
901 San Antonio Road
Palo Alto, CA 94303-4900 USA
650 960-1300 Fax 650 969-9131

Solaris and LDAP Naming

Services

Part No. 806-2893-10
October 2000

Sun Microsystems, Inc.

Send comments about this document to: docfeedback@sun.com

Please
Recycle

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 USA. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape Communicator™, the following notice applies:

Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, Sun BluePrints, and Solaris are trademarks, registered trademarks, or

service marks of Sun Microsystems, Inc. in the U.S. and other countries. All other product names mentioned herein are the trademarks of their

respective owners. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in

the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. The

OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the

pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds

a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable à

Netscape Communicator™ : Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, Sun BluePrints, et Solaris sont des marques de fabrique ou des marques

déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous

licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les

produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.L’interface d’utilisation graphique

OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de

Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique.

Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de

Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Acknowledgements

Pulling together all the information needed for a book such as this requires

contributions from various groups at Sun as well as from the AOL/Netscape

Alliance team. Without the cooperation and dedication of the people from these

groups, we would not have been able to produce this book.

First, we would like to thank the Sun BluePrints team for coming up with the

concept of the book, providing edits, reviewing its content, and walking it through

the production process. We especially want to express our gratitude for all the hard

work and long hours Cathy Miller put in, always with a cheerful disposition. The

BluePrint management team of Barb Jugo, Bill Sprouse, Jeff Wheelock, and of course

Chuck Alexander, were instrumental by supplying the resources and encouragement

necessary to take the book from concept to completion.

Next, we would like to recognize the members of the product teams from both Sun

native LDAP engineering and iPlanet Directory Server technical marketing for

providing input and reviews. David Huntley from iPlanet marketing provided

guidance throughout the whole process while Ludovic Poitou from iPlanet Directory

Server engineering spent many hours of his own time reviewing material and

provided numerous corrections and enhancements.

Finally, we would like to express our appreciation to the folks at Sun Professional

Services, notably James Lick and Dianne Fallier, who reviewed the book and

provided invaluable feedback.
iii

iv Solaris and LDAP Naming Services

Contents

Acknowledgements iii

Preface xxiii

1. Solaris Naming Services Overview 1

Definition of a Naming Service 1

Definition of a Directory Service 2

Directory Service versus Database Servers 3

Proliferation of Directory Services 3

Solaris Directory Services—Historical Perspective 4

Network Information Service 4

NIS+ 5

Domain Name System 6

Solaris Naming Service Switch 6

LDAP Background 7

Brief History of LDAP 7

LDAP Goals and Specifications 8

Solaris LDAP Implementation 8

Factors to Consider When Deploying LDAP 9

2. Solaris Naming Services Architecture 11

Evolution of Solaris Naming Services 11
v

NIS and Files Coexistence 12

NIS and DNS Coexistence 13

Solaris Naming Service Switch 13

NIS Architecture Overview 16

NIS Client Server Architecture 16

How NIS Clients Bind to the NIS Server 17

NIS Maps 17

NIS High Availability Architecture Features 19

NIS+ Architecture Overview 20

NIS+ Client Server Architecture 21

How NIS+ Clients Bind to the NIS+ Server 22

NIS+ Tables 23

NIS+ Interaction with DNS 24

NIS+ High Availability Architecture Features 25

Solaris DNS Architecture Overview 25

DNS Client Architecture 26

DNS Server Architecture 26

DNS High Availability Features 27

LDAP Architecture Overview 27

LDAP Information Model 27

LDAP Naming Model 29

LDAP Functional Model 31

LDAP Security Model 32

LDAP Replication 33

Comparison with Legacy Naming Services 35

3. Security Models 37

Authentication versus Authorization 37
vi Solaris and LDAP Naming Services

Traditional Solaris Authentication 38

How UNIX Passwords Work 39

NIS+ Credentials 40

Alternative Authentication Mechanisms 41

LDAP Authentication (Simple Authentication) 41

CRAM-MD5 42

Kerberos 45

Secure Socket Layer Authentication 49

Security Infrastructure 50

iPlanet Directory Server SASL 50

Solaris PAM Framework 52

PAM Module Types 52

How PAM Works 53

PAM Configuration File 54

Generic pam.conf File 57

PAM LDAP Module 61

How PAM and LDAP Work 63

4. iPlanet Directory Server Installation and Configuration 67

Product Architecture 67

Administration Domains 68

Configuration Data 68

Login Accounts 69

Netscape Console 69

Planning the Installation 70

Installation Procedure 72

Performing a Typical Installation 74

Installation Defaults 78
Contents vii

Starting the Netscape Console 80

Verifying the Installation 81

Installation File Navigation 82

Postinstallation Procedures 83

Changing Common Installation Configuration Parameters 87

Importing Directory Data 89

Reinstalling iPlanet Directory Server 92

Installation Troubleshooting Tips 92

Directory Replication 93

Planning Directory Replication 93

▼ Setting up Replication 94

Verifying Replication 98

Troubleshooting Replication Problems 98

Modifying the Supplier Initiated Agreement 98

Setting up a Secure System Using SSL and Certificates 98

Planning a Secure Server Configuration 99

Running the Certificate Setup Wizard 99

Rebooting the Secure Server 103

Changing the Trust Database Password or PIN 103

Using SSL for Replication 104

iPlanet Directory Server Startup Files 104

Script Generation Program 105

Installing the NIS Extensions 108

5. Solaris 8 Native LDAP Configuration 111

Definition of Native LDAP 111

Native Solaris LDAP Implementation 112

Solaris LDAP Client Profiles 113
viii Solaris and LDAP Naming Services

NIS Domain 114

Authentication Method 115

Proxy Agent 116

Directory Information Tree 117

Loading Data 118

Naming Context 118

Server Configuration Procedure 119

Tools and Techniques 119

Importing LDIF Files from the Command Line 123

Summary of Steps Required 123

▼ Step 1. Modifying slapd.user_at.conf 124

▼ Step 2. Modifying slapd.oc.conf 125

▼ Step 3. Modifying slapd.user_oc.conf 126

▼ Step 4. Changing Password Store to Crypt Format 128

▼ Step 5. Adding New Containers 129

▼ Step 6. Modifying Self-Entry Modification 133

▼ Step 7. Setting VLV Control ACI 133

▼ Step 8. Adding the Proxy Agent Entry 134

▼ Step 9. Setting Password Read Permission for proxyagent 135

▼ Step 10. Generating the Client Profile 135

▼ Step 11. Creating Indexes 137

▼ Step 12. Creating Virtual List View Indexes 137

▼ Step 13. Creating Sample Test Entries 139

▼ Step 14. Populating the LDAP data 139

Client Configuration 140

How LDAP Clients Initialize 140

LDAP Client Initialization Example 144
Contents ix

Troubleshooting Tips 144

Unresolved Host Name 145

Unable to Reach Systems in the LDAP Domain Remotely 145

Sendmail Fails to Deliver/Receive Mail To/From Remote Users 145

Login Does Not Work 145

6. NIS Extensions Configuration 147

Overview 147

What the Extensions Are 148

Storing NIS Information in LDAP 150

NIS Extensions Initialization 154

Initialization Checklist 157

▼ Initialization Procedure 158

Postinstallation Verification 158

7. Capacity Planning and Performance Tuning 161

Server Sizing 161

Directory Considerations 162

Directory Size 162

Directory Access 163

Security Requirements 163

Replication Strategy 164

Capacity Planning Methodology 164

Calculating Directory Database Size 164

Summary of Disk Storage Requirements 168

Memory Sizing 170

Summary of Memory Usage 171

Estimating CPU Usage 172
x Solaris and LDAP Naming Services

LDAP Test Suite 172

Results of Experimentation 174

Configuration 174

Simple Read Test with Persistent Connection 175

Read Test with Nonpersistent Connection 175

Modify Tests 176

Authentication Tests 177

Qualitative Observations Based on Test Results 177

Performance Tuning 178

Definition of Indexing 178

Indexing Summary 184

Caching for Performance 184

Directory Caches 184

Evaluating Sizing Factors 185

Setting the Database Cache Size 186

Setting Entry Cache Size 186

Sizing the Database and Entry Caches 187

Tuning Cache Sizes 188

Setting the All IDs Threshold 190

Tuning the All IDs Threshold Value 191

Setting Search Limit Parameters 191

Considering Data Design Issues 193

Designing an LDAP Client 195

Removing Unnecessary Plug-ins 195

Tuning Write Performance 196

Tuning Import Performance 199

Troubleshooting Checklist 200
Contents xi

8. Deploying Highly Available LDAP Data Services 203

iPlanet Directory Services 4.12 HA Architecture Models 203

High Availability Strategy 204

Overview of Sun Cluster 2.2 Software 210

Logical IP Addresses 211

Data Services for Sun Cluster 212

Building a Sun Cluster with HA LDAP Data Services 212

LDAP Fault Monitor 213

iPlanet Directory Server 4.12 Installation 214

Configuring the Sun Cluster HA for iPlanet Data Services 215

LDAP Cluster Deployment Options 216

Asymmetric (Hot Standby Model) HA 216

Active Server Model 218

Redirecting LDAP Client Requests 218

9. Preventive Maintenance 219

Directory Log Files 219

Access Log 219

Viewing the Access Log 221

Access Log Configuration Options 222

Error Log 224

Viewing the Error Log 224

Audit Log 225

Managing Database Transaction Logging 226

Changing the Location of the Database Transaction Log 227

Changing the Database Checkpoint Interval 228

Enabling Durable Transactions 228

Backing Up and Restoring the Directory Database 229
xii Solaris and LDAP Naming Services

Backing Up the Database from the Directory Server Console 230

Backing Up the Database from the Command Line 230

Restoring the Database from the Directory Server Console 231

Restoring Your Database from the Command Line 231

Deleting Database Backups 232

Restoring Databases That Include Replicated Entries 232

Placing a Database in Read-Only Mode 232

Exporting and Importing the Database with LDIF 233

Exporting Databases to LDIF from the Command Line 234

Importing Databases from LDIF 235

10. Managing Directory Services 237

Establishing Access Control Policies 237

LDAP Security Model Review 238

Access Control Instructions 238

Creating Access Control Instructions 240

▼ Adding a New ACI through the Directory Server Console 241

Managing the Directory Schema 242

The Schema Files 243

How Schema Files Are Read 245

Modifying the Schema 245

▼ Creating Attributes from the Directory Server Console 246

▼ Creating Object Classes from the Directory Server Console 247

Monitoring the Directory Server 248

Monitoring Resources 248

▼ Monitoring Server Performance from the Directory Server Console 251

Monitoring the Server from the Command Line 251

Monitoring Database Activity 253
Contents xiii

Monitoring the Database from the Directory Server Console 255

Monitoring the Database from the Command Line 256

Managing with SNMP 258

Using LDAP MIB 260

Managing the LDAP Directory Server with BMC PATROL 264

iPlanet Directory Server KM Overview 264

Introduction to BMC PATROL 265

Checking Memory Usage with pmap 270

11. Directory Services Consolidation 273

Benefits of Consolidation 273

LDAP as a Consolidation Choice 274

Consolidation Approaches 274

Consolidation of LDAP-Enabled Applications 274

LDAP Gateways 276

LDAP Synchronization 276

Password Synchronization 277

NIS Extensions for Solaris 277

NT Synchronization Service 277

iPlanet Meta-Directory Server 278

How Meta-Directory Works 278

Meta-Directory Connectors 279

Deploying iPlanet Meta-Directory 280

Unified Login and Single Sign-on 281

Kerberos and LDAP 281

SiteMinder 281

iPlanet Directory Access Router 284

iDAR Overview 284
xiv Solaris and LDAP Naming Services

iPlanet Directory Access Router Feature Set 285

12. Microsoft Windows Interoperability 289

Windows NT Interoperability 289

Windows NT Security Model 290

How the NT User Account Information Is Made Available to Solaris

Server 290

Mapping NT User Account Information to LDAP 291

How the Synchronization Service Works 291

Windows 2000 Interoperability 294

Active Directory Services Architecture 294

Information Model 296

Security Model 298

Access Model 299

Replication Model 300

How Active Directory Clients Interact with Servers 301

How Applications Access Active Directory Services 302

Solaris Directory Services and Active Directory Services Interactions 302

Signing On Only Once 303

Joining a Windows 2000 Tree or Forest 303

Specifying LDAP Referrals 303

Using Windows Services in UNIX 2.0 304

A. Using Netscape Communicator as an LDAP Client 305

B. LDAP Standards Information 309

C. Additional Information 323

D. LDAP v3 Result Codes 329
Contents xv

E. Schema Information 337

IETF Schemas 337

RFC 2307 Network Information Service Schema 337

RFC 2307 Draft Objectclasses 341

Mail Alias Schema 343

Glossary 351

Index 359
xvi Solaris and LDAP Naming Services

Figures

FIGURE 2-1 Naming Service Switch Functions 14

FIGURE 2-2 Major NIS Components 16

FIGURE 2-3 Creation of NIS Maps 18

FIGURE 2-4 NIS Client Failover with the Broadcast Method 19

FIGURE 2-5 NIS Client Failover with the Specified Server Method 20

FIGURE 2-6 NIS+ Architecture 22

FIGURE 2-7 NIS+ Security Process 23

FIGURE 2-8 Sample Directory Information Tree 28

FIGURE 2-9 Full Tree Replication 34

FIGURE 2-10 Subtree Replication 34

FIGURE 3-1 Login Program Text String Converting to a Hashed String 39

FIGURE 3-2 CRAM-MD5 Authentication 43

FIGURE 3-3 PAM and the Relationship Between Applications, Library, and Modules 54

FIGURE 3-4 pam_ldap Structure 62

FIGURE 4-1 Layout of the NetscapeRoot Portion of the Directory Tree 69

FIGURE 4-2 Diagram of Component Interactions 70

FIGURE 4-3 Netscape Console 80

FIGURE 4-4 Layout Diagram 82

FIGURE 4-5 Login to Directory Window 88

FIGURE 4-6 Manager Tab 88

FIGURE 4-7 Import Database Window 91
xvii

FIGURE 4-8 Consumer Settings Tab 95

FIGURE 4-9 Supplier Settings Tab 95

FIGURE 4-10 Source and Destination Form 96

FIGURE 4-11 Creating an LDIF File 97

FIGURE 4-12 Certificate Setup Wizard Generating a Certificate Request 100

FIGURE 4-13 Certificate Setup Wizard to Install a Certificate 102

FIGURE 4-14 Encryption Tab 102

FIGURE 4-15 Change Key Password 103

FIGURE 4-16 Specification of SSL 104

FIGURE 5-1 Property Editor View Window 121

FIGURE 5-2 Set Access Permissions Window 121

FIGURE 5-3 Select Attributes Window 122

FIGURE 5-4 Password Tab 129

FIGURE 6-1 NIS Data Accessibility 149

FIGURE 6-2 Data Synchronization 149

FIGURE 6-3 Typical Subtree 152

FIGURE 6-4 Directory Tab 159

FIGURE 7-1 Simple Read Test with Persistent Connection 175

FIGURE 7-2 Nonpersistent Connections vs. Persistent Connections 176

FIGURE 7-3 Effects of Additional CPUs 176

FIGURE 7-4 Authentication Performance of the Directory Server 177

FIGURE 7-5 Built-in System Indexes 180

FIGURE 7-6 Automatically Created Indexes 181

FIGURE 7-7 Select Attribute Window 183

FIGURE 7-8 Database Tab Statistics 189

FIGURE 7-9 Performance Tab Information 192

FIGURE 7-10 Expanded Plugins Icon 196

FIGURE 8-1 Single-Master, Directory-Replication Architecture 205
xviii Solaris and LDAP Naming Services

FIGURE 8-2 High-Performance, Single-Master, Directory-Replication Architecture 206

FIGURE 8-3 Master and Replication Directory Hub Architecture 207

FIGURE 8-4 Basic Referrals Mechanism 208

FIGURE 8-5 Replication Referrals Mechanism 209

FIGURE 8-6 Referral Search beyond the Local Division 210

FIGURE 8-7 Typical Sun Cluster HA Configuration 211

FIGURE 8-8 A Directory Server Asymmetric High Availability Model 217

FIGURE 9-1 Access Log Tab and the Resulting Details 222

FIGURE 9-2 Access Log Tab and Parameter Settings 223

FIGURE 10-1 Rights Pop-up Menu in the Set Access Permissions Window 241

FIGURE 10-2 Create Attribute Window 246

FIGURE 10-3 Create Object Class Window 247

FIGURE 10-4 Performance Counters 251

FIGURE 10-5 Database Output Example 256

FIGURE 10-6 Example of a Simple SNMP Environment 259

FIGURE 10-7 Basic PATROL Architecture 266

FIGURE 10-8 Basic iPlanet Directory PATROL Architecture 268

FIGURE 10-9 IMS4 Directory Services Knowledge Module Icon 268

FIGURE 10-10 Directory Knowledge Modules 269

FIGURE 10-11 Resource Summary Modules 270

FIGURE 11-1 SiteMinder Single Sign-on 283

FIGURE 12-1 Directory Server Settings Tab 293

FIGURE 12-2 Active Directory Services Major Components 295

FIGURE 12-3 Active Directory Namespace 297

FIGURE 12-4 Access Control Process in Windows 2000 299
Figures xix

xx Solaris and LDAP Naming Services

Tables

TABLE 2-1 hosts.byname 17

TABLE 2-2 hosts.byaddr 18

TABLE 2-3 NIS+ Tables 24

TABLE 2-4 Solaris Versions of BIND 26

TABLE 2-5 posixAccount Attributes 30

TABLE 2-6 Naming Service Feature Comparison 35

TABLE 3-1 PAM Configurations 55

TABLE 3-2 PAM Abbreviations 63

TABLE 3-3 PAM Authentication 64

TABLE 3-4 PAM Update of Password 64

TABLE 5-1 Directory Information Tree 117

TABLE 6-1 NIS-Specific Attributes 150

TABLE 6-2 New Object Classes 151

TABLE 6-3 Generic Mapping Rules 153

TABLE 7-1 Disk Storage Requirements 168

TABLE 7-2 Typical Memory Usage 171

TABLE 7-3 Sample Test Matrix 173

TABLE 7-4 Server Configuration 174

TABLE 7-5 Types of Indexes and Types of Searches 179

TABLE 7-6 System Indexes 180

TABLE 7-7 Default Indexes 181
xxi

TABLE 7-8 Cache Parameters 189

TABLE 7-9 Relative Costs of Index Types 197

TABLE 7-10 Location of Files That Can Be Updated 198

TABLE 10-1 Server Performance Monitoring 249

TABLE 10-2 Current Resource Usage Table 249

TABLE 10-3 Connection Status Table 250

TABLE 10-4 Database Performance Metrics 253

TABLE 10-5 Database Cache Information 254

TABLE 10-6 File-Specific Table 255

TABLE 10-7 Displayed Parameters 258

TABLE 10-8 Operations Table 261

TABLE 10-9 Entry Table 263

TABLE 10-10 Interaction Table 263

TABLE 12-1 Windows NT to LDAP Mapping 291
xxii Solaris and LDAP Naming Services

Preface

This book is one of an on-going series of books collectively known as the Sun

BluePrints™ program. The Solaris™ and LDAP Naming Services BluePrint describes

best practices for planning and deploying naming services based on the Lightweight

Directory Access Protocol (LDAP). The introduction of native LDAP in the Solaris 8

operating environment provides powerful capabilities but is based on a model

unfamiliar to most Solaris system administrators. Understanding general LDAP

concepts and the specific Solaris implementation is key to successful deployment of

resilient enterprise-wide naming services.

Sun BluePrints Program

The mission of the Sun BluePrints Program is to empower Sun customers with the

technical knowledge required to implement reliable, extensible, and secure

information systems within the data center using Sun products. The Sun BluePrints

Program is managed by the Enterprise Engineering Group, which is part of the

Customer Quality and Availability organization. This group provides a framework

to identify, develop, and distribute best practices information that applies across the

Sun product lines. Technical subject matter experts in various areas contribute to the

program and focus on the scope and usefulness of the information.

The Enterprise Engineering Group is the primary provider of the technical content of

the Sun BluePrints Program that includes books, guides, and online articles.

Through these vehicles, Sun can provide guidance, installation and implementation

experiences, real-life scenarios, and late-breaking technical information.

The monthly electronic magazine, Sun BluePrints OnLine, is located on the Web at

http://www.sun.com/blueprints . To be notified about updates to the Sun

BluePrints Program, please register yourself on this site.
xxiii

Who Should Use This Book

This book is primarily intended for two types of readers: IT planners and system

administrators. IT planners who must decide how to implement their future

corporate naming services infrastructure will find the chapters Capacity Planning and
Performance Tuning, Directory Services Consolidation, and Microsoft Windows
Interoperability useful. System administrators will find helpful installation and

management tips in the chapters iPlanet Directory Server Installation and Configuration,
Solaris 8 Native LDAP Configuration, NIS Extensions Configuration, Deploying Highly
Available LDAP Data Services, and Preventive Maintenance, Managing Directory Services.

Before You Read This Book

You should be familiar with basic Solaris system administration functions and

possess some understanding of NIS or NIS+ and DNS. Some knowledge of LDAP

concepts is helpful, but not required.

How This Book Is Organized

This book contains the following chapters and appendixes.

Chapter 1, “Solaris Naming Services Overview,” introduces to naming service

concepts and the Sun implementation of these concepts in the Solaris operating

environment. The chapter discusses how the Solaris naming service infrastructure

evolved into what it is today and why naming services are important.

Chapter 2, “Solaris Naming Services Architecture,” explains how naming services

are plugged into the Solaris operating environment and how Solaris clients interact

with naming services. The Solaris Naming Service Switch is discussed in detail. An

overview of NIS and NIS+ features is presented and contrasted with the Solaris 8

LDAP implementation.

Chapter 3, “Security Models,” details the role naming services and directories play

in authentication services. The Solaris Pluggable Authentication Module (PAM)

infrastructure is discussed in detail to show how new authentication methods, such
xxiv Solaris and LDAP Naming Services

as LDAP binding, are integrated. When to deploy them and how the various

authentication methods such as Public Key Infrastructure (PKI), Kerberos, and UNIX

crypt work is discussed.

Chapter 4, “iPlanet Directory Server Installation and Configuration,” describes

how to install and configure the core components of the iPlanet Directory Server that

ships with the Solaris 8 operating environment. Configuration tips that improve the

directory performance and availability are included.

Chapter 5, “Solaris 8 Native LDAP Configuration,” explains how to configure the

iPlanet Directory Server to support the LDAP features in the Solaris 8 operating

environment. A discussion of the directory schema extensions required to support

Solaris 8 LDAP clients is presented.

Chapter 6, “NIS Extensions Configuration,” describes how to configure the iPlanet

Directory Server to support the NIS extensions and how to bulk-load NIS maps into

the directory. How the iPlanet Directory Server running the extensions interacts with

real NIS servers is explained.

Chapter 7, “Capacity Planning and Performance Tuning,” presents heuristics,

based on past deployments and benchmark results, for sizing a directory. Procedures

for optimizing directory server performance are included.

Chapter 8, “Deploying Highly Available LDAP Data Services,” describes when to

cluster the iPlanet Directory Server and how to deploy Sun Cluster software running

the Data Services for LDAP. Alternative methods, such as directory replication, to

clustering are presented along with deployment scenarios.

Chapter 9, “Preventive Maintenance,” explains how to perform routine directory

maintenance such as pruning log files and backing up the directory database. How

to examine the directory log files and spot potential problems is presented.

Chapter 10, “Managing Directory Services,” discusses the use of the iPlanet

Directory Server tools to perform routine directory management functions like

setting access control policies, updating the directory schema, and monitoring the

health of the directory server. SNMP management with the LDAP Management

Information Base (MIB) and deployment of BMC PATROL to monitor the iPlanet

Directory Server are explained.

Chapter 11, “Directory Services Consolidation,” presents an overview of the iPlanet

Meta-Directory Server and describes how it can be used to unify disparate data

sources. Creating a single-sign-on environment with SiteMinder is also explained.

Chapter 12, “Microsoft Windows Interoperability,” explains how the iPlanet

Windows NT Synchronization services can be deployed to provide an unified login

between Windows clients and the iPlanet Directory Server. Windows 2000 Active

Directory Services is introduced, followed by a discussion of how it can interoperate

with the Solaris 8 operating environment.
Preface xxv

Appendix A, “Using Netscape Communicator as an LDAP Client” is a procedure

for extending the LDAP features in Netscape Communicator so directory data can be

viewed and searched.

Appendix B, “LDAP Standards Information” lists RFCs and other standards that

define LDAP.

Appendix C, “Additional Information,” lists sources of helpful information and

LDAP related tools.

Appendix D, “LDAP v3 Result Codes” describes error messages that iDS generates.

Appendix E, “Schema Information” describes the LDAP object classes and

attributes required to support native Solaris LDAP.

Glossary is a list of terms and acronyms used frequently in describing naming,

directory, and authentication services.

Ordering Sun Documents

The SunDocsSM program provides more than 250 manuals from Sun Microsystems,

Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase

documentation sets or individual manuals through this program.

Accessing Sun Documentation Online

The docs.sun.com Web site enables you to access Sun technical documentation

online. You can browse the docs.sun.com archive or search for a specific book title

or subject. The URL is http://docs.sun.com/ .
xxvi Solaris and LDAP Naming Services

Typographic Conventions

The following table describes the typographic changes used in this book.

Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for the

C shell, Bourne shell, and Korn shell.

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted with

on-screen computer output

machine_name% su
Password:

AaBbCc123 Command-line placeholder:

replace with a real name or

value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or

terms, or words to be

emphasized

Read Chapter 6 in User’s Guide. These

are called class options.

You must be root to do this.

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell

prompt

$

Bourne shell and Korn shell

superuser prompt

#

Preface xxvii

CHAPTER 1

Solaris Naming Services Overview

Naming services, like NIS and NIS+, have long been an integral part of the Solaris

operating environment. Now, for the first time in over 10 years, Sun is introducing a

new naming service into the Solaris operating environment to provide functionality

equivalent to that of NIS and NIS+. Unlike its predecessors, the new LDAP naming

service stores its data in a directory that is accessible from a standard network

protocol. The directory not only stores operating system information, but it also

makes an excellent repository for application data.

Just as TCP/IP and HTTP became the foundation of corporate intranets and

extranets in the 90s, directory services based on the standard Lightweight Directory

Access Protocol (LDAP) will be requirements in the next millennium. Although

legacy Solaris directory services like NIS and NIS+ still play an important role in an

organization, the emergence of LDAP as an industry standard creates opportunities

for directory service consolidation and data sharing among applications.

Realizing that LDAP technology is new to many Sun customers, we present in this

Sun BluePrint™ the information system administrators and system planners need to

start exploring Solaris LDAP deployment possibilities. This introduction starts with

a definition of what exactly a naming service is, followed by an overview of the

familiar legacy Solaris naming services.

Definition of a Naming Service

In simple terms, a naming service provides a convenient way of looking up complex

information by using user-friendly names. Although computers often required

information to be stored in a structure containing numeric identifiers, computer

users and application developers do not necessarily want to know the internal

representation of the data. Instead, they like to see it in a more human-readable

form.

A prime example of the benefits of a naming service is the translation of Internet

protocol (IP) addresses to computer names. IP addresses are hard to remember and

can frequently change as computers are moved from one subnet to another. By
1

providing a mapping of names to IP addresses, the naming service ensures that

users who reference a computer by its name will always be using the correct IP

address. If IP addresses change, applications and scripts that reference the computer

name are unaffected, since the naming service simply remaps the name to the new

IP address.

The information maintained by a naming service can be stored in a simple data

structure like a two-column table or in complex data records. The network protocol

used to access the naming service varies. It can be proprietary or based on open

standards. The security methods used to protect data maintained in a naming

service can range from none—totally unprotected—to one requiring strong

authentication. Finally, high availability features such as data replication can be a

feature of the naming service and can be implemented in different ways.

The native Solaris LDAP naming service has characteristics that are quite different

from previous naming services. The most distinguishing characteristic is how

information is stored. Rather than storing data in simple tables, this new naming

service stores data as entries within a directory. The entries are represented by

complex objects that can be searched by specification of any item contained in the

entry. Because of this characteristic, LDAP naming services are referred to as

directory services.

Definition of a Directory Service

When you think of directories, the first thing that comes to mind are publications,

such as the Yellow and White Pages, used to locate people and businesses. To find

the phone number of a person, you search a directory by thumbing through the

pages and following the alphabetical listing until you locate the person’s surname.

To locate a business, you search the alphabetical listing of business categories. Once

the desired entry is found, you simply make note of the phone number adjacent to it.

Computer, or online, directory services work in a similar way. Instead of searching

through a hard copy in the form of a phone book, you type in keywords or select

menu items with the mouse. The results of your query are then displayed on the

computer screen. In some cases, such as validation of a user’s identity, the results of

online directory searches are transparent to the user.

The main differences between traditional hard-copy directories and online

directories are the complexity of searches and the dynamic nature of the information

stored in the online directory. While a phone book may only be updated once a year,

online directory services are updated constantly. Changes must be made readily

available to users or else outdated or erroneous data might be referenced.
2 Solaris and LDAP Naming Services

Another distinguishing feature of online directories is their flexibility. Unlike printed

directories, the type of information contained in them can be easily extended.

Additional data fields, such as a person’s pager number, can be added without the

need to republish the whole directory.

While it is intuitive how to use the information you retrieve from a phone book, the

data in an online directory is often accessed by an application program and not by

an actual person. An agreed-on set of rules on how to use the data must be

established. These rules are referred to as the directory schema and are discussed in

later chapters.

Directory Service versus Database Servers

A directory service sounds a lot like a relational database but there are some

distinguishing characteristics of each. Although both are used for storing data that

can later be retrieved by keyword searches, the most significant difference is the

nature of the data. The data stored in a database is typically updated frequently but

might only be searched periodically. For example, an accounts receivable database

might be updated whenever a sale is made but is only searched once a day when

daily sales reports are generated. This type of environment requires fast and efficient

write speeds.

The type of data stored in directory services is usually the opposite. Data might be

updated infrequently, for example, when new user accounts are added, but is

searched often, for example, whenever someone logs in to an account. In some cases,

the read-to-write ratio can be 1000 to 1 or greater. Therefore, directory services are

optimized for read access and, in that area, perform much better than databases.

Another feature of a directory service is the ease with which data can be distributed

across multiple computers. While such distribution is feasible with databases, it is

rarely deployed because of significant performance problems.

Proliferation of Directory Services

With the introduction of client-server applications in recent years came the

requirement to store information about the users who access these products. For

example, a messaging server must maintain a database of all email users and the

location of their mailboxes. Likewise, a secure web-based application must maintain

account information about its users.

As the number of users accessing network-based applications increased, the size of

the data store required to support the products increased. Maintaining information

in a flat file would not be efficient, so some form of directory service was required.
Chapter 1 Solaris Naming Services Overview 3

Since it couldn’t be assumed that the underlying operating system would have a

suitable directory service, middleware products each ship with their own directory

service.

If a server was used to run multiple middleware products, then multiple directory

servers had to be installed. In many cases, the same information was kept in these

different directories, which in addition to being hard to manage, can result in data

being out of sync. The introduction of standards-based directory servers helps to

alleviate this problem.

Solaris Directory Services—Historical
Perspective

To better understand the role naming services play in the Solaris operating

environment today and evaluate the role they may play in the future, it is

worthwhile to take a look at the evolution of Solaris naming services. We start with

the Network Information Service (NIS) and work up to the native LDAP in the

Solaris 8 operating environment.

Network Information Service

In 1985, Sun introduced NIS, which was one of the first widely deployed UNIX-

based naming services. The main reason for creating NIS was to provide centralized

administration of operating system data. Prior to NIS, each computer on a network

had to maintain its own table of users and host information that was required when

sharing resources with other computers in the network. The tables were kept in text

files and had to be manually updated on every computer when new information was

entered or updated. This situation created an administrative nightmare.

NIS stores information in maps that are accessible by all computers in the network

through remote procedure calls (RPCs) rather than storing information in simple text

files. The information in these maps is arranged in data pairs and referenced by RPC

of the form get Xby Y. For example, the gethostbyname call returns the IP address

of a specified host.

NIS clients bind to an NIS server when they boot. Clients bind to a server either by

sending a broadcast to locate the nearest NIS server or by binding to one of a

number of servers contained in a list. If a particular NIS server is down, the client

will attempt to bind to an alternative server.
4 Solaris and LDAP Naming Services

NIS maps can reside on two types of servers: master or slave. An NIS map can only

be updated on the NIS master server. The NIS slave servers contain read-only

replicated NIS maps that are propagated to them by the master server. Maps are

propagated in their entirety whenever any changes are made on the master.

NIS maps are generated from data contained in text files, which, by default, are the

files found in /etc . For security reasons, it is recommended that the default location

be changed. Multiple NIS maps are generated from a single file, which contains the

same data, only in reverse order. This order is necessary because of the way data is

structured in NIS maps, which is in the form of a key-value pair. For example, one

NIS map uses the host name as a key to obtain an IP address, and a second NIS map

is used as a key to obtain a host name from an IP address.

Although NIS resembles a directory service, it lacks many of the key features you

have come to expect. The data structure used is primitive and not easily extensible.

Access control features are limited, and the replication model is inefficient.

Even though the first implementation of NIS was developed 15 years ago, it is

currently the most widely deployed Solaris naming service. A successor to NIS

called NIS+, which corrected a number of flaws in the NIS architecture, was

introduced some 10 years ago, but NIS remains the naming service of choice for

most Sun customers.

NIS+

Sun recognized that the NIS architecture contained a number of deficiencies and

proceeded to improve it with the creation of NIS+. The enhancements NIS+

provided included:

■ Hierarchal name space

■ Client authentication

■ Flexible data structure

While these enhancements were significant, there was no easy way to convert all NIS

servers to NIS+ servers. The architecture of NIS+ dictated a top-down approach that

required cooperation between all the IT departments within a corporation. Also, the

administration of NIS+ was far more complex because directory trees that could

span multiple machines had to be maintained along with public keys for

authentication. For these and other reasons, NIS+ was not widely adopted by the

Sun customer base.

However, many of the concepts introduced in NIS+ are similar to those found in

LDAP-based directory services. If you have been exposed to NIS+, then some of the

features contained in the LDAP-based directory services are already familiar to you.
Chapter 1 Solaris Naming Services Overview 5

Domain Name System

The Domain Name System (DNS) was developed to address a problem similar to

that addressed by NIS. However, the focus of DNS was primarily on resolving host

names to IP addresses—an issue that became a major concern as the Internet grew in

size. The NIS model was not suitable since it did not support a hierarchal namespace

as is required to accommodate large numbers of IP addresses spanning multiple

companies and organizations.

NIS also maintains information about operating system services and user account

information, so it cannot be replaced with DNS. However, there is a certain amount

of overlap because both services can be used to resolve host names to IP addresses.

NIS servers are equipped with a DNS forwarding feature so the two naming services

can coexist. If a host name cannot be resolved by the NIS server to which the NIS

client is bound, then the request is passed on to a DNS server.

Since DNS is so entrenched in the Internet, it is unlikely that it will be replaced any

time soon. The most likely scenario is that businesses will continue to maintain their

IP addresses in DNS and use LDAP-based directory servers for other data. Although

DNS continues to be enhanced, mostly in the area of automatic registration of IP

addresses, there are no foreseeable plans to make it a general-purpose directory

service.

Solaris Naming Service Switch

Since a number of naming services are available for the Solaris operating

environment, Sun developed the concept of universal naming. This means that an

application does not have to be aware of which naming service is actually running.

Instead, the application talks to a naming API, which is naming service independent.

The API consults the Solaris Naming Service Switch to determine which naming

service to search and in which order to search.

Although the Solaris Naming Service Switch was developed as a tool to cope with

the coexistence of multiple directory services present in the Solaris operating

environment, it can also be used to provide client-side failover. For example, if the

NIS directory service is unavailable, then local files located in /etc will be

consulted instead. See Chapter 2, ”Solaris Naming Services Architecture” for a more

in-depth discussion on the Solaris Naming Service Switch.
6 Solaris and LDAP Naming Services

LDAP Background

Since the focus of this Sun BluePrint is about deploying LDAP-based directory

services in the Solaris operating environment, some background information on the

history of LDAP and the goals it attempts to achieve is helpful.

Brief History of LDAP

Early naming services such as Sun’s NIS and NIS+ were designed for a specific

purpose, such as storing information about system resources and user accounts. As

mentioned previously, access to the NIS and NIS+ directories by applications is

accomplished through an API designed for that purpose. The API specifies a set of

procedure calls that can be either local or remote. Although this method works well

in a homogeneous Solaris operating environment, accessing these directories from

other platforms requires that the Sun-specific RPC toolkit be ported to that platform.

Recognizing the need for a general-purpose directory service that could be used by

applications running on multiple platforms to locate network objects, two standards

bodies, CCITT and ISO, developed a specification for one. Rather than basing access

to the directory service on RPCs, an industry-standard directory-access protocol was

created. The first incarnation of that protocol was X.500.

Besides specifying an access protocol, the X.500 specification defined a rigid set of

rules for defining object names so they could be easily located. While the concepts

behind the X.500 specification were good, some of the implementation details were

not. The X.500 specification dictated that the underlying protocols conform to the

ISO protocol stack and not to TCP/IP. Also, the rigid rules set forth in the

specification created potential bottlenecks and headaches for the implementors.

Realizing that X.500 was cumbersome to use and hard to implement, the standards

bodies created a lightweight version of the specification, called LDAP. Since LDAP

overcame most of the deficiencies of X.500, it was adopted as an emerging industry

standard. iPlanet E-Commerce Solutions, a Sun-Netscape Alliance, produced the

iPlanet Directory Server with Solaris extensions, and Microsoft has adopted LDAP in

its Exchange server and Active Directory.
Chapter 1 Solaris Naming Services Overview 7

LDAP Goals and Specifications

The main goal of the LDAP specification is to provide interoperability between

different vendor implementations while providing a great amount of flexibility in

the type of information stored in the directory. The LDAP standard defines four

models to use as a development guide.

■ The LDAP information model defines the kind of data you can put into the

directory.

■ The LDAP naming model defines how you organize and refer to your directory.

■ The LDAP functional model defines how you access and update the information in

your directory.

■ The LDAP security model defines how you protect information in the directory

from unauthorized access.

Unlike NIS, which provided little security, LDAP requires that users be

authenticated when they access the directory. This authentication takes place when

the LDAP client binds to the LDAP server. The authorization can be performed by a

simple name-password pair or a more sophisticated method by extending the LDAP

security mechanism. Alternatively, anonymous authentication can be turned on to

allow anyone to bind without supplying a name or password.

Although the LDAP specification defines how clients interact with LDAP servers, it

does not specify how to build an LDAP server. One of the first implementations of

an LDAP server was SLAPD, which was developed at the University of Michigan.

The source code for SLAPD was put in the public domain and formed the basis for

commercial LDAP servers such as Netscape Directory Server and Sun Directory

Server. The examples used in this Sun BluePrint are based on the iPlanet Directory

Server that runs in the Solaris operating environment and is a derivative of those

two LDAP implementations.

Solaris LDAP Implementation

Most of the growth in deployments of LDAP servers to date has been to support

LDAP-enabled applications that are usually deployed as a component of E-

Commerce sites or corporate intranets. A typical example is an email application

such as the iPlanet Messaging Server. Because these types of applications are tightly

coupled to a directory server, they are usually shipped with one. The reason is that a

vendor cannot assume that an LDAP server will be available on the target operating

system. As mentioned earlier, this situation contributes to the proliferation of

directory servers.
8 Solaris and LDAP Naming Services

So, how does the Solaris operating environment address this issue? The Solaris 8

operating environment has been made LDAP aware. While the Solaris operating

environment can still function without an LDAP directory server, the infrastructure

is in place for applications to take advantage of whatever LDAP directory server is

plugged in. This Sun BluePrint assumes that the LDAP server deployed is the

iPlanet Directory Server, but that is an assumption, not a requirement. An LDAP tag

has been added to the Solaris Naming Service Switch so applications running on

Solaris clients can access the LDAP directory without modification.

Sun has also embraced LDAP as a strategic technology to replace some of the

functions of legacy NIS and NIS+ naming services. It might not make sense to place

all the data contained in NIS maps in an LDAP directory server, but user account

information is certainly a natural fit.

Obviously, consolidating thousands of Sun user accounts from NIS/NIS+ to LDAP is

not a simple task and requires a great deal of planning. You can choose among

several approaches a way to move your user account data into an LDAP

directory. Chapter 11, ”Directory Services Consolidation” describes the most

popular methods.

Factors to Consider When Deploying
LDAP

You should consider a number of factors when planning to deploy Sun enterprise-

wide directory servers. Choosing the right directory server software and hardware

platform to run it on is one of the first steps. Once the directory server is installed,

tune it for peak performance. To keep the directory server running smoothly,

implement proper maintenance procedures. Another key factor is planning for the

consolidation of legacy Solaris directory services with LDAP-based ones.

The Solaris 8 operating system provides an LDAP infrastructure that can

accommodate a variety of directory servers. Since the iPlanet Directory Server is

bundled with the Solaris 8 operating environment, it is an obvious choice.

Extensions that allow synchronization with NIS servers are also available for the

iPlanet Directory Server. However, there are other LDAP directory servers that work

quite well with the Solaris 8 operating environment such as the Novell’s eDirectory

Server for Solaris.

One of the key factors to a successful deployment is sizing the server on which to

run the directory server. As the size of the directory database is likely to grow,

configuring a server with plenty of room for expansion is key. How to determine the

optimum server is not always an easy task. A directory server is much like a

database server; it needs to be properly tuned to deliver peak performance.
Chapter 1 Solaris Naming Services Overview 9

Knowing what parameters to fine tune and when will help prevent bottlenecks.

See Chapter 7, ”Capacity Planning and Performance Tuning” for guidelines to

tuning.

Knowing how to keep the directory server properly maintained and how to spot

trouble before it happens will keep the server running smoothly. Preventive

maintenance and performance monitoring need to be performed on a regular basis.

See Chapter 9, ”Preventive Maintenance” for additional information.

Consolidation of legacy directory services will not take place overnight. In most

cases, a phased approach is the best choice. Careful planning will enable this to be a

zero-downtime migration. See Chapter 11, ”Directory Services Consolidation” for

guidelines to consolidation.

CHAPTER 2

Solaris Naming Services
Architecture

The Solaris operating environment provides a sophisticated infrastructure that

supports a variety of naming services. The architecture on which it is based is

extensible and able to accommodate new naming services without the need for a

rewrite of important operating system utilities that access naming services. The

Solaris 8 LDAP naming service plugs into this architecture and is thus accessible to

system utilities that formerly had only NIS, NIS+, and DNS available.

Reading this chapter is not an absolute requirement for deployment, but if you

become familiar with some of the architectural nuances, you can better understand

the deployment strategies presented in later chapters. Each naming service has its

own unique characteristics which may dictate how you deploy them. Although the

focus of this BluePrint is LDAP, it is helpful to understand the feature set of legacy

Solaris naming services to see how this new technology compares.

Evolution of Solaris Naming Services

The UNIX operating system was developed to operate in a timesharing environment

where users access the server via physically attached ASCII terminals. Users

typically accessed only one server, so information about user accounts, group

memberships, and so on, only needed to be maintained on that server. Storing that

information in a text file worked quite well.

The Berkeley version of UNIX introduced the notion of distributed computing built

on top of the TCP/IP protocol. Computers running the UNIX operating system

could now easily communicate with one another. However, for things to work

smoothly, information about users and other systems in the network needed to be

maintained on each server. Storing this data in text files meant that any time

something changed, the text files on every server needed to be updated.
11

In 1985, Sun Microsystems produced NIS (Network Information Service), one of the

first UNIX-based distributed naming service as a replacement for storing

information in text files. The text files would be converted to binary maps that

would only be stored on selected computers, called NIS servers, in the network. The

other computers in the network would contact the NIS servers when they needed

access to the information.

However, some text files still needed to be maintained for two reasons: 1) some data

was required during the booting process before access to the network was

established and 2) there had to be a way to log in if the computer was disconnected

from the network. Moreover, some mechanism was required so that the operating

system utilities could search both text files and NIS, since NIS could not completely

replace the text files.

The introduction of NIS presented a new system administration model, by which

information was administered from a central repository and not all administrators

were granted permission to update it. Since some users still wanted to be able to

manage local accounts and system information, they needed some way to do this

without administering of NIS maps.

NIS and Files Coexistence

To solve the problem of providing a centrally administered naming service while

maintaining some local control, Sun’s first implementation of NIS searched the local

files before the NIS naming service was consulted. A special character was inserted

into the text files to tell the operating system when to start searching the NIS maps.

Any line beginning with a “+” character was the signal to contact NIS. For example,

the /etc/host file would look like this:

In this example, the /etc/hosts file would be searched for the specified host. If the

host specified is not tiger or galaxy , then the NIS host map is searched. If the host

name does not appear in the NIS map either, an error is returned.

Note – The “+” character only has an effect when the Solaris 1 operating

environment is running. It will have no effect if the Solaris 2 or later operating

environment is running except when run in the Solaris 1 compatibility mode.

127.0.0.1 localhost

129.148.181.130 tiger

129.154.86.22 galaxy

+

12 Solaris and LDAP Naming Services

NIS and DNS Coexistence

About the same time that Sun introduced NIS, standards for a universal naming

system were being defined in RFC 1034 and RFC 1035. Later, implementations of this

specification called the Domain Naming System (DNS) began to appear, like the

Solaris in.named program, which was derived from Berkeley Internet Name

Demon (BIND), found in Berkeley UNIX. Although NIS worked well to store host

names and IP addresses of computers within an organization, DNS could scale much

better and gained industry-wide adoption.

Companies deploying NIS tended to store the host name and IP addresses of their

Sun workstation and server networks in NIS maps, but used DNS to look up names

of computers outside of the network. To enable the two naming services to

interoperate, Sun added a DNS forwarding capability to the NIS server.

The way DNS forwarding works is that if a search is made in an NIS map that has

this feature enabled, the search request is passed on to a DNS server for resolution if

the host name is not found. To implement this idea, the hosts.byname and

hosts.byaddr maps must have the YP_INTERDOMAINkey in them. Creation of

this key requires a simple modification to the NIS Makefile .

The alternative to enabling DNS forwarding is to include DNS as an option in the

nsswitch.conf file which is described in the next section. It is not advisable to use

both schemes together because redundant searches are performed if the name cannot

be resolved, that is DNS will be searched twice.

Solaris Naming Service Switch

With the release of the Solaris 2 operating system, Sun introduced a new naming

service called NIS+ and an infrastructure for managing the coexistence of multiple

naming services. With NIS and DNS already widely deployed, and NIS+ added to

the mix, some mechanism for easy interoperability was required. The DNS

forwarding mechanism and “+” notation used in NIS maps were not easily

extensible to new naming services like NIS+.

To support the switch, Sun programmers developed a new Application

Programming Interface (API) that system utilities and other applications could use

instead of talking directly to the naming service. Programs written to this API do not

need to know the implementation details of the naming service they are accessing.

The switch also gives the system administrator the flexibility to choose which

naming services are consulted and in which order.
Chapter 2 Solaris Naming Services Architecture 13

Solaris Naming Service Switch Architecture

The main components that constitute the architecture are the Network Services

libraries, the policy configuration file, and interfaces to the available naming

services. A special tag identifies the location where the requested information is

actually stored. As shown in FIGURE 2-1 the available tags are files, nis , nisplus ,

dns , compat (for passwd) , with ldap added to the Solaris 8 operating

environment.

FIGURE 2-1 Naming Service Switch Functions

FIGURE 2-1 shows the flow of information when an application calls the Network

Services libraries. These library calls are in the form of get Xby Y, for example,

gethostbyname(), and are independent of any naming service. When the

application makes the call, the library routine consults the nsswitch.conf file to

determine which naming services to consult. The specified naming services are then

searched in order until a match is found or a NOTFOUNDerror is returned.

nsswitch.conf File

The policies that determine which naming service sources are searched and in what

order reside in the /etc/nsswitch.conf file. Sample configuration files that favor

a particular naming service are provided with the Solaris operating environment in

the /etc directory. These files are copied and automatically used as the

nsswitch.conf file when a primary naming service is chosen during the Solaris

installation process.

An example of the configuration files that favor nis follows.

get Xby Y

Policies
Sources

files , nis , nisplus , dns , ldap

object value
Application

nsswitch.conf
14 Solaris and LDAP Naming Services

The objects for which search policies can be set appear on the left. The search order,

or policy, appears to the right of the object. In the case of the passwd object, the local

/etc/passwd file is checked first for the user’s name, and if the name is found, the

password is returned. If the user’s name is not found in the

/etc/passwd file, the nis passwd map is searched.

The tag NOTFOUND=return is used to direct the switch to look only in the naming

services listed to the left unless these services are not operational. In the sample file,

files would only be consulted if nis is not responding. This tag speeds up search

times by eliminating unnecessary searches and at the same time provides a backup if

the primary naming service is down.

#
/etc/nsswitch.nis:
#
An example file that could be copied over to /etc/nsswitch.conf; it
uses NIS (YP) in conjunction with files.
#
"hosts:" and "services:" in this file are used only if the
/etc/netconfig file has a "-" for nametoaddr_libs of "inet" transports.

the following two lines obviate the "+" entry in /etc/passwd and /etc/
group.
passwd: files nis
group: files nis

consult /etc "files" only if nis is down.
hosts: nis [NOTFOUND=return] files
ipnodes: files

networks: nis [NOTFOUND=return] files
protocols: nis [NOTFOUND=return] files
rpc: nis [NOTFOUND=return] files
ethers: nis [NOTFOUND=return] files
netmasks: nis [NOTFOUND=return] files
bootparams: nis [NOTFOUND=return] files
publickey: nis [NOTFOUND=return] files

netgroup: nis

automount: files nis
aliases: files nis
Chapter 2 Solaris Naming Services Architecture 15

NIS Architecture Overview

Even though the first implementation of NIS appeared almost 15 years ago, NIS is

still the most widely used Solaris naming service, and the basic architecture has not

changed. This section looks at how NIS clients interoperate and how information is

stored and updated in NIS.

NIS Client Server Architecture

Deployment of NIS consists of one or more servers and clients that access the

servers. Clients and servers communicate with each other by the Remote Procedure

Call (RPC) mechanism. NIS client and server implementations are available on many

different platforms and can interoperate with one another.

FIGURE 2-2 shows the major components of NIS.

FIGURE 2-2 Major NIS Components

NIS uses a master-slave model by which all updates to NIS maps are performed on

the master, then propagated to the slave servers. The propagation can be performed

in either a push or pull manner, that is, either initiated by the master or by the client.

The map transfer protocol was not designed to accommodate large maps. Instead of

only propagating incremental changes, entire maps are transferred. Careful planning

of scheduling policies for map transfers is advisable to prevent overloading of a

network during peak time.

Master
Server

Slave
Server

 NIS Maps

NIS Clients

ypbind

ypbind

ypbind

ypbind

NIS Maps
16 Solaris and LDAP Naming Services

How NIS Clients Bind to the NIS Server

A system running the Solaris operating environment typically becomes an NIS client

at installation, although it could be configured as one later. A client is only required

to supply two pieces of information: 1) the domain name it is joining and 2) how to

locate the NIS server(s).

The domain name of the NIS client must exactly match the domain name of the NIS

server to establish a connection. Unlike DNS domain names, NIS client names are

case sensitive. A Solaris system can belong to both an NIS and a DNS domain. These

domains could have the same or different names. The connection from client to

server is referred to as binding which takes place at boot time. An NIS client can

potentially bind to either an NIS master or an NIS slave server. There are two

methods for locating a NIS server to bind to.

■ Broadcast method — Send out a broadcast message and bind to the first server

that responds.

■ Specified Server method — Specify a server or list of servers to bind to.

The Broadcast method only works if there is an NIS server on the same subnet. The

Specified Server method works regardless of where the NIS server resides. ”NIS

High Availability Architecture Features“ on page 19, discusses the pros and cons of

using each method.

NIS Maps

NIS uses a flat namespace where a series of maps reside. Each NIS domain contains

its own set of maps. There is no relationship between maps or between NIS

domains. The maps contain a pair of entries: the first is the keyword and the second

is the value retrieved. TABLE 2-1 and TABLE 2-2 show examples of two different NIS

maps.

TABLE 2-1 hosts.byname

Keyword Value

tulip 192.9.200.1

geranium 192.9.200.2

sunflower 192.9.200.3

marigold 192.9.200.4
Chapter 2 Solaris Naming Services Architecture 17

In the preceding examples, the two maps contain the same information, but in

different order. This ordering is necessary so a search can be performed both on a

host name and an IP address. So that the two maps do not get out of sync, they are

automatically created together whenever the map data is updated.

Creating NIS Maps

NIS maps are converted from text files to a binary dbm file by the makedbm
command as shown in FIGURE 2-3.

FIGURE 2-3 Creation of NIS Maps

In FIGURE 2-3 the source, or master, for the NIS maps is contained in text files shown

on the left. The best practice is to create a copy of one of these files and only edit the

copy. These files should be stored in a secure area and backed up frequently.

Once the source files have been created, the makedbmcommand is used to generate

the new maps. To make things easier to administer a default, Makefile , is provided

to perform the makedbmoperation for the standard NIS maps.

TABLE 2-2 hosts.byaddr

Keyword Value

192.9.200.1 tulip

192.9.200.2 geranium

192.9.200.3 sunflower

192.9.200.4 marigold

passwd.byuid

hosts.byname

hosts.byaddr

passwd.byname

makedbm

hosts

passwd

NIS Master
18 Solaris and LDAP Naming Services

Note – Updates to NIS maps are always performed on the NIS master server that

owns the map.

Although it is possible to have NIS maps owned by different masters within a

domain, joint ownership is not advisable. In this scenario, an NIS server could act as

a master to some maps and as a slave to others. Keeping track of which server is

master to which maps could be an administrative nightmare, so it is best to make

one server master of all the maps.

NIS High Availability Architecture Features

The main high availability feature of NIS is master-slave data replication. All

updates are performed on the master, then propagated to the slaves. If one of the

NIS servers fails, an NIS client can bind to another one. However, if the master NIS

fails, no updates can occur until it comes back online or another NIS master is

created. This may seem like a severe restriction, but in practice the information

stored in NIS maps is relatively static, so a few hours of downtime is usually

acceptable.

How the NIS client handles the failover from one NIS server to another is

determined by the method it uses to bind to its NIS server. FIGURE 2-4 and FIGURE 2-5

illustrate how NIS client failover is handled with both the Broadcast and Specified

Server methods.

FIGURE 2-4 NIS Client Failover with the Broadcast Method

ybind

Broadcast Method
OK

NIS1NIS2
Client
Chapter 2 Solaris Naming Services Architecture 19

FIGURE 2-5 NIS Client Failover with the Specified Server Method

In the Broadcast method, the NIS client sends out a broadcast to locate an NIS server

in the domain of which it is a member. The client then binds to the first server that

responds to the broadcast. If the NIS server to which the NIS client binds to fails,

then the next time an NIS look up is performed, the operation will time out and the

client will issue another ypbind broadcast.

In the Specified Server method, the NIS client maintains a list of potential NIS

servers. When the client boots, it attempts to bind to the first server in the list. If that

server is unavailable, then the client attempts to bind to the next server in the list

and so on. The downside of this method is that the time-out period can be lengthy,

which gives the impression that the service is down.

A form of load balancing can be achieved with the Broadcast method since the least

busy NIS server will respond to the clients ypbind request. The disadvantage is that

multiple NIS servers must reside on each subnet.

NIS+ Architecture Overview

Sun introduced NIS+ as part of the Solaris 2 operating environment as a replacement

for NIS. Several deficiencies in NIS were addressed in the NIS+ architecture. These

included:

■ Lack of hierarchal namespace

■ Weak authentication

■ No incremental updates between master and slaves

At the time NIS was developed, Sun’s major business focus was the technical

computing market. A typical network of Sun systems consisted of a couple of

servers and maybe 20-30 workstations that were used by engineers working on the

same design project. Verifying the authenticity of a NIS client was not an issue since

networks were small and everyone knew who was attached to it.

ybind Specified Server Method

NIS1NIS2
Client

NIS1

NIS2 Server List
20 Solaris and LDAP Naming Services

Because not many companies were wired end to end, the number of names stored in

NIS maps was limited and there was little interaction with groups in different

locations. A flat namespace, where one NIS domain is not related to another, was

sufficient, and since the number of NIS map entries was relatively small,

propagating whole maps from master to slave servers was not a major problem.

However, as Sun moved into corporate data centers and companies began creating

wide area networks (WANs), networks became larger and the need for a more

scalable business-wide naming service became obvious.

NIS+ Client Server Architecture

The architecture of NIS+ is similar to that of NIS in that both naming services

employ a master server, in which updates are made, and slave servers or replicas, in

which a mirror of the data contained on the master is maintained. However, the

similarity ends there.

NIS+ supports two types of masters:

■ Root domain master

■ Subdomain master

The root master, as the name suggests, acts as the top node in the hierarchal tree.

Below the root masters are subdomain masters with other subdomain masters below

them. At each level, replica servers can exist to provide redundancy for that section

of the tree.

Note – An interesting feature of NIS+ is that the subdomain master is actually a

client to the master above it, with the exception of the root master. The ramification

of this is that NIS+ must be deployed in a top-down fashion since the domain above

it must be configured before a subdomain master is configured.

Propagation of changes from master to replicas is different from NIS. Instead of

pushing an entire map when changes are made, NIS+ propagates only the

incremental changes. FIGURE 2-6 shows the NIS+ architecture.
Chapter 2 Solaris Naming Services Architecture 21

FIGURE 2-6 NIS+ Architecture

How NIS+ Clients Bind to the NIS+ Server

Unlike NIS, which does not authenticate its clients, NIS+ implements the notion of

credentials. Two types of credentials exist in the NIS+ world:

■ User credentials

■ Workstation credentials

The process of creating credentials is quite complex and is beyond the scope of this

book. Essentially, the process creates a private/public key pair and stores it in a

secure area. During authentication only the public key is passed between the sender

and the receiver. Data encrypted with one’s private key can be decrypted with one’s

public key.

Unlike NIS client requests, NIS+ servers perform authentication to see who is

sending the request, then authorize that user to perform specific types of access such

as read, write, or modify. To gain access to the NIS+ tables, users must provide their

credentials, that is in the form of UID@domainname. The exchange of credentials is

protected by public and private key encryption. If the user is logged in as root , then

additional credentials that identify the workstation must also be provided.

FIGURE 2-7 summarizes the NIS+ security process.

root master

subdomain subdomain replica

replica

replica

replica

subdomainsubdomain
22 Solaris and LDAP Naming Services

FIGURE 2-7 NIS+ Security Process

As shown in FIGURE 2-7, the following steps take place:

1. The client sends a request for access to the namespace along with its credentials.

2. The server authenticates the client’s request by examining the sender’s

credentials.

3. The server examines the object’s definition to determine access rights granted to

the sender, or principal, as it is called.

4. The server then determines the class of principal: Owner, Group , World , or

Nobody.

5. The server determines access rights granted to the principal’s class.

6. If the access rights granted to the principal’s class match the type of operation, the

operation is performed.

NIS+ Tables

NIS+ stores information in tables that have a column-entry structure rather than the

key-value structure of NIS maps. A client can access information not just by a key,

but by any column that is searchable. This approach eliminates the need to create

maps that have duplicate information.

request/credentials

Object

owner
group
world
nobody

read
modify
create
destroy

NIS+
Server

NIS+ Client
Chapter 2 Solaris Naming Services Architecture 23

The NIS+ tables in TABLE 2-3 come preconfigured and can be populated with the

information shown.

NIS+ Interaction with DNS

Unlike NIS, NIS+ has no automatic forwarding feature. To forward requests from

NIS+ to DNS, the Naming Service Switch on the client must be configured to search

DNS for hosts resolution.

Note – If an NIS+ server is run in NIS compatibility mode, the Naming Service

Switch on the NIS+ server needs to be configured to search DNS.

TABLE 2-3 NIS+ Tables

Table Name Information Contained

Hosts Network address and host name of workstations in the domain

Bootparams Location of the root , swap, and dump partition of diskless

client in the domain

Passwd User account information for or about every user in the domain

Cred Credentials for principals who belong to the domain

Group The group password, group ID, and members of every UNIX

group in the domain

Netgroup Netgroups to which workstations and users in the domain

belong

Mail_Aliases Information about the mail aliases of users in the domain

Timezone Time zone of every workstation in the domain

Networks Networks in the domain and their canonical names

Netmasks Networks in the domain and their associated netmasks

Ethers Ethernet address of every workstation in the domain

Services Names of IP services used in the domain and their port

numbers

Protocols List of IP protocols used in the domain

RPC RPC program numbers for RPC services available in the

domain

Auto_Home Location of all users’ home directories in the domain

Auto_Master Automounter map information
24 Solaris and LDAP Naming Services

NIS+ High Availability Architecture Features

The availability architecture for NIS+ is similar to that of NIS, but with the following

key differences:

■ Initialization of NIS+ clients

■ Propagation of updates from master to replicas

■ Format of mastered data

Unlike NIS clients, which do not require any authentication, NIS+ clients must

present credentials to gain access to the service. These credentials are stored in the

client’s home domain. NIS+ can be initialized with one of three methods:

■ Broadcast

■ Specified Server

■ Cold Start File

The Broadcast and Specified Server methods are similar to what NIS clients do. The

Cold Start File method provides a file to a client that contains information about

how to locate directory objects and also provides a set of credentials. This is the

preferred method since it provides additional security. Only a trusted server can

provide a Cold Start File.

Instead of pushing entire maps no matter how many changes are made, NIS+

masters only push out incremental changes. These changes are batched, then pushed

out. The result is that the replicas are more likely to be in sync. Also, a transaction

log keeps track of changes in case of a system failure before they can be pushed out.

Unlike NIS where the mastered data is kept in text files, NIS+ keeps mastered data

in a binary format. This means that not only do these files need to be backed up,

they also need to be checked periodically for corruption.

Solaris DNS Architecture Overview

The Domain Name System was created to solve the problem of locating computers

on ARPANET, the forerunner of the Internet. As more and more systems were

added, resolving hosts names to IP addresses by means of text files became

unworkable. Large hosts files had to be maintained and propagated to every

system in the network. Today, DNS is a requirement for access to the Internet.
Chapter 2 Solaris Naming Services Architecture 25

DNS Client Architecture

Solaris system utilities that access DNS do so by using the resolver on the client. The

resolver is actually a set of library routines that perform various types of queries.

These queries get information about the location of the DNS servers by looking in

the /etc/resolv.conf file. The following shows the format of this file:

As you can see, more than one DNS server can be specified. In normal operation the

resolver tries to contact the first server in the list. If contact cannot be established,

the second server is tried, then the third. The current limit in the Solaris operating

environment is three.

DNS Server Architecture

DNS supports a hierarchal namespace and replica or caching servers. The

namespace is separated into zones that can have primary and secondary servers.

Primary servers act as masters from which information is updated and then pushed

out to the secondary servers.

The Berkeley Internet Name Domain (BIND) is the name server (named) that runs

on a designated host in your organization. Since there are different features that

are available in different versions, it is helpful to know what version you are

running. TABLE 2-4 correlates the BIND version with the Solaris operating

environment that it appears in.

domainname mydomain.com
nameserver IPaddr1
nameserver IPaddr2
nameserver IPaddr3

TABLE 2-4 Solaris Versions of BIND

Solaris OE Version BIND Version

SunOS 4.x 4.8.1

SunOS 2.0-2.5 4.8.3

SunOS 2.6 4.9.4-P1

SunOS 5.7 8.1.2

SunOS 5.8 8.1.2
26 Solaris and LDAP Naming Services

DNS High Availability Features

DNS provides features for making itself more available and also features for making

applications more available. Caching servers, which contain the same information

and are synchronized, can be configured. Multiple IP addresses can be listed for a

specific host name in a DNS record. Each time a request is made for that host, the

next IP address in the list is handed out. This technique is often referred to as round

robin; it is useful when a DNS client is provided with the address of an application

server that is not operational because, with the round robin technique, the client will

try again and get a different address.

DNS servers can be clustered to provide automatic failover of master servers,

although this feature is not part of the architecture. With this technology, updates to

DNS records can still be performed in case the master DNS server fails.

LDAP Architecture Overview

The Lightweight Directory Access Protocol (LDAP) is the newest addition to the list

of Solaris naming services. Although included in the Solaris 8 release, it is an

optional naming service that can coexist with legacy Solaris naming services. LDAP

shares some characteristics with NIS and NIS+, but it is more sophisticated in the

way data is structured and the methods used to access data.

LDAP’s complex architecture is easier to explain if we divide it into the four models

it supports and describe each model separately, as we do in the following sections.

The four models are:

1. Information Model

2. Naming Model

3. Functional Model

4. Security Model

Each of these models are discussed in the following sections.

LDAP Information Model

The LDAP information model defines how entries in the directory are organized in

the directory. Entries are arranged in a tree-like structure called the Directory

Information Tree (DIT). At the top of the DIT is the directory root, which is identified
Chapter 2 Solaris Naming Services Architecture 27

by the server name and port number on which the directory service is running.

Multiple instances of the directory service can be running on the same server with

each instance having its own DIT.

Below the directory root is the directory suffix, of which there may be several per

DIT. Suffixes can be expressed as an organization (o=) or as an Internet style domain

component (dc=). The LDAP predecessor, X.500, dictated a specific format which

included a country, locality, and organization. These names were registered to avoid

duplication. Since LDAP does not enforce the same stringent naming rules as X.500

any organization name can be specified. The domain-based format typically mirrors

a company’s DNS domain address and is expressed as domain component (dc)

entries. Since most companies have a registered DNS name which ensures

uniqueness, this format essentially replaces the old X.500 style format.

FIGURE 2-8 is an example of a DIT:

FIGURE 2-8 Sample Directory Information Tree

Located below the suffix are organization unit (ou) entries. These entries can nested,

so an ou can contain other organization units. The name chosen for an ou only needs

to be unique at the level at which it resides. You can use the same ou in a different

portion of the DIT without creating a conflict. An ou entry called ou=People is

created during the default iPlanet Directory Server installation; this entry is the

default location for storing user account information, but any ou can be used for that

purpose.

If you have multiple directory servers in a network, they can be linked by LDAP

referrals. A referral is a mechanism that instructs an LDAP client searching the

directory to continue the search on another directory server. The referral

ou=Engineering

cn= Ann Toy

Directory Root

dc=sun,dc=com

ou=Sales

cn= Joe Buck cn= Ted Sanders

ou=Corporate
28 Solaris and LDAP Naming Services

accomplishes this instruction by passing a uniform resource locator (URL) back to

the client. Once the client receives the URL, it can access the specified directory

server.

Overall, the topology of the directory resembles that of a Solaris file system. It is a

hierarchal structure which has containers (ou entries) where directory entries reside.

Referrals are similar to NFS mount points in concept, though implemented

differently. Unlike the naming convention of a file system, that of an LDAP directory

is quite different and the entries stored are much more complex than those in Solaris

files.

LDAP Naming Model

Understanding the LDAP naming model is key to knowing how to configure and

administer native Solaris LDAP. Most Solaris administrators are unfamiliar with this

model and often are tripped up by some of the naming conventions. While the

LDAP naming model may seem cryptic at first, keep in mind the goals of LDAP. It is

designed to be flexible, but at the same time to provide a structure so that LDAP

clients can access data in any LDAP-compliant directory.

Before a client can access data in a directory it must know how to locate that data.

Unlike a Solaris file system where a search can always be initiated from the root file

system (/), LDAP begins a search by specifying one specific entry, such as

dc=blueprints , dc=com, as a search base. The entry name is specified as a

distinguished name (DN) which is a series of relative distinguished names (RDNs).

Each directory server contains a single root directory specific entry (DSE) which

contains basic information about the LDAP server. The DSE is specified during base

level searches on a directory when you do not know the name of a particular suffix.

As previously mentioned, each entry is identified by its DN. The DN is similar to a

Solaris file system pathname, but is specified in the reverse order. However, for

directory entries, unlike files, it is the value of their attributes which make each entry

unique. To understand the role of attributes, a discussion on the structure of

directory entries is useful.

Directory Objects and Attributes

The structure of a directory entry is defined by the object class to which it belongs.

