, and presents a serial port for administration. At $250
to $350, it’s not an inexpensive option, but when you consider that it’s less hassle
than a motherboard upgrade and comes with a great feature set, it looks like a pretty
good deal.

A lot of data centers rely on commercial serial consoles such as those sold by Cyclades,
Lantronix, and Digi, which fit nicely in racks, have up to 48 ports, and include all sorts
of management software, remote logging and kernel message capture, and security
features. (Don’t be confused by all those RJ-45 ports—those are real, genuine serial
RS-232 ports that use nice RJ-45 connectors.)

Or, you can build your own, using multiport serial expansion cards from vendors
like Comtrol, Moxa, and Axxon. You can even add some management software—
Conserver (http://www.conserver.com) is a great open source and free-of-cost console
server. It includes excellent logging, SSL integration, user authentication, message
broadcasting, spy mode, and system monitoring. This chapter covers how to set up
an ordinary x86 PC as a headless server, and how to set up an ordinary x86 PC as a
serial console. You could say this is Linux serial consoling on the cheap.

17.1 Preparing a Server for Serial Console
Administration

Problem
You have an ordinary x86 server that you want to run headless, with serial console
administration enabled, and you want to verify that all the pieces—hardware and
software—are present. The serial console might or might not be your primary
method of administering your server; regardless, you want to be sure that you can
connect to it with a serial console.

480 | Chapter 17: Linux Server Administration via Serial Console

Solution
First, check the BIOS for your server to see if it comes with serial console support
already built-in. Most likely, a low-end PC won’t, but higher-end and server-quality
equipment might. If it does, follow the directions for your particular machine for set-
ting it up for a serial console, and ignore the rest of this recipe.

If not, you’ll need the following:

• Keyboard and monitor connected to the server until the serial connection is
tested and ready.

• DB9 serial connector. If there is not one built-in to the motherboard, you can get
a PCI serial port card inexpensively.

• agetty or mgetty utility.

• BIOS that allows the system to boot without an attached keyboard.

• Null-modem cable for direct connection to another PC.

• Kernel with console support built-in, not as a module.

• Hardware-controller modem if you want remote dial-in administration.

• Bootable rescue disk. (Always have one of these!)

Discussion
Serial port is one of those terms that covers a lot of ground. It means the physical
connector, which on most PCs, is a male DB9 connector. It connects to a Universal
Asynchronous Receiver-Transmitter (UART) chip on the motherboard. A serial port
is also a logical device, /dev/ttyS*.

$ setserial -g /dev/ttyS[0123]
/dev/ttyS0, UART: 16550A, Port: 0x03f8, IRQ: 4
/dev/ttyS1: No such device
/dev/ttyS2, UART: unknown, Port: 0x03e8, IRQ: 4
/dev/ttyS3, UART: unknown, Port: 0x02e8, IRQ: 3

This shows that the system has only one serial port, /dev/ttyS0. That is the only one
with a UART value. You can get more information about it with the -a flag:

$ setserial -a /dev/ttyS0
/dev/ttyS0, Line 0, UART: 16550A, Port: 0x03f8, IRQ: 4
 Baud_base: 115200, close_delay: 50, divisor: 0
 closing_wait: 3000
 Flags: spd_normal skip_test

This shows a nice modern serial port that has a transfer rate of 115,200 baud. (Keep
in mind this is the transfer rate between the UART chip and the PC—anything out-
side the PC is limited by cabling, network traffic, and other factors.)

You may be more familiar with COM1, COM2, COM3, and COM4 than /dev/ttyS1,
dev/ttyS2, and so forth. The ports and interrupts are the same no matter what you
call it:

17.1 Preparing a Server for Serial Console Administration | 481

0x03f8 IRQ4 COM1 /dev/ttyS0
0x02f8 IRQ3 COM2 /dev/ttyS1
0x03e8 IRQ4 COM3 /dev/ttyS2
0x02e8 IRQ3 COM4 /dev/ttyS3

A getty (“get tty”—a holdover from the days of teletypes) is a program that manages
logins over serial connections. It opens a serial device, such as a modem or virtual
console, and waits for a connection. getty displays the login prompt, then hands off
to the login program when a username is entered, and then quietly retires. There are
all kinds of gettys. mingetty and fgetty support only local virtual consoles and have no
serial support, so don’t use them. It’s OK if they are already present on the system
because you’ll use /etc/inittab to control which one is used for serial console logins.
mgetty is an excellent getty that also supports faxing and voicemail. agetty, uugetty,
and plain old getty all work fine for serial consoling.

Most, but not all, PC BIOSes support booting without an attached keyboard. If yours
doesn’t, and a BIOS upgrade does not fix it, you’ll need something like the PC
Weasel to make it work. (See this chapter’s Introduction for more information on
hardware options.)

You can see what options your kernel has been compiled to support by looking at your
/boot/config-* file. For example, on my Debian system, this is /boot/config-2.6.20-16.
This is a not a file that you edit; it is a record of how your kernel was built. Options are
either built-in, =y, compiled as loadable modules, =m, or not included, like this exam-
ple shows:

2.6.20-16
CONFIG_X86=y
CONFIG_X86_CPUID=m
CONFIG_EMBEDDED is not set

Look for these lines to confirm console support, and remember you want it built-in,
and not loadable modules:

#
Serial drivers
#
CONFIG_SERIAL_8250=y
CONFIG_SERIAL_8250_CONSOLE=y

If it says CONFIG_SERIAL_8250=m or CONFIG_SERIAL_8250 is not set, then you’ll need to
rebuild the kernel. Look under Device Drivers ➝ Character devices ➝ Serial drivers in
menuconfig.

Here are related configuration items to look for:

CONFIG_VT=y
CONFIG_VT_CONSOLE=y
CONFIG_HW_CONSOLE=y
CONFIG_SERIAL_NONSTANDARD=y

Most likely these will already be present.

482 | Chapter 17: Linux Server Administration via Serial Console

Modems

Yes, I know that hardware-controller modems cost more than Winmodems/
softmodems. Trust me, you want a good-quality hardware-controller modem on the
server. If you can’t afford new, try eBay and other secondhand outlets.

There are many advantages: you don’t have to hassle with drivers, so it Just Works.
The whole point of accessing a system via the serial line is to get the most low-level
access you can, which you can’t do if you have to hassle with drivers. An external
modem has nice blinky lights that aid troubleshooting, and it’s portable. Internal
modems save space. An important feature to look for is retaining settings after a
power outage, usually in nonvolatile RAM (NVRAM). Cheap modems lose their set-
tings after a power cycle, so when you try to dial in, the modem does not respond.

I favor U.S. Robotics modems. Prices range from around $80 U.S. to $300. The fol-
lowing models (and all of their variants) work great with Linux:

• USR5686 56K External Faxmodem with V.92

• USR5610B 56K V.92 Performance Pro Modem

• USR3453 Courier 56K Business Modem with V.Everything and V.92

• USR5630 56K External Faxmodem with V.92

• USR5631 56K External Faxmodem with V.92

• USR0839 Sportster 33.6 External Faxmodem

For the purpose of Linux serial console administration, the lower-priced ones work
fine, as all you’re using are the most basic modem functions: answering the phone,
keeping the data flowing, and then hanging up. The higher-end models, like the USR
Courier, include useful security features such as callback, caller line identification,
and authorized caller lists. These are useful in preventing attackers from ever getting
as far as a login prompt.

See Also
• The manual for your motherboard

• The manpage for your getty program

• man 8 setserial

• man 1 tty

• man 4 tty

• Remote Serial Console HOWTO: http://www.tldp.org/HOWTO/Remote-Serial-
Console-HOWTO/

• Chapter 10, “Patching, Customizing, and Upgrading Kernels,” in Linux Cookbook,
by Carla Schroder (O’Reilly)

17.2 Configuring a Headless Server with LILO | 483

17.2 Configuring a Headless Server with LILO

Problem
Your soon-to-be headless server now has all the pieces in place for running headless.
Now, you need to know how to configure it to accept logins from a directly con-
nected serial console, and you want to see a boot menu when you reboot from the
console. You are using LILO as your bootloader.

Solution
First, edit /etc/inittab to set the default runlevel so that the system boots into a text
runlevel. If the server does not have X Windows installed, skip this step:

The default runlevel.
id:3:initdefault:

Then, open up a serial port to accept logins. This also happens in /etc/inittab:

Example how to put a getty on a serial line (for a terminal)
#
T0:23:respawn:/sbin/getty -L ttyS0 9600 vt100
#T1:23:respawn:/sbin/getty -L ttyS1 9600 vt100

Uncomment the one you’re going to connect to. (In this recipe, we’ll use ttyS0.) The
terminal emulation should already be vt100 or vt102; if it isn’t, change it. Next, save
your changes, and restart init:

init q

Fedora Linux users must take two extra steps. First edit /etc/sysconfig/init to disable
ANSI colors, and disable the interactive startup with these lines:

BOOTUP=serial
PROMPT=no

Disable Kudzu because it will reset the serial port whenever it runs, and then you’ll
be disconnected. Edit /etc/sysconfig/kudzu:

SAFE=yes

Now, edit the server bootloader to tell the kernel to make ttyS0 (or whichever one
you use) the default serial console. Use the following example as a model, substitut-
ing your own filepaths, kernels, and labels:

/etc/lilo.conf
#Global section

boot=/dev/hda
map=/boot/map
install=menu
prompt
timeout=100
serial=0,9600n8

484 | Chapter 17: Linux Server Administration via Serial Console

menu-title=" Webserver 1 "
default="CentOS 5-serial"

#boot stanzas

image=/boot/vmlinuz-2.6.18.ELsmp
 label="CentOS 5"
 initrd=/boot/initrd-2.6.18.ELsmp.img
 read-only
 root=LABEL=/

image=/boot/vmlinuz-2.6.18.EL
 label="CentOS 5- serial"
 initrd=/boot/initrd-vmlinuz-2.6.18.ELsmp.img
 read-only
 root=LABEL=/
 append="console=ttyS0,9600n8"

Disable any splash images by deleting or commenting out the line referring to them.
Do not enable a boot message because it won’t work.

Then, write the changes to the master boot record (MBR):

/sbin/lilo -v

Reboot a few times to test. Don’t disconnect the monitor and keyboard just yet—
wait until you connect successfully from a remote serial console.

Discussion
The Fedora /etc/sysconfig/init uses escape sequences to set colors, which can confuse
your serial console, so it’s best to disable colors entirely.

The serial=0,9600n8 line tells your server to be ready to accept control from serial
line ttyS0, initializes the serial port at a speed of 9600 baud, no parity, 8 bits.

append="console=ttyS0,9600n8" tells the kernel which serial port to use.

If you have more than one serial port, how do you know which one is ttyS0, and
which one is ttyS1? If your motherboard manual doesn’t tell you, you’ll just have to
use trial and error.

Use this line when you want to see boot messages on an attached monitor and the
remote serial console:

append="console=tty0 console=ttyS0,9600n8"

The attached monitor will see only the boot menu, then will appear to hang until the
login prompt comes up. The remote serial console will receive all boot messages,
including output from the init system, and system log messages.

Remember that timeout is measured in tenths of second.

17.3 Configuring a Headless Server with GRUB | 485

The install option has changed, starting with LILO version 22.3. It used to select
the user interface from a file in /boot; now, the user interface is an additional menu
option. Your choices are text, menu, and bmp. text is strictly command-line. menu is a
text-based boot menu, plus a command-line option. bmp is a big old graphical screen,
which you definitely don’t want over a serial line.

Booting to text mode still gives you the option to run X Windows when you want;
simply run the startx command on the server to start up X Windows. You won’t see
an X session over the serial line—this only makes sense when you want an X session
on an attached monitor, or you are running remote X clients from the server.

See Also
• man 5 lilo.conf explains all the options in /etc/lilo.conf

• man 5 inittab

• man 1 startx

• Remote Serial Console HOWTO: http://www.tldp.org/HOWTO/Remote-Serial-
Console-HOWTO/

• Chapter 7, “Starting and Stopping Linux,” in Linux Cookbook, by Carla Schroder
(O’Reilly) tells how to customize runlevels

• Chapter 12, “Managing the Bootloader and Multi-Booting,” in Linux Cookbook

• Recipe 15.2, “Using Both X Windows and Consoles,” in Linux Cookbook

17.3 Configuring a Headless Server with GRUB

Problem
Your soon-to-be headless server now has all the pieces in place for running headless.
Now, you need to know how to configure it to accept logins from a directly con-
nected serial console, and you want to see a boot menu when you reboot from the
console. You are using GRUB as your bootloader.

Solution
First, edit /etc/inittab to set the default runlevel so that the system boots into text
mode (Debian users, please see Recipe 17.4 for more information):

The default runlevel.
id:3:initdefault:

Then, open up a serial port to accept logins:

Example how to put a getty on a serial line (for a terminal)
#
T0:23:respawn:/sbin/getty -L ttyS0 9600 vt100
#T1:23:respawn:/sbin/getty -L ttyS1 9600 vt100

486 | Chapter 17: Linux Server Administration via Serial Console

Uncomment the one you’re going to connect to. (In this recipe, we’ll use ttyS0.) The
terminal emulation should already be vt100 or vt102; if it isn’t, change it. Then, save
your changes and restart init:

init q

Fedora Linux users must take two extra steps. First, edit /etc/sysconfig/init to disable
ANSI colors and disable the interactive startup with these lines:

BOOTUP=serial
PROMPT=no

Then, disable Kudzu because it will reset the serial port whenever it runs, and then
you’ll be disconnected. Edit /etc/sysconfig/kudzu:

SAFE=yes

Now, edit /boot/grub/grub.conf to tell the kernel to make ttyS0 (or whichever one you
use) the default system console. Use the following example as a model, substituting
your own filepaths, kernels, and titles:

#/boot/grub/grub.conf
#Global section

default 1
timeout 10
serial --unit=0 --speed=9600 --word=8 --parity=no --stop=1
terminal --timeout=10 serial
#boot stanzas
title Debian-Sarge
root (hd0,0)
kernel /boot/vmlinuz-2.6.20-16 root=/dev/hda2 ro
initrd /boot/initrd.img-2.6.20-16

title Debian-Sarge, serial
root (hd0,0)
kernel /boot/vmlinuz-2.6.20-16 root=/dev/hda2 ro console=ttyS0,9600n8
initrd /boot/initrd.img-2.6.20-16

Disable any splash images by deleting or commenting out any lines referring to them.
Reboot a few times to test. Don’t disconnect the monitor and keyboard just yet—
wait until you connect successfully from a remote serial console.

Discussion
GRUB counts from zero, so default=1 makes the second boot stanza the default.

The serial=0,9600n8 line tells your server to be ready to accept control from the
serial line, and initializes the serial port.

console=ttyS0,9600n8 on the kernel line tells the kernel which serial port to use.

The --timeout=10 argument tells GRUB to default to the first device listed in the ter-
minal line after 10 seconds.

17.4 Booting to Text Mode on Debian | 487

If you have more than one serial port, how do you know which one is ttyS0 and
which one is ttyS1? If your motherboard manual doesn’t tell you, you’ll just have to
use trial and error.

When you want to see boot messages on an attached monitor and the remote serial
console, add the console option, like this:

#Global section
...
terminal --timeout=10 serial console

#boot stanzas
...
kernel /boot/vmlinuz-2.6.11-ln.std root=/dev/hda2 ro console=tty0
console=ttyS0,9600n8

If you have an attached keyboard and monitor, and an attached remote serial con-
sole, you can strike a key on either one to make it the default. If you don’t select one,
it will default to the first device listed on the terminal line.

Booting to text mode still gives you the option to run X Windows when you want;
simply run the startx command on the server to start up X Windows. You won’t see
an X session over the serial line—this only makes sense when you want an X session
on an attached monitor, or you are running remote X clients from the server.

See Also
• man 8 grub

• man 1 startx

• Remote Serial Console HOWTO:

http://www.tldp.org/HOWTO/Remote-Serial-Console-HOWTO/

• Chapter 7, “Starting and Stopping Linux,” in Linux Cookbook, by Carla Schroder
(O’Reilly) tells how to customize runlevels

• Chapter 12, “Managing the Bootloader and Multi-Booting,” in Linux Cookbook

• Recipe 15.2, “Using Both X Windows and Consoles,” in Linux Cookbook

17.4 Booting to Text Mode on Debian

Problem
Your Debian system boots X Windows automatically, probably with Gnome Display
Manager (GDM), K Display Manager (KDM), or X Display Manager (XDM). But,
Debian does not install with both text and graphical runlevels already configured like
Red Hat; runlevels 2–5 by default are all the same. Because you chose a graphical login
during installation, runlevels 2–5 all boot to a graphical login. How do you configure
it to boot to a text-only session?

488 | Chapter 17: Linux Server Administration via Serial Console

Solution
First, you need to know which display manager the system is using. Then, remove it
from the appropriate runlevels. To see which one is running:

$ ps ax | grep dm
 537 | S 0:00 /usr/bin/gdm
 544 | S< 0:10 /usr/X11R6/bin/X :0 -dpi 100 -nolisten tcp vt7 -auth /var/
lib/gdm/A:0-PbCLdj

This tells us that GDM, the Gnome Display Manager, is running. First, remove it
from all runlevels:

update-rc.d -f gdm remove
update-rc.d: /etc/init.d/gdm exists during rc.d purge (continuing)
 Removing any system startup links for /etc/init.d/gdm ...
 /etc/rc0.d/K01gdm
 /etc/rc1.d/K01gdm
 /etc/rc2.d/S99gdm
 /etc/rc3.d/S99gdm
 /etc/rc4.d/S99gdm
 /etc/rc5.d/S99gdm
 /etc/rc6.d/K01gdm

Next, have GDM start on runlevel 5, and stop on all the others:

update-rc.d gdm start 99 5 . stop 01 0 1 2 3 4 6 .
 Adding system startup for /etc/init.d/gdm ...
 /etc/rc0.d/K01gdm -> ../init.d/gdm
 /etc/rc1.d/K01gdm -> ../init.d/gdm
 /etc/rc2.d/K01gdm -> ../init.d/gdm
 /etc/rc3.d/K01gdm -> ../init.d/gdm
 /etc/rc4.d/K01gdm -> ../init.d/gdm
 /etc/rc6.d/K01gdm -> ../init.d/gdm
 /etc/rc5.d/S99gdm -> ../init.d/gdm

Now, edit /etc/inittab to set the default runlevel so that the system boots into text
mode. Debian’s default runlevel is 2, so why not stick with tradition:

The default runlevel.
id:2:initdefault:

Now refer to Recipes 17.2 or 17.3 to finish setting up your server.

Discussion
Booting to text mode still gives you the option to run X Windows when you want;
simply run the startx command on the server to start up X Windows. You won’t see
an X session over the serial line—this only makes sense when you want an X session
on an attached monitor, or you are running remote X clients from the server.

update-rc.d is the Debian command for editing runlevels. The -f flag means “force
removal of symlinks even if /etc/init.d/<name> still exists.” Runlevels are simply big
batches of symlinks, which you can see in the /etc/rc*.d directories. This preserves the

17.5 Setting Up the Serial Console | 489

startup script in /etc/init.d, which you definitely do not want to delete. If you’re feel-
ing nervous, run update-rc.d -f -n <foo> first to do a dry run, the -n switch meaning
“not really.”

See Also
• man 8 update-rc.d

• man 1 startx

• Remote Serial Console HOWTO:

http://www.tldp.org/HOWTO/Remote-Serial-Console-HOWTO/

• Chapter 7, “Starting and Stopping Linux,” in Linux Cookbook, by Carla Schroder
(O’Reilly) tells how to customize runlevels

• Recipe 15.2, “Using Both X Windows and Consoles,” in Linux Cookbook

17.5 Setting Up the Serial Console

Problem
You have a Linux laptop or workstation all ready to go into service as a serial
console; all you need to know is how to configure it, and how to use the communica-
tions software. You want to connect directly to your headless server.

Solution
First, you need these things:

• A DB9 serial port. A lot of laptops don’t have serial ports. An alternative is a
USB-to-serial connector.

• Null modem cable.

• Minicom, the serial communications program.

Then, configure Minicom, connect the two systems, and you’re done.

Start up Minicom with -s for Setup:

minicom -s
------[configuration]-------
| Filenames and paths
| File transfer protocols
| Serial port setup
| Modem and dialing
| Screen and keyboard
| Save setup as dfl
| Save setup as..
| Exit
Exit from Minicom

490 | Chapter 17: Linux Server Administration via Serial Console

Select Serial port setup. From the following menu, select the letter of the option you
want to change, then hit Return to get back to the “Change which setting?” screen:

| A - Serial Device : /dev/ttyS0
| B - Lockfile Location : /var/lock
| C - Callin Program :
| D - Callout Program :
| E - Bps/Par/Bits : 9600 8N1
| F - Hardware Flow Control : Yes
| G - Software Flow Control : No
|
Change which setting?

From here, hit Return again to get back to the main menu. Next, select the Modem and
dialing option, and make sure the Init string and Reset string settings are blank.
Finally, select Save setup as dfl to make this the default, and then Exit from Minicom.

Now, take your nice new null-modem cable, and connect the two machines. Then,
fire up Minicom:

minicom
Welcome to minicom 2.1
OPTIONS: History Buffer, F-key Macros, Search History Buffer, I18n
Compiled on Nov 12 2003, 19:21:57
Press CTRL-A Z for help on special keys
headless login:

Login to your server, and you're in business. To exit, hit Ctrl-A, X.

Discussion
What can you do now? Anything that you can do from any Linux command shell.
Now you can disconnect the keyboard and monitor from the server. Always turn
computers off before connecting or disconnecting PS/2 keyboards and mice. I know,
some folks say you don’t have to turn off the power before removing PS/2 keyboards
and mice. I say it’s cheap insurance against possibly damaging your system; the PS/2
port was not designed to be hot-pluggable.

The default Bps value for option E - Bps/Par/Bits in the Minicom setup can be any-
thing from 9600 to 115200, depending on your Linux distribution. The Bps setting,
when you’re connecting with a null modem cable, must be the same throughout all
of your configurations—in the bootloader, /etc/inittab, and Minicom. 9600 is the saf-
est. You can experiment with higher speeds: 38400 is the standard Linux console
speed. If it doesn’t work, try 19200.

The setserial command displays the speed of your UART:

$ setserial -g /dev/ttyS0
/dev/ttyS0, UART: 16550A, Port: 0x03f8, IRQ: 4

17.5 Setting Up the Serial Console | 491

But, it’s unlikely you’ll successfully go higher than 38400. These are all the possible
serial line speeds:

110 bps
300 bps
1200 bps
2400 bps
4800 bps
9600 bps
19,200 bps
38,400 bps
57,600 bps
115,200 bps

File permissions

File permissions can drive you a bit nuts. If the server won’t let you log in as root,
you need an entry in /etc/securetty on the server:

/etc/securetty: list of terminals on which root is allowed to login.
See securetty(5) and login(1).
console
for people with serial port consoles
ttyS0

If you cannot connect as an unprivileged user, it means /dev/ttyS0 is restricted to the
root user. First, check permissions and ownership:

$ ls -al /dev/ttyS0
crw-rw---- 1 root dialout 4, 64 Sep 7 22:22 /dev/ttyS0

/dev/ttyS0 is owned by the dialout group, so all you need to do is add your authorized
users to that group.

Some how-tos tell you to make /dev/ttyS0 mode 777, which from a security stand-
point isn’t a good idea. It’s not much trouble to add users to groups, and it’s a lot
safer.

See Also
• man 5 securetty

• man 1 minicom

• Remote Serial Console HOWTO:

http://www.tldp.org/HOWTO/Remote-Serial-Console-HOWTO/

• Chapter 8, “Managing Users and Groups,” in Linux Cookbook, by Carla Schroder
(O’Reilly)

492 | Chapter 17: Linux Server Administration via Serial Console

17.6 Configuring Your Server for Dial-in
Administration

Problem
You want to dial in from home or from other offsite locations, and perform remote
administration on a server from your remote serial console. So, you need to set up
your server for dial-in administration. You have a proper hardware-controller
modem, either internal or external, installed and ready to go. You have enabled your
server for serial administration. Now, all you need to know is how to configure the
server’s modem to answer the phone.

Solution
Use Minicom to set your modem to answer when you dial in. Your modem must be
connected when you type in the commands.

This recipe uses the Hayes AT command set, which most modems use. Check your
modem documentation to make sure. First, configure the basic modem settings, then
enter the modem commands:

minicom -s
 -------[configuration]------
 | Filenames and paths |
 | File transfer protocols |
 | Serial port setup |
 | Modem and dialing |
 | Screen and keyboard |
 | Save setup as dfl |
 | Save setup as.. |
 | Exit |
 | Exit from Minicom

Select Serial port setup, and enter everything as it’s shown here (except the serial
device, which must be the correct one for your system):

| A - Serial Device : /dev/ttyS0
| B - Lockfile Location : /var/lock
| C - Callin Program :
| D - Callout Program :
| E - Bps/Par/Bits :115200 8N1
| F - Hardware Flow Control : Yes
| G - Software Flow Control : No
|
| Change which setting?

When you’re finished, return to the main menu, and select Save setup as dfl, then
Exit. You’ll see this:

Welcome to minicom 2.1
OPTIONS: History Buffer, F-key Macros, Search History Buffer, I18n

17.6 Configuring Your Server for Dial-in Administration | 493

Compiled on Jan 1 2005, 19:46:57.

Press CTRL-A Z for help on special keys

Next, enter the following commands:

AT &F
OK
AT Z
OK
AT &C1 &D2 &K3 S0=2 M0
OK
AT E0 Q1 S2=255 &W

Then, hit Ctrl-A, Q for the final prompt:

| Leave without reset| |
Yes No

Now, you can dial directly in to your server, and it will answer on the second ring.
You’ll get the same login as when you connect directly with a null modem cable.

Discussion
You can get away with cheap modems on whatever box you’re dialing in from, but it
pays to spend the money for a better one on the server.

Don’t worry too much about Bps settings because modern modems auto-negotiate
line speeds by themselves. You might try lower speeds if you have problems estab-
lishing a reliable connection.

How do you know what your serial port number is? The following command shows
that the system has a single serial port, /dev/ttyS0. You can tell which one it is
because it’s the one with a 16550A UART:

$ setserial -g /dev/ttyS[0123]
/dev/ttyS0, UART: 16550A, Port: 0x03f8, IRQ: 4
/dev/ttyS1: No such device
/dev/ttyS2, UART: unknown, Port: 0x03e8, IRQ: 4
/dev/ttyS3, UART: unknown, Port: 0x02e8, IRQ: 3

The modem commands are copied from Chapter 13 of the Remote Serial How-to.
The complete set of Hayes AT commands is available from many Internet sources.
It’s a good idea to keep a hardcopy on hand, or to make sure your modem documen-
tation is handy:

minicom -o -s
Start Minicom without sending an initialization string to the modem, and open
Minicom’s setup menu.

494 | Chapter 17: Linux Server Administration via Serial Console

AT
Attention, modem! I have new commands for you.

&F
Restore factory configuration.

Z
Reset to profile 1.

&C1
Data Carrier Detect (DCD) is on; be ready for data from the calling modem.

&D2
Data Terminal Ready (DTR); hang up when the calling modem has finished.

&K3
CTS/RTS handshaking, to prevent lost login characters.

S0=2
Answer incoming calls after two rings.

M0
Turn modem speaker off.

E0
Do not echo modem commands to the screen to prevent confusing the console.

Q1
Do not display modem responses to the screen.

S2=255
Disable modem command mode.

&W
Write changes to nonvolatile memory (NVRAM).

You should have a complete command listing with your modem documentation.
Most modems use the Hayes AT command set, which you can easily find on the
Internet.

If you want to hear your modem noises, change M0 to M1, which turns the speaker on
during the handshaking only, then use L1, L2, or L3 to set the volume. L1 is the quiet-
est, L3 the loudest.

See Also
• man 8 setserial

• man 1 minicom

• Remote Serial Console HOWTO:

http://www.tldp.org/HOWTO/Remote-Serial-Console-HOWTO/

• The Serial HOWTO goes extremely in-depth into how serial ports work:

http://www.tldp.org/HOWTO/Serial-HOWTO.html

17.7 Dialing In to the Server | 495

17.7 Dialing In to the Server

Problem
Your server is all set up for remote serial administration over dial-up, so how do you
dial in to it and get to work?

Solution
Use your good friend Minicom, your all-in-one serial communications program.

To dial out from your remote serial console machine, enter the phone number in
Minicom’s dialing directory, then hit the Dial command:

$ minicom
Initializing modem

Welcome to minicom 2.1

OPTIONS: History Buffer, F-key Macros, Search History Buffer, I18n
Compiled on Jan 1 2005, 19:46:57.

Press CTRL-A Z for help on special keys

AT S7=45 S0=0 L3 V1 X4 &c1 E1 Q0
OK
Ctrl-A, D
____________________[Dialing Directory]________________ _ _ _
| Name Number Last on Times Script |
|1 fileserver1 9322744 0 |
| |
| |
| |
| |
| |
| (Escape to exit, Space to tag) |
|__ _ _ |
 Dial Find Add Edit Remove moVe Manual

________________[Autodial]_____________ _ _ _
| |
| Dialing : fileserver1 |
| At : 9322744 |
| |
| Time : 39 Attempt #1 |
| |
| |
| Escape to cancel, space to retry |
|______________________________________ _ _ |
Connected. Press any key to continue
<Enter>

496 | Chapter 17: Linux Server Administration via Serial Console

CONNECT 115200/V34/LAPM/V42BIS/33600:TX/33600:RX
fileserver1.carla.com ttyS0 login: carla
Password: ********
[carla@fileserver1:~]$

And there you are. To exit your remote session:

[carla@fileserver1:~]$ logout

Discussion
This makes a nice backup if your Internet service goes down, or your Ethernet fails,
or if you need to reboot your server.

Don’t worry too much about Bps settings, because modern modems auto-negotiate
line speeds by themselves. You might try lower speeds if you have problems establish-
ing a reliable connection. Use the Edit command in the dialing menu to try different
line speeds.

See Also
• man 1 minicom

• Remote Serial Console HOWTO:

http://www.tldp.org/HOWTO/Remote-Serial-Console-HOWTO/

• The Serial HOWTO goes extremely in-depth into how serial ports work:

http://www.tldp.org/HOWTO/Serial-HOWTO.html

17.8 Adding Security

Problem
Because the serial line is a direct line to the kernel, bypassing firewalls and intrusion
detectors, you want to set up some barriers against intruders, especially for dial-in
administration.

Solution
Here are some ways to improve the security of a serial line:

• Direct all logging to a remote logging server.

• Use a higher-end modem with built-in security features such as automatic call-
backs, caller line identification, and approved caller lists.

• Don’t use a phone line with a publicly listed number.

• Disable the SysRq key with this line in /etc/sysctl.conf: kernel.sysrq = 0.

17.9 Configuring Logging | 497

• AT S2=255 disables the modem’s command mode, but a remote attacker could
possibly reset it to command mode, then input their own nefarious commands.
A modem that uses DIP switches or jumpers to put it in and out of command
mode is great for preventing this sort of attack.

Discussion
Your first line of defense is an obscure phone number. Security-through-obscurity
has its place in your security architecture; don’t make it easy for unsophisticated
troublemakers. But this will not foil a war-dialer. If a war-dialer should target your
network, it won’t take long to discover which phone lines have modems on them.
Then, to gain access, they’ll need to get past the initial login. A cracker can cause you
grief simply by repeatedly dialing the server’s phone number—denial-of-service
attacks are easy to launch and difficult to defend against. High-end modems like the
U.S. Robotics Courier have security features that help against a persistent attacker,
such as automatic callback and approved caller lists. You can’t stop a cracker from
dialing your number, but you can try to stop them from getting to a login prompt.

The SysRq key allows the user to send commands directly to the kernel. It is used pri-
marily by kernel developers; otherwise, there is no good reason to leave it active.
Check to see if support for it is compiled into your kernel. Look in your /boot/config-*
file under Kernel hacking:

CONFIG_MAGIC_SYSRQ=y

This means it is. Another option is to rebuild the kernel and remove support for it; if
you’re not doing kernel hacking, there is no reason to have it available.

See Also
• Recipe 19.19

• Remote Serial Console HOWTO:

http://www.tldp.org/HOWTO/Remote-Serial-Console-HOWTO/

• The Serial HOWTO goes extremely in-depth into how serial ports work:

http://www.tldp.org/HOWTO/Serial-HOWTO.html

17.9 Configuring Logging

Problem
You want to direct kernel messages to your serial console and to a logfile so that you
can follow along in real-time, and also have a logfile to study later. How do you do
this?

498 | Chapter 17: Linux Server Administration via Serial Console

Solution
Configure /etc/syslog.conf to route your kernel messages where you want them to go:

kern.* -/var/log/kern.log
kern.* /dev/console
kern.* @xena

This sends all kernel messages to three different locations. The first one is a local file,
the second one is your serial console, and the third one is the remote logging server
Xena.

There will be at least on default kern entry, so make sure you find and change or
delete it if it doesn’t suit your logging scheme.

Discussion
You may fine-tune your logging because syslog supports eight different severity levels:

debug, info, notice, warning, err, crit, alert, emerg

When you select one of these, you also get all the higher-priority messages as well.
This example:

kern.crit /dev/console

sends crit, alert, and emerg messages to the serial console.

You must restart klogd after changing this file. On Debian, use this command:

/etc/init.d/klogd restart

Fedora uses this command:

/etc/init.d/sysklogd restart

On Linux, the system logging daemon is actually two daemons: sysklogd and klogd.
klogd is the kernel logging daemon. Debian gives each one its own init file; Fedora
starts them both from the same file.

See Also
• man 5 syslog.conf

• Recipe 19.19

17.10 Uploading Files to the Server

Problem
You need to transfer some files to the server—perhaps a new NIC driver, or replacing a
corrupted drive controller, or replacing a hopelessly messed-up iptables configuration.
This is not Ethernet, so you can’t use scp, or drag-’n’-drop in a file manager. What do
you do?

17.10 Uploading Files to the Server | 499

Solution
Remember the olden days of Bulletin Board Services, and Xmodem, Ymodem, Zmo-
dem, and Kermit file transfer protocols? Because you’re using Minicom, you’ll need
one of these. Zmodem is the best choice, as it has built-in error correction, and is the
most reliable.

First, install the lrzsz package on the server; this has the same package name for both
RPM and Debian packages.

Then, log in to the server from the remote console with Minicom. Type this com-
mand on the server to tell it to wait to receive a file:

[server@remote:~]$ rz
rz waiting to receive.**|B0100000023be50

Then hit Alt-A, Z, and then S to bring up Minicom’s file-sending menu. First, choose
Zmodem protocol:

--[Upload]---
| zmodem |
| ymodem |
| xmodem |
| kermit |
ascii

Then, select the file or files you want to upload:

---------[Select one or more files for upload]------
|Directory: /home/carla |
| [..] |
| [.AbiSuite] |
| [.cddb] |
| [.cfagent] |
| [.config] |
| [.fonts] |
| (Escape to exit, Space to tag) |
||
 [Goto] [Prev] [Show] [Tag] [Untag] [Okay]

You don’t have to navigate the menu if you already know the filename because you
can type in the filenames by hitting “Okay” without tagging any files, which brings
up this menu:

|No file selected - enter filename: |
>

To exit rz on the server, hit Ctrl-X. It might take a few tries.

