

Mastering OpenLDAP

Configuring, Securing, and Integrating
Directory Services

Matt Butcher

 BIRMINGHAM - MUMBAI

Mastering OpenLDAP

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2007

Production Reference: 1230807

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847191-02-1

www.packtpub.com

Cover Image by Ronald R. McDaniel (rmcdaniel@indata.us)

Credits

Author

Matt Butcher

Reviewers

Aaron Richton

George K Thiruvathukal

Quanah Gibson-Mount

Development Editor

Douglas Paterson

Assistant Development Editor

Nikhil Bangera

Technical Editor

Ved Prakash Jha

Editorial Manager

Dipali Chittar

Project Manager

Patricia Weir

Project Coordinator

Abhijeet Deobhakta

Indexer

Bhushan Pangaonkar

Proofreader

Rebecca Paterson

Production Coordinator

Shantanu Zagade

Cover Designer

Shantanu Zagade

About the Author

Matt Butcher is the principal consultant for Aleph-Null, Inc., a systems integrator
that specializes in Free and Open Source solutions. He is also a member of the
Emerging Technologies Lab at Loyola University Chicago, where he is currently
finishing a Ph.D. in philosophy. Matt has written two other books for Packt:
Managing and Customizing OpenCms 6 Websites (ISBN: 978-1-904811-76-3), and
Building Websites with OpenCms (ISBN: 1-904811-04-3). Matt has also contributed
articles to Newsforge.com, TheServerSide.com, and LinuxDevices.com.

Anyone who actively works with Free and Open Source software
knows that any good project is the result of the contributions of a
wide variety of people. I hope it is evident in this book that I have
taken this lesson to heart. I would like to thank Bob Krumland for
introducing me to LDAP in 1997. I owe a great debt of gratitude to
Quanah Gibson-Mount and Aaron Richton, who both generously
lent their technical expertise to make this a better book. I would like
to thank Jon Hodge for his time and assistance. Also, I’d like to thank
Mark Patterson, Paul Beam, George Peavy, Ed Mattson, and Kevin
Reilly. And thanks to the members of the Emerging Technology
Lab at Loyola University, especially George Thiruvathukal for his
comments. The members of the OpenLDAP mailing list have been
tremendously helpful, especially Kurt Zeilenga, Howard Chu,
Pierangelo Masarati, and Aaron Richton. And, of course, thanks to
Claire, Anna, and Angie for their continual support, encouragement,
and crayon-colored pictures.

About the Reviewers

Aaron Richton is a Systems Administrator for the Rutgers University campus in
New Brunswick/Piscataway, NJ. He has used OpenLDAP since the 2.1 series. The
OpenLDAP servers he administers are responsible for the authentication of over
60,000 accounts. Richton holds degrees in Electrical and Computer Engineering and
Computer Science from the Rutgers University School of Engineering.

George K. Thiruvathukal Ph.D. is an associate professor of computer science
at Loyola University Chicago, where he directs the departmental computing and
infrastructure. He has held positions in industry (at Fortune 500 companies such as
R.R. Donnelley and Sons and Tellabs, both in the Chicago area) and in academia,
including the Illinois Institute of Technology and Argonne National Laboratory. He
has co-authored two books on advanced software development for Prentice Hall PTR
and Sun Microsystems press, including High-Performance Java Platform Computing:
Threads and Networking (see http://hpjpc.googlecode.com) and Web Programming
in Python (see http://slither.googlecode.com). His research interests include
parallel/distributed systems, programming languages/paradigms/patterns,
and experimental computing. His teaching interests include most of the modern
computer science curriculum and computing history. For more information, see
http://www.cs.luc.edu/gkt.

Quanah Gibson-Mount graduated from the University of Alaska, Fairbanks
with a B.S. in Computer Science. Quanah has been working with OpenLDAP since
the early stages of the OpenLDAP 2.1 release. He is currently a Principal Software
Engineer with Zimbra, Inc, where he focuses on OpenLDAP configuration and
Release Engineering. He is also the release engineer for the OpenLDAP project, and
in his spare (paid for) time teaches classes on LDAP and OpenLDAP for Symas Corp.
Prior to his employment with Zimbra, Quanah worked at Stanford University, where
one of his primary tasks was that of Directory Architect.

I'd like to thank my wife Karen for all of her support in these
many endeavors.

Table of Contents
Preface 1
Chapter 1: Directory Servers and LDAP 7

LDAP Basics 7
What is a Directory? 8
The Structure of a Directory Entry 10
A Unique Name: The DN 11
An Example LDAP Entry 12

The Object Class Attribute 14
Operational Attributes 15

The Directory Information Tree 15
What to Do with an LDAP Server 17

The History of LDAP and OpenLDAP 19
A Technical Overview of OpenLDAP 20

The Server 21
Clients 22
Utilities 22
Libraries 22

Summary 22
Chapter 2: Installation and Configuration 23

Before Getting Started 23
OpenLDAP Binaries for Operating Systems 24

Commercial OpenLDAP Distribution 24
Source Code Compilation 25

A Quick Note on Versions 25
Installation 25

Dependencies 25
Installing OpenLDAP 26

Configuring the SLAPD Server 26
Basics 28

Table of Contents

[ii]

Schemas 29
More Directives 29
Module Directives 30

Database Configuration 31
ACLs 34
Verifying a Configuration File 38

Starting and Stopping the Server 40
Using the Init Script 41
Running SLAPD Directly 41

Configuring the LDAP Clients 43
A Basic ldap.conf File 44

Size and Time Limits 46
Testing the Server 46
Summary 50

Chapter 3: Using OpenLDAP 51
A Brief Survey of the LDAP Suite 51
LDAP from the Server Side 52

SLAPD 52
The Binding Operation 53
The Search Operation 54
More Operations: Additions, Modifications, and Deletions 58
Infrequent Operations 60
SLAPD Summary 61

SLURPD 62
Creating Directory Data 62

The LDIF File Format 63
Anatomy of an LDIF File 64
Representing Attribute Values in LDIF 66

Example.Com in LDIF 69
Defining the Base DN Record 70
Structuring the Directory with Organizational Units 73
Adding User Records 78
Adding System Records 82
Adding Group Records 84

The Complete LDIF File 87
Using the Utilities to Prepare the Directory 89

slapadd 90
When Should slapadd be Used? 90
What Does slapadd Do? 91
Loading the LDIF File 91

slapindex 97
slapcat 98

Operational Attributes 99
slapacl 101

Table of Contents

[iii]

slapauth 102
slapdn 103
slappasswd 104

Storing and Using Passwords in OpenLDAP 104
Generating a Password with slappasswd 105

slaptest 107
Performing Directory Operations Using the Clients 108

Common Command-Line Flags 108
Common Flags 109
Setting Defaults in ldap.conf 110

ldapsearch 110
A Simple Search 110
Restricting Returned Fields 113
Requesting Operational Attributes 114
Searching Using a File 116

ldapadd 119
Adding Records from a File 120

ldapmodify 121
Adding a Record with ldapmodify 121
Modifying Existing Records 122
Modifying the Relative DN 125
Deleting Entire Records 128

ldapdelete 128
ldapcompare 129
ldapmodrdn 130

Modifying the Superior DN with ldapmodrdn 131
ldappasswd 133
ldapwhoami 135

Summary 136
Chapter 4: Securing OpenLDAP 137

LDAP Security: The Three Aspects 137
Securing Network-Based Directory Connections with SSL/TLS 138

The Basics of SSL and TLS 139
Authenticity 139
Encryption 141
StartTLS 142

Creating an SSL/TLS CA 143
Creating a Certificate 147

Creating a New Certificate Request 147
Signing the Certificate Request 149
Configuring and Installing the Certificates 150

Configuring StartTLS 152
Configuring Client TLS 153
Configuring LDAPS 155

Table of Contents

[iv]

Debugging with the OpenSSL Client 157
Using Security Strength Factors 157

The security Directive 158
Authenticating Users to the Directory 162

Simple Binding 162
Using an Authentication User for Simple Binding 164

SASL Binding 165
Configuring Cyrus SASL 167
Configuring SLAPD for SASL Support 168

Using Client SSL/TLS Certificates to Authenticate 175
Creating a New Client Certificate 176
Configuring the Client 178
Configuring the Server 179
Testing with ldapwhoami 181
Going Further with SASL 183

Controlling Authorization with ACLs 184
The Basics of ACLs 184
Access to [resources] 185

Access using DN 186
Access using attrs 187
Access using Filters 189
Combining Access Specifiers 190

By [who] [type of access granted] [control] 190
The Access Field 191
The who Field 195
The control Field 208

Getting More from Regular Expressions 209
Debugging ACLs 211
A Practical Example 213

Summary 217
Chapter 5: Advanced Configuration 219

Multiple Database Backends 219
The slapd.conf File 220
Creating and Importing a Second Directory 223

Performance Tuning 226
Performance Directives 226

Global Directives 227
Directives in the Database Section 233

The DB_CONFIG File 243
Setting the Cache Size 245
Configuring the Data Directory 246
Optimizing BDB/HDB Transaction Logging 246
Tuning Lock Files 248
More about Berkeley DB 248

Table of Contents

[v]

Directory Overlays 249
A Brief Tour of the Official Overlays 250
Configuring an Overlay: denyop 252

Loading the module 252
Adding the Overlay 253
Adding Overlay-Specific Directives 254

Referential Integrity Overlay 254
Configuring the Overlay 255
Modifying the Records 257
Drawbacks 260
A Useful Note 260

The Uniqueness Overlay 261
Summary 264

Chapter 6: LDAP Schemas 265
Introduction to LDAP Schemas 265

Why Do They Look So Complicated? 266
Schema Definitions 267
Object Classes and Attributes 269
Object Class Definitions 270
Attribute Definitions 274
Object Identifier Definitions 282
DIT Content Rules 284
Retrieving the Schemas from SLAPD 290

The ObjectClass Hierarchy 292
Attribute Hierarchies 293

Subordinate Attributes and Searching 294
Object Class Types: Abstract, Structural, and Auxiliary 295

The Object Class Hierarchy: An Overview 296
Abstract Classes 298
Structural Object Classes 300
Auxiliary Object Classes 305

Moving Onward 307
Schemas: Accesslog and Password Policy Overlays 307

Logging with the Accesslog Overlay 308
Loading the accesslog Module 308
Configuring the Access Log Backend 309
Creating A Directory for the Access Log Files 310
Enabling Logging for the Main Backend 311
The Log Records 313

Implementing a Complex Overlay: Password Policy 320
Setting the Global Directives in slapd.conf: Schema and Module 321
Creating a Password Policy 322
Configure the Overlay Directives 326

Table of Contents

[vi]

Test the Overlay 330
Password Policy Operational Attributes 333
Summary of ppolicy Operational Attributes 335

Creating a Schema 336
Getting an OID 337
Giving Our OID a Name 339
Creating Object Classes 340
Creating Attributes 342
Loading the New Schema 344

Troubleshooting Schema Loading 345
A New Record 345

Summary 347
Chapter 7: Multiple Directories 349

Replication: An Overview 350
SyncRepl 352

Configuring SyncRepl 353
Configuring the Master Server 354

Creating a SyncRepl User 356
Configuring the Shadow Server 357

The syncrepl Directive 359
Configuring a Referral 364

Starting Replication 365
For Larger Directories... 365

Delta SyncRepl 366
The Master Server's Configuration 366
The Shadow Server's Configuration 368

Debugging SyncRepl 369
Starting Over 369
Strategic Logging 370
A Few Common Mistakes 370

Configuring an LDAP Proxy 371
Using the LDAP Backend 372

Using Identity Management Features 374
Turning the Simple Proxy into a Caching Proxy 375

Notes on the Attribute Sets and Templates 380
A Translucent Proxy 381

Summary 386
Chapter 8: LDAP and the Web 387

The LDAP-Aware Application 387
Apache and LDAP 389

A Short Guide to Installing Apache 389
Configuring LDAP Authentication 391

Loading the Modules 392

Table of Contents

[vii]

Editing the default Configuration File 393
Other Features of the Require Parameter 400

phpLDAPadmin 401
Prerequisites 402
Installing phpLDAPadmin 402

Is Your Package Broken? 403
Configuring phpLDAPadmin 403

A Basic Look at Configuration Parameters 405
Configuring the LDAP Server Settings 409

A First Look at phpLDAPadmin 411
Navigating phpLDAPadmin 414
Viewing and Modifying a Record 416
Adding a New Record 422
Searching with phpLDAPadmin 426

Summary 430
Appendix A: Building OpenLDAP from Source 431

Why Build from Source? 431
Getting the Code 431
The Tools for Compiling 433

Build Tools 433
Installing Dependencies 436

Compiling OpenLDAP 437
Configuring 437
Building with make 439

Installation 440
Building Everything 441
Summary 442

Appendix B: LDAP URLs 443
The LDAP URL 443
Common Uses of LDAP URLs 445

Not all LDAP URLs are for Searching 445
For More Information on LDAP URLs... 446
Summary 446

Appendix C: Useful LDAP Commands 447
Getting Information about the Directory 447

The Root DSE 447
The Subschema Record 449
The Configuration Record 450

Making a Directory Backup 451
A Backup Copy of the Directory Database 451
An LDIF Backup File 452

Table of Contents

[viii]

Rebuilding a Database (BDB, HDB) 453
Step 1: Stop the Server 453
Step 2: Dump the Database 454
Step 3: Delete the Old Database Files 455
Step 4: Create a New Database 456
Step 5: Restart SLAPD 456
Troubleshooting Rebuilds 457

Summary 457
Index 459

Preface
The OpenLDAP directory server is a mature product that has been around (in
one form or another) since 1995. All of the major Linux distributions include the
OpenLDAP server, and many major applications, both Open Source and proprietary,
are directory aware, and can make use of the services provided by OpenLDAP. And
yet the OpenLDAP server seems to be shrouded in mystery, known and understood
only by the gurus and hackers. This book is meant not only to demystify OpenLDAP,
but to give the system administrator and software developer a solid understanding
of how to make use, in the practical realm, of OpenLDAP’s directory services.

OpenLDAP is an Open Source server that provides network clients with directory
services. The directory server can be used to store organizational information in a
centralized location, and make this information available to authorized applications.
Client applications can connect to OpenLDAP using the Lightweight Directory
Access Protocol (LDAP). They can then search the directory and (if they have
appropriate access) modify and manipulate records in the directory. LDAP servers
are most frequently used to provide network-based authentication services for users.
But there are many other uses for an LDAP, including using the directory as an
address book, a DNS database, an organizational tool, or even as a network object
store for applications. We will look at some of these uses in this book.

The goal of this book is to prepare a system administrator or software developer
for building a directory using OpenLDAP, and then employing this directory in
the context of the network. To that end, this book will take a practical approach,
emphasizing how to get things done. On occasion, we will delve into theoretical
aspects of LDAP, but such discussions will only occur where understanding the
theory helps us answer practical questions.

Administrator
高亮文本

Administrator
高亮文本

Administrator
高亮文本

Preface

[2]

What This Book Covers
In Chapter 1 we look at general concepts of directory servers and LDAP, cover the
history of LDAP and the lineage of the OpenLDAP server, and finish up with a
technical overview of OpenLDAP.

The next set of chapters focus on building directory services with OpenLDAP, and
we take a close look at the OpenLDAP server in these chapters.

Chapter 2 begins with the process of installing OpenLDAP on a GNU/Linux server.
Once we have the server installed, we do the basic post-installation configuration
necessary to have the server running.

Chapter 3 covers the basic use of the OpenLDAP server. We use the OpenLDAP
command-line tools to add records to our new directory, search the directory, and
modify records. This chapter introduces many of the key concepts involved in
working with LDAP data.

Chapter 4 covers security, including handling authentication to the directory,
configuring Access Control Lists (ACLs), and securing network-based directory
connections with Secure Sockets Layer (SSL) and Transport Layer Security (TLS).

Chapter 5 deals with advanced configuration of the OpenLDAP server. Here, we take
a close look at the various backend database options and also look at performance
tuning settings, as well as the recently introduced technology of directory overlays.

Chapter 6 focuses on extending the directory structure by creating and implementing
LDAP schemas. Schemas provide a procedure for defining new attributes and
structures to extend the directory and provide records tailor-made to your needs.

Chapter 7 focuses on directory replication and different ways of getting directory
servers to interoperate over a network. OpenLDAP can replicate its directory
contents from a master server to any number of subordinate servers. In this chapter,
we set up a replication process between two servers.

Chapter 8 deals with configuring other tools to interoperate with OpenLDAP. We
begin with the Apache web server, using LDAP as a source of authentication and
authorization. Next, we install phpLDAPadmin, a web-based program for managing
directory servers. Then we look at the main features, and do some custom tuning.

The appendices include a step-by-step guide to building OpenLDAP from source
(Appendix A), a guide to using LDAP URLs (Appendix B), and a compendium of
useful LDAP client commands (Appendix C).

Preface

[3]

What You Need for This Book
To get the most from this book, you will need the OpenLDAP server software, as well
as the client command-line utilities. These are all freely available (as Open Source
software) in source code form from http://openldap.org. However, you may
prefer to use the version of OpenLDAP provided by your particular Linux or
UNIX distribution.

While OpenLDAP will run on Linux, various versions of UNIX, MacOS X, and
Windows 2000 and so on, the examples in this book use the Linux operating system.

Since the basic LDAP tools are command-line applications, you will need basic
knowledge of getting around in a Linux/UNIX shell environment. The book does
not cover the network protocol in detail, and it is assumed that the reader has a basic
understanding of client-server network models. It is also assumed that the reader has
a basic understanding of the structure of web and email services.

Conventions
In this book you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "The
telephoneNumber attribute has two values, each representing a different
phone number."

A block of code will be set as follows:

########
ACLs
########
access to attrs=userPassword
 by anonymous auth
 by self write
 by * none

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

directory /var/lib/ldap
directory /usr/local/var/openldap-data
index objectClass sub,eq

index cn sub,eq

Preface

[4]

Any command-line input and output is written as follows:

 $ sudo slaptest -v -f /etc/ldap/slapd.conf

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"Clicking the Advanced Search Form link at the top of the simple search screen will
load a search screen with more options".

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata are added to the list of existing errata. The existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Directory Servers and LDAP
In this first chapter, we will cover the basics of LDAP. While most of the chapters
in this book take a practical hands-on approach, this first chapter is higher-level
and introductory in nature. We will get introduced to directory servers and
LDAP, including commonly-used directory terminology. We will also see how the
OpenLDAP server fits into the directory landscape, where it came from, and how it
works. Here are the main topics covered in this chapter:

The basics of LDAP directories
The history of LDAP and the OpenLDAP server
A technical overview of the OpenLDAP server

LDAP Basics
The term LDAP stands for Lightweight Directory Access Protocol. As the name
indicates, LDAP was originally designed to be a network protocol that provided an
alternative form of access to existing directory servers, but as the idea of LDAP—and
the technologies surrounding it—matured, the term LDAP became synonymous
with a specific type of directory architecture. We use the term LDAP when
referring to directory services that comply with that architecture, as defined in the
LDAP specifications.

LDAP is standardized. The body of LDAP standards, including the
network protocols, the directory structure, and the services provided
by an LDAP server, are all available in the form of RFCs (Requests For
Comments). Throughout this book, I will reference specific LDAP RFCs as
authoritative sources of information about LDAP.

•

•

•

Directory Servers and LDAP

[8]

The current version of LDAP is LDAP v.3 (version 3), a standard developed in
1997 as RFC 2251, and widely implemented throughout the industry. The original
specification has recently (June 2006) been updated, and RFCs 4510-4519 provide a
clarified and much more cohesive specification for LDAP.

While directories in general, and LDAP directories in particular, are by no means
novel or rare in the information technology world, the driving technologies are
certainly not as well understood as near relatives like the relational database. One of
the goals of this chapter (and of this book in general) is to introduce and clarify the
function and use of an LDAP directory.

In this section, we will introduce some of the concepts that are important for
understanding LDAP. The best place to start is with the idea of the directory.

What is a Directory?
When we think of a directory, we conjure images of telephone directories or
address books. We use such directories to find information about individuals or
organizations. For instance, I might thumb through my address book to find the
phone number of my friend Jack, or skim through the telephone directory looking
for the address of Acme Services.

A directory server is used this way, too. It maintains information about some set of
entities (entities like people or organizations), and it provides services for accessing
that information.

Of course, a directory server must also have means for adding, modifying, and
deleting information, as well. But, even as a telephone directory is assumed to be
primarily a resource for reading, a directory server's information is assumed to be
read more often than written. This assumption about the use of a directory server is
codified, or summarized, in the phrase "high-read, low-write". Consequently,
many applications of LDAP technology are geared toward reading and searching
for information.

While many directory servers have been optimized for fast reading at
the expense of fast modification, this is not necessarily the case with
OpenLDAP. OpenLDAP is efficient on both counts, and it can be used for
applications that require frequent writing of data.

Chapter 1

[9]

Some sorts of directory servers (envision a simple server-based implementation of
an address book) simply provide a narrow and specific service. A single-purpose
directory server, such as an online address book, might store only a very specific
type of data, like phone numbers, addresses, and email information for a set of
people. Such directories are not extensible. Instead, they are single-purpose.

But LDAP (and its X.500 predecessor) was designed to be a general-purpose directory
server. It has not been designed with the purpose of capturing a specific type of
data (like telephone numbers or email addresses). Instead, it was designed to
give implementers the ability to define—clearly and carefully—what data the
directory should store.

Such a generic directory server ought to be able to store many different kinds of
information. For that matter, it should be able to store different kinds of information
about different kinds of entities. For example, a general purpose directory should
be able to store information about entities as diverse as people and igneous rock
samples. But we don't want to store the same information about people as we do
about rocks.

A person might have a surname, a phone number, and an email address, as shown in
the following figure:

Given Name
Surname
Phone Number
Email

ID Number
Location
Hardness
Malleability

Human Rock

A rock sample might have an identification number, information about its
geographical origin, and a hardness classification.

LDAP makes it possible to define what a person's entry would look like, and what a
rock's entry would look like. Its general architecture provides the capabilities needed
for managing large amounts of diverse directory entries.

In the remainder of this section we will examine how information in an LDAP
directory is structured. We will start by looking at the idea of a directory entry,
with a distinguished name and attributes. Then, we will look at how entries are
organized within the directory information tree. By the end of this section, you
should understand the basic structure of information within an LDAP directory.

Directory Servers and LDAP

[10]

The Structure of a Directory Entry
Let's continue with our comparison of a directory server and a phone book. A phone
book contains a very specific type of information, organized in a very specific way,
and designed to fulfil a very specific purpose. Here's an example phone book entry:

Acme Services
123 W. First St.
Chicago, IL 60616-1234
(773) 555-8943 or (800) 555 9834

As mentioned earlier, this sort of directory has specific information, organized
in a specific way, designed to fulfill a specific purpose: it is information about
how to contact a specific organization (Acme Services) organized in a familiar
pattern (address and phone number). And it is designed so that a person, having a
particular name in mind, can quickly scan through the directory (which is ordered
alphabetically by organization name), and find the desired contact information.

But there are a few things to note about the phone book entry:

The data is arranged for searching by only one value: the name of the
organization. If you should happen to have the phone number of the
organization, but not the name, searching the phone book for the matching
telephone number in order to ascertain the name would be a taxing, and
probably futile task.
The format of the entry is sparse, and requires that the reader will be able to
recognize the format and supply auxiliary information required for making
sense of the data. One accustomed to reading phone book entries will be able
to extrapolate from the previous entry, and identify the information this way:

 Organization Name: Acme Services
 Street Address: 123 West First Street
 City: Chicago
 State: Illinois
 Postal Code: 60616-1234
 Country: USA
 Phone Number: +1 773 555 8943
 Phone Number: +1 800 555 9834

•

•

Chapter 1

[11]

In this example, the meaning of the information is made more explicit. Each value
is preceded by a name that identifies the type of information given. Acme Services
is now identified as the name of an organization. Information is also broken up into
smaller chunks (city and state on separate lines), and some information which was
implicit in the previous entry (such as the country) has been made explicit. And
where two pieces of information (the two phone numbers) were initially compressed
onto one line, they have now been separated, making the information more explicit.

This form of entry is closer to the way a record would look in an LDAP directory.
But there is still another issue to address. How can we distinguish between two very
similar records?

For example, say we have a telephone directory for the entire state of Illinois. And in
Illinois, we have a company called Acme Services located in the city of Chicago, and
another company named Acme Services located in the city of Springfield.

Simply knowing the company name alone is not sufficient information to isolate
just one entry in the phone book. To do that, we would need some sort of unique
name—a name that exists only once in the entire directory, and which can be used to
refer to one specific entry.

A Unique Name: The DN
One way of distinguishing between two very similar records is to create a unique
name for each record in the directory. This is the strategy adopted by LDAP�� eachcord in the directory. This is the strategy adopted by LDAP�� eachord in the directory. This is the strategy adopted by LDAP�� each
record in the directory has a distinguished name. The distinguished name is an
important LDAP term�� usually it is abbreviated as DN.

In an LDAP directory, the directory designer is the one who decides what
components will make up a DN, but typically the DN reflects where the record
is in the directory (a concept we will examine in the next part), as well as some
information that distinguishes this record from other near records.

A DN then, is composed of a combination of directory information, and looks
something like this:

dn: o=Acme Services, l=Chicago, st=Illinois, c=US

This single identifier is sufficient to pick it out from the Springfield company by
the same name. The DN of the Springfield company named Acme Services would,
according to the previous scheme, look something like this:

dn: o=Acme Services, l=Springfield, st=Illinois, c=US

Directory Servers and LDAP

[12]

As may be evident from this example, when defining what fields will compose a
DN, it is necessary to make sure that these fields will be fine-grained enough to
distinguish between two different entries. In other words, all it takes to break the DN
syntax is for another Acme Services to appear in Chicago.

DNs are not case sensitive
Some parts of LDAP records are case sensitive, and others are not. DNs,
for example, are not case sensitive.

The DN is one important element in an LDAP entry. Next, we will take a closer look
at the idea of an LDAP entry, and the components that make up an entry.

An Example LDAP Entry
Let's take a specific look at what an LDAP entry looks like.

An LDAP entry, or record, is the directory unit that stores information about an
individual item in the directory. Again, drawing on ideas found in other directories
is useful: an entry in a telephone directory describes a specific unit of information
in that directory. Likewise, a record in an LDAP directory contains information
about a specific unit, though (since LDAP is generic) the exact target of that unit is
unspecified. It might be a person, or a company, or a rock, or some virtual entity like
a Java object.

Originally, the LDAP specification stated that an entry had to have a
correlate in the real world. While this may have been the intention of
early directory server developers, there is no reason why, in practice,
a directory server entry must correlate with anything external to the
directory—real or virtual.

An entry is composed of a DN and one or more attributes. The DN serves as a
unique identifier within an LDAP directory information tree. Attributes provide
information about that entry. Let's convert our previous telephone directory entry
into an LDAP record:

dn: o=Acme Services, l=Chicago, st=Illinois, c=US
o: Acme Services
postalAddress: 123 West First Street
l: Chicago
st: Illinois

Chapter 1

[13]

postalCode: 60616-1234
c: US
telephoneNumber: +1 773 555 8943
telephoneNumber: +1 800 555 9834
objectclass: organization

The first line is the DN. All other lines in this record represent attributes.

Note that the main difference between this example and the previous telephone
directory examples we have examined is the names of each field in the entry; these
are now compacted into a form that the directory can easily interpret.

These attribute names, like o and postalAddress, refer to well-defined
attribute definitions contained in an LDAP schema. They cannot be
"invented" on the fly, or made up as you go. Creating new attributes
requires writing a schema. Schemas are covered in Chapter 6 of this book.

An attribute describes a specific type of information. There are eight attributes here
in our example, representing the following:

1. Organization Name (o)
2. Mailing address (postalAddress)
3. Locality (l), which may be the name of a city, town, village, and so forth
4. State or Province (st)
5. Postal Code or ZIP Code (postalCode)
6. Country (c)
7. Telephone Number (telephoneNumber)
8. Object Class (objectclass), which specifies what type (or types) of record

this entry is

An attribute may have one or more attribute names, where these names are
synonyms. For example c and countryName are both names for the attribute type
that identify a country. Both identify the same information, and LDAP will treat the
two names as describing the same type of information.

In any given record, an attribute may have one or more values (assuming the
attribute's definition allows more than one value). The record above has only one
attribute that contains more than one value. The telephoneNumber attribute has two
values, each representing a different phone number.

Directory Servers and LDAP

[14]

Attributes are defined in attribute definitions, which will be discussed at length in
Chapter 6. These definitions provide information about the syntax and length of the
information stored in values, all of the attribute names that apply to that attribute,
whether or not the attribute can have multiple values, and so on. Records stored in
LDAP directories must adhere to the attribute definitions.

For example, the attribute definition for a country name gives the following
information:

The names c and countryName can refer to this object. The default name is c.
A country name is stored as a string.
When doing matches on the attribute values, case can be ignored.
Matching can be done on either the entire string (for example Canada) or
using substrings (Ca*).
A country name cannot be longer than 32768 characters.
Only one country name is allowed per record.

All of this information is packed into a compact schema definition that the directory
server reads when it starts.

Attribute names are not case sensitive. The attribute name o is treated as
synonymous with the name O. Likewise, GivenName, givenname, and givenName are
all evaluated as the same attribute name.

As for the values of attributes, case sensitivity depends on the attribute definition.
For example, the values of DNs and objectclass attributes are not case sensitive,
but a URI (labeledURI) attribute value is case sensitive.

The Object Class Attribute
The last attribute in the given record is the objectclass attribute. This is a special
attribute that provides information about what type of record (or entry) this is.

An object class determines what attributes may be given to a record. The object class,
organization, indicates that this record describes an organization. According to
this object class's definition, an organization record can contain a locality (l), and a
postal code (postalCode), and all of the other attributes present in the record.

One of the fields, the organization name (o), is required for any entry with an
organization object class.

The object class also allows several other attributes that are not present in our record,
like description and facsimileTelephoneNumber.

•

•

•

•

•

•

Chapter 1

[15]

Given the object class attribute, which is required for any entry, the directory can
determine what attributes must, can, and cannot be present in the entry.

As with other attributes, the objectclass attribute may have multiple values,
though which values may be given are subject to the object class definition and
schema definition—the rules about what attributes belong to what object classes,
and how these object classes can be combined.

An LDAP Schema consists of rules that define the types of records in a
directory, and how those records might relate to each other. The main
two items stored in a schema (though there are others) are attribute
type definitions and object class definitions. Chapter 6 of this book is
devoted to schemas.

While a record may have multiple object classes, one of these object classes must be
the structural object class for the record. A structural object class determines what
type of object the record is. We will talk about structural object classes later in
the book.

The LDAP record then, is composed of a single DN, and one or more attributes
(remember, objectclass is required). The attributes contain information about the
entity that is identified by the DN.

An LDAP directory contains an aggregation of entries, arranged in one or more
hierarchies in a tree structure.

Operational Attributes
In addition to regular attributes, the directory server may also attach special
operational attributes to an entry. Operational attributes are used by the directory
server itself to store information about entries. Such attributes are not designed
for use by end users (though on occasion they can be useful), and are usually not
returned during LDAP searches.

At various points in this book, we will make use of operational attributes. But most
of the time, when we talk about attributes, we are talking about regular attributes.

The Directory Information Tree
So far, we have been comparing an LDAP directory to an address book or a
telephone directory. But now I am going to introduce one of the primary differences
between the structure of the data in an LDAP directory server, and that of many
other forms of directories.

Directory Servers and LDAP

[16]

The information in a telephone directory is typically stored in one long alphabetical
list. But in an LDAP directory the organizational structure is more sophisticated.

Information in an LDAP directory is organized into one or more hierarchies where,
at the top of the hierarchy, there is a base entry, and other entries are organized in
tree-like structures beneath the base entry. Each node on the hierarchy is an entry,
with a DN and more than one attributes.

This hierarchically organized collection of entries is called a directory information
tree, sometimes referred to simply as a directory tree or DIT.

To understand this method of organizing information, consider the organizational
chart of a company.

The top of the hierarchy is the company itself. Beneath this, there are a number
of departments and organizational units, and beneath these are the employees,
contractors, and other individuals with a formal affiliation to the company. We can
draw this as a hierarchy:

Accounting Human
Resources

Acme Services

Barbara

Marketing

Michael

LDAP directories store data in hierarchical relationships, too. At the top of the
directory information tree is the root entry. Beneath that is a subordinate entry,
which, in turn, may have its own subordinate entries. Each of these records has its
own DN, and its own attributes.

A File System Analogy
Most modern file systems represent data in hierarchies too.
For example, the directory /home may have multiple subdirectories:
/home/mbutcher, /home/ikant, /home/dhume. We can say that /home
has three subordinates, but that each of those has one superior (the /home
directory). When thinking about LDAP directory trees, it may help to
compare them to the layout of a file system.

Chapter 1

[17]

Adapting this to the previous example, we could easily create an LDAP directory
information tree that represented the organizational chart:

ou=Accounting ou=Human
Resources

o=Acme Services, I=Chicaco, st=Illinois, c=US

uid=Barbara

ou=Marketing

uid=Michael

Base DN

Subordinate
Entries

Su
bo
rd
in
at
e
to
Su
pe
rio
r

(C
hi
ld
to
P a
re
nt
)

Su
pe
rio
rt
o
Su
bo
rd
in
at
e

Note that the DN of each entry contains information about its superior entry (the
record above it). In fact, a DN is composed of two parts: the first part is the relative
DN (RDN), and contains one or more attributes from the entry. The second part is
the full DN of the superior entry. We will look at this relationship further in
Chapter 3.

When we create our directory in the next few chapters, we will create a tree-like
structure of records.

You should now have a basic idea of how a directory is represented in a directory
information tree. Records, consisting of a DN and some attributes, are organized in
a hierarchy. At the top of the hierarchy is the base entry, and beneath that entries are
organized into branches.

What to Do with an LDAP Server
I've given a description of what an LDAP directory is, but it is also helpful to look at
what an LDAP directory is used for. What is the function of an LDAP server? What
problem is it intended to solve?

The first, and most obvious, answer is that LDAP is designed to provide a digital
directory—an online presentation equivalent to a telephone directory or address
book. Of course, there is some truth to this, and LDAP servers can indeed be used in
this way. But so can relational databases and even more basic data structures.

Directory Servers and LDAP

[18]

We could expand on this answer, and point out that LDAP provides a robust
layer of services—searching with complex filters, representing complex entities
with attributes, allowing fine-grained access to data, and so on—that provide
sophisticated directory services.

A more classical explanation, one rooted in the historical development of LDAP out
of the X.500 directory, would be that LDAP is designed to represent organizations,
including their structure, their physical assets, and their personnel. LDAP, by this
account, isn't so much a fancy telephone directory as it is an enterprise management
tool. In fact, this is one of the more common ways to use LDAP directories.

The most common use of an LDAP, a use based on a conception of LDAP as a
narrow type of enterprise management tool, is as a central authority on network
users, groups, and accounts. An LDAP directory stores information on each user
account for the network—information like username, password, full name, and
email address. Other services on the network, from workstations to email servers
to web applications, can use LDAP as an authoritative source of user information.
Applications can authenticate users against the directory. A single user account can
be shared across multiple (perhaps all) enterprise applications.

Finally, there is a more generic, or abstract, view of the function of LDAP services.
LDAP is nothing other than a special sort of database that organizes data into tree
structures, like a file system hierarchy. This view is more easily seen by comparing
an LDAP directory to a relational database (RDB) system.

Relational databases store information in tables, and tables are composed of records.
Relationships, in RDBs, are established between records in different tables, and there
are numerous forms of relationship: one to many, one to one, many to one, and so
on. RDBs support reading and writing operations on data, typically implemented
through some version of SQL (Standard Query Language), and they typically listen
on network connections, making data available to other applications on the network.

Compared to an RDB, LDAP can also be seen as a storage system. Rather
than presenting data in tabular structures, though, LDAP stores entries in a
hierarchy (like a file system). The basic relationships in an LDAP consist of the
superior-to-subordinate relation (one to many), and the subordinate-to-superior
relation (one-to-one), though other relationships can be used.

Other Relationships in LDAP
While the superior/subordinate relationships are the most commonly
used, they are not the only ones supported. Relationships among arbitrary
entries within the database are often modeled by linking DNs together
using attributes. We will examine this use in detail when talking about
groups in Chapter 4.

Chapter 1

[19]

Reading and writing to the database are supported through LDAP operations with
sophisticated filters and data structures like LDIF (LDAP Data Interchange Format).
And LDAP directories, like their RDB counterparts, often listen on network sockets
to provide services to other applications.

I have suggested some different views of the purpose of LDAP. Is any one of
these the correct answer? No. Each of these uses of LDAP is legitimate, and LDAP
directories can be used to address a broad range of problems.

The History of LDAP and OpenLDAP
At first glance, the term LDAP seems misleading. When we talk, for instance, about
the primary protocol for the web, HTTP (HyperText Transfer Protocol), we are
talking about the way that web applications transfer information across the network.
We are not talking about the format of the data that is moved across the network, nor
are we talking about how that data is stored on or retrieved from the server.

But when we talk about LDAP, we are usually talking not only about the network
protocol, but about a particular kind of server that stores data of a well-defined
format inside of a special database. There is a historical reason for this seemingly
misleading name.

Originally, LDAP was just a network protocol used to get data out of an X.500
directory (a directory server architecture, designed in the 1980s and standardized in
1988). This was the intent of Yeong, Howes, and Killie when they initially drafted the
LDAP specification as RFC 1487 in 1993.

About RFCs
RFCs (Requests for Comments) are a series of technical documents,
usually specifying standards. Each RFC is identified by number, which are
organized sequentially—earlier RFCs have lower numbers. There are many
websites that make the RFC database, in whole or in part, available. One
exemplary source is the RFC Editor (http://www.rfc-editor.org),
which is used in this book.

The first LDAP servers were gateways to X.500 directories, but these servers quickly
evolved into full-fledged directory servers. Tim Howes and his colleagues at the
University of Michigan created the Open Source University of Michigan LDAP
Implementation, which became the reference implementation for other LDAP servers.

Historical information on the University of Michigan LDAP
project is still available online:
http://www.umich.edu/~dirsvcs/ldap/ldap.html

Directory Servers and LDAP

[20]

As the University of Michigan's LDAP server matured, a wealth of new standards
was created. LDAP picked up industry momentum. Tim Howes was hired by
Netscape, and LDAP went mainstream.

By the late 1990's, Netscape, Novell, Oracle, and Microsoft (among others) all touted
LDAP offerings. RFC 2251, released in 1997, standardized LDAPv3, which made vast
improvements to the earlier LDAP standards.

The market for LDAP servers matured, but the University of Michigan project lost
momentum. Key developers had left the university to move along to other projects.

In 1998 the OpenLDAP project was started by Kurt Zeilenga. Soon after, Howard
Chu (formerly of the University of Michigan, and the current architect of the project)
joined. They rescued the University of Michigan's code base, beginning development
anew. The result, OpenLDAP 2.0, was highly successful, and made its way into
almost every major Linux distribution.

A complete list of OpenLDAP contributors, from the project's inception to
the present, can be found at http://www.openldap.org/project/.

Since the late '90's, OpenLDAP has continued to mature, overseen by the OpenLDAP
Foundation, and supported by contributions from industry sponsors. As of this
writing, version 2.3 is the stable release, and version 2.4 is in the beta stages.

As was the intent with the University of Michigan LDAP server, OpenLDAP still
adheres closely to the LDAP standards. In fact, Kurt Zeilenga is responsible for many
of the updates made to the LDAP standards in June 2006.

But in addition to its high degree of standards compliance, OpenLDAP is also one of
the fastest directory servers in the market, far outpacing offerings from other Open
Source directory server implementations.

A Technical Overview of OpenLDAP
This book is a practically oriented technical book. It is designed to help you get
OpenLDAP up and running, and to help you integrate LDAP into your
own applications.

We will now begin this transition from the high-level material presented earlier to
a more practical examination of the OpenLDAP suite of packages. First, let's take a
brief look at the technical structure of OpenLDAP.

Chapter 1

[21]

The OpenLDAP suite can be broken up into four components:

Servers: Provide LDAP services
Clients: Manipulate LDAP data
Utilities: Support LDAP servers
Libraries: provide programming interfaces to LDAP

In the course of this book, we will look at all four of these categories. Here, we will
just get an overview:

Custom LDAP
Application

Connect
by LDAP
Protocol

Direct access

Idapsearch Client

slapcat Utility

Idapmodify Client

SLAPD Server

Directory
Data

OpenLDAP
Library

This diagram explains how these four elements relate to each other.

The Server
The main server in the LDAP suite is SLAPD (the Stand-Alone LDAP Daemon).
This server provides access to one or more directory information trees. Clients
connect to the server over the LDAP protocol, usually using a network-based
connection (though SLAPD provides a UNIX socket listener, too).

A server can store directory data locally, or simply access (or proxy access) to
external sources. Typically, it provides authentication and searching services, and
may also support adding, removing, and modifying directory data. It provides
fine-grained access control to the directory.

SLAPD is a major focus of this book, and we will discuss it in detail in the chapters
to come.

•
•
•
•

Directory Servers and LDAP

[22]

Clients
Clients access LDAP servers over the LDAP network protocol. They function by
requesting that the server performs operations on their behalf. Typically, a client will
first connect to the directory server, then bind (authenticate), and then perform zero
or more other operations (searches, modifications, additions, deletions, and so on)
before finally unbinding and disconnecting.

Utilities
Unlike clients, utilities do not perform operations using the LDAP protocol. Instead,
they manipulate data at a lower level, and without mediation by the server. They are
used primarily to help maintain the server.

Libraries
There are several OpenLDAP libraries that are shared between LDAP applications.
The libraries provide LDAP functions to these applications. The clients, utilities, and
servers all share access to some of these libraries.

Application Programming Interfaces (APIs) are provided to allow software
developers to write their own LDAP-aware applications without having to re-write
fundamental LDAP code.

While the APIs provided with OpenLDAP are written in C, the OpenLDAP project
also provides two Java APIs. These Java libraries are not included in the OpenLDAP
suite, and are not covered in this book. Both however, can be retrieved from the
OpenLDAP website: http://openldap.org.

As we move on through this book we will examine each of these components of the
LDAP architecture in detail.

Summary
In this chapter we have covered the basics of LDAP directories in general, and of
the OpenLDAP server in particular. We have covered the history of LDAP, the
important terminology, and some of the high-level technical aspects of OpenLDAP.
Now we are ready to start applying this knowledge.

In the next chapter we will turn our attention toward the process of installing and
configuring OpenLDAP.

Installation and Configuration
In this chapter we will walk through the process of installing and configuring the
OpenLDAP suite of tools. Here we will only cover basic configuration of the SLAPD
server. This will serve as a base for subsequent chapters (particularly Chapters 4 to
7), where we will explore advanced configuration options. The specific topics that we
will cover include:

Installing binary OpenLDAP packages
Configuring the LDAP server with the slapd.conf file
Verifying the slapd.conf configuration with slaptest
Starting and stopping the server
Configuring client tools with the ldap.conf file
Fetching the root DSE entry from the directory with ldapsearch

Before Getting Started
OpenLDAP is maintained by the OpenLDAP Foundation. The foundation maintains
a suite of tools that we will call as OpenLDAP suite. As we saw in Chapter 1, the
OpenLDAP suite includes the following classes of tools:

Daemons (slapd and slurpd)
Libraries (notably libldap)
Client applications (ldapsearch, ldapadd, ldapmodify, and others)
Supporting utilities (slapcat, slapauth, and others)

The official OpenLDAP source distribution includes all of these in one download.
Various binary versions however, may break these out into sub-packages.
Commonly the suite is split into three packages: libraries, clients, and servers.

•

•

•

•

•

•

•

•

•

•

Administrator
高亮文本

Installation and Configuration

[24]

OpenLDAP compiles and runs on a wide variety of operating systems. However,
the OpenLDAP project itself does not provide binary versions of their software. As
a result, different vendors and operating system maintainers compile and provide
their own binary versions. There are versions of OpenLDAP compiled for most
UNIX variants (including Mac OS X), as well as versions for the Windows operating
system. Some binary distributions even come with commercial support.

OpenLDAP Binaries for Operating Systems
In this book, we will be using Ubuntu Linux as the operating system of choice.
Ubuntu is a GNU/Linux distribution based on the venerable Debian Project. Like
Debian (and the multitude of other Debian-based distributions) Ubuntu uses the
Debian package format. Thus, if you are using another Debian-based distribution,
the installation process should be largely familiar.

Ubuntu is a user-friendly Linux distribution. You can learn more about
Ubuntu at http://www.ubuntu.com/. To learn more about the Debian
Project, on which Ubuntu is based, visit http://debian.org/.

Almost every major Linux and BSD distribution includes official support for
OpenLDAP. You may want to consult the documentation for your chosen
distribution to find out more information on getting and installing OpenLDAP. In
some cases, OpenLDAP is installed with the base operating system.

For Windows, Mac, and other variants of UNIX, the best way to find a list of available
binary packages is by perusing the list of distributions maintained in the OpenLDAP
Faq-O-Matic (http://www.openldap.org/faq/data/cache/108.html).

Commercial OpenLDAP Distribution
If you need a commercially supported OpenLDAP distribution, you may want to
consider the offerings from Symas. Symas (http://www.symas.com/) is owned
and operated by many of the same folks who contribute to the OpenLDAP suite.
They provide a commercial binary version of the OpenLDAP suite, distributed as
Connexitor Directory Services (CDS).

Several different CDS editions are available, with each edition tuned and optimized
for specific organizational needs. Their Platinum Edition, for instance, is optimized for
directories with more than 150 million records! Symas also provides LDAP training,
maintenance and support services, and consulting.

Chapter 2

[25]

Source Code Compilation
Instead of installing a binary file, you may wish to simply compile the OpenLDAP
source code yourself. This process is outlined in simple steps in Appendix A of
this book.

The primary advantage of building from source code is that you will benefit from
many improvements long before these revisions are made available in mainstream
packages. The focus of development on the stable branch of OpenLDAP is bug fixes.
Thus, building from source generally improves OpenLDAP stability.

A Quick Note on Versions
Currently, the stable branch for OpenLDAP is 2.3 branch (2.4 is in early beta).
However, some Linux distributions still use the aging 2.2 version, originally released
in 2003. If the latest package for your chosen operating system is still in the 2.2
branch, you may want to consider looking for unofficial versions of 2.3 for your
platform, or even compiling a custom binary (see Appendix A).

Installation
In this section, we will walk through the process of installing on a system running
Ubuntu Linux 7.04. Later, Ubuntu distributions will likely follow the same
installation pattern.

Dependencies
The basic OpenLDAP configuration in Ubuntu requires a few extra libraries and
packages. These are as follows:

The Berkeley Database (bdb4) version 4.2 (but not 4.3, which has stability
issues): In the Ubuntu default configuration, OpenLDAP stores the directory
inside a BDB database. The Berkeley Database is often simply called BDB.
The OpenSSL libraries: These provide SSL and TLS security. SSL and TLS
provide encryption for network connections to the directory.
The Cyrus SASL library: This provides support for secure
SASL authentication.
The Perl programming language: This can provide custom
back-end scripting.
The iODBC database connectivity layer: OpenLDAP can store the directory
in a relational database (RDBMS). The iODBC library is used to connect to
the RDBMS.

•

•

•

•

•

Administrator
高亮文本

Administrator
高亮文本

Administrator
高亮文本

Installation and Configuration

[26]

OpenLDAP also relies on some standard system library packages (such as libc6)
that are installed on all UNIX/Linux distributions. In its default installation, Ubuntu
includes BDB, OpenSSL, and Perl. Installation of other dependencies is handled
automatically by the package manager, so don't worry about manually installing any
of these.

Installing OpenLDAP
Like many other distributions, Ubuntu breaks OpenLDAP up into small packages.
The daemons (slapd and slurpd) are packaged in the slapd package. The clients are
packaged in ldap-utils, and the libraries are packaged in libldap-2.3-0. When
Ubuntu 7.04 was released, OpenLDAP version 2.3.30 was provided. As security
fixes are made, Ubuntu may release newer versions via online updates. While legacy
2.2.26 packages are still available, they should be avoided.

To install Ubuntu we can use the Synaptic graphical installer or any of the
command-line package management utilities. For the sake of simplicity, we will use
apt-get. This will download all of the necessary packages (including dependencies)
from the official Ubuntu repository and install them for us. Note that installing
this way will require access to the Internet (or, alternatively, to some other form
of Ubuntu distribution media, such as a CD-ROM). We need to run the
following command.

 $ sudo apt-get install libldap-2.3-0 slapd ldap-utils

It may take a little while for the packages to download and install.

Once apt-get is done, the LDAP server and all of its clients should be installed.
Next, we will begin the process of configuring the SLAPD server.

Configuring the SLAPD Server
There are two daemons that come packaged with OpenLDAP: SLAPD server and
SLURPD server. SLAPD, sometimes called the OpenLDAP server, handles client
requests and directory management, while SLURPD manages replicating changes
to other directories. SLURPD is now deprecated in favor of a newer, more robust
replication process, and will be removed from future versions of OpenLDAP.

In the next chapter we will talk more about what these two daemons do. Right now
we are only concerned with getting the SLAPD server up and running so we can
start connecting to (and using) our directory.

Chapter 2

[27]

SLAPD has one main configuration file and any number of auxiliary configuration
files. In this section we are going to edit the main configuration file. It is called
slapd.conf, and in Ubuntu's distribution it is located at /etc/ldap/ (if you built
from source, the default location is /usr/local/etc/openldap/).

Use find . –type f –name slapd.conf or if the locate service is
enabled, you can use locate slapd.conf.

While Ubuntu provides a good basic slapd.conf file that you can work with, if
you choose, we will not use it. For our purpose, we will start with an empty file
and create a slapd.conf configuration from scratch. You may want to make a
backup copy of the original slapd.conf file before we begin. You can do this from a
terminal by running:

 $ sudo mv /etc/ldap/slapd.conf /etc/ldap/slapd.conf.orig

This will rename the file from slapd.conf to slapd.conf.orig.

By default, Ubuntu does not activate the root account. Any time you
want to perform a function as the superuser, you should use sudo.
However, if you need to become root (to run, for instance, several
commands in sequence), you can type sudo su.

Now we are ready to create our new slapd.conf file. Open the text editor and create
a basic slapd.conf file:

slapd.conf - Configuration file for LDAP SLAPD
##########
Basics
##########
include /etc/ldap/schema/core.schema
include /etc/ldap/schema/cosine.schema
include /etc/ldap/schema/inetorgperson.schema

pidfile /var/run/slapd/slapd.pid
argsfile /var/run/slapd/slapd.args
loglevel none

modulepath /usr/lib/ldap
modulepath /usr/local/libexec/openldap
moduleload back_hdb

##########################
Database Configuration
##########################

Administrator
高亮文本

Administrator
高亮文本

Installation and Configuration

[28]

database hdb
suffix "dc=example,dc=com"
rootdn "cn=Manager,dc=example,dc=com"
rootpw secret
directory /var/lib/ldap
directory /usr/local/var/openldap-data
index objectClass,cn eq

########
ACLs
########
access to attrs=userPassword
 by anonymous auth
 by self write
 by * none

access to *
 by self write
 by * none

There are three headings in the file (Basics, Database Configuration, and ACLs),
and we will now see each heading in detail.

If you built from source, the paths in the above file need to be adjusted
(or, alternately, you can relocate files on your file system). Look in the
/usr/local portion of your file system to locate the correct location (for
example, modulepath is in /usr/local/libexex/openldap/).

Basics
The first section of the configuration file, labeled Basics, contains a variety of
configuration parameters:

##########
Basics
##########
include /etc/ldap/schema/core.schema
include /etc/ldap/schema/cosine.schema
include /etc/ldap/schema/inetorgperson.schema
pidfile /var/run/slapd/slapd.pid
argsfile /var/run/slapd/slapd.args
loglevel none

modulepath /usr/lib/ldap
modulepath /usr/local/libexec/openldap
moduleload back_hdb

Chapter 2

[29]

First note that all lines that start with a hash (#) are treated as comments, and ignored
by SLAPD.

The first three functional (non-comment) lines all begin with the include directive.
The include directive should always be followed by a full path to a file on the
file system. When SLAPD finds the include directive it will attempt to load the
indicated file. Those files will then be treated as part of the current configuration
file. So, when SLAPD reads these three lines, it will try to load the three schema files
(core.schema, cosine.schema, and inetorgperson.schema).

The include directive can be used to load any configuration parameters (in the next
chapter, we will use it to include a file that contains ACLs). Traditionally, the schema
information is stored separately from other configuration directives, and loaded
(using include directives) at server startup. This improves the readability of the
code and helps prevent the accidental modification of the schema information.

Schemas
Schemas provide definitions of (amongst other things) the different object classes
and attribute types that OpenLDAP should support. Using these, OpenLDAP can
determine what entries it is allowed to store, whether any given entry is valid, and
how entries should optimally be stored.

The three schemas loaded here contain the most frequently used options.
core.schema contains all of the attribute and object class definitions from the LDAP
v.3 specification. The cosine.schema and inteorgperson.schema files contain
schema definitions for commonly used standardized extensions (see RFCs 4524 and
2798). There are a host of other schemas available with OpenLDAP, and we will look
at some of those in Chapter 6.

More Directives
After the schemas are included the next two directives, pidfile and argsfile, tell
SLAPD where to store (and look for) files that contain information on:

The process ID for the SLAPD server process
The arguments that were passed into the slapd command at startup

Since SLAPD needs to write to these files, the user that runs slapd needs
to have permissions to read from and write to these files. Since the
files are removed when the SLAPD server shuts down, the user that runs
slapd will also need write permissions on the directory where these files
are stored (/var/run/slapd/, in this case).

•

•

Installation and Configuration

[30]

Next, the loglevel directive is set to none. The loglevel directive specifies how
much information SLAPD should send to the system log (by way of syslogd).
The loglevel directive accepts keywords (any, none, trace, and so on), integers
(0, 128, 32768), and hexidecimal numbers (0x2, 0x80, 0x100).

Setting this to none will cause SLAPD to only log critical events. In order to turn off
the logging altogether, use 0. To turn on all the logging, which will generate massive
amounts of logging for every request, use any. The SLAPD man page (man slapd)
provides a complete list of all the supported log levels.

Module Directives
The last few directives in the Basics section are modulepath and moduleload. These
are instructions for loading OpenLDAP modules.

A module is a special type of library that can be loaded when SLAPD starts up.
Instead of compiling all of SLAPD's code into one large binary, the modules make it
possible to create smaller library files for discrete functional units of LDAP code.

Typically, there are two different kinds of modules:

1. Backends: The OpenLDAP server can use different storage backends,
including BDB, SQL database, flat files (in LDIF format), or even another
LDAP directory server. Each of these backends can be compiled into its own
module. Then, during configuration, we have the option of only loading the
module (or modules) that we need.

2. Overlays: OpenLDAP includes a number of optional extensions, called
overlays, which can modify behavior of the server (we will look at several
overlays in the course of this book). These, too, are stored in modules.

Let's have a look at the directives we have used in our slapd.conf file:

The modulepath directive provides the full path to the directory where the
modules (the compiled libraries) are stored. By default, Ubuntu puts LDAP
libraries in /usr/lib/ldap. If, for some reason, you have modules stored in
multiple directories you can specify a list of paths, separated by colons:

 modulepath /usr/lib/ldap:/usr/local/lib/custom-ldap

The moduleload directive instructs OpenLDAP to load a particular module.
The directive takes either the file name of the module to be loaded (such as
back_hdb) or a full path (beginning with /) to a module file. If just the name
is specified, SLAPD will look in the directories specified in modulepath. If
the entire path is specified, it will attempt to load from exactly that path (it
will not use modulepath at all).

•

•

Chapter 2

[31]

moduleload back_hdb instructs SLAPD to load the module that provides
services for storing the directory in the Hierarchical Database (HDB)
backend. This is the database that we will configure in the Database
Configuration section.

For now these are the only directives we need in the Basics section. There are other
options though, and we will look at many of them in Chapters 4 and 5.

Database Configuration
The next section of our slapd.conf file is the database configuration section. This
section handles the configuration of the database storage mechanisms. OpenLDAP
is not limited to one database. More than one database can be used per server,
where each database stores its own directory tree (or subtree). For example, a single
OpenLDAP instance can serve a directory tree whose base is o=My Company,c=US
from one database, and a directory tree whose root is dc=example,dc=com from a
second database.

As we saw in Chapter 1, the base DN for a directory tree is made up
of attribute name/attribute value pairs. For example, the DN o=My
Company, c=US indicates that the organization name (o) is My Company,
and its country of origin (c) is United States (whose two-letter ISO code is
US). Likewise, the second DN is composed of attribute name/value pairs,
this time representing domain components (dc) from the organization's
registered domain name, here, the fictitious Example.Com.

We will look at this option in Chapter 5. In our simple slapd.conf file, we are
defining only one database:

##########################
Database Configuration
##########################
database hdb
suffix "dc=example,dc=com"
rootdn "cn=Manager,dc=example,dc=com"
rootpw secret
directory /var/lib/ldap
directory /usr/local/var/openldap-data
index objectClass,cn eq

The first directive in the database configuration section is the database directive.
This specifies which database backend will be used. In this case we will be using the
Hierarchical Database (HDB), so we specify hdb.

•

Installation and Configuration

[32]

HDB is the new generation storage mechanism for OpenLDAP. Like
its predecessor, the BDB backend, HDB uses the Oracle Berkeley DB
database for storage, but HDB stores entries hierarchically, a perfect fit for
LDAP's tree strucutre. The old BDB backend is still supported, and you
can use it by specificing bdb instead of hdb in the database directive.

The next directive, suffix, indicates which parts of the directory tree this database
will hold. Basically, it indicates that this database's base will be the entry with the
Distinguished Name (DN) specified in the suffix directive (dc=example,dc=com).
We have discussed Distinguished Names in Chapter 1.

When the server receives a request for something in that tree (for example,
cn=Matt,dc=example,dc=com), it will search in this database. The following figure
gives a better idea:

LDAP Client

Return record for:
cn=Matt,dc=example,dc=com

Search for:
cn=Matt,dc=example,dc=com

SLAPD Server

cn=Barb cn=Davecn=Matt

dc=example,dc=com

Here, the client is searching for a specific DN, cn=Matt, dc=example,
dc=com. The SLAPD server contains a directory information tree whose base DN
is dc=example, dc=com.

The DN cn=Matt,dc=example,dc=com is subordinate to dc=example,dc=com. It
exists in the dc=example,dc=com tree. So, SLAPD searches the dc=example,dc=com
database for a record whose DN is cn=Matt,dc=example,dc=com. Once the record is
found, it is returned to the client.

What will happen if a client requests the record of cn=Matt,dc=test,dc=net? Since
this DN does not contain a base DN handled by this server, the server will not search
for the record. Depending on the configuration, it may either send an error back to
the client or redirect the client to another server that might be able to handle such
a request.

Likewise, if a client tries to add a record with a base DN other than the one specified
in the suffix directive, the LDAP server will refuse to add the record to the directory
information tree.

Chapter 2

[33]

The suffix directive in slapd.conf specifies what the base DN will be for
information stored or referenced in this database. This will determine, to a large
degree, what records this database will contain, search for, or allow to be added.

One database can have multiple trees (this is covered in Chapter 5).

The next two lines assign a record for the directory manager and give the manager
entry a password. The rootdn directive specifies the DN that will be considered the
administrator of this directory. By convention, the root DN is created by prepending
cn=Manager to the base DN of the directory tree. Thus, our directory manager is
cn=Manager,dc=example,dc=com. The next field, rootpw, is used to assign a
password for the directory manager. Note that this is stored outside the directory
rather than inside it. For example, the userPassword attribute of a record in the
directory. This is to prevent the manager from being locked out of the directory.

The directory manager is a special user with special privileges. The manager's
requests are not filtered through ACLs—the manager's access cannot be restricted.
Furthermore, the manager has write access to all records in the directory under the
specified suffix or suffixes. For that reason, the manager DN should be used for
administrative tasks only and not for anything else.

Further, since the necessary fields for the manager are stored here in the
slapd.conf file, there should not be a record in the directory with the manager's
DN (this is recommended for best practices, though it is not explicitly prevented
by SLAPD).

Since the manager's DN and password are stored in the slapd.conf file, and since
the manager has access to everything in the directory, we should keep file system
permissions on the slapd.conf file as restrictive as possible.

Encrypting the Manager's Password
You can also give rootpw an encrypted password by using the
ldappasswd utility, described in the next chapter.

The directory directive indicates which directory on the file system should hold the
database files. In this case the database is stored at /var/lib/ldap/.

Finally, the index directive is composed of a list of attributes that should be indexed,
followed by the type of matching that the index will be used for. Our example
looked like this:

index objectClass,cn eq

Installation and Configuration

[34]

This means that we are creating an index that will support equality (eq) matching on
the attributes objectClass and cn. When the server gets a request for all the entries
with cn Rob or commonName Rob, the server can greatly expedite service by accessing
the index instead of searching the entire database. However, if the request was for
Rob* (note the * wildcard character), then the server would not be looking for a CN
that equals "Rob*", but for any CN that starts with "Rob". In this case, the index we
created would not be used.

Multiple index directives can be used, and we could support faster CN searches for
queries like Rob* by splitting the index directive into two different directives:

index objectClass eq
index cn eq,sub

In the given example, an equality (eq) index is maintained for objectClass
attributes, while the cn attribute is indexed for equality matches (eq) and substring
matches (sub).

Certain attributes do not support all index types. The objectClass attribute, for
example, does not support substring (sub) index matching. When we will look at
performance tuning in Chapter 5, we will see the indexing directive more carefully.

Once you have a database created, every time you modify the index directives in
slapd.conf, you should rebuild the indexes with the slapindex command-line
utility. Since we have not yet put any data in the database though, we don't need to
run this command now.

Now we are ready to move on to the third and final section of our configuration file.

ACLs
The last section in the slapd.conf file is the ACL section. ACLs (Access Control
Lists) determine which clients can access what data, and under what conditions. In
Chapter 4, we will cover ACLs in much more detail. However, it is important to have
some basic ACLs configured from the beginning, so we will briefly walk through
two simple ACLs:

########
ACLs
########
access to attrs=userPassword
 by anonymous auth
 by self write
 by * none

Chapter 2

[35]

access to *
 by self write
 by * none

ACLs are just fancy directives—directives with a complex syntax. They begin
with the access directive, followed by a list of conditions. The conditions can span
multiple lines as long as each continuation line begins with one or more white space
characters (such as a tab or a space).

Line Continuations in slapd.conf file
Any directive, not just ACLs, can span multiple lines, as long as each
continued line begins with a white space. For example, moduleload
back_hdb can be written as:
 moduleload
 back_hdb

Let's look at the first access control in detail:

access to attrs=userPassword
 by anonymous auth
 by self write
 by * none

The purpose of this access control is to keep a user's password protected. Specifically,
it allows anonymous users to request that the server perform an authentication
comparison (during the process of logging on) on a password. Additionally, it grants
a user permission to change his or her own password. Finally, it denies everyone else
any access to the password. That's what this rule is supposed to do. Now, how do we
get that?

Each line of code having by should be indented:

access to [resources]
 by [who] [type of access granted]
 by [who] [type of access granted]
 by [who] [type of access granted]

Installation and Configuration

[36]

Each access directive can have one to phrase, and any number of by phrases. Our
first rule has three by phrases. Let's see these in more detail:

In access to attrs=userPassword, attrs indicates that a list of one or more
attributes will follow. In our case there is only one attribute: userPassword.
The userPassword attribute is used to store the value of a password for an
object in the directory.

While not just any object in the directory can have a userPassword,
there are many objects in the directory that are not users, but can have
passwords. The most frequent use of the userPassword attribute is for
records that describe users.

In this access control there is no explicit mention of particular parts
of the directory to which this rule applies. Given this, the ACL will be
enforced for all instances of userPassword. So, the rule specifies access to
the userPassword attribute. The next three phrases will indicate who has
access to userPassword attributes, and what kind of access they have.
Next is by anonymous auth. This phrase grants an anonymous user (one
who has not yet authenticated) permission to authenticate using a password.
More accurately, it indicates that when a user submits a request for
authentication, the directory server is allowed to perform an authentication
operation (which amounts to comparing the submitted password with the
value in the userPassword attribute for the corresponding user's entry).
The last part of the by phrase specifies what sort of permissions are granted
to the record. The permissions level can be granted in a few ways, which is
discussed in detail in Chapter 4.

For the time being, though, we will look at four keywords that can be used in ACLs
to grant common permission levels:

auth: The server can perform an authentication operation using this resource.
read: The client can have auth access and can also read this resource, but
cannot make any changes.
write: The client can have auth and read access to this resource and can
also perform add, modify, and delete operations on whatever is specified
by resource.
none: The server should not give the client any access at all to this resource.

•

•

•

•

•

•

•

Chapter 2

[37]

In Chapter 4, when we look at ACLs in depth, we will look at other keywords and
explore creating finer-grained permissions levels, such as allowing write access
without granting read access.

So, the second by phrase, by self write, means that once a DN (usually a user) has
successfully connected and authenticated to the LDAP server, it can change the value
of userPassword.

Finally, the last by phrase says by * none. The * is a wildcard that will apply
to everyone. And none, as we came to know, denies any sort of access to the
userPassword attribute. This rule says that everyone should be denied access to
the password attribute.

This third by phrase provides a good illustration of how ACLs are applied. The
ACL is evaluated in order. In the rules above, as soon as the server finds a rule that
applies to the current DN, it will stop processing the ACL. Consider an example.
When an anonymous user tries to authenticate (bind) with a DN and password, the
server will check the ACLs to see if the DN has the right to request an authentication
comparison using the userPassword attribute.

As SLAPD evaluates this ACL, it will see that the first by phrase applies�� use that rule
and skip the other two. But, on the other hand, if an authenticated user tries to read
userPassword of another DN, the server will search by phrases until it finds one
that matches. It will evaluate and skip the first two before applying the third, which
denies that user the access to another record's userPassword attribute.

The Default by Phrase
When processing an ACL, SLAPD denies access by default. This means
that every access directive ends with an implicit by phrase of by * none.
So, to save space, we could have omitted the last phrase from both of
our ACLs.

Now that we understand the first ACL, the second should be a breeze. Let's see the
second one:

access to *
 by self write
 by * none

This last ACL becomes our default rule for the directory. It can be paraphrased this
way: for any object and all its attributes (to *), if the currently connected DN is the
DN of this object, it can write to the object (by self write). Otherwise, the currently
connected DN has no access whatsoever (by * none). In short, it lets objects write to
themselves, but denies everyone else all the permissions to the object.

Installation and Configuration

[38]

Restricting the Manager
It should be noted that ACLs cannot be used to restrict the special
directory manager account named in the rootdn directive.

Keep in mind that ACLs are processed sequentially. So this second rule will only
apply if the earlier rule did not apply.

These access controls are very strict and will prevent directory users from getting
much out of the directory. In Chapter 5 we will create some more rules which will
make the directory more accessible, but for now these simple rules will suffice.

Verifying a Configuration File
We are now done working through the configuration file. The last thing to do before
we start the server is to verify that the configuration file is valid.

OpenLDAP includes a tool for testing the configuration file to make sure that it is
well-formed and that the directives are all used correctly. It also checks elements
of the OpenLDAP environment to ensure that the requisite files are in the correct
locations. The testing tool is called slaptest and it appears as:

 $ sudo slaptest -v -f /etc/ldap/slapd.conf

Since the file system permissions on slapd.conf are very restrictive, we used sudo
to execute the test as the root user. The slaptest command needs to know where
the slapd.conf file is. This is specified with the -f parameter followed by the path
to the configuration file. We also used the -v flag to require verbose output. Since
nothing was wrong with slapd.conf, only one line was printed:

config file testing succeeded

But if anything is incorrect, slaptest will provide diagnostic information. Let's look
at a misconfigured slapd.conf file:

slapd.conf - Configuration file for LDAP SLAPD
##########
Basics
##########
include /etc/ldap/schema/core.schema
include /etc/ldap/schema/cosine.schema
include /etc/ldap/schema/inetorgperson.schema

pidfile /var/run/slapd/slapd.pid
argsfile /var/run/slapd/slapd.args
loglevel none

Chapter 2

[39]

modulepath /usr/lib/ldap
modulepath /usr/local/libexec/openldap
moduleload back_hdb

##########################
Database Configuration
##########################
database hdb
suffix "dc=example,dc=com"
rootdn "cn=Manager,dc=example,dc=com"
rootpw secret
directory /var/lib/ldap
directory /usr/local/var/openldap-data
index objectClass sub,eq
index cn sub,eq

########
ACLs
########
access to attrs=userPassword
 by anonymous auth
 by self write
 by * none

access to *
 by self write
 by * none

This configuration file is a minor variation of the one we have been examining
throughout this section. The problem is that the objectClass attribute cannot
handle substring matches. The reason for this (explained in more detail in Chapter 6)
is that the schema does not allow substring matching on the objectClass attribute.

Having made the above change, we run the slaptest command:

 $ sudo slaptest -v -f slapd.conf

The following messages appear:

slapd.conf: line 48: substr index of attribute
 "objectClass" disallowed
slaptest: bad configuration file!

As you can see this information is useful for quickly finding and fixing problems
before attempting to start the server.

Installation and Configuration

[40]

An Ubuntu Oversight
Due to a configuration oversight by Ubuntu packager maintainers, the
slaptest program does not issue a warning if an unknown directive
is found. As a result, a mistaken directive name may slip through the
verification stage unnoticed. For example, misspelling index as idnex
will not result in an error.

Testing slapd.conf with slapd
The slaptest command is actually nothing more than a symbolic link to
slapd, the command used to start the server. While there are no distinct
advantages to doing so, you can use the slapd program to test
slapd.conf:
 $ slapd -T dest -f /etc/ldap/slapd.conf

Once the configuration file passes muster with the slaptest program, we are ready
to start our server.

At this point, we have walked through our basic slapd.conf configuration file. This
configuration will get our directory up and running, and in later chapters of this
book we will cover some more advanced settings that can be included here in the
configuration file.