An object class defines a set of attributes that can be stored in a directory entry.

LDAP object classes are extensible by creation of a new class that is a child of an

existing one. All the attributes defined in the parent class are inherited by the child.

The name of an object class must be unique within the directory server and can be

registered as a standard LDAP object. These objects are assigned a numeric object

identifier (OID) to ensure they will not conflict with another object class.
Chapter 2 Solaris Naming Services Architecture 29

Attribute names are unique within the directory server and can be contained in more

than one object class. The type of data that can be stored in an attribute is well-

defined, as is the way LDAP searches treat the data. For example, data stored in a

string can either be case sensitive or not. If the data is not case sensitive any

combination of upper and lowercase characters in a string results in a match. If the

data is case sensitive, an exact match is required. Attributes can also contain more

than one value and can have aliases.

To promote interoperation, a set of standard LDAP object classes and attributes have

been defined. Definitions of these ship with most LDAP servers in the form of

schema configuration files. If they do not exist on a server, you can add the content of

these schema files to your LDAP configuration files. For example, to use native

LDAP, you need to add extra object classes and attributes to the iPlanet Directory

Server configuration files, as discussed in Chapter 5, ”Solaris 8 Native LDAP

Configuration.”

Directory Schema

The information specified in a directory schema includes the object class name,

required and allowed attributes, an optional OID number, and the allowable

syntax. TABLE 2-5 shows the schema definition for the posixAccount object class

attributes that stores Solaris user account information.

In this example, cn is a case-insensitive string that can contain multiple values. The

gidNumber and uidNumber are integers, and homePhone is represented by a

special data type used for telephone numbers. Note that the LDAP uid , which is a

string, is not the same as the numeric Solaris UID, which is represented by the LDAP

TABLE 2-5 posixAccount Attributes

Attribute Description Syntax

cn(commonName) Common Name of the POSIX account cis (1-many)

gidNumber Unique integer identifying group

membership

int (single)

homePhone The entry’s home phone number tel

uid(userID) The user’s login name cis , 1

uidNumber An integer uniquely identifying a user int

description A human-readable description of the object. cis

gecos GECOS comment field cis

loginShell Path to the login shell ces (single)

userPassword Entry’s password and encryption method bin , 1
30 Solaris and LDAP Naming Services

attribute uidNumber . A complete description of all iPlanet Directory Server schema

definitions can be found under documentation on the iPlanet Web site:

iplanet.com .

Distinguished Names

Recall that a directory entry is identified by its DN, which is similar to a file system

path name. However, entries are composed of many attributes, some of which are

the same as other entries. To distinguish between entries that may have the same

values for some attributes, one attribute is usually singled out as being unique. For

user account entries defined in the posixAccount object class, that attribute is uid .

To prevent duplicate values being used, the iPlanet Directory Server is configured by

default to enforce uid attribute uniqueness. Entries that do not have a uid attribute

are typically identified by the commonName(cn) attribute, which is available in most

object classes, but is not required by all object classes such as organization (o) and

organization unit (ou).

The form of a DN is:

attribute=value,container,suffix

where there may be multiple containers depending on the DIT topology. An example

of a DN for an user account is:

cn=Cathy Miller,ou=People,dc=blueprints,dc=com

The RDN specifies the left-most portion of the DN, which uniquely identifies the

entry relative to its parent. For example:

cn=Cathy Miller

In this case, cn=Cathy Miller has to be unique within the ou=People container.

LDAP Functional Model

Clients needing to access data on an LDAP server must begin by performing a bind

operation. The bind operation requires, at a minimum, the DN of the user account

entry the client wishes to bind as. If the entry has a password, then it is passed along

with the DN. Alternatively, the client can perform an anonymous bind, which does

not require a particular user name or password.

The type of authentication the directory server requires is specified as part of the

bind request. The default is simple authentication, which compares the password

sent with the password stored for the specified DN. Other authentication methods

such as secure socket layer (SSL), CRAM-MD5, or Kerberos can be invoked instead

by addition of another parameter to the bind operation call.
Chapter 2 Solaris Naming Services Architecture 31

If the bind operation is successful, the client is considered authenticated. All

subsequent client requests made on the connection established as a result of the bind

are performed as the authenticated user. After the LDAP client requests are

complete, an unbind operation is performed to release the connection. Chapter 5,

”Solaris 8 Native LDAP Configuration” describes how the Solaris LDAP client

binds to an LDAP server.

Note – If an LDAP bind operation is made with a DN, with no password, the bind

is successful, but is considered an anonymous bind.

LDAP Security Model

Access to LDAP entries on the server is protected by the rights established for the

authenticated user. The rights can be assigned at the container, object, or attribute

level. A portion of the DIT can be assigned stricter (or looser) control than other

parts of the DIT. All entries of the same object class type can be assigned the same

control. Control can also be established at the attribute level to protect certain

information. For example, an employee’s password might have restricted access,

while other information is available to everyone.

The mechanism used to assign access rights is called the access control instruction

(ACI). A single ACI can protect the entire DIT, or several can be used to provide

finer-grained protection. When multiple ACIs are created, the ACIs specifying deny
access takes precedence. For example, if access is granted to everyone at the top level

of the DIT but denied access to ou=Contractors , then the permissions set for

ou=Contractors is enforced.

Note – ACIs are not defined in the LDAP v3 standard. Currently, each LDAP

directory implementation has its own representation of ACIs.

Chapter 9, ”Preventive Maintenance” discusses how ACIs are created and

provides a more in-depth explanation of how they work. Establishing the correct

ACI is critical to configuring the iPlanet Directory Server to support native

Solaris LDAP, so Chapter 5, ”Solaris 8 Native LDAP Configuration” provides

examples. Note that the ACI syntax is not part of the LDAP specification, so the

examples are specific to the iPlanet Directory Server implementation.
32 Solaris and LDAP Naming Services

LDAP Replication

Replication is the mechanism by which directory data is automatically copied from

one directory server to another. Using replication, you can copy anything from entire

directory trees to individual directory entries between servers. Beside providing

high data availability, some additional benefits include:

■ Higher performance — By replicating directory entries to a location close to your

users, you can vastly improve directory response times.

■ Load balancing — By replicating your directory tree across multiple servers, you

can reduce the access time load on any given machine, thereby improving server

response time.

■ Local data management — Replication allows you to own data locally and share

it with other directory servers across your company.

To understand how replication works, you must first understand the roles LDAP

servers play. To begin, every directory object must be mastered by one and only one

directory server. The mastering directory server is called the Supplier server because

it supplies the objects to other servers. Servers that receive directory objects from

supplier servers are called Consumer servers.

Note – Any given directory server can be both a supplier of directory objects as well

as a consumer of objects supplied to it from other servers. In future releases of

iPlanet Directory Server, multi-master replication is supported which allows

directory data to be updated by more than one server.

A Supplier server is responsible for the following:

■ Managing any requests for changes to the replicated directory data. That is,

whenever a request to add, delete, or change an entry in a replicated tree is

received by a Consumer server, the request is referred to the Supplier server

where the request is actually performed.

■ Tracking the changes to the objects that it masters so that those changes can be

replicated to Consumer servers.

You can configure the Supplier server to initiate replication, or you can configure

your Consumer server(s) to initiate the replication process.

Consumer servers contain at least one directory entry that has been copied to it by a

supplier server. Consumer servers can contain the following:

■ The Supplier server’s entire tree.

■ A subsection, or subtree, of the Supplier server’s directory tree.

Only read operations occur on the Consumer server. All other operations are

handled on the Supplier server. Whenever an LDAP client tries to modify entries in

a replicated tree, the Consumer server automatically refers the LDAP client’s request

to the supplying server.
Chapter 2 Solaris Naming Services Architecture 33

FIGURE 2-9 and FIGURE 2-10 are examples of replication configurations:

FIGURE 2-9 Full Tree Replication

FIGURE 2-10 Subtree Replication

You choose which form of synchronization is used for each replication agreement.

Replication synchronization can be initiated by either the Supplier or the Consumer

server. A replication agreement indicates which directory entries will be replicated,

which servers are participating in the replication, and when the replication can

occur.

To decide on a synchronization method, follow these guidelines:

■ If you want your consumer servers to be updated instantly, use Supplier-initiated

replication.

■ If you are using a dial-up connection to update your Consumer servers, use

Consumer-initiated replication.

ou=people ou=groups
dc=blueprints , dc=com

ou=people ou=groups

Consumer

dc=blueprints , dc=com

Supplier

dc=blueprints,dc=com

ou=people ou=groups
ou=groups

dc=blueprints,dc=com
34 Solaris and LDAP Naming Services

Comparison with Legacy Naming
Services

Naming, or directory, services technology has evolved with the rise of network

computing as the central concept of information technology. Host-based naming

services, such as DNS, are widely deployed and have provided a key component of

the network infrastructure in place today. Desktop LAN-based naming services like

NIS have enjoyed much success in Solaris and UNIX environments but have not

been widely accepted outside of these environments. Standards-based LDAP

directories are starting to gain wide acceptance and look to be the backbone of

corporate directory infrastructures in the future.

With so many Solaris naming services available, it is not always easy to keep the

differences straight. To help you out, TABLE 2-6 summarizes the key features found in

each of the naming services discussed in this chapter.

Hierarchal Directory Information Base (DIB) — The ability to organize the name

space in a layered, tree-like structure.

Dynamic Updates — The ability to add, modify, and delete information in the name

space and have those changes be immediately visible to users of the service.

Distributed Directory Information Base (DIB) — The ability to service the

namespace from multiple nodes on the network.

Dynamic Replication — The ability to dynamically propagate changes made to the

DIB to other nodes that serve the DIB.

Extensible Directory Information Base — The ability to dynamically expand the

type of information stored as part of the namespace.

TABLE 2-6 Naming Service Feature Comparison

Naming
Service

Hierarchal
DIB

Dynamic
Updates

Distributed
DIB

Dynamic
Replication

Extensible
DIB

NIS

NIS+ X X X X

DNS X X X X

LDAP X X X X X
Chapter 2 Solaris Naming Services Architecture 35

CHAPTER 3

Security Models

Computer resources can be protected by a variety of security methods. Some,

methods, like firewalls, are designed to keep unwanted users out, and others are

designed to verify the identity of anyone attempting to access a resource. The act of

identity verification is commonly called authentication. The methods used to

authenticate users vary, depending on the security model that you choose to

implement.

Directories play an important role in the authentication process. The information,

such as user credentials, required by an authentication service is usually stored in a

directory. The directory service itself provides an authentication service that

identifies users who attempt to access directory data. LDAP-enabled applications

can take advantage of this authentication service to verify the identity of its clients

by using the client’s credentials to attempt directory service access.

This chapter begins by looking at traditional Solaris authentication and security

models and at the role directories play. Since there is not a one size fits all
authentication scheme, we discuss alternative authentication mechanisms including

the Solaris and iPlanet Directory Server infrastructure designed to cope with

multiple authentication methods.

Authentication versus Authorization

The terms authentication and authorization sound similar, but in the context of

computer security each has a distinct meaning and has different implementation

requirements. The security models discussed in this chapter deal primarily with

authentication and not authorization, so it is important to understand the difference.

In general terms, authentication is the verification of someone’s identity. This

verification can be as simple as entry of a user name and password, or an alternative

form can involve the use of digital certificates. In either case, the password or digital

certificate needs to be stored in a secure manner. The format in which this

information is stored and how it is retrieved without compromising security are the

key distinguishing features of authentication methods.
37

Authorization is the granting of access to controlled system resources. In other

words, once a user’s identity is established, authorization grants only the access

rights that the user is entitled to. The Solaris UFS file system uses octets of owner ,

group , and other permissions to determine whether the user can read, write,

create, or delete files and folders. The user’s identity is determined by the user ID

(UID) and group ID (GID) of the login shell, which are established when the user is

first authenticated.

The directory server controls access through access control instructions (ACIs) that

are assigned to directory objects. The directory user identities are determined by the

distinguished name (DN) they bind with. The act of binding is really an

authentication process. As discussed in the following sections, LDAP users or clients

can use several authentication methods to perform the binding.

Traditional Solaris Authentication

Traditional Solaris authentication is based on the method developed for early UNIX

implementations. This method employs an one-way encryption hashing algorithm

called crypt(3). The encrypted password is stored either in a file or in a Solaris

naming service, from which it is retrieved during the user login process. The

traditional UNIX method of Solaris authentication, using crypt(3), is very popular

and has been enhanced to use an LDAP directory as its data store.

Before we discuss authentication in more detail, you should understand what

crypt(3) is. There is some confusion because of a naming conflict with an application
named “crypt”; the latter is a standard tool that ships with Solaris and is a program

for encrypting and decrypting the contents of a file, this program can be found in

/usr/bin/crypt .

However, when the term “crypt” is referred to in authentication, it is normally cited

as crypt(3) and refers to the standard UNIX password hashing algorithm “crypt(3)”,

as available to C-programmers in the libcrypt.a library.

A more sophisticated authentication method based on public key technology was

introduced with the NIS+ naming service. This method does not replace crypt(3),

but rather provides an additional security layer by introducing the concept of a

network password. When users access network services through the secure RPC

mechanism, the network password is required.

Realizing that new authentication models are likely to be developed, Sun created the

pluggable authentication module (PAM) architecture which allows additional

methods to be added without disturbing existing ones. The PAM architecture and

alternatives to traditional Solaris authentication are presented starting in ”Solaris

PAM Framework“ on page 52.
38 Solaris and LDAP Naming Services

How UNIX Passwords Work

Passwords are created with the Solaris passwd command. The passwd command

prompts the user for a (new) password, which the user enters as a text string. This

text string is then hashed—or one-way encrypted—using the crypt(3) algorithm, and

the result is stored either in /etc/shadow , or in the passwd.byname and

passwd.byuid NIS maps. If you are using the NIS+ Naming Service, the results are

stored in the Passwd and Cred table type. The crypt(3) algorithm is provided with a

random seed, known technically as a “salt string," so that the result will be different

each time the passwd command is run, even if the same text string is used.

When a user logs in, the Solaris login program challenges that user to provide a

password. This password is hashed in the same manner as the passwd command. If

the output from this process matches the output that is stored in the password

database, the user is considered to have been authenticated.

FIGURE 3-1 Shows how the UNIX password process works.

FIGURE 3-1 Login Program Text String Converting to a Hashed String

crypt(3) hashed

 server

 /etc/shadow

 User

login

NEW password

randomseed
 or "salt"

 passwd.byname

password
passwd

crypt(3)
on user input

 /etc/shadow
 passwd.byname

Retrieve password
entry for user

Hashed password
 Is compared with the
entry from the database

Provides "Salt"
for crypt(3)

Match = OK

 NIS+ passwd table

 NIS+ passwd table

User inputs
name & password

User

server
Chapter 3 Security Models 39

Benefits and Drawbacks of Crypt(3)

The major benefit of crypt(3) is that it is easy to implement in a closed environment.

Authentication takes place on the system you are logging in to, so an authentication

server is not required. Since clear-text passwords are never stored or sent over the

network, you do not have to be concerned about eavesdroppers intercepting the

password.

Since crypt(3) uses a one-way encryption algorithm, the passwords stored on the

server cannot be decrypted. Only the user knows what the password actually is.

This means that there is no way to convert passwords stored in crypt to another

format required by a different authentication method.

NIS+ Credentials

The Solaris crypt method only checks to see if the text string the user types in

matches the stored string for that particular login ID. There is no check to see if the

user is logging in from a legitimate workstation or domain, since that information is

not stored anywhere. NIS+ addresses this problem by issuing credentials to users.

Credentials were introduced in NIS+ as a means to identify legitimate users within a

domain of workstations by maintaining more information than a simple user name.

NIS+ establishes two sets of credentials: workstation and user.

The workstation credentials are created when a Solaris system becomes a member of

an NIS+ domain. These credentials are then required when a workstation attempts

to access the NIS+ directory service. In the NIS+ environment, users and machines

are referred to as principals.

User credentials are created for users within a given NIS+ domain. These are in the

form of unix .userid@domainname and stored in the NIS+ cred table. When users log

into an NIS+ client workstation, the credentials are retrieved from the cred table.

The cred table contains the user’s network password and NIS+ uses this to check the

password of the user. This cred table actually contains the public and private keys of

the principals. The user’s password is not stored in the cred table but the private key

is encrypted by the user’s secure RPC or network password. By default, the user’s

password and network password will be the same, so the user only needs to enter it

once. In most cases, the two passwords are the same, but if they are not, the user will

have to perform a keylogin, using the secure RPC password and then use chkey -p
to make the two passwords the same.

The directory plays an important role in NIS+ authentication since credentials are

based on public key technology. The public and private keys required are

maintained in a directory so they can be universally accessed. For non-NIS+ clients

requiring public key authentication, the key may be maintained in NIS maps.
40 Solaris and LDAP Naming Services

Alternative Authentication Mechanisms

The Solaris crypt(3) and NIS+ credential mechanisms are fine for authenticating

Solaris clients, but they are not the only methods used by applications and services

running in the Solaris environment. In this section, alternative authentication

methods are discussed. Some of these are available in the iPlanet Directory Server,

others can be plugged into it through the extensible authentication mechanism

called the Simple Authentication Security Layer (SASL). This facility is analogous to

the Solaris PAM architecture. The presence of an authentication method in the

directory server does not mean that method can be used for Solaris client

authentication, and vice versa.

LDAP Authentication (Simple Authentication)

Before any form of authentication takes place in the LDAP directory you must first

perform some form of authentication. This authentication enables the directory

server to determine what level of access you have and what you can do in terms of

operations in the directory server.

The most basic form of authentication is the simple authentication. Here you supply

to the directory server the distinguished name (DN) and password; if you do not

supply a password, that is, NULL password is supplied to the directory server you

automatically obtain the credentials of the anonymous authenticated user.

Note – When you use simple authentication, you will be sending your password

over the wire in clear text! To avoid this security breach choose an alternative

mechanism such as SSL or SASL.

Authenticating to the directory as the anonymous user gives you only the most basic

ability to perform operations. It is likely that you will enable users to make specific

changes only to their own directory entry. If this is the case and you want to control

what types of access your users have, then you should implement access control

lists.

When access control lists are implemented, LDAP clients will authenticate to the

directory server and be dependent on the access control instructions (ACIs) that

have been set. The directory server will determine if that particular client is allowed

to modify the directory—adding, modifying, or deleting entries.

When referring to ACIs in relation to entries, be aware that entries do not have to

contain ACIs. The basic principle of an ACI is to grant or deny permissions to entries

in the directory server. This works when the directory server processes the incoming
Chapter 3 Security Models 41

requests from the LDAP client. The server then uses the ACIs for the particular entry

to establish whether the LDAP client has the relevant permissions to perform the

requested operation.

It is important to understand that at present, implementing access controls in LDAP

is not yet covered by any form of standards document. What this lack of

standardization leads to is proprietary access control mechanisms implemented by

each LDAP software vendor. This situation is, of course, not desirable; having

deployments of different LDAP servers from different vendors can be problematic.

The good news is that the Internet Engineering Task Force (IETF) working group is

developing a standard syntax for access control, and, in addition, a protocol for

querying the access rights that are applicable to a particular directory entry is also

being developed. The short-term downside is this: do not expect this functionality

from any of the LDAP vendors.

CRAM-MD5

CRAM-MD5 is a SASL authentication mechanism described in the IETF

Informational RFC 2195 (see Appendix B for additional information on RFCs).

CRAM stands for Challenge Response Authentication Mechanism, it uses the

Mechanism Digest 5 (MD5) hash algorithm developed by Ron Rivest for generating

a message digest, which is used for authentication. The advantage of CRAM-MD5 is

that a password is never sent in clear text to the server, as with a traditional crypt-

based UNIX login, and this restraint prevents ‘snoop attacks’ while the password is

being sent across the wire.

In this method of authentication, the server issues a challenge to the client in the

form of an arbitrary string of random digits, a timestamp, and the fully qualified

primary host name of the server. The client responds with the user name, a space,

and an MD5 digest or hash of the challenge plus the password. The server then

computes its own MD5 hash and compares the client response with its hash; if they

match, the client is authenticated. If they do not match, an error is returned to the

client. FIGURE 3-2 illustrates how this scheme works.
42 Solaris and LDAP Naming Services

FIGURE 3-2 CRAM-MD5 Authentication

The disadvantage of CRAM-MD5 is that the password must be accessible to the

server in a clear-text format. However, most servers store the password in some sort

of encrypted format that can be retrieved when necessary.

In the case of LDAP, some servers support CRAM-MD5, which at one point was

proposed as a required mechanism for LDAP v3 servers. CRAM-MD5 has since been

replaced by DIGEST-MD5. Since the use of SASL is part of the LDAP v3 protocol, the

LDAP v2 servers do not support CRAM-MD5. CRAM-MD5 authentication can be

achieved by use of pam_ldap against a server that supports it.

MD5 is used in two areas of the Solaris operating environment today: the Kernel

(TCP and IPsec) and the User (SLP and PPP). Ronald Rivest, who was at the time

working at the Laboratory for Computer Science at the Massachusetts Institute of

Technology, published MD5 as a RFC (RFC 1321) in April 1992. To better understand

what CRAM-MD5 is, you should understand what MD5 is all about.

In your organization, when you send data over the wire, you will be concerned with

three general issues: security, authenticity, and integrity. The security of your data

ensures that no one else can read your data. This issue is important in many

organizations that have information that can not be exposed to external sources.

Authenticity guarantees knowledge of the originator of the data, in other words,

where the data source is from. This issue is important in areas such as the legal

CLIENT SERVER

Initiate login session

Timestamp +
random digits +
(host name of server)Issue Challenge

Get passwd from
user

(user name +
md5(challenge +
password)) Sends response

Success/Fail

md5 (stored
password)
compares this to
client response
Chapter 3 Security Models 43

world, where authentication issues (like digital signatures) are of great importance.

Lastly, integrity guarantees that the data has not been tampered with in any way

when it was transmitted, thus determining whether the data you received was the

same data that was actually sent.

The MD5 algorithm guarantees the integrity of your data by taking a bit pattern of

arbitrary but finite length and producing a 128-bit fingerprinter or message digest of

that pattern. This pattern is always 128-bit, regardless of the length of the bit pattern.

No two files produce the same fingerprint, and the fingerprint is not reversible. The

MD5 algorithm is not complex and does not require large substitution tables.

Security experts estimate that the difficulty of finding two bit patterns having the

same digest is 264 operations and the difficulty of finding a bit pattern having

predetermined digest is 2128 operations. As mentioned earlier, it is not

computationally possible to determine a file based on its fingerprint. This means that

it is not possible for someone to figure out your data based on its MD5 fingerprint.

Take a look at an example of the output produced by MD5 on the binary file

/usr/bin/ls .

You should see output similar to the following:

What you see here is the fingerprint of /usr/bin/ls for example:

MD5 applied a mathematical algorithm to the binary ls and so produced the

fingerprint. Now, what you see is that you will get the exact same fingerprint; if you

do not, then you know that the binary has been altered in some way. Finally, since

MD5 does not encrypt data, it is not restricted by any exportation laws, so you can

distribute this tool freely anywhere in the world.

For the mathematical details of this process, refer to RFC 1321 (for detailed

information on RFCs see Appendix B).

Note – Solaris 8 introduces libmd5 , an implementation of MD5 (the same source

that appears in /kernel/misc/{sparcv9/,}md5 , or /platform/sun4u/
kernel/misc/{sparcv9/,}md5). It is tuned for UltraSPARC and exports the

standard MD5 calls to a user program.

blueprints# md5 /usr/bin/ls

4ec63a89e72c59c6dcf7d0d291f06134 /usr/bin/ls

4ec63a89e72c59c6dcf7d0d291f06134
44 Solaris and LDAP Naming Services

Kerberos

Kerberos is a network authentication protocol that provides strong authentication

for client-server applications by means of secret-key cryptography. A free

implementation of this protocol is available from the Massachusetts Institute of

Technology (MIT).

The Internet is an insecure place. Many of the protocols used in the Internet do not

provide security. Tools to “sniff” passwords on the network are in common use by

systems crackers. Thus, applications that send an unencrypted password over the

network are extremely vulnerable. Worse yet, other client-server applications rely on

the client program to be “honest” about the identity of the user who is using it.

Other applications rely on the client to restrict its activities to those for which it has

permission, with no other enforcement by the server.

Some sites attempt to use firewalls to solve their network security problems.

Unfortunately, firewalls assume that the bad guys are on the outside, which is often

a faulty assumption. Most of the really damaging incidents of computer crime are

carried out by insiders. Firewalls also have a significant disadvantage in that they

restrict how your users can use the Internet. Firewalls are simply a less extreme

example of the dictum that there is nothing more secure than a computer that is not

connected to the network and that is turned off. In many places, these restrictions

are simply unrealistic and unacceptable.

Kerberos was created at MIT as a solution to these network security problems. The

Kerberos protocol uses strong cryptography so that a client can prove its identity to

a server (and vice versa) across an insecure network connection. After a client and

server have used Kerberos to prove their identity, they can also encrypt all of their

communications to assure privacy and data integrity as they go about their business.

Kerberos is a solution to your network security problems. It provides the tools of

authentication and strong cryptography over the network to help you secure your

information systems across your entire company.

Kerberos as an Authentication Service

Kerberos is a distributed authentication service that allows a process (a client)

running on behalf of a principal (a user) to prove its identity to a verifier (an

application server, or just a server) without sending data across the network that

might allow an attacker or the verifier to subsequently impersonate the principal.

Kerberos optionally provides integrity and confidentiality for data sent between the

client and server. Kerberos was developed in the mid-80s as part of MIT’s Project

Athena. As Kerberos spread to other environments, changes were needed to support

new policies and patterns of use. To address these needs, design of Version 5 of

Kerberos (V5) began in 1989. Though V4 still runs at many sites, V5 is considered to

be standard Kerberos.
Chapter 3 Security Models 45

How Kerberos Works

The Kerberos Authentication System uses a series of encrypted messages to prove to

a verifier that a client is running on behalf of a particular user. The Kerberos protocol

is based in part on the Needham and Schroeder authentication protocol, but with

changes to support the needs of the environment for which it was developed.

Among these changes are the use of timestamps to reduce the number of messages

needed for basic authentication, the addition of a “ticket-granting” service to

support subsequent authentication without reentry of a principal’s password, and a

different approach to cross-realm authentication (authentication of a principal

registered with a different authentication server than the verifier).

Kerberos Encryption

Though, conceptually, Kerberos authentication proves that a client is running on

behalf of a particular user, a more precise statement is that the client has knowledge

of an encryption key that is known by only the user and the authentication server. In

Kerberos, the user’s encryption key is derived from and should be referred to as a

password; we will refer to it as such in this discussion. Similarly, each application

server shares an encryption key with the authentication server; this key is referred to

as the server key.

Encryption in the current version of Kerberos uses the data encryption standard

(DES). It is a property of DES that if ciphertext (encrypted data) is decrypted with

the same key used to encrypt it, the plaintext (original data) appears. If different

encryption keys are used for encryption and decryption, or if the ciphertext is

modified, the result will be unintelligible, and the checksum in the Kerberos

message will not match the data. This combination of encryption and the checksum

provides integrity and confidentiality for encrypted Kerberos messages.

Kerberos Ticket

The client and server do not initially share an encryption key. Whenever a client

authenticates itself to a new verifier, it relies on the authentication server to generate

a new encryption key and distribute it securely to both parties. This new encryption

key is called a session key, and the Kerberos ticket distributes it to the verifier.

The Kerberos ticket is a certificate issued by an authentication server, encrypted by

the server key. Among other information, the ticket contains the random session key

that will be used for authentication of the principal to the verifier, the name of the

principal to whom the session key was issued, and an expiration time after which

the session key is no longer valid. The ticket is not sent directly to the verifier, but is

instead sent to the client who forwards it to the verifier as part of the application
46 Solaris and LDAP Naming Services

request. Because the ticket is encrypted in the server key, known only by the

authentication server and intended verifier, the client cannot modify the ticket

without detection.

Basic Kerberos Authentication Protocol (Simplified)

Upon receipt of the application request, the verifier decrypts the ticket, extracts the

session key, and uses the session key to decrypt the authenticator. If the same key

was used to encrypt the authenticator as was used to decrypt it, the checksum will

match and the verifier can assume the authenticator was generated by the principal

named in the ticket and to whom the session key was issued. This is not by itself

sufficient for authentication since an attacker can intercept an authenticator and

replay it later to impersonate the user. For this reason, the verifier additionally

checks the timestamp to make sure that the authenticator is fresh. If the timestamp is

within a specified window (typically 5 minutes) centered around the current time on

the verifier, and if the timestamp has not been seen on other requests within that

window, the verifier accepts the request as authentic.

At this point the identity of the client has been verified by the server. For some

applications, the client also wants to be sure of the server’s identity. If such mutual

authentication is required, the server generates an application response by extracting

the client’s time from the authenticator and returns it to the client together with

other information, all encrypted with the session key.

Authentication Request and Response

The client requires a separate ticket and session key for each verifier with which it

communicates. When a client wishes to create an association with a particular

verifier, the client uses the authentication request and response messages to obtain a

ticket and session key from the authentication server. In the request, the client sends

the authentication server its claimed identity, the name of the verifier, a requested

expiration time for the ticket, and a random number that will be used to match the

authentication response with the request.

In its response, the authentication server returns:

■ Session key

■ Assigned expiration time

■ Random number from the request

■ Name of the verifier

■ Other information from the ticket
Chapter 3 Security Models 47

and these are all encrypted with the user’s password registered with the

authentication server, together with a ticket containing similar information, that is

forwarded to the verifier as part of the application request. Together, the

authentication request and response and the application request and response

constitute the basic Kerberos authentication protocol.

Additional Tickets

The basic Kerberos authentication protocol allows a client with knowledge of the

user’s password to obtain a ticket and session key and to prove its identity to any

verifier registered with the authentication server. The user’s password must be

presented each time the user performs authentication with a new verifier. This

procedure can be cumbersome; instead, a system should support single sign-on,

whereby the user logs into the system once and provides the password at that time,

and then subsequent authentication occurs automatically. The obvious way to

support this scheme—caching the user’s password on the workstation—is

dangerous. Though a Kerberos ticket and the session key associated with it are valid

for only a short time, the user’s password can be used to obtain tickets, and to

impersonate the user until the password is changed. The better approach used by

Kerberos is to cache only tickets and encryption keys (collectively called credentials)

that will work for a limited period of time.

When the user first logs in, an authentication request is issued and a ticket and

session key for the ticket-granting service is returned by the authentication server.

This ticket, called a ticket-granting ticket, has a relatively short life (typically, 8

hours). The response is decrypted, the ticket and session key saved, and the user’s

password forgotten.

Subsequently, when the user wishes to prove its identity to a new verifier, a new

ticket is requested from the authentication server through the ticket-granting

exchange. The ticket-granting exchange is identical to the authentication exchange

with two exceptions: 1) the ticket-granting request has embedded within it an

application request, authenticating the client to the authentication server, and 2) the

ticket-granting response is encrypted with the session key from the ticket-granting

ticket, rather than with the user’s password.

The description of Kerberos just presented was greatly simplified. Additional fields

are present in the ticket, authenticator, and messages to support bookkeeping and

additional functionality. Some of the features present in Version 5 include renewable

and forwardable tickets, support for higher-level authorization mechanisms, and

support for multiple-hop cross-realm authentication.
48 Solaris and LDAP Naming Services

Secure Socket Layer Authentication

Secure Socket Layer (SSL) authentication was developed by Netscape as a method

for creating a secure connection between a web client and a web server. It can also be

used to verify the identity of a client. This method of authentication is based on the

issuance of signed digital certificates from trusted authorities. There are two types of

certificates: server side and client side.

Server-Side Certificates

Server-side certificates are the most common type used with SSL. The client trusts

the server, but the server will grant access to any client, such as a web browser that

supports SSL. A typical example would be a credit card transaction over the

Internet. Here’s how it works.

1. The browser attaches to a secure port on a web server, usually done automatically,

by following a link.

2. The server presents its signed digital certificate to the client.

3. The client deciphers the certificate to determine which third-party certificate

authority issued it.

4. If the browser contains a list of trusted certificate authorities, it checks to see if the

signed certificate is listed. If the browser does not contain such a list, then it

displays a dialog box.

5. Once the certificate is accepted, a secret key is exchanged and used to encrypt the

data during the remainder of the transaction.

Only server-side certificates are needed because the sharing of confidential

information is in one direction only. The client sends its credit card information, but

nothing the server sends back to the client is privileged information.

Client-Side Certificates

If the server contains confidential or privileged information, clients may be required

to identify themselves before any information is transferred. The sequence of events

for client-side certificates is this:

1. The server issues the client a certificate. In this situation, the server acts as the

certificate authority.

2. The client stores the certificate in a secure location. The certificate contains a

password the user must supply before the certificate can be used.

3. The client presents the certificate to the server when a connection is attempted.
Chapter 3 Security Models 49

4. The server examines the certificate to see if it is valid, then grants access to the

client if it is.

The server might additionally check to see if the client certificate has been revoked.

In this case, a list of certificates is kept in an LDAP directory and checked when a

client attempts to establish a connection.

LDAP Over SSL

Creating a secure LDAP connection is accomplished through a client-side SSL. In

normal operation, LDAP requests are made over an insecure connection with

transmission performed in clear text. For public information, this may be acceptable,

but clear-text transmissions of sensitive information are not.

To set up LDAP over SSL, you perform the following steps:

1. Establish a Certificate Authority.

2. Configure a secure port for the LDAP server.

3. Issue the certificates to trusted clients.

Detailed steps to set up a secure iPlanet Directory Server can be found in Chapter 4,

”iPlanet Directory Server Installation and Configuration." Optionally, an LDAP

directory could be set up to store information about issued certificates and make

note if they are revoked.

Security Infrastructure

This section details the following security infrastructures:

■ iPlanet Directory Server SASL

■ Solaris PAM Framework

■ PAM Module Types

■ PAM Configuration File

■ PAM LDAP Module

iPlanet Directory Server SASL

The Simple Authentication and Security Layer (SASL) is a proposed standard for

pluggable authentication methods that will be used for adding authentication

support to connection-based protocols such as LDAP. Of all the security mechanisms
50 Solaris and LDAP Naming Services

that are available for clear-text password authentication, the IETF’s SASL framework

is probably the best solution. With SASL, you negotiate between a client and a server

from a list of multiple authentication schemes. SASL is beneficial as a modular

security layer.

The default behavior of SASL specifies the clear-text authentication method, but

most of the SASL implementations will use the CRAM-MD5 authentication

mechanism. This mechanism uses a challenge-and-response protocol but can also be

applied to multiple Internet protocols.

Note – The iPlanet Directory Server does not support CRAM-MD5 at this time;

however, the Solaris 8 LDAP Client (Solaris native LDAP) allows the use of the

CRAM-MD5 mechanism under SASL, which enables you to bind to the directory

server without sending the password over the wire in clear text.

Currently, SASL is not a commonly known or supported protocol, but is the most

likely candidate to succeed as the standard authentication layer among the Internet

protocols.

You might find CRAM-MD5 SASL implementations in the Sun Directory Services

product. These implementations are rare, but you will start to see that SASL will

most likely support stronger authentications schemes because of such factors as the

LDAP v3 protocol.

Using the SASL mechanism, you will find that the LDAP v3 protocol supports a

command that will identify, then authenticate, a particular user to the directory

server. This command works when you specify the name of the authentication

mechanism that you are going to use, for example, CRAM-MD5. If this

authentication is successful, then the client and server agree on a security layer, that

provides the session protection. Currently, the iPlanet Directory Server supports the

SASL mechanism that uses plug-in technology, so you can write your own plug-ins

that use the SASL mechanism. If you want to write your own SASL mechanism, then

you are required to register it with the Internet Assigned Numbers Authority

(IANA). Some of the currently registered SASL mechanisms are KERBEROS_V4,
GSSAPI, and CRAM-MD5.

To determine the SASL mechanisms that your LDAP v3 server supports (a

requirement of LDAP v3 servers), issue the following command in the root DSE

entry.

blueprints# ldapsearch -b ““ -s base “objectclass=*”
supportedsaslmechanism s

dn:
supportedsaslmechanisms: EXTERNAL
blueprints#
Chapter 3 Security Models 51

Notice in the preceding response that the mechanism referred to as EXTERNAL, is

used to determine that authentication has been agreed to by another source. This

source could be, for example, Transport Layer Security (TLS) which is the new

standard for SSL.

To obtain additional information about SASL refer to the RFC 2222 which you can

find at the following Web site:

http://www.ietf.org/rfc/rfc8222.txt .

Solaris PAM Framework

The Pluggable Authentication Module (PAM) framework enables new

authentication technologies to be “plugged-in” without the need to change

commands such as login , ftp , and telnet . Use PAM to integrate UNIX login with

other security mechanisms, such as Kerberos and LDAP authentication. Mechanisms

for account, session, and password management can also be plugged-in through this

framework.

PAM allows the system administrator to choose any combination of services to

provide authentication. These include:

■ Flexible configuration policy

■ Per application authentication policy

■ Choice of a default authentication mechanism for non-specified applications

■ Multiple passwords on high-security systems

■ Ease of use for the end user

■ No retyping of passwords if they are the same

■ Password mapping, whereby a single password can be used, even if the

password associated with separate authentication methods is different

■ Optional parameters passed to the services

PAM Module Types

PAM employs runtime-pluggable module types to provide authentication-related

services. These modules are categorized into four types, based on the function they

perform:

■ Authentication

■ Account management

■ Session management

■ Password management

The authentication modules provide authentication for the users and enables

credentials to be set, refreshed, or destroyed. These modules also identify the user.
52 Solaris and LDAP Naming Services

The account management modules check for password aging, account expiration,

and access hour restrictions. Once the user is identified by the authentication

modules, the account management modules determine whether the user can be

given access.

The session management modules primarily manage the opening and closing of an

authentication session. The modules can log activity, or clean up after the session is

over.

The password management modules enable changes to the password and the

password-related attributes.

PAM enables authentication by multiple methods through stacking. When a user is

authenticated through PAM, multiple methods can be selected to fully identify the

user. Depending on the configuration, the user can be prompted for passwords for

each authentication method. This means the user need not execute another

command to be fully authenticated. The order in which the methods are used is

determined through the configuration file, /etc/pam.conf .

Stacking can require that a user remember several passwords. Password mapping, if

supported by the underlying module, allows the primary password to be used to

decrypt the other passwords, so the user does not need to remember multiple

passwords. The other option is to synchronize the password across each

authentication mechanism.

Note – Stacking may increase the security risk, because the security of each

mechanism would be limited by the least secure password method used in the stack.

How PAM Works

The PAM software consists of a library, several modules, and a configuration file.

The PAM library, /usr/lib/libpam , provides the framework to load the

appropriate modules and manage stacking. It provides a generic structure for all of

the modules to plug into.

FIGURE 3-3 illustrates the relationship between the applications, the library, and the

modules. The applications ftp , telnet , and login use the PAM library to access

the appropriate module. The pam.conf file defines which modules are to be used

with each application. Responses from the modules are passed back through the

library to the application.
Chapter 3 Security Models 53

FIGURE 3-3 PAM and the Relationship Between Applications, Library, and Modules

PAM Modules

Each module provides the implementation of a specific mechanism. More than one

module type (auth, account, session, or password) can be associated with each

module, but each module needs to manage at least one module type. The following

is a description of the modules.

■ pam_unix — Supports authentication, account management, session

management, and password management. The module uses UNIX passwords for

authentication.

■ dial_auth — Can only be used for authentication. The module uses data stored

in the /etc/dialups and /etc/d_passwd files for authentication. It is mainly

used by login .

■ rhosts_auth — Can be used for authentication. The module uses data stored in

the ~/.rhosts and /etc/host.equiv files and is mainly used by rlogin and

rsh .

■ pam_dce — Supports authentication, account management, and password

management. Any of these three module type definitions are used with this

module. The module uses DCE Registry for authentication.

For security, these files are required to be owned by root and to have their

permissions set so that the files are not writable through group or other
permissions. If the file is not owned by root , then PAM will not load the module.

PAM Configuration File

The PAM configuration file, /etc/pam.conf , determines what authentication

services are used and in what order. Edit this file to select authentication

mechanisms for each system-entry application.

telnet

PAM Library

pam_dial.so.1 pam_dce.so.1

 pam.conf

ftp login

pam_unix.so.1
54 Solaris and LDAP Naming Services

Configuration File Syntax

The PAM configuration file consists of entries with the following syntax:

service_name module_type control_flag module_path module_options

where:

service_name is the name of the service (for example, ftp , login , telnet);

module_type is the module type for the service;

control_flag determines the continuation or failure semantics for the module;

module_path is the path to the library object that implements the service functionality;

module_options are the specific options passed to the service modules.

You can add comments to the pam.conf file by starting the line with a # (pound

sign). Use white space to delimit the fields.

Note – An entry in the PAM configuration file is ignored if one of the following

conditions exists: the line has fewer than four fields, an invalid value is given for

module_type or control_flag, or the named module is not found.

TABLE 3-1 summarizes PAM configurations.

TABLE 3-1 PAM Configurations

Service Name Daemon or Command Module Type

dtlogin /usr/dt/bin/dtlogin auth, account, session

ftp /usr/sbin/in.ftpd auth, account, session

init /usr/sbin/init session

login /usr/bin/login auth, account, session

passwd /usr/bin/passwd password

rexd /usr/sbin/rpc.rexd auth

rlogin /usr/sbin/in.rlogind auth, account, session

rsh /usr/sbin/in.rshd auth, account, session

sac /usr/lib/saf/sac session

su /usr/bin/su auth, account, session
Chapter 3 Security Models 55

Control Flags

To determine continuation or failure behavior from a module during the

authentication process, you must select one of four control flags for each entry. The

control flags indicate how a successful or a failed attempt through each module is

handled. Even though these flags apply to all module types, the following

explanation assumes that the flags are being used for authentication modules. The

control flags are as follows:

required — This module must return success in order for the overall result to be

successful. If all of the modules are labeled as required, then authentication through

all modules must succeed for the user to be authenticated. If some of the modules

fail, then an error value from the first failed module is reported. If a failure occurs

for a module flagged as required, all modules in the stack are still tried but failure is

returned. If none of the modules are flagged as required, then at least one of the

entries for that service must succeed for the user to be authenticated.

requisite — This module must return success for additional authentication to

occur. If a failure occurs for a module flagged as requisite , an error is

immediately returned to the application and no additional authentication is done. If

the stack does not include prior modules labeled as required that failed, then the

error from this module is returned. If an earlier module labeled as required has

failed, the error message from the required module is returned.

optional — If this module fails, the overall result can be successful if another

module in this stack returns success. The optional flag should be used when one

success in the stack is enough for a user to be authenticated. This flag should only be

used if it is not important for this particular mechanism to succeed. If your users

need to have permission associated with a specific mechanism to get their work

done, then you should not label it as optional.

sufficient — If this module is successful, skip the remaining modules in the

stack, even if they are labeled as required . The sufficient flag indicates that one

successful authentication will be enough for the user to be granted access.

telnet /usr/sbin/in.telnetd auth, account, session

ttymon /usr/lib/saf/ttymon session

uucp /usr/sbin/in.uucpd auth, account, session

TABLE 3-1 PAM Configurations (Continued)

Service Name Daemon or Command Module Type
56 Solaris and LDAP Naming Services

Generic pam.conf File

The following is an example of a generic pam.conf file:

This generic pam.conf file specifies the following behavior:

1. When running login , authentication must succeed for both the pam_unix and

the pam_dial_auth modules.

PAM configuration
Authentication management
#
login auth required /usr/lib/security/pam_unix.so.1
login auth required /usr/lib/security/pam_dial_auth.so.1
rlogin auth sufficient /usr/lib/security/pam_rhost_auth.so.1
rlogin auth required /usr/lib/security/pam_unix.so.1
dtlogin auth required /usr/lib/security/pam_unix.so.1
telnet auth required /usr/lib/security/pam_unix.so.1
su auth required /usr/lib/security/pam_unix.so.1
ftp auth required /usr/lib/security/pam_unix.so.1
uucp auth required /usr/lib/security/pam_unix.so.1
rsh auth required /usr/lib/security/pam_rhost_auth.so.1
OTHER auth required /usr/lib/security/pam_unix.so.1
#
Account management
#
login account required /usr/lib/security/pam_unix.so.1
rlogin account required /usr/lib/security/pam_unix.so.1
dtlogin account required /usr/lib/security/pam_unix.so.1
telnet account required /usr/lib/security/pam_unix.so.1
ftp account required /usr/lib/security/pam_unix.so.1
OTHER account required /usr/lib/security/pam_unix.so.1
#
Session management
#
login session required /usr/lib/security/pam_unix.so.1
rlogin session required /usr/lib/security/pam_unix.so.1
dtlogin session required /usr/lib/security/pam_unix.so.1
telnet session required /usr/lib/security/pam_unix.so.1
#
Password management
#
passwd password required /usr/lib/security/pam_unix.so.1
OTHER password required /usr/lib/security/pam_unix.so.1
Chapter 3 Security Models 57

2. For rlogin , authentication through the pam_unix module must succeed if

authentication through pam_rhost_auth fails.

3. The sufficient control flag indicates that for rlogin the successful

authentication provided by the pam_rhost_auth module is sufficient; then, the

next entry will be ignored.

4. Most of the other commands requiring authentication require successful

authentication through the pam_unix module.

5. Authentication for rsh must succeed through the pam_rhost_auth module.

The OTHERservice name allows a default to be set for any other commands

requiring authentication that are not included in the file. The OTHERoption makes it

easier to administer the file, since many commands that use the same module can be

covered by only one entry. Also, the OTHERservice name, when used as a catchall,

can ensure that each access is covered by one module. By convention, the OTHER
entry is included at the bottom of the section for each module type. The rest of the

entries in the file control account management, session management, and password

management. With the use of the default service name, OTHER, the generic PAM

configuration file is simplified as follows:

PAM configuration
#
Authentication management
#
login auth required /usr/lib/security/pam_unix.so.1
login auth required /usr/lib/scurty/pam_dial_auth.so.1
rlogin auth sufficient /usr/lib/security/pam_unix.so.1
rsh auth required /usr/lib/security/pam_rhost_auth.so.1
OTHER auth required /usr/lib/security/pam_unix.so.1
#
Account management
#
OTHER account required /usr/lib/security/pam_unix.so.1
#
Session management
#
OTHER session required /usr/lib/security/pam_unix.so.1
#
Password management
#
OTHER password required /usr/lib/security/pam_unix.so.1
58 Solaris and LDAP Naming Services

Normally, the entry for the module_path is root-relative. If the file name you enter

for module_path does not begin with a slash (/), the path /usr/lib/security/
is prepended to the file name. A full path name must be used for modules located in

other directories. The values for the module_options can be found in the man

pages for the module (for example, pam_unix (5)).

The use_first_pass and try_first_pass options, which are supported by the

pam_unix module, lets users reuse the same password for authentication without

retyping it.

If login specifies authentication through both pam_local and pam_unix , then the

user is prompted to enter a password for each module. In situations where the

passwords are the same, the use_first_pass module option prompts for only one

password and uses that password to authenticate the user for both modules. If the

passwords are different, the authentication fails. In general, this option should be

used with an optional control flag, as shown below, to make sure that the user can

still log in.

If the try_first_pass module option is used instead, the local module prompts

for a second password if the passwords do not match or if an error is made. If both

methods of authentication are necessary for users to gain access to all the tools they

need, use of this option could cause some confusion for users since they could get

access with only one type of authentication.

How to Add a PAM Module

1. Become superuser.

2. Determine the control flags and other options that should be used.

3. Copy the new module to /usr/lib/security .

4. Set the permissions so that the module file is owned by root and permissions are

555.

5. Edit the PAM configuration file, /etc/pam.conf , and add this module to the

appropriate services.

Authentication management
#
login auth required /usr/lib/security/pam_unix.so.1
login auth optional /usr/lib/security/pam_local.so.1
use_first_pass
Chapter 3 Security Models 59

Verification

It is essential to do some testing before the system is rebooted in case the

configuration file is misconfigured. Run rlogin , su , and telnet before rebooting

the system. If the service is a daemon spawned only once when the system is booted,

it may be necessary to reboot the system before you can verify that the module has

been added.

How to Prevent Unauthorized Access with PAM from Remote
Systems

Remove the rlogin auth rhosts_auth.so.1 entry from the PAM configuration

file. This action prevents someone from reading the ~/.rhosts files during a

rlogin session and therefore prevents unauthenticated access to the local system

from remote systems. All rlogin access requires a password, regardless of the

presence or contents of any ~/.rhosts or /etc/hosts.equiv files.

Note – To prevent other unauthenticated access to the ~/.rhosts files, remember

to disable the rsh service. The best way to disable a service is to remove the service

entry from /etc/inetd.conf . Changing the PAM configuration file does not

prevent the service from being started.

How to Initiate PAM Error Reporting

1. Edit the /etc/syslog.conf to add any of the following PAM error reporting

entries:

auth.alert – Messages about conditions that should be fixed immediately

auth.crit – Critical messages

auth.err – Error messages

auth.info – Informational messages

auth.debug – Debugging messages

2. Restart the syslog daemon or send a SIGHUPsignal to it to activate the PAM

error reporting.

Example: Initiating PAM Error Reporting
60 Solaris and LDAP Naming Services

The example below displays all alert messages on the console. Critical messages are

mailed to root . Informational and debug messages are added to the

/var/log/pamlog file.

Each line in the log contains a timestamp, the name of the system that generated the

message, and the message itself. The pamlog file is capable of logging a large

amount of information.

PAM LDAP Module

The PAM LDAP module (pam_ldap) was introduced in Solaris 8 for use in

conjunction with pam_unix for authentication and password management with an

LDAP server. This module was written to support stronger authentication methods

such as CRAM-MD5, in addition to the UNIX authentication provided by

pam_unix . Use the PAM LDAP module in Solaris native LDAP clients only. At the

present time, pam_ldap provides support only for the authentication and password

management. Support for account management is expected to be provided in the

future.

The pam_ldap module should be stacked directly below the pam_unix module in

the /etc/pam.conf configuration file. If there are other modules that are designed

to be stacked in this manner, they could be stacked under the pam_ldap module.

This design must be followed in order for authentication and password management

to work when pam_ldap is used. A sample /etc/pam.conf with pam_ldap
stacked under pam_unix follows:

auth.alert /dev/console
auth.crit ’root’
auth.info;auth.debug /var/log/pamlog

Authentication management for login service is stacked.
If pam_unix succeeds, pam_ldap is not invoked.
login auth sufficient /usr/lib/security/pam_unix.so.1
login auth required /usr/lib/security/pam_ldap.so.1
try_first_pass
Password management
other password sufficient /usr/lib/security/pam_unix.so.1
other password required /usr/lib/security/pam_ldap.so.1
Chapter 3 Security Models 61

It is important to note that the control flag for pam_unix is sufficient . This flag

means that if authentication through pam_unix succeeds, then pam_ldap is not

invoked. Also, other service types, such as dtlogin , su , telnet , etc. can substitute

for login. See FIGURE 3-4.

FIGURE 3-4 pam_ldap Structure

The options supported by the pam_ldap are described here:

■ debug
If this option is used with pam_ldap , then debugging information is output to the

syslog (3C) files.

■ nowarn
This option turns off warning messages.

■ use_first_pass
For authentication, this option compares the password in the password database

with the password entered when the user authenticated to the first auth module

in the stack. If these do not match (or no password was entered), pam_ldap quits

and does not prompt the user for a password.

In the case of password management, the use_first_pass option compares the

password in the password database with the user’s old password entered to the

first module in the stack. If these do not match (or no password was entered),

then pam_ldap quits and does not prompt the user for the old password. It also

attempts to use the new password entered to the first module in the stack as the

new password for this module. If this attempt also fails, pam_ldap quits and does

not prompt the user for a new password.

■ try_first_pass
This option does the same thing as the use_first_option in comparing the

password in the database with the password entered to the first module in the

stack. But unlike the use_first_pass option, it prompts the user for a

password if the passwords do not match.

login passwd su

PAM

pam_unix pam_ldap
/etc/pam.conf

 LDAP Server
62 Solaris and LDAP Naming Services

For password management, try_first_pass compares the password in the

database with the old password entered to the first module in the stack; if they do

not match, the user is prompted for the old password. try_first_pass also

attempts to use the new password entered to the previous module; if that fails,

try_first_pass prompts the user for a new password.

If the /var/ldap/ldap_client_cache file (which contains a list of LDAP servers,

their transport addresses, and the authentication mechanisms used to access them)

contains multiple authentication mechanisms specified for the NS_LDAP_AUTH
parameter, then pam_ldap first attempts to authenticate with the first mechanism; if

this fails, then pam_ldap goes to the next one and so forth until it succeeds or runs

out of mechanisms.

How PAM and LDAP Work

The authentication mechanism currently used in Solaris native LDAP is SIMPLE

authentication. SIMPLE authentication requires the client to pass a distinguished

name (DN) and password to the server in clear text. Currently, the iPlanet Directory

Server 4.12 does not support authentication mechanisms, such as CRAM-MD5,

which sends only the digest over the wire. The matrixes explain when the clear-text

password is sent across the wire.

TABLE 3-2 lists abbreviations we use in this discussion.

The matrixes are easier to understand when you distinguish between how the

password is stored and how the authentication mechanism is used to authenticate to

the LDAP server. The password can be stored in a variety of formats, such as SHA,

crypt, clear text, etc. The authentication mechanisms are SIMPLE or CRAM-MD5

(future authentication types includes DIGEST, etc.).

TABLE 3-2 PAM Abbreviations

Abbreviation Description

UP User password

PP Proxy agent password

NP New password

* Not applicable (at least not yet)
Chapter 3 Security Models 63

pam_unix Authentication

In authentication with pam_unix , the client retrieves the password that is stored in

the server by making a call to the getspnam function. This function binds to the

LDAP server with the proxy agent account (which is why the proxy passwd is sent

across the wire in clear text). It is also worth mentioning that the ACIs of the proxy

agent allow this account to have read access to all user passwords, which is how this

account can retrieve a user’s password. The encrypted password is retrieved to the

client side and is compared with the crypted password supplied by the user at the

password prompt. If there is a match, pam_unix returns success (see TABLE 3-3).

For updating passwords in pam_unix , the same comparison as for authentication

takes place (since the user has to bind as the dn); then, the new password is passed

over the wire in clear text (see TABLE 3-4).

pam_ldap Authentication

In authentication that uses pam_ldap , the user password is passed to the server in

an Auth structure in clear-text, since you are only trying to authenticate with the

user dn and password. If you are using SIMPLE authentication and the password

matches, then success is returned. At present, using pam_ldap does not serve much

purpose since pam_unix is sufficient for basic LDAP authentication. The reason is

twofold; first, pam_ldap is required for stronger authentication mechanisms such as

CRAM-MD5; and second, pam_ldap was designed to be extended for future

authentication mechanisms and newer mechanisms to be supported in future

releases. For additional information, see the pam_ldap man page (if you are using

pam_ldap) for the correct way to stack in /etc/pam.conf .

TABLE 3-3 PAM Authentication

Authentication Mechanisms pam_unix pam_ldap

SIMPLE UP-No PP-Yes UP-Yes PP-Yes

CRAM-MD5 UP-* PP-No UP-No UP-No

TABLE 3-4 PAM Update of Password

Authentication Mechanisms pam_unix pam_ldap

SIMPLE UP-Yes(NP) PP-* UP-Yes PP-*

CRAM MD5 UP-* PP-* UP-No PP-*
64 Solaris and LDAP Naming Services

When the CRAM-MD5 authentication mechanism is used, a digest is created and

sent across the wire to authenticate to the server. The server compares the sent digest

with the digest created by itself with the stored password and returns success if it

matches. In this mechanism, the password is not sent in clear-text.

When passwords are updated in pam_ldap , the new password is sent across in

clear-text (see TABLE 3-4).
Chapter 3 Security Models 65

CHAPTER 4

iPlanet Directory Server Installation
and Configuration

As part of the Solaris 8 media kit, Sun ships the iPlanet Directory Server software on

one of the Bonus Software CDs. Since this software is not part of the Solaris

installation mechanism, it needs to be installed separately after the operating system

is installed.

Even though the iPlanet Directory Server can be installed on Solaris releases prior to

version 8, the software is only licensed to run with the Solaris 8 operating

environment. Therefore, this chapter assumes a Solaris 8 installation, even though

the installation procedure is similar when installing software on earlier Solaris

releases.

Copackaged with the iPlanet Directory Server is an administration framework with

a GUI-based management tool that you can use to configure the server and perform

routine administration functions. Although you can administer the iPlanet Directory

Server without this set of tools, you will appreciate having the tools if you are an

inexperienced LDAP administrator, so we discuss their installation.

Once you complete the initial installation, you must perform a number of

postinstallation procedures. This chapter presents the most common of these

procedures.

Product Architecture

Before starting the iPlanet Directory Server installation, you should understand the

product’s architecture so that the installation options will be more meaningful.

Besides the Directory Server, two other components are available for installation.

These are:

■ Administration Server Console

■ Netscape (iPlanet) Console
67

The Administration Server Console is actually a daemon, called ns-admin , that

runs on the same system as the Directory Server Console and acts as a controller. It

can also be the control point for servers other than the directory server, but this

chapter focuses only on its use with the directory server.

The Netscape Console connects to the administration server when it starts. Once

connected, the Console GUI is used to issue commands to the directory server, for

example, stopping and starting the server.

Note – The iPlanet Directory Server is derived from the Netscape Directory Server,

so many references to Netscape exist in the software and product documentation.

For the purposes of this chapter, think of Netscape Directory Server and iPlanet

Directory Server as interchangeable terms.

Administration Domains

One of the installation options is the creation of or the joining of an administrative

domain. An administration domain allows a common login to work across several

servers. If this is the only server you are setting up or if you do not wish to manage

several servers as a group, then a domain of one is established. The procedures in

this chapter assume that a new administration domain is being established.

Configuration Data

Configuration data for both the administration server and directory server is

maintained in the directory database under the o=NetscapeRoot suffix, which is

automatically created during the installation process. Information about

administration domains and preferences used by the administration server is kept

here. An interesting feature is that critical configuration data for the administration

server, such as the admin login account, is kept in the directory database. This

means that the directory server must be running before the administration server

starts. During the installation, the directory server is already running when the

administration server is started, so this requirement is not an issue. However, the

directory server is not automatically started when the system is rebooted unless a

startup script is added manually. A script to generate a custom startup script is

included in “Postinstallation Procedures” on page 83, which starts the directory and

the administration servers in the correct order. A sample startup script is also

included in the Solaris Extensions package.

FIGURE 4-1 shows the layout of the NetscapeRoot portion of the directory tree as

viewed from the Directory Server Console.
68 Solaris and LDAP Naming Services

FIGURE 4-1 Layout of the NetscapeRoot Portion of the Directory Tree

Login Accounts

Two accounts are created during the installation: admin and Directory Manager .

The admin account is the account generally used to log into the Netscape Console.

This account can do most of the configuration and administration functions required

to maintain the directory server. The Directory Manager account is akin to the

superuser in the Solaris environment and can perform special functions such as

establishing directory-wide access control policies. Functions that require

Directory Manager authority are noted throughout this chapter, otherwise assume

the admin login.

Netscape Console

The Netscape Console is a Java application invoked with the startconsole
command. FIGURE 4-2 shows how the components interact.
Chapter 4 iPlanet Directory Server Installation and Configuration 69

FIGURE 4-2 Diagram of Component Interactions

As you can see in FIGURE 4-2, both the administration server and the directory server

need to be running for the Netscape Console to work. This is why there are several

questions regarding the administration server and the choice of the directory server

that will store the configuration data.

Planning the Installation

Before beginning the installation, have at hand the following information:

■ Installation directory — This is where the installation files are placed. The actual

directory server software is installed in the target directory. The installation

directory should have approximately 100 Mbytes of free space.

■ Path name to target directory — This is where the iPlanet Directory Server

software will be initially installed. About 100 Mbytes should be available here.

After the installation, we recommend that you move the directory database to a

separate partition before you load your data, so the disk space consumed here

should not get larger. The operation for relocating the directory database is

discussed in “Postinstallation Procedures” on page 83.

■ Directory suffix — This is the top node of the directory tree. You can use any

name, but it is customary to name this the same as the DNS name of the system

(which is the default). During the typical installation, two empty containers,

ou=People and ou=Administrators , are created under this suffix. If you

change your mind about the suffix, you can easily add a new suffix after the

installation and remove the one specified during installation. The procedure for

adding a new suffix is explained in Chapter 9, ”Preventive Maintenance.”

■ Directory Manager and admin account passwords — Two separate accounts

are set up during the installation, each requiring a password. The admin
password can be any length, but the Directory Manager password must be at

least 8 characters. Both of these can be easily changed.

admin
account

Directory
Server

Admin
Server

Console
70 Solaris and LDAP Naming Services

■ Host name of server — This can be the host name, without the trailing domain
name, but the fully qualified DNS name is recommended. You must be able to

ping the host name specified here from other systems in the network.

■ Administration domain name — This can be any name and is only meaningful if

you are setting up multiple servers and want one administrator to administer all

of them. The default here is the trailing part of the DNS domain name, for

example, sun.com .

■ Directory Server port number — The default LDAP port number is 389. Unless

the multiple directory servers are run on the same system, or you want to change

the port number for security reasons, the default is recommended.

■ Administration server port number — During the installation, a random unused

port number is chosen as the default. To make this port number easier to

remember, you can choose a number like 20000.

■ User to run the Directory Server as — For security reasons, the default here is

nobody . However, if you plan to run the NIS Extensions, the Directory Server

must have root privileges. The user can be changed later, but the ownership of

several files that are created during installation will also have to be changed. For

example, if you initially install the server as root , then change it to nobody , the

permissions on any writable files must be changed to grant nobody write

permission. Changing the owner from nobody to root is not an issue, since root
always has write permission on all files.

Disk Storage Partitioning/Layout

The directory database can grow to be quite large, and for performance reasons it

should reside on its own file system. During the installation, the database is created

in the file system specified for installation, for example, the default is /usr/
netscape . After the installation, the database should be relocated to another

partition. Guidelines for sizing the directory database are contained in Chapter 7,

”Capacity Planning and Performance Tuning.”
Chapter 4 iPlanet Directory Server Installation and Configuration 71

Installation Procedure

The iPlanet Directory Server can be found on the www.iplanet.com Web site and

is packaged as a single tar file called:

directory-4.12-export-us.sparc-sun-solaris2.6.tar

Note – This software can also be found on the Solaris 8 Bonus Software CD in an

extracted format, so the following step can be omitted. However, the older 4.11 is

contained on the CD instead of the maintenance release 4.12 (available on the Web

site). The same installation procedures apply to 4.12. Also, the reference of Solaris

2.5.1 is misleading since both the Solaris 2.6 and Solaris 8 operating environments

are supported.

1. Place this file into the installation directory.

This directory should not be in the same place as the target directory. To extract the

installation files, run the tar command:

tar xf directory-4.12-export-us.sparc-sun-solaris2.6.tar
ls -l
-rwxr-xr-x 1 root other 1589 May 23 1999 LICENSE.txt
-rwxr-xr-x 1 root other 470 May 23 1999 README.txt
drwxr-xr-x 2 root other 512 Sep 19 1999 admin
drwxr-xr-x 2 root other 512 Sep 19 1999 base
-rw-r--r-- 1 root other 44912640 Mar 22 10:40 directory-
4.12-export-us.sparc-sun-solaris2.5.1.tar
-rwxr-xr-x 1 root other 1399904 Apr 15 1999 setup
-rw-r--r-- 1 root other 1213 Sep 19 1999 setup.inf
-rwxr-xr-x 1 root other 5295 Apr 15 1999 silent.inf
drwxr-xr-x 2 root other 512 Sep 19 1999 slapd
drwxr-xr-x 2 root other 512 Sep 19 1999 svrcore
72 Solaris and LDAP Naming Services

2. From the installation directory, run the setup command:

3. Choose the items to install:

In most cases, choose 1. Since the Netscape Console is X-windows-based, it can run

on any graphical display, so it does not need to be loaded separately on another

system.

./setup

 Netscape Communications Corp.
 Netscape Server Products Installation/Uninstallation

Welcome to the Netscape Server Products installation program.
This program will install Netscape Server products and the
Netscape Console on your computer.

It is recommended that you have "root" privilege to install the
software.

Tips for using the installation program:
- Press "Enter" to choose the default and go to the next screen

 - Type "Control-B" to go back to the previous screen
 - Type "Control-C" to cancel the installation program
 - You can enter multiple items using commas to separate them.
 For example: 1, 2, 3

Would you like to continue with installation? [Yes]:

Select the items you would like to install:

1. Netscape Servers
Installs Netscape Servers with the integrated Netscape Console

 onto your computer.

2. Netscape Console
Installs Netscape Console as a stand-alone Java application on

 your computer.

To accept the default shown in brackets, press the Enter key.

Select the component you want to install [1]:
Chapter 4 iPlanet Directory Server Installation and Configuration 73

4. Choose an installation type:

For most installations, the second option is recommended. The difference between

the three options is the number of questions asked. The Typical installation uses a

subset of the questions asked in the Custom installation and the Express installation

uses a subset of the Typical installation questions. The next section shows all of the

installation defaults and identifies what questions each type of installation asks.

Default values are used where the installation script does not prompt you to enter an

option.

Note – The same files are installed for each of the installation types. The only

difference is which configuration parameters get set; all can be changed later.

Performing a Typical Installation

The following text shows the dialog for the Typical installation option. The system

prompt is shown in boldface with comments and recommendations below the

prompt.

Install location [/usr/netscape/server4]: /opt/netscape

Choose an installation type:

 1. Express installation
 Allows you to quickly install the servers using the most

common options and pre-defined defaults. Useful for quick
 evaluation of the products.

 2. Typical installation
 Allows you to specify common defaults and options.

 3. Custom installation
 Allows you to specify more advanced options. This is
 recommended for experienced server administrators only.

To accept the default shown in brackets, press the Enter key.

Choose an installation type [2]: 2
74 Solaris and LDAP Naming Services

Comment: This is where the directory server programs and database will be placed.

Allow about 100 Mbytes for the installation. You probably do not want to install the

directory under /usr , which is typically reserved for Solaris programs and libraries,

so specify another directory. If the specified directory does not exist, it will be

created.

Netscape Server Products components:

1. Netscape Server Products Core Components (3)

2. Netscape Directory Suite (2)

3. Administration Services (2)

Specify the components you wish to install [All]:

Comment: Selecting All is recommended. If you decide not to run the Administration

Services, you can disable them later.

Netscape Server Products Core Components:

1. Netscape Server Products Core Components

2. Netscape Core Java classes

3. Java Runtime Environment

Specify the components you wish to install [1, 2, 3]:

Comment: Selecting the default will assure you have the correct Java environment to

run the Netscape Console.

Netscape Directory Suite components:

1. Netscape Directory Server

2. Netscape Directory Server Console

Specify the components you wish to install [1, 2]:

Comment: This option enables installation of the Directory Server Console without

the need to install the directory server. It assumes you are setting up the admin
server on a separate server. The additional overhead of running the admin and

directory servers on the same system is negligible. Unless you have some good

reason for separating the two, choose the default.

Administration Services components:

1. Netscape Administration Server

2. Administration Server Console

Specify the components you wish to install [1, 2]:
Chapter 4 iPlanet Directory Server Installation and Configuration 75

Comment: Again, unless you do not want to run the administration server on the

same server, choose the default.

Computer name [blueprints.sun.com]:

Comment: This is the fully qualified name of the server. It should equate to the host

name + DNS domain name. The name has to be resolvable to this host or the

directory server will generate a “no such host” error when it is started by the

installation script.

Caution – The installation script finds the system’s domain name by executing the

domainname command, which returns your NIS domain name. If your NIS domain

name is different from your DNS domain name, the wrong domain will appear as

the default. If this is the case, you should change the NIS domain name to match the

DNS fully qualified name.

System User [nobody]:

System Group [nobody]:

Comment: The directory server process, ns-slapd , runs as this user and group. The

specified user and group must already exist, so choosing nobody is convenient

because user and group are created automatically during the Solaris operating

environment installation. Running this process as a non-superuser is recommended

for security reasons, but not mandatory. If you plan to run the NIS extensions on this

system, you must run the directory server as user root and group other . If you

want to change the user and group after the installation, see “Changing the ns-
slapd Process Owner” on page 87.