500 | Chapter 17: Linux Server Administration via Serial Console

Discussion
Files are transferred to the current working directory on the server, so be sure you’re
in the directory you want the files to land in.

See Also
• man 1 rz

• man 1 minicom

501

Chapter 18 CHAPTER 18

Running a Linux Dial-Up
Server

18.0 Introduction
In these modern times, dial-up networking might seem a bit quaint. But it still has its
place. Many parts of the world still have no access to affordable broadband. A dial-
up server is an inexpensive way to provide remote administration access, and to set
up a quick and cheap WAN. You may also share a dial-up Internet account; even
though that sounds like a recipe for frustration, there are times when it works out.
For example, two or three people who don’t do a lot of heavy-duty Interneting could
get by all right.

You should use a good-quality hardware-controller modem, ideally from a vendor
that supports Linux. Messing with cheapie modem drivers on a server isn’t worth the
pain.

18.1 Configuring a Single Dial-Up Account with
WvDial

Problem
You need to set up a dial-up Internet account on your Linux box, but you don’t
know what dialer or configuration utility to use. Or, you know about KPPP and
Gnome-PPP, which are good utilities, but KPPP requires KDE libraries, Gnome-PPP
requires Gnome libraries, and both require X Windows. You don’t want to down-
load all the baggage that comes with them; you just want a simple standalone dialer,
or you want a command-line dialer.

502 | Chapter 18: Running a Linux Dial-Up Server

Solution
The WvDial dial-up program runs from the command line, and runs on any Linux
distribution. These are the steps to configure a single account:

• Make sure you have WvDial and pppd (point-to-point protocol daemon)
installed

• Have your Internet account login information handy

Then, make sure that /etc/ppp/options contains a basic set of options. You can copy
this exactly:

asyncmap 0
crtscts
lock
hide-password
modem
proxyarp
lcp-echo-interval 30
lcp-echo-failure 4
noipx

As root, start up the WvDial configuration script, giving it the name of the configura-
tion file, exactly as shown here:

wvdialconf /etc/wvdial.conf
Scanning your serial ports for a modem.

ttyS0<*1>: ATQ0 V1 E1 -- OK
ttyS0<*1>: ATQ0 V1 E1 Z -- OK
ttyS0<*1>: ATQ0 V1 E1 S0=0 -- OK
[...]
Found a modem on /dev/ttyS0.
Modem configuration written to /etc/wvdial.conf.
ttyS0<Info>: Speed 115200; init "ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0"

This writes the modem defaults to /etc/wvdial.conf. Now, open /etc/wvdial.conf, and
add your login information, using your own dial-up number, login, and password:

[Dialer Defaults]
Modem = /dev/ttyS0
Baud = 115200
Init1 = ATZ
Init2 = ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
ISDN = 0
Modem Type = Analog Modem
Phone = 123-4567
Username = alrac
Password = passfoo

Save your changes, and try dialing in by running the wvdial command:

18.1 Configuring a Single Dial-Up Account with WvDial | 503

wvdial
--> WvDial: Internet dialer version 1.54.0
--> Initializing modem.
--> Sending: ATZ
ATZ
OK
--> Sending: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
OK
--> Modem initialized.
--> Sending: ATDT9322744
--> Waiting for carrier.
ATDT9322744
CONNECT 115200
--> Carrier detected. Starting PPP immediately.
--> Starting pppd at Thu March 13 13:54:09 2007
--> pid of pppd: 7754
--> Using interface ppp0
--> local IP address 68.169.174.170
--> remote IP address 68.169.174.12
--> primary DNS address 68.169.174.2
--> secondary DNS address 68.169.174.3

Test your connection by surfing the Web or pinging some reliable hosts:

$ ping -C2 yahoo.com
PING yahoo.com (216.109.112.135) 56(84) bytes of data.
64 bytes from w2.rc.vip.dcn.yahoo.com (216.109.112.135): icmp_seq=1 ttl=50 time=133
ms
64 bytes from w2.rc.vip.dcn.yahoo.com (216.109.112.135): icmp_seq=2 ttl=50 time=138
ms

There you go, all ready to web surf at the speed of dial-up.

Discussion
S0=0 tells the modem to answer the phone immediately, so delete this if you don’t
want to enable dial-in access. Or, change the value to 1, 2, 3, or 4 to answer on the
first, second, etc. ring.

It is better to use /dev/ttyS* than /dev/modem. On some Linux distributions, /dev/
modem is supposed to be a softlink to the modem, but it isn’t always correct. It is
better to name it explicitly.

Modern modems are good at auto-negotiating line speeds. 115200 is a safe default. If
you have problems sustaining a connection, try lower speeds:

9,600 bps
19,200 bps
38,400 bps
57,600 bps

See man wvdial.conf to see what the default configuration values are.

504 | Chapter 18: Running a Linux Dial-Up Server

See Also
• man 1 wvdial

• man 5 wvdial.conf

• WvDial: http://open.nit.ca/wiki/?page=WvDial

18.2 Configuring Multiple Accounts in WvDial

Problem
You have several dial-up accounts, so how do you configure WvDial to handle them?

Solution
Add different sections to your /etc/wvdial.conf. This example divides it into a section
containing global defaults, then three different dial-up accounts:

[Dialer Defaults]
Modem = /dev/ttyS3
Baud = 115200
Init1 = ATZ
Init2 = ATQ0 V1 E1 &C1 &D2 +FCLASS=0
ISDN = 0
Modem Type = Analog Modem
Dial Attempts = 10

[Dialer ISP1]
Stupid Mode = on
Phone = 1234567
Username = alrac
Password = secretfoo
Idle Seconds = 600

[Dialer ISP2]
Phone = 2345678
Username = foobear@isp1.net
Ask Password = yes
Idle Seconds = 200

[Dialer ISP2]
Stupid Mode = on
Phone = 3456789
Username = fredfoo@isp2.com
Password = fredsecret

Then, connect to the one you want by naming the Dialer section:

wvdial ISP2

18.3 Configuring Dial-Up Permissions for Nonroot Users | 505

Discussion
Another way to do this is to put each account into a separate configuration file, then
call the file with the --config option:

wvdial --config /etc/wvdial-isp2

This gives you the flexibility to set up different configurations for different users; just
remember to give them read permissions on the file.

Unprivileged users can have their own personal WvDial configurations, as long they
have permissions on the necessary files. See the next recipe to learn how to do this.

See Also
• man 1 wvdial

• man 5 wvdial.conf

• WvDial: http://open.nit.ca/wiki/?page=WvDial

18.3 Configuring Dial-Up Permissions for Nonroot
Users

Problem
You want your users to have dial-up privileges, but so far in this chapter, only the
root user can use dial-up. How do you make dial-up available to nonprivileged users?

Solution
This takes a bit of tweaking permissions on a number of files:

/etc/ppp/chap-secrets
/etc/ppp/pap-secrets
/dev/ttyS*
/usr/sbin/pppd
/var/lock

Some Linux distributions come with the dialout group for dial-up users. Others use
dip or uucp. Make /etc/ppp/chap-secrets, /etc/ppp/pap-secrets, and /dev/ttyS* owned by
the dialout group (or dip, or uucp, it doesn’t matter as long as they are all in the same
group):

chown root:dialout /dev/ttyS3 /etc/ppp/chap-secrets \
 /etc/ppp/pap-secrets

Next, put your authorized users in the same group these files belong to:

dialout:x:20:alrac,foobear,fredfoo

506 | Chapter 18: Running a Linux Dial-Up Server

Make sure that /etc/ppp/chap-secrets and /etc/ppp/pap-secrets are readable and writ-
able only by the owner and group owner:

chmod 0660 /etc/ppp/chap-secrets /etc/ppp/pap-secrets

Next, check the /var/lock directory. It should be wide open to the world, and the
sticky bit set:

$ ls -ld /var/lock
drwxrwxrwt 3 root root 4096 14. Okt 07:37 /var/lock

If it isn’t, make it so:

chmod 1777 /var/lock

pppd needs to be suid, as this shows:

$ ls -l /usr/sbin/pppd
-rwsr-xr-- 1 root dip 232536 Dec 30 2004 /usr/sbin/pppd

If it isn’t, make it so:

chmod 4754 /usr/sbin/pppd

Discussion
If the group owner of any file is root, do not add users to the root group! Change the
group owner to dialout (or whatever group you choose).

You’ll see messages in your logfiles complaining that “Warning—secret file /etc/ppp/
pap-secrets has world and/or group access.” Don’t worry about them—just make
sure they are not world-readable, and be careful who goes in the dialout group.

The little s in -rwsr-xr-- tells you /usr/sbin/pppd is suid root. This means ordinary
users get to run pppd with the necessary root privileges it needs to work. If you get
“Cannot open device /dev/ttyS0- Device or resource busy” errors as an unprivileged
user, chances are either /usr/sbin/pppd is not suid root, or /var/lock has incorrect per-
missions. suid opens a potential security hole, and should not be used casually; this is
one of the few times where it is OK to use it.

See Also
• Chapters 8 and 9 of Linux Cookbook, by Carla Schroder (O’Reilly) for more

information on file permissions, and user and group management.

• man 1 wvdial

• man 5 wvdial.conf

• man 8 pppd

• WvDial: http://open.nit.ca/wiki/?page=WvDial

18.4 Creating WvDial Accounts for Nonroot Users | 507

18.4 Creating WvDial Accounts for Nonroot Users

Problem
You want your users to have their own private dial-up accounts, with the configura-
tion file stored in their own home directories.

Solution
First, make sure all the necessary permissions and group ownerships are configured
as in Recipe 18.3. Then, WvDial configuration for individual users is done just like in
the first two recipes in this chapter, except the WvDial configuration file is stored in
their home directories. Create the new configuration file as the user, with the --config
option to specify the location of the user’s personal configuration file:

$ wvdialconf --config ~/.wvdialrc

The file can have any name you like; using .wvdialrc creates a default that is called by
using the wvdial command with no options. Multiple accounts are created by using
Dialer sections, and called just like in the other recipes:

$ wvdial ISP2

If the file has a different name, it must be called with the --config option:

$ wvdial --config ~/dialup

If there are multiple Dialer sections in it, call them this way:

$ wvdialconf --config ~/dialup ISP1

Discussion
Some users like having a desktop icon to click on, instead of running a shell com-
mand. It is easy to make one; check the documentation for whatever desktop they
are running, as each one is a little different.

For simple individual dial-up accounts, graphical utilities like KPPP and GnomePPP
are nice for your users. But, you often still have to make manual edits to /etc/ppp/
options or other ppp files. A common one is replacing the auth option in /etc/ppp/
options with noauth. It shouldn’t even be there, as virtually no commercial ISPs
require two-way authentication. Most Linux distributions make noauth the default
these days, thankfully.

See Also
• man 1 wvdial

• man 5 wvdial.conf

• man 8 pppd

• WvDial: http://open.nit.ca/wiki/?page=WvDial

508 | Chapter 18: Running a Linux Dial-Up Server

18.5 Sharing a Dial-Up Internet Account

Problem
You have a small number of users who need to share a single dial-up Internet
account. Maybe it’s all you can afford, or it’s all that’s available, or maybe your
needs are so minimal you don’t need broadband. It could even be a fiendishly clever
method for discouraging users from web surfing. You might have a mix of platforms
on the client side—Linux, Mac, Windows. Your LAN is already set up and function-
ing. You want to use an old PC as your Internet gateway.

Solution
Use an old PC to act as your Internet gateway. Configure a dial-up account on this
machine, then configure IP masquerading to direct all those Internet packets to all
the hosts on your LAN.

You’ll need the following:

• A modem on the dial-up server

• A program like WvDial, KPPP, or Gnome-PPP to configure dial-up networking
on the server

First, connect the modem to the phone line, and set up your dial-up account. Do not
connect the gateway box to the LAN yet. Get your dial-up account or accounts set
up and working.

Then, run these iptables rules from the command line:

modprobe iptable_nat
iptables -t nat -A POSTROUTING -o ppp0 -j MASQUERADE
echo "1" > /proc/sys/net/ipv4/ip_forward

Now, when the gateway machine is connected to the LAN, all users can share the
connection. This provides no security whatsoever, and no persistence between
reboots, so you need to add these rules to a proper iptables firewall script. Please see
Chapter 3 to learn how to build a firewall.

Discussion
This is a great time to dig out that old AMD 586 box that lies under a layer of dust in
your closet and put it to work. Don’t use one of your user’s PCs because this leads to
frustration and woes. You can’t control what the user does with it, and it must be on
all the time. And, one of the reasons servers are more reliable than desktop PCs is
they are not asked to do nearly as much, so you’ll get better performance.

18.6 Setting Up Dial-on-Demand | 509

There are a lot of excellent specialized mini-Linux distributions made expressly to
serve as firewalls and Internet gateways. Here is a list of some excellent ones to try
that support dial-up networking:

• IPCop (http://www.ipcop.org/)

• FreeSCO (http://www.freesco.org/)

• Shorewall (http://www.shorewall.net/)

See Also
• man 8 iptables

• Building Secure Servers with Linux, by Michael D. Bauer (O’Reilly)

18.6 Setting Up Dial-on-Demand

Problem
You don’t want to babysit a shared dial-up connection, or leave it on all the time;
you want it to connect itself on demand, like when a user clicks on a web browser or
checks email, and disconnect after a period of inactivity.

Solution
First, get WvDial and ppp working reliably, as we covered in the previous recipes.

Next, create a file called /etc/ppp/peers/demand so that it looks like this, naming your
own Dialer section, modem port, and user login:

noauth
name wvdial
usepeerdns
connect "/usr/bin/wvdial --chat ISP1"
/dev/ttyS2
115200
modem
crtscts
defaultroute
noipdefault
user alrac@isp.net
idle 300
persist
demand
logfd 6

Now, you can start up your new demand-dial server with the pon command, naming
the configuration file you just created:

pon demand

510 | Chapter 18: Running a Linux Dial-Up Server

It will not dial up right away, but will wait for a user to initiate a link by trying to
connect to the Internet. Test this by pinging some web sites, opening a web browser,
or checking email. You can verify that the pppd daemon has started with ps:

$ ps ax | grep pppd
 6506 ? Ss 0:00 /usr/sbin/pppd call demand

Shut down the link with poff:

poff

Discussion
The /etc/ppp/peers/demand file can be named anything you like.

pon means “pppd on” and poff means “pppd off.”

The demand option prepares the pppd link; it configures the interface (ppp0), then
stops short of connecting. Then, when packets start moving, such as checking email,
pppd dials in and establishes the connection.

The persist option keeps the link open even when packets are no longer flowing
over the link.

idle 300 means that the connection will close after 300 seconds of inactivity. You can
set this to any value, or not use it at all if you want maximum availability.

You may do all of this with ppp alone, and not use WvDial. I like WvDial because it
is easy to use. WvDial assumes that most modems understand the Hayes AT com-
mand set. ppp was created in the days when modem commands were not standard,
so its structure and configuration are more complex.

See Also
• man 1 wvdial

• man 5 wvdial.conf

• man 8 pppd

• WvDial: http://open.nit.ca/wiki/?page=WvDial

18.7 Scheduling Dial-Up Availability with cron

Problem
You want to shut down dial-up activity completely during nights and weekends, as
no one will be using it. Your modem bandwidth costs you money, or you don’t want
it accidentally running when no one is around just because someone left an IRC ses-
sion or email client open.

18.7 Scheduling Dial-Up Availability with cron | 511

Solution
A simple cron job will do the trick. If you are using demand dialing create a crontab,
as root, using the name of your own /etc/ppp/peers/[foo] file:

crontab -e
00 6 * * 1-5 /usr/bin/pon demand
00 20 * * 1-5 /usr/bin/poff

Save the file without renaming it, and then exit the editor. This example starts dial-
on-demand every morning at 6 a.m., and shuts it down every evening at 8 p.m.
Verify your new rules with the -l (list) switch:

crontab -l
00 6 * * 1-5 /usr/bin/pon filename
00 20 * * 1-5 /usr/bin/poff

Discussion
crontabs are user-specific, so when you want to create a system-wide cron job, you
must do so as root. crontab opens the default editor as specified in your ~/.bashrc. You
may use any editor you like. In the example in the Solution, crontab opened the Vim
editor. This is what the ~/.bashrc entry that defines your default editor looks like:

EDITOR=vim
VISUAL=$EDITOR
export EDITOR VISUAL

crontab -e means “edit the current user’s crontab.”

This is what the fields in crontab mean:

field allowed values
----- --------------
minute 0-59
hour 0-23
day of month 1-31
month 1-12 (or names, see below)
day of week 0-7 (0 or 7 is Sun, or use names)

You may also use WvDial commands if your setup is like the first two recipes in this
chapter, and you are not using demand dialing:

crontab -e
00 6 * * 1-5 /usr/bin/wvdial filename
00 20 * * 1-5 kill `pidof wvdial`

This starts up WvDial at 6 a.m. and shuts it down at 8 p.m.

See Also
• man 5 crontab

• Recipe 6.15, “Setting Your Default Editor,” in Linux Cookbook, by Carla Schroder
(O’Reilly) to learn more about customizing the editor that crontab uses

512 | Chapter 18: Running a Linux Dial-Up Server

18.8 Dialing over Voicemail Stutter Tones

Problem
When you have a message on your voicemail, the dial tone changes to a stutter tone.
Your modem interprets this as no dial tone, and will not dial out.

Solution
Add or change this line in /etc/wvdial.conf:

Abort on No Dialtone = no

This tells WvDial to dial no matter what, without checking for a dial tone.

Discussion
Hopefully, you are not in the sort of environment where phone cables are continu-
ally coming unplugged, which would make using this option a bit of a problem. You
might want to turn up the modem speaker so you can hear it dialing out, just to keep
an eye (OK, ear) on it, with these options added to the Init2 line in /etc/wvdial.conf:

M1 L3

M1 turns on the speaker for dialing and the handshake only. L1 is the lowest volume.
L2, L3, and L4 are progressively louder.

See Also
• man 1 wvdial

• man 5 wvdial.conf

• man 8 pppd

• WvDial: http://open.nit.ca/wiki/?page=WvDial

18.9 Overriding Call Waiting

Problem
Your phone line has call waiting, so whenever you get a call when you are online it
messes up your connection—you get disconnected, or your downloads get cor-
rupted or interrupted.

Solution
Disable call waiting in /etc/wvdial.conf. This option disables call waiting globally:

Dial Prefix = *70,

This disables it per phone number:

Phone = *70,1234567

18.10 Leaving the Password Out of the Configuration File | 513

You can add another comma or two to give it more time to take effect before dialing
the number, if necessary.

Discussion
The V.92 modem standard allows for more options than merely disabling call wait-
ing: ignore, disconnect, or place the Internet connection on hold and take the call.
The last option requires using an ISP that supports this. You’ll need a modem that
supports these features to make them work.

See Also
• man 1 wvdial

• man 5 wvdial.conf

• man 8 pppd

• WvDial: http://open.nit.ca/wiki/?page=WvDial

18.10 Leaving the Password Out of the Configuration
File

Problem
You don’t want to leave your dial-up account password in the WvDial configuration
file because it is stored in plaintext.

Solution
Add the Ask Password = yes option to your WvDial configuration file, like this:

[Dialer Defaults]
Modem = /dev/ttyS3
Baud = 115200
Init1 = ATZ
Init2 = ATQ0 V1 E1 &C1 &D2 +FCLASS=0
ISDN = 0
Modem Type = Analog Modem
Dial Attempts = 10

[Dialer ISP1]
Stupid Mode = on
Phone = 1234567
Username = alrac
Ask Password = yes
Idle Seconds = 600

Then, you’ll be prompted for your password during login.

514 | Chapter 18: Running a Linux Dial-Up Server

Discussion
This is not suitable for a dial-up server, unless you enjoy scampering to the server
and entering a password every time someone needs to go online. It adds a bit of pro-
tection for users who do not have control over who uses their computers.

See Also
• man 1 wvdial

• man 5 wvdial.conf

• man 8 pppd

• WvDial: http://open.nit.ca/wiki/?page=WvDial

18.11 Creating a Separate pppd Logfile

Problem
All of your pppd messages are getting dumped into /var/log/messages, and making a
big mess, and you would rather have them going to a separate file.

Solution
Create your logfile:

touch /var/log/ppp

Then, add the logfile option to /etc/ppp/options:

logfile /var/log/ppp

Delete any references to logfd, as the two options are mutually exclusive.

Discussion
There is no downside to having separate logfiles for your services; it makes it a lot
easier to find out what is happening on your system.

Customizing the standard Linux syslog is bit more difficult than it needs to be; see
Chapter 19 to learn how to build a robust, easily customizable logging server with
syslog-ng.

See Also
• man 8 pppd

515

Chapter 19 CHAPTER 19

Troubleshooting Networks

19.0 Introduction
Linux provides a host of software utilities for troubleshooting network problems.
This chapter covers a number of excellent Linux utilities for pinpointing problems
and seeing what’s happening on your network. These are all intended to be quick
and easy to use, rather than for ongoing monitoring. Check out Chapters 13 and 14
on Nagios and MRTG to learn how to set up monitoring and alerting.

Your workhorses are going to be ping, tcpdump, Wireshark, and ngrep. While ping is
still the number one tool for checking connectivity, tcpdump, Wireshark, and ngrep
all provide different and excellent ways to capture and read what’s going over your
wires. You can’t count on applications to generate useful error messages when com-
mands fail (or sometimes to generate any messages at all), but nothing is hidden
from a packet sniffer. When you don’t know if it’s a hardware or software problem,
run these first to narrow down the possibilities. Software problems are more com-
mon than hardware problems, so don’t break out the hardware testers until you have
eliminated software glitches. Of course, it never hurts to rule out the immediately
obvious, such as a disconnected cable or a powered-down machine.

Practice running the various utilities in this chapter as often as you can on healthy
systems. Then, you’ll know what a healthy network looks like, and you’ll develop
elite skills that will come in handy when there are troubles.

Don’t forget your logfiles. Most applications come with an option to crank up the
logging levels to debug. Do this to collect as much data as possible, and then don’t
forget to turn the level back down to something sane so you don’t fill your logfiles in
record time.

516 | Chapter 19: Troubleshooting Networks

Testing and Tracing Cabling
If you’re into testing your own cabling, there are all kinds of interesting tools to help
you. A basic multimeter should be your first purchase, along with an electrical outlet
tester. These are inexpensive little yellow three-pronged gadgets with colored LEDs.
Just plug one into an electrical outlet, and the LEDs will tell you if it is healthy or not.

Multimeters are useful for a lot of jobs, such as finding shorts and opens, testing for
continuity and attenuation, and determining whether a wire is terminated correctly.
They’re also great for other jobs, such as testing power supplies and motherboards.

For installed cable, you’ll need a special continuity tester that comes in two pieces—
one for each end of the cable. Some of these also come with tone generators for
tracing cables. If you crimp your own cables, you ought to invest in a good cable
tester.

Tracking down cable problems inside walls—and tracing and identifying them—
calls for a “fox and hound pair,” which is a delightful name for a tone generator and
amplifier pair. The fox connects to a cable and generates a tone, and then the hound
sniffs out the tone to identify and trace the cable. The fox reads the tone through the
wire’s insulation, and even through drywall.

If you’re not interested in being your own cable guru, find yourself a professional
who understands analog wiring, digital wiring, and computer cabling, because these
days, you’re going to find all three jumbled together. Even when you are your own
cabling guru, you’ll still need an electrician and a telecom technician from time to
time. Never try to be your own homegrown electrician—any wire that carries cur-
rent should be touched only by a professional.

Spares for Testing
Don’t forget hubs and switches in your bug hunts. Ordinary dumb hubs and
switches are dirt cheap—keep a couple on hand for swapping with a suspect switch
or hub. Keep extra patch cables, too. Using your handy network administrator lap-
top for portable testing is a fast way to figure out which side of a switch a problem is
on, or even whether it’s on the switch itself.

19.1 Building a Network Diagnostic and Repair
Laptop

Problem
You want to set up an old laptop as a portable network diagnostic station. What
should you have on it?

19.1 Building a Network Diagnostic and Repair Laptop | 517

Solution
This is a fine and endlessly useful thing to have. It doesn’t have to be a super-duper
brand-new laptop; any one of reasonably recent vintage that supports USB 2.0 and
Linux will do. It should have:

• Two wired Ethernet interfaces and one wireless

• Modem

• USB 2.0 ports

• Serial port

• Serial terminal

Most laptops don’t have a serial port, so you can use a USB-to-serial adapter instead.

Another great thing to have is a PATA/SATA-to-USB 2.0 adapter for rescuing failing
hard drives. This lets you plug in either 2.5" or 3.5" PATA or SATA hard drives, and
then do a direct copy to save your data. Use the excellent GNU ddrescue utility for
this. If your primary hard drive isn’t big enough to hold the data, hook up a second
one with another PATA/SATA-to-USB 2.0 adapter, or copy it over your network.
Why not just copy it over the network in the first place? Because a failing drive is
going to take the networking stack down along with everything else.

Install whatever Linux distribution you want, and these applications:

OpenSSH
Secure remote administration.

sshfs
Securely mount remote filesystems.

telnet
Insecurely login to servers; useful for several kinds of tests.

Nmap
Port scanner and network exploration.

tcptraceroute; traceroute
Show routes taken to other hosts.

tcpdump; Wireshark
Packet sniffers.

Netstat
Show listening and connected ports.

netstat-nat
Display NAT connections.

ping
Send ICMP ECHO_REQUEST to network hosts.

518 | Chapter 19: Troubleshooting Networks

fping
Send ICMP ECHO_REQUEST to multiple network hosts.

echoping
Test that a server is listening.

ssmping
Test multicast connectivity.

ngrep
Packet sniffer that does plaintext and regular expression filtering, rather than fil-
tering on hosts, protocols, and TCP flags.

etherwake
Send Wake-on-LAN packets to WOL-compliant computers.

iptraf
Console-based network statistics utility.

httping
Ping-like program for http-requests.

iftop
Display bandwidth usage on an interface.

iperf
Measure TCP and UDP bandwidth performance.

host
Find hostnames or IP addresses.

dig
Query name servers.

arping
Send ARP REQUEST to check for duplicate IP addresses, and to see if a host is up.

GNU ddrescue
Excellent dd-type block copier for rescuing failing hard drives. GNU ddrescue is
written by Antonio Diaz; don’t confuse it with the older dd-rescue, authored by
Kurt Garloff. That is also a good rescue utility, but the newer GNU ddrescue is
faster and does a better job.

net-tools package; iproute2 package
See the Introduction to Chapter 6 for additional information on the net-tools and
iproute2 packages.

Get these utilities for wireless troubleshooting:

Kismet
 802.11b wireless network sniffer.

wireless-tools
Userspace tools for Linux wireless extensions.

19.2 Testing Connectivity with ping | 519

madwifi-tools
Userspace tools for the Atheros Wireless driver.

hostapd
Wireless authenticator.

aircrack-ng
Crack and recover WEP/WPA passwords.

airsnort
WLAN sniffer.

wpasupplicant
Key negotiation with your WEP/WPA Authenticator.

Doubtless you will find others that you must have; just fling ’em in there and go to
work.

Discussion
Don’t forget to pay extra attention to security. Be sure to keep all of your packages
updated, especially security updates, and be finicky with access controls. You can
always run a firewall, but this often gets in the way, so your best strategy is to config-
ure it as though you were always going to run it without a firewall. You shouldn’t
need to run any services anyway, except sshd, so a firewall isn’t strictly necessary.

See Also
• Chapter 4

• Chapter 7

• Chapter 17

19.2 Testing Connectivity with ping

Problem
Some services or hosts on your network are not accessible, or have intermittent
failures. You don’t know if it’s a physical problem, a problem with name services,
routing, or what the heck. Where do you start?

Solution
Good old ping should always be your first stop. Use the -c switch to limit the num-
ber of pings; otherwise, it will run until you stop it with Ctrl-C:

$ ping localhost
PING xena.alrac.net (127.0.1.1) 56(84) bytes of data.
64 bytes from xena.alrac.net (127.0.1.1): icmp_seq=1 ttl=64 time=0.034 ms
64 bytes from xena.alrac.net (127.0.1.1): icmp_seq=2 ttl=64 time=0.037 ms

520 | Chapter 19: Troubleshooting Networks

--- xena.alrac.net ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.034/0.035/0.037/0.006 ms

Pinging localhost first confirms that your network interface is up and operating. You
can also ping your hostname and IP address to further confirm that local networking
is operating correctly. Then, you can test other hosts:

$ ping -c10 uberpc
PING uberpc.alrac.net (192.168.1.76) 56(84) bytes of data.
64 bytes from uberpc.alrac.net (192.168.1.76): icmp_seq=1 ttl=64 time=5.49 ms
[...]

--- uberpc.alrac.net ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 9031ms
rtt min/avg/max/mdev = 0.097/0.108/0.124/0.007 ms

The output from that simple command gives you several useful pieces of informa-
tion, including that name resolution is working and you have a good, clean, fast
connection.

This example shows a problem:

$ ping -c10 uberpc
ping: unknown host uberpc

This means you entered the wrong hostname, DNS is broken, routing is goofed up,
or the remote host is not connected to the network. So, your next step is to ping the
IP address:

$ ping -c10 192.168.1.76
PING 192.168.1.76 (192.168.1.76) 56(84) bytes of data.
From 192.168.1.10 icmp_seq=1 Destination Host Unreachable
[...]
From 192.168.1.10 icmp_seq=10 Destination Host Unreachable

--- 192.168.1.76 ping statistics ---
10 packets transmitted, 0 received, +9 errors, 100% packet loss, time 9011ms
, pipe 3

This shows that you entered the wrong IP address or the host is down, but you got as
far as a router on the host’s network. You know this because the router sent you the
“Destination Host Unreachable” message.

If pinging the IP address had succeeded, then that would point to a DNS problem.

This is what it looks like when your own PC is not connected to the network:

$ ping -c10 192.168.1.76
connect: Network is unreachable

This is what you see when the whole remote network is unreachable:

$ ping -c10 alrac.net
PING alrac.net(11.22.33.44) 56(84) bytes of data.

19.3 Profiling Your Network with FPing and Nmap | 521

--- alrac.net ping statistics ---
10 packets transmitted, 0 received, 100% packet loss, time 10007ms

If the failure is intermittent, increase the number of pings to several hundred. It’s a
good idea to place a limit because we do go off and forget that it’s running.

When the hosts that you are pinging are on the other side of your router or Internet
gateway, run ping both from a workstation behind the router and then from the
router itself.

On a multihomed host, use ping -I <interface> to specify which interface to use.

Discussion
Don’t block echo-request, echo-reply, time-exceeded, or destination-unreachable ping
messages. Some admins block all ping messages at their firewalls, and this is a mistake
because many network functions require at least these four ping messages to operate
correctly. See Chapter 3 to learn how to correctly configure your iptables firewall.

See Also
• man 8 ping

• IANA list of ICMP parameters:

http://www.iana.org/assignments/icmp-parameters

19.3 Profiling Your Network with FPing and Nmap

Problem
You would like to like to discover all the hosts on your network, and you want to
establish the baseline performance of your network with ping, so you have some-
thing for comparison when you’re troubleshooting network performance problems.
You could do it with ping, and perhaps write a clever script to automate pinging a
whole subnet. But, isn’t there already a way to do it with a single command?

Solution
FPing pings all the addresses in a range in sequence. This example pings a subnet
once, reports which hosts are alive, queries DNS for the hostnames, and prints a
summary:

$ fping -c1 -sdg 192.168.1.0/24
xena.alrac.net : [0], 84 bytes, 0.04 ms (0.04 avg, 0% loss)
pyramid.alrac.net : [0], 84 bytes, 0.45 ms (0.45 avg, 0% loss)
uberpc.alrac.net : [0], 84 bytes, 0.11 ms (0.11 avg, 0% loss)
ICMP Host Unreachable from 192.168.1.10 for ICMP Echo sent to 192.168.1.2
ICMP Host Unreachable from 192.168.1.10 for ICMP Echo sent to 192.168.1.3
ICMP Host Unreachable from 192.168.1.10 for ICMP Echo sent to 192.168.1.4
[...]

522 | Chapter 19: Troubleshooting Networks

192.168.1.9 : xmt/rcv/%loss = 1/0/100%
xena.alrac.net : xmt/rcv/%loss = 1/1/0%, min/avg/max = 0.04/0.04/0.04
192.168.1.11 : xmt/rcv/%loss = 1/0/100%
[...]
 128 targets
 3 alive
 126 unreachable
 0 unknown addresses

 0 timeouts (waiting for response)
 127 ICMP Echos sent
 3 ICMP Echo Replies received
 102 other ICMP received

 0.04 ms (min round trip time)
 1.02 ms (avg round trip time)
 2.58 ms (max round trip time)
 6.753 sec (elapsed real time)

It also reports which hosts are not alive, so you get a lot of output. Use this example
to filter the output to show only up hosts and the summary:

$ fping -c1 -sdg 192.168.1.0/25 2>&1 | egrep -v "ICMP|xmt"
xena.alrac.net : [0], 84 bytes, 0.06 ms (0.06 avg, 0% loss)
pyramid.alrac.net : [0], 84 bytes, 1.03 ms (1.03 avg, 0% loss)
uberpc.alrac.net : [0], 84 bytes, 0.11 ms (0.11 avg, 0% loss)

 128 targets
 3 alive
 126 unreachable
 0 unknown addresses

 0 timeouts (waiting for response)

 0.06 ms (min round trip time)
 0.40 ms (avg round trip time)
 1.03 ms (max round trip time)
 6.720 sec (elapsed real time)

Use this example to append the results to a text file:

$ fping -c1 -sdg 192.168.1.0/24 2>&1 | egrep -v "ICMP|xmt" >> fpingtest

Run this several times at different times of day when your network is not having
problems, and you’ll have something to compare to when you are troubleshooting.

If all you want to do is to discover all the up hosts on your network, Nmap is faster
and less verbose:

nmap -sP 192.168.1.0/24
Starting Nmap 4.20 (http://insecure.org) at 2007-06-08 15:53 PDT
Host xena.alrac.net (192.168.1.10) appears to be up.
Host pyramid.alrac.net (192.168.1.50) appears to be up.
MAC Address: 00:0D:B9:05:25:B4 (PC Engines GmbH)
Host uberpc.alrac.net (192.168.1.76) appears to be up.

19.4 Finding Duplicate IP Addresses with arping | 523

MAC Address: 00:14:2A:54:67:D6 (Elitegroup Computer System Co.)
Nmap finished: 256 IP addresses (3 hosts up) scanned in 4.879 seconds

If you run it as a nonroot user you won’t see the MAC addresses.