If you are interested in reading more about configuration options for
slapd.conf, you may want to take a look at the manual (man) pages.
The man pages for OpenLDAP provide a thorough (though sometimes
tersely worded) reference. In particular, the slapd.conf page is
very useful.
 $ man slapd.conf

At the bottom of that page there is a list of other related manual pages, such as
slapd-hdb, which lists directives specific to the HDB database.

Starting and Stopping the Server
At this point, we have configured our slapd.conf file. We are now ready to start
our server. There are two different ways to run the SLAPD server: we can either use
the init script provided with the distribution, or we can run the slapd command
directly. Each way has its advantages, and we will look at both here.

Chapter 2

[41]

Using the Init Script
The OpenLDAP packages that are installed with Ubuntu include a startup script that
is located, along with other service startup scripts, in the /etc/init.d/ directory.
The scripts in /etc/init.d/, usually referred to as the init scripts, are used to
automatically start and stop services when the system run level changes (when the
system boots, halts, or reboots), and by default, OpenLDAP should be configured to
start when the server boots, and stop during halts and reboots.

The ldap init script provides a convenient way to start, stop, and restart
the server. You can start it (if it is not already running) with the Ubuntu
invoke-rc.d command:

 $ sudo invoke-rc.d slapd start

You can use the same script to stop the server. Just change start to stop:

 $ sudo invoke-rc.d slapd stop

Similarly, to restart, use the restart command instead of start or stop.

The init scripts set up default parameters and pass in many system options. Some
of these are stored in a separate configuration file located at /etc/default/slapd.
For example, by setting the SLAPD_USER and SLAPD_GROUP variables to a particular
system user ID and group ID, you can run SLAPD as a user other than the default.

The OpenLDAP server must start as root, in order to bind to the correct TCP/IP
port (389 or 636 by default). Then it will switch and use the user account and group
specified in the file located at /etc/default/slapd.

Ubuntu creates a special user and group, named openldap, for running
SLAPD. Other distributions run SLAPD as root, which is not a good idea
from a security point of view.

Other settings, such as logging settings, can also be made in this configuration file.

Running SLAPD Directly
Sometimes, it is useful to start SLAPD directly from the command line. This may
make it easier to see error messages when starting of the server fails, or to test
configurations before making any changes to the init script or its configuration files.

To start the SLAPD server directly, simply run the slapd command:

 $ sudo slapd

Installation and Configuration

[42]

This will start the SLAPD server in the background.

If you compiled OpenLDAP from source, the slapd command
will be at /usr/local/libexec/, which is not, by default, in
$PATH. You will have to run the command using the full path:
/usr/local/libexec/slapd.

The server will write its process ID to the location specified in the pidfile directive
in slapd.conf. In our case, this is /var/run/slapd/slapd.pid. We can stop the
server by using the standard kill command:

 $ sudo kill `cat /var/run/slapd/slapd.pid`

This command first uses the cat program to print the contents of the file (which
is simply the process ID of slapd). Note that the cat command is surrounded by
backticks (`), not single quotes ('). The backticks tell the shell to treat the statement
as a command to be executed. The process ID is then passed to the kill command,
which instructs the process to shut itself down.

In cases where the slapd.pid file is not available you might find it more expedient
to kill the server with this command:

 $ sudo kill `pgrep slapd`

Sometimes though, it is more useful to start the command in the foreground, and set
debugging information to print out in the terminal window. This can be done quite
easily as well:

 $ sudo slapd -d config

In the command above we use the -d flag to print logging information to the shell's
standard output. This means that slapd will print information to the terminal
window. The -d flag takes one parameter—the debugging level. We have specified
config, which instructs the server to print verbose logging information about the
processing of the configuration file.

The output looks something like this:

@(#) $OpenLDAP: slapd 2.3.24 (Jun 16 2006 23:35:48) $
 mbutcher@bezer:/home/mbutcher/temp/openldap-2.3.24/servers/slapd
reading config file /etc/ldap/slapd.conf
line 6 (include /etc/ldap/schema/core.schema)
reading config file /etc/ldap/schema/core.schema
line 44 (rootdn "cn=Manager,dc=example,dc=com")
line 45 (rootpw ***)

Chapter 2

[43]

line 47 (directory /var/lib/ldap)
line 48 (index objectClass eq)
index objectClass 0x0004
line 49 (index cn eq,sub,pres,approx)
index cn 0x071e
slapd starting

This can be one other useful way to ferret out configuration issues. The -d flag will
take any of the debugging levels specified in the slapd.conf man page. I find acl
useful for debugging access problems, and filter is often useful in figuring out
trouble with searches.

When -d is specified the program will run in the foreground. To stop the server
simply hit CTRL+C. This will stop the server and return you to a shell prompt.

Other useful command line parameters to use with slapd are -u and -g. Each takes
one argument: -u takes a username and -g takes a groupname. These control the
effective UID and GID (user ID and group ID) that SLAPD runs as. Once SLAPD
has started and connected to the appropriate ports (which it must do as root), it will
switch its UID and GID to the names specified in these parameters.

To get a list of other command line flags that we can use with slapd,
refer to the man page for slapd.

In the next section, we will be using some of the OpenLDAP clients to connect to our
directory. This will require that the SLAPD server be running. You can verify that
slapd is running by checking if /var/run/slapd/slapd.pid exists, or by running
pgrep slapd, which will display the process ID of slapd if it's running. If no process
ID number is returned, slapd is not running.

Configuring the LDAP Clients
In the last couple of sections we have focused exclusively on the SLAPD server. Now
that the server is running we need to get the client configuration so that we can make
test connections to the server.

Fortunately all of the OpenLDAP client programs share one common configuration
file, ldap.conf, which is located in Ubuntu at /etc/ldap/ldap.conf (if you
build from source, according to Appendix A, the default location for this file is
/usr/local/etc/openldap/ldap.conf).

Installation and Configuration

[44]

Other programs, such as those that use the OpenLDAP client libraries (like the PHP
and Python LDAP APIs, may also use the ldap.conf file as a default location to
retrieve basic configuration information.

Too Many ldap.conf Files
Occasionally, some Linux distributions will create two different
ldap.conf files—one for OpenLDAP, and one for the PAM or NSS
LDAP tools. This can lead to confusion about which ldap.conf file
is used for which process. Ubuntu, however, gives the other packages
distinctly named configuration files, like /etc/pam_ldap.conf.

A Basic ldap.conf File
The purpose of the ldap.conf file is two-fold:

1. It provided a place to define certain aspects of client behavior, such as how
they treat SSL/TLS certificates or whether they follow alias entries.

2. It provides the OpenLDAP clients with useful defaults. By specifying some
defaults, we can reduce the number of parameters we have to pass to the
OpenLDAP clients when we run them from the command line.

An alias is an entry in the directory that points to some other entry.
Conceptually, it is similar to a symbolic link in a UNIX/Linux file system,
or to a shortcut in Microsoft Windows.

The ldap.conf file has three different kinds of directive:

General settings, which specify things such as the default server and DN
to use
SASL-specific settings, which determine how the OpenLDAP clients will try
to authenticate when using SASL (Simple Authentication and Security Layer)
authentication mechanisms
TLS-specific settings, which specify how OpenLDAP will handle connections
that use SSL (Secure Sockets Layer) and TLS encryption

At this point we are only interested in the general settings. In later chapters, we will
return to this file when configuring SSL/TLS and SASL.

Now, we need to look into a basic ldap.conf file. The ldap.conf file is located in
the same directory as slapd.conf—/etc/ldap/ (or /usr/local/etc/openldap/
if you built from source). We will now insert the LDAP client settings into that basic
ldap.conf file:

•

•

•

Chapter 2

[45]

LDAP Client Settings

URI ldap://localhost
BASE dc=example,dc=com
BINDDN cn=Manager,dc=example,dc=com

SIZELIMIT 0
TIMELIMIT 0

Again, as with slapd.conf, lines that begin with a number sign (#) are treated as
comments, and are ignored by the OpenLDAP client tools.

Next, we have directives:

The URI directive indicates which server (or servers, as this directive can take
multiple URIs, separated by spaces) is to be contacted if no server is explicitly
specified by the client.
Since the server is running on the same machine that we are going to be
running client commands from, we should set the URI to ldap://localhost.
This URI specifies that the default client connection should be made using the
(unencrypted) LDAP protocol over the loopback interface (127.0.0.1 or
localhost). Since no port is specified it will use the default LDAP port,
which is 389.
The second directive is BASE. This tells the client programs where to start
their search in the directory. It takes a full DN as a value. In this case we set
it to the base DN of the server—to the DN of the root entry in our directory
tree, so that all searches will start at the root.
You may recall that when we were working on the database configuration
section of slapd.conf, we set this same base DN, dc=example,dc=com, as
the suffix for the database stored there. So, what we have done here is told
the client to start at the same directory tree root that the server manages. This
is generally the most convenient way to configure BASE in the ldap.conf file.
The third directive, BINDDN, specifies the default DN that will be used when
connecting to the server. In this file I have set it to the manager's DN,
cn=Manager,dc=example,dc=com. While this will be very helpful when it
comes to the examples in the next chapter it is not, in general, a good idea,
and should never be set this way in a production environment. Usually
the BINDDN default value should be set to a user that has limited privileges, or
it should be omitted (in which case no default DN will be used).

•

•

•

Installation and Configuration

[46]

Size and Time Limits
The next two directives, SIZELIMIT and TIMELIMIT, indicate the upper limits on the
number of records returned (SIZELIMIT) and the amount of time the client will wait
for the server to respond (TIMELIMIT). Here we have set both to 0, a special value for
these directives that indicates that there should be no limit.

The way that size and time limits are handled can be a little confusing. On the
client side there are two ways of specifying these limits: through the ldap.conf
configuration file (as we are doing here) and through command-line parameters
(as we will see in the next chapter).

However, the SIZELIMIT and TIMELIMIT directives above are not exactly defaults
in the usual sense of the word. They are the absolute upper limit that the client can
request. With command-line arguments the client can specify lower time and size
limits, and those lower numbers will be used. But if the client attempts to specify
larger size or time limits, they will be ignored, and the values of SIZELIMIT and
TIMELIMIT will be used instead.

But the story doesn't end here. The SLAPD server can also define size and time limits
(with the limits, sizelimit and timelimit directives in slapd.conf). If a client
specifies a limit higher than the server's, the server will ignore the client's limit and
use its own. We will look more at setting server limits in Chapter 5.

Now we have a functioning ldap.conf file that will alleviate the need to specify
these parameters on the command line.

The last thing we need to do in this chapter is to use an OpenLDAP client to test out
the SLAPD server.

Testing the Server
At this point, we have a SLAPD server configured and running, and we have an
ldap.conf file that specifies many of the defaults for our tools. Now we are going to
query the directory and fetch some information.

We haven't actually put any entries in our database, though. So what will we query?
SLAPD does provide directory-based access to certain information, including
currently-loaded schemas and subschemas, configuration information, and a special
record called the root DSE. The root DSE (DSA-Specific Entry, where DSA stands
for Directory Service Agent—the technical term for an LDAP server) is a special
entry that provides information about the server itself. Like all other entries in an
LDAP, the root DSE has a DN. Unlike all other entries, the root DSE's DN is an
empty string.

Chapter 2

[47]

Why use an empty string for a DN? The answer is simple: any client can connect to
the server and find out about what sorts of operations the server supports, and all of
this can be done without requiring the client to know anything about the directory
structures hosted on the server. All it must do is perform a search with an empty DN.

The LDAPv3 Directory Information Models specification (RFC 4512)
states that a root DSE with an empty DN be provided by any standards-
compliant LDAP server.

The root DSE contains information about what version of the LDAP protocol the
server supports, what extensions to that protocol the server supports, and other
useful information that helps clients fruitfully interact with the directory.

We will search for this entry using the ldapsearch command-line client.

Because of the restrictive way in which we set up our ACLs, we will have to
authenticate to the directory in order to see the root DSE. And since we have only
one defined user, the directory manager, we will log in as that user and perform a
search for the root DSE:

 $ ldapsearch -x -W -D 'cn=Manager,dc=example,dc=com' -b "" -s base

All of the above should go on one line at a shell prompt. In order to do the search, we
must specify several different parameters:

-x: This tells the server to use simple authentication (instead of the more
complicated, but more secure, SASL authentication).
-W: This tells the client to prompt us for an interactive password. The client
will give the following prompt:

 Enter LDAP Password:

-D 'cn=Manager,dc=example,dc=com': This specifies the DN that we want
to use to connect to the directory. In this case, we are using the directory
manager account.
-b "": This sets the base DN for the search. In the ldap.conf file we set the
default base to be dc=example,dc=com. But to get the root DSE, which is not
under dc=example,dc=com, we need to specify an empty search base.
-s base: This indicates that we want to search for just one (base) entry—the
entry with the DN specified in the -b parameter (the empty DN of the
root DSE).

•

•

•

•

•

Installation and Configuration

[48]

When we run this search, this is the result returned from the server:

 # extended LDIF
 #
 # LDAPv3
 # base <> with scope baseObject
 # filter: (objectclass=*)
 # requesting: ALL
 #

 #
 dn:
 objectClass: top
 objectClass: OpenLDAProotDSE

 # search result
 search: 2
 result: 0 Success

 # numResponses: 2
 # numEntries: 1

At the top of the result is a summary of how the search was processed. The
highlighted portion shows the root DSE entry. The server returned three attributes:
the dn (which is empty) and two object class specifications.

The last section, beneath the highlighted section, displays a summary, including how
many records were returned (two: the DSE entry and the summary) and the error
code (0 for success).

This record is sparse, containing only a few attributes. And it doesn't give us much
information about the directory's configuration or capabilities. But the
root DSE contains much more information than appears here. How to we get at
that information?

To get more extensive information out of the root DSE, we need to query for all of
the operational attributes for the record.

Operational attributes, as explained in Chapter 1, are attributes that are
intended for internal use. RFC 4512 states that many of the root DSE's
attributes be treated as operational attributes.

Here's a modified version of the search that adds a filter for any object class
'(objectclass=*)', and a request for all operational attributes (+). Since we are
using the asterisk character (*) in the filter, the filter must be enclosed in single
quotes to avoid shell expansion:

 $ ldapsearch -x -W -D 'cn=Manager,dc=example,dc=com' -b "" -s base \

 '(objectclass=*)' +

Chapter 2

[49]

The output of this command looks something like this:

 Enter LDAP Password:
 # extended LDIF
 #
 # LDAPv3
 # base <> with scope baseObject
 # filter: (objectclass=*)
 # requesting: +
 #
 #
 dn:
 structuralObjectClass: OpenLDAProotDSE
 configContext: cn=config
 namingContexts: dc=example,dc=com
 supportedControl: 1.3.6.1.4.1.4203.1.9.1.1
 supportedControl: 2.16.840.1.113730.3.4.18
 supportedControl: 2.16.840.1.113730.3.4.2
 supportedControl: 1.3.6.1.4.1.4203.1.10.1
 supportedControl: 1.2.840.113556.1.4.319
 supportedControl: 1.2.826.0.1.334810.2.3
 supportedControl: 1.2.826.0.1.3344810.2.3
 supportedControl: 1.3.6.1.1.13.2
 supportedControl: 1.3.6.1.1.13.1
 supportedControl: 1.3.6.1.1.12
 supportedExtension: 1.3.6.1.4.1.4203.1.11.1
 supportedExtension: 1.3.6.1.4.1.4203.1.11.3
 supportedFeatures: 1.3.6.1.1.14
 supportedFeatures: 1.3.6.1.4.1.4203.1.5.1
 supportedFeatures: 1.3.6.1.4.1.4203.1.5.2
 supportedFeatures: 1.3.6.1.4.1.4203.1.5.3
 supportedFeatures: 1.3.6.1.4.1.4203.1.5.4
 supportedFeatures: 1.3.6.1.4.1.4203.1.5.5
 supportedLDAPVersion: 3
 supportedSASLMechanisms: NTLM
 supportedSASLMechanisms: DIGEST-MD5
 supportedSASLMechanisms: CRAM-MD5
 entryDN:
 subschemaSubentry: cn=Subschema

 # search result
 search: 2
 result: 0 Success

 # numResponses: 2
 # numEntries: 1

Installation and Configuration

[50]

Again the results above are for the same record—the root DSE record. Only now we
get a much bigger record, containing all of the operational attributes for the record.

The information returned from the server this time includes lists of supported
features, extensions, controls, and SASL mechanisms (most of which are not
particularly human-friendly).

While many of the items in this record are not useful to us right now, some can be
very useful in practice. For example, the supportedLDAPVersion attribute indicates
what version of the LDAP protocol this server uses. The namingContexts attribute
gives the base DN for each directory information tree hosted on this server. The
supportedSASLMechanisms list tells us what sort of authentication routines can be
performed when doing a SASL bind (which we will look at in detail in Chapter 4).

Some LDAP client programs will even query the root DSE and use this information
to determine what kinds of operations the server will support, adjusting the client's
own features to the level of service provided by the server.

What is most important about this exercise though, is that we have verified that we
have successfully configured the SLAPD server, as well as the OpenLDAP clients.
We have connected, authenticated (using a simple bind), and retrieved a record from
the LDAP server.

Summary
The focus of this chapter has been on installing and configuring the OpenLDAP
suite of tools. We installed OpenLDAP on an Ubuntu system, and then walked
through the process of authoring a slapd.conf file. Once we had created and tested
slapd.conf, we turned to the ldap.conf file, which contains settings and defaults
used by the OpenLDAP clients. Finally, we used ldapsearch to request the root
DSE record from the directory, verifying that we had both the client and the
server configured.

In the next chapter, we will walk through the OpenLDAP utilities and client
applications. In the process of doing this we will add some records to our directory.

Using OpenLDAP
Now that we have a basic OpenLDAP server installed, configured, and running, it
is time to turn our attention to using OpenLDAP. In this chapter we will be looking
at what the various applications in the OpenLDAP suite do. In the process, we will
discuss LDAP operations, create our initial directory tree, and use the OpenLDAP
clients and utilities to interact with the directory server. As we do this we will cover
the following:

The basic functional division of the OpenLDAP tools: daemons, clients,
and utilities
The basic directory server operations
Building an initial directory tree in an LDIF file
Loading the data into the directory
Working with the directory records
Searching the directory
Setting passwords and authenticating against the directory

Along the way, we will also see many new LDAP terms and concepts.

A Brief Survey of the LDAP Suite
In the last chapter we saw that the OpenLDAP suite was composed of daemons,
libraries, clients, and utilities.

In UNIX parlance, a daemon is a process that runs for long periods of time without
user interaction. It is a process that runs in the background. A server is a type of
daemon that answers requests from other applications (clients). There are two
daemons in the OpenLDAP suite: the SLAPD daemon (server) and the SLURPD
daemon. In the next section we will look at these two.

•

•

•

•

•

•

•

Using OpenLDAP

[52]

There are a host of utilities included with OpenLDAP too. Utilities are programs that
assist in managing the directory but do not use the LDAP protocol. They do things
like maintain indexes, dump the contents of the database, and assist with migrating
records from one directory to another.

Clients, in contrast to utilities, are programs that connect to the directory server
using the LDAP protocol and perform directory operations, such as searching for,
adding, modifying, and deleting records from the directory.

We will look at all of the utilities and clients. But before we dive into that we will
look at the daemons and some of the concepts involved in communication between
LDAP clients and servers. This will give us the foundational knowledge for our work
with the LDAP utilities and clients.

LDAP from the Server Side
OpenLDAP includes two daemons: SLAPD and SLURPD. SLAPD is the main
server, and we will examine its operation throughout this book. SLURPD is a
special-purpose daemon used for replicating directories. While it is still in use, it is
now deprecated in favor of a more robust replication mechanism. We will cover it
only briefly in this book.

SLAPD
The first, SLAPD, is the stand-alone LDAP daemon. It is the LDAP server. It listens
for client requests and, when it receives a request, performs the requested operation
and returns any necessary data. In the most common case a client will send a query
message to the server. The SLAPD server will then look up the information and
return the results. Let's consider an example (in conversational English):

Client: Log in as user Bob with the password Password
Server: Bob is now logged in
Client: Bob wants all of the usernames of users whose email addresses start
 with 'm'
Server: There are four users with email addresses that start with 'm'.
 The user IDs are: mattb, markd, melaniek, melindaq
Client: Log Bob off
Server: OK

Chapter 3

[53]

This example is very simplistic (and omits lots of the details of an LDAP transaction),
but it should give you the main idea of what SLAPD does.

The SLAPD program is called, appropriately enough, slapd. It is located at /usr/
sbin (if you compiled from source, it is in /usr/local/libexec). In the previous
chapter we configured SLAPD using the /etc/ldap/slapd.conf configuration file.

The SLAPD server handles all client interactions, including authentication,
processing ACLs, performing searches, and handling changes, additions, and
deletions of the data. It also manages the databases that store LDAP content. All of
the clients that we look at in this chapter interact directly with SLAPD. The utilities
provide maintenance services for SLAPD, though they rarely directly interact with
the SLAPD server (they tend to operate on files that the directory uses).

Let's take a slightly more technical look at the simple LDAP exchange that we
outlined here. We can break the exchange into two major parts: the authentication
process (called binding in LDAP parlance) and the search process.

The Binding Operation
The first thing that must happen is the client must authenticate to the server. Keep
in mind that in order to interact with an LDAP server the client must provide two
pieces of information: a DN and a password.

Typically, there are two different ways by which a client can authenticate to a server:
through a Simple Bind, and through an SASL Bind. It is possible to write custom
methods of binding, too, but that's a significant undertaking. Let's look at the way
clients connect to LDAP using the Simple Bind method.

Typically, to authenticate a user, SLAPD looks up the DN (and the DN's
userPassword attribute) in the directory and verifies the following:

1. The supplied DN exists in the directory.
2. The DN is allowed to connect under the present conditions (such as from the

originating IP address, or with the currently-implemented security features).
3. The password supplied matches the value of the DN's userPassword

attribute.

In our example scenario the user Bob wants to bind to the directory. For Bob to
bind according to the outlined steps, the client would have to provide Bob's full
DN, which might be something like cn=Bob,dc=example,dc=net. But, not all
clients know the full DN of the user. Most applications require only a username and
password, not a full DN. To solve this problem, LDAP servers support the idea of the
Anonymous user.

Using OpenLDAP

[54]

When the LDAP server receives a bind request with an empty DN and an empty
password field, the server treats the user as Anonymous. The Anonymous user
can be granted or denied access to information in the directory based on the ACLs
specified for SLAPD. Generally, the task of the Anonymous user is to get Bob's DN
out of the directory and request that Bob be authenticated.

How does this happen? The client first connects to the server as Anonymous, then
searches the directory for Bob's entry with a filter of something like this: entries whose
CN is "Bob" and who have the objectclass "organizationalPerson".

The actual LDAP filter for this request would look like this:
(&(cn=Bob)(objectClass=oraganizationalPerson))

Assuming that the filter is specific enough, and the directory actually has an entry for
Bob, then the server would then send the client one DN: cn=Bob,dc=example,
dc=net. The client would then re-bind, this time as cn=Bob,dc=example,dc=net
(and with Bob's password), rather than as Anonymous.

In order for anonymous authentication to work, the ACLs will need to allow the
Anonymous user to bind and attempt to perform authentication. The ACLs we
added to slapd.conf in the previous chapter allowed the Anonymous user to
request authentication services with the userPassword attribute.

In this chapter, we will use Simple Binding, though we will specify a full DN,
rather than bind as Anonymous and search, and then rebind. Simple Bind sends
the password from the client to the server. Without additional security (like SSL or
TLS encryption), this makes the authentication process vulnerable to attacks. SASL
(Simple Authentication and Security Layer) Binding provides another method
of authenticating that relies on external security measures for added security. In
Chapter 4, we will look at the authentication process in more detail, with particular
emphasis on security.

The Search Operation
In our example scenario, after Bob authenticates to the server he searches for all the
email addresses that begin with the letter m. Let's examine that process in a little
more detail.

In order to search the directory we need to know the following things:

Base DN: Where in the directory to start from
Scope: How deep in the tree to look
Attributes: What information we want retrieved
Filter: What to look for

•
•
•
•

Chapter 3

[55]

Let's look at what Bob wants to get out of the directory. Bob wants to get a list of
all of the people in his organization, Example.Com, who have email addresses that
begin with the letter m. From this information, we can construct a search.

First, Bob wants to know about everyone in the Example.Com organization. In the
directory, this is everything under the Example.Com entry: dc=example,dc=com.
Also, since we know that Bob wants all of the email addresses that begin with m,
not just one layer down�� we know that Bob wants to search the entire subtree under
dc=example,dc=com. So we have:

Base DN: dc=example,dc=com
Scope: Entire subtree

Next, we want to know what attributes Bob wants the server to return. The DN will
be automatically returned. Other than that, Bob is concerned only with the attribute
that stores the email address. Email addresses are stored in the mail attribute. We
could also grab any number of attributes, such as the user's name (cn) and telephone
number (telephoneNumber). So we have:

Attributes: mail, cn, telephoneNumber

Attribute Descriptions
The attribute referred to by mail also has a second name:
rfc822Mailbox. These two names are called attribute descriptions
because they both describe a common attribute. Each attribute has at
least one attribute description, but it is legal to have multiple descriptions
(such as cn and commonName, or dc and domainComponent). When you
have an attribute with more than one description it doesn't matter which
description you use. All should return the same results.

Finally, we need to create a filter from Bob's criteria. Bob wants all of the entries
where the email address starts with the letter m.

Here is the search filter:

(mail=m*)

This simple filter is composed of four parts:

First, the filter is enclosed in parentheses. Parentheses are used for grouping
elements within the filter. For any filter, the entire filter should always be
enclosed in parentheses.
Second, the filter begins with an attribute description: mail.

•

•

•

•

•

Using OpenLDAP

[56]

Third is the matching rule. There are four matching rules: equality (=),
approximate match (~=), greater than or equal to (>=), and less than or equal
to (<=). How these are used (and whether they can be used) is determined
to a large degree by the directory schema, which we will discuss at length in
Chapter 6. In this case the filter performs string matching.
Finally, we have the assertion value—the string or pattern that we want
results to match. In this case it is composed of the character m and the
wildcard character (*). This indicates that the string must start with m, and
can then have zero or more characters following it.

This type of search is called a substring search, because the filter provides only part
of the string, and requests that the server respond with any entries that match the
substring (according to the pattern supplied).

What if Bob also needed all of the users with email addresses that started with n? We
could run two separate searches, or we could create a more elaborate filter:

(|(mail=m*)(mail=n*))

This filter is composed of two subfilters: (mail=m*) and (mail=n*). The first
matches only mail addresses that start with m, while the second matches only
addresses that start with n. These two subfilters are disjoined using the pipe (|)
symbol. That means that an OR operation will be performed, and the filter will
match a record if the record matches either (mail=m*) or (mail=n*).

The syntax may seem a little unusual at first, as the operator (the OR) comes before
the two filters are listed.

There are three logical operators that can be used in filters:
AND (&), OR (|), and NOT (!).

Just to make things more interesting, let's say that Bob wants to restrict the list to
only people whose offices have room numbers of 300 or above. We can simply add
one more sub-filter to our list, and we will have the results that Bob is looking for:

(&(|(mail=m*)(mail=n*))(roomNumber>=300))

To visualize this a little better let's add some line breaks and spaces:

(&
 (|
 (mail = m*)
 (mail = n*)
)
 (roomNumber >= 300)
)

•

•

Chapter 3

[57]

Now it should be a little easier to see how this filter is interpreted. In the innermost
level, mail addresses are considered matches if they start with m OR n. Now, these
matches are only returned if they also have a room number greater than or equal to
300. They must match either (mail=m*) OR (mail=n*), AND, in addition, must also
have (roomNumber >= 300).

Once Bob performs the search, with the base DN, scope, attributes, and filter, he
will receive a response from the server that will contain a list of records that look
something like this:

dn:cn=Matt B,dc=example,dc=com
mail: mattb@example.com
cn: Matt B
cn: Matthew B
telephoneNumber: +1 555 555 55555

dn: cn=Melanie K,dc=example,dc=com
mail: melaniek@example.com
cn: Melanie K
elephoneNumber: +1 555 555 4444

The search returns everything in appearing in the subtree below the DN
dc=example,dc=com that matches our filter. The returned records only have the DN
and the attributes that we specified: mail, cn, and telephoneNumber.

In our most complex filter, we used the roomNumber attribute. Why isn't it present
in the records above? Even though it was used in the filter the attribute value would
not be returned in the response unless we requested it.

Before going on, there is one last thing to mention about searching. During a search
the entire request is checked against the list of access controls.

If an ACL specifies that Bob does not have access to the telephoneNumber attribute,
then the search will return the same DNs but without the telephoneNumber
attribute. Similarly, if an ACL denied Bob access to the records of certain people in
the directory, then the server would send back the results for only those that Bob
does have permission to see.

The server will not give Bob any indication that some information has been withheld
because of an ACL.

Using OpenLDAP

[58]

More Operations: Additions, Modifications, and
Deletions
In our illustration of Bob's search for email addresses we covered only binding and
searching. Of course, LDAP supports adding, modifying, and deleting, as well. All
three of these also require that the user first bind. And all three of these are also
subject to ACL restrictions.

The Addition Operation
In an addition operation a new record is added to the server. In this case the client
will have to provide a new (and unique) DN, and set of attribute/value pairs. The
attribute/value pairs must include a list of object classes to which the entry belongs.
For example, if the entry is going to be a new user with a user ID and an email
account, then the modification would have to include at least three object class
attribute/value pairs.

An entire record for a user to be added might look something like this:

dn: uid=bjensen,dc=exaple,dc=com
cn: Barbara Jensen
mail: bjensen@example.com
uid: bjensen
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

The Modification Operation
Modification acts on a particular record, specified by DN. Any number of changes
can be done on a single record in one modification request.

For a particular record, a modification operation can add, replace, or remove
attributes. And it can combine operations in the same request. That is, it can remove
one attribute and replace another attribute in one request. Let's see these attributes:

An add request takes an attribute name and one or more values. It will add
those values to the existing set of values for that attribute. For example,
consider a record like this:
 dn: cn=Matt,dc=example,dc=com

 cn: Matt

 telephoneNumber: 1 555 555 1234

 telephoneNumber: 1 555 555 4321

 objectClass: person

•

Chapter 3

[59]

If we want to modify this record by adding cn: Matthew, the result will look
like this:
 dn: cn=Matt,dc=example,dc=com

 cn: Matt

 cn: Matthew

 telephoneNumber: 1 555 555 1234

 telephoneNumber: 1 555 555 4321

 objectClass: person

Modification operations are processed in an "all or nothing" fashion. When
multiple modifications are sent in one request, either they all succeed, or they
all fail.
A replace request also takes an attribute and one or more values. But the
list of values replaces the existing values. For example, if Matt relocated
and his telephone number changed, then replacing with the new attribute
telephoneNumber: 1 555 555 6543 would result in a record that looked
like this:
 dn: cn=Matt,dc=example,dc=com

 cn: Matt

 cn: Matthew

 telephoneNumber: 1 555 555 6543

 objectClass: person

The new number is added and the old numbers are removed.
A delete request also takes an attribute and a list of values. It deletes only
the values for an attribute that are specified in the list of values. For example,
deletion of cn: Matthew would give us the following record:

 dn: cn=Matt,dc=example,dc=com

 cn: Matt

 telephoneNumber: 1 555 555 6543

 objectClass: person

Only the matching CN was removed. If, however, a delete request only
specifies the attribute (with no values), then all instances of that attribute will
be removed.

The Delete Operation
Finally, an entire LDAP record can be deleted. Like modifications, deletion operates
on a particular record, the record's DN. During a delete operation, the entire record
is removed from the directory—the DN and all attributes.

•

•

Using OpenLDAP

[60]

Only records that do not have children can be deleted from the directory. If an
entry has children, the children must be removed from the directory (or relocated to
another part of the tree) before the parent entry can be removed.

Infrequent Operations
There are a few operations that clients can call, but that tend to be used less than
binding, searching, adding, modifying, and deleting. Three that we will look at just
briefly are ModifyDN, Compare, and Extended Operation.

The ModifyDN Operation
ModifyDN is used in cases where the DN for a record must be changed. Generally,
DNs should not be changed frequently as they are intended to be used as unique and
stable locators within a directory tree. However, it is not difficult to envision cases
where a DN needs to be changed. The following figure displays a (full) DN:

Relative DN
cn=Matt,dc=example,dc=com

Base DNFull DN

A (full) DN is composed of two parts:

First, there is the part specific to the immediate record, called the Relative
DN or the RDN. For example, in the DN cn=Matt,dc=example,dc=com, the
RDN is the cn=Matt part.
Second, there is the part that refers to the parent record of the DN. It is
specific to this record. The dc=example,dc=com part in the same example
points to the parent of this record.

Given the DN, we know how far down the directory tree this record is. It is one layer
below the root of the tree—the base DN (dc=example,dc=com).

The ModifyDN operation provides a way to change just the RDN or the entire
DN. Changing the latter equates to moving the record to another part of the
directory tree.

•

•

Chapter 3

[61]

The Compare Operation
A Compare operation takes a DN and an attribute value assertion (attribute = value),
and checks to see if that attribute assertion is true or false. For example, if the client
supplies the DN cn=Matt,dc=example,dc=com and the attribute value assertion
cn=Matthew, then the server will return true if the record has an attribute cn with the
value Matthew, or false otherwise. This operation can be faster (and also more secure)
than fetching a record and doing the comparison on the client side.

In OpenLDAP ACLs, the auth permission setting (as well as the =x
permission setting that we will look at in the next chapter) allows the
Compare operation to be used, but does not allow the attribute value
to be returned in a search. The read permission (=xw) allows both the
Compare operation and the return of the attribute value in search results.

The Extended Operation
Finally, OpenLDAP implements the LDAP v.3 Extended Operation, which makes it
possible for a server to implement custom operations.

The exact syntax of an Extended Operation will depend on the implementation of the
extension. The supported Extended Operations are listed in the root DSE under the
supportedExtension attribute. Take a look at the root DSE at the end of Chapter 2.
In that record there are two extended operations:

1.3.6.1.4.1.4203.1.11.1: This Modify Password extension is defined in RFC
3062 (http://www.rfc-editor.org/rfc/rfc3062.txt). This extension
provides an operation for updating a password in the directory.
1.3.6.1.4.1.4203.1.11.3: This Who Am I? extension is defined in RFC 4532
(http://www.rfc-editor.org/rfc/rfc4532.txt). This extension makes it
possible for the currently active DN to find out about itself from the server.

Later in this chapter we will look at tools that use the Modify Password and the Who
Am I? extensions.

SLAPD Summary
In this section we have looked at some of the operations that the SLAPD server
makes available to the clients. We've looked at the most common operations
(binding, searching, modifying, adding, and deleting). We've also looked at a few
of the less-known operations like modifyDN, Compare, and Extended Operations
as well.

•

•

Using OpenLDAP

[62]

By now you should have a good idea of what services the SLAPD server provides to
clients. Clients can bind (or authenticate) to a SLAPD server and perform powerful
searches of the directory. And through SLAPD the information in the directory tree
can be maintained.

These concepts will be central to the rest of this chapter, and the rest of this book.

Next, we'll look at the SLURPD daemon, though we will not go into much detail.

SLURPD
SLAPD and SLURPD are the two daemons included in the OpenLDAP suite. Above,
we looked at the SLAPD server. Now we will turn to the second daemon.

SLURPD, the Stand-alone LDAP Update Replication Daemon, is used less frequently
than SLAPD, and is on its way to obsolescence. SLURPD provides one way of
keeping multiple copies of an LDAP directory synchronized (see the discussion
in Chapter 1). Basically it works by tracking the changes (additions, deletions,
modifications) to a master SLAPD directory server. When a change is made to the
master directory, SLURPD sends updates to all of the subordinate slave servers.

The SLURPD program, slurpd, is located at /usr/sbin (or /usr/local/libexec,
if you compiled from source). In configurations where SLURPD is used, slurpd
is typically started immediately after slapd. SLURPD does not have its own
configuration file. It searches the slapd.conf file for configuration information.

In Chapter 7 we will look at the technology that will likely replace SLURPD: the
LDAP Sync Replication capability that is built into recent (OpenLDAP 2.2 and later)
versions of SLAPD.

Creating Directory Data
In the previous section we looked at the two LDAP daemons, SLAPD and SLURPD.
But though we have a directory running already, we do not have any entries in our
directory (other than the ones that are created by SLAPD, such as schema records
and the root DSE).

In this section we will create a file for holding our LDAP data, and we will devise
some directory entries to go in this file. In the next section we will load the data into
the directory.

Chapter 3

[63]

The LDIF File Format
Throughout this book we look at examples of LDAP records presented in plain text,
with each line having an attribute description, followed by a colon and a value. The
first line of the record is the DN, and usually the last lines of the record are the object
class attributes:

dn: uid=bjensen,dc=exaple,dc=com
cn: Barbara Jensen
mail: bjensen@example.com
uid: bjensen
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

This format is the standard way of representing LDAP directory entries in a text file.
It is an example of a record written in the LDAP Data Interchange Format (LDIF),
version 1.

The LDIF file format was developed as part of the University of Michigan
LDAP server project. In 2000, LDIF version 1 was standardized in RFC
2849. The standard is available online at http://www.rfc-editor.
org/rfc/rfc2849.txt.

The LDIF standard defines a file format not only for representing the contents of a
directory, but for representing certain LDAP operations, such as additions, changes,
and deletions. In the section on the ldapmodify client, we will use LDIF to specify
changes to records in the directory server, but right now we are interested in creating
a file that represents the contents of our directory.

LDIF is not the only directory file format. There is an XML-based
directory markup language called DSML (Directory Services Markup
Language). While there is a standardized DSML version 1, the project
seems to have lost momentum to the extent that the official website,
dsml.org, is now gone. However, one Open Source DSML tools website
hosts a mirror of the old dsml.org site: http://www.dsmltools.
org/dsml.org/.
The OpenLDAP suite does not directly support DSML.

Using OpenLDAP

[64]

Anatomy of an LDIF File
An LDIF file consists of a list of records, each of which represents an entry in the
directory. Each entry must have a DN (since any LDAP entry requires a DN), and
then one or more attributes or change records (add, modify, delete, modrdn, moddn).
For now we will confine ourselves to attributes, and put off discussion of change
records until we discuss ldapmodify.

Records are separated by empty lines, and each record must begin with a DN:

First Document: "On Liberty" by J.S. Mill
dn: documentIdentifier=001,dc=example,dc=com
documentIdentifier: 001
documentTitle: On Liberty
documentAuthor: cn=John Stuart Mill,dc=example,dc=com
objectClass: document
objectClass: top

Second Document: "Treatise on Human Nature" by David Hume
dn: documentIdentifier=002,dc=example,dc=com
documentIdentifier: 002
documentTitle: Treatise on Human Nature
documentAuthor: cn=David Hume,dc=example,dc=com
objectClass: document
objectClass: top

Lines that begin with a pound or number sign (#) are treated as comments, and
ignored. Note that the pound sign must be the first character on the line, not
preceded by any whitespace characters.

While it is customary for records to end with the objectClass attributes, this is done
because it is considered easier to read. There is no requirement to do so. The order of
attributes in an LDIF record is inconsequential.

An object class (which is defined in a schema definition) indicates what type or
types of object the record represents. In the precvious example, the two records
are both documents. The object class definition determines which attributes are
required, and which are merely allowed. When authoring an LDIF file you will
need to know which fields are required. The DN of any entry is, of course, required,
as is the objectclass attribute. In the top object class, which represents the root
of the schema hierarchy, there are no required fields other than objectclass. The
document object class definition requires documentIdentifier, and allows
eleven additional fields, including documentTitle (which takes a string value)
and documentAuthor (which takes a DN value, pointing to another record in
the directory).

Chapter 3

[65]

The Document Object Class
LDAP directories can model a variety of different types of objects.
The document object class, used in the previous example, represents
documents (such as books, papers, and manuals) in the directory. The
schema for the document object class and the related documentSeries
object class is contained in cosine.schema and defined in section 3.2 of
RFC 4524 (ftp://ftp.rfc-editor.org/in-notes/rfc4524.txt).
Schemas will be discussed at length in Chapter 6.

Let's look at the list of attributes for the document and documentSeries object classes:

Required:

Allowed:
documentIdentifier

documentTitle
documentAuthor
documentVersion
documentLocation
documentPublisher
cn
description
seeAlso
I
o
ou

Required:

Allowed:
cn

description
seeAlso
I
o
ou
telephoneNumber

document documentSeries

Any attributes that are used in the DN but are not part of the directory's base
DN must be present in the record. For example, consider the case where the
base DN is dc=example,dc=com. An entry with the DN cn=Matt,dc=example,
dc=com would have to have a cn attribute with the value Matt. In the previous
examples, since documentIdentifier is used in the DN, there must be a matching
documentIdentifier attribute in the record.

In fact, the document object class requires the documentIdentifier
attribute so, in this case, even if the attribute was not used in the DN, any
document record would still need a documentIdentifier.

Likewise, an entry with the DN cn=Matt,ou=Users,dc=example,dc=com would
have to have the attributes cn:Matt and ou:Users.

Using OpenLDAP

[66]

Representing Attribute Values in LDIF
Not all attribute values are simple and short ASCII strings. LDIF provides facilities
for encoding more complex types of data.

Sometimes attribute values won't fit on one line. If an attribute value is too long to fit
on one line it can be continued on the next line, provided that the first character on
the continued line is a whitespace character:

dn: documentIdentifier=003,dc=example,dc=com
documentIdentifier: 003
documentTitle: An essay on the nature and conduct of the passions

 and affections with illustrations on the moral sense.

documentAuthor: cn=Francis Hutchison,dc=example,dc=com
objectClass: document
objectClass: top

According to the RFC, an LDIF file can only contain characters in the ASCII character
set. However, characters that are not in ASCII can be represented in LDIF using a
base-64 encoded value. Entries whose value is base-64 encoded differ slightly. The
attribute description is followed by two colons, instead of one:

dn: documentIdentifier=004,dc=example,dc=com
documentIdentifier: 004
documentTitle:: bW9uYWRvbG9neQ==

documentAuthor: cn=G. W. Leibniz,dc=example,dc=com
objectClass: document
objectClass: top

You should consider base-64 encoding under the following circumstances:

When the attribute value contains binary data (such as a JPEG photo).
When the character set is not ASCII. Generally, the directory data should be
stored in UTF-8, but that means that in order to remain compliant to the LDIF
standard, values should be base-64 encoded.
When there are line breaks or other non-printing characters within the
value. (Note that for such values to be accepted the schema must allow these
characters or the directory server will not allow them to be uploaded even if
they are encoded.)
When the value begins with or ends with whitespace characters (that you
want preserved), or begins with a colon (:) or a less-than sign (<).

Even DNs can be base-64 encoded, and you can use UTF-8 characters in a DN as long
as the DN is base-64 encoded.

•

•

•

•

Chapter 3

[67]

There are several UNIX/Linux utilities which can be used to base-64 encoded values.
The most popular is the uuencode program that comes in the sharutils package.
However, this program is not installed by default in Ubuntu. You can install it
quickly from the command line with apt-get:

 $ sudo apt-get install sharutils

Once sharutils is installed you can encode a value with uuencode:

$ echo -n " test" | uuencode -m name
begin-base64 644 name
IHRlc3Q=
====

In this example we are converting the string " test" (note the leading white space)
into a base-64 encoded string. This is done with a couple of commands on the
command line (using the Bash shell in this example).

The uuencode command is typically used to encode files for attachment to an email
message, so we have to do a little work to get it to operate the way we want. First,
we echo the string that we want to encode. The echo program, by default, adds
a newline character onto the end of the string that it echoes. We use the -n flag to
prevent it from adding the newline character.

The string " test" is echoed to the standard output (/dev/stdout), and then
piped (|) into the uuencode command. The -m flag instructs uuencode to use
base-64 encoding, and the name string is used by uuencode to generate a name
for the attachment. While this is useful when using uuencode to generate email
attachements, it serves no purpose for us. Since we are not attaching this file to
anything it doesn't really matter what you put there�� foo would work equally
as well.

The uuencode program then prints three lines of output:

begin-base64 644 name
IHRlc3Q=

====

Only the second line of the code (highlighted one), the actual base-64 encoded value,
matters to us. We can copy IHRlc3Q= and paste it into our LDIF file.

Another popular tool for base-64 encoding is mimencode, provided by
the metamail package. Both the Perl and Python scripting languages
have base-64 encoding tools as well.

Using OpenLDAP

[68]

In some cases, inserting a lengthy attribute value (such as the entire base-64 encoded
image file, or even a lengthy bit of text) into the LDIF file would make the file too
large to efficiently edit with a text editor. Even a small image file would be hundreds
of characters long when base-64 encoded. Instead of inserting the base-64 encoded
string directly into the file you can use a special file reference, and the contents of the
file will be retrieved and loaded into the directory when the LDIF file is imported.

dn: documentIdentifier=005,dc=example,dc=com
documentIdentifier: 005
documentTitle: Essays in Pragmatism
documentAuthor: cn=William James,dc=example,dc=com
description:< file:///home/mbutcher/long-description.txt

objectClass: document
objectClass: top

The highlighted line of code shows an example of inserting a reference to an
external file.

There are two important features to note in this example:

The left angle bracket (<) character is used to indicate that the file should be
imported. This character evokes the UNIX/Linux shell, which uses the left
angle bracket for the same purpose.
The path to the file follows the standard file:// URL scheme to represent
the file path.

Note that in the file scheme, you will usually need three slashes at the
beginning (file:///path/to/file) to indicate that there is no host
field. RFC 3986 (ftp://ftp.rfc-editor.org/in-notes/rfc3986.
txt) defines the general structures of URIs and URLs. file:// is one
particular URL scheme, and is roughly defined in section 3.1 of RFC 1738
(ftp://ftp.rfc-editor.org/in-notes/rfc1738.txt).

In cases where you have attribute values in multiple languages you can store
language information along with the attribute description:

dn: documentIdentifier=006,dc=example,dc=com
documentIdentifier: 006
documentTitle;lang-en: On Generation and Corruption

documentTitle;lang-la: De Generatione et Corruptione

documentAuthor: cn=Aristotle,dc=example,dc=com
objectClass: document
objectClass: top

•

•

Chapter 3

[69]

The language information is stored in the directory, and clients will be able to use it
to display the language appropriate to the locale.

This covers the basics of the LDIF file format, now we will move on and create an
LDIF file to load into the directory.

Example.Com in LDIF
Now we are ready to model our directory tree in an LDIF file. The first thing to do
is to decide on a directory structure. We are going to represent an organization in
our directory tree. Of course the possibilities for the types of trees you can model are
boundless, but we will stick to those most commonly used for LDAP directories.

There are two popular ways of defining the roots of an organizational directory tree:

1. The first is to create a root entry that indicates the official name of the
organization and the geographic location (usually just the country) of the
organization. Here are a few examples:
 o=Arius Ltd.,c=UK

 o=Acme GmBH,c=DE

 o=Example.Com,c=US

In each of these three examples, o represents the organization name, and c is
the two-character country code.

2. The second popular model is to use the organization's domain name. For
example, if the company Airius has registered the airus.co.uk domain
name, then the root DN would be composed of three domain component
(dc) attributes:
 dc=airius,dc=co,dc=uk

Likewise, the other two records could be re-written using their respective
domain components:
 dc=acme,dc=de

 dc=example,dc=com

Using OpenLDAP

[70]

Using the organization/country configuration has its advantages. Corporations with
multiple domains may find this form more appealing. But the second form, relying
upon domain components instead, has become much more prevalent. In most
circumstances, I prefer the domain component form because it is more closely related
to the way much information is referenced on the Internet.

Of course, there is no hard and fast rule about how exactly the DN must be
structured, and you may find other base DN structures more appealing.

Defining the Base DN Record
Now that we have chosen a base DN style, let's begin building a directory for
Example.Com. LDIF files are read sequentially, record by record. So, the base DN
must come first, since all other records will refer to it in their DNs. Likewise, as
we build the directory information tree, we will need to make sure that the parent
entries always appear in the file before their children.

Our base DN looks like this:

dn: dc=example,dc=com
description: Example.Com, your trusted non-existent corporation.
dc: example
o: Example.Com
objectClass: top
objectClass: dcObject
objectClass: organization

Let's start from the bottom and work backwards through the example. The record
has three object classes: top, dcObject, and organization. As we have seen already,
the top object class is the root of the hierarchy of object classes, and all records
within the directory are in the top object class.

Chapter 3

[71]

Here is the figure displaying the object classes:

top

Required:
ObjectClass

Required:

Allowed:
o

userPassword
searchGuide
businessCategory
description
seeAlso
x121Address
registeredAddress
destinationIndicator
preferredDeliveryMethod
telexNumber
teletexTerminalIdentifier
telephoneNumber
internationalISDNNumber
facsimileTelephoneNumber
street
postOfficeBox
postalCode
postalAddress
physicalDeliveryOfficeName
l
st

dcObject

Required:
dc

organization

The dcObject object class simply describes domain components—pieces of a domain
name. The domain www.packtpub.com, for example, has three domain components:
www, packtpub, and com. Since we are using domain components in the DN, we need
the dcObject class, which requires one attribute: dc.

You may notice that while in the DN there are two dc attributes (dc=example
and dc=com), there is only one (dc:example) listed in the record. While it seems
counter-intuitive at first glance, the reason is actually straightforward. The record is
not describing the entire domain—just a single domain component (example). Like a
DNS record, the parent component (com) refers to another entity somewhere else in a
great big hierarchy.

So, each record that uses the dcObject object class can describe only one domain
component, and hence have only one dc attribute in the record (though the DN may
have multiple dc attributes, specifying in which part of the domain hierarchy this
record resides).

Using OpenLDAP

[72]

But is the dc=com record supposed to be in our directory? Since the root of this
directory (as specified in the slapd.conf file) is dc=example,dc=com, we would
not expect to find the dc=com record within the database, as it is not under the
dc=example,dc=com part of the tree (rather, dc=com is above, or superior to, this part
of the tree).

Handling Requests for Records Outside the Directory Tree
What if a search request comes into our Example.Com directory for
dc=com? Or what if we get a request for dc=otherExample,dc=com?
These are records not expected to be in our directory. Using the referral
directive in the slapd.conf file, you can direct requests of this sort
to another server that might prove more authoritative on the matter.
The syntax for the directive is referral <ldap URL>, for example:
referral ldap://root.openldap.org.

Now we have specified what domain component our record describes. But we still
need a little more. We can't just have a record with top and dcObject object classes
for two reasons—one practical and the other technical.

Practically speaking, the record would not be particularly useful with just this sparse
information, as it wouldn't really tell us about the base of the directory tree (other
than that, it has a domain name).

Technically speaking, neither of the two object classes, top and dcObject, are
sufficient for a complete record. The reason for this is that neither of these object
classes are structural object classes, (top is abstract, and dcObject is auxiliary)
and every record in the directory must have one object class that is considered the
structural object class for that record. For a detailed explanation, as well as some
useful information about structuring records, see Chapter 6.

What would make our base record more useful (and fulfill the record's requirement
to have a structural object class)? The organization object class describes an
organization, as the name suggests. It requires one field, o (or its synonym,
organizationName), which is used to specify the (legal) name of the organization.
Additionally the organization object class allows twenty-one optional fields that
provide more detailed information about the organization, such as postalAddress,
telephoneNumber, and location. In the previous example we used the
description field, which is also among the twenty-one attributes allowed by the
organization object class.

That is our base entry for our directory. It describes the record at the root of our
directory information tree. Next we want to add some structure to our directory.

Chapter 3

[73]

Structuring the Directory with Organizational Units
One of the strengths of LDAP's directory server model is its ability to represent data
organized into hierarchies. In this section, we will use Organizational Units (OUs) to
create a several subtrees beneath our dc=example,dc=com root.

Our Example.Com directory is intended primarily for holding user and account
information. For that reason, we will want to use Organizational Units to
create subtrees.

If we were, for example, creating a directory of document records (as we
did in the section entitled The LDIF File Format), instead of using OUs, we
might instead use documentSeries records.

OpenLDAP does not provide a default OU subtree structure, so you will need to
create your own. This can be done in many ways, but here we will see the two
prominent theories of how OUs should be structured.

Theory 1: Directory as Organizational Chart
The first theory is that the directory should be structured to represent the
organizational chart of the organization you are modeling. For example, if the
organization has three main units—Accounting, Human Resources (HR), and
Information Technology (IT)—then you should have three OUs. Here is a figure for
the same:

ou=accounting ou=HR

dc=example, dc=com

uid=barbara

ou=IT

uid=matt

In the given screenshot, each OU represents a unit in the organizational chart.
Employees who work in Accounting will have their user accounts in the directory
subtree ou=Accounting,dc=example,dc=com, while employees in IT will have
accounts in ou=IT,dc=example,dc=com.

Using OpenLDAP

[74]

This method has some obvious advantages. Knowledge of how the organization
works will help you locate information in the directory. Conversely, the directory
will serve as a tool for understanding how the organization is structured.
Organizational relationships between people or records in the directory will be
more easily ascertained. For example, a glance at the record (or just the DN) of
uid=Marvin,ou=Accounting,dc=example,dc=com, and you will know that Marvin
works in the same department as Barbara.

There are a few things to consider before structuring your directory this
way though:

First, while organizational structures change—sometimes too frequently—
relocating DNs within the directory is not an easy task (and in some cases
requires deleting a record from one part of the tree and creating a similar
version in another part of the tree).
If Barbara, the manager of Accounting, is transferred to Human Resources,
her DN must change (to reflect the new OU). Some (older) backends do
not allow DN changes, and so Barbara's Accounting record would need
to be deleted, and then a new one created for her in the HR OU. Also,
applications that stored the DN of the user would have to be reconfigured.
Similarly, some employees may split their time between two departments.
How would this case be handled?
A second consideration, and one that is not at all obvious, has to do with the
technical use of the LDAP directory. If user records are spread throughout
the directory tree, then applications will need to be smart enough to search
all over the tree for user records.
This problem is usually solved by pre-authentication search techniques, such
as binding as Anonymous or as a special authentication user, searching
the directory for the account that will be used for authentication, and then
binding as the correct account (if found). But not all clients (and not all
directories, for that matter) allow pre-authentication searching. And
pre-authentication searching can impose a bigger load on the server,
whereas other techniques may be easier on the server.
A third consideration has to do with what other sorts of information you
want to store in your directory. If you are using the directory primarily as
a tool for modeling the organizational chart, then this particular method
of structuring the directory will be ideal for you. You can track employees,
assets (fleet vehicles, computers, and so on), and other resources within the
directory, and locate their position in the organization.

•

•

•

Chapter 3

[75]

But if the main purpose of the directory is to create a directory of users of IT
services, then this structure will be less than ideal, requiring applications to
do much more work to locate users (and in some cases, requiring users to
know more about their LDAP accounts).

Theory 2: Directory as IT Service
The second theory is that the directory should be structured to represent the way
your system (networks, servers, user applications) will need to access the records. In
this case the structure of the LDAP directory should be optimized for use by such IT
services. While the organizational chart technique groups records by their relation to
the organization, this method groups records into functional units, where a position
in the directory is determined primarily by the tasks that applications and services
will require the directory to perform.

One common way to structure the directory is to split it into a unit for users, a unit
for groups, and a unit for system-level records that applications need, but users will
not require access to. Let's see an example:

ou=System ou=Groups

dc=example, dc=com

uid=barbara

ou=Users

uid=matt

In this case, all of the user accounts are under a particular subtree of the directory:
ou=Users,dc=example,dc=com. Applications need only search in one part of the
directory to find user accounts, and when the organization changes, the structure of
the directory need not also change.

There is nothing magical about using organizational units (OUs)
for partitioning the directory information tree. You can use other
record types, and other attributes (such as cn—common name) to
divide a directory into multiple branches. Using OUs is traditional,
though perhaps not the most appropriate in cases where the directory
information tree does not model the organizational chart.

Using OpenLDAP

[76]

This method, Also has some drawbacks. First, the directory structure does not,
by design, provide any overt clues to the structure of the organization. Of course
organizational information, such as department IDs, can be stored in individual
records, and so can be retrieved that way.

More importantly though, if the directory supports a large number of users,
the ou=Users branch is going to have a lot of records. This is not necessarily a
performance problem, but it can make browsing the directory (as opposed to
searching the directory) a tedious process.

In some cases, this problem is mitigated by adding additional subtrees under the
user's branch. Sometimes this is done by creating a hybrid configuration where
ou=User has subtrees that represent departments in the organization, such as
ou=Accounting,ou=Users,dc=example,dc=com. Sometimes other classification
systems, such as alphabetical schemes, are used to handle this situation:
uid=matt,ou=m-p,ou=Users,dc=example,dc=com.

But for small and medium-sized ones, a user's branch typically does not have any
additional subtrees, which eases the process of integrating with other applications.

LDAP also has object classes designed to describe groups of records in the directory.
Usually, it does not make sense to store these in with the user accounts, so they can
be moved to a separate branch.

Finally, the System branch is used to store records for things like system accounts,
mail servers, web servers, and other miscellaneous applications often need (or
perform best with) their own LDAP accounts. But if it can be helped, they shouldn't
be grouped in with user accounts.

I've outlined two different ways of structuring the directory information tree—one
mirroring the organization, and the other facilitating IT services. But these are only
two ways of structuring the directory. You may find that other structures meet your
needs better. However, for our purposes, we will use the IT services structure as we
continue to build our LDIF file.

Expressing the OUs in LDIF
Now we are ready to write out our chosen OUs in LDIF. We will create three
OUs—Users, Groups, and System—as follows:

Subtree for users
dn: ou=Users,dc=example,dc=com
ou: Users
description: Example.Com Users
objectClass: organizationalUnit

Subtree for groups

Chapter 3

[77]

dn: ou=Groups,dc=example,dc=com
ou: Groups
description: Example.Com Groups
objectClass: organizationalUnit

Subtree for system accounts
dn: ou=System,dc=example,dc=com
ou: System
description: Special accounts used by software applications.
objectClass: organizationalUnit

The three OUs have the same structure.

Each OU must have the organizationalUnit object class. This object class has one
required attribute: ou. Here is a figure displaying the organizationalUnit:

Required:

Allowed:
o

userPassword
searchGuide
businessCategory
description
seeAlso
x121Address
registeredAddress
destinationIndicator
preferredDeliveryMethod
telexNumber
teletexTerminalIdentifier
telephoneNumber
internationalISDNNumber
facsimileTelephoneNumber
street
postOfficeBox
postalCode
postalAddress
physicalDeliveryOfficeName
l
st

organizationalUnit

Note that the objectClass: top has been omitted from these records,
as well as all of the following records in this chapter. All records are
automatically assumed to be instances of the top object class, so it is not
necessary to explicitly include the objectClass: top attribute.

Using OpenLDAP

[78]

The description attribute is optional and there are more than twenty additional
(optional) attributes that can be added—most of which provide contact information
of the organization unit, such as telephoneNumber, postOfficeBox, and
postalAddress.

With our OUs in place we are ready to add a third tier to our directory tree. Before
we start creating individual records let's get an overview of what this next tier will
look like. Here is the directory tree structure with a group, a system account, and a
pair of users:

ou=System ou=Groups

dc=example, dc=com

uid=barbaracn=LDAP Adminsuid=Authentication

ou=Users

uid=matt

This is the directory information tree that we will create in the remainder of this
section. Next, we will continue building an LDIF file first by adding the users,
followed by a system record, and then a group.

Adding User Records
We will reserve the Users OU for records that describe people in the organization.
In these accounts we want to store information about the user—things like first and
last name, title, and department. Since the directory will also be a central resource for
application information, we also want to store user ID, email address, and password.

A basic user record looks like this:

Barbara Jensen:
dn: uid=barbara,ou=Users,dc=example,dc=com
ou: Users
uid: Barbara
sn: Jensen
cn: Barbara Jensen
givenName: Barbara
displayName: Barbara Jensen
mail: barbara@example.com
userPassword: secret

Chapter 3

[79]

objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

The user record for Barbara belongs to three object classes: person,
organizationalPerson, and inetOrgPerson. All three of these are structural object
classes, where inetOrgPerson is a child of the organizationalPerson class, which,
in turn, is a child of the person object class. The attributes in Barbara's record are
a mixture of the required and allowed attributes from the three object classes. The
following figure displays the attributes in Barbara's record:

dn: uid=barbara, ou=Users,
dc=example, dc=com

From Person:

From organizationalPerson

From inetOrgPerson

cn: Barbara Jensen (required)
sn: Jensen (required)
userPassword: secret

ou: Users

uid: barbara
givenName: Barbara
diplayName: Barbara Jensen
mail: barbara@example.com

Since inetOrgPerson inherits from organizationalPerson, a record that has the
inetOrgPerson object class also must have the organizationalPerson object class.
And organizationalPerson inherits from the person object class, so person, is
also required.

Using OpenLDAP

[80]

This means that all of the inetOrgPerson records will require cn (the user's full
name) and sn (the user's surname) attributes, as all inetOrgPerson records are also
person records. It also means that the record can have any combination of the
forty-nine optional attributes defined between the three object classes.

Since uid and ou attributes were used in the DN, they are effectively
required attributes as well. Furthermore, OpenLDAP will require that
the record have a uid attribute and an ou attribute that have values that
match the values in the DN—in other words, since the ou in the DN is
Users, the ou attribute in the record must have the value Users. This
behavior is dictated by the LDAP standard.

Different object classes, different schemas
While person and organizationalPerson are defined in the core
schema (core.schema), inetOrgPerson is defined in its own schema
(inetOrgPerson.schema), and is standardized on its own in RFC 2798
(http://rfc-editor.org/rfc/rfc2798.txt). The reason for this is
largely historical: person and organizationalPerson were defined
well before inetOrgPerson (and by different parties).

An inetOrgPerson record that utilizes more of the available attributes might look
like this:

Matt Butcher
dn: uid=matt,ou=Users,dc=example,dc=com
ou: Users
Name info:
uid: Matt
cn: Matt Butcher
sn: Butcher
givenName: Matt
givenName: Matthew
displayName: Matt Butcher
Work Info:
title: Systems Integrator
description: Systems Integration and IT for Example.Com
employeeType: Employee
departmentNumber: 001
employeeNumber: 001-08-98
mail: mbutcher@example.com
mail: matt@example.com
roomNumber: 301
telephoneNumber: +1 555 555 4321

Chapter 3

[81]

mobile: +1 555 555 6789
st: Illinois
l: Chicago
street: 1234 Cicero Ave.
Home Info:
homePhone: +1 555 555 9876
homePostalAddress: 1234 home street $ Chicago, IL $ 60699-1234
Misc:
userPassword: secret
preferredLanguage: en-us,en-gb
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

In this example we are still using the same three object classes , but have selected
many more of the optional attributes. One thing that may stand out in both Barbara's
and Matt's records, is that there are an awful lot of attributes used simply for
specifying the name of the person�� cn, sn, givenName, and displayName are all fields
related to the person's name. What's the point in having so many? There are two
benefits achieved by providing diverse name fields:

This reduces the amount of guess work that an application has to do when
parsing names. Names can be ambiguous—for instance, John Stuart Mill's
surname is Mill, while Mary Stuart Masterson's surname is Stuart Masterson.
Explicitly specifying such things can reduce ambiguity.
The different attributes allow additional information to be specified.
Multiple cn and givenName values can specify different forms of a person's
name, while displayName (which can only have one value, and cannot be
used multiple times in the same record) ensures that the applications will
consistently display the same name.

Common Names
The cn field is used by many different object classes in the directory,
many of which do not describe persons. For this reason, a cn does not
always contain the full name of a person. Groups, devices, and documents
are amongst the things that may use the cn (or commonName) attribute.

In the previous examples the userPassword field, which contains the person's
password, is in plain text. When this file is loaded into the directory, the value
will be base-64 encoded, but it will not be encrypted. It is not at all secure to store
clear-text passwords in the directory (and base-64 encoding does not improve the
security of the password). Later in this section we will look at the ldappasswd
tool, which encrypts passwords before storing them in the directory. Production
directories should always store the userPassword value in encrypted form.

•

•

Using OpenLDAP

[82]

You may notice that in the homePostalAddress field, dollar signs ($)
are used where one would normally expect to see line breaks. OpenLDAP
does not automatically convert these to line breaks. But use of the dollar
sign is an older way of representing line breaks without using base-64
encoding. Typically, it is only used in postal address related fields—and it
is up to implementing applications to correctly interpret the dollar signs.

Both of these examples use the inetOrgPerson object class as their primary
structural object class. This is because these records describe a person and use the
uid attribute (and use it as part of the DN). Additionally, inetOrgPerson provides
a number of attributes that are useful for modern information infrastructures��
jpegPhoto, preferredLanguage, and displayName (amongst others) are all
intended to be used primarily by modern computer agents rather than humans. As it
is standardized and widely deployed (LDAP servers from Sun to Microsoft use it), it
is the preferred object class for describing people within an organization.

Thus far we have created a base DN entry, some organizational units, and a few
users. Now we will add a record describing a system account.

Adding System Records
Some of the entries in our tree—entries that we will need—do not describe users,
and so do not belong in the Users organizational unit (OU). Instead, we will put
such special records in the System OU. Likewise, the entities we are describing are
not people, and so using the person, organizationalPerson, and inetOrgPerson
object classes is not appropriate.

In this section we will create a new record for an account that will assist users in
logging in. The function of the account will be described in detail in Chapter 4, but
this account will need to be able to authenticate to the directory server and perform
operations. But, again, this account is not for a specific person, and so it will not have
personal data (like a surname or a given name).

Here's what our new system account, called authenticate, looks like:

Special Account for Authentication:
dn: uid=authenticate,ou=System,dc=example,dc=com
uid: authenticate
ou: System
description: Special account for authenticating users
userPassword: secret
objectClass: account
objectClass: simpleSecurityObject

Chapter 3

[83]

This record has two object classes: account and simpleSecurityObject. The first
one, account, is the structural object class. An account object, which is defined in
the Cosine schema (cosine.schema), describes an account used to access computers
or networks. Let's have a look at the two object classes:

account simpleSecurityObject

Required:

Allowed:
uid

I
o
ou
host
description
seeAlso

Required:
userPassword

Our account, whose DN is uid=authenticate,ou=System,dc=example,dc=com,
uses the uid attribute required by the account object class, as well as the ou and
description fields from account. But the account object class does not have a field
for storing a password. For that reason we need to add to the record the auxiliary
object class simpleSecurityObject, which has one attribute: the required attribute
userPassword.

Auxiliary object classes can be combined with any other structural or
auxiliary object classes. While using multiple structural object classes
in one record requires that the object classes be related (for example as
organizationalPerson is a child of person), auxiliary object classes
do not need to be related to the object classes with which they are used.
In this case simpleSecurityObject has no direct relation to account.
See Chapter 6 for a more detailed explanation.

By adding the simpleSecurityObject auxiliary object class, we have now made
it possible for our account record to have a password. Again, in our example, we
have specified the password (userPassword: secret) in clear text. It is not safe to
store unencrypted passwords in the directory. For information on encrypting LDAP
passwords, see the section on ldappasswd later in this chapter.

Now we have created some records under two of our three organizational units:
Users and System. Next, we will add a group under the Groups OU.

Using OpenLDAP

[84]

Adding Group Records
The last record we will add to our LDIF file is a record that describes a group of DNs.
Groups provide a flexible method for collecting similar DNs by whatever criterion
is needed. The DNs in a group do not have to be structurally similar—they can
have completely different attributes and object classes, and can describe completely
different things (such as a document and a person). Thus, it is up to the directory
administrators and directory applications as to what sorts of DNs will be grouped
into any particular group.

In our case, we are going to create a group to represent our directory administrators,
and all of the DNs that belong to this group are DNs for users (in the Users OU, and
with the inetOrgPerson structural object class).

LDAP Admin Group:
dn: cn=LDAP Admins,ou=Groups,dc=example,dc=com
cn: LDAP Admins
ou: Groups
description: Users who are LDAP administrators
uniqueMember: uid=barbara,dc=example,dc=com
uniqueMember: uid=matt,dc=example,dc=com
objectClass: groupOfUniqueNames

Our group has the DN cn=LDAP Admins,ou=Groups,dc=example,dc=com. Note that
we use the cn attribute, rather than uid, to identify the group. That is because the
groupOfUniqueNames object class does not allow a uid attribute (and cn is required).

Usually, you should use the groupOfNames object class rather than
groupOfUniqueNames, because groupOfNames is the default grouping
object class in OpenLDAP. We use a groupOfUniqueNames here
to exhibit some of the features of LDAP group management in the
later chapters.

A groupOfUniqueNames class is one of three grouping object classes defined in the
core LDAP version 3 schema (core.schema). The other two are groupOfNames and
organizationalRole.

Chapter 3

[85]

These have been diplayed in the following figure:

groupOfUniqueNames groupOfNames organizationalRole

Required:

Allowed:

uniqueMember
cn

o
ou
owner
description
seeAlso
businessCategory

Required:

Allowed:

member
cn

o
ou
owner
description
seeAlso
businessCategory

Required:

Allowed:
cn

roleOccupant
ou
st
I
street
postOfficeBox
postalCode
postalAddress
seeAlso
description
x121Address
registeredAddress
destinationaIndicator
preferreDeliveryMethod
physicalDeliveryOfficeName
telexNumber
teletexTerminalIdentifier
telephoneNumber
internationalISDNNumber
facsimileTelephoneNumber

All three of these object classes are designed for collecting DNs. Each has an attribute
that specifies the DN of a member of the group. In groupOfNames, the attribute
is called, simply enough, member. The groupOfUniqueNames class, which does
not differ in function from groupOfNames, uses uniqueMember as its membership
attribute. The organizationalRole grouping class, which is intended to represent
the group responsible for performing a particular role in the context of the
organization, uses the roleOccupant attribute for membership.

In all three grouping object classes, the membership attribute
(member, uniqueMember, or roleOccupant) can be specified multiple times,
as we saw in the LDIF snippet for the LDAP Admins group.

Using OpenLDAP

[86]

What Kind of Group Should I Use?
How do you decide whether to use a groupOfNames,
groupOfUniqueNames, or organizationalRole? By default, it is best
to use groupOfNames, as it is treated as the default grouping object class
by OpenLDAP. The organizationalRole object class is intended to be
used as a way of defining what a person does within an organization. The
groupOfUniqueNames object class was intended for a different use from
groupOfNames, but implementation-wise, they function identically
on OpenLDAP.