Do you want to register this software with an existing

Netscape configuration directory server? [No]:

Comment: The iPlanet Directory Server stores configuration data about itself in the

directory under o=NetscapeRoot . If you have multiple directory servers, you

could store all configuration data in one place, however this choice creates another

point of failure. By accepting the default, you ensure that the data will be

maintained by the directory server you are installing, as is recommended in most

cases.

Do you want to use another directory to store your data? [No]:

Comment: This question relates to the previous question. An example of the data that

could be stored on another directory server is the admin user account information. If

you have multiple administration servers, maintaining all their account data on one

directory server may simplify administration, but doing so introduces another point

of failure. Again, in most cases accept the default.

Directory server network port [389]:
76 Solaris and LDAP Naming Services

Comment: The default port for an LDAP server is 389. You can change this port

assignment, but LDAP clients will have to be aware of what the port number is. If an

LDAP server is already running on this port, the default will appear as a random

number instead of 389.

Caution – If you are reinstalling the iPlanet Directory Server, an instance of ns-
slapd may already be running. In this case, the installation script will not display

port 389 as the default and will not accept that port number. Also, if you are not

running the installation script as root , you will not be allowed to make a port

assignment below 1024.

Directory server identifier [blueprints]:

Comment: This identifier distinguishes between multiple instances of the directory

server running on the same system. A separate subdirectory, called slapd- identifier,
is created for each instance. In most cases, only a single instance of the directory

server will be running, so accepting the default (host name) is quite acceptable.

administrator ID [admin]:

Password:

Comment: These are the account and password used to log into the administration

server. The account is maintained under the o=NetscapeRoot suffix instead of

where other user accounts are stored. Additional admin accounts can be set up after

the software is installed. The passwords can be any length and can be easily

changed.

Note – This is only a directory account and not a Solaris account. It will not appear

in /etc/passwd , NIS+, or NIS.

Suffix [o=sun.com]:

Comment: The default here is to use the DNS domain name as the directory suffix,

but it could be any string. It simply acts as an identifier for a top node in the

directory information tree (DIT), for example: o=sun.com . You can add suffixes

later.

Directory Manager DN [cn=Directory Manager]:

Password:

Comment: The Directory Manager is a special account that has authority similar to

that of root in the Solaris operating environment. It has higher authority than does

the admin account and must be used to perform certain operations such as setting

directory-wide access control policies. The password must contain at least 8

characters and can be easily changed later.
Chapter 4 iPlanet Directory Server Installation and Configuration 77

Administration Domain [sun.com]:

Comment: Every administration server belongs to an administration domain. The

domain can consist of a single server, in which case the name is insignificant. If

multiple administration servers are grouped for more flexible administration control,

then all those servers would belong to the same domain. The DNS domain name is

used as the default, but any string can be entered here.

Administration port [24087]:

Comment: The installation script chooses a random port to start the administration

server. You may want to change this to a port number that is easier to remember,

such as 20000. If you forget this number you can look at the startconsole script to

which the number is written during the installation.

Run Administration Server as [root]:

Comment: Although not required, running the administration server as root
virtually eliminates potential access problems. This user can be changed after the

software is installed.

Installation Defaults

The following shows the complete list of installation questions asked during the

Custom installation along with defaults. Questions asked during the Express

installation are shown in bold italic type with bold type used to denote the Typical

installation option.

Install location [/usr/netscape/server4]:

Netscape Server Products components:

1. Netscape Server Products Core Components (3)

2. Netscape Directory Suite (2)

3. Administration Services (2)

Specify the components you wish to install [All]:

Netscape Server Products Core Components components:

1. Netscape Server Products Core Components

2. Netscape Core Java classes

3. Java Runtime Environment

Specify the components you wish to install [1, 2, 3]:
78 Solaris and LDAP Naming Services

Netscape Directory Suite components:

1. Netscape Directory Server

2. Netscape Directory Server Console

Specify the components you wish to install [1, 2]:

Administration Services components:

1. Netscape Administration Server

2. Administration Server Console

Specify the components you wish to install [1, 2]:

Computer name [blueprints.east.sun.com]:

System User [nobody]:

System Group [nobody]:

Do you want to register this software with an existing

Netscape configuration directory server? [No]:

Do you want to use another directory to store your data? [No]:

Directory server network port [389]:

Directory server identifier [blueprints]:

administrator ID [admin]:

Password:

Suffix [o=sun.com]:

Directory Manager DN [cn=Directory Manager]:

Password:

Administration Domain [sun.com]:

Do you want to configure this directory server

to use replication? [No]:

Do you want to install the sample entries? [No]:

You may wish to populate your new directory instance with some data.

Type the full path and filename, the word suggest, or the word none

[suggest]:
Chapter 4 iPlanet Directory Server Installation and Configuration 79

Do you want to disable schema checking? [No]:

Administration port [24087]:

IP address:

Server Administrator ID [admin]:

Password:

Run Administration Server Console as [root]:

Differences between the Installations

As you can see from the listing, only a few additional questions are asked during the

Custom installation. Most of them concern the initial population of the directory

database and replication setup. Both of these operations can be performed after the

software is installed.

Starting the Netscape Console

Once the installation is complete, you start the Netscape Console by executing the

startconsole command. If the server where the software was installed does not

have a monitor, you can X-display it on a remote system as shown in the following

example.

After the command executes, the following login screen is displayed. You can then

enter the admin password to bring up the Netscape Console; see FIGURE 4-3.

FIGURE 4-3 Netscape Console

blueprints# setenv DISPLAY mysys :0
blueprints# cd install_dir
blueprints# ./startconsole&
80 Solaris and LDAP Naming Services

Note – The Administration URL, which is displayed, assumes your NIS and DNS

domain names are the same. If they are not, you will have to edit this box, since the

NIS domain name is displayed instead of the DNS domain name.

Verifying the Installation

The first indication of a successful installation is that the Netscape Console is started

without errors. From the main Console you should be able to summon the Directory

Server Console; click the Directory Server icon under Server Group. A separate

window is then displayed, from which you can view the directory content. The

installation can also be verified from the command line as follows.

If either of these methods fail, try restarting both the administration and the

directory server as explained in the next section.

blueprints# cd install_dir/shared/bin
blueprints# ./ldapsearch -b ““ -s base “objectclass=*”
dn:
objectclass: top
namingcontexts: dc=blueprints,dc=sun,dc=com
namingcontexts: o=NetscapeRoot
subschemasubentry: cn=schema
supportedldapversion: 2
supportedldapversion: 3
changelog: cn=changelog
firstchangenumber: 1
lastchangenumber: 110
dataversion: blueprints.sun.com:389 020000314150203
netscapemdsuffix: cn=ldap://:389,dc=blueprints,dc=sun,dc=com
blueprints#
Chapter 4 iPlanet Directory Server Installation and Configuration 81

Restarting the Administration and Directory Servers

If the Netscape Console fails to start properly, try to restart both the administration

and directory servers by executing the commands shown below.

If the servers do not restart properly refer to “Installation Troubleshooting Tips” on

page 92.

Installation File Navigation

Before explaining how configuration options are set, we look at the location of the

important files. FIGURE 4-4 shows the layout diagram starting at the target

installation directory.

FIGURE 4-4 Layout Diagram

Commands like start-admin and startconsole , which do not pertain to a

particular directory instance, appear directly under the installation directory. Most of

the configuration files that we discuss in the next section reside under the slapd -

instance subdirectory. In most cases, you will have only one instance of the directory

server running on a server, so this will be the primary directory for performing

configuration changes.

blueprints# cd install_dir/slapd- instance
blueprints# ./restart-slapd
blueprints# cd install_dir
blueprints# ./restart-admin
blueprints# ps -e | grep ns-
 2429 ? 0:02 ns-slapd
 2434 ? 0:00 ns-admin
blueprints# ./startconsole&

install_dir

start-admin
startconsole

admin-serv slapd -instance

config logs

shared

bin db logs config

ldapsearch
ldapmodify
ldapdelete

start-slapd
db2bak
saveconfig
ldif2db
82 Solaris and LDAP Naming Services

Postinstallation Procedures

The following postinstallation procedures have to be considered:

■ Saving the configuration

■ Changing the DB files location

■ Changing the transaction log location

■ Changing the DB backing files location

▼ Saving the Configuration

After a successful installation, one of the first tasks you should perform is a backup

of the directory configuration data stored in the directory database. This data resides

under the o=NetscapeRoot container.

It is wise to back up this portion of the DIT because if it is accidently deleted, the

Netscape Console will not function. To perform this backup, run the saveconfig
script as described below.

See Chapter 9, ”Preventive Maintenance” for information of how to restore the

configuration and for other maintenance procedures.

▼ Changing the DB Files Location

The directory database and associated index files are stored in the install_dir/slapd -

instance directory by default. Since this is where all your directory data will be kept,

you will want to move it to its own volume for better performance. See Chapter 7,

”Capacity Planning and Performance Tuning” on what type of volumes are best.

blueprints# cd install_dir/slapd- instance
blueprints# ./stop-slapd
blueprints# ./saveconfig
Chapter 4 iPlanet Directory Server Installation and Configuration 83

To relocate the database files, perform the following steps.

Note – The above procedure assumes the target volume is mounted on the file

system /db_fs and the directory server is running as nobody . The subdirectory db
should be empty before you copy the *.log files there.

▼ Changing the Transaction Log Location

Every operation performed on the directory is recorded in a transaction log, so the

directory can be rolled back to a known good state in the event of a server crash.

Data is being continuously written to the log, even during search operations.

Therefore, it is important for performance reasons to locate this log on a separate

volume. Chapter 7, ”Capacity Planning and Performance Tuning” provides

additional details on the performance hit caused by leaving the transaction log on

the same volume as the database files.

blueprints# cd install_dir/slapd- instance
blueprints# ./stop-slapd
blueprints# cd config
blueprints# cp slapd.ldbm.conf slapd.ldbm.conf.bak
blueprints# vi slapd.ldbm.conf
...
suffix "dc=blueprints, dc=com"
suffix "o=NetscapeRoot"
directory "/db_fs/db" <--- add this line
cachesize 100000
dbcachesize 125000000
...
blueprints# mkdir /db_fs/db
blueprints# cp db/*.db2 /db_fs/db
blueprints# chown -R nobody /db_fs/db
blueprints# chgrp -R nobody /db_fs/db
blueprints# ./start-slapd
84 Solaris and LDAP Naming Services

The following procedure explains how to move the transaction log.

Note – The above procedure assumes the target volume is mounted on the file

system /log_fs and the directory server is running as nobody .

▼ Changing the DB Backing Files Location

If your system is experiencing excessive paging, you can improve performance by

moving __db_lock.share , __db_mpool.share , and __db_txn.share to a

tmpfs file system. If the amount of free memory is exhausted on a heavily loaded

system, the Solaris operating environment will flush pages from memory. To

increase performance, the directory database cache will flush the pages to the

*.share files. If this paging condition occurs, performance will suffer because of the

increased writes to disk. To eliminate this bottleneck, move the *.share files to a

tmpfs file system shown in the following example.

blueprints# cd install_dir/slapd- instance
blueprints# ./stop-slapd
blueprints# cd config
blueprints# cp slapd.ldbm.conf slapd.ldbm.conf.bak
blueprints# vi slapd.ldbm.conf
...
suffix "dc=blueprints, dc=com"
suffix "o=NetscapeRoot"
directory "/db_fs/db"
db_logdirectory "/log_fs/logs" <--- add this line
cachesize 100000
dbcachesize 125000000
...
blueprints# mkdir -p /log_fs/logs
blueprints# chown nobody /log_fs/logs
blueprints# chgrp nobody /log_fs/logs
blueprints# ./start-slapd
Chapter 4 iPlanet Directory Server Installation and Configuration 85

To complete this procedure, modify the slapd-start script to automatically create

/tmp/dir_home when the server starts, as shown below. If this modification is not

done, the dir_home directory will not be re-created after a reboot .

blueprints# cd install_dir/slapd- instance
blueprints# ./stop-slapd
blueprints# cd config
blueprints# cp slapd.ldbm.conf slapd.ldbm.conf.bak
blueprints# vi slapd.ldbm.conf
...
suffix "dc=blueprints, dc=com"
suffix "o=NetscapeRoot"
directory "/db_fs/db"
db_logdirectory "/log_fs/logs"
db_home_directory /tmp/dir_home <-- add this line
cachesize 100000
dbcachesize 125000000
...
blueprints# mkdir -p /tmp/dir_home
blueprints# cd install_dir/slapd- instance/db
blueprints# mv *.share /tmp/dir_home
blueprints# chown < server-owner >/tmp/dir_home
blueprints# ./start-slapd

blueprints# vi install_dir/slapd-instance/slapd-start
...
if [! -d /tmp/dir_home]
 then
 mkdir /tmp/dir_home
 chown <server-owner>/tmp/dir_home
fi
...
blueprints#
86 Solaris and LDAP Naming Services

Changing Common Installation Configuration

Parameters

When changing common installation configuration parameters, you should consider

the following:

■ Changing the ns-slapd process owner

■ Changing the directory manager password

■ Changing the admin password

▼ Changing the ns-slapd Process Owner

The directory server process, ns-slapd , assumes the identity of the user specified

during the installation. The default is nobody , but in some cases, such as when the

NIS extensions are running, it needs to run as root . If the server was installed with

the default nobody , you can change it by editing the slapd.conf file.

Note – If the new user specified is not root , then the ownership on the *.db , log ,

and config files need to be changed.

▼ Changing the Directory Manager Password

The easiest way to change the Directory Manager password is through the Directory

Server Console. If you started the console with the default admin account, you will

need to login as Directory Manager (see FIGURE 4-5) .

blueprints# cd install_dir/slapd- instance
blueprints# ./stop-slapd
blueprints# cd config
blueprints# cp slapd.conf slapd.conf.bak
blueprints# vi slapd.conf
...
schemacheck on
enquote_sup_oc on
security off
localuser nobody <----- change this to the new user
userat "/files/netscape/slapd-iplanet/config/
slapd.user_at.conf"
useroc "/files/netscape/slapd-iplanet/config/
slapd.user_oc.conf"
...
blueprints# install_dir/ slapd- instance/start-slapd
Chapter 4 iPlanet Directory Server Installation and Configuration 87

FIGURE 4-5 Login to Directory Window

Go to the Configuration —> Manager tab and input the new password as shown in

FIGURE 4-6.

FIGURE 4-6 Manager Tab

Note – Any encryption method can be chosen. This method affects only the

Directory Manager account.

If you forget the Directory Manager password you can reset it by editing the

slapd.conf file for the instance of the directory server you are running.

▼ Changing the admin Password

You change the admin account password from the Directory Server Console by

going to the Configuration Administrator screen, under the Directory tab:

NetscapeRoot —> Topology Management —> Administrators —> Configuration
Administrator

Use this screen to change the admin password.
88 Solaris and LDAP Naming Services

Importing Directory Data

Once you have installed the directory server, you can populate the directory with

data. You can input data one entry at a time through the Directory Server Console or

you can import it as a batch process by running an import script. Import scripts

usually take data entered in LDAP Data Interchange Format (LDIF) and then use

one of two methods:

1. Initialize complete database

2. Append to current database

Initializing the Database

The quickest way to import data is to initialize the whole database. That is, remove

all the current data and replace it with data from an LDIF file. This operation is

performed while the directory server is offline. The command for initializing a

database is ns-slapd with the ldif2db argument.

One problem with performing a database initialization is that the configuration data

that was placed there during the installation is lost. To preserve this data, you must

back it up, then restore it. The easiest way to do this is to run the ldif2db script or

run Import from the Directory Server Console.

Note – ldif2db is a script that runs the ns-slapd command with the ldif2db
argument. There is no ldif2db executable.
Chapter 4 iPlanet Directory Server Installation and Configuration 89

The following is an example of running the ldif2db script.

As part of the import process, indexes are automatically created as shown in the

output of ldif2db . Refer to Chapter 7, ”Capacity Planning and Performance

Tuning” for information on the purpose and modification of indexes.

An alternative to running the 1dif2db command is to use the Import feature of the

Directory Server Console. To invoke this screen, click the Configuration tab, click the

Console icon on the top tool bar, then choose Import. Once invoked, the Import
Database screen (see FIGURE 4-7) is displayed.

blueprints# cd install_dir/slapd- instance
blueprints# ./stop-slapd
blueprints# ./ldif2db -i LDIF_file
saving configuration ...
[25/Mar/2000:10:20:56 -0500] - Processed 109 entries.
Importing configuration and data
[25/Mar/2000:10:20:57 -0500] - ldif2db: Index buffering enabled
with buffer size 7
[25/Mar/2000:10:20:59 -0500] - ldif2db: Beginning import job...
[25/Mar/2000:10:20:59 -0500] - ldif2db: Processing file /files/
netscape/slapd-blueprints/confbak/2000_03_25_102053.ldif
-------Index Task-------State--Entry----Rate-
Processed 0 entries, Average rate 0.0, Recent rate 0.0, Hit Ratio
0%
[25/Mar/2000:10:21:00 -0500] - ldif2db: Processing file /home/
tom/LDIF/100.ldif
Done...
Waiting for workers to stop...Done.

Indexing complete...Postprocessing...Flushing caches...Closing
files...
[25/Mar/2000:10:21:05 -0500] - ldif2db: Import complete.
Processed 213 entries in 8 seconds at a rate of 26.62 entries per
second
blueprints# ./start-slapd
90 Solaris and LDAP Naming Services

FIGURE 4-7 Import Database Window

In FIGURE 4-7, the Overwrite entire database and Preserve configuration items are

selected. With these options, the database can be initialized with the configuration

data stored in it, saved, and then restored. While the import is performed the

directory server is automatically shut down and then restarted.

Appending to the Database

You can append data to an existing database by running the ldapmodify command.

Use this command to add a single entry or to read from an LDIF file to update a

large number of files. Unlike the command that initializes a database, this command

can be invoked while the directory server is online. Since ldapmodify uses the

LDAP protocol, it must bind to the directory server before it can add any data. To

avoid permission problems during large imports by ldapmodify , it is wise to bind

to the server as Directory Manager .

Since ldapmodify is used in various ways, several options can be specified when it

is invoked. To simplify imports, a script called ldif2ldap is provided. The

following is an example of the use of this script.

blueprints# cd install_dir/slapd- instance
blueprints# ./ldif2ldap “Directory Manager” password LDIFfile
Chapter 4 iPlanet Directory Server Installation and Configuration 91

From the Directory Server Console, you do the equivalent of running the

ldif2ldap script by using the procedure in the previous section and specifying the

Append data to database option.

Reinstalling iPlanet Directory Server

To reinstall the iPlanet Directory Server software, you should first run the

uninstall program located in the server root directory, which halts the processes

associated with the directory server. Once the uninstall procedure has completed,

you will still need to remove all the files in the installation directory to do a clean

installation. These steps are necessary since if the server processes are still running

during the new installation, you will not be able to assign the same port numbers

specified during the previous installation.

The following steps are recommended before you perform another installation.

Installation Troubleshooting Tips

A number of factors can cause the installation to fail. Usually the first indication of a

failed installation is the failure of the ns-slapd process to start. If you suspect this

is the case, check to see if the process is running, then check for errors in the error

log.

Three common causes of a failed installation are:

1. The domain name suffix created by the installation program is wrong (the NIS

domain is different than the DNS domain).

2. The server port is already in use (perhaps there is a hung ns-slapd process).

blueprints# install_dir/uninstall
blueprints# rm -r install_dir/*

blueprints# ps -e | grep ns-slapd
blueprints#
blueprints# tail install_dir/slapd- instance/logs/error
...
[09/Mar/2000:11:30:00 -0500] - start: Failed to start ns-slapd,
err=22 Invalid host name: blueprints.Eng.East.Sun.COM
...
blueprints#
92 Solaris and LDAP Naming Services

3. The fully qualified domain name must resolve to this host.

If the ns-slapd process starts correctly (no errors), but the Netscape Console fails to

start, make sure the ns-admin process is running, then check to see if the

configuration data appears in the database.

If no configuration data is found, then you must run the restoreconfig
command, assuming you have run saveconfig earlier.

Directory Replication

Once the primary directory server is installed and configured the next step is to set

up a replica server. The role of a replica server is explained in Chapter 2, ”Solaris

Naming Services Architecture.” You set up replica servers directly from the

installation program by choosing the Custom installation option, or you can set them

up after the directory server software is installed. This section discusses how a

replica is set up after the initial installation.

Planning Directory Replication

Before setting up a replica server you need the following required information:

■ How the replication will be initiated — by the Consumer or by the Supplier

blueprints# ps -e | grep ns-admin
 1984 ? 0:00 ns-admin
blueprints# ldapsearch -b “o=NetscapeRoot” “objectclass=*”
o=NetscapeRoot
objectclass=top
objectclass=organization
o=NetscapeRoot
aci=(targetattr="*")(version 3.0; acl "Enable Configuration
Administrator Group modification"; allow (all) groupdn = "ldap:/
//cn=Configuration Administrators, ou=Groups,
ou=TopologyManagement, o=NetscapeRoot";)
aci=(targetattr="*")(targetfilter=(o=NetscapeRoot))(version
3.0; acl "Default anonymous access"; allow (read, search)
userdn="ldap:///anyone";)
aci=(targetattr="*")(version 3.0; acl "Enable Group Expansion";
allow (read, search, compare) groupdnattr="ldap:///
o=NetscapeRoot?uniquemember?sub";)
...
Chapter 4 iPlanet Directory Server Installation and Configuration 93

■ Replication account name and password

■ Portion of DIT to be replicated

■ Frequency of replication

■ Location of the changelog

Replication can be initiated either in a pull or push mode. The pull mode is referred

to as Consumer initiated and the push mode is called Supplier initiated. Consumer-

initiated replication is rare these days and is only useful if you have unreliable WAN

connections. For most cases choose Supplier.

The Supplier logs in as (binds to) a special account that is required to be on the

Consumer system. The default account name is Replication Manager . An

alternative method to binding is the use of client certificates, as discussed in the next

section.

You can replicate the entire DIT or only a portion of it. In some cases, you may

choose to replicate only a portion of the DIT since it is the only part relevant to the

clients accessing the replica.

The Supplier maintains a list of all changes that take place in the directory. The

changes are then propagated to the Consumer at specified intervals. You can choose

to have the changes propagated immediately or only during a specified time. The

changes are maintained in the changelog . If many modifications are taking place

there could be a lot of write activity to this file. To avoid a potential bottleneck, this

file should not reside on the same disk as the directory database.

For information on replication strategies and architecture, refer to Chapter 8,

”Deploying Highly Available LDAP Data Services.”

▼ Setting up Replication

Perform the following steps to set up replication.

1. On the Consumer: In the Directory Server Console, go to the Configuration —>
Database —> Replication Agreements tab and choose Consumer Settings.

Enter the DN (see FIGURE 4-8) that the Supplier will use and assign it a password.
94 Solaris and LDAP Naming Services

FIGURE 4-8 Consumer Settings Tab

2. On the Supplier: In the Directory Server Console, go to

Configuration —>Database —>Replication Agreements tab and choose Supplier
Settings.

Enter the location (FIGURE 4-9) where you want the changelog to be stored, along

with a maximum age or number of records to prevent the log from getting too large.

FIGURE 4-9 Supplier Settings Tab

3. Log in as Directory Manager, then right-click Replication Agreements and choose
New Replication Agreement.

In the form shown in FIGURE 4-10, enter the Consumer server’s host name and port

number along with the account information that was set up on the Consumer server.

Then enter, or use the browse list to choose, the portion of the DIT you want to

replicate.
Chapter 4 iPlanet Directory Server Installation and Configuration 95

FIGURE 4-10 Source and Destination Form

4. Choose either to keep the directories in sync or to synchronize only on specified
days and time of day.

Option 1: Always keep directories in sync

Option 2: Sync on the following days:

Replication will take place between:

Note – To use bandwidth efficiently, choose the second option.

5. Specify how you want to initialize the Consumer.

When a replica server first comes online, it needs to be populated with directory

data contained on the Supplier. You populate the directory either through the LDAP

protocol or by importing an LDIF file. The LDAP protocol method is very slow and

is only recommended if you have a limited number of directory entries.
96 Solaris and LDAP Naming Services

Note – If the suffix being replicated does not exist on the Consumer, it must be

created before the Initialize consumer now option is invoked. The LDIF file is

generated on the Supplier and automatically creates any required suffixes when it is

imported on the Consumer.

Importing an LDIF file through the command line is the preferred and most

commonly used method, since the GUI method will take considerably longer. You

create an LDIF file on the Supplier then import it on the Consumer. FIGURE 4-11

shows the available options.

FIGURE 4-11 Creating an LDIF File

Alternatively, run the ldapmodify command to import the LDIF file.

6. Import the LDIF file on the Consumer

In the Directory Server Console, log in as Directory Manager , go to the

Configuration tab, click the Console icon in the top tool bar, then choose Import.

Note – Make sure you append to the existing database, not reinitialize it.
Chapter 4 iPlanet Directory Server Installation and Configuration 97

Verifying Replication

To verify that replication is working properly, check the status on the Supplier
Replication Agreement. On the Directory Server Console:

1. Go to the Status tab

2. Click Replication Status and observe the status which should read: (in sync)

Troubleshooting Replication Problems

One common problem is that the Supplier fails to bind to the Consumer. To see if

this is happening, check the error log on the Supplier and the access log on the

Consumer. Chapter 8, ”Deploying Highly Available LDAP Data Services” discusses

how to view these log files.

Another problem that you can spot by checking the error log is whether the suffix

could not be created. This problem can occur if the Initialize consumer now option

is chosen.

Modifying the Supplier Initiated Agreement

You can change the parameters used to establish the agreement by going to

Replication Agreements —> Supplier Initiated under the Configuration tab and

clicking the agreement name.

You disable replication by deleting the agreement.

Setting up a Secure System Using SSL
and Certificates

By default, data transfer to and from the directory server is performed in clear text.

Also, by default, authentication is performed by use of a simple login name/
password pair. Since most of the data maintained in the directory may not be

proprietary in nature and data transfer is behind the corporate firewall, clear-text

and simple authentication is quite acceptable.
98 Solaris and LDAP Naming Services

However, there may be some sensitive data or situations where tighter security

access control is required. This section details how to make the directory server more

secure by setting up the Secure Socket Layer (SSL) protocol, which uses digital

certificates.

Note – The iPlanet Directory Server can function in a secure and insecure mode

simultaneously. By following the procedure in this section, you are adding a secure

access point and not necessarily replacing the insecure access point.

Planning a Secure Server Configuration

Two aspects of security are discussed in this section: authentication and data

encryption. Authentication can take place by the server identifying itself to the

client, the client identifying itself to the server, or both. Data encryption takes place

once authentication has taken place and a secret key is passed between the server

and client.

The mechanism used for identity identification is the digital certificate. For server

identification the server side certificate is used. For client side identification, client

side certificates are used. These certificates are created by a trusted Certificate

Authority (CA). This section focuses on installing server side certificates.

Before configuring SSL you must either have access to a CA, or create your own.

Trusted CAs such as Verisign, are useful for doing secure transactions over the

Internet. They act as a trusted third-party. For use within a corporate intranet,

setting up your own CA makes the most sense.

These steps are required to obtain and install a server side certificate:

1. Fill out a request form

2. Send the request to a CA

3. Receive and install the certificate

Running the Certificate Setup Wizard

You use the Certificate Setup Wizard to generate requests for server certificates and

to install server certificates. The following procedure shows how to generate a

request for a certificate.
Chapter 4 iPlanet Directory Server Installation and Configuration 99

Generating a Certificate Request

Perform the following steps to generate a certificate request:

1. In the Directory Server Console, invoke the Certificate Setup Wizard, which is
located under the Task tab.

2. Specify use internal as the Cryptographic Device and check no to the Is server
certificate ready to install? question.

3. Specify a password containing at least eight characters and at least one non-
alphabetic character.

Since this is the first time you will be adding a certificate to this server, a trust

database is created. A password is assigned to the trust database and must be

supplied when the database is accessed. The password is required to start the

directory server in a secure mode.

Note – The actual database is created in the install_dir/alias directory and

maintained in the slapd- instance-cert7.db and slapd- instance-key3.db files.

These files are stored as binary data and cannot be edited directly.

4. Supply the information requested in FIGURE 4-12.

FIGURE 4-12 Certificate Setup Wizard Generating a Certificate Request

After the form is complete, an encrypted certificate request, which looks like the

following, is created:
100 Solaris and LDAP Naming Services

-----BEGIN NEW CERTIFICATE REQUEST-----

MIIBLDCB1wIBADByMQswCQYDVQQGEwJVczEWMBQGA1UECBMNTUFTU0F

DSFVTRVRUUzETMBEGA1UEBxMKQnVybGluZ3RvbjEMMAoGA1UEChMDQ1FB

MQswCQYDVQQLEwJFRTEbMBkGA1UEAxMSYmx1ZXByaW50cy5zdW4uY29tMF

wwDQYJKoZIhvcNAQEBBQADSwAwSAJBAK04VWg+fnGSE5PJegmxCMeuCO7kb

EqTDucJd8aj3oc1hMNxthwRh+2HXmIG9i6beBTWfmrsfZ+1Mjsmd4EDJXcCAwEAA

aAAMA0GCSqGSIb3DQEBBAUAA0EAaAV8aWoqBRgWZNt5Q1LP6aOXZsrQxw1m

KvvAlXIeWXsftoQ5rNyC/OTWtjOl8sVaK9fdjar53DjUHTjJB6ZRdw==

-----END NEW CERTIFICATE REQUEST-----

The request can either be sent via email to the CA or cut and pasted into a CA

enrollment tool. Make sure you include the BEGIN and END lines when performing

this operation.

5. Receive the certificate from the CA.

A certificate which looks like the one below will either be sent by email, stored in a

file, or displayed on a web page for cutting and pasting, depending on what CA is

being used.

-----BEGIN CERTIFICATE-----

MIIDhjCCAzCgAwIBAgIIYf8KzQAAABswDQYJKoZIhvcNAQEEBQAwdjELMAkG

A1UEBhMCVVMxCzAJBgNVBAgTAkRDMRMwEQYDVQQHEwpXYXNoaW5ndG9

uMRYwFAYDVQQKEw1VUyBHb3Zlcm5tZW50MRIwEAYDVQQLEwlQcmVzaWRl

bnQxGTAXBgNVBAMTEFJpaXhvbi5jcnQwDQYJKoZIhvcNAQEEBQADQQAJzQaM

esR5sFom9hBLPGRYhFq6hDT2gaWAp6Fc3SccXSeZ8kXkTijn2KN4KTsO0WYbr5Rqo

uC7OU8QDrHUsqjd.. . .

-----END CERTIFICATE-----

Installing the Server Certificate

Once a server certificate is received from a CA, it can be installed in the directory

server. The same tool, Certificate Setup Wizard, used to generate a certificate

request is also used to install the certificate. After the wizard is started, choose the

Yes option for Question 2, then follow these steps:

1. Enter the password that was assigned during the creation of the trust database.

2. When the screen shown in FIGURE 4-13 is displayed, either specify the file
containing the certificate or paste in the certificate.
Chapter 4 iPlanet Directory Server Installation and Configuration 101

FIGURE 4-13 Certificate Setup Wizard to Install a Certificate

Enabling SSL on the Server

Once the certificate is installed, SSL is activated through the Configuration tab of the

Directory Server Console.

1. Inside the Configuration tab, click the top line, which is the name of the directory
server. Click Settings and make a note of the Encrypted port number (the well
known LDAPS port is 636). Change this number if you do not want to use this
particular port number.

2. Click the Encryption tab and select Enable SSL (see FIGURE 4-14).

You should also check RSA for the cipher and Allow Client Authentication.

FIGURE 4-14 Encryption Tab
102 Solaris and LDAP Naming Services

Once the changes are saved, the server is running SSL on the encrypted port. To

verify that it is running, try to telnet to the encrypted port:

Rebooting the Secure Server

To restart the directory server once SSL has been enabled, enter the password for the

trust database, as shown below.

If you want the server to start without prompting for a PIN, then create a text file

called: install_dir/alias/slapd- instance-pin.txt . This file must contain the

directive: Internal (Software) Token=password. Refer to the documentation on

http:www.iplanet.com .

Changing the Trust Database Password or PIN

From the Task tab in the Directory Server Console, choose Change Key Password
from the Console menu (see FIGURE 4-15).

FIGURE 4-15 Change Key Password

blueprints# telnet blueprints 636
Trying 129.148.181.130...
Connected to blueprints.
Escape character is ’^]’.

./restart-slapd
Enter PIN for Internal (Software) Token:
Chapter 4 iPlanet Directory Server Installation and Configuration 103

Using SSL for Replication

One of the uses of SSL is to create a secure channel between the Supplier and the

Consumer during replication. The following steps are required to accomplish this.

1. Install a server certificate on the Consumer and Supplier.

2. Trust the certificate on the Supplier.

3. Enable the SSL connection.

Both the Supplier and Consumer need to be set up for SSL. This setup requires

installation of a server certificate on both servers. In addition, the Consumer’s trust

database must include a certificate from the Supplier’s CA. Instructions for using the

iPlanet Certificate Server as a CA can be found on the iPlanet Web site at http://
www.iplanet.com.

4. Specify SSL in the Supplier’s replication agreement as shown in FIGURE 4-16.

FIGURE 4-16 Specification of SSL

This example uses the same bind operation as before, but, alternatively, SSL client

authentication could be used. Instructions for using the iPlanet Certificate Server to

generate and maintain client certificates can be found on the iPlanet Web site at

http://www.iplanet.com .

iPlanet Directory Server Startup Files

The iPlanet Directory Server installation does not automatically create startup or run

command (rc) scripts. Unless these scripts are added to the Solaris rc directory, you

have to manually start up the directory and administration servers. Find sample

startup files in the Solaris Extension Samples directory. Alternatively, as described

in this section, you can run an interactive script that generates a start script (S72ns-
slapd) and a kill script (K72ns-slapd). Once generated, these scripts should be

placed in the /etc/rc2.d directory with a hard link created to /etc/init.d .
104 Solaris and LDAP Naming Services

Script Generation Program

The following is an interactive script that creates the proper rc files for your

environment.

#!/bin/sh

PATH=/sbin:/bin:/usr/bin:$PATH
export PATH

takes two arguments, a PROMPT and the default value (Y | N).
Returns 0 if the user specified "Y", nonzero otherwise.
yes_or_no()
{
 OK=n
 while ["$OK" = n]
 do
 echo >/dev/tty
 echo "$1 [$2]: \c" >/dev/tty
 read ans
 if ["$ans" = ""]
 then
 ans=$2
 else
 if ["$2" = "y" -o "$2" = "n"]
 then
 case $ans in

"Y"|"y"|"YES"|"yes"|"Yes") ans=y;;
 "N"|"n"|"NO"|"no"|"No") ans=n;;
 esac
 fi
 fi
 if ["$ans" = y -o "$ans" = n]
 then
 OK=y
 else
 echo $ans >/dev/tty

echo "Is this correct (y/n) [y] \c" >/dev/tty
 read OK
 case $OK in
 ""|"Y"|"y"|"YES"|"yes"|"Yes") OK=y;;
 "N"|"n"|"NO"|"no"|"No") OK=n;; esac
 fi
 done
 echo $ans
Chapter 4 iPlanet Directory Server Installation and Configuration 105

}

echo ""
echo CURRDATE=‘date‘
echo HOST=‘hostname‘
echo DOMAIN=‘domainname‘

echo ""
echo "i-Planet Directory Server for Solaris rc* configuration program"

OK=‘yes_or_no "Would you like to continue with installation?" "y"‘
if ["$OK" != "y"]
then
 exit 0
fi

BASEDIR=/usr/netscape/server4
SLAPDINSTANCENAME=‘/usr/bin/hostname‘

echo ""
echo "Specify the server root location. This is where the server programs,
the Administration Server, and the server configuration files are located."
echo ""
echo "To accept the default shown in brackets, press the Enter key."

BASEDIR=‘yes_or_no "Installation Location is" $BASEDIR‘

echo""
echo "Creating iPlanet rc startup scripts..."

echo "Setting permissions on iPlanet rc startup scripts..."

echo "Creating link to the iPlanet rc startup scripts..."
echo""

#
installation is now complete
set the rc scripts to start slapd and admin server automatically at boot
time
#
cat <<% > /etc/init.d/ns-slapd
106 Solaris and LDAP Naming Services

#!/sbin/sh
#
#
Copyright(c) 1997, by Sun Microsystems, Inc.
All rights reserved.
#
#ident "@(#)ns-slapd 1.0 200/02/17 SMI"
#
This script will automatically start/stop/restart the
i-Planet Directory Server 4.12
#
SLAPDDIR=$BASEDIR/slapd-$SLAPDINSTANCENAME
BASEDIR=$SLAPDDIR$BASEDIR

case "\$1" in
’start’)
 rm -f \$SLAPDDIR/logs/pid
 \$SLAPDDIR/start-slapd > /dev/null 2>&1
 \$BASEDIR/start-admin > /dev/null 2>&1
 echo "Directory Services Started."
 ;;

’stop’)
 \$SLAPDDIR/stop-slapd
 \$BASEDIR/stop-admin
 echo "Directory Services Stopped"
 ;;

’restart’)
 \$SLAPDDIR/restart-slapd
 \$BASEDIR/restart-admin
 echo "Directory Services Restarted"
 ;;

*)
echo "Usage: /etc/init.d/ns-slapd { start | stop | restart }"

 exit 1
 ;;
esac
exit 0
%

#
Set the correct file permissions
#

Chapter 4 iPlanet Directory Server Installation and Configuration 107

Installing the NIS Extensions

Chapter 8, ”Deploying Highly Available LDAP Data Services” covers in great detail

the installation of NIS extensions. Installation of the extensions is performed after

the directory installation. Before the extensions are installed, the server should be

configured as either an NIS master or NIS slave.

/usr/bin/chmod 744 /etc/init.d/ns-slapd

#
Set the correct group permissions
#
/usr/bin/chgrp sys /etc/init.d/ns-slapd

Check for the existance of the hard link
if it exists, remove it, then create the new
links.

 /usr/bin/rm -f /etc/rc2.d/S72ns-slapd
 /usr/bin/ln /etc/init.d/ns-slapd /etc/rc2.d/S72ns-slapd
 /usr/bin/rm -f /etc/rc0.d/K72ns-slapd
 /usr/bin/ln /etc/init.d/ns-slapd /etc/rc0.d/K72ns-slapd

cd /cdrom/cd_4.1_ext/Solaris_Extension
pkgadd -d .
The following packages are available:

SUNWdsnis Solaris Extensions for Netscape Directory Server
- NIS (sparc) 4.1

2 SUNWdsrad Solaris Extensions for Netscape Directory Server
- RADIUS (sparc) 4.1

3 SUNWdsutl Solaris Extensions for Netscape Directory Server
- Utilities (sparc) 4.1

Select package(s) you wish to process (or ’all’ to process all
packages). (default: all) [?,??,q]:
108 Solaris and LDAP Naming Services

Next, run dsypinstall .

Additional information on NIS configuration is presented in Chapter 6, ”NIS

Extensions Configuration.”

blueprints# ./dsypinstall
Chapter 4 iPlanet Directory Server Installation and Configuration 109

CHAPTER 5

Solaris 8 Native LDAP
Configuration

After you install the iPlanet Directory Server as detailed in Chapter 4, ”iPlanet

Directory Server Installation and Configuration,” several configuration changes need

to be made to it before Solaris LDAP clients can be supported. This chapter explains

what these configuration changes are, why they are necessary, and the steps required

to make them. So you can gain a better understanding of the nature of these

changes, the first part of the chapter presents some architectural concepts and

implementation details. The second part of the chapter contains the actual

procedures for setting up the LDAP server and LDAP clients.

Both a graphical user interface (GUI) and a command-line interface provided with

the iPlanet Directory Server can be used to make the necessary configuration

changes. Some can be made either by editing the configuration files, running the

LDAP commands like ldapmodify , importing LDIF files, or through the Directory

Console. The method you choose depends on the type of changes required and your

proficiency at using LDAP tools. Since a lot of hand editing is required and

commands can be quite lengthy, you can download the example text from:

www.sun.com/blueprints

After downloading the text, cut and paste it into the configuration files, the LDIF

files, and the command lines.

Definition of Native LDAP

As discussed in Chapter 2, ”Solaris Naming Services Architecture,” the Solaris 8

operating environment introduces a new naming service based on LDAP technology.

This is referred to as a native implementation because it is built into the Solaris

naming service infrastructure as a core component. Technically, native LDAP is a

client implementation only and not tied to any particular LDAP directory server.

However, for Solaris LDAP clients to work, a properly configured LDAP server must

exist on the network.
111

Solaris LDAP clients have been available for some time in the form of web browsers,

like Netscape Communicator, and LDAP-enabled applications like messaging

servers. These implementations were designed to perform a specific function, such

as searching an address book, and provided their own LDAP libraries. Since core

network services, such as accessing a naming service, are not available through those

LDAP clients, a native Solaris LDAP client is required.

An alternative to deploying native LDAP is presented in Chapter 6, ”NIS Extensions

Configuration,” which discusses the NIS extension implementation. Although they

address the same issue as native LDAP, the extensions are a server-only

implementation. Solaris clients that access an iPlanet Directory Server running the

NIS extensions use the NIS protocol, not LDAP.

Implementing LDAP as a Solaris naming service requires information to be stored in

an LDAP directory. The directory schema needs to be extended to accommodate it

and you need to set proper access rights, so that some of the information can be read

by everyone but some, like passwords, can only be modified by the Solaris user who

owns it. Changes to the Solaris security model are required so that users can be

authenticated by LDAP methods. Clients need a way of locating available LDAP

servers and knowing where in the directory information tree (DIT) to begin

searching for information.

The next section presents a closer examination of the components, which constitute

the native LDAP implementation. Understanding how these components work is

helpful to an understanding of the nature of changes required on the LDAP server

and how Solaris LDAP clients are configured. If you already know how Solaris

LDAP was implemented, you can skip this section and proceed directly to “Server

Configuration Procedure” on page 119 and “Client Configuration” on page 140.

Native Solaris LDAP Implementation

In general, the goal of this implementation is to store in an LDAP directory all the

information formerly stored in NIS maps and NIS+ tables and enable Solaris clients

to access that information through LDAP rather than the NIS/NIS+ protocol. As

discussed in Chapter 2, ”Solaris Naming Services Architecture,” LDAP uses different

naming, information, security, and access models than those of NIS/NIS+, a number

of changes are required. The Solaris LDAP client must first bind to the directory

before information can be accessed, and the stored information has to be returned in

a format that Solaris utilities can use.

When a Solaris LDAP client boots, a couple of configuration files are read. One file

contains the client’s credentials and describes how authentication is to take place,

and the other one locates LDAP servers and sets various configuration parameters.
112 Solaris and LDAP Naming Services

These files are dynamic and refreshed from information stored in the LDAP

directory as client profiles. Enough information to bind to an LDAP server and

retrieve an initial profile is supplied during the LDAP client initialization.

After the client successfully binds to the server, Solaris utilities that access data

through the Solaris Naming Switch can now access LDAP data, provided the ldap
tag is included in the name switch configuration file. The Solaris login utility can

also authenticate users through the enhanced Solaris 8 PAM mechanism. Since the

directory binding takes place before a user logs in, an account that is independent of

any user must be set up on the server for the client machine. Since creating a

separate account for each client can be tedious, you can a special account which by

default is called cn=proxyagent to perform the binding for all clients within a

domain.

Similar to the NIS and NIS+ naming services, LDAP clients are grouped into

domains that all share a common namespace. On the LDAP server, an entry in the

DIT identifies the domain it services. To support this, a new object class, called

nisDomainObject , that contains the nisdomain attribute is created. The client

checks this attribute to make sure it binds to a server in the same domain it belongs

to.

Since information is stored in LDAP entries rather than in NIS maps or NIS+ tables,

an LDAP definition, or schema, needs to be established along with LDAP containers

to hold the entries. The standard RFC 2307 schema, which is discussed in Chapter 2,

”Solaris Naming Services Architecture,” defines most of what is required, but some

changes are needed to support the native Solaris LDAP implementation. Therefore,

the NIS object classes and attributes that ship with the iPlanet Directory Server

require modification since they are based on RFC 2307.

Solaris LDAP Client Profiles

To simplify Solaris LDAP client configuration, a client profile entry is created on the

directory server. A separate client profile can be created for each client, or several

clients can share the same one. The following is a list of client profile attributes and

their description.

■ SolarisLDAPServers — A comma-separated list of LDAP servers that can be

used by the client. This is a mandatory attribute that must contain at least one

server name. If multiple servers are listed, the first server is tried first, and if after

a specified timeout period it doesn’t respond, then the next server in the list is

tried.

■ SolarisSearchBaseDN — LDAP naming context where the Solaris naming

information will be stored.

■ SolarisBindDN — bindDN used by the clients. Usually this is the proxyagent
DN. The default is a NULL string that is used with anonymous authentication.
Chapter 5 Solaris 8 Native LDAP Configuration 113

■ SolarisBindPassword — The password when SIMPLE or CRAM_MD5
authentication is used. The default is a NULL string.

■ SolarisAuthMethod — Authentication method to be used by the clients: NONE,
SIMPLE, or CRAM_MD5. If multiple methods are specified, the first one is tried,

and if it fails, the next method listed is tried. The default is NONE.
■ SolarisTransportSecurity — Secured transport to be used by the client

when updating information on the server. Currently, NONEis the only option

supported.

■ SolarisDataSearchDN — Alternate baseDN when searching for naming

information. This attribute allows you to override one or more of the default

containers established on the server.

■ SolarisSearchScope — Search scope to be used to look up naming

information. Base , One level , and Subtree are possible values. The default is

One level .

■ SolarisSearchTimeLimit — Time limit in seconds when searching for naming

information. The default is 30 seconds.

■ SolarisCacheTTL — Time-To-Live (TTL) value for clients to refresh their profile

information from the server. If 0 (zero) is specified then automatic refreshes are

disabled.

■ SolarisSearchReferral — Referral option to be used to look up naming

information. Default is to always follow referrals.

The ldap_gen_profile (1M) command is used to create client profiles. Its usage is

described in “Client Configuration” on page 140.

NIS Domain

Although native LDAP does not use NIS, the concept of an NIS domain is carried

over. Solaris clients find a server for a specific domain by checking the value of the

nisDomain attribute in the nisDomainObject object class as defined in the root
DN entry of the DIT representing the desired domain. The client uses this

information when initializing the system and refreshing the client profile. During the

initialization, the client searches for an entry on the LDAP server that has a value in

nisDomain matching the desired domain. The DN of the entry found is used as the

BaseDN for the naming information.

When refreshing the client profile, the program ldap_cachemgr, which performs

the refresh, verifies that nisDomain defined in the root DN entry matches the

domain desired before refreshing its profile.
114 Solaris and LDAP Naming Services

This is an example entry, in LDIF format, setting nisdomain to the domain

mydomain.blueprints.com .

Authentication Method

When a Solaris LDAP client binds to a directory server, LDAP authentication is

performed. That is, the authentication takes place on the directory server, not on the

client. Currently, the supported mechanisms by Solaris 8 clients are SIMPLE, CRAM-
MD5, and NONE. A password and DN are passed to the server during SIMPLE
authentication. CRAM-MD5, as described in Chapter 3, ”Security Models,” uses a

challenge-response mechanism that provides a higher degree of security. However,

the iPlanet Directory Server 4.12 does not support CRAM-MD5, so SIMPLE
authentication is the only viable option. If NONEis specified, then anonymous

authentication is used.

Solaris applications that run on an LDAP client are authenticated through the

Pluggable Authentication Module (PAM) mechanism as described in Chapter 3,

”Security Models.” Here, the client can choose from pam_unix or pam_ldap
authentication.

pam_unix

The pam_unix module has been enhanced in the Solaris 8 operating environment to

be LDAP aware. It uses the traditional model of UNIX authentication, which means

the following steps take place:

1. The encrypted password of the user is retrieved from the directory and passed to

the local machine.

2. Users are prompted for their passwords.

3. The user’s password is encrypted on the local machine.

dn: dc=mydomain,dc=blueprints,dc=com

dc: mydomain

objectclass: top

objectclass: domain

objectclass: domainRelatedObject

objectclass: nisDomainObject

nisdomain: mydomain.blueprints.com
Chapter 5 Solaris 8 Native LDAP Configuration 115

4. The system compares the two encrypted passwords locally to decide if the user

should be authenticated or not.

If clients using LDAP are configured with this module, the userPassword attribute

must be readable by the identity that the client is using (anonymous or the

configured cn=proxyagent). Additionally, there are two more restrictions to

pam_unix :

■ The password must be stored in an attribute called userPassword .

■ The password must be stored in UNIX crypt format (not clear text or SHA-1).

pam_ldap

Since the traditional method of authentication used by pam_unix is not necessarily

the best option when you are deploying LDAP directories, a new PAM mechanism,

pam_ldap , was added in the Solaris 8 operating environment to authenticate users

directly to the directory. This module allows Solaris clients to work with newer and

more advanced authentication methods that the directory server might support in

the future. Solaris clients using pam_unix do not require read access to the

password attribute, and they do not need the password to be stored in any specific

format in the directory.

As an added benefit, because pam_unix authenticates users directly to the directory

server, user level access controls can be put in place to control an individual’s

authentication by means of ACIs.

Note – SIMPLE authentication, which passes passwords in clear text, is the only

method currently supported by the iPlanet Directory Server through pam_ldap .

Therefore pam_unix is recommended.

Proxy Agent

Unless anonymous authentication is used, all naming information lookups from a

Solaris LDAP client are performed as a proxy agent. The proxy agent entry can be

created anywhere in the DIT but must contain a userPassword attribute. The

recommended entry location is under the ou=profile container and uses the

person object class as shown below.
116 Solaris and LDAP Naming Services

The userpassword type specifies the format used to store the password (here it is

crypt). Any entry containing the userPassword attribute can be used, but for easy

identification, cn=proxyagent is commonly used.

Directory Information Tree

Solaris LDAP clients use the information in a predefined Directory Information Tree

(DIT). The DIT is divided into containers that are subtrees containing entries for a

specific information type. TABLE 5-1 lists the container and information type stored in

the DIT.

dn: cn=proxyagent,ou=Profile,dc=blueprints, dc=com

sn: proxyagent

objectclass: top

objectclass: person

cn: proxyagent

userpassword: {crypt}xxxxxxxxxxxxxx

TABLE 5-1 Directory Information Tree

Container Information Type

ou=Ethers bootparams , ethers

ou=Group group

ou=Hosts hosts , ipnodes

ou=Aliases aliases

ou=Netgroup netgroup

ou=Networks networks , netmasks

ou=People passwd , shadow , user_attr , audit_user , publickey for users

ou=Protocols protocols

ou=Rpc rpc

ou=Services services

ou=Profile Solaris client profile

ou=SolarisAuthAttr auth_attr
Chapter 5 Solaris 8 Native LDAP Configuration 117

Loading Data

To facilitate loading of legacy naming service data into an LDAP directory, Solaris 8

provides a tool called dsimport included on the Solaris 8 companion CD containing

the NIS extensions. With dsimport , you can load data in /etc file format into the

iPlanet Directory Server. To import data from NIS maps, use the source files for

those maps.

A definition of how the /etc formatted data should be converted to an LDAP

format is contained in a mapping file. The rules defined in the file can be modified,

but unless you have a specific reason for doing so, modification is not

recommended.

Caution – Early versions of dsimport , which shipped with Sun Directory Server,

do not support conversion to the native Solaris LDAP format. You can verify you

have the right version by checking to see if dsimport accepts the -S flag.

Naming Context

As discussed in Chapter 2, ”Solaris Naming Services Architecture,” the LDAP

naming model supports two styles of naming the top node of the DIT, or naming

context. One is the original X.500 style which defines a country code (c=) and

organization (o=) and the other is domain naming, which defines domain

component (dc=) entries. The iPlanet Directory Server supports both styles and uses

the X.500 style (o=) as the default during installation.

The domain naming style has become popular because users can align the name of

their rootDN with their DNS address. Since almost all companies have a registered

DNS address, this alignment ensures uniqueness among other directory servers. The

examples used here assume the fictitious domain of blueprints.com and use the

dc= naming conventions.

ou=SolarisProfAttr prof_attr , exec_attr

ou=projects project

nismapname=auto_* auto_*

TABLE 5-1 Directory Information Tree (Continued)

Container Information Type
118 Solaris and LDAP Naming Services

Server Configuration Procedure

The procedure to set up the iPlanet Directory Server to support Solaris LDAP clients

is far more complex than that for setting up the client. One reason is that the Solaris

native LDAP implementation was designed to be independent of the LDAP

directory server. Since Sun has decided to ship the iPlanet Directory Server with the

Solaris 8 operating environment, it is likely a simplified procedure will be available

in the future.

Many changes are required, so grouping them into separate categories makes the

task of setting up a server less daunting. These categories are:

■ Changes to the directory schema

New object classes and attributes need to be added. One minor tweak to an existing

object class is also required.

■ Creation of the DIT structure and support entries

The containers that will hold the Solaris naming information need to be created

along with client profile entries and an entry to use as a proxy agent. Correct

permissions need to be set on containers and attributes for proper operation. Also

the server needs to be configured to store passwords in crypt format.

■ Performance optimization

Attribute indexes need to be created to increase directory search performance.

Native LDAP will work without these indexes, but performance will suffer. Virtual

list views (VLV) need to be created so containers with a large number of entries can

be viewed.

■ Population of the DIT

Finally, your legacy naming service data needs to be loaded into the iPlanet

Directory Server. A small amount of sample data can be loaded first for testing.

Tools and Techniques

There are four basic techniques for changing configuration data on the iPlanet

Directory Server:

1. Using the Directory Console GUI.

2. Creating an LDIF file that defines the changes, then importing it.

3. From the command line, by running ldapmodify and ldapadd commands.

4. Modifying the server configuration files with an editor.
Chapter 5 Solaris 8 Native LDAP Configuration 119

If you are unfamiliar with LDAP tools, the Directory Console is the easiest method

to use when making small changes. Since a number of the examples assume the

Directory Console is being used, procedures for bringing up the appropriate screens

are presented next. Later, the procedural steps show the data fields that need to be

modified and assumes you know where to find the input form.

Creating an LDIF file is a popular method, but is most efficient when you have a

template or a script that generates it for you. Check the Web site www.sun.com/
blueprints for LDIF templates and scripts. Chapter 9, ”Preventive Maintenance,”

presents an overview of how to import and export LDIF files.

The command-line method is the most difficult method because the command lines

tend to be very complex. If you use LDAP commands, it is best to embed them in a

script. Correct usage of these commands can be found in the iPlanet Directory Server

documentation on the www.iplanet.com Web site.

Modifying the directory server configuration files is the most efficient way of adding

new object classes and attributes. The text of these changes can be found on

www.sun.com/blueprints and can easily be cut and pasted into the configuration

files.

Using the Directory Console to Make Configuration Changes

The Directory Console is useful for creating new objects, such as containers, special

entries such as the proxyagent entry, and setting permissions by creating ACIs.

▼ Adding an Object to the DIT

1. Run the Directory Console and login as cn=Directory Manager.

2. Go to the Directory tab and highlight the portion of the tree in the left pane where
you want to insert the new object.

3. Hold down the right mouse button and choose New from the pull-down menu.

Four choices are offered: User, Group, Organizational Unit, and Other. For the

objects defined as ou entries choose Organizational Unit; for the other objects, such

as the nisMap object, choose Other and choose the appropriate object from the list.

FIGURE 5-1 shows what adding an nisMap object would look like.
120 Solaris and LDAP Naming Services

FIGURE 5-1 Property Editor View Window

4. Click OK

If you accidently create the object in the wrong portion of the DIT, you can delete it

by choosing Delete from the pull-down menu.

5. To verify that the data entered is correct, choose Properties from the pull-down
menu.

Note – You can add attributes and change their values by invoking the Property
Editor on an existing entry.

▼ Setting Permissions by Creating ACI Entries

1. Run the Directory Console and login as cn=Directory Manager.

2. Go to the Directory tab and highlight the top node of the DIT where you want to
place the object.

3. If an ACI already exists for that object it is displayed on the Multivalue ACI
Selector screen. You can either modify an existing ACI by clicking it or create a
new one by choosing New (see FIGURE 5-2).

FIGURE 5-2 Set Access Permissions Window
Chapter 5 Solaris 8 Native LDAP Configuration 121

4. Double-click the User/Group box to specify which users and groups the access
rights apply to.

5. Double-click the Rights box to specify read, write, search and compare access
rights.

6. To set permissions on a particular attribute, click the ACI Attribute box and fill in
the information in FIGURE 5-3.

FIGURE 5-3 Select Attributes Window

Note – The value of an ACI can also be changed from the Property Editor.

▼ Importing LDIF Files from the Directory Console

1. Run the Directory Console and login as cn=Directory Manager.

2. From the Configuration Tab, left click Console on the top bar and choose Import.

Use the defaults in the Import screen and browse to the location of the LDIF file you

created.

Caution – Never choose the Overwrite entire database option because that option

will wipe out any changes you made to the directory.
122 Solaris and LDAP Naming Services

Importing LDIF Files from the Command Line

Usage:

ldapmodify -a -D bindDN -w password -f filename.ldif

where:

-a assumes the change type is add

-D DN of entry you are binding as, usually cn=Directory Manager
-w password associated with the DN specified

Example:

Summary of Steps Required

The following list summarizes the changes required on the iPlanet Directory Server

to support native LDAP clients. The changes are described in detail following the

summary. Before you make these changes, the server should already be installed and

configured as described in Chapter 4, ”iPlanet Directory Server Installation and

Configuration.”

Directory Schema Update

1. Modify the slapd.user.at.conf file to add new attributes.

2. Modify the slapd.oc.conf configuration file to change the definition of an
existing object class.

3. Modify slapd.user_oc.conf configuration files to add new object classes.

DIT and Support Entry Creation

4. Configure the server to store passwords in the unix_crypt format.

5. Add new containers to the directory tree.

6. Modify the top-level access control permissions to restrict those attributes that can
be changed by the entry owner for security reasons.

7. Enable anonymous viewing on VLV Control ACI.

blueprints# ldapmodify -a -D “cn=Directory Manager” -w secret -f\
dit.ldif
Chapter 5 Solaris 8 Native LDAP Configuration 123

8. Add the proxy agent entry.

9. Give cn=proxyagent password read permission.

10. Generate the client profile.

Performance Optimization

11. Create indexes for the native LDAP client specific attributes.

12. Create Virtual List View (VLV) indexes for containers with a large number of
objects.

Loading Data

13. Create sample test entries.

14. Populate the directory by running the dsimport command.

▼ Step 1. Modifying slapd.user_at.conf

The slapd.user_at.conf file adds new attributes that are not defined in the

slapd.at.conf configuration file. If you are modifying the server after a fresh

install, this file is empty.

1. Stop the directory server (if it is running) and edit the slapd.user_at.conf
file.

2. Add the following entries:

The nisMapEntry attribute.

blueprints# install_dir/ slapd - instance/ stop-slapd
bluebrints# vi install_dir/ slapd - instance/ config/slapd.at.conf

Sun nisMapEntry attributes
attribute nisPublickey 1.3.6.1.1.1.1.28 cis
attribute nisSecretkey 1.3.6.1.1.1.1.29 cis
attribute nisDomain 1.3.6.1.1.1.1.30 cis
124 Solaris and LDAP Naming Services

The following lines for LDAP client profile.

The mailGroup attribute.

▼ Step 2. Modifying slapd.oc.conf

The slapd.oc.conf configuration file defines LDAP standard object classes.

Normally, it is not advisable to edit this file, but one small change is required. Back

up the file before making the change.

1. Stop the directory server and edit slapd.oc.conf .

2. Modify the ipNetwork entry to change cn from requires to allows .

XXX attributes for LDAP client profile
attribute SolarisLDAPServers 1.3.6.1.4.1.42.2.27.5.1.15 cis
attribute SolarisSearchBaseDN 1.3.6.1.4.1.42.2.27.5.1.16 dn single
attribute SolarisCacheTTL 1.3.6.1.4.1.42.2.27.5.1.17 cis single
attribute SolarisBindDN 1.3.6.1.4.1.42.2.27.5.1.18 dn single
attribute SolarisBindPassword 1.3.6.1.4.1.42.2.27.5.1.19 ces single
attribute SolarisAuthMethod 1.3.6.1.4.1.42.2.27.5.1.20 cis
attribute SolarisTransportSecurity 1.3.6.1.4.1.42.2.27.5.1.21 cis
attribute SolarisCertificatePath 1.3.6.1.4.1.42.2.27.5.1.22 ces single
attribute SolarisCertificatePassword 1.3.6.1.4.1.42.2.27.5.1.23 ces single
attribute SolarisDataSearchDN 1.3.6.1.4.1.42.2.27.5.1.24 cis
attribute SolarisSearchScope 1.3.6.1.4.1.42.2.27.5.1.25 cis single
attribute SolarisSearchTimeLimit 1.3.6.1.4.1.42.2.27.5.1.26 int single
attribute SolarisPreferredServer 1.3.6.1.4.1.42.2.27.5.1.27 cis
attribute SolarisPreferredServerOnly 1.3.6.1.4.1.42.2.27.5.1.28 cis single
attribute SolarisSearchReferral 1.3.6.1.4.1.42.2.27.5.1.29 cis single

 # XXX Sun additional attributes to RFC2307 attributes (NIS)
attribute mgrpRFC822MailMember 2.16.840.1.113730.3.1.30 cis
attribute rfc822mailMember ces
attribute nisNetIdUser 1.3.6.1.4.1.42.2.27.1.1.12 ces
attribute nisNetIdGroup 1.3.6.1.4.1.42.2.27.1.1.13 ces
attribute nisNetIdHost 1.3.6.1.4.1.42.2.27.1.1.14 ces

blueprints# install_dir/ slapd - instance/ stop-slapd
blueprints# vi install_dir/ slapd - instance/ config/slapd.oc.conf
Chapter 5 Solaris 8 Native LDAP Configuration 125

Before changes:

After changes:

▼ Step 3. Modifying slapd.user_oc.conf

The slapd.user_oc.conf file adds new object classes that are not defined in the

slapd.oc.conf configuration file. If you are modifying the server after a fresh

install, this file is empty. To avoid having to edit these entries by hand, you can

download a sample file from www.sun.com/blueprints .

Note – The object classes added here contain attributes that are defined in Step 3.

You should perform both Steps 2 and 3 before restarting the directory server.

1. Stop the directory server (if it is running) and edit the slapd.user_oc.conf
file.

2. Add the following entries:

The publickey objectclass .

objectclass ipNetwork
oid 1.3.6.1.1.1.2.7
requires objectClass, ipNetworkNumber, cn
allows ipNetmaskNumber, manager, l, description

objectclass ipNetwork
oid 1.3.6.1.1.1.2.7
requires objectClass, ipNetworkNumber
allows cn , ipNetmaskNumber, manager, l, description

blueprints# install_dir/ slapd - instance/ stop-slapd
blueprints# vi install_dir/ slapd - instance/ config/slapd.oc.conf

NIS publickey objectclass
objectclass NisKeyObject
oid 1.3.6.1.1.1.2.14
superior top
requires cn, nisPublickey, nisSecretkey
allows uidNumber, description
126 Solaris and LDAP Naming Services

The nisDomainObject objectclass .

The LDAP client profile objectclass .

The mailGroup objectclass .

The nisMailAlias objectclass .

NIS domain objectclass
objectclass nisDomainObject
oid 1.3.6.1.1.1.2.15
superior top
requires nisDomain

LDAP client profile objectclass
objectclass SolarisNamingProfile
oid 1.3.6.1.4.1.42.2.27.5.2.7
superior top
requires cn, SolarisLDAPservers, SolarisSearchBaseDN
allows SolarisBindDN, SolarisBindPassword,
SolarisAuthMethod,SolarisTransportSecurity,
SolarisCertificatePath,
SolarisCertificatePassword,SolarisDataSearchDN,
SolarisSearchScope,
SolarisSearchTimeLimit,SolarisPreferredServer,
SolarisPreferredServerOnly, SolarisCacheTTL,SolarisSearchReferral

mailGroup objectclass
objectclass mailGroup
oid 2.16.840.1.113730.3.2.4
superior top
requires mail
allows cn, mgrpRFC822MailMember

nisMailAlias objectclass
objectClass nisMailAlias
oid 1.3.6.1.4.1.42.2.27.1.2.5
superior top
requires cn
allows rfc822mailMember
Chapter 5 Solaris 8 Native LDAP Configuration 127

The nisNetId objectclass .

▼ Step 4. Changing Password Store to Crypt

Format

By default, the iPlanet Directory Server stores passwords in the SHA-1 format. Since

the native LDAP client does not support this format, the server needs to be

configured to store passwords in another format: unix_crypt . Additional

information on how crypt works can be found in Chapter 3, ”Security Models.”

The easiest method for changing the password store format is through the Directory

Console. Note that changing the configuration does not affect how existing

passwords are stored, but affects only new ones. Therefore, this change needs to take

place before the directory is populated.

1. Bring up the Directory Console and login as cn=Directory Manager.

2. Under the Configuration tab, highlight Database in the left pane.

3. Under the Password tab, use the Password encryption pull-down menu to change
the format to UNIX crypt as shown in FIGURE 5-4.

nisNetId objectclass
objectClass nisNetId
oid 1.3.6.1.4.1.42.2.27.1.2.6
superior top
requires cn
allows nisNetIdUser, nisNetIdGroup, nisNetIdHost
128 Solaris and LDAP Naming Services

FIGURE 5-4 Password Tab

▼ Step 5. Adding New Containers

You create the containers required to hold LDAP entries either by importing an LDIF

file or by using the Directory Console. To import the entries, you must first create an

LDIF file that contains the entry information shown below, then run the

ldapmodify command, as described earlier, or run Import from the Directory

Console.

1. Modify the top entry to add the nisDomainObject properties.

To import it, create the following LDIF file:

dn: dc=blueprints,dc=com

changetype: modify

add: objectclass

objectclass: nisDomainObject

add: nisdomain

nisdomain: mydomain.blueprints.com
Chapter 5 Solaris 8 Native LDAP Configuration 129

2. Add the following Organizational Unit (ou) entries at the top level of your DIT.

a. Method 1: From the Create New Organizational Unit screen in the Directory
Console, create entries with these Name fields:

■ People

■ Group

■ Rpc

■ Protocols

■ Networks

■ Netgroup

■ Aliases

■ Hosts

■ Services

■ Ethers

■ Profile

Note – These names are not case sensitive.

b. Method 2: Create the following LDIF file, then import it.

The example uses dc=blueprints , dc=com as the top DIT level and will need to

be changed to reflect your environment.

dn: ou=People,dc=blueprints,dc=com

ou: People

objectClass: top

objectClass: organizationalUnit

dn: ou=Group,dc=blueprints, dc=com

ou: Group

objectClass: top

objectClass: organizationalUnit

dn: ou=Rpc,dc=blueprints, dc=com

ou: Rpc

objectClass: top

objectClass: organizationalUnit

dn: ou=Protocols,dc=blueprints,dc=com

ou: Protocols

objectClass: top
130 Solaris and LDAP Naming Services

objectClass: organizationalUnit

dn: ou=Networks,dc=blueprints,dc=com

ou: Networks

objectClass: top

objectClass: organizationalUnit

dn: ou=Netgroup,dc=blueprints,dc=com

ou: Netgroup

objectClass: top

objectClass: organizationalUnit

dn: ou=Aliases,dc=blueprints,dc=com

ou: Aliases

objectClass: top

objectClass: organizationalUnit

dn: ou=Hosts,dc=blueprints,dc=com

ou: Hosts

objectClass: top

objectClass: organizationalUnit

dn: ou=Services,dc=blueprints,dc=com

ou: Services

objectClass: top

objectClass: organizationalUnit

dn: ou=Ethers,dc=blueprints,dc=com

ou: Ethers

objectClass: top

objectClass: organizationalUnit

dn: ou=Profile,dc=blueprints,dc=com

ou: Profile

objectClass: top

objectClass: organizationalUnit
Chapter 5 Solaris 8 Native LDAP Configuration 131

3. Add the following NIS map objects by creating nisMap entries:

a. Method 1: From the Directory Console, invoke the object editor with
New —> Other and choose nisMap from the pick list.