You might want to use Nmap’s operating system fingerprinting to see what your
users are running, and what ports they’re leaving open:

nmap -sS -O 192.168.1.*

Nmap with no options scans your network for open ports on all hosts:

nmap 192.168.1.*

Nmap output can also be redirected to a text file. Remember that > overwrites, and
>> appends.

Discussion
FPing is good for occasional quick tests. If you want to track long-term activity try
Smokeping. Smokeping charts ping statistics with RRDTool and makes pretty HTML
graphs.

The -s switch for fping means print a summary at exit, -d means lookup hostnames,
and -g specifies the address range to use. -c specifies how many times fping will run.

FPing sends most of its output to STDERR, so you can’t grep it in the usual way.
That’s why you have to redirect it first with 2>&1, which means “make the standard
error (file descriptor 2) go to the same place that the standard output (file descriptor
1) is going.”

See Also
• man 8 fping

• man 1 grep

• Smokeping: http://oss.oetiker.ch/smokeping/

19.4 Finding Duplicate IP Addresses with arping

Problem
You want to know how to test an IP address on your LAN to see whether it is a
duplicate.

Solution
Use arping, like this:

$ arping -D 192.168.1.76
ARPING 192.168.1.76 from 0.0.0.0 eth0
Unicast reply from 192.168.1.76 [00:14:2A:54:67:D6] for 192.168.1.76 [00:14:2A:54:67:
D6] 0.605ms

524 | Chapter 19: Troubleshooting Networks

Sent 1 probes (1 broadcast(s))
Received 1 response(s)

Received 1 response(s) means that this address is already in use, and arping even
gives you the MAC address. You may also test with a hostname:

$ arping -D uberpc
ARPING 192.168.1.76 from 0.0.0.0 eth0
Unicast reply from 192.168.1.76 [00:14:2A:54:67:D6] for 192.168.1.76 [00:14:2A:54:67:
D6] 0.590ms
Sent 1 probes (1 broadcast(s))
Received 1 response(s)

You should set a time limit or count limit, or arping will keep running when it gets
no response. This example sets a time limit of 10 seconds:

$ arping -w10 -D 192.168.1.100
ARPING 192.168.1.100 from 0.0.0.0 eth0
Sent 11 probes (11 broadcast(s))
Received 0 response(s)

Use -c5 instead of -w10 to tell arping to run for five counts.

Discussion
Of course, you may use any value for -c and -w that you like.

This is a good test to run when you have mobile users with static IP addresses on
their laptops that come and go a lot, or to use before assigning a static address to a
new host. If you’re having intermittent connectivity problems with a particular host,
run arping to see if it has a duplicate address.

arping is also useful to see if a host is up when ping fails. Some folks like to block
ping, which is not a good thing to do, so arping will work when ping is blocked.

Address Resolution Protocol (ARP) is used mainly to translate IP addresses to Ether-
net MAC addresses. You can see this in action with tcpdump:

tcpdump -pi eth0 arp
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes
14:58:34.835461 arp who-has xena.alrac.net tell pyramid.alrac.net
14:58:34.839337 arp reply xena.alrac.net is-at 00:03:6d:00:83:cf (oui Unknown)

pyramid is the local name server, so it needs to keep track of the hosts on the LAN.

oui Unknown means the IEEE Organizational Unique Identifier is unknown. The first
24-bits of every MAC address are assigned to the manufacturer, and you can look
them up at Standards.ieee.org (http://standards.ieee.org/regauth/oui/index.shtml). You
can’t just copy and paste because you have to enter the numbers separated by dashes,
like this: 00-03-6d.

19.5 Testing HTTP Throughput and Latency with httping | 525

See Also
• man 8 arping

19.5 Testing HTTP Throughput and Latency with
httping

Problem
As always, your users are complaining “the web site is too slow! We’re dying here!”
But it seems OK to you. Isn’t there some way you can make some objective measure-
ments without having to master some expensive, complicated analysis tool?

Solution
While sophisticated HTTP server analysis tools are nice, and there are dozens of
them, sometimes you just want something quick and easy. httping is an excellent
utility for measuring HTTP server throughput and latency, and because it’s a tiny
command-line tool, you can easily run it from multiple locations via SSH.

Its simplest invocation is to test latency:

$ httping -c4 -g http://www.oreilly.com
PING www.oreilly.com:80 (http://www.oreilly.com):
connected to www.oreilly.com:80, seq=0 time=177.37 ms
connected to www.oreilly.com:80, seq=1 time=170.28 ms
connected to www.oreilly.com:80, seq=2 time=165.71 ms
connected to www.oreilly.com:80, seq=3 time=179.51 ms
--- http://www.oreilly.com ping statistics ---
4 connects, 4 ok, 0.00% failed
round-trip min/avg/max = 165.7/173.2/179.5 ms

That’s not too bad. This doesn’t tell you how long it takes pages to load, only how
long it takes the server to respond to a HEAD request, which means fetching only the
page headers without the content. So, let’s do a GET (-G) request, which fetches the
whole page:

$ httping -c4 -Gg http://www.oreilly.com
PING www.oreilly.com:80 (http://www.oreilly.com):
connected to www.oreilly.com:80, seq=0 time=1553.78 ms
connected to www.oreilly.com:80, seq=1 time=2790.99 ms
connected to www.oreilly.com:80, seq=2 time=2067.32 ms
connected to www.oreilly.com:80, seq=3 time=2033.02 ms
--- http://www.oreilly.com ping statistics ---
4 connects, 4 ok, 0.00% failed
round-trip min/avg/max = 1553.8/2111.3/2791.0 ms

That slowed it down a bit!

526 | Chapter 19: Troubleshooting Networks

The -r switch tells httping to resolve the hostname only once, to remove DNS latency
from its measurements:

$ httping -c4 -Grg http://www.oreilly.com

You can test SSL-enabled sites with the -l switch:

$ httping -c4 -lGg https://www.fictionalsslsite.org

To specify an alternate port, append it to the URL:

$ httping -c4 -Gg http://www.fictionalsslsite.org:8080

httping will report the roundtrip time with the -b switch in kilobytes per second (not
kilobits):

$ httping -c4 -Gbg http://www.fictionalsslsite.org
PING www.fictionalsslsite.org:80 (http://www.fictionalsslsite.org):
connected to www.fictionalsslsite.org:80, seq=0 time=2553.96 ms 43KB/s

Use the -s switch to display return codes. Put it all together, and this is what you get:

$ httping -c4 -Gsbrg http://www.oreilly.com
PING www.oreilly.com:80 (http://www.oreilly.com):
 75KB/sed to www.oreilly.com:80, seq=0 time=1567.91 ms 200 OK
 72KB/sed to www.oreilly.com:80, seq=1 time=1618.20 ms 200 OK
 18KB/sed to www.oreilly.com:80, seq=2 time=5869.12 ms 200 OK
 58KB/sed to www.oreilly.com:80, seq=3 time=1979.43 ms 200 OK
--- http://www.oreilly.com ping statistics ---
4 connects, 4 ok, 0.00% failed
round-trip min/avg/max = 1567.9/2758.7/5869.1 ms
Transfer speed: min/avg/max = 18/56/75 KB

You can test a local server by specifying the hostname and port instead of the URL:

$ httping -c4 -h xena -p 80

Discussion
Ubuntu Feisty ships with a buggy version of httping, so you may need to build it
from sources to get SSL support and a few other features that seem to have fallen
out.

Building from sources is easy; you’ll need the OpenSSL development libraries, which
on Debian are libssl-devel, and on Fedora are openssl-devel. Unpack the tarball and
run:

make all
make install

That’s all there is to it.

httping is also designed to be a Nagios plug-in. The command definition looks like this:

define command{
 command_name check_httping
 command_line /usr/bin/httping -N 2 -c 1 -h $HOSTADDRESS$
}

19.6 Using traceroute, tcptraceroute, and mtr to Pinpoint Network Problems | 527

See Also
• man 1 httping

• httping home page: http://www.vanheusden.com/httping/

19.6 Using traceroute, tcptraceroute, and mtr to
Pinpoint Network Problems

Problem
You’re having problems reaching a particular host or network, and ping confirms
there is a problem, but there are several routers between you and the problem, so
you need to narrow it down further. How do you do this?

Solution
Use traceroute, tcptraceroute, or mtr.

traceroute is an old standby that works well on your local network. Here is a two-
hop traceroute on a small LAN with at least two subnets:

$ traceroute mailserver1
traceroute to mailserver1.alrac.net (192.168.2.76), 30 hops max, 40 byte packets
 1 pyramid.alrac.net (192.168.1.45) 3.605 ms 6.902 ms 9.165 ms
 2 mailserver1.alrac.net (192.168.2.76) 3.010 ms 0.070 ms 0.068 ms

This shows you that it passes through a single router, pyramid. If you run traceroute
on a single subnet, it should show only one hop, as no routing is involved:

$ traceroute uberpc
traceroute to uberpc.alrac.net (192.168.1.77), 30 hops max, 40 byte packets
 1 uberpc (192.168.1.77) 5.722 ms 0.075 ms 0.068 ms

traceroute may not work over the Internet because a lot of routers are programmed
to ignore its UDP datagrams. If you see a lot of timeouts, try the -I option, which
sends ICMP ECHO requests instead.

You could also try tcptraceroute, which sends TCP packets and is therefore nearly
nonignorable:

$ tcptraceroute bratgrrl.com
Selected device eth0, address 192.168.1.10, port 49422 for outgoing packets
Tracing the path to bratgrrl.com (67.43.0.135) on TCP port 80 (www), 30 hops max
 1 192.168.1.50 6.498 ms 0.345 ms 0.334 ms
 2 gateway.foo.net (12.169.163.1) 23.381 ms 22.002 ms 23.047 ms
 3 router.foo.net (12.169.174.1) 23.285 ms 23.434 ms 22.804 ms
 4 12.100.100.201 54.091 ms 48.301 ms *
 5 12.101.6.101 101.154 ms 100.027 ms 110.753 ms
 6 tbr2.cgcil.ip.att.net (12.122.10.61) 104.155 ms 101.934 ms 101.387 ms
 7 tbr2.dtrmi.ip.att.net (12.122.10.133) 108.611 ms 105.148 ms 108.538 ms
 8 gar3.dtrmi.ip.att.net (12.123.139.141) 108.815 ms 116.832 ms 97.934 ms

528 | Chapter 19: Troubleshooting Networks

 9 * * *
10 lw-core1-ge2.rtr.liquidweb.com (209.59.157.30) 116.363 ms 115.567 ms 149.428
ms
11 lw-dc1-dist1-ge1.rtr.liquidweb.com (209.59.157.2) 129.055 ms 137.067 ms *
12 host6.miwebdns6.com (67.43.0.135) [open] 130.926 ms 122.942 ms 125.739 ms

An excellent utility that combines ping and traceroute is mtr (My Traceroute). Use
this to capture combined latency, packet loss, and problem router statistics. Here is
an example that runs mtr 100 times, organizes the data in a report format, and stores
it in a text file:

$ mtr -r -c100 oreilly.com >> mtr.txt

The file looks like this:

HOST: xena Loss% Snt Last Avg Best Wrst StDev
 1. pyramid.alrac.net 0.0% 100 0.4 0.5 0.3 6.8 0.7
 2. gateway.foo.net 0.0% 100 23.5 23.1 21.6 29.8 1.0
 3. router.foo.net 0.0% 100 23.4 24.4 21.9 78.9 5.9
 4. 12.222.222.201 1.0% 100 52.8 57.9 44.5 127.3 10.3
 5. 12.222.222.50 4.0% 100 61.9 62.4 50.1 102.9 9.8
 6. gbr1.st6wa.ip.att.net 1.0% 100 61.4 76.2 46.2 307.8 48.8
 7. br1-a350s5.attga.ip.att.net 3.0% 100 57.2 60.0 44.4 107.1 11.6
 8. so0-3-0-2488M.scr1.SFO1.gblx 1.0% 100 73.9 83.4 64.0 265.9 27.6
 9. sonic-gw.customer.gblx.net 2.0% 100 72.6 79.9 69.3 119.5 7.5
 10. 0.ge-0-1-0.gw.sr.sonic.net 2.0% 100 71.5 78.2 67.6 142.2 9.3
 11. gig50.dist1-1.sr.sonic.net 0.0% 100 81.1 84.3 73.1 169.1 12.1
 12. ora-demarc.customer.sonic.ne 5.0% 100 69.1 82.9 69.1 144.6 10.2
 13. www.oreillynet.com 4.0% 100 75.4 81.0 69.8 119.1 7.0

This shows a reasonably clean run with low packet loss and low latency. When
you’re having problems, create a cron job to run mtr at regular intervals by using a
command like this (using your own domain and filenames, of course):

$ mtr -r -c100 oreillynet.com >> mtr.txt && date >> mtr.txt

This stores the results of every mtr run in a single file, with the date and time at the
end of each entry.

You can watch mtr in real time like this:

$ mtr -c100 oreillynet.com

You can skip DNS lookups with the -n switch.

Discussion
If any of these consistently get hung up at the same router, or if mtr consistently
shows greater than 5 percent packet losses and long transit times on the same router,
then it’s safe to say that particular router has a problem. If it’s a router that you con-
trol, then for gosh sakes fix it. If it isn’t, use dig or whois to find out who it belongs
to, and nicely report the trouble to them.

Save your records so they can see the numbers with their own eyes.

19.7 Using tcpdump to Capture and Analyze Traffic | 529

There are a lot of web sites that let you run various network tools, such as ping and
traceroute, from their sites. This is a good way to get some additional information for
comparison.

mtr can generate a lot of network traffic, so don’t run it all the time.

tcptraceroute sends TCP SYN packets instead of UDP or ICMP ECHO packets.
These are more likely to get through firewalls, and are not going to be ignored by
routers. When the host responds, tcptraceroute sends TCP RST to close the connec-
tion, so the TCP three-way handshake is never completed. This is the same as the
half-open (-sS) scan used by Nmap.

See Also
• man 8 traceroute

• man 1 tcptraceroute

• man 8 mtr

19.7 Using tcpdump to Capture and Analyze Traffic

Problem

You really need to see what’s going over the wires, and you know that tcpdump is
just the powerhouse packet sniffer you want. But, you don’t know how to filter all
those masses of traffic. How do you make it show only what you want to see?

Solution
tcpdump can filter your traffic as precisely as you like. Just follow these examples to
learn the more commonly used filters.

You should routinely use the -p switch to prevent the interface from going into pro-
miscuous mode because promiscuous mode is pretty much useless on switched
networks.

Capture all traffic on a single host:

tcpdump -pi eth0 host uberpc

Capture all traffic on more than one host:

tcpdump -pi eth0 host uberpc and stinkpad and penguina

Capture all traffic on more than one host, except from a specified host:

tcpdump -pi eth0 host uberpc and stinkpad and not penguina

Capture traffic going to a host:

tcpdump -pi eth0 dst host uberpc

530 | Chapter 19: Troubleshooting Networks

Capture traffic leaving a host:

tcpdump -pi eth0 src host uberpc

Capture a single protocol:

tcpdump -pi eth0 tcp

Capture more than one protocol:

tcpdump -pi eth0 tcp or udp or icmp

Capture a specific port:

tcpdump -pi eth0 port 110

Capture several ports:

tcpdump -pi eth0 port 25 or port 80 or port 110

Capture a port range:

tcpdump -pi eth0 portrange 3000-4000

Watch traffic leaving a port:

tcpdump -pi eth0 src port 110

Watch traffic entering a port:

tcpdump -pi eth0 dst port 110

Look for packets smaller than the specified size:

tcpdump -pi eth0 less 512

Look for packets larger than the specified size:

tcpdump -pi eth0 greater 512

Watch SSH connections from certain hosts:

tcpdump -pi eth0 src host uberpc or stinkpad and dst port 22

Watch for traffic leaving one network and entering two other networks:

tcpdump -pi eth0 src net 192.168.1.0/16 and dst net 10.0.0.0/8 or 172.16.0.0/16

The -X switch reads the data payload, but the default is to only read 68 bytes, so -s0
displays the whole data payload, as this example from an IRC conversation shows:

tcpdump -X -s0 -pi eth0
10:40:14.683350 IP 192.168.1.10.35386 > 12.222.222.107.6667: P 1:65(64) ack 410 win
16022 <nop,nop,timestamp 1204830 3703450725>
 0x0000: 4500 0074 c43b 4000 4006 8157 c0a8 010a E..t.;@.@..W....
 0x0010: 8cd3 a66b 8a3a 1a0b 420f ddd1 bb15 eb3b ...k.:..B......;
 0x0020: 8018 3e96 4309 0000 0101 080a 0012 625e ..>.C.........b^
 0x0030: dcbe 2c65 5052 4956 4d53 4720 236c 696e ..,ePRIVMSG.#lin
 0x0040: 7578 6368 6978 203a 746f 2062 6520 6120 uxchix.:to.be.a.
 0x0050: 7375 7065 722d 7365 6b72 6974 2073 7079 super-sekrit.spy
 0x0060: 2c20 7573 6520 7468 6520 2d73 2073 7769 ,.use.the.-s.swi
 0x0070: 7463 680a tch.

19.7 Using tcpdump to Capture and Analyze Traffic | 531

This particular incantation:

tcpdump -pXi eth0 -w tcpdumpfile -s0 host stinkpad

captures all traffic passing through Stinkpad, including data payload, and stores it in
the file tcpdumpfile. You can read this file with:

tcpdump -r tcpdumpfile

Directing tcpdump output to a file lets you study it at leisure, or open it with Wireshark
to read it in a prettier interface. The -w switch creates a file format that Wireshark can
read. Figure 19-1 shows what it looks like in Wireshark.

This command lets you see the live capture and store it in a file. This doesn’t create a
file that Wireshark can read, but it does create a text file that you can parse with your
favorite text-searching utilities:

tcpdump -pXi eth0 -s0 host stinkpad -l | tee tcpdumpfile

This is a good way to catch infected hosts that are sending out spam because nobody
should be sending anything from port 25 except your official mail servers:

tcpdump -pni eth0 dst port 25 and not src host mailserver1

The -n switch turns off name resolution.

Finally, you might want to use the -c switch to limit the number of packets captured:

tcpdump -c 1000 -pXi eth0 -w tcpdumpfile -s0

Otherwise, it will run until you hit Ctrl-C.

Figure 19-1. Examining tcpdump output in Wireshark

532 | Chapter 19: Troubleshooting Networks

Discussion
tcpdump should be your number one network troubleshooting tool because it shows
you exactly what is happening over your wires. Don’t guess—run tcpdump.

Let’s dissect some typical tcpdump output, using an excerpt from checking mail:

tcpdump -pi eth0
14:23:02.983415 IP xena.alrac.net.58154 > host6.foo.com.pop3s: S 3100965180:
3100965180(0) win 5840 <mss 1460,sackOK,timestamp 4546985 0,nop,wscale 2> (DF)

• 14:23:02.983415 is the timestamp, in hh:mm:ss:fraction format.

• xena.alrac.net.58154 is the originating host and port.

• host6.foo.com.pop3s is the destination host and port.

• S is the first part of the three-way TCP handshake (SYN, SYN, ACK).

• 3100965180:3100965180 is the byte sequence/range. The initial sequence number
(ISN) is generated randomly. Then, sequence numbers for the rest of the bytes in
the connection are incremented by 1 from the ISN. Because no data are
exchanged at this stage, both numbers are the same.

• win 5840 is the window size, or the number of bytes of buffer space the host has
available for receiving data.

• mss 1460 is the maximum segment size, or maximum IP datagram size that can
be handled without using fragmentation. Both sides of the connection must
agree on a value; if they are different, the lower value is used. This is called path
MTU (Maximum Transmission Unit) discovery. MTU is the size of the total
frame, which includes the MSS plus TCP/IP headers, and any other headers that
are required by the sending protocol.

• sackOK means “selective acknowledgments,” which allows the receiver to
acknowledge packets out of sequence. Back in the olden days, packets could
only be acknowledged in sequence. So, if the third packet out of a hundred pack-
ets received went missing, the host could only acknowledge the receipt of the
first two packets, and the sender would have to resend all packets from number
3 through 1,000. sackOK allows only the missing packets to be resent.

• timestamp 4546985 0 measures the round-trip time. There are two fields: the
Timestamp Value and the Timestamp Echo Reply. On the first exchange, the
Echo Reply is set to 0. When the second host receives that packet, it transfers the
timestamp from the old packet’s Timestamp Value field to the new packet’s
Timestamp Echo Reply field. Then, it generates a new value for the Timestamp
Value field. So, the Timestamp Value field contains the latest timestamp, while
the Timestamp Echo Reply field contains the previous timestamp.

• nop, or “no operation,” is just padding. TCP options must be multiples of 4
bytes, so nop is used to pad undersized fields.

19.8 Capturing TCP Flags with tcpdump | 533

• wscale 0 is a nifty hack to get around the original window size limitation of
65,535 bytes. wscale provides for a full gigabyte of buffer. Both sides of the con-
nection must support this and agree; otherwise, the window size does not
change.

• (DF) means “don’t fragment.”

Sometimes, you need the correct physical placement to capture the type of informa-
tion you want. For example, if you want to catch infected hosts sending out spam, or
want to watch traffic between networks, you’ll need to run tcpdump on a router. Or,
plug-in your handy network administrator laptop between the router and the switch,
if you have dumb switches. Smart switches have network monitoring ports.

Plug-in your handy network administrator laptop between the Internet and your fire-
wall to get an unfiltered view of what’s trying to enter your network.

See Also
• man 8 tcpdump

19.8 Capturing TCP Flags with tcpdump

Problem
The syntax for tcpdump filters is pretty easy to understand, until you come to the
part about filtering on specific TCP flags, like SYN, ACK, RST, and so forth. Then, it
goes all bizarre. How do you know what to use?

Solution
The tcpdump manpage tells how to calculate the correct values for TCP flags. You are
welcome to study it and learn how to figure them out from scratch. Or, you can copy
them from here.

Capture all SYN packets:

 # tcpdump 'tcp[13] & 2 != 0'

Capture all ACK packets:

 # tcpdump 'tcp[13] & 16 != 0'

Capture all SYN-ACK packets:

 # tcpdump 'tcp[13] = 18'

Capture all FIN packets:

 # tcpdump 'tcp[13] & 1 != 0'

Capture all URG packets:

 # tcpdump 'tcp[13] & 32 != 0'

534 | Chapter 19: Troubleshooting Networks

Capture all PSH packets:

 # tcpdump 'tcp[13] & 8 != 0'

Capture all RST packets:

 # tcpdump 'tcp[13] & 4 != 0'

These may be combined with other filtering options such as ports, hosts, and net-
works, just like in the previous recipe.

Discussion
There are several scenarios where you’ll want to look for certain TCP flags, such as
when you’re investigating suspicious activity, or having problems with misconfig-
ured services sending the wrong responses. Another way to do this sort of filtering is
to capture a lot of data with minimal filtering and dump it to a file with the -w
switch, then examine the file in Wireshark. Then, you’ll be able to filter the same set
of data several different ways without having to get a new capture each time.

Using Wireshark to analyze and filter a tcpdump capture is probably the most flexi-
ble and powerful method available. Figure 19-2 shows my favorite feature, Follow
TCP Stream. This lets you pluck out a single TCP stream from all the masses of data
you’ve collected. Wireshark supports all the same filters as tcpdump, and has lots of
nice graphical menus to help you put them together.

Figure 19-2. Wireshark can highlight a single TCP stream

19.9 Measuring Throughput, Jitter, and Packet Loss with iperf | 535

You may prefer to use Wireshark in place of tcpdump entirely. If you’re running any
headless boxes or servers without X Windows, you’ll still want to know how to use
tcpdump.

See Also
• man 8 tcpdump

• Wireshark: http://www.wireshark.org/

• Wireshark’s included Help pages

19.9 Measuring Throughput, Jitter, and Packet Loss
with iperf

Problem
You want to measure throughput on your various network segments, and you want
to collect jitter and datagram loss statistics. You might want these just as a routine
part of periodically checking your network performance, or you’re running a VoIP
server like Asterisk, Trixbox, or PBXtra, so you need your network to be in extra-
good shape to have good call quality.

Solution
Use iperf, which is a nifty utility for measuring TCP and UDP performance between
two endpoints. It must be installed at both ends of the connection you’re measuring;
in this example, that is Xena and Penguina. We’ll call Xena the server and Penguina
the client. First, start iperf on Xena in server mode, then fire it up on Penguina. (The
easy way is to do all this on Xena in two X terminals via SSH.)

carla@xena:~$ iperf -s
--
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)
--

terry@penguina:~$ iperf -c xena
--
Client connecting to xena, TCP port 5001
TCP window size: 16.0 KByte (default)
--
[3] local 192.168.1.76 port 49215 connected with 192.168.1.10 port 5001
[3] 0.0-10.0 sec 111 MBytes 92.6 Mbits/sec

And it’s done. That’s a good clean run, and as fast as you’re going to see over Fast
Ethernet.

536 | Chapter 19: Troubleshooting Networks

You can conduct a bidirectional test that runs both ways at once:

terry@penguina:~$ iperf -c xena -d
--
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)
--
--
Client connecting to xena, TCP port 5001
TCP window size: 56.4 KByte (default)
--
[5] local 192.168.1.76 port 59823 connected with 192.168.1.10 port 5001
[4] local 192.168.1.76 port 5001 connected with 192.168.1.10 port 58665
[5] 0.0-10.0 sec 109 MBytes 91.1 Mbits/sec
[4] 0.0-10.0 sec 96.0 MBytes 80.5 Mbits/sec

Or, one way at a time:

$ terry@uberpc:~$ iperf -c xena -r

Compare the two to get an idea of how efficient your Ethernet duplexing is.

Troubleshooting multicasting can drive a network administrator to drink, but fortu-
nately, iperf can help. You’ll run iperf in server mode on all of your multicast hosts,
and then test all of them at once from a single client:

admin@host1:~$ iperf -sB 239.0.0.1
admin@host2:~$ iperf -sB 239.0.0.1
admin@host3:~$ iperf -sB 239.0.0.1
carla@xena:~$ iperf -c 239.0.0.1

If you’re using multicasting for video or audio streaming, you’ll want to test with
UDP instead of the default TCP, like this:

admin@host1:~$ iperf -sBu 239.0.0.1
admin@host2:~$ iperf -sBu 239.0.0.1
admin@host3:~$ iperf -sBu 239.0.0.1
carla@xena:~$ iperf -c 239.0.0.1 -ub 512k

Adjust the -b (bits per second) value to suit your own network, or use -m for mega-
bits. Testing with UDP will generate a number of useful and interesting statistics. If
the server is still running, stop it with Ctrl-C, then run this command:

carla@xena:~$ iperf -su
--
Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 108 KByte (default)
--

Then, start the client:

terry@penguina:~$ iperf -c xena -ub 100m
--
Client connecting to xena, UDP port 5001
Sending 1470 byte datagrams
UDP buffer size: 108 KByte (default)

19.9 Measuring Throughput, Jitter, and Packet Loss with iperf | 537

--
[3] local 192.168.1.76 port 32774 connected with 192.168.1.10 port 5001
[3] 0.0-10.0 sec 114 MBytes 95.7 Mbits/sec
[3] Sent 81444 datagrams
[3] Server Report:
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[3] 0.0-10.0 sec 113 MBytes 94.9 Mbits/sec 0.242 ms 713/81443 (0.88%)
[3] 0.0-10.0 sec 1 datagrams received out-of-order

Jitter and datagram loss are two important statistics for streaming media. Jitter over
200 ms is noticeable, like you’re driving over a bumpy road, so the 0.242 ms in our
test run is excellent. 0.88 percent datagram loss is also insignificant. Depending on
the quality of your endpoints, VoIP can tolerate as much as 10 percent datagram
loss, though ideally you don’t want much over 3–4 percent.

The out-of-order value is also important to streaming media—obviously a bunch of
UDP datagrams arriving randomly don’t contribute to coherence.

You may adjust the size of the datagrams sent from the client to more closely reflect
your real-world conditions. The default is 1,470 bytes, and voice traffic typically runs
around 100–360 bytes per datagram (which you could find out for yourself with
tcpdump). Set the size in iperf with the -l switch. It looks a bit odd because the avail-
able values are kilobytes or megabytes per second only, so we have to use a fractional
value:

terry@uberpc:~$ iperf -c xena -ub 100m -l .3K
--
Client connecting to xena, UDP port 5001
Sending 307 byte datagrams
UDP buffer size: 108 KByte (default)
--
[3] local 192.168.1.76 port 32775 connected with 192.168.1.10 port 5001
[3] 0.0-10.0 sec 98.2 MBytes 82.3 Mbits/sec
[3] Sent 335247 datagrams
[3] Server Report:
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[3] 0.0-10.0 sec 96.9 MBytes 81.2 Mbits/sec 0.006 ms 4430/335246 (1.3%)
[3] 0.0-10.0 sec 1 datagrams received out-of-order

Discussion
These same tests can be run over the Internet. iperf by default uses TCP/UDP port
5001. You can also specify which ports to use with the -p switch.

Link quality is becoming more important as we run more streaming services over
packet-switched networks, and service providers are trying to meet these new needs.
Talk to your ISP to see what they can do about link quality for your streaming
services.

See Also
• man 1 iperf

538 | Chapter 19: Troubleshooting Networks

19.10 Using ngrep for Advanced Packet Sniffing

Problem
You know and love both tcpdump and Wireshark, and are pretty good at finding the
information you want. But sometimes, you still end up dumping the output to a text
file and using grep to look for strings or regular expressions that tcpdump and Wire-
shark can’t filter on. If only there were something like tcpdump and grep combined.

Solution
There is: ngrep, or “network grep.” ngrep is a packet sniffer that is similar to
tcpdump, with the added facility of being able to search on any text string or regular
expression just like grep. Suppose you’re snooping to see what your employees are
saying about you on IRC. You want to get straight to the juicy stuff, so try this
command:

ngrep -qpd eth0 host ircserver -i carla
interface: eth0 (192.168.1.0/255.255.255.0)
match: carla
##
T 192.168.1.10:33116 -> 140.222.222.107:6667 [AP]
PRIVMSG #authors :that carla is truly wonderful and everyone loves her
##
T 192.168.1.32:39422 -> 140.222.222.107:6667 [AP]
PRIVMSG #authors :yes, carla is great, the world would be dust and ashes without her

It looks promising, and you want some more context, so you add the -A 5 switch to
include the five lines that follow your match:

ngrep -qpd eth0 -A5 host ircserver -i carla
T 192.168.1.10:33116 -> 140.222.222.107:6667 [AP]
PRIVMSG #authors :LOL thanks, I haven't laughed that hard in ages
##
T 192.168.1.32:39422 -> 140.222.222.107:6667 [AP]
PRIVMSG #authors :NP, it's a good thing the bossy little dope can't eavesdrop on us

ngrep uses the same protocol options as tcpdump. This example shows only POP3
traffic:

ngrep -qpd eth0 '' tcp port 110

ngrep can tell the difference between Windows pings and Linux pings. Windows uses
letters to fill out the payload, and Linux uses numbers, so you can tailor your search
to see what OS certain pings are coming from:

ngrep -qpd eth0 'abcd' icmp
interface: eth0 (192.168.1.0/255.255.255.0)
filter: (ip or ip6) and (icmp)
match: abcd
#
I 192.168.1.77 -> 192.168.1.10 8:0
 abcdefghijklmnopqrstuvwabcdefghi

19.10 Using ngrep for Advanced Packet Sniffing | 539

ngrep -qpd eth0 '1234' icmp
interface: eth0 (192.168.1.0/255.255.255.0)
filter: (ip or ip6) and (icmp)
match: 1234
#
I 192.168.1.76 -> 192.168.1.10 8:0
.F!s....
..................... !"#$%&'()*+,-./01234567

That demonstrates how, if you can find something reasonably unique in the data pay-
load, you can make some very fine-tuned searches. By default, ngrep displays the entire
packet. The maximum size is 65,536 bytes; use the -S switch to view a smaller number
of bytes. This example captures HTTP headers and views only the first 156 bytes:

ngrep -qpd -S 156 '' tcp port 80
interface: eth0 (192.168.1.0/255.255.255.0)
filter: (ip or ip6) and (tcp port 80)

T 192.168.1.10:33812 -> 208.201.239.36:80 [AP]
 GET / HTTP/1.1..User-Agent: Mozilla/5.0 (compatible; Konqueror/3.5; Linux) KHTML/3.
5.6 (like Gecko) (Kubuntu)..Accept: te
 xt/html, image/jpeg, image/png, tex [...]

So, you can take a quick look at what web browsers your site visitors are using, with-
out having to dig through logfiles or HTTP analyzers.

One of ngrep’s nicest features is the classic grep inversion match, -v, which means
“don’t match this.” This example excludes any Session Initiation Protocol (SIP)
INVITES requests on an Asterisk server:

ngrep -qpd eth0 -vi invites port 5060
interface: eth0 (192.168.1.0/255.255.255.0)
filter: (ip or ip6) and (port 5060)
don't match: invites

Protocols and hosts are excluded with not statements:

ngrep -qpd eth0 \(not port 22\)
interface: eth0 (192.168.1.0/255.255.255.0)
filter: (ip or ip6) and ((not port 22))
ngrep -qpd eth0 \(not host irc.ircserver1.org\)
interface: eth0 (192.168.1.0/255.255.255.0)
filter: (ip or ip6) and ((not host irc.ircserver1.org))

The parentheses must be escaped, or the Bash shell will try to interpret them.

Discussion
q

This means quiet output. This displays headers and payload, and omits the hash
marks that separate each packet.

p
This means turn off promiscuous mode, which you should do routinely because
it doesn’t really work on packet-switched networks anyway.

540 | Chapter 19: Troubleshooting Networks

d
This means device, or your network interface. On a multihomed system, ngrep
will use the lowest-numbered device by default.

i
This means case-insensitive.

S
This means display this number of bytes.

v
This means do not match this.

See Also
• man 8 ngrep

19.11 Using ntop for Colorful and Quick Network
Monitoring

Problem
You like tcpdump and Wireshark just fine, but they’re not easy to read, and don’t
give you nice visual snapshots of network activity. Isn’t there some program that will
monitor and collect network traffic data, and aggregate statistics, and make nice colorful
charts so you can see at a glance what your network is doing? Such as established con-
nections, protocols used, and traffic statistics? And that is quick and easy to set up?

Solution
You want ntop, which is a hybrid packet analyzer that monitors network protocols,
and creates nice HTML charts and graphs. Debian users should install it this way:

aptitude install ntop rrdtool graphviz

Fedora users will have to dig up an RPM (try http://rpm.pbone.net/), or build it from
sources. You must have libpcap and GDBM installed, and some sort of HTTP server.
(Lighttpd is an excellent lightweight HTTP server.) You should also install:

• RRDTool

• Graphviz

• OpenSSL

• ZLib

• GDChart

• GDLib

• LibPNG

• Ettercap

19.11 Using ntop for Colorful and Quick Network Monitoring | 541

After installing ntop, start it with this command:

/etc/init.d/ntop start

It will ask you for a password for the admin user. Then, open a web browser to http://
localhost:3000. Give it a few minutes to collect some data, and you can help it along
by checking email and web surfing. The pages will automatically refresh.