The groupOfUniqueNames and groupOfNames object classes both allow the owner
attribute, which can also be used more than once (to, for example, model cases where
a group has two owners). An owner attribute holds the DN of the record that is
considered the owner of the group.

There is a fourth (but experimental) general purpose method for grouping
in OpenLDAP, called dynlist/dyngroup. This uses a specific object class,
the dynamic groupOfURLs grouping class, in conjunction with a special
directory overlay. This method of grouping is expected to reach maturity
in OpenLDAP 2.4.

In our example group, which is groupOfUniqueNames, we specified two
uniqueMember attributes:

uniqueMember: uid=barbara,dc=example,dc=com
uniqueMember: uid=matt,dc=example,dc=com

Both of these DNs are members of the group. Note that SLAPD does not actively
check to make sure that these DNs exist, nor does it automatically remove a DN from
groups when the DN is removed from the directory.

Integrity Checking
SLAPD can be configured to do integrity checking on records using the
RefInt (Referential Integrity) overlay discussed in Chapter 5. This overlay
can be used to make sure that group member DNs stay synchronized with
the entries in the directory information tree.

Thus, directory administrators and directory applications must be careful to perform
additional verification and cleanup when working with groups. When a DN is
deleted from the directory, a directory-wide search for attributes that take DN values
should be performed to make sure that attributes such as member and roleOccupant
(and, for that matter, seeAlso) do not point to the newly-deleted DN.

Chapter 3

[87]

The Complete LDIF File
Finally, we have finished building our LDIF file. We will save it in a file named
basics.ldif, since it contains the basic elements of our directory. Here is what it
looks like:

This is the root of the directory tree
dn: dc=example,dc=com
description: Example.Com, your trusted non-existent corporation.
dc: example
o: Example.Com
objectClass: top
objectClass: dcObject
objectClass: organization

Subtree for users
dn: ou=Users,dc=example,dc=com
ou: Users
description: Example.Com Users
objectClass: organizationalUnit

Subtree for groups
dn: ou=Groups,dc=example,dc=com
ou: Groups
description: Example.Com Groups
objectClass: organizationalUnit

Subtree for system accounts
dn: ou=System,dc=example,dc=com
ou: System
description: Special accounts used by software applications.
objectClass: organizationalUnit

##
USERS
##

Matt Butcher
dn: uid=matt,ou=Users,dc=example,dc=com
ou: Users
Name info:
uid: matt
cn: Matt Butcher
sn: Butcher
givenName: Matt
givenName: Matthew
displayName: Matt Butcher
Work Info:

Using OpenLDAP

[88]

title: Systems Integrator
description: Systems Integration and IT for Example.Com
employeeType: Employee
departmentNumber: 001
employeeNumber: 001-08-98
mail: mbutcher@example.com
mail: matt@example.com
roomNumber: 301
telephoneNumber: +1 555 555 4321
mobile: +1 555 555 6789
st: Illinois
l: Chicago
street: 1234 Cicero Ave.
Home Info:
homePhone: +1 555 555 9876
homePostalAddress: 1234 home street $ Chicago, IL $ 60699-1234
Misc:
userPassword: secret
preferredLanguage: en-us,en-gb
Object Classes:
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

Barbara Jensen:
dn: uid=barbara,ou=Users,dc=example,dc=com
ou: Users
uid: barbara
sn: Jensen
cn: Barbara Jensen
givenName: Barbara
displayName: Barbara Jensen
mail: barbara@example.com
userPassword: secret
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

LDAP Admin Group:
dn: cn=LDAP Admins,ou=Groups,dc=example,dc=com
cn: LDAP Admins
ou: Groups
description: Users who are LDAP administrators
uniqueMember: uid=barbara,dc=example,dc=com
uniqueMember: uid=matt,dc=example,dc=com

Chapter 3

[89]

objectClass: groupOfUniqueNames

Special Account for Authentication:
dn: uid=authenticate,ou=System,dc=example,dc=com
uid: authenticate
ou: System
description: Special account for authenticating users
userPassword: secret
objectClass: account
objectClass: simpleSecurityObject

In the next section, we will look at the OpenLDAP utilities, and we will use these
utilities to load our LDIF file into the directory.

Using the Utilities to Prepare the
Directory
So far in this chapter we have looked at the server operations, and created an LDIF
file representing our initial directory information tree. In the remainder of this
chapter we are going to look at two groups of tools. In this part we are going to look
at the OpenLDAP utilities. In the next part we will look at the OpenLDAP clients.

Unlike the OpenLDAP clients, the utilities do not use the LDAP protocol to connect
to a server and perform directory operations. Instead they work on a lower level,
interacting directly with OpenLDAP directories and data files. The OpenLDAP suite
includes eight utilities that perform administrative tasks. We will look at these tools
as we go through the process of creating, loading, and verifying directory data.

The aim of this section is to explain the basic use of these utilities. Each utility has
a handful of command-line flags that can be used to further modify the behavior
of the utility. We will see some of the more useful flags, but if you want detailed
information, you should consult the excellent OpenLDAP man pages.

In recent versions of OpenLDAP the utilities do not actually exist as stand-alone
programs. Instead, they are all compiled into the slapd program, and symbolic
links are created to point from the utility name to the slapd program. Using the ls
command, we can look at the utilities to see how this is done:

 $ ls -og /usr/local/sbin

This is what we get:

total 0
lrwxrwxrwx 1 16 2006-08-17 11:37 slapacl -> ../libexec/slapd
lrwxrwxrwx 1 16 2006-08-17 11:37 slapadd -> ../libexec/slapd

Using OpenLDAP

[90]

lrwxrwxrwx 1 16 2006-08-17 11:37 slapauth -> ../libexec/slapd
lrwxrwxrwx 1 16 2006-08-17 11:37 slapcat -> ../libexec/slapd
lrwxrwxrwx 1 16 2006-08-17 11:37 slapdn -> ../libexec/slapd
lrwxrwxrwx 1 16 2006-08-17 11:37 slapindex -> ../libexec/slapd
lrwxrwxrwx 1 16 2006-08-17 11:37 slappasswd -> ../libexec/slapd
lrwxrwxrwx 1 16 2006-08-17 11:37 slaptest -> ../libexec/slapd

All eight of the utilities are just symbolic links to the slapd program. When slapd
gets executed, it checks to see what program name was used when it was executed,
and then it acts like that program. For example, when slapd is called as slapadd, it
acts as a program for loading data into the directory. If it is called as slaptest, it acts
as a program for verifying the format of and directives in the configuration file.

As we proceed through the description of the utilities we will cover them as if they
were separate programs because that is how they are treated.

Since we created an LDIF file in the last part, we will begin this section by looking at
the tool that loads the LDIF file into the directory backend.

slapadd
The slapadd program is used to load directory data, formated as LDIF files, directly
into OpenLDAP. It is executed from within an operating system shell (for example a
command prompt or shell script).

The slapadd program does not use the LDAP protocol to connect to a running
server. Instead, it works directly with the OpenLDAP backend. For that reason,
when you run slapadd you must first shut down the directory server. Otherwise,
you may end up with conflicts between the slapd server process and the slapadd
process as they both try to exclusively manage the same databases.

When Should slapadd be Used?
There are many tools for loading records into the directory, including the
OpenLDAP client ldapadd (which connects to the server over the LDAP protocol
and performs one or more add operations). So, how do we figure out which program
to use under any particular set of circumstances?

Well, slapadd is intended to be used to load large amounts of directory data,
generally for the purpose of creating a new directory, or restoring a directory from
a backup. Because it requires that the directory be taken offline, this utility is not
generally a good candidate for performing routine updates. The ldapadd program
(discussed in the Clients section later in this chapter) is a much better candidate for
that sort of operation.

Chapter 3

[91]

What Does slapadd Do?
The slapadd utility reads the slapd.conf file (and any included files), loads the
appropriate backend databases, and then reads LDIF data (usually from a file). As
it reads the data, it verifies that all of the records are correctly constructed (that the
DNs are in a tree that the server manages, that the records use the right attributes
for their object classes, that all required fields are there, that the record is formatted
correctly, and so on), and then it loads the records into the appropriate backend.

Since slapadd does not connect over the LDAP protocol, it does not require any
authentication to the directory. It does, however, require write access to the directory
database files. So slapadd is usually run from the shell of either the user that runs
the directory (often ldap or slapd) or from the root account.

Loading the LDIF File
In the previous part of this chapter we created an LDIF file containing a handful of
records for our directory tree. Now we will load this LDIF file into our directory.
This will take four steps:

Stop the slapd server
Test the LDIF file with slapadd
Load the directory with slapadd
Restart the slapd server

Stopping the Server
We covered the process of starting and stopping the server at the end of Chapter 2.
To summarize, though, we can stop a version installed from the Ubuntu package
using the invoke-rc.d command:

 $ sudo invoke-rc.d slapd stop

With the version compiled from source (see Appendix A), this can be done by
finding the slapd process ID and killing the process (or using the killall program):

 $ sudo kill `pgrep slapd`

Next, we need to make sure that the LDIF file we created in the last part is
correctly formatted.

Running ldapadd in Test Mode
Running in test mode before doing the actual load can greatly reduce the amount of
time it takes to load a new LDIF file because it will help you catch LDIF errors before
things get written to the directory. Normally slapadd adds records one at a time

•

•

•

•

Using OpenLDAP

[92]

as it reads them. So if there are three records in a file, the first record will be added
to the directory before the second or third records are read. If there is an error in a
record later in the file, then the directory will be partially loaded, and you will either
have to creatively alter the LDIF file or destroy the database and start again.

Using test mode, we can make sure that the LDIF file does not have any errors before
we start loading records into the directory. This should just eliminate cases where an
LDIF file is only partially imported because of bad records.

We can use the slapadd program to do this before we try to load the data into
the directory:

 $ sudo slapadd -v -u -c -f /etc/ldap/slapd.conf -l /tmp/basics.ldif

This command uses five flags:

-v flag: This puts the program into "verbose" mode, where it will print out
extra information about what is happening (and, if the process fails, what
led to the failure). Usually it is a good idea to run slapadd in verbose mode,
especially when loading an untested LDIF file.
-u flag: This tells slapadd to run in test (or dry-run) mode. When this is
enabled, slapadd will evaluate the file as if it were going to load the file into
the directory, but it won't actually put any records in the directory.
-c flag: This tells slapadd to keep processing the file even if it hits a bad
record. Using this flag, we can run through the file once and get a list of all of
the records that are not correctly formatted.
-f flag: This flag, which takes as an argument the path to the server's
configuration file, specifies which configuration file should be used. In most
cases you can omit this, and slapadd will just look in the default place
(usually /etc/ldap/slapd.conf).
-l flag: This points to the LDIF file we want to load. In this case we are
loading the basics.ldif file, which is located in the system's /tmp directory.

In cases where there is an error in the LDIF file, slapadd will print out some helpful
information. For example, if we try to load an obviously broken file that looks
like this:

This is the root of the directory tree
dn: dc=example,dc=com
description: Example.Com, your trusted non-existent corporation.
dc: example
o: Example.Com
objectClass: top
objectClass: dcObject

•

•

•

•

•

Chapter 3

[93]

objectClass: organization

Broken

Subtree for users
dn: ou=Users,dc=example,dc=com
ou: Users
ferble: glarp

description: Example.Com Users
objectClass: organizationalUnit

In this file the broken lines are highlighted. When we run slapadd, we will get
an error:

added: "dc=example,dc=com"
str2entry: entry -1 has no dn
slapadd: could not parse entry (line=11)
<= str2entry: str2ad(ferble): attribute type undefined
slapadd: could not parse entry (line=18)

Here, slapadd tested our first record, dc=example,dc=com, without problems, but
then encountered a line that did not begin with a DN (on line 11). It skipped that
record. On line 18 it encountered another error: the ferble attribute is not defined
by any of the object classes in the record.

When run successfully against the LDIF file we created earlier in this chapter, the
output looks like this:

$ sudo slapadd -v -u -c -f /etc/ldap/slapd.conf -l basics.ldif
added: "dc=example,dc=com"
added: "ou=Users,dc=example,dc=com"
added: "ou=Groups,dc=example,dc=com"
added: "ou=System,dc=example,dc=com"
added: "uid=matt,ou=Users,dc=example,dc=com"
added: "uid=barbara,ou=Users,dc=example,dc=com"
added: "cn=LDAP Admins,ou=Groups,dc=example,dc=com"
added: "uid=authenticate,ou=System,dc=example,dc=com"

No errors. We are ready to proceed to the third step: importing the records into
the directory.

Importing the Records Using slapadd
To do the actual import of the records into the directory, we use the slapadd
command with a subset of the flags used in the previous section. We omit the -u flag
(for testing) and the -c flag (so that it doesn't continue if it encounters a bad record).

Using OpenLDAP

[94]

Using the -q flag
To load the directory faster, you can add the -q flag, which turns off some
of the time-consuming checks slapadd performs on the data. But before
using this flag, make sure you test the LDIF data first (using the method
just described). Otherwise you might end up with an unusable directory.

Now, the command looks like this:

 $ sudo slapadd -v -f /etc/ldap/slapd.conf -l basics.ldif

And, this is what we get as output:

added: "dc=example,dc=com" (00000001)
added: "ou=Users,dc=example,dc=com" (00000002)
added: "ou=Groups,dc=example,dc=com" (00000003)
added: "ou=System,dc=example,dc=com" (00000004)
added: "uid=matt,ou=Users,dc=example,dc=com" (00000005)
added: "uid=barbara,ou=Users,dc=example,dc=com" (00000006)
added: "cn=LDAP Admins,ou=Groups,dc=example,dc=com" (00000007)
added: "uid=authenticate,ou=System,dc=example,dc=com" (00000008)

Note that the output is just slightly different this time�� at the end of each line, there is
an ID number enclosed in parentheses. This ID number makes up part of the record's
entryCSN attribute, which is used internally to monitor the record.

As with many LDAP servers, OpenLDAP attaches special operational
attributes to records. In these attributes, OpenLDAP stores directory-
centric information about the record. We will talk about these more when
we discuss the slapcat utility.

We have just populated our directory with the eight records we created earlier in the
chapter. We are now ready to start the directory.

Restarting the Directory
In Chapter 2 we discussed starting and stopping the directory. This can be done with
the init script:

 $ sudo invoke-rc.d slapd start

Or, if you installed according to Appendix A, slapd can be run directly:

 $ sudo /usr/local/libexec/slapd

Chapter 3

[95]

If Something Went Wrong...
It sometimes happens that midway through a slapadd, the program encounters an
error—either in the LDIF file itself, or from some external consideration—and aborts
the directory import part way through. In these cases you may need to start over.
But merely re-running the slapadd operation will give errors like this (the error may
vary depending on the backend you are using):

$ sudo slapadd -v -f /usr/local/etc/openldap/slapd.conf -l
 basics.ldif
=> hdb_tool_entry_put: id2entry_add failed: DB_KEYEXIST: Key/data
 pair already exists (-30996)
=> hdb_tool_entry_put: txn_aborted! DB_KEYEXIST: Key/data pair
 already exists (-30996)
slapadd: could not add entry dn="dc=example,dc=com" (line=9):
 txn_aborted! DB_KEYEXIST: Key/data pair already exists (-30996)

What is going on here?

What has happened is that some of the entries from the basics.ldif file have
already been imported into the directory, but perhaps not all of them. There are
various ways to attempt to work around this. You can try to prune the LDIF file
down to just the records that haven't been added already. You can try to run the
slapadd program in continuation mode (with the -c flag) and hope that all of the
remaining records are added correctly.

But you may find that the best way of dealing with these cases is to simply destroy
and rebuild the directory. While this sounds like a rather extreme measure, it has one
distinct advantage over other methods: it avoids the problem of inconsistent records
that can be caused with failed slapadd commands. Thus, it is often the best way of
recovering from failed directory imports.

Errors in the index files can also be induced by slapadd failures. If you
decide not to destroy and recreate your directory after a failed slapadd,
make sure you run the slapindex utility (covered later in this chapter)
after loading new records to the directory.

Destroying and Recreating the Directory Files
In most of the OpenLDAP backends that can be loaded with slapadd, the backend
stores data somewhere on the file system or in a relational database. After a failed
slapadd you may find that the best way to recover is to destroy all of the data in the
underlying backend, and then start over.

Using OpenLDAP

[96]

Currently, we are using the hdb backend (see Chapter 2). The method used here will
apply equally well to other BerkeleyDB backends (bdb and ldbm in bdb mode), and
can be easily adapted to cover the (deprecated) ldbm with gdbm backend.

For other sorts of backends, such as those that use relational databases like
PostgreSQL, or custom backends like back-perl, you will need to examine the
documentation on those backends to determine the best way of clearing the records
from the directory.

For the hdb and bdb backends, the directory data files are stored on the file system.
In Ubuntu, these are located at /var/lib/ldap. If you followed the directions in
Appendix A, the database files are located at /usr/local/var/openldap-data/.

Here's what the contents of the /var/lib/ldap directory look like:

alock __db.002 __db.005 dn2id.bdb objectClass.bdb
cn.bdb __db.003 DB_CONFIG id2entry.bdb
__db.001 __db.004 DB_CONFIG.example log.0000000001

Here you can see all of the directory database files (which start with __db.), the
directory index files (which end with .bdb), and the BerkeleyDB transaction logs
(which begin with log.). There are a few other files in this directory, such as alock
and DB_CONFIG, that we don't need to delete. To delete the files, we use rm with a list
of expressions that match only the files we want to delete:

 $ sudo rm __db.* *.bdb log.*

This removes just the files we don't want. Now the directory should contain only a
couple of files:

alock DB_CONFIG DB_CONFIG.example

That's all it takes to destroy the database. Now we can re-create the directory by
loading the (corrected, if necessary) LDIF file with the slapadd command:
 $ sudo slapadd -v -l basics.ldif

And this message is returned:

added: "dc=example,dc=com" (00000001)
added: "ou=Users,dc=example,dc=com" (00000002)
added: "ou=Groups,dc=example,dc=com" (00000003)
added: "ou=System,dc=example,dc=com" (00000004)
added: "uid=matt,ou=Users,dc=example,dc=com" (00000005)
added: "uid=barbara,ou=Users,dc=example,dc=com" (00000006)
added: "cn=LDAP Admins,ou=Groups,dc=example,dc=com" (00000007)
added: "uid=authenticate,ou=System,dc=example,dc=com" (00000008)

That is all there is to destroying and recreating a directory.

Chapter 3

[97]

slapindex
The next utility that we will examine is slapindex. This utility manages the index
files for OpenLDAP backends that use indexes (such as hdb, bdb, and the
deprecated ldbm).

OpenLDAP maintains a set of index files to expedite searching for records. These
are stored outside of the main directory database, and as records are added,
modified, and removed from the directory, the slapd server modifies the index
files accordingly.

But in certain circumstances, the slapd server may not have sufficient information
to know about changes it needs to make to the index files and, in those cases, the
indexes will need to be rebuilt manually.

Like slapadd, slapindex should not be run while the server is running.
Before running slapindex, you should stop slapd.

There are three common cases that require use of the slapindex command:

1.	 When a utility, usually slapadd, is used to add records to an
existing database.

2.	 When the indexing directives in slapd.conf are changed, or new indexes are
added (see Chapter 2 and the Performance Tuning section of Chapter 5).

3.	 On other (rare) occasions, external conditions or failed slapadd commands
may get the directory database and the directory indexes out of sync.
The main symptom of this synchronization error is that searches using
ldapsearch will fail to return records that are known to be in the directory.

In these three cases, slapindex should be run:

 $ sudo slapindex -q -f /etc/ldap/slapd.conf

This will rebuild all of the indexes for the first database defined in slapd.conf (we
only have one database defined).

The -q flag instructs slapindex to perform some additional checking operations,
which will greatly expedite the process of re-indexing. Skipping such checks is
generally safe with the slapindex utility, though it should only be done with great
care when using slapadd.

The -f flag, which takes the path to a configuration file, specifies the slapd
configuration file. If this flag is omitted (as we have done), slapindex will look in
the default location for the slapd.conf file.

Using OpenLDAP

[98]

If you want to monitor the progress of slapindex, you can use the -v flag to turn on
verbose output.

slapcat
The slapcat program dumps the entire contents of a directory into an LDIF file. It
is a convenient tool for creating a backup of the directory, and can also be useful for
examining the data is in the directory.

Of course, there is a similar client application, ldapsearch, which can also dump
the entire contents of the directory. How do you know when to use each? Since
ldapsearch uses the LDAP protocol to contact the server, bind, and then run LDAP
search operations, it incurs more overhead. slapcat, on the other hand, works
directly with the backend. ldapsearch is limited by time and size limits, set both
in the client configuration file, ldap.conf, and in the server's configuration in
slapd.conf (see Chapter 2). The ldapsearch command is also limited by ACLs,
while no ACLs are applied to slapcat.

Clearly then, for operations such as backing up the directory, slapcat ought to be
used rather than ldapsearch.

As of version 2.3 of OpenLDAP, if you are using the hdb or bdb backends, you
can safely run slapcat while slapd is running�� there is no need to shutdown the
directory server in order to make a backup copy.

The man page for slapcat in OpenLDAP incorrectly indicates that it
is unsafe to run slapcat while the directory server is running. This is
simply an artifact of the earlier versions of OpenLDAP (2.2 and earlier), in
which slapcat could not be run while slapd was running. Note that it
is still unsafe to run slapcat against an ldbm backend while slapd
is running.

When we covered slapadd earlier in this chapter, we used that utility to load records
in basics.ldif into the directory. Now we can use slapcat to view those records.

 $ sudo slapcat -l basics-out.ldif

The -l flag, which takes a path for an argument, indicates what file the output
should be written to. In this case it is writing to the file basics-out.ldif. If -l is
omitted, then the LDIF data will be sent to standard output, which will usually be
printed straight to your screen.

Chapter 3

[99]

As with the other utilities, the -f flag can be used to specify the path to the SLAPD
configuration file. The -a flag, which takes an LDAP filter, can be used to specify a
pattern that records must match before they are dumped to output. You can use this
flag to dump just a subtree. For example, we could dump only records in the Users
OU with this command:

 $ sudo slapcat -a "(entryDN:dnSubtreeMatch:=ou=Users,

 dc=example,dc=com)"

This would return complete records for only the following three DNs:

ou=Users,dc=example,dc=com

uid=matt,ou=Users,dc=example,dc=com

uid=barbara,ou=Users,dc=example,dc=com

Operational Attributes
Let's take a closer look at the output for just the record of the base DN:

$ sudo slapcat -a "(dc=example)"
dn: dc=example,dc=com
description: Example.Com, your trusted non-existent corporation.
dc: example
o: Example.Com
objectClass: top
objectClass: dcObject
objectClass: organization
structuralObjectClass: organization

entryUUID: b1a00a7c-c587-102a-9eb2-412127118751

creatorsName: cn=Manager,dc=example,dc=com

modifiersName: cn=Manager,dc=example,dc=com

createTimestamp: 20060821173908Z

modifyTimestamp: 20060821173908Z

entryCSN: 20060821173908Z#000000#00#000000

The highlighted attributes should look unfamiliar, as they did not exist in the
original LDIF file that we created. These are internal operational attributes that
OpenLDAP automatically maintains.

Different operational attributes play different roles in OpenLDAP, and these
attributes may be useful for directory managers and LDAP-aware applications.

•

•

•

Using OpenLDAP

[100]

For example, the creatorsName, modifiersName, createTimestamp, and
modifyTimestamp fields often come in useful. OpenLDAP automatically retains the
following record-level information:

1. When and by whom each record was created.
2. When and by whom each record was last modified.

The entryUUID attribute provides a Universally Unique Identifier (UUID) for a
record, which serves as an identifier that is more stable than DN (which can
change), and is supposed to be, according to the specification in RFC 4122
(http://rfc-editor.org/rfc/rfc4122.txt), "an identifier unique across both
space and time, with respect to the space of all UUIDs." See the entryUUID RFC at
http://rfc-editor.org/rfc/rfc4530.txt.

The entryCSN (Change Sequence Number) attribute is used by the SyncRepl
replication provider to determine what records need to be synchronized between
LDAP servers. We will see this in more detail in Chapter 7.

Finally, the attribute structuralObjectClass is added. This attribute specifies
which of the object classes is to be treated as the structural object class. Recall
that when we created our records for Matt and Barbara, each record had three
object classes: person, organizationalPerson, and inetOrgPerson. All three
are structural object classes, and all three are related (inetOrgPerson is a child of
organizationalPerson, which in turn is a child of person). But each record can
have only one structural object class. As I noted above, the one farthest down the tree
becomes the structural object class, and the others are treated, essentially, as abstract
object classes. We can see this if we use slapcat to dump Barbara's record:

$ sudo slapcat -a '(uid=barbara)'
dn: uid=barbara,ou=Users,dc=example,dc=com
ou: Users
uid: barbara
sn: Jensen
cn: Barbara Jensen
givenName: Barbara
displayName: Barbara Jensen
mail: barbara@example.com
userPassword:: e1BMQUlOfXNlY3JldA==
objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

structuralObjectClass: inetOrgPerson

entryUUID: b1ae9916-c587-102a-9eb7-412127118751
creatorsName: cn=Manager,dc=example,dc=com

Chapter 3

[101]

modifiersName: cn=Manager,dc=example,dc=com
createTimestamp: 20060821173908Z
modifyTimestamp: 20060821173908Z
entryCSN: 20060821173908Z#000005#00#000000

Note that the structuralObjectClass attribute has the value inetOrgPerson.

At this point we've examined the slapcat tool, as well as the slapindex and
slapadd tools. These three are the most often used utilities. But there are a few others
that can come in handy in certain circumstances. So next, we will look at slapacl.

slapacl
Writing ACLs can be frustrating and difficult to test. In order to ease the process of
testing the efficacy of ACLs in the slapd.conf file, the OpenLDAP suite includes
a tool for testing ACLs directly. We will make greater use of this tool when we test
ACLs in Chapter 4, but we will see an introduction to the utility here.

In Chapter 2, we added the following ACL to slapd.conf:

access to attrs=userPassword
 by anonymous auth
 by self write
 by * none

This ACL specifies that for any given record in the directory, if it has userPassword,
the following rules should be applied to requests for access to that attribute:

The anonymous user should be able to authenticate using userPassword.
It should allow a DN the permissions to modify (and read) its own password.
It should deny all other DNs all access to this record's userPassword.

That means that uid=matt,ou=Users,dc=example,dc=com should not be able to
write a new userPassword value for uid=barbara,ou=Users,dc=example,dc=com.
We can use the slapacl utility to test this:

 $ sudo slapacl -v -D "uid=matt,ou=Users,dc=example,dc=com" -b

 "uid=barbara,ou=Users,dc=example,dc=com" "userPassword/write"

This command might look daunting at first, but it is actually very simple. Let's look
at the arguments in sequence:

The -v flag tuns on verbose output.
The -D flag is used to tell slapacl which DN is trying to access the directory.
In this case, we said: -D "uid=matt,ou=Users,dc=example,dc=com". That
is, slapacl is testing to see if the DN for Matt can get access.

•

•

•

•

•

Using OpenLDAP

[102]

The -b flag indicates which record we want the given DN to try to access. In
this case it is Barbara's DN, since we want to test if Matt can write Barbara's
password: -b "uid=barbara,ou=Users,dc=example,dc=com".
Finally, the last argument specifies what attribute we want to access,
and what sort of privilege we are requesting. In this case, we want the
userPassword attribute, and we want to see if Matt has write access to it
("userPassword/write").

So, in the end, we are testing to see if Matt's DN can write a new userPassword for
Barbara's record. Here is the result of the slapacl command:

authcDN: "uid=matt,ou=users,dc=example,dc=com"
write access to userPassword: DENIED

That's the result we would expect. Because of this ACL, Matt cannot write to
Barbara's userPassword attribute.

slapauth
The slapauth tool is used to test SASL authentication to the directory. When an
application attempts to bind using SASL, instead of specifying a complete DN (like
uid=matt,ou=Users,dc=example,dc=com), the application passes in a user ID (u:
matt) along with a few other bits of information, such as a realm identifier and an
authentication mechanism.

We will cover SASL authentication in Chapter 4. If you do not already have
experience with SASL you may want to read on, and come back to this section after
reading Chapter 4.

OpenLDAP can then take that information and use a regular expression to guess
what DN that user belongs to. But it can be difficult to figure out what the regular
expressions will look like. The slapauth tool is useful in testing what one particular
SASL request will look like when OpenLDAP receives it.

For example, we could add the following SASL configuration directives to our
slapd.conf file:

authz-policy from
authz-regexp
 "^uid=([^,]+).*,cn=auth$"
 "uid=$1,ou=Users,dc=example,dc=com"

•

•

Chapter 3

[103]

The regular expression in authz-regexp should convert from a SASL authzID
format to an LDAP DN:

$ sudo slapauth -U "matt" -X "u: matt"
ID: <matt>
authcDN: <uid=matt,ou=users,dc=example,dc=com>
authzDN: <uid=matt,ou=users,dc=example,dc=com>
authorization OK

The first parameter, -U matt, sends a test request with the SASL authcID of matt.
The -X "u: matt" parameter sends a test request with the authzID u: matt. These
should then output a correctly formatted DN, according the the regular expression in
authz-regexp.

We will use slapauth more in Chapter 4 when we set up SASL authentication.

slapdn
The slapdn tool is used to test whether a given DN is valid for this directory server.
Specifically, it tests a DN against the defined schemas to make sure that the DN is
valid.

Here are a few examples of slapdn in action:

$ sudo slapdn 'cn=Foo,dc=example,dc=com'
DN: <cn=Foo,dc=example,dc=com> check succeeded
normalized: <cn=foo,dc=example,dc=com>
pretty: <cn=Foo,dc=example,dc=com>

$ sudo slapdn 'ou=New Unit,dc=example,dc=com'
DN: <ou=New Unit,dc=example,dc=com> check succeeded
normalized: <ou=new unit,dc=example,dc=com>
pretty: <ou=New Unit,dc=example,dc=com>

In these two examples, the DNs checked out. slapdn tested the DNs, and then
printed out the normalized version (all lowercase, extra spaces removed) and the
pretty (originally formated) version.

Here's an example of a failure:

$ sudo slapdn 'fakeAttr=test,dc=example,dc=com'
DN: <fakeAttr=test,dc=example,dc=com> check failed 21
 (Invalid syntax)

Using OpenLDAP

[104]

In this case no schema was found that had the attribute fakeAttr. Here's another
failed case:

$ sudo slapdn 'documentSeries=Series 18,dc=example,dc=com'
DN: <documentSeries=Series 18,dc=example,dc=com> check failed 21
 (Invalid syntax)

While documentSeries is defined in a schema it is an object class, not an attribute,
and object class names cannot be used in constructing DNs.

The usefulness of the slapdn program is limited to only rare cases where you need
to test a DN against a directory without being able to look at the slapd.conf file
to find out what schemas are loaded (or, alternately, search the schemas using the
ldapsearch program).

slappasswd
The slappasswd utility is a tool for encrypting passwords according to
schemes supported by OpenLDAP, such as the one described in RFC 2307
(http://rfc-editor.org/rfc/rfc2307.txt).

Storing and Using Passwords in OpenLDAP
When we created our basic LDIF file, we used the userPassword attribute for storing
passwords. For example, our authentication account record looked like this:

Special Account for Authentication:
dn: uid=authenticate,ou=System,dc=example,dc=com
uid: authenticate
ou: System
description: Special account for authenticating users
userPassword: secret
objectClass: account
objectClass: simpleSecurityObject

The userPassword field has the password in plain text. When the value is loaded
into the directory userPassword is encoded with base-64, and looks like this:

userPassword:: c2VjcmV0

But this is not encrypted—just encoded in an easily reversible way. While it
might prevent the directory administrator from accidentally seeing the user's
password, base-64 encoding will do nothing to prevent an attacker from figuring
out the password.

Chapter 3

[105]

Using the Python scripting language, you can easily encode and
decode strings with the built-in base64.b64encode() and
base64.b64decode() functions.

But OpenLDAP does not require you to store passwords in unencrypted text. In
fact, it is best if you do not. OpenLDAP supports a number of one-way hashing
algorithms that can be used to store the passwords in a way in which they cannot
be decrypted.

The slappasswd program provides the tools to create a hashed value of a password.
That hashed value can then be used in the userPassword field of an LDIF file.

OpenLDAP supports five different password hashing schemes: Crypt (CRYPT),
Message Digest 5 (MD5), salted MD5 (SMD5), Secure Hashing Algorithm, the SHA-1
version (SHA), and Salted SHA (SSHA). By default, OpenLDAP uses the most secure of
the available hashing algorithms: SSHA.

Passwords are stored in the userPassword field in a format according to section 5.3
of RFC 2307 (http://rfc-editor.org/rfc/rfc2307.txt). An encrypted password
looks like this:

{SSHA}71xEB2E59cuoPEQLErY44bYMHwCCgbtR

At the beginning of the password, the section in curly braces ({}) indicates which of
the five password schemes was used. In this case it is the default SSHA algorithm.
The remainder of the field is the digested hash of the password.

While the hashed password cannot be decrypted, when a user tries to bind to the
server, OpenLDAP takes the password the user supplies and encrypts it using the
same algorithm as the value (and same salt) of the value of userPassword. If the two
hashed passwords match, then OpenLDAP logs the user on. If the two do not match,
OpenLDAP responds with an error message indicating that authentication failed.

Generating a Password with slappasswd
Armed with this basic understanding of how passwords are used and stored, we
can now look at the slappasswd program. This program can be used to encrypt a
password and format it for insertion into an LDIF file. The command can be called
with no arguments:

$ slappasswd
New password:
Re-enter new password:
{SSHA}71xEB2E59cuoPEQLErY44bYMHwCCgbtR

Using OpenLDAP

[106]

In this case, since no parameters were specified on the command line, slappasswd
prompts for a password, and then prompts for verification of the password. Then,
it prints out the encrypted value of the password. We can use this value in an
LDIF record:

dn: uid=nicholas,ou=Users,dc=example,dc=com
cn: Nicholas Malebranche
sn: Malebranche
uid: nicholas
ou: Users
userPassword: {SSHA}71xEB2E59cuoPEQLErY44bYMHwCCgbtR
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

In some cases, typing and retyping passwords may be too tedious, and a faster
method of encrypting a number of passwords is preferred. You can either use the -T
flag to point to a file containing a list of clear-text passwords to be hashed, or you can
specify the password on the command line with the -s flag:

$ for i in foo bar baz ; do slappasswd -s $i; done
{SSHA}p3zm8Sq/jgAMxYkniwnu+ym954qjIRiG
{SSHA}Fklv7m0n0wIw8sLQOe2IxDRsexZegzUT
{SSHA}FOLOLnR0fgmw7jP8p1WRQEJXoX3fJsyG

In this shell command, each of the three clear-text passwords, foo, bar, and baz, are
encrypted by slappasswd.

On a multi-user system, other users may have access to your command
history, and thus would be able to see these passwords in cleartext.
Caution should be used when specifying passwords (or other sensitive
information) on the command line.

By using the -h flag, you can specify which hashing algorithm slappasswd
should use:

$ slappasswd -h {MD5} -s test
{MD5}CY9rzUYh03PK3k6DJie09g==
$ slappasswd -h {SMD5} -s test
{SMD5}vWw5aAcoIbJ1PS9BMnp/KF5XS5g=
$ slappasswd -h {SHA} -s test
{SHA}qUqP5cyxm6YcTAhz05Hph5gvu9M=

In the above commands, the same password, test, is encrypted using three different
hashing schemes.

Chapter 3

[107]

Next we will turn to the last OpenLDAP utility—slaptest.

slaptest
The slaptest utility is used for checking the format and directives used in the
slapd.conf file (and any files included by slapd.conf).

Running slaptest is simple:

 $ slaptest -v -f /etc/ldap/slapd.conf

The -v flag turns on verbose output, and the -f flag, which takes one argument,
specifies which configuration file to check. If -f is omitted, then the default
slapd.conf file (usually /etc/ldap/slapd.conf) is checked.

As noted in the previous chapter, the version of slaptest provided
by Ubuntu Linux does not print warnings if a directive in slapd is
unknown. This is non-standard behavior. Most of the time OpenLDAP is
compiled with such warnings enabled.

If the configuration file is correctly formatted and the directives are all valid and
operational, then slaptest will print out a basic success message:

config file testing succeeded

If anything goes wrong however, slaptest will print out diagnostic information.
For example, if I add an include directive to slapd.conf that points to a file that
does not exist, slaptest will print an error:

$ sudo slaptest
could not stat config file "/non/existent/file": No such file or
 directory (2)
slaptest: bad configuration file!

This output should be helpful for tracking down the problem in the configuration
files. In this case it was caused by a line that looks like this:

include /non/existent/file

This is the last of the OpenLDAP utilities. Now we will turn to the client applications
that are included with the OpenLDAP suite.

Using OpenLDAP

[108]

Performing Directory Operations Using
the Clients
There are a host of OpenLDAP clients, all stored at /usr/bin (or /usr/local/bin
if you compiled according to Appendix A). The OpenLDAP clients communicate
over the LDAP protocol. They are all standards-compliant, and follow the LDAPv3
protocol (which was last updated in June 2006).

While some of the clients provide the basic standardized LDAP operations, such as
search, add, and delete, others implement one or more of the LDAP extensions. But
since the suite of tools does follow the standards, these tools should work against
any standards-compliant LDAP directory server.

In this part of the chapter we will take a brief look at each of the OpenLDAP clients
and see how they can be used to interact with an LDAP server. We do not have the
space to cover all of the details of each client, so we will focus on the most useful and
common features of each client. The OpenLDAP man pages (which are installed with
OpenLDAP) are detailed and informative, and they provide a good source of further
information for these clients.

Most of the utilities in the last part required that the SLAPD server must
not not be running. All of the tools in this section, however, connect to
a SLAPD server. So make sure your server is running before trying the
examples in this part.

Common Command-Line Flags
All of the OpenLDAP clients are command-line applications that use UNIX-style
flags to pass parameters to the program. For the sake of continuity common flags
(like -D, -b, and -H) are used consistently across all of the clients.

In Chapter 2 we configured our directory server to handle basic directory operations.
However, we did not configure it to use SASL authentication (which is covered
in Chapter 4). To authenticate to the server we will be using what is called simple
binding. In simple binding the client authenticates by sending a full DN and
password to the server.

The clients require different command-line flags depending on whether they do a
simple bind or a SASL bind. Now we will see those necessary for simple binding.
Those flags needed for SASL binding are covered in Chapter 4.

Chapter 3

[109]

Common Flags
There are command-line flags for the simple binding process. Some of the common
flags are as follows:

-D: The -D flag is used to specify the full DN of the user who will bind to the
directory server (this is used for simple binding).
-W, -w, -y: Each of these flags indicates a different source for the password.
Let's see them one by one:

The -W flag indicates that the user should be interactively
prompted to enter a password.
The -w flag takes the password string for a value. We can use
it to specify the password on the command line.
The -y flag takes a file name as an argument. It will use the
contents of the file as a password. These flags are mutually
exclusive—you can only use one of these per command.

The -y flag uses the entire contents of a file for the password. This means
that if there is a line break in the file, it will be treated like part of the
password. To create a password file, you can use the echo command with
the -n flag: $ echo -n "secret" > my_pw.

-x: The -x flag specifies that the client will use a simple bind. If this is not
specified, the client will try a SASL bind.
-H, -h: These two flags provide different ways of specifying which host to
connect to. -H takes an LDAP URL (-H 'ldap://example.com:389').
-h simply takes the host name (-h example.com), and can be used with
-p to specify a port. Unless you do not have a choice, use -H. The -h flag is
provided only for backward compatibility, and may disappear in
future versions.
-Z: This flag is used to indicate that the client should issue a Start TLS
command to the server, so that traffic is encrypted according to the TLS
standard. But if TLS negotiation fails, the client will still continue to operate.
Using two Z's (-ZZ) will make it mandatory that the traffic be encrypted. If
negotiation fails, then the client will disconnect. TLS is covered in more detail
in the next chapter.
-b: This is used to specify a base DN (-b 'dc=example,dc=com').
-f: The -f flag takes a filename as a parameter. The client will then read the
contents of the file and build requests based on the contents of the file.
-v: This flag will turn on verbose output. It is useful when troubleshooting.

•

•

°

°

°

•

•

•

•

•

•

Using OpenLDAP

[110]

These are the common flags used by the clients in the OpenLDAP suite. But these
represent only a subset of the flags used by each client, as each client implements the
flags needed to accomplish its task.

Setting Defaults in ldap.conf
In Chapter 2, in the section entitled Configuring the LDAP Clients, we looked at
the ldap.conf file. In that file, we set some useful defaults. In particular we set
these three:

URI ldap://localhost
BASE dc=example,dc=com
BINDDN cn=Manager,dc=example,dc=com

If you omit host settings (-H, -h), then the value of URI will be used. If the client
needs a base DN, and none is set with the -b flag, then the value of BASE is used.
Likewise, if the client uses simple binding (with -x), and doesn't specify a DN with
-D, then the value of BINDDN will be used.

Since we have an ldap.conf file created already, many of the examples will omit the
-H and -b flags.

While ldap.conf is shared by all clients, you can create a user-specific LDAP
configuration file in your home directory. The LDAP clients will look for
user-specific configuration files named ldaprc and .ldaprc in your home
directory ($HOME).

Now we are ready to look at the client commands.

ldapsearch
The first client we will look at is also the most often used tool: ldapsearch. As the
name suggests, this is a tool for searching the directory information tree.

The ldapsearch client connects to the server, authenticates a user, and then (as
that user) runs one or more search operations, returning the results in LDIF format.
When it is done performing searches, it closes the connection and exits. Since
ldapsearch is a network client it can be used to search both local directories or a
remote directory server.

A Simple Search
Let's take a look at a simple search command. In this command we will log in as the
directory manager and request the record for the entry with the user ID barbara:

Chapter 3

[111]

 $ ldapsearch -x -W -D 'cn=Manager,dc=example,dc=com' -b \

 'ou=Users,dc=example,dc=com' '(uid=barbara)'

Here is the result:

Enter LDAP Password:
extended LDIF
#
LDAPv3
base <ou=Users,dc=example,dc=com> with scope subtree
filter: (uid=barbara)
requesting: ALL
#

barbara, Users, example.com
dn: uid=barbara,ou=Users,dc=example,dc=com
ou: Users
uid: barbara
sn: Jensen
cn: Barbara Jensen
givenName: Barbara
displayName: Barbara Jensen
mail: barbara@example.com
userPassword:: c2VjcmV0
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

search result
search: 2
result: 0 Success

numResponses: 2
numEntries: 1

In this example we ran the ldapsearch command with four flags: -x, -W, -D, and
-b. For a description of these flags see the Common Command-Line Flags section. In
a nutshell though, -x, -W, and -D are all parameters used for authenticating to the
directory. They instruct the client to bind to the directory with simple authentication
(-x) as the DN specified by -D (the directory manager in this case), then prompt the
user to enter a password interactively (-W).

The -b flag sets the base DN for the search. This is set to ou=Users,dc=example,
dc=com. Given this, ldapsearch will start searching in the Users OU.

Using OpenLDAP

[112]

If we had omitted the -b flag, the value of BASE in ldap.conf
would have been used, which would have set the base DN to
dc=example,dc=com.

After all of the command-line flags and their arguments, we specified an LDAP filter:

(uid=barbara)

This is the filter that the server will use for searching. We covered search filters in
more detail earlier in this chapter, in the section entitled The Search Operation. In this
case though, the search filter is straightforward: it matches only records that have the
attribute named uid with the attribute value of barbara.

Many attributes have more than one name (these are properly called
attribute descriptions). For example, the attribute that labels user IDs has
the attribute descriptions uid and userID. In the case above, a search for
(uid=barbara) will also match directory entries with and attribute of
the form userID: barbara.

When this command is run, it will first prompt the user to enter a password (because
of the -W flag), and then connect to the server and attempt to bind as the specified
DN (cn=Manager,dc=example,dc=com). Then, if the bind is successful, it will
request all records that match the filter, (uid=barbara). As the example illustrates,
the server will return the entire record of the user, or as much of it as the ACLs
allow, in the case of a non-manager user.

The results are returned in LDIF format, with comments sprinkled throughout. The
first set of comments provides basic information about the search:

extended LDIF
#
LDAPv3
base <ou=Users,dc=example,dc=com> with scope subtree
filter: (userID=barbara)
requesting: ALL
#

The first line indicates that this record is in extended LDIF format. This is LDIF
version 1.0, plus some comments. Beneath that, we get a summary of the search,
including the following:

Version of LDAP used (v3)
What the base DN is (ou=Users,dc=example,dc=com).

•

•

Chapter 3

[113]

What type of search will be performed. In this case, it is a subtree search,
which means the server will look in all records beneath the base DN.
What the operating search filter is ((userid=barbara)).
What attributes the client wants returned. ALL indicates that the client wants
all available attributes returned.

The central part of the file contains the full record for Barbara. Beneath the record is a
brief summary of the results:

search: 2
result: 0 Success

numResponses: 2
numEntries: 1

The first line, search, indicates that we performed two search operations (one for
binding and one to execute the filtered search).

The second, result, inidcates the result code that the server sent back. 0 Success
indicates that our search ran without encountering any errors.

The extended (and thus commented) results add some additional information.
numResponses indicates that the server sent two responses back to the client (one
for the bind, one for the search). And numEntries indicates how many entries were
returned by the search. In this case there was only one—Barbara's record.

Restricting Returned Fields
Sometimes we don't want to get a DN's entire record back. Instead, we just want a
couple of attributes. This can be accomplished by specifying a list of attributes at the
end of the command:

 $ ldapsearch -x -w secret -D 'cn=Manager,dc=example,dc=com' -b \

 'ou=Users,dc=example,dc=com' -LLL '(userID=matt)' mail cn

Here is the result:

dn: uid=matt,ou=Users,dc=example,dc=com
cn: Matt Butcher
mail: mbutcher@example.com
mail: matt@example.com

Note that in this example we used the -w secret flag to specify the password on
the command line. We also used the -LLL flag to suppress all of the extraneous
comments printed in the LDIF output.

•

•

•

Using OpenLDAP

[114]

Specifying the password on the command line can be a security risk.
Other users on the system may be able to access this information through
command-line histories (like the Bash shell's history feature) and
operating system constructs (like the /proc file system in Linux).

In addition to the filter, (userID=matt), I also added a list of attributes that I wanted
returned: cn and mail. The returned record contained four lines: the dn, the two
mail attributes, and the cn attribute. The DN is always returned.

Requesting Operational Attributes
You may have noticed that the record returned for Barbara by ldapsearch is quite a
bit different than the record returned by slapcat.

We covered slapcat in the part of this chapter entitled Using the
Utilities to Prepare the Directory.

Let's compare the two. First, here's the ldapsearch output:

$ ldapsearch -x -w secret -D 'cn=Manager,dc=example,dc=com' -b
'ou=Users,dc=example,dc=com' -LLL '(userID=barbara)'
dn: uid=barbara,ou=Users,dc=example,dc=com
ou: Users
uid: barbara
sn: Jensen
cn: Barbara Jensen
givenName: Barbara
displayName: Barbara Jensen
mail: barbara@example.com
userPassword:: c2VjcmV0
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

Now, here's the slapcat output:

$ sudo slapcat -a '(uid=barbara)'
dn: uid=barbara,ou=Users,dc=example,dc=com
ou: Users
uid: barbara
sn: Jensen
cn: Barbara Jensen
givenName: Barbara

Chapter 3

[115]

displayName: Barbara Jensen
mail: barbara@example.com
userPassword:: c2VjcmV0
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
structuralObjectClass: inetOrgPerson
entryUUID: bec561c4-c5b0-102a-81c0-81bc30f92d57
creatorsName: cn=Manager,dc=example,dc=com
modifiersName: cn=Manager,dc=example,dc=com
createTimestamp: 20060821223300Z
modifyTimestamp: 20060821223300Z
entryCSN: 20060821223300Z#000005#00#000000

The output of slapcat has a host of additional attributes—namely the special
operational attributes that the directory maintains internally. We can retrieve the
operational attributes with ldapsearch either by specifying them by name along
with the list of desired attributes, or by using the special plus sign (+) attribute list
specifier at the end of the ldapsearch command:

 $ ldapsearch -x -w secret -D 'cn=Manager,dc=example,dc=com' -b

 'ou=Users,dc=example,dc=com' -LLL '(userID=barbara)' +

And, this is what we get:

dn: uid=barbara,ou=Users,dc=example,dc=com
structuralObjectClass: inetOrgPerson
entryUUID: bec561c4-c5b0-102a-81c0-81bc30f92d57
creatorsName: cn=Manager,dc=example,dc=com
modifiersName: cn=Manager,dc=example,dc=com
createTimestamp: 20060821223300Z
modifyTimestamp: 20060821223300Z
entryCSN: 20060821223300Z#000005#00#000000
entryDN: uid=barbara,ou=Users,dc=example,dc=com
subschemaSubentry: cn=Subschema
hasSubordinates: FALSE

Specifying the + list does not return all attributes—only the operational attributes.
To get all of the regular attributes and all of the operational attributes, you will need
both the + specifier and the * (asterisk) specifier. The * specifier indicates that we
want all of the standard attributes. This is the output:

$ ldapsearch -x -w secret -D 'cn=Manager,dc=example,dc=com' -b
 'ou=Users,dc=example,dc=com' -LLL '(userID=barbara)' '*' +
dn: uid=barbara,ou=Users,dc=example,dc=com
ou: Users

Using OpenLDAP

[116]

uid: barbara
sn: Jensen
cn: Barbara Jensen
givenName: Barbara
displayName: Barbara Jensen
mail: barbara@example.com
userPassword:: c2VjcmV0
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
structuralObjectClass: inetOrgPerson
entryUUID: bec561c4-c5b0-102a-81c0-81bc30f92d57
creatorsName: cn=Manager,dc=example,dc=com
modifiersName: cn=Manager,dc=example,dc=com
createTimestamp: 20060821223300Z
modifyTimestamp: 20060821223300Z
entryCSN: 20060821223300Z#000005#00#000000
entryDN: uid=barbara,ou=Users,dc=example,dc=com
subschemaSubentry: cn=Subschema
hasSubordinates: FALSE

Now we have the complete list of attributes. Using this combination of arguments,
we can generate LDIF files suitable for making backups (assuming the ACLs are not
preventing access to something). While slapcat will outperform ldapsearch for
this task, the fact that ldapsearch can run remotely over the network is attractive in
many cases.

Note that in the given record, ldapsearch has returned three
operational attributes that do not show up with slapcat: entryDN,
subschemaSubentry, and hasSubordinates. These values are
generated dynamically at runtime and do not exist in the LDAP backend.
For that reason they are not exported with slapcat. Since they are
generated dynamically, they are not useful values to back up.

It is also possible to run multiple queries in sequence using ldapsearch. This is done
by using an external file to store filter information for multiple searches.

Searching Using a File
The ldapsearch client can use a file to build and execute multiple queries. Let's say
we have a plain text list of user IDs, and we want to get the last name for each user
ID. The file, userIDs.txt, looks like this:

matt
barbara

Chapter 3

[117]

We can use ldapsearch to dynamically build a filter and run a search for each user's
surname. To do this, we use the -f flag, and point to the userIDs.txt file, and then
we build a special filter. Here is the command line to be executed:

 $ ldapsearch -x -D 'cn=Manager,dc=example,dc=com' -b \

 'ou=Users,dc=example,dc=com' -w secret -f userIDs.txt '(uid=%s)' sn

Most of this should look familiar, by now. But notice the filter: '(uid=%s)'. This
filter uses the special %s placeholder to indicate where the values from the file ought
to be placed. As ldapsearch runs, it will read through the userIDs.txt file line by
line, and with each line, it will execute a search, substituting the value of the line for
%s in the filter. The results look like this:

extended LDIF
#
LDAPv3
base <ou=Users,dc=example,dc=com> with scope subtree
filter pattern: (uid=%s)
requesting: sn
#

#
filter: (uid=matt)
#
matt, Users, example.com
dn: uid=matt,ou=Users,dc=example,dc=com
sn: Butcher

search result
search: 2
result: 0 Success

numResponses: 2
numEntries: 1

#
filter: (uid=barbara)
#
barbara, Users, example.com
dn: uid=barbara,ou=Users,dc=example,dc=com
sn: Jensen

search result
search: 3
result: 0 Success

numResponses: 2
numEntries: 1

Using OpenLDAP

[118]

In this example the ldapsearch client actually ran two different search operations. It
first expanded (uid=%s) to (uid=matt) and ran a search�� then, it expanded (uid=%s)
to (uid=barbara), and ran another search. In each case, it returned only the dn (which
is always returned for a match) and the requested sn attribute.

You can also create filters in a file, and have multiple search filters run. For example, we
could create a file named filters.txt with the following lines:

&(ou=System)(objectClass=account)
&(uid=b*)(ou=Users)

Since each line will be inserted into a filter, we do not need the outer set of
parentheses. Now we can use these lines to dynamically build filters with
ldapsearch:

 $ ldapsearch -x -D 'cn=Manager,dc=example,dc=com' -b \

 'dc=example,dc=com' -w secret -f filters.txt '(%s)' cn description

We will get this output:

extended LDIF
#
LDAPv3
base <dc=example,dc=com> with scope subtree
filter pattern: (%s)
requesting: cn description
#

#
filter: (&(ou=System)(objectClass=account))
#
authenticate, System, example.com
dn: uid=authenticate,ou=System,dc=example,dc=com
description: Special account for authenticating users

search result
search: 2
result: 0 Success

numResponses: 2
numEntries: 1

#
filter: (&(uid=b*)(ou=Users))
#
barbara, Users, example.com
dn: uid=barbara,ou=Users,dc=example,dc=com
cn: Barbara Jensen

Chapter 3

[119]

search result
search: 3
result: 0 Success

numResponses: 2
numEntries: 1

In this case the filter (%s) was expanded in the first case to (&(ou=System)(objectC
lass=account)), and in the second case to (&(uid=b*)(ou=Users)).

Using techniques like this it becomes possible to execute a number of complex
searches with one command.

We will continue using the ldapsearch client throughout this book. Now that
we have a basic idea as to how it works, we will move on to the next client in the
OpenLDAP suite.

ldapadd
This is a command-line program used for adding new entries to an LDAP directory.
The ldapadd command is not actually a stand-alone client. It is just a link to the
ldapmodify program. When ldapmodify sees that it has been called as ldapadd, it
will assume that it should request that the server perform an add operation, instead
of requesting a modify operation.

In the most simple case, ldapadd can be used to enter a new record from the
command line:

$ ldapadd -x -W -D 'cn=Manager,dc=example,dc=com'
Enter LDAP Password:

Once we have been successfully authenticated, the cursor will move to the next line
and wait for the input. We can directly enter a record. As soon as we hit Enter twice
(creating a blank line, which indicates the end of a record), ldapadd will send the
record to the server:

dn: uid=adam,ou=Users,dc=example,dc=com

cn: Adam Smith

sn: Smith

uid: adam

ou: Users

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

adding new entry "uid=adam,ou=Users,dc=example,dc=com"

Using OpenLDAP

[120]

The highlighted portion is the text that we entered. It specifies one entire record (a
record for a user named Adam Smith).

After we pressed the return key twice, inserting a blank line, the record was sent to
the server. The client indicated that it was adding the record: adding new entry "u
id=adam,ou=Users,dc=example,dc=com". No error message followed. This means
that the add was successful.

Once a record is added the cursor will move to a blank line, waiting for the dn
attribute of the next record.

dn: cn=Foo,dc=example,dc=com

farble: gork

objectClass: account

adding new entry "cn=Foo,dc=example,dc=com"
ldap_add: Undefined attribute type (17)
 additional info: farble: attribute type undefined

In this example the record that we entered (again, highlighted) contained an
undefined attribute, and the server balked with the same error message. In cases
where the server sends an error message, the ldapadd client prints the error message
and exits. To re-enter the record you will have to re-run ldapadd.

But as long as new records are valid and the server does not report an error, ldapadd
will continue prompting (or rather listening) for new records. When finished, use the
CTRL-C key combination to exit the program.

Adding Records from a File
While typing a record directly into the client may be useful on occasion, in most
cases it is far more convenient (and less error prone) to create the records in a plain
text file, and then load them all at once with the ldapadd program.

As usual, the records in the text file should be formated in LDIF. Here, for example,
are the contents of the file user_records.ldif:

dn: uid=david,ou=Users,dc=example,dc=com
cn: David Hume
sn: Hume
uid: david
ou: Users
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

dn: uid=immanuel,ou=Users,dc=example,dc=com

Chapter 3

[121]

cn: Immanuel Kant
sn: Kant
uid: immanuel
ou: Users
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

We can add all of the records in a file:

$ ldapadd -x -w secret -D 'cn=Manager,dc=example,dc=com' -f \
 user_records.ldif
adding new entry "uid=david,ou=Users,dc=example,dc=com"

adding new entry "uid=immanuel,ou=Users,dc=example,dc=com"

Just as when we added records interactively, here the absence of an error message
indicates that the record was successfully added.

Next we will look at modifying records that already exist in the directory.

ldapmodify
The ldapmodify program is used to modify an existing entry. It can add, change,
and delete the attributes of a entries in the directory. It can also be used to add new
entries (together with attributes for the entry).

Like ldapadd, ldapmodify can be run interactively. It can be used to add, modify,
and remove records.

Adding a Record with ldapmodify
The syntax for adding a record is almost identical in ldapmodify to that of ldapadd:

 $ ldapmodify -w secret -x -D 'cn=Manager,dc=example,dc=com'

Here is the result:

dn: uid=nicholas,ou=Users,dc=example,dc=com
changetype: add
cn: Nicholas Malebranche
sn: Malebranche
uid: nicholas
ou: Users
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

adding new entry "uid=nicholas,ou=Users,dc=example,dc=com"

Using OpenLDAP

[122]

The only difference is the addition of the changetype instruction after the dn. This
tells ldapmodify what sort of LDAP operation should be performed on this record.

The changetype instruction is not an attribute, though it looks
like one. It is not part of the record, but rather an instruction (in
LDIF format) to tell the server what operation it should use.

There are four possible values for changetype:

add

modify

modrdn

delete

Each of these corresponds to an LDAP operation. The add change-type is used
to add a new record (essentially performing the same add operation as ldapadd).
The modify change-type takes an existing record and modifies it in some way (for
example, by adding, replacing, or removing attributes). The modrdn change-type
changes the relative DN (or RDN) of a record. The delete change-type deletes the
entire record from the directory server.

Modifying Existing Records
Usually it is easier to add records with ldapadd. Where the ldapmodify client really
shines is in its ability to modify existing records, adding, removing, or replacing
attributes within a record.

Let's add a givenName field to one of the records we added in the last section:

 $ ldapmodify -x -W -D 'cn=Manager,dc=example,dc=com'

This gives the following output:

Enter LDAP Password:
dn: uid=david,ou=Users,dc=example,dc=com
changetype: modify
add: givenName
givenName: David

modifying entry "uid=david,ou=Users,dc=example,dc=com"

Just as with ldapadd, once the authentication phase has been done, ldapmodify
waits for a DN to be given. After the dn attribute is specified, the changetype
should follow.

•

•

•

•

Chapter 3

[123]

When using a modify change-type, as we do here, we must also specify exactly
what attributes we are going to change, and how we will change them. The modify
change-type is the only type that requires this further specification. Here is the figure
displaying the several change-types:

Changetype: Add

Changetype: Modify

Changetype: delete

add

replace

delete

In this case, we want to add a new attribute to the the uid=david, ou=Users,
dc=example, dc=com record. And the attribute we want to add is givenName. So, the
line that specifies that we will add a givenName attribute reads add: givenName.

Next, we want to specify the attribute and attribute value:

givenName: David

Then, by hitting Enter twice, we indicate that the record is complete. Just as with
ldapadd, ldapmodify indicates which record it is modifying. If the server does not
return an error, ldapmodify will wait for another modify record.

The add modification type is one of three that ldapmodify supports. Operations
can only be specified if the change-type is set to modify. The three modification
types are:

add: Adds new attributes to an existing record
replace: Replaces existing attribute values with new attribute values
delete: Removes attributes from the record

•

•

•

Using OpenLDAP

[124]

More than one of these operations can be done in a single transaction:

$ ldapmodify -w secret -x -D 'cn=Manager,dc=example,dc=com'
dn: uid=immanuel,ou=Users,dc=example,dc=com
changetype: modify
add: givenName
givenName: Manny
-
replace: cn
cn: Manny Kant

modifying entry "uid=immanuel,ou=Users,dc=example,dc=com"

In this example we first add givenName, and then replace the existing cn value with
a new one. Between the two modification requests we use a dash (-) to indicate that
we are still working on the same record. Remember, a blank line indicates that we
are done with the record. Now, if we look up the record with ldapsearch, it looks
like this:

$ ldapsearch -x -w secret -D 'cn=Manager,dc=example,dc=com' -LLL \
 '(uid=immanuel)'

dn: uid=immanuel,ou=Users,dc=example,dc=com
sn: Kant
uid: immanuel
ou: Users
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
givenName: Manny
cn: Manny Kant

The cn has been replaced, and the givenName attribute has been added.

If the modification is adding several attributes, rather than splitting the additions up
using dashes, you can group them together:

dn: uid=nicholas,ou=Users,dc=example,dc=com
changetype: modify
add: description title
description: This is a test
title: Cartesian philosopher

Note that, in this case, the add line has two attribute names (description and
title), followed by both attributes. And just as with ldapadd, we can put these
change records into a plain text file, and then use the -f flag, which takes the path
to a file, to have ldapmodify read the commands from the file instead of from the
interactive prompt:

Chapter 3

[125]

$ ldapmodify -x -w secret -D 'cn=Manager,dc=example,dc=com' -f \
 change-nicholas.ldif
modifying entry "uid=nicholas,ou=Users,dc=example,dc=com"

Using the modify change-type we can delete an attribute:

dn: uid=nicholas,ou=Users,dc=example,dc=com
changetype: modify
delete: title

Deleting an attribute from the record has the result of deleting all of the attribute
values from the record. For example, if Nicholas had two titles specified, the above
would remove them both.

To delete just one specific attribute, the request must also name the attribute value to
be deleted:

dn: uid=nicholas,ou=Users,dc=example,dc=com
changetype: modify
delete: title
title: Cartesian philosopher

That will delete any title attribute values that contain the exact string "Cartesian
philosopher", leaving any other attribute values intact.

Modifying the Relative DN
The third change type is for modifying relative DNs—the portion of the DN that
identifies the current record (see the discussion at the beginning of this chapter).

For example, we can change the RDN portion of the DN for our user uid=immanuel,
ou=Users,dc=example,dc=com:

$ ldapmodify -w secret -x -D 'cn=Manager,dc=example,dc=com'
dn: uid=immanuel,ou=Users,dc=example,dc=com
changetype: modrdn
newrdn: uid=manny
deleteoldrdn: 0

modifying rdn of entry "uid=immanuel,ou=Users,dc=example,dc=com"
rename completed

In this example, we use the modrdn change-type to instruct SLAPD to change the
RDN portion of the user's DN. The newrdn instruction supplies the new RDN
portion, and the deleteoldrdn instruction determines whether the old attribute
value (uid=immanuel) will be deleted or retained. Setting 0 indicates that the old
attribute value should not be deleted, while 1 will result in the old attribute
value's removal.

Using OpenLDAP

[126]

Now, if we search for that user, we can observe the modification:

$ ldapsearch -x -W -D 'cn=manager,dc=example,dc=com' -LL \
 '(sn=kant)' uid
Enter LDAP Password:
version: 1

dn: uid=manny,ou=Users,dc=example,dc=com
uid: immanuel
uid: manny

In some cases we don't want the old RDN attribute value to be kept. In such cases,
setting the deleteoldrdn value to 1 will remove the old RDN attribute values:

$ ldapmodify -w secret -x -D 'cn=Manager,dc=example,dc=com'
dn: uid=manny,ou=Users,dc=example,dc=com
changetype: modrdn
newrdn: uid=immanuel
deleteoldrdn: 1

modifying rdn of entry "uid=manny,ou=Users,dc=example,dc=com"
rename completed

This changes the RDN back to uid=immanuel, and since deleteoldrdn is set to 1,
the old UID value (manny) should be deleted. We can verify this with ldapsearch:

$ ldapsearch -x -W -D 'cn=manager,dc=example,dc=com' -LL \
 '(sn=kant)' uid
Enter LDAP Password:
version: 1

dn: uid=immanuel,ou=Users,dc=example,dc=com
uid: immanuel

Note that, in addition to the changed DN, the old uid attribute value (manny) is no
longer present in the record. It has been replaced.

We will take another look at modifying relative DNs when we examine the
ldapmodrdn client.

Moving a Record with modrdn
The modrdn change-type can be used for more than just changing the RDN. It can be
used for changing a record's superior entry, essentially relocating a record within the
directory information tree.

For this operation to work however, the backend database type must support this
sort of modification. Currently, the only storage database that supports this is HDB.
In Chapter 2, we set up slapd.conf to store the dc=example,dc=com tree in an
HDB backend.

Chapter 3

[127]

Now, we can issue a compound ModRDN operation, in which we change the
record's RDN, and move the record to a different OU:

$ ldapmodify -w secret -x -D 'cn=Manager,dc=example,dc=com'
dn: uid=manny,ou=users,dc=example,dc=com
changetype: modrdn
newrdn: uid=immanuel
deleteoldrdn: 1
newsuperior: ou=system,dc=example,dc=com

In this example, we change the user's UID from manny back to immanuel. Since
deleteoldrdn is 1, the old RDN (uid=manny) will be removed from the record.

The newsuperior instruction tells SLAPD what the new base portion of the DN
ought to be. This will effectively move the record from the ou=users branch to the
ou=system branch of our directory information tree.

Unlike modifying a user's RDN, changing a record's superior will not
modify any of the fields in the record. Thus, our record above would still
have the ou=Users attribute.

Again, we can use ldapsearch to see the newly modified record:

 $ ldapsearch -x -W -D 'cn=manager,dc=example,dc=com' -LL

 '(sn=kant)' uid

And, we get:

Enter LDAP Password:
version: 1

dn: uid=immanuel,ou=system,dc=example,dc=com
uid: immanuel

Notice that not only has the uid changed, but also the ou in the DN.

In order to use the newsuperior instruction, you must first specify a modrdn. Thus, if
we wanted to move the record for this user back to the users OU, we would still have
to specify the user's new RDN.

So how do you move a record without changing the RDN?

Since the modrdn change-type does not require that the new RDN be different from
the old one, a record can be moved with modrdn simply by setting the newrdn to be
the same as the old RDN:

$ ldapmodify -w secret -x -D 'cn=Manager,dc=example,dc=com'
dn: uid=immanuel,ou=system,dc=example,dc=com

Using OpenLDAP

[128]

changetype: modrdn
newrdn: uid=immanuel
deleteoldrdn: 1
newsuperior: ou=users,dc=example,dc=com

modifying rdn of entry "uid=immanuel,ou=system,dc=example,dc=com"
rename completed

In this case, newrdn: uid=immanuel does not actually change the RDN of the user.
But this is necessary in order to change the superior.

The newsuperior instruction indicates that the record should be moved (back) to the
ou=users,dc=example,dc=com tree. One last ldapsearch of this record shows us
the results of that change:

$ ldapsearch -x -W -D 'cn=manager,dc=example,dc=com' -LL
 '(sn=kant)' uid
Enter LDAP Password:
version: 1

dn: uid=immanuel,ou=users,dc=example,dc=com
uid: immanuel

Once again, the record is back in the Users OU.

Deleting Entire Records
Finally, using the delete change-type, we can delete an entire record
with ldapmodify:

$ ldapmodify -w secret -x -D 'cn=Manager,dc=example,dc=com'

dn: uid=nicholas,ou=Users,dc=example,dc=com
changetype: delete

deleting entry "uid=nicholas,ou=Users,dc=example,dc=com"

When deleting a record all we need to specify are the DN and the change-type.

Essentially, using the delete change-type performs the same task as is done using the
ldapdelete client.

ldapdelete
The ldapdelete tool is used to delete one or more records from the directory. It
performs the same operation as the delete change-type used in ldapmodify.

Chapter 3

[129]

If you want to delete a record with ldapdelete, you must know its DN. This tool
will not search for, say, all records that have a specified address, and then delete
them all.

The syntax of the ldapdelete command is simple:

 $ ldapdelete -x -w secret -D 'cn=Manager,dc=example,dc=com' \

 'uid=nicholas,ou=Users,dc=example,dc=com'

After the usual flags (-x, -w, -D), ldapdelete takes the DN that is to be deleted (this
is the DN for uid=nicholas on the second line of the command). Upon execution
it will request that the server delete the record. Assuming that the record exists and
the user is allowed (by the server's ACLs) to delete the record, then the record will be
removed from the directory.

ldapcompare
This tool is used to ask the server whether a particular entry (identified by a DN) has
a particular attribute that matches the attribute specified. If the entry does have a
matching attribute, then ldapcompare returns TRUE. Otherwise, it returns FALSE.

Here is a pair of examples:

$ ldapcompare -x -w secret -D 'cn=Manager,dc=example,dc=com' \
 'uid=david,ou=Users,dc=example,dc=com' 'givenName:David'
TRUE

$ ldapcompare -x -w secret -D 'cn=Manager,dc=example,dc=com' \
 'uid=david,ou=Users,dc=example,dc=com' 'cn:Dave Hume'
FALSE

In the first example ldapcompare requested that the server examine the record for
uid=david,ou=Users,dc=example,dc=com to see if it had the attribute givenName
with the value David. The record did have an attribute givenName: David, and so
the return value is TRUE.

The second example performed a similar compare on the same record�� it looked
for the attribute cn with the value Dave Hume. While the record does have a cn
attribute, the value of that attribute is David Hume, not Dave Hume. So the server
returned FALSE.