Create the NIS map entries by filling in the nismap field with these names:

■ auto_home
■ auto_direct
■ auto_master
■ auto_shared

b. Method 2: Create and import a LDIF file that looks like this:

dn: nismapname=auto_home,dc=blueprints,dc=com

nismapname: auto_home

objectClass: top

objectClass: nisMap

dn: nismapname=auto_direct,dc=blueprints,dc=com

nismapname: auto_direct

objectClass: top

objectClass: nisMap

dn: nismapname=auto_master,dc=blueprints,dc=com

nismapname: auto_master

objectClass: top

objectClass: nisMap

dn: nismapname=auto_ON,dc=blueprints,dc=com

nismapname: auto_ON

objectClass: top

objectClass: nisMap

dn: nismapname=auto_shared,dc=blueprints,dc=com

nismapname: auto_shared

objectClass: top

objectClass: nisMap
132 Solaris and LDAP Naming Services

▼ Step 6. Modifying Self-Entry Modification

As discussed in Chapter 10, ”Managing Directory Services,” you set permissions on

a directory object by creating an ACI. You set the ACI either by using the Directory

Console or by creating an LDIF file that contains ACI statements.

1. Method 1: Directory Console

a. Run the Directory Console and login as cn=Directory Manager.

You can do this from the Task tab.

b. Go to the Directory tab and highlight the top node of the DIT where the NIS
objects reside.

c. Right-click and choose Set Access Permissions on the pull-down menu. The
Multivalue ACI Selector form is displayed.

Set the User/Group field to self by double-clicking the field, then enter the text

string self . Also, set the Rights to write by double-clicking the field and checking

the write box.

d. Click the ACI Attribute box and fill in the information in the following form:

Target Attribute(s) is not:

cn || uid || uidNumber || gidNumber || homeDirectory || loginShell
|| gecos || shadowLastChange || shadowMin || shadowMax ||
shadowWarning || shadowInactive || shadowExpire || shadowFlag ||
memberUid

2. Method 2: Create a LDIF file that looks like this:

dn: dc=blueprints , dc=com

changetype: modify

add: aci

aci: (target="ldap:///dc=blueprints,dc=com")(targetattr!="cn || uid
|| uidNumber || gidNumber || homeDirectory || shadowLastChange ||
shadowMin || shadowMax || shadowWarning || shadowInactive ||
shadowExpire || shadowFlag || memberUid")(version 3.0; acl "Allow
self entry modification"; allow (write) userdn = "ldap:///self";)

▼ Step 7. Setting VLV Control ACI

The default behavior of iPlanet Directory Server is to grant permission for all valid

users to access the directory by using Virtual List View (VLV) controls. Since the

ldapclient program uses VLV control to access the directory and does this as an
Chapter 5 Solaris 8 Native LDAP Configuration 133

anonymous user, the default setting needs to be changed to allow anonymous

access. The easiest way to change the VLV control ACI is through the Directory

Console.

1. In the left pane, click config, then features.

The VLV Request Control entry is displayed.

2. Right-click the VLV Request Control entry and choose Properties.

Expand the window, so the userdn=ldap:///all portion of the ACI field shows.

3. Change all to anyone and click OK.

After you modify the ACI, check it by running the ldapsearch command.

▼ Step 8. Adding the Proxy Agent Entry

The cn=proxyagent and userPassword fields are used as input to the

ldap_gen_profile command. This is the DN that Solaris LDAP clients use to bind

to the directory.

1. Add the proxy agent’s entry in the LDAP server. You can create this entry from the
Directory Console by using the new user form or by importing an LDIF file that
looks like this:

ldapsearch -b cn=features,cn=config objectclass=*
dn: oid=2.16.840.1.113730.3.4.9,cn=features,cn=config
objectclass: top
objectclass: directoryServerFeature
oid: 2.16.840.1.113730.3.4.9
cn: VLV Request Control
aci: (targetattr !=”aci”)(version 3.0; acl “VLV Request Control”;
allow (compare,read,search) userdn = “ldap:///anyone”;)

dn: cn=proxyagent,ou=profile,dc=blueprints,dc=com
cn: proxyagent
sn: proxyagent
objectclass: top
objectclass: person
userpassword: proxy_agent_password
134 Solaris and LDAP Naming Services

▼ Step 9. Setting Password Read Permission for

proxyagent

If pam_unix is used to authenticate Solaris users (as recommended) the

cn=proxyagent DN, with which the Solaris LDAP client binds to the server, must

be granted read permission for user account passwords. To perform this operation

through the Directory Console, follow these steps:

1. Click the right mouse button on the top-level object, then choose Set Access
Permissions from the pull-down menu and add the following data:

■ Allow/Deny – allow
■ User/Group – cn=proxyagent , ou=profile (use Add User to List)
■ Host – any
■ Time – any
■ Rights – compare, read, search

Under ACI Attributes

■ ACI Name – allow-read-password (or any descriptive name)

■ Target Attribute(s) – userPassword

2. When done click OK.

An LDIF file can also be used to change the ACI. For example:

dn: dc=blueprints , dc=com

changetype: modify

add: aci

aci: (target="ldap:///dc=blueprints,dc=com")
(targetattr="userPassword")

(version 3.0; acl "password read"; allow (compare,read,search)

userdn = "ldap:///cn=proxyagent,ou=profile,dc=blueprints,dc=com";)

▼ Step 10. Generating the Client Profile

1. Now generate the client profile and then add it into the LDAP server. You should
generate the profile on a 2.8 Solaris machine or higher because older OS levels
won’t have the ldap_gen_profile utility.

blueprints# ldap_gen_profile -P profile -b baseDN -D bindDN \
-w bindDNpasswd ldapServer_IP_address(es)[:port#]
Chapter 5 Solaris 8 Native LDAP Configuration 135

The bindDN used here is the bind DN of the proxy agent. You can specify more than

one LDAP server’s IP address if you want to failover to another LDAP server.

Capture the above result in a file, like profile.ldif .

Example:

The following example shows the generated profile:

Note – There may be a problem with ldap_gen_profile inserting a leading tab in

the second line onward. The leading tab, if present, needs to be deleted before you

import the file.

2. Import the LDIF file using the ldapmodify command.

blueprints# ldap_gen_profile -P myProfile -b “dc=mydomain,dc=blueprints,
dc=com” \
-D cn=proxyagent,ou=profile,dc=mydomain,dc=blueprints,dc=com” \
-w proxy_agent_pswd -a simple xx.xx..xx.xx > profile.ldif

dn: cn=myprofile,ou=profile,dc=mydomain,dc=blueprints,dc=com

SolarisBindDN:cn=proxyagent,ou=profile,dc=mydomain,dc=blueprints,dc=com

SolarisBindPassword: {NS1}xxxxxxxxxxxxxx

SolarisLDAPServers: 192.146.85.197

SolarisSearchBaseDN: dc=mydomain,dc=blueprints,dc=com

SolarisAuthMethod: NS_LDAP_AUTH_SIMPLE

SolarisTransportSecurity: NS_LDAP_SEC_NONE

SolarisSearchReferral: NS_LDAP_FOLLOWREF

SolarisDataSearchDN:profile:(ou=other,dc=mydomain,dc=blueprints,dc=com)

SolarisSearchScope: NS_LDAP_SCOPE_ONELEVEL

SolarisSearchTimeLimit: 30

SolarisCacheTTL: 43200

cn: myprofile

ObjectClass: top

objectclass: SolarisNamingProfile

blueprints# ldapmodify -a -D “cn=Directory Manager” \
-w password -f profile.ldif
136 Solaris and LDAP Naming Services

▼ Step 11. Creating Indexes

To optimize directory search performance, the creation of indexes is recommended.

Indexes can be created through the Directory Console as described in Chapter 7,

”Capacity Planning and Performance Tuning.” The following attributes should be

indexed along with the type of recommended indexing:

■ membernisnetgroup pres,eq,sub
■ nisnetgrouptriple pres,eq,sub
■ memberuid pres,eq
■ macAddress pres,eq
■ uid pres,eq
■ uidNumber pres,eq
■ gidNumber pres,eq
■ ipHostNumber pres,eq
■ ipNetworkNumber pres,eq
■ ipProtocolNumber pres,eq
■ oncRpcNumber pres,eq
■ ipServiceProtocol pres,eq
■ ipServicePort pres,eq
■ nisDomain pres,eq
■ nisMapName pres,eq
■ mail pres,eq

1. Login into the Directory Console as Directory Manager .

2. Under the Configuration Tab, highlight Database and go to the Index Tab.

3. Click Add Attribute, choose one of the attributes listed above and check off the
index types (Equality, Presence, Substring) shown as eq , pres , and sub above.

▼ Step 12. Creating Virtual List View Indexes

In addition to the attribute indexes listed in Step 11, you should create Virtual List

View (VLV) indexes (also referred to as browsing indexes) for any container, such as

password , group , host , and network , that contains a large number of entries. If

you do not create these indexes, search performance will suffer and the directory

server will seem unresponsive.

You can create VLV indexes by using the Directory Console or the Property Editor to

define new vlvIndex and vlvSearch objects or by importing an LDIF file. The

Property Editor method is cumbersome since a lot of information needs to be

entered manually and so is not recommended.
Chapter 5 Solaris 8 Native LDAP Configuration 137

1. For each attribute, create an LDIF file that looks like this:

Repeat the above, substituting the following attributes and objectclasses :

■ getspent , objectclass=posixAccount
■ getgrent, objectclass=posixGroup
■ gethostent, objectclass=ipHost
■ getnetent, objectclass=ipNetwork

2. Run the ldapmodify command to import the LDIF file.

3. Build the index databases.

Note – Place the directory server in read-only mode when creating index database

files. See Chapter 9, ”Preventive Maintenance” for instructions.

cn: cn= getpwent ,cn=config,cn=ldbm
objectclass: top
objectclass: vlvSearch
cn: getpwent
vlvBase: ou=people,dc=blueprints,dc=com
vlvScope: 1
vlvFilter: (objectclass= posixAccount)
aci: (target="ldap:///
cn=getpwent,cn=config,cn=ldbm")(targetattr="*")
 (version 3.0; acl
"Config";allow(read,search,compare)userdn="ldap:///anyone";)

dn: cn= getpwent ,cn= getpwent ,cn=config,cn=ldbm
cn: getpwent
vlvSort: cn uid
objectclass: top
objectclass: vlvIndex

blueprints# ldapmodify -a -D “cn=Directory Manager” -w password -f vlv.ldif

blueprints# cd install_dir/ instance/
blueprints# ./vlvindex getpwent
blueprints# ./vlvindex getgrent
blueprints# ./vlvindex gethostent
blueprints# ./vlvindex getspent
138 Solaris and LDAP Naming Services

▼ Step 13. Creating Sample Test Entries

For test purposes, you can create sample entries through the Directory Console. For

example, you could add an ipHost entry in the Hosts container by invoking the

New Object menu item.

▼ Step 14. Populating the LDAP data

Information from your current naming service can now be placed in the LDAP

directory. For bulk-load of real production data use the dsimport command.

The dsimport command is included in the NIS Extensions software which is

discussed in Chapter 6, ”NIS Extensions Configuration.” To load the dsimport
command without installing the NIS extensions, load the Utilities package only.

Example:

The command syntax for dsimport is:

Before you can create the LDIF file used to populate the directory, an NIS to LDAP

mapping file must exist. A default one, called nis.mapping , is created in:

/etc/opt/SUNWconn/ldap/current/mapping

The SUNWdsnis package must be loaded before the file can be installed. It should be

modified to match the topology of your DIT.

The dsimport command takes a text file in /etc/files format as input. Typically,

you use the same files that are maintained to generate your NIS maps.

1. To load password data (assuming passwd.nis as an input NIS data file):

blueprints# cd install_dir/Solaris_Extension
blueprints# pkgadd -d SUNWdsutl

blueprints# /opt/SUNWconn/ldap/sbin/dsimport [-n] [-r] [-s] [-c
dsserv_conf_file] [-d debuglevel] [-D binddn] [-f front_end] [-h
host] [-m mapping_file] [-M bindmethod] [-p port] [-S
schema_entry_dn] -t table [-T ldap-timeout] [-V variable=value]...
[-w passwd] [file...]

blueprints# cat passwd.nis | dsimport -n -m file.mapping -t passwd
\ -M SIMPLE -D “ adminDN” -w “ adminPasswd” > passwd.nis
Chapter 5 Solaris 8 Native LDAP Configuration 139

2. Now load this generated password data (passwd.ldif) into the LDAP server.

3. Repeat the process for all other NIS maps.

Client Configuration

Solaris 8 LDAP clients need to be initialized after the operating system is installed.

First, you will need to install the client specifying NIS, NIS+, or files as the

naming service, then convert it to LDAP. You should also make sure the SUNWldap
package is loaded or the LDAP utilities will not be installed.

How LDAP Clients Initialize

The following is an overview of the client initialization process.

1. The domainname is set on the client.

2. The ldapclient command is run on the client to specify a directory server IP

address and the name of a profile that resides on the server.

3. The ldapclient command performs an anonymous search of the server looking

for the nisDomainObject , then checks the value of the nisdomain attribute.

Since the client uses VLV control for this search, it is mandatory to have the VLV

Control ACI set to userdn=anyone to permit anonymous access.

4. A check is made to see if the value of the nisdomain attribute matches the name

of the domain the client is set to.

5. The profile entry specified on the command line is retrieved, and the information

is used to create two local files: /var/ldap/ldap_client_file and /var/
ldap/ldap_client_cred .

6. The /etc/nsswitch.conf file is modified to include ldap as a naming service.

blueprints# ldapmodify -a -c -D “cn=Directory Manager” -w password
-f passwd.ldif

ldap_client# domainname mydomain.blueprints.com
140 Solaris and LDAP Naming Services

7. When the client is rebooted, the /usr/lib/ldap/ldap_cachemgr program is

run to read the two files and then caches the information.

8. When an LDAP naming service request is made, the client used the cached

information to bind to the server and retrieve the data.

9. Periodically, ldap_cachemgr checks the server to see if the profile has changed

and updates the cached information if it has.

Sample /var/ldap/ldap_client_file

This information in the sample file has the following meanings:

NS_LDAP_SERVERS— Server Information: Server’s IP addresses [:port]

NS_LDAP_SEARCH_BASEDN— Search basename , baseDN name for LDAP

operation.

NS_LDAP_AUTH— Authentication Mechanism, the security mechanism to be used.

NS_LDAP_TRANSPORT_SEC— Secure Transport, the transport service to be used.

NS_LDAP_SEARCH_REF— Search referral option, follow or don’t follow referral.

NS_LDAP_DOMAIN— Domain name

NS_LDAP_EXP— Server Info Expiration Time, the time when the configuration

stored in this file and the ldap_client_cred files become stale. Default is 12 hours

from last refresh. The parameter is expressed in seconds.

#
Do not edit this file manually; your changes will be lost.Please
use ldapclient (1M) instead.
#
NS_LDAP_FILE_VERSION= 1.0
NS_LDAP_SERVERS= 145.107.100.1
NS_LDAP_SERVERS= 147.217.200.1
NS_LDAP_SEARCH_BASEDN= dc=blueprints,dc=com
NS_LDAP_AUTH= NS_LDAP_AUTH_SIMPLE
NS_LDAP_TRANSPORT_SEC= NS_LDAP_SEC_NONE
NS_LDAP_SEARCH_REF= NS_LDAP_FOLLOWREF
NS_LDAP_DOMAIN= mydomain.blueprints.com
NS_LDAP_EXP= 957424982
NS_LDAP_SEARCH_SCOPE= NS_LDAP_SCOPE_ONELEVEL
NS_LDAP_SEARCH_TIME= 30
NS_LDAP_PROFILE= default
NS_LDAP_SEARCH_DN=passwd:(ou=people,dc=blueprints,dc=com)
Chapter 5 Solaris 8 Native LDAP Configuration 141

NS_LDAP_SEARCH_DN— Alternate baseDN, for a specific database search. The

default is defined internally (multi_value).

NS_LDAP_PROFILE— Name of the client profile

NS_LDAP_SEARCH_SCOPE— Scope of the LDAP search. Default is one level.

NS_LDAP_SEARCH_TIME— Search time out, maximum time after which, if a search

operation doesn’t get the result, it returns to timeout. Default is 30 seconds; can be

increased or decreased depending upon the complexity of the network.

Note – Some of these parameters might not be present in the configuration file; their

absence means they have a default value.

Sample /var/ldap/ldap_client_cred File

This information in the sample file has the following meanings:

NS_LDAP_BINDDN— Binding DN, the LDAP client name used for general naming

information lookup.

NS_LDAP_BINDPASSWD— Bind DN Password, the LDAP client password for

authentication.

ldap_cachemgr Daemon

The ldap_cachemgr is a daemon that runs on the LDAP client machines. It serves

two purposes:

■ Refreshes the information in the /var/ldap/ldap_client_file file from the

LDAP server.

■ Accesses the credential information from the /var/ldap/ldap_client_cred
file which is readable only by root .

#
Do not edit this file manually; your changes will be lost.Please
use ldapclient (1M) instead.
#
NS_LDAP_BINDDN= cn=proxyagent,ou=profile,dc=blueprints,dc=com
NS_LDAP_BINDPASSWD= {NS1}XXXXXXXXXXXXXXX
142 Solaris and LDAP Naming Services

If this process is not running, then the refresh is done per process and the /var/
ldap/ldap_client_file will not be updated. Also, only anonymous connections

can be made to the directory server (unless permissions of ldap_client_cred are

changed to allow read access to everyone).

Besides providing the update capability, the ldap_cachemgr also reduces the

LDAP network traffic generated during the refresh and provides a robust parsing

mechanism that can flag any invalid syntax in the configuration file. See the

ldap_cachemgr (1M) man page for additional information.

ldaplist Command

ldaplist is an LDAP utility that lists the Naming information from the LDAP

servers. It uses the simplified API to access the information, thus obeying all the

security and options defined by the configuration files. See the ldaplist (1) man

page for additional information.

Without any argument, ldaplist returns all the containers in the current search

baseDN.

blueprints# ldaplist hosts lizzy
dn:
cn=lizzy+ipHostNumber=181.232.103.177,ou=Hosts,dc=blueprints,dc=com

ldapclient# ldaplist
dn: ou=Directory Administrators, dc=blueprints,dc=com
dn: ou=People, dc=blueprints,dc=com
dn: ou=Special Users,dc=blueprints,dc=com
dn: ou=Group,dc=blueprints,dc=com
dn: ou=rpc,dc=blueprints,dc=com
dn: ou=protocols,dc=blueprints,dc=com
dn: ou=networks,dc=blueprints,dc=com
dn: ou=Groups, dc=blueprints,dc=com
dn: ou=netgroup,dc=blueprints,dc=com
dn: ou=aliases,dc=blueprints,dc=com
dn: ou=Hosts,dc=blueprints,dc=com
dn: ou=services,dc=blueprints,dc=com
dn: ou=Ethers,dc=blueprints,dc=com
dn: ou=profile,dc=blueprints,dc=com
dn: nismapname=auto_home,dc=blueprints,dc=com
dn: nismapname=auto_direct,dc=blueprints,dc=com
dn: nismapname=auto_master,dc=blueprints,dc=com
Chapter 5 Solaris 8 Native LDAP Configuration 143

LDAP Client Initialization Example

Client Verification

To double-check that the LDAP client is set up properly, run the ldaplist
command as described earlier. If the command fails, check the following:

■ Check that ldap exists as a source in /etc/nsswitch.conf .

■ Check that the files /var/ldap/ldap_client_file and /var/ldap/
ldap_client_cred exist.

■ Check that the ldap_cachemgr is running (ps -ef |grep ldap should show it

running).

■ Run ldapclient -l to check out the contents of the LDAP client cached files.

Caution – Do not try to read the /var/ldap/* files directly—there is no guarantee

they are in ASCII readable format.

■ Verify that the requested profile exists on the server.

Troubleshooting Tips

This section describes LDAP configuration problems and suggested solutions to the

problems.

ldapclient# ldapclient -v -P default 129.148.181.130
parsing -P option
findDN: begins
findDN: calling __ns_ldap_default_config()
found 3 namingcontexts
findDN: __ns_ldap_list(NULL,
"(&(objectclass=nisDomainObject)(nisdomain=blueprints.com))"
rootDN[0] dc=blueprints,dc=com
found baseDN dc=blueprints,dc=com for domain blueprints.com
Servers addresses 129.148.181.130
About to configure machine by downloading a profile
...
144 Solaris and LDAP Naming Services

Unresolved Host Name

The Solaris LDAP client back end returns fully qualified host names for host

lookups, such as host names returned by gethostbyname (3N) and

getipnodebyname (3N). If the name stored is fully qualified (it contains at least one

dot), then the client returns the name as is. For example, if the name stored is

hostB.eng , the returned name is hostB.eng .

If the name stored in the LDAP directory is not fully qualified (it does not contain a

dot), the client back end appends the domain part to the name. For example, if the

name stored is hostA , the returned name is hostA.domainname .

Unable to Reach Systems in the LDAP Domain

Remotely

If the DNS domainname is different from the LDAP domainname , change the

nsswitch.conf file. In the host entry, specify dns or put dns before ldap .

Sendmail Fails to Deliver/Receive Mail To/From

Remote Users

If your mail domain (commonly the DNS domain) is different from the LDAP

domain, you might run into a mail delivering problem. sendmail (1M) derives the

mail domain from the domain portion of the host name returned by

gethostbyname (3N). This means the return address will be in the LDAP domain.

Because the mail/DNS domain is different from the LDAP domain, external users

cannot respond to the email to fix this problem, you should change the host entry in

the nsswitch.conf file to dns or put dns before ldap .

Login Does Not Work

LDAP clients use the PAM(3) modules for user authentication during the logins.

When the standard UNIX PAM module is used, the password is read from the server

and checked on the client side.

Authentication can fail for the following reasons:

■ Password on the server is not readable by the proxy agent. You need to allow at

least the proxy agent to read the password because the proxy agent returns it to

the client for comparison.
Chapter 5 Solaris 8 Native LDAP Configuration 145

■ The proxy agent is incorrectly configured.

Lookup Too Slow

The LDAP database relies on indexes to improve the performance. A major

performance degradation occurs when indexes are not configured properly. As part

of the documentation, a common set of attributes that should be indexed have been

provided. You can also add your own indexes to improve performance at your site.

ldapclient Cannot Bind to Server

If ldapclient fails to initialize the client when using the -P profile option, there

are several possible causes:

■ nisDomain attribute is not set in the DIT to represent the entry point for the

specified client domain (nisDomainObject NOT FOUND message).

■ Virtual list view (VLV) indexing ACI does not allow anonymous access

(nisDomainObject NOT FOUND message).

■ ACI is not set up properly on the server, thus disallowing anonymous search in

the LDAP database.

■ Incorrect server IP address passed to the ldapclient command. Use

ldapsearch (1) to verify the server address.

■ Incorrect profile name passed to the ldapclient command. Use ldapsearch (1)

to verify the profile name in the DIT.
146 Solaris and LDAP Naming Services

Chapter 5 Solaris 8 Native LDAP Configuration 147

148 Solaris and LDAP Naming Services

Chapter 5 Solaris 8 Native LDAP Configuration 149

CHAPTER 6

NIS Extensions Configuration

Sun provides a two-way synchronization service between LDAP and NIS, as an

extension to the iPlanet Directory Server. As described in Chapter 4, ”iPlanet

Directory Server Installation and Configuration,” this extension is installed by the

addition of optional software packages. However, once the packages are installed,

the directory server needs to be configured to support the extensions. Once the

server is configured, several deployment options that can be considered.

This chapter presents an overview of what the NIS extensions are, how they are

integrated into the iPlanet Directory Server, what schema changes are necessary, and

how they can be deployed to coexist with your current NIS environment. Since the

directory server deployed to support the NIS extensions can be used to support

other applications, we discuss how configuration changes might affect these

applications.

Overview

The NIS Extensions for Netscape Directory Server were originally developed as part

of the Sun Directory Server. Since Sun now ships the iPlanet Directory Server as part

of the Solaris software distribution, the extensions were ported to that server. The

motivation for providing NIS support is the same and the implementation is similar.

If you have experience with the Sun Directory Server version, the content in this

chapter will be very familiar to you.

Although you could configure and deploy the extensions without knowing the

software architecture and implementation details, you will find some background to

be helpful in determining when and how to deploy the extensions. There may also

be some confusion as to the relationship between the NIS extensions and other

LDAP features found in the Solaris 8 operating environment. We hope that reading

this section will clear up that confusion.
147

Note – Due to a name change, for the purposes of this chapter think of NIS

Extensions for Solaris and Solaris Directory Extensions as interchangeable terms.

What the Extensions Are

NIS extensions are an add-on software package to the iPlanet Directory Server which

provides a service that allows NIS map data to be stored in an LDAP directory, then

made available to NIS clients. The service is referred to as a synchronization service

since data is maintained in more than one place, in NIS maps and as LDAP entries.

The architecture of the extensions is such that an entire NIS server deployment can

be replaced or deployed as an NIS slave server to complement an existing

environment.

When the NIS extension software package is installed, a plug-in is added to the

iPlanet Directory Server. The plug-in communicates with a Solaris process called

dsservd that emulates an NIS server. NIS clients communicate with dsservd in the

same manner they would with the native Solaris process ypserv . The NIS server

emulator maintains a set of NIS maps just as a native NIS server would.

Besides being able to respond to NIS client requests, dsservd can update its NIS

maps when NIS data changes in the LDAP directory and, conversely, can update the

LDAP data when NIS maps are changed. This synchronization occurs through an

interprocess communication channel between the iPlanet Directory Server plug-in

and dsservd . The next section explains the flow of data in greater detail.

NIS Extensions Architecture

FIGURE 6-1 shows how NIS data is accessed by both NIS and LDAP clients.
148 Solaris and LDAP Naming Services

FIGURE 6-1 NIS Data Accessibility

The server shown in FIGURE 6-1 is running the iPlanet Directory Server with NIS

extensions. As you can see, the server maintains both an LDAP directory and a set of

NIS maps. The dsservd process shown looks like a ypserv process to the NIS

client, which is bound to it. The binding occurs either by the Broadcast method or by

a list of NIS servers specified at boot time (Specified Server method). NIS requests

are serviced by consulting data in the NIS maps.

LDAP clients communicate directly with the directory server. Since the data is

synchronized between the two data stores, each client sees the same view. FIGURE 6-2

shows how data is synchronized.

FIGURE 6-2 Data Synchronization

In FIGURE 6-2, serverB is running the iPlanet Directory Server with NIS extensions.

serverA is running the directory server with the extensions, and serverC is

running as a native NIS server. Two forms of data replication are being used. One is

NIS-based and the other is LDAP-based.

LDAP

iDS

NIS

dsservd

NIS
MAPS

LDAP
Client

NIS
Client

iDS

NIS

NIS
MAPS

iDS

yppush

replication

serverA serverB serverC

dsservd

LDAP

LDAP

ypserv
Chapter 6 NIS Extensions Configuration 149

serverB can run in either NIS master or NIS slave mode. In the master mode, the

NIS maps on serverB are updated, then pushed to serverC . Changes to NIS data

can occur by use of standard NIS methods, such as regeneration of an NIS map with

makedbm, by updates to the LDAP directory, by LDAP methods such as

ldapmodify , or by an imported LDIF file.

Synchronization occurs when either the NIS plug-in or dsservd process detects a

change. The changes are then propagated from one data store to the other.

Note – When the NIS extensions are run in NIS slave server mode, you can only

perform read operations on the NIS information in the LDAP directory.

Storing NIS Information in LDAP

Recall from Chapter 2, ”Solaris Naming Services Architecture,” that the model for

storing data in LDAP directories is quite different from the one for storing data in

NIS maps. To compensate for this mismatch, NIS information needs to be mapped to

equivalent LDAP entries. Since new attributes that are not part of the standard

LDAP are being introduced, a new schema definition is required. While this may not

seem like a major issue, agreeing on exactly what goes into the new definition can be

a lengthy process.

TABLE 6-1 lists the attributes required to support NIS information in an LDAP

directory.

TABLE 6-1 NIS-Specific Attributes

Attribute Description

uidNumber Solaris UID

gidNumber Solaris GID

gecos /etc/passwd comment field

homeDirectory User’s home directory

loginShell User’s log in shell, for example, sh , ksh , or csh

shadowLastChange Last time password was changed

shadowMin Minimum length for password

shadowMax Maximum length for password

shadowWarning Time to change a password

shadowInactive User account disabled

shadowExpire Password no longer valid
150 Solaris and LDAP Naming Services

To create a directory entry using these new attributes, you create object classes that

contain them. These new object classes are listed in TABLE 6-2.

shadowFlag Type of account

memberNisNetgroup Member of the netgroup

nisNetgroupTriple hostname/username/domainname format

ipServicePort Port on which service is running

ipServiceProtocol Name of protocol

ipProtocolNumber Number assigned to protocol

oncRpcNumber RPC number of the RPC service

ipHostNumber IP address in dotted decimal form

ipNetworkNumber IP network number

ipNetmaskNumber IP netmask

macAddress Media Access Control (MAC) address

bootParameter Parameters for remote booting

bootfile Name of the file to boot

nisMapName Name of an NIS map

nisMapEntry Entry in an NIS map

nisPublicKey Public key used by NIS

nisSecretKey Secret key used by NIS

nisDomain Name of the NIS Domain

TABLE 6-2 New Object Classes

Object Description

posixAccount Adds Solaris attributes to account object

shadowAccount Maps to /etc/shadow

posixGroup Maps to /etc/group

ipService Maps to /etc/services

ipProtocol Maps to /etc/protocols

oncRpc Maps to /etc/rpc

ipHost Maps to /etc/hosts

TABLE 6-1 NIS-Specific Attributes (Continued)

Attribute Description
Chapter 6 NIS Extensions Configuration 151

Directory Information Tree (DIT) Structure

For entries to be found in an LDAP directory, they must reside in well-defined

containers, or organization units (ou), within the directory tree. The installation

script which is run after installation of the NIS extension software package is

installed, creates the proper directory tree structure for you. The components of this

subtree represent standard NIS maps and any custom maps you may have created.

FIGURE 6-3 shows what a typical subtree might look like.

FIGURE 6-3 Typical Subtree

The container ou=People stores user account information. Information from /etc/
passwd and /etc/shadow is used to create the entries found here. The

ou=Services containers maintain the information stored in the rest of the NIS

maps. A configuration file called nis.mapping contains the default mappings of

standard NIS maps to containers in the subtree. This file also contains rules for how

LDAP attributes are mapped.

ipNetwork Maps to /etc/networks

nisNetgroup Maps to /etc/netgroup

nisMap User-defined NIS map

nisObject User-defined NIS object

ieee802Device Maps to /etc/ethers

bootableDevice Maps to /etc/bootparams

nisKeyObject NIS public key

nisDomainObject NIS domain

TABLE 6-2 New Object Classes (Continued)

Object Description

ou=People ou=Services

ou=Hosts ou=Group ou=Networks ou=Protocols ou=mapName
152 Solaris and LDAP Naming Services

Default NIS Mappings

The amount of information stored in the standard NIS maps varies from map to

map. The ethers map contains a key with a single associated value, and the

passwd map contains a key with a string representing multiple values associated

with it. The rules defined in the nis.mapping file determine which values get

stored in which attributes. The group map is a good example to illustrate this point.

An entry in this map might look like this:

sales:*:1001:tom,linda,bill,cathy

When converted to an LDAP entry, the following attributes are defined.

cn: sales

userPassword: *

gidNumber: 1001

memberUid: tom

memberUid: linda

memberUid: bill

memberUid: cathy

Generic Mappings

Containers and mapping rules are also generated for any custom NIS maps you may

have created. The initialization script parses the NIS Makefile to discover any

additional NIS maps. If any are found, a container with the same name as the NIS

map is created with generic mapping rules applied to the contents of the NIS map.

These rules are shown in TABLE 6-3.

TABLE 6-3 Generic Mapping Rules

LDAP Attribute NIS Information

cn nisKey (case ignored in LDAP searches)

sunNisKey nisKey

nisMapEntry nisValue

nisMapName map name found in Makefile

objectClass top, nisSunObject
Chapter 6 NIS Extensions Configuration 153

This generic mapping is useful for representing custom NIS maps such as the ones

commonly used to contain automounter information. For example, if you have an

NIS map, called auto.tools , that contains mount points for software tools used in

your organization, an LDAP entry representing an NIS map entry might look like

this:

cn: java

sunNisKey: java

nisMapEntry: javaserver:/export/javatools

nisMapName: auto.tools

NIS Extensions Initialization

The previous section described the data should go into the LDAP directory to

support the NIS extensions. This section describes how that data gets there. Most of

the configuration is performed automatically by execution of the initialization script,

but it is still helpful to know what the script is doing in case something goes wrong.

Therefore, we present an overview of what is being configured.

Initialization Overview

The following steps summarize the configuration changes that must be made.

1. Update the directory schema.

2. Examine and modify the NIS Master’s Makefile .

3. Create the subtree topology where the NIS information is stored.

4. Import NIS information.

5. Establish NIS server role.

6. Set up NIS replication policy.
154 Solaris and LDAP Naming Services

Directory Schema Update

The additional object classes and attributes required to support the NIS extensions

are added to the user-defined attribute and object class configuration files

slapd.user_at.conf and slapd.user_oc.conf . View these changes as follows:

blueprints# more install-dir/ instance/ config / slapd.user_at.conf
User defined attributes
These attributes can be updated via LDAP by modifying the
cn=schema schema entry. The attributes in slapd.at.conf can not
be updated
attribute rfc822mailMember rfc822mailMember-oid cis
attribute nisNetIdUser 1.3.6.1.4.1.42.2.27.1.1.12 ces
attribute nisNetIdGroup 1.3.6.1.4.1.42.2.27.1.1.13 ces
attribute nisNetIdHost 1.3.6.1.4.1.42.2.27.1.1.14 ces
attribute sunNisMapFullName 1.3.6.1.4.1.42.2.27.1.1.1 ces
attribute sunNisDomain 1.3.6.1.4.1.42.2.27.1.1.2 ces
. . .
blueprints#

blueprints# more install-dir/ instance/ config / slapd.user_oc.conf
user defined objectclasses
These ObjectClasses are read/writable over LDAP
The ObjectClasses in slapd.oc.conf are read only and may not be
updated
objectclass nismailalias
 oid 1.3.6.1.4.1.42.2.27.1.2.5
 superior top
 requires
 cn
 allows
 rfc822mailMember

objectclass nisnetid
 oid 1.3.6.1.4.1.42.2.27.1.2.6
 superior top
 requires
 cn
 allows
 nisNetIdUser,
 nisNetIdGroup,
 nisNetIdHost
. . .
blueprints#
Chapter 6 NIS Extensions Configuration 155

Makefile Examination and Modification

The creation of NIS maps is determined by targets defined in Makefile , which by

default resides in /var/yp on the NIS master server. The NIS extension software

consults this file to determine which NIS maps are currently being used and then

modifies it so a special make command is invoked instead of the standard makedbm.

The following lines in Makefile are modified.

These lines are changed to:

This change results in a new version of makedbm and mkalias being executed

when NIS maps are generated. This new version also updates the LDAP directory in

addition to creating updated dbm files.

LDAP containers are created according to the targets listed in Makefile . For

example, an ou will be created for each target map listed below:

YPDBDIR=/var/yp
MAKEDBM=$(SBINDIR)/makedbm
MKALIAS=$(YPDIR)/mkalias

YPDBDIR=/var/yp/ldapsynch
MAKEDBM=/opt/SUNWconn/ldap/lib/dsmakedbm
MKALIAS=/opt/SUNWconn/ldap/lib/dsmakealias

all: passwd group hosts ipnodes ethers networks rpc
services protocols \

 netgroup bootparams publickey \
 auto.master auto.home
156 Solaris and LDAP Naming Services

Creating the Subtree

The initialization script automatically creates subtree components in the directory by

issuing ldapmodify commands. The portion of the directory tree where these

components are created is determined by the NAMING_CONTEXTvariable. You can

set the variable by uncommenting it in the nis.mapping file, as shown below. If the

variable is not set, then the NIS domain name is used instead.

Importing NIS Maps

Once the system is initialized to be an NIS server, the data contained in the NIS

maps needed to be imported into the LDAP directory. You import the data by

reading the text files used to generate the NIS maps and then issuing ldapmodify
commands to update the directory.

Initialization Checklist

Before running the dsypinstall script, have at hand the following information:

1. The name of the NIS domain managed by the server.

This is also the default name in the directory subtree where NIS information is

stored.

2. The installation directory for your iPlanet Directory Server.

3. The distinguished name (DN) and password of the directory manager. For

example:

cn=Directory Manager

4. The port number of the directory server. The default is 389.

The name of the NIS domain
 DOMAIN_NAME=blueprints.com

#
NAMING_CONTEXT, if defined, gives the root of the naming tree
if it is not defined, the naming tree root is derived from
the DOMAIN_NAME variable using dc attributes for each
element in the domain name (airius.com --> dc=airius,dc=com)
NAMING_CONTEXT=O=XYZ,C=US
#

Chapter 6 NIS Extensions Configuration 157

5. The DN of the administrator for NIS information. Optional, if you do not want to

use the directory manager as the administrator.

6. The location of the NIS source files. These files are used as the import source.

7. A list of other NIS servers in your domain.

▼ Initialization Procedure

To initialize an NIS server:

1. Setup the system as an NIS server by running ypinit (1M).

Use the default /var/yp location for the Makefile .

2. Run the /opt/SUNWconn/sbin/dsypinstall script.

The script prompts for the information mentioned in the checklist.

3. Verify the installation.

The next section describes how to check to see if the installation was performed

correctly.

Postinstallation Verification

Once the installation is successfully completed, the same NIS information is

accessible from both NIS clients and LDAP clients. To verify this from the NIS side,

make sure your client is bound to the server you just installed, then issue a ypcat
command. For example:

nis_client# ypwhich
blueprints
nis_client# ypcat passwd
cmiller:IzBtd1LP0vCic:2848:20:Cathy Miller:/home/cmiller:/bin/sh
ludovic:Cxitd1LP0jkic:3808:20:Ludovic Poitou:/home/ludop:/bin/sh
mhaines:GHikZZxvFUxiM:1349:20:Michael Haines:/home/mh:/bin/sh
........
nis_client#
158 Solaris and LDAP Naming Services

From an LDAP client, you should be able to access the NIS data by executing the

ldapsearch command. For example:

In this example, all the entries in the host map are searched. This is equivalent to

performing a ypcat hosts command.

Viewing NIS Data From the iPlanet Directory Console

FIGURE 6-4 shows what you will see under the Directory tab.

FIGURE 6-4 Directory Tab

To display NIS entries, click any of the containers shown.

Updating NIS Maps

Once the directory is populated, you can update NIS information in two ways:

1. From an LDAP client, like the iPlanet Directory Console.

2. By updating the NIS source files, then running make in the /var/yp directory.

ldap_client# ldapsearch -D "cn=Directory Manager" -w netscape -b\
"ou=Hosts,ou=Services,dc=blueprints,dc=com" objectclass=ipHost
"cn=*"
cn=localhost,ou=Hosts,ou=Services,dc=blueprints,dc=com
cn=heat,ou=Hosts,ou=Services,dc=blueprints,dc=com
cn=summer,ou=Hosts,ou=Services,dc=blueprints,dc=com
ldap_client#
Chapter 6 NIS Extensions Configuration 159

You should be aware that the NIS source files are not automatically updated when

changes are made through an LDAP client. You can resynchronize them by running

the dsexport command.

Propagating NIS Maps

There are two methods of propagating NIS maps between master and slave servers.

Between two iPlanet Directory Servers, choose LDAP replication. Between an iPlanet

Directory Server and a native NIS server use standard NIS replication.
160 Solaris and LDAP Naming Services

CHAPTER 7

Capacity Planning and Performance
Tuning

When directory servers become overloaded, they can no longer provide the level of

service users have come to expect. Even though the server may still be considered

up, response times can become so long that the directory service becomes unusable.

Preventing overload conditions requires identifying the proper hardware

configuration to handle the load and the proper tuning of the directory server

software to assure peak performance.

In this chapter, methodologies for correctly sizing your directory server are

examined and some guidelines are offered. Additional tips for optimizing

performance are presented so unnecessary bottlenecks can be removed.

Server Sizing

You must consider several factors before determining the optimum server

configuration:

■ Size of directory

■ Frequency of directory access

■ Type of directory access

■ Security requirements

■ Replication strategy

■ Number of concurrent connections

Knowing the impact of these factors helps determine which hardware components

are required to provide optimum performance. These hardware components include:

■ Physical memory

■ CPU

■ Disk storage

■ Network adapters
161

Failure to properly size any one of these components can cause a bottleneck that

degrades the total system performance no matter how well the other components are

sized. In general, you want enough memory to prevent swapping and you want fast

disk storage devices that can handle the expected I/O throughput. Network

adapters are rarely a factor because of the high data rates they can sustain, but you

still must be aware of the network bandwidth consumption.

Eventually, some component, such as the CPU speed, will become a limiting factor.

By carefully matching the components, you can push this limitation as far up the

performance curve as practical.

Directory Considerations

Directory considerations include the following:

■ Directory size

■ Directory access

■ Security requirements

■ Replication strategy

Directory Size

The size of the directory affects both the amount of disk storage and physical

memory required. It is important to choose sufficient disk storage to accommodate

the current directory size along with space for expansion. Optimum directory

performance is obtained when all the directory entries together with the directory

indexes can fit into physical memory.

Calculating how much space is required for the directory entries is a straightforward

process. The average size of an entry is determined, then it is multiplied by the

number of entries. However, in addition to the directory entries are the index

databases used to increase search performance. The size of these databases can vary

depending on the number of attributes indexed and the type of indexing employed.
162 Solaris and LDAP Naming Services

Directory Access

The way directory data is accessed has a profound effect on performance. The

iPlanet Directory Server is optimized for search speeds and performs very well

when the bulk of requests are searches. Assuming the directory data fits into

physical memory, search performance is limited by the speed of the CPU and

memory bandwidth.

Write performance is substantially less than read performance and will have a

greater impact on performance. Additionally, there is a trade-off between tuning for

read and write performance. Read or search performance is greatly enhanced by

indexing the directory data based on what type of searches are likely to occur.

However, as the number of indexes increases, so does the time it takes to update

them.

Another factor affecting performance is how the LDAP client establishes a

connection to the server. If the client is an LDAP-enabled application, then the same

connection can be used for all client accesses, and this technique greatly increases

performance. If a new connection is created each time a client, such as a web

browser, accesses the directory server, a significant additional load is placed on the

server. These two types of connections are commonly referred to as persistent and

nonpersistent.

The more connections that a directory server has to maintain, the greater the load on

the system resources.

Security Requirements

The level of security at which the directory server operates has a great effect on

performance. The implementation of access control affects directory performance

because more checking is required. Transmission to and from the directory server

can be in clear or encrypted text. Encryption based on SSL, which the directory

server supports, provides greater security at the expense of performance.

Authentication is another aspect of security that can be performed simply by entry

of a name and password or by presentation of a client certificate via the SSL

protocol. The public key exchange, which is an integral part of SSL and the

encryption algorithms used to protect data, are CPU intensive and have a significant

impact on performance.
Chapter 7 Capacity Planning and Performance Tuning 163

Replication Strategy

Replication is a handy tool for increasing search performance by load distribution

across more than one server. However, overhead is associated with replication.

Changes to the directory database need to be recorded in a change log, then pushed

out to replicas. Therefore, disk write speed and network bandwidth are important.

In addition, CPU cycles are used during the transfer of data from the Supplier to the

Consumer.

Capacity Planning Methodology

Sizing a directory server is not an exact science. As discussed earlier, there are many

factors to consider. However, you can remove some uncertainty by employing the

following techniques:

1. Calculating the size of your directory database

2. Determining what indexes are useful

3. Obtaining data from industry-standard benchmarks

4. Developing your own prototype/benchmarks

Once the directory server is placed into production, you can do additional fine-

tuning by monitoring directory activity. This section discusses how to calculate the

size of your directory database and provides some test results as guidelines.

Calculating Directory Database Size

The directory database consists of two components:

■ Database entries

■ Database indexes

Each database entry consists of a number of attributes and the values assigned to

them. An entry varies in length depending on the number of attributes and size of

values assigned to them. The value is an arbitrary string so its length will be

different for different entries.

The database indexes contain only part of the entire entry, but they can still get quite

large. In fact, if there are numerous indexes, the total size of these can be about the

same as the entry size.
164 Solaris and LDAP Naming Services

Directory Sizing Example

Here is an example of how the directory database grows in size.

For each person in the company, you have an entry that looks like this:

cn: Laura Weng

givenName: Yanna Laura Weng

sn: Weng

uid: lweng

description: NYC Financial SE

telephoneNumber: 555-566-7133

homePhone: 555-274-6401

mobile: 555-964-9769

pager: 888-856-1234

userpassword: ********

ou: people

mail: lweng@blueprints.com

departmentNumber: 777-100-1234

facsimileTelephoneNumber: 555-235-3232

initials: ylw

title: Systems Engineer
Chapter 7 Capacity Planning and Performance Tuning 165

If the database is populated with 10,000 entries, the corresponding size of the entries

and indexes grows, as shown below:

The file id2entry.db2 contains all the entries in the directory along with an ID

number. The size of this file gives a good approximation of how large the directory

database is. From the listing, you can see that the size of this file is approximately 7

Mbytes, which equates to about 700 bytes per entry.

Note – Since the size of the sample entry used in this example might be on the low

side, you can use 1 Kbyte per entry to approximate the size of the database entries.

The other *.db2 files listed here represent the index files. If you add up the sizes of

all index files, you come up with roughly 6 Mbytes. So the total database size would

be 13 Mbytes.

Note – Index files can be smaller or larger than the example. For additional

information on managing indexes, see “Performance Tuning” on page 178.

iplanet# cd database_dir/db
iplanet# ls -l
total 26530
-rw------- 1 root other 18 Apr 5 10:42 DBVERSION
-rw------- 1 root other 16384 Apr 5 10:35 aci.db2
-rw------- 1 root other 729088 Apr 5 10:41 cn.db2
-rw------- 1 root other 16384 Apr 5 10:40 copiedfrom.db2
-rw------- 1 root other 16384 Apr 5 10:40 default.db2
-rw------- 1 root other 811008 Apr 5 10:41 dncomp.db2
-rw------- 1 root other 1310720 Apr 5 10:41 entrydn.db2
-rw------- 1 root other 540672 Apr 5 10:35 givenName.db2
-rw------- 1 root other 6979584 Apr 5 10:41 id2entry.db2
-rw------- 1 root other 974848 Apr 5 10:35 mail.db2
-rw------- 1 root other 16384 Apr 5 10:41 numsubordinates.db2
-rw------- 1 root other 81920 Apr 5 10:41 objectclass.db2
-rw------- 1 root other 32768 Apr 5 10:41 parentid.db2
-rw------- 1 root other 532480 Apr 5 10:35 sn.db2
-rw------- 1 root other 540672 Apr 5 10:35 telephoneNumber.db2
-rw------- 1 root other 16384 Apr 5 10:35 uid.db2
-rw------- 1 root other 16384 Apr 5 10:35 uniquemember.db2
-rw------- 1 root other 876544 Apr 5 10:35
vlv#snmccoupeopleoblueprintscom.db2
166 Solaris and LDAP Naming Services

If you create a directory database with 100,000 entries using the same sample entry,

the sizes look like this:

As expected the id2entry.db2 file grew to almost 70 Mbytes and the total of the

entries and indexes is about 130 Mbytes. This example gives you an idea of how

much disk storage is required for the database. There are a number of other files

which need to be taken into account. These files include database directory backups

and log files.

Directory Backups

In addition to replication, it is wise to perform regular backups. Backups consist of a

copy of all the files in the database directory. The backups are stored in separate

directories, so several different snapshots can be stored.

Since backups require as much storage as the active directory database, you must

allocate space for these. If multiple backups are stored, then the space requirement

will grow proportionally with the number of backups.

Log Files

You need to allocate space for log files. These log files include:

blueprints# cd install_dir/db
blueprints# ls -l
total 253668
-rw------- 1 root other 18 Apr 5 11:18 DBVERSION
-rw------- 1 root other 16384 Apr 5 11:15 aci.db2
-rw------- 1 root other 7135232 Apr 5 11:18 cn.db2
-rw------- 1 root other 7946240 Apr 5 11:18 dncomp.db2
-rw------- 1 root other 13189120 Apr 5 11:18 entrydn.db2
-rw------- 1 root other 5021696 Apr 5 11:18 givenName.db2
-rw------- 1 root other 29 Apr 5 11:18 guardian
-rw------- 1 root other 68558848 Apr 5 11:18 id2entry.db2
-rw------- 1 root other 9666560 Apr 5 11:18 mail.db2
-rw------- 1 root other 16384 Apr 5 11:18 numsubordinates.db2
-rw------- 1 root other 81920 Apr 5 11:18 objectclass.db2
-rw------- 1 root other 32768 Apr 5 11:18 parentid.db2
-rw------- 1 root other 4775936 Apr 5 11:18 sn.db2
-rw------- 1 root other 4923392 Apr 5 11:18 telephoneNumber.db2
-rw------- 1 root other 16384 Apr 5 11:15 uid.db2
-rw------- 1 root other 16384 Apr 5 11:15 uniquemember.db2
-rw------- 1 root other 8364032 Apr 5 11:18
vlv#snmccoupeopleoblueprintscom.db2
Chapter 7 Capacity Planning and Performance Tuning 167

■ Transaction log

■ Access log

■ Error log

■ Audit log

■ Change log

Transaction logs are a way of maintaining database consistency even when the

server crashes. Before each write operation is performed on the database, an entry is

written to the transaction log. Since the write operation to the transaction log

happens at about the same time as the write to the database, it is preferable to have

the log on a separate disk volume for better performance.

The access log keeps track of who accesses the directory and what type of access is

performed. The information contained in these logs is valuable when you determine

what type of searches are performed the most so you know what indexes to

optimize. A typical entry in this log is about 70 bytes. Therefore, a million searches

would generate a 70-Mbyte file. Based on how active your directory is and how

much data you want to collect, you can determine how much space to allocate for

the access log. You can specify a size limit to prevent this file from growing too

large. Writes to the access log are buffered, so disk write speed is not an important

factor.

The error log records change in status activity as well as errors. The information

stored here is useful for troubleshooting problems but usually doesn’t need to be

kept for a long period of time. Unless the directory server has a serious problem, this

file will not grow very fast. Allocating 100 Mbytes is probably sufficient.

The audit log records certain events. The amount of data written to this log depends

on what events you want to audit and how often those events occur.

The changelog on the Supplier tracks changes it needs to replicate on the

Consumer. Unless a lot of update activity is going on, this log file will not grow very

large.

Summary of Disk Storage Requirements

TABLE 7-1 summarizes the disk storage requirements.

TABLE 7-1 Disk Storage Requirements

Purpose Size Estimate Comment

Directory DB 1.5-2 Kbytes per entry Separate volume

DB Backups n * DB Size n=number of backups

Transaction Log 8-20 Mbytes Separate volume
168 Solaris and LDAP Naming Services

Be sure to consider storage needs for the directory database, the directory database

backups, and the log files.

Directory Database

You should have enough RAM so the entire database, including indexes, can fit into

memory. Ideally, everything should be cached so read speed is not important. In

most environments, only a small percentage of activity will be writes, so the write

speed is not that important.

Since the directory database must fit within a single file system, it should be large

enough to accommodate future growth. Data availability is key here, so disk

mirroring, or other RAID levels that provide redundancy, is recommended. Also, no

other data should be kept on this volume.

Directory Database Backups

You perform database backups by copying the *.db2 files from the database

directory to another directory. The backup storage device should be on a different

volume than the active database and ideally on a different disk controller.

Performance will be impacted somewhat if the two directories are on the same

volume and controller, but the bigger concern is that if the active database volume

becomes inoperative, then you do not want the backup volume to be inoperative

also.

Log Files Storage

The transaction log is relatively small but is continually updated even for search

operations. A storage device with a write cache is a benefit here for busy servers.

The A1000, T3, etc. are good choices.

Writes to the access log are buffered, so there is little performance penalty with

access logging turned on. The only consideration is the amount of space required, as

long as it is not on the same volume as the directory database or transaction log.

Access Log 100 Mbytes Activity dependent

Error Log 10 Mbytes Pruned often

Audit Log 0-10 Mbytes Depends on usage

Changelog 1-10% of DB Size Depends on # of updates

TABLE 7-1 Disk Storage Requirements (Continued)

Purpose Size Estimate Comment
Chapter 7 Capacity Planning and Performance Tuning 169

Memory Sizing

The most important factor that determines directory performance is the availability

of free memory. For peak performance, all directory data needs to be cached in

memory. If data has to be retrieved from disk, performance will suffer dramatically.

Correctly sizing the directory server’s memory requires some knowledge of which

components of the directory use memory and how much each of these components

uses. These components include:

■ Server executables and database image backing files

■ Database entry cache

■ Database index cache

■ Solaris file system cache

Server Executables

The directory server software includes four application executables:

1. ns-slapd — An instance of the directory server

2. ns-admin — The administration server

3. jre — Java runtime environment used by the Netscape Console

4. dsypserv — An NIS extension used for NIS interoperability

The ns-slapd process will use up most of the memory. Running with an empty

directory database, the ns-slapd process only consumes 5-6 Mbytes, which

includes all of the standard plug-ins. The NIS plug-in uses another 500 Kbytes.

However, the database caches reside within this process space and will grow as they

fill up. The database image backing files are also mapped into this space.

The ns-admin process uses up about 8 Mbytes of memory and does not grow in

size. The Netscape Console is Java-based and so requires the Java runtime

environment (jre). The size of this process is around 27 Mbytes. If the NIS

extensions are used, the dsypserv process will be running and consuming about 2.5

Mbytes of memory.

Database Entry Cache

The database entry cache caches all the directory data. The total size of the database

entries is close to the size of the id2entry.db file. The size will depend on the

number of entries and the number of attributes each entry contains. For a relatively

small entry, say, containing 15 attributes, plan on about 1 Kbyte per entry. Therefore,

a 100,000-entry database would consume 100 Mbytes of space.
170 Solaris and LDAP Naming Services

The size of the database entry cache can be configured but should be made large

enough to fit all of the database entry data. The cache size will grow as entries are

accessed until all entries are cached. This memory shows up as part of the

ns-slapd process.

Database Index Cache

This cache is also referred to as the database cache, but the name is a little

misleading. What is really contained in the cache are the database indexes. These

indexes speed up search time by anticipating what type of searches will be most

frequently done and caching the results. The number and size of indexes depend on

how the directory data will be accessed. The size of the database indexes can

approach the size of the database entries.

For peak performance, the database index cache should be large enough to contain

all of the indexes. If configured correctly, this cache has a greater impact on

performance than does the database entry cache.

Solaris File System Cache

Data that gets read from disk gets cached in the file system cache. Although

directory data which doesn’t fit into the database caches will still be cached in the

file system cache, performance will not be as good as with the database cache.

Therefore, it is better to make the database caches large and not rely on the file

system cache. One exception to this advice is a directory database that is much larger

than the system memory. In the case of a lot of paging activity, the file system cache

will be more efficient handling the paging activity than will the database caches.

Summary of Memory Usage

TABLE 7-2 shows typical memory usage.

TABLE 7-2 Typical Memory Usage

Component Estimated Size Comment

ns-admin 8 Mbytes Static size

jjre 25 Mbytes Required for console

dsypserv 2.5 Mbytes NIS extension
Chapter 7 Capacity Planning and Performance Tuning 171

Estimating CPU Usage

Estimating how much CPU power will be needed is a difficult task. It is easy to see

when a production system is overloaded, but predicting at what load level this

overload occurs is tricky. If you already have a directory server running that you

plan to upgrade, you can measure its CPU and use the measurement as a guide.

However, if you do not have any historical data to go by, the best approach is to use

benchmarks or testing results as a guide.

Industry-standard benchmarks are helpful when you are comparing two platforms

but may not be representative of your environment. Homegrown or custom

benchmarks are useful since you can design them to simulate your environment or

what you think the environment might look like.

Unfortunately, there are not any widely accepted industry-standard LDAP

benchmarks. The DirectoryMark benchmark from Mindcraft was developed to

measure the effectiveness of an LDAP server in a messaging environment. However,

it has not caught on as an industry standard benchmark as WebBench and SPECweb

have for web servers. You can find more information on DirectoryMark on the

Mindcraft Web site at:

http://www.mindcraft.com

To obtain sizing information for this book, we ran a series of custom benchmark

programs. The following sections describe those benchmarks and provide the

results.

LDAP Test Suite

The test suite runs with the standard LDAP schema that ships with the iPlanet

Directory Server and client programs written with the iPlanet software development

kit (SDK). The directory is populated with entries that have the following attributes:

cn:
givenName:
sn:

ns-slapd 6 Mbytes (no data) Main directory process

DB Entry Cache 1 Kbyte x# of entries Data dependent

DB Index Cache Varies Depends on complexity of searches;

could reach DB Entry size

TABLE 7-2 Typical Memory Usage (Continued)

Component Estimated Size Comment
172 Solaris and LDAP Naming Services

uid:
description:
telephoneNumber:
homePhone:
mobile:
pager:
userpassword:
ou:
mail:
departmentNumber:
facsimileTelephoneNumber:
initials:
title:

Random data is created for each entry by the creation of an LDIF file. The LDIF file

is then imported into the directory database. Test runs included varying the number

of entries, number of CPUs, type of connection, and type of encryption used during

authentication.

TABLE 7-3 is a sample test matrix for these tests.

The tests listed in TABLE 7-3 are:

Simple read: Client creates a persistent anonymous connection to the directory.

Base-level searches select entries uniformly across the entire set of data in the

directory. Search returns the user’s email address based on the user ID.

Measurement is queries/second.

TABLE 7-3 Sample Test Matrix

Test/Profiles Number of Entries Number of CPUs Cache Size

Linear CPU Scalability

Simple read

100 Kbytes 1, 2, 4 200 Mbytes

entries scalability

Simple read

Attribute update

Entry add/delete

Authenticate

10 Kbytes

50 Kbytes

100 Kbytes

200 Kbytes

1, 2, 4 200 Mbytes

Cache-size effect

Simple read

100 Kbytes 2 200 Mbytes

Import performance

Import
Chapter 7 Capacity Planning and Performance Tuning 173

Attribute update: Client creates a persistent authenticated connection to the

directory. A single attribute is updated in entries selected uniformly across the entire

set of data in the directory. That attribute is indexed with an equality index.

Measurement is updates/second.

Entry add/delete: Client creates a persistent authenticated connection to the

directory. Whole entries are added and deleted in a ratio of 75% adds, 25% deletes.

Measurement is operations/second.

Authenticate: Client creates a persistent anonymous connection to the directory.

User authentication is performed uniformly through the LDAP authenticate operation

over that connection against the entire set of data in the directory. Measurement is

authentications/second.

Results of Experimentation

The following tests were included in the experimentation:

■ Configuration tests

■ Simple read test with persistent connection

■ Simple read test with nonpersistent connection

■ Modify tests

■ Authentication tests

Configuration

This server configuration (TABLE 7-4) represents what an organization’s directory

server might look like. The maximum memory configuration allowed tests to be run

with increasingly larger directory sizes with sufficient available memory. The A1000

was chosen because of its write cache. This write cache helps speed up writes to the

transaction log.

TABLE 7-4 Server Configuration

Server Type Sun Enterprise 450 (E450)

CPU 4 x 400 Mhz

Memory 4 Gbytes

Disk Storage A1000

Network 100BaseT
174 Solaris and LDAP Naming Services

Tests were run with directory sizes of 10 Kbytes, 50 Kbytes, 100 Kbytes, and 200

Kbytes. These sizes were chosen to be representative of directory use within an

organization. The iPlanet Directory Server is capable of scaling well past these sizes

into millions of entries for E-Commerce applications.

Simple Read Test with Persistent Connection

This series of tests is aimed at measuring the directory search times as the directory

grows in size and also measures the effect of adding additional CPUs (see

FIGURE 7-1). The intent is to fit all the directory data in memory so that disk read

speeds are not a factor.

In this series of tests, a persistent connection between the LDAP client and iPlanet

Directory Server is established throughout the entire test run. The intent is to

simulate an environment wherein an LDAP-enabled application is performing the

directory searches.

FIGURE 7-1 Simple Read Test with Persistent Connection

Read Test with Nonpersistent Connection

This series of tests shows the effect of using nonpersistent connections instead of

persistent connections (see FIGURE 7-2). This setup simulates an environment in

which an LDAP client is directly binding to the directory server, such as when a

Netscape browser performs Address Book lookups.

10K

3000

2000

1000

500

Number of CPUs

Ops/
Sec

50K 100K 200K

Number of Entries

1 2 3 4

3000

2000

1000

500
Chapter 7 Capacity Planning and Performance Tuning 175

FIGURE 7-2 Nonpersistent Connections vs. Persistent Connections

Modify Tests

This series of tests demonstrates what directory update performance looks like. The

tests simulate an environment wherein updates need to be performed on many

entries, such as changing the telephone number prefix for a large group of

employees. The effect of adding additional CPUs is shown.

FIGURE 7-3 Effects of Additional CPUs

FIGURE 7-3 illustrates that write operations do not scale past two CPUs because they

are limited by the speed of the disk.

Ops/sec

Persistent

Nonpersistent

1000 30002000500

Ops/Sec 100

200

50

1 2 3 4

Number of CPUs
176 Solaris and LDAP Naming Services

Authentication Tests

This series of tests shows the authentication performance of the directory server

with passwords stored in clear text, SHA encryption, and UNIX crypt encryption. It

simulates an environment of a mail server having to authenticate a large number of

email users in a short period of time.

FIGURE 7-4 Authentication Performance of the Directory Server

As shown in FIGURE 7-4, the iPlanet Directory Server is optimized for storing

passwords in SHA-1 format. UNIX crypt format is supported but runs only half as

fast. The reason for this is that the crypt library is not multithread (MT) safe, so a

mutex is required in a multithreaded environment.

Qualitative Observations Based on Test
Results

Since the purpose of this experimentation is to provide guidelines on how to size

your directory server, look at an interpretation of the results and evaluate its

application to selection of the right server configuration.

■ The iPlanet Directory Server is very fast at performing read or search operations.

The peak was 2600 per second with 4 CPUs and a small, 10K entry, directory size.

■ Read operations scale very well. Adding CPUs increased performance almost

linearly.

■ The search speed decreases as the directory gets larger. The greater the number of

entries, the more time it takes to perform a search. However, this is not a linear

degradation. Increasing the size by a factor of 10 decreased performance by only

40%.

Ops/Sec

250 500 1000

Clear Text

SHA-1

UNIX Crypt
Chapter 7 Capacity Planning and Performance Tuning 177

■ Write operations are slow compared to read operations. Increasing the number of

CPUs does not increase performance.

■ Authentication speeds vary somewhat, depending on how passwords are stored.

■ Persistent connections require a lot less overhead than do nonpersistent

connections.

Performance Tuning

Tuning the iPlanet Directory Server for better performance is much like tuning a

database. Many of the concepts are similar, for example, using indexing for faster

searches and database caching. Some simple things can be done, such as reducing

the directory server code path by removing unneeded plug-ins.

This section looks at the role indexing plays in directory performance. If you are not

well versed in database tuning concepts, then you can gain some background from

the following overview of indexing.

Definition of Indexing

An index is a lookup table of entry ID numbers that correspond to certain search

criteria. For example, if a search is made for a particular UID, then the UID index

can be searched to find which entries have a matching UID.

Importance of Indexing

To understand the importance of indexing, it is helpful to understand the searching

algorithm the directory server uses. When a search request is received, the directory

server looks to see if any indexes match the search criteria. If, for example, an

equality search for UID=jsmith is made and an equality index for the attribute UID
exists, then the entry number can be retrieved directly from the index.

If an index does not exist for a particular search, then the directory server creates a

candidate list that includes all the entries in the database. The directory searches the

candidate list to see if there are any matches.
178 Solaris and LDAP Naming Services

Index Types

TABLE 7-5 lists different types of indexes and the types of searches they are used with.

Different index types are used for different types of searches.

The Presence index is commonly used to determine if an ACI exists for a particular

object. If an ACI exists, then access permissions need to be checked.

The Equality index is used in searches that require an exact match. A common

example is a mail server, which bases the search for an entry on the UID of the

person logging in. In this case, only an entry that matches exactly is of interest.

The Approximate index is used to retrieve entries that sound like the value being

searched for. For example, a person’s first name, may have multiple spellings, such

as Stephen and Steven.

The Substring index is used to retrieve entries when only a portion of the total value

is specified. An example of this is search for a name when only a sequence of

characters in the name are known.

Viewing Indexes

The best way to view directory indexes is through the Directory Server Console. To

summon the index screen, go to

Configuration —> Database —> Indexes

Two types of indexes are displayed: System and Additional.

TABLE 7-5 Types of Indexes and Types of Searches

Index Type Used When Search Contains Example

Presence Comparison against ‘*’ (iscontractor=*)

Equality Comparison against some value (uid=jsmith)

Approximate Comparison uses the ~=
operations for sound-alike

searches

(sn~=stevan)

Substring Comparison string contains the

‘*’ as a wildcard

(cn=*smith *)

None available, always unindexed Inequality comparisons (cn>smith)
Chapter 7 Capacity Planning and Performance Tuning 179

System Indexes

FIGURE 7-5 shows the built-in system indexes.

FIGURE 7-5 Built-in System Indexes

These indexes are read-only and cannot be modified. TABLE 7-6 explains the use of

these indexes.

Since these indexes cannot be modified, you do not need to know detailed

information on how they work. The next category of indexes can be modified and

are of more interest.

Additional Indexes

During the installation of the directory server, several indexes are created

automatically; see FIGURE 7-6.

TABLE 7-6 System Indexes

Attribute Purpose

aci Quickly obtains access control information

changeNumber Tracks the replication

copiedfrom Specifies source for replication

dncomp Accelerates subtree searches

entrydn Speeds up entry retrieval based on DN equality

searches

numsubordinates Specifies source for internal operations of the

Directory Server Console.

objectclass Accelerates subtree searches for internal

administration purposes.

parentid Speeds up one-level searches
180 Solaris and LDAP Naming Services

FIGURE 7-6 Automatically Created Indexes

TABLE 7-7 shows the directory component or service that uses the index.

TABLE 7-7 Default Indexes

Attribute Used By

cn Common search parameter

givenName User Account

mail User Account

mailAlternative Address NT Synchronization service

mailHost Mail Server

member Referential Integrity Plug-in

nsCalXItemId iPlanet Calender Server

nsLIProfileName Netscape Communicator roaming

ntGroupDomainId NT Synchronization service

owner Referential Integrity Plug-in

pipstatus iPlanet Calendar Server

pipuid Netscape Calendar Server

seeAlso Referential Integrity Plug-in

sn Common search parameter
Chapter 7 Capacity Planning and Performance Tuning 181

The default indexes can be removed or modified. Removing indexes that are not

used reduces the amount of memory required but does not significantly affect

overall performance. Knowing which indexes are important and which are not is not

always easy. The use of some indexes, such as those that support the NT

Synchronization service, is obvious, and if you were not running the NT

Synchronization service, you would remove those indexes.

If, however, a number of attributes are being used, but you do not know how often,

you can monitor the usage of these attributes, as described in the next section.

Determining Which Indexes Are Important

You can determine the type of directory searches being performed by the directory

server by looking in the access log for entries that contain the keyword SRCH. The

following example shows what a typical SRCHrecord would look like.

In this example, the search is being performed on the cn attribute. You can also see

that it is an equality index. If this type of search appeared frequently in the access

log, then an equality index on the cn attribute would help boost performance.