Everything is configurable via the web interface. You should visit Admin ➝ Configure
➝ Startup Options first to configure what you want monitored, such as the local
machine only, the local subnet, or multiple subnets. Disable promiscuous mode. There
are other configuration tabs that let you set up ntop pretty much any way you like.

Figures 19-3 and 19-4 give you an idea of what ntop looks like in action, allowing
you to find out at glance who is engaged in monkey business.

Discussion
ntop doesn’t have the power and customizability of heavier-duty network monitors,
but it’s great when you want something up and running quickly, and to generate
some snapshots of network activity. The IP Local tab is especially interesting; this
can help you find sneaky wireless access points, and lets you see at a glance which ports
have been used. This can be an eye-opening; for example, if you’re seeing activity on

Figure 19-3. Summary for a single PC

542 | Chapter 19: Troubleshooting Networks

port 110 (POP3) when you expect only port 995 (POP3s), you know you have an unse-
cured mail client running. Or, if you’re seeing port 25 (SMTP) traffic when you’re not
running a mailserver, or it’s on the wrong hosts, you might have some compromised
PCs spewing forth spam. You’ll see bandwidth usage at a glance, for homing in on
bandwidth hogs, and a whole lot of other helpful data.

See Also
• ntop home page: http://www.ntop.org/

19.12 Troubleshooting DNS Servers

Problem
You’re getting a lot of “unknown host” errors or timeouts, or mail bounces, or other
signs of DNS problems. You can connect using the IP addresses, but not the host-
names. What do you do to track down the problem?

Solution
Use the dig and host commands to see what answers your DNS server is dishing out.
Don’t use nslookup; it has long been deprecated, and doesn’t always work correctly
anyway.

One of the biggest sources of trouble is having private and public authoritative name
servers, or worse, a single server handling both jobs. So, you especially want to make
sure that private name requests are not going out to the Internet. First, run the host
command:

$ host uberpc
uberpc.alrac.net has address 192.168.1.76

Figure 19-4. Summary of protocols for a subnet

19.12 Troubleshooting DNS Servers | 543

$ host 192.168.1.76
76.1.168.192.in-addr.arpa domain name pointer uberpc.alrac.net.

This is good; the address is correct, and your reverse pointer is correctly configured.
Now, run dig to see what server is being queried:

$ dig uberpc
; <<>> DiG 9.3.4 <<>> uberpc
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 46745
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;uberpc. IN A

;; ANSWER SECTION:
uberpc. 0 IN A 192.168.1.76

;; Query time: 42 msec
;; SERVER: 192.168.1.50#53(192.168.1.50)
;; WHEN: Sat Jul 14 23:17:02 2007
;; MSG SIZE rcvd: 38

This shows the A record for Uberpc with a proper trailing dot, and that the server
that is handling the request is 192.168.1.50, which presumably is your local caching
resolver. On the other hand, this is what you do not want to see:

;; QUESTION SECTION:
;uberpc.alrac.net. IN A

;; AUTHORITY SECTION:
alrac.net. 10800 IN SOA ns57.domaincontrol.com. dns.jomax.
net. 2007062900 28800 7200 604800 86400

;; Query time: 147 msec
;; SERVER: 192.168.1.50#53(192.168.1.50)
;; WHEN: Sat Jul 14 23:21:54 2007
;; MSG SIZE rcvd: 100

Requests for private hostnames should not be wandering all over the Internet, so if
you see this, you know your private name server is misconfigured.

You can query the remote nameserver you just found directly to double-check:

$ dig @ns57.domaincontrol.com alrac.net

; <<>> DiG 9.3.4 <<>> @ns57.domaincontrol.com alrac.net
; (1 server found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 25896
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 0

;; QUESTION SECTION:

544 | Chapter 19: Troubleshooting Networks

;alrac.net. IN A

;; ANSWER SECTION:
alrac.net. 3600 IN A 68.178.232.99

;; AUTHORITY SECTION:
alrac.net. 3600 IN NS ns57.domaincontrol.com.
alrac.net. 3600 IN NS ns58.domaincontrol.com.

;; Query time: 99 msec
;; SERVER: 208.109.14.50#53(208.109.14.50)
;; WHEN: Sat Jul 14 23:41:36 2007
;; MSG SIZE rcvd: 98

Yep, someone out there has registered alrac.net, so if I want to use that domain name
on my private network I need to make sure my DNS house is in order. Private
domains should not be leaking out to the Internet anyway.

dig can retrieve most DNS record types by using the following options: a, any, mx, ns,
soa, hinfo, axfr, txt, cname, naptr, rp, and srv. Use the -t switch to query specific
record types, as this example for SRV records shows:

$ dig -t srv oreilly.com

To see the entire delegation path, use the +trace option:

$ dig -t oreilly.com +trace

This should be a short path from the authoritative root servers to your authoritative
server. There should not be other authoritative servers, so if you see any, you need to
investigate. This is a typical trace with the redundant output snipped:

$ dig -t a linuxchix.org +trace
; <<>> DiG 9.3.4 <<>> -t a linuxchix.org +trace
;; global options: printcmd
. 299724 IN NS d.root-servers.net.

.;; Received 276 bytes from 192.168.1.50#53(192.168.1.50) in 36 ms

org. 172800 IN NS TLD4.ULTRADNS.org.

;; Received 345 bytes from 128.8.10.90#53(d.root-servers.net) in 167 ms

linuxchix.org. 86400 IN NS ns0.linuxchix.org.

;; Received 153 bytes from 199.7.67.1#53(TLD4.ULTRADNS.org) in 92 ms

linuxchix.org. 86400 IN A 140.211.166.107
linuxchix.org. 86400 IN NS ns0.linuxchix.org.
;; Received 130 bytes from 216.134.213.24#53(ns2.demandspace.com) in 137 ms

Following along with tcpdump as you run other tests is helpful:

tcpdump -pi eth0 port 53

And always check logfiles.

19.13 Troubleshooting DNS Clients | 545

Discussion
Always check the ->>HEADER<<- line to see the status. When it says NOERROR, you have
a successful query. When it says NXDOMAIN, that means it did not find a DNS record
matching your query.

On your private LAN, you may use any arbitrary domain name and not have to regis-
ter it. This is a perfectly good way to do local DNS for private hosts with no public
services, and for private servers that serve only the LAN.

Misconfigured DNS servers are legion. If you must use BIND, please study Cricket
Liu’s books. Mr. Liu is the best BIND authority there is.

My recommended combination is Dnsmasq for a local caching resolver and private
authoritative server, and Maradns for a public authoritative server.

Visit Internet Assigned Numbers Authority (http://www.iana.org/) for official and
detailed information on how DNS is managed worldwide.

See Also
• man 1 dig

• man 1 host

• Chapter 4 for recipes on using the excellent Dnsmasq for both caching and
authoritative local name services

19.13 Troubleshooting DNS Clients

Problem
Configuring DNS involves a number of seemingly random configuration files on
Linux. What do you need to look for to make sure client configurations are good?

Solution
DHCP clients on Debian need only entries in /etc/network/interfaces. Don’t edit /etc/
resolv.conf. You may enter important hosts in /etc/hosts as a fallback in case your
DNS server goes down; just be careful to get it right because /etc/hosts takes prece-
dence over your DNS server.

On Fedora, each interface has its own configuration file, /etc/sysconfig/network-scripts/
ifcfg-*. Again, don’t edit /etc/resolv.conf for DHCP clients, and you may use /etc/hosts
as a fallback.

Statically configured interfaces must have nameservers configured in /etc/resolv.conf,
and the correct gateway in the interface configuration file. You may use /etc/hosts as a
fallback.

546 | Chapter 19: Troubleshooting Networks

On Windows and Mac clients, the same principles apply: don’t configure conflicting
static information on DHCP clients, and on statically configured clients, make sure
you manually configure the correct gateway and DNS servers. And, just like Linux
DHCP clients, you can serve up everything from your DHCP server.

Discussion
Make it easy on yourself—use your DHCP server to assign dynamic and static
addresses, provide addresses for your network gateway and servers, and assign static
routes. Then, the only client configuration you need is the usual DHCP configuration.

See Also
• Chapter 4 has several recipes on configuring DHCP and DNS with Dnsmasq

• Chapter 24, “Managing Name Resolution,” in Linux Cookbook, by Carla Schroder
(O’Reilly) has several recipes on configuring /etc/hosts and using dhcpd for your
DHCP server

19.14 Troubleshooting SMTP Servers

Problem
What are some tests you can run directly on your SMTP server to see if it is working
correctly? You want to eliminate as many variables as you can, and talk directly to
the server, if that’s possible.

Solution
Good old telnet does the job. You also needthe mailx package installed, and Netstat.

First, run telnet on your SMTP server to see if you can talk to it. This example cre-
ates and sends a test message:

$ telnet localhost 25
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
220 xena.alrac.net ESMTP Postfix (Ubuntu)
ehlo xena
250-xena.alrac.net
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-STARTTLS
250-ENHANCEDSTATUSCODES
250-8BITMIME
250 DSN

19.14 Troubleshooting SMTP Servers | 547

mail from: carla@testing.net
250 2.1.0 Ok
rcpt to: carla@xena
250 2.1.5 Ok
data
354 End data with <CR><LF>.<CR><LF>
Date: July 4, 2007
From: testcarla
Reply-to: testcarla@testing.net
Message-ID: one
Subject: SMTP testing
Hi Carla,
If you can read this, the SMTP server works.
.
250 2.0.0 Ok: queued as B2A033FBA
quit
221 2.0.0 Bye
Connection closed by foreign host.

Now, run mail to read your message:

$ mail
Mail version 8.1.2 01/15/2001. Type ? for help.
"/var/mail/carla": 1 message 1 new
>N 1 testcarla@xena.al Sun Jul 15 10:46 17/523 SMTP testing
& t
Message 1:
From carla@testing.net Sun Jul 15 10:46:21 2007
X-Original-To: carla@xena.alrac.net
Date: July 4, 2007
From: testcarla@xena.alrac.net
Reply-to: testcarla@testing.net
Subject: SMTP testing
To: undisclosed-recipients:;

Hi Carla,
If you can read this, the SMTP server works.

& q
Saved 1 message in /home/carla/mbox

This shows you that your name services are working, and that the SMTP server is
working. If you see this instead:

$ telnet localhost 25
Trying 127.0.0.1...
telnet: Unable to connect to remote host: Connection refused

That means the server is not running, which you can confirm with Netstat:

netstat -pant|grep :25

If it returns nothing, your SMTP server is not running. This example shows a run-
ning Postfix server:

netstat -pant|grep :25
tcp 0 127.0.0.1:25 0.0.0.0:* LISTEN 8000/master

548 | Chapter 19: Troubleshooting Networks

Once you get it running on localhost, you can test it remotely:

terry@uberpc:~$ telnet xena 25
Trying 192.168.1.10...
telnet: Unable to connect to remote host: Connection refused

Netstat already showed why you can’t connect remotely—Postfix is only listening on
localhost. So, you need to configure it to also listen on the LAN interface, which
means you need two lines like this in main.cf:

mynetworks = 127.0.0.0/8, 192.168.1.0/24
inet_interfaces = 127.0.0.1, 192.168.1.10

Restart Postfix, and now Netstat should report this:

netstat -pant|grep :25
tcp 0 0 192.168.1.10:25 0.0.0.0:* LISTEN 8324/master
tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN 8324/master

Following along with tcpdump as you run your other tests is helpful:

tcpdump -pi eth0 port 25

And, always check logfiles.

Discussion
Other SMTP servers are configured differently, so you’ll need the documentation for
your own server.

To exit a telnet session early, hit Ctrl-], then Q.

Why use telnet? Because it can talk directly to the server and find out quickly if the
server is operating correctly. Bypassing intermediaries is always a good first step.

This recipe also shows you how easy it is to spoof mail headers, and how careful you
must be with access controls. The SMTP protocol is completely insecure as spam-
mers discovered many years ago, so make sure that you are not providing SMTP
services to the world. As with all services, it’s a two-pronged approach: careful con-
figuration of the server’s own access controls, and careful firewalling. You should
also consider using smtp-auth, which requires your SMTP users to authenticate
themselves to your server.

See Also
• Recipe 19.7

• Recipe 19.10

• Chapter 20, “Building a Postfix Mail Server,” in Linux Cookbook, by Carla
Schroder (O’Reilly)

• Chapter 21, “Managing Spam and Malware,” in Linux Cookbook

• man 1 telnet

19.15 Troubleshooting a POP3, POP3s, or IMAP Server | 549

19.15 Troubleshooting a POP3, POP3s, or IMAP Server

Problem
What are some tests you can run directly on your POP3, POP3s, or IMAP server to
see if it is working correctly? You want to eliminate as many variables as you can and
talk directly to the server, if that’s possible.

Solution
telnet and Netstat will do the job for you. Netstat shows you if it is running and lis-
tening to the correct ports and addresses, as this example shows for Dovecot:

netstat -plunt | grep :110
tcp 0 0 :::110 :::* LISTEN 4654/dovecot

This shows that Dovecot is open to all connections, so if you want to limit it to LAN
connections, you’ll need to fix its configuration. Then, Netstat will report this:

tcp 0 0 192.168.1.25:110 :::* LISTEN 4654/dovecot

POP3s, which is POP3 over SSL, runs on TCP port 995.

IMAP runs on TCP port 143, and IMAP over SSL uses TCP port 993.

To test a POP3 server with telnet, you need to have a user account already set up on
the server. Then, do this:

$ telnet localhost 110
Trying 127.0.0.1...
Connected to localhost.localdomain.
Escape character is '^]'.
+OK Hello there.
user carla
+OK Password required.
pass password
+OK logged in.
stat
+OK 2 1275
list
+OK
1 748
2 1028
3 922
.

This shows a successful login, and the list command shows there are three
messages. At this point, you can quit, or enter retr 1, retr 2, or retr 3 to read your
messages. quit closes the session.

Use the s_client command, which is part of OpenSSL, to test POP3s:

$ openssl s_client -connect localhost:995

550 | Chapter 19: Troubleshooting Networks

This should spew forth bales of SSL certificate information so you can verify that it is
indeed using your SSL certificate, and using the right one. Then, you can go ahead
and run the usual POP3 commands:

+OK Hello there.
user carla
+OK Password required.
pass password
+OK logged in.

Once you have successfully connected directly on the server, try logging in from a
remote PC:

$ telnet xena.alrac.net 110
$ openssl s_client -connect xena.alrac.net:995

IMAP can also be tested with telnet and openssl s_client:

$ telnet localhost 143
Trying 127.0.0.1...
Connected to localhost.localdomain.
Escape character is '^]'.
* OK [CAPABILITY IMAP4rev1 UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUBJECT
THREAD=REFERENCES SORT QUOTA IDLE ACL ACL2=UNION STARTTLS] Courier-IMAP ready.
a001 login carla password
a001 OK LOGIN Ok.
a002 examine inbox
* FLAGS (\Draft \Answered \Flagged \Deleted \Seen \Recent)
* OK [PERMANENTFLAGS ()] No permanent flags permitted
* 0 EXISTS
* 0 RECENT
* OK [UIDVALIDITY 1085106842] Ok
* OK [MYRIGHTS "acdilrsw"] ACL
a002 OK [READ-ONLY] Ok
a003 logout
* BYE Courier-IMAP server shutting down
a003 OK LOGOUT completed
Connection closed by foreign host.

$ openssl s_client -connect localhost:993
[...]

Following along with tcpdump as you run your other tests is helpful:

tcpdump -pi eth0 port 110

And always check logfiles.

Discussion
To exit a telnet session early, hit Ctrl-], then Q.

Why use telnet? Because it can talk directly to the server, and find out quickly if the
server is operating correctly. Bypassing intermediaries is always a good first step.

19.16 Creating SSL Keys for Your Syslog-ng Server on Debian | 551

Follow the previous recipe to send yourself some messages from your SMTP server
and see if your POP3 server receives them. If they are on the same machine, and the
POP3 server does not receive the messages, then you know you have a configuration
problem. If they are on separate machines, then it could be either a connection prob-
lem, or a configuration problem. Always make sure your servers are operating
correctly before looking for other problems.

Some admins think that operating behind a NAT firewall excuses them from paying
close attention to access controls on their internal servers. This is not good think-
ing—always restrict your server access controls as narrowly as possible.

See Also
• RFC 1939 lists all POP3 commands

• RFC 3501 lists all IMAP commands

• Recipe 19.7

• Recipe 19.10

• Chapter 20, “Building a Postfix Mail Server,” and Chapter 21, “Managing Spam
and Malware,” in Linux Cookbook, by Carla Schroder (O’Reilly)

• man 1 telnet

19.16 Creating SSL Keys for Your Syslog-ng Server on
Debian

Problem
You want to set up a secure Syslog-ng server, and you know you need stunnel and
OpenSSL to do this. Creating and managing OpenSSL certificates makes you break
out in a rash—it’s confusing, and it always takes you too long. Isn’t there some kind
soul who will show you the way? You’re running Debian, or one of its descendants,
or pretty much any Linux except Fedora or Red Hat.

Solution
Just follow along, and you’ll be fine. What we’re going to do is create an OpenSSL
Certification Authority, and server and client encryption keys to use with stunnel.
stunnel provides the transport for our Syslog-ng traffic, and OpenSSL does the
encryption and authentication.

You should have OpenSSL already installed; if not, you know what to do.

We’ll take this slowly because managing SSL certificates is confusing, and stunnel
complicates matters by requiring a special keyfile format.

552 | Chapter 19: Troubleshooting Networks

Although stunnel is going to use these certificates, I’m naming them “syslog-ng*”
because they’re for authenticating Syslog-ng traffic. We will create the Certificate
Authority (CA) and public-/private-key pairs in the /etc/syslog-ng/ directory on the
server. After they are created, I’ll store them in /etc/syslog-ng/keys on the server and
the clients. Wherever you want to keep your stuff, first make sure that the directo-
ries exist.

Now, find your CA.sh script, which is part of OpenSSL, and edit these two lines:

DAYS="-days 3650" # 10 years
CATOP=./syslog-ng-CA

The default lifetime of your new Certificate Authority (CA) is one year, so adjust this
to suit. CATOP is the top-level directory of your new CA.

Now, edit openssl.cnf so that the top-level directory for the CA and number of
default days agree with CA.sh:

[CA_default]
dir = ./syslog-ng-CA # Where everything is kept
[...]
default_days = 3650 # how long to certify for

And, edit your personal information:

countryName_default = US
stateOrProvinceName_default = OR
0.organizationName_default = Alrac's Fine Hooves

Make sure these lines are commented out:

[req_attributes]
#challengePassword = A challenge password
#challengePassword_min = 4
#challengePassword_max = 20
#unstructuredName = An optional company name

Now, let’s change to the SSL certificate-creation directory:

cd /etc/syslog-ng

Create the new CA:

/usr/lib/ssl/misc/CA.sh -newca
CA certificate filename (or enter to create)

Hit Enter:

Making CA certificate ...
Generating a 1024 bit RSA private key
..++++++
.............................++++++
writing new private key to './syslog-ng-CA/private/./cakey.pem'

Create a good strong passphrase, and don’t lose it—you need it every time you cre-
ate a new key pair:

19.16 Creating SSL Keys for Your Syslog-ng Server on Debian | 553

Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:
State or Province Name (full name) [OR]:
Locality Name (eg, city) []:Portland
Organization Name (eg, company) [Alracs Fine Hooves]:
Organizational Unit Name (eg, section) []:HoofRanch
Common Name (eg, YOUR name) []:syslog-ng
Email Address []:alrac@hoofranch.net

You need the passphrase you just created:

Enter pass phrase for ./syslog-ng-CA/private/./cakey.pem:
Check that the request matches the signature
Signature ok
Certificate Details:
 Serial Number: 0 (0x0)
 Validity
 Not Before: Jul 16 19:05:29 2007 GMT
 Not After : Jul 15 19:05:29 2010 GMT
 Subject:
 countryName = US
 stateOrProvinceName = OR
 organizationName = Alrac's Fine Hooves
 organizationalUnitName = HoofRanch

Use the fully qualified domain name of your server for the common name, or clients
will emit complaints:

 commonName = xena.alrac.net
 emailAddress = alrac@hoofranch.net
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:
 OpenSSL Generated Certificate
 X509v3 Subject Key Identifier:
 27:F4:BE:F9:92:8A:2B:84:8F:C7:C8:88:B9:4E:8A:A7:D9:3F:FE:93
 X509v3 Authority Key Identifier:
 keyid:27:F4:BE:F9:92:8A:2B:84:8F:C7:C8:88:B9:4E:8A:A7:D9:3F:FE:93

Certificate is to be certified until Jul 15 19:05:29 2010 GMT (1095 days)

Write out database with 1 new entries
Data Base Updated

554 | Chapter 19: Troubleshooting Networks

You should see /etc/syslog-ng/syslog-ng-CA populated with a number of files and sub-
directories.

Now, we will create the server and client key pairs. In this example, the server is
Xena and the client is Uberpc. First, we create the signing requests:

openssl req -new -nodes -out syslogserver-xena_req.pem -keyout \
 syslogserver-xena.pem
openssl req -new -nodes -out uberpc_req.pem -keyout uberpc.pem

The next step is to sign the requests and create the new key pairs. First, the server:

openssl ca -out syslogserver-xena_cert.pem -infiles \
syslogserver-xena_req.pem
Using configuration from /usr/lib/ssl/openssl.cnf
Enter pass phrase for ./syslog-ng-CA/private/cakey.pem:
Check that the request matches the signature
Signature ok
Certificate Details:
 Serial Number: 1 (0x1)
 Validity
 Not Before: Jul 16 19:27:01 2007 GMT
 Not After : Jul 13 19:27:01 2017 GMT
 Subject:
 countryName = US
 stateOrProvinceName = OR
 organizationName = Alrac's Fine Hooves
 organizationalUnitName = HoofRanch
 commonName = xena.alrac.net
 emailAddress = alrac@hoofranch.net
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:
 OpenSSL Generated Certificate
 X509v3 Subject Key Identifier:
 96:DE:84:A1:55:46:78:55:54:B1:4F:B7:E3:CE:EB:26:5A:90:7F:EA
 X509v3 Authority Key Identifier:
 keyid:27:F4:BE:F9:92:8A:2B:84:8F:C7:C8:88:B9:4E:8A:A7:D9:3F:FE:93

Certificate is to be certified until Jul 13 19:27:01 2017 GMT (3650 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

And then Uberpc:

openssl ca -out uberpc_cert.pem -infiles uberpc_req.pem

OK, we’re almost there. You should now have these files:

syslogserver-xena_cert.pem
syslogserver-xena_req.pem

19.16 Creating SSL Keys for Your Syslog-ng Server on Debian | 555

syslogserver-xena.pem
uberpc_cert.pem
uberpc_req.pem
uberpc.pem

You can delete the req.pem files because they’re not needed anymore. uberpc.pem
and syslogserver-xena.pem are the private keys. Never ever share these. They are
plaintext files, so you can open them and confirm that they say -----BEGIN RSA
PRIVATE KEY-----.

Open uberpc_cert.pem and copy the public certificate, which is the bit between:

-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

into a new file. You need to do this for every client—copy all of their public certifi-
cates into a single file on the Syslog-ng server, which in this recipe I call /etc/syslog-ng/
clientkeys.

Now, copy Uberpc’s public certificate into uberpc.pem, like this:

 -----BEGIN RSA PRIVATE KEY-----
 [encoded key]
 -----END RSA PRIVATE KEY-----
 [empty line]
 -----BEGIN CERTIFICATE-----
 [encoded certificate]
 -----END CERTIFICATE-----
 [empty line]

Delete all of the plaintext certificate information. Then, do the same thing to the
server’s key pair, because stunnel is fussy about the format, and it must be done this
way. So now, syslogserver-xena.pem and uberpc.pem contain their own public and
private keys, and nothing else.

Now, you can copy Uberpc’s keyfile into its permanent home:

scp uberpc.pem root@uberpc:/etc/syslog-ng/keys/

If you have disabled root logins over SSH, I shall leave it to your own ingenuity to fig-
ure out how to transfer this file.

And do the same for the server:

root@xena:/etc/syslog-ng# scp syslogserver-xena.pem keys/

Finally, protect the private keys by changing them to mode 0400, or read-only by the
owner:

chmod 0400 uberpc.pem
chmod 0400 syslogserver-xena.pem

For every new client, follow these steps:

openssl req -new -nodes -out newclient_req.pem -keyout newclient.pem
openssl ca -out newclient_cert.pem -infiles newclient_req.pem

556 | Chapter 19: Troubleshooting Networks

• Concatenate the private and public key into a single file

• Copy the keyfile to the new client

• Adjust the permissions

• Copy the public certificate to the server

Well, that was a bit like work. But now you know how to do it.

Discussion
Of course, you have the option of not encrypting your Syslog-ng traffic; it will work
fine without it. You know that it is trivially easy to sniff traffic on a network with
commonly available tools, and any network with wireless access points is extra-
vulnerable, so leaving it in the clear is risky.

I like to use the CA.sh script to create the Certificate Authority because it takes care
of the gnarly job of creating all the necessary files. You can use it to create several dif-
ferent types of certificates, but it’s almost as easy to use the openssl command, which
has more flexibility. The CA.pl script does the same thing, except it’s a Perl script
instead of a Bash script.

This is what the options mean in the signing request:

req -new -nodes
Create a new signing request for a private key, with no passphrase.

-out
The out filename, or name of your new signing request. This can be anything
you want, as long as you use the .pem extension.

-keyout
The name of your new private key.

This is what the options mean when you sign the private keys:

ca -out
Use your CA to sign a new private key, and give it the name of your choice.

-infiles
Use this signing request, which must be an existing file.

There is often confusion over keys and certificates. A certificate binds a public key
with a distinguished name. Certificates are signed with the issuer’s private key, and
each one is given a serial number. You can see all this in the example in this recipe,
and in your own certificates. All kinds of encryptions and hashes are used to verify
that a particular public key did indeed come from a particular CA.

If you trust the issuer, then presumably, you can trust all keys created from the same
CA. Private CAs are perfect for jobs like this—we know who we are, so we don’t
need a third-party CA to vouch for us.

19.17 Creating SSL Keys for Your Syslog-ng Server on Fedora | 557

See Also
• man req

• man ca

• man openssl

• Network Security with OpenSSL, by John Viega et al. (O’Reilly)

19.17 Creating SSL Keys for Your Syslog-ng Server on
Fedora

Problem
You want to set up a secure Syslog-ng server, and you know you need stunnel and
OpenSSL to do this. OpenSSL on Fedora doesn’t look like OpenSSL on any other
Linux distribution—where is everything? No CA.sh or CA.pl, it uses the /etc/pki
directory, and it just looks all weird. What do you do?

Solution
Calm down, because Fedora has a nice Makefile for creating your Public Key Infra-
structure (PKI) for stunnel. In fact, it is very easy. Change to its directory, and run it
with no options to see what it does:

cd /etc/pki/tls/certs
make
This makefile allows you to create:
 0 public/private key pairs
 0 SSL certificate signing requests (CSRs)
 0 Self-signed SSL test certificates
[...]

Create the server and one client certificate like this:

make syslogserver-xena.pem
make uberpc.pem

Use the fully qualified domain name of your server for the common name, or clients
will emit complaints.

Open uberpc.pem and copy the public certificate, which is the bit between:

-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

into a new file. You need to do this for every client—copy all of their public certifi-
cates into a single file on the Syslog-ng server, which in this recipe I call /etc/syslog-ng/
clientkeys.

558 | Chapter 19: Troubleshooting Networks

Now, you can copy Uberpc’s keyfile into its permanent home:

scp uberpc.pem root@uberpc:/etc/syslog-ng/keys/

If you have disabled root logins over SSH, I shall leave it to your own ingenuity to fig-
ure out how to copy this file.

And do the same for the server:

root@xena:/etc/syslog-ng# scp syslogserver-xena.pem keys/

Finally, protect the private keys by changing them to mode 0400, or read-only by the
owner:

chmod 0400 uberpc.pem
chmod 0400 syslogserver-xena.pem

For every new client, follow these steps:

• Create a new, unique keyfile

• Copy the keyfile to the new client

• Adjust the permissions

• Copy the client’s public certificate to the server

And that’s all there is to it.

Discussion
Of course, you have the option of not encrypting your Syslog-ng traffic; it will work
fine without it. You know that it is trivially easy to sniff traffic on a network with
commonly available tools, and any network with wireless access points is extra-
vulnerable, so leaving it in the clear is risky.

Fedora’s keyfiles are created by the Makefile in the exactly correct format for stunnel,
so you don’t have to muck around like you do on Debian.

See Also
• man req

• man ca

• man openssl

• Network Security with OpenSSL, by John Viega et al. (O’Reilly)

19.18 Setting Up stunnel for Syslog-ng

Problem
You have your SSL infrastructure set up, and now you want to configure stunnel to
use with your Syslog-ng server.

19.18 Setting Up stunnel for Syslog-ng | 559

Solution
You’ll need to install stunnel on the clients and server. Install it on Debian with this
command:

aptitude install stunnel4

On Fedora, use this command:

yum install stunnel

Now, edit your server /etc/stunnel/stunnel.conf file to look like this. The cert names
come from the previous two recipes:

cert = /etc/syslog-ng/syslogserver-xena.pem
CAfile = /etc/syslog-ng/clientkeys
client = no
verify = 3
setgid = stunnel4
setuid = stunnel4

[syslog-ng]
#server address
accept = 192.168.1.50:5140
connect = 127.0.0.1:514

The stunnel4 user and group are created by the Debian installer. If your system does
not create an unprivileged user and group for stunnel, you should create them yourself:

groupadd stunnel
useradd -d /var/run/stunnel -m -g stunnel -s /bin/false stunnel

The stunnel client configuration file looks like this:

cert = /etc/syslog-ng/uberpc.pem
client = yes
verify = 3
setuid = stunnel4
setgid = stunnel4

[syslog-ng]
accept = 127.0.0.1:514
#server address
connect = 192.168.1.50:5140

Now, you’re ready to move on to actually configuring Syslog-ng.

Discussion
This is as simple a setup as it is possible to use. By default, stunnel will listen on all
interfaces, so if that is the behavior you want, it’s not necessary to specify IP
addresses. You do need to list which ports you want it to listen to, so check /etc/
services for open ports, and enter the ones you are using.

See Also
• man 8 stunnel

560 | Chapter 19: Troubleshooting Networks

19.19 Building a Syslog Server

Problem
You want to have a central network logging server, but the mossy old Linux syslog
isn’t really up to the job. It’s OK for host logging, but it’s not as flexible as it could
be, and its remote logging capability is not built-in—it’s a bit of a hack job, really.
You want a modern log server that is designed for network logging, has encryption,
and that lets you fine-tune your settings.

You have your SSL certificates and stunnel all configured and ready to go, so now
you want to set up Syslog-ng itself.

Solution
Install Syslog-ng on Debian with this command:

aptitude install syslog-ng

And on Fedora with this command:

yum install syslog-ng

These will automatically remove the old syslog and set up a default configuration
that mimics a standard syslog installation.

You must install Syslog-ng, OpenSSL, and stunnel on all client hosts as well, so if you
haven’t done this yet, see the previous three recipes.

We don’t want to make a lot of changes to the existing /etc/syslog-ng/syslog-ng.conf
file, so let’s start with the options section on the Syslog-ng server:

options {
 sync (0);
 log_fifo_size (2048);
 time_reopen(10);
 time_reap(360);
 create_dirs (yes);
 perm (0640);
 dir_perm (0750);
 chain_hostnames(0);
 use_dns(no);
 use_fqdn(no);
 };

Add these lines to the source section to tell Syslog-ng to listen for messages via
stunnel, and to give each remote host its own file in /var/log/hosts/:

source stunnel {tcp(ip("127.0.0.1")port(514) max-connections(1));};
destination d_clients {file("/var/log/hosts/$HOST/$DATE_$FACILITY"); };
log {source(stunnel); destination(d_clients);};

19.19 Building a Syslog Server | 561

Now, add the following to the syslog-ng.conf file on each client:

options
 {long_hostnames(off);
 sync(0);};

source s_local {unix-stream("/dev/log"); pipe("/proc/kmsg"); internal();};
destination stunnel {tcp("127.0.0.1" port(514));};
log { source(s_local); destination(stunnel); };

And now, the moment of truth—we start up stunnel and Syslog-ng:

stunnel
/etc/init.d/syslog-ng

Give it a test drive with the logger command on both the server and the client:

$ logger "this is a test!"

Look in /var/log/messages to see a successful test:

Jul 14 21:46:32 xena logger: this is a test

Then, /var/log/hosts/ should have a new file created for the client, Uberpc, and
Uberpc should have also logged the test message in its own /var/log/messages file.

Discussion
That is a good setup that should suit most situtations because it nearly replicates the
standard logging setup on the server. One difference is the client files are named with
the hostname, date, and logging facility, so it’s easy to find the file you want.

syslog-ng.conf has five sections:

options{}
Global options. These can be overridden in any of the next four sections.

source{}
Message sources, such as files, local sockets, or remote hosts.

destination{}
Message destinations, such as files, local sockets, or remote hosts.

filter{}
Filters are powerful and flexible; you can filter on any aspect of a log message,
such as standard syslogd facility names (man 5 syslog.conf), log level, hostname,
and arbitrary contents like words or number strings.

log{}
Log statements connect the source, destination, and filter statements, and tell
Syslog-ng what to do with them.

As you saw from our examples, you don’t have to organize everything in this man-
ner. I like to group the statements by task rather than the type of statement.

562 | Chapter 19: Troubleshooting Networks

Source, destination, and filter statements have arbitrary names. For example, source
s_local could be source local, or source fred, or anything. There is a convention of
using s_ to indicate source statements and d_ for destination statements, but it’s not
required.

Debian comes with a startup file for stunnel; Fedora doesn’t. So, Fedora users can
create one using /etc/skel as a model, or just drop it into /etc/rc.d/rc.local.

What if things don’t work? Well, this is a chapter on troubleshooting, so you might
read backwards!

First, make sure that Syslog-ng is operating correctly locally, which you can check
with the logger command.

stunnel’s maximum logging level is debug = 7 (in stunnel.conf), and stunnel messages
go into /var/log/daemon.log. You might also try directing the log messages to the
screen by starting it from the command line with these options:

stunnel -f -D7

That keeps it in the foreground, so you’ll see everything in real time.

Using a packet sniffer will show you the communications between the various play-
ers, so set tcpdump to watching your Syslog-ng ports to see what they’re telling each
other:

tcpdump -pi eth0 -s0 port 514 or port 5140

See Also
• man 8 syslog-ng

• man 5 syslog-ng.conf

• man 1 logger

• The Syslog-ng Administrator Guide:

http://www.balabit.com/dl/html/syslog-ng-admin-guide_en.html/index.html

563

Appendix A APPENDIX A

Essential References

Computer networking is a deep and complex subject. Please refer to the references
here for deeper study of the subjects covered in this book.