Using OpenLDAP

[130]

Base-64 Encoding with ldapcompare
In cases where the value to compare is not an ASCII string, you should
base-64 encode the value and use the double colon syntax (::) that we
used in our LDIF files. Example: givenName::RGF2aWQ=

An LDAP compare operation is often much faster than a search operation. In cases
where the same task can be accomplished with ldapsearch and ldapcompare, it is
often more efficient to use ldapcompare.

ldapmodrdn
The ldapmodrdn client is used to change the Relative DN (RDN) portion of a DN.
This client requests a ModifyDN operation. ldapmodrdn takes the full DN of an
existing record, and the relative DN that should replace the existing RDN for
the record:

 $ ldapmodrdn -x -w secret -D 'cn=Manager,dc=example,dc=com'

 'uid=immanuel,ou=Users,dc=example,dc=com' 'uid=manny'

This example requests that the RDN for uid=immanual,ou=Users,dc=example,
dc=com be changed from uid=immanuel to uid=manny.

Now let's take a look at the record after the change. We will search by the sn field:

$ ldapsearch -x -w secret -D 'cn=Manager,dc=example,dc=com' -LLL \
 '(sn=Kant)' uid

dn: uid=manny,ou=Users,dc=example,dc=com
uid: immanuel
uid: manny

Here, the filter is looking for records with the surname Kant and requesting that only
the uid attribute be returned. Recall that we did not ever add a uid attribute with the
value manny—we only had uid: immanuel.

But looking at the results, we can see that not only has the DN been modified,
but a new user ID attribute has been added for us. In some cases it is fine that the
modification of the RDN results in adding (rather than replacing) an attribute value.
But in other cases this is inconvenient or even illegal (because of the schema).

For example, we might have a record in the directory that describes a subtree of
records that have to do with the company website. Such a record might look like this:

dn: dc=www,dc=example,dc=com
dc: www

Chapter 3

[131]

ou: Website
objectClass: organizationalUnit
objectClass: dcObject

Now, say we wanted to change the RDN to point not to www, but to web. Using
ldapmodrdn the way we did earlier would generate an error:

$ ldapmodrdn -x -w secret -D 'cn=Manager,dc=example,dc=com' \
 'dc=www,dc=example,dc=com' 'dc=web'

Rename Result: Constraint violation (19)
Additional info: attribute 'dc' cannot have multiple values

The reason for this error is that the schema definition for dc specifies that there can
be only one dc attribute value per record.

The dc (or domainComponent) attribute is defined in core.schema.

The solution to this problem is to use the -r flag for ldapmodrdn.

 $ ldapmodrdn -x -w secret -D 'cn=Manager,dc=example,dc=com' -r

 'dc=www,dc=example,dc=com' 'dc=web'

The -r flag causes ldapmodrdn to replace, rather than add, the existing attribute
value. Now the resulting record looks like this:

dn: dc=web,dc=example,dc=com
ou: Website
objectClass: organizationalUnit
objectClass: dcObject
dc: web

There is only one dc attribute listed, and it has the newly set value, web.

Modifying the Superior DN with ldapmodrdn
Just as we saw earlier with the modrdn change-type for ldapmodify, we can change
the superior DN (the base portion of a record's DN) with ldapmodrdn.

The Right Backend
Not all backends support this type of renaming. Currently, the HDB
backend is the only storage backend to support changing the superior
reference in a DN. Other non-storage backends (like ldap) may pass on
these operations to the underlying storage mechanism, which in turn may
or may not support this degree of renaming.

Using OpenLDAP

[132]

Also, as with the modrdn change type, ldapmodrdn must specify a replacement RDN
even if that RDN is the same as the current one. In other words, an RDN is required,
even if the RDN is not a new RDN. We will see an example of this below.

The -s flag for ldapmodrdn specifies the new superior DN. Thus, to move the entry
uid=barbara,ou=users,dc=example,dc=com to the ou=system branch of the
directory, we can use a command like this:

 ldapmodrdn -x -w secret -D 'cn=Manager,dc=example,dc=com' \

 -s "ou=system,dc=example,dc=com" -r \

 "uid=barbara,ou=users,dc=example,dc=com" "uid=barbara"

This is a long command, and it is thus broken up into three lines:

The first line contains the flags that handle binding to the directory, and these
should be familiar by now.
The second line begins with the -s flag, which takes a DN for a parameter.
This is the flag that specifies what the new superior DN will be. In this case, it
is ou=system,dc=example,dc=com.
The -r flag, as we have seen before, instructs SLAPD to replace the old RDN
with the new one.
On the third line is the DN for the entry we want to modify, uid=barbar,
ou=users,dc=example,dc=com, and the new RDN. Since we want to keep
the same RDN (but move the record to a new subtree), we set this last value
to uid=barbara, which is the RDN that the existing record has.

After we run this command we can see the results with ldapsearch:

$ ldapsearch -x -W -D 'cn=manager,dc=example,dc=com' -LL
 '(uid=barbara)' uid ou
Enter LDAP Password:
version: 1

dn: uid=barbara,ou=system,dc=example,dc=com
ou: Users
uid: barbara

The base portion of Barbara's new record is now ou=system,dc=example,dc=com.

Just as with the modrdn changetype for ldapmodify, changing a superior entry will
not change any attributes in the record. Thus, even though this record is now in the
sytem OU, it still has the attribute ou: Users.

•

•

•

Chapter 3

[133]

It is possible to construct Relative DNs that have more than one attribute value. For
example, I can use a combination of uid and l (for location) in the RDN portion:

dn: uid=matt+l=Chicago,ou=Users,dc=example,dc=com

In such cases, the plus sign (+) is used to indicate that both the attribute are to be
considered part of the RDN.

ldapmodrdn is smart enough to handle these cases. It will add (or replace) all of the
attributes used in the RDN.

In the case where the -r flag is specified, there are some things to be aware of. First,
ldapmodrdn will replace all of the fields used in the new RDN. Second, if there is a
value in the initial RDN that is removed from the RDN, then the attribute value will
be removed from the record as well. For example, here is our starting record:

dn: cn=Matt Butcher+l=Chicago,dc=example,dc=com
cn: Matt Butcher
sn: Butcher
l: Chicago
objectClass: person
objectClass: organizationalPerson

Notice that the DN uses both the cn and the l attributes, both of which are present
in the body of the record. Now, if we use ldapmodrdn with the -r flag and replace
cn=Matt Butcher+l=Chicago with cn=Matt Butcher, the l: Chicago attribute will
be removed from the record:

dn: cn=Matt Butcher,dc=example,dc=com
sn: Butcher
objectClass: person
objectClass: organizationalPerson
cn: Matt Butcher

So, when using ldapmodrdn with multi-attribute RDNs, be judicious when using
the -r flag.

ldappasswd
In the utilities section we looked at encrypting passwords with slappasswd.
That tool was used to generate encrypted values for inclusion in LDIF files. The
ldappasswd client, in contrast, connects to the server and changes a password value
in the directory. If needed it can be used to automatically generate a password,
as well.

Using OpenLDAP

[134]

Unlike ldapadd and ldapmodify, which use the LDAP v.3 standard Add and
Modify operations, the ldappasswd client uses an extension operation—the
LDAP Password Modify Extended Operation as defined in RFC 3062
(http://rfc-editor.org/rfc/rfc3062.txt).

When loading passwords from an LDIF file, or from ldapadd or
ldapmodify, if you send the server a cleartext password, the password
will be stored in the directory in an unencrypted string. This is not safe.
You should either use slappasswd to generate an encrypted password
for inclusion in an LDIF, or you should use ldappasswd to set
the password.

As long as the ACLs permit, a user can change her or his password with the
ldappasswd client:

$ ldappasswd -x -W -S -D 'uid=matt,ou=Users,dc=example,dc=com'
New password:
Re-enter new password:
Enter LDAP Password:

Result: Success (0)

The -S flag is the only new flag used here. It indicates that ldappasswd should
prompt the user to enter (and re-enter) a new password. The -W flag, as you may
recall, prompts the user to enter a current password interactively.

The order in which the user enters the passwords differs from the norm. The user
is prompted to first enter and re-enter a new password, and then to enter the
current password.

It is also possible for an administrator (or one with write permissions to the
userPassword attribute of a given record) to change a password for another user:

$ ldappasswd -x -w secret -D 'cn=Manager,dc=example,dc=com' -s secret \
'uid=barbara,ou=Users,dc=example,dc=com'

Result: Success (0)

In this case the directory manager is changing the value of the userPassword
attribute for uid=barbara,ou=Users,dc=example,dc=com. Rather than using -S
and entering the password at an interactive prompt, the password has been specified
on the command line: -s secret.

Chapter 3

[135]

The password, when changed through ldappasswd, is automatically encrypted by
the server before it is stored in the record:

barbara, Users, example.com
dn: uid=barbara,ou=Users,dc=example,dc=com
userPassword:: e1NTSEF9UzFTUnQ1bkkvcHZGOGt3UklVU3J3TkRHZHFSS3hOQ1Y=

If we decode the userPassword value, it reads:value, it reads: {SSHA}S1SRt5nI/
pvF8kwRIUSrwNDGdqRKxNCV. The password is stored in an irreversible SSHA hash.The password is stored in an irreversible SSHA hash.

Setting the Default Encryption Scheme
You can specify which encryption scheme the server should choose when
encrypting passwords. To specify the algorithm, use the password-hash
directive in slapd.conf. Example: password-hash {SMD5}

Finally, ldappasswd can request that the server generate a strong password for that
DN. If no flag is set that indicates, the source of the password (for example -s, -S, or
-T), then ldappasswd requests that one be generated. Here is the request:

$ ldappasswd -x -w secret -D 'cn=Manager,dc=example,dc=com' \
 'uid=barbara,ou=Users,dc=example,dc=com'

New password: dS9R4Kvc
Result: Success (0)

The server responded to this request with a generated password, New password:
dS9R4Kvc, which has already been encrypted and stored in the userPassword
attribute on the server.

ldapwhoami
The last client in the OpenLDAP suite is ldapwhoami. This client provides a client
implementation of the "Who am I?" Extended Operation. This operation provides
information about the DN who is currently bound to the directory.

The ldapwhoami command simply requires enough information to authenticate to
the directory server:

$ ldapwhoami -x -w secret -D 'cn=Manager,dc=example,dc=com'

dn:cn=Manager,dc=example,dc=com
Result: Success (0)

As you can see from this example, all this client does is reply with the DN of the user
we connected with. This tool comes in useful when debugging SASL authentication,
which does not require a DN to connect. We will look at SASL configuration in the
next chapter.

Using OpenLDAP

[136]

Summary
In this chapter we have taken a closer look at the tools in the OpenLDAP suite. We
began by looking at the SLAPD and SLURPD servers. In particular, we looked at the
major LDAP operations, such as bind, search, add, modify, and delete.

Next we created a basic directory information tree in an LDIF file. In doing this,
we familiarized ourselves with LDIF—the text format for representing LDAP
directory data.

From there we looked at the utilities and clients in the OpenLDAP suite. Along the
way, we loaded our directory information tree from LDIF into the directory, and
then added to and modified that data.

At this point you should be comfortable working with the tools included in
OpenLDAP. In the next chapter we are going to return to the SLAPD server and take
a close look at LDAP security.

Securing OpenLDAP
In Chapter 2 we installed OpenLDAP and created a basic configuration file for the
SLAPD server. Then, in the last chapter, we turned our attention to LDAP operations
and LDAP clients. Now we will return to the SLAPD server, but with a specific focus:
security. We will take a look at three major security considerations with OpenLDAP:
securing connections between the server and client connections, authenticating
users of the directory, and specifying what data particular users can access (and in
what capacity they can access it). We will look at these security considerations on a
practical level and, in doing so, we will cover the following:

Configuring SSL and TLS to protect network data
Using simple binding to authenticate DNS (Domain Name System) for using
the directory
Using SASL to provide more robust authentication services
Integrating SASL and client SSL/TLS certificates for authentication
Configuring Access Control Lists (ACLs) to establish rules about what data
users can access

LDAP Security: The Three Aspects
As we have seen already, the directory contains sensitive information. One example
of such sensitive information is the userPassword attribute. But other information
that may be considered sensitive, such as personal information or confidential
information about the organization, may exist in the directory. Such information
needs to be protected.

We might ask what is meant by protection in this case. For it is certainly not the case
that we want to prevent all clients from seeing everything. What we want rather, is
to allow people to get at specific pieces of the directory information. But, on the
other hand, there are cases where we want to deny certain users the ability to get at

•

•

•

•

•

Securing OpenLDAP

[138]

certain pieces of directory information. So protecting our data becomes a matter of
providing information in some cases, while denying it in other cases.

While it is possible to draw finer-grained distinctions, here we are going to consider
three broad aspects of security where we want to make sure that we are protecting
the directory and its information. These three aspects are as follows:

Connection Security: This is the process of protecting directory information
(and client information) as it is passed between a client and the directory
server. We will talk about this in the context of network security with SSL
and TLS.
Authentication: This is the process of ensuring that the user who tries to
access the information in the directory is who he/she/it claims to be. In
this chapter we will look at two types of authentication: simple and
SASL Binding. SASL stands for Simple Authentication and
Security Layer.
Authorization: This is the process of ensuring that an identified or
authenticated user is allowed to access pieces of information within the
directory. OpenLDAP ACLs are used to specify rules for authorization.

In this chapter we will look at each of these three aspects of security. By combining
all three we will be able to provide suitably fine-grained protection for our
directory information.

Securing Network-Based Directory
Connections with SSL/TLS
The first element of security that we will examine is network security. Most clients
connect to OpenLDAP over a network interface, and client requests, as well as the
server's responses, are transferred over a network.

The LDAP protocol, by default, sends and receives messages in clear text. In this case
no attempt is made to obscure the data as it is being transmitted across the network.
Sending in clear text has a few advantages:

It is easier to configure and maintain.
LDAP services can function faster. The process of encrypting and decrypting
messages can be processor-intensive, and eliminating that processing can
serve to speed things up.

•

•

•

•

•

Chapter 4

[139]

But these advantages come at the cost of security. Other devices on the network may
be able to intercept these unencrypted transmissions and read their contents and in
doing so, they may obtain sensitive information. On a small Local Area Network
(LAN) the risks may be smaller (though still present). On a large scale network, such
as the Internet, the dangers are much greater.

In this section we will walk through the process of configuring Secure Sockets
Layer (SSL) and Transport Layer Security (TLS) encryption to protect data as it
is transmitted over a network. SSL and TLS are very similar, to the point where
the terms are often used (acceptably) as synonyms. TLS though, is a refinement of
SSL, and has been implemented in ways that are more flexible than the typical SSL
implementation. The StartTLS method of securing a connection is an example.

The Basics of SSL and TLS
OpenLDAP provides two methods for encrypting network traffic. The first is to have
OpenLDAP listen on a special port for requests (port 636, the LDAPS port, is used
by default). Transmissions on this port will automatically be encrypted. This
method is older, introduced as an addition to LDAP v2, but it is no longer the
preferred method.

The second method, which is part of the LDAP v3 standard, is to allow clients
connecting over the standard port (usually port 389) to request to switch from clear
text transmissions to encrypted transmissions. I will cover both configurations here.

Secure Sockets Layer (SSL) is a security process, originally developed by Netscape
Communications for their web browser, designed to provide a safe way of
exchanging trusted information between a server and any client on the network.
There are two major features of the SSL process: establishing authenticity and
conducting securely encrypted transactions.

As SSL developed and evolved it was handed over to a standard body, the Internet
Engineering Task Force (IETF), for standardization and continued development.
IETF renamed it Transport Layer Security (TLS) and released version 1.0 (as RFC
2246). SSL 3.0 and TLS 1.0 do not have any notable differences, and most servers that
support one also support the other. Because of their similarity and shared heritage, I
refer to them jointly as SSL/TLS.

Authenticity
Proving authenticity and providing encryption are the two major features of SSL/TLS.
In regards to the first, SSL/TLS provides a way to establish the authenticity of the server
(and, if desired, the client too). What this means is that SSL/TLS makes it possible for
the client to be reasonably sure that the server belongs to whom it claims to belong.

Securing OpenLDAP

[140]

Consider the case of online banking. If I use my browser to log on to my bank's
website and conduct a few transactions, I want to be sure that the website I am
connected to really is my bank's website, and not some other website masquerading
as my bank. SSL/TLS provides tools to establish the authenticity of the server using
X.509 certificates. An X.509 certificate has three important pieces of information:

Information about the individual or organization that owns the certificate
A public encryption key (which we will discuss in the next section)
The digital signature of a certificate authority (CA)certificate authority (CA)

A certificate is designed as a sort of assurance that a server is associated with a
particular individual or organization. When I contact a server that I believe to be
my bank's, I want some assurance that it is, in fact, my bank's server. So one piece
of information contained in the certificate is information about who owns the
certificate. We can inspect this information ourselves, but since the certificate has a
digital signature, it is also possible for software to computationally verify this—in
a way much more reliable than reading the certificate and simply trusting that the
certificate is accurate.

The digital signature is an encrypted bit of information. It is encrypted with a special
"private" key that is owned by a Certificate Authority. The CA can then issue a public
key that client software can use to verify that the certificate was in fact signed by the
CA. The CA then, plays a very important role in establishing trust. We will discuss
public and private keys in the Encryption section.

Certificate Authorities are responsible for issuing certificates. Ideally, a CA is
a trusted source that can verify the authenticity of the certificate, and provide
assurance that the certificate is really owned by the organization or individual that
claims to own it.

There are a number of commercial CAs that provide certificate generation services
for a price. To obtain a certificate through these services, an organization or
individual must provide a certain amount of information that can be used to verify
that the person or organization signing up for the certificate is legitimate. Once
investigation of this material has been done, and the person or organization has paid
the requisite fee, the CA issues a digitally-signed certificate.

The certificates of large CAs are included by default in most SSL-aware applications,
such as popular web browsers (like Mozilla Firefox) and SSL libraries (like
OpenSSL). These certificates include the public keys necessary for verifying digital
signatures. Thus, when a client gets an X.509 certificate that is signed by one of these
CAs, it has all of the tools it needs to verify the certificate's authenticity.

•

•

•

Chapter 4

[141]

But it is possible, and often useful, for an organization or individual to simply
create a locally used CA, and then use that CA to generate certificates for in-house
applications. This is what we will do when we create a certificate for OpenLDAP.

Of course, certificates generated this way may not be considered reliable to users
outside of your organization, but hosting an individual or organization-wide CA can
be an effective way to add security to your own network, without having to purchase
certificates from a commercial vendor.

Not all CAs use the same form of authoritative signing (and not all CAs
charge for certificates). Some CAs, such as Cacert.org, use what is called
a web of trust technique for establishing authenticity. In the web of trust
the authenticity of a certificate is established by peers who can play
the role of assuring that the certificate is owned by the person or
organization that it claims to be owned by. For more information visit
http://www.cacert.org/.

We have discussed the first role of SSL/TLS, establishing authenticity. Next we will
turn to the second role of SSL/TLS�� providing encryption services.

Encryption
SSL/TLS provides the features required for sending encrypted messages back and
forth between the client and the server. In a nutshell the process goes like this: the
server sends the client its certificate, and inside the certificate (among other things)
is the server's public key. The public key is the first half of a pair of keys. A public
key can be used for encrypting a message, but not decrypting it. A second key, the
private key, is then used for decrypting a message. The server keeps its private key
to itself, but gives out its public key to any client that requests it. Clients can then
send messages to the server that only the server can decrypt and interpret.

Depending on the configuration the client also sends the server its public key, which
the server can use to send messages that only the client can decrypt. At this point,
each can transmit encrypted messages to the other.

But there is a drawback to using public/private keys: they are slow and resource-
intensive. Rather than trading all information through these public/private key
combos, the client and server then negotiate a set of temporary symmetric encryption
keys (which use the same key to encrypt and decrypt messages) that they will both
use for the duration of the session. All traffic between the two clients is encrypted
using these keys. Once the session is complete, both the client and server discard the
temporary keys.

Securing OpenLDAP

[142]

For a more detailed introduction to SSL and TLS, as well as pointers to
further sources of information, see the Wikipedia entry for Transport
Layer Security: http://en.wikipedia.org/wiki/
Transport_Layer_Security.

StartTLS
As it is typically implemented, SSL requires that the server listen for encrypted traffic
on a port separate from the one it uses for unencrypted traffic. All traffic that comes
over the SSL port is assumed to be SSL-encrypted traffic. This means that every
server that needs to provide both cleartext and encrypted services must listen on at
least two different ports.

The multi-port requirement seemed to some to be unnecessary, inelegant, and
wasteful. There is no reason why the client should not be able to request on a
cleartext (non-SSL) connection that further communication between the client and
server be encrypted. The client and server could then perform all of the SSL/TLS
negotiation over the same connection, and not have to switch to another SSL/TLS-
only port. This suggestion was standardized in RFC2487 as StartTLS.

Which to Pick: StartTLS or LDAPS?
The standardized way of implementing SSL/TLS in LDAP v.3 is to use
the StartTLS method. This method should be implemented whenever
possible. However, external considerations (such as network firewalling
or clients without StartTLS support) may require that you use LDAPS
and a dedicated SSL/TLS-protected port. LDAPS support is now listed as
deprecated, though it is not yet slated for removal from OpenLDAP. Both
options can be used on the same server.

In a StartTLS-supporting server, if the client sends the server the command STARTTLS
then the server will begin the TLS encryption process. Assuming the TLS negotiation
is successful, the client and server will then continue their transactions using
encrypted traffic.

StartTLS has the obvious advantage of requiring only one listening port per server.
And, it makes it possible for clients and servers to communicate in cleartext for
unimportant data, and then switch over to TLS when security becomes important.
Since encryption is resource intensive, requiring extra processing power to encrypt
and decrypt messages, streamlining services the StartTLS way can improve
performance and free up resources for other tasks.

Chapter 4

[143]

There is a drawback for StartTLS though. Since both encrypted and cleartext traffic
are sent over the same port, the method of simply blocking a port to prevent insecure
data transmissions (by using a firewall for instance) is not effective with StartTLS.
Security measures must be capable of inspecting transmissions at the protocol level.

In order to improve security services in such cases, OpenLDAP provides methods of
testing the security strength factor (SSF) of a connection to see if it is encrypted (and
if so, if the encryption scheme is strong enough). We will look at SSF in more detail
later in this chapter in the section on Using Security Strength Factors.

At this point, you should have a fairly good idea of how SSL and TLS function. Now
we will move on to more practical matters. We will create our own CA, and our own
certificate, and then configure OpenLDAP to support SSL/TLS and StartTLS.

Creating an SSL/TLS CA
In order to create a Certificate Authority and generate certificates, you will need to
have OpenSSL installed. Since many Ubuntu packages, including the OpenLDAP
packages, require OpenSSL, it should be installed already.

If you build from source, as detailed in Appendix A, you may also enable support for
SSL/TLS using the OpenSSL libraries.

If you have a certificate already, you can skip this section and move to the
Configuring StartTLS section. OpenLDAP uses certificates in the
PEM format.

The first thing we will need to do is create our new CA.

While it is possible to manually configure your CA using the openssl command line
tool, it is much simpler to use the CA.pl Perl script that is included with OpenSSL.
This script streamlines many of the configuration options for OpenSSL, and the first
thing that we will use it for is creating the environment for our new CA.

Ubuntu maintains documentation on creating a new Certificate Authority
the "long way" (creating all of the files by hand). This documentation
is detailed and well worth reading. While I will follow the conventions
established there, I will be using the CA.pl script to do most of the heavy
lifting (https://help.ubuntu.com/community/OpenSSL).

Securing OpenLDAP

[144]

You can put the CA environment anywhere on your system. Some prefer to keep
CA files with the rest of the SSL configuration at /etc/ssl/. Others prefer keeping
the certificate authority in a user directory so that it does not get overwritten during
system upgrades (an unlikely, but possible, event). In keeping with the Ubuntu
suggestion to keep CA info in a user's home directory, I will just put mine in my
home directory, /home/mbutcher/:

 $ cd ~

 $ /usr/lib/ssl/misc/CA.pl -newca

Note that the CA.pl script is not in $PATH, so you will need to type in the entire path
to the script.

Finding CA.pl
Different operating system distributions will put CA.pl in different
places. If running which CA.pl does not return any results, you may
want to consult the man pages for SSL (man config or man CA.pl), or
use the find or slocate utilities to find the CA.pl file.

The argument -newca instructs CA.pl to set up a new certificate authority
environment. This will generate a directory structure along with a number of files.

The first thing that CA.pl will do is prompt you to enter a CA file:

$ /usr/lib/ssl/misc/CA.pl -newca
CA certificate filename (or enter to create)

Hit Enter to create a new CA certificate. CA.pl will then generate a new key and then
prompt you for a password:

CA certificate filename (or enter to create)

Making CA certificate
Generating a 1024 bit RSA private key
....++++++
...................................++++++
unable to write 'random state'
writing new private key to './demoCA/private/cakey.pem'
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

Chapter 4

[145]

Once you have entered and re-entered your password, CA.pl will collect some
information from you about your organization:

You are about to be asked to enter information that will be
 incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name or
 a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:Illinois

Locality Name (eg, city) []:Chicago

Organization Name (eg, company) [Internet Widgits]:Example.Com

Organizational Unit Name (eg, section) []:

Common Name (eg, YOUR name) []:Matt Butcher

Email Address []:matt@example.com

Please enter the following 'extra' attributes
 to be sent with your certificate request
A challenge password []:mypassword

An optional company name []:Example.Com

CA.pl walks you through the process of creating a main certificate. The highlighted
lines in the code listing are those where you will have to provide information at an
interactive prompt. After setting the country, state, and city name for my locale, we
set the Organization Name to Example.Com. While we left the Organizational Unit
field blank, you can use that to further specify what part of the organization this CA
is a member of.

You should consider using the same fields in your certificate that you
used for your root DN when you set up your directory information tree in
the previous two chapters.

Usually the Common Name and Email Address fields should contain information
about the organization. Sometimes Common Name is used for the server name (as
will be the case when we create our certificate). Sometimes, it is used for contact
information. In the case that follows, we used my name and email. If the CA is to
be the "official" CA for your organization, you should set this to the official contact
person for certificate inquiries.

Securing OpenLDAP

[146]

Next, CA.pl will begin the process of generating a certificate request for the CA
certificate. In other words, CA.pl will create a new certificate that will be the CA's
own certificate. The first step in doing this is to create a certificate request. We will
need to set a challenging password for the certificate request. We can also set a
company name too. With the above information, CA.pl will continue the process of
generating a new certificate:

Using configuration from /usr/lib/ssl/openssl.cnf
Enter pass phrase for ./demoCA/private/cakey.pem:

Check that the request matches the signature
Signature ok
Certificate Details:
 Serial Number:
 bf:2f:58:47:b1:6d:31:4d
 Validity
 Not Before: Oct 10 21:34:28 2006 GMT
 Not After : Oct 9 21:34:28 2009 GMT
 Subject:
 countryName = US
 stateOrProvinceName = Illinois
 organizationName = Example.Com
 commonName = Matt Butcher
 emailAddress = matt@example.com
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:
 OpenSSL Generated Certificate
 X509v3 Subject Key Identifier:

07:92:9B:35:CB:B7:EE:92:A8:33:61:B0:DC:F7:88:E9:4F:06:9F:7F
 X509v3 Authority Key Identifier:

keyid:07:92:9B:35:CB:B7:EE:92:A8:33:61:B0:DC:F7:88:E9:4F:06:9F:7F

Certificate is to be certified until
 Oct 9 21:34:28 2009 GMT (1095 days)

Write out database with 1 new entries
Data Base Updated

We will be prompted to enter a pass phrase. This is the pass phrase we created first
(when prompted to Enter PEM pass phrase). If we enter the pass phrase correctly,
CA.pl will generate our new certificate and display its contents on the screen.

We have now created a Certificate Authority. Now we are ready to start generating a
certificate to be used by SLAPD.

Chapter 4

[147]

Due to a bug in some versions of CA.pl, you may have to cd into the
./demoCA directory (the directory that CA.pl -newca created) and
add a symbolic link to itself: ln -s ./demoCA. This is because CA.pl
occasionally expects to find files in the current directory (./), which
it assumes to be demoCA/, and sometimes it expects to find files in ./
demoCA (which, of course, is equivalent to demoCA/demoCA/). You can
also fix this simply by editing the dir= line under [CA_default] in the
/etc/ssl/openssl.cnf file, and setting it to an absolute path.

Creating a Certificate
Creating a certificate is a two-step process:

1. We need to generate the Certificate Request.
2. We need to sign the request with the CA's signature.

Let's see these steps in detail.

Creating a New Certificate Request
The first step in creating a valid SSL certificate is to create a Certificate Request. In
the process, we will specify what information we want to show up on the certificate.

There are a few ways to generate Certificate Requests. For example, you can use the
openssl command line tool and specifying a number of command line parameters.
But, following our previous example, we will use CA.pl and let the application
prompt us for information as is necessary.

To generate a new request we will run CA.pl -newreq. In the next example the
highlighted lines are lines that require us to enter information:

$ /usr/lib/ssl/misc/CA.pl -newreq
Generating a 1024 bit RSA private key
.....++++++
.....................++++++
unable to write 'random state'
writing new private key to 'newkey.pem'
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be
 incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name or
 a DN.
There are quite a few fields but you can leave some blank

Securing OpenLDAP

[148]

For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Illinois
Locality Name (eg, city) []:Chicago
Organization Name (eg, company) [Internet Widgits]:Example.Com
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:example.com
Email Address []:matt@example.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
Request is in newreq.pem, private key is in newkey.pem

This should look familiar. It is similar in most respects to the process of generating a
Certificate Authority.

First, we will be prompted to enter a pass phrase. We will use this pass phrase in a
few moments.

Next, we will be asked to supply information about the organization that this
certificate will represent. As before the fields are Country Name, State/ProvinceCountry Name, State/Province
Name, Locality, Organization Name, Organizational Unit, Common Name (of the (of the
contact person), and the Email for the contact person. Again, as before, we enteredEmail for the contact person. Again, as before, we enteredfor the contact person. Again, as before, we entered
the information for Example.Com.

This time, however, we set the Common Name field to be the domain name of theCommon Name field to be the domain name of the field to be the domain name of the
server that the certificate is for—example.com. It is very important that you useIt is very important that you use
the correct domain name for the server. During the certificate negotiation processDuring the certificate negotiation process
clients will check the Common Name field to see if it matches the domain name ofCommon Name field to see if it matches the domain name of field to see if it matches the domain name of
the server. If the names do not match the user may get an error message, or the client
application may simply terminate the connection.

The extra password and optional company name are sometimes used in the certificate
request process. Since we are doing the requesting and the signing ourselves we
don't need to complete either of these fields.

Now we should have two files in the CA directory:

One called newreq.pem, which contains a base-64 encoded representation ofwhich contains a base-64 encoded representation of
our certificate request
One called newkey.pem, which contains the base-64 encoded private keywhich contains the base-64 encoded private key

We are now ready to move on to the second step.

•

•

Chapter 4

[149]

Signing the Certificate Request
The Certificate Request has all of the information required for a certificate, but it
still lacks the digital signature of the CA. The next step, then, will be to use the
CA we created previously to sign this new certificate. To do this, we will run
CA.pl -signreq:

$ /usr/lib/ssl/misc/CA.pl -signreq
Using configuration from /usr/lib/ssl/openssl.cnf
Enter pass phrase for ./demoCA/private/cakey.pem:

Check that the request matches the signature
Signature ok
Certificate Details:
 Serial Number:
 ba:49:df:f5:8e:7e:77:c2
 Validity
 Not Before: Oct 12 21:23:49 2006 GMT
 Not After : Oct 12 21:23:49 2007 GMT
 Subject:
 countryName = US
 stateOrProvinceName = Illinois
 localityName = Chicago
 organizationName = Example.Com
 commonName = example.com
 emailAddress = matt@example.com
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:
 OpenSSL Generated Certificate
 X509v3 Subject Key Identifier:

47:DD:90:8F:79:90:2E:C0:CC:B3:95:62:35:C4:D8:6C:5D:A2:EE:88
 X509v3 Authority Key Identifier:
 keyid:6B:FB:66:33:5D:DB:CC:40:42:D7:71:F7:F0:
D0:7C:94:3E:8F:CD:58

Certificate is to be certified until
 Oct 12 21:23:49 2007 GMT (365 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y

Write out database with 1 new entries
Data Base Updated
Signed certificate is in newcert.pem

Securing OpenLDAP

[150]

The CA.pl -signcert command looks for newreq.pem and then begins the signing
process. First, we need to enter the pass phrase for the CA. If that is correct, then
CA.pl will display the certificate in newreq.pem and ask if we want to sign it. Finally,
it will ask us to commit these changes.

Once the changes are committed a new file will be created, named newcert.pem.

There are two important files that we now have:

newkey.pem, which contains the private key
newcert.pem, which contains the signed certificate.

We've just got a few loose ends to tie up, and then we can move on to configuring
SLAPD to use SSL/TLS.

Configuring and Installing the Certificates
We have only three more steps to do, here. The first one has to do with the pass
phrase we set on our certificate.

Remove the Pass Phrase from the Key
Be very careful here!� When generating our certificate request, we set a pass phrase on When generating our certificate request, we set a pass phrase on
the certificate. This encrypted the newkey.pem file with a pass phrase.

If you use a key file that is encrypted with a pass phrase, then every time you use
this certificate, you will have to enter a password. This means, in our case, that
every time we start OpenLDAP, we will have to enter a pass phrase. Unless we have
stringent security requirements (and are willing to put up with the hassle of typing
the pass phrase every time we start or restart the server), we probably do not want
the key file to be encrypted.

So, we will need to create an unencrypted version of the key file using the
openssl command:command:
 $ openssl rsa < newkey.pem > clearkey.pem

This is what we get:

Enter pass phrase:
writing RSA key

In this example the command openssl rsa executes the OpenSSL RSA tool, which
will decrypt the key. Using < newkey.pem, we sent the file contents ofwe sent the file contents of newkey.pem
into openssl to be decrypted. Then, using > clearkey.pem we directed openssl
to write the cleartext key file to the clearkey.pem file. In order to complete this
operation, openssl prompts for the pass phrase. Now clearkey.pem has the
unencrypted private key for our certificate.

•

•

Chapter 4

[151]

The clearkey.pem file now contains an unencrypted private key. This
file should be protected from misuse. You should set strict permissions on
this file so that other users of the system cannot access it.

The openssl Program
The openssl program performs dozens of SSL-related functions, from
generating certificates to emulating a network-based SSL client. Its syntax
is notoriously difficult though. That is why we have been using the
CA.pl wrapper script to perform common tasks. But some tasks can only
be done with the openssl command. Should you need them though,
openssl has excellent man pages: man openssl.

Relocate the Certificates
The second task is to move our new certificate and key to a useful location on the
server, and give the PEM files useful names as well. If this certificate is to be used by
lots of different services, it might make sense to locate it in the shared directory. But
for our cases we will only be using the SSL certificate for LDAP, so we can put the
files in /etc/ldap/ (or /usr/local/etc/openldap/ if you built from source).

The two files with which we are concerned are newcert.pem and clearkey.pem. We
need to rename and move those two keys:

 $ sudo mv cacert.pem /etc/ldap/example.com.cert.pem

 $ sudo mv clearkey.pem /etc/ldap/example.com.key.pem

Now, we need to set permissions and ownership on the certificate files. Since we did
not add a pass phrase to the key, we should also make sure that only the OpenLDAP
user can read the key file:

 $ sudo chown root:root /etc/ldap/example.com.*.pem

 $ sudo chmod 400 /etc/ldap/example.com.key.pem

The first line changes the owner and group of the two PEM files to the root user and
the root group. The second line sets the mode so that only the owner can read the
file, and no one else has any access.

If you are running OpenLDAP as a user other than root (and it is a good idea to
do so), then the files should be owned by that user instead of root; for example
chown oenldap example.com.*.pem.

Securing OpenLDAP

[152]

Install the CA Certificate
The third task is to install the CA's public certificate so that other applications on
the system can use that certificate to verify the authenticity of the certificate we just
generated. First, we need to copy the CA certificate to the local certificate database
for Ubuntu. In the process we will give it a user-friendly name:

 $ sudo cp cacert.pem /usr/share/ca-certificates/Example.Com-CA.crt

Then, edit the /etc/ca-certificates.conf file, and add Example.Com.crt at the
end of the file.

Finally, run update-ca-certificates:

$ sudo update-ca-certificates
Updating certificates in /etc/ssl/certs....done.

The CA certificate has now been installed. The /etc/ssl/certs directory is now the
authoritative source for CA certificates.

UNIX and Linux systems other than Ubuntu and Debian may not
have the update-ca-certificates script. Consult the system
documentation to find out how to update the certificate database on
such systems.

Optional: Clean Up
If you want, you can do a little clean-up in the CA directory. Delete the encrypted
key file and the certificate request file, both of which are in the demoCA/ directory:

 $ rm newkey.pem newreq.pem

Also, make sure clearkey.pem is no longer present in the demoCA/ directory.

Now we are ready to configure OpenLDAP to use our new certificates. First, we will
configure StartTLS support, which is the easiest, then we will configure SSL/TLS
support on the LDAPS port, port 636.

Configuring StartTLS
In the previous sections we created our new certificate and key, and placed the
two files in the /etc/ldap directory. In this section we will set up StartTLS (which
we introduced earlier in this chapter in the StartTLS section). Setting up StartTLS
requires only a few extra lines in the slapd.conf file.

Again, StartTLS is the standard way (according to RFC 4511) of providing
SSL/TLS security to OpenLDAP. For security reasons support for StartTLS should be
provided whenever practical.

Chapter 4

[153]

In the slapd.conf file, just before the BDB Database Configuration section, insert
the SSL/TLS options:

###########
SSL/TLS
###########
TLSCACertificatePath /etc/ssl/certs/
TLSCertificateFile /etc/ldap/example.com.cert.pem
TLSCertificateKeyFile /etc/ldap/example.com.key.pem

Basically, there are only three directives we need to specify to get StartTLS working:

The first directive, TLSCACertificatePath, tells SLAPD where to find all of
the CA certificates that it will need for verifying certificates. The definitive
location is, as we saw before, the /etc/ssl/certs/ directory.
The second directive, TLSCertificateFile, specifies the location of the
signed certificate.
The third directive, TLSCertificateKeyFile, specifies the location of
the corresponding key file, which has the private encryption key for
the certificate.

There are a handful of other TLS-specific directives that allow you to
provide detailed constraints on TLS connections (such as which suites of
ciphers can be used, and whether the client needs to provide a certificate
to the server). Complete documentation on these can be found in the TLS
section of the slapd.conf man page: man slapd.conf.

That's all we need to get SLAPD to perform StartTLS. Restart SLAPD so that the
changes take effect.

Configuring Client TLS
We do need to add a directive or two to ldap.conf—the configuration file that the
OpenLDAP clients use. As with SLAPD, we need to direct the clients to the correct
location of the new CA certificate so that they can verify the server certificate.

At the bottom of the ldap.conf file we can add the appropriate directive:
TLS_CACERTDIR /etc/ssl/certs

Clients will use this directive to locate the CA certificates for checking digital
signatures on the certificates they get from servers. If you know that you are only
going to use certificates signed by a specific CA, you can use the TLS_CACERT
directive to point to a specific CA certificate file, instead of a directory containing one
or more certificates.

•

•

•

Securing OpenLDAP

[154]

By default, OpenLDAP clients always perform a check on the digital signatures.
If a server sends a certificate that was signed by a CA other than those at
/etc/ssl/certs/ (or whatever directory TLS_CACERTDIR points to), then the
client will close the connection and print an error message to the screen.

Sometimes though, the correct CA certificate is not available, and it is worthwhile to
get the encryption support of TLS even if it is not possible to verify the identity of
the server.

In such cases you may find it necessary to change the way OpenLDAP clients
perform identification checks. For example, it might be desirable to try to verify the
certificate, but to continue with the connection even if there is no appropriate CA
locally. To accomplish this, use the following directive in slapd.conf:

TLS_REQCERT allow

In this case, if there is no CA certificate or if the certificate sent cannot be verified, the
session will continue, rather than exiting with an error message. TLS_REQCERT has a
few different levels of checking, ranging from strict (always verify) to never (do
not even bother trying to verify certificates).

At this point, we can use ldapsearch to test a connection. To instruct a client to use
StartTLS, we need to use the -Z flag. But if just -Z is specified, if the client fails TLS
negotiation with the server, it will continue with the transaction in clear text. In other
words, with -Z, TLS is preferred, but not required. To make TLS required, we will
add an extra z to the flag, making it -ZZ:

 $ ldapsearch -LLL -x -W -D 'cn=Manager,dc=example,dc=com' -H \

 ldap://example.com -ZZ '(uid=manny)'

This should prompt for a password and then return one result:

Enter LDAP Password:
dn: uid=manny,ou=Users,dc=example,dc=com
sn: Kant
uid: immanuel
uid: manny
ou: Users
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
givenName: Manny
cn: Manny Kant

Chapter 4

[155]

If the result comes back like this, then TLS was successfully configured. But TLS
can be difficult to get configured because it is strict by design. Small errors in
configuration (like using a domain name that differs from the one in the CN field of
the certificate) can prevent TLS from working. Consider this example:

$ ldapsearch -LL -x -W -D 'cn=Manager,dc=example,dc=com' -H \
 ldap://localhost -ZZ '(uid=manny)'

ldap_start_tls: Connect error (-11)
 additional info: TLS: hostname does not match CN in peer
 certificate

In this case, the host name specified on the command line (localhost) differed from
the one in the CN field of the certificate (example.com). Even though, in this case, the
two domain names are hosted on the same system, TLS will not accept the mismatch.

Other common errors in TLS are:

Reversing the values of the TLSCertificateFile and the
TLSCertificateKeyFile directives
Forgetting to install the CA certificate (which results in an error indicating
that the server certificate cannot be verified)
Forgetting to set the client CA path correctly in ldap.conf
Setting the read/write permissions (or the ownership) on the key file (or the
certificate file) in such a way that the SLAPD server cannot read it

While OpenLDAP can be forgiving in many areas, TLS configuration is not one of
them. It pays to take extra care when configuring TLS and SSL.

Configuring LDAPS
Now that we have configured TLS, we need to take only a few additional steps to
enable SSL/TLS on its own port. The traditional port for running dedicated
TLS/SSL-protected LDAP traffic is port 636, the LDAPS port.

Most of the time it is better to use StartTLS. However, network considerations (like
clients that do not support StartTLS or policies dictating mandatory blocking on
ports that allow non-encrypted text) might warrant using LDAPS.

Keep in mind that LDAPS and StartTLS can both be used for the same server. SLAPD
can accept LDAPS traffic on a dedicated port, and continue to provide the StartTLS
feature on an LDAP port.

•

•

•

•

Securing OpenLDAP

[156]

Like the StartTLS configuration, this configuration requires
that the slapd.conf file have the TLSCertificateFile,
TLSCertificateKeyFile, and TLSCACertificateDir directives set.

Getting SLAPD to listen on this port requires passing an additional parameter when
starting slapd. In Ubuntu, as with other Debian-based distributions, configuration
parameters can be set in the /etc/defaults/slapd file. In that file we just need to
set SLAPD_SERVICES. When the start script is executed, SLAPD will start all of the
services listed here.

SLAPD_SERVICES="ldap:/// ldaps:///"

The given code tells SLAPD to listen on all available IP addresses on both the default
LDAP (port 389) and the default LDAPS (port 636). If we wanted SLAPD to only
listen on one address for LDAP traffic, but all addresses for LDAPS traffic, we could
replace the above with:

SLAPD_SERVICES="ldap://127.0.0.1/ ldaps:///"

Here, the ldap://127.0.0.1/ tells SLAPD to only listen on the loopback address for
LDAP traffic, while ldaps:/// indicates that SLAPD should listen for LDAPS traffic
on all of the IP addresses configured for this host. You will need to restart SLAPD in
order for these changes to take effect.

Similarly, if you built from source and want to start slapd directly, the -h command
line flag lets you specify which services to start:

/usr/local/libexec/slapd -h "ldap:/// ldaps:///"

That is all there is to configuring LDAPS. We can now test it with ldapsearch:

 ldapsearch -LL -x -W -D 'cn=Manager,dc=example,dc=com' -H \

 ldaps://example.com '(uid=manny)'

There are two crucial differences between this ldapsearch and the ones we used
when testing StartTLS:

The protocol for the URL specified after the -H flag is ldaps:// rather than
ldap://.
There is no -Z or -ZZ flag here. Those flags tell the client to send the StartTLS
command, and SSL/TLS over a dedicated port do not recognize the
StartTLS command.

•

•

Chapter 4

[157]

If you get an error doing the given search, but StartTLS is working properly, the first
place to look is at the firewall settings. Typically, firewalls allow traffic on port 389,
but block 636. It is also useful to make sure that the server is actually listening on
port 636. You can check this from a shell prompt using netstat –tcp -l, which will
print out a list of what ports are being used. If LDAPS (636) does not show up, then
check /etc/defaults/slapd again to make sure that the SLAPD_SERVICES directive
is set correctly.

Debugging with the OpenSSL Client
In some cases it is useful to be able to connect to SLAPD over LDAPS and watch the
certificate processing. The openssl program can do this with its built-in s_client
client application:

 $ openssl s_client -connect example.com:636

The -connect parameter takes a host name followed by a colon and a port number.
When this command is run, openssl will connect to a remote server using SSL, and
perform the certificate negotiation. The entire negotiation process is written to the
screen. If certificate negotiation succeeds, then openssl leaves the connection open,
and you can type in raw protocol commands at the command line. To exit, just
hit CTRL+C.

Now we have both StartTLS and TLS/SSL working. We have one more short item to
cover in this section, and then we will move on to authentication.

Using Security Strength Factors
There are advantages to running StartTLS. It is simpler to configure, it is easier (in
many respects) to debug, and complex transactions can switch back and forth from
cleartext to encryption as needed.

But there is one clear drawback: we can use a standard firewall to block non-
encrypted traffic when all clear text goes over one port and all encrypted traffic goes
over another. But when both go over the same port, many firewalls can't do much to
verify that the traffic is secure.

But OpenLDAP does provide some tools for implementing this sort of security in
SLAPD, instead of in a firewall.

OpenLDAP can examine the integrity and encryption state of a connection and,
based on those features, assign a Security Strength Factor (SSF) to that connection.
An SSF is a numeric representation of the strength of the protective measures used.

Securing OpenLDAP

[158]

Most of the SSF numbers simply reflect the key length of the encryption cipher.
For example, since the maximum key length for DES is 56, when a connection is
protected using DES, the SSF is 56. Triple-DES (3DES), which is the cipher used by
default in Ubuntu's OpenSSL configuration, has a key length of 112. Hence, its SSF
is also 112. The AES cipher, which is strong and can be computed quickly, can use
different key sizes. AES-128 uses a 128-bit key, while AES-256 uses a 256-bit key. In
the case of AES then, the SSF will reflect the key size.

There are two special SSF numbers: 0 and 1. An SSF of 0 indicates (as might be
expected) that no security measures have been implemented. An SSF of 1 indicates
that only integrity checking on the connection is being done.

OpenLDAP can use SSF information to determine whether a client is allowed to
connect to the directory. SSF information can also be used in ACLs and in SASL
configuration, effectively allowing complex rules to be built as to what conditions a
client connection must satisfy before getting access to perform certain operations on
the directory.

We will look at SASL authentication and ACLs later in this chapter, but right now
we will look at using SSFs in the security directive in slapd.conf as a way of
specifying how secure a connection must be in order to access the database.

The security Directive
The security directive can be used in two different contexts in slapd.conf. If it
is put near the top of the file, before any backend databases are defined, then it is
placed in the global context and will apply to all connections. On the other hand,
if the security directive is placed within a backend definition, then it will only be
applied to that particular database. For example, consider a case where there are
two backends:

include /etc/ldap/schema/core.schema

modulepath /usr/local/libexec/openldap
moduleload back_hdb
Other configuration directives ...

DB 1:
database hdb
suffix "ou=Users,dc=example,dc=com"
More directives for DB 1...
DB 2:
database bdb
suffix "ou=System,dc=example,dc=com"
More directives for DB 2...

Chapter 4

[159]

This partial example of a slapd.conf file defines two directory backends. Now, if
the security directive is used before the first database is defined (namely before the
line that says database hdb), then it will be applied globally to all connections.

But if we wanted to allow non-encrypted connections to DB 2, but allow only
well-encrypted connections to DB 1 (which houses all of our user entries), we could
use separate security directives:

include /etc/ldap/schema/core.schema

modulepath /usr/local/libexec/openldap
moduleload back_hdb
loglevel stats
Other configuration directives ...

DB 1:
database hdb
suffix "ou=Users,dc=example,dc=com"
security ssf=112

More directives for DB 1...

DB 2:
database bdb
suffix "ou=System,dc=example,dc=com"
security ssf=0

More directives for DB 2...

Note the addition of the two highlighted lines—two separate security directives,
one for each database backend.

Now, restarting the directory (note that the loglevel is set to stats), we can test out
the security parameters with ldapsearch. First, we will try to search the Users OU
with a non-TLS connection:

 $ ldapsearch -x -W -D 'uid=matt,ou=Users,dc=example,dc=com' -b \

 'ou=Users,dc=example,dc=com' '(uid=david)' uid

In the log we see entries like this:

conn=0 fd=12 ACCEPT from IP=127.0.0.1:48758 (IP=0.0.0.0:389)
conn=0 op=0 BIND dn="uid=matt,ou=Users,dc=example,dc=com" method=128
conn=0 op=0 RESULT tag=97 err=13 text=confidentiality required
conn=0 fd=12 closed (connection lost)
connection_read(12): no connection!

Securing OpenLDAP

[160]

The third line indicates that the server returned error number 13: confidentiality
required. This is because we did not do anything to protect the connection. Using
simple authentication (which is not encrypted) and failing to use TLS/SSL resulted
in the client connection having an effective SSF of 0.

Next, let's do the same search with TLS turned on:

 $ ldapsearch -x -W -D 'uid=matt,ou=Users,dc=example,dc=com' -b \

 'ou=Users,dc=example,dc=com' -Z '(uid=david)' uid

Note that in this example, the -Z flag is included to send the StartTLS command.
Now, the server log says:

conn=1 fd=12 ACCEPT from IP=127.0.0.1:44684 (IP=0.0.0.0:389)
conn=1 op=0 STARTTLS
conn=1 op=0 RESULT oid= err=0 text=
conn=1 fd=12 TLS established tls_ssf=256 ssf=256
conn=1 op=1 BIND dn="uid=matt,ou=Users,dc=example,dc=com" method=128
conn=1 op=1 BIND dn="uid=matt,ou=Users,dc=example,dc=com" mech=SIMPLE
ssf=0
conn=1 op=1 RESULT tag=97 err=0 text=

There are a few things to note about this result. On the second line, OpenLDAP
reports that it is doing StartTLS. Two lines later it reports: TLS established tls_
ssf=256 ssf=256. This line indicates that the TLS connection has an SSF of 256 (since
the connection is using AES-256), and that the total SSF of the connection is 256.

If you look a few lines lower, on the second line that begins BIND, you will notice that
there another SSF is reported: ssf=0. Why?

OpenLDAP measures SSF on various aspects of the connection. First, as we can
see above, it checks the SSF of the network connection. TLS/SSL connections are
assigned an SSF based on their cipher strength.

But during the bind phase when the client authenticates to the directory, OpenLDAP
also measures the SSF of the authentication mechanism. The simple (mech=SIMPLE)
authentication mechanism does not encrypt the password, and so it is always given
an SSF of 0.

The total SSF for the connection, however, remains at 256, with the TLS SSF being
256 and the SASL SSF at 0.

Chapter 4

[161]

A Fine-Grained security Directive
The security directive that we have looked at so far is basic. It simply requires
that the overall SSF be 112 (3DES encryption) or greater, but we can make it
more specific.

For example, we can simply require that any TLS connection have at least a
128 bit key:

security tls=128

This will require that all incoming connections use TLS with a strong (128 bit or
greater) cipher.

In some cases it is desirable to define which TLS/SSL ciphers or cipher
families will be used. This cannot be done with the security directive.
Instead, you will need to use the TLSCipherSuite directive, which will
allow you to give a detailed specification for which ciphers are acceptable
for TLS/SSL connections.

Or, if we only wanted to define a strong SSF for connections that try to perform a
simple bind (as opposed to an SASL bind), then we can specify an SSF just for simple
binding:

security simple_bind=128

This will require that some strong TLS cipher be used to protect the authentication
information.

If you plan to allow simple binding, and you are running on a non-secure
network, you are strongly advised to configure TLS/SSL and require TLS
encryption during the bind operation using the security directive.

You can also use the update_ssf keyword in the security directive to set the
SSF necessary for updating operations. Thus you could specify that only
low-grade encryption is needed for reading the directory, but high-grade
encryption must be used for performing updates to directory information:

security ssf=56 update_ssf=256

In the coming section, we will look at SASL configuration. You can use the
security directive to set SSF for SASL binding as well using the sasl= and
update_sasl= phrases.

Securing OpenLDAP

[162]

Finally, in rare cases where OpenLDAP is listening on a local socket (that is,
ldapi://), you can use security transport=112 (or whatever cipher strength
you desire) to ensure that traffic coming over that socket is encrypted.

At this point, we have completed our examination of SSL and TLS. Next, we will
move on to the second of our three aspects of security: authentication.

Authenticating Users to the Directory
As we have seen earlier in the book, OpenLDAP supports two different methods of
binding (or authenticating) to the directory. The first is to use simple binding. The
second is to use SASL binding. In this part we will look at each of these two methods
of authentication.

It is not necessary to choose one or the other. OpenLDAP can be configured to do
both, at which point it is up to the client as to which method will be used. Simple
binding is easier to configure (there is very little configuration that must be done).
But SASL is more secure and more flexible, though these benefits come at the cost of
added complexity.

The basics of the bind operation and the authentication process are covered early in
Chapter 3. While we will review some of that materials here, you may find it useful
to glance back at that section.

Simple Binding
The first form of authentication we will look at is simple binding. It is simple not
necessarily from the user's perspective, but it is definitely easier to configure, and the
process of binding is easier on the server, too, since less processing is needed.

To perform a simple bind the server requires two pieces of information: a DN and
a password. If both the DN and the password fields are empty then the server
attempts to bind as the Anonymous user.

During a simple bind the client connects to the server and sends the DN and
password information to the server, without adding any additional security. The
password, for example, is not specially encrypted.

If the client is communicating over TLS/SSL, then the whole transaction will be
encrypted, and so the password will be safe. If the client is not using TLS/SSL then
the password will be sent over the network in cleartext. This, of course, is a security
issue, and should be avoided (perhaps by using the security directive discussed in
the previous section, or by using an SASL bind instead of a simple bind).

Chapter 4

[163]

There are two common ways in which client applications attempt to perform
a simple bind. The first is sometimes called Fast Bind. In a Fast Bind, the client
supplies a full DN (uid=matt,ou=users,dc=example,dc=com) and also a password
(myPassword). It is faster than the common alternative (binding as anonymous and
searching for the desired DN).

Cyrus SASLAuthd, which provides SASL authentication services to
other applications, is the application in which the term "Fast Bind" was
first used. SASLAuthd is a useful tool for providing SASL authentication
services. We will look at it again in the next section. Nowhere in the
OpenLDAP documentation, is the term "Fast Bind" used.

The directory first performs, as the anonymous user, an auth access on the
userPassword attribute of the DN that the client supplies. In an auth access
the server compares the value of the supplied password to the value of the
userPassword stored in the directory. If the userPassword value is hashed (with, for
example, SSHA or SMD5), then SLAPD hashes the password that the user supplies,
and then compares the hashes. If the values match, OpenLDAP binds the user and
allows it to perform other LDAP operations.

The OpenLDAP command-line clients, when used with the -x option,
perform simple binding. The clients require that you specify the entire
user DN and a password, and they then perform a Fast Bind.

That's a Fast Bind. But there is a second common method of doing a simple bind—a
method designed to eliminate the requirement that the user know an entire DN.

In this second method (which is not, incidentally, called a "slow bind"), the client
application requires that the user only know some particular unique identifier—
usually the value of uid or cn. The client application then binds to the server as
anonymous (or another pre-configured user) and performs a search for a DN that
contains the matching attribute value. If it finds one (and only one) matching DN,
then it re-binds, using the retrieved DN and the user-supplied password.

Usually, client applications that use simple bind will need a base DN. The second
method of performing a simple bind requires one additional piece of information
not required in a Fast Bind: a search filter. The filter is usually something like
(&(uid=?)(objectclass=inetOrgPerson)), where the question mark (?) is
replaced by the user-supplied value.

Securing OpenLDAP

[164]

Using an Authentication User for Simple Binding
While it is more convenient for the user when only a user ID or a CN is required,
the second method we have seen may raise an additional concern: the Anonymous
user, in order to perform the search, must have read access to all user records in
the directory. This means that anyone can connect to the directory (remember,
Anonymous has no password) and perform searches.

In many cases this isn't a problem. Allowing someone to see a list of all the users
in the directory may not be a security concern at all. But in other cases, such access
would not be acceptable.

One way to work around this problem is to use a different user (rather than
Anonymous) to perform the search for the user's DN. In the last chapter, we created
just such an account. Here is the LDIF record we used:

Special Account for Authentication:
dn: uid=authenticate,ou=System,dc=example,dc=com
uid: authenticate
ou: System
description: Special account for authenticating users
userPassword: secret
objectClass: account
objectClass: simpleSecurityObject

The purpose of this account is to log into the server and perform searches for DNs.
In other words, it conducts the same job as the Anonymous user, but it adds a little
more security, since clients that use the uid=authenticate account will have to have
the appropriate password, too.

To make this clear let's look at the case where a client, configured to use the
Authenticate account, binds a user that identifies himself as matt with the password
myPassword.

Here's a step-by-step breakdown of what happens when doing a bind operation
this way:

1.	 Client connects to the server and starts a bind operation with the DN
uid=autenticate,ou=system,dc=example,dc=com and the
password secret.

2.	 The server, as Anonymous, compares the Authenticate password,
secret, with the value of the userPassword attribute for the
uid=autenticate,ou=system,dc=example,dc=com record.

3.	 If the above succeeds, then the client (now logged in as the Authenticate
user) performs a search with the filter: (&(uid=matt)(objectclass=inetOr
gPerson)). Since uid is unique, the search should return either 0 or 1 record.

Chapter 4

[165]

4.	 If one matching DN is found (in our case, it would be uid=matt,ou=user,
dc=example,dc=com), then the client tries to re-bind as this DN, and using
the password the user initially supplies to the client (myPassword).

5.	 The server, as Anonymous, compares the user-supplied password,
myPassword, with the value of the userPassword attribute of uid=matt,
ou=user,dc=example,dc=com.

6.	 If the password comparison succeeds then the client application can continue
performing LDAP operations as uid=matt,ou=user,dc=example,dc=com.

The process is lengthy and it requires that the client application be configured
with bind DN and password information for the Authenticate user, but it adds an
additional layer of security to an Anonymous bind and search.

In this section, we have looked at three different ways of performing a simple bind.
Each of these methods is useful in particular circumstances, and when used in
conjunction with SSL/TLS, simple binding does not pose a significant security threat
when the password is transmitted across the network.

Simple Binding Directives in slapd.conf
There are only a few directives in slapd.conf that have any bearing
on simple binding. Simple binding is allowed by default. To prevent
SLAPD from accepting simple bind operations, you can use the require
SASL directive which will require that all bind operations are SASL
bind operations. Additionally, the security directive provides the
simple_bind= SSF check, which can be used to require a minimum SSF
for simple bind operations. This is covered in more detail in the section
entitled The security Directive.

Later in this book we will examine several third party applications that use simple
binding when connecting to the directory.

But there are times when it is desirable to have an even more secure authentication
process, or when the bind-search-rebind method of simple binding is too much for
the client to do. In such cases using SASL binding may be even better.

SASL Binding
SASL provides a second method of authenticating to the OpenLDAP directory. SASL
works by supplanting the simple bind method outlined above with a more robust
authentication process.

Securing OpenLDAP

[166]

The SASL standard is defined in RFC 2222
(http://www.rfc-editor.org/rfc/rfc2222.txt).

SASL supports a number of different kinds of underlying authentication
mechanisms, ranging from login/password combinations to more complex
configurations like One-Time Passwords (OTP) and even Kerberos
ticket-based authentication.

While SASL provides dozens of different configuration options, we will cover only
one. We will configure SASL for doing DIGEST-MD5 authentication. It is slightly
more difficult to set up than some SASL mechanisms, but does not require the
detailed configuration involved in GSSAPI or Kerberos.

Later in this chapter, we will integrate our SASL work with our SSL/TLS work, and
use the SASL EXTERNAL mechanism for authenticating to the directory with client
SSL certificates.

The Cyrus SASL documentation (at /usr/share/doc/libsasl2
or available online at http://asg.web.cmu.edu/sasl/) provides
information on implementing other mechanisms.

In DIGEST-MD5 authentication, the user's password will be encrypted by the SASL
client, sent across the network in its encrypted form only, then decrypted by the
server and compared to a cleartext version of the password.

The advantage to using DIGEST-MD5 is that the password is protected when
transmitted over the network. The disadvantage, however, is that the passwords
must be stored on the server in cleartext.

Contrast this with the way simple bind works. In a simple bind the password
itself is not encrypted when crossing the network, but the copy of the password
stored in the database is stored in an encrypted format (unless you configure
OpenLDAP otherwise).

Keep in mind that when SSL/TLS is used, all data transmitted over the connection is
encrypted, including passwords.

Configuring SASL is more complex than configuring simple bind operations. There
are two parts to configuring SASL support:

Configuration of Cyrus SASL
Configuration of OpenLDAP

•

•

Chapter 4

[167]

Configuring Cyrus SASL
When we installed OpenLDAP in Chapter 2, one of the packages we installed
was Cyrus SASL (the library was named libsasl2). We will also need the SASL
command-line tools, which are included in the sasl2-bin package:

 $ sudo apt-get install sasl2-bin

Included in this package are the saslpasswd2 program and the SASL testing client
and server applications.

Now we are ready to start configuring.

The SASL Configuration File
The SASL library can be used by numerous applications, and each application
can have its own SASL configuration file. SASL configuration files are stored in the
/usr/lib/sasl2 directory. In that directory, we will create a configuration file for
OpenLDAP. The file, slapd.conf, looks like this:

SASL Configuration
pwcheck_method: auxprop
sasldb_path: /etc/sasldb2

Do not confuse this slapd.conf, located at /usr/lib/sasl2 with the
main slapd.conf file at /etc/ldap/. These are two different files.

As usual, lines that begin with the pound sign (#) are comments. The second line
determines how SASL will try to check passwords. For example, SASL comes with
a stand-alone server, saslauthd, which will handle password checking. In our case
though, we want to use the auxprop plugin, which does the password checking
itself, rather than querying the saslauthd server.

The last line tells SASL where the password database (which stores a cleartext
version of all of the passwords) is located. The standard location for this database is
/etc/sasldb2.

Setting a User Password
As we get started, we will store the SASL password in the /etc/sasldb2 database.
To add a password to the database we use the saslpasswd2 program:

 $ sudo saslpasswd2 -c -u example.com matt

Note that we have to run the above using sudo because the password file is owned
by root. Both sudo and saslpasswd2 will prompt you to enter a password.

Securing OpenLDAP

[168]

The -c argument for saslpasswd2 indicates that we want the user ID to be created
if it does not already exist. -u example.com sets the SASL realm. SASL uses realms
as a way to partition the authentication name space. Client applications typically
provide SASL with three pieces of information: the username, the password, and the
realm. By default, clients will send their domain name as the realm.

Using realms, it is possible to give the same user name different passwords for
different applications or application contexts. For example, matt in realm
example.com can have one password, while matt in realm testing.example.com
can have a different password.

For our purposes we need only one realm, and we will name it example.com.
When the given command is run it will prompt for a password for user matt, and
then prompt for a password confirmation. If the passwords match, it will store the
password in clear text in the SASL password database.

Now we are ready to configure OpenLDAP.

Configuring SLAPD for SASL Support
The OpenLDAP side of SASL configuration is done in the slapd.conf file for the
server, and the ldap.conf file for the client. In this section, we will focus on the
SLAPD server.

When OpenLDAP receives a SASL authentication request it receives four pieces of
information from the client. The four fields of information it gets are:

Username: This field contains the ID that the user supplied
when authenticating.
Realm: This field contains the SASL realm in which the user is authenticated.
SASL Mechanism: This field indicates which authentication system
(mechanism) was used. Given our SASL configuration, this should be
DIGEST-MD5.
Authentication Information: This field is always set to auth to indicate that
the user needs authentication.

All of this information is compacted into one DN-like string that looks like this:

uid=matt,cn=example.com,cn=DIGEST-MD5,cn=auth

The order of the fields above is the same as the order of the bulleted list: User-name,
realm, SASL mechanism, and authentication information. Note however, that the
realm is not required and might not always be present. If SASL does not use any
realm information, the realm field will be omitted.

•

•

•

•

Chapter 4

[169]

Of course, we do not have any records in our LDAP with DNs like the SASL string
above. So, in order to correlate the authenticated SASL user with a user in the LDAP,
we need to set up some method of converting the above DN-like string into a DN
that is structured like the DNs in the directory. So we want to make the given string
into something like this:

uid=matt,ou=Users,dc=example,dc=com

There are two ways of doing this mapping. We can either configure a simple string
replacement rule to convert the SASL information string to a DN like the last one, or
we could perform a search of the directory for an entry with a uid that is matt, and
then, if a match is found, use that matching entry's DN.

Each of these two methods has its advantages and disadvantages. Using string
replacement is faster, but it is less flexible, and it may not be sufficient for complex
directory information trees. Using string replacement it may be necessary to
use several authz-regexp directives in a row, each one with a different regular
expression and replacement string.

Searching for the user on the other hand, can be much more flexible in a directory
with lots of subtrees. But it will incur the overhead of doing an additional search of the
LDAP tree, and it may require tweaking ACLs to allow pre-authentication searches.

Both methods use the same directive in slapd.conf: the authz-regexp directive. Let's
look at an example of each method, beginning with the string replacement method.

Using a Replacement String in authz-regexp
The authz-regexp directive takes two parameters: a regular expression for getting
information out of the SASL DN-like string, and a replacement function (which is
different depending on whether we do string replacement or a search).

For our regular expression we want to take the username from the SASL information
and map it to the uid field in a DN. We don't really need any of the information in
the other three SASL fields, so our regular expression is fairly simple:

"^uid=([^,]+).*,cn=auth$"

This rule starts at the beginning of the line (^) and looks for an entry that starts with
uid=. The next part, ([^,]+), stores characters after uid= and before a comma (,)
in a special variable called $1. The rule reads "match as many characters as possible
(but at least one character) that are not commas and store them in the first
variable ($1)."

After that, the rule (using .* to match anything) skips over the realm (if there is
one) and the mechanism, and then looks for a match at the end of the line: cn=auth$
(where the dollar sign ($) indicates a line ending).

Securing OpenLDAP

[170]

Once the regular expression is run we should have a variable, $1, which contains the
user's name. Now we can use that value in a replacement rule, setting the uid value
to the value of $1. The entire authz-regexp line looks like this:

authz-regexp "^uid=([^,]+).*,cn=auth$"
 "uid=$1,ou=Users,dc=example,dc=com"

After the authz-regexp directive, I have inserted the regular expression we just
looked at. After the regular expression comes the replacement rule, which instructs
SLAPD to insert the value of $1 in the uid field of this template DN.

The authz-regexp directive can go anywhere in the slapd.conf file before the first
database directive.

Since authz-regexp is the only necessary directive for configuring SASL, we can
now test SLAPD from the command line, without making any additional changes to
slapd.conf:

$ ldapsearch -LLL -U matt@example.com -v '(uid=matt)' uid
ldap_initialize(<DEFAULT>)
SASL/DIGEST-MD5 authentication started
Please enter your password:

SASL username: matt@example.com
SASL SSF: 128
SASL installing layers
filter: (uid=matt)
requesting: uid
dn: uid=matt,ou=Users,dc=example,dc=com
uid: matt

Previously, we have used the -x flag, combined with -W and -D, to do a simple bind
with a full DN and a password.

With SASL however, we don't need the full DN. All we need is a shortened
connection string. So, instead of using the -x, -W, and -D flags, we just use -U matt@
example.com. The -U flag takes a SASL username and (optionally) a realm. The
realm is appended to the username, separated by the at sign (@). So, in the given
example, we are connecting with username matt and realm example.com.

Next, ldapsearch prompts for a password (see the highlighted line in the example).
This is not our LDAP password, but our SASL password—the one in the account we
created when we ran saslpasswd2.

Chapter 4

[171]

To review, what is happening in the previous command is this:

The client is connecting to SLAPD requesting an SASL bind.
SLAPD uses the SASL subsystem (which checks the /usr/lib/sasl/slapd.
conf file for settings) to tell the client how to authenticate. In this case, it tells
the client to use DIGEST-MD5.
The client sends the authentication information to SLAPD.
SLAPD performs the translation specified in authz-regexp.
SLAPD then checks the client's response (using the SASL subsystem) against
the information in /etc/sasldb2.
When the client authentication succeeds, OpenLDAP runs the search and
returns the results to the client.

Now we are ready to look at using authz-regexp to search the directory with a
specific filter.

Using a Search Filter in authz-regexp
In this case, we want to search the directory for an entry that matches the username
(uid) received during the SASL bind. Recall that the SASL authentication
information comes in a string that looks like this:

uid=matt,cn=example.com,cn=DIGEST-MD5,cn=auth

In the last case, we mapped the given directly on to a DN of the form:

uid=<username>,ou=users,dc=example,dc=com.

But what do we do if we don't know, for example, if the user matt is in the
Users OU or the System OU? A simple mapping function will not work. We need
to search the directory. We will do this by changing the last argument in our
authz-regexp directive.

Our new authz-regexp directive looks like this:

authz-regexp "^uid=([^,]+).*,cn=auth$"
 "ldap:///dc=example,dc=com??sub?(uid=$1)"

This regular expression is the same as the one in the previous example. But the
second argument to authz-regexp is an LDAP URL.

For an overview of writing and using LDAP URLs see Appendix B.

•

•

•

•

•

•

Securing OpenLDAP

[172]

This LDAP URL instructs SLAPD to search in the base dc=example,dc=com (using
a subtree (sub) search) for an entry whose uid equals the value of $1, which gets
replaced by the value retrieved from the regular expression in the first argument to
authz-regexp. If the user matt attempts to authenticate, for example, the URL will
look like this:

ldap:///dc=example,dc=com??sub?(uid=matt)

When SLAPD performs that search against our directory information tree, it will get
a single record back—the record with the DN uid=matt,ou=Users,dc=example,
dc=com.