With the iPlanet Directory Server, you can be identify searches that reference

unindexed attributes by examining the access log. Look for RESULTrecords that

have a field that says notes=U . For example,

By matching the connection (conn) and operation (op) fields with the corresponding

SRCHrecord, you can determine which searches are being performed without

indexes.

telephoneNumber Common search parameter

uid Common search parameter

uniquemember Referential Integrity Plug-in

blueprints# grep -i SRCH install_dir/slapd- instance/logs/access
05/Apr/2000:16:18:12 -0400] conn=18863 op=18885 SRCH
base="dc=blueprints, dc=com" scope=2 filter="(cn=John Smith)"
. . .

blueprints# grep -i “notes=U” install_dir/slapd- instance/logs/access
05/Apr/2000:16:18:12 -0400] conn=18863 op=18885 notes=U RESULT
err=0

TABLE 7-7 Default Indexes (Continued)

Attribute Used By
182 Solaris and LDAP Naming Services

Cost of Indexing

Indexing can really help search performance, but at a cost. Indexes do consume

memory, but the biggest cost in terms of resources is the increased write times. If an

indexed attribute is added or modified, the associated index files also need to be

updated.

In the case of a Substring index, a list of strings needs to be generated for each entry.

Generation of the list can be very CPU intensive, especially for large string values.

Also, if there are multiple index types, each type needs to be updated. For more

information on tuning indexes for better write performance, see “Tuning Write

Performance” on page 196.

Index Administration

Creating or modifying indexes is most easily performed through the Directory

Server Console. If an attribute is already indexed, you can modify it by checking the

appropriate boxes or you can remove it completely. To add an index, use the Add
Attribute button under Configuration —> Database —> Indexes. All of the

attributes defined in the directory should be listed in the Select Attribute window

(see FIGURE 7-7).

FIGURE 7-7 Select Attribute Window

Choose the attribute for which you want to create the index, then click the OK
button. The attribute is then added to the Index screen where the type of indexing

can be specified.
Chapter 7 Capacity Planning and Performance Tuning 183

Indexing Summary

Indexing is a powerful tool for speeding up directory search times. However, too

much indexing can have a negative effect on write performance. Before modifying or

creating new indexes, you should examine the directory access log to determine

what types of searches are more prevalent.

Since indexes pertain only to a particular instance of a directory server, a second

server could be set up with replicated data but different indexes. The first server

could be optimized for write access (minimum indexing), and the second server

could be optimized for a wide variety of searches, although having lots of indexes

does slow down directory replication.

Caching for Performance

To provide the quickest response to LDAP queries, the iPlanet Directory Server uses

in-memory caches to cache database indexes and directory entries. The caches are

managed to help ensure that the highest possible percentage of queries can be

fulfilled from information stored in cache instead of from information retrieved from

relatively slow disks.

Directory Caches

The iPlanet Directory Server uses two levels of cache to allow it to store information

from the database in memory, and to circumvent the need to retrieve it from disk:

Database cache. The database cache caches pages from the database. It stores both

database indexes and data. It is the lowest cache level. The size of the database cache

is set by the administrator to a given amount of memory.

Entry cache. The entry cache caches the most recently accessed entries from the

directory. It uses a least recently used algorithm to ensure that the most frequently

accessed directory entries are always available in memory. Unlike the database cache

size, the size of the entry cache is set by the administrator and is based on the

maximum number of entries the cache should hold, not on the maximum amount of

memory it should consume.
184 Solaris and LDAP Naming Services

Evaluating Sizing Factors

To maximize directory read performance, you must cache as much directory data in

memory as possible. By preventing the directory from having to read information

from disk, you can eliminate the disk subsystem as a huge performance bottleneck.

There are three rules you must follow in maximizing read performance.

1. Your database cache must always be large enough to hold the database’s
indexes. As you will see, it should probably be set much larger than that, but you

must always ensure that it is at least big enough to hold the directory indexes. If

it is not, the directory will be forced to read indexes from disk for every search

request. This behavior will quickly bring directory throughput to a virtual halt.

2. Your database and entry caches must always fit into available physical memory.
If the sizes of the two caches combined is bigger than the amount of available

physical memory on the machine, then the operating system will begin to swap

the cache memory to disk. This can cause a significant amount of virtual memory

thrashing that will quickly bring the directory and the entire system to a virtual

halt.

3. The database cache is more important than the entry cache. When given a choice

between allocating memory to the database cache or entry caches, you should

generally prefer the database over the entry cache.

To maximize directory performance, you will want to allocate as much available

memory to the directory caches as possible. You can achieve efficient operation by

allocating memory between the caches in the ratio of 75% for the database cache,

25% for the entry cache. For example, if the system has 500 Mbytes of free memory

during normal operation, allocate 375 Mbytes to the database cache, and 125 Mbytes

to the entry cache.
Chapter 7 Capacity Planning and Performance Tuning 185

Setting the Database Cache Size

You can set the size of the database cache through the Directory Server Console GUI

or through a parameter in the slapd.ldbm.conf by editing the configuration file

as shown below.

Note – Be aware that the actual amount of memory used by the database cache can

exceed the size you specify by up to 25% because of the additional memory required

to manage the cache itself.

In any case, the database cache (with overhead) should not be set to consume over 2

Gbytes of memory, since it is not capable of using more memory than that.

Setting Entry Cache Size

Unlike the database cache, the entry cache size is set not by the amount of memory

you would like it to consume but by the maximum number of entries you would like

it to hold. The actual amount of memory it will consume is a function of the average

entry size. For example, if your average entry size is 1 Kbyte, and you specify that

the entry cache should hold a maximum of 10,000 entries, then the amount of

memory the cache will consume will be (1 Kbyte/entry * 10,000 entries) 10 Mbytes +

25% for cache management overhead.

To determine the average entry size, you will need to use your best judgment of the

data the directory will hold. You can determine the size of an entry by adding the

sizes of all of its attributes. The sample entry below containing personal information

for Cathy Miller is 387 bytes.

dn: uid=cmiller , ou=People , dc=blueprints , dc=com
cn: Cathy Miller

sn: Miller

blueprints# cd install_dir/slapd- instance/config
blueprints# vi slpad.ldbm.conf
. . .
suffix "dc=blueprints,dc=com"
suffix "o=NetscapeRoot"
directory "/db_fs/db"
cachesize 100000
dbcachesize 100000000 <--- set size here in bytes
lookthroughlimit 5000
. . .
blueprints# install-dir/ slapd - instance/ restart
186 Solaris and LDAP Naming Services

givenname: Cathy

objectclass: top

objectclass: person

objectclass: organizationalPerson

objectclass: inetOrgPerson

ou: Tech Writing

ou: People

l: Chico

uid: cmiller

mail: cmiller@blueprints.com

telephonenumber: +1 408 555 4798

facsimiletelephonenumber: +1 408 555 9751

roomnumber: 4612

userpassword: BPs’r’Cool

To set the entry cache, edit the slapd.ldbm.conf file, as shown below.

Sizing the Database and Entry Caches

Although bigger caches are usually better, performance can degrade if

dbcachesize is set too large. If you set the database cache too large and exceed the

physical free memory available, the process will begin to page-out to disk. The result

is severe performance degradation. You can detect this behavior by using vmstat
and looking for excessive page-out activity.

Assuming the caches are not set too high to begin with, here is a technique you can

use to fine-tune your database and entry cache sizes:

1. Identify, using vmstat , the amount of free memory available when your system
configuration is operating normally.

2. Use 75% of your free memory to allocate to your database cache.

blueprints# cd install_dir/slapd- instance/config
blueprints# vi slapd.ldbm.conf
. . .
suffix "dc=blueprints,dc=com"
suffix "o=NetscapeRoot"
directory "/db_fs/db"
cachesize 100000 <--- set size here in # of entries
dbcachesize 100000000
lookthroughlimit 5000
. . .
blueprints#
Chapter 7 Capacity Planning and Performance Tuning 187

3. Divide that amount by 1.25 to account for the cache overhead, and use the result
as the database cache size.

a. If the result is larger than 1.6 Gbytes, reduce it to 1.6 Gbytes (the maximum
dbcache size).

b. If the result is smaller than the sizes of the database indexes (calculated by
adding up the sizes of all *.db2 files in the directory database directory and
subtracting the size of id2entry.db2), increase it to cover the sizes of the
indexes. Do not exceed available memory, 1.6 Gbytes, or whichever is lower.

4. Use 25% of your free memory to allocate to the entry cache.

5. Divide that amount by 1.25 to account for cache overhead.

6. Divide the result by the average entry size, and use the result as the entry cache
size (maximum number of cache entries).

7. Determine the size of an entry by adding up all of its attributes. Examine your
data closely to determine average entry size.

Here is an example:

Assume the following system/directory parameters:

150 Mbytes available RAM (free memory)

Estimated 1 Kbyte entry size on average

Calculate DB cache size:

150 M * .75 = 112 Mbytes to allocate to db cache

112/1.25 = 90 Mbytes for db cache

Calculate entry cache size

150 - 112 = 38 Mbytes for entry cache

38/1.25 = 30 Mbytes avail for entries

30M/1 Kbytes = max 30,000 cache entries

Tuning Cache Sizes

Once you have set your initial cache sizes according to the aforementioned

procedure, you should monitor your cache utilization from time to time to ensure

efficient use. You can determine the effectiveness of your caches by examining the

Database Performance Counters available through the Directory Server Console. To

access this information, go to Status —> Performance Counters; under the Database
tab the statistics shown in FIGURE 7-8 are displayed.
188 Solaris and LDAP Naming Services

FIGURE 7-8 Database Tab Statistics

Note – The Performance Counters display data since the directory server was last

started. To reset the counters, restart the directory server and delete the *.share
backing files.

In FIGURE 7-8 you can see that the entry cache is set to 100,000 but it is only half full.

Also, the database cache hit ratio is 99% which means that the indexes are essentially

always cached. All the cache parameters are listed in TABLE 7-8.

TABLE 7-8 Cache Parameters

iPlanet Console Label Monitor Entry Attribute Meaning

Entry cache hits entrycachehits Number of requests filled from

the entry cache

Entry cache tries entrycachetries Number of total requests to the

entry cache.

Entry cache hit ratio entrycachehitratio Percentage of requests filled

from the entry cache

Current number of entries in

entry cache

currententrycachesize Current number of entries in the

entry cache

Hits (under database cache

heading)

dbcachehits Number of requests filled from

the database cache.

Tries (under database cache

heading)

dbcachetries Number of total requests to the

database cache.

Hit ratio (under database

cache heading)

dbcachehitratio Percentage of requests filled

from the database cache.
Chapter 7 Capacity Planning and Performance Tuning 189

These parameters can also be obtained from the command line, as shown below:

Under optimal conditions, both the entry and database cache hit ratios will be above

95%. If either hit ratio is less than 95% and you have additional available physical

memory, you should consider increasing your cache size to increase the hit ratio.

If you have been running your directory for several days and find that your entry

cache is not filled to the maximum level, you might also consider lowering the size

of your entry cache to just above the high watermark, and giving the freed memory

to the database cache.

Setting the All IDs Threshold

Each index that the directory server uses comprises a table of index keys and

matching entry ID lists. That is, for each index key there is a list of directory entry

IDs that match the key. This entry ID list is used by the directory server to build a

list of candidate entries that can match a specified search filter.

There is a size limit for each entry ID list. This size limit, called the All IDs threshold,

is globally applied to every index key managed by the server. When the size of an

individual ID list reaches this boundary, the server replaces that ID list with an All

IDs token.

blueprints# ldapsearch -b "cn=monitor,cn=ldbm" -s base
"objectclass=*"
cn=monitor,cn=ldbm
objectclass=top
objectclass=extensibleObject
cn=monitor
database=ldbm
readonly=0
entrycachehits=985475
entrycachetries=1114773
entrycachehitratio=88
currententrycachesize=50002
maxentrycachesize=100000
dbchehits=1465400933
dbcachetries=1465424719
dbcachehitratio=99
dbcachepagein=23766
dbcachepageout=269607
. . .
190 Solaris and LDAP Naming Services

The All IDs token causes the server to assume that all directory entries match the

index key. In effect, the All IDs token causes the server to behave as if no index is

available for that particular search. The assumption is that some other aspect of the

search filter will allow the server to narrow its candidate list before processing the

list.

The default value for this parameter is 4,000. The All IDs mechanism is an important

mechanism for improving search performance in those cases where the search

results would yield most, if not all, directory entries. However, performance

problems can occur if the All IDs threshold is set either too low or too high for your

directory’s size.

Tuning the All IDs Threshold Value

Stated again for emphasis: You should be very careful about changing the default All

IDs threshold value for your server. With this in mind, here are some tips for tuning

this parameter.

If your directory is reasonably stable in size, set the All IDs threshold to

approximately 5% of the total number of entries stored in your directory. That is, if

you have 1,000,000 entries in your directory, set the All IDs threshold to 50,000.

By default, the directory server is set to an All IDs threshold of 4,000. This value is

ideal for a directory size of 80,000 entries. According to the advice given in the

preceding section, this default value is acceptable for directories between 8,000 and

800,000 entries in size. If your anticipated directory size falls outside this range,

change your All IDs threshold before populating your database. However, setting

the All IDs too high can degrade search performance and increase memory footprint.

Setting Search Limit Parameters

Three search limit parameters let you manage the Directory Server performance by

limiting the amount of resources the server allocates to client requests.

Size Limit (in entries) — Specifies the maximum number of entries the server will

return to the client in response to a search operation. If this limit is reached, the

server returns any entries it has located that match the search request, as well as an

exceeded size limit error. The default value for this parameter is 2000. Decreasing

this value could reduce your average search time but will also limit the number of

results returned on very large searches.

Time Limit (in seconds) — Specifies the maximum amount of real time the server

spends performing a request. If this limit is reached during a search, the server

returns any entries it has located that match the search request, as well as an
Chapter 7 Capacity Planning and Performance Tuning 191

exceeded time limit error. The default value for this parameter is 3600. Decreasing

this value produces results similar to those obtained by decreasing the Size Limit
parameter.

Lookthrough Limit (in entries) — Specifies the maximum number of entries the

server will check when seeking candidate entries in response to a search request. If

this limit is reached, the server returns any entries it has located that match the

search request, as well as an exceeded size limit error. The default value for this

parameter is 5000. Decreasing this value could reduce the average search time per

request but will also produce more unmet requests. As a guideline, you should set

this parameter at least 10% above your value for Size Limit.

Note – The values set on these parameters are hard limits on the resources that the

server will apply to each request, but they are not enforced on the rootdn . In

addition, an LDAP client can cause the server to actually use smaller values for Size
Limit and Time Limit.

Changing Search Limit Parameters

You set the Size Limit and Time Limit parameters either by using the Directory

Server Console or by editing the slapd.conf file.

From the Directory Server Console:

Go to the Configuration tab and highlight the top line in the left pane. On the right

side of the screen, go to the Performance tab and observe the information there,

shown in FIGURE 7-9.

FIGURE 7-9 Performance Tab Information

Note – You should halt the Directory Server Console from the command line before

you make the changes, then restart it.
192 Solaris and LDAP Naming Services

To change these parameters from the command line:

The lookthroughlimit can be changed either through the Directory Server Console

or from the command line. However, using the Console will cause previously hand-

edited data to be overwritten, so the command line method is recommended.

To change the lookthroughlimit parameter:

Considering Data Design Issues

You must look at three data design issues when deploying a directory:

■ What are the number and types of attributes that will be stored as entries?

■ How will the entries be organized into the directory hierarchy?

■ What are the security rules that govern access to directory contents?

blueprints# install_dir/slapd - instance/stop-slapd
blueprints# cd install_dir/slapd- instance/config
blueprints# vi slapd.conf
include "/opt/netscape/slapd-iplanet/config/slapd.at.conf"
include "/opt/netscape/slapd-iplanet/config/slapd.oc.conf"
include "/opt/netscape/slapd-iplanet/config/ns-schema.conf"
readonly off
timelimit 3600 <----- change this line
sizelimit 2000 <----- change this line
lastmod on
idletimeout 0
. . .
blueprints# install_dir/slapd- instance/start-slapd

blueprints# install_dir/slapd - instance/stop-slapd
blueprints# cd install_dir/slapd- instance/config
blueprints# vi slapd.ldbm.conf
. . .
suffix "dc=blueprints,dc=com"
suffix "o=NetscapeRoot"
directory "/db_fs/db"
cachesize 100000
dbcachesize 100000000
lookthroughlimit 5000 <---- change this line
. . .
blueprints# install_dir/slapd- instance/start-slapd
Chapter 7 Capacity Planning and Performance Tuning 193

Design of the Entries

The number and type of attributes stored on entries can have a performance impact.

When an entry is selected by a search, all of the entry’s attributes are read into the

entry cache even if only a few are requested by the client. This means that for a

given amount of memory on a machine, you will be able to cache either a small

number of large entries or a large number of small entries. Since the cache hit rate is

increased as you cache greater numbers of entries, you will get better overall

performance with smaller entries than with bigger ones.

The iPlanet Directory Server documentation recommends that you examine your

schema for attributes that are redundant or unnecessary. Especially look for

attributes that are excessively large. One small 20-character attribute will have

negligible impact on entry size compared to the impact of a 50-Kbyte JPG photo.

You should take this suggestion in moderation, however. The directory is capable of

managing entries with hundreds of attributes, with attribute values that are several

megabytes in size. If your application requires that a lot of data be stored in the

directory, you should not be discouraged from storing that amount of data. It is only

important to understand the relationship between entry size and performance and to

make sure that your machine has enough memory to provide a properly sized cache

for your directory size.

Design of the Directory Hierarchy

The iPlanet Directory Server is designed so that the hierarchy structure will provide

little or no impact on the performance of the directory. The directory can support

branches that contain millions of entries all at the same level and as well as trees that

are many levels deep, all without a significant impact on performance.

Design of the Security Rules

Using a large number of complicated Access Control Instructions (ACIs) can also

impact performance. Although there is no hard limit on the number of ACIs you can

use, strive for a simple ACI solution with as few ACIs as possible. As the number of

ACI statements grows, the statements become difficult to manage and will also

degrade performance. Most sites have 5-40 ACI statements in their directory and

achieve acceptable performance.
194 Solaris and LDAP Naming Services

Designing an LDAP Client

If you are building your own LDAP-enabled applications, remember that the design

of your application can also affect search performance. Below is a list of tips to

follow when you are designing your LDAP client:

■ Avoid the use of ldapdelete followed by ldapadd . Use ldapmodify instead.

■ Avoid configuring your client to always perform substring searches.

■ Avoid retrieving attributes of an entry that your client does not need.

■ Avoid multiple round trips to the directory when one trip will do. For example, in

adjacent code, do not perform multiple searches for attributes in the same entry

when the entries could be retrieved with a single search.

■ Use a progressive, multilevel search that executes searches in order of complexity

as described here:

■ Client searches for an exact match on an attribute and, if successful, returns the

results and quits.

■ Client searches for a substring match and, if successful, returns the results and

quits.

■ Client searches for a sounds-like match and returns the results and quits.

This type of phased approach to searching offers the best overall performance by

minimizing the load on the iPlanet Directory Server.

Removing Unnecessary Plug-ins

The iPlanet Directory Server can be enhanced by the addition of features

implemented as plug-ins which are contained in libraries loaded at runtime. If the

features provided by the plug-ins are not used, there is only a small impact on

performance. The memory footprint of the directory server will also be somewhat

larger because of the inclusion of plug-ins.

It is wise to keep most of the default plug-ins, since removing them could have

unwanted side effects. If, however, you are not using the Windows NT

Synchronization service, it is safe to remove the two plug-ins associated with the

service.

To remove plug-ins, from the Directory Server Console, go to the Configuration tab

and expand the Plugins icon as shown in FIGURE 7-10.
Chapter 7 Capacity Planning and Performance Tuning 195

FIGURE 7-10 Expanded Plugins Icon

You can then click the plug-ins you want to delete, then uncheck the Enable plugin
box. Since this operation modifies the slapd.conf file, you should halt the server,

then restart after the change is made.

Tuning Write Performance

Compared with tuning the search performance of the directory, tuning the write

performance is straightforward. The factor that most limits write performance is the

amount of time it takes to update information in files on the physical disks of the

machine where the directory is running. When a write operation of some type (add,

update, or delete) is performed by the directory, the directory writes information to

files in many different places:

■ The appropriate indexes are updated.

■ The update is noted in the transaction log.

■ The access and audit logs are updated.

■ The changelog is updated if replication is to be performed.

To guarantee the integrity of its data, the directory never considers a write operation

complete until the Solaris operating system has confirmed that all of the appropriate

files have been updated on physical media. Since disk access is thousands of times

slower than memory access, write operations are often many times slower than

reads, which are often completed out of the in-memory caches.
196 Solaris and LDAP Naming Services

Considering this, center all write-tuning efforts around optimizing disk access. This

optimization takes one of two forms:

1. It minimizes the amount of information that must be written to disk.

2. It increases the throughput of disk write operations by using faster disks, or

spreading the load across spindles and controllers.

The following sections offer tips on tuning write performance.

Optimize Indexes

Although indexing makes searches much faster, the indexes must be updated by the

directory for each write operation. This updating places a load on the server and

increases the number of disk accesses that must be made for each directory update.

When creating indexes, you must balance the needs of a fast search access to data

against directory write performance.

The first optimization you can perform is to examine your indexes and remove any

that are unneeded. If your applications never search on a particular attribute or do

so infrequently, then putting an index on that attribute will only slow directory

writes without providing any search performance gains. The directory, when first

installed, is configured with a certain set of default indexes. You should always

examine that list of indexes and remove any unnecessary ones.

It is important to consider the types of indexes the directory is maintaining. Each

type of index, while useful for optimizing particular types of queries, is also

associated with a particular cost whenever that index must be maintained. TABLE 7-9

illustrates the relative cost of maintaining certain types of indexes. The cost is

expressed in terms of the number of logical database writes associated with

maintaining the index for a given value.

You can see from TABLE 7-9, that substring indexes are potentially an order of

magnitude (or more!) more expensive to maintain than equality or presence indexes.

You should always be using the least expensive type of index that can accommodate

TABLE 7-9 Relative Costs of Index Types

Type of Index Relative Cost to Index a Value Example Value: “first middle last”

Presence 1 1

Equality 1 1

Approximate 1 * number of words in value 3

Substring 1 * number of characters in value 17
Chapter 7 Capacity Planning and Performance Tuning 197

the types of queries being made to an attribute. For example, if your applications

will never be executing wildcard searches on a uid attribute, then you should not

maintain a substring index for that attribute.

Increase Disk Throughput

An important part of write-performance tuning is finding ways to increase the

throughput of the disks storing the directory data. This can be accomplished in two

ways:

1. Increase the performance of individual disk subsystems.

2. Balance the write load across multiple disk subsystems.

The overall throughput of writing information to disk can be increased if the write

load is spread across drives and controllers. The default installation of the directory

places all directory data files under a single subdirectory. These files include the

database and indexes, transaction logs, change database, and log files. This

configuration usually results in all directory files being managed by a single disk

volume.

In Chapter 4, ”iPlanet Directory Server Installation and Configuration,” procedures

for relocating writable files are provided. Consult TABLE 7-10 to review the locations

of the directives that control the location of each directory files that can be updated.

Minimize Write Traffic

Since update performance is directly related to the amount of information that must

be written to disk whenever an update occurs, anything that reduces or eliminates

that disk traffic will speed updates. Here are some suggestions:

■ Remove any unnecessary indexes, as discussed in “Optimize Indexes” on page

197.

TABLE 7-10 Location of Files That Can Be Updated

File Directive Location

Database and indexes directory slapd.ldbm.conf

Transaction log db_logdirectory slapd.conf

Change log changelogdir parameter

or Netscape Console

slapd.conf

Log files accesslog , errorlog ,

auditfile parameters, or

Netscape Console

slapd.conf
198 Solaris and LDAP Naming Services

■ Minimize or eliminate logging. Turn off the access or audit logs if you don’t use

them regularly or don’t require them for audit purposes.

■ Eliminate the changelog db. If the directory is not a replication master, it doesn’t

need to maintain a change log. Turn it off through the Directory Server Console or

through the changelogdir parameter in slapd.conf .

Checking the Schema

Schema checking is performed by iPlanet Directory Server to verify that all

modifications conform to the current database schema. The database schema defines

the type of information allowed in the database. Schema checking is an important

feature that ensures you will be able to properly maintain the information after

import. Schema checking works by default when database modifications are made

by an LDAP client, such as ldapmodify , the directory server gateway, or when

importing a database from an LDIF using the command line. The default value for

this parameter is on.

Turning schema checking off can result in a slight increase in update performance.

However, the amount of CPU time spent performing the schema check is a small

fraction of the time spent waiting for disk writes to complete. For this reason, it’s not

recommended that the schema check be turned off during normal directory

operation. However, turning it off can result in a large performance gain for imports.

Also, on replica servers, you may want to turn schema checking off, since no

application will directly modify the data on these servers.

If you do turn schema checking off, you will manually have to verify that your

entries conform to the schema. Make sure that the attributes and object classes you

create in your LDIF statements are both spelled correctly and identified in

slapd.conf , slapd.at.conf , slapd.oc.conf , or a custom schema file that you

are including in slapd.conf .

Tuning Import Performance

During a directory import with the ldif2db command, the directory performs a

direct conversion of the entries in an LDIF file to a directory database and indexes.

No LDAP operations are performed during this process, so the directory must be

offline before an import can occur.

You can increase the performance of the import process by properly setting cache

sizes and by turning off schema checking.
Chapter 7 Capacity Planning and Performance Tuning 199

Setting Cache Sizes

During an import, the directory completely bypasses the LDAP processing logic and

performs operations directly against the underlying database. The entry cache is

completely unused during an import, and the database cache receives all of the

activity.

You achieve maximum import performance by making the entry cache as small as

possible (1,000 entries), and increasing the database to use as much available

physical memory as possible.

Import Schema Checking

Turning off schema checking during an import may provide as much as a factor of

two performance gain; however, you should never turn off schema check unless you

are willing to sacrifice data integrity for speed. Leaving schema check off during

import can result in an entry in the database that is impossible to modify once

schema checking is turned back on. For this reason, you should not turn off schema

checking unless you are certain that the entries in the LDIF file are valid for the

directory’s installed schema.

Troubleshooting Checklist

Here is a short checklist to help diagnose search performance problems:

1. Be certain that the directory is the problem.

If the machine running the directory is shared by other applications, the activities of

those programs will naturally affect the performance of the directory. Before

concentrating on tuning the directory, make sure that other programs are not the

cause of your performance problem. For example, make certain that the

“performance hiccup” that occurs at 9:00 every morning isn’t caused by some other

program’s daily batch process.

2. Make sure that all searches are indexed.

Do you have RESULT records in the access log that have a notes=U field? If so, see

“Optimize Indexes” on page 197.

3. Make sure that the machine isn’t swapping.
200 Solaris and LDAP Naming Services

Use vmstat to look at swap activity while the directory is running. If a significant

amount of swapping is occurring, your cache sizes are probably set too large for the

amount of available physical memory. See “Setting Cache Sizes” on page 200 for

more information.

4. Make sure your caches are set large enough.

Optimal directory search performance is achieved by caching as much data in

memory as possible. If your machine has unused physical memory, you can improve

directory performance by increasing cache sizes. See “Setting Cache Sizes” on page

200, for more information.

5. Use server search parameters to keep runaway queries in check.

If the directory is receiving ad hoc queries from end-user applications, it is possible

that the server can get bogged down executing thoughtless queries that return

thousands of entries. You can limit the impact of these types of runaway queries by

using the Size Limit, Time Limit, and Lookthrough Limit search parameters. See

“Setting Search Limit Parameters” on page 191 for more information.
Chapter 7 Capacity Planning and Performance Tuning 201

CHAPTER 8

Deploying Highly Available LDAP
Data Services

LDAP directory servers provide their own high availability features by performing

directory data replication. With replication, the content of a directory tree, or sub-

tree on one server, is duplicated on other servers. If one of the servers fails, the

content is still available on the other servers. However, the current iPlanet Directory

Server supports only a single-master replication model. This means that only one

server at any one time is granted the access rights to update the content in the

directory. If that server fails, updates cannot take place until the server is back online

or a replica server is granted update permission. This chapter looks at a method for

automatically switching over to a backup master directory server if the primary one

fails. The software to do this is Sun Cluster 2.2 in conjunction with the Highly

Available Data Services for the LDAP module.

Even with cluster deployments, LDAP replication plays an important role. Most

companies are geographically dispersed with Wide Area Network (WAN)

connections between sites. By positioning replicated LDAP directory servers at end

points of WAN connections to service local users, you conserve precious bandwidth.

The second part of this chapter presents LDAP replication architecture examples and

deployment strategies for making LDAP data services available with the efficient

use of network bandwidth.

iPlanet Directory Services 4.12 HA
Architecture Models

This section provides working examples of the High Availability (HA) architecture

that will enable you to understand what iPlanet Directory Server HA models are

available and the concepts behind them. Since no single architecture fits every

environment, we provide material about model availability to inform your decision

about an architecture.
203

High Availability Strategy

When designing the architecture of a highly available directory strategy, you must

be aware that availability comes at a price. It is generally thought that the more

highly available a system is, the more its design and operations cost will be.

One of the major reasons for designing the architecture of highly available services is

to prevent against the loss of business due to application service outages and

downtime. In the case of directory services, unavailability of an application service

can lead to loss of income, potential Internet subscribers, and even future revenues.

The value of HA to directory services customers is directly related to the costs of

downtime. This means that the higher the cost of downtime, the easier it will be to

justify the additional expense of implementing HA. Take the case of Internet Service

Providers (ISPs) who are core users of the directory services. They probably have

service-level agreements with subscribers whereby they guarantee a certain level of

availability. If ISPs do not meet this service-level agreement, they could incur

financial penalties.

To provide HA solutions for your organization’s directory services you must identify

the goals of providing HA services. Possible goals might include performance, load

balancing, and management. Once you understand your organization’s goals, then

you can look at some of the available options. Understanding the design goals will

influence the way you design an architecture of an HA solution. Some of the more

common approaches to designing high availability directory services include:

■ Replication Models

■ Referral Models

■ Asymmetric HA (hot standby model)

Replication Models

Replication models support a single writable Supplier, and multiple read-only

Consumer servers. The mechanism used is a simple replay-based replication scheme,

in which a single-master server records the changes made to it and at some later

time replays those changes to Consumer servers, which hold a read-only copy of the

replicated subtree. Consumer servers may service bind , unbind , search , and

compare operations on the replicated subtree, but they refer add , delete , modify ,

and modifyRDN /modifyDN operations to the master server, unless those operations

come from the master server itself.

The Supplier server stores state information in a special attribute (the copiedFrom
attribute) in the Consumer’s copy of the entry at the top of the replicated subtree.

Before commencing replay of changes, the Supplier retrieves the value of this

attribute and sends only changes that have occurred since the last replication run.
204 Solaris and LDAP Naming Services

Between these servers is a Replication Agreement, which must be configured before

the servers can synchronize any data. Using the replication model enables us to

avoid a situation whereby the loss of a single server causes the directory services to

become unavailable. Once a server has been designated as the Supplier, all client

updates are directed to that server. When a replica is initially created, it typically

contains no directory data. To begin servicing client operations, initialize a replica.

At a minimum, the replicated model should contain at least one backup server.

FIGURE 8-1 illustrates single-master directory replication architecture.

FIGURE 8-1 Single-Master, Directory-Replication Architecture

LDAP Client Sends Directory Updates

Client
Supplier

Consumer Consumer

LDAP

SIR SIR
Chapter 8 Deploying Highly Available LDAP Data Services 205

A higher-performance replication architecture is based on the same principle as

FIGURE 8-1. To deploy that architecture, you would deploy directory services and the

appropriate directory clients in the form of a workgroup. The idea behind

workgroup architecture is that a Supplier server replicates its directory tree out to

the multiple Consumers that are located in the workgroup in multiple LANs. The

benefit of such an architecture is that it allows clients of the directory service to be

much closer to the directory server that services their needs.

FIGURE 8-2 shows high-performance, single-master, directory-replication architecture.

FIGURE 8-2 High-Performance, Single-Master, Directory-Replication Architecture

Supplier

Consumer

Consumer

Consumer

LDAP
Client

LDAP
Client

LDAP
Client

LDAP
Client

LDAP
Client

LDAP
Client

LDAP
Client

LDAP
Client

LDAP
Client

WorkGroup
(Local Area Network 1)

WorkGroup
(Local Area Network 2)

WorkGroup
(Local Area Network 3)
206 Solaris and LDAP Naming Services

The replication hub directory architecture (FIGURE 8-3) builds upon the two previous

architectures: a single-master directory, serves as a dedicated Supplier server to

maintain all of the directory data. Any update requests that come from clients are

handled by the Supplier server. The one major difference in the replication hub

directory architecture is how the Supplier server replicates its content out to a

replication master server. This replication hub server is a Consumer server of the

Supplier server, and its function is to replicate changes that are made and send these

changes out to the other Consumer servers. In turn, these directory Consumer

servers will serve requests to clients.

One of the big advantages of the replication hub directory architecture is that the

Supplier server can be taken offline for tasks such as routine maintenance.

FIGURE 8-3 Master and Replication Directory Hub Architecture

LDAP Client Sends Directory Updates

LDAP
Client Supplier

Supplier Supplier Supplier

Replication
HUB

SIR
SIR

SIR
Chapter 8 Deploying Highly Available LDAP Data Services 207

Referral Models

Referral models are helpful because they enable HA architecture to scale to millions

of users. For example, consider the not-unusual case of a company that has

thousands of divisions located around the world. One major issue that this type of

organization faces is the undesirability and impracticality (from management’s

viewpoint) of putting all the organization’s entries into one directory server.

FIGURE 8-4 illustrates the basic referrals mechanism and how it works.

FIGURE 8-4 Basic Referrals Mechanism

LDAP

Client

Directory
Server (foo)

Directory
Server (bar)

#1

#2

#3

#4

#1-Client sends original request
#2-Directory Server (foo) sends a referral
#3-Client then resubmits the request
#4-Directory Server (bar) responds to Client request
208 Solaris and LDAP Naming Services

A better approach to solving such management issues is to enable all divisions

within your organization to manage their own directory server for its local user

entries. The reason this architecture works so well is that users at the local division

are only concerned with local entries. If the local division users want to find

information pertaining to a user located outside the local division, they will then be

referred automatically to a directory of directory servers. This server uses its

directory tree to determine where to refer client requests.

FIGURE 8-5 illustrates a replication referrals mechanism.

FIGURE 8-5 Replication Referrals Mechanism

LDAP

Client

Directory

Directory
Server (bar)

#1

#2

#3

#4

#1-Client sends modify request
#2-Directory Server (foo) sends a referral
#3-Client then resubmits the modify request
#4-Directory Server (bar) responds to Client’s modify request

Server (foo)

(Read-Only
Replica)

Consumer

Consumer

(Writable)
Chapter 8 Deploying Highly Available LDAP Data Services 209

FIGURE 8-6 shows a referral mechanism beyond the local division server.

FIGURE 8-6 Referral Search beyond the Local Division

Overview of Sun Cluster 2.2 Software

In general, clusters perform two mutually exclusive roles: clustering for high

availability, and clustering for performance. Although Sun Cluster software can

increase performance of some applications such as database servers, its primary

benefit to an LDAP directory service is increased availability. In this role, Sun

Cluster software is configured in a shared nothing architecture. What this means is

that at any time a resource is owned by only one of the cluster nodes. If that node

fails, then the ownership of its resources is transferred to a working node.

Sophisticated clustering software such as Sun Cluster needs to perform many

housekeeping functions such as cluster creation and membership monitoring. While

these are important functions, they are not discussed here. Instead the focus is on

how the failover of the LDAP data service works.

LDAP

Client

Directory
Server (foo)

Directory
Server (bar)

#1

#2

#3

#4

#1-Client sends a search operation
#2-Directory Server (foo) references and searches for entry
#3-Client then resubmits the search operation
#4-Directory Server (bar) responds to Client search operation with additional entries

1=Europe

1=EastCoast
210 Solaris and LDAP Naming Services

Logical IP Addresses

The basic concept behind clustering for HA is the notion of a floating Internet

Protocol (IP) address that is temporarily assigned to a server providing a service

such as an LDAP directory server. Clients of this service use the logical IP address,

rather than the server’s actual IP address, to access the server. In the event of a

cluster node failure, the logical IP address associated with the LDAP data service is

transferred to a working node.

The convenience of referencing services by their logical IP address rather than the

actual one is that the client need not know what physical server is actually providing

the service. For example, an LDAP client such as a messaging application would

always reference the LDAP server by its logical IP address and would be unaware if

this IP address was transferred to another cluster node.

FIGURE 8-7 shows what a typical Sun Cluster HA configuration might look like. Two

public networks are used for redundancy, and logical addresses are used by clients

accessing services on the servers. The physical hosts are called phys-hahost1 and

phys-hahost2 ; however LDAP clients only address these servers by their logical

IP addresses.

FIGURE 8-7 Typical Sun Cluster HA Configuration

In the FIGURE 8-7 configuration, both phys-hahost1 and phys-hahost2 are capable

of running instances of the iPlanet Directory Server. The directory database files

reside on the multihomed disks which are mirrored. At any time, the disks are

Public Network (192.9.200)

Public Network (192.9.201)

Multihome Disks

hahost2
Logical IP
192.9.200.2

hahost1
Logical IP
192.9.200.1

hahost1-201
Logical IP
192.9.201.2

hahost2-201
Logical IP
192.9.201.2

phys-hahost2
phys-hahost1
Chapter 8 Deploying Highly Available LDAP Data Services 211

owned by only one of the hosts. In the event of a failure, the ownership of the disks

(and database) is transferred to the working node. The logical IP address associated

with the directory service is also transferred.

Data Services for Sun Cluster

To run a particular application, such as the iPlanet Directory Server, in a Sun Cluster

environment, the following software is required:

■ Sun Cluster core components

■ HA Data Services (for that application)

The Sun Cluster core components provide the necessary framework for running the

application-specific software, or data services. The core components are responsible

for maintaining a cluster configuration database and other services such as a

heartbeat signal between cluster nodes. These core components must be configured

before the data services can be installed and configured.

The data services provide functions specific to a particular service or application. For

example, the Sun Cluster HA for Netscape LDAP data service manages the failover

of the iPlanet Directory Server. This service is added as a Solaris package after the

core Sun Cluster components are installed.

The HA Data Service for LDAP performs the following functions:

■ Monitors the health of the directory service

■ Controls the stopping and starting of the directory service

■ Attempts to restart a failed directory server on the same node

■ Stops the directory server on one cluster node, restarts it on another

Caution – Once the HA Netscape LDAP data service is configured with the Sun

Cluster software, the directory server is no longer started or stopped manually,

because the data service provides those functions.

Building a Sun Cluster with HA LDAP
Data Services

While it is possible to build and configure a Sun Cluster without professional

assistance, we strongly recommend that you seek the services of a consultant with

Sun Cluster experience. Since you are deploying a Sun Cluster to increase service
212 Solaris and LDAP Naming Services

availability, it is well worth the investment to have an expert perform the initial set-

up. To give you an idea of what is involved in setting up a Sun Cluster, we outline

below some of the basic steps.

Building a Sun Cluster starts with identifying a Sun-supported hardware

configuration. This configuration usually consists of two (or more) similar servers

both of which are physically connected to one or more multihomed disk storage

devices. The storage devices contain information such as the directory database and

log files. Since the log files are usually kept on a different disk drive than the

directory tree, several physical disk drives are typically deployed.

The multihomed storage devices are physically accessible by all the cluster nodes,

but only one cluster node has control over it at any time. If the LDAP directory

service fails, the control of the multihomed storage devices is transferred to another

cluster node.

Another important consideration is the communication channels between the nodes.

Separate channels are used for cluster communication, the heartbeat signal, and client

access to the directory service itself. If the heartbeat or communication channels fail,

then the cluster will not function properly. Each node would think that the other

node has failed. Therefore, using redundant network interface controller (NIC) cards

is critical.

LDAP Fault Monitor

The HA LDAP data service contains a fault probe that periodically checks to see if

the directory service is functioning properly. The fault probe is run on both the

active node and the standby node. On the active node, an ldapsearch command is

executed on the node running the LDAP service; then the probe waits for the

successful completion. On the standby node, the probe attempts to telnet into the

port (default is 389) on the node that the LDAP server is running on. If the

attempted telnet session times out, then the standby node is assumed to have failed.
Chapter 8 Deploying Highly Available LDAP Data Services 213

The following is a section of the shell script used as the fault probe in HA LDAP

Data Services.

iPlanet Directory Server 4.12 Installation

No changes are required to the iPlanet Directory Server software to run in the Sun

Cluster environment; however, there are compatibility issues, so it is recommended

that you consult the Sun Cluster documentation. You must enter specific

configuration parameters and install components in the proper order. The following

steps summarize the process.

1. Load the core Sun Cluster components.

2. Install the HA Data Services for LDAP package SUNWscns1.

3. Install the HA Data Services Update, Patch-ID# 108109-xxx.

4. Install the iPlanet Directory Server 4.12 software on each cluster node.

5. Run the Sun Cluster configuration command: hadsconfig(1M) .

When installing the iPlanet directory Server 4.12 software as noted in Step 4, you

must change the following default parameters:

■ Specify the logical host name instead of the physical host name of the server on

which the software is being installed.

■ Change the default server root directory, /usr/netscape/server4 , to a

directory that resides on the multihomed disk.

INST_MON=$INST_MON_DIR/ldapsearch
PROBE_INTERVAL=‘get_config_param $INST_NAME PROBE_1_INTERVAL‘
PROBE_TIMEOUT=‘get_config_param $INST_NAME PROBE_1_TIMEOUT‘
while : ; do
#
Take a nap here
In the first iteration, this has the advantage of allowing time
for slapd to start.
#
sleep $PROBE_INTERVAL

#
Remote probe, just try to connect to slapd
Local probe, connect to slapd with "cn=monitor" if ["$LOCAL"
= "yes"]; then hatimerun -t $PROBE_TIMEOUT $INST_MON -h $LHOST
-p $LPORT -b "cn =monitor" -s base "objectClass=*" > /dev/null
2>&1 else hatimerun -t $PROBE_TIMEOUT telnet -e’e’ $LHOST $LPORT
<< TELEND > /dev/null 2>&1 equit TELEND fi
214 Solaris and LDAP Naming Services

■ Change the base install directory: The pathname should be the location, at which

the start and stop scripts, start-slapd and stop-slapd , reside.

These parameters are also used for input to the hadsconfig command.

In addition to changing the default parameters, you set the following parameters to

the preferred operation of the HA LDAP Data Service.

■ Name of the instance — Multiple instances of the iPlanet Directory Server can be

run simultaneously in the Sun Cluster environment. For administrative purposes,

assign each instance a unique name tag.

■ Takeover flag — This parameter specifies whether you want to failover this

instance of the directory service to another cluster node. In most cases, you want

this parameter set to y for yes .

■ Probe interval — This is the time between fault probes. Since the fault probe

executes an ldapsearch command, an additional load is placed on the directory

server and network. The trade-off is between adding the additional load versus

the time it takes for the Sun Cluster software to recognize there is a problem. The

default is 60 seconds.

■ Probe time-out — This is the time after which the fault probe will time out.

Setting this value too low may cause a false failover trigger, so you must take care

to set this value correctly. The default is 30 seconds.

Configuring the Sun Cluster HA for iPlanet Data

Services

After you have installed the Sun Cluster HA for Netscape packages and the

Netscape Directory Server, you are ready to configure the LDAP data service

package. Sun Cluster HA for Netscape allows configurable instances that are

independent of each other. Sun Cluster data services are configured with the

hadsconfig (1M) command.

To configure HA data services for LDAP:

1. Run the hadsconfig (1M) command to configure the service.

2. Register the Sun Cluster HA for LDAP data service by running the hareg (1M)
command.

phys-hahost# hadsconfig
Chapter 8 Deploying Highly Available LDAP Data Services 215

If you installed the data service packages on all potential masters of a logical host

but not on all hosts in the cluster, use the -h option and specify the logical host

name.

3. Run the hareg -Y command to enable all services and perform a cluster
reconfiguration.

LDAP Cluster Deployment Options

Once you have decided to deploy your LDAP directory server in a Sun Cluster

environment, you will need to decide what deployment model is right for you. You

can either use the hot standby model or run services on all cluster nodes with the

active server model.

Asymmetric (Hot Standby Model) HA

The basic asymmetric architecture consists of two clustered host machines,

commonly referred to as nodes. These two nodes are represented by one logical IP

address and an associated host name. The basic idea behind one logical IP address

and host name is that the cluster services can then be referred to singularly. In this

type of configuration, only one node in the cluster is ever active at any given time,

which means that the hot standby node stays potentially idle most of the time. The

obvious disadvantage to this type of architecture is the cost involved in having a

server idle most of the time. Both cluster nodes share a logical disk array that is

configured and designated to this shared volume. In this architecture, only one

instance of the directory server will run on the active node.

phys-hahost# hareg -s -r nsldap -h logicalhost

phys-hahost1# hareg -Y
216 Solaris and LDAP Naming Services

FIGURE 8-8 A Directory Server Asymmetric High Availability Model

In the architecture of FIGURE 8-8 the active node is Physical-A. If a failover occurs, the

active node then becomes Physical-B. At the same time, the shared volume is

switched to the secondary node in the cluster (backup node). In turn, the directory

services that were running on the primary node will be stopped and will be started

on the secondary node. The advantage of this architecture is that it dedicates a

resource exclusively to the primary node with no resource contention. The

disadvantage of the asymmetric HA model architecture is that the secondary node is

idle most of the time.

In this model, two identical servers are configured and sized with enough capacity

to handle the load effectively. One server in the cluster is active all the time, and the

other server is idle. If the primary server fails, then the secondary server takes over.

The advantage of this model is that server performance does not degrade in the

event of a failure. The disadvantage, of course, is that the resources on the standby

server are not doing productive work. However, a manual switchover can be

initiated so that periodical maintenance can be performed on a server without

affecting service.

Public Network

Directory Server
(slapd)

Hot Standby
Node

Directory Server
Database
Logs

Private Network Interface

IP: Physical-A
IP: Logical Host IP: Physical-B

Primary Cluster Node Secondary Cluster Node
(Backup)
Chapter 8 Deploying Highly Available LDAP Data Services 217

Active Server Model

In this model, all the cluster nodes have active services running on them. However,

because you cannot have two master LDAP directory servers active at the same

time, you either have to run two different instances of the LDAP server or run

another type of service.

For example, you could have two separate directory trees, each with its own master

server. One of the master servers could be active on each cluster node. In the event

of a cluster node failure, the LDAP server on that node would failover to the healthy

node. Similarly, you could have an LDAP server active on one node and a web

server active on another node. If either service failed, then the LDAP server would

failover to the other node.

The problem with this model is that running the additional service or services on the

second node requires additional system resources. If sufficient resources are not

available on the node to which the services failover, then the performance of all

services will be degraded.

Redirecting LDAP Client Requests

How LDAP clients locate servers is application dependent. Web browsers with built-

in LDAP capability generally only allow you to specify a single server for a

particular Address Book. If that server is not operational, the client will not

automatically try another server. Other clients, like the Solaris 8 LDAP client, allow

you to specify a list of potential servers and a time out period during which to try

another one if the first one does not respond.

A simple technique for client failover is DNS round robin, which rotates through a

list of IP addresses, returning a different one for different lookup requests. The

theory is that if a client attempts to contact a server and is unsuccessful, it will try

again by performing a new DNS lookup. This time, the client receives an address of

a different server, with luck, one that is operational. The problem is that clients often

cache IP addresses so they will not have to do subsequent DNS lookups, which

defeats the purpose of a DNS round robin.

An alternative method is to deploy some kind of LDAP redirector, which routes a

received client request, to an appropriate LDAP server. The iPlanet Directory Access

Router (iDAR) is an example of a redirector. The iDAR also acts as a load balancer,

by sending requests to the least busy server. If a server is not responding, then no

further requests are forwarded to it until it is operational again. More discussion on

iDAR can be found in Chapter 11, ”Directory Services Consolidation.”
218 Solaris and LDAP Naming Services

CHAPTER 9

Preventive Maintenance

Proper maintenance procedures are a critical element in keeping the directory server

running trouble free. Log file examination and pruning, scheduled backups,

directory schema updates, and proper access control are all important maintenance

functions. If you know the proper procedures to perform, these functions can save

time and prevent unnecessary downtime.

This chapter discusses both routine and less frequently performed procedures such

as relocating the directory to larger disk partitions. Sample scripts are also provided

to perform bulk modifications on the directory database.

Directory Log Files

Log files play an important role in determining the health of your directory server.

However, they do tend to grow in size and will need occasional pruning. There is

sometimes a trade-off between the amount of data that is logged and the effect of

that logging has on overall directory performance.

The iPlanet Directory Server provides three types of logs to help you manage your

server and tune performance better. These logs include:

■ Access Log

■ Error Log

■ Audit Log

The following sections discuss the format of the data maintained in these logs, the

method for viewing the contents, and the settings for pruning parameters.

Access Log

If access logging is turned on, every time a client performs a directory operation,

that event is written to the access log. For each client access two types of records are

recorded:
219

■ Operation requested

■ Result of the operation

The operation requested can be a search , add , delete , or modify function. For a

search operation, which is the most common, the following data is recorded in the

operation record.

Date/Time — When the operation was performed.

Connection number — What connection the operation was performed on. If the

clients are using persistent connections, there will be many entries with the same

connection number.

Operation number — A sequence number identifying the operation that took place

on the connection.

Search base — Where in the DIT the search began.

Scope — How many levels of the DIT were searched.

Filter — Search criteria specified.

Following the operation record in the access log is the result of that operation. For a

search operation, the following data is written to the access log:

Date/Time — This should correspond to the operation record timestamp.

Connection number — The same connection as the operation record.

Operation number — The same number as operation record.

Error code and tag number — 0 for no error; see Appendix D, “Error Codes” for

nonzero return codes.

Number of entries returned — If the search was successful, the number of entries

that matched the search criteria.

Search time — The time in seconds it took to perform the search.

A typical pair of access records looks like this:

[05/Apr/2000:16:18:12 -0400] conn=18868 op=19154 SRCH
base="dc=blueprints,dc=com" scope=2 filter="(uid=cmiller)"

[05/Apr/2000:16:18:12 -0400] conn=18868 op=19154 RESULT err=0
tag=101 nentries=1 etime=0

In the example, you can see that the conn= and op= fields match, so you know the

result matches the operation performed. The result was successful, with one

matching entry returned.
220 Solaris and LDAP Naming Services •

Viewing the Access Log

View the access log from either the command line or the Directory Server Console.

The same information is displayed regardless of which method you use.

To View the Access Log from the Command Line

You can view the archive access logs by specifying the archive name, which has an

extension of YearMonthDayTime . For example,

access.20000405-153437

To View the Access Log from the Directory Server Console

1. On the Directory Server Console, choose the Status tab, then click the Logs icon in
the navigation tree in the left pane.

2. Choose the Access Log tab in the right pane.

This tab displays the last 25 entries in the access log by default.

blueprints# cd install_dir/slapd - instance/logs
blueprints# more access
[05/Apr/2000:16:18:12 -0400] conn=18872 op=19387 SRCH
base="dc=blueprints,dc=com" scope=2 filter="(uid=tbialaski)"
[05/Apr/2000:16:18:12 -0400] conn=18873 op=19438 RESULT err=0
tag=101 nentries=1 etime=0
[05/Apr/2000:16:18:12 -0400] conn=18868 op=19154 SRCH
base="dc=blueprints,dc=com" scope=2 filter="(uid=bsmith)"
[05/Apr/2000:16:18:12 -0400] conn=18870 op=19358 SRCH
base="dc=blueprints,dc=com" scope=2 filter="(uid=mmoore)"
[05/Apr/2000:16:18:12 -0400] conn=18868 op=19154 RESULT err=0
tag=101 nentries=1 etime=0
[05/Apr/2000:16:18:12 -0400] conn=18870 op=19358 RESULT err=0
tag=101 nentries=1 etime=0
[05/Apr/2000:16:18:12 -0400] conn=18867 op=19095 SRCH
base="dc=blueprints,dc=com" scope=2 filter="(uid=mhaines)"
[05/Apr/2000:16:18:12 -0400] conn=18872 op=19387 RESULT err=0
tag=101 nentries=1 etime=0
[05/Apr/2000:16:18:12 -0400] conn=18874 op=19446 SRCH
base="dc=blueprints,dc=com" scope=2 filter="(uid=cmiller)"
...
blueprints#
Chapter 9 Preventive Maintenance 221

3. To refresh the current display, click Refresh. Click the Continuous check box if
you want the display to refresh automatically every 10 seconds.

4. To view an archived access log, choose it in the Select Log pull-down menu.

5. To display a different number of messages, enter the number you want to view in
the Lines to show text box and then click Refresh.

6. You can tell the server to display only messages containing a specific string. To do
this, enter the string in the Show only lines containing text box and then click
Refresh.

FIGURE 9-1 shows the access log being displayed.

FIGURE 9-1 Access Log Tab and the Resulting Details

Access Log Configuration Options

Access logs can provide helpful troubleshooting information, but they also take up

disk space and consume system resources. The actual load that access logging places

on the system is minimal, so turning off access logging does not improve system

performance. However, the size of the access log can grow very quickly on a busy

server. Every 2,000 accesses adds an additional 1 Mbyte to the log, so it is not wise to

let the log keep growing.

There are a number of configurable parameters you can use to limit the amount of

space the access log will consume. You can specify a size limit, after which the access

log is written to an archive file. An archive file can also be created after a specified

period of time, perhaps daily or weekly. The next section explains how to configure

the various options.
222 Solaris and LDAP Naming Services •

Enabling Access Logging and Specifying Log Location

1. On the Directory Server Console, choose the Configuration tab and then click the
Logs icon in the navigation tree.

2. Choose the Access Log tab in the right pane.

3. To enable access logging, click the Enable Logging check box.

Clear this check box if you do not want the server to maintain an access log.

You can also disable access logging manually by changing the accesslog-logging-
enabled parameter in the slapd.conf file as follows:

accesslog-logging-enabled off

4. Enter the full path and file name you want the server to use for the access log in
the text box provided. The default is:

install_dir/slapd -instance/logs/access

Note – Access logging is enabled/disabled immediately through the Directory

Server Console. If manually edited in the slpad.conf file, the change does not take

effect until the directory server is restarted.

Setting Log Creation Policies

Log file creation policies are established through the same screen as the one that

enables access logging. FIGURE 9-2 shows where the parameters are set.

FIGURE 9-2 Access Log Tab and Parameter Settings
Chapter 9 Preventive Maintenance 223

You can establish creation and deletion policies by changing the values in the

following fields.

Creation Policy

Maximum number of logs: Total of access logs + number of archive logs. This

number should be set to greater than 1 or else the access log will grow indefinitely.

Once the maximum number is reached, the oldest log file is deleted.

File size for each log: A new log file is created when this limit is reached. Enter -1

for no limit to be set.

Create a new log every: The default—every day—is handy if you want to see what

the activity was on a particular day.

Deletion Policy

When total log size exceeds: When the sum of all the log files reaches this size, the

oldest log file is deleted.

When free disk space is less than: Deletes the oldest log file if the free space on the

disk partition the logs are stored on falls below the specified threshold.

When a file is older than: Deletes log files when they reach a specified age.

Error Log

The error log contains detailed messages of errors and events the server experiences

during normal operations such as start up and shut down. The error log record is in

the format of:

date time details

The error log is enabled by default and can be disabled, but disabling is not

recommended. Unless there is a serious problem, the error log does not grow

substantially and uses few system resources. Similar parameters for controlling the

size of the access log can be set for the error log.

Viewing the Error Log

View the error log from either the Directory Server Console or the command line.

From the Directory Server Console follow these steps:
224 Solaris and LDAP Naming Services •

1. On the Directory Server Console, choose the Status tab and then click the Logs
icon in the navigation tree.

2. Choose the Error Log tab in the right pane.

This tab displays the last 25 entries in the error log by default.

3. To refresh the current display, click Refresh. Click the Continuous check box if
you want the display to refresh automatically every 10 seconds.

4. To view an archived error log, choose it in the Select Log pull-down menu.

5. To specify a different number of messages, enter the number you want to view in
the Lines to show text box and click Refresh.

6. You can tell the server to display only messages containing a specific string. To do
this, enter the string in the Show only lines containing text box and click Refresh.

From the command line:

Audit Log

The audit log is useful for tracking changes to the directory database and the

directory server configuration. If a problem arises with the directory at a particular

time, checking the audit log is a good place to start to see if the problem coincided

with the directory malfunction.

blueprints# cd install_dir/slapd - instance/logs
blueprints# tail -f errors
[06/Apr/2000:08:22:53 -0400] - slapd got shutdown signal
[06/Apr/2000:08:22:54 -0400] - slapd shutting down - signaling
operation threads
[06/Apr/2000:08:22:54 -0400] - slapd shutting down - waiting for
20 threads to terminate
[06/Apr/2000:08:22:54 -0400] - slapd shutting down - waiting for
housekeeping to close down
[06/Apr/2000:08:22:54 -0400] - Waiting for 4 database threads to
stop
[06/Apr/2000:08:22:55 -0400] - All database threads now stopped
[06/Apr/2000:08:22:55 -0400] - slapd stopped.
...
blueprints#
Chapter 9 Preventive Maintenance 225

The following is an example of an entry made in the audit log.

From the log, you can see that a change was made to the directory tree at 10:07 on

April 20. At this time, a new ou called Managers was added by the Directory

Manager.

Audit Log Configuration

The procedure for enabling the audit log and managing the creation of archive log

files is similar to the procedures for the access and error logs. You set the parameters

through the Directory Server Console by going to the

Configuration—>Logs—>Audit Log tab.

Managing Database Transaction
Logging

Whenever a directory database operation such as a write is performed, the server

logs the operation by default to the transaction log. For best performance, the

operation itself might not be performed immediately. Instead, it is stored in a

temporary memory cache on the directory server until the operation is completed. If

the server experiences a failure, such as a power outage, and shuts down

abnormally, the information about recent directory changes that were stored in the

cache are lost. However, when the directory server restarts, it automatically detects

the error condition and uses the database transaction log file to recover the database.

blueprints# cd install_dir/ slapd - instance/logs
blueprints# tail -f audit
time: 20000420100730
dn: ou=Managers,dc=blueprints,dc=com
changetype: add
ou: Managers
objectclass: top
objectclass: organizationalunit
creatorsname: cn=Directory Manager
modifiersname: cn=Directory Manager
createtimestamp: 20000420140730Z
modifytimestamp: 20000420140730Z
...
blueprints#
226 Solaris and LDAP Naming Services •

Although database transaction logging and database recovery are automatic

processes that require no intervention, you may want to tune some of the database

transaction logging parameters for best performance. These parameters include:

■ Location of the database transaction log

■ Database checkpoint interval

■ Durable transactions

The following sections show how to modify these parameters.

Changing the Location of the Database

Transaction Log

In Chapter 4, ”iPlanet Directory Server Installation and Configuration,” the

postinstallation section explains how to move the transaction log. Moving the

transaction log file, which is stored in the install_dir/slapd- instance/db directory, to

another disk drive is recommended for two reasons:

1. The purpose of the transaction log is to aid in the recovery of a directory database

that was shut down abnormally, possibly as a result of a system failure. If the

problem was caused by a disk failure on the disk volume where the directory

database resides, you would also lose the transaction log.

2. Storing the database transaction log on a separate physical disk will improve

directory server performance.

You specify the location of the database transaction log file by adding the

db_logdirectory parameter to the end of the slapd.ldbm.conf file as shown

here.

After you complete the change, restart the directory server to cause the changes to

take effect.

blueprints# cd install_dir/slapd- instance/config
blueprints# vi slapd.ldbm.conf
...
directory "/db_fs/db"
cachesize 100000
dbcachesize 100000000
lookthroughlimit 5000
readonly off
mode 0600
db_logdirectory /log_fs/log <- change this line
...
blueprints#
Chapter 9 Preventive Maintenance 227

Changing the Database Checkpoint Interval

Whenever a directory database operation such as a write or modify is performed,

the operation is logged to the directory server database transaction log. For best

performance, the results of the operation itself may not be written to disk

immediately. Instead, they are stored in a temporary memory cache on the directory

server. At specific intervals, the directory server writes the previously cached data

out to the disk and logs a checkpoint entry in the database transaction log. By

indicating which changes have already been written to the directory, checkpoint

entries tell the directory server where in the database transaction log to begin

recovery, thus speeding up the recovery process.

By default, the directory server is set up to send a checkpoint entry to the database

transaction log every 60 seconds. Increasing the checkpoint interval can increase the

performance of directory server write operations. Increasing the checkpoint interval

can also significantly increase the amount of time required to recover the directory

database after a disorderly shutdown and can waste disk space due to overly large

database transaction log files. Therefore, you should only modify this parameter if

you are familiar with database optimization and can fully assess the impact of the

change.

To modify the checkpoint interval, you add the db_checkpoint_interval
parameter using a range from 10 to 300 to the end of the slapd.conf file. The

parameter is specified in seconds.

Enabling Durable Transactions

By default, durable database transaction logging is enabled. This means that every

time a write is performed on the directory, a corresponding entry is physically

written to the database transaction log disk. To improve performance, you can

disable durable transaction logging. When you do so, every directory database

operation is logically written to the database transaction log file, but it may not be

physically written to disk immediately. That means that if a directory change was

written to the logical database transaction log file but not physically written to disk

at the time of a system crash, you cannot recover the change. When durable

blueprints# cd install_dir/slapd- instance/config
blueprints# vi slapd.conf
...
db_checkpoint_interval 120 <- Add this line
...
blueprints#
228 Solaris and LDAP Naming Services •

transactions are disabled, the recovered database is consistent but does not reflect

the results of any LDAP write operations that completed just before the system

crash.

You can disable durable transactions by adding the db_durable_transactions
parameter to the end of the slapd.conf file and set its value to off.

Backing Up and Restoring the Directory
Database

Backing up the directory database is essential even though your directory server is

protected with redundant hardware such as RAID. If the directory data becomes

corrupted for some reason and is not detected right away, the corruption will be

copied to the mirrored disk. In cases like this, you need to restore the directory

database to a known good state.

The fastest way to back up the directory database is to copy the database and

associated index files to another disk volume. For archive purposes, the backed-up

files can then be backed up to tape. It is also wise to maintain more than one backup

copy rather than deleting the old one when a fresh backup is performed. This

practice is easy to follow since a new directory is created by default each time a new

backup is performed.

You can perform backups while the directory server is running; however, the server

must be offline while you perform a restore. You can initiate a backup from the

Directory Server Console or from the command line. In most cases, the command

line is preferable since it can be run from an automated script. If, however, you want

to back up the database before performing some risky directory operation such as

updating the schema, using the Directory Server Console is quick and convenient.

The following sections discuss how to back up and restore both from the Directory

Server Console and from the command line.

blueprints# cd install_dir/slapd- instance/config
blueprints# vi slapd.conf
...
db_durable_transactions off <- Add this line
...
blueprints#
Chapter 9 Preventive Maintenance 229

Backing Up the Database from the Directory

Server Console

When you back up your database from the Directory Server Console, the server

copies the entire database and associated index files to a backup location. To perform

an online backup of your database from the Directory Server Console,

1. On the Directory Server Console, choose the Tasks tab.

2. Click Back Up the Directory Server. The Backup directory dialog box is displayed.

3. Choose a directory name where you want the backup stored in one of two ways:
In the Directory text box, type the name of the directory in which you want the
backup placed; or, click Use default and let the server provide a name for the
backup directory. If you choose to use the default, the backup files will be placed
in the following location:

install_dir/slapd- instance/bak/ backup_directory

where backup_directory is a directory given the name of the backup. By default, the

backup directory name identifies the time and date when the backup was created in

the format YYYY_MM_DD_HHMMSS.

4. Click OK.

Backing Up the Database from the Command Line

You can back up your database from the command line by using the db2bak
command line script. This script assumes you are using the slapd.conf file located

in install_dir/slapd- instance/config .

To perform an online backup of your directory from the command line:

Note – If a directory is not specified on the command line, the default install_dir/
slapd- instance/backup_dir is used where backup_dir is in the

YYY_MM_DD_HHMMSSformat.

blueprints# cd install_dir/ slapd - instance
blueprints# ./db2bak backup_dir
230 Solaris and LDAP Naming Services •

Restoring the Database from the Directory Server

Console

If your database becomes corrupted, you can restore it from a previously generated

backup by using the Directory Server Console. This process consists of copying the

database and associated index files from the backup location to the database

directory.

Caution – Restoring your database overwrites your existing database files.

To restore your database from a previously created backup:

1. On the Directory Server Console, choose the Tasks tab.

2. Click Restore Directory Server. The Restore Directory dialog box is displayed.

3. The Directory Server Console lists all backups in the default directory (install_dir/
slapd- instance/bak/ backup_name) in the Available Backups list box. You can
either select the backup from this list or, from the Directory text box, enter the full
pathname to a location containing a valid backup.

4. Click OK.

Note – If the server is running, you are prompted to shut it down. The restore

cannot continue while the server is running.

Restoring Your Database from the Command Line

You can restore your database from the command line by using the bak2db
command line script. This script assumes you are using the slapd.conf file located

in install_dir/slapd- instance/config , where install_dir is the directory where you

installed the directory server and instance is the name of your directory server.

To restore your directory from the command line:

blueprints# cd install_dir/ slapd - instance
blueprints# ./stop-slapd
blueprints# bak2db backup_dir
blueprints# ./start-slapd
Chapter 9 Preventive Maintenance 231

Deleting Database Backups

By default, the Directory Server Console places the backup files that it creates in a

directory under install_dir/slapd- instance/bak . If you want to remove old backups,

you can manually delete the files from this directory by using a Solaris utility like

the rm -r command or you can create a cron script that deletes the directory and its

contents.

Restoring Databases That Include Replicated

Entries

If you are restoring a database that is supplying entries to other servers, then you

must reinitialize all of your Consumer servers. A message will be logged to the

Consumer servers’ log files stating that reinitialization is required. If you want re-

initialization to occur automatically, you can modify the ORCauto parameter.

If you are restoring a database containing data received from a Supplier server, then

one of two situations can occur:

1. Change log entries have not yet expired on the supplier server. If change log

entries have not expired on the Supplier server since the local database backup

was made, then you can simply restore the local Consumer server and continue

with normal operations. This situation is likely to occur only if the backup was

done within a period of time that is shorter than the value you have set for the

Max Changelog Age parameter in slapd.conf .

2. Change log entries have expired on the Supplier server since the time of the
local backup. In this case, the Consumer server will automatically be re-

initialized.

If the Consumer server needs to be initialized, then the database needs to be placed

in read-only mode, as described in the next section.

Placing a Database in Read-Only Mode

You must put a database in read-only mode if you are manually initializing a

Consumer server. When a database is in read-only mode, you cannot create, modify,

or delete any entries. If your directory server manages multiple databases, you can

place all of them into read-only mode at the same time by placing your entire server

in read-only mode.
232 Solaris and LDAP Naming Services •

If you want to place a database into read-only mode from the command line, set the

slapd.conf read-only parameter to on. You must shut the server down before you

edit the configuration files.

To place a database into read-only mode from the Directory Server Console:

1. On the Directory Server Console, choose the Configuration tab.

2. Click the Database icon in the navigation tree in the left pane.

3. Choose the Settings tab in the right pane.

4. Click the Make Database Read-Only check box.

5. Click Save.

Exporting and Importing the Database
with LDIF

An alternative to the backup and restore procedures described in the previous

section is to export and import directory data in LDAP Data Interchange Format

(LDIF). This method is useful if you want to copy part of the directory tree to

another server.

Chapter 4, ”iPlanet Directory Server Installation and Configuration” describes the

procedures for initializing the directory by importing data in LDIF format. This is a

common method for importing data from legacy data sources such as NIS maps. In

this scenario, the maps are converted to LDIF format; then the LDIF file is imported

into the directory.

Note – The process of converting data to LDIF requires that some kind of filtering

program be written. The procedure for writing such a filter is beyond the scope of

this book. Tips to get started can be found on the iplanet.com Web site.

You can perform the export and import of LDIF either through the Directory Server

Console or through the command line. Since the procedure for using the Directory

Server Console is discussed in Chapter 7, ”Capacity Planning and Performance

Tuning,” the focus here is on using the command line tools.
Chapter 9 Preventive Maintenance 233

Exporting Databases to LDIF from the Command

Line

The directory database is exported to LDIF with the ns-slapd command executed

from the db2ldif keyword. Below is the full syntax for running this command.

ns-slapd db2ldif -f slapd.conf -a output_file [-d debug_level -n -r -s
include_suffix -x exclude_suffix]

where:

slapd.conf — Is the location of the directory server configuration file. The default

location of the slapd.conf file is install_dir/slapd- instance/config .