Andreasson, Oskar. “iptables and ipsysctl Tutorials.” http://iptables-tutorial.
frozentux.net/.

Always start here to learn iptables. You’ll see a lot of crazy iptables tutorials out
there-stick with the master. This goes hand-in-hand with having an in-depth
understanding of TCP/IP.

Barrett, Daniel J., et al. SSH, The Secure Shell: The Definitive Guide, Second Edition.
Sebastopol, CA: O’Reilly Media, Inc., 2005.

SSH is very flexible and capable, and it seems there is nothing you can’t do with
it. This books does a great job of covering all of it.

Bautts, Tony, et al. Linux Network Administrator’s Guide, Third Edition. Sebastopol,
CA: O’Reilly Media, Inc., 2005.

This takes a more practical approach, and covers essential services like mail ser-
vices, web services, name services, PPtP, and iptables firewalls.

Carter, Gerald. LDAP System Administration. Sebastopol, CA: O’Reilly Media, Inc.,
2003.

Spend the money. Buy the book. LDAP is complex and abstract, and you’ll make
yourself crazy trying to learn via the usual cheapskate channels online. You
won’t be sorry.

Hagen, Sylvia. IPv6 Essentials, Second Edition. Sebastopol, CA: O’Reilly Media, Inc.,
2006.

IPv6 is coming whether you want it to or not. Ms. Hagen has done a great job of
teaching IPv6 fundamentals clearly and understandably. This is the background
you’ll need to understand implementing IPv6 in your networks.

564 | Appendix A: Essential References

Hall, Eric. Internet Core Protocols: The Definitive Guide. Sebastopol, CA: O’Reilly
Media, Inc., 2000.

As one reader review stated:

This book is not going to teach you how to program network software, and it’s
not going to teach you how to administer network servers. It goes into horrid
detail on all the bits flying around on the network. And it does so incredibly well.

Which it does—this book removes the mysteries of what happens when your
bits go out across the wires.

Hosner, Charlie. “OpenVPN and the SSL VPN Revolution.” http://www.sans.org/
reading_room/whitepapers/vpns/.

A great paper that describes what a genuine Virtual Private Network (VPN) is,
how OpenVPN is the best VPN of all, the problems with IPSec, and how the
majority of pricey commercial SSL-based VPNs are not real VPNs, and not all
that secure.

Hunt, Craig. TCP/IP Network Administration, Third Edition. Sebastopol, CA:
O’Reilly Media, Inc., 2002.

If you don’t understand TCP/IP, you won’t understand computer networking.
This book is a great reference that covers essential theory as well as hands-on
administration.

Krafft, Martin. The Debian System: Concepts and Techniques. San Francisco, CA: No
Starch Press, 2005.

This is a wonderful book for all Debian users and admins that fully explores all
the riches and sophisticated power tools available to Debian users.

Mauro, Douglas, and Kevin Schmidt. Essential SNMP, Second Edition. Sebastopol,
CA: O’Reilly Media, Inc., 2005.

SNMP is the common language for network hardware and software, and the key
to both monitoring and management. Once you figure out all those OIDs and
MIBs and community strings and traps, the rest is easy.

Newham, Cameron. Learning the bash Shell, Third Edition. Sebastopol, CA: O’Reilly
Media, Inc., 2005.

Ace network admins need scripting skills, and this is the book to use to learn
them.

Robbins, Arnold. bash Quick Reference. Sebastopol, CA: O’Reilly Media, Inc., 2006.

A great, 72-page downloadable PDF that covers bash commands in detail; well-
organized and with clear explanations.

Essential References | 565

Schroder, Carla. Linux Cookbook. Sebastopol, CA: O’Reilly Media, Inc., 2004.

My very own book for Linux system administrators and power users, designed
to be a companion to Linux Networking Cookbook. It covers package manage-
ment; running various servers such as mail, web, DNS, and DHCP; backup and
recovery; system rescue; file and printer sharing on mixed networks; and more.

Siever, Ellen, et al. Linux in a Nutshell, Fifth Edition. Sebastopol, CA: O’Reilly
Media, Inc., 2005.

A perennial classic, continually updated and containing all substantial user, pro-
gramming, administration, and networking commands for the most common
Linux distributions.

Stevens, Richard W., and Gary R. Wright. TCP/IP Illustrated, Volumes 1, 2, and 3.
Boston, MA: Addison-Wesley, 2001.

If you really want to be the reigning TCP/IP Master of the Universe, these books
are for you. Most admins wear out several copies of Volume 1. Clear, thorough,
abundantly illustrated, and a pleasure to read.

Ts, Jay, et al. Using Samba, Third Edition. Sebastopol, CA: O’Reilly Media, Inc.,
2007.

The official book of the Samba team, also available free online at http://www.
samba.org/. It’s especially valuable for understanding the weird stuff in Win-
dows networking (which is pretty much all of it), and what you need to know to
run Linux networks that have Windows hosts. Even if you can’t migrate away
from Windows desktops to nice solid Linux PCs, Windows clients on a Linux
network makes all kinds of sense, and Samba is the key to making it all work.

Tyler, Chris. Fedora Linux. Sebastopol, CA: O’Reilly Media, Inc., 2006.

This book goes into useful detail on using different desktop environments, run-
ning Fedora on laptops, running servers, package management, RAID, SELinux,
Xen, security, and data storage.

Viega, John, et al. Network Security with OpenSSL. Sebastopol, CA: O’Reilly Media,
Inc., 2002.

This is targeted more at programmers than network administrators, but it’s great
at removing a lot of mystery from OpenSSL protocols and key management.

566

Appendix BAPPENDIX B

Glossary of Networking
Terms

A
Active Directory

Microsoft’s implementation of LDAP used in Windows environments. Active
Directory is a directory service primarily used to provide authentication services
for Windows computers, but can also be used to store any information about a
network or organization in a central database designed to be quickly accessible.
The data in Active Directory’s database is held in one or more equal peer
Domain Controllers, each of which holds a copy of all information within the
Active Directory, and synchronizes changes made on one DC to all others. Com-
pare this to pre-Windows 2000 Server systems, which used a Primary Domain
Controller and multiple Backup Domain Controllers.

AGP—Accelerated Graphics Port
Originally, graphics cards didn’t need any more bandwidth than a PCI slot could
provide, but the more they developed, the more bandwidth they took from the
PCI bus—eventually requiring a dedicated connection. The AGP slot was cre-
ated specifically to cater to the bandwidth requirements of high performance
graphics cards. Based on the architecture of a PCI slot, an AGP port is a dedi-
cated single port, not just one slot of many on a shared bus. This means the AGP
card gets all the bandwidth on that connection to itself, without having to share
with anything else. Since the rise in popularity of PCIe slots (which can provide
much higher bandwidth), fewer new motherboards are being released with AGP
ports.

ATM—Asynchronous Transfer Mode
High-speed networking standard that supports both voice and data communica-
tions. ATM is normally used by ISPs on their private long-distance networks. ATM
does not use routing like Ethernet. Instead, ATM switches establish point-to-point
connections between endpoints, and data flows directly from source to destina-
tion. ATM uses fixed-sized cells of 53 bytes in length, rather than variable-length

B | 567

packets like Ethernet. ATM performance is usually expressed as OC (Optical Car-
rier) levels, written as “OC-xxx.” Performance levels as high as 10 Gbps (OC-192)
are theoretically possible, but it’s more common to see 155 Mbps (OC-3) and
622 Mbps (OC-12).

B
Baud

The number of discrete signaling events that occur each second in a digitally
modulated transmission. The term is named after Jean-Maurice-Emile Baudot,
the inventor of the Baudot telegraph code. At slow rates, only one bit of informa-
tion is encoded in each signalling event—in these cases, the baud is equivalent to
the number of bits per second that are transmitted; for example, 300 baud
means that 300 bits are transmitted each second (300 bps). It is possible to
encode more than one bit in each signalling event, so that a 2400 baud connec-
tion may transfer 4 bits with each event, resulting in 9600 bps. At these higher
speeds, data transmission rates are usually expressed in bits per second (bps)
rather than baud.

BDC—Backup Domain Controller
See Primary Domain Controller.

BIOS—Basic Input/Output System
The BIOS in a PC is the code that runs when the computer is first turned on. It is
stored in a form of memory on the motherboard, and when run will initialize
and configure the hardware, load boot code for the operating system (usually
from a hard disk), then transfer control to the operating system. Older operating
systems would make use of the BIOS for I/O tasks, but current systems take full
control of the machine, only using the BIOS for initialization and booting.

Bridging
Combining two network segments (for example, one segment connected to a
wired Ethernet port and another connected wirelessly) as if they were one net-
work. An Ethernet bridge does not use routing, but rather, relies on broadcast-
ing to communicate between the two segments. So, this is a good way to share
broadcast services, such as a Samba server, between two LAN segments, or to
combine two LAN segments into one for easier administration and routing.

Bridging doesn’t scale up well for larger LANs where the amount of broadcast
traffic can become unwieldy. (Compare to Routing.)

Broadcasting
In the context of a computer network, broadcasting means sending packets that
are designed to be received by all devices on a subnet. Broadcasting is limited to
the broadcast domain, which includes only those computers able to talk to one
another on a network directly, without going through a router.

568 | Appendix B: Glossary of Networking Terms

C
Certificate or Public Key Certificate

A method used when implementing public-key cryptography across a large num-
ber of users or devices, where securely handling keys is impractical due to the
large number of members. In normal public-key cryptography, you may want to
allow others to send you encrypted secret messages, so you provide people with
your public key. Anyone who wishes to contact you securely encrypts messages
to you with your public key, which you decrypt with your private key.

This leaves open the possibility that an attacker may publish a public key of their
own, claim it is yours, then intercept and read communication meant for you. In
small webs of trust this may not be a problem, but across many thousands of
users, it becomes more of an issue to keep track of who genuinely owns which
public key.

To avoid this issue, each member in a large group may use a certificate instead of
a plain public key. The certificate consists of their public key combined with
their identity, signed by a third party who is trusted by all. In a Public Key Infra-
structure, this third party will be a Certificate Authority. Now, anyone who
wishes to send you an encrypted message can obtain your certificate, check to
see that the trusted third party believes the key and the identity within it match,
and with that verification complete, trust encrypted communication to you.

Self-signed certificates are used inside the LAN to authenticate local users and
services; in that case, you do not need a third-party Certificate Authority because
you can easily verify your own certificates.

CIDR—Classless Inter-Domain Routing
Introduced in 1993, CIDR removes the idea of classful networks by going to a
resolution of bits for defining networks, indicated by a numerical suffix. The old
Class A, B, and C networks corresponded to CIDR suffixes of /8, /16, or /24.
Dividing IP addresses into CIDR blocks allows a resolution much finer than pre-
vious classful networks, which were wasteful of IP addresses. 192.168.0.0/16
corresponds to an old class B network, where 192.168 (the first 16 bits) define
the network, and .0.0 up to .255.255 refer to hosts. Finer grained division of net-
works are possible, down to individual IP addresses, such as 192.168.100.2/32.

Codec
In the context of a VoIP network, a codec is an algorithm that encodes audio
into digital form for transmission over the network, and can decode it back into
audio for listening. Different codecs make different tradeoffs between high qual-
ity audio, bandwidth usage, and CPU cycles. If issues out of your control
severely limit the bandwidth available, for example, you may be willing to use a
more CPU-intensive codec that can compress audio into a smaller stream. In the
wider sense of the term, other forms of data (such as video or pictures) can be
encoded and decoded using other relevant codecs.

C | 569

Community string
When devices communicate using SNMP, a piece of text known as a community
string is included in every packet sent between a management station (an SNMP
manager) and a device (an SNMP agent). It can be seen as a password defining the
access an agent will allow a manager. A community string can be a read string or a
read/write string—if a manager presents a read string, the agent will only allow the
manager to read information, but if a read/write string is presented, an agent will
allow that manager to read information and change the agent’s settings.

Console
Console has many meanings. A Linux command-line session that is not running
in X Windows is called a console session, or virtual console. Some Linux docu-
mentation refers to an attached keyboard and monitor as the console or the
physical console. Console can refer to the logical device /dev/ttyS0. Another way
to think of the Linux console is as the location where kernel messages appear.

Circuit switching
In a circuit switching network, a dedicated circuit must be opened between users
before they can communicate and, while the circuit is open, no other users may
use that circuit or parts of it. A circuit may remain open without any informa-
tion transmission, and still be unusable by others; it must be closed before its
components are available to different users. (Compare this to Packet switching.)

CPE—Customer Premises Equipment
Any device at a subscriber’s premises and connected to a telecommunications
network on the customer side of a demarcation point (demarc). Equipment
included may be for telephone communication, a cable Internet connection,
DSL, or cable TV.

CSU/DSU—Channel Service Unit/Data Service Unit
Equipment used to connect a router to a T1 connection. The CSU provides the
connection to the digital line, receiving and transmitting the signal required for
communication, and the DSU converts the line frames as used on a T1 connec-
tion into frames useful for a LAN. In practice, the CSU and DSU are usually
combined into the one box for connecting a LAN to a T1.

Collision domain
A segment of a network where packets can potentially collide if two or more
computers send at the same time. Using a hub with multiple machines attached
creates a collision domain, as the hub simply repeats the packet sent to the hub
out to all other machines connected to it without regard for other network activ-
ity. Computers must sense the network to check it isn’t busy before sending
packets—even then packets might collide, which requires the packet be resent.
Collisions waste time, and the more machines in a collision domain that are
transmitting often, the more collisions occur. Using switches instead of hubs
splits collision domains into smaller segments, and a 100 percent switched net-
work has no collision domains.

570 | Appendix B: Glossary of Networking Terms

D
Demarc—demarcation point

The point at which the wiring on a customer’s premises meets that of telecom-
munications providers. A demarc can be as simple as a connection between
internal and external telephone wires, or a box allowing connection of all forms
of telecommunications, from telephone and cable, to fiber optic connections.

DHCP—Dynamic Host Configuration Protocol
DHCP is a protocol used between clients (network devices such as computers)
and a DHCP server, so that the client can obtain a valid IP address and other
information such as default gateway, subnet mask, and DNS servers, for the cli-
ent to connect to the network.

DNS—Domain Name System
The system that provides information about domain names to users of the Inter-
net. Essentially, a widespread distributed directory of information about the
Internet. Publically available domain names must be globally unique and are
managed via central registries. Domain names are matched to the IP addresses of
specific hosts; these addresses must also be globally unique. The domain name
system can take a domain name and return information about how to reach it
(IP address); how to send mail to a user on it (mail exchange servers); and
digging further, even information about the owner of the domain, when it was
registered, and when it might expire.

Private domain names and addresses that are not accessible outside the LAN do
not need to be unique, and do not have to be registered.

Domain (Windows)
A group of computers that share a central directory database that contains infor-
mation about about users, their privileges, resources, and the privileges required
to access those resources. A user who needs to use a computer within a domain
has a single account that is unique across the domain. Implementing a domain
provides several benefits, including centralized administration and a single login
that authenticates access to potentially thousands of resources. For Windows
NT domains, the directory was provided by a Primary Domain Controller,
whereas Windows 2000 Server and later uses Active Directory.

DSL—Digital Subscriber Loop or Digital Subscriber Line
DSL is a family of technologies designed to provide high speed digital data trans-
mission over the local loop of a telephone network (from exchange to customer
premises). ADSL (Asynchronous DSL, where some bandwidth is sacrificed for
voice compatibility, and download speed is many times higher than upload
speed) is the most widely used DSL, and is designed to work with an existing
voice service. SDSL (Synchronous DSL) and other faster forms of DSL require
the line’s entire bandwidth.

F | 571

Dynamic address
A dynamic address refers to an IP address given out to a device on a network
with no regard to matching a specific address to that device. When a client
device (say a laptop plugged into a network) is given a dynamic address, it
simply receives one from a pool of available addresses. It may or may not be allo-
cated the same IP address as on previous connections; no attempt is made to do
so, nor is an attempt made to give a specifically different one.

E
Encryption

A process by which information is changed from a meaningful usable form
(called plaintext) into an encrypted form (called ciphertext), which is undeci-
pherable except to those with the key to decrypt it. Encryption may apply to a
single file on disk, to all data in packets over a network connection, or to an
entire stream of data.

Ethernet, Fast Ethernet, Gigabit Ethernet
Ethernet refers to a family of related link-level protocols for sending data. Ether-
net generally refers to the entire family, or sometimes just 10 megabit per second
connections. Fast Ethernet is 100 megabits per second, and Gigabit Ethernet is
1,000 megabits (or one gigabit) per second Ethernet.

F
FQDN—Fully Qualified Domain Name

A complete domain name that unambiguously refers to an address in DNS. As
an example, a host named alrac at example.com will have the FQDN of alrac.
example.com.

Frame Relay
A point-to-point protocol that transmits traffic in variable-sized frames rather
than TCP/IP packets, and that is used to connect branch offices or a customer to
their ISP. Frame relay doesn’t do any error correction; this is left up to the end-
points.

This used to be a lower-cost alternative to T-services, but these days is not as
cost-competitive as it used to be, and is used mainly when high-speed DSL or T-
services are not available.

FXS/FXO
“Foreign Exchange Station” and “Foreign Exchange Office.” These are analog
telephony terms. FXS is the interface the telco provides to its customers, such as
the wall jack that the telephone plugs into. An analog telephone is an FXO
device.

572 | Appendix B: Glossary of Networking Terms

G
GRE—Generic Routing Encapsulation

A tunneling protocol that provides encapsulation of OSI layer 3 packets inside IP
packets. GRE provides a virtual point-to-point link between machines at remote
points on an IP network like the Internet. GRE is completely insecure, but it pro-
vides a fast and simple way to access a remote network.

GRUB—GNU GRUB or GRand Unified Bootloader
A multiboot bootloader for Linux and other operating systems. GNU GRUB is
based on the GRand Unified Bootloader. When a computer is booted, GRUB
executes and allows a user to make boot-time choices such as selecting different
kernels or kernel options, then transfers control and options to a kernel to boot
an operating system. Just one kernel may be installed, or multiple operating sys-
tems with multiple kernels. Most current, general-purpose Linux distributions
use GRUB. GRUB features a rather powerful interactive interface, and unlike
LILO, the master boot record on disk does not have to be overwritten for every
configuration change. (See also LILO.)

H
Hub

An Ethernet hub is a networking device with multiple ports that connects many
networking devices in a star topology. When a packet arrives in one of the hub’s
ports, the hub simply repeats that packet to all of its other ports so it is received
by all computers connected to the hub, in the hope that the correct destination
machine will receive the packet. Because every packet on every port in the hub is
repeated back out its other ports, collisions occur frequently and slow down the
network. (Contrast this with a Switch.)

I
IAX

The Inter-Asterisk eXchange protocol that is native to the Asterisk iPBX (Inter-
net protocol-base Private Branch Exchange) and VoIP (Voice over IP) server. IAX
can carry multiple audio and video data streams, which reduces IP overhead,
and because it uses a single port, it is easy to get through firewalls.

Interface
In the context of networking, a name used in Linux operating systems to describe
a network connection. The connection may directly correlate to a physical device,
such as eth0 (describing a specific ethernet port), or a virtual connection through
another connection, such as tun0 tunneled over another connection.

I | 573

IOS—Internet Operating System
Used in most Cisco routers, IOS is a specific-purpose operating system designed
for handling network tasks on Cisco networking hardware.

IP
Along with TCP, one of the most widely used and important protocols on the
Internet. IP is the protocol involved in shipping a packet of information from
one computer on a network to a remote machine potentially on the other side of
the world. Routers pay attention to the IP address carried in an IP packet, and
perform the magic required to shift the packet hop-by-hop to its final destina-
tion. IP provides no guarantees of reliability, so if packets are lost in transit,
accidentally duplicated, arrive in the wrong order, or arrive corrupted, no effort
is made to address the problem on the IP level—that is left to protocols a layer
above, such as TCP. (If TCP detects a missing, corrupted, or out of order packet,
it must request it be resent from the source.)

IP has two main flavors. First, is the widely popular and default IPv4 with its famil-
iar 32-bit addressing (represented in dotted quad notation like 12.139.163.20),
which gives a maximum of 4.3 billion addresses, not quite enough to give every
human alive one IP address. Second, is IPv6, the successor to IPv4. With 128-bit
addressing, IPv6 can provide enough addresses to give every human alive billions
of IP addresses for every cell in their body. While a much larger address pool is
one of the great features of IPv6, a few other extras are worth mentioning, such
as multicast support by default, jumbograms (packets up to 4 GB in size), IPsec
support by default, and stateless host auto-configuration.

IPsec—IP security
A set of protocols for encrypting, authenticating, and integrity checking packets
at the level of IP streams. IPsec also includes protocols for cryptographic key
establishment, and is widely used in some implementations of Virtual Private
Networking (VPN). IPsec operates at the network layer below that of other Inter-
net security systems (such as SSL), which can give extra flexibility with the
tradeoff of more complexity. IPsec has two modes of operation: transport mode
and tunnel mode. Transport mode is performed by each machine at the end of a
connection, and only encrypts the payload of the IP packet, leaving the IP header
as plaintext so it can be routed (although not by using NAT, which rewrites part
of the packet, causing it to fail integrity checking). In tunnel mode, the entire
packet is encrypted, and then encapsulated into a new IP packet to allow rout-
ing to function—using this method, secure traffic flow between two LANs can
be provided by two nodes, one in each LAN.

ISDN—Integrated Services Digital Network
A digital network technology using ordinary telephone wires, ISDN is capable of
delivering multiple channels of data, voice, video or fax over a single physical
line. Channels on ISDN are either B (for Bearer, usually 64 Kbps channels that

574 | Appendix B: Glossary of Networking Terms

most data is transmitted on) or D (for the channel used to transmit control sig-
nals). Different ISDN services can provide varying numbers of channels, from a
basic two B and one D, up to services with 30 B channels. In much of the world,
ISDN has been supplanted by DSL.

K
Kerberos

An authentication protocol that allows users communicating over a network to
prove their identity to one another securely. It not only allows a user to prove
her identification to a server, for example, but allows the server to prove its iden-
tification to the user. Kerberos authentication uses symmetric key cryptography
and a trusted third party, the Key Distribution Center (KDC). Each entity on the
network has a secret key that is known only to itself and the KDC.

Authentication between two entities on the network is a complex process with
many steps, but it can be summarized like this: a client wishes to access a server
on the network, and communicates this wish to the KDC. The KDC and client
communicate using the client’s key (known only to the client and the KDC), and
after some negotiation, the KDC returns multiple messages to the client, includ-
ing one encrypted with the server’s key that the client must send to the server to
prove that the KDC has authenticated the client, and a session key specifically to
be used for communication between the client and server. When the client pre-
sents the message encrypted with the server’s key to the server, the server
decrypts it and extracts the session key and other information identifying the
client. This establishes a mutual trust, and the client and server can then com-
municate with each other using the session key to encrypt their messages.

KDC—Key Distribution Center
See Kerberos.

L
LAN—Local Area Network

LANs are networks based on a small physical area such as a residence, building,
or college campus. They tend to consist of fast connections between systems
(Gigabit Ethernet and Wi-Fi are common), and don’t involve a paid network
connection to the Internet as part of their structure, although one may be used
to connect the LAN to the rest of the world.

LDAP—Lightweight Directory Access Protocol
A protocol for accessing information in and writing information to an LDAP
directory. The directory itself is a database designed for very fast consistent
reads, used for relatively static information like user data, passwords, security
keys, customer data, etc. LDAP clients connect to an LDAP server and send

M | 575

requests—generally, a client can send multiple requests to the server and does
not need to wait for responses in between, and the LDAP server can return
responses in any order. Microsoft’s Active Directory and Fedora Directory Server
are two examples of heavyweight LDAP implementations.

LILO—LInux LOader
When a computer that has LILO installed is booted, the BIOS passes control to
LILO from disk, and allows a user to make boot-time choices such as selecting
different kernels or kernel options. Once an option is selected, LILO loads the
relevant kernel and transfers control and options to it in order to boot an operat-
ing system. LILO has fallen out of favor among general Linux distributions, in
favor of GRUB. (See also GRUB.)

M
Masquerading

IP Masquerading is a synonym for Network Address Translation (NAT).

MIB—Management Information Base
In the context of SNMP, it is a hierarchical structure that describes all the objects
that an agent can be queried about or in some cases written to. The MIB for each
agent contains the name, Object Identifier (OID), data type, and read or read/
write status of each object. Network equipment (agents) designed to be managed
by SNMP must contain a MIB with objects relevant to the device’s operation,
and the manager for that agent must also know what can be sanely accessed on
the agent. In reality, there is one MIB and the Internet Assigned Numbers
Authority (IANA) manages the structure of it. Devices only implement a subset
of the MIB tree with objects relevant to their operation.

Modem
From MOdulate/DEModulate, a modem is a device that encodes (by modula-
tion of a carrier signal) digital data for transmission over an analog phone
connection, and decodes a received analog signal back into a digital stream.
Modems are best known for connecting two computers over the telephone sys-
tem, but different forms of modems using other analog transmission mediums
(such as radio) exist.

MPPE—Microsoft Point-to-Point Encryption
A protocol used to encrypt PPP and VPN connections. MPPE uses RSA’s RC4
encryption using up to 128-bit session keys. Session keys are changed frequently
for extra security, but due to keys being derived from information originally sent
as plaintext, MPPE is not particularly robust encryption.

Multicast
IP Multicast is the process of sending a packet to multiple machines on a
network. Contrast this with Unicast (sending to one host only) and with Broad-
casting (sending to all hosts). Multicast only requires the source to send a packet

576 | Appendix B: Glossary of Networking Terms

once, no matter the number of receivers—it’s the nodes within a network that
replicates the packet as many times as needed. Movement and replication of the
packet within the network to the correct hosts depends on the source sending to
a group address, and having multiple receivers who have already announced to
the network that they are part of that group. Nodes within the network (know-
ing who has joined the multicast group) can then intelligently forward the packet
on, replicating it only when needed.

N
NAS—Network Access Server

A point of access to a network that guards access to that network. The NAS
takes credentials from a client wishing to connect to the network, passes them to
an authentication service of some kind, and then grants or denies the client
access depending on the response from the authentication service. To perform as
a NAS, a server does not require information about which clients are allowed
access, although the authentication service used by the NAS may run on the
same physical device. All the NAS must be able to do is prevent or allow a client
access to the resources behind it.

NAT—Network Address Translation
A method used to allow a single public IP address to represent an entire private
subnet, and to run public servers with private nonroutable addresses. A typical
Internet connection may have one public IP address, and a LAN of 25 worksta-
tions, laptops, and servers behind it, protected by an iptables NAT firewall. The
entire network will appear to the outside world as a single computer. Source
NAT (SNAT) rewrites the source addresses of all outgoing packets to the fire-
wall’s address, and can retranslate the other way, too, when responses for
machines inside the private network are received from the Internet. While hav-
ing public routable IP addresses is desirable for public services, like web and
mail servers, you can get by on the cheap without them and run public servers
on private addresses. Destination NAT (DNAT) rewrites the destination address,
which is the firewall address, to the real server addresses, then iptables forwards
incoming traffic to these servers.

Netmask
Subnet Mask. (See also Subnet.)

NIC—Network Interface Card or Network Interface Controller
The hardware that allows a computer to connect to a network. It may consist of
a card that plugs in to a computer motherboard, it could connect via USB port,
or it could be integrated into the motherboard itself. It provides the physical
connection that allows the computer to talk to the rest of the network. Most
common is a connection to a TCP/IP network that may use cat5, wireless, or
coax connections. NICs exist for other network types, including token ring and
optical fiber.

O | 577

NSS—Name Service Switch
A part of many Unix and related systems that defines how lookups for information
relating to the environment of the machine are made. By default, most lookups
for names such as user passwords, groups, hosts, and so on are done via files
such as /etc/passwd or /etc/hosts. The Name Service Switch allows lookups using
other databases to discover the same information, and defines the order in
which those databases are accessed. It is through configuration of this switch
that a Linux system can be used on a Windows domain, with the Winbind NSS
module providing users and groups from a Windows domain.

NTP—Network Time Protocol
A protocol designed to allow computers on a network to synchronize their
clocks, taking into account the variable latency on a packet switched network.
Using NTP, it’s possible for all computers on a network (like the Internet) to
have clocks synchronized to within hundredths of a second. This is required for
some network activities, such as Kerberos authentication, which in part relies
upon accurate timestamps.

Null modem cable
A cable that allows a PC to connect directly to another PC via serial ports. Simi-
lar to a normal modem cable (except where receive/transmit lines would go
straight through to transmit/receive pins on the modem), a Null modem cable
swaps the lines inside the cable, allowing the two PCs to communicate using the
same serial connection software and serial ports used to connect to a modem.

NVRAM—Non-Volatile Random Access Memory
Unlike the normal RAM inside a PC, NVRAM doesn’t lose its contents when
power is removed. Various forms of NVRAM generally come with disadvan-
tages compared to normal RAM—it’s often slower, requires more power to read,
and many times more to write, and may wear out with the masses of writing that
normal RAM requires. Different forms of NVRAM are most often used to store
some settings within a device, where only occasional writes are required, but it
can also serve as a silent replacement for a small hard drive. Flash memory is the
most well-known form of NVRAM.

O
OID—Object IDentifier

Within the context of SNMP, a unique identifier referring to an object within a
Management Information Base (MIB) used to store information and settings
related to a network device. The OID is represented as a string of numbers sepa-
rated by dots, and refers to an object’s position in the tree structure of the MIB.
For example, 1.3.4.16 would be a sibling of 1.3.4.1800, and both are children of
1.3.4. The object and the information it contains can be anything relevant to the
device’s operation, from the name of the device to the speed of fans, memory
usage, bandwidth usage, or the number of hamster wheels in use.

578 | Appendix B: Glossary of Networking Terms

OSPF—Open Shortest Path First
A link-state routing protocol, implemented by routers to dynamically adjust
routing to changing network conditions. An OSPF router multicasts informa-
tion to other routers when changes have occurred around its network, as well as
routine updates every 30 minutes. From this information, each individual OSPF
router builds a link-state database that contains a representation of the entire
topology of the network in tree form, with the router itself at the root. When a
router needs to forward a packet, it can use its copy of the link-state database to
calculate the best path from the root (itself) to the destination on the tree, using
a path cost as its routing metric (as opposed to RIP’s hop count). In a practical
sense, path cost is mainly determined by link speed over a given route, so a
packet is forwarded toward the fastest of multiple routes. As a network grows
larger, routers will spend more time and bandwidth talking to each other, which
consumes valuable bandwidth just keeping the network together. OSPF
addresses this issue by allowing the division of a network into areas. Areas must
all be connected to a common backbone, and the routers inside each area only
need to contain the topology for that area, with border routers communicating
between different areas. (See also RIP.)

P
Packet filtering

Filtering by the attributes of a packet entering a device or network. Attributes
may include the source or destination address for the device, the port, connec-
tion type, elements of the data payload, or any other number of detectable
attributes of the packet.

Packet switching
A packet switched network breaks information to be transmitted into discrete
packets, each of which is sent over a shared network used by multiple machines
or users. Each individual packet contains information pertaining to its source
and destination, and does not require a dedicated path to reach its destination;
indeed, packets may travel between the same source and destination using differ-
ent paths. Multiple users may transmit packets over the same connection at the
same time, independently of one another. (Contrast with Circuit switching.)

PAM—Pluggable Authentication Modules
A system whereby applications that require authentication can use many kinds
of authentication, all using the same API. An application only needs to know it is
using PAM, and the relevant modules provide one of many kinds of authentica-
tion, transparently.

P | 579

PBX—Private Branch eXchange
A PBX was originally a private telephone exchange that handled a business’ own
internal telephone requirements, so that an entire building’s internal phone calls
wouldn’t need to use the costly public phone network. Now, a PBX is any sys-
tem that handles in-house telephony, from manual exchanges to VOIP systems
that route telephony over IP networks.

PCI—Peripheral Component Interconnect
The PCI Standard defines a 32- or 64-bit parallel bus for connecting devices to a
computer motherboard. Peripherals connected via a PCI bus vary widely, includ-
ing graphics cards, network cards, modems, disk controllers, and other I/O
devices. The original PCI bus specification consisted of a 33 MHz 32-bit bus,
and has been revised multiple times, culminating in PCI-X running up to 533
MHz with 64-bit signalling. PCIe (also called PCI Express) is a far faster inter-
face that is physically and electrically very different to PCI, but retains software
compatibility; i.e., an operating system written to talk to PCI devices won’t be
confused when it finds it’s running on a PCIe system.

PDC—Primary Domain Controller
A server catering to Windows NT style domains that can give a user access to
multiple resources on a network with the use of one login. NT Server domains
have one Primary Domain Controller, and optionally multiple Backup Domain
Controllers. While the Primary Domain Controller contains the database of
accounts and privileges in a read/write form, each Backup Domain Controller
gets a full backup of the database, but is read-only. If needed, a PDC can be
removed and a BDC can be promoted to PDC. Under Linux, Samba can per-
form as a PDC. (Contrast to Active Directory, which supersedes NT-style
domains.)

 PKI—Public Key Infrastructure
A system that handles the work of creating public-key certificates containing
identities tied to public keys and signed by a certificate authority (CA). The PKI
can publish the public-key certificates to those who wish to communicate with
the keys’ owners, and verify that a certificate containing some public key and
identity is genuine, so the public key can be trusted to belong to the owner
described.

PPP—Point-to-Point Protocol
In its most common form, PPP is used to provide an OSI layer 2 (data link)
between two nodes over a serial modem connection to allow TCP/IP to function
and give a computer Internet access. Defined within PPP’s specification is Link
Control Protocol (LCP), which automatically configures the interfaces at each
end of the PPP connection. PPP is also used as part of PPP over Ethernet (PPPoE)
for some ADSL connections, and PPP over ATM (PPPoA) for some ADSL and
Cable Internet connections.

580 | Appendix B: Glossary of Networking Terms

PPTP—Point-to-Point Tunneling Protocol
A protocol used to create a VPN over an IP-based network such as the Internet.
Network protocols on the original networks are sent over a regular PPP session
using a Generic Routing Encapsulation (GRE) tunnel. A PPTP VPN can be
encrypted using Microsoft Point to Point Encryption (MPPE), but the implemen-
tation isn’t particularly secure in comparison to the SSL-based OpenVPN.

Q
QoS—Quality of Service

Any system whereby packets zipping around your network are handled in differ-
ent ways according to their importance and need. Applications sending/receiving
data don’t all require the same performance from the network; VoIP may have
strict requirements for low delay, high quality video may need consistent high
throughput, an SSH session may require little bandwidth but must be highly
responsive, and network warnings to on-call admins (you really do want to
know when your most critical servers have something to complain about) abso-
lutely must get through.