Here's an example using ldapsearch. It is the same example used in the previous
section, and it should have the same results even though we are using the LDAP
search method:

$ ldapsearch -LLL -U matt@example.com -v '(uid=matt)' uid
ldap_initialize(<DEFAULT>)
SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt@example.com
SASL SSF: 128
SASL installing layers
filter: (uid=matt)
requesting: uid
dn: uid=matt,ou=Users,dc=example,dc=com
uid: matt

A Note on ACLs and Search Filters
When SLAPD reads the search filter, it performs a search of the directory. But the
search is done as the Anonymous user. What this means is that we will need to make
sure that the Anonymous user will need to have the requisite permissions to search
the directory using the filter.

Given our last example, the Anonymous user will need to be able to search the
dc=example,dc=com subtree for uid values. The ACLs that we created in Chapter 2
do not grant the Anonymous user any such permission. We will need to add one rule
to our ACLs in order to allow the search to operate successfully:

access to attrs=uid
 by anonymous read
 by users read

This rule, which should appear at the top of the list of ACLs, grants read access to
the uid attribute to anonymous and to any authenticated users on the system. The
important part, in this example, is that Anonymous gets read access.

Chapter 4

[173]

Keep in mind that by adding this rule, we are making it possible for unauthenticated
users to see what user IDs exist in the database. Depending on the nature of your
directory data, this may be a security issue. If this is a problem you can either use
the string replacement method (remember, you can use several authz-regexp
expressions in a row to handle more complex pattern matching), or you can try to
reduce exposure to the uid field by building more restrictive ACLs

Later in this chapter, we will take a more detailed look at ACLs.

Failure of Mapping
In some cases the mapping done by authz-regexp will fail. That is, SLAPD will
search the directory (using the search filter) and not find any matches. The user,
however, is authenticated, and SLAPD will not fail to bind.

Instead, what will happen is that the user will bind as the SASL DN. Thus, the
effective DN may be something like:

uid=matt,cn=example.com,cn=digest-md5,cn=auth

It makes no difference that there is no actual record in the directory with that
username. The client will still be able to access the directory.

But this DN is also subject to ACLs, so you can write access controls targeted at users
who have authenticated through SASL but who do not have a DN corresponding to
a record in the directory.

Removing the Need to Specify the Realm
In our configuration all of the users are in the same realm, example.com. Rather than
typing that the username and the realm be typed in every time, we can configure a
default realm in slapd.conf by adding the following directive:

sasl-realm example.com

If we restart the server with this new modification, we can now run an ldapsearch
without having to specify the realm:

$ ldapsearch -LLL -U matt -v '(uid=matt)' uid
ldap_initialize(<DEFAULT>)
SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers
filter: (uid=matt)
requesting: uid
dn: uid=matt,ou=Users,dc=example,dc=com
uid: matt

Securing OpenLDAP

[174]

This time, passing -U matt was sufficient for authentication. SLAPD automatically
inserted the default realm into the SASL information.

Debugging the SASL Configuration
Getting the correct SASL configuration can be frustrating. One way of improving
your ability to debug is to configure logging in such a way that you can see what is
going on during a SASL transaction. The trace debugging level (1) can be used to
watch what is happening in SASL. You can either set the debug level in slapd.conf
to trace (or just the digit 1), or you can run slapd in the foreground on the
command line:

$ sudo slapd -d trace
some of the voluminous output removed...
slap_sasl_getdn: u:id converted to uid=matt,cn=DIGEST-MD5,cn=auth
>>> dnNormalize: <uid=matt,cn=DIGEST-MD5,cn=auth>
<<< dnNormalize: <uid=matt,cn=digest-md5,cn=auth>
==>slap_sasl2dn: converting SASL name uid=matt,cn=digest-md5,cn=auth
 to a DN
slap_authz_regexp: converting SASL name
 uid=matt,cn=digest-md5,cn=auth
slap_authz_regexp: converted SASL name to
 uid=matt,ou=Users,dc=example,dc=com
slap_parseURI: parsing uid=matt,ou=Users,dc=example,dc=com
ldap_url_parse_ext(uid=matt,ou=Users,dc=example,dc=com)
>>> dnNormalize: <uid=matt,ou=Users,dc=example,dc=com>
<<< dnNormalize: <uid=matt,ou=users,dc=example,dc=com>
<==slap_sasl2dn: Converted SASL name to
 uid=matt,ou=users,dc=example,dc=com
slap_sasl_getdn: dn:id converted to

 uid=matt,ou=users,dc=example,dc=com

Following this log, we can see the initial SASL string, uid=matt,
cn=DIGEST-MD5,cn=auth, and watch as it is normalized, run through the regular
expression, and converted to uid=matt,ou=users,dc=example,dc=com.

The ldapwhoami client and the slapauth utility are also useful when attempting
to debug SASL. An example of using ldapwhoami to evaluate the results of
authz-regexp is given in the next section.

Chapter 4

[175]

Using Client SSL/TLS Certificates to
Authenticate
SASL and SSL/TLS can be used in combination to perform SASL EXTERNAL
authentication. In SASL EXTERNAL authentication the SASL module relies upon an
external source, in this case a client's X.509 certificate, as a source of identity.

Using this configuration a client with an appropriately signed certificate can bind to
SLAPD without having to enter a username and password, but in a way that is
still secure.

How does this work? Just as it is possible to issue a server a certificate for SSL/TLS
communication, it is also possible to issue one to a user or client. We have discussed
already how a certificate provides, in a secure way, identity information about a
server. A client certificate can serve the same purpose.

Authentication, using SASL EXTERNAL works like this:

The client and server communicate with SSL/TLS protection, either using
LDAPS or using StartTLS
When the server sends its certificate, it requests that the client also provide
a certificate
The client sends its own certificate, which includes the following

Identity information
A public key
The signature of a certificate authority that the server
will recognize

The server, after verifying the certificate, passes the identity information on
to SLAPD through the SASL subsystem
SLAPD then uses that information to bind

Since the certificate sent by the client contains all of the information needed to verify
the client's identity, no login/password combination is needed.

Configuring the SASL EXTERNAL mechanism requires the following steps:

1. Create a new client certificate
2. Configure the client to send the certificate
3. Configure SLAPD to correctly handle client certificates
4. Configure SLAPD to correctly translate the identity information provided in

the client certificate

•

•

•

°

°

°

•

•

Securing OpenLDAP

[176]

Creating a New Client Certificate
Creating a new client certificate is not significantly different from creating a server
certificate. We will use the same certificate authority that we created earlier in
this chapter.

First, we need to create a new certificate request:

$ /usr/lib/ssl/misc/CA.pl -newreq
Generating a 1024 bit RSA private key
............++++++
..++++++
unable to write 'random state'
writing new private key to 'newkey.pem'
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be
 incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
 Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Illinois
Locality Name (eg, city) []:Chicago
Organization Name (eg, company)
 [Internet Widgits Pty Ltd]:Example.Com
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:matt
Email Address []:matt@example.com

Please enter the following 'extra' attributes
 to be sent with your certificate request
A challenge password []:
An optional company name []:
Request is in newreq.pem, private key is in newkey.pem

This process is just like the one before, though the fields are completed specifically
for the user who is represented by this certificate. For example, if we were generating
this certificate for Barbara, we would complete the Common Name and Email
Address fields with her information.

Chapter 4

[177]

What should go in the Common Name field?
Earlier we used the CN field to store a domain name. What should go
in an individual's CN field? One option is to use the user's full name. A
more pragmatic option is to use an identifier that is used in the user's
LDAP DN (such as the value of the user's uid attribute). This makes
mapping from a certificate to an LDAP record easier.

Now, we have the new request (newreq.pem) and key (newkey.pem). The next thing
to do is sign the certificate with our CA's digital signature:

$ /usr/lib/ssl/misc/CA.pl -signreq
Using configuration from /usr/lib/ssl/openssl.cnf
Enter pass phrase for ./demoCA/private/cakey.pem:
Check that the request matches the signature
Signature ok
Certificate Details:
 Serial Number:
 ba:49:df:f5:8e:7e:77:c6
 Validity
 Not Before: Jul 4 03:28:28 2007 GMT
 Not After : Jul 3 03:28:28 2008 GMT
 Subject:
 countryName = US
 stateOrProvinceName = Illinois
 localityName = Chicago
 organizationName = Example.Com
 commonName = matt
 emailAddress = matt@example.com
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:
 OpenSSL Generated Certificate
 X509v3 Subject Key Identifier:

9A:97:8F:8C:95:1F:E0:6E:50:BD:DF:F4:C5:71:68:92:3F:A0:30:DD
 X509v3 Authority Key Identifier:

keyid:6B:FB:66:33:5D:DB:32:40:42:D7:71:F7:F0:D0:7C:94:3E:8F:CD:58

Certificate is to be certified until
 Jul 3 03:28:28 2008 GMT (365 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y

Securing OpenLDAP

[178]

Write out database with 1 new entries
Data Base Updated
unable to write 'random state'
Signed certificate is in newcert.pem

Now, we have the signed certificate stored in the file newcert.pem.

The next thing to do is to move these files to a location that will be convenient for
the user. In this case, we will make a new directory in the user's home directory and
move the files into that directory:

 $ sudo mkdir /home/mbutcher/certs

 $ sudo mv new*.pem /home/mbutcher/certs

 $ sudo chown -R mbutcher:mbutcher /home/mbutcher/certs

In these three lines, we make a new directory for the certs. In this case, the new
certs/ directory is in the user's home directory.

Then we move the newly-created certificate files into the new directory. We could
rename these files but for now the generic name will suffice.

Finally, we need to make sure that the user has access to his or her certificates. This is
done with the chown command.

The certificates are ready to use.

Configuring the Client
The next thing we need to do is configure the client to use the certificate and key.
This is done by creating .ldaprc file in the user's home directory.

A .ldaprc file is a "personal" version of an ldap.conf file. It supports
all of the directives normally included in ldap.conf, plus a couple of
special directives, like the TLS_CERT and TLS_KEY directives.

Since I am the user mbutcher, I will create this file in my own home directory:

$ cd /home/mbutcher
$ touch .ldaprc

Now we can edit the .ldaprc file. This file needs to indicate that the client is
using the SASL EXTERNAL mechanism. Also, it must contain directives about the
certificate and key files that we want to use. Additionally, it is not a bad idea to
specify the location of the CA certificates (or even to the specific certificate for the CA
that signed the server's certificate), though this is usually done at a global level with
the ldap.conf file.

Chapter 4

[179]

The .ldaprc file then, looks like this:

SASL_MECH EXTERNAL
TLS_CERT /home/mbutcher/certs/newcert.pem
TLS_KEY /home/mbutcher/certs/newkey.pem
TLS_CACERT /etc/ssl/certs/Example.Com-CA.pem

The first directive, SASL_MECH, indicates what SASL mechanism the client is using. In
our case the client is using the EXTERNAL SASL mechanism.

The TLS_CERT directive points to the location of the client's signed X.509 certificate,
and the TLS_KEY directive indicates the location of the client's private key file.

The TLS_CACERT directive points to the specific certificate used for signing the
server's certificate. This will be used by the client libraries to verify the identity of the
server during SSL/TLS negotiation.

At this point the client is ready. Now we need to configure SLAPD.

Configuring the Server
SLAPD needs to do a few things in order to make the SASL EXTERNAL
mechanism work:

It must request a certificate from the client (otherwise the client will not
present one)
It needs to translate the identity information given in the client certificate into
a DN that is meaningful in our environment

To set the server to request a client certificate is a matter of adding one directive. In
the global section of the slapd.conf file, before any database directive is specified,
the TLSVerifyClient directive should be added:

TLSCACertificateFile /etc/ssl/certs/Example.Com-CA.pem
TLSCertificateFile /etc/ldap/example.com.cert.pem
TLSCertificateKeyFile /etc/ldap/example.com.key.pem
TLSVerifyClient try

Only the highlighted line is new. The other lines we added earlier in the chapter.

TLSVerifyClient determines whether SLAPD will take steps to request and verify
client certificates. There are four possible values:

never: Never request a client certificate. This is the default. If no certificate
is requested the client will not provide one. Hence SASL EXTERNAL
authentication cannot be used when the TLSVerifyClient is set to never.

•

•

•

Securing OpenLDAP

[180]

allow: This will cause SLAPD to request a certificate from the client but if the
client does not provide one, or if the provided one is not good (for example if
the signature cannot be verified), the session will continue.
try: In this case SLAPD will request a certificate from the client. If the client
does not provide a certificate the session will continue. However, if the client
provides a certificate that is bad, the session will terminate.
demand: This will cause SLAPD to require a certificate from the client. If the
client does not provide one, or if the provided one is not good, the session
will terminate.

In the last example we set TLSVerifyClient to try. This simply means that if the
client submits a certificate, it must be a valid certificate (with a known CA signature)
before SLAPD will allow the connection. But it will also allow clients to connect
without supplying a certificate (though such clients will not be able to use SASL
EXTERNAL authentication).

If we wanted to force clients to provide a certificate then we would use the demand
keyword instead of try.

At this point, we have SSL/TLS configured correctly. Now, we need to add one
additional step: we need to map the identity provided by the certificate (which
happens to be a DN) onto a DN for a directory user.

Translating the certificate DN into another DN is not strictly necessary. A
user can bind using a certificate DN even if it is not in the directory. ACLs
can be written to target such DNs too.

The DN in the client certificate we create looks like this:

dn:email=matt@example.com,cn=matt,o=example.com,l=chicago,\
 st=illinois,c=us

Note that this is one long line.

The DN contains the information we entered when running CA.pl -newreq. What
we want to do is translate this DN into the DN of the corresponding LDAP record:
uid=matt,ou=users,dc=example,dc=com.

How is this translation done? Using the authz-regexp directive that we examined
earlier in the section on SASL authentication.

•

•

•

Chapter 4

[181]

There are two fields in the certificate's identity string that are particularly helpful in
identifying the user: email and cn. Thus, a simple regular expression can capture
these two fields:

^email=([^,]+),cn=([^,]+).*,c=us$

This will assign the email address to $1, and the CN to $2.

From here we could either specify an LDAP URL with a filter for looking up DNs by
email address, or we could substitute the CN for the UID field used in the LDAP DN
(since the CN maps cleanly onto UID).

We will use this second method, and create authz-regexp that looks like this:

authz-regexp "^email=([^,]+),cn=([^,]+).*,c=us$"
 "uid=$2,ou=Users,dc=example,dc=com"

This directive maps the CN value of the certificate DN to the UID attribute in the
LDAP authorization DN. Thus, when a client connects with a certificate with the
DN dn:email=matt@example.com,cn=matt,o=example.com,l=chicago,
st=illinois,c=us, SLAPD will translate that into the DN uid=matt,ou=users,
dc=example,dc=com.

Now we are ready to test things out.

Testing with ldapwhoami
The ideal client for testing this process is ldapwhoami. This will allow us to
connect and bind with SASL EXTERNAL. In addition it will indicate whether or
not authz-regexp mapped the certificate DN to our LDAP DN.

After restarting SLAPD to load the changes, we can test the server:

$ ldapwhoami -ZZ -H 'ldap://example.com'
Enter PEM pass phrase:
SASL/EXTERNAL authentication started
SASL username: emailAddress=matt@example.com,CN=Matt, \
 O=Example.Com,L=Chicago,ST=Illinois,C=US
SASL SSF: 0
dn:uid=matt,ou=users,dc=example,dc=com
Result: Success (0)

First, let's take a closer look at the command entered:

ldapwhoami -ZZ -H 'ldap://example.com'

Securing OpenLDAP

[182]

The -ZZ flag requires that StartTLS negotiation be done successfully. Using only
one Z will attempt StartTLS, but not close the connect if the negotiations fail. Using
-ZZ is always a good idea when attempting authentication with the SASL
EXTERNAL mechanism.

Next, the -H 'ldap://example.com' parameter provides the URL of the SLAPD
server. Remember that for StartTLS negotiation to work, here, the domain in the
LDAP URL must match the domain in the server's certificate.

What happens when this command is executed? First, the user is prompted for a
pass phrase:

Enter PEM pass phrase:

This prompt is actually generated by the SSL/TLS subsystem (OpenSSL). Recall that
the key that we generated is protected by a pass phrase. In order to read the key file,
the OpenSSL subsystem requires the pass phrase.

But didn't I say that the SASL EXTERNAL method can obviate the need for entering
a password? Yes, it can—but to do so, we would need to remove the passphrase
from the key as we did when generating the server certificate:

openssl rsa < newkey.pem > clearkey.pem

Then the TLS_KEY directive in .ldaprc would need to be adjusted to point to the
clearkey.pem file.

Removing the pass phrase may be desirable in some circumstances, and undesirable
in others. Keep in mind that removing the pass phrase from the key will make it
easier for the certificate to be hijacked by someone else. A key without a pass phrase
should be carefully protected by permissions and other means.

Once the user's pass phrase has been entered, SASL authentication begins:

SASL/EXTERNAL authentication started
SASL username: emailAddress=matt@example.com,CN=Matt, \
 O=Example.Com,L=Chicago,ST=Illinois,C=US
SASL SSF: 0

As can be seen here, the SASL EXTERNAL mechanism is used, and the
SASL username is set to emailAddress=matt@example.com,CN=Matt,
O=Example.Com,L=Chicago,ST=Illinois,C=US. Finally, the SASL security
strength factor is set to 0 because no SASL security mechanism has been used.
Instead, the security mechanisms are external to SASL. Since we are using SSL/TLS
with an AES-256 encyrpted certificate, the overall SSF will still be 256.

Chapter 4

[183]

One important detail to note is that SLAPD will normalize the DN. In normalized
form the DN will look like this:

email=matt@example.com,cn=matt,o=example.com,l=chicago,st=illinois,\
 c=us

The emailAddress attribute has been converted to email, and all uppercase strings
have been converted to lowercase. The authz-regexp that we looked at above
operates on this normalized version of the DN.

Finally, the last few lines of output are the results of the LDAP Who Am I? operation:

dn:uid=matt,ou=users,dc=example,dc=com
Result: Success (0)

According to SLAPD, the client is currently performing directory operations with
an effective DN of uid=matt,ou=users,dc=example,dc=com. This means that our
mapping was successful.

What would the output look like if the authz-regexp mapping was not successful?
It would look something like this:

$ ldapwhoami -ZZ -H 'ldap://example.com'
Enter PEM pass phrase:
SASL/EXTERNAL authentication started
SASL username:
emailAddress=matt@example.com,CN=Matt,O=Example.Com,L=Chicago,
 ST=Illinois,C=US
SASL SSF: 0
dn:email=matt@example.com,cn=matt,o=example.com,l=chicago,
 st=illinois,c=us

Result: Success (0)

The highlighted portion shows the result of the Who Am I? operation. The DN
returned is simply the normalized form of the certificate DN—not the desired
LDAP DN.

Going Further with SASL
SASL is a flexible tool for handling authentication. Here we have looked at only
two SASL mechanisms: DIGEST-MD5 and EXTERNAL. But there are many other
possibilities. It can be used in conjunction with robust network authentication
systems like Kerberos. It can take advantage of secure One Time Password systems,
like Opiekeys. And it can be used as an interface to more standard password storage
systems, like PAM (Pluggable Authentication Modules).

Securing OpenLDAP

[184]

While such configurations are outside of the scope of this book, there are many
resources available. The SASL documentation (installed locally on Ubuntu in
/usr/local/doc/libsasl/index.html), and the OpenLDAP Administrator's
Guide (http://openldap.org), both provide more information about different
SASL configurations.

Now we will move on from authentication to authorization, and turn our attention
to ACLs.

Controlling Authorization with ACLs
We've looked at connection security and authentication. Now we are ready to look
at the last aspect of security: authorization. What we are specifically interested in is
controlling access to information in our directory tree. Who should be able to access
a record? Under what conditions? And how much of that record should they be able
to see? These are the sorts of questions that we will address in this section.

The Basics of ACLs
The primary way that OpenLDAP controls access to directory data is through
Access Control Lists (ACLs). When the SLAPD server processes a request from a
client, it evaluates whether the client has permissions to access the information it has
requested. To do this evaluation SLAPD sequentially evaluates each of the ACLs in
the configuration files, applying the appropriate rules to the incoming request.

Previously in this chapter, we have looked at authentication using simple
and SASL binding. ACLs provide authorization services, which determine
what information a given DN has access to.

ACLs were introduced in Chapter 2 in the section entitled ACLs. This section will
develop the basic examples discussed there.

An ACL is just a fancy configuration directive (the access directive) for SLAPD. Like
certain other directives, the access directive can be used multiple times. There are
two different places in the SLAPD configuration where ACLs can be placed. Firstly,
they can be placed in the global configuration outside of a database section (that is,
near the top of the configuration file). Rules that are placed at this level will apply
globally to all backends. In the next chapter we will look at the case where a single
directory has multiple backends.

Chapter 4

[185]

Secondly, ACLs may be placed within a backend section (somewhere beneath a
database directive). In this case, the ACLs will only be used when handling requests
for information within database. In Chapter 2, we put our ACLs within the backend
section, and we did not create any global access directives.

How does all of this work out in practice? When are global rules used, and when are
backend-specific rules used? If a backend has no specific ACLs, then the global rules
will apply. If a backend does have ACLs, then the global rules will only be applied
if none of the backend-specific rules apply. If the request is for a record which is not
stored in any backend, such as the Root DSE or the cn=subschema entry, then only
the global rules will be applied.

Within their context ACLs are evaluated top-down, from the first directive in the
configuration file to the last. So, when backend-specific rules are tested, SLAPD
begins testing with the first rule on the list and continues sequentially until either a
stopping rule matches or SLAPD reaches the end of the list.

In Chapter 2 we put the ACLs directly in the slapd.conf configuration file. In
this section we will put them in their own file and use the include directive in
slapd.conf to direct SLAPD to load the ACL file. This will allow us to separate the
potentially lengthy ACLs from the rest of the configuration file.

Let's take a quick look at the format of an ACL, and then we will move on to some
examples which will help clarify the intricacies of the ACL method.

An access directive looks like this:

access to [resources]

 by [who] [type of access granted] [control]

 by [who] [type of access granted] [control]

More 'by' clauses, if necessary....

An access directive can have one to phrase, and any number of by phrases. We will
take a look at the access to phrase first, then the by phrase.

Access to [resources]
In the access to part, an ACL specifies what is to be restricted in the directory tree
by this rule. In the given rule we used [resources] as a placeholder for this section.
An ACL can restrict by DN, by attribute, by filter, or by a combination of these. We
will first look at restricting by DN.

Securing OpenLDAP

[186]

Access using DN
To restrict access to a particular DN, we would use something like this:

access to dn="uid=matt,ou=Users,dc=example,dc=com"
 by * none

The by * none phrase simply rejects access to anyone. We will cover this
and other rules when we discuss the by phrase later in this chapter.

The rule would restrict access to that specific DN. Any time a request is received
that needs access to the DN uid=matt,ou=Users,dc=example,dc=com, SLAPD
would evaluate this rule to determine whether that request is authorized to access
this record.

Restricting access to a specific DN can be useful at times, but there are several other
supported options to the DN access specifier that come in useful for more general
rule-making.

It is possible to restrict access to subtrees of a DN, or even by DN patterns. For
example, if we wanted to write a rule that restricted access to entries beneath the
Users OU, we could use an access clause like this:

access to dn.subtree="ou=Users,dc=example,dc=com"
 by * none

In this example the rule restricts access to the OU and any records subordinate to
it. This is accomplished by using dn.subtree (or the synonym dn.sub). In our
directory information tree there are a number of user records in the Users OU
subtree. These records are children of the Users OU. The DN uid=matt,ou=Users,
dc=example,dc=com, for example, is in the subtree, and an attempt to access the
record would trigger this rule.

Along with dn.subtree, there are three other keywords for adding structural
restrictions to the DN access specifier:

dn.base: Restrict access to this particular DN. This is the default, and
dn.exact and dn.baselevel are synonyms of dn.base.
dn.one: Restrict access to any entries immediately below this DN.
dn.onelevel is a synonym.
dn.children: Restrict access to the children (subordinate) entries of this DN.
This is similar to subtree, except that the given DN itself is not restricted by
the rule.

•

•

•

Chapter 4

[187]

The dn clause accepts one other modifier that can be used to do sophisticated pattern
matching: dn.regex. The dn.regex access specifier can process POSIX extended
regular expressions. Here is an example of a simple regular expression in dn.regex:

access to dn.regex="uid=[^,]+,ou=Users,dc=example,dc=com"
 by * none

This example would restrict access to any DN with the pattern uid=SOMETHING,
ou=Users,dc=example,dc=com, where SOMETHING can be any string that is at least
one character long and has no commas (,) in it. Regular expressions are a powerful
tool for writing ACLs. We will discuss them more in the section Getting More from
Regular Expressions after we look at the by phrase.

Access using attrs
In addition to restricting access to records by DN, we can also restrict access to one or
more attributes within records. This is done using the attrs access specifier.

In the examples we've seen, when we restricted access we were restricting access at a
record level. The attrs restriction works at a finer-grained level: it restricts access to
particular attributes within records.

For example, consider a case where we want to limit access to the homePhone
attribute of all records in our directory information tree. This can be done with the
following access phrase:

access to attrs=homePhone
 by * none

The attrs specifier takes a list of one or more attributes. In the given example, we
just restricted access to the homePhone attribute. If we wanted to block access to
homePostalAddress as well, we could modify the attrs list accordingly:

access to attrs=homePhone,homePostalAddress
 by * none

Let's say that we wanted to restrict access to all of the attributes in the
organizationalPerson object class. One way of doing this would be to
create one long list: attrs=title, x121Address, registeredAddress,
destinationIndicator,.... But such a method would be time-consuming, difficult to
read, and clumsy.

Instead, there is a convenient shorthand notation for this:

access to attrs=@organizationalPerson
 by * none

Securing OpenLDAP

[188]

This notation should be used carefully, however. This code does not just restrict
access to the attributes explicitly defined in organizationalPerson, but also all
of the attributes already defined in the person object class. Why? Because the
organizationalPerson object class is a subclass of person. Therefore, all of the
attributes of person are attributes of organizationalPerson.

Sometimes it useful to restrict access to all attributes not required or allowed by a
particular object class. For example, consider the case where the only attributes we
want to restrict are those that are not specified in the organizationalPerson object
class. We can do that by replacing the at sign (@) with an exclamation point (!):

access to attrs=!organizationalPerson
 by * none

This will restrict access to any attributes unless they are allowed or required by the
organizationalPerson object class.

There are two special names that can be specified in the attributes list but that do not
actually match an attribute. These two names are entry and children. So we have
two cases:

If attrs=entry is specified, then the record itself is restricted.
If attrs=children, then the records that are children of this record
are restricted.

These two key words are not particularly useful in cases where only an attrs
specifier is used, but they can be much more useful when attrs and dn specifiers are
used in conjunction.

Sometimes it is useful to restrict by the value of an attribute (rather than by an
attribute name). For example, we may want to restrict access to any givenName
attribute that has the value Matt. This sort of thing can be accomplished using the
val (value) specifier:

access to attrs=givenName val="Matt"
 by * none

Like the dn specifier, the val specifier has regex, subtree, base, one, exact, and
children styles.

When using the val specifier you can have no more than one attribute in
the attrs list. The val specifier will not work on object class lists either.

•

•

Chapter 4

[189]

With val.regex you can use regular expressions for matching. We can modify the
last example to restrict access to any givenName that starts with the letter M:

access to attrs=givenName val.regex="M.*"
 by * none

In cases where the attribute value is a DN (like the member attribute for a
groupOfNames object), the regex, subtree, base, one, and children styles can be
used to restrict access based on the DN in the attribute value.

access to attrs=member val.children="ou=Users,dc=example,dc=com"
 by * none

Specifying an Alternate Matching Rule
By default, the val comparison uses the equality matching rule. You can
select a different matching rule however, by inserting a slash (/) after
val, and then entering the name or OID of the matching rule:access to
attrs=givenName val/caseIgnoreMatch="matt".

Access using Filters
One of the lesser used but surprisingly powerful features of the access phrase is
support for LDAP search filters as a means of restricting access to records. We looked
at the LDAP filter syntax at the beginning of Chapter 3 when we discussed the search
operation. Here we will use filters to restrict access to parts of a record.

Filters provide a way to support value matching for entire records (instead of just
attribute values, as is done with attrs). For example, using filters we can restrict
access to all records that contain the object class simpleSecurityObject:

access to filter="(objectClass=simpleSecurityObject)"
 by * none

This will restrict access to any record in the directory information tree that has the
object class simpleSecurityObject. Any legal LDAP filter can be used in a filter
specifier. For example, we could restrict access to all records that have the given
name Matt, the given name Barbara, or the surname Kant:

access to
 filter="(|(|(givenName=Matt)(givenName=Barbara))(sn=Kant))"
 by * none

This code uses the "or" (disjunction) operator to indicate that if the request needs
access to records that have given names with the values of Matt or Barbara, or if the
request needs access to a record with the surname Kant, this rule should be applied.

Securing OpenLDAP

[190]

Combining Access Specifiers
We have looked at three different access specifiers: dn, attrs, and filter. And in
the previous sections we have used each. Now we will combine them to create even
more specific access rules.

The order of combination is as follows:

access to [dn] [filter] [attrs] [val]

The dn and filter specifiers come first, as they both deal with records as a whole.
Then attrs (and val), which function at the attribute level, come next. Let's say
that we want to restrict access to records in the Users OU just in the cases where the
record has an employeeNumber attribute. To do this we can use a combination of a
DN specifier and a filter:

access to dn.subtree="ou=Users,dc=example,dc=com"
 filter="(employeeNumber=*)"
 by * none

This ACL will only restrict access when the request is for records in the ou=Users,
dc=example,dc=com subtree and the employeeNumber field exists and has
some value.

In a similar fashion, we can limit access to attributes for records in a certain subtree.
For example, consider the case where we want to restrict access to the description
attribute, but only for records that are in the the System OU. We can do this by
combining the DN and attribute specifiers:

access to dn.subtree="ou=System,dc=example,dc=com"
 attrs=description
 by * none

By this rule, a client could access the record with DN uid=authenticate,
ou=System,dc=example,dc=com, but it would not be able to access the description
attribute of that record.

By carefully combining these access specifiers it is possible to articulate exact access
restrictions. We will see some more in action as we continue on to the by phrase.

By [who] [type of access granted] [control]
The by phrase contains three parts:

The who field indicates what entities are allowed to access the resource
identified in the access phrase

•

Chapter 4

[191]

The access field (type of access granted) indicates what can be done with
the resource
The third optional part, which is usually left off, is the control field

To get the gist of this distinction, consider the by phrase that we have been working
with in the previous sections: by * none. In this by phrase, the who field is * (an
asterisk character), and the access field is none. The control field is omitted in
this example.

The * is the universal wildcard. It matches any entity, including anonymous and all
DNs. The none access type indicates that no permissions at all should be granted to
the entity identified in the who specifier. In other words, by * none means that no
access should be granted to anyone.

The directory manager (cn=Manager,dc=example,dc=com), specified
in the slapd.conf file with the rootdn directive, is an exception. It
cannot be restricted by any access control. Thus, by * none does not
apply to the manager.

We will explore the who field in detail, but before getting to that, let's examine the
access field.

The Access Field
There are six distinct privileges that a client can have, in regards to an entry or
attribute. There is also a seventh privilege specifier that equates to the removal of all
privileges:

1.	 w: Writes access to a record or attribute.
2.	 r: Reads access to a record or attribute.
3.	 s: Searches access to a record or attribute.
4.	 c: Accesses to run a comparison operation on a record or attribute.
5.	 x: Accesses to perform a server-side authentication operation on a record

or attribute.
6.	 d: Accesses to information about whether or not a record or attribute exists

('d' stands for 'disclose').
7.	 0: Does not allow access to the record or attribute. This is equivalent

to -wrscxd.

These seven privileges can be specified in a by clause. To set one or more of these
access privileges, use the = (equals) sign.

•

•

Securing OpenLDAP

[192]

For example, to allow the server to compare a record's givenName field to a
givenName specified by a client, we could use the following ACL:

access to attrs=givenName
 by * =c

This will allow any client to attempt a compare operation. But that is the only
operation it will allow. By this rule, no one can read from or write to this attribute.
How does this work out in practice? When we use the ldapsearch client to attempt
to read the value of the givenName attribute, we do not get any information about
the givenName:

$ ldapsearch -LLL -U matt "(uid=matt)" givenName
SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers
dn: uid=matt,ou=Users,dc=example,dc=com

The only thing the server returns for our query is the DN of the record that matches
the filter. No givenName attribute is returned.

However, if we use the ldapcompare client, we can ask the server to tell us whether
or not the DN has a givenName field with the value 'Matt':

$ ldapcompare -U matt uid=matt,ou=Users,dc=example,dc=com \

 "givenName: Matt"

SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers
TRUE

The ldapcompare client sends a DN and an attribute/value pair to the server, and
asks the server to compare the supplied attribute value with the server's copy of the
attribute value for the record with the given DN.

Here the ldapcompare client will request that the SLAPD server look up the record
for uid=matt,ou=Users,dc=example,dc=com and check to see if the givenName
attribute has the value 'Matt'. The server will answer TRUE, FALSE, or (if there is an
error) UNDEFINED.

Chapter 4

[193]

In this case, the server responded TRUE. This indicates that the server performed
the comparison, and the values matched. The combination of the ldapsearch and
ldapcompare examples should illustrate how the ACL worked: while the server-side
compare operation is permitted, the client does not have access to read the
attribute value.

Multiple access privileges can be granted in one by phrase. To modify in order to
allow reading (r), comparing (c), and disclosing (d) on the givenName attribute, we
can use the following ACL:

access to attrs=givenName
 by * =rcd

Now, both the ldapsearch and ldapcompare commands that we ran should succeed.

There are cases where permissions are inherited from other ACLs (we will look at
some later). In such cases, we can selectively add or remove specific permissions by
using + (plus sign) to add and – (minus sign) to remove.

For example, if we know that all the users already have compare (c) and disclose
(d) on all the attributes, but we want to add read privileges just for the givenName
attribute, we can use the following ACL:

access to attrs=givenName
 by * +r

An access control that grants compare and disclose, and then
continues processing might look something like this: access to
attrs=givenName,sn by * =cd break. This uses the break control to
instruct SLAPD to continue processing ACLs. If this rule appeared in the
SLAPD configuration above the rule access to attrs=giveName by *
+r, then a request to the givenName attribute would have the effective
permissions =rcd.

Likewise, if we needed to remove the compare operation just for the givenName
attribute, we could use a by clause like by * -c.

The 0 access privilege removes all privileges. It cannot be used with the + or
– operators, it can only be used with the = operator. The following ACL removes all
privileges for all users to the givenName attribute:

access to attrs=givenName
 by * =0

This is the same as the by clause: by * -wrscdx.

Securing OpenLDAP

[194]

These access controls are good for fine-grained control, but sometimes it is nice to
have shortcuts. OpenLDAP has seven shortcuts that handle common configurations
of access controls:

Keyword Privileges
none 0

disclose d

auth xd

compare cxd

search scxd

read rscxd

write wrscxd

The none keyword we have seen before and it is the same as =0. Looking at the other
keywords and their associated privilege, a pattern emerges: each keyword adds
one new privilege, to the privileges of the previous keyword. Thus, auth has the =d
privilege from disclose, plus the x privilege, and compare has =xd from auth and
adds the c privilege. The write keyword at the bottom has all privileges.

Because this general accumulation of privileges captures the usual use cases while
remaining more readable, keywords are used more frequently than privilege strings.
In most of our examples from here on, we will use the keyword unless there is a
specific reason to use the privilege string instead.

Of the seven keywords, disclose, auth, compare, search, read, and
write can be prefixed with one of two prefixes: self and realself.
The self prefix indicates that if the value in question refers to the
user's DN, then the user may have certain privileges. Thus selfwrite
indicates that the user has =wrscxd permissions if and only if the value
of the attribute in question is the user's DN.
The realself prefix is similar, but it carries the additional stipulation
that the DN not be proxied. These prefixes are particularly useful when
dealing with groups and other membership-based records.
For example, the following ACL allows a user write access to the
uniqueMember attribute only if the uniqueMember attribute contains that
user's DN: access to attrs=uniqueMember by users selfwrite.

Now that we have covered the access field we will move on to the who field.

Chapter 4

[195]

The who Field
We have always used * in the who field. However, the who field is the richest of the
ACL fields, providing twenty-three distinct forms, most of which can be used in
combinations. In order to efficiently cover ground, we will cover the major forms on
their own, and then group similar forms together and treat them as units.

The five most frequently used forms are *, anonymous, self, users, and dn.

The * and anonymous Specifiers
The * specifier, as we have already seen, is a global match. It matches any client,
including the anonymous user.

The anonymous specifier matches only clients that bind to the directory as the
Anonymous user (see Chapter 3 for details on the Anonymous user). This refers,
then, to clients that have not authenticated to the directory. Since the process of
authentication requires that the client connect Anonymously, and then attempt to
bind as a DN with a specific password, the anonymous user almost always needs
permissions to perform an auth operation, in which the client sends the DN and
password to the directory and asks the directory to verify that the information is
correct. For that reason, you will likely need an ACL that looks like this:

access to attrs=userPassword
 by anonymous auth

This grants the Anonymous user the ability to do an auth operation. Note that every
ACL ends with an implicit phrase: by * none. In other words, if permissions are not
explicitly specified none are granted.

Note that the ACL above does not allow users to modify their own passwords. That's
where the self specifier comes in.

The self Specifier
The self specifier is used to specify access controls for a DN on its own record.
Thus, we can use the self specifier to allow a user to modify her or his own
userPassword value:

access to attrs=userPassword
 by anonymous auth
 by self write

If we log in as uid=matt,ou=Users,dc=example,dc=com and try to modify the
userPassword value of our own record (dn: uid=matt,ou=Users,dc=example,dc
=com), SLAPD will allow us to change the password. But it will not (according to the
rule above) allow us to modify anyone else's userPassword value.

Securing OpenLDAP

[196]

The self specifier can be further modified with a level style. The
level style indicates whether (and how many) parent records or child
records are to be treated as if they were part of self. The level style
takes an integer index. Positive integers refer to parents, while negative
integers refer to children.
Thus access to ou by self.level{1} write indicates that the
current DN has write permissions to the ou of its parent. Likewise,
access to ou by self.level{-1} write indicates that the current
DN has write permission to the ou of any of its immediate children.

The users Specifier
The users specifier refers to any authenticated client. The anonymous user is not
included in users because it represents a client that has not authenticated.

This specifier comes in very handy when you need to allow anyone who has
authenticated access to some resources. For example, in an enterprise directory we
would likely want to allow all users the ability to see each other's names, telephone
numbers, and email addresses:

access to attrs=sn,givenName,displayName,telephoneNumber,mail
 by self write
 by users read

The dn Specifier
The dn specifier performs similarly in the by phrase to the role it plays in the access
to phrase. It specifies one or more DNs. The dn has the regex, base, one, subtree,
and children modifiers, all of which perform the same way here as they did in the
access to phrase. Here's an example using a few different DN patterns:

access to dn.subtree="ou=System,dc=example,dc=com" attrs=description
 by dn="uid=barbara,ou=Users,dc=example,dc=com" write
 by dn.children="ou=System,dc=example,dc=com" read
 by dn.regex="uid=[^,]+,ou=Users,dc=example,dc=com" read

This rule restricts access to the description attributes of anything in the System
OU subtree. The user uid=barbara,ou=Users,dc=example,dc=com has write
permissions to the description, while any child users of the System OU have read
permissions. Users with DNs of the form uid=SOMETHING,ou=Users,dc=example,
dc=com also have read access to the description.

Chapter 4

[197]

In addition to the regular DN modifiers, a dn in the by clause can also have a level
modifier. Level allows the ACL author to specify exactly how many levels down a by
phrase should go. Recall that the dn.one specifier indicates that any record directly
below the specified DN is to be granted the specified permissions. For example by
dn.one="ou=Users,dc=example,dc=com" read grants any direct descendant of the
Users OU read permissions. So uid=matt,ou=Users,dc=example,dc=com would be
granted read access, but uid=jake,ou=Temp,ou=Users,dc=example,dc=com would
not be granted such access because he is two levels down. The dn.level specifier
lets us arbitrarily specify how many levels to descend. For example, by dn.level{2}
="ou=Users,dc=example,dc=com" read would allow both matt and jake
read access.

Proxy Authentication and Real DNs
If SLAPD is set up to allow Proxy Authentication, in which case one DN
is used for authentication, and then another DN is used for performing
other directory operations, it is sometimes useful to write ACLs based
on the DN used for authentication (the real DN). The realdn specifier
can be used for this. It functions just like the dn specifier, except that
it operates on the real DN. Also, realanonymous, realusers,
realdnattr, and realself can be used to restrict based on the real
DN. See the slapd.access man page for more: man slapd.access.

Groups and Members
Sometimes it is useful to grant group members the access to an object. For example,
if you have an Administrators group, you may wish to grant any member of that
group write access to all of the records in the System OU.

One might expect that the way to set permissions for group members is simply to
use the group as the value of a dn specifier in an ACL. However, that is not the case
since the dn specifier refers to the group record as a whole, and has nothing at all to
do with the members of the group, each of which has its own record elsewhere in
the directory.

Instead, what we need is a way to search the member attributes of a particular group
record, and then grant access to the DNs listed in the record. The group specifier
provides exactly this sort of capability.

Group evaluation can be done with the group specifier. In its simplest form it is used
like this:

access to dn.subtree="ou=System,dc=example,dc=com"
 by group="cn=Admins,ou=Groups,dc=example,dc=com" write

 by users read

Securing OpenLDAP

[198]

This ACL will grant members of the cn=Admins,ou=Groups,dc=example,dc=com
group write access to anything in the System OU, while giving all other users
read-only permissions.

Order Matters
ACL by phrase are evaluated sequentially, and by default SLAPD will
stop processing by phrases when it hits a match. In other words, if the
by phrases in the above rule were reversed, members of LDAP Admins
would never be given write permission because they would always match
the by users read phrase. Evaluation of the ACL would stop before
group membership was checked.

But the ACL above will only work on groups whose object class is groupOfNames,
and whose membership attribute is member. This is because groupOfNames is the
default grouping object class, and member is the default membership attribute.

When we created our LDAP Admins group in Chapter 3, it was not groupOfNames,
nor did it use the member attribute for membership. Our record looked like this:

dn: cn=LDAP Admins,ou=Groups,dc=example,dc=com
cn: LDAP Admins
ou: Groups
description: Users who are LDAP administrators
uniqueMember: uid=barbara,ou=Users,dc=example,dc=com
uniqueMember: uid=matt,ou=Users,dc=example,dc=com
objectClass: groupOfUniqueNames

We used the groupOfUniqueNames object class and the uniqueMember membership
attribute. In order to get the ACL to match these constraints we will need to specify
the object class and membership attribute in the group specifier:

access to dn.subtree="ou=System,dc=example,dc=com"
 by group/groupOfUniqueNames/uniqueMember=

 "cn=LDAP Admins,ou=Groups,dc=example,dc=com" write

 by users read

Note the change in the highlighted line. Using slashes (/) we have specified first the
object class then the membership attribute that should be used to determine who
what entries represent members. When this by phrase is evaluated, SLAPD will find
the DN cn=LDAP Admins,ou=Groups,dc=example,dc=com, check to see if it has
object class groupOfUniqueMembers, and then grant write permissions to a DN if it is
specified in a uniqueMember attribute.

Chapter 4

[199]

Using this expanded notation, you can use other membership-based records as
groups. For example, you can use the organizationalRole object class with the
roleOccupant membership attribute.

Like many other specifiers, the group specifier also supports regular expressions
with the regex style. Thus, we could create a rule that would allow members of any
group in OU Groups write access to the System OU by expanding our last example:

access to dn.subtree="ou=System,dc=example,dc=com"
 by group/groupOfUniqueNames/uniqueMember.regex=

 "cn=[^,]+,ou=Groups,dc=example,dc=com" write

 by users read

The second and third lines should be combined into one long line in slapd.conf. The
regular expression in the group specifier would match any DN with a CN component
at the beginning. For all such entries, if the object class is groupOfUniqueMembers,
then the SLAPD will grant membership to a user who is a uniqueMember of one of
those groups.

Member-Based Record Access
What if a group member needs to modify the record of the group to whom she or
he belongs? One way to allow this is with the dnattr specifier. The dnattr specifier
grants access to a record only if the client's DN appears in a certain attribute of the
record. For example, the following example allows a group member (uniqueMember)
of a group (which is a groupOfUniqueNames object) access to the group record:

access to dn.exact="cn=LDAP Admins,ou=Groups,dc=example,dc=com"
 by dnattr=uniqueMember write
 by users read

The second line specifies that if the client's DN is in the list of values for the
uniqueMember attribute, then that client should be given write access to the entire
group record. Other users, according to the third line, will have read access.

Network, Connections, and Security
SLAPD can use information about the client's connection (including network and
security information) in access control lists. This feature provides an additional layer
of network security that complements SSL/TLS and SASL.

The following are network or connection level specifiers:

peername: This is used to specify a range of IP addresses (for ldap:// and
ldaps://).

•

Securing OpenLDAP

[200]

sockname: This is used to specify a socket file for an LDAPI listener
(ldapi://).
domain: This is used to specify a domain name for ldap:// and
ldaps:// listeners.
sockurl: This is used to specify a socket file in URL format (ldapi://var/
run/ldapi) for an LDAPI listener.
ssf: The overall security strength factor (SSF) of the connection.
transport_ssf: The SSF for the underlying transport layer of the network.
tls_ssf: The SSF for the SSL/TLS connection. This works with SSL/TLS
connections on LDAPS listeners and Start TLS on LDAP listeners.
sasl_ssf: The SSF of the SASL connection.

The SSF specifiers (ssf, transport_ssf, tls_ssf, and sasl_ssf) perform the same
checks as the SSF parameters to the SLAPD security directive (discussed in the first
part of this chapter). In this case, however, SSFs may be used to selectively restrict
(or grant) access to portions of the directory information tree. SSF specifiers require
an integer value for the level of security desired. For example, using ssf=256 will
require that the overall SSF of a connection be 256. But tls_ssf=56 will require that
the SSF of the TLS/SSL layer be at least 56, regardless of what the SSF of the SASL
configuration is. For more information on SSFs, see the section earlier in this chapter
entitled Using Security Strength Factors.

For example, the following ACL will only grant write access to the specified DN
when the client has connected with a strong SASL cipher:

access to dn.subtree="ou=users,dc=example,dc=com"
 by self sasl_ssf=128 write

 by users read

This rule allows users to modify their own records only if they have authenticated
with SASL using a security mechanism with a strength of 128 (DIGEST-MD5) or
more. All other users would only get read access.

Combining Specifiers in a by Phrase
As the rule above illustrates, multiple specifiers can be used in a single
by phrase. When this happens all specifiers must be matched before the
indicated rights will be granted (or denied).

The peername specifier is used for setting restrictions based on information about
the IP connection. It can be used to complement other components in network
security, like SSL/TLS. The peername specifier can take an IP address or a range of
IP addresses (using subnet masks) and can also specify a source port.

•

•

•

•

•

•

•

Chapter 4

[201]

The following rule grants write access to local connections, read access to
connections on the local LAN (address from 10.40.0.0 through 10.40.0.255), and
denies access to all other clients. Remember, every rule ends with an implicit
by * none.

access to *
 by peername.ip=127.0.0.1 write
 by peername.ip=10.40.0.0%255.255.255.0 read

Note that the peername specifier requires the ip style for specifying an
IP address. It also supports the regex style (access to * by peername.
regex="^IP=10\.40\.0\.[0-9]+:[0-9]+$" write) and the path specifier to replicate
the behavior of sockname.

Regular Expressions for IP Addresses
For an IP address, the format of the string used in regular expression
evaluation is this: IP=<address>:<port>. If you are creating a
precise regular expression make sure to deal with the IP= prefix and
the port information. A regular expression like this will fail: peername.
regex="^10.40.12[0-9]$". Why? Because it is missing the IP= and
port information.

A more useful version of the rule above would deny access to anything in the
directory if it was not in the particular ranges, but would leave further access
controls to rules appearing later in the ACL list. This can be done using the special
break control described in the next section. We could also added SSF information,
so connections coming over non-local connections must also use strong SSL/TLS
encryption. Here is the rule:

access to *
 by peername.ip=127.0.0.1 break
 by peername.ip=10.40.0.0%255.255.255.0 tls_ssf=128 break

The above rule might appear difficult to read, but here is what it does:

If the connection is local (coming over 127.0.0.1 or localhost), then SLAPD
allows further processing of the ACL list (that's what break does). Whether
or not the user then gets access to resources is dependent on other rules.
If the connection comes from an address on the LAN and it is using strong
SSL/TLS encryption, then SLAPD will continue processing the ACL list.
Under any other connecting circumstances the connection is rejected. For
example, if a connection comes from the LAN but does not use sufficiently
strong SSL/TLS, the connection will be closed. This behavior is caused by the
implicit by * none phrase.

•

•

•

Securing OpenLDAP

[202]

For more on the break control, see the section called The Control Field.

Sometimes it is more useful to be able to specify which domain names (rather
than which IP addresses) should be granted access. This can be done with the
domain specifier:

access to *
 by domain.exact="main.example.com" write
 by domain.sub="example.com" read

In the example above, the second line provides write access to any client connection
coming from the domain name main.example.com. The third line grants read access
to the domain example.com, and any subdomain of example.com. So, if a server
with the domain name test2.example.com made a request, it would be granted
access under the third rule. However, testexample.com would not match because it
is not a subdomain of example.com—it is a different domain altogether.

When SLAPD encounters a domain specifier in an ACL, it takes the IP address of the
client connection and does a reverse DNS lookup to get the host name. In light of this
there are two things to keep in mind when using the domain specifier.

First, the name returned by a reverse DNS lookup may not be what you expect based
on a forward DNS lookup. For example, doing a DNS lookup on ldap.example.com
returns the address 10.40.0.23. However, doing a reverse DNS lookup on 10.40.0.23
returns mercury.example.com. Why?

It is because ldap.example.com is in DNS parlance, a CNAME record, and
mercury.example.com is an A record. Practically speaking, what this means is
that ldap.example.com is an alias to the server's real (canonical) name, which is
mercury.example.com. The practical consequence is this: when you write an ACL
using the domain specifier, make sure you use the A record domain name, not the
CNAME record name. Otherwise, SLAPD will apply the rule to the wrong
domain name.

Looking up DNS Information
There are many tools for looking up DNS information. Most Linux
distributions, including Ubuntu Linux, provide the host and dig
commands for command-line DNS lookups. The host command gives
brief sentence-like information like this: ldap.example.com is an
alias for mercury.example.com. The dig command, in contrast,
gives detailed technical information.

Chapter 4

[203]

The second thing to keep in mind when considering the domain specifier is that it
is less reliable than using IP address information. DNS addresses can be spoofed,
which means another server on the network can claim to be ldap.example.com and
send traffic that looks, to SLAPD, like it is coming from the real ldap.example.com.

One way to diminish the risk of this is to use client-side SSL/TLS certificates and
configure SLAPD to require that the client send a signed certificate to authenticate
before it can perform any other directory operations. Unfortunately, client-side
certificates cannot be selectively required through ACLs. Instead you will have to use
the directive TLSVerifyClient demand in the slapd.conf file.

The sockname and sockurl specifiers are used for servers that run with UNIX
local socket Inter Process Communication (IPC) instead of network sockets. These
directives can be used to restrict local connections that use the IPC layer instead of
connecting through the IP network.

It is uncommon to run LDAPI. Generally it is used only in situations
where IP network connections cannot or should not be used. In typical
cases, local clients connect to SLAPD over LDAP, using the URL
ldap://localhost/ rather than using LDAPI.

For example, we could use the following ACL to allow only local (LDAPI)
connections to write to the record, while users who connected through a different
mechanism could only read the record:

access to dn.exact="uid=matt,ou=Users,dc=example,dc=com"
 by sockurl="ldapi://var/run/ldapi" write
 by users read

The second line indicates that only LDAPI connections that connect through a
particular LDAPI socket file should gain write access to the DN. All other clients
(users) will get read permissions.

Advanced Step: Using the set Specifier
In addition to the syntax we have examined just now, there is an experimental type
of by phrase—the set syntax. The set syntax can be used to create a compact and
powerful set of conditions for access. Since it allows Boolean operators, and has a
method for accessing attribute values, a single rule in the set syntax can accomplish
what would otherwise take tremendously complex ACLs.

Securing OpenLDAP

[204]

The basic idea behind the set syntax is this. By using a rule composed of conditions
joined by operators, SLAPD creates a set of objects which have access to the record
in question. If the result of an evaluation of a set specifier is a set that contains one
or more members, then the by phrase is considered a match and permissions are
applied. If, on the other hand, the set is empty, then SLAPD will continue evaluating
the by phrases for that rule to see if it can find another match.

The set specifier uses operations of the sort used in set theory. When
using the set specifier you may find it helpful to think in terms of set
theory, with sets (lists of items) and set operations, such as union (&) and
intersection (|).

Here is a simple ACL using a set specifier to replicate the behavior of the group
specifier. It provides write access to records in the System OU only to clients in the
LDAP Admins group. All others get read access only:

access to dn.subtree="ou=System,dc=example,dc=com"
 by set="[cn=ldap admins,ou=groups,dc=example,dc=com]/

 uniqueMember & user" write

 by users none

The second line, highlighted above, contains the set specifier, which contains a set
statement. The text in the square brackets specifies a DN, which is the DN of the
LDAP Admins group. To access the values of the uniqueMember attribute we append
/uniqueMember to the DN. When SLAPD expands this, it will contain the set of all
uniqueMembers in the LDAP Admins group. In set-theoretic notation (which is not
used by OpenLDAP, but which is helpful to understand what is happening), the set
of group members would look like this:

{ uid=matt,ou=users,dc=example,dc=com ;
 uid=barbara,ou=users,dc=example,dc=com }

There are two members (the two uniqueMembers) for the LDAP Admins group.

The & (ampersand) operator performs a union operation on two sets. The user
keyword expands to the set that contains one member: the DN of the current client.
So, if I perform a search, binding as uid=matt,ou=users,dc=example,dc=com, then
the user set will contain one record:

{ uid=matt,ou=users,dc=example,dc=com }

Chapter 4

[205]

When the & operator is applied, it will generate the intersection of the two sets. That
is, the resulting set will contain only members that are in both of the original sets.
Since only the record for UID matt is in both, the resulting set will contain just the
DN for matt:

{ uid=matt,ou=users,dc=example,dc=com }

The resulting set is not empty so it is considered a match. The result of the set
evaluation, then, is that the uid=matt,ou=users,dc=example,dc=com will be
granted access based on the set specifier.

Sets are case-sensitive, and always use the normalized DN form.
What this means is that the DNs in sets should always be lowercase.

Consider a case though, when the user is not a member of the LDAP Admins
group. If uid=david,ou=users,dc=example,dc=com binds, can he perform read
and write operations? When the set specifier is run, the first of the two sets (group
membership) will evaluate to the same thing it did above:

{ uid=matt,ou=users,dc=example,dc=com ;
 uid=barbara,ou=users,dc=example,dc=com }

But the user keyword will expand to this:

{ uid=david,ou=users,dc=example,dc=com }

There are no items in the intersection of these two sets, so the resulting set, after the &
operator is applied, is an empty set:

{ }

There are no matches, so this by phrase fails to apply. The last line in our ACL (by
users none) will then apply, and the uid=david will be given no access permissions.

Let's look at another example. We will use the set specifier to implement a rule
where, when a client DN tries to access a record DN, it is given write access only if
the two DNs are the same, or else it is given read access if they are in the same OU.
Otherwise, the client DN is denied access to the record DN. Here's the ACL:

access to dn.subtree="dc=example,dc=com"
 by set="this & user" write
 by set="this/ou & user/ou" read

The first line indicates that this rule will apply to the record dc=example,dc=com and
everything under it.

Securing OpenLDAP

[206]

The second line takes the intersection of the sets generated by two keywords: this
and user. The this keyword expands to the set containing the DN of the requested
record. The user keyword, as we saw, expands to the DN of the client.

So, if the client uid=david,ou=users,dc=example,dc=com requests access to its
own record, the resulting set operation will be as follows:

{ uid=david,ou=users,dc=exampls,dc=com } &
 { uid=david,ou=users,dc=example,dc=com }

Since both sets contain the same member, the resulting set (the intersection of the
two) is { uid=david,ou=users,dc=example,dc=com }. The end set is not empty, so
the user will be granted write access.

Now let's look at the third line of the given ACL. This rule will return a non-empty
set whenever the requested DN and the client DN both have the same value for the
ou attribute. If uid=david,ou=users,dc=example,dc=com requests the record for
uid=matt,ou=users,dc=example,dc=com, then SLAPD will check the values of
their respective OU attributes.

The set identified by this/ou will be expanded to contain the values of all of the OU
attributes in the requested record (the record for uid=matt,ou=users,dc=example,
dc=com). This set is:

{ 'Users' }

Note that in this case the value is not a DN, but a string. Sets can perform matching
operations on strings as well as DNs.

The set identified by user/ou will be expanded to contain the values of all of the OU
attributes in the client's record. The record for uid=david,ou=users,dc=example,
dc=com contains one value for the ou attribute, and the resulting set will contain that
one attribute value:

{ 'Users' }

SLAPD will compute the intersection of { 'Users' } & { 'Users' }, which is
{ 'Users' }. Since the set is not empty, uid=david,ou=users,dc=example,dc=com
will be granted access to read the record of uid=matt,ou=users,
dc=example,dc=com.

The set specifier provides one way of granting access to a record only in the case that
a record contains a certain attribute. If we only want to grant write access to records
with the title attribute, we can use the following rule:

access to dn.child="ou=Users,dc=example,dc=com"
 by set="this/title" write

Chapter 4

[207]

In this ACL, if the requested record has a single title attribute, then the result of
the evaluation of the above rule will be a set containing one element. However, if the
record attribute has no title attribute, then the resulting set will be empty, and write
access will not be granted.

In our directory the record of uid=matt,ou=users,dc=example,dc=com has the
following title attribute:

title: Systems Integrator

But the record uid=barbara,ou=users,dc=example,dc=com does not have a title
attribute at all. So if the record for uid=matt was requested, then the resulting set,
based on the above ACL, would be:

{ 'Systems Integrator' }

So if an authenticated user attempted to access the record for uid=matt, SLAPD
would grant access. In contrast, the set for uid=barbara would be {}, the empty set.
So a user trying to access the record having uid=barbara would be denied access.

Using a similar set specifier, we could grant access to a record depending not only on
the existence of an attribute, but on its value too:

access to dn.child="ou=Users,dc=example,dc=com"
 by set="this/objectclass & [person]" write

According to the above rule, write access will be granted for anything in the Users
OU only if the entry has an objectclass attribute with the value person. Note that
in this case the square brackets are used to define a string literal.

If a client were to access the record uid=barbara,ou=users,dc=example,dc=com,
the first part of our set statement would evaluate to the following set:

{ 'person' ; 'organizationalPerson' ; 'inetOrgPerson' }

Those are the three object classes for the uid=barbara record. The other part,
[person], would be expanded to this set:

{ 'person' }

When the union is computed, the result would be the set {'person'} and so write
access would be granted.

These are just a few of the basic operations that can be done with the set specifier.
Unfortunately, set is not documented in the slapd.access man page. However,
there is a lengthy and informative article on using set in the OpenLDAP official
FAQ-O-Matic: http://www.openldap.org/faq/data/cache/1133.html.

Securing OpenLDAP

[208]

The control Field
The last field in the by phrase is the control field. There are only three possible values
for the control field: stop, break, and continue. If no control field is specified, stop
is assumed. For example, by * none is the same as by * none stop.

The first value, stop, indicates that if that particular by clause matches, no further
checking of ACLs for matching should occur. Consider the following (admittedly
contrived) case:

access to attr=employeeNumber, employeeType, departmentNumber
 by users=cd
 by dn="uid=matt,ou=Users,dc=example,dc=com" +r

access to attr=employeeNumber
 by users +w

If I bind as uid=matt,ou=Users,dc=example,dc=com and try to modify my
employeeNumber, will I be allowed to? No, I will not.

The reason I will not be able to modify the record is because I will only have the
permissions granted by the first by phrase: by users =cd (remember, by users =cd
is the same as by users=cd stop). As soon as SLAPD sees that I match the first by
phrase of the first ACL, it will stop testing ACLs. Thus it will never reach the rule
that grants my DN +r access, nor will it reach the rule that grants all users +w to the
employeeNumber attribute.

This is an example of the stop control, which is used implicitly by all three rules.

Now, if I wanted to make sure that after the first by phrase SLAPD continues to
evaluate phrases within the ACL, I could re-write the ACLs using the
continue control:

access to attr=employeeNumber, employeeType, departmentNumber
 by users-=cd continue
 by dn="uid=matt,ou=Users,dc=example,dc=com" +r

access to attr=employeeNumber
 by users +w

After running the same test on these rules, the DN uid=matt,ou=Users,
dc=example,dc=com would have the permissions =cdr.

The continue control instructs SLAPD to continue processing all of the by phrases in
the current ACL. Once it is done evaluating that ACL though, it will not continue to
look for matches in other ACLs.

Chapter 4

[209]

In order to tell SLAPD to look at different rules for matches, we would have to use
the break control. When SLAPD encounters an applicable clause that ends with a
break control, it stops processing the current ACL but continues looking at other
ACLs to see if they apply.

Thus, to get write permissions with our ACL we would want the following ACLs:

access to attr=employeeNumber, employeeType, departmentNumber
 by users=cd continue
 by dn="uid=matt,ou=Users,dc=example,dc=com" +r break

access to attr=employeeNumber
 by users +w stop

Now what will happen when the user with UID matt attempts accesses an
employeeNumber?

First, the by phrase of the first ACL will be evaluated, and matt will be granted
=cd. Because of the continue control, SLAPD will then examine the second by
clause, which will also match for the user matt. Thus, matt will have =rcd when the
processing of the first ACL completes.

Due to the break control the second ACL will also be evaluated, and matt will be
granted +w as well, bringing his final permissions up to =wrcd.

Using the continue and break controls is one way to incrementally handle
permissions. In complex configurations, judicious use of continue and break can
make maintaining ACLs much easier, and can reduce the total number of ACLs.

Getting More from Regular Expressions
In the previous sections we have looked at using regular expressions in both the
access to phrase and the by phrase. But we can use both in conjunction. We can
store information about the matches identified in the access to phrase, and use that
information later in the by phrases.

To temporarily store matching information in an access to phrase we can surround
the regular expression with parentheses. Here's an example:

access to dn.regex="ou=([^,]+),dc=example,dc=com"
 by dn.children,expand="ou=$1,dc=example,dc=com" read

This ACL grants a client the DN access to read a record DN only if both the client
DN and the record DN are in the same part of the directory tree (that is, if both are in
the same OU).

Securing OpenLDAP

[210]

In the first line of the given ACL we used parentheses to capture the match from the
regular expression [^,]+, which will be the value of the ou= component of the DN.
Again, [^,]+ says "match all charcters that are not ','."

In the second line we used the dn.children specifier but supplemented it with an
extra keyword: expand. The expand keyword tells SLAPD to substitute matches from
the access to clause into this phrase.

Because of the expand keyword, the variable $1 is substituted with the value of
the match in the first line. Everything captured between '(' and ')' in the regular
expression will be stored in $1.

Variable names are assigned in order. The first set of parenthesis in the regular
access to phrase gets stored in $1. If a second set of parenthesis existed, the
matching information inside of those would be stored in $2 and so on for each
additional set of parenthesis.

For example, we might want an ACL like this:

access to dn.regex="uid=([^,]+),ou=([^,]+),dc=example,dc=com"
 by dn.children,expand="uid=$1,ou=$2,dc=example,dc=com" write

This rule would grant a client DN access to read and write any entries subordinate to
its own record but deny other uses the ability to even read those entries.

Address books are sometimes implemented in OpenLDAP by storing
a user's addresses as subordinate entries to the user's own entry in the
directory. There is an example of this in the OpenLDAP FAQ-O-Matic:
http://www.openldap.org/faq/data/cache/1005.html

Notice that the first line stores two variables. The UID goes in $1 and the OU goes in
$2. These are expanded in the second line.

It is also possible to use matches from the access to phrase in regular expressions in
the by phrase:

access to dn.regex="uid=[^,]+,ou=([^,]+),dc=example,dc=com"
 by dn.regex="uid=[^,]+,ou=$1,dc=example,dc=com" write

In the first line only the results of the second regular expression are captured and
stored in a variable. The second line also contains a regular expression, and it makes
use of the $1 variable to retrieve the value of the OU from the first line. Note that
dn.children,expand was replaced with dn.regex. The expand keyword need not
be added for regular expressions.

Chapter 4

[211]

The rule grants write access to a client DN for any user record that is in the same OU
of that directory tree.

We have looked at some simple, though useful, regular expressions in these ACLs.
But much more complex regular expressions can be composed, making ACLs even
more powerful. As you compose more advanced regular expressions you may find
some other sources of information helpful. Along with the slapd.access man page,
the POSIX extended regular expressions man page (man regex) may turn out to be
useful as well.

Debugging ACLs
Debugging ACLs can be frustrating. They are complex, security sensitive, and
require detailed testing. But there are three tools that make the debugging and
testing process easier.

The first is just the ldapsearch command-line client. It can be used to carefully craft
filters designed to test the processing of ACLs. The ldapcompare tool also comes in
handy when you need to test comparison operations.

But it is also useful to make the most of LDAP's logging directives. The trace and
acl debugging levels each provide detailed information about ACL processing.
The acl level, for example, records each ACL evaluation. This can be very useful in
determining what rules are run and when. We find the trace debugging level to be
useful as well, as it provides information about how each evaluation was performed,
including how regular expressions were expanded.

Running SLAPD in the Foreground
Sometimes it is easier to test ACLs by running SLAPD in the foreground,
instead of as a daemon process, and printing debugging and logging
information to standard out. For example, we can print ACL and trace
debugging out this way: slapd -d "acl,trace". Note that you will
want to run this command as the appropriate user (such as openldap).
To terminate the process use the Ctrl-C keyboard combination.

Finally, the slapacl command line utility provides a detail-oriented tool for
evaluating ACLs directly. Since it does not connect to the SLAPD server over the
LDAP protocol it allows more direct testing of just the ACLs.

For example, we can check whether or not a particular SASL user, matt, can access
the record cn=LDAP Admins,ou=Groups,dc=example,dc=com and read the value of
the description attribute:
 $ slapacl -U matt -b "cn=LDAP Admins,ou=Groups,dc=example,dc=com" \

 "description/read"

Securing OpenLDAP

[212]

The -U matt param specifies the SASL user name. The -b "cn=LDAP Admins,
ou=Groups, dc=example,dc=com" param indicates which record we want to test
against, and the last field, "description/read" indicates the attribute and the
access level. This will simply return ALLOWED if the ACLs allow read access, or
DENIED otherwise.

Likewise, we can test other LDAP operations. For example, we can test whether a
user has permissions to compare:

$ slapacl -U matt -b "uid=matt,ou=Users,dc=example,dc=com"
 "uid/compare"
authcDN: "uid=matt,ou=users,dc=example,dc=com"
compare access to uid: ALLOWED

In this example we have included the response. The first response line indicates how
the SASL DN was resolved, and the second line indicates that compare access on uid
was allowed.

The slapacl program essentially runs its own SLAPD and as such, it can be set to
print complete processing logs to the screen. For example, to turn on trace debugging
we can just add the -d trace param to the given command:

$ slapacl -U matt -b "uid=matt,ou=Users,dc=example,dc=com" -d trace
 "uid/compare"
slapacl init: initiated tool.
slap_sasl_init: initialized!
hdb_back_initialize: initialize HDB backend
hdb_back_initialize: Sleepycat Software: Berkeley DB 4.3.29:
 (September 6, 2005)
bdb_db_init: Initializing HDB database
>>> dnPrettyNormal: <dc=example,dc=com>
LOTS of lines deleted...
<<< dnPrettyNormal: <uid=matt,ou=Users,dc=example,dc=com>,
 <uid=matt,ou=users,dc=example,dc=com>
entry_decode: ""
<= entry_decode()
compare access to uid: ALLOWED
slapacl shutdown: initiated
====> bdb_cache_release_all
slapacl destroy: freeing system resources.

As you can seeslapacl provides detailed evaluation information in this case.

Using the LDAP command-line clients, detailed logging, and the slapacl command,
debugging and testing ACLs can be done effectively.

Chapter 4

[213]

A Practical Example
In this part of the chapter, we have taken a low-level look at ACLs in OpenLDAP.
We have covered many of the details of the ACL system. Now it is time to implement
what we have covered so far to create a generic set of ACLs for our directory
information tree.

In Chapter 2 we created a bare-bones set of ACLs in our slapd.conf file. Here'sfile. Here's
what we created then:

########
ACLs
########
access to attrs=userPassword
 by anonymous auth
 by self write
 by * none

access to *
 by self write
 by * none

Now, we will create a new, more practical list of ACLs.

The first thing we will do is move the ACLs out of slapd.conf and into a separate
file: acl.conf. This will keep the lengthy list of ACLs separate from the rest of our
configuration. To do this we will replace the ACLs above with an include directive:

########
ACLs
########
include /etc/ldap/acl.conf

When SLAPD is started it will include the contents of /etc/ldap/acl.conf
at the location where the include statement appears. Recall that ACLs are
backend-specific. Each different database can have its own ACLs (and multiple
databases can be defined in the same slapd.conf file). So it is important to put the
include directive after the database directive in slapd.conf.

Now we will begin editing the acl.conf file. The rules that we will write will be
simple, and designed for a directory where most of the directory users are allowed to
view most of the information in the directory. A higher-security directory may have
a far more complex list of ACLs.

Since ACLs are evaluated in order from top to bottom we want to carefully craft our
rules so that important restrictions are implemented right away.