-a — Is the location of the output file in which the server saves the exported LDIF. If

a path is not specified, the file is created in the current directory.

-d — Optional debug level

-f — Is the slapd.conf configuration file to use for the conversion process. The

default location of the slapd.conf file is install_dir/slapd- instance/config .

-n — Optionally specifies that entry IDs are not to be included in the LDIF output.

The entry IDs are necessary only if the db2ldif output is to be used as input to the

db2index command.

-r — Optionally used to import the LDIF file into a Consumer server. The -r flag

causes the server to include the copiedFrom attribute and its contents in the LDIF

output. The replication process requires this information. If the -r option is used, you

also need to use the -s option to specify the suffix you want exported. You must shut

down the server before using this option to export.

-s — Optionally specifies the suffix or suffixes to include in the export. Multiple -s
arguments can be specified. If an -s or -x argument is not specified, then the server

exports all suffixes within the database. If you use both -x and -s arguments with the

same suffix, the -x operation takes precedence. If you intend to import the LDIF file

into your configuration directory, make sure that you also use -s to include

o=NetscapeRoot .

-x — Optionally specifies a suffix or suffixes to exclude in the export. You can specify

multiple -x arguments.

Here is an example of the command:

blueprints# ns-slapd db2ldif -f /files/netscape/slapd-
blueprints/config/slapd.conf -a output.ldif -s dc=blueprints,
dc=com -s "o=NetscapeRoot"
234 Solaris and LDAP Naming Services •

The db2ldif Script

If you want to export the entire directory to LDIF, you can use a script called

db2ldif . The script is located in install_dir/slapd- instance directory. If the script is

run with a file name as an argument, then the LDIF output is sent that file.

Otherwise, a default file of the form: YYYY_MM_DD_HHMMSS.ldifis created.

For example:

Importing Databases from LDIF

You can import an LDIF file either by running the ns-slapd command with the

ldif2db keyword or by running the ldapmodify command. To import an entire

database run the ldif2db script, which executes the ns-slapd command with the

ldif2db argument. For example:

Import a directory subtree from an LDIF file by using the ldif2db command.

However, for importing small numbers of entries (less than 10,000) run the

ldapmodify command.

For example:

Note – You cannot import an LDIF file that contains a root entry unless you bind to

the directory as the rootDN (Directory Manager). The reason is that access to the

root entry is the top of the tree and by definition does not contain any ACIs.

blueprints# cd install_dir/slapd- instance
blueprints# ./db2ldif
blueprint# ls ./ldif
2000_04_17_224244.ldif
blueprints#

blueprints# cd install_dir/slapd- instance
blueprints# ./stop-slapd
blueprints# ./ldif2db -i ./ldif/2000_04_17_224244.ldif
blueprints# ./start-slapd

blueprints# ldapmodify -D "cn=Directory Manager" -w mypassword -
c -a -f somefile .ldif
Chapter 9 Preventive Maintenance 235

CHAPTER 10

Managing Directory Services

The contents of a directory are not static. Directory entries are constantly being

added, deleted, and modified. After the directory service is installed and running,

new uses for it will be discovered, requiring changes to the directory database

structure. Setting proper access control on new directory data objects is also an

ongoing process as the nature and sensitivity of directory data changes. As more

applications and clients begin to rely on the availability of the directory service,

monitoring its health and taking corrective action is critical to a successful

implementation.

This chapter looks at the tools and techniques for managing your constantly

changing directory server. The specific areas covered are:

■ Establishing access control policies

■ Managing the directory schema

■ Monitoring directory resource consumption

■ Managing with SNMP

■ Managing the LDAP directory server with BMC PATROL

Establishing Access Control Policies

Before populating the directory database, it is wise to map out an access control

policy. In the Solaris UFS file system, permissions are set on directories and files to

establish what access rights are permissible. User and group ownership is assigned

to determine who has access to directories and files. Finer grained access control can

be obtained by the use of the Solaris access control list (ACL).

The same access rights can also be applied to the directory, but the tools for applying

them are much different from the Solaris tools you may be used to. This mechanism

is far more flexible but can also be far more complex to administer. To help you to

better understand how to administer directory access control, we first review the

security access model and define some of the common terminology you will

encounter.
237

LDAP Security Model Review

At the top of the directory information tree (DIT) is the root. Under the root are

containers in the form of suffixes or organization units (ou). Data entries, which

have attributes associated with them, appear under an ou . Access permissions can

be set at any level of the DIT: root DN, ou , entry , or attribute . These permissions

are set by the creation of access control instructions (ACIs), which are associated

with any one of the directory entities.

A directory client establishes its identity when a connection is first made to the

directory server. This operation is called binding and requires some form of

authentication, which users do by one of the following methods:

■ Simple bind by supplying a DN and password

■ SSL using client certificates

■ Anonymous binding

■ Directory server defined with SASL

The simple bind is the most common method. Once a user is authenticated, an

attribute, such as the uid and group membership, can be used to grant or restrict

access.

An ACI can be set at any level in the DIT, including the attribute level. Once an ACI

is created for a directory entity, all the children of that entity inherit it. An ACI

different from the parent can be assigned to a child entry, but the precedence rule

applies. This rule states that a deny access always takes precedence over the allow
access directive. For example, you can permit read access to everyone for the whole

directory, but limit access in a subtree by creating an ACI with deny access set.

Likewise, a single attribute, such as an employee’s salary, can be protected with an

ACI.

Access Control Instructions

An access control instruction is an attribute that can be assigned to any entry in the

directory. By default, no ACI attributes are assigned. With no ACI attributes

assigned, the default is to deny access rights to all users. An ACI can be assigned in

these ways:

■ From the Directory Server Console

■ By creation of an LDIF file

■ Through an LDAP URL from Netscape Communicator

Using the Directory Server Console is the simplest method, but for large bulk

imports, LDIF statements may be more convenient. For remote online updates, you

can use a web browser to create or modify ACIs.
238 Solaris and LDAP Naming Services

Note – During the iPlanet Directory Server installation, a special account called

Directory Manager is created. This user has complete directory access rights and

is not affected by ACIs.

ACI Format

The ACI is composed of three parts:

■ Targets — The object, object attribute, or group of objects to which access is being

controlled.

■ Permissions — The rights that are allowed or denied

■ Bind Rules — The persons who can access the directory, time (hours or days)

when they can access the directory, and the location from which the directory can

be accessed.

The target can be expressed as an entry such as ou=Sales or as a wildcard targeting

all matching entries. Permissions and Bind Rules are set as a pair and collectively

referred to as an Access Control Rule (ACR).

Access Rights

Unlike the Solaris file system, which permits read, write, and execute permissions,

ACIs provide a number of access rights that can be assigned to directory data.

■ Read — Read data.

■ Write — Add, delete, modify attributes.

■ Add — Create new entries.

■ Delete — Delete entries.

■ Search — Search for data. The user must have both search and read permission.

■ Compare — Comparison operations. User cannot see the value.

■ Selfwrite — Add or delete self. Use for group management.

■ Proxy — Access target with rights from another entry.

■ All — Do everything. Specified entry has all rights.

Bind Rules

Bind rules define the following:

1. The users and groups that can access the directory

2. Location from which an entity must bind

3. Time or day access is allowed
Chapter 10 Managing Directory Services 239

4. Access based on authentication method

Use rule 1 to specify a particular user, all authenticated users, nonauthenticated

(anonymous) users, or users belonging to a particular group. Define access for

special cases such as parent access and self-access in this rule.

Specify an IP address or fully qualified DNS name in rule 2. You can use wildcards

to limit the location to specific subnets. A particular time of day like 8:00 a.m. to 5:00

p.m., or a day of the week like Monday through Friday, can be specified in rule 3 to

limit user access to those hours.

If SSL or SASL authentication is available, specify either of these types as a

requirement in rule 4. In this situation, the default is not to require any particular

type of authentication.

Access is defined by specifying a bind rule of userdn = “ldap:///anyone . You can

see that there is no restriction on when a client can access the resource. The ACI

format is as follows:

aci: (<target>) (version 3.0;acl”<name>”;<permission><bind rule>;)

■ <target> — Defines the object, attribute, or filter you are using to define what

resource to control access to.

■ version 3.0 — Required string that identifies the ACL version.

■ acl “<name>” — Name for the ACI. This <name> can be any string that

identifies the ACI. This ACI name is mandatory.

■ <permission> — Defines that actual access rights and whether they are allowed

or denied.

■ <bind rule> — Identifies the circumstances under which the directory login

must occur, and in what order for the ACI to take affect.

Example Anonymous Access ACI statement:

Creating Access Control Instructions

The easiest way to create a new ACI and modify existing ones is through the

Directory Server Console. Use the following procedure to create a new ACI.

aci: (target =”ldap:///dc=blueprints,dc=com”)(targetattr
!=”userPassword”)(version 3.0;acl”Anonymous read-search
access”;allow(read,search,compare)(userdn =”ldap:///anyone”);)
240 Solaris and LDAP Naming Services

▼ Adding a New ACI through the Directory Server

Console

1. Log in as Directory Manager (or user with equivalent authority).

2. From the Directory Tab, right-click the entry in the navigation tree for which you
want to create an ACI.

The Properties menu is displayed.

3. Choose the Set Access Permissions Menu Item.

The ACI selector box is displayed. Existing ACIs can be edited or deleted from this

box.

4. Click New.

The Set Access Permissions window is displayed. At this point you can modify or

add rules. FIGURE 10-1 shows the Rights pop-up menu used for adding access rights.

FIGURE 10-1 Rights Pop-up Menu in the Set Access Permissions Window

5. Modify the rule to create the desired permissions.

The following options are available:

■ Allow/Deny — Pull-down menu, pick one.
Chapter 10 Managing Directory Services 241

■ User/Group — Double-click to choose users and groups to either include or

exclude from access. Also use to add users and groups to the list.

■ Host — Double-click to enter a DNS host name or IP address to include or

exclude from access. You can enter a wildcard as part of the IP address to limit

or deny access to a particular range of IP addresses or subnet.

■ Time — Double-click to choose a range of hours to allow or deny access and a

day of the week. Add new rule or ACI to specify a range of days.

■ Rights — Check the boxes shown.

■ View/Edit Syntax — Use this form to change the name of the ACI from the

default Unknown and to edit previously defined ACIs.

■ ACI Attributes — Use this option to assign access rights to a particular

attribute or a range of attributes.

ACI Best Practices

ACI is flexible and can be a useful tool. However, if misused, ACIs can create

problems. Here are some tips to avoid potential problems.

1. Limit the number. Processing ACIs creates additional overhead, so for better

performance, keep the number of ACIs to a minimum.

2. Keep them simple. Complicated rules are often hard to decipher and can lead to

unintended results.

3. Limit one rule per ACI. If a simple ACI won’t do, then it is better to create

multiple ACIs with a single rule each. This practice makes it easier for someone

else to understand what access rights were intended.

Managing the Directory Schema

Before an LDAP client can interact with an LDAP directory server, it must be aware

of how the directory data is stored. Data can be stored as strings, numbers, and in

some cases, multiple values. Rules for matching values during searches are also

established, for example, whether a compare operation is case sensitive. The format

of directory data and the rules for how that data is used are defined in the directory

schema.

The schema is a set of files that are read by the directory server when it starts. Every

object class and attribute that the directory can store is defined in the schema files.

To ensure that any LDAP client can interoperate with any LDAP server, a set of

standard schema definitions has been defined. The definitions include the

mandatory object classes and attributes that all compliant LDAP servers must

support.
242 Solaris and LDAP Naming Services

However, although fairly comprehensive, the standard schema may have to be

extended to accommodate data particular to a company. This section looks at where

schema files reside and describes how to add new object classes and attributes that

LDAP-enabled applications require.

The Schema Files

On the iPlanet Directory Server all schema files reside in the

install_dir/slapd- instance/config directory. The schema definition is divided into

two files:

■ slapd.oc.conf — Contains object class definitions

■ slapd.at.conf — Contains attribute definitions

All the standard object class definitions that all LDAP directory servers are expected

to have are contained in the slapd.oc.conf file. The standard attributes, in

addition to those defined by Netscape, are contained in the slapd.at.conf file.

However, the Netscape-defined object classes that use the attributes contained in the

slapd.at.conf file are not in the slapd.oc.conf file. These object classes are

defined in separate files which have the schema.conf extension. For example:
Chapter 10 Managing Directory Services 243

These schema files are placed here as a convenience for use with Netscape (iPlanet)

applications such as messaging and calendaring servers. They are not required for

normal directory operation.

The files slap.oc.con f and slapd.at.conf should never be modified. Instead,

you can make necessary modification in two files included for that purpose.

■ slapd.user_at.conf — User-defined attributes

■ slapd.user_oc.conf — User-defined object classes

These files are created during the iPlanet Directory Server installation but do not

contain data unless additional object classes and attributes are added. If, for

example, the NIS extensions are installed, the new object class and attribute

definitions appear in slapd.user.at.conf and slapd.user.oc.conf .

blueprints# cd install_dir/slapd- instance/config
blueprints# ls *schema*
java-object-schema.conf
ns-admin-schema.conf
ns-calendar-schema.conf
ns-certificate-schema.conf
ns-common-schema.conf
ns-compass-schema.conf
ns-delegated-admin-schema.conf
ns-directory-schema.conf
ns-legacy-schema.conf
ns-mail-schema.conf
ns-mcd-browser-schema.conf
ns-mcd-config-schema.conf
ns-mcd-li-schema.conf
ns-mcd-mail-schema.conf
ns-media-schema.conf
ns-mlm-schema.conf
ns-msg-schema.conf
ns-netshare-schema.conf
ns-news-schema.conf
ns-proxy-schema.conf
ns-schema.conf
ns-value-schema.conf
ns-wcal-schema.conf
ns-web-schema.conf
blueprints#
244 Solaris and LDAP Naming Services

How Schema Files Are Read

When the iPlanet Directory Server starts, it reads the slapd.conf file. Contained in

this file is the location of the schema files. The pertinent lines are shown below.

If you make changes to any of the files shown, you need to restart the server for the

changes to take effect.

Modifying the Schema

When new LDAP-enabled applications are deployed, there is a good chance that the

directory schema needs to be modified. Since you should not modify the core set of

schema definitions for risk of losing compatibility with other LDAP

implementations, you should always create a new object class when you want to add

attributes.

In most cases, if you are extending the schema to support a new application, the

application developer or vendor will supply either a sample schema file or a schema

installation script that modifies the existing schema files. Besides modifying the

schema files directly, use the Directory Server Console to create new object classes

and attributes.

Note – The schema is accessible via LDAP in Planet Directory Server 4.12 in read-

only mode. Future versions of the iPlanet Directory server may support write mode

as well.

blueprints# cd install_dir/slapd- instance/config
blueprints# more slapd.conf
...
include "/usr/netscape/blueprints/slapd-blueprints/config/
slapd.at.conf"
include "/usr/netscape/blueprints/slapd-blueprints/config/
slapd.oc.conf"
include "/usr/netscape/blueprints/slapd-blueprints/config/ns-
schema.conf"
...
userat "/usr/netscape/blueprints/slapd-blueprints/
slapd.user_at.conf"
useroc "/usr/netscape/blueprints/slapd-blueprints/config/
slapd.user_oc.conf"
...
blueprints#
Chapter 10 Managing Directory Services 245

Obtaining an Object Identifier

If you do decide to extend the schema by defining a new schema element, you

should register your schema and get the appropriate OIDs to uniquely identify it.

In a test environment you do not need OIDs. You can use an OID that you fabricate,

just as long as you do not publicly publish your schema.

If you have a schema that you think is valuable to the world, you may want to

standardize it by submitting it to the IETF. Sun does have an official owner of the

Sun LDAP OID tree.

▼ Creating Attributes from the Directory Server

Console

To create attributes from the Directory Server Console, follow these steps:

1. Under the Configuration tab, select the Database icon.

2. Under the Schema tab, choose Attributes.

3. Click the Create button.

A form like that shown in FIGURE 10-2 is displayed.

FIGURE 10-2 Create Attribute Window

4. Fill in the form with the following values:

Attribute name: Unique name

Attribute OID: Object Identifier

Syntax: One of the following types:

■ Case Ignore String

■ Binary

■ Telephone Number
246 Solaris and LDAP Naming Services

■ Case Exact String

■ Distinguished Name

▼ Creating Object Classes from the Directory

Server Console

To create object classes from the Directory Server Console, follow these steps:

1. Under the Configuration tab select the Database icon.

2. Under the Object Classes tab select the Schema folder.

3. Click the Create button.

A form like that shown in FIGURE 10-3 is displayed.

FIGURE 10-3 Create Object Class Window

4. Fill in the top part of the form and choose the attributes you want to include in
the new object class.

Name — Choose a unique name for this object class. It cannot be the same as an

existing object class.
Chapter 10 Managing Directory Services 247

Parent — The parent object class from which this new object class will inherit its

attributes. If this object class is not related to any previously defined object class,

then the parent is top.

OID — Object Identifier. OIDs are registered dotted decimal numbers much like

Internet addresses. In most cases, this part is left blank.

Required Attributes — These attributes must be defined in any entry of this object

class.

Allowed Attributes — An entry may or may not have these attributes defined.

Note – New attributes must be created before they can be added to an object class.

Monitoring the Directory Server

Careful monitoring of your directory server is important to prevent unnecessary

outages due to overload conditions. Solaris utilities such as vmstat and iostat
provide an overall assessment of the health of the system. To get a better

understanding of what is going on with the directory itself, the iPlanet Directory

Server includes some performance monitoring tools. These tools are explained here.

Monitoring Resources

The following tables show available performance monitoring parameters of three

categories: overall server performance (TABLE 10-1), current resources being

consumed (TABLE 10-2), and the status of current connections (TABLE 10-3).
248 Solaris and LDAP Naming Services

TABLE 10-1 Server Performance Monitoring

Resource Usage Since Startup Average/Minute

Connections Total number of connections to this server

since server startup.

Average number of

connections per

minute since server

startup.

Operations initiated Total number of operations initiated since

server startup. Operations include any

client requests for server action, such as

searches, adds, and modifies in the

directory tree. It is likely that multiple

operations will be initiated for each

connection.

Average number of

operations per

minute since server

startup.

Operations completed Total number of operations completed by

the server since server startup

Average number of

operations per

minute since server

startup.

Entries sent to clients Total number of entries sent to clients since

server startup. Entries are sent to clients as

the result of search requests.

Average number of

entries sent to

clients per minute

since server startup.

Bytes sent to clients Total number of bytes sent to clients since

server startup.

Average number of

bytes sent to clients

per minute since

server startup.

TABLE 10-2 Current Resource Usage Table

Resource Current Total

Active threads Current number of active threads used for handling

requests. Additional threads can also be created by

internal server tasks, such as replication.

Open connections Total number of open connections. Each connection

can account for multiple operations and, therefore,

multiple threads.

Remaining available connections Total number of remaining connections that the

server can concurrently open. This number is based

on the number of currently open connections and the

total number of concurrent connections that the

server is allowed to open.
Chapter 10 Managing Directory Services 249

Threads waiting to write to client Total number of threads waiting to write to the

client. This happens anytime the server must pause

while sending data to a client. Reasons for this pause

can include a slow network or client, or an extremely

large amount of information being sent to the client.

Threads waiting to read from

client

Total number of threads waiting to read from the

client. Threads wait if the server starts to receive a

request from the client and the transmission of that

request is halted for some reason. Generally, threads

waiting to read are an indication of a slow network

or client

Thread Concurrency Number of threads running concurrently.

Databases in use Total number of databases being serviced by the

server. Currently, this value is always 1.

TABLE 10-3 Connection Status Table

Table Header Description

Time opened The time on the server when the connection was

initially opened.

Started The number of operations initiated by this

connection.

Completed The number of operations completed by the server

for this connection.

Bound as The distinguished name used by the client to connect

to the server. If the client has not authenticated to the

server, the server displays the error code “not bound

in this field.”

Read/Write The state of the server currently blocked (or not) for

read or write access to the client. Possible values

include:

Not blocked – The server is idle, actively sending

data to the client or actively reading data from the

client.

Blocked – The server is trying to send data to the

client or read data from the client but cannot. The

probable cause is a slow network or client.

TABLE 10-2 Current Resource Usage Table (Continued)

Resource Current Total
250 Solaris and LDAP Naming Services

▼ Monitoring Server Performance from the

Directory Server Console

The easiest way to view the monitoring parameters is from the Directory Server

Console. To view these parameters:

1. Click Performance Counters under the Status tab.

2. Click the Server tab.

3. To continually refresh the screen with new data, check the Continuous refresh
check box.

FIGURE 10-4 shows the performance counters.

FIGURE 10-4 Performance Counters

Monitoring the Server from the Command Line

You can monitor service activity from any LDAP client by performing a search and

specifying the following parameters:

objectClass=*

and a search base of

cn=monitor
Chapter 10 Managing Directory Services 251

and a scope of

base

For example:

When you monitor your server’s activities in this way, you see the following

information:

version — The directory server’s current version number.

threads — Current number of active threads used for handling requests. Additional

threads can also be created by internal server tasks, such as replicating or writing to

logs.

currentconnections — Number of open connections to the server.

totalconnections — Number of connections handled by the directory server since it

started.

dtablesize — Number of file descriptors available to the directory server. Each

connection requires one file descriptor: one for every open index, one for log file

management, and one for ns-slapd itself. Essentially, this value lets you know how

many more concurrent connections can be serviced by the directory server.

blueprints# ldapsearch -h blueprints.com -s base -b"cn=monitor"
“(objectclass=*)"
cn=monitor
objectclass=top
objectclass=extensibleObject
cn=monitor
version=Netscape-Directory/4.12 B00.193.0352
threads=20
currentconnections=5
totalconnections=28
dtablesize=1024
readwaiters=0
opsinitiated=1992
opscompleted=1991
entriessent=2102
bytessent=1887388
currenttime=20000425182927Z
starttime=20000420135517Z
nbackends=1
dataversion=blueprints.com:389 020000316143827 42241
ldapserverconfigdn=cn=ldap://:389,dc=blueprints,dc=com
backendmonitordn=cn=monitor,cn=ldbm
blueprints#
252 Solaris and LDAP Naming Services

writewaiters — Number of threads waiting to write data to a client.

readwaiters — Number of threads waiting to read data from a client.

opsinitiated — Number of operations the server has initiated since it started.

opscompleted — Number of operations the server has completed since it started.

entriessent — Number of entries sent to clients since the server started.

bytessent — Number of bytes sent to clients since the server started.

currenttime — Time when this snapshot of the server was taken. The time is

displayed in Greenwich Mean Time (GMT) in UTC format.

starttime — Time when the server started. The time is displayed in GMT in UTC

format.

nbackends — Number of back ends (databases) the server services. Currently this

value is always 1.

Monitoring Database Activity

A number of database metrics can be extracted from the directory. Many of these

were discussed in Chapter 7, ”Capacity Planning and Performance Tuning,” but to

review, we summarize these metrics in TABLE 10-4, TABLE 10-5, and TABLE 10-6.

TABLE 10-4 Database Performance Metrics

Performance Metric Current Total

Read-only status The state of the database—whether currently in read-only

mode. Your database is in read-only mode when your read-

only slapd.conf parameter is set to on.

Entry cache hits The total number of successful entry cache lookups. That is,

the total number of times the server could process a search

request by obtaining data from the cache rather than by going

to disk.

Entry cache tries The total number of entry cache lookups since the directory

server was last started. That is, the total number of search

operations performed against your server since server startup.
Chapter 10 Managing Directory Services 253

Entry cache hit ratio Ratio of the number of entry cache tries to successful entry

cache lookups. This number is based on the total lookups and

hits since the server was last started. The closer this value is to

100% the better. Whenever a search operation attempts to find

an entry that is not resident in the entry cache, the directory

server has to perform a disk access to obtain the entry. Thus,

as this ratio drops towards zero, the number of disk accesses

increases and directory server search performance drops.

Refer to Chapter 7, ”Capacity Planning and Performance

Tuning,” for tuning information.

Current number of

entries in entry cache

The total number of directory entries currently resident in the

entry cache.

Maximum number of

entries in entry cache

The maximum number of directory entries that are allowed to

be maintained in the entry cache. This value is managed by

the Maximum Entries in the Cache parameter in

slapd.ldbm.conf .

TABLE 10-5 Database Cache Information

Performance Metric Current Total

Hits The number of times the database cache successfully supplied

a requested page.

Tries The number of times the database cache was asked for a page.

Hit ratio The ratio of database cache hits to database cache tries. The

closer this value is to 100%, the better. Whenever a directory

operation attempts to find a portion of the database that is not

resident in the database cache, the directory server has to

perform a disk access to obtain the appropriate database page.

Thus, as this ratio drops towards zero, the number of disk

accesses increases and directory server performance drops.

Refer to Chapter 7, ”Capacity Planning and Performance

Tuning,” for tuning information.

Pages read in The number of pages read from disk into the database cache.

TABLE 10-4 Database Performance Metrics (Continued)

Performance Metric Current Total
254 Solaris and LDAP Naming Services

Monitoring the Database from the Directory

Server Console

To view the database activity from the Directory Server Console, follow this

procedure:

1. Click Performance Counters under the Status tab.

2. Click the Database tab.

Pages written out The number of pages written from the cache back to disk. A

database page is written out to disk whenever a read-write

page has been modified and then subsequently evicted from

the cache. Pages are evicted from the database cache when the

cache is full and a directory operation requires a database

page that is not currently stored in cache.

Read-only page evicts The number of read-only pages discarded from the cache to

make room for new pages.

Read-write page evicts The number of read-write pages discarded from the cache to

make room for new pages. This value differs from Pages

Written Out in that these are discarded read-write pages that

have not been modified.

TABLE 10-6 File-Specific Table

Performance Metric Current Total

Cache hits Number of times that a search result resulted in a cache hit on

this specific file. That is, a search that required data from this

file was performed and the required data was successfully

obtained from the cache.

Cache misses Number of times that a search result failed to result in a cache

hit on this specific file. That is, a search that required data

from this file was performed and the required data could not

be found in the cache.

Pages read in Number of pages brought to the cache from this file.

Pages written out Number of pages for this file written from cache to disk.

TABLE 10-5 Database Cache Information (Continued)

Performance Metric Current Total
Chapter 10 Managing Directory Services 255

3. To continually refresh the screen with new data, Check the Continuous refresh
box.

FIGURE 10-5 is an example of the output.

FIGURE 10-5 Database Output Example

Monitoring the Database from the Command Line

You can monitor your directory server’s database activities from any LDAP client by

specifying the following parameters:

objectClass=*

and a search base of

cn=monitor,cn=ldbm

and a scope of

base
256 Solaris and LDAP Naming Services

For example:

When you monitor your server’s activities in this way, you see the following

information:

database — The type of database you are currently monitoring.

read-only — State of the database, that is, whether in read-only mode. A value of 0

means the server is not in read-only mode; 1 means it is in read-only mode.

The other parameters displayed are listed in TABLE 10-7 along with a cross-reference

to the performance metric it represents.

blueprints# ldapsearch -h blueprints.com -s base -b
"cn=monitor,cn=ldbm" "(objectclass=*)"
cn=monitor,cn=ldbm
objectclass=top
objectclass=extensibleObject
cn=monitor
database=ldbm
readonly=0
entrycachehits=2611
entrycachetries=2939
entrycachehitratio=88
currententrycachesize=305
maxentrycachesize=100000
dbchehits=2046
dbcachetries=2251
dbcachehitratio=90
dbcachepagein=205
dbcachepageout=60
dbcacheroevict=0
dbcacherwevict=0
dbfilename-0=uid.db2
dbfilecachehit-0=46
dbfilecachemiss-0=3
dbfilepagein-0=3
dbfilepageout-0=6
...
blueprints#
Chapter 10 Managing Directory Services 257

Managing with SNMP

The Simple Network Management Protocol (SNMP) has been around for a number

of years and is widely deployed. Originally designed to manage network devices,

SNMP can also manage other items such as applications and services.

Using the directory server MIB and network management software, such as Sun MC,

you can monitor your directory server like all other managed devices on your

network.

The SNMP protocol runs in the application layer of the Open Systems

Interconnection (OSI) stack, which allows network devices to read, write, and act on

management data. The management information resides in a special object data

store and includes everything from the make and architecture of a machine to the

TABLE 10-7 Displayed Parameters

Parameter Performance Metric

entrycachehits Entry cache hits

entrycachetries Entry cache tries

entrycachehitratio Entry cache hit ratio

currententrycachesize Current number of entries

maxentrycachesize Maximum number of entries

dbchehits Hits

dbcachetries Tries

dbcachehitratio Hit ratio

dbcachepagein Pages read in

dbcachepageout Pages written out

dbcacheroevict Read-only page evicts

dbcacherwevict Read-write page evicts

dbfilecachehit Cache hits

dbfilecachemiss Cache misses

dbfilepagein Pages read in

dbfilepageout Pages written out
258 Solaris and LDAP Naming Services

average number of data bytes transmitted. You will find that companies such as Sun

will add new object definitions as the need arises. A data structure named

Management Information Base (MIB) defines SNMP objects.

Network devices, can generally be grouped into either managed devices or Network

Management Servers (NMSs). It is also likely that the managed server will also

function as a managed device. Each managed device contains a local object data

store and runs an SNMP application known as an agent. On a Solaris host, the agent

is a daemon. Your installed version of Solaris will determine whether you have the

SNMP agent or not. The agent updates the local object data store as events transpire

and also responds to commands from their network management servers.

FIGURE 10-6 depicts specific elements of a SNMP network, with the Local Area

Network (intranet), and Wide Area Network (Internet) all supporting the Internet

protocol (IP).

FIGURE 10-6 Example of a Simple SNMP Environment

Three devices illustrate a simplistic view of the type of protocols that the device

would use, all over IP. The other device located at the top of FIGURE 10-6 is the server

that will act as the management host. The purpose of this host is to query and if

necessary update the agents running on the other three networked devices. You will

Management Station
(NMS)

LAN / WAN

SNMP
Agent

LDAP MIB

SNMP
Agent

LDAP MIB

SNMP
Agent

LDAP MIB

IP IP
Chapter 10 Managing Directory Services 259

notice that the application running on the management station talks to the SNMP

protocol layer, which in turn uses IP port 161 to send and receive information from

managed devices.

The three devices located in FIGURE 10-6 all have an SNMP agent installed and

running, enabling them to be managed devices that can perform actions based on

commands from the management station. What happens here is the management

station receives commands that arrive as IP packets on the default port of 161. The

SNMP protocol interprets these packets and directs the agent to read and write

objects in an MIB data store.

SNMP describes this functionality using one or more MIBs. The Abstract Syntax

Notation One (ASN.1) describes objects within an MIB. SNMP v2, which is the

current version of SNMP, and uses MIB-II specification (RFC1213 contains a

complete definition).

Using LDAP MIB

The iPlanet Directory Server has its own management information base. The

directory server’s MIB is a file called netscape-ldap.mib . This MIB contains

definitions for variables pertaining to network management for the directory server.

These variables are known as managed objects. Using the directory server MIB and

network management software, such as Sun MC, you can monitor your directory

server like all other managed devices on your network.

The directory server MIB has an object identifier of

iso.org.dod.internet.private.enterprises.netscape.nsldap that is,

nsldap OBJECT IDENTIFIER ::= { 1.3.6.1.4.1.1450.7 } which is located in

the install_dir/plugins/snmp directory.

You can see administrative information about your directory server and monitor the

server in real time by using the directory server MIB. The directory server MIB is

divided into three distinct tables of managed objects:

■ Operations Table

■ Entries Table

■ Interaction Table

Note – Before you can use the directory server’s MIB, you must compile it along

with the MIBs that you will find in install_dir/plugins/snmp/mibs .
260 Solaris and LDAP Naming Services

Operations Table

The Operations Table provides statistical information about directory server access,

operations, and errors. TABLE 10-8 describes the managed objects stored in the

Operations Table of the netscape-ldap.mib file.

TABLE 10-8 Operations Table

Managed Object Description

dsAnonymousBinds The number of anonymous binds to the directory

since server startup.

dsUnauthBinds The number of unauthenticated binds to the

directory since server startup.

dsSimpleAuthBinds The number of binds to the directory server that

were established by a simple authentication method

such as password protection since server startup.

dsStrongAuthBinds The number of binds to the directory server that

were established by a strong authentication method

such as SSL or an SASL mechanism such as Kerberos

since server startup.

dsBindSecurityErrors The number of bind requests that have been rejected

by the directory server because of authentication

failures or invalid credentials since server startup.

dsInOps The number of operations forwarded to this

directory server from another directory server since

server startup.

dsReadOps The number of read operations serviced by this

directory server since application start. The value of

this object is always 0 because LDAP implements

read operations indirectly through the search

operation.

dsCompareOps The number of compare operations serviced by this

directory server since server startup.

dsAddEntryOps The number of add operations serviced by this

directory server since server startup.

dsRemoveEntryOps The number of delete operations serviced by this

directory server since server startup.

dsModifyEntryOps The number of modify operations serviced by this

directory server since server startup.

dsModifyRDNOps The number of modify RDN operations serviced by

this directory server since server startup.
Chapter 10 Managing Directory Services 261

dsListOps The number of list operations serviced by this

directory server since server startup. The value of

this object will always be 0 because LDAP

implements list operations indirectly through the

search operation.

dsSearchOps The total number of search operations serviced by

this directory server since server startup.

dsOneLevelSearchOps The number of one-level search operations serviced

by this directory server since server startup.

dsWholeSubtreeSearchOps The number of whole subtree search operations

serviced by this directory server since server startup.

dsReferrals The number of referrals returned by this directory

server in response to client requests since server

startup.

dsChainings The number of operations forwarded by this

directory server to other directory servers since

server startup. The value of this object is always 0.

dsSecurityErrors The number of operations forwarded to this

directory server that did not meet security

requirements.

dsErrors The number of requests that could not be serviced

because of errors (other than security or referral

errors). Errors include name errors, update errors,

attribute errors, and service errors. Partially serviced

requests are not counted as errors.

TABLE 10-8 Operations Table (Continued)

Managed Object Description
262 Solaris and LDAP Naming Services

Entry Table

The Entry Table (TABLE 10-9) provides statistical information about directory entries

and the entry cache.

Interaction Table

The Interaction Table (TABLE 10-10) provides statistical information about

communications with peer servers.

TABLE 10-9 Entry Table

Managed Object Description

dsMasterEntries The number of directory entries for which this directory

server contains the master entry. The value of this object

is always 0.

dsCopyEntries The number of directory entries for which this directory

server contains a slave copy. The value of this object is

always 0.

dsCacheEntries The number of entries cached in the directory server.

dsCacheHits The number of operations serviced from the locally held

cache since application startup.

dsSlaveHits The number of operations that were serviced from

locally held replications (shadow entries). The value of

this object is always 0.

TABLE 10-10 Interaction Table

Managed Object Description

dsIntIndex Statistical data is kept for the last 5 peer directory

servers with which this directory server has attempted to

communicate. This object provides a unique identifier

used to delimit the information about the interaction

with a specific peer directory server.

dsName The distinguished name of the peer directory server

identified by the corresponding dsIntIndex object.

dsTimeOfCreation The amount of time since this directory server first

attempted to contact the peer directory server identified

by the corresponding dsIntIndex object. If this attempt

was made before the NMS was initialized, the object will

contain a value of 0.
Chapter 10 Managing Directory Services 263

Managing the LDAP Directory Server
with BMC PATROL

Third-party products, such as BMC PATROL from BMC, can be used to monitor the

directory service. This section describes the Knowledge Module (KM) developed to

monitor the iPlanet Directory Server.

iPlanet Directory Server KM Overview

The iPlanet Directory Server (part of the iPlanet Messaging KM) Knowledge Module

allows the administrator to continually monitor and automatically react to critical

data centers, thus decreasing the likelihood of a failure as administrators are made

aware of potential application problems before they become critical.

dsTimeOfLastAttempt The amount of time since this directory server last

attempted to contact the peer directory server identified

by the corresponding dsIntIndex object. If this attempt

was made before the NMS was initialized, the object will

contain a value of 0.

dsTimeOfLastSuccess The number of times this directory server has failed to

contact the peer directory server identified in the

corresponding dsIntIndex object since the last

successful contact.

dsFailuresSinceLastSucces The number of times this directory server has failed to

contact the peer directory server identified in the

corresponding dsIntIndex object since the last

successful contact.

dsFailures The total number of times this directory server has failed

to contact the peer directory server identified by the

corresponding dsIntIndex object.

dsSuccesses The total number of times this directory server has

successfully contacted the peer directory server

identified by the corresponding dsIntIndex object.

dsUR The URL of the peer directory server identified in the

corresponding dsIntIndex object.

TABLE 10-10 Interaction Table (Continued)

Managed Object Description
264 Solaris and LDAP Naming Services

The iPlanet Directory Knowledge Module conforms to standard PATROL

Knowledge Module design and operation, ensuring that the PATROL architectural

integrity is maintained. The Knowledge Module is designed to run on servers that

conform to the iPlanet E-Commerce Solutions environment, such as the iPlanet

Directory and Messaging servers.

Introduction to BMC PATROL

PATROL monitors and manages distributed systems with the ultimate goal of

increasing the availability of servers and applications that run on them. As with any

other technology, you need to understand from an architectural point of view how

components work and fit together. This understanding will enable you to address

the management of LDAP directory services. It is important to understand each

component of PATROL, as well as its own objectives and key terms.

First, look at the behind-the-scenes functioning of PATROL, including how the

Agent works, how the Agent communicates with the Console, and how knowledge

is distributed in the PATROL environment.

Basic PATROL Architecture

When you understand the functions of the main components, you understand how

PATROL can do all the things it does. The PATROL product comprises four main

components:

1. PATROL Agent

2. PATROL Event Manager

3. PATROL Knowledge Modules

4. PATROL Console

Here are some key terms that are used in the PATROL components.

Agent — A process that resides on the server—basically, the monitoring engine. The

Agent carries out most of PATROL’s duties.

Console — Software that runs on your workstation to provide your view into the

PATROL Agents.

Discovery — The process of finding, recognizing, and then establishing monitoring

relationships with target objects (databases, applications, etc.). It is what makes

PATROL self-configuring.

Knowledge — The collection of all monitoring definitions and rules, for example,

which Module guides the Agent in performing its duties.
Chapter 10 Managing Directory Services 265

Event — A situation that requires manual intervention; a communication that takes

place between an Agent and a Console; a change in the state of a PATROL object.

Event Management — The process of assigning responsibility for the investigation

of a system-related problem and then tracking activities associated with this event

through to closure.

Commit — The process of globalizing changes made to the PATROL environment

from a Developer Console and then piping the change to the Agent(s).

FIGURE 10-7 illustrates PATROL architecture.

FIGURE 10-7 Basic PATROL Architecture

Basic PATROL Agent

The Agent is the workhorse of PATROL. At Agent startup, the Agent reads a

discovery script from its local file system. Once discovery has taken place, the

appropriate KMs are loaded. Everything the Agent monitors and executes

automatically is based on the rules within the KM.

It is important to note that Agents live within the boundaries of resources that you

allocate to them. This allocation is done at installation. The more resources you

allocate to the Agent, the faster it becomes. The PATROL Smart Agent technology

was developed to consume as few resources as possible (on your server, as well as

your network). The fewer the applications or features of those applications you

monitor with PATROL, the fewer the resources the Agent needs to accomplish its

tasks.

The Agent process is made up of several logical modules. It is this modular

approach that facilitates addition of new functionality over time.

Console

PEM
Browser

PEM

PEM

Agent

Agent

KM Server1

Server2KM
266 Solaris and LDAP Naming Services

Basic PATROL Event Manager (PEM)

The PATROL Event Manager (PEM) enables you to view and manage events that

occur on monitored system resources and that are sent by PATROL Agents. PEM is a

PATROL tool that helps automate this process. The Agent communicates events to

all interested consoles via the event broadcast mechanism.

Basic PATROL Knowledge Modules

The knowledge module has three distinct characteristics. At Agent startup, a

Knowledge Module is loaded from a file on the Agent’s local file system. Similarly,

at Console startup, a Knowledge Module is also loaded. The only time a KM is

moved around over your underlying network is when a Developer Console updates

knowledge stored at each Agent.

A Knowledge Module comprises two major components: discovery rules and

scripts. The discovery rules implement the scope defined by the KM developer. The

discovery rules define to the PATROL environment how to determine whether the

objects that you want to manage exist and are currently active in the target

environment. Once the objects have been discovered, the scripts provide PATROL

the intelligence required to implement the purpose of the KM.

Parameters are the monitoring component of PATROL. A parameter monitors the

individual units of performance of the targeted application (e.g., CPU utilization, file

system capacity). Associated with parameters are alert ranges, and associated with

alert ranges are recovery action scripts.

Basic PATROL Console

The PATROL Console is where the PATROL user initiates ad hoc commands that are

executed on the Agents. Ad hoc commands are sourced (the actual command scripts

are stored at the Console), and when triggered by the PATROL user, the command

scripts are sent to an Agent (or multiple Agents simultaneously) for execution. This

approach allows a PATROL Console user to not only view alerts from the agent but

also to take troubleshooting, administrative, or corrective actions from the same

platform. These stored commands make up the administrator’s toolkit, the chief

benefit of running a PATROL console.

The PATROL Console running in developer mode is the tool used to manage,

update, and modify the PATROL environment’s monitoring knowledge. The other

option for the PATROL Console is the Operator Console. This is the type of console

that you encounter in production environments. It has all the capabilities to monitor

and take action, but none of the authority necessary to access the Agent’s knowledge

and change the way PATROL is configured.
Chapter 10 Managing Directory Services 267

Basic iPlanet Directory PATROL Architecture

FIGURE 10-8 illustrates the iPlanet Directory PATROL architecture.

FIGURE 10-8 Basic iPlanet Directory PATROL Architecture

iPlanet Directory PATROL Components

The iPlanet Directory Services Knowledge Module, which is a component of the

iPlanet Messaging Server 4.15, is made up of a set of modules which are accessed in

an hierarchical manner. The entry-level module is the access point to the other

directory modules.

FIGURE 10-9 IMS4 Directory Services Knowledge Module Icon

This module (FIGURE 10-9) houses several properties of its own including the ability

to automatically discover an LDAP service running on the default port of 389, as

well as the configuration of other LDAP instances that are not running on this well-

known LDAP port. It is also possible to stop, start, and restart the LDAP service

from a menu option. Double-clicking this module will present you with the view in

FIGURE 10-10.

Patrol Console

Managed Hosts

iPlanet Module

iPlanet Module

UDP
Patrol Agent

iPlanet Monitoring KM

iPlanet
Component

SNMP
GET/SET

KM

KM

KM
268 Solaris and LDAP Naming Services

FIGURE 10-10 Directory Knowledge Modules

FIGURE 10-10 presents the remaining directory knowledge modules, which include

the Configuration files, Connectivity, Connection Status, Admin Server Status, and

Resource Summary. In addition to these modules, the SNMP modules monitor the

process status of the master agent and subagent.

It is easy to make mistakes when modifying the configuration files. If a modification

error has occurred, the Knowledge Module will alert you of the condition that one of

the configuration files has changed. The following configuration files are currently

monitored:

■ slapd.conf — Main LDAP configuration file

■ slapd.at.conf —Where the standard LDAP attribute types are defined

■ slapd.oc.conf —Where the standard LDAP Object Classes are defined

■ slapd.user_at.conf —Where the LDAP user-defined attributes are defined

■ slapd.user_oc.conf —Where the user-defined Object Classes are defined

The Resource Summary module enables system administrators to take a quick

glance at what the LDAP server has been doing. The resources that are currently

monitored are LDAP connections, which are the total number of connections made

to a particular LDAP server, the total number of all LDAP operations to an LDAP

server, how many LDAP operations were completed by the LDAP server, the total

number of entries based on the search requests that were sent to the clients, and the

total amount of bytes also sent to the clients.
Chapter 10 Managing Directory Services 269

FIGURE 10-11 Resource Summary Modules

In addition to the modules in FIGURE 10-11, the Knowledge Modules support the

current resource usage of an LDAP server, including the current number of active

threads of an LDAP server, the number of open connections, and how many

connections the LDAP server can open. The Knowledge Module also provides some

general server information, such as the version of the LDAP server software you are

running.

Checking Memory Usage with pmap

The Solaris 8 operating environment includes a utility called pmap which is handy

for determining which processes are using up memory. Since the database and entry

cache sizes are dynamic, the amount of memory consumed by the directory server

will change over time.

To run pmap on the directory server process, specify the PID of the ns-slapd
process. For example:

blueprints# ps -e | grep ns-slapd
 24626 ? 1:05 ns-slapd
blueprints# pmap 24626
...
0012E000 6408K read/write/exec [heap]
...
 total 33136K
...
blueprints#
270 Solaris and LDAP Naming Services

The output from pmap is quite voluminous, so only a couple of lines are shown. You

will notice that as the directory caches grow in size, the size of the heap grows.

Eventually, this value will reach the maximum value specified in the configuration

files. This is a good check to see if the actual cache size matches what you think it

was set at. For additional information on pmap see the man page, pmap(1M).
Chapter 10 Managing Directory Services 271

CHAPTER 11

Directory Services Consolidation

Most corporate information technology (IT) infrastructures are composed of

heterogeneous hardware and software platforms. Some systems may have been

chosen because they provided the best solution at the time, whereas others may have

been inherited through a merger or acquisition. Whatever the reasons for the system

composition, corporate IT managers have to cope with maintaining a multitude of

applications requiring several different data stores.

Examples of disparate applications and data stores are:

■ LDAP-enabled applications, such as messaging and web servers

■ Relational Database — Oracle, Sybase, etc.

■ Microsoft Exchange

■ e-Directory from Novell

■ Windows NT Directory Services (NTDS)

■ Lotus Notes

■ NIS and NIS+ from Sun

Consolidation of all these data stores into a single repository is a daunting task. This

activity must be well planned to prevent critical data from becoming inaccessible.

Another aspect of consolidation is the simplification of the security access methods

deployed by different applications. This chapter examines tools, technology, and the

methodology available to make data consolidation a reality.

Benefits of Consolidation

The obvious benefit to consolidation is the ability to present a consistent view of

data, such as employee information, across a wide range of applications. The data

about an employee may be maintained in a Human Resources (HR) database,

messaging system database, operating system naming service, and a company-wide

address book. In many cases, the same data fields are maintained in all these places.

If the employee transfers to another department, updates need to occur in all these

data stores. This creates extra work and may lead to conflicting data being stored.
273

Another benefit to directory consolidation is providing a single interface that new

applications can be written to. With a single view of the data, the application

developer does not have to worry about how the data is formatted and what access

protocol to use.

LDAP as a Consolidation Choice

Having made the decision to consolidate, you must next figure out how. There are

numerous approaches, but consolidation built around LDAP technology makes the

most sense. LDAP has a wide industry adoption and is gaining popularity,

particularly in the E-Commerce market. Unlike relational databases, LDAP

technology makes it easy to distribute data around your company. It is also easily

extended to include new data objects.

Once you decide to build your consolidation strategy around LDAP, you must next

decide how to deploy this technology. A number of alternatives are explained in the

following section.

Consolidation Approaches

There are essentially three approaches. In most cases, it makes sense to deploy a

combination of these.

1. Convert all your data to LDAP directory data.

2. Deploy gateway services that act as a front end to the LDAP directory.

3. Deploy a synchronization service.

Converting all your data is not practical in some cases, but when you have multiple

LDAP-enabled applications each with its own directory, you can consolidate this

data, as described later. Gateway services are difficult to implement and not widely

available. Synchronization services have several advantages which we discuss later.

We also later discuss the iPlanet Meta-Directory Server product, which combines

synchronization and the ability to join disparate data sources to create a single

LDAP view.

Consolidation of LDAP-Enabled Applications

Even when different applications are using LDAP as their primary data store, there

are some caveats you must be aware of when merging the data into a single LDAP

directory.
274 Solaris and LDAP Naming Services

■ Incorporating the application-specific schema

■ Creating a common Directory Information Tree (DIT)

■ Resolving ACI conflicts

Most applications will extend the standard LDAP schema to include additional

object classes and attributes. If the applications are all written by a single vendor, for

example iPlanet, chances are the schema extensions are compatible. In fact, the

iPlanet Directory Server ships with schema files that are used to support the iPlanet

suite of products. However, if you plan to have your directory support other

applications that require schema extensions, you must watch out for conflicts.

Many applications are hard-coded to look for particular distinguished names (DNs)

in the DIT. For example, the application might expect user profiles to reside in a

particular organizational unit within a particular branch of the tree. Another

application might expect user profiles to reside somewhere else. Unless these

conflicts are resolved, a separate subtree must be created for each application.

Different organizations may have different security requirements and therefore may

set different access control levels on the directory contents. In some cases, this can

present a conflict. For example, if an application needs write permission to a

directory subtree which has access control instructions that prohibit writing, the

application will fail.

Mapping Attributes

Applications that need to use an existing schema but refer to attributes by a different

name can include a mapping file. A mapping file equates its attributes to the

attributes it uses internally. The file can also contain a naming context mapping so

the application data can be placed anywhere in the DIT. An example of an

application that provides attribute mapping is the NIS extensions for Solaris. In this

application, you define the place where the NIS map data is stored by modifying a

mapping entry.

Another method for mapping attributes is to deploy an LDAP directory router,

which has that capability, as a front end to your directory servers. The iPlanet

Directory Access Router provides attribute mapping and is discussed in “iPlanet

Directory Access Router” on page 284.
Chapter 11 Directory Services Consolidation 275

LDAP Gateways

LDAP gateways provide front ends to an existing directory service that uses LDAP

directories as their data store. With gateways, clients use the same protocol they

normally would, only instead of communicating with a real server, they

communicate with the gateway server. Unlike synchronization services, discussed

below, the only data store for gateways is the LDAP directory.

A good example of an LDAP gateway is ypldapd from PADL Software. The

ypldapd software acts as a gateway between NIS and an LDAP directory by

emulating the Solaris ypserv process. NIS clients bind to the server running

ypladpd just as they would to a server running ypserv . However, instead of

retrieving information from NIS maps, they retrieve it from an LDAP directory

server.

Another example of a gateway is the dynamic DNS implementation in Windows

2000. DNS records can be optionally maintained in Active Directory instead of DNS

db zone files. DNS requests are serviced in a manner transparent to the client.

LDAP gateways are attractive because all the directory data resides in one place.

There is no danger of getting data out of sync. However, since you are not

maintaining the original data store, you cannot use management tools that work

against that data. Instead, you must be use LDAP-based tools.

Also, it is difficult to provide all the functionality of the directory server you are

replacing. For example, directory replication may not be available between a

gateway and the native service such as NIS, since NIS data is propagated from

masters to slaves as dbm files.

LDAP Synchronization

An alternative to an LDAP gateway is a synchronization service. Instead of using an

LDAP directory as its sole data store, the synchronization service also maintains data

in the data store of the original directory server. Updates are performed on one data

store, then the changes are propagated to the other one. In some synchronization

services, all data is mastered on only one of the directory servers. This process is

referred to as one-way synchronization. Other synchronization services allow

updates to be performed on either server and are referred to as two-way

synchronization services.
276 Solaris and LDAP Naming Services

Password Synchronization

As discussed in Chapter 3, ”Security Models,” there are many different

authentication schemes. For protection, these schemes store passwords in an

encrypted format by employing a particular hashing algorithm. Since it is likely that

the two directory servers being synchronized use different hashing algorithms, the

passwords must be decrypted, then encrypted with a new algorithm.

Some encryption algorithms, such as crypt, use a one-way hash, which means they

cannot be decrypted on the server. The only way to get around this restriction is to

intercept the password before it is encrypted on one server, then send the

unencrypted password to the server being synchronized. An example of this

technique is the NT Synchronization Service, which installs a special DLL on a

Windows NT Domain Controller. All password changes are trapped by the DLL,

which sends the unencrypted password to the iPlanet Directory Server.

Two problems can arise when password synchronization is deployed. The first

problem is that in some cases passwords are sent over the network in clear text.

However, you can solve this problem by setting up a secure SSL connection between

the two synchronizing directory services. The second problem is that one-way

hashed passwords can only be reset when users change their passwords. While this

is not an insurmountable problem, it can inconvenience the users.

NIS Extensions for Solaris

The iPlanet Directory Server NIS extensions are an LDAP synchronization service

between NIS and LDAP.

NT Synchronization Service

The NT Synchronization Service, which is available for the iPlanet Directory Server,

synchronizes user account data maintained in the Windows NT SAM database with

data maintained in the directory. For additional details see Chapter 12, ”Microsoft

Windows Interoperability.”
Chapter 11 Directory Services Consolidation 277

iPlanet Meta-Directory Server

The iPlanet Meta-Directory Server is really a combination of a gateway and a

synchronization service. Data from various sources can be synchronized with an

LDAP directory, and incoming LDAP requests can be redirected, or linked, to an

external data source. How different data sources are handled is determined by the

type of Meta-Directory connector written for the data source.

Originally developed for Windows NT, the Meta-Directory Server now runs in the

Solaris operating environment. The Meta-Directory Server is not a replacement for a

directory server; instead, it works in conjunction with one. The iPlanet Directory

Server bundled with the Solaris operating environment is fully compatible with the

Meta-Directory Server, which must be purchased separately.

Since the Meta-Directory is a complex product with many features, it is not practical

to present here a detailed explanation of how it works. Instead, we present an

overview and some possible deployment scenarios.

How Meta-Directory Works

Conceptually, the Meta-Directory software creates a unified view of an LDAP

directory that is composed of data from different data sources. This view is referred

to as the MetaView and is what applications accessing the Meta-Directory see. The

concept is simple, but the underlying technology required to create the unified view

is quite complex.

A component called the JoinEngine collects data from ConnectorViews and then

merges that data to create the unified view. A ConnectorView is created from

special software, called connectors, which is written specifically to interface with a

particular directory service. For example, an SQL connector would interface directly

to a relational database.

Data can also be collected outside the context of the JoinEngine by indirect

connectors. Indirect connectors use a synchronized copy of the directory to provide

the JoinEngine with access to data in an external directory. Both direct and indirect

connectors are available with the Meta-Directory software.

The Meta-Directory uses a trigger mechanism, which is written as part of a

connector, to detect changes on the data source. The changes are recorded in a

changelog , which is consulted to construct the MetaView of the data.
278 Solaris and LDAP Naming Services

Meta-Directory Connectors

Connectors come in two types: direct and indirect. Direct connectors can access the

data source directly through either LDAP or SQL, which are the two protocols that

Meta-Directory Server supports. If the data source does not support either of these

protocols, then an indirect connector is used. The indirect connector synchronizes a

data source with data in an LDAP directory. The LDAP directory is then used to

create the MetaView .

Connectors are available with the Meta-Directory Server product and from third

parties. A description of some of the more popular connectors are provided in this

section.

LDAP Connector

The LDAP connector is a direct connector to the location of the data in an LDAP

directory. An LDAP connector is effectively built into the iPlanet Directory Server

when the Meta-Directory schema is added to the directory schema. The Meta-

Directory server may or may not reside on the same system to which the LDAP

connector points.

Database Connector

The database connector is a direct connector to data residing in an SQL-accessible

database. Supported databases are Oracle, Sybase, and the Microsoft SQL Server. A

trigger mechanism detects changes in specified tables and columns in the connected

database. Each insert, update, and deletion of rows in the selected tables results in a

series of changes in the changelog .

A setup of customized scripts is created for the database server during the Meta-

Directory Server configuration. The scripts are run against the target database to

create a second database, which is populated with changes made to tables in that

database.

Database connectors can be either one-way or two-way. LDAP search queries

directed to the Meta-Directory Server can be forwarded to the connected database

for data retrieval, and, if desired, database tables can be updated through LDAP.

Whether a two-way flow of data is permitted depends on the particular database

connector being deployed.
Chapter 11 Directory Services Consolidation 279

Directory Connector for Lotus Notes

The Directory Connector for Lotus Notes is an indirect connector that allows a two-

way flow. It propagates any entry changes made in Lotus Notes to those same

entries stored in the LDAP directory. If you make a change in the MetaView to an

entry linked with a Lotus Notes entry, the change will (if the configuration allows it)

be reflected in the Lotus Notes ConnectorView and propagated to Lotus Notes

through the Directory Connector for Lotus Notes.

Directory Connector for Microsoft Exchange

The Directory Connector for Microsoft Exchange allows a two-way flow of data

between Microsoft Exchange and its corresponding Indirect ConnectorView . It

propagates any entry changes made in Microsoft Exchange to those same entries

stored in the Indirect ConnectorView , so that they can be relayed to any

corresponding entries in the MetaView . If you make a change in the MetaView to an

entry linked with a Microsoft Exchange entry, the change will (if the configuration

allows it) be reflected in the Microsoft Exchange ConnectorView and propagated to

Microsoft Exchange through the Directory Connector for Microsoft Exchange.

Universal Connector

The Universal Connector allows a two-way flow of data between a variety of

external directories and their corresponding Indirect ConnectorViews . It provides

a Perl programming interface, which you can configure to connect to applications

not previously supported by the Meta-Directory. It enables you to create, modify, or

delete records in the external data repository.

The Universal Connector is interesting because you can use it to access data

contained in flat files. Solaris system data that resides in /etc files can become a

data source with some Perl programming.

Deploying iPlanet Meta-Directory

The iPlanet Meta-Directory Server can be deployed alongside other directory

consolidation tools. Although it is possible to write a connector for almost any data

source, if an alternative exists, you should use it. For example, a Universal

Connector for NIS data could be written, but available iPlanet NIS extensions

provide that function. Likewise, the iPlanet NT Synchronization Service provides

synchronization between LDAP and Windows NT user account data.
280 Solaris and LDAP Naming Services

Unified Login and Single Sign-on

Directory consolidation by itself may provide a unified login , but it does not

provide single sign-on (SSO) capability. A unified login is achieved since the same

name and password are used for all directory-enabled application logins. However,

this does not mean that each application will not prompt the user for a name and

password.

Single sign-on is achieved by only requiring the user to log in once. When the user

attempts to access an application after already being authenticated, a special

identifier is passed to the new application, verifying that the user has already been

authenticated. Since there is no single standard way of performing SSO, all

participating applications must be written with the same method. In this section, we

examine two methods:

■ Kerberos

■ Netegrity SiteMinder

Kerberos and LDAP

Chapter 3, ”Security Models,” presented an overview of Kerberos. Although

Kerberos technology is orthogonal to directory services, Kerberos can be used to

create an SSO environment with or without the presence of a directory service.

However, for web-based applications, the use of Kerberos is somewhat limited. If,

for example, you want to provide access to partners outside your company, they

would not be able to contact the Key Distribution Center (KDC) as required by

Kerberos.

The directory service can use Kerberos as an authentication service, provided it is

equipped to do so. However, at the time this book was written, the necessary

Kerberos module for the iPlanet Directory Server was not available.

SiteMinder

The SiteMinder product was developed by Netegrity to address the problem of

managing logins to heterogeneous web-based services. For example, users that

access a web service hosted on a Microsoft IIS Web server are authenticated by a

Windows NT domain controller, which maintains user account information. If the

same users want to access web services on an iPlanet Web server running on a Sun
Chapter 11 Directory Services Consolidation 281

server, they have to be authenticated by another mechanism, usually through LDAP.

Since there is no way to pass authentication verification between these two systems,

users must log in twice.

SiteMinder solves this multiple login problem by providing a central point for all

authentication. Instead of being authenticated by each web service, users are

authenticated by SiteMinder instead. After the user is authenticated, a special

encrypted cookie is created and used for subsequent logins to different web-based

services and applications. Even though users are automatically authenticated, you

can curtail their access rights to specific resources by establishing access control

policies through SiteMinder’s security policy management features.

How SiteMinder Works

The SiteMinder product provides more than single sign-on capability. A full

description of all these features can be found at the Netegrity Web site: http://
www.netegrity.com . Included here is a brief description of how SiteMinder

works, to give you an idea of how it would be deployed in a corporate environment.

The SiteMinder software consists of two main components:

■ SiteMinder Policy Server

■ SiteMinder Web Agent

The Policy Server provides authentication, among other services, to web-based

applications. The Web Agent is integrated with a standard web server and is the

component that allows the web server to be managed by SiteMinder. It intercepts all

requests for resources (URLs), then decides whether the specified resource is under

SiteMinder’s control. If it is, the Policy Server is contacted.

The Policy Server acts as a front end to whatever authentication method is being

deployed within your organization. These include:

■ Basic authentication (user-name/password)

■ Basic authentication over SSL

■ Authentication schemes

■ ACE/Server (Security Dynamics)

■ CryptoCard

■ RADIUS Proxy

■ Forms-based authentication

■ X.509 certificates

■ Custom or third-party schemes

Use some of these schemes in combination to provide stronger authentication. You

can establish priority levels for finer control over resources. For example, if users are

authenticated by a method that has a lower priority than the resource they are
282 Solaris and LDAP Naming Services

accessing, then an attempt to authenticate them at a higher level is made.

Conversely, if users are already authenticated at a high-priority level, then no further

authentication is required.

FIGURE 11-1 illustrates how single sign-on is achieved with SiteMinder.

FIGURE 11-1 SiteMinder Single Sign-on

In FIGURE 11-1, the user accesses an URL that is located on Web server A, which has

the SiteMinder Web Agent running on it. The agent checks to see if the requested

URL is under SiteMinder control, and if it is, the agent contacts the Policy Server,

which authenticates the user according to established policy rules. Once the user is

authenticated, an encrypted cookie or user credential is created and passed to the

other web servers under SiteMinder control.

When the same user tries to access a URL on Web server B, the Web Agent can then

grant access according to the user credential it was passed, eliminating the need for

a second user login.

Limitation of SiteMinder

SiteMinder was designed to work in a web server environment, where

authentication is triggered upon a URL request. When a user logs into a computer,

authentication is handled by the underlying operating system, instead of being

initiated by a web server. Since there is no way to pass the authentication

information to SiteMinder from the operating system, the user would have to log in

again to gain access to web service applications.

Even though SiteMinder is a valuable tool for creating an SSO environment between

disparate web applications, the user is still required to log into the platform from

which the web applications will be launched. SiteMinder also requires that an agent

Web
Agent Policy

Server

LDAP RADIUS NT Domains

Web Server A Web Server B

User
Credential

URL

user

Web
Agent
Chapter 11 Directory Services Consolidation 283

be installed on each web server that will participate in the SSO environment. The

agents are written with web server extension APIs such as ISAPI for Microsoft IIS

and NSAPI for iPlanet Web server, and so must be provided by Netegrity.

iPlanet Directory Access Router

Although the iPlanet Directory Access Router (iDAR) does not provide directory

consolidation by itself, it can be used to address some consolidation issues. For

example, if two LDAP-enabled applications are expecting different directory

schemas, use the iDAR to map the schema of one directory server to another.

Response filtering provides an approach to consolidating internal and external

directories. Instead of maintaining separate directories with protected data on one,

deploy the iDAR to block external access to sensitive data.

Additional information about particular features can be obtained from the iPlanet

Web site at: http://www.iplanet.com .

iDAR Overview

Functionally, iDAR is an LDAP access router located between LDAP clients and

LDAP directory servers. Requests from LDAP clients can be filtered and routed to

LDAP directory servers, based on rules defined in the iDAR configuration. Results

from the directory server can be filtered and passed back to clients, again based on

rules defined in the iDAR configuration. This process is totally transparent to the

LDAP clients, which connect to the iDAR just as they would to any other LDAP

directory server.

The iDAR provides enhanced high availability, security, and client compatibility

features for both extranet and intranet directory infrastructures, including:

■ Automatic load balancing

■ Transparent server failover and failback

■ Automatic referral following

■ Extranet/intranet access control groups

■ Secure client and server authentication

■ Dynamic query and response filtering

■ Dynamic schema mapping

■ Directory-based or file-based configuration

■ Configurable logging

The iDAR coexists with and complements new and existing LDAP directory

infrastructures and integrates seamlessly with directory-enabled applications

already deployed in both company extranets and intranets. It can be deployed to
284 Solaris and LDAP Naming Services

leverage the existing investment in a corporate directory infrastructure. The iDAR

will interoperate with any LDAP-compliant directory server. The iDAR will work

with the iPlanet Directory Server, and it is compatible with any LDAP-enabled and

conformant directory, whether it’s a native LDAP directory, an LDAP-enabled X.500

directory, or an LDAP-enabled relational database.

The iDAR implements the LDAP v3 Internet specification and also supports the

older and less functional LDAP v2 specification for compatibility with already

deployed directory-enabled client applications that use LDAP v2. In the Solaris

operating environment, the iDAR server runs as a separate system server process.

The server is multithreaded and can handle thousands of LDAP client requests

while applying access control rules and protocol filtering rules to each request. The

iDAR provides protection to private directory information from unauthorized

access, while making it safe for organizations to publish their public information.

Fine-grained, access control policy on LDAP directories can be established, such as

control over who can perform different types of operations on different parts of the

Directory Information Tree (DIT). The iDAR can also be configured to disallow

certain kinds of operations typically performed by web trawlers and robots to collect

information.

Unlike a web proxy server, the iDAR does not operate in a reverse proxy mode. It

does not forward connections to arbitrary servers on the Internet from clients inside

the firewall. Neither does it cache search results. The predominant reason for this is

the problem of applying access controls to the data. These controls are currently only

applied in the LDAP directory server where the access controls are maintained. The

Directory Access Router has no knowledge of the directory server access controls.

iPlanet Directory Access Router Feature Set

The iDAR feature set provides three distinct functions:

■ High availability

■ Firewall-like security

■ Client-server compatibility

High Availability

The iDAR supports high availability directory deployments by providing both

automatic load balancing and automatic failover and failback among a set of

replicated LDAP directory servers. For extranet and intranet environments, it is

often necessary to ensure that mission-critical directory-enabled clients and

applications have 24x7 access to directory data. The iDAR maintains connection state

information for all directory servers that it knows about and dynamically performs

proportional load balancing of LDAP operations across a set of configured directory
Chapter 11 Directory Services Consolidation 285

servers. Should one or more directory servers become unavailable, the load is

proportionally redistributed among the remaining servers. When a directory server

comes back online, the load is proportionally reallocated dynamically.

For example, suppose directory server A is configured to receive 40% of the LDAP

client load; server B, 20%; server C, 20%; and server D, 20%. If directory server B

fails, iDAR will recognize that server A is configured to carry twice the load of

servers C and D and will redistribute the 20% load from server B such that server A

now receives 50%, server C, 25%, and server D, 25%. When directory server B is

recovered, iDAR automatically detects this and reverts to the original load

percentages configured across all four servers.

Network layer IP load balancing devices don’t have access to the LDAP protocol

layer. However, the iDAR integrates load balancing with access control, query

filtering, and query routing and can make more intelligent decisions about

application-layer access control and LDAP routing.

Firewall-like Security

The iDAR provides flexible, external, directory access control facilities that enhance

the basic access control provided by a directory server. The access control

mechanisms allow different users and communities of users to be associated with

specific access groups to which administrator-defined security restrictions and query

filters will be applied. The administrator can control access to entries based on

LDAP authentication information, IP address, domain name, and other criteria. The

server also supports secure authentication, using Internet standard security

mechanisms including both challenge-response, protected-password authentication,

and digital certificate-based strong authentication and data encryption. For

protected passwords, the CRAM-MD5 and DIGEST-MD5 SASL mechanisms are

supported. For strong authentication and data confidentiality, support is available

for both the Netscape alternate port 636 Secure Sockets Layer (SSL) mechanism and

the Internet standard Transport Layer Security (TLS) mechanism. RSA, Digital

Signature Standard, Triple-DES, and Diffie Hellman cryptographic algorithms are

supported.

One of the significant security features the iDAR provides is the protection of the

number of connections established between LDAP clients and the LDAP directory

server. You can protect your LDAP directory server from connection attacks by

configuring the iDAR to monitor a number of specific metrics: the number of

simultaneous client operations, the number of operations a client can request per

connection, and the number of connections for a particular client group. The iDAR

can also time out inactive clients.

The systems administrator can configure the iDAR with specific threshold limits not

to be exceeded for the given metrics. The iDAR monitors these metrics and helps

ensure that the thresholds are not exceeded.
286 Solaris and LDAP Naming Services

These features can help prevent denial-of-service attacks and flood attacks that are

so commonplace in the industry today. If the iDAR detects that a threshold has been

reached, it starts refusing connections to the directory server and prevents the

directory server from being attacked and overwhelmed.