R
RAS/RRAS—Remote Access Service, Routing & Remote Access Service

RAS is Windows NT’s Remote Access Service, which allows the sharing of net-
work services over a dial-up connection. A remote user would dial in to a server,
and then have the same access to the server’s network as if they were connected
to it physically.

RRAS is the equivalent to RAS in Windows 2000 Server and above, which not
only provides dial-up remote access, but also a VPN server, IP Routing, and
NAT.

RDP—Remote Desktop Protocol
The protocol used by client software to connect to a remote Windows computer
running Microsoft Terminal Services, and to use that computer as if it were the
local machine. Currently, the server software only runs on Windows, but clients
are available for other operating systems, including Linux, Mac OS X, BSDs, and
Solaris. RDP not only allows the remote machine to display graphics on the local
screen, but applications on the remote can play audio and use serial ports, paral-
lel ports, and printers on the local device.

Not all Windows computers can run an RDP service; notable exceptions are
Windows XP Home Edition and Windows Vista Home Basic or Home Premium.

S | 581

RFC—Request For Comments
Documents containing standards, technical, and organizational information
about the Internet. An individual RFC is not necessarily a standard or even a
proposed standard, but may be published to provide information about how
other standards work in practice when applied to the Internet, to provide infor-
mation on de facto adopted standards, or to convey new concepts related to the
Internet. RFCs are serialized, and referred to by number; for example, RFC 4406
is a document covering an experimental protocol for email authentication.
Anyone may publish a document to the Internet Engineering Task Force for inclu-
sion as a possible RFC. The official source for RFCs is http://www.rfc-editor.org/.

RIP—Routing Information Protocol
A method by which routers within a network are able to adapt to changing
network conditions (such as a downed router or suddenly congested links) by
communicating to other routers. About every 30 seconds, a RIP-enabled router
multicasts its routing table to any other connected routers, and can be triggered
to do the same on certain events for quick response to sudden changes. As a
distance-vector routing protocol, RIP uses the hop count of a destination to
detect the most desirable path to route packets, but limits the number of hops to
15 to prevent routing loops. This creates a limit to the size of a network that can
be supported by RIP, as anything more than 15 hops away appears not to exist
to RIP routers. RIP benefits from simple configuration and low processing
requirements, so for a relatively small LAN, RIP may be ideal. (See also OSPF.)

Routing
IP Routing is the process of path selection for packets traveling through an IP-
based network. Compared to bridging, which automatically discovers the route
that network traffic takes between multiple network segments, and does so via
OSI Layer 2 (the data link layer), routing relies upon a coordinated OSI Layer 3
(network layer) network, and uses the IP addresses of packets to decide where to
forward them. Routing is usually controlled by pre-constructed routing tables
that define where a packet should go. Each router only needs to know where a
packet should be sent on its next hop, and doesn’t know nor care what happens
afterward; the next hop plus one is the responsibility of the next router, and so
on through the network until a packet reaches its destination.

S
SBC—Single Board Computer

A computer where everything needed to function is on a single board (mostly). A
desktop computer can require a whole load of different boards and accessories
to make it work. There’s the motherboard, some RAM modules, a hard drive, a
graphics card, a keyboard, and a mouse—and that’s just for a basic system
without including extra storage, exotic graphics setups, extra USB ports, or

582 | Appendix B: Glossary of Networking Terms

specialized sound and media cards. On the other hand are the single board com-
puters with much more modest hardware. A fanless basic processor, RAM, flash
RAM storage, multiple networking ports, and serial connections all on the one
board is the norm. There may be some basic expansion available, but it’s not
necessary for most operations. The idea is that many specialized repetitive tasks
like routing, firewalls, and some services can be handled by computers at about
the speed of an early Pentium, and that’s where these boards fit. Just cram it in a
box, add power and an operating system to its flash RAM, and you’re on your
way.

Serial console
Any PC, laptop, or PDA that controls another machine via the serial port. Some
folks think that only a real hardware serial terminal, like a Wyse terminal, can be
called a console. Using an old PC for a serial console is a nice way to get a few
more years’ life out of an old machine.

SIP—Session Initiation Protocol
The SIP protocol is probably the most popular VoIP protocol in use now. Com-
mercial VoIP providers like Vonage use SIP. SIP is not a multimedia protocol
itself, but rather carries any type of audio or video stream, and it creates, modi-
fies, and terminates sessions between at least two endpoints.

SLA—Service Level Agreement
A formal agreement that defines the level of service to be expected from a pro-
vider of those services. For example, with an Internet connection, an SLA may
define the percentage of time a connection remains open and fully usable, the
average time before the helpdesk answers their phones, or the average time taken
for problems to be fixed. An SLA can also lay out billing reductions for the cli-
ent or penalties for the provider if they fail to honor the level of service
described.

Smurf
A Smurf attack is a form of Denial of Service attack that exploits the response of
computers on a network to a broadcast ICMP echo request (a ping). The basic
element of a Smurf attack is a single ICMP echo request carrying a faked source
IP address, sent to a broadcast address. The routing device that receives the echo
request then broadcasts the single request to all IP addresses covered by that
broadcast address, and each one sends back an ICMP echo response directed to
the faked source IP address. In this way, a single ping request from somewhere
on the Internet can generate a much larger ping response to the faked source
address (the victim). Floods of such pings can multiply the response hundreds-
fold, and overwhelm the network connection or computer at the faked source IP.

SNMP—Simple Network Management Protocol
SNMP consists of managers (stations that oversee devices on a network) and
agents (inside a network device itself) communicating through a simple lan-
guage. Using SNMP, a manager is able to read information from an agent, or

S | 583

read and write information depending on the permissions it has to that agent.
Information within agents is stored by objects within a Management Informa-
tion Base (MIB), and those objects may contain a wide range of information
about a device such as settings, usage statistics, performance data, or physical
properties (e.g., temperature or fan speed).

SOHO—Small Office/Home Office
A term applying to a small business with up to about 10 users. Computing
equipment labeled SOHO may be designed with some features typically for busi-
ness use, but not necessarily capable of handling the requirements of large
organizations with hundreds of users.

SRPM—Source RPM
A package for Red Hat-based Linux systems that contains source code and a
spec file that lets the rpm utility compile and build an RPM package. The result-
ing RPM package can then be installed and managed like any other RPM.

SSH—Secure SHell
A protocol that allows the opening of a secure, encrypted channel between two
computers with secure authentication. SSH is most often used to provide a
secure shell to log in to a remote machine, but also supports file transfers, TCP,
and X11 tunneling.

SSL/TLS—Secure Sockets Layer/Transport Layer Security
SSL and TLS are similar, related protocols for providing secure data transmis-
sion and authentication over networks, including the Internet. SSL was originally
developed by Netscape in 1994, and was revised to become SSL 3.0 in 1996,
which became the base of TLS. TLS 1.1 is the current version of the protocol. An
SSL/TLS connection is started by a client requesting a secure connection to a
server. The client and server decide on the strongest cipher and hash function
they both share, and the server presents a digital certificate that can be checked
by the client with the issuing certificate authority. Within the server’s certificate
is its public key, which the client uses to encrypt a random number to send to
the server. If the connection is genuine, the server is able to decrypt the message
and the server and client now have a matching secret random number that can
be used to generate keys for data transfer. Now that this handshaking is
complete, the server and client may communicate over a secure connection. The
client may also present a digital certificate as part of the handshaking process, so
that the server, too, can verify the client’s identity.

State (packet filtering)
Filtering on the known state of a packet, identified by previous network activity.
A single packet coming from a random machine on the Internet may be dropped
by a firewall, or it may be accepted, depending on the known state. For exam-
ple, a machine behind a firewall may request a web page from a web server. The
web server then sends a response back, and the firewall allows the response
because it knows a machine requested information from that server. The same

584 | Appendix B: Glossary of Networking Terms

response from the web server would be denied if there had been no original
request passing through the firewall. While there was not necessarily any infor-
mation within the packet that defined whether it was a valid response to be
passed through, its state was derived by the firewall through previous activity
between the two hosts.

Static address
A Static address is one meant to be matched to a particular computer, so that it
always has the same address. Necessary when you have a server on a network,
and must know a permanent IP address in order to use it. (Contrast with a
Dynamic address.)

Subnet
In the context of an IP-based network, a subnet is a group of related IP addresses
all beginning with the same binary network part, and ending in a unique binary
sequence identifying the host within the subnet. An example might be the IP
address 192.168.100.12 with subnet mask of 255.255.255.0. The first 24 bits of
the address, shown by bits in the subnet mask, reveal which part is the network
address (192.168.100.0), with the last 8 bits correspond to the hosts part (12 in
this case). The entire subnet thus spans the address range 192.168.100.0 to
192.168.100.255. Dividing a network into subnets in this hierarchical sense
keeps routing easy, as the IP addresses within a subnet can all be derived from
the network address.

Switch
At first glance, a switch may look very similar to a hub, but it will act far more
intelligently. Switches take note of the addresses of connected computers in
order to send only data to the correct machine. For example, a packet arrives in
a port on a switch, and is destined for one particular machine connected via
another port. The switch has previously paid attention to which machines are
connected to which port, and forwards the packet out only to the correct
machine. An unmanaged switch has no configuration options, and simply con-
nects to multiple network computers. A managed switch can be configured for
various network fine tuning, such as limiting speed on certain ports, QoS, SNMP
reporting/control, link aggregation, and so on. (Contrast with Hub.)

SYN/ACK—Synchronization/Acknowledgement
Part of opening a new TCP connection. When a client wishes to connect to a
server on the Internet, it first sends a SYN packet to the server. The server
responds back with a SYN-ACK (an acknowledgment), and the client returns a
SYN-ACK-ACK (another acknowledgment). Both acknowledgments together
indicate that the server can talk to the client, the client can talk to the server, and
a TCP connection is now open for use between the two hosts.

T | 585

T
TCAM—Ternary Content Addressable Memory

Unlike normal RAM in a computer where data is stored in many addresses and
the RAM can only be queried for the contents at a given address, Content
Addressable Memory (CAM) works in the other direction. CAM is provided
with content, then searches its memory in order to return a list of addresses
where the content was found. With RAM, a search requires software to repeat-
edly read from a memory address, compare the contents of memory to the
content being searched for, then move on to the next address, repeating until the
area of RAM to be searched is exhausted. With CAM, content can be provided,
and the list of addresses containing that content is returned in one operation,
which provides a phenomenal speedup for searching the contents of memory.

Ternary Content Addressable Memory takes this a step further. With normal
CAM, the stored data is only in the form of bits—a word at an address may be
10011101, but TCAM may contain a third state of “don’t care” or “X” in mem-
ory—so a word at an address could be 10011X01, which would match the
search for 10011101 and 10011001. CAM and TCAM are often used in switches
and routers to store MAC lookup tables and routing tables, respectively. A
router may have a network address in memory, and when a packet arrives to be
routed, its destination IP address can be searched for in TCAM, which will
instantly return the address of a routing table entry for its destination address,
stored with only the network part of the destination network as 1 or 0, and host
part as X. CAM and TCAM are far more complex, expensive, and power-hungry
memory-wise than normal RAM, but are necessary for applications like routing
where a search through a routing table must be done thousands or millions of
times per second.

TCP—Transmission Control Protocol
One of the central protocols essential to the function of the Internet, TCP allows
applications to create connections that, once established, the applications can
stream data across. TCP stacks in an operating system do the hard work of split-
ting the stream of data into segments with a sequence number, and sending
them out over an IP-based network. At the remote end, the TCP stack acknowl-
edges packets that have been received (so that missing packets can be resent)
and reassembles received packets in the correct order to provide an in-order data
stream to the remote application.

TLS/SSL—Transport Layer Security/Secure Sockets Layer
See SSL/TLS.

586 | Appendix B: Glossary of Networking Terms

TTL—Time To Live
A TTL is a limit on how long a piece of information can exist before it should be
discarded. One example is a DNS record. When first looked up by a caching
DNS server, a domain’s DNS records will be cached and the TTL will be
recorded in seconds. Before the number of seconds has passed, any subsequent
DNS lookups of that record will come from the cache. Once the TTL has passed,
the cached record expires, and should be looked up again from an authoritative
source. The time may also be a number of transmissions or hops on a network,
for example performing a traceroute depends on a TTL being reduced by 1 on
every hop. When a traceroute runs, a series of packets are sent towards a destina-
tion with increasing TTL values. With each hop, the TTL is reduced—when it
reaches 0, the packet is considered expired, and an ICMP Time Exceeded packet
is returned to the sender. The traceroute utility is able to record the origin of
each ICMP packet returned as each successive longer TTL allows the packet to
reach further through a network, then display the list of hosts a packet passes
through to reach the destination.

U
UART—Universal Asynchronous Receiver/Transmitter

A UART is a device that performs a conversion between data in parallel form,
such as bytes in memory, and a serial stream for transmission over a serial con-
nection. Universal refers to the ability of the Asynchronous Receiver/Transmit-
ter to operate at a number of different bit rates, depending on the need at the
time.

V
VLAN—Virtual LAN

A method whereby multiple logical LAN segments are created on top of an existing
physical LAN. An existing LAN segment may consist of 10 computers physically
connected as a LAN. Along comes the concept of a VLAN, and it defines three of
those computers as belonging to VLAN1, with the remaining seven on VLAN2. To
software running on the machines in VLAN1, the entire LAN consists of just
three computers, and the other seven (although physically connected as if they
were part of the same LAN) are not seen. This logical subnetting reduces traffic
on the network by providing smaller (and more numerous) broadcast domains,
and subnets can be created without needing to rewire or relocate hardware phys-
ically. VLANs are implemented through the use of IEEE 802.1Q, which allows
the tagging of Ethernet frames with information that identifies which VLAN they
belong to.

W | 587

VNC—Virtual Network Computing
VNC is a remote display system where a user can view or control the desktop
environment of a remote computer that may be across the room, or on the other
side of the world over the Internet. When controlling, communication goes both
ways—keyboard and mouse events are sent from the viewer (the client) to the
remote machine, and the remote (the server) provides updates of the screen dis-
play back to the client. VNC works on a framebuffer level, and does not require
higher-level protocols to display windows, text, animation and so on—all screen
updates are purely image based. A user may connect to a server, use its desktop
for a time, then disconnect and move to another location. Upon reconnecting to
the server, the user will see the exact desktop, down to the mouse pointer being
in the same place.

There are many VNC implementations; you can control two PCs from a single
keyboard and mouse, attach to an existing session, and mix-and-match operat-
ing systems.

VoIP—Voice over IP
Using packet-switched networks to transmit voice traffic instead of the traditional
circuit-switched networks. Packet-switching allows the physical circuits to carry
far more traffic.

VPN—Virtual Private Network
In its broadest sense, a network tunneled through another network. In the term’s
usage in this book, it is a tunnel used to connect trusted remote users (such as
those on laptops working from home), or other remote networks (such as a
branch office) into a LAN, so that the remote users may have full network access
as if their computer were connected directly to the LAN. The connection is tun-
neled over the Internet, and the two endpoints authenticate to one another and
encrypt communications. Think of it as a long, private Ethernet cable that
extends over the Internet to your users in the field.

W
WAN—Wide Area Network

A Wide Area Network is a network that spans a large geographic area relative to
a LAN. It will likely contain a paid network connection by a telecommunica-
tions provider, and cross legal (including national) boundaries. A school campus
may consider its entire on-campus network to be a LAN (even if that supplies
hundreds of buildings on the one site), and the connection to other campuses in
different cities to be part of the WAN. On a different scale, a community wire-
less network may consider home computer networks of one or two machines to
each be LANs, and the wireless network that connects them all across one part
of a city to be their WAN. The Internet can be considered the largest of all
WANs.

588 | Appendix B: Glossary of Networking Terms

WAP—Wireless Access Point
The device that connects a wired LAN to a wireless network, and acts to move
data between wireless devices and the wired LAN, or directly to the Internet.
The WAP contains the antenna that transmits/receives wireless signals to/from
any wireless-connected devices such as laptops, and is the device that imple-
ments the encryption required for good wireless security.

WEP—Wired Equivalent Privacy (or Wireless Encryption Protocol)
An encryption scheme used to secure wireless networks, part of the 802.11 stan-
dard. WEP is particularly weak protection, and vulnerable to an attacker within
minutes using freely available tools such as AirSnort and WEPCrack. If your
hardware only supports WEP, upgrade to something supporting WPA/WPA2.
As of August 2003, Wi-Fi certification is not possible without WPA support.

Wi-Fi
Wi-Fi refers to standards (the 802.11 family) that define wireless networking
most commonly used on LANs. While IEEE formally defines the 802.11 stan-
dards, testing and certification of products following the standard is performed
by the Wi-Fi Alliance, an industry group formed to push the adoption of stan-
dard wireless networking. Only products tested by the Wi-Fi Alliance may carry
the Wi-Fi trademark. Wi-Fi certification is a moving target that involves not just
the wireless connection itself, but relevant technologies such as encryption, QoS,
and power saving. As new wireless developments are ratified, the requirements
for Wi-Fi certification change, too. One example is security; WPA2 certification
is compulsory in order to obtain Wi-Fi certification as of 2006.

Winbind
A Name Service Switch (NSS) module that allows a Linux (and Unix/Unix-alike)
system to join a Windows domain and obtain login information from the
domain, instead of from the Linux system’s local user database. Essentially, this
means Windows domain users (NT or Active Directory) can appear and operate
as Linux users on the Linux machine, and gain access to Windows domain ser-
vices. Winbind is part of the Samba suite.

WINS—Windows Internet Name Service
WINS is Microsoft’s name resolution service for NetBIOS computer names. A
WINS server allows computers to register their NetBIOS names and IP addresses
dynamically upon joining a network. A computer queries the WINS server by
providing the NetBIOS name of a machine it is interested in, and the WINS
server returns that machine’s IP address. WINS is essentially to NetBIOS names
as DNS is to domain names. Under Linux, Samba is perfectly capable of acting
as a WINS server.

W | 589

WPA/WPA2—Wi-Fi Protected Access
Encryption schemes used to secure wireless networks. There are two flavors of
WPA: WPA and WPA2. WPA is an upgrade of WEP; both use RC4 stream
encryption. It was designed to be a transitional protocol between WEP and
WPA2. WPA is stronger than WEP, but not as strong as WPA2. WPA2 uses a
new strong encryption protocol called Counter Mode with CBC-MAC Protocol
(CCMP), which is based on Advanced Encryption Standard (AES).

590

Appendix CAPPENDIX C

Linux Kernel Building
Reference

This is a quick guide to building a custom 2.6 kernel, patching the kernel, and add-
ing loadable kernel modules. You’ll find detailed recipes in Linux Cookbook
(O’Reilly) in Chapter 10, “Patching, Customizing, and Upgrading Kernels,” and
Chapter 12, “Managing the Bootloader and Multi-Booting,” which tells how to
customize your GRUB or LILO boot menus for different kernels.

Why would you want to build a custom kernel? To add features or remove unneces-
sary features. On routers and firewalls, it adds a bit of security to use kernels that
have had all the unnecessary features removed, and you can reduce the size consider-
ably to fit on devices with limited storage.

Building a Custom Kernel
Many distributions have their own distribution-specific tools for building kernels.
You don’t need these for building vanilla kernels from kernel.org. But, it’s a different
story when you’re using distribution-specific kernel sources. Red Hat and Fedora
package theirs as source RPMs, so you can’t just build the kernel, but must also
build an RPM. Fear not, for this appendix reveals how. Red Hat/Fedora kernels are
heavily patched, to the point that a vanilla kernel may not even work, so you need to
know the Red Hat Way of customizing kernels.

Debian, on the other hand, does very little modification to Linux kernels. They
remove any bits that don’t meet their policies, and that’s all. So, vanilla kernels work
fine on Debian systems.

You’ll need a build environment, kernel source code for your distribution, and at
least 2 GB of free disk space. You can build a kernel on any system, then copy it to
other systems. If you like to modify kernels a lot, you might set up an old PC as a
dedicated kernel-building station. Then, you’ll only have to maintain source trees
and utilities on a single box.

Building a Custom Kernel | 591

Most documentation tells you to unpack kernel sources into /usr/src/linux. Don’t do
this. As the kernel README says:

Do NOT use the /usr/src/linux area! This area has a (usually incomplete) set of kernel
headers that are used by the library header files. They should match the library, and
not get messed up by whatever the kernel-du-jour happens to be.

You may store binaries and source trees anywhere, and execute almost every step as
an unprivileged user. Only the final steps require superuser privileges.

You may install as many kernels as you like, selecting the one you want to use at
boot.

Prerequisites
You need a build environment and some helpful utilities. You should have the lshw
and lspci commands installed in case you need to look up hardware information.
Run the update-pciids command first to bring them up-to-date. Run cat /proc/
cpuinfo to display your CPU specs.

Next, on Fedora, install these packages to get a basic build environment:

yum groupinstall 'Development Tools'
yum install qt-devel

On Debian, install these packages:

aptitude install build-essential libqt3-mt-dev qt3-dev-tools

Building a Vanilla Kernel
Obtaining a kernel that has not been altered by distribution vendors is easy—go to
http://kernel.org/, the mothership of the Linux kernel. Download and unpack it into a
folder in your own home directory; for example ~/kernel:

[carla@windbag:~/kernel]$ wget http://kernel.org/pub/linux/kernel/v2.6/linux-2.6.20.1
[carla@windbag:~/kernel]$ tar zxvf linux-2.6.20.1

This is about a 40 MB download that will unpack to about 240 MB.

Change to the top-level directory of your new source tree. All of the following com-
mands will be run from here:

$ cd linux-2.6.20.1

Read the Documentation/Changes file to make sure you have the correct gcc version
and other necessary utilities. Read the README for installation tips and other use-
ful information.

Edit the new kernel makefile (~/kernel/linux-2.6.20.1/Makefile) to give a custom
value to EXTRAVERSION, such as EXTRAVERSION =-test. Or, in the kernel configuration,
enter your custom value in General Setup ➝ Local version ➝ append to kernel
release.

592 | Appendix C: Linux Kernel Building Reference

Let’s see what options the make command has:

$ make help

Even though this is a brand-new source tree, run a cleanup first:

$ make mrproper

At this point, you may copy your own custom config file to this directory, or just let
make take care of it for you. If you don’t provide one, it will use your /boot/config-*
file. You can change everything anyway, so it doesn’t matter all that much.

Now, run these commands:

$ make xconfig
$ make
$ su
make modules_install
mkinitrd -o /boot/initrd-linux-2.6.20.1
cp linux-2.6.20.1/arch/i386/boot/bzImage /boot/vmlinuz-linux-2.6.20.1
cp linux-2.6.20.1/System.map /boot/System.map-linux-2.6.20.1

Save a copy of your new config file in a directory outside of the build tree. Add the
new kernel to your GRUB bootloader menu:

/boot/grub/menu.lst
title new test kernel
root (hd0,0)
kernel /boot/vmlinuz-2.6.20.1 root=UUID=b099f554-db0b-45d4-843e-0d6a1c43ba44 ro
initrd /boot/initrd-2.6.20.1

Where does the UUID come from? From running the blkid command:

$ blkid
/dev/sda1: UUID="b099f554-db0b-45d4-843e-0d6a1c43ba44" SEC_TYPE="ext2" TYPE="ext3"
/dev/hda1: UUID="1a5408ad-7d1d-4e24-b9db-d132d76e9e8e" SEC_TYPE="ext2" TYPE="ext3"

Remember that GRUB counts from zero, so hd0,0 means /dev/hda1, or the first parti-
tion of the first block device. In this era of mixed PATA and SATA drives, this
depends on the BIOS order of your hard drives, so you may need to dig around in
your BIOS settings to see which drive the BIOS recognizes as the first, second, and so
forth.

Reboot to your new kernel and enjoy. If it doesn’t work, simply reboot to your old
kernel, and try again.

You should use UUIDs to identify your block devices because /dev names are no
longer static, but at the mercy of udev. You need to create an initrd image because
the /dev directory is not populated until after boot, so there is no way to build the
boot device into the kernel anymore.

Building a Custom Kernel | 593

Configuration Options
make xconfig is time-consuming, but very important. If you leave out anything impor-
tant, some things won’t work, or it might not boot at all. Every configuration item
has a Help entry. The kernel source tree has reams of help in the Documentation/
directory.

You have three options for each configuration item: leave it out, build it into the
kernel, or build it as a loadable module. These things should be built-in to the kernel:

• Module support and kmod, for automatic module loading

• a.out binaries, ELF binaries, and MISC binaries

• VGA text console

• All filesystems you’ll be using, such as ext2/3, ReiserFS, JFS, XFS, loopback,
VFAT, NTFS, UDF, etc.

Any hardware support related to boot devices should be built into the kernel:

• IDE, ATA, and ATAPI block devices

• SCSI support (note that the 2.6 kernel does not need IDE-SCSI, so if you have no
SCSI devices, you can omit this)

• USB support

• Any on-board controllers

• ACPI power management

These are fine to have as loadable modules:

• NIC drivers

• Netfilter/iptables

• USB drivers

• Sound card drivers

• PCI hotplug

• Video drivers

It doesn’t matter if you prefer a large statically built kernel, or a lean kernel with lots
of loadable modules. Don’t obsess over building the leanest possible kernel because
it doesn’t matter—performance is the same either way. Just be sure to enable load-
able module support so that you can add additional modules as needed; this is a lot
quicker and easier than rebuilding a kernel. Your best chance of improving perfor-
mance is to select support for your particular CPU, rather than generic i386.

594 | Appendix C: Linux Kernel Building Reference

Adding New Loadable Kernel Modules
Change to the directory that contains the build tree, like ~/kernel/linux-2.6.20.1.
Then, you’ll need a good up-to-date config file. Copy it to the top level of your build
tree, then run:

$ make oldconfig

This takes your existing configuration, and lets you add new features. As you go
through the configuration, find the driver you need, and select it as a module. For
example, the tulip module is a common driver for many Ethernet cards. Then, run
these commands:

$ make dep
$ make modules
make modules_install
depmod -av

Load the module with modprobe:

modprobe tulip

If you remembered to enable kmod in the kernel configuration, the kernel will try to
find and load all necessary modules at boot. If it doesn’t, add them to /etc/modules
(Debian) or /etc/modules.conf (most other Linux distributions).

Vendor-supplied modules come with their own installation instructions. For exam-
ple, Nvidia provides a script that does everything for you. Others have different
methods, so it all depends on the vendor.

Patching a Kernel
If you wish to apply patches to your new kernel, this must be done before building it.
The patch must be in the next-highest directory upstream from your build tree; for
example:

$ ls ~/kernel
linux-2.6.20.1 patch-2.6.22.1.bz2

Now, change to the top level of your build tree, then unpack and apply the patch:

$ cd linux-2.6.20.1
$ bzip2 -dc ../patch-2.6.22.1.bz2 | patch -s -p1

Or, you can do a test-drive first with the --dry-run option:

$ bzip2 -dc ../patch-2.6.22.1.bz2 | patch -s -p1 --dry-run

Now, configure and build your kernel, and away you go.

Your kernel build tree includes a script to handle applying patches for you, in scripts/
patch-kernel. This is a great little script when you have several patches to apply

Building a Custom Kernel | 595

because it automatically applies them in the correct order. Have all of your patches
in the correct directory; then, from your top-level source directory, run this command:

[carla@windbag:~/kernel/linux-2.6.20.1]$ scripts/patch-kernel

Patches must be applied in order, and you must have all of them. For example, to use
patch-2.6.22.1-pre3.bz2, you also need the first two in the series, unless you down-
loaded a kernel that already includes the first set of patches.

Customizing Fedora Kernels
Fedora patches kernels heavily; a vanilla kernel from kernel.org may or may not
work. So, let’s do this the 100 percent Fedora way.

Fedora supplies only source RPMs, so you’ll have to customize your kernel and then
package it into an RPM. Download your kernel SRPM from your favorite Fedora
mirror, such as:

$ wget http://mirrors.kernel.org/fedora/core/development/source/SRPMS/kernel-2.6.21-
1.3194.fc7.src.rpm

Then, make sure you have all the build tools you need:

yum install rpmdevtools

Now, set up a build tree in your home directory, and make sure to do this as your-
self and not as the root user:

$ fedora-buildrpmtree

This creates an rpmbuildtree directory populated with BUILD, RPMS, SOURCES,
SPECS, and SRPMS directories.

Now, install the source RPM. This will unpack files into your new rpmbuildtree
directory:

$ rpm -ivh 2.6.21-1.3194.fc7.src.rpm

Ignore any warnings about “group kojibuilder does not exist.”

Next, run the %prep stage of the RPM rebuild. Make the --target option match your
CPU type:

$ rpmbuild -bp --target=i686 ~/rpmbuild/SPECS/kernel-2.6.spec

The kernel tarball has been extracted, and all the Fedora patches applied. Change to
the source directory of your new build tree:

$ cd ~/rpmbuild/BUILD/kernel-2.6.21/linux-2.6.21-1.3194.i686/

Do housecleaning:

$ make mrproper

Now, let’s get started with configuring the new kernel:

$ make xconfig

596 | Appendix C: Linux Kernel Building Reference

And, finally:

$ rpmbuild --target i686 -ba ~/rpmbuild/SPECS/kernel-2.6.spec

Again, make the --target option match your CPU type.

This builds the kernel.rpm, the kernel-devel.rpm, and rebuilds the kernel.src.rpm with
your custom config included. The new binary kernel RPM is in ~/rpmbuild/RPMS/
i686/. Grab your new kernel.rpm, and install it just like any other RPM:

rpm -ivh kernel-2.6.21-1.3194.i686.rpm

Then, reboot and enjoy your new kernel.

Customizing Debian Kernels
Debian users can employ either vanilla kernels, or have the option to fetch official
Debian kernel sources with aptitude. You should also install kernel-package and
fakeroot:

aptitude install linux-source-2.6.22 kernel-package fakeroot

This downloads the source tarball into /usr/src/, so you need to move it to your per-
sonal kernel-building directory:

mv /usr/src/linux-source-2.6.20.tar.bz2 ~/kernel

Remember that dpkg -L [package name] shows you all the installed files in a package if
you can’t find them.

Change to your ordinary user, change to your kernel directory, and unpack the tarball:

$ su carla
$ cd ~/kernel
$ tar zxvf linux-source-2.6.20.tar.bz2

Then, change to the top-level source directory, and start configuring your new kernel:

$ cd linux-source-2.6.20
$ make mrproper
$ make xconfig

When you’re done slogging through configuration, run these commands:

$ make-kpkg clean
$ make-kpkg -rootcmd fakeroot -rev test.1 linux_image

This produces a .deb package named linux-image-2.6.20_test.1_i686.deb, which you
can install in the usual way with dpkg:

dpkg -i linux-image-2.6.20_test.1_i686.deb

This should put everything where it belongs and create a GRUB menu entry.

Building a Custom Kernel | 597

fakeroot fools the system into thinking you are the root user when you’re not. It
won’t let you run commands that need genuine root privileges, but it’s good enough
for kernel-building.

Debian’s binary kernel packages are named linux-image-*, and the kernel source
packages are named linux-source-*. It has been this way since the 2.6.12 kernel;
before then, they were called kernel-image-* and kernel-source-*. The new naming
convention is in hopes of allowing other kernels to be used with Debian in addition
to the Linux kernel.