Securing OpenLDAP

[214]

If there are network-based access rules they should usually appear at the top of the
ACL list so that they are evaluated first. For example, if we want to restrict access to
the entire database if the host is not in our LAN, we would use the following rule:

access to *
 by peername.ip=127.0.0.1 none break
 by peername.ip=10.40.0.0%255.255.255.0 none break

By this rule only access from the localhost (127.0.0.1) and from inside of our 10.40.0.0
subnet will be allowed to access the directory. Since the break control is specified,
later rules may modify the none permission, granting clients more permissions. All
other connections will be closed immediately.

Next, we want to grant members of the LDAP Admins group write access to
everything in the dc=example,dc=com tree:

access to dn.subtree="dc=example,dc=com"
 by group/groupOfUniqueNames/uniqueMember=
 "cn=LDAP Admins,ou=Groups,dc=example,dc=com" write
 by * none break

This immediately grants write access to the members of the LDAP Admins group.
For all other clients though, SLAPD will continue processing.

No ACLs need to be written for the directory manager, the DN specified
in the slapd.conf directive rootdn. This DN always has full access to
the directory information tree, and ACLs will have no effect on this user.

Next, we want to make sure that the userPassword field is available to the
anonymous user for authentication purposes. We also want to allow users to be able
to modify their own passwords, but otherwise we want userPassword unavailable
for reading and writing by others. Note that by the previous rule the LDAP Admins
will also be able to modify passwords for users.

access to attrs=userPassword
 by anonymous auth
 by self write

In some cases, other users may need auth access to the password as well, in which
case you may need to add by users auth to the given list.

We also need to grant access to the uid attribute if we are using the ldap://
URL form for SASL binding in the authz-regexp directive. This is because the filter
in the LDAP URL is run as anonymous (see the discussion in the Configuring SLAPD
for SASL Support Subsection).

Chapter 4

[215]

Additionally, we don't want to let users try to modify their own uid, since uid is
used in the DN:

access to attrs=uid
 by anonymous read
 by users read

Now Anonymous and all authenticated users will be able to access the uid attribute
of any record in the directory to which they have access.

There are also a few other attributes we don't want users to be able to modify—even
in their own records.

We don't want users to try to modify their OU attributes, since OU attributes are also
used in DNs. We also don't want them to be able to modify their employeeNumber or
their employeeType:

access to attrs=ou,employeeNumber,employeeType by users read

We have a special account, uid=Authenticate,ou=System,dc=example,dc=com,
which will be used on occasion to help with bind requests. This user should not have
access to anything else other than what we specified:

access to *
 by dn.exact="uid=Authenticate,ou=System,dc=example,dc=com"
 none
 by users none break

Again, the last line instructs SLAPD to continue processing ACLs for users who
aren't having the authentication account. This line will also stop the anonymous user
from browsing the rest of the tree since the implicit rule at the end, by * none, will
catch the anonymous user.

The uid=Authenitcate user was already granted, in an earlier rule,
access to the uid attribute, which is the attribute that this account will use
to search for user information needed to bind.

Let's say that we don't want regular users (DNs in the Users OU) to be able to
access records in the System OU of our directory (which is typically used for system
accounts). We can implement this with the following rule:

access to dn.subtree="ou=System,dc=example,dc=com"
 by dn.subtree="ou=Users,dc=example,dc=com" none
 by users read

Securing OpenLDAP

[216]

This denies access to users in the Users OU, but allows other users (like System
accounts) access to these records.

We also want to give every user the ability to read and write records below its own,
but restrict others from accessing those records. This makes it possible for users to
store their own information (like address books) inside of the directory:

access to dn.regex="^.*,uid=([^,]+),ou=Users,dc=example,dc=com$"
 by dn.exact,expand="uid=$1,ou=Users,dc=example,dc=com write

Finally, the last rule we want is a default rule. This rule should answer the question,
"What do we want to happen when no other rules are matched?" We want users to
be able to modify their own records and see the records of others:

access to *
 by self write
 by users read

Now our list of ACLs is complete. Altogether, this is what they look like:

###
ACLs
These are ACLs for the first database section
of the slapd.conf file found in this directory
###
##
Restrict by IP address:
access to *
 by peername.ip=127.0.0.1 none break
 by peername.ip=10.40.0.0%255.255.255.0 none break

Give Admins immediate write access:
access to dn.subtree="dc=example,dc=com"
 by group/groupOfUniqueNames/uniqueMember="cn=LDAP
 Admins,ou=Groups,dc=example,dc=com" write
 by * none break

Grant access to passwords for auth, but allow users to change
their own.
access to attrs=userPassword
 by anonymous auth
 by self write

This rule is needed by authz-regexp
(Note: Since uid is used in DN, user cannot change its own uid.)
access to attrs=uid
 by anonymous read
 by users read

Chapter 4

[217]

Don't let anyone modify OUs, employee num or employee type.
access to attrs=ou,employeeNumber,employeeType by users read

Stop authentication account from reading anything else. This also
stops anonymous.
access to *
 by dn.exact="uid=Authenticate,ou=System,dc=example,dc=com"
 none
 by users none break

Prevent DNs in ou=Users from seeing system accounts
access to dn.subtree="ou=System,dc=example,dc=com"
 by dn.subtree="ou=Users,dc=example,dc=com" none
 by users read

Allow user to add subentries beneath its own record.
access to dn.regex="^.*,uid=([^,]+),ou=Users,dc=example,dc=com$"
 by dn.exact,expand="uid=$1,ou=Users,dc=example,dc=com" write

The default rule: Allow DNs to modify their own records. Give
read access to everyone else.
access to *
 by self write
 by users read

While they certainly won't meet all needs, these rules provide a good starting point
for balancing security and usability of the directory. Furthermore, they set the stage
for some of the things we will be doing later in this book.

In later chapters of this book, the mentioned ACLs will be revisited and fine-tuned to
allow additional features, like directory replication.

Summary
The focus of this chapter has been OpenLDAP security, and we have covered a lot
of ground. We began with connection-level security, where we configured SSL/TLS
encryption for our directory server. We used StartTLS over the standard LDAP port,
and also configured the older (LDAP v2) LDAPS protocol on port 636. Next, we
looked at the process of authenticating to the LDAP. In that part we covered both
simple binding and SASL binding. Finally, we took a detailed look at access control
lists (ACLs), finishing the chapter with a basic set of ACLs.

In the next chapter we will look at advanced configuration of OpenLDAP's SLAPD
server. We will configure our server to host multiple backend databases and we will
use directory overlays to add powerful additional features to our SLAPD server.

Advanced Configuration
In the last chapter, we looked at securing our OpenLDAP server with SSL/TLS,
simple and SASL authentication, and ACL-based authorization rules. All of these
measures were implemented through configuration files for SLAPD. In this chapter,
we will look at some other advanced features of SLAPD, including:

Configuring multiple database backends
Tuning directory performance
Working with directory overlays
Adding integrity checks
Adding uniqueness constraints

Multiple Database Backends
As we have worked on OpenLDAP so far we have been using only one directory tree
(dc=example,dc=com) and one backend database (an HDB database configured in
slapd.conf). This works well for most of the small directory servers. It is simple to
configure and all of the data is stored in the same place.

But there are a number of more complex-use cases where it makes sense to have one
directory server that handles multiple directory trees, where each tree is stored in its
own backend database. Here are some situations in which this sort of configuration
might make sense:

One directory server hosts the directory information trees for
multiple organizations
One large directory server is broken up into multiple smaller trees and
subtrees for performance and replication reasons
Two or more previously existing directory information trees are being
gradually consolidated (as in the case of a corporate merger)

•

•

•

•

•

•

•

•

Advanced Configuration

[220]

Of course, there are other scenarios that might require an LDAP server with multiple
backends. These are just a few examples of common situations.

How does a SLAPD with multiple backends works? Let's examine a simple example.
Say we have two directory information trees, the dc=example,dc=com tree that we
have used in previous chapters, and dc=demo,dc=net.

We want to host both of these on the same SLAPD server. But we don't want the data
for dc=example,dc=com to be stored in the same database files as dc=demo,dc=net
(that could present problems later on if we ever had to split up the databases). And,
of course, we don't want searches for records in one directory tree to return entries
from the other.

Configuring a new database is primarily a matter of defining the new database in
slapd.conf. After that is done we just need to create some data and load it into the
new database.

The slapd.conf File
We created the slapd.conf file in Chapter 2. In previous chapters we have modified
small sections of slapd.conf, but now we are going to step back and take a look at
the overall structure of the slapd.conf file.

As mentioned in Chapter 2, the slapd.conf file can be broken into component
pieces. Initially we created three sections, which we called Basics, Database, andACLs.
In the last chapter we looked extensively at ACLs, as well as the security directives
which (for the most part) are defined in the first, Basics section. Let's see how the
structure of our slapd.conf file looks:

Basics

Database

ACLs

slapd.conf

Chapter 5

[221]

Now it is time to refine the model a little bit. The Basics section contains global
configuration parameters. That is, the parameters defined there are effective for the
entire SLAPD server, regardless of how many database backends it has.

The Database section contains directives that pertain to a specific database backend,
where each backend often hosts only one directory information tree. Parameters in
this section define which backend (such as BDB, HDB, LDIF, SQL) is used, what the
specific parameters and overlays are for that backend, which DN will be the manager
for that database, and so on. There can be multiple Database sections in one slapd.
conf file. In fact, configuring multiple database sections is how we accomplish
hosting multiple database backends on one SLAPD server.

Finally, the ACL section is really a subsection of the Database section (though, as we
saw in the last chapter, ACLs can be used at the global level, as well). Each database
can have its own set of access controls. So a more accurate picture of the slapd.conf
file would look more like this:

slapd.conf
Schemas
Global Directives
TLS Configuration
SASL Configuration
Global ACLs

Database Configuration
Database Directive
Database-specific Parameters
Backend-specific Parameters

Access Control Lists (ACLs)

Database Configuration
Database Directive
Database-specific Parameters
Backend-specific Parameters

Access Control Lists (ACLs)

Basic Configuration

Database 1 Configuration

Database 2 Configuration

This figure is more representative of how the slapd.conf file is composed. The
previous example shows two separate databases (though the number of databases is
certainly not limited to two), each of which has its own directives, and its own ACLs.

Advanced Configuration

[222]

While global ACLs are mentioned in the Basic Configuration section, they are not
visually separated into their own section in part because their role there is not as
significant as the use of ACLs in the context of a backend. Global ACLs should be
used primarily to protect the root DSE, cn=Config, and cn=Subschema portions of
the tree (see Appendix C), but not much more. Most ACLs should be placed in the
appropriate Database Configuration section.

Now we are ready to turn to the configuration file itself and see how the previous
diagram is put into practice.

A basic multiple database setup can be done easily by adding just over a dozen lines
to our slapd.conf file. We will begin with the existing backend configuration that
we created in Chapter 2 and add a new database backend beneath it:

##############################
BDB Database Configuration
##############################
Database 1: Example.Com

database hdb
suffix "dc=example,dc=com" "o=My Company,c=US"
rootdn "cn=Manager,dc=example,dc=com"
rootpw secret
directory /var/lib/ldap
#directory /usr/local/var/openldap-data
index objectClass eq
index cn eq,sub,pres,approx
index uid eq,sub,pres

########
ACLs
########
include /etc/ldap/acl.conf

##############################
Database 2: Demo.Net

database hdb
suffix "dc=demo,dc=net"
rootdn "cn=Manager,dc=demo,dc=net"
rootpw secret
directory /var/lib/ldap/demo.net
#directory /usr/local/var/openldap-data/demo.net
index objectClass eq
index cn eq,sub,pres,approx
index uid eq,sub,pres

########
ACLs
########

Chapter 5

[223]

access to attrs=userPassword
 by anonymous auth
 by self write

access to dn.sub="dc=demo,dc=net" by users read

We have just configured two databases:

The Example.Com directory is handled by the first database
The Demo.Net directory is handled by the second database

There are a few important things to note about this configuration:

Each directory has a separate manager account. This is useful when each
directory is managed by a different individual or group.
The directory for the second database is different than that of the first.
Remember that the directory is the location where the database files are
stored. Each backend must have its own storage directory.
As we discussed earlier, each database section can (and should) have its own
ACLs and a different set of ACLs can be specified for each database defined
in slapd.conf. The ACLs in the previous example are minimal.

Creating and Importing a Second Directory
Before we can import data, we need to create the location where the data will be
stored. In the slapd.conf file fragment, the directory directive points to /var/
lib/ldap/demo.net. However, this directory does not yet exist. We need to create it:

 $ sudo mkdir /var/lib/ldap/demo.net

If SLAPD is run as a user other than root, make sure to change
the ownership on the demo.net/ directory. The SLAPD user
ought to own the directory. For example, if the user ldap runs
slapd, do this:

chown ldap /var/lib/ldap/demo.net

Next, we need to create an LDIF file that contains the basic records for our new
directory. In Chapter 3, we created an LDIF file with the main tree structures for the
dc=example,dc=com directory information tree. Here we will create just a minimal
directory structure in a file called demo.net.ldif:

This is the root of the directory tree
dn: dc=demo,dc=net
description: Demo.Net
dc: demo

•
•

•

•

•

Advanced Configuration

[224]

o: Demo.Net
objectClass: top
objectClass: dcObject
objectClass: organization
Subtree for users
dn: ou=Users,dc=demo,dc=net
ou: Users
description: Demo.Net Users
objectClass: organizationalUnit

George Berkeley
dn: uid=george,ou=Users,dc=demo,dc=net
ou: Users
uid: george
sn: Berkeley
cn: George Berkeley
givenName: George
displayName: George Berkeley
mail: george@demo.net
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

This file creates the top-level entry—a single subtree branch (for users) and a
single user.

Now that we have an LDIF file, we can import it with slapadd. If you have not
already done so, stop SLAPD while running slapadd. We run the following
command to import:
 $ sudo slapadd -b 'dc=demo,dc=net' -l demo.net.ldif

By default, slapadd tries to import the data into the first directory specified in
slapd.conf. However, in our case we want the data to be stored in the second
directory. Thus, in the previous example, we used the -b flag to specify the base DN
of the second directory. Instead of doing -b 'dc=demo,dc=net', we could have done
-n 2, which instructs slapadd to put the records in database two.

Now we have a second database with a handful of entries. We can start up the server
and test it with ldapsearch:
 $ ldapsearch -LLL -x -W -D 'cn=Manager,dc=demo,dc=net' -b \

 'dc=demo,dc=net' '(objectclass=*)' description

This is what we will get:

Enter LDAP Password:

dn: dc=demo,dc=net

Chapter 5

[225]

description: Demo.Net
dn: ou=Users,dc=demo,dc=net
description: Demo.Net Users

dn: uid=george,ou=Users,dc=demo,dc=net

Binding to the dc=demo,dc=net directory tree as the manager of that directory,
we can verify that the three records we added exist. Note that only the description
attribute is to be returned. That is why only dn and description are displayed.

No ACLs are in place in the demo.net portion of slapd.conf that would prevent
users of the example.com database from seeing information in the demo.net
directory. For example, the user uid=matt,ou=users,dc=example,dc=com can
retrieve information from the demo.net directory:

 $ ldapsearch -LLL -U matt -b 'dc=demo,dc=net' '(uid=george)' mail

This is the output:

SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers

dn: uid=george,ou=Users,dc=demo,dc=net
mail: george@demo.net

If we want to prevent this behavior, we can do so with ACLs. For example, we could
replace the rule that reads access to dn.sub="dc=demo,dc=net" by users read to a
rule that restricts reading to entries within the dc=demo,dc=net tree:

access to dn.sub="dc=demo,dc=net"
 by dn.sub="dc=demo,dc=net" read

This would deny entries outside of the dc=demo,dc=net tree from accessing
these records. A similar rule would have to be added to the ACLs in the
dc=example,dc=com section to block access from users in the dc=demo,dc=net tree.

Now we have a directory with two different databases. In later parts of this book,
we will examine other aspects of using multiple databases. For example, later in this
chapter we will look at using the glue overlay to connect two databases together in
one search. In Chapter 7 we will look at doing replication with multiple databases.
But next we will look at some performance tuning options for SLAPD.

Advanced Configuration

[226]

Performance Tuning
In Chapter 2 we created a basic slapd.conf file. Our focus there, though, was
on getting a basic server running. In the last chapter, we took a close look at the
directives that had to do with security. While creating a second database backend
just now, we took a higher-level look at the slapd.conf file.

In this part, we will continue working on slapd.conf, but here we will focus
on parameters that help you tailor the server to the performance needs of your
organization. Later in this part we will look at the DB_CONFIG file that the Berkeley
DB backends (BDB and HDB) use. The optimizations made in that file can lead to
significant performance improvements in OpenLDAP.

Terminology: Databases and Backends
The distinction between databases and backends is a fine-grained one,
and often the terms are used interchangeably. Here is the difference.

A database is a location (a file, a relational database, a network
resource) where a directory information tree is stored.
A backend is a particular mechanism that is used to store
databases (or, in some cases, to direct SLAPD to a remote
database). Backends are coded as modules, which means they
can be loaded dynamically at startup.

•

•

Performance Directives
We have already created a slapd.conf file that SLAPD uses for managing the
directory server. We will continue building on this configuration file as we look at
the next batch of directives.

We will break the directives into two different classes:

Those that are global, and should be placed in the basic configuration section
at the top of the slapd.conf file
Those that apply only to individual database backends

Of those that apply to database backends, some are available to all backend types
(such as BDB, SQL, Shell, LDIF, and so on), and there are some that apply only to
a specific backend type. Since we are using an HDB backend (the default), we will
focus on directives that can be used by that backend.

•

•

Chapter 5

[227]

Global Directives
The global directives must be placed at the top part of the slapd.conf file, before
any database sections are defined. These directives apply to the entire SLAPD server,
not just a particular directory information tree within that server.

The first three directives we will see are used to optimize the interaction between
the client and the LDAP server. These directives are the timelimit, sizelimit, and
idletimeout directives. After that, we will look at the threads directive, which is
used to tune SLAPD's threading.

Fine-grained limits on size and time can be set per-database
using the limit directive, discussed later in this section. For
example, this directive can be used to set time and size limits
based per user or group.

Time Limits
The timelimit directive is used to specify the maximum amount of time SLAPD
will work on a particular operation before stopping the operation and returning a
message to the client.

Some operations, like searching a large directory for an attribute that is not indexed,
can take a long time. Other times, clients connecting over slow network links and
requesting large amounts of data can also take up significant time. Such lengthy
searches can slow the entire server down, and on a busy server it can also prevent
other clients from connecting and getting timely responses. And, of course, not all
client applications deal well with lengthy waiting periods.

In order to avoid these problems, there is a timelimit directive, which gives you the
ability to set the maximum amount of time the server will wait for an operation to
complete before ending the operation and returning a message to the client.

The default time limit is 3600 seconds. In this example, we will lower it to only
five minutes:

timelimit 300

Remember, this directive is a global directive, and must be placed in the configuration
file before any database directives.

Sometimes it is useful to eliminate all time limits. This does have the disadvantage of
allowing a connection to occupy resources for an unspecified amount of time and, if
too many connections did this, the result would be lengthy delays (and perhaps,

Advanced Configuration

[228]

in extreme cases, denial of service) for clients. But, in controlled environments, this
might be a risk that can be taken. To turn off time limits use the keyword unlimited:

timelimit unlimited

With this setting the server will not return a message to the client until the operation
is complete.

These examples represent the basic use of time limits, but sometimes a more
sophisticated time limit configuration is desirable. The OpenLDAP developers
created a more advanced form of the timelimit directive to handle such complex
time limit settings. In this form, the timelimit directive can set two different sorts of
time limits:

Soft limit: The soft limit is the default time limit that the server uses if the
client does not include a desired time limit in its request.
Hard limit: The hard limit is the absolute longest time that the server will
spend processing a request.

Understanding this difference will help to know how the client and the server handle
timing issues.

When a client connects to the directory and performs a search, it might send its own
time limit request, which instructs the server to take no longer than that amount of
time to do the search. For example, if a client sends a time limit of 30 seconds, it will
expect the server to take no longer than 30 seconds to respond. If the server's hard
time limit is higher than the time limit sent by the client, then the server will set the
limit for that request to the client's requested time limit. However, if the server's hard
limit is lower than the client's then it will use its own hard limit for that request.

So, if the server's hard time limit is 60 seconds, and the client requests a 30 second
time limit, the server will use the 30 second limit. If, however, the server's hard time
limit is 10 seconds and the client requests a 30 second limit, the server will use its
hard 10-second limit, since it is lower.

Setting the Client Time Limit
For OpenLDAP clients like ldapsearch, you can set the client time
limit by editing ldap.conf (or your .ldaprc file) and adding the
TIMELIMIT directive. In the ldap.conf file, TIMELIMIT takes only
one parameter: time limit in seconds. For example, to set the time limit
to 30 seconds: TIMELIMIT 30.

•

•

Chapter 5

[229]

Where does the soft limit come in? The client does not always supply a time limit
and, in these cases, you may want to set a limit that is lower than the hard limit. That
is, if the default hard limit is an hour, that may be a perfectly legitimate limit to set
as a maximum limit, but a default of a minute or two is a better limit for those clients
that don't need the longer limit.

If you set a soft limit higher than the hard limit, the hard limit
will be used.

Now we can look at the expanded form of the timelimit directive to see an example
of setting the hard and soft limits. Typically, both are set in the same command
(though you can set one without setting the other):

timelimit time.soft=30 time.hard=300

In this example the soft time limit is 30 seconds, while the hard time limit is 300
seconds. This allows clients that request longer limits to get longer processing time,
while setting a lower default for clients that do not provide time limits when making
requests.

What does the client get if the time limit is reached? The server will return as much
of the processing as it could complete, but it will also include a warning that the time
limit was exceeded.

Note that on a busy server a request may get queued, but not actually be executed
until a thread becomes available to do the processing. In such cases, the time that the
request waits for a thread is not counted against the time limit. The timer for the time
limit begins when the worker thread begins processing the request, not when the
server receives the request.

The backend-specific limits directive discussed later in this
chapter provides fine-grained time and size-limit support. For
example, you can set time limits on particular users or group
members.

Idle Timeouts
Along with limiting the amount of time SLAPD spends processing a request you can
also limit how long SLAPD should allow a client to remain connected, but idle. A
connection is idle if it is connected to SLAPD but is not performing any operations.
For example, a client may connect to SLAPD, perform a bind, and then keep the
connection open, perhaps waiting for input from a user.

Advanced Configuration

[230]

In many cases, there is no harm in allowing clients to remain connected, but idle. Idle
clients do not require attention by one of the server's threads, so they do not use up
valuable resources. Because of this, the default behavior of the server is to simply
allow idle connections to remain connected indefinitely.

But on occasion (sometimes because of limitations in another part of the system),
it is desirable to prevent clients from connecting and remaining idle. Use the
idletimeout directive to set a timeout. Like the simple form of timelimit,
idletimeout takes just one argument, the number of seconds a connection can be
idle before SLAPD closes the connection:

idletimeout 3600

Size Limits
Along with setting limits on the amount of time that an operation can take, it is also
possible to set limits on the number of records a search operation can return. Clients
can easily perform broad searches that will return many records. Without a size limit
in place a search with the filter (objectclass=*) would, if not restricted by ACLs,
return every record in the search base. And if such a search was performed on a
database that held millions of records, SLAPD would send all of those records back
to the client.

In most cases it makes sense to set an upper limit on the number of records that
can be returned in any one search. By default, SLAPD will only return the first 500
records. But that number can be changed with the sizelimit directive.

In its simple form the sizelimit directive takes only one parameter, the maximum
number of records to return:

sizelimit 1000

As with timelimit though, there is an expanded form of the sizelimit directive,
and like timelimit, sizelimit has both soft and hard limits. The expanded
sizelimit directive also has a third property that can be set, and this property is
called unchecked.

Hard and soft limits function similarly in sizelimit as they do in timelimit. The
hard limit determines the maximum number of search results that will be returned
in any search. Just as is the case with time limits, clients can also send information
telling the server the maximum number of entries the client wants back. If no such
information is set the value of the soft limit will be used.

If the server finds more records than the sizelimit allows, it will return the
maximum number of records as well as an error message: Size limit exceeded.

Chapter 5

[231]

The unchecked condition is a little bit more complex. In cases where a search requests
matches for an attribute that is not indexed, SLAPD may find a large number of
records that it needs to test to see if they match the client's filter. Sometimes the
number of candidate records is quite large. The unchecked property can be used to
set a limit on the maximum number of records that can be selected as candidates for
matching. This can prevent poorly-tuned databases from consuming lots of time and
resources searching through huge potential records for those that match.

Indexing attributes that are commonly searched is the best way
to avoid this situation. Indexing is discussed later in this chapter.

If a client's request produces more candidates than allowed by the unchecked
property, the server will return an error (Administrative limit exceeded) and
will not do the search at all.

The unchecked property will keep the server from spending too much time on such
tasks, but at the expense of the client's ability to run queries against the database.
Perfectly legitimate searches can be blocked this way. For that reason, the unchecked
property should be used with care. The default is to not limit the number of
candidates. This is equivalent to specifying size.unchecked=unlimited.

Here's an example of setting all three in one directive:

sizelimit size.soft=500 size.hard=1000 size.unchecked=2000

In this example, the soft size limit is set to 500, while the hard limit is set to 1000, and
the maximum number of unchecked records to be analyzed is 2000. Note that the
unchecked size limit should, as a matter of practice, be set to a value larger than
the hard limit.

Threads
The last few directives have dealt with setting limits on the server's performing
requested operations. These can prove valuable ways of preventing resources from
being wasted or misused. Now however, I want to turn to a directive that governs
the server's ability to handle requests.

SLAPD is a multi-threaded application. Unlike other servers, SLAPD does not start
subprocesses to handle searching. Instead, the SLAPD server is a single process that
has many different threads executing concurrently within that processes.

Advanced Configuration

[232]

Each thread can perform its own task. So, if a server has sixteen threads (the default
for OpenLDAP's SLAPD server), then it can perform sixteen different tasks at the
same time. Roughly speaking, threads perform operations. A single client can make
a single connection, and then request several different operations, each of which may
be done by a different thread (although no more than half of the total threads will be
dedicated to a single client).

Sixteen threads, the default, is excessive. Recent performance testing has shown
that running a busy server at eight threads performs better than running sixteen,
even at high loads. Why? The answer, in a nutshell, is that more threads introduce
more competition for the same resources. SLAPD is efficient enough that delegating
work to a smaller thread pool is typically faster than using a large thread pool, and
incurring thread scheduling overhead.

Lowering the thread count has additional benefits. It is estimated that each thread
costs at least 13MB (and perhaps quite a bit more, depending on the configuration of
SLAPD and the hardware on the machine). Enterprise LDAP directories can certainly
handle this sort of overhead, but on a host that runs LDAP along with many other
services, reducing the number of threads might boost the server's performance
in other areas, and still perform at the same speeds (or better) as it would when
running sixteen threads.

In future versions of OpenLDAP, the default thread count will
very likely be reduced from sixteen to eight.

The threads directive is used to set the maximum number of threads that SLAPD
will create. It takes an integer:

threads 8

In typical OpenLDAP configurations, this setting is optimal, though small servers
with little traffic may benefit by dropping the thread pool to as low as four.

Proxies and Threads
If you are running busy SLAPD proxy server (with a proxy or ldap
backend, covered in Chapter 7) that queries remote directory servers,
you may benefit by having much larger thread pools. Since the worker
thread is occupied until the remote LDAP server responds, a thread can
remain occupied for long periods of time. In order to keep clients from
being denied service you may want to add threads.

Chapter 5

[233]

Note that the lowest number of threads allowed is 2. This is the minimum number of
threads OpenLDAP needs to provide basic service.

Directives in the Database Section
Some directives go in the database section instead of the main portion of the
configuration file. And of these, some database directives are specific to the
particular backend being used. Along with the backend-neutral directives, we will
see a few directives that can be used in BDB/HDB backends.

Limits
We looked at the sizelimit and timelimit directives, both of which are used in the
global section. But in the Database section, there is another directive used for setting
limits, and this directive provides finer-grained control over who is limited. You can,
for example, set lower or higher limits for individual DNs, subtrees, or for members
of a group. The directive for doing these things is the limit directive.

A limit directive is similar to an ACL. It has three parts: the directive itself, the
who-phrase, and one or more limit-phrases. Here's an example:

limits users size=20

This directive sets a limit for all authenticated users (using the users keyword).
Only twenty records will be returned before SLAPD will return the message:
Size limit exceeded.

The limit directive supports two limit-phrases: size and time. As with the
sizelimit directive discussed above, size can use the soft, hard, and unchecked
styles. Similarly, time can use the soft and hard styles. Since more than one
limit-phrase can be used, we can create a more robust set of limits. Here's an example
limiting the anonymous user to only short result sets, and only if the operation can
be done quickly:

limits anonymous
 size.soft=5 size.hard=15 size.unchecked=100
 time.soft=5 time.hard=30

This sets all three size limits, as well as both time limits, for the anonymous user.
This would keep the anonymous user from running lengthy searches.

As we have seen, the anonymous and users keywords can be used in the
who-phrase. But just as in ACLs, the dn specifier, along with its modifiers (exact,
base, onelevel, subtree, children, and regex) can also be used.

Advanced Configuration

[234]

The dn field and its modifiers were covered in detail in the
section on Access Control Lists in the previous chapter.

Using the dn field we can create limits for particular DNs, DN patterns, or subtrees.
For example, we can set a size limit for a particular user:

limits dn="uid=matt,ou=Users,dc=example,dc=com" size=50

This will set the size limit to 50 for this particular user only. If this is the only limits
statement, then SLAPD will apply the size limit set in sizelimit to all other DNs.

Similarly, we can set a size limit for all DNs in a subtree with a directive like this:

limits dn.sub="ou=Users,dc=example,dc=com" size=50

The above limit will apply to uid=matt,ou=Users,dc=example,dc=com as well as
all other users in that same branch of the directory information tree.

Finally, limits can also be set by group. In this case the limits will apply to any
member of the group. As with ACLs, the limits directive's who-phrase uses the
group field to indicate that SLAPD should base restrictions on group membership:

limits group="cn=Admins,ou=Groups,dc=example,dc=com" size=unlimited

This directive sets the limit for members of the Admins group to unlimited, which
means that no limiting will be enforced on these group members.

Just as with ACLs, only records with the object class groupOfNames are
automatically considered to be groups. But other object classes function as groups,
as well. For example, in Chapter 3 we created a group with the object class
groupOfUniqueNames. That group's DN was cn=LDAP Admins, ou=Groups,
dc=example,dc=com.

In order to use that record as a group we need to specify more information in the
limits clause:

limits group/groupOfUniqueNames/uniqueMember="
 cn=LDAPAdmins,ou=Groups,dc=example,dc=com" size=unlimited

When putting a directive, such as the given one into a slapd.conf file note that the
entire group field (from group to the end of the DN) must be on one line.

This limits directive will allow search results of unlimited size for members of the
group cn=LDAP Admins, ou=Groups,dc=example,dc=com. The group type explicitly
indicates the object class of the record (groupOfUniqueNames) and the field that is to
be treated as the membership field for that group (uniqueMember). Thus, when

Chapter 5

[235]

SLAPD checks limits, it will look at the LDAP Admins record, check to see if it has
the groupOfUniqueNames object class, and then evaluate whether the user who
connected is listed in one of the uniqueMember values in the record. If so, then that
user's size limit will be set to unlimited.

Read-only and Restrict Directives
One way to improve performance on a busy server is to limit what clients can do on
the server. For example, if the information in a directory is static (that is, no users
ought to be able to change data), then it may be best to put the directory server into
a read-only mode. Or perhaps limiting just specific operations (such as adding new
records or deleting records) is sufficient.

There are two directives that can be placed in the slapd.conf file for achieving these
results: readonly and restrict.

The readonly directive is simple. It is either on or off. By default it is off, so the
directory allows writing operations (add, modify, delete, and so on). Here's how it is
used to configure SLAPD as a read-only directory server:

readonly on

When this directive is set, a client that attempts to modify information in the
directory information tree will get an error message from the server:

 ldap_modify: Server is unwilling to perform (53)
 additional info: operation restricted

Not even the manager can perform modifications to the directory
when readonly is turned on.

Binding, searching, and other operations that do not involve changing directory
information can continue to function as normal though.

Extended operations, such as the Password Modify extended
operation, are not affected by the readonly directive. For that
reason the ldappasswd client, for example, will still change a
password in the directory even if readonly is turned on.
To prevent this, use the restrict operation to restrict one or all
extensions. The Password Modify extended operation is defined
in RFC 3062 (http://www.ietf.org/rfc/rfc3062.txt).

Advanced Configuration

[236]

Sometimes setting the server to read-only mode is too stringent. It may be
desirable to just prevent certain operations. This can be accomplished with the
restrict directive.

The restrict directive takes a list of one or more LDAP operations that should be
disallowed. These are the operations that restrict understands:

add

bind

compare

delete

modify

rename

read (a special pseudonym that prevents all reading operations like search,
compare, and bind)
search

write (a special pseudonym that prevents all writing operations and is
equivalent to setting readonly on)

In addition to these nine, there is one special type for handling extension:
extended=<OID>. In the extended type, <OID> should be replaced with the Object
Identifier (OID) for the extended operation that you want to restrict.

For example, we can prevent users from adding, renaming, and deleting entire
entries with the following directive:

restrict add delete rename

This will prevent a user from adding new entries, renaming existing entries (that is,
changing the DN), or deleting entries. With the above configuration in the database
section of slapd.conf, we cannot add or remove entries with the command-line
tools:

 $ ldapadd -U matt -f john_locke.ldif

Here is what we get:

SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers

•

•

•

•

•

•

•

•

•

Chapter 5

[237]

adding new entry "cn=John Locke, ou=users,dc=example,dc=com"
ldap_add: Server is unwilling to perform (53)
 additional info: operation restricted

$ ldapdelete -U matt "uid=manny,ou=users,dc=example,dc=com"
SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers
ldap_delete: Server is unwilling to perform (53)
 additional info: operation restricted

Notice that in both cases the server responded: Server unwilling to perform.
However, modifying an attribute in the record is still allowed, as are searching,
comparing, and binding.

As we noted before, extended operations can be restricted using the extended
type with the restrict directive. Unlike the other types though, extended takes a
value—we can specify which extended operation we want to restrict. Unfortunately,
the value must be in the unfriendly OID format. To find out the correct OID you can
either check your server's Root DSE entry (see Appendix C), or you can read the RFC
for the desired extended operation.

Once you have the OID number it is easy to set a restriction. For example,
to prevent clients from performing the Password Modify extended operation use
the following:

restrict extended=1.3.6.1.4.1.4203.1.11.1

Attempting to use the ldappasswd client to modify a password will result in
an error:

 $ ldappasswd -x -W -D 'cn=Manager,dc=example,dc=com' -S

 'uid=barbara,ou=users,dc=example,dc=com'

Here is the error:

New password:
Re-enter new password:
Enter LDAP Password:
Result: Server is unwilling to perform (53)
Additional info: extended operation restricted

The restrict directive provides a convenient way of limiting what operations
clients can perform.

Advanced Configuration

[238]

Index (BDB/HDB Backends Only)
If you are running a SLAPD server with the BDB or HDB backends (the most
commonly-used backends), then the index directive is the single most important
performance-related directive.

The index directive, which is specified in the database section for each BDB or HDB
database, indicates which fields SLAPD should build and maintain an index for. An
index is a separate database file that is optimized for speedy access during LDAP
read operations.

When a client uses a search filter with an attribute that is not indexed, SLAPD
searches through every record in the directory for the desired attribute, then checks
the value of that attribute against the attribute value or filter supplied by the client.

If the attribute is indexed on the other hand, the SLAPD server simply
searches the appropriate attribute index for the value, and quickly returns a list of
matching records.

An index search is much faster than a full directory search and, the larger the
directory, the more noticeable the difference.

The task of determining which attributes must be indexed is left up to you, and the
attributes that you ought to index should be determined by which object classes are
used in your directory information tree, and which reading operations (searches,
binds, compares) are run against your directory server. Directories primarily
oriented around information about people (using person, organizationalPerson,
and inetOrgPerson object classes) should probably have indexes for commonly
used attributes such as cn, sn, and uid.

When we created our basic slapd.conf file in Chapter 2, we configured the
following indexes:

index objectClass eq
index cn eq,sub,pres,approx
index uid eq,sub,pres

There are three indexes specified above: one for objectClass, one for cn, and one
for uid.

The first line creates an index for the objectClass attribute. The index is optimized
for equality (eq) matches (that is, searches like objectclass=person, but not
searches such as objectclass=*son). This index should always be included, as the
vast majority of reading operations will use the objectClass attribute.

Chapter 5

[239]

The second line is the index for the cn attribute. Along with configuring this index
to efficiently handle equality (eq) matches, it is also configured to efficiently perform
substring (sub) and approximation (approx) matches, as well as doing quick tests to
see if the attribute is present (pres). Here is a brief explanation of each of the index
optimization types:

approx: This optimizes searches for approximation matching. If a search
operation is made request approximate matches (cn~=mat), this index may be
used to speed up the approximation matching.
eq: This optimizes for equality matching. Filters that request an exact
match, such as (uid=matt) or (objectclass=person) make use of the eq
optimization. It is very important that the objectclass attribute have an
index optimized for equality. When using directory replication or other
overlays, you may also need to index other frequently used attributes.
sub: This optimizes substring matching. A substring search occurs when
a search request sends a part of a string and asks that attribute value that
contains that part be returned. For example, the filter (uid=*ar*) should
match any UIDs that contain the string ar. Users mark and karen would both
match this filter.
subinitial: This is a special type of sub optimization that optimizes
matching the first part of the string only. It is good for handling filters like
(uid=mar*), but not filters like (uid=*ark).
subfinal: This is also a special type of sub optimization. This one optimizes
matching the last part of the string, and performs well for filters like
(uid=*ark).
pres: The pres type optimizes the index for cases where a search merely
needs to see if an attribute is present.

Not all attributes though, support all of the index options. For example, the
objectclass attribute does not support approx, sub, or any of the sub variants, and
does not benefit from having a pres index.

Indexes and Schemas
An object class' schema defines what matching rules an attribute
supports, and the type of matching rule determines whether or not it
can support a particular type of index. See Chapter 6.

In general, adding indexes for commonly-used attributes is a good thing. It speeds
up searching and other reading operations, and since the majority of LDAP
operations are reading operations, this can be a boon to performance.

•

•

•

•

•

•

Advanced Configuration

[240]

But maintaining indexes does slow down writing operations that involve indexed
attributes, since those attributes have to be maintained not only in the main database,
but also in the index database files. Also, each index requires additional cache space
for efficiently searching, which means adding more indexes will consume more
memory. For those reasons, it is best to index only the attributes that are frequently
used in searching operations, rather than indexing everything.

When an index directive is added or modified though, SLAPD does not
automatically re-index all of the entries in the directory. You will need to do it by
hand. For example, after looking at common searches on our system, we determine
that it would be good to add indexes for the sn and member attributes. Other
applications often run searches to find out what groups particular DNs are members
of, and an index of this attribute would expedite those searches.

To service these needs we will add the following new index directives:
index sn eq,sub,approx
index member eq

But once we have added these to slapd.conf, we will need to stop SLAPD and run
the slapindex program to rebuild the index files:

 $ sudo slapindex -q

This will rebuild all of the indexes. The -q (quick) flag will greatly speed up the
process, as it skips performing consistency checks of the database.

Avoid Rebuilding Indexes
A slapindex procedure will rebuild all indexes. When adding an
index to a large directory, you may want to avoid rebuilding all of the
other indexes. One way to do this is to comment out the existing indexes
in slapd.conf (leaving only the new index lines uncommented),
run slapdindex, and then remove the comments from the existing
indexes. The next version of OpenLDAP will support a more convenient
way of adding indexes.

The slapindex program will print error messages if any of the optimizing types
are not allowed for an attribute (like if one tries to add substring indexing to
objectclass). But when it runs successfully, it will quietly exit without printing
any messages.

Once slapindex is finished, SLAPD can be restarted.

Chapter 5

[241]

Controlling the Cache (BDB/HDB Only)
With BDB and HDB backends, SLAPD stores frequently-accessed records in a cache
so that it doesn't have to read directory information from disk with every request. By
default, SLAPD retains one-thousand records in the cache. But busy directory servers
with a few thousand entries or more will benefit from having a larger cache. This can
be done with the cachesize directive:

cachesize 2000

The above directive doubles the default cache size, instructing SLAPD to keep 2000
records in memory.

What happens when the cache is full? By default, SLAPD simply drops the last item
in the cache (leaving a cache of 2000 with 1999 full slots). On a busy server, emptying
just one cache entry at a time can have slight negative impacts on performance,
since it is possible that if a number of searches are executed in rapid succession,
each one missing a cache hit, the last entry of the cache would be freed up and
filled with every request. This scenario is more likely to happen with the cache is
disproportionately small, when compared to the number of entries in the database.

The cachefree directive can be used to instruct SLAPD to drop more than one item
from the cache when it fills:

cachefree 5

This example instructs SLAPD to drop the last five entries in the cache.

Ideally, the cache size should remain as close to the actual number of entries in the
database as memory constraints will permit. At least, though, the cache should be
large enough that frequently requested records can remain in memory. For example,
if your directory server functions as an address book, then the cache should be large
enough that the user records, as well as their ancestor records, can all be kept in
cache at the same time.

These caching directives are not the only ones of importance
for SLAPD. See also the set_cachesize directive in the
DB_CONFIG file section.

The third cache directive is idlcachesize. The idlcachesize directive is used for
caching the results of frequently performed searches, and a large cache here will
make searches of often used searches much faster. With the HDB database, it is
suggested that this be three times the cachesize value:

cachesize 2000
idlcachesize 6000

Advanced Configuration

[242]

We have now finished taking a look at the slapd.conf configuration options. Now
we will turn to another configuration file that can be used to tailor the performance
of SLAPD.

Reducing Disk I/O Latency (BDB/HDB Only)
When LDAP operations write new data to the directory and SLAPD is using the BDB
or HDB backends the data is stored in memory first, and then flushed to the database
files stored in the operating system.

On a very busy directory server (or a server with really slow disk I/O), it is
sometimes desirable to trade off data security for speed. There are two directives in
particular that instruct SLAPD to make this trade off:

The first, and the less risky of the two, is the dirtyread directive which takes
no parameters.
Consider the case where one client performs a write operation to modify
a record, and then another client performs a read operation on that same
record before SLAPD has written the first client's changes to disk. Should the
server return the unmodified data stored on disk, or the modified data that
has not yet been committed? Usually it does the first, sending the clean, but
soon-to-be out-of-date record to the client.
The term "dirty read" describes the second case, where the server sends the
client information that has not been committed. While returning this data
may be faster, it might possibly be inaccurate�� the server may reject or abort
the modification request of the first client even after having sent the modified
data to the second client.
The dirtyread directive only increases the risks that a client may get
inaccurate data.
The second directive, dbnosync, carries a higher risk.
Normally, when an operation changes directory information, the changes are
written to disk as soon as possible. Data stored in memory is flushed to the
files in the Berkeley DB subsystem. But performing disk I/O can slow
the server. One way to speed this up is to instruct SLAPD to delay writing
the information to the log file on the disk, and this is done with the
dbnosync directive.
The risk in running with dbnosync though, is that in the event that the server
should die without a clean shutdown, modifications made to the directory,
but not yet written to disk, will be lost. However, there is no greater risk of
corrupting the database—the database will still be recoverable, though the
most recent changes may be lost.

•

•

Chapter 5

[243]

You can reduce (though not eliminate) the risks of running with dbnosync
by also using the checkpoint directive. Setting a checkpoint causes SLAPD
to periodically write data to the disk. The checkpoint directive takes two
parameters: a maximum size (in kilobytes), and a time limit (in minutes).
SLAPD will checkpoint the database anytime the amount of data written
is greater than the maximum size or after the specified interval of time has
passed. Here is an example of the checkpoint directive:

 checkpoint 1024 30

This instructs SLAPD to checkpoint the database (flushing any new data
from memory to the file system) whenever more than one megabyte of data
has been written to the database and every 30 minutes.

Due to the increased risks with these directives, it is generally better to try other
means of improving performance (such as altering the cache or tuning the
DB_CONFIG file) before implementing these directives.

The DB_CONFIG File
The DB_CONFIG file is technically not an OpenLDAP configuration file at all. It is a
Berkeley DB configuration file, and is specific to the BDB and HDB backends only. It
provides a series of settings for the Berkeley database engine.

Berkeley DB is an Open Source embedded database, now
maintained by Oracle. Because it is robust and reliable, actively
maintained, and widely support, it is a popular product in both
open source and proprietary applications. For more information
about Berkeley DB, see Oracle's website: http://www.oracle.
com/database/berkeley-db/index.html

Since the entire directory information tree, as well as the indexes, for a BDB/HDB
backend is stored in a Berkeley DB database, a properly configured DB_CONFIG file is
the most important facet of directory performance.

When experimenting with the DB_CONFIG file and trying out new configurations, it is
best to use a non-production server, and to use slapcat to make a full backup of the
directory data before you make any changes.

The DB_CONFIG file is not stored with the OpenLDAP configuration files. Instead,
it is stored alongside the database files at /var/lib/ldap (or /usr/local/var/
openldap-data). Unlike the other configuration files, it is read only when the
database is created or recovered. As of OpenLDAP 2.3, if SLAPD detects changes in

Advanced Configuration

[244]

DB_CONFIG when it is starting up, it will attempt to perform a database recovery in
order to incorporate the changes, and you may see an entry like this in your log file:

bdb_db_open: DB_CONFIG for suffix dc=example,dc=com has changed
Performing database recovery to activate new settings

Likewise, when you create a new directory, the Berkeley DB subsystem will read the
DB_CONFIG file and create the databases according to the directives therein.

Make sure your database has a DB_CONFIG file. If your database
directory does not have a DB_CONFIG file present, you will be using
the factory defaults for Berkeley DB, which are very conservative. On
anything but a small (<100 entries) directory server, the defaults will be
insufficient, and result in poor performance.

OpenLDAP distributions include a default DB_CONFIG file tuned for general use.
It should be located at /var/lib/ldap already (though it is sometimes labeled
DB_CONFIG.example, in which case you will need to rename it to just DB_CONFIG). In
Ubuntu Linux, an Ubuntu-customized DB_CONFIG file is located at /usr/share/doc/
slapd/examples/DB_CONFIG. We will start by using the version included with the
OpenLDAP source distribution (which is configured for enterprise use). The default
version looks something like this:

one 0.25 GB cache
set_cachesize 0 268435456 1
Data Directory
#set_data_dir db

Transaction Log settings
set_lg_regionmax 262144
set_lg_bsize 2097152
#set_lg_dir logs

We have removed some of the comments from the header and footer of the file, but
preserved all of the settings.

For standard usage on a medium-sized directory, these settings are good. If your
directory is performing sufficiently fast and your system is not strapped for
resources, you need not feel compelled to change the default settings.

The DB_CONFIG file contains directives that directly pertain to the performance of
the underlying Berkeley DB files. We will go through these six settings in order. The
most important directive is the first.

Chapter 5

[245]

At the end of this section we will also look at three additional directives used for
tuning Berkeley DB lock handling.

Some of the directives we examined earlier are synonyms for
DB_CONFIG directives. For example, dbnosync does the same
thing as the DB_CONFIG directive set_flags DB_TXN_NOSYNC.

Setting the Cache Size
The BDB/HDB backend attempts to keep as much of the directory as possible in
memory in the form of a cache. This keeps directory reading quick since SLAPD does
not have to read information from the disk.

While it might not be possible (on a system with other services, a good economic
trade-off) to keep the entire directory in the cache, the server will run faster if at least
the most frequently used entries are kept in the cache.

The set_cachesize directive determines how much memory SLAPD will allocate
for a directory cache. The directive takes three arguments:

The number of gigabytes of space to allocate for the cache
The number of bytes of space to allocate for the cache
The number of segments to use for the the cache

The first and second are added together and should not, when combined, be larger
than 4 GB. The third determines how many data segments the Berkeley DB backend
will break the cache into. The values 1 and 0 both result in a single cache segment
(which is usually desired).

In the default OpenLDAP DB_CONFIG file, the set_cachesize directive looks
like this:

set_cachesize 0 268435456 1

The total size of the cache is 256 megabytes (268435456/1024/1024), and the entire
cache is stored in one segment. For our tiny directory, this is far more than we need.
It is a safe setting, though the full 256 megabytes will not be allocated.

A good rule of thumb for estimating the minimum amount of cache you will need
in a small or medium-sized directory is to allocate two megabytes of cache for
every 100 megabytes of LDIF data, plus one megabyte of cache per index. Larger
directories will definitely benefit though, from carefully-tuned caches. For a
finer-grained calculation, see the OpenLDAP FAQ-O-Matic entry on setting cache
sizes: http://www.openldap.org/faq/data/cache/1075.html.

•

•

•

Advanced Configuration

[246]

Configuring the Data Directory
The set_data_dir directive takes one parameter, which is the path to the directory
that contains the database files. In the previous example this directive is commented
out. Since the DB_CONFIG file is stored in the same directory as the BDB files
themselves you should not need to set this directive. It only needs to be set when the
DB_CONFIG file is loaded from a location outside of the database directory.

Optimizing BDB/HDB Transaction Logging
The last three directives relate to transaction logging. As modifications are made
to the Berkeley DB, the complete details of the transaction are written to log files,
named log.XXXXXXXXXX, where the ten X's are replaced by digits from 0-9. The first
log file is log.0000000001, and once it grows too large, a new log file is created by
incrementing the number: log.0000000002.

The log files comprise a record of all that has happened in a database. In fact,
they are so complete that they can be used to rebuild a corrupt database. The log
file format is not plain text, and cannot be read using the usual tools (like cat,
more, or less). To read it you will need to use the db_printlog command
(or dbX.Y_printlog, where X.Y is replaced by the major and minor version numbers
of the database, such as db4.2_printlog). This will display a record for each
transaction made to the databases.

Recovering a Corrupt BDB/HDB Database
The log files written by the Berkeley DB subsystem can be used to
recover a corrupt database. The Berkeley DB distribution includes a tool
called db_recover (or dbX.Y_recover, where X.Y is the major and
minor version number, such as db4.3_recover). The db_recover
tool uses the log files to fix corrupted databases. For more information
view the man page for db_recover.

At startup SLAPD automatically performs a recovery on the BDB directory to
ensure that the database is in a stable state. It is only in rare cases that a system
administrator will have to manually work with the log files.

Since these transaction log files play such an important role in the safety of SLAPD's
data, it is good to ensure that the environment is properly tuned.

The set_lg_regionmax directive controls the amount of memory allocated to
storing the names of Berkeley DB files. It takes one argument: the amount of space
to be allocated (in bytes). The file above allocates 256 KB for storing names, and this
should be fine for almost all applications. Only in rare cases where there are

Chapter 5

[247]

many index files would it be necessary to raise this limit (I have never yet
encountered such a situation).

The next directive, set_lg_bsize, is used to allocate the amount of memory used
to buffer data before it is written to the transaction log. It too takes one argument:
the amount of space (in bytes) to be used for a buffer. The setting in our file allocates
two megabytes of space. When a modification is made to the BDB/HDB database,
information about the modification is not written to the log until the transaction is
complete. Until it is written it is temporarily stored in an in-memory buffer, whose
size is no bigger than the value of set_lg_bsize.

Since most LDAP data is relatively short, two megabytes is usually sufficient. But if
your particular directory frequently stores large chunks of data (such as image files),
you may consider increasing the buffer size for the transaction log to accommodate
the largest chunks of data. For example, if the directory stores images as large as ten
megabytes, set_lg_bsize should be set at 10485760 (which is 10 * 1024 *1024).

Howard Chu, one of the OpenLDAP developers, points out that when increasing
the set_lg_bsize flag to a value this large, you will also have to raise the maximum
size limit for the log file using the set_lg_max flag. The maximum size for the log
file must be at least four times the value of set_lg_bsize.

set_lg_max 41943040

Finally, the last directive, set_lg_dir, points to the log file for BDB. By default,
these log files are stored in the same directory as the rest of the database files
(/var/lib/ldap/ or /usr/local/var/openldap-data/ if you compiled from
source). However, since logs are crucial in recovery of the database, it is not a bad
idea to store the log files in a different location than the databases. For example, you
might want to store the logs on a different hard disk than the database files. To do so,
uncomment the set_lg_dir directive and set it to the absolute path of the desired
destination directory:

set_lg_dir /usr/local/var/ldap/

This directive will instruct the Berkeley DB subsystem to write the log files to
/usr/local/var/ldap instead of the same directory that the BDB files are located.

Regularly backing up the Berkeley DB files (including the log
files) is a good idea. A more portable way of backing up the data
is to dump a copy of the directory using the slapcat tool. This
will export the database into LDIF format, which can be easily
imported into a SLAPD server, regardless of the backend format.

Advanced Configuration

[248]

Tuning Lock Files
There are three additional parameters that should be included in the DB_CONFIG file.
These are the three directives that tune the locking mechanisms in Berkeley DB.

Certain operations on the database will require that the data be locked to prevent the
introduction of data inconsistency. For example, it is not good to allow two different
threads to modify the same record at the same time. Berkeley DB uses a locking
mechanism to prevent this from happening.

There are three directives that are used to tune the locking subsystem. These are:

set_lk_max_objects: The maximum number of objects that can be locked at
a given time
set_lk_max_locks: The maximum number of locks that can be requested at
a time
set_lk_max_lockers: The maximum number of simultaneous lock requests

In the default Ubuntu DB_CONFIG file these are all set to 5000, but lower values
(between 1500 and 3000) may be more desirable:

Number of objects that can be locked at the same time.
set_lk_max_objects 5000
Number of locks (both requested and granted)
set_lk_max_locks 5000
Number of lockers
set_lk_max_lockers 5000

Setting these values at a sufficiently high value will prevent the database from
running out of locks, and thus denying database access.

To see if your Berkeley DB lock settings are adequate, you can
use the following command, which prints detailed information
about locks and lockers:
 db4.2_stat -c

More about Berkeley DB
The directives we have covered in this section are those that get the most attention
for OpenLDAP. However, there are other directives, and judicious use of such
settings can also improve the performance and reliability of the BDB and
HDB backends.

•

•

•

Chapter 5

[249]

Some information about these parameters can be found in OpenLDAP's
FAQ-O-Matic (http://www.openldap.org/faq/data/cache/1072.html). For a
thorough understanding, though the best resource is the Berkeley DB Reference Guide.
The newest version can be found here: http://www.oracle.com/technology/
documentation/berkeley-db/db/ref/toc.html

At this point we have looked at the slapd.conf and DB_CONFIG files, examining
some of the ways that these files can be modified to improve the performance of
SLAPD. Next, we will turn to a different topic: extending the functionality of SLAPD
using directory overlays.

Directory Overlays
As the OpenLDAP project has grown, more and more features have been added.
Initially, these features were added directly to the SLAPD server's code base. But as
features were rolled into OpenLDAP, both the code and the configuration became
increasingly complex.

To address this problem, OpenLDAP developers introduced a new concept in
OpenLDAP 2.2 that made it easier to introduce new features while reducing the
complexity of the underlying code. The developers introduced a modular system
called overlays. An overlay is a chunk of code that can modify the behavior of
the SLAPD.

When SLAPD receives a request for a database configured to use an overlay, the
overlay is given an opportunity to perform processing on the request before any
information is retrieved from the underlying database. As a result overlays can be
used to perform additional processing of requests.

How is an overlay added to the directory server? It is through special directives
in the slapd.conf file. The overlay directive is placed in the database
configuration section, though an overlay sometimes intercepts operations that
are not backend-specific.

More than one overlay can be used in a database. When overlays are used this way,
they are said to be stacked. As we will see later in this chapter the order of overlay
directives is very important because SLAPD sequentially goes through the overlay
stack, calling the overlays one at a time.

Advanced Configuration

[250]

A Brief Tour of the Official Overlays
In OpenLDAP 2.3 there are sixteen official overlays included with the OpenLDAP
distribution, and a handful of contributed and unofficial overlays. Almost all of the
official overlays are described in the man pages. Here we have a brief description of
each of the sixteen�� we will also see a few useful overlays in more detail. In the later
chapters we will also make use of overlays.

The official overlays are as follows:

1. accesslog: The access logging overlay is used to record information about
directory access and utilization. Rather than recording the data in the file
system, information is stored as records inside a special log directory. Logs can
then be retrieved through LDAP clients, or by using a tool such as slapcat to
dump the logs into a flat (LDIF) file. We will implement this overlay in the next
chapter, and use it again in Chapter 7 to improve replication.

2. auditlog: The audit logging overlay records information on changes to the
directory. Unlike the more powerful access logging overlay, audit log stores
information in a file in the file system.

3. chain: In complex directory environments, one directory may have
information that another directory does not have. That second directory
may be configured to refer clients of the first directory. Typically, a referral
involves sending the client information about redirecting its query, and
then the client is left to chase the referral. The chain overlay handles referral
chasing on the server side�� the server will follow the referral itself and return
the complete information to the client.

4. denyop: The deny operation overlay performs the same sort of function as
the restrict directive discussed earlier in this chapter. It disallows clients
from performing certain LDAP operations. In the next section we will use
this overlay.

5. dyngroup: The dyngroup overlays provide ways of creating dynamic groups
based on specific attributes in an object. This provides a powerful method of
grouping records.

6. dynlist: It is similar to the dyngroup overlay.
7. glue: The glue overlay, which is built-in and loaded by default, makes it

possible to link two databases together so they appear as if they were one
large directory information tree. For example, if one database contains
dc=example,dc=com, and a second database holds ou=Users,dc=example,
dc=com, the glue overlay makes it possible for searches of dc=example,
dc=com to return entries from the ou=Users,dc=example,dc=com database.
The subordinate directive must be used in the database section of
slapd.conf to indicate which databases should be glued.

Chapter 5

[251]

8. lastmod: The last modification overlay creates a special record in the
directory information tree that contains information about what the most
recently modified record is and when it was modified.

9. pcache: The proxy cache overlay caches the results of an LDAP search.
This overlay is mainly used with the ldap backend. With this combination,
SLAPD can be configured to use another LDAP server as its backend, but
speed up client requests by keeping a cached copy of the data in a special
database.

10. ppolicy: The password policy overlay allows you to enforce certain
restrictions, such as password expiration dates and password length. The
password policy overlay is described in the next chapter.

11. refint: The referential integrity overlay is used to keep directory entries
consistent when records are deleted or DNs are modified. For example, if
a DN is deleted from the directory and the refint overlay is used, SLAPD
will search the directory for other references to this DN (such as group
memberships) and remove those references as well. We will look at this later
in the chapter.

12. retcode: This overlay is designed to help LDAP client implementors test
how their code responds to abnormal server responses.

13. rwm: The rewriting and mapping overlay provides a facility for taking a client
request and re-writing or mapping parts of the request to other values. This
can be used in conjunction with a proxying LDAP server to re-write attribute
names and DNs.

14. syncprov: The synchronization provider overlay is used by SLAPD servers
that act as providers from which other SLAPD servers replicate data. We will
discuss this more in Chapter 7.

15. translucent: The translucent overlay is similar to the proxy overlay.
When a client requests a record, it retrieves the record from a remote server.
But, it can do more—it can store a local copy of the record that can override
portions of the remote record.

16. unique: The unique overlay enforces attribute uniqueness. It is used to
ensure that, for specified attributes, a given attribute value exists in only one
record in the directory. This is useful to keep multiple users from having the
same email address (mail) or user ID (uid) attribute values.

Each of the overlays documented here (except for denyop) has a corresponding
man page that can be accessed using the command man slapo-<name of overlay>,
where <name of overlay> is replaced with the abbreviated name of the overlay. For
example, to get the man page for the translucent overlay, run the command:
man slapo-translucent.

Advanced Configuration

[252]

In the remainder of this chapter we will cover a few simple overlays in detail. In
the next few chapters we will cover several sophisticated overlays, using them to
address common directory server needs.

Configuring an Overlay: denyop
Since we have covered the basic concepts behind the denyop overlay when we
looked at the restrict directive, and since denyop is simple to implement, we will
look at it as an example for how to use an overlay.

The restrict directive is actually the preferred method
of restricting operations. The denyop overlay was intended
primarily as an example for other overlay authors.

Overlays are configured in the slapd.conf file. Typically there are three steps to
configuring an overlay:

1. Load the dynamic object with the moduleload directive
2. Add the overlay to the database section with the overlay directive
3. Add any overlay-specific directives to the database section

Let's look at each step in detail.

Loading the module
The first task is to load the module containing the overlay. This part is not always
necessary. Some versions of OpenLDAP have all of the modules statically compiled
in, which means they are loaded along with the server. More often though, SLAPD
is compiled to dynamically load modules that are loaded when SLAPD starts, and
almost all overlays are implemented as modules.

See Appendix A for a further discussion of the difference
between these two ways of building OpenLDAP.

The moduleload directive should go near the top of the configuration file, before
the first database directive. To load the denyop dynamic object we need to add the
following highlighted line:

modulepath /usr/lib/ldap
moduleload back_hdb
moduleload denyop

Chapter 5

[253]

When SLAPD starts it will search for the denyop object in its module path, and load
it if it finds it.

If you need to load a module not in the module path you
can specify the full path to the module. For example
/usr/local/libexec/openldap/my_module.

If SLAPD fails to find the module on startup it will fail to start, exiting with an error
like this:

lt_dlopenext failed: (/tmp/lastmod) /tmp/lastmod.so: cannot open
 shared object file: No such file or directory

This indicates that the module, lastmod, was not found in the given module path,
which in this case was erroneously set to /tmp.

Make sure that the module is in one of the directories listed in modulepath, or that
the full path to the module is correct.

Adding the Overlay
The next step is to add the overlay to the overlay stack. Since there are no overlays
already specified, this will be the first of three items on the stack. The glue overlay
is automatically applied, though it does nothing unless a subordinate directive is
present. The backend processing of the operation (the actual directory lookup) is
always the last item on the stack.

To add our overlay we need to put the directive in the appropriate database section
of the slapd.conf file. In a situation where there are multiple backends, the same
overlay directive can be repeated in each database section to load the overlay for
each database. The new directive is highlighted in the following example:

database hdb
suffix "dc=example,dc=com" "o=My Company,c=US"
rootdn "cn=Manager,dc=example,dc=com"
rootpw secret
directory /var/lib/ldap
overlay denyop

Now, we are ready for the third step.

Advanced Configuration

[254]

Adding Overlay-Specific Directives
An overlay may have its own special directives. These directives are usually
documented in the man page for that overlay.

There is only one directive supported by the denyop overlay, and it is the
eponymous denyop directive. Like the restrict directive that we looked at earlier,
the denyop directive takes a list of operations. Clients will be disallowed from
performing any operation in this list.

Earlier in this chapter we used the restrict directive to prevent clients from
performing add, delete, and rename operations:

restrict add delete rename

We can implement the same thing with the denyop directive:
denyop add,delete,modrdn

There are a few minor differences between the two directives:

denyop takes a comma-separated list of operations
denyop uses the modrdn name instead of using the term rename

If a client attempts to perform one of the disallowed operations denyop will stop
SLAPD from performing the operation, and the client will be returned an Unwilling
to perform error.

The denyop overlay is simple and, due to the restrict directive, not likely to enjoy
much use in a production server. But the next overlay that we will look at provides
useful features, though the accompanying directives are slightly more complex.

Referential Integrity Overlay
The second overlay we will examine is the RefInt (Referential Integrity) overlay.
RefInt is designed to handle cases where the modification or deletion of a record may
render attribute values in other records inaccurate.

LDAP groups provide a good context for illustrating the problem that the RefInt
overlay is designed to address. In Chapter 3 we created an LDAP group that looked
like this:

dn: cn=Admins,ou=Groups,dc=example,dc=com
objectClass: groupOfNames
cn: Admins
ou: Groups
member: uid=matt,ou=users,dc=example,dc=com
member: uid=david,ou=users,dc=example,dc=com

•

•

Chapter 5

[255]

This group has two members, uid=matt, and uid=david. These two member
attributes refer to other records (identified by their respective DNs) that are also
located in the directory. For example, here is the record for uid=david:

dn: uid=david,ou=Users,dc=example,dc=com
cn: David Hume
sn: Hume
uid: david
ou: Users
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

What would happen to the cn=Admins group if we deleted this record for uid=david
from the directory information tree? Nothing! The cn=Admins group would still
contain a member attribute with the DN for uid=david. By default, SLAPD does not
do any searching for references to a modified or removed DN. Why? The assumption
has generally been that such tasks are the responsibility of the applications that
access and modify the directory.

But keeping a directory free of invalid references is not a job that everyone wants
to leave to external applications. For that reason the OpenLDAP developers created
the RefInt overlay, which makes the task of maintaining referential integrity the
responsibility of SLAPD.

There are two cases when the RefInt overlay kicks into action:

When a DN is modified (via a modrdn operation): The RefInt overlay does a
search of the directory (searching only the values of the attributes specified
in the configuration), and replacing any occurrences of the old DN with the
newly modified DN
When a record is removed (with a delete operation): The RefInt overlay
searches the directory (looking for the specified attributes only), and deletes
any references to the DN that it finds

We will look at examples of these, but first let's configure the overlay.

Configuring the Overlay
The first step to configuring the overlay is to make sure the module is loaded. This
is done (as always) by adding a moduleload directive in the basic section of the
slapd.conf file, before the first database section:

modulepath /usr/lib/ldap
moduleload back_hdb
moduleload denyop
moduleload refint

•

•

Advanced Configuration

[256]

This example builds on our earlier moduleload example. Only the highlighted line
has been added.

Next, we want to add the overlay to the stack, and configure it for operation. These
configuration directives go in each database section for which we want to use
the overlay:

overlay refint
refint_attributes member uniqueMember seeAlso
refint_nothing cn=EMPTY

The first line, the overlay directive, adds RefInt to the overlay stack. Remember,
it's position relative to other overlay directives will determine its position on the
overlay stack.

On the next line is the refint_attributes directive. This directive takes a list of
attributes (separated by whitespace characters) that will be searched whenever a
modrdn or delete operation is performed. We want to include all of the attributes
that we want SLAPD to maintain referential integrity for.

Since we have records that are groupOfNames and groupOfUniqueNames object
classes, we want the RefInt overlay to check the member and uniqueMember
attributes. The seeAlso attribute, which is an attribute allowed for organization,
organizationalUnit, and person objects (all of which are used in our directory
information tree), takes a DN for a value, so we want RefInt to check it as well.

The seeAlso Attribute
The seeAlso attribute, which allows only values that are DNs, is used
to indicate a connection between the record that contains the seeAlso
attribute, and the record or records that the seeAlso attribute points
to. There are other attributes, such as the manager attribute for
inetOrgPerson objects, which also take DN values.

The last directive, refint_nothing, is used in special cases when RefInt is
responding to a delete operation.

Sometimes it is not possible for RefInt to delete an attribute value. This happens
when a record must (according to the schema) have at least one such attribute value.
For example, any groupOfNames object must have at least one member attribute
value. The schema does not allow groups with no members.

But what if deleting an entry would require RefInt to remove the only member
attribute from a group? We wouldn't want RefInt to try to violate the server's
schema constraints.

Chapter 5

[257]

RefInt avoids the problem this way: RefInt adds the DN in refint_nothing as a
value for that attribute, and then deletes the other attribute. Effectively, it replaces
the deleted value with a known placeholder value.

In the previous example we have set the refint_nothing DN to be cn=EMPTY. There
is no entry in our directory information tree named cn=EMPTY (though if there were,
it would cause no problems).

Modifying the Records
Now, we will add two records to our directory:

dn: uid=marcus,ou=users,dc=example,dc=com
uid: marcus
sn: Tullius
cn: Marcus Tullius
givenName: Marcus
ou: users
objectclass: person
objectclass: organizationalperson
objectclass: inetOrgPerson

dn: cn=Public Relations,ou=Groups,dc=example,dc=com
objectclass: groupOfNames
cn: Public Relations
ou: Groups
member: uid=marcus,ou=users,dc=example,dc=com

The first record is for a new inetOrgPerson with the UID marcus. The second
record defines the cn=Public Relations group which currently has one member,
uid=marcus. What happens to the member attribute of cn=Public Relations if we
delete the record for uid=marcus by using the following command?

 $ ldapdelete -U matt uid=marcus,ou=users,dc=example,dc=com

Now, we search for the cn=Public Relations group:

 $ ldapsearch -U matt -LLL '(cn=Public Relations)'

The record looks like this:

SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128

Advanced Configuration

[258]

SASL installing layers

dn: cn=Public Relations,ou=Groups,dc=example,dc=com
objectClass: groupOfNames
cn: Public Relations
ou: Groups
member: cn=EMPTY

As the last line of the code illustrates, there is still one member (the groupOfNames
schema requires that there be one) but, thanks to the RefInt overlay, it no longer
points to the deleted uid=marcus record. Instead it points to the DN we specified in
refint_nothing.

Usually, though, the record will have more than one member attribute, like the
cn=Admins example earlier. In such a case when one of those DNs is deleted,
the attribute value is completely removed. Consider a modified version of our
cn=Public Relations group:

dn: cn=Public Relations,ou=Groups,dc=example,dc=com
objectclass: groupofnames
cn: Public Relations
ou: Groups
member: uid=david,ou=users,dc=example,dc=com
member: uid=marcus,ou=users,dc=example,dc=com

If the record for uid=marcus was deleted in this case, then the RefInt overlay would
simply delete the second member attribute value, leaving the group looking like this:

dn: cn=Public Relations,ou=Groups,dc=example,dc=com
objectclass: groupofnames
cn: Public Relations
ou: Groups
member: uid=david,ou=users,dc=example,dc=com

The value of refint_nothing is used only when required.