Client-Server Compatibility

The iDAR provides intelligent query routing by making query routing decisions that

are based on LDAP DNs and group access rights, including identification of mobile

users by their authentication credentials. In addition, the iDAR can automatically

follow LDAP referrals that may be returned by a directory server in support of

highly distributed and scalable directory services. Automatic referral following is a

significant advantage for large-scale directory deployments, where it is necessary to

physically distribute directory information among a set of directory servers, but to

have the distributed directory appear to users as one logical directory. The iDAR

supports this type of deployment scenario by enabling the directory architect to

logically unify otherwise distributed directory data in support of scalable distributed

directory services.

The iDAR supports any compliant LDAP v2 or LDAP v3 client application. Support

is provided for schema rewriting to accommodate client applications with fixed

schemas that do not always match the directory server’s schema. For example, the

Microsoft Outlook email client has a fixed schema that expects the directory server

to implement Microsoft-defined attributes, which may not match a company’s more

general schema requirements. The schema rewriting capability allows the directory

system administrator to implement a general-purpose company schema and then

dynamically map specific elements of that schema into the set of attribute types that

are required by the less functional client application. The iDAR is otherwise schema

agnostic and accepts any attribute types and object classes defined by a large set of

standard and ad hoc industry schema definitions, including RFC1274, X.520, X.521,

LIPS, PKIX, inetOrgPerson , and DEN.
Chapter 11 Directory Services Consolidation 287

CHAPTER 12

Microsoft Windows Interoperability

One of the advantages of standard technology like LDAP is the opportunity it

creates for dissimilar operating environments to interoperate. The business

computing landscape is composed of heterogeneous systems, since no single

computing architecture addresses all computing needs. These systems include

UNIX-based servers and workstations and Microsoft Windows clients and servers.

Each of these systems maintains its own data store, which is sometimes duplicated

to enable users to access resources on either system.

This chapter focuses on how Solaris-based systems can share information with

Windows-based systems by deploying LDAP technology. The first part of this

chapter looks at how the user account data can be synchronized between a Windows

NT server and a Solaris server running the iPlanet Directory Server. The second part

of the chapter examines the directory services in Microsoft’s newest operating

system, Windows 2000, and how they can interact with Solaris directory services.

Windows NT Interoperability

One of the most important roles a directory plays is being the keeper of user account

information, including the user’s identity. When a user logs into a computer or

application, the directory is consulted to provide user information that is used for

controlling access and locating personal resources such as mail boxes and home

directories. The ability to share this user account data between different operating

environments is highly desirable.

This section focuses on how user account information is managed in a Windows NT

environment and how that information can be made available to the Solaris

operating environment. The key technology that allows this flexibility is a feature of

the iPlanet Directory Server called the NT Synchronization Service.
289

Windows NT Security Model

In the Windows NT environment, user account information is kept in the Security

Account Manager (SAM) database. This database is maintained on special Windows

NT servers called Domain Controllers, of which there are two varieties: primary

(PDC) and backup (BDC). The difference between the two is that the BDC maintains

only a read-only copy of the SAM database, whereas the PDC has write privileges.

When a user logs into a computer running Windows NT, the login ID along with the

user’s password is passed to either a BDC or a PDC for authentication. If the user is

successfully authenticated, then a token called a security ID (SID) is passed back

along with information about the user. Based on the SID, Windows NT servers can

determine what access rights a user has to its resources.

Besides the login process, other applications can use the SAM database for

authorization and retrieval of user profile information. For example, a Microsoft

Exchange server would contact a BDC or PDC to verify the identity of an email user,

then retrieve information about the user.

How the NT User Account Information Is Made

Available to Solaris Server

Several approaches can be implemented to allow information to be accessed from

both the Windows NT and Solaris operating environments. One approach is to port

the PDC and BDC code from Windows NT to the Solaris operating system, which is

how the Solaris PC NetLink product was architected. Another approach is to

provide a synchronization service between the SAM database and a different type of

directory store, like an LDAP directory.

The approach used in the iPlanet Directory Server is the latter one. That is, provide a

two-way synchronization service that updates the LDAP directory whenever

changes are made on the Windows NT side, and vice versa. Since the SAM database

is not based on LDAP, the structure of the data stored in it is different from the

structure of the same data stored in the iPlanet Directory Server. To make the

synchronization service work, the data from the Windows NT environment needs to

be mapped to an LDAP structure.
290 Solaris and LDAP Naming Services

Mapping NT User Account Information to LDAP

The schema for two object classes—ntUser and ntGroup —that support Windows

NT user accounts ships with the iPlanet Directory Server. Some of the LDAP

attributes contained in these object classes correspond directly to Windows NT user

account fields. These are shown in TABLE 12-1.

For each Windows NT user account as well as for Windows NT groups, an

equivalent LDAP entry is created with these mapped fields. Also, if an ntUser
LDAP entry is created, an equivalent Windows NT user account is created.

How the Synchronization Service Works

The NT synchronization service consists of a process, ns-dssynch.exe , running on

a Windows NT domain controller and the iPlanet Directory Server, with the NT

synchronization plug-in enabled, running on a Sun server. The ns-dssynch.exe
process captures changes to the SAM database, then sends them to the iPlanet

Directory Server over a predefined port number. A special DLL running on the

Windows NT server traps password changes before they are encrypted and sends

them in clear text to the directory server.

Note – Since passwords are sent to the directory server in clear text, it is

recommended that the synchronous service be set up on a secure port that uses SSL.

At scheduled times, changes made to user accounts on the NT side are propagated

to the directory server. The equivalent LDAP entries are then updated.

TABLE 12-1 Windows NT to LDAP Mapping

Directory Server Attribute NT User Account Field

cn or commonName full_name

description comment

uid name

userPassword password
Chapter 12 Microsoft Windows Interoperability 291

NT Synchronization Service Installation

Two components are required to run the NT synchronization service. One

component runs on the Sun server and is installed by default. The other component,

which runs on the Windows NT server, is not contained on the Solaris companion

CD and must be downloaded from the iPlanet Web site:

www.iplanet.com

The iPlanet Directory Server for NT software, which you download, is contained in

a ZIP file that you should install on the NT Server. Once you unZIP the file, run

setup.exe on the Windows NT domain controller and follow these steps:

1. Choose the Custom installation option.

2. Check these components for installation:

■ Netscape Server Family Core Components

■ Netscape Directory Server 4.0 Synch Service

3. When the configuration screen appears, fill in the appropriate information:

■ Host — Name of the Sun server.

■ LDAP Port — Either the secure or insecure port on the Sun server.

■ Administrator DN — The account as which the Synchronization server will log

into the directory server. There must be write permission in the subtree where the

entries are kept.

■ Administrator password — Password for login DN.

■ Directory base for NT Users — The container on the directory server where

account information is stored. This container must be created manually on the

server.

■ Directory base for NT Groups — The container on the directory server where

group information is stored. This must be created manually.

■ Enforce UID uniqueness in subtree — A specified subtree prevents the creation

of entries with the same UID.

■ Synchronization plug-in port — The port number configured on the directory

server for synchronization. Port 5009 is the default.

FIGURE 12-1 shows the Directory Server Settings tab of the Configuration tool. You

can run this tool after the installation to change parameters.
292 Solaris and LDAP Naming Services

FIGURE 12-1 Directory Server Settings Tab

After the installation on the NT server completes, modify the Netscape Directory
Synchronization service on the NT server so you can log in as an NT administrator.

On the directory server:

1. In the Directory Server Console, highlight the rootDN and go to
Configuration—>Settings.

2. Under settings:

a. Check Enable NT Synchronization Service.

b. Enter number in Synchronization port: field.

3. Create the containers (ou=) for the NT users and groups.
Chapter 12 Microsoft Windows Interoperability 293

Windows 2000 Interoperability

With the release of Windows 2000, Microsoft placed the directory service at the core

of its operating environment. The directory service, called Active Directory, is used

by the core operating system to store user account and system resource data and by

the BackOffice suite of products as their data store.

The goal of Active Directory is to provide a scalable, easily accessible, central

repository for both operating system and application data. To achieve this goal,

Active Directory brings together several standards-based technologies:

■ DHCP

■ DNS

■ LDAP

■ Kerberos

■ Public Key Infrastructure

Although similar technologies exist in the Solaris environment, implementation

differences do not allow the technologies to be freely mixed and matched. This

section focuses on how Active Directory services are structured, how the technology

components interact, and how Solaris-based services can interoperate.

Active Directory Services Architecture

Before discussing how Active Directory services interoperate with Solaris directory

services, it is useful to take a look at their architecture. FIGURE 12-2 depicts the major

components of Active Directory services.
294 Solaris and LDAP Naming Services

FIGURE 12-2 Active Directory Services Major Components

The core of the directory server is referred to as the Directory System Agent (DSA).

Each controller in an Active Directory environment is a DSA that runs on its own

computer. The DSA is the control center of Active Directory and is the integration

point for other services and agents. All updates to the database and searches are

performed by the DSA. The DSA also communicates with other DSAs in the

network, which together form an Active Directory services domain.

The database that Active Directory uses is based on the Extensible Storage Engine

(ESE) database. This is an Indexed Sequential Access Method (ISAM) database

similar to the one in which Microsoft Exchange stores data. The ESE database has

built-in indexing features, along with other database features such as transaction

logging and recovery. All directory data resides in this database. It includes user

accounts, Kerberos credentials, public keys, digital certificates, etc. If the Windows

2000 DNS server is deployed, the DNS zone data is also maintained in the directory.

The DSA interfaces with other services. LDAP-enabled applications can interface

directly with the DSA, although this is not the recommended interface for

applications. Windows 2000 clients and services access the DSA through a set of

APIs called the Active Directory Service Interface (ADSI). This is Microsoft’s

preferred interface and is discussed in “How Applications Access Active Directory

Services” on page 302.

A replication agent performs multimaster replication between multiple DSAs. A

SAM agent provides backward compatibility to Windows clients, using NT Lan

Manager (NTLM) authentication.

LDAP
Clients

Windows
2000
Services

RPC Interface Windows NT 4
Services

Replication
Agent

SAM
Agent

Dynamic
DNS

DNS Zones

Core Directory System Agent

indexing, transaction recovery, logging

Directory Entries ESE Database DS-integrated DNS Zones
Chapter 12 Microsoft Windows Interoperability 295

To examine how Active Directory services work in greater detail, let’s look at the

different aspects of the Active Directory architecture. These functional areas can be

expressed in terms of these four models:

■ Information model

■ Security model

■ Access model

■ Replication model

As these models are described, you will notice similarities to the LDAP models

discussed in Chapter 2, ”Solaris Naming Services Architecture.” This is not a

coincidence; X.500 and LDAP concepts are used throughout the Active Directory

implementation.

Information Model

The directory information model defines how data is stored and how objects are

named. Basically, two types of naming constructs are used in Active Directory:

■ LDAP, or X.500

■ DNS

LDAP or X.500 Integration

The LDAP, or X.500, information model names and stores directory entries. The

Active Directory structure looks very much like the LDAP Directory Information

Tree (DIT). It is an inverted tree with a root entry, or suffix, at the top. Below the root

entry are containers, such as organization units (ou) which contain directory entries.

The entries are defined as objects that have attributes associated with them.

Associated with the attributes are values that can be single or multivalue. As is the

case with LDAP directory servers, the Active Directory schema defines the objects

and rules that determine the attribute values that can be used.

DNS Integration

DNS plays an important role in Active Directory services. Clients locate Active

Directory controllers by examining service resource (SRV RR) records. Clients of

Active Directory services search these records to locate the nearest controller. The

directory naming context, or Active Directory partition, as Microsoft calls it, maps to

the DNS domain name of a company and its subdomains. To do this, the domain

component (dc) naming convention identifies the root object. This naming is not

mandatory, but it does eliminate confusion between Active Directory domains and

DNS domains if you make the names the same.
296 Solaris and LDAP Naming Services

Although not directly related to the naming model, the Windows 2000 version of

DNS supports dynamic updates of zone records. What this means is that when a

DHCP server assigns an IP address to a client, that IP address is automatically

updated in the DNS database. Likewise, when a DHCP address lease expires, the

entry is removed from the DNS database. Using dynamic DNS eliminates the need

for WINS servers and databases.

Active Directory Naming

The Active Directory namespace is similar to that found in the iPlanet Directory

Server. At the top of the tree is a root identifier specified by dc= , under which is an

organization specified by o=, as depicted in FIGURE 12-3.

FIGURE 12-3 Active Directory Namespace

In FIGURE 12-3, the Active Directory domain is mapped to the company’s DNS

domain name which is opm.com . This technique is convenient since nearly all

companies have a registered DNS domain name. Under the top-level domain are the

subdomains called east.opm.com and west.opm.com . Deployments of Solaris

directory services follow a similar pattern.

The east and west portions of the tree actually reside in a different Active

Directory domain. In the next section, we see how these different Active Directory

domains are tied together.

dc=opm,dc=com

dc=west
dc=east

o=engineering
Chapter 12 Microsoft Windows Interoperability 297

Domains, Trees, and Forests

In Windows NT Server 4.0, directory data, such as user account information, is

maintained by a domain controller, as discussed in “Windows NT Security Model”

on page 290. These controllers are responsible for maintaining their own namespace.

Since it is not always practical to keep all of your company data in a single domain,

you will generally deploy multiple NT domains. To share data between these

domains, you set up a trust relationship between two cooperating domains. You

must do this manually, and the trust relationships soon become an administrative

nightmare to maintain.

With Windows 2000, domain controllers still maintain their own namespace, but the

trust relationships between domain controllers have been improved. You can now

establish automatic trust relationships by deploying domain trees and domain forests.

A domain tree is a set of domains that form a contiguous namespace through a set of

hierarchal relationships. In FIGURE 12-3, opm.com is the parent domain of

east.opm.com and west.opm.com . Together they form a domain tree.

A domain forest is a set of domains or domain trees that do not form a contiguous

namespace but do have an implicit trust relationship between them. Domains in a

domain forest share a common schema, configuration, and the Global Catalog.

Global Catalog

By default, Active Directory services configures the first domain controller in the

first domain in the forest as the Global Catalog. The Global Catalog has several

purposes:

■ It enables users to browse for the names and addresses of all other users in the

domain forest.

■ It enables users and applications to use resources and objects in remote domains.

■ It enables public key authentication and encryption functions.

Significantly, the Global Catalog provides a way to centrally maintain information

about users and universal groups for access control purposes.

Security Model

The initial authentication of a user at login time takes place through the client’s

LDAP connection to the Active Directory server. Either Kerberos, or public key-

based Transport Layer Security (TLS) protocols running alongside the LDAP bind
operation provide authentication of all users. Once users are authenticated, their

identities are mapped to a Windows 2000 account. Optionally, Kerberos or TLS can

encrypt all LDAP traffic between the user and Active Directory services.
298 Solaris and LDAP Naming Services

After a user is authenticated, every directory activity is subject to access controls.

Access controls are stored as a binary value called a security descriptor, with the

object they protect. This security descriptor contains a security identifier (SID) that

identifies the principal to whom the access control entry (ACE) applies, and also

contains information on the type of access the ACE grants or denies.

Note – The generation of an SID is specific to Microsoft’s Active Directory

implementation and not a standard LDAP concept. Therefore, a Solaris directory

server cannot generate an SID, preventing it from authenticating a user for operating

system use. However, LDAP-enabled applications running on Windows clients can

be authenticated by a Solaris server.

Access Model

The access model describes how authorization to access particular objects takes

place. FIGURE 12-4 shows the access control process in Windows 2000.

FIGURE 12-4 Access Control Process in Windows 2000

In the Windows 2000 security model, clients access objects through services. They

never directly access to the objects. Controllers authenticate the user’s identity at

login time by using Kerberos or another method negotiated under LDAP’s Simple

Authentication and Security Layer (SASL). The client is granted a Kerberos Ticket-

Granting Ticket (TGT) and service tickets for application servers. For access control,

application servers use the client security context information to impersonate the

client and look up its user or group SIDs in local permissions tables such as the file

system. If the access check succeeds, the client can use the requested objects.

Impersonate
client

Get object security
descriptor

Get client
access token

Perform
access check

Client

Access
request

Application Service

Response Resource
Chapter 12 Microsoft Windows Interoperability 299

Replication Model

Active Directory services use a multimaster replication model that is far more

difficult to set up and manage than is the single-master model on which the iPlanet

Directory Server 4.12 is based. In the single-master model, all changes for a

particular naming context are made on one server. The changes are then propagated

to replication partners. In the multimaster model, changes can be made on any

server in the domain.

Another factor that increases the complexity is that domains can be arranged in trees

and forests. The replication service must therefore be aware of the topology and

determine what data needs to be replicated.

In the simple case where multiple controllers at a single site are serving the same

domain, replication is set up automatically. An Active Directory process called the

Knowledge Consistency Checker (KCC) is responsible for mapping out the Active

Directory domain controller topology and determining how replication should be

performed. The main heuristics used in this case are the network mask of the

controller to determine what subnet the controller is on and the routing information

to determine how many hops there are between controllers.

For example, if there are three Active Directory domain controllers called A, B, and

C, A might replicate to B, B to C, and C to A. The KCC would automatically set up

this replication scheme. However, the scheme could later be manually modified.

What gets updated and when are determined by an update sequence number (USN)

which is stored with every entry. There is also a pause interval between controllers,

so updates can be batched together and make more efficient use of network

bandwidth. If changes are marked urgent, they can be sent out immediately instead

of pausing. An example of an urgent change would be the revocation of a user’s

account.

Another issue with the multimaster model is maintaining consistency. For example,

if a user account is created at the same time on two different controllers with the

same login name, a conflict will exist during replication, since each user must have a

unique login name. In this case, the Active Directory service will automatically

change the login to a unique name for one of the entries. In the event a container

was removed on one controller while an entry was created in it on another

controller, that entry will be placed in a lost and found area.

If replication is performed between sites in different geographical regions, the

network bandwidth of the link between them must be factored in. Active Directory

services will try to do the right thing, but manual inspection is recommended. In this

case, the replication partner pulls the updates. Also, there is no controller-to-

controller notification going on as is the case within a site.

Active Directory domains can be grouped together in trees and forests as discussed

earlier. The relationships among domains in a domain tree are established by a

common schema and configuration. The schema defines the rules for allowable data
300 Solaris and LDAP Naming Services

types and values, and the configuration lets each controller know how the other

ones are configured. Both the schema and configuration containers need to be

replicated to maintain the tree relationship.

Forests are similar to trees but do not have an explicit hierarchal relationship. An

identical schema can be used but is not required. However, to create a trust

relationship that can be automatically maintained, you must replicate a subset of the

tree. User accounts are an example of what would be replicated.

Note – The main advantage of multimaster replication is that if one server goes

down, a replication partner can assume all its duties including the task of

performing updates. Clustering the iPlanet Directory Server master replication

server creates the same environment.

How Active Directory Clients Interact

with Servers

Active Directory services servers support both NTLM and Windows 2000 style login

and authentication. The login process for a Windows client is as follows:

1. The Client obtains an IP address and an address of a DNS server from DHCP.

2. The DNS server is searched for a Service Resource Record (SVR RR) which

contains the IP address of an Active Directory domain controller.

3. The Client initiates the domain controller logon process.

4. Credentials are obtained from a Kerberos key server.

5. An LDAP bind operation that involves a Kerberos exchange, whereby the client

presents credentials, takes place.

In the Active Directory services environment, DHCP plays the same role it did in

previous releases. However, DHCP is integrated with Dynamic DNS, so DNS is

updated whenever DHCP assigns an IP address or a DHCP lease expires. Essentially,

this mechanism replaces WINS.

Windows clients locate a domain controller by consulting a DNS server and looking

for particular service records. Every controller within a domain is listed. The client

picks the one on the same subnet it resides on.

Legacy clients can use the same protocol for logging on as before. This protocol

sends a password to the controller along with a login name. If the client supports

Active Directory services, then the handshake is different. The client first needs to
Chapter 12 Microsoft Windows Interoperability 301

obtain security credentials from a Kerberos server. Then, the client attempts to bind

to the domain controller by using Kerberos authentication or some other SASL-

defined security method. Part of the Kerberos ticket is the client’s SID.

Once the client is logged in, an object that impersonates the user is used for access

control. The client never has direct access to any resources.

How Applications Access Active Directory

Services

The Microsoft preferred interface is the Active Directory Service Interface (ADSI).

The following operations are supported in ADSI:

■ Binding to the domain controller

■ Access to directory data

■ Complex searches

Additionally, ADSI provides interfaces to other directories including LDAP and

NetWare.

Alternatively, applications can use LDAP to access Active Directory Services but

need a supported security method like Kerberos. ADSI also provides a number of

enhancements that LDAP does not. These include automatic locating of the directory

server entry (DSE) of a domain server.

Solaris Directory Services and Active
Directory Services Interactions

At the time this Sun BluePrint was written, Windows 2000 had recently been

released, so there has been little interoperability certification between Solaris

directory services and Active Directory services. However, since there is common

technology between the two environments, there is an opportunity for some degree

of interoperability.

This section looks at the level of interoperability that is desirable and at potential

issues.
302 Solaris and LDAP Naming Services

Signing On Only Once

We would like a user to be authenticated once upon login and then automatically be

authenticated for all applications the user accesses. However, this aim is difficult to

achieve because two processes actually take place: authentication and authorization.

Authentication is the process of verifying whether users are who they say they are.

The authentication scheme Windows 2000 uses is Kerberos, which is also available in

the Solaris operating environment. So, in theory, a Windows 2000 client could

authenticate through a Solaris Kerberos server, but that approach would not

necessarily give the user access to Windows 2000 resources.

Authorization is required for user access to system resources. Windows NT

authorizes users by checking the client’s SID against an access control list (ACL).

The client receives the SID as part of a Kerberos ticket. Since the way the SID is

generated is proprietary, the Solaris Kerberos server cannot attach an SID to the

ticket.

Note – The SID that Active Directory Services uses is not the same as the one stored

in a PDC’s SAM database. Therefore, even though the Solaris PC NetLink software

can function as a PDC, it cannot generate Windows 2000-style SIDs.

You can achieve single sign-on for Kerberos-enabled applications. Use the same

Kerberos ticket with applications running on either Solaris or Windows 2000 servers.

However, the user typically needs to log in to a system before running applications,

so a true single sign-on environment would not be achieved.

Joining a Windows 2000 Tree or Forest

We might also want to create a contiguous namespace consisting of an Active

Directory tree of which both Windows 2000 and Solaris servers are a part or share

data by joining an Active Directory forest. However, both of these capabilities

require security mechanisms that have recently been published by Microsoft but

have not yet been implemented in the Solaris operating environment. Another way

of accessing data on a directory with a different namespace is through the use of

referrals.

Specifying LDAP Referrals

Referrals are made by specification of a URL of another directory server in response

to a query. If a search query is performed on a server that implements referrals, the

query can be forwarded to an another server to retrieve additional matching entries.
Chapter 12 Microsoft Windows Interoperability 303

To specify a referral, a server must be able to bind to the server to which the referral

will be sent. Since binding requires authentication, a common authentication method

must exist between both servers. An Active Directory server can bind to an iPlanet

Directory Server by simple name/password authentication. However, binding to

the Active Directory requires a more sophisticated authentication method such as

Kerberos.

As of this writing, a Kerberos interface to the iPlanet Directory Server is not

available although it is being considered. However, even with Kerberos

authentication, the access control mechanisms on the Active Directory server could

not be used unless the connection were made using the Security Support Provider

Interface (SSPI). Otherwise, only anonymous access is allowed.

Using Windows Services in UNIX 2.0

In the latest version of Windows Services for UNIX, Microsoft has included the

capability to store NIS map data in the Active Directory and to provide access to NIS

clients. Instead of storing NIS data in RFC 2307 format, Windows Services stores the

data in a simple keyword-value pair. This means that the data stored in Active

Directory cannot be retrieved by an LDAP client expecting to see RFC 2307 format.

Also, NIS clients access the data stored in the Active Directory through anonymous

authentication, so any client can access it without verification of its identity.
304 Solaris and LDAP Naming Services

APPENDIX A

Using Netscape Communicator
as an LDAP Client

Setting up a directory server is useless unless you have LDAP clients that can access

its data. LDAP clients can be written with several programming and scripting

languages including C, C++, Perl, and Java. However, you do not have to write your

own client to benefit from the LDAP server you just installed.

The Netscape Communicator Web browser is an LDAP client that can easily be

configured to search and retrieve employee information contained in an LDAP

directory. This appendix shows you how to configure the Address Book feature of

Netscape Communicator and start taking advantage of LDAP technology without

writing a single line of code.

Configuration Overview

One of the most important tasks of any directory service is to facilitate the update of

the corporation’s phone directory. This process includes gathering all the pertinent

information (like room number, floor, and extension number) from different sources,

compiling this information into an understandable form, printing the information,

and finally distributing this information to the correct sources. Not only is this

intensive task painful, but it is also out-of-date as soon as it is printed.

Creating a corporate address book is a two-step process. First, the information needs

to be placed in a client-accessible portion of the directory information tree (DIT);

second, the client needs to be configured to gain access. Once the directory is

populated with data, you can decide what level of access you want users to have.

For example, you may decide to only allow users to search the directory and not

update any data.

Once the directory server is configured, any computer running Netscape

Communicator can start using the Address Book, provided the directory server is

reachable and LDAP traffic is not blocked by a firewall.
305

Directory Server Setup

Before setting up an Address Book, you need to populate the directory with

employee information. You typically do this by creating a script that converts

existing data to an LDIF format that can be imported into the directory. Another way

you can populate the directory is through the iPlanet Directory Console, by invoking

the New User form. While this method is not practical for loading the entire Address

Book, it can be useful for creating sample data.

Before you create new user entries, you should create a container to store them in.

The iPlanet Directory Server default to create user accounts is in the ou=People
container, but any container will work. After you create the container, set the

permissions to reflect the desired access control level. For testing, allowing read-only

access to everyone is probably the easiest course.

For production environments, you can choose to have users authenticated, then set

access control based on the user or group to which the user belongs. In the example

used here, the default ou=People container is used to store employee information,

and anonymous read-only access is allowed. The directory server port is set to 389,

which is the default LDAP port.

Netscape Communicator Setup

To access the directory server from Netscape Communicator, follow these steps:

1. Run Communicator.

2. Choose Address Book.

3. Under File, choose New Directory from the pull-down menu.

4. Fill in the form (see FIGURE A-1).
306 Solaris and LDAP Naming Services

FIGURE A-1 Directory Info Form

5. Click OK.

You should then see the new directory appear in the left pane of the Address Book
window.

The directory is now ready to be searched.

Directory Searches

To activate a simple search on Communicator, search the directory with the

following steps:

1. Run Communicator.

2. Choose Address Book.

3. Highlight the Directory Panel in the newly created directory.

4. Type in the Search names containing the desired search string or substring. For
example, Johnson, Smith, etc.

Matches to your search request are displayed in the right pane. If a common name

like Johnson is specified, several matches might be displayed. You can now highlight

the correct match, click the right mouse button, then choose New Message from the
Appendix A Using Netscape Communicator as an LDAP Client 307

pull-down menu to send that person an email message. You can also add the entry

to your personal address book by dragging and dropping it to the Personal Address
book displayed in the left pane.

Other Features

The Netscape Communicator’s Address Book contains many more features than

those mentioned here. The layout of the Address Book can be customized and

advanced searches can be specified. These and any other features are described in

the Netscape Communicator documentation.
308 Solaris and LDAP Naming Services

APPENDIX B

LDAP Standards Information

LDAP, like any other standards-based technology, is defined in great detail in a

series of documents which are publicly available. As the technology matures and

becomes more popular, requests for enhancements are inevitable, necessitating

changes to these documents. We could have included copies of the current revision

of LDAP documents, but the dynamic nature of LDAP technology would soon make

them outdated so, instead of including these documents, we provide information on

them and their location.

The following sections provide guidelines to important documents and pointers to

where they may be found.

Locating RFCs and Internet Drafts

To locate the specifics of protocols such as LDAP v3, look at RFCs and Internet

Drafts. RFC, which stands for Request for Comments, is where each distinct version

of an Internet standards-related specification is published as part of the Request for

Comments (RFC) document series. This archival series is the official publication

channel for Internet standards documents and other publications of the Internet

community.

The sites below do not list all the RFCs defining a particular standard; some, are

often classified as Experimental, Informational, Historic, or Early (before IETF—

standards track). Most RFCs start off as Internet Drafts before being approved as

RFCs. When you are searching for a particular RFC or Internet Draft, you will find

that it is available at mirrored sites all over the world.

The following sites are not complete but can be used as a starting place for locating

your favorite (and most useful) RFCs:

http://www.rfc-editor.org/rfcsearch.html

http://www.ietf.org/rfc/rfc.html

http://src.doc.ic.ac.uk/computing/internet/rfc/
309

ftp://src.doc.ic.ac.uk/computing/internet/rfc/

http://info.internet.isi.edu:80/in-notes/rfc/files/

ftp://ds.internic.net/rfc/

For example, if you want to access a particular RFC and you know the specific RFC

number, say, RFC 2251, you would type 2251 in the box provided. If you do not

know the RFC number, use the URL in the following example to locate the RFC you

are interested in.

http://www.rfc-editor.org/rfcsearch.htm

This Web site enables you to specify the RFC number and other information such as

the Title . You can enter the word LDAPand, assuming you have set the maximum

number of entries returned high enough, all the LDAP-related RFCs will be

returned. Be aware that if you search for an Internet Draft and you are unable to find

it, it does not mean that the draft does not exist! You may need to refine your

search—try searching for the same draft with a higher number.

Life Cycle of a RFC

The first step toward publication of an RFC is publication of the document as an

Internet Draft. Internet Drafts are working documents of the IETF, its areas, and its

working groups. You will notice that part of the name has the letters IETF, with a

brief description of the RFC followed by a two-digit version number, and the .txt
extension.

Once an Internet Draft has been submitted, it has a life span of six months; after that

time the Internet Draft expires. Expiration means either that a new draft is submitted

(which typically means that a new draft is issued with a higher sequential number)

or that the Internet Draft has expired and is no longer available. When an Internet

Draft expires, it is deleted. Sometimes, you receive a date and timestamp with the

information that a particular Internet Draft was deleted.

When the document reaches consensus of the Internet community, it is published as

an RFC. RFCs can be of different types, such as the Standards Tracks RFC which

include the Proposed Standard, Draft Standard, and Standard. Not all documents are

published in the Standards Track; it is also possible to have the documents published

as Historical, Experimental, or Informational; these are not Internet Standards.

You can also find Internet Drafts at these sites:

IETF: ftp://ftp.ietf.org/inte net-drafts/

Africa: ftp.is.co.za

Canada: ftp.normos.org
310 Solaris and LDAP Naming Services

Sweden: ftp.nordu.ne t

Switzerland: ftp://sunsite.cnlab-switch.ch

Italy: ftp.nic.it

Pacific Rim: munnari.oz.au

US West Coast: ftp.isi.edu

South America: ftp.ietf.rnp.br

LDAP RFCs and Internet Drafts

This section lists some of the LDAP RFCs and provides a sample of LDAP Internet

Drafts.

LDAP RFCs

RFC 1823: The C LDAP Application Program Interface

RFC 1823 defines the old LDAPv2 interface. This RFC will eventually be replaced by

a document that is currently an Internet Draft. This Internet Draft defines the

LDAPv3 extensions to the C API for accessing LDAP.

Status: INFORMATIONAL

RFC 2247: Using Domains in LDAP/X.500 Distinguished Names

This document defines an algorithm by which a name registered with the Internet

Domain Name System (DNS) can be represented as an LDAP-distinguished name.

Status: PROPOSED STANDARD

RFC 2251: Lightweight Directory Access Protocol (v3)

This is the main RFC for LDAPv3 and defines the protocol operations, data

representation, and data organization.

Status: PROPOSED STANDARD
Appendix B LDAP Standards Information 311

RFC 2252: Lightweight Directory Access Protocol (v3): Attribute Syntax Definitions

LDAP transmits most attribute values as strings, rather than as binary structures.

For example, the number 4,000 is transmitted as “4000” . This document defines the

standard attribute type representations and specifies how attribute values are

compared for each standard type during a search operation.

Status: PROPOSED STANDARD

RFC 2253: Lightweight Directory Access Protocol (v3): UTF-8 String Representation of
Distinguished Names

Each entry in an LDAP directory is uniquely identified by its distinguished name

(DN), represented as a string. This document defines the syntax and structure of

these names.

Status: PROPOSED STANDARD

RFC 2254: The String Representation of LDAP Search Filters

The basic LDAPv3 RFC (RFC 2251) defines a binary format for search expressions

passed from a client to a server. However, users of clients compose and submit

search requests in an easily readable and printable string format, which is defined in

RFC 2254.

Status: PROPOSED STANDARD

RFC 2255: The LDAP URL Format

RFC 2255 defines the URL format for expressing an LDAP search. You can enter an

LDAP URL in many browsers to perform an LDAP search.

Status: PROPOSED STANDARD

RFC 2256: A Summary of the X.500(96) User Schema for Use with LDAPv3

Where possible, LDAP leverages the schema standardization work of X.500, rather

than inventing new standards for schema information. This document defines

standard attributes for representing a person in an LDAP entry. These attributes are

based on the X.500 standard.

Status: PROPOSED STANDARD
312 Solaris and LDAP Naming Services

RFC 2307: An Approach for Using LDAP as a Network Information Service

This document describes an experimental mechanism for mapping entities related to

TCP/IP and the UNIX system into X.500 entries so that they can be resolved with

the LDAP protocol.

Status: EXPERIMENTAL

RFC 2259: Internet X.509 Public Key Infrastructure Operational Protocols-LDAPv2

This document addresses requirements to provide access to public-key infrastructure

(PKI) repositories for retrieval and management of PKI information based on LDAP.

Status: PROPOSED STANDARD

RFC 2587: Internet X.509 Public Key Infrastructure LDAPv2 Schema

This document defines a minimal schema to support PKIX in an LDAPv2

environment, as defined in RFC 2559.

Status: PROPOSED STANDARD

RFC 2589: LDAPv3 Extensions for Dynamic Directory Services

This document defines extended operations to support dynamic (short-lived)

directory data storage.

Status: PROPOSED STANDARD

RFC 2596: Use of Language Codes in LDAP

This document describes how language codes as defined in RFC 1766 are carried in

LDAP and are to be interpreted by LDAP servers.

Status: PROPOSED STANDARD

RFC 2696: LDAP Control Extension for Simple Paged Results Manipulation

This document describes an LDAPv3 control extension for simple paging of search

results. This control extension allows a client to control the rate at which an LDAP

server returns the results of an LDAP search operation.

Status: INFORMATIONAL
Appendix B LDAP Standards Information 313

RFC 2713: Schema for Representing JavaTM Objects in an LDAP Directory

This document defines the schema for representing JavaTM objects in an LDAP (v3)

directory.

Status: INFORMATIONAL

RFC 2714: Schema for Representing CORBA Object References in an LDAP Directory

This document defines the schema for representing CORBA object references in an

LDAP (v3) directory.

Status: INFORMATIONAL

RFC 2739: Calendar Attributes for vCard and LDAP

This document describes a mechanism to locate (URI) an individual user’s calendar

and free/busy time.

Status: PROPOSED STANDARD

RFC 2798: Definition of the inetOrgPerson LDAP Object Class

This document defines a person object class that meets the requirements found in

today’s Internet and Intranet directory service deployments.

Status: INFORMATIONAL

RFC 2829: Authentication Methods for LDAP

This document specifies particular combinations of security mechanisms which are

required and recommended in LDAP implementations.

RFC 2830: Lightweight Directory Access Protocol (v3) Extension for Transport Layer
Security

This document defines the Start Transport Layer Security (TLS) Operation for LDAP

[LDAPv3, TLS]. This operation provides for TLS establishment in an LDAP

association and is defined in terms of an LDAP extended request.
314 Solaris and LDAP Naming Services

RFC 2849: The LDAP Data Interchange Format (LDIF) - Technical Specification

This document specifies an Internet standards track protocol for the Internet

community and requests discussion and suggestions for improvements.

LDAP Internet Drafts

Internet Drafts have a set path that they follow every six months. When you start

looking at Internet Drafts, you will be amazed by the number of available drafts that

are related to LDAP.

The LDUP (LDAP Duplication Replication Update Protocols) working group is an

important working group for LDAP users. This is due to LDAP v3 becoming more

widely deployed, and the replication of data across servers running different

implementations becomes an important part of providing a distributed directory

service. However, the LDAP v3 community to date has focused on standardizing the

client-server access protocol. Therefore, this group will standardize master-slave and

multimaster LDAP v3 replication.

The LDAPEXT (LDAP Extension) working group is just as important as the LDUP

working group by providing LDAP v3 with a standard access control model for the

representation and semantic access control information.

The LDAP Bis is a newly created working group whose charter will be to move the

LDAP v3 to a Standard, by reissuing the LDAP v3 RFCs and renewing ambiguities.

C API

The C LDAP Application Program Interface (draft-ietf-ldapext-ldap-c-api-
04.txt)

This document defines a C language application program interface (API) to LDAP.

This document replaces the previous definition of this API, defined in RFC 1823,

updating this document to include support for features found in version 3 of the

LDAP protocol. New extended operation functions were added to support LDAP v3

features (for example, controls). In addition, other LDAP API changes were made to

support information hiding and thread safety.
Appendix B LDAP Standards Information 315

Java API

The Java LDAP Application Program Interface (draft-ietf-ldapext-ldap-java-
api 11.txt)

This document defines a Java language application program interface to the

lightweight directory access protocol (LDAP), in the form of a class library. It

complements but does not replace RFC 1823, which describes a C language

application program interface. It updates the previous draft in correcting a few

minor errors which are listed in Appendix B of RFC 1823. It also includes the

asynchronous layer of the API which was previously defined in draft-ietf-
ldapext-ldap-java-api- asynch.

The Java LDAP Application Program Interface Asynchronous Extension (draft-ietf-
ldapext-ldap-java-api-asynch-ext-05.txt)

This document defines asynchronous extensions to the Java language application

program interface to LDAP defined in draft-ietf-ldapext-ldap-java-api-
11.txt . Directory SDK for Java implements the API defined by this document and

by draft-ietf-ldapext-ldap-java-api-08.txt .

Access Control

Access Control Model for LDAP (draft-ietf-ldapext-acl-model-06.txt)

This document describes the access control model for the LDAP v3 directory service.

It includes a description of the model, the LDAP controls, and the extended

operations to the LDAP protocol. The current LDAP APIs are sufficient for most

access control operations.

Replication

LDUP Update Reconciliation Procedures, (draft-ietf-ldup-urp-03.txt)

This document describes the procedures used by directory servers to reconcile

updates performed by autonomously operating directory servers in a distributed,

replicated directory service.

LDAP Replication Architecture, (draft-ietf-ldup-model-04.txt)

This architectural document outlines a suite of schema and protocol extensions to

LDAP v3 that enables the robust, reliable server-to-server exchange of directory

content and changes.
316 Solaris and LDAP Naming Services

LDUP Replication Information Model, (draft-ietf-ldup-infomod-01.txt)

This document describes the architectural approach to replication of LDAP directory

contents. This document describes the information model and schema elements

which support LDAP Replication Services which conform to the LDUP model.

Directory schema is extended to provide object classes, subentries, and attributes to

describe areas of the namespace which are under common administrative authority,

units of replication (i.e., subtrees, or partitions of the namespace, which are

replicated), servers which hold replicas of various types for the various partitions of

the namespace, which namespaces are held on given servers, and the progress of

various namespace management and replication operations. Among other things,

this knowledge of where directory content is located will provide the basis for

dynamic generation of LDAP referrals for clients who can follow them.

The LDUP Replication Update Protocol, (draft-ietf-ldup-protocol-02.txt)

The protocol described in this document is designed to allow one LDAP server to

replicate its directory content to another LDAP server. The protocol is designed to be

used in a replication configuration where multiple updatable servers are present.

Provisions are made in the protocol to carry information that allows the server

receiving updates to apply a total ordering to all updates in the replicated system.

This total ordering allows all replicas to correctly resolve conflicts that arise when

LDAP clients submit changes to different servers that later replicate to one another.

All protocol elements described here are LDAP v3 extended operations.

Controls and Extended Operations

Persistent Search: A Simple LDAP Change Notification Mechanism, (draft-ietf-
ldapext-psearch-02.txt)

This document defines two controls that extend the LDAP v3 search operation to

provide a simple mechanism by which an LDAP client can receive notification of

changes that occur in an LDAP server. The mechanism is designed to be very flexible

yet easy for clients and servers to implement. Since the IETF is likely to pursue a

different, more comprehensive solution in this area, this document will eventually be

published with Informational status in order to document an existing practice.

LDAP Extensions for Scrolling View Browsing of Search Results, (draft-ietf-
ldapext-ldapv3-vlv-04.txt)

This document describes a Virtual List View (vlv) control extension for the LDAP

Search operation. This control is designed to allow the “virtual list box” feature,

common in existing commercial email address book applications, to be supported

efficiently by LDAP servers. LDAP servers’ inability to support this client feature

is a significant impediment to LDAP replacing proprietary protocols in

commercial email systems. The control allows a client to specify that the server
Appendix B LDAP Standards Information 317

return, for a given LDAP search with associated sort keys, a contiguous subset of

the search result set. This subset is specified in terms of offsets into the ordered

list, or in terms of a greater than or equal comparison value.

LDAP Control Extension for Server Side Sorting of Search Results, (draft-ietf-
ldapext-sorting-03.txt)

This document describes two LDAP v3 control extensions for server side sorting of

search results. These controls allow a client to specify the attribute types and

matching rules a server should use when returning the results to an LDAP search

request. The controls may be useful when the LDAP client has limited functionality

or for some other reason cannot sort the results but still needs them sorted. Other

permissible controls on search operations are not defined in this extension. The sort

controls allow a server to return a result code for the sorting of the results that is

independent of the result code returned for the search operation.

LDAP Control for a Duplicate Entry Representation of Search Results, (draft-ietf-
ldapext-ldapv3-dupent-04.txt)

This document describes a Duplicate Entry Representation control extension for the

LDAP Search operation. By using the control with an LDAP search, a client requests

that the server return separate entries for each value held in the specified attributes.

For instance, if a specified attribute of an entry holds multiple values, the search

operation will return multiple instances of that entry, each instance holding a

separate single value in that attribute.

Returning Matched Values with LDAP v3, (draft-ietf-ldapext-matchedval-
02.txt)

This document describes a control for the LDAP v3 that is used to return a subset of

attribute values from an entry, specifically, only those values that match a “values

return” filter. Without support for this control, a client must retrieve all of an

attribute’s values and search for specific values locally.

A Taxonomy of Methods for LDAP Clients Finding Servers, (draft-ietf-ldapext-
ldap-taxonomy-02.txt)

There are several different methods for an LDAP client to find an LDAP server. This

draft discusses these methods and provides pointers for interested parties to learn

more about implementing a particular method.

Discovering LDAP Services with DNS, (draft-ietf-ldapext-locate-03.txt)

This document specifies a method for discovering such servers using information in

the Domain Name System.
318 Solaris and LDAP Naming Services

Authentication and Security

X.509 Authentication SASL Mechanism, (draft-ietf-ldapext-x509-sasl-
03.txt)

This document defines a SASL authentication mechanism based on X.509 strong

authentication, providing two-way authentication. This mechanism is only for

authentication and has no effect on the protocol encodings and is not designed to

provide integrity or confidentiality services.

Information and X.500 Documents

A great deal of the LDAP standards are based on the standards model of X.500. As

you may have noticed, the LDAP standards documentation is freely available on the

Internet today. This is not the case when dealing with the basic X.500

documentation. If you are interested in gaining access to this documentation, then

you must purchase it from the International Telecommunication Union (ITU) or

International Organization for Standardization (ISO). Here is the location from

which the X.500 documentation may be purchased:

http://www.itu.int/itudoc/itu-t/rec/x/x500up/

The following list of documents has been taken from the book Understanding X.500
The Directory by David Chadwick.

■ The Directory (CCITT REC. X.500-X.521 | ISO/IEC Standard 9594:1993)

■ X.500: Overview of Concepts, Models and Services
■ X.501: Models
■ X.509: Authentication Framework
■ X.511: Abstract Service Definition
■ X.518: Procedures for Distributed Operations
■ X.519: Protocol Specifications
■ X.520: Selected Attribute Types
■ X.521: Selected Object Classes
■ X.525: Replication

The North American Directory Forum (NADF) Documents
(April 1993)
■ SD-0: NADF Standing Documents: A Brief Overview
■ SD-1: Terms of Reference
■ SD-2: Program Plan
■ SD-3: Service Description
■ SD-4: The Directory Schema
■ SD-5: An X.500 Naming Scheme for National DIT Subtrees and Its Application for

C=CA and C=US
Appendix B LDAP Standards Information 319

■ SD-6: Guidelines on Naming and Subtrees
■ SD-7: Mapping the North American DIT onto Directory Management Domains
■ SD-8: The Experimental Pilot Plan
■ SD-9: Charter, Procedure, and Operations of the Central Administration for NADF
■ SD-10: Security and Privacy: Policy and Services
■ SD-11: Directory Security: Mechanisms and Practicality
■ SD-12: Registry of ADDMD Names

EWOS Directory Functional Standards
■ A/711 (A/DI1): Directory Access, published as ENV 41 210 (also published as ISP

10615 parts 1 and 2)

■ A/712 (A/DI2): Directory System Protocol, published as ENV 41 212 (also

published as ISP 10615 parts 3 and 4)

■ A/713 (A/DI32): Dynamic Behavior of DSAs for Distributed Operations, published as

ENV 41 215 (also published as ISP 10615 part 6)

■ A/714 (A/DI31): Directory User Agents Distributed Operation, published as ENV 41

217 (also published as ISP 10615 part 5)

■ Q/511 (F/DI11): Common Directory Use, published as ENV 41 512 (also published

as ISP 10616; see also ISO/IEC PDISP)

■ Q/512 (F/DI2): Directory Data Definitions Directory Use by MHS
■ Q/513 (F/DI3): Directory Data Definitions FTAM Use of the Directory (to be

published as ISP 11190)

■ ETG XXX: Introduction to Directory Profiles (final draft)

■ ETG 017: Error Handling in the OSI Directory (final draft, May 1992)

■ ETG XXX: Security Architecture for the Directory (fifth draft in 1992)

Joint ISO Standards and CCITT Recommendations
■ ISO/IEC 8824:1988 | CCITT X.208: Specification of Abstract Syntax Notation One

(ASN.1)
■ ISO/IEC 8824-2 DIS (1993) | CCITT X.208-2: Abstract Syntax Notation One (ASN.1):

Information Object Specification
■ ISO/IEC 8825-1 | CCITT X.209-1: Part 1: Basic Encoding Rules (BER)
■ ISO/IEC 8825-3 DIS (1993) | CCITT X.209-3: Part 3: Distinguished Encoding Rules
■ ISO/IEC 9072-1 | CCITT X.219: Remote Operations Model, Notation and Service

Definition
■ ISO 8649:1988 | CCITT X.217: Service Definition for the Association Control Service

Element

Other ISO Documents
■ ISO/IEC JTC 1/SC21 N6063: Use of Object Identifiers to Access Directory Information

(May 1991)
320 Solaris and LDAP Naming Services

■ ISO 3166:1988: Codes for the Representation of Names of Countries
■ ISO IS 10162/3: Documentation Search and Retrieve Service Definition/Protocol

Specification
■ ISO 6523:1984: Data Interchange Structure for the Identification of Organizations
■ ISO/IEC 10646-1:1993: (E) Information Technology Universal Multiple-Octet Coded

Character Set (UCS)
■ ISO/IEC PDISP 10616: International Standardized Profile FDI11 Directory Data

Definitions Common Directory Use (February 1993)
Appendix B LDAP Standards Information 321

APPENDIX C

Additional Information

This appendix presents some additional sources of information available on LDAP.

The following categories are covered:

■ X.500 books

■ General LDAP books and online resources

■ Novell Directory Services books and online resources

■ DNS books and online resources

■ LDAP Server software vendors

■ LDAP client SDKs

X.500 Books

Understanding X.500 - The Directory by David Chadwick (Chapman & Hall, 1994).

Unfortunately, the complete book is no longer available. However, parts of the book

are available online at

http://www.salford.ac.uk/its024/Version.Web/Contents.htm .

X.500 Directory Services by Sara Radicati (International Thompson Computer Press,

1994).

General LDAP Books

The following books will provide you with some general LDAP information.
323

Introduction to Deploying LDAP

Understanding and Deploying LDAP Directory Services by Timothy A. Howes, Mark C.

Smith, and Gordon S. Good (MacMillan Network Architecture and Development

Series, 1999).

This comprehensive tutorial provides the reader with a thorough treatment of LDAP

directory services. Minimal knowledge of general networking and administration is

assumed, making the material accessible to intermediate and advanced readers. It is

the first book to explore the design and deployment of directory services, and it

contains real-world examples of directory deployments illustrating effective design

principles along with practical insight and advice from world-renowned experts.

Implementing Directory Services by Archie Reed (McGraw-Hill, 1999).

This book gives you all the information you’ll need for smart and strategic

implementation of directory services, on both the business and technical sides. There

is a lot more to directory services than just LDAP, and this important resource

provides a guide to the various standards available, including LDAP, X.500, Public

Key Infrastructure (PKI), and Directory Enabled Networks (DEN), as well as the

vendor products available today, including Microsoft Active Directory, Novell

eDirectory, and Netscape DS.

Understanding Directory Services by Doug Sheresh, and Beth Sheresh (New Riders

Pub., 1999).

This book focuses on directory technology from a networking perspective. Ranging

from basic theory and archetypes to current network directory services options, this

book provides crucial information for anyone using a directory service on their

networks.

LDAP Programming

Programming Directory-Enabled Applications with Lightweight Directory Access Protocol
by Tim Howes and Mark Smith (MacMillan Technology Series, 1997).

This book provides a solid introduction to LDAP, including its history and

architecture. It also covers LDAP API programming in C and C++ in clear, discrete

examples that range from simple searching to filtering, reading, and updating LDAP

directories. More advanced topics include asynchronous LDAP programming with

threads, as well as a description for building command line tools.

LDAP Programming with Java by Rob Weltman and Tony Dahbura (Addison-Wesley,

2000).

This book comes to you from the designer of the Directory SDK for Java and from a

leading implementor of directory-based solutions.
324 Solaris and LDAP Naming Services

Implementing LDAP by Mark Wilcox (Wrox Press Inc., 1999).

This book is intended for programmers and system administrators who need to

install LDAP servers and build LDAP clients.

Online Resources

This is an LDAP Roadmap and FAQ site for Directory Services:

http://www.kingsmountain.com/ldapRoadmap.shtml

This is Innosoft’s (now acquired by Sun) LDAP World site:

http://www.innosoft.com/ldapworld/

This site is dedicated to bringing you news and information related to LDAP:

http://www.ldapcentral.com/resources.html

An online encyclopedia, comprised of information and links to LDAP resources:

http://webopedia.internet.com/TERM/L/LDAP.html

An LDAP schema repository:

http://www.hklc.com/ldapschema/

This is an article written by a system administrator which gives a perspective on

what you’ll need in order to reap the benefits of using LDAP. A good understanding

of what LDAP can and cannot accomplish. It offers some familiarity with LDAP

basics, and ideas on how to make the transition to LDAP.

http://people.netscape.com/bjm/whyLDAP.html

This is Mark Wilcox’s LDAP Root site, which includes LDAP resources:

http://www.mjwilcox.com/ldap/

This is Mark Wahl’s LDAP FAQ site:

http://www3.innosoft.com/ldapworld/ldapfaq.html
Appendix C Additional Information 325

Novell Directory Services Books

Novell’s Four Principles of NDS Design by Hughes, Jeff: ISBN: 0764545221.

This guide not only reveals the principles of Novell Directory Services design but

also offers the practical, step-by-step information you need to be able to put them

into action. From trees to synchronization, from objects to partitions, Novell’s Four
Principles of NDS Design provides the authoritative, high-level guidance every

Novell professional needs.

Administering NDS: Corporate Edition by Nancy Cadjan and Jeffrey Harris: ISBN:

0072122080.

This all-inclusive resource covers everything from server and client installation, to

design principles for maximizing the efficiency and scalability of NDS trees in a

mixed environment, to basic step-by-step instructions for installing NDS.

Novell’s NDS Developer’s Guide by Chris Andrew and Karl Bunnell: ISBN: 0764545574.

This book will enable developers to leverage the power of Novell Directory Service

and develop NDS-aware ActiveX controls and javaBeans, use Delphi to create a

password administration application, build reports using the NDS ODBC Driver and

Crystal Reports, learn the fundamentals of JavaScript and CGI scripting for web

programming, manipulate NDS using cross-platform APIs and the LDAP APIs,

master NetBasic NDS library calls and other related libraries, access NDS using JNDI

and ADSI, and find out how to extend NetWare Administrator and ConsoleOne.

Novell’s Guide to Troubleshooting NDS by Peter Kuo and Jim Henderson: ISBN:

0764545795.

An advanced network administrator’s guide to managing the performance of Novell

Directory Services, which has over 40 million users. The focus is on resolving and/

or preventing problems that may occur with NDS, including discussions on

diagnostic tools and techniques, recovery tools, programming for NDS disaster

recovery, and error codes.

Online Resources

NDS eDirectory Online Documentation:

http://www.novell.com/documentation/lg/ndsse/docui/index.html/

NDS eDirectory Development:

http://www.developer.novell.com/nds/
326 Solaris and LDAP Naming Services

NDS Schema Registration:

http://www.developer.novell.com/support/schreg2c.htm

DNS Books

DNS and BIND, third edition by Paul Albitz and Cricket Liu: ISBN: 1565925122.

This book discusses one of the Internet’s fundamental building blocks: the

distributed host information database that’s responsible for translating names into

addresses, routing mail to its proper destination, and many other services. The third

edition covers BIND 4.9, on which most commercial products are currently based;

and BIND 8, which implements many important new features and will be the basis

for the next generation of commercial name servers.

Online Resources

DNS Resources Directory:

http://www.dns.net/dnsrd/

LDAP Server Software Vendors

iPlanet Directory Server:

http://www.iplanet.com/downloads/download/detail_8_213.html

IBM SecureWay Directory:

http://www-4.ibm.com/software/network/directory/

OpenLDAP Directory:

http://www.openldap.org/

Linux Directory Services:

http://www.rage.net/ldap/

Oracle Directory Services:
Appendix C Additional Information 327

http://www.oracle.com/database/oid/

LDAP Client SDKs

The Java Naming and Directory InterfaceTM (JNDI) is a standard extension to the

JavaTM platform, providing Java technology-enabled applications with a unified

interface to multiple naming and directory services in the enterprise. As part of the

Java Enterprise API set, JNDI enables seamless connectivity to heterogeneous

enterprise naming and directory services. Developers can now build powerful and

portable directory-enabled applications using this industry standard.

http://java.sun.com/products/jndi/

At the location below, you will find the directory SDKs for C, Java, and Perl. These

SDKs are precompiled. If you wish to obtain the source code version’s then go to the

mozilla.org Web site.

http://www.iplanet.com/downloads/developer/index.html

This is the mozilla.org site which is the location where the Open Source for the

LDAP SDKs for C, Java, and Perl programming can be found. In addition, to the

SDKs you will find some useful LDAP tools.

http://www.mozilla.org/directory/
328 Solaris and LDAP Naming Services

APPENDIX D

LDAP v3 Result Codes

This appendix explains some of the LDAP error codes that can be returned by your

LDAP server. It is not a complete list and does not discuss the mechanism of why an

LDAP server gives a particular error. To find out additional information on error

codes refer to RFC 2251, which defines these error codes. Also, as another very

useful resource, see Internet Draft draft-just-ldapv3-rescodes-02.txt ,

which details exact descriptions of these error codes. Finally, you may also want

to refer to the ldap.h file, which in the case of the Solaris Operating

Environment can be found in /usr/include .

In addition to reviewing the RFC 2251, review the access and error log files, which

are located by default under /usr/netscape/server4/ slapd-instance/logs . These

files can help you debug certain problems with your directory server.

The error codes in TABLE D-1 apply to the iPlanet Directory Server, and possibly to

other LDAP servers, but not to all. This list is not comprehensive. Codes without

comments in the third column are not currently returned to clients by Netscape

Directory Server or generated by the SDK.

TABLE D-1 LDAP Error Codes

0 0x00 LDAP_CONNECTION SUCCESS The operation completed

successfully.

1 0x01 LDAP_OPERATIONS_ERROR Invalid syntax for ACI or

schema, or inappropriate

control for the operation.

2 0x02 LDAP_PROTOCOL_ERROR Invalid filter expression on

search, or DN on add, modify,

or delete.

3 0x03 LDAP_TIME_LIMIT_EXCEEDED Either the server’s or the

client’s specified search time

limit was exceeded.
329

4 0x04 LDAP_SIZE_LIMIT_EXCEEDED Either the server’s or the

client’s specified limit on

number of search results was

exceeded.

5 0x05 LDAP_COMPARE_FALSE A compare operation returns

mismatch.

6 0x06 LDAP_COMPARE_TRUE A compare operation returns

match.

7 0x07 LDAP_STRONG_AUTH_METHOD_NOT_SUPPORTEDThe server does not support

the requested authentication

method.

8 0x08 LDAP_STRONG_AUTH_REQUIRED The server requires an

authentication method

stronger than unencrypted

user name and password.

9 0x09 LDAP_PARTIAL_RESULTS The client has bound with

LDAP v2, or the server

supports only LDAP v2, and

the base DN specified by the

client is not among the naming

contexts of the server.

10 0x0a LDAP_REFERRAL The server is configured to

return a referral or search

reference when an operation is

directed toward this DN. This

is an LDAP v3 error ONLY.

11 0x0b LDAP_ADMIN_LIMIT_EXCEEDED To satisfy the search request,

the server would need to

process too many entries; the

search may need to be

narrowed, or the server’s

lookthrough limit raised.

12 0x0c LDAP_UNAVAILABLE_CRITICAL_EXTENSION A control was provided with

request; the control was

tagged as critical, but the

server doesn’t support it.

TABLE D-1 LDAP Error Codes (Continued)
330 Solaris and LDAP Naming Services

13 0x0d LDAP_CONFIDENTIALITY_REQUIRED This error code is new in

LDAPv3. This error code may

be returned if the session is

not protected by a protocol

which provides session

confidentiality. For example, if

the client did not establish a

TLS connection using a cipher

suite which provides

confidentiality of the session

before sending any other

requests, and the server

requires session confidentiality

then the server may reject that

request with a result code of

confidentialityRequired .

14 0x0e LDAP_SASL_BIND_IN_PROGRESS SASL authentication is being

negotiated between the client

and the server.

16 0x10 LDAP_NO_SUCH_ATTRIBUTE An attribute to be modified or

deleted was not present in the

entry.

17 0x11 LDAP_UNDEFINED_ATTRIBUTE_TYPE Applicable operations: Modify,

Add.

This error may be returned if

the specified attribute is

unrecognized by the server,

since it is not present in the

server’s defined schema. If the

server doesn’t recognize an

attribute specified in a search

request as the attribute to be

returned, the server should

not return an error in this case

- it should just return values

for the requested attributes it

does recognize. Note that this

result code applies only to the

Add and Modify operations

18 0x12 LDAP_INAPPROPRIATE_MATCHING The value specified doesn’t

adhere to the syntax definition

for that attribute.

TABLE D-1 LDAP Error Codes (Continued)
Appendix D LDAP v3 Result Codes 331

19 0x13 LDAP_CONSTRAINT_VIOLATION Invalid attribute for this entry,

or new password does not

meet password policy

requirements

20 0x14 LDAP_ATTRIBUTE_OR_VALUE_EXISTS Attempt to add an identical

attribute value to an existing

one.

21 0x15 LDAP_INVALID_ATTRIBUTE_SYNTAX

32 0x20 LDAP_NO_SUCH_OBJECT Attempt to bind with a

nonexistent DN, to search with

a nonexistent base DN, or to

modify or delete a nonexistent

DN.

33 0x21 LDAP_ALIAS_PROBLEM Applicable operations: Search.

An alias has been dereferenced

which names no object.

34 0x22 LDAP_INVALID_DN_SYNTAX Invalid DN or RDN specified

on adding an entry or

modifying an RDN.

35 0x23 LDAP_IS_LEAF

36 0x24 LDAP_ALIAS_DEREFERENCING_PROBLEM Applicable operations: Search.

An alias was encountered in a

situation where it was not

allowed or where access was

denied. For example, if the

client does not have read

permission for the

aliasedObjectName
attribute and its value, then

the error

aliasDereferencing
Problem should be returned.

48 0x30 LDAP_INAPPROPRIATE_AUTHENTICATION Applicable operations: Bind.

This error should be returned

by the server when the client

has tried to use a method of

authentication that is

inappropriate.

TABLE D-1 LDAP Error Codes (Continued)
332 Solaris and LDAP Naming Services

49 0x31 LDAP_INVALID_CREDENTIALS Invalid password or other

credentials supplied on bind.

50 0x32 LDAP_INSUFFICIENT_ACCESS_RIGHTS Give the user the proper

privileges. Check the ACL

rules to make sure they are

correct.

51 0x33 LDAP_BUSY Applicable operations: All.

This error code may be

returned if the server is unable

to process the client’s request

at this time. This implies that

if the client retries the request

shortly, the server will be able

to process it then.

52 0x34 LDAP_UNAVAILABLE Returned by SDK if server is

not accessible.

53 0x35 LDAP_UNWILLING_TO_PERFORM User not allowed to change

password, password expired,

operation not implemented

(moddn), attempt to modify

read-only attribute, attempt to

delete all schema elements,

attempt to delete an object

class that has derived object

classes, attempt to delete a

read-only schema element, the

database is read-only, no back

end (database) is available for

the operation, or other

uncategorized error.

54 0x36 LDAP_LOOP_DETECT Applicable operations: All.

This error may be returned by

the server if it detects an alias

or referral loop and is unable

to satisfy the client’s request.

TABLE D-1 LDAP Error Codes (Continued)
Appendix D LDAP v3 Result Codes 333

64 0x40 LDAP_NAMING_VIOLATION Applicable operations: Add,

ModifyDN .

The attempted addition or

modification would violate the

structure rules of the DIT as

defined in the directory

schema and X.501. That is, it

would place an entry as the

subordinate of an alias entry,

or in a region of the DIT not

permitted to a member of its

object class, or would define

an RDN for an entry to

include a forbidden attribute

type.

65 0x41 LDAP_OBJECT_CLASS_VIOLATION Invalid attribute specified for

modify operation on an entry.

Update the schema.

66 0x42 LDAP_NOT_ALLOWED_ON_NONLEAF Attempt to delete an entry that

has child nodes.

67 0x43 LDAP_NOT_ALLOWED_ON_RDN Applicable operations: Delete,

ModifyDN .

Attempt to modify the value

of the attribute which is the

RDN of the entry.

68 0x44 LDAP_ENTRY_ALREADY_EXISTS No need to update the

directory server, since it

already has this value/
entry .

69 0x45 LDAP_OBJECT_CLASS_MODS_PROHIBITED Applicable operations: Modify.

An operation attempted to

modify an object class that

should not be modified, e.g.,

the structural object class of an

entry.

70 0x46 LDAP_RESULTS_TOO_LARGE

71 0x47 LDAP_AFFECTS_MULTIPLE_DSAS

80 0x50 LDAP_OTHER

TABLE D-1 LDAP Error Codes (Continued)
334 Solaris and LDAP Naming Services

81 0x51 LDAP_SERVER_DOWN SDK could not connect to

server. Start the directory

server.

82 0x52 LDAP_LOCAL_ERROR

83 0x53 LDAP_ENCODING_ERROR

84 0x54 LDAP_DECODING_ERROR

85 0x55 LDAP_TIMEOUT

86 0x56 LDAP_AUTH_UNKNOWN

87 0x57 LDAP_FILTER_ERROR

88 0x58 LDAP_USER_CANCELLED

89 0x59 LDAP_PARAM_ERROR No modifications on a modify

operation, no attributes on an

add operation, invalid scope

or empty search filter on

search, or other invalid

argument to an SDK method.

90 0x5a LDAP_NO_MEMORY

91 0x5b LDAP_CONNECT_ERROR SDK reports unexpected error

connecting to server.

92 0x5c LDAP_NOT_SUPPORTED

93 0x5d LDAP_CONTROL_NOT_FOUND

94 0x5e LDA_NO_RESULTS_RETURNED

95 0x5f LDAP_MORE_RESULTS_TO_RETURN

96 0x60 LDAP_CLIENT_LOOP

97 0x61 LDAP_REFERRAL_LIMIT_EXCEEDED SDK reports hop limit

exceeded on referral

processing.

TABLE D-1 LDAP Error Codes (Continued)
Appendix D LDAP v3 Result Codes 335

APPENDIX E

Schema Information

This appendix looks at the LDAP schema, especially the schema required to support

the Solaris 8 LDAP Client. LDAP schemas are defined by Internet Engineering Task

Force (IETF), the revised RFC 2307 Network Information Service Schema draft, and

the LDAP Mailgroups Internet draft. Solaris 8-specific schemas and predefined

schema elements, especially in the area of managing user information, are also

discussed.

LDAP has well-defined schema elements so you can add data without any

modifications to the LDAP server.

LDAP schemas are an arrangement of attribute-value pairs. Which attributes are

required and allowed is controlled by the content rules defined on a per-server basis

or by a special attribute called the objectclass . The values of this attribute

identify the type of entry (person, organization, etc.) and determine which attributes

are required and which are optional.

Support for Solaris LDAP Naming clients requires Solaris-specific schemas and

schemas defined by IETF.

IETF Schemas

IETF defines two required LDAP schemas:

■ Revised RFC 2307 Network Information Service schema draft

■ LDAP mailgroups Internet draft

RFC 2307 Network Information Service Schema

The LDAP servers must be configured to support the revised RFC 2307 draft.

Note – Internet-Drafts are draft documents valid for a maximum of six months and

might be updated, replaced, or made obsolete by other documents at any time.
337

TABLE E-1 lists RFC 2307 draft attributes.