See Also
• The Red Hat manuals also apply to Fedora; find them at:

https://www.redhat.com/docs/manuals/enterprise/

• Fedora’s own documentation is getting more thorough:

http://docs.fedoraproject.org/

• The Debian Reference Manual has everything you need to know about Debian,
including kernel building:

http://www.debian.org/doc/manuals/reference/

599

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Numbers
32-bit Cardbus adapters, 10
3FFE::/16 addresses, 441
6Bone test network, 441
6to4 tunnels, 450

A
access keyword, 412
Active Directory, 566

Active Directory domains, joining Linux
hosts to, 319–323

adding Poptop servers to, 298
AGP (Accelerated Graphics Port), 566
AllowGroups, 216
AllowUsers, 216
analog telephone adapters (ATA), 125
Andreasson, Oskar, 36
antenna diversity, turning off, 115
anycast addresses, 441
Apache, configuring for Nagios, 376–378
apt-cache command, 340
apt-mirror application, 468
apt-proxy application, 470
areas, 174
arping, 523
Asterisk, 123–127

activation and making calls, 146–148
applications, 141
Asterisk.org, 128
AsteriskNOW, 168–171

installation and removal of packages
on, 170

conferencing, 163
conference types, 163
monitoring conferences, 165

dialplans, 141
digital receptionists, creating, 151
extensions.conf, 137, 141
hold music, customizing, 161
IAX traffic, getting through NAT

firewalls, 168
identifying unmet dependencies, 129
installation, versions 1.2 compared to

1.4, 130
installing on Debian, 131

apt-get, 131
module-assistant utility, 131

invention of, 125
making calls, 136
message of the day maintenance, 156–158
MP3 files, playing, 161
parking calls, 159
PBX connection to analog lines, 148–151
phone calls, 138
phone extensions, adding to, 136–143

local user accounts, setup, 136
production hardware and software, 124
recording custom prompts, 153–156
remote usage, 171
routing calls to groups of phones, 158
SIP traffic, getting through NAT

firewalls, 166
sip.conf, 138
softphones, 143–145
source code installation, 127–131

Linux build environment, 128

600 | Index

Asterisk (continued)
starting and stopping, 132–135

shutdown commands, 134
startup files, 133

supported IP telephony services, 123
testing the server, 135
test-lab hardware and software, 124
transferring calls, 158
voicemail broadcasts, 162
voicemail.conf, 137, 142

ATM, 566
attributes, 334

B
bandwidth, 6
Bastille Linux, 43
bastion hosts, 37
Baud, 567
Bering uClibc, 43
Berkeley DB, 332
BGP (Border Gateway Protocol), 174
BGP Expert 2006 IPv4 Address Use

Report, 438
BIOS (Basic Input/Output System), 567
boot

Nagios, starting at, 390
OpenVPN, boot startup

configuration, 281
PXE boot, 452
time update at, 121
USB boot, 453

boot.iso, 454
BOOTPROTO configuration option, 50
Border Gateway Protocol (see BGP)
bridging, 567
broadcasting, 567

C
ca.crt, 106
cable services, 2, 3
cabling, 11

straight and crossover cables, 45
cachesize, 361
cache-size option, dnsmasq.conf, 118
Cardbus adapters, 10
Cat5, Cat5e, and Cat6 cabling, 11
CCMP (Counter Mode with CBC-MAC

Protocol), 84
CentOS 5.0, 127
certificates, 568

OpenVPN, revocation under, 282
CF (Compact Flash) cards, Pyramid Linux

installation on, 17
cfgmaker command, 416
chains, 40

check_icmp, 392
Chicken of the VNC, 229
CIDR (Classless Inter-Domain Routing), 568

notation, 178
common netmasks, 176

circuit switching, 569
Classless Inter-Domain Routing (see CIDR)
code examples, xxi
codec, 568
collision domain, 569
com2sec keyword, 411
command-line operation of Quagga

daemons, 195
community string, 411, 569
Compact Flash writers, 18
computer networks (see networks)
condrestart, 208, 313
conferencing, 163
consoles, 569
contexts, 141
continuity testers, 516
Counter Mode with CBC-MAC Protocol

(CCMP), 84
CPE (customer premises equipment), 569
cron, scheduling dial-up availability with, 510
crontabs, 511
CSU/DSU (Channel Service Unit/Data Service

Unit), 569

D
daemons file (Quagga), 188
DB_CONFIG file, 343
db_stat, 359
DD-WRT, 83
Debian, xx

booting to text mode, 487
kernel characteristics, 590
kernels, customizing, 596
MPPE support, kernel patches for, 291
network installation of Pyramid

Linux, 19–21
network installs, 466

automation with preseed files, 475
building a mirror with apt-mirror, 468
client PC configuration for your local

mirror, 471
new system installs from your local

mirror, 474
partial mirror with apt-proxy, 470
PXE Netboot server setup, 472

NIC configuration on, 45
OpenLDAP installation on, 339
RIP dynamic routing, using on, 187
RIP implementation, 187–191
Samba, supporting packages in, 308

Index | 601

security updates, 472
SSL key creation for Syslog

services, 551–557
Debian Router, 43
default gateways, setting, 178–180

for static hosts, 179
demarc, 570
demilitarized zones (DMZs), 37
DenyGroups, 216
DenyHosts, 216, 223

cron versus daemon operation, 224
options, 224
startup file, creating, 225

Destination NAT (see DNAT)
Development Tools package, 128
DEVICE configuration option, 49
DHCP (Dynamic Host Configuration

Protocol), 570
dhcpd.conf, 465
dialplans, 141
dial-up networking, 501

call waiting, overriding, 512
cron, scheduling dial-up availability

with, 510
dial-on-demand shared Internet

dial-up, 509
dial-up Internet account sharing, 508
group ownership by root, 506
separate pppd logfiles, creating, 514
voicemail stutter tones, dialing over, 512
WvDial, 502

accounts for nonroot users,
creating, 507

leaving the password out of the
configuration file, 513

multiple accounts, configuring, 504
permissions for nonroot users,

configuring, 505
single account configuration, 501–504

dial-up services, 4
dig command, 117
directory information tree (DIT), 333, 337
directory objects, 334
diskboot.img, 454
distance-vector routing algorithm, 173
distinguished names (see DNs)
DIT (directory information tree), 333, 337
Dixon, Jim, 126
DMZs (demilitarized zones), 37
dn2id.bdb, 359
DNAT (Destination NAT), 38

directing traffic to private services, 70
DNs (distinguished names), 334
DNS (Domain Name System), 570
DNS cache management, Windows

caches, 120

DNS clients, troubleshooting, 545
DNS servers, troubleshooting, 542–545
dnsmasq, 90, 96

adding mail servers, 96
cache flags, 119
DNS cache management, 117–120

dnsmasq.conf, 91
server representation in, 110

domain (Windows), 570
domain component, 335
dotted-quad netmask notation, 176, 178
dpkg command, 340
DSA keys, 211
DSL (Digital Subscriber Line), 2, 570
DSL services, 4
duplicate IP addresses, finding, 523
dynamic address, 571

E
EAP-TLS authentication, 101
ebtables, 89
EGP (Exterior Gateway Protocol), 174
encryption, 571
entries, 334
environment file (Quagga), 189
eq index type, 355
/etc/iftab, 46
/etc/network/interfaces, 46
Etherboot project, 453
Ethernet, 571
Ethernet bridges, 88–89, 107, 567

OpenVPN servers, setting up to use, 284
versus routing, 108

extensions, 141
extensions.conf, 137, 141

calls, transferring, 158
Exterior Gateway Protocol (EGP), 174
exterior protocols, 174

F
Fast Ethernet, 571
Fedora

customizing kernels, 595
implementing RIP, 191
ipcalc command version, 176
kernel characteristics, 590
LDAP installation on, 341
mirrors page, 460
MPPE support, kernel patches for, 294
network installation of Pyramid

linux, 21–24
network installs

boot media, creating, 453
boot media, using, 455–457

602 | Index

Fedora (continued)
customized installations,

creating, 461–463
FTP-based installation server

setup, 458–460
HTTP installation server setup, 457
kickstart file installation, 463
PXE Netboot, 464

NIC configuration, 48–50
OpenLDAP database, creating, 344–347
Poptop pptpd, installing on, 293
Samba, supporting packages in, 308
SSL key creation for Syslog, 557–558

filter table, 41
firewall boxes, assembling network

interfaces, 45
firewalls, 36–43

DMZs, 37
firewall boxes, assembling, 44

cabling, 45
required hardware, 44

firewall init script, 60
getting multiple SSH host keys past

NAT, 68
Internet sharing on dynamic WAN IP

addresses, 51–55
Internet sharing on static WAN IP

addresses, 56
iptables, 38, 40–42

firewall setup on a server, 76–78
firewall shutdown, 58
logging configuration, 79

manual activation and manual
shutdown, 59

need for, 39
NIC configuration on Debian, 45
public and private servers, 37
public services on private IP addresses, 69
remote SSH administration through NAT

firewalls, 66
remote SSH administration, configuration

for, 65
security of, 43
single-host firewalls, setting up, 71–75
specialized Linux distributions for, 42
status, displaying, 57
testing, 62–64

fox and hound pairs, 516
FPing, 521
FQDN (Fully Qualified Domain Name), 571
fractional T1 lines, 5
frame relay, 5, 571
FREE ciSCO, 42
Free World Dialup (FWD), 146

FreeNX, 228
advantages, tunneling over Unix, 238
custom desktop configuration, 242–244
generating and managing SSH keys, 233
managing FreeNX users, 239
Nxclient (see Nxclient)
running Linux from Solaris, Mac OS X, or

Linux, 238
running Linux from Windows, 233–237
Session menu, 245
source of older NoMachine clients, 237
starting and stopping the server, 241
troubleshooting, 247
“Unable to create the X authorization

cookie” message, 236
FreeRADIUS, 101

clients, authenticating to, 106
permissions, 103
testing, 103

Fully Qualified Domain Name, 571
fw_flush script, 58
fw_nat script, 52, 56
FWD (Free World Dialup), 146
FXS/FXO, 571

G
Gast, Matthew, 84
gateway address assignment, 47
gateways, 2, 37, 178–180

configuration definitions, 47
default gateways, 270
hardware options for Linux gateways, 7
single-board computers, building

on, 12–35
required hardware, 13
required software, 14

(see also firewalls)
getty, 481
Gigabit Ethernet, 10, 571
Gnome remote desktop sharing, 230
GQ LDAP client, 334
GRE (Generic Routing Encapsulation), 572
group keyword, 412
GRUB (GRand Unified Bootloader), 572

H
Hardware Access Layer (HAL) blobs, 83
hardware IP phones (hardphones), 124
Heimdal Kerberos, 309
high-end enterprise routers, 7
Hosner, Charlie, 267
host keys, 207

generating and copying, 211
host-key authentication, 206, 209

Index | 603

hostapd, 84, 97–100
hostapd.conf, MAC address-based access

control, 100
hostname command, 175
httping, 525
hub, 572
hubs versus switches, 8
HWADDR configuration option, 49

I
IAX (Inter-Asterisk eXchange), 572
ICMP, 39
id2entry.bdb, 359
IDE Compact Flash writers, 18
identity keys, 207
ifconfig -a, 46
ifrename, 46, 47
ifup and ifdown commands, 47, 93
ifup eth1 command, 54
Inter-Asterisk Exchange (IAX), 125
interface, 572
Internet, 1
Internet Assigned Numbers Authority

(IANA), 440
Internet connection sharing

NAT and, 182
simplest configuration, 183–184

Internet gateways, 37
IOS (Internet Operating System), 573
IP, 39, 573
IP addresses

Debian, assignment on, 46
Fedora, assignment on, 48
gateway address assignment, 49
static addresses, setting from DHCP

services, 93
ip command, 175, 445

setting null routes in zebra.conf, 198
IP forwarding, 182
IP Masquerading, 575
IP Multicast, 575
IP phones, 124
IP routing, 581
IP telephony services, 123
IPADDR configuration option, 50
ipcalc command

Fedora version, differences in, 176
options, 178

ipcalc commsnd, 176
IPCop, 42
iperf, 535–537
iproute2 command, 178
IPSec, 266, 573

IPSec VPN, 288
iptables, 36, 38, 40–42, 59

boot activation, 59
built-in modules and implementation by

differing kernels, 55
chains, 40
commands for displaying firewall

status, 57
configuration to allow Poptop VPN

traffic, 300
custom kernel modules, 41
firewall testing, 63
handling by different Linux

distributions, 61
Internet connection sharing over a dynamic

WAN address, 52–55
kernel level operation, 55
logging configuration, 79
mangle table, 41
NAT table, 41
policies and rules, 40
running public services on private IP

addresses, configuration, 69
script for single-host firewalls, 71
server firewalls, setting up, 76
shared dial-up Internet accounts, rules

for, 508
simple Internet sharing script, 183
tables in, 41
TCP/IP headers and, 39
turning off firewalls, 58

IPv4 private address ranges, 177
IPv6, 437–442

addressing, 439–442
address types and ranges, 440
addresses, shortcuts for expressing, 446
calculating addresses, 449
global unicast addresses, 439
hexadecimal format, 441
interface ID, 440
quantity of available addresses, 438

autoconfiguration, 448
barriers to adoption, 438
copying files with scp, 447
IPv4 compared to, 438
Linux systems, testing for support of, 442
Mac OS X, support in, 442
Microsoft Windows, support in, 442
pinging Link Local IPv6 hosts, 443–446
SSH, using with, 446
using over the Internet, 450

ipv6calc command, 449
ISDN (Integrated Services Digital

Network), 573

604 | Index

ISPs (Internet Service Providers)
cable services, 3
choosing, 2
dial-up services, 4
DSL services, 4
potential problems, 4
private networks, 6
regulated broadband services, 5
service options, 3–7
types of service, 2

iwlist, 113

J
J2ME VNC, 230
jumbo frames, 9

K
KDC (Key Distribution Center), 574
KDE remote desktop sharing, 230
Kerberos, 574
kernel building reference, 590–597

custom kernels, 590
adding new loadable kernel

modules, 594
configuration options, 593
customizing Debian, 596
customizing Fedora, 595
patching, 594
prerequisites, 591
vanilla kernels, 591

Kickstart, 461
hands-off Fedora installation, 463

known_hosts file, 210
Konqueror, 330
krdc command, 230
Kwlan, 100

L
L2TP/IPsec-based VPNs, 288
LANs (Local Area Networks), 574

mixed Linux/Windows (see Samba)
latency, 6
LDAP (Lightweight Directory Access

Protocol), 332–338, 574
DB_CONFIG file, 343
directory design considerations, 337
directory information tree, 333
directory structure, 333
objectClass, 335
OpenLDAP (see OpenLDAP)
rootDSE, 336

ldapadd, 349
ldapmodify, 350
ldappasswd, 370
ldapsearch, 353
ldapwhoami, 370
LDIF (LDAP Data Interchange Format)

file, 345
Lighttpd, 413
Lighttpd HTTP server, 457
Lightweight Directory Access Protocol (see

LDAP)
LILO (LInux LOader), 575
Link Local address, finding with ifconfig, 444
Link Local Unicast address, 441
link-state algorithm, 174
LinNeighborhood, 331
Linux, xx

installation over networks (see network
installs)

mini-distributions for firewalls and Internet
gateways, 509

Linux PPTP VPN servers, 287–290
connecting Linux clients to, 299
Debian, installing Poptop on, 290
Debian, patching for MPPE support, 291
Fedora, patching for MPPE support, 294
iptables configuration to allow Poptop

VPN traffic, 300
Linux requirements, 289
monitoring, 301
Poptop pptpd, installation on Fedora, 293
Poptop server adding to Active

Directory, 298
PPTP security, 288
standalone server setup, 295–298
troubleshooting, 302–304
Windows client update requirements, 288

LoadMIBs option, 420
local-ttl option, dnsmasq.conf, 118
locate command, 429
lrzsz package, 499

M
MAC addresses, 94

finding, 46
Mac OS X, IPv6 support, 442
make menuselect, 129
mangle table, 41
Masquerading, 575
MDI/MDI-X (medium dependent

interfaces), 9
meetme command, 165

Index | 605

meetme.conf, 165
Metrix.net, 13
mgetty, 481
MIB (Management Information Base), 575
MIB (Management Information Browser), 409

MIB tree access controls, 411
Microsoft Windows

ACLs and Windows filesystems, 247
Active Directory, 566

adding Poptop servers to, 298
domains, joining Linux hosts

to, 319–323
DNS cache management, 120
IPv6 support, 442
Linux, connecting to with, 230–232
MPPE, 575
networking issues, 307
remote desktop connections to, 228
Samba, replacing NT4 domain controllers

with, 305
security, 38
tunneling TightVNC to Linux, 262–264
Windows machines, setting up as

OpenVPN clients, 286
Windows PPTP servers, connecting Linux

clients to, 299
WINS (Windows Internet Name

Service), 588
X-Lite softphone, 143

MIMO (multiple-input/output), 116
Minicom, 14, 495

multiple profiles, configuring, 17
mirroring, 8
MIT Kerberos, 309
modems, 482, 575
MP3 files, playing on Asterisk, 161
MPPE (Microsoft Point-to-Point

Encryption), 575
MPPE kernel module, building for

Debian, 291
building for Fedora, 294

MRTG (Multi-Router Traffic Graph), 408
active CPU load, monitoring, 419–422
cfgmaker command, 416
configuration file, creating, 413
CPU user and idle times, monitoring, 422
Debian, configuring and starting

on, 415–417
disk usage, monitoring, 426
Fedora, configuring and starting on, 418
HTTP service configuration for, 413
installing, 409
MIBs and OIDs, finding and

testing, 429–430

mrtg.cfg file, 416
configuring to monitor CPU load, 419
monitoring CPU user and idle

times, 422
options, 420

multiple MRTG index pages, creating, 433
physical memory, monitoring, 424
remote hosts, monitoring, 432
running as a daemon, 434–436
SNMP, dependency on, 408
snmpd, testing for operation, 410
swap space and memory, monitoring, 425
TCP connections, monitoring, 428

MSRC4 DSM plug-in, 229
mtr (My Traceroute) utility, 528
Multicast addressing, 441, 575
multimeters, 516
multiple-input/output (MIMO), 116
Multi-Router Traffic Graph (see MRTG)

N
Nagios, 371

Apache, configuring for, 376–378
CGI permissions, configuring for Nagios

web access, 389
configuration files, organizing, 378–380
DNS and DHCP servers, monitoring, 403
grouping related services with

servicegroups, 402
installing from source code, 372–376
localhost monitoring

configuration, 380–389
mail servers, monitoring, 400–402
remote administration with OpenSSH,

setting up, 405
remote administration with OpenSSL,

setting up, 406
speeding up with check_icmp, 392
SSHD, monitoring, 393–396
starting at boot, 390
users, adding, 391
web servers, monitoring, 397–399

name services, setting up, 90–92
naming context, 335
NAS (Network Access Server), 576
NAT (Network Address Translation), 38, 576
NAT table, 41
Nautilus, 330
ncache, 362
ndiswrapper, 51, 82
Netfilter FAQ, 36
Netgate.com, 13
NETMASK configuration option, 50

606 | Index

netmasks, 176
net-snmp, 409
netstat command, 52, 62, 64, 174, 549
netstat-nat command, 56
net-tools package, 174
Network Address Translation (NAT), 38, 576
network installs, 452

Debian, 466
automation with preseed files, 475
building a mirror with apt-mirror, 468
client PC configuration for your local

mirror, 471
new system installs from your local

mirror, 474
partial Debian mirrors with

apt-proxy, 470
PXE Netboot server setup, 472

Fedora
creating network install boot media

for, 453
customized installations,

creating, 461–463
FTP-based installation server

setup, 458–460
install using boot media, 455–457
kickstart file installation, 463
PXE Netboot, 464
setting up an HTTP installation server

for, 457
ndiswrapper, problems with, 467
PXE boot, 452
USB boot, 453

network interfaces, 45
network restart command, 93
network troubleshooting, 515

arping, finding duplicate IP addresses
with, 523

cabling, testing and tracing, 516
DNS clients, 545
DNS servers, 542–545
FPing and Nmap, network profiling

with, 521–523
HTTP throughput and latency testing, 525
measuring throughput and packet

loss, 535–537
network diagnostic and repair

laptops, 516–519
network monitoring with ntop, 540–542
packet sniffing with ngrep, 538–540
ping, 519
POP3, POP3s, and IMAP servers, 549–551
SMTP servers, 546–548
spare equipment, 516
SSL key creation for Syslog services on

Debian, 551–557

SSL key creation for Syslog services on
Fedora, 557–558

stunnel setup for Syslog-ng, 558
Syslog servers, building, 560–562
TCP flags, capturing with tcpdump, 533
traceroute, tcptraceroute, and

mtr, 527–529
traffic, capturing and analyzing, 529–533

networking
dial-up (see dial-up networking)
Internet connection sharing between

wireless and wired clients, 87
Linux and Windows static DHCP client

configuration, 94
mail servers, adding to dnsmasq, 96
networking commands, 174
static IP addresses, setting from DHCP

services, 93
networking restart command, 93
NetworkManager, 100, 107
networks, 1

areas, 174
bandwidth, latency, and throughput, 6
Internet connections, 1
mixed networks, integration of (see Samba)
Nagios, monitoring with (see Nagios)
troubleshooting (see network

troubleshooting)
wireless networking, 11

next hop, 180
next hop routers, 178
ngrep, 538–540
NICs (network interface cards), 10, 576

configuration on Debian, 45
Fedora, configuration on, 48–50
identifying, 50

Nmap, 523
nmap, 62
nmap command, 63
nmbd, 312
NoMachine, 229

source of older clients, 237
no-negcache option, dnsmasq.conf, 118
NSS (Name Service Switch), 577
ntop, 540–542
NTP (Network Time Protocol), 577
ntpdate, 121
null modem cable, 577
NVRAM (Non-Volatile Random Access

Memory), 577
Nxclient

creating additional Nxclient sessions, 244
file and printer sharing, and

multimedia, 246
prevention of password saving in, 246
watching users from a FreeNX server, 240

Index | 607

O
Object IDs (see OIDs)
objectClass, 335
objectClass definitions, 334
OIDs (Object Identifiers), 335, 336, 577

LoadMIBs option and, 420
ONBOOT configuration option, 50
Open Shortest Path First (see OSPF)
OpenLDAP, 332

access controls, refining, 366–369
Berkeley DB configuration

logging configuration and
performance, 362

Debian, installing on, 339
directory backup and restoration, 364–366
directory entries, correcting, 350–351
directory management with graphical

interfaces, 356–358
directory searches, 352–354
Fedora, creating a database on, 344–347
Fedora, installing on, 341
indexing the database, 354

indexes and id2entry file size, 355
logging configuration, 363–364
passwords, changing, 370
remote OpenLDAP servers, connecting

to, 352
-H option to commands, 352

schemas, 335
server testing and configuration, 341–344
Sleepycat Berkeley DB

configuration, 358–363
users, adding to the directory, 348–349

OpenSSH, 205–207
alternate ports, finding, 219
client configuration files, using for easier

logins, 218
components, 205
configuration syntax, checking, 218
DenyHosts startup file, creating, 225
encryption algorithms, 205
hardening, 215
host-key setup, 209
identity key management, 214
keys, 207

fingerprints, changing, 217
generating and copying, 211
labeling with comments, 222

passphrases, changing, 216
passphrases, creating, 208
public-key authentication for protection of

passwords, 213
remote command execution without a

remote shell, 221
servers and clients, 207

SSH attacks, foiling with DenyHosts, 223
sshfs, mounting remote filesystems

with, 226
starting and stopping, 207
supported authentication schemes, 206
tunneling, 205
tunneling X Windows over SSH, 220
(see also SSH)

OpenVPN, 265–267
bridge mode server setup, 284
certificates, revoking, 282
client configuration, 267
configuring to start at boot, 281
connecting Windows clients, 286
encryption process, 266
encryption, testing with static keys, 272
PKI, creating, 276–279
remote Linux clients, connection with

static keys, 274
running as a nonprivileged user, 285
server configuration for multiple

clients, 279–281
starting and testing, 270–272

“Connection refused” message, 271
--ifconfig option, 271

TAP/TUN drivers and, 267
test lab setup, 267–270

IP addresses setting, 269
OpenWRT, 83
organizational units (OUs), 334
OSPF (Open Shortest Path First), 174,

199–201, 578
ospfd, monitoring, 202
security enhancements, 201

OSXvnc, 229
OUs (organizational units), 334

P
packet filtering, 578
packet switching, 578
packets, 39
PalmVNC Palm OS client, 230
PAM (Pluggable Authentication

Modules), 578
passphrase-less Authentication, 206
passphrases, 208
passwords, protection with public-key

authentication, 213
PBX (Private Branch eXchange), 123, 579
PC Engines boards, 12

WRAP boards, 87
PC Weasel, 479
PCI (Peripheral Component

Interconnect), 579
PCI adapters for telephony, 125

608 | Index

PCI bus, 10
PCI-Express, 10
PDC (Primary Domain Controller), 579
permissions, dial-up for nonroot users, 505
ping, 515, 519
ping6 command, 443
pkgsel command, 476
PKI (Public Key Infrastructure), 266, 579

OpenVPN, creating for, 276–279
PocketPC VNCServer, 230
PocketPC VNCViewer VNC client, 230
Point-to-Point Tunneling Protocol (see PPTP)
polarization diversity, 116
pool.ntp.org, 121
Poptop pptpd, 289

Active Directory, adding to, 298
Debian Linux, installing on, 290
Fedora kernel patches for MPPE

support, 294
Fedora Linux, installing on, 293
iptables firewalls, getting PPTP traffic

through, 300
PPTP servers, monitoring, 301
PPTP servers, troubleshooting, 302–304
setting up a standalone PPTP VPN

server, 295
port 22, 208, 216
port trunking, 9
PPP (Point-to-Point Protocol), 579
PPTP (Point-to-Point Tunneling

Protocol), 287, 580
(see also Linux PPTP VPN servers)

pres index type, 355
preseed, 475
priorities, 141
Private Branch eXchange (PBX), 123
private key passphrases, changing, 216
Protocol 2, 216
proute2 package, 175
Public Key Certificates, 568
Public Key Infrastructure (PKI), 266
public-key authentication, 206

sudo and, 214
PXE boot, 452

Debian PXE Netboot server setup, 472
Pyramid Linux, 12, 14, 43

adding software, 28–31
booting, 24
DHCP and DNS services, 90
Fedora, network installation on, 21–24
getting and installing the latest build, 28
hardening, 27
hardware drivers, adding, 32
hostapd, 97–100
installation on CF card, 17
kernel customization, 33

making the filesystem writable, 88
network installation on Debian, 19–21
Pyramid files, finding and editing, 26
router hostname, changing, 114
wireless access points, using for, 86

Q
QoS (Quality of Service), 9, 580
Quagga, 188–191

command-line operation, 192
command-line operation of daemons, 195
configuration file comments, 189
configuration files, 188
included routing daemons, 190
OSPF dynamic routing, 199–201
remote login to Quagga daemons, 194
startup file, 189

R
RADIUS servers, using for wireless

authentication, 100–104
radiusd.conf, 103
radvd (router advertising daemon), 448
RAS (Remote Access Service), 580
rdesktop, 228

compatible Microsoft operating
systems, 232

Linux, connecting to Microsoft
Windows, 230–232

RDNs (Relative Distinguished Names), 334
RDP (Remote Desktop Protocol), 228, 580
RealVNC, 229
records, 334
Red Hat Linux, xx
regional registrars, 439
regulated broadband services, 5
RELATED,ESTABLISHED rules, 54
Relative Distinguished Names (RDNs), 334
remote administration, 204
Remote Desktop Protocol (RDP), 228
remote graphical desktops, 228

built-in remote desktop sharing, KDE and
Gnome, 230

custom desktop configuration, 242–244
displaying windows to multiple remote

users, 254–256
FreeNX (see FreeNX)
Microsoft Windows, connecting to, 228
Nxclient (see Nxclient)
rdesktop, 228

Linux, connecting to Microsoft
Windows, 230–232

tunneling x11vnc over SSH, 261
VNC, 229

RFC (Request for Comment), 581

Index | 609

RFC 2132 numbers, 110
RHEL (Red Hat Enterprise Linux), xx
RIP (Routing Information Protocol), 173,

188, 581
Debian, configuration on, 187–191
default logging level, 190
dynamic routing on Debian, 187
Fedora set up, 191
security enhancements, 201
versions, 190

RIPD, monitoring, 197
ripd.conf (Quagga), 188
ripd.conf file definitions, 189
rootdn, 339
rootDSE, 336
rootpw, 339
route command, 178, 269
routerboards, 12
routers, 2, 37

commercial routers, 8
enabling Internet connection

sharing, 183–184
enterprise routers, 7
hardware choices, 173
hostname, changing under Pyramid

Linux, 114
inexpensive options, 45
Internet connection sharing between wired

and wireless clients, 87
simple local routers, setting up, 180

private addressing schemes, 182
routes, blackholing with zebra, 198
routing, 581

interior routing protocols, 173
OSPF for dynamic routing, 199–201
persistent static routes, configuring, 186
RIP (see RIP)
static routing, configuration across

subnets, 185
wireless routing between two LAN

segments, 108–113
Routing Information Protocol (see RIP)
RRAS (Routing and Remote Access

Service), 580
RSA keys, 211

S
Samba, 305

compilation from source code, 310
hardware requirements, 306
Linux clients, command-line utilities for

connecting, 326–329
Linux clients, graphical programs for

connecting, 330

primary domain controller, using
as, 313–317

required software, 307
starting and stopping, 312
supporting Debian and Fedora

packages, 308
Windows 95/98/ME, joining to Samba

domains, 323
Windows NT/2000, connecting to Samba

domains, 325
Windows NT4 domain controllers,

migrating from, 317–319
Windows NT4 domain controllers,

replacing with, 305
Windows NT4, connecting to Samba

domains, 324
Windows XP, connnecting to Samba

domains, 325
SBCs (single-board computers), 12, 581

wireless access points, using for, 86
(see also Soekris 4521 boards)

Scope:Link address, 441
scp, copying files over IPv6, 447
Secure Sockets Layer (see SSL)
Secure Sockets Layer-based Virtual Private

Networks (see SSL VPNs)
security

adding to RIP and OSPF, 201
Debian security updates, 472
firewalls (see firewalls)
hardening Pyramid Linux, 27
MAC addresses and, 94
serial connections, 496
wireless networking, 84

Sentry Firewall, 42
serial consoles, 478, 582

commercial consoles, 479
logging, configuring, 497
networks, connecting to, 478
security, improving, 496
servers, dialing into, 495
servers, file uploads to, 498
servers, preparing for administration

by, 479
BIOS serial console support,

checking, 480
modems, 482

setting up, 489–491
x86 PC BIOS and, 479
(see also servers, preparing for headless

operation)
serial ports, 480
servers, preparing for headless operation, 479

configuration for dial-in
administration, 492–494

GRUB, configuration with, 485–487

610 | Index

servers, preparing for headless operation
(continued)

LILO, configuration with, 483–485
(see also serial consoles)

services file (Quagga), 189
set_cachesize, 361
single-board computers (see SBCs)
SIP (Session Initiation Protocol), 582
sip.conf, 138
SLA (Service Level Agreement), 582
slapadd, 365
slapcat, 364
slapd.conf, 337, 339, 342

indexing options, 354
security concerns, 346

slapindex, 355
Sleepycat Berkeley DB, 332, 340

configuring, 358–363
logging configuration and

performance, 362
Smb4k, 330
smbclient, 328
smbd, 312
smbmnt, 329
smbmount and smbumount, 329
smbtree, 327
SMTP servers, troubleshooting, 546–548
Smurf attack, 582
SNAT (Source NAT), 38, 56
SNMP (Simple Network Management

Protocol), 408, 582
Debian, configuring on, 410–412
Fedora, configuring on, 413
MRTG and, 408
snmpd, manual startup using

chkconfig, 410
snmpd, testing for operation, 410
snmpd.conf, 410
testing remote SNMP characters, 430

snmpwalk, 410
remote snmp queries, testing, 431
syntax, 412

Soekris 4521 boards, 12, 14–17
comBIOS, updating, 34
Minicom, loading to, 14
netbooting, 19–24

Debian, using, 19–21
Fedora, using, 21–24

Pyramid Linux files, finding and
editing, 26

Pyramid Linux kernel, customizing, 33
Pyramid Linux, adding software to, 28
Pyramid Linux, booting, 24
Pyramid Linux, hardening, 27

Pyramid Linux, installing the latest
build, 28

serial port address configuration, 15
serial terminal options, 16

Soekris routerboard series, 87
softphones (software phones), 143–145
software phones (softphones), ALSA

soundsystem, 145
SOHO (Small Office/Home Office), 583
Source NAT (SNAT), 38, 56
spatial diversity, 116
speex-devel package, 130
Spencer, Mark, 125
SRPM (Source RPM), 583
SSH (Secure Shell), 39, 205, 583

allowing remote SSH through NAT
firewalls, 66

default port, 208
changing to a nonstandard port, 216

firewall configuration for remote
administration, 65

FreeNX, key generation and management
with, 233

getting multiple host keys past NAT, 68
IPv6 logins, options to permit, 447
keys, labeling with comments, 222
known_hosts file on clients, 210
SSH-1 versus SSH-2, 216
tunneling, 205
tunneling x11vnc, 261
(see also OpenSSH)

ssh-copy-id, 214
sshd -l command, 218
sshd_config, 215, 219

syntax checking, 218
sshfs, mounting remote filesystems with, 226
ssh-keygen command, 215, 217

-p switch, 217
SSL (Secure Sockets Layer), 265, 583
SSL VPNs, 265
state (packet filtering), 583
Static address, 584
stunnel, 551, 558
sub index type, 355
subnets, 584

broadcast addresses, 177
calculation with ipcalc, 176

subschemas, 336
sudo

compared to su command, 222
public-key authentication and, 214

suffix, 335
switch, 584

Index | 611

switches, 8
management ports, 8
MDI/MDI-X, 9
serial ports, 9

SYN/ACK, 584
sysctl command, 55
Syslog servers, building, 560–562
SysRq, 497

T
T1 lines, 2
TAP/TUN drivers, 267
tasksel command, 475
tc command, 175
TCAM (Ternary Content Addressable

Memory), 7, 173, 585
TCP (Transmission Control Protocol), 39,

585
tcpdump, 529–533

TCP flags, capturing with, 533
tcptraceroute, 527
telnet, 550
Ternary Content Addressable Memory (see

TCAM)
throughput, 6
TightVNC, 229

multiple concurrent users, 254
tunneling between Linux and

Windows, 262–264
time, updating at boot, 121
TLS (Transport Layer Security), 265, 583
traceroute, 527
Transport Layer Security (see TLS)
TTL (Time To Live), 586
tunnel brokers (6to4), 451
tunneling, 205

X Windows over SSH, 220
x11vnc over SSH, 261

Twinkle softphone, 143
TwinVNC, 230

U
UART (Universal Asynchronous

Receiver/Transmitter), 586
UDP, 39
UIDs (user IDs), 334
UltraVNC, 229
Unique Local Unicast addresses, 441
USB 2.0 versus USB 1.1, 51
USB boot, 453
USB headsets, 145
user IDs (UIDs), 334
USERCTL configuration option, 50

V
vectors (RIP), 173
view keyword, 412
Vino, 230
Virtual Network Computing (see VNC)
VLAN (Virtual LAN), 586
VLANs, 9
VNC (Virtual Network Computing), 229, 587

changing the Linux VNC server
password, 256

connecting to an existing X session, 259
customizing remote desktops, 257
displaying windows to multiple remote

users, 254–256
Microsoft Windows, controlling from

Linux, 248–250
remote desktop size, setting, 258
tunneling TightVNC between Linux and

Windows, 262–264
using for remote Linux-to-Linux

administration, 252
port numbers, specifying, 253

using to control Windows and Linux
simultaneously, 250

x11vnc, 230
tunneling over SSH, 261

VNC server for MorphOS, 230
vncpasswd command, 256
voicemail broadcasts, 162
voicemail.conf, 137, 142
VoIP (Voice over Internet Protocol), 587

VoIP services (see Asterisk)
Voyage Linux, 43
VPNs (Virtual Private Networks), 265, 587

default gateways, 270
IPSec VPN, 288
Linux PPTP VPN servers (see Linux PPTP

VPN servers)
vsftpd, 459
vtysh, 192

W
WAN (Wide Area Network), 587
WAP (Wireless Access Point), 588
WEP (Wired Equivalent Privacy), 11, 84, 588
wext driver, 99
whitelists, 223
Wi-Fi, 588
Wi-Fi Protected Access (WPA), 84
Win2VNC, 229
Winbind, 588
window manager startup commands, 244
Windows static DHCP clients,

configuring, 94

612 | Index

Windows, Microsoft (see Microsoft Windows)
WindowsCE.NET server, 230
WINS (Windows Internet Name Service), 588
Wired Equivalent Privacy (WEP), 11, 84
wireless chipsets with Linux compatibility, 83
wireless networking, 11

access points, 100
building, 86
inexpensive options, 45
supported clients, 100

authentication with RADIUS
servers, 100–104

binary blobs in the kernel, 83
encryption and authentication, 84
FreeRADIUS, authenticating clients

to, 106
hostnames, changing on Pyramid Linux

routers, 114
Internet connection sharing between wired

and wireless clients, 87
name services, setting up, 90–92
probing wireless interface cards, 113
routing between LAN segments, 108–113
security, 84
security risks of unsecured networks, 84
shutting down one of two antennas, 115
static IP addresses, setting from DHCP

services, 93
WPA2 security enhancements using

Pyramid Linux, 97–100
Wistron CM9 mini-PCI interface, 83

wlanconfig, 113
WPA (Wi-Fi Protected Access), 84, 589

support for Windows XP, 99
wpa_supplicant, 85
WPA2, 84, 589

security enhancements using Pyramid
Linux, 97–100

WPA-EAP, 84
WPA-Enterprise, 85
WPA-Personal, 84
WPA-PSK, 84
WRAP boards, 44
WvDial, 502

(see also dial-up networking)
wvdial.conf, 504

X
x11vnc, 230

tunneling over SSH, 261
x2vnc, 230, 250
X-Lite softphone, 143

Z
zebra, 188, 190

blackholing routes, 198
zebra.conf, 188

setting null routes in, 198
ztdummy module, 131

About the Author
Carla Schroder is a self-taught Linux and Windows sysadmin who laid hands on her
first computer around her 37th birthday. Her first PC was a Macintosh LC II. Next
came an IBM clone, a 386sx running MS-DOS 5, and Windows 3.1, with a 14" color
display, which was adequate for many pleasant hours of DOOM play. Then, around
1997, she discovered Red Hat 5.0 and had a whole new world to explore.