These last two examples have dealt with cases where the delete operation is used.
But the RefInt overlay also handles changes to DNs made with the modrdn operation.
For example, what if instead of deleting the record for uid=marcus we changed the
DN? Using the previous example let's begin with the same two records:

dn: uid=marcus,ou=users,dc=example,dc=com
uid: marcus
sn: Tullius
cn: Marcus Tullius

Chapter 5

[259]

givenName: Marcus
ou: users
objectclass: person
objectclass: organizationalperson
objectclass: inetOrgPerson

dn: cn=Public Relations,ou=Groups,dc=example,dc=com
objectclass: groupofnames
cn: Public Relations
ou: Groups
member: uid=marcus,ou=users,dc=example,dc=com

Let's change the DN of the first record to use Marcus Tullius's better-known name:

 $ ldapmodrdn -U matt uid=marcus,ou=users,dc=example,dc=com

 uid=cicero

In the previous example, we are changing the DN uid=marcus,ou=users,
dc=example,dc=com, replacing the relative DN portion (uid=marcus) with a new
relative DN: uid=cicero. Now the first record looks like this:

dn: uid=cicero,ou=users,dc=example,dc=com
uid: marcus
uid: cicero
sn: Tullius
cn: Marcus Tullius
givenName: Marcus
ou: users
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

The ldapmodrdn client added a new uid attribute value (cicero), and then
changed the DN of the entry from uid=marcus,ou=users,dc=example,dc=com
to uid=cicero,ou=users,dc=example,dc=com. And what about the cn=Public
Relations group? It now looks like this:

dn: cn=Public Relations,ou=Groups,dc=example,dc=com
objectClass: groupOfNames
cn: Public Relations
ou: Groups
member: uid=cicero,ou=users,dc=example,dc=com

Advanced Configuration

[260]

The RefInt attribute changed the value of the member attribute to point to the
newly modified DN. Remember, without the RefInt overlay, the cn=Public
Relations group would point to the now non-existent DN uid=marcus,
ou=users,dc=example,dc=com.

Drawbacks
Are there any drawbacks of using the RefInt overlay? Performance is one issue. For
every deletion or DN modification, the RefInt overlay will check all the values for
all of the attributes listed in the refint_attributes directive. A large number of
deletions or DN modifications can have an impact on system performance. But in
most situations, large-scale delete and modrdn operations are not the norm (and the
overlay can always be turned off when doing such operations).

There is one other drawback worthy of consideration. Some applications do handle
their own reference checking. It is possible that a poorly-written client might try
to delete attribute values that do not exist, generating spurious error messages in
the process. Of course, this would not have any negative effect on the directory
information tree, but it might alarm the user. However, the vast majority of clients,
including many that perform their own integrity checking, should not be hampered
by the RefInt overlay.

A Useful Note
When starting up SLAPD after installing a new overlay, it is not uncommon to get
the following warning message:

WARNING: No dynamic config support for overlay refint.

What does this message mean? And is the problem serious?

This warning message can be ignored when configuring OpenLDAP with a
slapd.conf file. It is simply a notice that the configuration options for this overlay
cannot be changed once the server starts. But this is, of course, how all directives in
the slapd.conf file work.

This warning message applies only to installations that load their configuration
into the directory as an LDIF file, and then manage their configuration inside of the
directory server (using the cn=Config record). This feature is fairly new, and since it
does not support all of the OpenLDAP features (such as many overlays), it is not the
recommended configuration for most clients.

Chapter 5

[261]

The Uniqueness Overlay
The last overlay that we will examine in this section is the uniqueness overlay. The
uniqueness overlay enforces uniqueness for a configurable set of attributes in the
directory. It prevents attributes in different records from containing the same values.
This is desirable, for example, when working with the uid attribute, where we would
clearly not want to have the same UID for multiple users in the system. By default,
SLAPD only enforces uniqueness when it comes to DNs—no two DNs may be the
same. But other attribute values are unchecked. Using the uniqueness overlay, we
can specify which attributes we want SLAPD to ensure uniqueness for.

The first step in configuring the uniqueness overlay is to load the module:

modulepath /usr/local/libexec/openldap
moduleload back_hdb
moduleload denyop
moduleload refint
moduleload unique

In the Basics section of slapd.conf, we add one more moduleload directive. The
module we want to load is named unique.

Next we want to add this overlay, along with a few specific directives, to the relevant
database sections:

overlay unique
unique_base dc=example,dc=com
unique_attributes uid

This is a very basic configuration for the uniqueness overlay. The unique_base
directive indicates which parts of the directory information tree we want to enforce
uniqueness in. For our exercise we want to enforce uniqueness across our entire
directory tree, dc=example,dc=com.

The unique_attributes directive takes a whitespace-separated list of attributes that
the uniqueness overlay will enforce uniqueness constraints. In this example we just
want to enforce uniqueness on the UID attribute.

The behavior of the uniqueness overlay is expected to change in
the next version of OpenLDAP (version 2.4). In particular, it will
support multiple bases inside a single database.

Thus, according to our configuration, no two UID values for any records in the
dc=example,dc=com directory information tree should be identical.

Advanced Configuration

[262]

Now let's see how this overlay works in practice.

In the discussion of the RefInt overlay, we created the following record:

dn: uid=cicero,ou=users,dc=example,dc=com
uid: marcus
uid: cicero
sn: Tullius
cn: Marcus Tullius
givenName: Marcus
ou: users
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

Note that this record has the UID marcus, even though this attribute is not used in
the DN. Now let's try to add the following record:

dn: uid=marcus,ou=users,dc=example,dc=com
uid: marcus
sn: Aurelius
cn: Marcus Aurelius
givenName: Marcus
ou: users
objectclass: person
objectclass: organizationalperson
objectclass: inetOrgPerson

This record also uses the UID marcus. Without the uniqueness overlay, SLAPD
would allow both records to have the same UID. This, of course, will cause problems
for applications that assume that a Unique ID is really unique—only zero or one
results will be returned for a search on the UID attribute.

But with the uniqueness overlay, as we have configured it, SLAPD will prevent
clients from adding a UID value that matches an existing UID value. The uniqueness
overlay does this by checking the attributes in add, modify, or modrdn operations. If
we try to add the given record for uid=marcus, we get an error:

$ ldapadd -U matt -f unique-example.ldif
SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers

Chapter 5

[263]

adding new entry "uid=marcus,ou=users,dc=example,dc=com"
ldap_add: Constraint violation (19)
 additional info: some attributes not unique

SLAPD sends back a Constraint violation error because the uniqueness overlay will
not allow a duplicate UID attribute value. To work around this, we would have to
either delete the extra UID attribute from the uid=cicero record or use a different
UID for Marcus Aurelius's record.

The example configuration we have just seen represents the most typical use of the
uniqueness overlay. There are two additional uniqueness directives that provide
more complex configurations:

The first is the unique_ignore directive. Typically, this is used instead of unique_
attributes.

While you can use both unique_attributes and unique_ignore, it
is not recommended because it can cause unexpected behavior. See the
man page for more detail: man slapo-unique.

The unique_ignore directive takes a whitespace-separated list of attributes
that should not be tested for uniqueness. There are attributes, such as ou, sn, and
objectclass, that are likely to be legitimately used more than once in a directory.
For example, it is perfectly possible for multiple people in an organization to have
the same surname, and thus have identical sn
attribute values.

But when unique_attributes is not specified, then by default all non-operational
attributes are assumed to require uniqueness. Consider this example configuration:

 overlay unique
 unique_base dc=example,dc=com
 unique_ignore objectclass sn ou description

According to this configuration, all of the attribute values in the directory
information tree except objectclass, sn, ou, and description will be required to
have unique values. Obviously, this configuration is far more restrictive than our
first example and it should be used with care.

Operational parameters—those intended for internal SLAPD
use—are not automatically added to the uniqueness list under
any circumstances. Doing so might cause hard-to-debug errors
that would prevent SLAPD from functioning properly.

Advanced Configuration

[264]

Finally, there is one additional directive for the unique overlay. The
unique_strict directive, which takes no parameters, can be used to turn
on "strict" uniqueness enforcement.

By default, the uniqueness overlay allows multiple attributes to have empty (null)
values. For example, if we enforce uniqueness on the uid attribute, SLAPD would
still allow multiple records to have a UID attribute with an empty value. But this is
not always desirable. Under some circumstances, it might be necessary to ensure that
no more than one attribute has an empty value. The unique_strict directive is used
for this purpose.

When the unique_strict directive is present, the uniqueness overlay will not
allow a client to set an attribute value to empty (null) if another instance of the same
attribute already exists and already has an empty value.

At this point, you should have a good idea of how to use overlays. We have looked
at three different overlays but in the coming chapters we will look at several more.

Summary
The focus of this chapter has been on advanced configuration of the SLAPD
server. We began by taking a second look at the slapd.conf file. Then we added
an additional database to our directory server, supporting a second directory
information tree. From there we looked at some ways of improving SLAPD's
performance using directives in the slapd.conf file, and also tuning the Berkeley
DB's DB_CONFIG file. In the last section we looked at SLAPD's overlay engine, touring
three specific overlays.

By now you should feel comfortable working with the slapd.conf file as well as
using overlays.

In the next chapter we will examine LDAP schemas, adding a few schemas for new
overlays, and then creating our own schema. Later, in Chapter 7, we will expand
upon some of the themes in this chapter when we look at the ways to configure
multiple OpenLDAP servers to work together.

LDAP Schemas
The focus of this chapter will be LDAP Schemas. Schemas are the standard way of
describing the structure of objects that may be stored inside the directory. The first
few sections are designed to provide foundational knowledge of what schemas do
and how they work—a foundation necessary for our work, later in this chapter,
using and implementing schemas. But we will continue on from there to a number of
more practical topics, including adding pre-defined schemas and defining our own
custom schemas.

We will begin with a general examination of schemas. From there, we will look at
schema hierarchies. Like the directory information tree itself, schemas are organized
into hierarchies. Next, we will examine some of the basic schemas that are included
with OpenLDAP. We will also look at two overlays that require their own schemas.
Finally, we will create a custom schema consisting of a pair of new object classes,
each with new attributes. The main topics we will discuss in this chapter are:

The basics of schema definitions
The three types of object classes
Using different schemas in OpenLDAP
Configuring the Accesslog and Password Policy Overlays
Obtaining and using an Object Identifier (OID)
Creating new schemas by hand

Introduction to LDAP Schemas
We have already looked at a variety of attributes and object classes used in
OpenLDAP. For example, we created entries for our users using the person,
organizationalPerson, and inetOrgPerson object classes and, in so doing, we
used attributes like cn, sn, uid, mail, and userPassword. We also created groups
using the groupOfNames and groupOfUniqueNames object classes, paying special

•

•

•

•

•

•

LDAP Schemas

[266]

attention to the member and uniqueMember attributes. We even looked briefly (in
Chapter 3) at object classes and attributes for describing documents and collections
of documents (document and documentCollection respectively).

Each of these object classes and attributes has a strict definition. The definitions
of attributes and object classes are bundled together into larger collections called
schemas. OpenLDAP applications use these schemas to determine how records
should be structured and where (in the hierarchical structure) each entry can
be located.

Why Do They Look So Complicated?
LDAP schemas have a bad reputation. They are viewed as complex, arcane,
hyper-technical, and difficult to implement. The goal of this chapter is to overcome
this perception.

It is understandable why this reputation persists though. I think there are a few
aspects of LDAP schemas that are daunting to the neophyte.

First, LDAP schemas are based on generations of technical specifications coming out
of the complex X.500 system. Because of this heritage, LDAP schemas make frequent
use of equipment that is not particularly human-friendly, such as object identifier
numbers that look like this: 1.3.6.1.4.1.1466.115.121.1.25. However, a little bit
of background knowledge can overcome this hurdle.

Second, the LDAP schema definition language is notably different from the sorts of
definition languages (DDL) familiar to SQL developers. This is largely due to the
different nature of the backend database. LDAP is not inherently tabular as relational
databases are, while it does make frequent use of concepts like inheritance (a rarity
in SQL DDL languages, though some do support the idea). Finally, while SQL DDL
takes the form of a SQL command, LDAP schema definitions are purely descriptive.

But the LDAP schema language is actually quite compact and typically only
two directives (attributetype and objectclasstype), each with a handful
of arguments, are needed in order to create custom schemas. For this reason,
the learning curve is short, and by the end of this chapter you should be able to
comfortably create your own schemas.

Typically schemas are written in plain-text files and stored in a subdirectory
of the OpenLDAP configuration folder. In Ubuntu these files are located at
/etc/ldap/schema. If you built from source the schema files are located by default
at /usr/local/etc/openldap/schema.

Chapter 6

[267]

SLAPD does not automatically use all of the schemas in the schema directory. When
SLAPD starts up, it loads only the schemas specified in the slapd.conf file.

There is an exception to this rule: certain vital LDAP schema components,
like objectclass, are hard-coded into OpenLDAP, since they are
fundamental to the operation of the server.

Usually schemas are included using the include directive. In Chapter 2 we included
three schema files in our slapd.conf file. The include section, near the top of the file,
looks like this:

include /etc/ldap/schema/core.schema
include /etc/ldap/schema/cosine.schema
include /etc/ldap/schema/inetorgperson.schema

The first line imports the core schema, which contains the schemas of attributes
and object classes necessary for standard LDAP use. The second imports a number
of commonly used object classes and attributes, including those used for storing
document information and DNS records. The inetorgperson.schema file includes
the inetOrgPerson object class definition and its associated attribute definitions.

In the coming sections we will look at the format of these files, implementing some
existing schemas, and finally creating our own schema.

Schema Definitions
LDAP schemas are used to formally define attributes, object classes, and various
rules for structuring the directory information tree. The term schema refers to a
collection of (conceptually related) schema definitions. The inetOrgPerson schema,
for example, contains the definition of the inetOrgPerson object class, as well as all
of the extra (non-core) attributes that are allowed or required by the inetOrgPerson
object class.

A schema definition is a special type of directive that provides information about
how a particular entity in SLAPD is to be structured. There are four different
types of schema definition that can be included in slapd.conf (or an included
schema definition):

Object class definitions: This defines an object class, including its unique
identifier, its name, and the attributes it may or must have.
Attribute definitions: This defines an attribute, including its unique
identifier, its name or names, the rules for what types of content will be
allowed as values, and how matching operations are performed.

•

•

LDAP Schemas

[268]

Object identifiers: This attaches a string name to a unique identifier. It is
primarily used to expedite creating schemas.
DIT content rules: This specifies rules for what additional (auxiliary) object
classes an entry with a particular structural object class may have.

In addition to these four, there are other schema definitions that are not typically
placed in a schema. Instead, most of these are generated by OpenLDAP code. Here
is a brief description of what each does (for more information see RFC 4512, which
defines the LDAP schema language):

Matching rule definitions: These define a rule used for matching operations.
Searches may use matching rules (such as equality and substring matching)
to find specific attribute values. For example, the distinguishedNameMatch
matching rule (with unique identifier 2.5.13.1) defines the matching
rule for exactly matching DNs. This rule is used by attributes like member
(for group membership) and seeAlso. Searching with this rule will return
successful results only if an attribute's value matches the given DN. The
matching rules for any attribute determine what indexes can be created for
that attribute.
Matching rule uses: These map attributes to matching rules, and is usually
created dynamically by SLAPD. Based on this definition, a client can tell
which attributes a particular matching rule can be applied to. It can be
used, for example, to find out all of the attribute values that support exact
DN matches (the distinguishedNameMatch matching rule). The schema
definition for a matching rule use (matchingRuleUse) contains a unique
identifier, the matching rule name, and all of the attributes that this matching
rule applies to.
LDAP syntaxes: These describe the syntax allowed for the content of an
attribute value. The exact type and syntax of data for an attribute value can
be specified when an attribute is defined. There are a number of supported
syntaxes (ldapSyntaxes) defined for SLAPD, including a syntax for the DN
structure, one for binary data, several for kinds of plain text data, and
so on. We will talk about supported syntaxes more when we look at
attribute definitions.
Structure rules: These define where in a directory information tree a given
entry can be located. It is based on the structural object class of the entry.
Structural object classes and the object class hierarchy are discussed later in
the section The Object Class Hierarchy section.
Name forms: These specify what attributes may or must be used in the RDN
portion of an entry's DN (based on the entry's structural object class).

•

•

•

•

•

•

•

Chapter 6

[269]

SLAPD builds this part of the schema in code. For example, matching rule uses
are generated based on what matching rules exist and what attributes implement
those matching rules. Like the rest of the schema, matching rules, LDAP syntaxes,
structure rules, and name forms can all be accessed over the LDAP protocol. See the
Retrieving Schemas from SLAPD section for more information.

For the time being though, we will focus primarily on the four schema definitions
that can be included in the slapd.conf file. In particular, we will focus on creating
new object classes and attributes.

Object Classes and Attributes
There are two different types of schema definition that we need in order to extend
the types of information that our directory server will store:

Attribute type definition: An attribute type definition defines an attribute,
including what attribute names it may have (for example, cn and
commonName), what sort of values an attribute may contain (numbers, string,
DNs, and so on), what rules to use when trying to match values, and whether
it may have more than one value.
Any given attribute may require that its value or values be composed of cer-
tain characters or data types. For example, the description attribute allows
long strings of characters, which makes it possible to include a sentence or
two of information as a value to a description field.
Object class definition: An object class definition specifies the name of the
object class, what attributes it must have, what attributes it may have, and
what kind of object it is.

We will look at each of these in turn. To start, let's take another look at one of the
schemas introduced in Chapter 3. Here is a graphical representation of the person
object class:

Required:
cn
sn
Allowed:
userPassword
telephoneNumber
seeAlso
description

Person

•

•

LDAP Schemas

[270]

The person object class has two required attributes (cn and sn) and four more
attributes that are allowed, but not required: userPassword, telephoneNumber,
seeAlso, and description.

A new record that is of object class person (and has no other object classes) might
look like this:

dn: cn=Thomas Reid, dc=example,dc=com
objectclass: person
cn: Thomas Reid
sn: Reid
userPassword:: DSFSUYJKHGH=
telephoneNumber: 555-555-5555
seeAlso: uid=david,ou=users,dc=example,dc=com
description: A basic user.

This record contains all, and only, the attributes in the person object class.
Attempting to add a different attribute type not mentioned in the schema would lead
to an error. Similarly, trying to remove all values for the cn or sn attributes would
also lead to an error since their presence is required.

But how does OpenLDAP know which attributes are required and which are
allowed? This information is stored in the schema definition for the person
object class.

Object Class Definitions
The schema definition is stored in the core.schema (and also in core.ldif) file at
/etc/ldap/schema (or /usr/local/etc/openldap/schema if you compiled from
source). Have a look at this:

objectclass
 (
 2.5.6.6
 NAME 'person'
 DESC 'RFC4519: a person'
 SUP top STRUCTURAL
 MUST (sn $ cn)
 MAY (userPassword $ telephoneNumber $ seeAlso $ description)
)

This is a simple object class definition. It begins with a descriptor, objectclass,
which tells the schema interpreter what type of definition is being made. The rest of
the definition is enclosed in parentheses. Extra whitespace characters, including line
breaks, are generally ignored (unless enclosed in a quoted string), but remember that

Chapter 6

[271]

since objectclass is a directive in the slapd.conf file format, every line other than
the first must start with a whitespace character.

The first field within the definition is the numeric identifier for the object class:
2.5.6.6. This unique identifier is called an Object IDentifier (OID). Every schema
definition has a unique OID that distinguishes that definition from any other
definition in the world. Because this OID is supposed to be globally unique there
is an official procedure for giving a definition a unique identifier. This will be
described later in the chapter. For now it is sufficient to note that these OIDs must be
universally unique.

Any LDAP application may refer to a definition by its OID. Object classes, attributes,
matching rules, and many other LDAP entities have OIDs.

The Root DSE record is a good example of how LDAP clients can learn
important information about a server's capabilities based on the OIDs that
the server presents to the client. See Appendix C for an example.

The second field in the definition is the NAME field. While an OID is easily used
by a computer, it is not so easily used by humans. So, in addition to an OID,
server-unique names (in character strings) may be specified. The above object class
only has one name: person. Multiple names can be given to a single object class, but
usually a single one will suffice.

In a schema definition, the string names should always be enclosed in single
quotation marks. In a list of string values, each value must be enclosed in single
quotes and the entire list must be enclosed in parentheses. For example, if the person
definition specified two names, person and humanBeing, the NAME field would look
like this:

NAME ('person' 'humanBeing')

Note also that spaces are not allowed in the values of the NAME field,
so 'human being' would be an illegal name.

In attribute definitions, it is more common to give attributes a long name
and an abbreviated name. For example, cn and commonName are both
names for the attribute with OID 2.5.4.3.

Most of the time object classes and attributes are referred to by the values in the NAME
field rather than by OID.

LDAP Schemas

[272]

By convention, names that consist of multiple words are concatenated
by capitalizing the first letter of each word after the first. For example,
commonName is composed of two words: common and name. Only the
second word is capitalized. Underscores, dashes, and other special
characters are typically not used to concatenate words. Thus, you should
not use names like common_name or common-name.

The DESC field is a brief description of what this schema definition is to be used for.
In this case the description field refers to an RFC (RFC 4519) that gives a detailed
explanation of the object class. Of course it is not necessary to create an RFC to
formally define your schemas, though if you plan on distributing the schema widely
writing an RFC is a good idea.

The next field, SUP, which is short for 'superior,' indicates what the parent object class
of this object class is. The parent of the person object class is the object class called
top. Object classes, like directory information trees, are organized in hierarchies. The
top object class is at the top of the object class hierarchy. The STRUCTURAL keyword
also pertains to how this schema definition fits into the schema hierarchy. We will
discuss schema hierarchies in the next part.

The last two fields are less mysterious. They define which attributes a person object
must (MUST) contain, and which attributes an object may (MAY) contain.

The syntax for the MUST and MAY fields is straightforward. Each description takes a
list of attributes:

MAY (userPassword $ telephoneNumber $ seeAlso $ description)

The list of attribute values (designated either by OID or by an attribute name) is
enclosed in parentheses. Values are separated with the dollar sign ($). The example
above indicates that the four values, userPassword, telephoneNumber, seeAlso,
and description, are all attributes that a person object is allowed to have.

An attribute should be specified in only one of the two lists. There is no need to put
an attribute in both a MAY and a MUST list.

Of course, the names can be replaced with OIDs instead. Thus, the following two
lines are equivalent:

 MUST (sn $ cn)

and

 MUST (sn $ 2.5.4.3)

The OID for the cn attribute is 2.5.4.3, and either identifier will work.

Chapter 6

[273]

There are a few fields that may be present in an object class definition but which are
not present in the previous code. The first is the OBSOLETE keyword, which appears
after the DESC field. This is used to designate an object class as obsolete but still
(temporarily) supported.

The second is the extensions section, which is used for providing implementation-
specific extensions to a schema. At the end of the schema one or more extensions
may be specified. An extension is a keyword followed by a list enclosed in
parentheses. By default, none of the schemas included in OpenLDAP's schema/
directory have any extensions.

In summary then, an object class definition begins with the objectclasstype
directive, and can contain the following fields:

A unique OID to identify this object class (example: 2.5.6.6).
A NAME field with a unique name (NAME 'person').
A DESC field with a brief description of the purpose of the object class (DESC
'RFC4519: a person').
Optionally, it may contain an OBSOLETE tag if the class is obsolete and should
not be used.
A SUP line, indicating what object class is the parent (superior) of this one.
Also, this line should specify the type of object class (STRUCTURAL, ABSTRACT,
or AUXILLIARY). Example: SUP top STRUCTURAL. Abstract classes do not have
superiors. When defining an abstract class SUP can be omitted.
A MUST field with a list of attributes that must be specified for an instance of
this object class. Example: MUST (sn $ cn).
A MAY field with a list of attributes that can optionally be added to records
of this object class. Example: MAY (userPassword $ telephoneNumber $
seeAlso $ description).
One or more extensions.

Object class definitions are an important part of schemas and we will look back at
these concepts several times in this chapter. After covering other definition types, we
will take a detailed look at the object class hierarchy. As we do that the role of the
SUP line will become clearer.

Further on we will look at some specific object classes and we will also write our
own custom object class. But before we move on to those things we will look at the
other schema definitions. Next, we will look at attribute definitions.

•

•

•

•

•

•

•

•

LDAP Schemas

[274]

Attribute Definitions
The person object class that we examined now can have six different
attributes—the two necessary sn and cn attributes, and the optional userPassword,
telephoneNumber, seeAlso, and description attributes. Just as the object class
was defined in the schema, so each attribute is also defined. The syntax for attribute
definitions is similar though the fields allowed in the definition are different and
more numerous.

The schema definition for the telephoneNumber attribute is a good example of a
basic attribute definition:

attributetype
 (
 2.5.4.20
 NAME 'telephoneNumber'
 DESC 'RFC2256: Telephone Number'
 EQUALITY telephoneNumberMatch
 SUBSTR telephoneNumberSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.50{32}
)

The attribute definition begins with an attributetype directive. The rest of the
definition is enclosed in parentheses.

The first field in the definition is the unique OID for this attribute. As with all OIDs,
this identifier must be globally unique. The OID 2.5.4.20 should only be used to
refer to a telephoneNumber attribute. Later in this chapter, in the section Getting an
OID, we will discuss getting and using a base OID.

After the OID comes the NAME field that associates one or more names with
the attribute.

The names given in the NAME field are usually called attribute descriptions
(see the discussion of the search operation in Chapter 3). This term is
confusing when talking about schema definitions because the attribute
schema definition has a description field, and that field is not the
attribute description.

It is not uncommon for attributes to have two names—a long name (such as
commonName or surname) and an abbreviated name (cn or sn respectively). When an
attribute has multiple names, the list of names should be enclosed in parentheses. As
an example, consider the NAME field for the fax attribute:

attributetype
 (
 2.5.4.23

Chapter 6

[275]

 NAME ('facsimileTelephoneNumber' 'fax')
 DESC 'RFC2256: Facsimile (Fax) Telephone Number'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.22
)

Note the syntax of the highlighted line. Each name in the list of names is enclosed in
single quotes (') and the entire list is enclosed in parentheses.

SLAPD will refer to attributes by the first name. Thus, if you search
for the fax attribute SLAPD will return the matching attributes as
facsimileTelephoneNumber not as fax.

The DESC field provides a brief description of the purpose of the attribute. In
the telephoneNumber attribute definition, the value of this field is 'RFC2256:
Telephone Number', indicating that the attribute is defined in RFC 2256.

One important aspect of defining an attribute is specifying how an application
should test two attribute values to see if they match. Do TEST and test match? In
some cases we might want them to, while in others we might not. Does t*st match
test? Again, in some cases, this is desirable while in others it is not.

We can determine, in the attribute definition, which matching rules should be used
to test whether one value matches another. When we discussed the search operation
in Chapter 3 we saw four different comparison operators that could be used in
search filters:

The equality operator (=)
The approximation operator (~=)
The greater-than-or-equal-to operator (>=)
The less-than-or-equal-to operator: (<=)

In addition to these we looked at using regular expression characters, such as the
asterisk (*), to match portions, or substrings, of an attribute value. The behavior
of each of these is determined, to a large degree, by the matching rules in the
attribute definition.

When the LDAP server processes a comparison (during operations like binding,
comparing, and searching) it uses the schema to determine how to handle these
comparisons. The schema specifies which matching rules should be used. There are
three different sorts of matching rules that can be assigned in a schema:

The equality rule, EQUALITY
The ordering rule, ORDERING
The substring matching rule, SUBSTRING

•

•

•

•

•

•

•

LDAP Schemas

[276]

An attribute schema may specify rules for one, two, or all three of these. The value of
each can be either the OID or the name of a matching rule. In the telephoneNumber
schema, EQUALITY and SUBSTRING are used:

EQUALITY telephoneNumberMatch
SUBSTR telephoneNumberSubstringsMatch

When an equality test for a telephone number is requested, such as the evaluation
of the filter (telephoneNumber=+1 234 567 8901), the telephoneNumberMatch rule
is used. Note that the plus sign (+) is part of the telephone number, not part of the
operator. If the filter includes a wild-card match, such as (telephoneNumber=+1 234
567*), then the telephoneNumberSubstringsMatch rule is used instead.

With no ORDERING rule defined, SLAPD will not process matching tests
for >= or <= operators. Any comparison will return false.

How do these two matching rules perform? Let's look at an example. When we
defined the user with UID matt, we assigned that user a telephone number. Here, we
will search for that entry, requesting only the telephoneNumber attribute:

 $ ldapsearch -LL -U matt '(uid=matt)' telephoneNumber

And the search result is as follows:

SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers
version: 1

dn: uid=matt,ou=Users,dc=example,dc=com
telephoneNumber: +1 555 555 4321

The telephoneNumber attribute has the value +1 555 555 4321. Now let's perform a
search using the telephone number:

 $ ldapsearch -LL -U matt '(telephoneNumber=+1 555 555 4321)' uid \

 telephoneNumber

And the search result is as follows:

SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128

Chapter 6

[277]

SASL installing layers
version: 1

dn: uid=matt,ou=Users,dc=example,dc=com
uid: matt
telephoneNumber: +1 555 555 4321

As expected a search using the exact phone number returned a result. This looks no
different from what we would expect a string matching rule to do. Using the special
telephoneNumberMatch rule in the schema has some advantages though. When
using this matching rule, SLAPD will ignore certain telephone number formatting
characters. Here's an example using a substring search:

 $ ldapsearch -LL -U matt '(telephoneNumber=+1 555-555-43*)' uid \

 telephoneNumber

Here is the result:

SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers
version: 1

dn: uid=matt,ou=Users,dc=example,dc=com
uid: matt
telephoneNumber: +1 555 555 4321

The filter in this example uses dashes (-) where the previous filter used spaces. Using
the telphoneNumberSubstringMatch rule, SLAPD ignored the dashes. With the
telephoneNumberMatch and telephoneNumberSubstringMatch rules, the numbers
+15555554321, +1 555 555 4321, 1-5-5-55554-3-2-1, and +1 555-555-4321 are all
treated as identical matches.

This illustrates the virtue of being able to specify matching rules in the schema. For
attributes such as cn, sn, or mail (email address), we certainly wouldn't want dashes
to be treated the same as white space characters. We wouldn't want Dan Forth
to match Danforth. But it is certainly a desirable feature when matching phone
numbers. The LDAP answer to this problem is to assign matching rules fitting to the
type of information stored in the attribute.

Other attributes, like homePhone, pagerTelephoneNumber, and
mobileTelephoneNumber (all defined in cosine.schema) all use the
telephoneNumberMatch and telelphoneNumberSubstringMatch
matching rules too. Since they all share the same format there is no need
to assign each a different specialized matching rule.

LDAP Schemas

[278]

Matching Rules and Indexes
Some backends, such as BDB and HDB, support indexes (using the index
directive in slapd.conf). The index supported is determined by the
matching rules defined for an attribute. For example, an attribute with
an equality matching rule can have an equality (eq) index. Likewise, one
with a substring matching rule supports sub indexes.

The last field in the telephoneNumber matching scheme is the SYNTAX field. This
relates to the type and structure of the data stored in values for telephoneNumber
attributes.

SYNTAX 1.3.6.1.4.1.1466.115.121.1.50{32}

The value of the SYNTAX parameter has two parts. The first is the OID (or the name)
of the LDAP syntax, and the second, set off in curly braces ({ and }) is the maximum
length (usually the number of characters) for the field. The length specifier is
optional, and the server is not obligated to enforce the maximum length.

The OID mentioned earlier, 1.3.6.1.4.1.1466.115.121.1.50, is the
telephone number syntax. This indicates that attribute values for instances of the
telephoneNumber attribute are to contain the characters (integers, dashes, spaces,
and so on) that a phone number would require. SLAPD will reject attempts to add
phone numbers that contain letters and other special characters. Later in this chapter,
in the Creating a Schema part, we will look at the list of common LDAP syntaxes that
OpenLDAP supports.

As far as complexity goes the telephoneNumber attribute is about average. However,
many attribute definitions are much shorter, taking advantage of the fields set in
similar attributes. Thus, there are many attributes that, because they inherit most of
their features from their superior (parent) attribute, have only an OID, a NAME field,
and a DESC field. The schema definition for the ever popular cn attribute looks
like this:

attributetype
 (
 2.5.4.3
 NAME ('cn' 'commonName')
 DESC 'RFC2256: common name(s) for which the entity is known by'
 SUP name
)

Chapter 6

[279]

In this case, the SUP name field indicates that the name attribute is the parent of the cn
attribute. Attributes, like object classes, can be organized hierarchically. A superior
attribute is the parent or prototype for this attribute and certain properties, if left
unspecified in the schema definition, are inherited from the superior. Syntax and
matching rules, for example, can be inherited from a parent.

In the previous example no matching rules and no LDAP syntax were specified.
Therefore, the cn attribute type inherits these values from its superior. The
name attribute uses the caseIgnoreMatch EQUALITY matching rule and the
caseIgnoreSubstringMatch SUBSTR rule, and uses the Directory String LDAP
syntax (1.3.6.1.4.1.1466.115.121.1.15). A directory string is a UTF-8 encoded
string intended to store text.

There are a handful of other fields that the previous examples do not make use of.
These are OBSOLETE, SINGLE-VALUE, COLLECTIVE, NO-USER-MODIFICATION, USAGE,
and the extension area. Let's briefly look at those.

The OBSOLETE flag, which usually appears after the DESC field, plays the same role
in attribute definitions as it does in object class definitions. It labels an attribute
obsolete. While obsolete attributes are still supported and can be used for records
in the directory information tree, they are to be treated as deprecated, subject to
removal in future versions of the schema or software. OBSOLETE takes no parameters.

The SINGLE-VALUE flag indicates that the defined attribute can only have one
attribute value. Typically, an attribute can have an arbitrary number of values. But
any attribute whose schema includes the SINGLE-VALUE flag can have no more than
one. The domain component (dc) attribute that we looked at in Chapters 3 and 4 is
an example of this. An object that has a dc attribute can only assign one value to that
attribute. SINGLE-VALUE takes no parameters.

The COLLECTIVE flag indicates that this attribute is a collective attribute. Entries can
be grouped, with collective attributes, into an entry collection.

Collectives are implemented in OpenLDAP via the collect overlay, which is not
compiled or installed by default, though it can be found in the servers/slapd/
overlays directory of the source code. The schemas necessary for collective support
are also not included by default in the OpenLDAP distribution, and must be copied
from another source (such as RFC 3671).

LDAP Schemas

[280]

Here's a rough idea of how entry collections work:

1. One record is the collection record, and must use the
collectiveAttributeSubentry object class. This becomes the authority
for that collective attribute. All other subordinate records then inherit the
attribute (and its value) and the attribute is visible (though read-only) as an
attribute of each of these records. For more information on collectives see
RFC 3671 (http://www.ietf.org/rfc/rfc3671.txt).

2. The NO-USER-MODIFICATION flag is used to indicate that the attribute is an
operational attribute (used by SLAPD or an overlay), and cannot be modified
by an LDAP client. This is not usually used in user-defined schemas.
Use it only when writing a custom overlay that will make use of its own
operational attributes.

3. The USAGE field provides SLAPD with information about what will
use the attribute. There are four possible values. The first three,
directoryOperation, distributedOperation, and dSAOperation, all
indicate that SLAPD itself uses the attribute. The last, userApplication, is
the default and it indicates that the attribute is primarily intended to be used
by client applications. Since most schemas are intended for client application
use, the default is usually what is desired and the USAGE field is rarely used.

4. Finally, attributetype definitions can also use extensions, though there
are no extensions used in the main schemas included in OpenLDAP. The
syntax for extensions is the same for attribute types as it is for object
class definitions.

In summary, an attribute schema definition begins with the attributetype directive
which is followed by a schema definition enclosed in parentheses. The following
fields are allowed in attribute definitions:

A unique OID number, which is required. Example: 2.5.4.15.
A NAME field, with one or more names for the attribute. Example: NAME
'businessCategory'.
A DESC field containing a description of the attribute type. Example: DESC
'RFC2256: business category'.
A DEPRECATED tag, if the attribute is deprecated.
A SUP field with the name or OID of the superior attribute type. Example:
SUP postalAddress.
An EQUALITY matching rule OID or name. Example: EQUALITY
caseIgnoreMatch.
An ORDERING matching rule OID or name.

•

•

•

•

•

•

•

Chapter 6

[281]

A SUBSTR matching rule OID or name. Example: SUBSTR
caseIgnoreSubstringsMatch.
A SYNTAX field with an LDAP syntax OID, and an optional length. Example:
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{128}.
The SINGLE-VALUE flag, if the attribute can only have one value.
The COLLECTIVE flag, if the attribute is a collective attribute.
The NO-USER-MODIFICATION flag, if the attribute is an operational attribute
that client applications should not be able to modify.
The USAGE field, together with one of the four keywords (userApplication,
directoryOperation, distributedOperation, or dSAOperation) used to
indicate what the attribute is to be used for.
Any extensions that the attribute definition requires.

At this point we have looked at both object class definitions and attribute definitions.
When creating your own custom schemas it is most likely that these are the only two
types of schema definitions that you will need to use.

We have discussed the basics of schemas and seen a few examples in the text. Later
in this chapter we will look at some other specific examples. But if you want to
take a look at more examples of attribute and object class schemas peruse the files
in the schema directory for OpenLDAP (/etc/ldap/schema or /usr/local/etc/
openldap/schema). The best place to start is with the core.schema schema, which
defines the standard LDAPv3 schemas.

While reading core.schema you might notice that several very
important object classes and attribute types are commented out. Why?
Because they are included in the system schema, which is hard-coded
into OpenLDAP. This schema is found in the OpenLDAP source code in
slapd/schema_prep.c.

The cosine.schema file contains many other commonly used schemas and is also
a good place to look. The inetOrgPerson.schema schema is a good example of
what a user-defined schema file ought to look like. Or, for a shorter example of a
user-defined schema, see openldap.schema.

While attributetype and objectclass are the two primary directives used in
schema creation there are a few others which we will cover, albeit more briefly, in the
next two sections.

•

•

•

•

•

•

•

LDAP Schemas

[282]

Object Identifier Definitions
The object identifier directive (objectidentifier) is an extension to the standard
definition language. While it doesn't provide additional functionality to the schema
language, it serves as a time-saving (and human-friendly) utility.

The objectidentifier directive is used to assign a string alias to an OID.
When SLAPD processes OID fields for attributetype, objectclasstype, and
ditcontentrule directives, if it encounters a string instead of an OID, it will check
to see if this string is an alias to an OID and, if so, it will use the value of the OID.
The telephoneNumber schema we examined in the last section provides a
good example:

attributetype
 (
 2.5.4.20
 NAME 'telephoneNumber'
 DESC 'RFC2256: Telephone Number'
 EQUALITY telephoneNumberMatch
 SUBSTR telephoneNumberSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.50{32}
)

Instead of using the OID for the telephone number equality and substring
matching rules (1.3.6.1.4.1.1466.115.121.1.50 and 1.3.6.1.4.1.1466.11
5.121.1.58, respectively), the schema refers to the names of the matching rules:
telephoneNumberMatch and telephoneNumberSubstringMatch. This later form is
much easier for humans to read.

The objectidentifier directive makes it easy to define such aliases for OID
numbers, in whole or in part. Here is a simple example of assigning a name to
an OID:

objectidentifier exampleComDemo 1.3.6.1.4.1.8254.1021.3.1

Using a directive like this at the top of a schema makes it possible to refer to the OID
using the name exampleComDemo later.

The given OID is valid and is registered to the author. If you are
developing your own LDAP schemas, you should register your own OID
(see the Getting an OID section). While you are free to use this OID when
recreating these examples, do not use it to write your own extensions.
Otherwise, there will be no way to ensure that such OIDs are globally
unique which defeats the purpose of the OID.

Chapter 6

[283]

For example, we could create a schema like this:

objectclass
 (
 exampleComDemo
 NAME 'myPersonObjectClass'
 DESC 'My Person Object Class'
 SUP inetOrgPerson STRUCTURAL
)

Note that instead of using the OID number for the object, we used the
exampleComDemo alias. But, generally, we would not assign one alias per object class.
It would be more convenient to alias a common root OID and then append just the
last part of the OID number. For example:

objectidentifier exampleComOC 1.3.6.1.4.1.8254.1021.1

objectclass
 (
 exampleComOC:1
 NAME 'myPersonObjectClass'
 DESC 'My Person Object Class'
 SUP inetOrgPerson STRUCTURAL
)

In this example we used the objectidentifier directive to create an alias for the
OID base that will be used for all of my object class definitions. Thus, when SLAPD
encounters the name exampleComOC, it will expand it to 1.3.6.1.4.1.8254.1021.1.
The object class definition for myPersonObjectClass should have the OID 1.3.6.1.
4.1.8254.1021.1.1 (note the extra .1 at the end). Rather than writing out the entire
number we use the exampleComOC alias and append a colon (:) and then the numeric
suffix for the object class.

When SLAPD encounters exampleComOC:1 it will expand it to 1.3.6.1.4.1.8254
.1021.1.1. Likewise, if I were to create a second object class with the desired OID
1.3.6.1.4.1.8254.1021.1.2, I could use exampleComOC:2 instead of typing out
the entire long OID.

Using the objectidentifier attribute can not only save typing, but
reduce typos in an area particularly prone to typos (and with typos
particularly difficult to spot).

For more examples of the objectidentifier directive, see openldap.schema in the
schema directory for OpenLDAP.

LDAP Schemas

[284]

DIT Content Rules
The last schema directive we will look at is the ditcontentrule directive which is
used for creating DIT Content Rules.

DIT stands for Directory Information Tree. This abbreviation is a
frequently used bit of LDAP parlance.

A DIT content rule identifies a particular structural object class, and indicates which
auxiliary object classes are allowed (or not allowed) to be included in entries that use
that object class.

For an example, let's use a few of the object classes introduced in Chapter 3. In the
Anatomy of an LDIF File section we created an entry representing a document. It
implemented the document object class, whose schema (located in cosine.schema)
looks like this:

objectclass
 (
 0.9.2342.19200300.100.4.6
 NAME 'document'
 SUP top
 STRUCTURAL
 MUST documentIdentifier
 MAY (commonName $ description $ seeAlso $ localityName $
 organizationName $ organizationalUnitName $
 documentTitle $ documentVersion $ documentAuthor $
 documentLocation $ documentPublisher)
)

This is a structural object class. Also in Chapter 3, in the Adding System Records section
we added the entry for uid=authenticate,ou=System,dc=example,dc=com. This
entry implemented the simpleSecurityObject object class. Here is the schema for
simpleSecurityObject:

objectclass
 (
 0.9.2342.19200300.100.4.19
 NAME 'simpleSecurityObject'
 DESC 'RFC1274: simple security object'
 SUP top
 AUXILIARY
 MUST userPassword
)

Chapter 6

[285]

This object class is an auxiliary object class, meaning that it can be added to entries
that already have a structural object class, the result being that the attributes of the
auxiliary object class are now available for that entry.

For more discussion on the different sorts of object classes and how they
function, see the discussion in Chapter 3 and the section in this chapter
called The Object Class Hierarchy.

According to default OpenLDAP settings, if we had an entry with the document
structural object class, we could give this document a password (for binding to the
directory) by adding objectclass: simpleSecurityObject to the record, and then
adding a userPassword attribute. This would give us a record looking something
like this:

dn: documentIdentifier=011,uid=david,ou=Users,dc=example,dc=com
documentIdentifier: 011
documentTitle: Treatise on Human Nature
userPassword:: c2VjcmV0
objectClass: document
objectClass: simpleSecurityObject

This entry is essentially a document that has the ability to log in! A client that used
this record's DN and the correct password could log in as this document.

Perhaps there are cases where this is desirable, but for the sake of this example, let us
suppose that this is a configuration that we do not want to allow.

Normally, decisions about which entries have which object classes are left to external
applications. But what if we wanted to make sure that no application could give
document a userPassword attribute?

The best method for solving this problem is to create a DIT content rule that
disallows adding the userPassword attribute to any entry that has the document
object class. This is done with the ditcontentrule directive:

ditcontentrule
 (
 0.9.2342.19200300.100.4.6
 NAME 'noPWForDocs'
 DESC 'Do not allow passwords for documents'
 NOT userPassword
)

The form of the ditcontentrule directive should be familiar by now. Like the
objectclass and attributetype directives, this directive encloses the DIT content
rule definition inside of parentheses.

LDAP Schemas

[286]

The first field is an OID. But unlike the other schema definitions, this OID is not the
OID for this definition. Instead, it is the OID of the structural object class that we
are targeting.

In this case, the OID 0.9.2342.19200300.100.4.6 is the OID for the document
object class. You can verify this with a glance at the document schema listed a few
pages back or by browsing the cosine schema.

The NAME field should contain a unique name used for referencing this rule. For the
most part, the value of this field is used in reporting references to this rule in the log
file, and in responses to the client.

The DESC field contains a short-text description of what the rule does.

The NOT field contains a list of OIDs or names of attributes that should be disallowed.
The name userPassword comes from the NAME field in the userPassword
attribute definition.

With this content rule in place, what will happen if we try to add a userPassword
attribute to a document? Here is an example using ldapmodify:

$ ldapmodify -U matt
SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers

dn: documentIdentifier=011,uid=dave,ou=users,dc=example,dc=com
changetype: modify
add: objectclass
objectclass: simpleSecurityObject
-
add: userPassword
userPassword: secret

modifying entry
 "documentIdentifier=011,uid=dave,ou=users,dc=example,dc=com"
ldap_modify: Object class violation (65)
 additional info: content rule 'noPWForDocs' precluded
 attribute 'userPassword'

The highlighted portion in this example is the attempted modification. We attempted
to add the simpleSecurityObject object class and the userPassword attribute to
the record. But the server responded with an Object class violation error, giving the
following reason:

content rule 'noPWForDocs' precluded attribute 'userPassword'

Chapter 6

[287]

Our custom DIT content rule did its job—it prevented the addition of the
userPassword attribute to the document entry.

This DIT content rule we created above is a negative rule—it defines what attributes
an entry cannot have. But ditcontentrule can also be used to create positive rules:
rules that specify which attributes (or auxiliary object classes) are allowed.

For example, we could write a rule that says that every entry that is an
inetOrgPerson must have a userPassword:

ditcontentrule
 (
 2.16.840.1.113730.3.2.2
 NAME 'reqPassword'
 DESC 'Require userPassword for inetOrgPerson'
 MUST userPassword
)

The OID used in this rule is the OID for the inetOrgPerson object class. The MUST
field indicates that any entry with the structural object class inetOrgPerson must
also have the userPassword attribute set.

Because of this rule, an attempt to add a new inetOrgPerson entry without a
userPassword would result in an error similar to the one we looked at earlier:

$ ldapadd -U matt
SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers

dn: uid=Johann,ou=users,dc=example,dc=com

uid: johann

ou: users

cn: Johann Fichte

cn: Johann Gottlieb Fichte

sn: Fichte

givenName: Johann

objectclass: person

objectclass: organizationalPerson

objectclass: inetOrgPerson

adding new entry "uid=Johann,ou=users,dc=example,dc=com"
ldap_add: Object class violation (65)
 additional info: content rule 'reqPassword' requires attribute
 'userPassword'

LDAP Schemas

[288]

The record being added (highlighted) is a valid inetOrgPerson entry, according
to the inetOrgPerson object class definition. But, because of the DIT content rule,
adding the record failed because there is no userPassword attribute value specified.

Now let's expand this rule to take advantage of the AUX field. The AUX field may be
used to explicitly state which auxiliary classes can be combined with this structural
object class.

In our newly revised DIT content rule we will make it so that only the pkiUser
and the labeledURIObject auxiliary object classes can be added to an
inetOrgUser record.

The pkiUser object class is an auxiliary object class designed to indicate
that an entry is capable of performing public key infrastructure (PKI)
secure transactions. It has one attribute, userCertificate, that
contains the user's cryptographic certificate. See the Wikipedia page
for a quick introduction to PKI: http://en.wikipedia.org/wiki/
Public_key_infrastructure.

The labeledURIObject object class allows an additional attribute, labeledURI,
which takes a URI (such as a URL) and a plain text description:

labeledURI: http://aleph-null.tv Home Page

The URI is separated from the label by a white space. So the URI is
http://aleph-null.tv and the label is Home Page. The labeledURIObject is
defined in RFC 2079 (http://www.ietf.org/rfc/rfc2079.txt).

Also, we will change the NAME and DESC elements to reflect the fact that our rule
now does more than just require a userPassword. The DIT content rule now
looks like this:

ditcontentrule
 (
 2.16.840.1.113730.3.2.2
 NAME 'inetOrgPersonRules'
 DESC 'Restrictions for entries with inetOrgPerson object class'
 MUST userPassword
 AUX (labeledURIObject $ pkiUser)
)

Note the syntax of the AUX field. To list multiple values in a field it is necessary to
enclose the list of values, separated by a dollar sign ($), inside of parentheses.

Chapter 6

[289]

Using this DIT content rule, we can successfully add a URL (using the
labeledURIObject auxiliary object class) to my record:

$ ldapmodify -U matt
SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers

dn: uid=matt,ou=users,dc=example,dc=com

changetype: modify

add: objectclass

objectclass: labeledURIObject

-

add: labeledURI

labeledURI: http://aleph-null.tv Home Page

modifying entry "uid=matt,ou=users,dc=example,dc=com"

The entry, highlighted above, was added successfully because the
labeledURIObject (which allows the labeledURI attribute) is allowed by the
content rule. But if I try to add a different auxiliary object class—one not explicitly
allowed in the DIT content rule – the change request will be denied:

$ ldapmodify -U matt
SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers

dn: uid=matt,ou=users,dc=example,dc=com

changetype: modify

add: objectclass

objectclass: userSecurityInformation

modifying entry "uid=matt,ou=users,dc=example,dc=com"
ldap_modify: Object class violation (65)
 additional info: content rule 'inetOrgPersonRules' does not
 allow class 'userSecurityInformation'

The DIT content rule prevented the addition of an auxiliary object class because this
class is not specified in the AUX field of the rule.

Like the other definitions, the ditcontentrule directive also allows the
OBSOLETE flag.

LDAP Schemas

[290]

In summary, the ditcontentrule directive takes a definition of a DIT content rule
enclosed in parentheses. The following fields are supported:

The OID of the structural object class to which this rule applies.
The NAME field, which provides a short name used to identify the rule.
The DESC field, which contains a description of the rule.
The OBSOLETE flag to mark this rule as obsolete.
The AUX field, which contains the names or OIDs of all auxiliary classes that
the entries of this object class are allowed to implement.
The MUST field, which contains a list of all of the (not already mandatory)
attributes that entries of this object class must have.
The MAY field, which lists all of the fields that a member of this object class
may have. As of OpenLDAP 2.3.30, this is not exclusive. Attributes not in this
list but allowed by object class schema definitions are still allowed. In other
words, MAY does not impose any restrictions.
The NOT field, which contains a list of attributes that an entry of this object
class cannot have. This cannot be applied to attributes that are required by
the object classes schema definition.

Now we have looked at the four different schema definition directives allowed in the
slapd.conf file (or included files). With this information you should be able to read
through and understand any of the schemas defined in OpenLDAP.

Next we will take a quick look at how to get schema information out of a SLAPD
server using the LDAP protocol.

Retrieving the Schemas from SLAPD
When SLAPD loads the schemas, it stores them in a special part of the directory
information tree, along with the Root DSE record�� a special entry holds schema
information. Having this information is useful for debugging, but more importantly
it provides a way for client applications to find out about what types of objects and
attributes may be stored in this directory server.

Obtaining the information from the directory is as easy as issuing an
ldapsearch command.

The schema information is stored in a special record called the subschema subentry.
You can access the subschema subentry using ldapsearch:

 $ ldapsearch -U matt -b 'cn=subschema' -s base +

•

•

•

•

•

•

•

•

Chapter 6

[291]

Access to the cn=subschema record is governed by global ACLs (ACLs
that appear before the database section). For example, to grant access
to the subschema to users only, you can use a rule like this: access to
dn.exact="cn=subschema" by users read.

This will retrieve the entire schema specification from the server including not only
the attribute and object class definitions, but also definitions of matching rules,
matching rule uses, structure rules, name forms, and LDAP syntaxes.

But, as with any other record in an LDAP server, we can use search filters to get just
the values of specific attributes. For example, we can find out what all of the existing
DIT content rules are:

$ ldapsearch -LL -U matt -b 'cn=subschema' -s base ditcontentrules
SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers
version: 1

dn: cn=Subschema
dITContentRules: (0.9.2342.19200300.100.4.6 NAME 'noPWForDocs' DESC
 'Do not allow passwords for documents' NOT userPassword)
dITContentRules: (2.16.840.1.113730.3.2.2 NAME 'inetOrgPersonRules'
 DESC 'Restrictions for inetOrgPerson object class.'
 AUX (labeledURIObject $ pkiUser)
 MUST userPassword)

This search returns all of the DIT content rules currently included in the schema
definitions for this server. Of course, the only two there are the ones we created in
the last section.

The following schema-related attributes are included in the cn=Subschema record:

ldapSyntaxes: This attribute has one value for every LDAP syntax
supported in the directory. Example: ldapSyntaxes: (1.3.6.1.1.16.1
DESC 'UUID').
matchingRules: This attribute has one value for every matching rule in the
directory. Example: matchingRules: (2.5.13.14 NAME 'integerMatch'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27).

•

•

LDAP Schemas

[292]

matchingRuleUse: This attribute has one value for every matching rule
use, which pairs matching rule OIDs with a list of all of the attributes
that implement that matching rule. Example: matchingRuleUse: (
2.5.13.27 NAME 'generalizedTimeMatch' APPLIES (createTimestamp $
modifyTimestamp)).
attributeTypes: This attribute has one value for every attribute definition
in this directory. Example: attributeTypes: (2.5.4.3 NAME ('cn'
'commonName') DESC 'RFC2256: common name(s) for which the entity is
known by' SUP name).
objectClasses: This attribute contains one value for every object class
definition. Example: objectClasses: (2.5.6.2 NAME 'country' DESC
'RFC2256: a country' SUP top STRUCTURAL MUST c MAY (searchGuide $
description)).
dITContentRules: This attribute contains one value for every DIT content
rule defined.

Other standard attributes, such as cn, objectclass, and the basic operational
attributes, are also part of the record.

Examining schemas this way is an alternative to simply reading the schema files.
While it has less documentation (since there are no comments), using filters can be
helpful. Also, information not in the standard schemas (such as schema definitions
for operational attributes) is also available in this record.

Later in the chapter we will begin implementing schemas in SLAPD, first by
including some already written schemas, then by writing our own. But next we
will take a quick look at one more theoretical component of schemas: the
schema hierarchy.

The ObjectClass Hierarchy
Object classes and attributes in LDAP can be organized into hierarchical
relationships. A hierarchical relationship is one in which one entity stands in a parent
or superior relationship to one or more subordinate entities.

Attribute hierarchies tend to be simple, and require only a short explanation. Object
classes, on the other hand, use a more complicated hierarchical model and will be the
focus of this part of the chapter.

In the cases of both attribute and object class hierarchies, the mechanism for creating
the hierarchy is the schema definition. Schema definitions for both attributes and
object classes use the SUP field to indicate a relationship to a parent, or superior.

•

•

•

•

Chapter 6

[293]

We will start out with a brief discussion of attribute hierarchies, and then move on to
the more complicated object class hierarchies.

Attribute Hierarchies
Attribute hierarchies are simple relationships wherein one attribute can, through
its subordinate relationship to another attribute, inherit certain features, such as
matching rules and LDAP syntaxes.

The simplicity of attribute hierarchies manifests itself in a few ways:

There is no requirement that an attribute have any relation to other attributes.
In other words, there is no requirement that attributes be part of a hierarchy.
Many, such as the telephoneNumber attribute we looked at in the previous
part, stand on their own.
Attribute hierarchies do not play a significant role in how attributes are used.
Attribute hierarchies exist primarily to keep attribute schema definitions
clean and succinct, minimizing repetition.

The name attribute, which is conventionally not used directly in any object class,
is a good example of the use of superior/subordinate relationships in attribute
definitions. Thirteen attributes in the core schema list name as their superior. The cn
attribute is one example.

NAME ‘name’

DESC ‘RFC2256: common supertype of name attributes

EQUALITY caseIgnoreMatch

SUBSTR caseIgnoreSubstringsMatch

SYNTAX 1.3.6.1.4.1466.115.121.1.15{32768}

name (2.5.4.41)

cn (2.5.4.3)

NAME (’cn’ ‘commonName’)

DESC ‘RFC2256: common names(s) for which the...’

SUP name

EQUALITY caseIgnoreMatch

SUBSTR caseIgnoreSubstringsMatch

SYNTAX 1.3.6.1.4.1466.115.121.1.15{32768}

The schema definition for cn uses only the NAME, DESC, and SUP fields, with SUP
indicating that the name attribute is the superior of cn.

•

•

LDAP Schemas

[294]

Since the cn attribute definition does not specify any matching rules or an LDAP
syntax, these are inherited from the name attribute. Hence, cn is assigned the
equality and substring matching rules defined in name, as well as the LDAP syntax
and length.

But there is not much more that can be done with attribute hierarchies. Other than
matching rules and syntax nothing else is automatically inherited from the superior,
and there are no other benefits in using attribute hierarchies.

Subordinate Attributes and Searching
There is one interesting effect that results from attribute hierarchies. A request for a
superior attribute may return subordinate attributes as matches. For example, here is
a search requesting just a single attribute: name:

$ ldapsearch -LL -U matt '(uid=matt)' name
SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers
version: 1

dn: uid=matt,ou=Users,dc=example,dc=com

ou: Users

cn: Matt Butcher

sn: Butcher

givenName: Matt

givenName: Matthew

title: Systems Integrator

st: Illinois

l: Chicago

According to the search parameters, the search should return any name attribute
values for records with uid=matt. But the record returned (highlighted) has more
than that. In addition to the DN, which is always returned, the record also has ou, cn,
sn, givenName, title, st, and l values.

Why is this? This happens simply because all of those attribute types have name as
the superior.

Chapter 6

[295]

Such behavior extends to search filter behavior, as well. For example, a search filter
like (name=Marcus) will result in a search being performed against all attributes that
use name as a superior:

$ ldapsearch -LL -U matt '(name=Marcus)'
SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers
version: 1

dn: uid=cicero,ou=Users,dc=example,dc=com
uid: marcus
uid: cicero
sn: Tullius
cn: Marcus Tullius
givenName: Marcus

ou: users
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

The record for uid=cicero matched because the givenName field has the value
Marcus. As can be seen in the attribute type definition, the givenName attribute has
name as a superior attribute type:

attributetype (2.5.4.42 NAME ('givenName' 'gn')
 DESC 'RFC2256: first name(s) for which the entity is known by'
 SUP name

While this feature can cause some unexpected behavior for those unfamiliar with
schemas, it can prove quite useful at times.

For the most part, attribute hierarchies are fairly simple. Object class hierarchies are
more complex though. And we will now take a look at them.

Object Class Types: Abstract, Structural, and
Auxiliary
Like attributes, object classes can be organized into hierarchies. Typically, there is
one major object class hierarchy. But while the hierarchical organization of object
classes plays an important part in the structure of the directory, not all object classes
are part of the hierarchy. To understand why this is we must begin by examining the
different types of object classes.

LDAP Schemas

[296]

There are three types of object class: abstract, structural, and auxiliary as follows:

An abstract object class holds a place at the top of the object class hierarchy.
It may set required and allowed attributes for all object classes beneath it
in the hierarchy, but no record can be an instance of that object class only.
Further, any parent of an abstract object class must also be abstract.
A structural object class also holds a place in the hierarchy, and is a
subordinate of (or, to phrase it differently, inherits from) either another
structural object class or an abstract object class. An entry in the directory
is an instance of a structural object class. When one structural object class
subclasses another structural object class, the parent class is treated as if it
were abstract. So, operationally speaking, for any given record it has only
one structural object class—the structural object class is lowest on the object
class hierarchy.
An auxiliary object class is not required to be part of the object class
hierarchy, though it can be. An auxiliary object class is intended to allow
extra attributes to be defined for a record that already has a structural
object class. For example, a record that describes a system account may not
be in the person part of the hierarchy but may still need a password. The
simpleSecurityObject is an auxiliary object class that can be added to other
structural object classes to allow (and, in fact, require) that a userPassword
attribute be set.

Abstract and structural object classes are organized into a hierarchy, with abstract
classes at the top, and structural object classes as subordinates of those. In core
schema (core.schema), there is only one abstract object class: top. This object class
marks the top of the object class hierarchy—the ancestor (the highest superior) of all
object classes.

The Object Class Hierarchy: An Overview
The hierarchy begins with the abstract object class top. Beneath it are any number of
structural object classes, all of which are either direct or indirect subordinates. A direct
subordinate is one that lists top as its superior object class (in the SUP field of the
schema definition). An indirect subordinate is farther down the object class hierarchy.
It lists another abstract or structural object class as its superior, but that superior either
itself refers to top as its superior, or refers to another indirect subordinate.

In other LDAP references, a superior class is sometimes called a
superclass, while a superior attribute (in the attribute hierarchy) is called
a supertype. Likewise, the terms subclass and subtype can be used to
indicate the subordinate relationships in classes and attributes.

•

•

•

Chapter 6

[297]

Structural object classes have either an abstract object class or another structural
object class as their superior.

Auxiliary object classes may or may not be in the object class hierarchy. They can
have superiors, but they are not required to.

Here is a pictorial representation of a simple object class hierarchy (consisting of four
object classes) and a pair of records in the directory information tree that we created
in Chapter 3:

uid=authenticate, ou=System, dc=example, dc=com
objectclass: account
objectclass: simpleSecurityObject

cn=Admins, ou=Groups, dc=example, dc=com
objectclass: groupOfNames

simpleSecurityObject
(Auxiliary)

account
(Structural)

top
(Abstract)

groupOfNames
(Structural)

The account and groupOfNames structural object classes both have top listed as their
superior (as indicated by the solid lines). simpleSecurityObject, an auxiliary object
class, has no superiors.

Beneath the object class hierarchy are two records, with the DN and object class
attributes displayed. The dotted lines indicate which schemas these entries
implement. Each of the two records (the uid=authenticate user and the cn=Admins
group) are related to a different part of the object class hierarchy. cn=Admins is a
groupOfNames, while uid=authenticate is an account that also has the attributes of
a simpleSecurityObject.

This representation of the object class hierarchy is designed to show how the
organization of schemas is related to the entries within the directory.

It is important to keep in mind that there are two different hierarchies in play
here. The two entries above are part of the directory information tree hierarchy.
Their position in that hierarchy is indicated by their DNs. The uid=authenticate
entry, for example, is a child of the ou=System entry, which in turn is a child of the
dc=example,dc=com entry (the root entry for our directory information tree).

LDAP Schemas

[298]

But by their object classes, the entries can also be related to the object class hierarchy,
as is illustrated. For the time being it is only this second hierarchy—the object class
hierarchy—that we are interested in.

Let's take a look at each of the three types of object classes. Understanding the
differences between the three, and the respective role each plays, will illuminate the
concepts at play in the object class hierarchy.

Abstract Classes
The first of the three types that we will examine is the abstract class. While abstract
classes are only rarely used, they play a major role in the development of the object
class hierarchy.

We have already talked about the special top object class. The most commonly used
LDAP schemas do not use any other abstract object classes beside top. The top object
class definition looks like this:

objectclass
 (
 2.5.6.0
 NAME 'top'
 DESC 'RFC2256: top of the superclass chain'
 ABSTRACT
 MUST objectClass
)

It requires only one attribute: objectclass. All structural object classes should be
related, either directly or indirectly, to top. And any abstract object class that will
have structural object classes subordinate to it must also be related to top. While it is
possible to create an abstract class without a superior class, effectively starting a new
tree of object classes, this is rarely done.

Abstracts without Superiors
The main circumstance for defining abstract classes without superiors
is when all of the classes that inherit from that abstract class will be
auxiliary object classes. Structural object classes, according to RFC 4512,
must be related (directly or indirectly) to the top object class.

But top is not the only abstract object class in frequent use. There are a few common
schemas included with OpenLDAP, notably the java.schema and corba.schema,
which make use of abstract object classes whose superiors are top. If an abstract
object class has a superior, it must be an abstract superior.

Chapter 6

[299]

Abstract object classes can have lists of attributes in the MUST and MAY fields of their
definition. The top object class, as we just saw, requires the objectclass attribute.
Any entry that implements a structural object class subordinate to this abstract object
class inherits the MUST and MAY constraints of the parent.

For example, in the java.schema the class javaObject is abstract. Here is
its definition:

objectclass
 (
 1.3.6.1.4.1.42.2.27.4.2.4
 NAME 'javaObject'
 DESC 'Java object representation'
 SUP top
 ABSTRACT
 MUST javaClassName
 MAY (javaClassNames $ javaCodebase $
 javaDoc $ description)
)

According to the SUP field, this object class is subordinate to top. It requires
that any entry that implements javaObject has a javaClassName attribute. It
also defines several attributes—javaClassNames, javaCodebase, javaDoc, and
description—that entries may include.

The Java schema is used to store serialized Java objects in a directory
server. It is defined in RFC 2713.

There are no structural object classes subordinate to javaObject. However,
there are a couple of auxiliary object classes that are subordinate to
javaObject: javaSerializedObject and javaMarshalledObject. Here is the
javaSerializedObject schema definition:

objectclass
 (
 1.3.6.1.4.1.42.2.27.4.2.5
 NAME 'javaSerializedObject'
 DESC 'Java serialized object'
 SUP javaObject
 AUXILIARY
 MUST javaSerializedData
)

Only one attribute is required in this class: javaSerializedData. There are no
optional attributes specified in this definition.

LDAP Schemas

[300]

If some entry uses the javaSerializedData object class what fields must it have?
And what fields may it have?

It must have a javaSerializedData attribute. We can see that from the
javaSerializedObject schema. But it also must have the javaClassName attribute
because that is required in the object class of the superior javaObject object class.
And a javaSerializedData entry may have any of the attributes listed in the MAY
field of the javaObject schema: javaClassNames, javaCodebase, javaDoc,
and description.

This example illustrates the use of the abstract object class as a way of organizing object
classes into hierarchies, grouping similar object classes (here, javaSerializedObject
and javaMarshalledObject) under a common (and more generic) ancestor,
javaObject. The javaObject abstract object class is then used to specify the common
attributes that both of the subordinate object classes need included.

Thus, one of the major uses of abstract object classes is to collect common attributes
that should be (or may be) included in object classes that are defined as subordinate
to it.

Abstract classes are rare. In contrast, the most commonly used object class type is the
structural object class.

Structural Object Classes
As we have seen in a number of examples, every record has a DN and one or more
object classes. From there, what other attributes it has depends on the object classes.
But there are constraints on which object classes an entry has. One major factor
that determines what object classes an entry may have is the structural object
class hierarchy.

Every record in the directory must have at least one structural object class. The
structural object class determines what type of entry a record is. For example, an
entry with the structural object class organization is an organization entry.

Once an entry has been created in the directory, its structural object class
cannot be changed. Adding and removing auxiliary object classes is
allowed, but the structural object class is unalterable (as is, ipso facto, the
chain of superior object classes).

Chapter 6

[301]

An entry may implement more than one object class, and not all the object classes
that it implements need be structural. Let's take a look at the organization record we
created in Chapter 3:

dn: dc=example,dc=com
description: Example.Com, your trusted non-existent corporation.
dc: example
o: Example.Com
objectClass: top
objectClass: dcObject
objectClass: organization

There are three object classes for this entry:

top—an abstract object class
dcObject—an auxiliary object class
organization—a structural object class

The top object class is not strictly necessary in this entry. SLAPD
implicitly includes top in all entries, since all structural object classes
derive from it.

How do we know which object classes are of which type? The schema definitions for
these object classes are the primary source of such information.

The structural object class locates this entry in the hierarchy of object classes, a
hierarchy composed of abstract and structural object classes.

An entry may have more than one structural object class as long as they are all
related by superior/subordinate relationships.

In the case where there are multiple structural object classes in one record, the most
subordinate object class (the one farthest from the root object class, top) will have
all of the rest of the structural object classes as ancestors. That is, for the object class
farthest from top in the object class hierarchy, all other structural object classes must
be superior to it. This lowest object class is then treated as the structural object class.

For example, in Chapter 3 we created a record for the user barbara:

dn: uid=barbara,ou=Users,dc=example,dc=com
ou: Users
uid: barbara
sn: Jensen
cn: Barbara Jensen
givenName: Barbara

•

•

•

LDAP Schemas

[302]

displayName: Barbara Jensen
mail: barbara@example.com
userPassword: secret
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

This user belongs to four object classes. Three of these were explicitly stated earlier:
person, organizationalPerson, and inetOrgPerson. All three of these happen to
be structural object classes. The fourth, the top object class, is implicitly included.

All four of these object classes are related in the hierarchy. The top abstract object
class sits at the top of the object class hierarchy. The person object class is directly
subordinate to top. That is, the person object class definition lists top as its parent:

 objectclass
 (
 2.5.6.6
 NAME 'person'
 DESC 'RFC2256: a person'
 SUP top
 STRUCTURAL
 MUST (sn $ cn)
 MAY (userPassword $ telephoneNumber $ seeAlso $ description)
)

While person points to top as its superior, organizationalPerson points to
person. And inetOrgPerson points to organizationalPerson as its superior. Thus,
we get a hierarchy of object classes:

organizationalPerson (structural) pilotPerson (structural)

inetOrgPerson (structural)

top (abstract)

person (structural)

SUP

SUP

SUP

So, according to this hierarchy, any entry that is an inetOrgPerson must also
abide by definitions of all of its superiors: organizationalPerson, person, and
top. Any required attributes of any of those object classes will be required for an
inetOrgPerson entry, and any optional attributes for any of those classes is optional
for an inetOrgPerson entry.

Chapter 6

[303]

Thus, the required fields for inetOrgPerson are sn and cn, both of which it gets
from the person object class, and the objectclass attribute, which it inherits
from top.

For a complete list of fields required by and allowed by inetOrgPerson,
see the subsection Adding User Records in Chapter 3.

In the previous figure, the pilotPerson object class is also included, which
represents another branch of the hierarchy. Like organizationalPerson and
inetOrgPerson, pilotPerson describes a person within an organization, but
it includes a number of attributes not present in organizationalPerson and
inetOrgPerson, including the favouriteDrink and janetMailBox attributes.

While pilotPerson is not officially obsolete, it is not usually used; inetOrgPerson
is typically used instead. But like organizationalPerson, pilotPerson lists person
as its superior. Thus, it inherits the attributes of person and top. However, it is not
related, directly or indirectly, to organizationalPerson or inetOrgPerson, and
thus inherits none of their attributes.