TABLE E-1 RFC 2307 Draft Attributes

Schema Description Equality Syntax

nisSchema.1.0
NAME’uidNumber’

An integer uniquely

identifying a user in

an administrative

domain

integerMatch ’INTEGER’
SINGLE-VALUE

nisSchema.1.1
NAME’gidNumber’

An integer uniquely

identifying a group in

an administrative

domain

integerMatch ’INTEGER’
SINGLE-VALUE

nisSchema.1.2
NAME’gecos’

The GECOSfield; the

common name

caseIgnoreIA5Match
SUBSTRINGS
caseIgnoreIA5Subst
ringsMatch

’IA5String’
SINGLE-VALUE

nisSchema.1.3
NAME’homeDirectory’

The absolute path to

the home directory

caseExactIA5Match ’IA5String’
SINGLE-VALUE

nisSchema.1.4
NAME’loginShell’

The path to the

login shell

caseExactIA5Match ’IA5String’
SINGLE-VALUE

nisSchema.1.5
NAME’shadowLastChang
e’

integerMatch ’INTEGER’
SINGLE-VALUE

nisSchema.1.6
NAME’shadowMin’

integerMatch ’INTEGER’
SINGLE-VALUE

nisSchema.1.7
NAME’shadowMax’

integerMatch ’INTEGER’
SINGLE-VALUE

nisSchema.1.8
NAME’shadowWarning’

integerMatch ’INTEGER’
SINGLE-VALUE

nisSchema.1.9
NAME’shadowInactive’

integerMatch ’INTEGER’
SINGLE-VALUE

nisSchema.1.10
NAME’shadowExpire’

integerMatch ’INTEGER’
SINGLE-VALUE

nisSchema.1.11
NAME’shadowFlag

integerMatch ’INTEGER’
SINGLE-VALUE

nisSchema.1.12
NAME’memberUid’

caseExactIA5Match
SUBSTRINGS
caseExactIA5Substr
ingsMatch

IA5String
338 Solaris and LDAP Naming Services •

nisSchema.1.13
NAME’memberNisNetgro
up’

caseExactIA5Match
SUBSTRINGS
caseExactIA5Substr
ingsMatch

IA5String

nisSchema.1.14
NAME’nisNetgroupTrip
le’

Netgroup triple nisNetgroupTrip
leSyntax

nisSchema.1.15
NAME’ipServicePort’

integerMatch ’INTEGER’
SINGLE-VALUE

nisSchema.1.16
NAME’ipServiceProtoc
ol’SUP name

nisSchema.1.17
NAME’ipProtocolNumbe
r’

integerMatch ’INTEGER’
SINGLE-VALUE

nisSchema.1.18
NAME’oncRpcNumber’

integerMatch ’INTEGER’
SINGLE-VALUE

nisSchema.1.19
NAME’ipHostNumber’

DESC’IP address as a

dotted decimal, e.g.,

192.9.25.1 omitting

leading zeros’SUP

name

nisSchema.1.20
NAME’ipNetworkNumber
’

’IP network as a

dotted decimal, e.g.,

192.168, omitting

leading zeros’ SUP

name SINGLE-

VALUE

nisSchema.1.21
NAME’ipNetmaskNumber
’

IP netmask as a

dotted decimal, e.g.,

255.255.255.0,

omitting leading

zeros

caseIgnoreIA5Match ’IA5String{128}
’ SINGLE-VALUE

nisSchema.1.22
NAME’macAddress’

MAC address in

maximal, colon

separated hex

notation, e.g.,

08:00:20:01:01:01

caseIgnoreIA5Match IA5String{128}

nisSchema.1.23
NAME’bootParameter’

rpc.bootparamd
parameter

bootParameterSy
ntax

TABLE E-1 RFC 2307 Draft Attributes (Continued)

Schema Description Equality Syntax
Appendix E Schema Information 339

nisSchema.1.24
NAME’bootFile’

Boot image name caseExactIA5Match IA5String

nisSchema.1.26
NAME’nisMapName’ SUP
name

nisSchema.1.27
NAME’nisMapEntry’

caseExactIA5Match
SUBSTRINGS
caseExactIA5Substr
ingsMatch

’IA5String{1024
}’ SINGLE-VALUE

nisSchema.1.28
NAME’nisPublicKey’

NIS public key nisPublicKeySyn
tax

nisSchema.1.29
NAME’nisSecretKey’

NIS secret key nisSecretKeySyn
tax

nisSchema.1.30
NAME’nisDomain’

NIS domain IA5String

TABLE E-1 RFC 2307 Draft Attributes (Continued)

Schema Description Equality Syntax
340 Solaris and LDAP Naming Services •

RFC 2307 Draft Objectclasses

TABLE E-2 lists of the RFC 2307 objectclasses .

TABLE E-2 RFC2307 Objectclasses

Schema Description Must May

nisSchema.2.0
NAME’posixAccount’
SUP top

Auxiliary -

Abstraction of an

account with POSIX
attributes

(cn $uid
$uidNumber
$gidNumber $home
Directory)

(userPassword
$loginShell
$gecos
$description)

nisSchema.2.1
NAME’shadowAccount’
SUP top

Auxiliary -

Additional attributes

for shadow

passwords

uid (userPassword
$shadowLastChang
e $shadowMin
shadowMax
$shadowWarning
$shadowInactive
$shadowExpire
$shadowFlag
$description)

nisSchema.2.2
NAME’posixGroup’ SUP
top

Structural -

Abstraction of a

group of accounts

(cn $gidNumber) (userPassword
$memberUid
$description)

nisSchema.2.3
NAME’ipService’ SUP
top

Structural -

Abstraction of an

Internet Protocol

service. Maps an IP

port and protocol

(such as tcp or udp)

to one or more names;

the distinguished

value of the cn

attribute denotes the

service’s canonical

name.

(cn
$ipServicePort
$ipServiceProtoc
ol)

(description)

nisSchema.2.4
NAME’ipProtocol’ SUP
top

Structural -

Abstraction of an IP

protocol. Maps a

protocol number to

one or more names.

The distinguished

value of the cn
attribute denotes the

protocol’s canonical

name.

(cn
$ipProtocolNumbe
r)

(description)
Appendix E Schema Information 341

nisSchema.2.5
NAME’oncRpc’ SUP top

Structural -

Abstraction of an

Open Network

Computing (ONC)

[RFC1057] Remote

Procedure Call (RPC)

binding. This class

maps an ONC RPC

number to a name.

The distinguished

value of the cn

attribute denotes the

RPC service’s

canonical name.

(cn
$ipHostNumber)

(l $description
$manager
$userPassword)

nisSchema.2.6
NAME’ipHost’ SUP top

Auxiliary -

Abstraction of a host,

an IP device. The

distinguished value

of the cn attribute

denotes the host’s

canonical name.

Device should be used

as a structural class.

(cn
$ipHostNumber)

(l $description
$manager
$userPassword)

nisSchema.2.7
NAME’ipNetwork’ SUP
top

Structural -

Abstraction of a

network. The

distinguished value

of the cn attribute

denotes the network’s

canonical name.

ipNetworkNumber (cn
$ipNetmaskNumber
$l $description
$manager)

nisSchema.2.8
NAME’nisNetgroup’
SUP top

Structural -

Abstraction of a

netgroup. May refer

to other netgroups.

cn (nisNetgroupTrip
le
$memberNisNetgro
up $description)

nisSchema.2.9
NAME’nisMap’ SUP top

Structural - A generic

abstraction of an NIS

map

nisMapName description

nisSchema.2.10
NAME’nisObject’ SUP
top

Structural - An entry

in an NIS map

(cn $nisMapEntry
$nisMapName)

description

TABLE E-2 RFC2307 Objectclasses (Continued)

Schema Description Must May
342 Solaris and LDAP Naming Services •

Mail Alias Schema

LDAP servers must be configured to support mail alias information. Mail alias

information uses the schema defined by the LDAP Mailgroups Internet draft,

formerly known as the draft-steinback-ldap-mailgroups draft. Since the

introduction of the Solaris LDAP client functionality, this Internet draft has expired

and is no longer a valid Internet draft. Unfortunately, no available standard provides

a schema with the same information. For now, Solaris LDAP clients need to continue

to use this schema for mail alias information until a new schema becomes available.

The original LDAP Mailgroups schema contains a large number of attributes and

object classes. Only three of them are used by Solaris clients. These are listed in the

following sections.

nisSchema.2.11
NAME’ieee802Device’
SUP top

Auxiliary-A device

with a MAC address;

device should be used

as a structural class.

macAddress

nisSchema.2.12
NAME’bootableDevice’
SUP top

A device with boot

parameters; device

should be used as a

structural class.

(bootFile
$bootParameter)

nisSchema.2.14
NAME’nisKeyObject’
SUP top

Auxiliary - An object

with a public and

secret key

(cn
$nisPublicKey
$nisSecretKey)

(uidNumber
$description)

nisSchema.2.15
NAME’nisDomainObject
’ SUP top

Auxiliary - Associates

an NIS domain with a

naming context

nisDomain

TABLE E-2 RFC2307 Objectclasses (Continued)

Schema Description Must May
Appendix E Schema Information 343

Attributes/Syntax

TABLE E-3 lists mail alias attributes and syntax.

Object Class

This is a mail alias object class.

Schema: 2.16.840.1.113730.3.2.4 NAME’mailGroup’ SUP top

Structural Must: mail

May: (cn $mailAlternateAddress $mailHost $mailRequireAuth
$mgrpAddHeader $mgrpAllowedBroadcaster $mgrpAllowedDomain
$mgrpApprovePassword $mgrpBroadcasterModeration $mgrpDeliverTo
$mgrpErrorsTo $mgrpModerator $mgrpMsgMaxSize $mgrpMsgRejectAction
$mgrpMsgRejectText $mgrpNoMatchAddrs $mgrpRemoveHeader
$mgrpRFC822MailMember)

Solaris-Specific Schemas
The schemas required for the Solaris operating environment are:

■ Extended user accounting

■ Role-based access control

■ Solaris client naming profile

TABLE E-3 Mail Alias Schemas

Schema Description Equality Syntax

0.9.2342.19200300.10
0.1.3 NAME’mail’

RFC822 email address

for this person

caseIgnoreIA5Match IA5String(256)
SINGLE-VALUE

2.16.840.1.113730.3.
1.30
NAME’mgrpRFC822MailM
ember’

RFC822 mail address

of email only member

of group

CaseIgnoreIA5Match IA5String(256)
344 Solaris and LDAP Naming Services •

Extended User Accounting Schema

/etc/user_attr is a local source of extended attributes associated with users and

roles. TABLE E-4 lists the attributes. For additional information, see user_attr(4) .

The extended user accounting Objectclass is:

Schema: 1.3.6.1.4.1.42.2.27.5.2.1 NAME’SolarisProject’ SUP top

Structural Must: (SolarisProjectID $SolarisProjectName)

May: (uidNumber $gidNumber $description $SolarisProjectAttr)

Role-Based Access Control Schema

/etc/user_attr is a local source of extended attributes associated with users and

roles. TABLE E-5 is a list of the role-based access control attributes. For additional

information, see user_attr(4) .

TABLE E-4 Extended User Accounting Attributes

Schema Description Equality Syntax

1.3.6.1.4.1.42.2.27.5.1.1
NAME’SolarisProjectID’

Unique ID for a

Solaris Project

entry

integerMatch INTEGER SINGLE

1.3.6.1.4.1.42.2.27.5.1.2
NAME’SolarisProjectName’

Name of a Solaris

Project entry

caseExactIA5Match IA5String SINGLE

1.3.6.1.4.1.42.2.27.5.1.3
NAME’SolarisProjectAttr’

Attributes of a

Solaris Project

entry

caseExactIA5Match IA5String

TABLE E-5 Role-Based Access Control Attributes

Schema Description Equality Syntax

1.3.6.1.4.1.42.2.27.5.1.4
NAME’SolarisAttrKeyValue’

Semicolon-

separated

key=value pairs of

attributes

caseIgnoreIA5Match
SUBSTRINGS
caseIgnoreIA5Match

’IA5String’
SINGLE-VALUE

1.3.6.1.4.1.42.2.27.5.1.5
NAME’SolarisAuditAlways’

Always audited

attributes per user

caseIgnoreIA5Match ’IA5String’
SINGLE-VALUE

1.3.6.1.4.1.42.2.27.5.1.6
NAME’SolarisAuditNever’

Never audited

attributes per user

caseIgnoreIA5Match ’IA5String’
SINGLE-
VALUE)
Appendix E Schema Information 345

TABLE E-6 lists role-based access control objectclasses .

1.3.6.1.4.1.42.2.27.5.1.7
NAME’SolarisAttrShortDesc
’

Short description

about an entry, used

by GUIs

caseIgnoreIA5Match ’IA5String’
SINGLE-VALUE

1.3.6.1.4.1.42.2.27.5.1.8
NAME’SolarisAttrLongDesc’

Detail description

about an entry

caseIgnoreIA5Match ’IA5String’
SINGLE-VALUE

1.3.6.1.4.1.42.2.27.5.1.9
NAME’SolarisKernelSecurit
yPolicy’

Solaris kernel

security policy

caseIgnoreIA5Match ’IA5String’
SINGLE-VALUE

1.3.6.1.4.1.42.2.27.5.1.1
0
NAME’SolarisProfileType’

Type of object

defined in profile

1.3.6.1.4.1.42.2.27.5.1.1
1 NAME’SolarisProfileId’

Identifier of object

defined in profile

caseExactIA5Match ’IA5String’
SINGLE-VALUE

1.3.6.1.4.1.42.2.27.5.1.1
2
NAME’SolarisUserQualifier
’

Per user login
attributes

caseIgnoreIA5Match ’IA5String’
SINGLE-VALUE

1.3.6.1.4.1.42.2.27.5.1.1
3 NAME’SolarisReserved1’

Reserved for future

use

caseIgnoreIA5Match ’IA5String’
SINGLE-VALUE

1.3.6.1.4.1.42.2.27.5.1.1
4 NAME’SolarisReserved2’

Reserved for future

use

caseIgnoreIA5Match ’IA5String’
SINGLE-VALUE

TABLE E-6 Role-based Access Control Objectclasses

Schema Description Must May

1.3.6.1.4.1.42.2.27.5.2.
2 NAME’SolarisAuditUser’
SUP top

Auxiliary - Per user

audit attributes

(SolarisAuditAlways
$SolarisAuditNever)

1.3.6.1.4.1.42.2.27.5.2.
3 NAME’SolarisUserAttr’
SUP top

Auxiliary - User

attributes

(SolarisUserQualifier
$SolarisAttrReserved1
$\ SolarisAttrReserved2
$SolarisAttrKeyValue)

TABLE E-5 Role-Based Access Control Attributes (Continued)

Schema Description Equality Syntax
346 Solaris and LDAP Naming Services •

Solaris Client Naming Profile Schema

/etc/user_attr is a local source of extended attributes associated with users,

roles, and profiles. For additional information, see user_attr(4) .

/etc/security/prof_attr is a local source for execution profile names,

descriptions, and other attributes of execution profiles. For additional information,

see prof_attr(4) .

To support simplified client setup with client profile, the LDAP servers must

support the client profile schema shown in TABLE E-7.

1.3.6.1.4.1.42.2.27.5.2.
4 NAME’SolarisAuthAttr’
SUP top

Structural -

Authorizations data

cn (SolarisAttrReserved1
$SolarisAttrReserved2
$\SolarisAttrShortDesc
$SolarisAttrLongDesc
$\SolarisAttrKeyValue)

1.3.6.1.4.1.42.2.27.5.2.
5 NAME’SolarisProfAttr’
SUP top

Structural - Profiles

data

cn (SolarisAttrReserved1
$SolarisAttrReserved2
$\ SolarisAttrLongDesc
$SolarisAttrKeyValue)

1.3.6.1.4.1.42.2.27.5.2.
6 NAME’SolarisExecAttr’
SUP top

Auxiliary - Profiles

execution attributes

(SolarisKernelSecurityP
olicy
$SolarisProfileType
$\SolarisAttrReserved1
$SolarisAttrReserved2
$\SolarisProfileId
$SolarisAttrKeyValue)

TABLE E-6 Role-based Access Control Objectclasses (Continued)

Schema Description Must May
Appendix E Schema Information 347

TABLE E-7 Solaris Client Naming Profile Attributes

Schema Description Equality Syntax

1.3.6.1.4.1.42.2.27.5.
1.15
NAME’SolarisLDAPServer
s’

LDAP Server address,

e.g., 76.234.3.1:389

caseIgnoreIA5M
atch

SolarisLDAPSer
verSyntax

1.3.6.1.4.1.42.2.27.5.
1.16
NAME’SolarisSearchBase
DN’

Search Base

Distinguished Name

distinguishedN
ameMatch

DN SINGLE-
VALUE

1.3.6.1.4.1.42.2.27.5.
1.17
NAME’SolarisCacheTTL’

TTL value for the

Domain information, e.g.,

1w, 2d, 3h, 10m, or 5s

caseIgnore
Match

IA5String
SINGLE-VALUE

1.3.6.1.4.1.42.2.27.5.
1.18
NAME’SolarisBindDN’

DN to be used to bind to

the directory as proxy

distinguishedN
ameMatch

DN SINGLE-
VALUE

1.3.6.1.4.1.42.2.27.5.
1.19
NAME’SolarisBindPasswo
rd’

Password for bindDN to

authenticate to the

directory

caseExactIA5Ma
tch

OctetString
SINGLE-VALUE

1.3.6.1.4.1.42.2.27.5.
1.20
NAME’SolarisAuthMethod
’

Authentication method

to be used, e.g.,

NS_LDAP_AUTH_NONE,
NS_LDAP_AUTH_SIMPLE
or
NS_LDAP_AUTH_SASL_C
RAM_MD5

caseIgnoreIA5M
atch

IA5String

1.3.6.1.4.1.42.2.27.5.
1.21
NAME’SolarisTransportS
ecurity’

Transport Level Security

method to be used, e.g.,

NS_LDAP_SEC_NONEor

NS_LDAP_SEC_SASL_TL
S

caseIgnoreIA5M
atch

IA5String
SINGLE-VALUE

1.3.6.1.4.1.42.2.27.5.
1.22
NAME’SolarisCertificat
ePath’

Path to certificate file/

device

caseExactIA5
Match

IA5String
SINGLE-VALUE

1.3.6.1.4.1.42.2.27.5.
1.23
NAME’SolarisCertificat
ePassword’

Password or PIN that

grants access to

certificate.

caseExactIA5Ma
tch

OctetString
SINGLE-VALUE
348 Solaris and LDAP Naming Services •

The Solaris client naming profile object class is:

Schema: 1.3.6.1.4.1.42.2.27.5.2.7 NAME’SolarisNamingProfile’ SUP
top

Structural Description: Solaris LDAP Naming client profile object class

Must: (cn $SolarisLDAPServers $SolarisSearchBaseDN)

May: (SolarisBindDN $SolarisBindPassword $SolarisAuthMethod
$SolarisTransportSecurity $SolarisCertificatePath
$SolarisCertificatePassword $SolarisDataSearchDN
$SolarisSearchScope $SolarisSearchTimeLimit
$SolarisPreferredServer $SolarisPreferredServerOnly
$SolarisCacheTTL $SolarisSearchReferral)

1.3.6.1.4.1.42.2.27.5.
1.24
NAME’SolarisDataSearch
DN’

Search DN for data

lookup in

“database:(DN0),(DN1)
,... ” format

caseIgnoreIA5M
atch

IA5String

1.3.6.1.4.1.42.2.27.5.
1.25
NAME’SolarisSearchScop
e’

Scope to be used for

search operations, e.g.,

NS_LDAP_SCOPE_BASE,
NS_LDAP_SCOPE_ONELE
VEL or
NS_LDAP_SCOPE_SUBTR
EE

caseIgnoreIA5M
atch

IA5String
SINGLE-VALUE

1.3.6.1.4.1.42.2.27.5.
1.26
NAME’SolarisSearchTime
Limit’

Time limit in seconds for

search operations

integerMatch INTEGER
SINGLE-VALUE

1.3.6.1.4.1.42.2.27.5.
1.27
NAME’SolarisPreferredS
erver’

Preferred LDAP Server
address or network
number

caseIgnoreIA5M
atch

IAString

1.3.6.1.4.1.42.2.27.5.
1.28
NAME’SolarisPreferredS
erverOnly’

Boolean flag for use of

preferredServer or

not

booleanMatch BOOLEAN
SINGLE-VALUE

1.3.6.1.4.1.42.2.27.5.
1.29
NAME’SolarisSearchRefe
rral’

Referral chasing option,

e.g., NS_LDAP_NOREF
or

NS_LDAP_FOLLOWREF

caseIgnoreIA5M
atch

IA5String
SINGLE-VALUE

TABLE E-7 Solaris Client Naming Profile Attributes (Continued)

Schema Description Equality Syntax
Appendix E Schema Information 349

Glossary

Access Control Entry
(ACE) An entry in Active Directory that contains a security identifier which identifies

the principles who are granted access to a directory object.

Access Control
Instruction (ACI) An instruction that grants or denies permissions to entries in the directory

server.

Access Control List
(ACL) The list from which Windows NT authorization checks the client’s SID.

Access Control Rule
(ACR) Collective permissions and bind rules that are set as a pair.

ACE See Access control entry.

ACI See Access Control Instruction.

ACL See Access Control List.

ACR See Access Control Rule.

Active Directory Microsoft’s directory service used by the core operating system to store user

account and system resource data and by the BackOffice suite of products as

their data store.

Active Directory
Service Interface

(ADSI) A set of APIs through which Windows 2000 clients and services access the
Active Directory.

administration
domain A domain that allows a common login to work across several servers.

ADSI See Active Directory Service Interface.

ASN.1 Abstract Syntax Notation One (ASN.1) describes objects within a management

information database.

Backup Domain
Controller (BDC) A backup mechanism that maintains a read-only copy of the SAM database.
Glossary 351

BDC See Backup Domain Controller.

Broadcast method A way in which to locate an NIS server to bind to. The method sends out a

broadcast message and binds to the first server that responds.

CA Certificate Authority. A trusted third party that issues digital certificates.

Cold Start File
method A way to provide a file to a client. The method contains information about how

to locate directory objects and also a set of credentials. This is the preferred

NIS+ method because it provides additional security.

CRAM-MD5 One of the SASL mechanisms (RFC 2222) that was at one point proposed as a

required mechanism for LDAP v3. CRAM stands for Challenge Response

Authentication Mechanism, Message digest 5, and it uses the MD5 hash

algorithm developed by Ron Rivest for generating a message digest, which in

turn is used for authentication.

DAP Directory Access Protocol (X.500).

DEN Directory Enabled Networks.

DES Data Encryption Standard.

DHCP See Dynamic Host Configuration Protocol.

Directory Information
Tree (DIT) An arrangement of directory entries in a treelike structure.

directory naming
context A method to map to the DNS domain name of a company and its subdomains.

Termed Active Directory by Microsoft.

Directory Specific Entry
(DSE) A naming context that defines the root entry of the directory server.

directory service A specific type of naming service in which the objects bound to names are

directory entries.

Directory System Agent
(DSA) The core program of Microsoft’s Active Directory implementation.

Distinguished Name
(DN) A unique identifier of each entry in the DIT.

DIT See Directory Information Tree.

DN See Distinguished Name.

DNS See Domain Name System.

domain forests A set of domains or domain trees that do not form a contiguous namespace,

but they do have an implicit trust relationship among them.
352 Solaris and LDAP Naming Services

Domain Name System
(DNS) A method to solve the problem of locating computers on ArpaNet, the

forerunner of the Internet. DNS is the de facto standard naming service of the

Internet.

domain trees A set of domains that form a contiguous namespace through a set of hierarchal

relationships.

DSA Directory Services Agent.

DSE See Directory Server Entry.

Dynamic Host
Configuration Protocol

(DHCP) A procedure by which IP-related information is provided to new clients.

Extensible Storage
Engine (ESE) A database that has built-in indexing features, along with other database

features such as transaction logging and recovery. All Active Directory data

resides in this database.

flat namespace An area (domain) in which one NIS domain is not related to another.

Global Catalog A list that provides a way to centrally maintain information about users and

universal groups for access control.

GMT Greenwich Mean Time.

GSSAPI Generic Security Service API. Used to provide a standard interface to different

authentication methods.

heartbeat signal Client access to the directory service itself. If the heartbeat or communication

channels fail, then the cluster will not function properly.

http Hypertext Transport Protocol.

IANA Internet Assigned Numbers Authority.

Indexed Sequential
Access Method

(ISAM) A database modeled after the ESE and similar to the one in which Microsoft

Exchange stores data.

ISO International Standards Organization.

JNDI Java Naming and Directory Interface.

KCC See Knowledge Consistency Checker.

KDC See Key Distribution Center.

Kerberos A network authentication protocol that provides strong authentication for

client-server applications by using secret-key cryptography.
Glossary 353

Key Distribution
Center (KDC) A clearinghouse required by Kerberos.

KM See Knowledge Module.

Knowledge Consistency
Checker (KCC) An Active Directory process that is responsible for mapping out the Active

Directory domain controller topology and determining how replication should

be performed.

Knowledge Module
(KM) A utility that monitors the iPlanet Directory Server. KM continually monitors

and automatically reacts to critical infrastructure information.

LAN Local Area Network.

LDAP Lightweight Directory Access Protocol. The newest addition to the list of

Solaris naming services. It is an optional naming service that can coexist with

legacy Solaris naming services. LDAP shares some characteristics with NIS and

NIS+, but it is more sophisticated in how stored data is structured and

accessed.

LDAP access model A model that defines how LDAP clients communicate with LDAP servers.

LDAP Data Interchange
Format (LDIF) A common method for importing data from legacy data sources such as NIS

maps.

LDAP information
model A model that defines how entries are organized in a directory.

LDAP naming model A model that defines how objects are named and the type of information which

can be stored in the directory.

LDAP referral A mechanism used to instruct an LDAP client searching the directory to

continue the search on another directory server.

LDAP replication
model The mechanism by which directory data is automatically copied from one

directory server to another. Using replication, you can copy everything from

entire directory trees to individual directory entries between servers.

LDAP security model A model that defines how information in the directory is protected from

unauthorized access.

LDIF See LDAP Data Interchange Format.

Lightweight Directory
Access Protocol See LDAP.
354 Solaris and LDAP Naming Services

Management
Information Base

(MIB) A data structure used to define network devices and objects that SNMP

accesses.

naming service In a general sense, a facility that organizes and names objects. It provides an

association, often referred to as a binding, between a name and an object.

NDS Netware Directory Server.

Network Information
Service See NIS.

Network Information
Service + See NIS+.

NIS The first UNIX-based distributed naming service. It replaced text files as the

repository for storing information.

NIS+ A successor to NIS that corrected a number of flaws in the NIS architecture.

NMS Network Management Servers.

NTLM A SAM agent that provides backward compatibility to Windows clients by

using NT Lan Manager (NTLM) style authentication.

Object Identifier A number assigned to child object classes to ensure they will not conflict with

another object class.

OID See Object identifier.

OSI stack Open Systems Interconnection that allows network devices to read, write, and

act upon management data.

PAM See Pluggable Authentication Module.

PDC See Primary Domain Controller.

Pluggable
Authentication Module

(PAM) A framework that allows new authentication technologies to be “plugged in”

without changing commands such as login , ftp , and telnet .

Primary Domain
Controller (PDC) A controller that has write privileges on the SAM database.

PSL A language that enables users to write their own KMs.

Public key
technology Security feature that uses a mathematically related pair of encryption keys

called the public and private key. Data encrypted with the public key can only

be decrypted with the associated private key.

RDN Relative Distinguished Name. The leftmost portion of a directory entry name.
Glossary 355

Remote Procedure Calls
(RPC) A programming mechanism that enables NIS clients and servers to

communicate with each other.

Replication The mechanism by which directory data is automatically copied from one

directory server to another.

RFC Request for Comments, A means by which each distinct version of an Internet

standards-related specification is published as part of the RFC document

series.

RPC See Remote Procedure Calls.

SAM See Security Account Manager.

SASL See Simple Authentication and Security Layer

SDK Software Development Kit.

Secure Socket Layer
(SSL) An authentication method developed by Netscape as a way to create a secure

connection between a web client and a web server.

Security Account
Manager (SAM) A database of user account information maintained on special Windows NT

servers called Domain Controllers, of which there are two varieties: primary

(PDC) and backup (BDC).

Service Resource
Records (SRV RR) An Active Directory service that clients search to locate the nearest controller.

shared nothing
architecture An architecture wherein at any time a resource is owned by only one of the

cluster nodes.

SID Security ID. An identification, the generation of which is specific to Microsoft’s

Active Directory implementation and not a standard LDAP concept.

Simple Authentication
and Security Layer

(SASL) A standard proposed for pluggable authentication methods to be used for

adding authentication support to connection-based protocols such as LDAP.

SASL allows negotiation about multiple authentication schemes between a

client and a server. SASL is beneficial as a modular security layer.

Simple Network
Management Protocol

(SNMP) A widely deployed protocol originally designed to manage network devices,

SNMP can also be used to manage other items such as applications and

services.

Single sign-on The ability to authenticate a user once upon login so that user is automatically

authenticated for all applications the user accesses.
356 Solaris and LDAP Naming Services

SNMP See Simple Network Management Protocol.

Solaris Naming Service
Switch A tool to cope with the coexistence of multiple directory services present in the

Solaris operating environment.

Solaris Resource
Manager (SRM) A utility that assigns shares of system resources to different applications,

thereby maintaining a minimum threshold of performance.

Specified Server
Method A mechanism that specifies an NIS server or list of servers to bind to.

SQL Structured Query Language. Standard used for database queries.

SRV RR See Service Resource Records.

SSL See Secure Socket Layer.

SSPI Security Support Provider Interface.

TCP/IP Transmission Control Protocol/Internet Protocol.

TGT See Ticket-Granting Ticket.

Ticket-Granting Ticket
(TGT) A Kerberos method for application servers to grant service tickets to an

authenticated user.

TLS See Transport Layer Security.

Transport Layer
Security (TLS) The new standard for secure socket layers. A public-key-based Transport Layer

Security protocol.

URL Uniform Resource Locator.

Wide Area Network
(WAN) Wide area network.

X.500 The first incarnation of LDAP.
Glossary 357

Index
A
abbreviations, PAM, 63

access control policies, 237

ACI, 238

LDAP security model review, 238

access control process, 299

access control, Internet drafts, 316

access log, 219

Access Log tab and parameter settings, 223

Access Log tab and resulting details, 222

command line, viewing, 221

configuration options, 222

Directory Server Console, viewing, 221

enabling, 223

log creation policies, setting, 223

viewing, 221

access model, 299

access rights, ACI, 239

ACI, 238

access rights, 239

adding new, 241

best practices, 242

bind rules, 239

creating, 240

format, 239

Active Directory

access model, 299

applications access, 302

architecture, 294

architecture, DNS integration, 296

clients interaction, 301

Extensible Storage Engine (ESE), 295

Global Catalog, 298

information model, 296

Kerberos, 298

Kerberos Ticket-Granting Ticket (TGT), 299

Knowledge Consistency Checker (KCC), 300

LDAP referrals, 303

major components, 295

namespace, 297

naming, 297

replication model, 300

security model, 298

single sign-on, 303

Solaris interactions, 302

transport layer security (TLS), 298

Active Server Model, 218

admin login account, 69

admin password, changing, 88

administration domains, 68

Administration Server Console, 68

alternative authentication mechanisms, 41

CRAM-MD5, 42

Kerberos, 45

LDAP, 41

Secure Socket Layer (SSL), 49

appending to the database, 91

architecture

Active Directory, 294

evolution of Solaris naming services, 11

iPlanet Directory Server, 67

LDAP overview, 27

NIS extensions, 148

NIS overview, 16
Index 359

Solaris DNS, 25

Solaris naming service switch, 14

Solaris naming services, 11

asymmetric high availability model, 217

asymmetric model, 216

attribute update test, 174

audit log, 225

audit log, configuration, 226

authenticate tests, 174

authentication and security, Internet drafts, 319

authentication method, 115

authentication performance of the directory

server, 177

authentication tests, 177

authentication vs. authorization, 37

authentication, PAM, 64

B
backing up and restoring directory database, 229

backing up database from

command line, 230

directory server console, 230

basic iPlanet Directory PATROL architecture, 268

basic PATROL

Agent, 266

architecture, 266

Console, 267

Event Manager, 267

Knowledge Modules, 267

basic referrals mechanism, 208

benchmarks, 172

benefits of consolidation, 273

bind rules, ACI, 239

BMC PATROL, introduction

Agent, 266

architecture, 268

Console, 267

Event Manager, 267

Knowledge Modules, 267

Broadcast method, 17, 25

building a Sun Cluster with HA LDAP data

services, 212

configuring for Netscape data services, 215

iPlanet Directory Server installation, 214

LDAP fault monitor, 213

C
C API, 315

caching for performance, 184

cache parameters, 189

data design considerations, 193

Database tab statistics, 189

directory caches, 184

entry cache size, 186

LDAP client design, 195

Performance tab information, 192

Plugins icon, expanded, 196

removing unnecessary plug-ins, 195

setting

all IDs threshold, 190

database cache size, 186

search limit parameters, 191

sizing database and entry caches, 187

sizing factors, 185

tuning

all IDs threshold value, 191

cache sizes, 188

import performance, 199

write performance, 196

calculating directory database size, 164

backups, 167

log files, 167

sizing example, 165

capacity planning

caching for performance, 184

directory considerations, 162

methodology, 164

performance tuning, 178

qualitative observations based on test

results, 177

results of experimentation, 174

server sizing, 161

troubleshooting checklist, 200

Certificate Setup Wizard
certificate request, generating, 100

running, 99

server certificate, installing, 101, 102

Change Trust DB Password window, 103
360 Solaris and LDAP Naming Services

changing

DB backing files location, 85

DB files location, 83

transaction log location, 84

trust DB password, 103

client configuration, 140

initialization, 140

LDAP create Client, 144

client-side certificates, 49

coexistence

NIS and DNS, 13

NIS and files, 12

Cold Start File method, 25

commands

domainname , 76

dsexport , 160

dsimport , 139

hadsconfig(1M) , 215

ldag_gen_profile , 134

ldap_gen_profile(1M) , 114

ldaplist , 143

ldapmodify , 91, 157

ldapsearch , 134, 159

ldif2db , 90

make, 156

makedbm, 156

ns-slapd , 89

passwd , 39

restoreconfig , 93

setup , 73

startconsole , 69, 80

tar , 72

ypcat , 158

ypcat hosts , 159

common installation configuration parameters,

changing, 87

comparison with legacy naming services, 35

configuration, 174

configuration data, 68

configuring the Sun Cluster HA for Netscape data

services, 215

connection status, 250

consolidation, 273

approaches, 274

benefits, 273

iPlanet Directory Access Router (iDAR), 284

LDAP gateways, 276

LDAP synchronization, 276

LDAP-enabled applications, 274

unified login and single sign-on, 281

controls and extended operations, Internet

drafts, 317

CRAM-MD5, 42

CRAM-MD5, authentication diagram, 43

Create Attribute window, 246

Create Object Class window, 247

creating

attributes from Directory Server Console, 246

LDIF file, 97

object classes from Directory Server

Console, 247

subtree, 157

crypt

benefits and drawbacks, 40

UNIX, 39

current resource usage, 249

D
data design considerations, 193

design of directory hierarchy, 194

design of entries, 194

design of security rules, 194

data services for Sun Cluster, 212

data synchronization, 149

database

appending to, 91

backups, deleting, 232

cache sizing, 186

connector, 279

entry cache, 170

Import Database window, 91

index cache, 171

initialization, 89

database cache information, 254

database performance metrics, 253

database servers vs. directory service, 3

Database tab statistics, 189

database transaction log

database checkpoint interval, changing, 228

durable transactions, enabling, 228

location, changing, 227

managing, 226
Index 361

db2ldif script, 235

debugging, 144

default NIS mappings, 153

deleting database backups, 232

deploying HA LDAP data services, 203

building a Sun Cluster, 212

iPlanet Directory Services architecture

models, 203

LDAP cluster deployment options, 216

overview of Sun Cluster 2.2 software, 210

redirecting LDAP Client requests, 218

deploying LDAP, 9

directory backups, 167

directory caches

database cache, 184

entry cache, 184

Directory Connector

Lotus Notes, 280

Microsoft Exchange, 280

directory considerations, 162

directory access, 163

directory size, 162

replication strategy, 164

security requirements, 163

directory data, importing, 89

directory database, backing up and restoring, 229

directory information tree (DIT), 117

directory information tree structure, 152

directory log files, 219

access, 219

audit log, 225

error log, 224

Directory Manager
login account, 69

password, changing, 87

directory objects and attributes, 29

directory replication, 93

Consumer Settings tab, 95

LDIF file, creating, 97

planning, 93

setting up, 94

Source and Destination form, 96

SSL, using, 104

Supplier Settings tab, 95

troubleshooting, 98

verifying, 98

directory schema, 30

directory schema update, 123, 155

directory server

asymmetric high availability model, 217

monitoring, 248

directory service

overview, 2

proliferation, 3

vs. database servers, 3

directory sizing example, 165

Directory tab, 159

disk storage

partitioning and layout, 71

requirements, 168

disk throughput, increasing, 198

displayed parameters, 258

distinguished names, 31

DIT, 117

sample tree, 28

structure, 152

subtree, creating, 157

support entry creation, 123

DNS

client architecture, 26

high availability features, 27

integration, 296

introduction, 6

server architecture, 26

domainname command, 76

dsexport command, 160

dsimport command, 139

dsservd process, 148

dsypserv process, 170

E
effects of additional CPUs, 176

Encryption tab, 102

entry add/delete test, 174

entry cache size, 186

Entry table, 263

error log, 224

error log, viewing, 224

estimating CPU usage, 172

evolution of Solaris naming services, 11
362 Solaris and LDAP Naming Services

NIS and DNS coexistence, 13

NIS and files coexistence, 12

service switch, 13

EWOS directory functional standards, Internet

drafts, 320

example simple SNMP environment, 259

exporting and importing database with LDIF, 233

exporting databases to LDIF from command

line, 234

Extensible Storage Engine (ESE) database, 295

F
file navigation, 82

files

nis.mapping , 153

nsswitch.conf , 14

pam.conf , 57

pam_ldap , 62

slapd.ldbm.conf , 187

file-specific table, 255

G
generic mappings, 153

generic pam.conf file, 57

Global Catalog, 298

H
hadsconfig(1M) command, 215

high availability

architecture models, 203

asymmetric model, 216

hot standby model, 216

referral models, 208

replication models, 204

strategy, 204

typical Sun Cluster HA configuration, 211

high-performance single-master directory-

replication architecture, 206

history of LDAP, 7

hot standby model, 216

I
iDAR, 284

feature set, 285

client-server compatibility, 287

firewall-like security, 286

high availability, 285

overview, 284

Import Database window, 91

importing databases from LDIF, 235

importing directory data, 89

appending to the database, 91

database initialization, 89

importing LDIF files from command line, 123

indexing, 178

administration, 183

automatically created indexes, 181

built-in system indexes, 180

cost, 183

default indexes, 180

determining importance, 182

importance, 178

optimize, 197

relative costs of index types, 197

Select Attribute window, 183

summary, 184

system indexes, 180

types, 179

viewing, 179

information and X.500 documents, Internet

drafts, 319

information model, 296

initialization

checklist, 157

NIS extensions, 154

NIS extensions overview, 154

procedure, 158

installation

custom, 78

defaults, 78

differences, 80

disk storage partitioning and layout, 71

express, 78

file navigation, 82

layout diagram, 82

NIS extensions, 108

planning, 70

post, procedures, 83
Index 363

procedure, 72

restarting administration and directory

servers, 82

starting Netscape Console, 80

troubleshooting tips, 92

type, 74

typical, performing, 74

verifying, 81

installation scripts, NIS vs. DNS, domain name, 76

Interaction table, 263

Internet drafts

access control, 316

authentication and security, 319

C API, 315

controls and extended operations, 317

EWOS directory functional standards, 320

information and X.500 documents, 319

Java API, 316

joint ISO standards and CCITT

recommendations, 320

LDAP specific, 315

locating, 309

NADF documents, 319

other ISO documents, 320

replication, 316

interoperability

Windows 2000, 294

Windows NT, 289

iPlanet Directory Access Router (iDAR), 284

iPlanet Directory Server

installation, 214

reinstalling, 92

SASL, 50

script generation program, 105

startup files, 104

iPlanet Directory Services architecture models

HA strategy, 204

iPlanet Meta-Directory Server, 278

ISO documents, 320

ISO standards, joint and CCITT

recommendations, 320

J
java API, 316

K
Kerberos, 45, 281, 298

Kerberos Ticket-Granting Ticket (TGT), 299

Knowledge Consistency Checker (KCC), 300

L
layout of NetscapeRoot portion of directory

tree, 69

LDAP

architecture overview, 27

authentication, 41, 115

choosing, 274

client

configuration, 140

create, 144

design, 195

initialization, 140

profiles, 113

requests, redirecting, 218

verification, 144

cluster deployment options, 216

comparison with legacy naming services, 35

connector, 279

consolidating enabled applications, 274

deployment, factors, 9

directory objects and attributes, 29

directory schema, 30

directory topology model, 27

distinguished names, 31

DIT, 117

error codes, 329

fault monitor, 213

functional model, 31

gateways, 276

goals, 8

history, 7

implementation, native configuration, 112

loading data, 118

managing with BMC PATROL, 264

MIB (management information base), 260

naming context, 118

naming model, 29

NIS domain, 114

NIS information, storing, 150

overview, native configuration, 111

pam_ldap authentication, 116
364 Solaris and LDAP Naming Services

pam_unix authentication, 115

proxy agent authentication, 116

replication

full tree, 34

subtree, 34

replication model, 33

RFCs and Internet drafts, 311

schema information, 337

security model, 32

security model review, 238

Solaris implementation, 8

specifications, 8

standards information, 309

synchronization, 276

test suite, 172

vs. SSL, 50

LDAP cluster deployment options

active server model, 218

hot standby model, 216

LDAP synchronization

database connector, 279

deploying iPlanet Meta-Directory, 280

iPlanet Meta-Directory Server, 278

LDAP connector, 279

Meta-Directory connectors, 279

NIS extensions for Solaris, 277

NT synchronization service, 277

password synchronization, 277

LDAP test suite

attribute update, 174

authenticate, 174

entry add/delete, 174

sample test matrix, 173

simple read, 173

ldap_cachemgr daemon, 142

ldap_gen_profile command, 134

ldap_gen_profile(1M) command, 114

ldaplist command, 143

ldapmodify command, 91, 157

ldapsearch command, 134, 159

LDIF (LDAP Data Interchange Format)

creating a file, 97

db21dif script, 235

exporting and importing the database, 233

exporting databases from command line, 234

importing databases, 235

ldif2db command, 90

loading data, 118

log creation policies, setting, 223

log files, 167

login accounts, 69

admin , 69

Directory Manager , 69

login does not work, 145

ldapclient cannot bind to server, 146

lookup too slow, 146

login program text string converting to a hashed

string, 39

login to directory window, 88

M
maintenance, preventive, 219

make command, 156

makedbm command, 156

Makefile examination and modification, 156

Manager tab, 88

managing database transaction logging, 226

managing directory schema

files, 243

modifying, 245

reading schema files, 245

managing directory services, 237

access control policies, 237

managing LDAP directory server using BMC

PATROL, 264

managing the directory schema, 242

monitoring the directory server, 248

SNMP-based management, 258

managing LDAP directory server using BMC

PATROL, 264

checking memory usage with pmap, 270

introduction, 265

KM overview, 264

managing the directory schema, 242

Create Attribute window, 246

Create Object Class window, 247

creating attributes from Directory Server

Console, 246

creating object classes from Directory Server

Console, 247

mapping, NT to LDAP, 291
Index 365

master and replication directory hub

architecture, 207

memory sizing, 170

database entry cache, 170

database index cache, 171

estimating, 172

server executables, 170

Solaris file system cache, 171

typical usage, 171

usage summary, 171

Meta-Directory

connectors, 279

deploying, 280

how it works, 278

methodology, capacity

calculating directory database size, 164

estimating CPU usage, 172

LDAP test suite, 172

memory sizing, 170

summary of disk storage requirements, 168

summary of memory usage, 171

Microsoft Windows interoperability, 289

Active Directory Services Architecture, 294

Solaris Directory services and Active Directory

services interactions, 302

Windows 2000, 294

Windows NT, 289

minimize write traffic, 198

modify tests, 176

modify tests, effects of additional CPUs, 176

monitoring database activity, 253

cache information, 254

file-specific, 255

performance metrics, 253

monitoring the directory server

connection status, 250

current resource usage, 249

database from command line, 256

database from Directory Server Console, 255

database output example, 256

displayed parameters, 258

monitoring database activity, 253

performance counters, 251

performance from command line, 251

performance from Directory Server Console, 251

server performance, 249

N
NADF documents, Internet drafts, 319

naming context, 118

naming services

NIS, 12

NIS and DNS coexistence, 13

overview, 1

Solaris evolution, 11

Solaris switch, 13

Solaris switch architecture, 14

Solaris switch functions, 14

native LDAP configuration, 111

client configuration, 140

implementation, 112

introduction, 111

overview, 111

server configuration procedure, 119

troubleshooting, 144

native LDAP implementation, 112

authentication method, 115

directory information tree, 117

loading data, 118

naming context, 118

NIS domain, 114

pam_ldap , 116

pam_unix , 115

proxy agent, 116

Solaris LDAP client profiles, 113

Netscape Communicator

configuration overview, 305

other features, 308

using, 305

Netscape Console, 69

diagram of component interactions, 70

starting, 80

NIS

architecture overview, 16

Broadcast method, 17

client failover

broadcast method, 19

specified server method, 20

client server architecture, 16

clients bind to NIS server, 17

DNS coexistence, 13

domain, 114

files coexistence, 12

high availability architecture features, 19

introduction, 4
366 Solaris and LDAP Naming Services

major components, 16

maps, 17

maps, creating, 18

specific attributes, 150

Specified Server method, 17

NIS extensions

architecture, 148

configuration, 147

creating the subtree, 157

data accessibility, 149

data synchronization, 149

default NIS mappings, 153

directory schema, update, 155

Directory tab, 159

DIT structure, 152

generic mappings, 153

initialization, 154

checklist, 157

overview, 154

procedure, 158

installing, 108

Makefile examination and modification, 156

maps

importing, 157

propagating, 160

updating, 159

object classes, new, 151

overview, 147

postinstallation and verification, 158

slave server mode, 150

Solaris, 277

specific attributes, 150

storing NIS information in LDAP, 150

typical subtree, 152

NIS maps

defaults, 153

generic, 153

importing, 157

propagating, 160

updating, 159

NIS+

architecture, 22

architecture overview, 20

Broadcast method, 25

client server architecture, 21

clients bind to the NIS+ server, 22

Cold Start File method, 25

credentials, 40

high availability architecture features, 25

interaction with DNS, 24

introduction, 5

security process, 23

Specified Server method, 25

tables, 23

nis.mapping file, 153

ns-admin process, 93, 170

ns-dssync process, 291

ns-slapd command, 89

ns-slapd process, 76, 170

caution, 77

changing owner, 87

nsswitch.conf file, 14

NT

Lan Manager (NTLM) authentication, 295

synchronization service, 277

synchronization service, installation, 292

to LDAP mapping, 291

user account information, 290

O
object classes, new, 151

OIDs, obtaining, 246

Operations table, 261

overview of Sun Cluster 2.2 software, 210

data services, 212

P
PAM (Pluggable Authentication Module)

abbreviations, 63

authentication, 64

configuration file, 54

configuration file syntax, 55

configuration, control flags, 56

configurations, 55

error reporting, 60

framework, 52

generic pam.conf file, 57

how to add a module, 59

LDAP module, 61

module types, 52

module verification, 60

modules, 54
Index 367

preventing unauthorized access, 60

relationship between applications, library, and

modules, 54

update of password, 64

using, 53

pam_ldap , 116

pam_ldap file, 62

pam_unix , 115

passwd command, 39

password synchronization, 277

Password tab, 129

PEM (PATROL Event Manager), 267

performance counters, 251

performance counters, resetting, 189

performance optimization, 124

Performance tab information, 192

performance tuning, 178

automatically created indexes, 181

built-in system indexes, 180

caching for performance, 184

cost of indexing, 183

default indexes, 180

determining index importance, 182

importance of indexing, 178

index administration, 183

index types, 179

indexing, 178

indexing summary, 184

Select Attribute window, 183

system indexes, 180

viewing indexes, 179

Plugins icon, expanded, 196

posixAccount attributes, 30

postinstallation and verification, 158

postinstallation procedures, 83

DB backing files location, changing, 85

DB files location, changing, 83

saving the configuration, 83

transaction log location, changing, 84

preventive maintenance, 219

backing up and restoring directory

database, 229

directory log files, 219

exporting and importing the database with

LDIF, 233

managing database transaction logging, 226

processes

dsservd , 148

dsypserv , 170

ns-admin , 170

ns-dssync , 291

ns-slapd , 170

ypserv , 148

product architecture, 67

administration domains, 68

configuration data, 68

diagram of component interactions, 70

installation planning, 70

layout of NetscapeRoot portion of the

directory tree, 69

login accounts, 69

Netscape Console, 69

Property Editor, 121

proxy agent, 116

Q
qualitative observations based on test results, 177

R
read test with nonpersistent connection, 175

redirecting LDAP Client requests, 218

referral models, 208

basic referrals mechanism, 208

replication referrals mechanism, 209

search beyond the local division, 210

referral search beyond the local division, 210

reinstalling iPlanet

Directory Server, 92

ns-slapd vs. root , 77

removing unnecessary plug-ins, 195

replication models, 204

high-performance single-master directory

architecture, 206

master and replication directory hub

architecture, 207

single-master directory architecture, 205

Windows 2000, 300

replication referrals mechanism, 209

replication, directory, 93
368 Solaris and LDAP Naming Services

Consumer Settings tab, 95

LDIF file, creating, 97

planning, 93

setting up, 94

Source and Destination form, 96

Supplier Settings tab, 95

troubleshooting, 98

using SSL, 104

verifying, 98

replication, Internet drafts, 316

Request for Comments (RFC)

LDAP specific, 311

life cycle, 310

locating, 309

restarting

administration server, 82

directory server, 82

restoreconfig command, 93

restoring database

from command line, 231

from directory server console, 231

including replicated entries, 232

results of experimentation, 174

authentication tests, 177

configuration, 174

modify tests, 176

read test with nonpersistent connection, 175

simple read test with persistent connection, 175

Rights pop-up menu in the Set Access Permissions
window, 241

S
samples

/var/ldap/ldap_client_cred file, 142

/var/ldap/ldap_client_file , 141

directory information tree (DIT), 28

test matrix, 173

SASL, 50

saving the configuration, 83

schema files

directory, 243

modifying, 245

obtaining OIDs, 246

reading, 245

schemas

checking, 199

checking, import, 200

information, 337

script generation program, 105

search limit parameters

lookthrough limit, 192

size limit, 191

time limit, 191

secure server

Certificate Setup Wizard
generating certificate request, 100

installing a certificate, 102

running, 99

planning configuration, 99

rebooting, 103

setting up, 98

trust database password or PIN, changing, 103

Secure Socket Layer (SSL) authentication, 49

secure system, planning configuration, 99

security infrastructure, 50

iPlanet Directory Server SASL, 50

PAM configuration file, 54

PAM framework, 52

PAM LDAP module, 61

PAM module types, 52

using PAM, 53

security models, 37

alternative authentication mechanisms, 41

authentication vs. authorization, 37

infrastructure, 50

traditional Solaris authentication, 38

Windows NT, 290

Select Attribute window, 183

Select Attributes window, 122

sendmail fails to deliver/receive mail to/from

remote users, 145

server configuration, 174

server configuration procedure, 119

adding new containers, 129

adding proxy agent entry, 134

changing password store to unix_crypt
format, 128

creating indexes, 137

creating virtual list view indexes, 137

generating the client profile, 135

importing LDIF files from command line, 123
Index 369

modifying

self-entry modification, 133

slapd.oc.conf , 125

slapd.user_at.conf , 124

slapd.user_oc.conf , 126

populating the LDAP data, 139

setting password read permission for

proxyagent , 135

setting VLV control ACI, 133

summary of steps required, 123

tools and techniques, 119

server executables, 170

server performance monitoring, 249

server setup

creating an LDAP client, 144

debugging, 144

directory information tree, 117

ldap_cachemgr daemon, 142

ldaplist command, 143

loading data, 118

naming context, 118

NIS domain, 114

proxy agent, 116

sample /var/ldap/ldap_client_cred
file, 142

sample /var/ldap/ldap_client_file , 141

server sizing, capacity planning, 161

server-side certificates, 49

Set Access Permissions window, 121

setting

all IDs threshold, 190

cache sizes, 200

database cache size, 186

search limit parameters, 191

search limit parameters, changing, 192

setup command, 73

simple authentication, see LDAP authentication

simple read test, 173

simple read test with persistent connection, 175

single sign-on, Windows 2000 interoperability, 303

single-master directory-replication

architecture, 205

SiteMinder, 281

how it works, 282

limitations, 283

single sign-on, 283

sizing database and entry caches, 187

sizing factors, 185

slapd.ldbm.conf file, 187

SNMP-based management, 258

Entry table, 263

example of simple SNMP environment, 259

Interaction table, 263

LDAP MIB, 260

Operations table, 261

Solaris

CRAM-MD5 authentication, 42

directory services, historical, 4

DNS architecture, 25

file system cache, 171

Kerberos authentication, 45

LDAP authentication, 41

LDAP client profiles, 113

LDAP implementation, 8

LDAP vs. SSL authentication, 50

PAM framework, 52

SSL authentication, 49

traditional authentication, 38

UNIX crypt, 39

Solaris and Active Directory interactions, 302

Solaris naming service switch, 13

architecture, 14

functions, 14

introduction, 6

Solaris naming services

architecture, 11

evolution, 11

overview, 1

Source and Destination form, 96

Specified Server method, 17, 25

SSL

client-side certificates, 49

enabling on server, 102

Encryption tab, 102

replication, using, 104

secure port, 291

server-side certificates, 49

specification of, 104

vs. LDAP, 50

startconsole command, 69, 80

startup files, iPlanet Directory Server, 104

storage considerations

directory database, 169

directory database backups, 169
370 Solaris and LDAP Naming Services

log files storage, 169

storing NIS information in LDAP, 150

summary of disk storage requirements, 168

summary of memory usage, 171

summary of steps required

directory schema update, 123

DIT and support entry creation, 123

loading data, 124

performance optimization, 124

Sun Cluster

building with HA LDAP data services, 212

configuring for Netscape data services, 215

data services, 212

iPlanet Directory Server installation, 214

LDAP cluster deployment options, 216

LDAP fault monitor, 213

overview, 210

typical HA configuration, 211

synchronization service, 291

installation, 292

SSL, 291

T
tar command, 72

tools and techniques, 119

adding object to DIT, 120

importing LDIF files from Directory

Console, 122

setting permissions by creating ACI entries, 121

traditional Solaris authentication, 38

NIS+ credentials, 40

UNIX crypt, 39

Transport Layer Security (TLS), 298

troubleshooting, 144

checklist, capacity planning, 200

login does not work, 145

replication problems, 98

sendmail fails to deliver/receive mail to/from

remote users, 145

tips on installation, 92

unable to reach systems in the LDAP domain

remotely, 145

unresolved host name, 145

tuning

all IDs threshold value, 191

cache sizes, 188

tuning import performance, 199

schema checking, 200

setting cache sizes, 200

tuning write performance, 196

increase disk throughput, 198

minimize write traffic, 198

optimize indexes, 197

schema checking, 199

typical

memory usage, 171

subtree, 152

Sun Cluster HA configuration, 211

U
unified login and single sign-on, 281

Kerberos, 281

SiteMinder, 281

Universal Connector, 280

UNIX crypt, 39

UNIX crypt, benefits and drawbacks, 40

unresolved host name, 145

using Netscape Communicator, 305

V
viewing error log, 224

W
Windows 2000

access control process, 299

access model, 299

Active Directory

access, 302

client interaction, 301

Active Directory Services, 294

interoperability, 294

LDAP referrals, 303

replication model, 300

security model, 298

Windows NT

interoperability, 289

Security Account Manager (SAM) database, 290
Index 371

security model, 290

synchronization service, 291

synchronization service, installation, 292

to LDAP mapping, 291

user account information, 290

Y
ypcat command, 158

ypcat hosts command, 159

ypserv process, 148
372 Solaris and LDAP Naming Services

	Contents
	Definition of a Naming Service
	Definition of a Directory Service
	Directory Service versus Database Servers
	Proliferation of Directory Services

	Solaris Directory Services—Historical Perspective
	Network Information Service
	NIS+
	Domain Name System
	Solaris Naming Service Switch

	LDAP Background
	Brief History of LDAP
	LDAP Goals and Specifications

	Solaris LDAP Implementation
	Factors to Consider When Deploying LDAP
	Evolution of Solaris Naming Services
	NIS and Files Coexistence
	NIS and DNS Coexistence
	Solaris Naming Service Switch
	Solaris Naming Service Switch Architecture
	nsswitch.conf File

	NIS Architecture Overview
	NIS Client Server Architecture
	How NIS Clients Bind to the NIS Server
	NIS Maps
	Creating NIS Maps

	NIS High Availability Architecture Features

	NIS+ Architecture Overview
	NIS+ Client Server Architecture
	How NIS+ Clients Bind to the NIS+ Server
	NIS+ Tables
	NIS+ Interaction with DNS
	NIS+ High Availability Architecture Features

	Solaris DNS Architecture Overview
	DNS Client Architecture
	DNS Server Architecture
	DNS High Availability Features

	LDAP Architecture Overview
	LDAP Information Model
	LDAP Naming Model
	Directory Objects and Attributes
	Directory Schema

	Distinguished Names

	LDAP Functional Model
	LDAP Security Model
	LDAP Replication

	Comparison with Legacy Naming Services
	Authentication versus Authorization
	Traditional Solaris Authentication
	How UNIX Passwords Work
	Benefits and Drawbacks of Crypt(3)

	NIS+ Credentials

	Alternative Authentication Mechanisms
	LDAP Authentication (Simple Authentication)
	CRAM-MD5
	Kerberos
	Kerberos as an Authentication Service
	How Kerberos Works
	Kerberos Encryption
	Kerberos Ticket
	Basic Kerberos Authentication Protocol (Simplified)
	Authentication Request and Response
	Additional Tickets

	Secure Socket Layer Authentication
	Server-Side Certificates
	Client-Side Certificates
	LDAP Over SSL

	Security Infrastructure
	iPlanet Directory Server SASL
	Solaris PAM Framework
	PAM Module Types
	How PAM Works
	PAM Modules

	PAM Configuration File
	Configuration File Syntax
	Control Flags

	Generic pam.conf File
	How to Add a PAM Module
	Verification
	How to Prevent Unauthorized Access with PAM from Remote Systems
	How to Initiate PAM Error Reporting

	PAM LDAP Module
	How PAM and LDAP Work
	pam_unix Authentication
	pam_ldap Authentication

	Product Architecture
	Administration Domains
	Configuration Data
	Login Accounts
	Netscape Console
	Planning the Installation
	Disk Storage Partitioning/Layout

	Installation Procedure
	Performing a Typical Installation
	Installation Defaults
	Differences between the Installations

	Starting the Netscape Console
	Verifying the Installation
	Restarting the Administration and Directory Servers

	Installation File Navigation
	Postinstallation Procedures
	Saving the Configuration
	Changing the DB Files Location
	Changing the Transaction Log Location
	Changing the DB Backing Files Location

	Changing Common Installation Configuration Parameters
	Changing the ns-slapd Process Owner
	Changing the Directory Manager Password
	Changing the admin Password

	Importing Directory Data
	Initializing the Database
	Appending to the Database

	Reinstalling iPlanet Directory Server
	Installation Troubleshooting Tips

	Directory Replication
	Planning Directory Replication
	Setting up Replication

	Verifying Replication
	Troubleshooting Replication Problems
	Modifying the Supplier Initiated Agreement

	Setting up a Secure System Using SSL and Certificates
	Planning a Secure Server Configuration
	Running the Certificate Setup Wizard
	Generating a Certificate Request
	Installing the Server Certificate
	Enabling SSL on the Server

	Rebooting the Secure Server
	Changing the Trust Database Password or PIN
	Using SSL for Replication

	iPlanet Directory Server Startup Files
	Script Generation Program

	Installing the NIS Extensions
	Definition of Native LDAP
	Native Solaris LDAP Implementation
	Solaris LDAP Client Profiles
	NIS Domain
	Authentication Method
	pam_unix
	pam_ldap

	Proxy Agent
	Directory Information Tree
	Loading Data
	Naming Context

	Server Configuration Procedure
	Tools and Techniques
	Using the Directory Console to Make Configuration Changes
	Adding an Object to the DIT
	Setting Permissions by Creating ACI Entries
	Importing LDIF Files from the Directory Console

	Importing LDIF Files from the Command Line
	Summary of Steps Required
	Directory Schema Update
	DIT and Support Entry Creation
	Performance Optimization
	Loading Data
	Step 1. Modifying slapd.user_at.conf
	Step 2. Modifying slapd.oc.conf
	Step 3. Modifying slapd.user_oc.conf
	Step 4. Changing Password Store to Crypt Format
	Step 5. Adding New Containers
	Step 6. Modifying Self-Entry Modification
	Step 7. Setting VLV Control ACI
	Step 8. Adding the Proxy Agent Entry
	Step 9. Setting Password Read Permission for proxyagent
	Step 10. Generating the Client Profile
	Step 11. Creating Indexes
	Step 12. Creating Virtual List View Indexes
	Step 13. Creating Sample Test Entries
	Step 14. Populating the LDAP data

	Client Configuration
	How LDAP Clients Initialize
	Sample /var/ldap/ldap_client_file
	Sample /var/ldap/ldap_client_cred File
	ldap_cachemgr Daemon
	ldaplist Command

	LDAP Client Initialization Example
	Client Verification

	Troubleshooting Tips
	Unresolved Host Name
	Unable to Reach Systems in the LDAP Domain Remotely
	Sendmail Fails to Deliver/Receive Mail To/From Remote Users
	Login Does Not Work
	Lookup Too Slow
	ldapclient Cannot Bind to Server

	Overview
	What the Extensions Are
	NIS Extensions Architecture

	Storing NIS Information in LDAP
	Directory Information Tree (DIT) Structure
	Default NIS Mappings
	Generic Mappings

	NIS Extensions Initialization
	Initialization Overview
	Directory Schema Update
	Makefile Examination and Modification
	Creating the Subtree
	Importing NIS Maps

	Initialization Checklist
	Initialization Procedure

	Postinstallation Verification
	Viewing NIS Data From the iPlanet Directory Console
	Updating NIS Maps
	Propagating NIS Maps

	Server Sizing
	Directory Considerations
	Directory Size
	Directory Access
	Security Requirements
	Replication Strategy

	Capacity Planning Methodology
	Calculating Directory Database Size
	Directory Sizing Example
	Directory Backups
	Log Files

	Summary of Disk Storage Requirements
	Directory Database
	Directory Database Backups
	Log Files Storage

	Memory Sizing
	Server Executables
	Database Entry Cache
	Database Index Cache
	Solaris File System Cache

	Summary of Memory Usage
	Estimating CPU Usage
	LDAP Test Suite

	Results of Experimentation
	Configuration
	Simple Read Test with Persistent Connection
	Read Test with Nonpersistent Connection
	Modify Tests
	Authentication Tests

	Qualitative Observations Based on Test Results
	Performance Tuning
	Definition of Indexing
	Importance of Indexing
	Index Types
	Viewing Indexes
	System Indexes
	Additional Indexes
	Determining Which Indexes Are Important
	Cost of Indexing
	Index Administration

	Indexing Summary

	Caching for Performance
	Directory Caches
	Evaluating Sizing Factors
	Setting the Database Cache Size
	Setting Entry Cache Size
	Sizing the Database and Entry Caches
	Tuning Cache Sizes
	Setting the All IDs Threshold
	Tuning the All IDs Threshold Value
	Setting Search Limit Parameters
	Changing Search Limit Parameters

	Considering Data Design Issues
	Design of the Entries
	Design of the Directory Hierarchy
	Design of the Security Rules

	Designing an LDAP Client
	Removing Unnecessary Plug-ins
	Tuning Write Performance
	Optimize Indexes
	Increase Disk Throughput
	Minimize Write Traffic
	Checking the Schema

	Tuning Import Performance
	Setting Cache Sizes
	Import Schema Checking

	Troubleshooting Checklist
	iPlanet Directory Services 4.12 HA Architecture Models
	High Availability Strategy
	Replication Models
	Referral Models

	Overview of Sun Cluster 2.2 Software
	Logical IP Addresses
	Data Services for Sun Cluster

	Building a Sun Cluster with HA LDAP Data Services
	LDAP Fault Monitor
	iPlanet Directory Server 4.12 Installation
	Configuring the Sun Cluster HA for iPlanet Data Services

	LDAP Cluster Deployment Options
	Asymmetric (Hot Standby Model) HA
	Active Server Model

	Redirecting LDAP Client Requests
	Directory Log Files
	Access Log
	Viewing the Access Log
	To View the Access Log from the Command Line
	To View the Access Log from the Directory Server Console

	Access Log Configuration Options
	Enabling Access Logging and Specifying Log Location
	Setting Log Creation Policies
	Creation Policy
	Deletion Policy

	Error Log
	Viewing the Error Log
	Audit Log
	Audit Log Configuration

	Managing Database Transaction Logging
	Changing the Location of the Database Transaction Log
	Changing the Database Checkpoint Interval
	Enabling Durable Transactions

	Backing Up and Restoring the Directory Database
	Backing Up the Database from the Directory Server Console
	Backing Up the Database from the Command Line
	Restoring the Database from the Directory Server Console
	Restoring Your Database from the Command Line
	Deleting Database Backups
	Restoring Databases That Include Replicated Entries
	Placing a Database in Read-Only Mode

	Exporting and Importing the Database with LDIF
	Exporting Databases to LDIF from the Command Line
	The db2ldif Script

	Importing Databases from LDIF

	Establishing Access Control Policies
	LDAP Security Model Review
	Access Control Instructions
	ACI Format
	Access Rights
	Bind Rules

	Creating Access Control Instructions
	Adding a New ACI through the Directory Server Console
	ACI Best Practices

	Managing the Directory Schema
	The Schema Files
	How Schema Files Are Read
	Modifying the Schema
	Obtaining an Object Identifier
	Creating Attributes from the Directory Server Console
	Creating Object Classes from the Directory Server Console

	Monitoring the Directory Server
	Monitoring Resources
	Monitoring Server Performance from the Directory Server Console

	Monitoring the Server from the Command Line
	Monitoring Database Activity
	Monitoring the Database from the Directory Server Console
	Monitoring the Database from the Command Line

	Managing with SNMP
	Using LDAP MIB
	Operations Table
	Entry Table
	Interaction Table

	Managing the LDAP Directory Server with BMC PATROL
	iPlanet Directory Server KM Overview
	Introduction to BMC PATROL
	Basic PATROL Architecture
	Basic PATROL Agent
	Basic PATROL Event Manager (PEM)
	Basic PATROL Knowledge Modules
	Basic PATROL Console
	Basic iPlanet Directory PATROL Architecture
	iPlanet Directory PATROL Components

	Checking Memory Usage with pmap

	Benefits of Consolidation
	LDAP as a Consolidation Choice
	Consolidation Approaches
	Consolidation of LDAP-Enabled Applications
	Mapping Attributes

	LDAP Gateways
	LDAP Synchronization
	Password Synchronization
	NIS Extensions for Solaris
	NT Synchronization Service
	iPlanet Meta-Directory Server
	How Meta-Directory Works
	Meta-Directory Connectors
	LDAP Connector
	Database Connector
	Directory Connector for Lotus Notes
	Directory Connector for Microsoft Exchange
	Universal Connector

	Deploying iPlanet Meta-Directory

	Unified Login and Single Sign-on
	Kerberos and LDAP
	SiteMinder
	How SiteMinder Works
	Limitation of SiteMinder

	iPlanet Directory Access Router
	iDAR Overview
	iPlanet Directory Access Router Feature Set
	High Availability
	Firewall-like Security
	Client-Server Compatibility

	Windows NT Interoperability
	Windows NT Security Model
	How the NT User Account Information Is Made Available to Solaris Server
	Mapping NT User Account Information to LDAP
	How the Synchronization Service Works
	NT Synchronization Service Installation

	Windows 2000 Interoperability
	Active Directory Services Architecture
	Information Model
	LDAP or X.500 Integration
	DNS Integration
	Active Directory Naming
	Domains, Trees, and Forests
	Global Catalog

	Security Model
	Access Model
	Replication Model
	How Active Directory Clients Interact with Servers
	How Applications Access Active Directory Services

	Solaris Directory Services and Active Directory Services Interactions
	Signing On Only Once
	Joining a Windows 2000 Tree or Forest
	Specifying LDAP Referrals
	Using Windows Services in UNIX 2.0
	Using Netscape Communicator as an LDAP Client

	Configuration Overview
	Directory Server Setup
	Netscape Communicator Setup
	Directory Searches
	Other Features
	LDAP Standards Information

	Locating RFCs and Internet Drafts
	Life Cycle of a RFC
	LDAP RFCs and Internet Drafts
	LDAP RFCs
	LDAP Internet Drafts
	C API
	Java API
	Access Control
	Replication
	Controls and Extended Operations
	Authentication and Security
	Information and X.500 Documents
	The North American Directory Forum (NADF) Documents (April 1993)
	EWOS Directory Functional Standards
	Joint ISO Standards and CCITT Recommendations
	Other ISO Documents
	Additional Information

	X.500 Books
	General LDAP Books
	Introduction to Deploying LDAP
	Online Resources

	Novell Directory Services Books
	Online Resources

	DNS Books
	Online Resources

	LDAP Server Software Vendors
	LDAP Client SDKs
	LDAP v3 Result Codes
	Schema Information
	IETF Schemas
	RFC 2307 Network Information Service Schema
	RFC 2307 Draft Objectclasses
	Mail Alias Schema
	Attributes/Syntax
	Object Class

	Solaris-Specific Schemas
	Extended User Accounting Schema
	Role-Based Access Control Schema
	Solaris Client Naming Profile Schema