Somewhere along the way she found herself doing freelance consulting for small
businesses and home users, supporting both Linux and Windows users, and inte-
grating Linux and Windows on the LAN. She is the author of Linux Cookbook
(O’Reilly), and writes Linux how-tos for several computer publications.

Carla is living proof that you’re never too old to try something new, computers are a
heck of a lot of fun, and anyone can learn to do anything. Visit http://tuxcomputing.com
for more Carla stuff.

Colophon
The image on the cover of Linux Networking Cookbook is a female blacksmith.
While historically women worked more commonly as seamstresses and teachers,
women blacksmiths have existed as far back as the Middle Ages. Though medieval
women often stayed in to cook, bake bread, and sew, some were blacksmiths who
made weapons to defend their homes and castles.

In spite of their history in the profession, the presence of women in the black-
smithing industry continued to surprise many. In 1741, author and bookshop owner
William Hutton came across a blacksmith’s shop while traveling the English coun-
tryside. At the shop, he witnessed “one or more females, stripped of their upper
garments, and not overcharged with the lower, wielding the hammer with all the
grace of the sex.” It is thought that finding women—and not men—working as
blacksmiths shocked Hutton, while the state of their dress remained an unimportant
matter.

Controversy occasionally surrounded the idea of women working as blacksmiths. In
1895, Mrs. Hattie Graham sent in a proposal to the town hall of Sudbury, Massachu-
setts, to do business as a blacksmith in a shop owned by Miss Mary Heard. That a
woman owned a blacksmith shop was not controversial, but a woman working as a
blacksmith was. However, Graham’s skilled work eventually won over those who
had protested her early days of working at the shop.

Even in recent decades many people expressed astonishment at the fact that women
previously worked as blacksmiths. Reportedly, tourists wandering through Colonial
Williamsburg often asked if women were allowed to be blacksmiths, or wondered if
the work was too physically demanding for them.

In the 21st century, blacksmithing has evolved into a profession of empowerment
and artistic expression. In 2001, the documentary Mama Wahunzi (Swahili for
“women blacksmiths”) chronicled the lives of three women who learned to make
their own wheelchairs and take control of their own mobility. In Africa, women
blacksmiths work with women farmers in the design and maintenance of their tools.
In the U.S., where it is estimated that 50 full-time female blacksmiths exist today,
many blacksmiths produce public art, help restore architecture, and build modern
furniture.

The cover image and chapter opening graphics are from Dover’s Women: A Pictorial
Archive from 19th-Century Sources. The cover font is Adobe ITC Garamond. The
text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the
code font is LucasFont’s TheSans Mono Condensed.

	Linux Networking Cookbook
	Linux Networking CookBook
	Table of Contents
	Preface
	Audience
	Contents of This Book
	What Is Included
	Which Linux Distributions Are Used in the Book
	Downloads and Feedback
	Conventions
	Using Code Examples
	Comments and Questions
	Safari® Books Online
	Acknowledgments

	Introduction to Linux Networking
	1.0 Introduction
	Connecting to the Internet
	Overview of Internet Service Options
	Cable, DSL, and Dial-Up
	Cable
	DSL
	Dial-up
	Cable, DSL, and dial-up gotchas

	Regulated Broadband Services
	Private Networks
	Latency, Bandwidth, and Throughput
	Hardware Options for Your Linux Firewall/Gateway
	High-End Enterprise Routers
	Not-So-High-End Commercial Routers
	Switches
	Management port
	Serial port
	MDI/MDI-X (Medium Dependent Interfaces)
	Lots of blinky lights
	Jumbo frames
	Port trunking
	VLANs
	QoS
	Per-port access controls
	Network Interface Cards (NICs)

	Gigabit Ethernet Gotchas
	Cabling
	Wireless Networking

	Building a Linux Gateway on a Single-Board Computer
	2.0 Introduction
	Required Hardware
	Software
	What to Do with Old PCs?

	2.1 Getting Acquainted with the Soekris 4521
	Problem
	Solution
	Discussion
	See Also

	2.2 Configuring Multiple Minicom Profiles
	Problem
	Solution
	Discussion
	See Also

	2.3 Installing Pyramid Linux on a Compact Flash Card
	Problem
	Solution
	Discussion
	See Also

	2.4 Network Installation of Pyramid on Debian
	Problem
	Solution
	Discussion
	See Also

	2.5 Network Installation of Pyramid on Fedora
	Problem
	Solution
	Discussion
	See Also

	2.6 Booting Pyramid Linux
	Problem
	Solution
	Discussion
	See Also

	2.7 Finding and Editing Pyramid Files
	Problem
	Solution
	Discussion
	See Also

	2.8 Hardening Pyramid
	Problem
	Solution
	Discussion
	See Also

	2.9 Getting and Installing the Latest Pyramid Build
	Problem
	Solution
	Discussion
	See Also

	2.10 Adding Additional Software to Pyramid Linux
	Problem
	Solution
	Discussion
	See Also

	2.11 Adding New Hardware Drivers
	Problem
	Solution
	Discussion
	See Also

	2.12 Customizing the Pyramid Kernel
	Problem
	Solution
	Discussion
	See Also

	2.13 Updating the Soekris comBIOS
	Problem
	Solution
	Discussion
	See Also

	Building a Linux Firewall
	3.0 Introduction
	Separating Private and Public
	Windows Security
	Iptables and NAT, SNAT, and DNAT
	iptables and TCP/IP Headers
	When Is a Firewall Needed?
	iptables Overview
	iptables Policies and Rules
	Tables Overview
	Specialized Linux Firewall and Routing Distributions
	Important Disclaimer

	3.1 Assembling a Linux Firewall Box
	Problem
	Solution
	Discussion
	Cabling
	Network interfaces

	See Also

	3.2 Configuring Network Interface Cards on Debian
	Problem
	Solution
	Discussion
	Configuration definitions

	See Also

	3.3 Configuring Network Interface Cards on Fedora
	Problem
	Solution
	Discussion
	See Also

	3.4 Identifying Which NIC Is Which
	Problem
	Solution
	Discussion
	See Also

	3.5 Building an Internet-Connection Sharing Firewall on a Dynamic WAN IP Address
	Problem
	Solution
	Discussion
	See Also

	3.6 Building an Internet-Connection Sharing Firewall on a Static WAN IP Address
	Problem
	Solution
	Discussion
	See Also

	3.7 Displaying the Status of Your Firewall
	Problem
	Solution
	Discussion
	See Also

	3.8 Turning an iptables Firewall Off
	Problem
	Solution
	Discussion
	See Also

	3.9 Starting iptables at Boot, and Manually Bringing Your Firewall Up and Down
	Problem
	Solution
	Discussion
	See Also

	3.10 Testing Your Firewall
	Problem
	Solution
	Discussion
	Application-level security

	See Also

	3.11 Configuring the Firewall for Remote SSH Administration
	Problem
	Solution
	Discussion
	See Also

	3.12 Allowing Remote SSH Through a NAT Firewall
	Problem
	Solution
	Discussion
	See Also

	3.13 Getting Multiple SSH Host Keys Past NAT
	Problem
	Solution
	Discussion
	See Also

	3.14 Running Public Services on Private IP Addresses
	Problem
	Solution
	Discussion
	See Also

	3.15 Setting Up a Single-Host Firewall
	Problem
	Solution
	Discussion
	See Also

	3.16 Setting Up a Server Firewall
	Problem
	Solution
	Discussion
	See Also

	3.17 Configuring iptables Logging
	Problem
	Solution
	See Also

	3.18 Writing Egress Rules
	Problem
	Solution
	Discussion
	See Also

	Building a Linux Wireless Access Point
	4.0 Introduction
	Security
	See Also

	4.1 Building a Linux Wireless Access Point
	Problem
	Solution
	Discussion
	See Also

	4.2 Bridging Wireless to Wired
	Problem
	Solution
	Discussion
	See Also

	4.3 Setting Up Name Services
	Problem
	Solution
	Discussion
	See Also

	4.4 Setting Static IP Addresses from the DHCP Server
	Problem
	Solution
	Discussion
	See Also

	4.5 Configuring Linux and Windows Static DHCP Clients
	Problem
	Solution
	Discussion
	See Also

	4.6 Adding Mail Servers to dnsmasq
	Problem
	Solution
	Discussion
	See Also

	4.7 Making WPA2-Personal Almost As Good As WPA-Enterprise
	Problem
	Solution
	Discussion
	See Also

	4.8 Enterprise Authentication with a RADIUS Server
	Problem
	Solution
	Discussion
	See Also

	4.9 Configuring Your Wireless Access Point to Use FreeRADIUS
	Problem
	Solution
	Discussion
	See Also

	4.10 Authenticating Clients to FreeRADIUS
	Problem
	Solution
	Discussion
	See Also

	4.11 Connecting to the Internet and Firewalling
	Problem
	Solution
	Discussion
	See Also

	4.12 Using Routing Instead of Bridging
	Problem
	Solution
	Discussion
	See Also

	4.13 Probing Your Wireless Interface Card
	Problem
	Solution
	Discussion
	See Also

	4.14 Changing the Pyramid Router’s Hostname
	Problem
	Solution
	Discussion
	See Also

	4.15 Turning Off Antenna Diversity
	Problem
	Solution
	Discussion
	See Also

	4.16 Managing dnsmasq’s DNS Cache
	Problem
	Solution
	Discussion
	See Also

	4.17 Managing Windows’ DNS Caches
	Problem
	Solution
	Discussion
	See Also

	4.18 Updating the Time at Boot
	Problem
	Solution
	Discussion
	See Also

	Building a VoIP Server with Asterisk
	5.0 Introduction
	Test-lab Hardware and Software
	Production Hardware and Software
	Call Quality
	Digium, Asterisk, and the Zapata Telephony Project
	Asterisk Implementations
	Using Asterisk
	See Also

	5.1 Installing Asterisk from Source Code
	Problem
	Solution
	Discussion
	See Also

	5.2 Installing Asterisk on Debian
	Problem
	Solution
	Discussion
	See Also

	5.3 Starting and Stopping Asterisk
	Problem
	Solution
	Discussion
	See Also

	5.4 Testing the Asterisk Server
	Problem
	Solution
	Discussion
	See Also

	5.5 Adding Phone Extensions to Asterisk and Making Calls
	Problem
	Solution
	Discussion
	sip.conf
	Dialplans

	See Also

	5.6 Setting Up Softphones
	Problem
	Solution
	Discussion
	See Also

	5.7 Getting Real VoIP with Free World Dialup
	Problem
	Solution
	Discussion
	See Also

	5.8 Connecting Your Asterisk PBX to Analog Phone Lines
	Problem
	Solution
	Discussion
	See Also

	5.9 Creating a Digital Receptionist
	Problem
	Solution
	Discussion
	See Also

	5.10 Recording Custom Prompts
	Problem
	Solution
	Discussion
	See Also

	5.11 Maintaining a Message of the Day
	Problem
	Solution
	Discussion
	See Also

	5.12 Transferring Calls
	Problem
	Solution
	Discussion
	See Also

	5.13 Routing Calls to Groups of Phones
	Problem
	Solution
	Discussion
	See Also

	5.14 Parking Calls
	Problem
	Solution
	Discussion
	See Also

	5.15 Customizing Hold Music
	Problem
	Solution
	Discussion
	See Also

	5.16 Playing MP3 Sound Files on Asterisk
	Problem
	Solution
	See Also

	5.17 Delivering Voicemail Broadcasts
	Problem
	Solution
	Discussion
	See Also

	5.18 Conferencing with Asterisk
	Problem
	Solution
	Discussion
	See Also

	5.19 Monitoring Conferences
	Problem
	Solution
	Discussion
	See Also

	5.20 Getting SIP Traffic Through iptables NAT Firewalls
	Problem
	Solution
	Discussion
	See Also

	5.21 Getting IAX Traffic Through iptables NAT Firewalls
	Problem
	Solution
	Discussion
	See Also

	5.22 Using AsteriskNOW, “Asterisk in 30 Minutes”
	Problem
	Solution
	Discussion
	See Also

	5.23 Installing and Removing Packages on AsteriskNOW
	Problem
	Solution
	Discussion
	See Also

	5.24 Connecting Road Warriors and Remote Users
	Problem
	Solution
	Discussion
	See Also

	Routing with Linux
	6.0 Introduction
	Exterior Protocols
	Linux Routing and Networking Commands

	6.1 Calculating Subnets with ipcalc
	Problem
	Solution
	Discussion
	See Also

	6.2 Setting a Default Gateway
	Problem
	Solution
	Discussion
	See Also

	6.3 Setting Up a Simple Local Router
	Problem
	Solution
	Discussion
	See Also

	6.4 Configuring Simplest Internet Connection Sharing
	Problem
	Solution
	Discussion
	See Also

	6.5 Configuring Static Routing Across Subnets
	Problem
	Solution
	Discussion
	See Also

	6.6 Making Static Routes Persistent
	Problem
	Solution
	Discussion
	See Also

	6.7 Using RIP Dynamic Routing on Debian
	Problem
	Solution
	Discussion
	See Also

	6.8 Using RIP Dynamic Routing on Fedora
	Problem
	Solution
	Discussion
	See Also

	6.9 Using Quagga’s Command Line
	Problem
	Solution
	Discussion
	See Also

	6.10 Logging In to Quagga Daemons Remotely
	Problem
	Solution
	Discussion
	See Also

	6.11 Running Quagga Daemons from the Command Line
	Problem
	Solution
	Discussion
	See Also

	6.12 Monitoring RIPD
	Problem
	Solution
	Discussion
	See Also

	6.13 Blackholing Routes with Zebra
	Problem
	Solution
	Discussion
	See Also

	6.14 Using OSPF for Simple Dynamic Routing
	Problem
	Solution
	Discussion
	See Also

	6.15 Adding a Bit of Security to RIP and OSPF
	Problem
	Solution
	Discussion
	See Also

	6.16 Monitoring OSPFD
	Problem
	Solution
	Discussion
	See Also

	Secure Remote Administration with SSH
	7.0 Introduction
	OpenSSH
	SSH Tunneling
	OpenSSH Components
	Using OpenSSH
	Key types

	7.1 Starting and Stopping OpenSSH
	Problem
	Solution
	Discussion
	See Also

	7.2 Creating Strong Passphrases
	Problem
	Solution
	Discussion

	7.3 Setting Up Host Keys for Simplest Authentication
	Problem
	Solution
	Discussion
	See Also

	7.4 Generating and Copying SSH Keys
	Problem
	Solution
	Discussion
	See Also

	7.5 Using Public-Key Authentication to Protect System Passwords
	Problem
	Solution
	Discussion
	See Also

	7.6 Managing Multiple Identity Keys
	Problem
	Solution
	Discussion
	See Also

	7.7 Hardening OpenSSH
	Problem
	Solution
	Discussion
	See Also

	7.8 Changing a Passphrase
	Problem
	Solution
	Discussion
	See Also

	7.9 Retrieving a Key Fingerprint
	Problem
	Solution
	Discussion
	See Also

	7.10 Checking Configuration Syntax
	Problem
	Solution
	Discussion
	See Also

	7.11 Using OpenSSH Client Configuration Files for Easier Logins
	Problem
	Solution
	Discussion
	See Also

	7.12 Tunneling X Windows Securely over SSH
	Problem
	Solution
	Discussion
	See Also

	7.13 Executing Commands Without Opening a Remote Shell
	Problem
	Solution
	Discussion
	See Also

	7.14 Using Comments to Label Keys
	Problem
	Solution
	Discussion
	See Also

	7.15 Using DenyHosts to Foil SSH Attacks
	Problem
	Solution
	Discussion
	See Also

	7.16 Creating a DenyHosts Startup File
	Problem
	Solution
	Discussion
	See Also

	7.17 Mounting Entire Remote Filesystems with sshfs
	Problem
	Solution
	Discussion
	See Also

	Using Cross-Platform Remote Graphical Desktops
	8.0 Introduction
	rdesktop
	FreeNX
	VNC
	Built-in Remote Desktop Sharing in KDE and Gnome

	8.1 Connecting Linux to Windows via rdesktop
	Problem
	Solution
	Discussion
	See Also

	8.2 Generating and Managing FreeNX SSH Keys
	Problem
	Solution
	Discussion
	See Also

	8.3 Using FreeNX to Run Linux from Windows
	Problem
	Solution
	Set up the server
	Get the client
	Set up the connection

	Discussion
	See Also

	8.4 Using FreeNX to Run Linux from Solaris, Mac OS X, or Linux
	Problem
	Solution
	Discussion
	See Also

	8.5 Managing FreeNX Users
	Problem
	Solution
	Discussion
	See Also

	8.6 Watching Nxclient Users from the FreeNX Server
	Problem
	Solution
	Discussion
	See Also

	8.7 Starting and Stopping the FreeNX Server
	Problem
	Solution
	Discussion
	See Also

	8.8 Configuring a Custom Desktop
	Problem
	Solution
	Discussion
	See Also

	8.9 Creating Additional Nxclient Sessions
	Problem
	Solution
	Discussion
	See Also
	Problem
	Solution
	Discussion
	See Also

	8.10 Enabling File and Printer Sharing, and Multimedia in Nxclient
	Problem
	Solution
	Discussion
	See Also

	8.11 Preventing Password-Saving in Nxclient
	Problem
	Solution
	Discussion
	See Also

	8.12 Troubleshooting FreeNX
	Problem
	Solution
	See Also

	8.13 Using VNC to Control Windows from Linux
	Problem
	Solution
	Discussion
	See Also

	8.14 Using VNC to Control Windows and Linux at the Same Time
	Problem
	Solution
	Discussion
	See Also

	8.15 Using VNC for Remote Linux-to-Linux Administration
	Problem
	Solution
	Discussion
	See Also

	8.16 Displaying the Same Windows Desktop to Multiple Remote Users
	Problem
	Solution
	Discussion
	See Also

	8.17 Changing the Linux VNC Server Password
	Problem
	Solution
	Discussion
	See Also

	8.18 Customizing the Remote VNC Desktop
	Problem
	Solution
	Discussion
	See Also

	8.19 Setting the Remote VNC Desktop Size
	Problem
	Solution
	Discussion
	See Also

	8.20 Connecting VNC to an Existing X Session
	Problem
	Solution
	Discussion
	See Also

	8.21 Securely Tunneling x11vnc over SSH
	Problem
	Solution
	Discussion
	See Also

	8.22 Tunneling TightVNC Between Linux and Windows
	Problem
	Solution
	Discussion
	See Also

	Building Secure Cross- Platform Virtual Private Networks with OpenVPN
	9.0 Introduction
	What About IPSec?
	OpenVPN

	9.1 Setting Up a Safe OpenVPN Test Lab
	Problem
	Solution
	Discussion
	See Also

	9.2 Starting and Testing OpenVPN
	Problem
	Solution
	Discussion
	See Also

	9.3 Testing Encryption with Static Keys
	Problem
	Solution
	Discussion
	See Also

	9.4 Connecting a Remote Linux Client Using Static Keys
	Problem
	Solution
	Discussion
	See Also

	9.5 Creating Your Own PKI for OpenVPN
	Problem
	Solution
	Discussion
	See Also

	9.6 Configuring the OpenVPN Server for Multiple Clients
	Problem
	Solution
	Discussion
	See Also

	9.7 Configuring OpenVPN to Start at Boot
	Problem
	Solution
	Discussion
	See Also

	9.8 Revoking Certificates
	Problem
	Solution
	Discussion
	See Also

	9.9 Setting Up the OpenVPN Server in Bridge Mode
	Problem
	Solution
	Discussion
	See Also

	9.10 Running OpenVPN As a Nonprivileged User
	Problem
	Solution
	Discussion
	See Also

	9.11 Connecting Windows Clients
	Problem
	Solution
	Discussion
	See Also

	Building a Linux PPTP VPN Server
	10.0 Introduction
	Windows Client Necessary Updates
	PPTP Security
	IPSec VPN
	Linux Requirements
	Is PPTP Really Easier?
	See Also

	10.1 Installing Poptop on Debian Linux
	Problem
	Solution
	Discussion
	See Also

	10.2 Patching the Debian Kernel for MPPE Support
	Problem
	Solution
	Discussion
	See Also

	10.3 Installing Poptop on Fedora Linux
	Problem
	Solution
	Discussion
	See Also

	10.4 Patching the Fedora Kernel for MPPE Support
	Problem
	Solution
	Discussion
	See Also

	10.5 Setting Up a Standalone PPTP VPN Server
	Problem
	Solution
	Discussion
	See Also

	10.6 Adding Your Poptop Server to Active Directory
	Problem
	Solution
	Discussion
	See Also

	10.7 Connecting Linux Clients to a PPTP Server
	Problem
	Solution
	Discussion
	See Also

	10.8 Getting PPTP Through an iptables Firewall
	Problem
	Solution
	Discussion
	See Also

	10.9 Monitoring Your PPTP Server
	Problem
	Solution
	Discussion
	See Also

	10.10 Troubleshooting PPTP
	Problem
	Solution
	Discussion
	See Also

	Single Sign-on with Samba for Mixed Linux/Windows LANs
	11.0 Introduction
	Replacing an NT4 Domain Controller
	Hardware Requirements

	11.1 Verifying That All the Pieces Are in Place
	Problem
	Solution
	Discussion
	See Also

	11.2 Compiling Samba from Source Code
	Problem
	Solution
	Discussion
	See Also

	11.3 Starting and Stopping Samba
	Problem
	Solution
	Discussion
	See Also

	11.4 Using Samba As a Primary Domain Controller
	Problem
	Solution
	Discussion
	See Also

	11.5 Migrating to a Samba Primary Domain Controller from an NT4 PDC
	Problem
	Solution
	Discussion
	See Also

	11.6 Joining Linux to an Active Directory Domain
	Problem
	Solution
	Discussion
	See Also

	11.7 Connecting Windows 95/98/ME to a Samba Domain
	Problem
	Solution
	Discussion
	See Also

	11.8 Connecting Windows NT4 to a Samba Domain
	Problem
	Solution
	Discussion
	See Also

	11.9 Connecting Windows NT/2000 to a Samba Domain
	Problem
	Solution
	Discussion
	See Also

	11.10 Connecting Windows XP to a Samba Domain
	Problem
	Solution
	Discussion
	See Also

	11.11 Connecting Linux Clients to a Samba Domain with Command-Line Programs
	Problem
	Solution
	Discussion
	See Also

	11.12 Connecting Linux Clients to a Samba Domain with Graphical Programs
	Problem
	Solution
	Discussion
	Konqueror
	Nautilus
	Smb4k
	LinNeighborhood

	See Also

	Centralized Network Directory with OpenLDAP
	12.0 Introduction
	LDAP Directory Structure
	Schemas, objectClasses, and Attributes
	The “Secret” RootDSE
	Deciding How Deep Your Directory Is

	12.1 Installing OpenLDAP on Debian
	Problem
	Solution
	Discussion
	See Also

	12.2 Installing OpenLDAP on Fedora
	Problem
	Solution
	Discussion
	See Also

	12.3 Configuring and Testing the OpenLDAP Server
	Problem
	Solution
	Discussion
	See Also

	12.4 Creating a New Database on Fedora
	Problem
	Solution
	Discussion
	ObjectClasses and attributes

	See Also

	12.5 Adding More Users to Your Directory
	Problem
	Solution
	Discussion
	See Also

	12.6 Correcting Directory Entries
	Problem
	Solution
	Discussion
	See Also

	12.7 Connecting to a Remote OpenLDAP Server
	Problem
	Solution
	Discussion
	See Also

	12.8 Finding Things in Your OpenLDAP Directory
	Problem
	Solution
	Discussion
	See Also

	12.9 Indexing Your Database
	Problem
	Solution
	Discussion
	See Also

	12.10 Managing Your Directory with Graphical Interfaces
	Problem
	Solution
	Discussion
	See Also

	12.11 Configuring the Berkeley DB
	Problem
	Solution
	Discussion
	See Also

	12.12 Configuring OpenLDAP Logging
	Problem
	Solution
	Discussion
	See Also

	12.13 Backing Up and Restoring Your Directory
	Problem
	Solution
	Discussion
	See Also

	12.14 Refining Access Controls
	Problem
	Solution
	Discussion
	See Also

	12.15 Changing Passwords
	Problem
	Solution
	Discussion
	See Also

	Network Monitoring with Nagios
	13.0 Introduction
	See Also

	13.1 Installing Nagios from Sources
	Problem
	Solution
	Discussion
	See Also

	13.2 Configuring Apache for Nagios
	Problem
	Solution
	Discussion
	See Also

	13.3 Organizing Nagios’ Configuration Files Sanely
	Problem
	Solution
	Discussion
	See Also

	13.4 Configuring Nagios to Monitor Localhost
	Problem
	Solution
	Discussion
	See Also

	13.5 Configuring CGI Permissions for Full Nagios Web Access
	Problem
	Solution
	Discussion
	See Also

	13.6 Starting Nagios at Boot
	Problem
	Solution
	Discussion
	See Also

	13.7 Adding More Nagios Users
	Problem
	Solution
	Discussion
	See Also

	13.8 Speed Up Nagios with check_icmp
	Problem
	Solution
	Discussion
	See Also

	13.9 Monitoring SSHD
	Problem
	Solution
	Discussion
	Command definitions
	Host definitions
	Service definitions

	See Also

	13.10 Monitoring a Web Server
	Problem
	Solution
	Discussion
	See Also

	13.11 Monitoring a Mail Server
	Problem
	Solution
	Discussion
	See Also

	13.12 Using Servicegroups to Group Related Services
	Problem
	Solution
	Discussion
	See Also

	13.13 Monitoring Name Services
	Problem
	Solution
	Discussion
	See Also

	13.14 Setting Up Secure Remote Nagios Administration with OpenSSH
	Problem
	Solution
	Discussion
	See Also

	13.15 Setting Up Secure Remote Nagios Administration with OpenSSL
	Problem
	Solution
	Discussion
	See Also

	Network Monitoring with MRTG
	14.0 Introduction
	14.1 Installing MRTG
	Problem
	Solution
	Discussion
	See Also

	14.2 Configuring SNMP on Debian
	Problem
	Solution
	Discussion
	See Also

	14.3 Configuring SNMP on Fedora
	Problem
	Solution
	Discussion
	See Also

	14.4 Configuring Your HTTP Service for MRTG
	Problem
	Solution
	Discussion
	See Also

	14.5 Configuring and Starting MRTG on Debian
	Problem
	Solution
	Discussion
	See Also

	14.6 Configuring and Starting MRTG on Fedora
	Problem
	Solution
	Discussion
	See Also

	14.7 Monitoring Active CPU Load
	Problem
	Solution
	Discussion
	See Also

	14.8 Monitoring CPU User and Idle Times
	Problem
	Solution
	Discussion
	See Also

	14.9 Monitoring Physical Memory
	Problem
	Solution
	Discussion
	See Also

	14.10 Monitoring Swap Space and Memory
	Problem
	Solution
	Discussion
	See Also

	14.11 Monitoring Disk Usage
	Problem
	Solution
	Discussion
	See Also

	14.12 Monitoring TCP Connections
	Problem
	Solution
	Discussion
	See Also

	14.13 Finding and Testing MIBs and OIDs
	Problem
	Solution
	Discussion
	See Also

	14.14 Testing Remote SNMP Queries
	Problem
	Solution
	Discussion
	See Also

	14.15 Monitoring Remote Hosts
	Problem
	Solution
	Discussion
	See Also

	14.16 Creating Multiple MRTG Index Pages
	Problem
	Solution
	Discussion
	See Also

	14.17 Running MRTG As a Daemon
	Problem
	Solution
	Discussion
	See Also

	Getting Acquainted with IPv6
	15.0 Introduction
	Barriers to Adoption
	Anatomy of IPv6 Addresses
	IPv6 address types and ranges

	Counting in Hexadecimal
	Mac and Windows IPv6 Support

	15.1 Testing Your Linux System for IPv6 Support
	Problem
	Solution
	Discussion
	See Also

	15.2 Pinging Link Local IPv6 Hosts
	Problem
	Solution
	Discussion
	See Also

	15.3 Setting Unique Local Unicast Addresses on Interfaces
	Problem
	Solution
	Discussion
	See Also

	15.4 Using SSH with IPv6
	Problem
	Solution
	Discussion
	See Also

	15.5 Copying Files over IPv6 with scp
	Problem
	Solution
	Discussion
	See Also

	15.6 Autoconfiguration with IPv6
	Problem
	Solution
	Discussion
	See Also

	15.7 Calculating IPv6 Addresses
	Problem
	Solution
	Discussion
	See Also

	15.8 Using IPv6 over the Internet
	Problem
	Solution
	Discussion
	See Also

	Setting Up Hands-Free Network Installations of New Systems
	16.0 Introduction
	PXE Boot
	USB Boot
	Installation

	16.1 Creating Network Installation Boot Media for Fedora Linux
	Problem
	Solution
	Discussion
	See Also

	16.2 Network Installation of Fedora Using Network Boot Media
	Problem
	Solution
	Discussion
	See Also

	16.3 Setting Up an HTTP-Based Fedora Installation Server
	Problem
	Solution
	Discussion
	See Also

	16.4 Setting Up an FTP-Based Fedora Installation Server
	Problem
	Solution
	Discussion
	See Also

	16.5 Creating a Customized Fedora Linux Installation
	Problem
	Solution
	Discussion
	See Also

	16.6 Using a Kickstart File for a Hands-off Fedora Linux Installation
	Problem
	Solution
	Discussion
	See Also

	16.7 Fedora Network Installation via PXE Netboot
	Problem
	Solution
	Discussion
	See Also

	16.8 Network Installation of a Debian System
	Solution
	Discussion
	See Also

	16.9 Building a Complete Debian Mirror with apt-mirror
	Problem
	Solution
	Discussion
	See Also

	16.10 Building a Partial Debian Mirror with apt-proxy
	Problem
	Solution
	Discussion
	See Also

	16.11 Configuring Client PCs to Use Your Local Debian Mirror
	Problem
	Solution
	Discussion
	See Also

	16.12 Setting Up a Debian PXE Netboot Server
	Problem
	Solution
	Discussion
	See Also

	16.13 Installing New Systems from Your Local Debian Mirror
	Problem
	Solution
	Discussion
	See Also

	16.14 Automating Debian Installations with Preseed Files
	Problem
	Solution
	Discussion
	See Also

	Linux Server Administration via Serial Console
	17.0 Introduction
	17.1 Preparing a Server for Serial Console Administration
	Problem
	Solution
	Discussion
	Modems

	See Also

	17.2 Configuring a Headless Server with LILO
	Problem
	Solution
	Discussion
	See Also

	17.3 Configuring a Headless Server with GRUB
	Problem
	Solution
	Discussion
	See Also

	17.4 Booting to Text Mode on Debian
	Problem
	Solution
	Discussion
	See Also

	17.5 Setting Up the Serial Console
	Problem
	Solution
	Discussion
	File permissions

	See Also

	17.6 Configuring Your Server for Dial-in Administration
	Problem
	Solution
	Discussion
	See Also

	17.7 Dialing In to the Server
	Problem
	Solution
	Discussion
	See Also

	17.8 Adding Security
	Problem
	Solution
	Discussion
	See Also

	17.9 Configuring Logging
	Problem
	Solution
	Discussion
	See Also

	17.10 Uploading Files to the Server
	Problem
	Solution
	Discussion
	See Also

	Running a Linux Dial-Up Server
	18.0 Introduction
	18.1 Configuring a Single Dial-Up Account with WvDial
	Problem
	Solution
	Discussion
	See Also

	18.2 Configuring Multiple Accounts in WvDial
	Problem
	Solution
	Discussion
	See Also

	18.3 Configuring Dial-Up Permissions for Nonroot Users
	Problem
	Solution
	Discussion
	See Also

	18.4 Creating WvDial Accounts for Nonroot Users
	Problem
	Solution
	Discussion
	See Also

	18.5 Sharing a Dial-Up Internet Account
	Problem
	Solution
	Discussion
	See Also

	18.6 Setting Up Dial-on-Demand
	Problem
	Solution
	Discussion
	See Also

	18.7 Scheduling Dial-Up Availability with cron
	Problem
	Solution
	Discussion
	See Also

	18.8 Dialing over Voicemail Stutter Tones
	Problem
	Solution
	Discussion
	See Also

	18.9 Overriding Call Waiting
	Problem
	Solution
	Discussion
	See Also

	18.10 Leaving the Password Out of the Configuration File
	Problem
	Solution
	Discussion
	See Also

	18.11 Creating a Separate pppd Logfile
	Problem
	Solution
	Discussion
	See Also

	Troubleshooting Networks
	19.0 Introduction
	Testing and Tracing Cabling
	Spares for Testing

	19.1 Building a Network Diagnostic and Repair Laptop
	Problem
	Solution
	Discussion
	See Also

	19.2 Testing Connectivity with ping
	Problem
	Solution
	Discussion
	See Also

	19.3 Profiling Your Network with FPing and Nmap
	Problem
	Solution
	Discussion
	See Also

	19.4 Finding Duplicate IP Addresses with arping
	Problem
	Solution
	Discussion
	See Also

	19.5 Testing HTTP Throughput and Latency with httping
	Problem
	Solution
	Discussion
	See Also

	19.6 Using traceroute, tcptraceroute, and mtr to Pinpoint Network Problems
	Problem
	Solution
	Discussion
	See Also

	19.7 Using tcpdump to Capture and Analyze Traffic
	Problem
	Solution
	Discussion
	See Also

	19.8 Capturing TCP Flags with tcpdump
	Problem
	Solution
	Discussion
	See Also

	19.9 Measuring Throughput, Jitter, and Packet Loss with iperf
	Problem
	Solution
	Discussion
	See Also

	19.10 Using ngrep for Advanced Packet Sniffing
	Problem
	Solution
	Discussion
	See Also

	19.11 Using ntop for Colorful and Quick Network Monitoring
	Problem
	Solution
	Discussion
	See Also

	19.12 Troubleshooting DNS Servers
	Problem
	Solution
	Discussion
	See Also

	19.13 Troubleshooting DNS Clients
	Problem
	Solution
	Discussion
	See Also

	19.14 Troubleshooting SMTP Servers
	Problem
	Solution
	Discussion
	See Also

	19.15 Troubleshooting a POP3, POP3s, or IMAP Server
	Problem
	Solution
	Discussion
	See Also

	19.16 Creating SSL Keys for Your Syslog-ng Server on Debian
	Problem
	Solution
	Discussion
	See Also

	19.17 Creating SSL Keys for Your Syslog-ng Server on Fedora
	Problem
	Solution
	Discussion
	See Also

	19.18 Setting Up stunnel for Syslog-ng
	Problem
	Solution
	Discussion
	See Also

	19.19 Building a Syslog Server
	Problem
	Solution
	Discussion
	See Also

	Essential References
	Glossary of Networking Terms
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Linux Kernel Building Reference
	Building a Custom Kernel
	Prerequisites
	Building a Vanilla Kernel
	Configuration Options
	Adding New Loadable Kernel Modules
	Patching a Kernel
	Customizing Fedora Kernels
	Customizing Debian Kernels
	See Also

	Index