Because pilotPerson is not related to organizationalPerson or inetOrgPerson,
and because all of these are structural object classes, SLAPD will not allow any
record to implement the pilotPerson object class and organizationalPerson
or its subordinates. For example, if we try to add a record with all four of the
person-describing object classes, we will get an error:

$ ldapadd -U matt
SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers

dn: uid=charles,ou=users,dc=example,dc=com

uid: charles

ou: users

cn: Charles Sanders Peirce

sn: Peirce

gn: Charles

objectclass: person

objectclass: organizationalPerson

objectclass: inetOrgPerson

objectclass: pilotPerson

adding new entry "uid=charles,ou=users,dc=example,dc=com"

LDAP Schemas

[304]

ldap_add: Object class violation (65)
 additional info: invalid structural object class chain
 (inetOrgPerson/pilotPerson)

When the client requests that the record above be added, SLAPD responds with
an Object class violation error, indicating that the chain of object classes is not
correct. This is because pilotPerson is not related to organizationalPerson or
inetOrgPerson.

Returning to our record for uid=barbara, that entry lists three object classes:

objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

As we saw in the previous figure, inetOrgPerson is the lowest object class on the
hierarchy—the far most from top. That means that SLAPD considers this object
class to be the structural object class for the record. It even sets a special operational
attribute, structuralObjectClass, that stores this value. Thus, you can get
information on the structural object class through ldapsearch:

 $ ldapsearch -LL -U matt '(uid=barbara)' structuralObjectClass

Here is the information:

SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers
version: 1

dn: uid=barbara,ou=Users,dc=example,dc=com
structuralObjectClass: inetOrgPerson

When handling operations and evaluating rules, such as DIT content rules, SLAPD
will treat this record as an inetOrgPerson record.

Within this discussion of structural object classes we have covered the gist of the
object class hierarchy. An entry's place in the hierarchy is determined by its structural
object class. But not all object classes affect a record's placement in the object class
hierarchy. Let's turn to the third type of object class: auxiliary object classes.

Chapter 6

[305]

Auxiliary Object Classes
Auxiliary object classes provide a mechanism for adding one or more attributes to
an entry with an existing structural object class. Think of it as a modular system
for defining a collection of related attributes that can be attached to otherwise
(conceptually) unrelated object classes.

To get an idea of how this works let's take another look at the
uid=authenticate entry:

dn: uid=authenticate,ou=System,dc=example,dc=com
uid: authenticate
ou: System
description: Special account for authenticating users
userPassword:: c2VjcmV0
objectClass: account
objectClass: simpleSecurityObject

The structural object class for this entry is account. The simpleSecurityObject
object class is auxiliary.

The account schema, found in cosine.schema, looks like this:

objectclass
 (
 0.9.2342.19200300.100.4.5
 NAME 'account'
 SUP top STRUCTURAL
 MUST userid
 MAY (description $ seeAlso $ localityName $
 organizationName $ organizationalUnitName $ host)
)

This entry, according to the COSINE standard (RFC 4524), is to define a system
account on a computer.

For whatever reason, the creators of the standard did not include the attributes
necessary to give the account a password. This makes sense. It is probably not typical
that a system account would need to authenticate against LDAP. However, the
system account we have created needs to perform directory operations and so we
need this account to have a userPassword attribute.attribute.

One way to achieve this is to create a new structural object class subordinate to
account, but which requires a userPassword attribute. But there is also an objectattribute. But there is also an object
class in core.schema designed specifically for the purpose of giving non-persondesigned specifically for the purpose of giving non-person
entries in the directory a userPassword to allow them to bind. In other words, thereto allow them to bind. In other words, there
is an existing object class that provides exactly the functionality we require: the
simpleSecurityObject object class.object class.

LDAP Schemas

[306]

The simpleSecurityObject is also defined in the COSINE schema.

The simpleSecurityObject schema looks like this:

objectclass
 (
 0.9.2342.19200300.100.4.19
 NAME 'simpleSecurityObject'
 DESC 'RFC1274: simple security object'
 SUP top
 AUXILIARY
 MUST userPassword
)

This schema definition adds one required attribute to any implementing entry,
userPassword. Effectively then, the simpleSecurityObject object class can be
added to an entry in order to allow it to bind to the directory (assuming the
ACLs allow).

Given the combination of the structural object class, account, and the auxiliary
object class, simpleSecurityObject, our uid=authenticate record now has three
required fields:

objectclass, inherited from top
uid, from the account structural object class
userPassword, from the simpleSecurityObject auxiliary object class.

This example illustrates how the auxiliary object class can be used to add additional
attributes to an entry that already belongs to a structural object class.

Rather than creating new structural object classes for each set of attributes you want
an entry to have, the auxiliary object class mechanism makes it possible to define a
modular collection of add-on attributes that can be attached to entries as needed.

By default, any auxiliary object class can be added to a record regardless of the
structural object class of that record.

In other words, by default it is legal to take an entry with a person structural object
class (an entry obviously intended to represent a human being) and attach to it the
javaSerializedObject auxiliary object class (an entry intended to describe a stored
representation of a Java binary class).

•

•

•

Chapter 6

[307]

Historically, the responsibility for judiciously choosing which auxiliary object classes
ought to be added to an entry has been left to LDAP client applications and users.
However, you can use DIT content rules (see the previous part of this chapter) to
formalize which auxiliary object classes an entry of a given structural object class is
allowed to have.

Moving Onward
Up to this point, this chapter has focused on the details of the LDAP schema system,
and has focused as much on theoretical points as it has on practice.

In these pages, I have tried to provide a condensed explanation of LDAP schemas,
focusing on the aspects most applicable to the goals of this book. This material
should provide the necessary background knowledge for reading schema definitions,
wisely selecting which schemas to use for your own directory needs, and writing
custom schemas.

However, if you intend to work on the OpenLDAP code, write overlays or modules,
or even write schemas intended for public standardization, you ought to read the
LDAP RFCs, particularly RFC 4512, which defines the LDAP schema language.

Now we are ready to move on to more practical matters. In the next section, we will
implement a few overlays that require extra schemas. As we configure those overlays
we will examine the schemas and the role those schemas play in the functioning of
the overlay.

After that, we will create our own short schema.

Schemas: Accesslog and Password
Policy Overlays
In the last chapter we saw OpenLDAP's overlay technology, and we implemented a
few simple overlays. In this chapter we have seen how LDAP schemas work. Now
we are going to take a look at a few overlays that require custom schemas.

The two overlays that we will examine are the accesslog overlay and the ppolicy
(Password Policy) overlay.

Because they require their own schemas, and because each provides a robust feature
set, these two overlays have a more complicated configuration. However, since the
basic concepts are familiar already, we will move quickly.

LDAP Schemas

[308]

Logging with the Accesslog Overlay
The Access Logging overlay (accesslog) extends the logging abilities of the SLAPD
server. First, it makes it possible to track client access to the directory server. Second,
it stores this logging data within the directory, making it possible to retrieve access
logs from any authorized LDAP client.

Since it stores information inside of the directory server, and since the format for
access log entries is not already described in any of the familiar schemas, the access
logging overlay needs its own schema.

The access log schema is still considered experimental, and has not yet been
finalized. Nor is it included in the schema directory (/etc/ldap/schema or /usr/
local/etc/openldap/schema). The object classes are defined in the man page
(man slapo-accesslog).

However, the access log overlay automatically loads its own schema, so there is no
manual schema configuration to be done.

The process of installing the accesslog is of four steps:

1.	 Load the accesslog module
2.	 Configure the accesslog backend section
3.	 Create a database to store the access log
4.	 Configure the directory backend to log to the new database

Loading the accesslog Module
By now, this step should be familiar. Along with the other moduleload statements at
the top of slapd.conf, we need to add one to load the accesslog module:

modulepath /usr/local/libexec/openldap
moduleload back_hdb
moduleload denyop
moduleload refint
moduleload unique
moduleload accesslog

When SLAPD is restarted the accesslog module, which contains the accesslog
overlay, will be loaded.

Chapter 6

[309]

Configuring the Access Log Backend
The accesslog overlay needs a location within the directory server to write the
access information. We will create an extra database backend that will hold the
logging data.

There is nothing particularly special about this backend. It functions just like any
other, and we will use the standard set of configuration directives. But there is one
catch to implementing accesslog: the database where the access logs are stored
must appear in slapd.conf before the database that it is going to record access
data about.

We want to log access to our first database (the one with suffix dc=example,dc=com),
so we need to insert the configuration directives for the access log before the
dc=example,dc=com database. Here's the beginning of the original Example.Com
database definition:

##############################
BDB Database Configuration
##############################
Database 1: Example.Com

database hdb
suffix "dc=example,dc=com" "o=My Company,c=US"
rootdn "cn=Manager,dc=example,dc=com"

We will insert our access log configuration above the database directive in the
previous example:

##############################
BDB Database Configuration
##############################
Database 1: Logging DB

database hdb

suffix cn=log

rootdn "cn=Manager,cn=log"

rootpw secret

directory /var/lib/ldap/accesslog

#directory /usr/local/var/openldap-data/accesslog

index reqStart eq

##############################
Database 2: Example.Com

database hdb
suffix "dc=example,dc=com" "o=My Company,c=US"

LDAP Schemas

[310]

The highlighted section is the definition for the access log database.

As with the other databases, this one uses the HDB backend. The suffix for our
logging directory will simply be cn=log.

Each logging event will be stored as an LDAP record, and each entry in the logging
directory will have a DN composed of two attributes. The RDN is the reqStart
attribute (which contains the timestamp indicating when the request started), and
ends with the suffix which, in our case, is cn=log.

This database also has its own manager account and password (rootdn and rootpw).
The Berkeley DB files will be stored at /var/lib/ldap/accesslog—a directory we
will create on the file system in the next step.

Finally, the index directive configures an equality (eq) index for the reqStart
attribute, which is the attribute SLAPD uses to create DNs. It uses this attribute
when performing maintenance operations, so it is a good idea to have this
attribute indexed.

There are a few more things to do in slapd.conf. But before doing those, we will
create a directory for the Berkeley DB files.

Creating A Directory for the Access Log Files
Like the other HDB databases, this new database needs a location on the server's file
system to store Berkeley DB database files. In the earlier configuration, we pointed
SLAPD to the directory /var/lib/ldap/accesslog. Now, we need to create that
directory and configure it for a Berkeley DB environment.

The first thing to do is create the new directory. From a shell this can be done easily:

 $ sudo mkdir /var/lib/ldap/accesslog

From there, all we need to do is copy the DB_CONFIG to the new accesslog/ directory:

 $ sudo cp /var/lib/ldap/DB_CONFIG /var/lib/ldap/accesslog/

Depending on the traffic on your server and the amount of data you are logging,
you may want to increase or decrease the cache size allocated in DB_CONFIG. See
the discussion in the previous chapter for more information on tuning the
DB_CONFIG file.

Chapter 6

[311]

Check the DB_CONFIG files
The DB_CONFIG file we created in the last chapter did not have any
absolute references to locations on the file system. But some directives
in the DB_CONFIG file (like set_lg_dir) might have absolute path
references, which could result in two databases using the same log. That
would have catastrophic consequences. Make sure you adjust the
DB_CONFIG file accordingly.

Make sure that the new accesslog/ directory is readable and writable for the user
account that runs the SLAPD process, and also make sure that that user can read the
DB_CONFIG file.

Enabling Logging for the Main Backend
Now we have the logging environment set up. The next thing to do is configure our
dc=example,dc=com backend to start using the new logging backend.

Back in slapd.conf, we need to add some new overlay-specific directives inside
of the dc=example,dc=com backend. These directives must come after the database
definition for the Example.Com database:

##############################
Database 1: Example.Com

database hdb
suffix "dc=example,dc=com" "o=My Company,c=US"

... a dozen lines omitted ...

overlay accesslog
logdb cn=log
logops all
logold (objectclass=person)
logpurge 7+00:00 2+00:00
logsuccess TRUE

The first directive, overlay accesslog, loads the access logging overlay within
the context of this particular database. The next five directives are the
accesslog-specific directives.

The logdb directive is the only one required by the accesslog overlay. All the rest
are optional.

The logdb directive specifies which database will be treated as an access log. In
our case we want to use the cn=log database. For a site hosting multiple directory
information trees, separate logging databases could be set up for each suffix.

LDAP Schemas

[312]

The logops directive is used to specify exactly which LDAP operations should be
logged. In this example, the keyword all indicates that all operations will be logged.
But the following options are supported:

Any operation can be specified by name: add, delete, modify, modrdn,
search, compare, extended, bind, unbind, and abandon.
There are a few special keywords that include a collection of operations.
These are:

read (search, compare)
write (add, delete, modify, modrdn)
session (bind, unbind, abandon)

There is the all keyword, which includes all operations.

More than one value can be placed on a logops line. Values should be separated
by an empty space. For example, logops modify modrdn will log all modify and
modrdn operations.

The logold ("log old") directive takes a search filter. When a delete or modify
operation is successfully executed, then accesslog will check to see if the record
matches the filter. If it does match, then accesslog will store a complete record of
the change, including what attributes were added, and what attributes were
changed or removed. For example, when I modified a user with the ldapmodify
command-line tool, an entry detailing the changes was written to the accesslog
directory information tree:

dn: reqStart=20070117022818.000002Z,cn=log
objectClass: auditModify
reqStart: 20070117022818.000002Z
reqEnd: 20070117022818.000003Z
reqType: modify
reqSession: 4
reqAuthzID: uid=matt,ou=users,dc=example,dc=com
reqDN: uid=barbara,ou=users,dc=example,dc=com
reqResult: 0
reqMod: objectClass:+ labeledURIObject

reqMod: labeledURI:+ http://example.com Home Page

reqMod: entryCSN:= 20070117022818Z#000001#00#000000

reqMod: modifiersName:= uid=matt,ou=users,dc=example,dc=com

reqMod: modifyTimestamp:= 20070117022818Z

reqOld: objectClass: person

reqOld: objectClass: organizationalPerson

reqOld: objectClass: inetOrgPerson

•

•

°

°

°

•

Chapter 6

[313]

reqOld: entryCSN: 20061228230549Z#000000#00#000000

reqOld: modifiersName: cn=Manager,dc=example,dc=com

reqOld: modifyTimestamp: 20061228230549Z

The reqMod values show the new modifications, while the reqOld attribute values
show the old lines. Note that two lines were added (the object class and the
labeledURI), and two were changed (modifiersName, modifyTimestamp).

Why use logold? It may not be particularly useful for log evaluation but, when
combined with SyncRepl, synchronization between SLAPD servers can be done more
efficiently. (This form of SyncRepl is called Delta-SyncRepl.) If you are not using
SyncRepl, you probably won't want to use logold at all. We will discuss SyncRepl
(and Delta-SyncRepl) in detail in the next chapter.

The logpurge directive directs SLAPD to periodically check the access log and delete
old entries. It takes two parameters that provide the following information: how
old an entry must be before it is a candidate for being purged, and how long of an
interval should pass between checking for entries to remove.

The format of the two parameters is the same:

[<number of days>+]<hours>:<minutes>[:<seconds>]

Where number of days and number of seconds are optional fields. Our logpurge
parameter looked like this:

logpurge 7+00:00 2+00:00

This indicates that logs seven days old are to be considered for deletion. And after
running a check, SLAPD will wait the indicated amount of time—two days—before
checking for new deletions.

The last parameter is logsuccess. By default, accesslog records all attempted
operations, whether successful or not. To log only the operations that are successfully
completed set logsuccess to TRUE.

That's all there is to configuring accesslog. SLAPD will need to be restarted for the
new overlay to be added.

The Log Records
Now that we have our new logging overlay running, let's test it out. The first step is
to generate some logging data. Since we are logging all operations (logops all), any
LDAP operation will do.

LDAP Schemas

[314]

Here is a simple ldapsearch:

 $ ldapsearch -x -W -D 'uid=matt,ou=users,dc=example,dc=com' \

 '(uid=matt)' mail gn sn

This uses a simple bind, and searches for my own record (uid=matt), retrieving the
values for the mail, gn (given name) and sn attributes.

With a search like this, what is written to the access log? To find out, we can use
ldapsearch:

$ ldapsearch -LL -U matt -b 'cn=log'

The output for this command, even with the results of only one command, is
surprisingly large:

SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers
version: 1

dn: cn=log
objectClass: auditContainer
cn: log

dn: reqStart=20070117044539.000000Z,cn=log
objectClass: auditBind
reqStart: 20070117044539.000000Z
reqEnd: 20070117044539.000001Z
reqType: bind
reqSession: 0
reqAuthzID:
reqDN: uid=matt,ou=users,dc=example,dc=com
reqResult: 0
reqVersion: 3
reqMethod: SIMPLE

dn: reqStart=20070117044539.000002Z,cn=log
objectClass: auditSearch
reqStart: 20070117044539.000002Z
reqEnd: 20070117044539.000003Z
reqType: search
reqSession: 0
reqAuthzID: uid=matt,ou=Users,dc=example,dc=com
reqDN: dc=example,dc=com
reqResult: 0

Chapter 6

[315]

reqScope: sub
reqDerefAliases: never
reqAttrsOnly: FALSE
reqFilter: (uid=matt)
reqAttr: mail
reqAttr: gn
reqAttr: sn
reqEntries: 1
reqTimeLimit: 3600
reqSizeLimit: 500

dn: reqStart=20070117044540.000000Z,cn=log
objectClass: auditObject
reqStart: 20070117044540.000000Z
reqEnd: 20070117044540.000001Z
reqType: unbind
reqSession: 0
reqAuthzID: uid=matt,ou=Users,dc=example,dc=com

There are four different entries returned from the ldapsearch and each one has a
different structural object class. We will look at each in turn.

The first LDIF entry it displays is the base record for cn=log:

dn: cn=log
objectClass: auditContainer
cn: log

The auditContainer object class is designed as a sort of general-purpose object class
for the access log. It's schema looks like this:

objectClass
 (
 1.3.6.1.4.1.4203.666.11.5.2.0
 NAME 'auditContainer'
 DESC 'AuditLog container'
 SUP top
 STRUCTURAL
 MAY (cn $ reqStart $ reqEnd)
)

The base record only uses the optional cn attribute.

In the accesslog schema there are object classes defined for each LDAP operation:
auditAbandon, auditAdd, auditBind, auditCompare, auditDelete, auditModify,
auditModRDN, auditSearch, and auditExtended. In addition, there is a special
object class called auditObject that describes general events.

LDAP Schemas

[316]

In fact (in the current version) all of the operation object classes listed are
subordinates to the auditObject object class. Because it is the parent of these other
object classes, we will begin by looking at the auditObject schema definition.

The auditObject object class definition looks like this:

objectclass
 (
 1.3.6.1.4.1.4203.666.11.5.2.1
 NAME 'auditObject'
 DESC 'OpenLDAP request auditing'
 SUP top
 STRUCTURAL
 MUST (reqStart $ reqType $ reqSession)
 MAY (reqDN $ reqAuthzID $ reqControls $ reqRespControls $
 reqEnd $ reqResult $ reqMessage $ reqReferral)
)

The three required attributes are:

reqStart:A timestamp indicating the starting time of the operation
reqType: A string indicating the operation being executed
reqSession: The connection ID number used (internally) by SLAPD

In addition to these required attributes, there are eight optional attributes:

reqDN: This records the DN of the record the operation is currently
operating on.
reqAuthzID: This records the DN of the user performing the operation. If the
user is Anonymous the value is left blank.
reqControls and reqRespControls: If the client sets any controls, they are
indicated here.
reqEnd: This stores the timestamp indicating when the operation
was completed.
reqResult: This contains the numeric error code if an error was encountered.
If the operation is successful this returns 0.
reqMessage: If the error code is accompanied by a text message, the message
is put in this attribute.
reqReferral: If the operation returned a referral, the referral is noted here.

•

•

•

•

•

•

•

•

•

•

Chapter 6

[317]

The second entry returned in the search records the client's bind operation:

dn: reqStart=20070117044539.000000Z,cn=log
objectClass: auditBind
reqStart: 20070117044539.000000Z
reqEnd: 20070117044539.000001Z
reqType: bind
reqSession: 0
reqAuthzID:
reqDN: uid=matt,ou=users,dc=example,dc=com
reqResult: 0
reqVersion: 3
reqMethod: SIMPLE

This first entry records the bind operation, and is an instance of the auditBind object
class. The auditBind object class is a subordinate of auditObject:

objectClass
 (
 1.3.6.1.4.1.4203.666.11.5.2.6
 NAME 'auditBind'
 DESC 'Bind operation'
 SUP auditObject
 STRUCTURAL
 MUST (reqVersion $ reqMethod)
)

It adds two required attributes: reqVersion, which records the version of LDAP
used for the connection and reqMethod, which indicates what method was used
in binding.

Looking at the bind entry, we can see that it records the details of a successful
bind operation. The start and end times are recorded in reqStart and reqEnd
respectively. The reqType indicates that the operation performed is a bind operation.
The reqSession indicates the internal ID of the request (which happens to be zero
because this is the first operation run since we started SLAPD, and connection IDs
increment starting at 0).

Since the bind was performed by the anonymous user, the reqAuthzID attribute is
present, but has no value. The reqDN indicates that the client was attempting to bind
as uid=matt,ou=users,dc=example,dc=com, and the reqResult of 0 indicates
that the bind operation was completed successfully. The bottom two attributes are
the attributes that belong to the auditBind object class. The reqVersion attribute
indicates that the client used the LDAPv3 protocol and, according to reqMethod, the
bind was a simple bind.

LDAP Schemas

[318]

So, the first operation performed in this LDAP session was a bind. The second
operation is the search:

dn: reqStart=20070117044539.000002Z,cn=log
objectClass: auditSearch
reqStart: 20070117044539.000002Z
reqEnd: 20070117044539.000003Z
reqType: search
reqSession: 0
reqAuthzID: uid=matt,ou=Users,dc=example,dc=com
reqDN: dc=example,dc=com
reqResult: 0
reqScope: sub
reqDerefAliases: never
reqAttrsOnly: FALSE
reqFilter: (uid=matt)
reqAttr: mail
reqAttr: gn
reqAttr: sn
reqEntries: 1
reqTimeLimit: 3600
reqSizeLimit: 500

Since it describes a search operation, this entry uses the auditSearch object class,
which has the following schema definition:

objectClass
 (
 1.3.6.1.4.1.4203.666.11.5.2.11
 NAME 'auditSearch'
 DESC 'Search operation'
 SUP auditReadObject
 STRUCTURAL
 MUST (reqScope $ reqDerefAliases $ reqAttrsonly)
 MAY (reqFilter $ reqAttr $ reqEntries $ reqSizeLimit $
 reqTimeLimit)
)

Note that auditSearch is a subordinate not of auditObject but of auditReadObject,
another structural object class that is itself subordinate to auditObject. In other
words, auditSearch is an indirect subclass of auditObject. The auditReadObject
(as of OpenLDAP 2.3.30) does not add any additional attributes.

Chapter 6

[319]

For the most part the attributes inherited from auditObject perform in the same
capacity here as they did in the entry for the bind operation. The reqAuthzID in this
case is the authenticated user's DN, instead of empty, and the reqDN shows the base
DN for the search operation.

The next set of attributes provide detailed information about the nature of the
search request.

reqScope indicates the scope of the search. reqDerefAliases indicates that
aliased entries (entries mapped to other entries elsewhere in the directory,
a concept similar to symbolic linking in Linux file systems) are never
dereferenced during searches. The reqAttrsOnly flag indicates that the
search did not request that only the attribute names be returned. Instead, the
names and values were to be returned.
reqFilter contains the LDAP search filter. This is the filter we specified on
the command line when running the ldapsearch command.
reqAttr has three values, mail, gn, and sn, corresponding to the three
attributes I requested in the ldapsearch command. And reqEntries
indicates the total number of matching records found in the directory.
reqTimeLimit and reqSizeLimit indicate the (soft) size and time limits
requested in the search.

Taken as a whole, this entry provides a detailed record of what my LDAP search was
and, from this record alone, it would be trivial to replicate the exact search.

There is one final (short) entry left, the entry that records the client's unbind.

dn: reqStart=20070117044540.000000Z,cn=log
objectClass: auditObject
reqStart: 20070117044540.000000Z
reqEnd: 20070117044540.000001Z
reqType: unbind
reqSession: 0
reqAuthzID: uid=matt,ou=Users,dc=example,dc=com

Since there are no paramters to the unbind operation (just the closing of a
connection), there is no specific object class to model this event. Instead, the
auditObject object class is used as the structural object class for this entry.

When clients perform other kinds of LDAP operations, such as additions and
modifications, different object classes will be used. The object class definitions (and
attribute definitions) can be found in the cn=sucbschema record. See the earlier
section Retrieving the Schema from SLAPD for information on how to do this.

•

•

•

•

LDAP Schemas

[320]

Now we have finished looking at the accesslog overlay. This overlay can come
in use not only for record keeping but for debugging troublesome issues, discovering
which attributes would most benefit form indexing, and even adding performance-
enhancing functionality to directory replication. In the next section, we will look at
the password policy overlay.

Implementing a Complex Overlay: Password
Policy
One of the proposed extensions to LDAP is a standardized method for implementing
password policies in an LDAP directory. The Password Policy (ppolicy) overlay
implements the "Password Policy for LDAP Directories" IETF draft, which is likely to
soon become an RFC.

A password policy provides account aging, password expirations, password strength
checking, grace logins, and a variety of other password maintenance services.

How does this work in OpenLDAP? Password policy information is stored inside
of the directory information tree in records described by a specialized schema.
The ppolicy overlay monitors connections, updating password information and
enforcing the password policy as appropriate.

Password policies operate on the userPassword attribute. That means
that if you use SASL and store the passwords outside of the directory
information tree (in a place such as the sasldb), then the ppolicy
overlay will not function. In this chapter we will be using simple binding.

The password policy schema defines the object class, pwdPolicy, that is
implemented by password policy entries. There are no object classes for user records.
Instead, operational attributes (attributes used internally by SLAPD) are used to
store password policy information in user records. These operational attributes are
used to store internal information (such as when a user last changed the password),
and usually managed solely by the ppolicy overlay.

The password policy extension has many features, all documented in the man page,
as well as in the IETF draft standard. Since the draft has not been finalized, and is
still in a state of change, this module is marked as experimental. New features may
be added, or current features altered or even removed, as the standard changes.
But the experimental categorization does not reflect on the stability of the code.
Administrators of large systems have reported this module to be production quality.

Chapter 6

[321]

Because of the wealth of features, the ppolicy overlay is not a quick and easy install.
It will require the following steps:

1. Include the password policy schema and load the module
2. Create a password policy
3. Configure the ppolicy overlay

Once the password policy overlay is implemented, we will do some testing.

Setting the Global Directives in slapd.conf: Schema
and Module
The first thing we need to do is configure the global (basic) section of the slapd.conf
file. As with the other overlays we will need to load the ppolicy module. And since
we are using a new schema—one stored in the schema/ directory—we will need to
include that too.

Since the directives are close together, we can look at both additions at once:

include /etc/ldap/schema/core.schema
include /etc/ldap/schema/cosine.schema
include /etc/ldap/schema/inetorgperson.schema
include /etc/ldap/schema/ppolicy.schema

#pidfile /var/run/slapd/slapd.pid
#argsfile /var/run/slapd/slapd.args
pidfile /usr/local/var/run/slapd.pid
argsfile /usr/local/var/run/slapd.args
loglevel none

modulepath /usr/lib/ldap
modulepath /usr/local/libexec/openldap
moduleload back_hdb
moduleload denyop
moduleload refint
moduleload unique
moduleload accesslog
moduleload ppolicy

The two highlighted lines show the necessary changes:

1. The highlighted include directive imports the ppolicy.schema file into the
configuration

2. The moduleload directive loads the ppolicy module

LDAP Schemas

[322]

In step 3 we come back to the slapd.conf file and make a few more changes, but
next we need to create a password policy and load it into the directory. That will
require restarting SLAPD to pick up the new schema definitions:

 $ sudo invoke-rc.d slapd restart

Creating a Password Policy
This step is more demanding than the previous. Our goal is to load a new password
policy into the directory. To do this, we will need to get acquainted with the
pwdPolicy object class in the ppolicy schema, create the requisite LDIF entries for
our directory information tree, and then load these into the directory with ldapadd.

The pwdPolicy object class contains a number of attributes that can be used
for storing information about a password policy. A password policy is a set of
conditions determining what constraints will be placed on password usage within
the LDAP server.

Here is the schema for the pwdPolicy object class:

objectclass
 (
 1.3.6.1.4.1.42.2.27.8.2.1
 NAME 'pwdPolicy'
 SUP top
 AUXILIARY
 MUST (pwdAttribute)
 MAY (pwdMinAge $ pwdMaxAge $ pwdInHistory $ pwdCheckQuality $
 pwdMinLength $ pwdExpireWarning $ pwdGraceAuthNLimit $
 pwdLockout $ pwdLockoutDuration $ pwdMaxFailure $
 pwdFailureCountInterval $ pwdMustChange $ pwdAllowUserChange
 $ pwdSafeModify)
)

This object class is an auxiliary object class so, when we create an entry to hold the
policy, it will need a structural object class.

There is only one required attribute for pwdPolicy: pwdAttribute. The value of this
attribute should be set to the OID of the attribute used for password storage. Since
the schema is part of a proposed standard, the purpose of this attribute is to make
it possible for different directory servers to all use the same schema (since different
directory server implementations use different attributes for storing password
values). However, for OpenLDAP's SLAPD, the only attribute that can be used here
is the OID for userPassword, which is 2.5.4.35.

Chapter 6

[323]

The authPassword attribute, defined in RFC 3112, is a candidate for
replacing userPassword in future versions of OpenLDAP. However, at
this time it is not completely implemented.

The remaining attributes, all of which are optional, are used to store policy
information. Here is a brief explanation of what each attribute is used for:

pwdMinAge: This specifies how much time must pass (in seconds) between
the last time the password was changed and the next time SLAPD will allow
the password to be changed. Setting this prevents an account from having
the password changed multiple times in rapid succession.
pwdMaxAge: This specifies how long (in seconds) a password will be
considered good. This is calculated from the time when the password was
last changed. After the elapsed time, the password will be marked as expired.
pwdInHistory: If you store your passwords in plain text (unencrypted)
in the directory then the ppolicy overlay can be configured to maintain a
password history and prevent users from re-using passwords. This attribute
is used to specify the maximum number of passwords that ppolicy will
maintain for each user. Unless this attribute is set, and to a value greater than
zero, no history will be maintained.
pwdCheckQuality: There are two quality checks done by ppolicy if
pwdCheckQuality is set to check passwords. The first is length checking
(discussed next). The second is running a custom quality checking function.
It is possible (using the pwdCheckModule object class and some custom C
code) to add your own password quality checking module to SLAPD, and
then use it to check password quality. This attribute takes one of three integer
values: 0, 1, and 2. Now we have three cases:

If the value is 0 (the default), then ppolicy will not attempt to
do any quality checking.
If 1, then ppolicy will attempt checking, but if the password
is encrypted and certain checking functions cannot be
performed, it will return successful.
If 2, then if the password checking function cannot run, it will
return an error message.

pwdMinLength: If pwdCheckQuality is set to 1 or 2, then ppolicy will
make sure that new passwords meet a minimum length requirement. This
attribute, which takes a positive integer, can be used to set the minimum
acceptable length for a password.

•

•

•

•

°

°

°

•

LDAP Schemas

[324]

pwdExpireWarning: When a password approaches its expiration date
(set in pwdMaxAge), ppolicy can provide a warning to the user when the
user logs in. This attribute takes the time, in seconds, prior to when the
password expires that it should start warning the user. In other words, at
pwdMaxAge—pwdExpireWarning from when the password was set—the user
will start getting warning messages. If this is set to 0 (the default) then no
expiration warning will be sent.
pwdGraceAuthNLimit: By default (or if this attribute is set to 0), when a
password expires the account is locked and the user can no longer bind to the
directory server. But using this attribute we can allow grace logins. The value
of this attribute should be a non-negative integer, which will specify how
many grace logins a user with an expired password will be allowed before
the account is locked.
pwdLockout: This attribute allows you to turn on password lockouts. If
this is turned on, then when a user fails to bind a certain number of times
(pwdMaxFailures) in a row, then the account will be locked for some
duration of time (pwdLockoutDuration). To turn on pwdLockout, which is
off by default, set the value of this attribute to TRUE.
pwdLockoutDuration: This attribute specifies the amount of time, in seconds,
that an account will be locked out if pwdLockout is set to TRUE and the user
fails to log in too many times (the number set in pwdMaxFailures). If this is
set to 0 or is not set, then the account will be locked until an administrator
re-enables it.
pwdMaxFailures: This specifies the number of times in a row that a user can
fail a login before being locked out. pwdLockout must be set to TRUE before
this constraint will be enforced though.
pwdFailureCountInterval: This attribute can be used to fine-tune the
timing involved in password lockouts. By default (or when this attribute is
set to 0), failed login attempts are stored until a successful login is made. But
the value of this attribute can be set to a number of seconds that ppolicy will
wait before clearing the password failure count.
pwdMustChange: This determines whether or not a user must change their
password after an administrator sets it. By default, the user is not prompted
to change a password. But if this is set to TRUE, if an administrator changes
(or initially sets) a password, the user will be prompted to reset
the password.
pwdAllowUserChange: By default, users are allowed to change their own
passwords. But if this is set to FALSE, users under this policy will not be
allowed to change their own passwords. Since different policies can be
assigned to different groups of users, this allows finer-grained control of
write permissions to a password than ACLs do.

•

•

•

•

•

•

•

•

Chapter 6

[325]

pwdSafeModify: By default, once a user has successfully performed a
bind operation, the user can change passwords without having to re-send
the original password. But if pwdSafeModify is set to TRUE, then the user
will have to send both the old password and the new password in order
to change the password value. This adds an extra level of security to the
password changing process.

Some of the policy attributes—primarily the password checking functions and
password history—require that the password be stored in cleartext within the
directory. This is the case simply because comparison functions do not work on
encrypted values. Two identical password values, if using different salt sequences,
will result in different ciphertexts. Two different hashing algorithms (like MD5
and SHA) will generate different hashes for the same password even if the same
salt is used. Likewise, given certain hashing algorithms, two different strings could
generate the same ciphertext (though the possibility of this happening to a particular
user is negligible).

Most of the other features though, work regardless of how the values are stored in
the directory.

Now we are ready to create an LDIF file to hold our policy. By convention, password
policies are usually located in a separate OU in the directory information tree. We
will add a new OU for that purpose.

And for our policy we will use the majority of the possible attributes:

dn: ou=Policies,dc=example,dc=com
ou: Policies
description: Directory policies.
objectclass: organizationalUnit

dn: cn=Standard,ou=Policies,dc=example,dc=com
cn: Standard
description: Standard password policy.
pwdAttribute: 2.5.4.35
pwdMinAge: 60
30 days: 60 sec * 60 min * 24 hr * 30 days
pwdMaxAge: 2592000
pwdCheckQuality: 1
pwdMinLength: 7
Warn three days in advance
pwdExpireWarning: 259200
pwdGraceAuthNLimit: 3
pwdLockout: TRUE
pwdLockoutDuration: 1200
pwdMaxFailure: 3

•

LDAP Schemas

[326]

pwdFailureCountInterval: 1200
pwdMustChange: TRUE
pwdAllowUserChange: TRUE
pwdSafeModify: TRUE
objectclass: device
objectclass: pwdPolicy

The first entry is for our organizational unit. The second is our password policy.
Since the pwdPolicy object class is auxiliary we have to give the entry another object
class, a structural object class. The device object class is typically used (based on the
testing schema used in the source distribution of OpenLDAP).

Why is pwdPolicy Auxiliary?
There are a few reasons why the creators of the password policy
specification might have made such a choice. First, according to RFC 4512,
a structural object class must represent a physical entity. Second, making
the class auxiliary makes it possible to integrate this schema with other
existing schemas. For us, though, this presents the minor difficulty that
there are no good candidates for a structural object class.

We can now add this LDIF with ldapadd. We have the above LDIF saved in a file
called ppolicy.ldif, so we can add it with the following command:

 ldapadd -x -W -D 'uid=matt,ou=users,dc=example,dc=com' -f ppolicy.ldif

This adds our two new entries to the directory.

Make sure you have restarted the server since adding the schema. If the
ppolicy schema has not been loaded, the above will not work.

Now that we have our entries loaded it is time to return to slapd.conf and
configure the overlay.

Configure the Overlay Directives
In the first step of setting up the password policy overlay, we added directives
to slapd.conf to include the ppolicy schema definitions and load the ppolicy
module. Now we will look at the backend configuration for the overlay.

As with the other overlays, all of the configuration directives are backend specific.
Also, since the ppolicy overlay does a lot of writing to the directory information
tree, not all features work on read-only databases.

Chapter 6

[327]

While this overlay is sophisticated, there are only three directives for the overlay,
and these are all straightforward. The relevant section in our slapd.conf file, in the
dc=example,dc=com directory tree, looks like this:

overlay ppolicy
ppolicy_default cn=Standard,ou=Policies,dc=example,dc=com
ppolicy_use_lockout
ppolicy_hash_cleartext

Once the overlay is applied to this database using the overlay directive, there are
three overlay-specific directives.

The first, ppolicy_default, points to the DN of the entry in the directory
information tree that is to be treated as the default password policy entry. As we
will see shortly different entries can use different policies. But the one indicated by
ppolicy_default is the one that ppolicy will use when another is not explicitly
set. For our example above, it is set to the DN of the entry that we created in the
previous step.

The second directive is ppolicy_use_lockout. This directive alters how SLAPD
reports error messages due to account lockouts. When a user's account is locked by
the password policy overlay the user is not allowed to bind again. By default (when
this directive is not included), the client is notified that the bind failed because of
invalid credentials (the generic LDAP error) but no additional information is given.
When this directive is present though, then SLAPD sends the Account Locked
error code.

While this extra error message might be helpful to the user, it could have
negative consequences. An attacker might be able to determine, based on
this information, that the server is using the password lockout features.
Such an attacker could then perform a denial of service attack against
known accounts on the server simply by attempting to login on each
known account until the account was locked.

The last ppolicy directive, ppolicy_hash_cleartext, modifies the way SLAPD
handles changes to the password. In short, if this directive is present, then SLAPD
will automatically hash cleartext passwords when they are changed using the LDAP
modify operation (as opposed to the LDAP password modify extended operation).

To understand what this means, let's look at an example. In our directory we have
the following record (created in Chapter 3):

dn: uid=adam,ou=Users,dc=example,dc=com
cn: Adam Smith
sn: Smith

LDAP Schemas

[328]

uid: adam
ou: Users
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

This user does not yet have a password. One way to set such a password would be
to use the ldappasswd too, which (as we saw in Chapter 3) uses the LDAP password
modify extended operation. This is the best way to change passwords as the
server handles the password encryption. Here's an example of setting a password
with ldappasswd:
 $ ldappasswd -U matt -s secret 'uid=adam,ou=users,dc=example,dc=com'

This sets the password for uid=adam to secret. What will the record look like now?
Like this:

dn: uid=adam,ou=Users,dc=example,dc=com
cn: Adam Smith
sn: Smith
uid: adam
ou: Users
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
userPassword:: e1NTSEF9WlFzZWdrVUdpT3JKNUgwYXFRdisxQ0dpaTNYUFdkMjA=

The userPassword value is base64 encoded. Its decoded value is this:
{SSHA}ZQsegkUGiOrJ5H0aqQv+1CGii3XPWd20

SLAPD performed the SSHA hashing of the value.

There is a second way of modifying the password and this is with the LDAP modify
operation (as used by the ldapmodify client). When a userPassword value is
changed with LDAP modify it is assumed that the client is sending the password
value in the form in which it should be stored. In fact, the LDAP standard states that
this is how the server should act when performing a modification of an attribute
value. Thus, SLAPD will not encrypt the password.

Here's an example of using ldapmodify to set the password:

$ ldapmodify -x -W -D 'uid=matt,ou=users,dc=example,dc=com'
Enter LDAP Password:
dn: uid=adam,ou=users,dc=example,dc=com
changetype: modify
replace: userPassword
userPassword: secret
modifying entry "uid=adam,ou=users,dc=example,dc=com"

Chapter 6

[329]

The highlighted portion above is the LDIF information to be modified. The value
of the userPassword attribute was set to secret—the same password used in the
ldappasswd example. But this time, if we look at the entry, the userPassword value
is not encrypted:

dn: uid=adam,ou=Users,dc=example,dc=com
cn: Adam Smith
sn: Smith
uid: adam
ou: Users
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
userPassword:: c2VjcmV0

The password is not hashed. Instead, it is just base64 encoded. The decoded value
is secret.

Including the ppolicy_hash_cleartext directive modifies this behavior. During
modifications the ppolicy overlay checks to see if the modified attribute is
userPassword and if the value is in cleartext. If the value is in cleartext then ppolicy
hashes it.

In effect, turning on this feature causes SLAPD to perform in a
nonstandard way, but for the sake of additional security.

For example, we can re-run the same ldapmodify:

$ ldapmodify -x -W -D 'uid=matt,ou=users,dc=example,dc=com'
Enter LDAP Password:
dn: uid=adam,ou=users,dc=example,dc=com
changetype: modify
replace: userPassword
userPassword: secret

modifying entry "uid=adam,ou=users,dc=example,dc=com"

But this time, since ppolicy_hash_cleartext is on, the password is encrypted:

dn: uid=adam,ou=Users,dc=example,dc=com
cn: Adam Smith
sn: Smith
uid: adam
ou: Users
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
userPassword:: e1NTSEF9Q0M3QUdSQUlPMG4vYy8rbVZiRE95bC9aYnpqNHcxd1Q=

LDAP Schemas

[330]

The userPassword value, decoded, is {SSHA}CC7AGRAIO0n/c/+mVbDOyl/Zbzj4w1wT.
When hashing cleartext is enabled, LDAP modify operations (for the userPassword
attribute only) behave more like LDAP password modify extended operations.

We've now configured the overlay completely. It will take a restart for SLAPD to
pick up the changes to slapd.conf though. Now we are ready to test some of
these features.

Test the Overlay
As it is configured now, SLAPD will enforce policy controls on any entry with a
userPassword attribute. Let's do a little testing to see how the password
policy works.

The Administrator
As I work through the examples I use the uid=matt account as a
managing account. This account is allowed (by the ACLs) to perform
administrative tasks. But it is also subject to the constraints of the
ppolicy overlay.
The root DN account (cn=manager,dc=example,dc=com on this
server) is treated differently. For example, the manager can set a
password for a user without having to know the user's old password,
even if pwdSafeModify is on.

First, let's see how the policy responds to some password changes. And let's start this
examination with an ldapmodify attempt:

$ ldapmodify -x -W -D 'uid=matt,ou=users,dc=example,dc=com'
Enter LDAP Password:
dn: uid=adam,ou=users,dc=example,dc=com
changetype: modify
replace: userPassword
userPassword: new_password

modifying entry "uid=adam,ou=users,dc=example,dc=com"
ldap_modify: Insufficient access (50)
 additional info: Must supply old password to be changed as
 well as new one

The modification attempt fails because the the pwdSafeModify is set to TRUE. There
is no way to satisfy this requirement with ldapmodify. Instead we will have to use
ldappasswd to change the password and we will have to set it to supply the server
with the old password. This is what we will get:

Chapter 6

[331]

$ ldappasswd -x -W -D 'uid=matt,ou=users,dc=example,dc=com' \
 -s new_password -a secret 'uid=adam,ou=users,dc=example,dc=com'
Enter LDAP Password:
Result: Success (0)

The -s flag is used to specify the new password, while the -a flag is used to provide
the old password (and then ldappasswd prompts for the password of the DN that is
binding too). With both of these set we meet the requirements of pwdSafeModify.

Since we have password checking turned on we should be able to test
password length:

$ ldappasswd -x -W -D 'uid=matt,ou=users,dc=example,dc=com' \
 -s short -a new_password 'uid=adam,ou=users,dc=example,dc=com'
Enter LDAP Password:
Result: Constraint violation (19)
Additional info: Password fails quality checking policy

In this case the new password, short, is (as the name implies) too short. The
pwdMinLength of the policy states that the password must be seven characters
long, and when the password quality checking function is performed (which it will
since pwdCheckQuality is set to 1), the server returns an error noting that it failed.
Unfortunately for the user the message does not indicate the precise reason.

Next, let's look at password expiration warnings and password expirations. This will
require some minor changes to our policy for the sake of testing—namely we will
want to set the values for pwdMaxAge and pwdExpireWarning to lower values
(values that would normally be too low for a production environment). Let's set the
password to expire every ten minutes, and the expiration message to come up for the
last nine minutes:

$ ldapmodify -x -W -D 'uid=matt,ou=users,dc=example,dc=com'
Enter LDAP Password:
dn: cn=Standard,ou=Policies,dc=example,dc=com
changetype: modify
replace: pwdMaxAge
pwdMaxAge: 600
-
replace: pwdExpireWarning
pwdExpireWarning: 540

modifying entry "cn=Standard,ou=Policies,dc=example,dc=com"

Now, when uid=adam binds, the following message is logged in the LDAP log:

ppolicy_bind: Setting warning for password expiry for
 uid=adam,ou=users,dc=example,dc=com = 536 seconds

LDAP Schemas

[332]

Unfortunately, no message is sent to the client so the user does not see the
message. This may be due to the fact that the draft specification doesn't require
that the messages be sent to the client. Expiry warnings then, are useful mainly
to administrators.

After ten minutes the userPassword value will be past the expiration point and, the
next time the user logs in, SLAPD will mark the password as expired. Again, the user
gets no explicit warning of this fact. An entry in the log file indicates the expiration of
the account:

ppolicy_bind: Entry uid=adam,ou=Users,dc=example,dc=com
 has an expired password: 3 grace logins

But in addition to this log entry, a new operational attribute is added to the user's
record. The pwdGraceUseTime attribute is added to the user's record, and the time
stamp there indicates the last time the user performed a bind operation:

$ ldapsearch -LL -x -W -D 'uid=matt,ou=users,dc=example,dc=com' \
 '(uid=adam)' pwdGraceUseTime
Enter LDAP Password:
version: 1

dn: uid=adam,ou=Users,dc=example,dc=com
pwdGraceUseTime: 20070121172107Z

Each time a DN with an expired userPassword binds to the directory, a new value
is added to the pwdGraceUseTime attribute. So after uid=adam has performed
three binds after the password expiration date, the user's record will contain three
pwdGraceUseTime attribute values:

$ ldapsearch -LL -x -W -D 'uid=matt,ou=users,dc=example,dc=com' \
 '(uid=adam)' pwdGraceUseTime
Enter LDAP Password:
version: 1

dn: uid=adam,ou=Users,dc=example,dc=com
pwdGraceUseTime: 20070121172107Z
pwdGraceUseTime: 20070121173638Z
pwdGraceUseTime: 20070121174603Z

After the number of pwdGraceUseTime values reaches the number in the
pwdGraceAuthNLimit attribute of the policy, the account will be treated as locked,
and that DN (uid=adam, in this case) will not be allowed to bind anymore. If
uid=adam attempts to bind he will get an error message:

$ ldapsearch -x -W -D 'uid=adam,ou=users,dc=example,dc=com' \
 '(uid=adam)'
Enter LDAP Password:
ldap_bind: Invalid credentials (49)

Chapter 6

[333]

Furthermore, a message is added to the log noting the problem:

ppolicy_bind: Entry uid=adam,ou=Users,dc=example,dc=com
 has an expired password: 0 grace logins

At this point an administrator will have to take steps to enable the account again.

Password Policy Operational Attributes
In the previous section we tested several different features of the password policy.
Now we will look at performing administration operations on accounts.

The ppolicy overlay stores information about a user's adherence to a password
policy in that user's record. The information is stored in operational attributes.

Unlike regular attributes, operational attributes are not returned to clients unless the
client explicitly requests them (either by name, or with the special plus (+) attribute
specifier, which matches any operational attribute). And SLAPD can prevent clients
from being able to modify operational attributes.

To begin we will look at an example of what happens when password lockout
(pwdLockout) is turned on, and an account gets locked out. The ppolicy overlay
uses operational attributes to store information about failures and lockouts.

In our policy, when a user fails to authenticate correctly three times in a row
(according to pwdMaxFailure), they will be locked out of their account for some
period of time (determined by pwdLockoutDuration).

One of the other users in our directory is uid=dave,ou=users,dc=example,dc=com.
This user has failed to authenticate three times. The next time the user attempts to
authenticate, even if he uses the right password, he will be disallowed from binding:

$ ldapsearch -x -W -D 'uid=dave,ou=users,dc=example,dc=com'\
 '(uid=dave)'
Enter LDAP Password:
ldap_bind: Invalid credentials (49)

A few operational attributes in that user's record indicate what the problem is:

$ ldapsearch -LL -x -W -D 'uid=matt,ou=users,dc=example,dc=com' \
 '(uid=dave)' +
Enter LDAP Password:
version: 1

dn: uid=dave,ou=Users,dc=example,dc=com
structuralObjectClass: inetOrgPerson
entryUUID: efbf8838-c734-102a-935c-57e457da105f

LDAP Schemas

[334]

creatorsName: cn=Manager,dc=example,dc=com
createTimestamp: 20060823205147Z
pwdChangedTime: 20070121180110Z
pwdFailureTime: 20070121180139Z
pwdFailureTime: 20070121180140Z
pwdFailureTime: 20070121180142Z
pwdAccountLockedTime: 20070121180142Z
entryCSN: 20070121180142Z#000000#00#000000
modifiersName: cn=Manager,dc=example,dc=com
modifyTimestamp: 20070121180142Z
entryDN: uid=dave,ou=Users,dc=example,dc=com
subschemaSubentry: cn=Subschema
hasSubordinates: TRUE

Note that the ldapsearch in the example is for all of (and only) the operational
attributes for entries that match the filter—that's what the plus sign (+) does.

The highlighted lines show the attributes in which we are interested:
pwdFailureTime and pwdAccountLockedTime.

The pwdFailureTime operational attribute has a timestamp for every time the user
failed a login. When a user has a successful login, the values of pwdFailureTime are
cleared, so having three values indicates that three logins in a row have failed.

The pwdAccountLockedTime indicates what time the password was locked.
According to our configuration, the lockout should only last for twenty minutes,
after which the user will be allowed to try again.

If the user succeeds the pwdFailureTime and pwdAccountLockedTime attributes will
be removed from the user's record:

$ ldapsearch -LL -x -W -D 'uid=matt,ou=users,dc=example,dc=com'
'(uid=dave)' +
Enter LDAP Password:
version: 1

dn: uid=dave,ou=Users,dc=example,dc=com
structuralObjectClass: inetOrgPerson
entryUUID: efbf8838-c734-102a-935c-57e457da105f
creatorsName: cn=Manager,dc=example,dc=com
createTimestamp: 20060823205147Z
pwdChangedTime: 20070121180110Z
entryCSN: 20070121182203Z#000000#00#000000
modifiersName: cn=Manager,dc=example,dc=com
modifyTimestamp: 20070121182203Z
entryDN: uid=dave,ou=Users,dc=example,dc=com
subschemaSubentry: cn=Subschema
hasSubordinates: TRUE

Chapter 6

[335]

In such cases administrators do not have to make any special changes to a user's
entry. But what if the user gets locked out? This can happen if pwdLockDuration
is set to 0 and the user fails to login too many times. It can also happen, as we saw
in the example, if the user's password has expired and the user has exhausted the
allowed grace logins.

Once the account has been locked, the user will not even be allowed to change his
or her password. That means that the manager will need to intervene on the user's
behalf and change the password using ldappasswd, ldapmodify, or another
similar tool.

In rare cases, it may be desirable to modify the operational attributes directly. For
example, pwdAccountLockedTime, pwdReset, and pwdPolicySubentry can be
modified by the manager:

$ ldapmodify -x -W -D 'cn=manager,dc=example,dc=com'
Enter LDAP Password:
dn: uid=adam,ou=users,dc=example,dc=com
changetype: modify
add: pwdReset
pwdReset: TRUE
modifying entry "uid=adam,ou=users,dc=example,dc=com"

In this example, the pwdReset flag for the uid=adam account was set to TRUE. This
will require the user to change the password the next time a bind is performed.

But SLAPD may not allow the other operational attributes to be modified by
the standard LDAP modification. This is because the ppolicy schema sets the
NO-USER-MODIFICATION flag on these schema definitions.

Can these operational attributes ever be modified? Using a special control, the
Relax Rules control (formerly called ManageDIT), managers can change the values
of operational parameters that usually do not allow such changes. However, the
Relax Rules control is not yet officially released and is not enabled by default in
OpenLDAP. We would have to build the development version of OpenLDAP to
enable the control.

Summary of ppolicy Operational Attributes
We have looked at a few more operational attributes that ppolicy can attach to a
record used for bindng. Here's a list of all of the possible attributes along with a brief
description of each:

pwdChangedTime: This contains a timestamp indicating when the password
was last changed. There can only be one value for this attribute. Passwords in
entries that do not have this attribute will never expire.

•

LDAP Schemas

[336]

pwdAccountLockedTime: This attribute is added to an entry when the entry
is locked. It contains a timestamp indicating at what time SLAPD marked the
account as locked. We saw this used when a user failed to authenticate too
many times in a row.
pwdFailureTime: A pwdFailureTime attribute value is added to a record
every time a user tries to bind, but fails to supply the right password. A
successful login clears all pwdFailureTime attributes.
pwdGraceUseTime: If a user's account has expired, and the policy allows
grace logins, a new pwdGraceUseTime value will be added every time the
user logs in with an expired password. Resetting the password clears all
pwdGraceUseTime values.
pwdHistory: If password history tracking is turned on then every time a user
changes passwords, the old password is stored in a pwdHistory attribute
value. Only the number of password specified in the policy are retained in
the history
pwdPolicySubentry: This attribute, which allows only one value, takes the
DN of the password policy that this record should use. If this attribute is not
found, SLAPD uses the default policy (as specified by the ppolicy_default
directive in slapd.conf).
pwdReset: This attribute takes a boolean value. When a manager changes the
password the flag is set to TRUE. If the policy also has pwdMustChange set to
TRUE then the user will have to change her or his password on the next bind
(using ldappasswd).

At this point we are done working with the Password Policy overlay. Next we will
move on to create our own schema.

Creating a Schema
Up to this point we have taken an in-depth look at schema definitions and then
implemented a few overlays that made use of custom schemas. By now you should
be comfortable working with and reading schemas. Here we are going to create our
own schema.

Our goal in this section is to create a small schema for adding blog information to our
directory. We want to be able to store a record in the directory to represent a blog,
and also link existing entries to these blogs, indicating, for example, that a particular
user maintains a particular blog.

To do this we are going to add two object classes—one structural and one auxiliary—
and a handful of new attributes. The structural object class, blog, will describe an
individual blog. It will contain the necessary attributes to describe a blog.

•

•

•

•

•

•

Chapter 6

[337]

The auxiliary class blogOwner, will be used to add blog ownership information to a
particular entry. Since the information about the blog will be stored in a blog entry,
the blogOwner object class will only need one attribute that can be used to point to
the appropriate blog entry.

The first thing we will do is walk through the process of obtaining an OID. Then we
will create our object classes. After the object classes are created we will define our
new attributes. Finally, we will try out our new schema.

Getting an OID
As we have seen so far the OID (Object Identifier) plays an important role in defining
a schema.

An OID is a sequence of integers separated by dots (.). But OIDs are not arbitrary
combinations of digits. They are structured to represent the pedigree of an object.
As we will use them here, for creating a new schema, we will treat the OID as being
composed of three parts:

The base OID
The type number
The item number

The base part of an OID number is assigned by a naming authority. We will get ours
from the Internet Assigned Numbers Authority (IANA).

IANA is not the only naming authority. Each country may have its
own registry. For instance, in the United States the American National
Standards Institute (ANSI) also has a registry.

IANA maintains a registry of OIDs for private enterprises. It allocates numbers free
of charge and all that is necessary is a one-time registration. However, IANA only
gives one number to each enterprise so, if your organization has one already, you
should use the existing one. You can view the registry at http://www.iana.org/
assignments/enterprise-numbers.

To obtain a number go to http://iana.org/cgi-bin/enterprise.pl and
complete the form there. You will then be assigned an OID looking something like
this: 1.3.6.1.4.1.?, where the question mark is replaced with an integer. This OID
serves as the basis for the OIDs we use when creating schemas. By appending your
own series of digits and dots to this string you can create your own OID numbers,
and as long as you take care to keep your OIDs unique within your own domain,
you can assume that these OIDs are also globally unique (for you are the only one
with the exact base OID).

•
•
•

LDAP Schemas

[338]

In these examples I am using the OID registered to me. These OIDs
may be used to replicate the examples herein, but do not use my OID to
create your own schemas. The practice of using someone else's OID is
called OID hijacking, and is frowned upon because it compromises the
assumption that OIDs are globally unique.

While this series of digits has some semantic meaning (it means, roughly, that the
owner is a private enterprise operating within IANA's namespace), there are no
constraints on how you decide to structure your OIDs. You could, for example, just
append a new set of random digits to the base OID each time you needed to create a
new OID:

1.3.6.1.4.1.8254.78.45146762
1.3.6.1.4.1.8254.57.483729598

But it is often more manageable to come up with some semantic scheme for
organization. A version derived from the OpenLDAP foundation's scheme is
recommended. From the base OID, create a segment to be used just for LDAP OIDs:

1.3.6.1.4.1.8254.1021

Now we have just one portion of the namespace that will be used only for LDAP
OIDs. From here we will use a simple subcategory identifier. Starting with the OID
arc 1.3.6.1.4.1.8254.1021, we will create OIDs of the form:

1.3.6.1.4.1.8254.1021.x.y

Where x indicates the type of object and y indicates the specific object we are
identifying. The OpenLDAP Foundation uses the following types:

LDAP syntaxes (1)
Matching rules (2)
Attribute types (3)
Object classes (4)
Supported features (5)
Protocol mechanisms (9)
Controls (10)
Extended operations (11)

We are only going to create object classes and attributes, so the value of x for our
classes will be 3 for OIDs attached to attributes and 4 for OIDs attached to
object classes.

•

•

•

•

•

•

•

•

Chapter 6

[339]

For the y value, we will just start with the digit 1 and increment each time we define
a new object of that type. For example, our first object class will have the OID:

1.3.6.1.4.1.8254.1021.4.1

And for our second object class we will just increment the last value from 1 to 2:

1.3.6.1.4.1.8254.1021.4.2

Again, this is just one convention and different organizations use different
conventions. While I advocate this convention you are free to choose another if you
find that it is better for your needs.

There are two things to keep in mind though. First, you need to ensure that the OIDs
are unique across your arc. That means you should maintain a registry of them in a
place accessible to all people in your organization who work with the OIDs. Second,
adding meaning to the numbers can provide tremendous utility, as it can help you
recall or derive what an otherwise arbitrary string of numbers represents.

Now we are ready to begin creating our schema.

Giving Our OID a Name
Our schema definitions are all going in a file called blog.schema, which we will later
reference in an include statement in slapd.conf.

Most usually once the base OID for LDAP objects is defined, it is convenient to use
the objectidentifier directive in slapd.conf to make the OIDs more readable,
and make the process of creating schema definitions less error prone.

We can do this in the first few lines of our schema file:

objectidentifier blogSchema 1.3.6.1.4.1.8254.1021
objectidentifier blogAttrs blogSchema:3
objectidentifier blogOCs blogSchema:4

The first line maps the name blogSchema onto the OID 1.3.6.1.4.1.8254.1021.
Now we can refer to that long OID as blogSchema, which is much easier to
remember.

The second and third objectidentifier directives add a few more aliases. The
second one sets the name blogAttrs refer to the OID blogSchema:3 (which
is 1.3.6.1.4.1.8254.1021.3). Thus, when we define attributes we can
use the shortcut blogAttrs:1 instead of typing the whole thing out as
1.3.6.1.4.1.8254.1021.3.1.

LDAP Schemas

[340]

Similarly, blogOCs alias (short for "blog object classes") can be used to refer to the
1.3.6.1.4.1.8254.1021.4 arc.

With this mechanism in place we have implemented the organizational strategy
explained in the previous section, and our OID naming from here on should be a
simple matter of incrementing the last integer of an OID.

Creating Object Classes
We will be starting with our object classes, and then use these defined object classes
to guide the creation of our attributes. This is typically the way creation of schemas
is done, but it does have one counter-intuitive result: object classes must be defined
after the attributes that they contain. In effect then, we are jumping to the end of our
schema file to add object classes, and will later add attribute definitions between the
object identifiers and the object classes.

The first object class to describe is the blog class. This object class will define the
attributes necessary to define a blog. For our purposes we are going to create a very
simple object class, though there are many more attributes that could be attached.

We want the class to have the following attributes:

blogTitle: The title of the blog
blogUrl: The URL (Uniform Resource Locater) of the main page for the blog
blogFeedUrl: The URL for the RSS or Atom feed of the URL
description: A brief text description of the blog

Of these, the blogUrl and blogTitle attributes should be required. blogUrl is an
essential component of a blog. Without this, an entry describing a blog would be of
little value. And the blogTitle attribute is necessary to give us a naming component
to use in DNs.

For the sake of clarity of meaning, here we have prepended the blog string to
any new attributes so that they can be immediately distinguished from other
similar attributes.

Naming Object Classes and Attributes
If your object classes or attributes are designed for internal use, or for
application-specific use, it is advised that the name of the organization
or application be prepended to the attribute and object class names. That
helps to make the purpose of the defined items explicit.

•

•

•

•

Chapter 6

[341]

Fortunately for us, description is already defined. While we could use the title
attribute, as defined in core.schema, this could introduce confusion, as that attribute
is used to refer to the title of a person in an organization. To avoid any confusion
then, we will avoid reusing that attribute.

Already we have said that this object class is going to be structural, and we have a
scheme for determining an OID number. There are no similar object classes so we
will create a class whose superior is top. We now have all the information we need
to create our schema definition:

objectclass
 (
 blogOCs:1
 NAME 'blog'
 DESC 'Describes an online blog accessible by URL.'
 SUP top
 STRUCTURAL
 MUST (blogUrl $ blogTitle)
 MAY (blogFeedUrl $ description)
)

In the OID field we used the object identifier we assigned in the last section. And we
started with 1, our first object class.

The blogOwner object class is to be marked auxiliary so that we can attach it to a
variety of different entries, regardless of the structural object class. For example,
regardless of whether the blog is a corporate blog, or is maintained by an
organizational unit, or is simply an individual's, we can add this object class to the
desired entry.

We want to use the blogOwner object class to insert a pointer from an entry to the
appropriate blog entry in the directory information tree. Since that is all we need, a
single attribute will suffice for these purposes:

blogDN: The DN describing the blog that this entry is affiliated with.

This object class then, turns out to be even simpler than the previous one:

objectclass
 (
 blogOCs:2
 NAME 'blogOwner'
 DESC 'Indicates that this entry is responsible for a blog.'
 AUXILIARY
 MUST (blogDN)
)

•

LDAP Schemas

[342]

This OID number differs from the first only in that the last value has been
incremented. This follows the scheme we defined in the previous section.

Since this is an auxiliary object class, there is no need for a superior. And since we
want this class to be used to point to a blog entry elsewhere in the directory, the
blogDN attribute is required.

Now we have our two object classes. In creating them we have referred to four
attributes that currently do not exist. It is time to create them.

Creating Attributes
As we created the blog and blogOwner object classes, we tentatively defined (in our
text) four attributes: blogTitle, blogUrl, blogFeedUrl, and blogDN. Now we will
define each of these, beginning with blogTitle.

In order to define our attribute we want to decide on the syntax of the attribute
and also the matching rules that SLAPD will use for this attribute. The blogTitle
will contain values that are strings of text data. So the syntax we want is one that
supports this. The Directory String syntax, defined in RFC 4517, is intended for just
such a purpose. And it supports internationalization, storing characters in UTF-8.

When performing searches, we do not want the case of the text (upper or lower) to
make a difference. In other words, we want "My Blog" and "my blog" to be treated
as matches. So we need to find the matching rule that will best support this. There
are over three dozen matching rules supported in OpenLDAP (you can see a list by
searching the cn=Subschema entry). We want to implement string-based equality
and substring matching on our blogTitle attribute, so the pair of matching rules we
will want to use are caseIgnoreMatch and caseIgnoreSubstringsMatch.

Now, we have all of the information necessary for creating a new attribute type:

attributetype
 (
 blogAttrs:1
 NAME 'blogTitle'
 DESC 'Title of a blog.'
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256}
)

The OID field is blogAttrs:1, indicating that this is our first attribute.

Chapter 6

[343]

The LDAP syntax OID is the OID for a Directory String. At the end of the OID, the
{256} suggests that the maximum length of the title be constrained to 256 characters.

The characters are in UTF-8, so this might take up as much as 512 bytes of
space if each of the 256 characters is two bytes.

The next two attributes, blogUrl and blogFeedUrl, are similar and we can take
advantage of that as we define them.

The first thing to examine is the LDAP syntax of these attributes. Unlike blogTitle,
we do not want the values of blogUrl and blogFeedUrl to be in the Directory String
syntax, because (according to RFC 3986 and the previous URL standards) URLs are
to use a subset of the ASCII character set.

For more on URLs and internationalization, see the W3C's Web Naming
and Addressing page: http://www.w3.org/Addressing/. Links to
information as well as pertinent RFCs can be found there.

Instead of using Directory String syntax, we should use the IA5 String syntax
which describes an extended ASCII character set. The OID for this syntax is
1.3.6.1.4.1.1466.115.121.1.26.

Similarly, when we specify matching rules, we want to use the IA5 matching
rules. And since URLs are case-sensitive, we want exact matches. We do not want
the case to be ignored. So for matching rules we want caseExactIA5Match and
caseExactIA5SubstringsMatch.

Now we can define both attributes:

attributetype
 (
 blogAttrs:2
 NAME 'blogUrl'
 DESC 'Uniform Resource Locator (URL) for a blog.'
 EQUALITY caseExactIA5Match
 SUBSTR caseExactIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{512}
)

attributetype
 (
 blogAttrs:3

LDAP Schemas

[344]

 NAME 'blogFeedUrl'
 DESC 'URL to an XML feed for a blog.'
 SUP blogUrl
)

Since the blogUrl field contains the matching rules and syntax that blogFeedUrl
uses, and since there is an obvious similarity in usage between the two, it makes
sense to treat blogUrl as the supertype of blogFeedUrl. So, blogFeedUrl inherits
the LDAP syntax and matching rules from blogUrl.

Finally, we need to define our blogDN field, which will hold a DN. There is syntax
and specific matching rules for DNs, and we will use those. The Distinguished
Name syntax, defined with the OID 1.3.6.1.4.1.1466.115.121.1.12, is used for
values that are DNs. And the distinguishedNameMatch matching rule is used for
performing exact matches on DNs. There are no substring or ordering matches
for DNs.

Our last attribute then, looks like this:

attributetype
 (
 blogAttrs:4
 NAME 'blogDN'
 DESC 'DN of a blog entry in the directory.'
 EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
)

Now we have our entire schema defined. We are ready to test it.

Loading the New Schema
As with all other schemas, in order to load this schema, we must include it in
slapd.conf.

include /etc/ldap/schema/core.schema
include /etc/ldap/schema/cosine.schema
include /etc/ldap/schema/inetorgperson.schema
include /etc/ldap/schema/ppolicy.schema
include /etc/ldap/schema/blog.schema

It is assumed here that blog.schema is located in the /etc/ldap/schema directory
(which is a good place to put the schema). If you choose to locate the schema
elsewhere, adjust the path accordingly.

Chapter 6

[345]

The highlighted line in the code is the only addition necessary (the rest should be
there already). Note that our schema is only dependent on core.schema. The other
three are not necessary to make our schema work.

Restarting SLAPD will load the schema.

Troubleshooting Schema Loading
If there is an error in the schema SLAPD will not start, failing instead with an
elaborate error message like this:

/etc/schema/blog.schema: line 89: Unexpected token before
 MUST (blogDN))
ObjectClassDescription = "(" whsp
 numericoid whsp ; ObjectClass identifier
 ["NAME" qdescrs]
 ["DESC" qdstring]
 ["OBSOLETE" whsp]
 ["SUP" oids] ; Superior ObjectClasses
 [("ABSTRACT" / "STRUCTURAL" / "AUXILIARY") whsp]
 ; default structural
 ["MUST" oids] ; AttributeTypes
 ["MAY" oids] ; AttributeTypes
 whsp ")"
slapd stopped.
connections_destroy: nothing to destroy.

This error was triggered when we misspelled AUXILIARY—a cause not easily divined
by this error message. But it illustrates the fact that the process of writing a schema
definition takes patience and precision.

The best strategy for dealing with such failures is to carefully read the errant
schema definition over, hunting for errors. Sometimes simplifying a definition can
help eliminate other possible errors too. Finally, checking the definition against the
specification in RFC 4512 can help you spot any nondescript syntactical errors.

A New Record
Now we can use ldapadd to add a new blog entry to our directory information tree.
We will add information about the official corporate blog of Example.Com:

$ ldapadd -U matt
SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt

LDAP Schemas

[346]

SASL SSF: 128
SASL installing layers

dn: blogTitle=Example.Com News,dc=example,dc=com

blogTitle: Example.Com News

blogUrl: http://example.com/blogs/main

blogFeedUrl: http://example.com/rss/main

description: The Official Example.Com Blog.

objectclass: blog

adding new entry "blogTitle=Example.Com News,dc=example,dc=com"

The highlighted portion above is the new entry we are adding. The last line, returned
by SLAPD, indicates that the entry has been added successfully.

Our user uid=barbara is responsible for maintaining this blog so we can indicate
this relationship by adding the blogOwner object class and blogDN attribute to her
record with ldapmodify:

$ ldapmodify -U matt
SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers

dn: uid=barbara,ou=users,dc=example,dc=com
changetype: modify
add: objectclass
objectclass: blogOwner
-
add: blogDN
blogDN: blogTitle=Example.Com News,dc=example,dc=com

modifying entry "uid=barbara,ou=users,dc=example,dc=com"

The record for uid=barbara now looks like this:

dn: uid=barbara,ou=Users,dc=example,dc=com
ou: Users
uid: barbara
sn: Jensen
cn: Barbara Jensen
givenName: Barbara
displayName: Barbara Jensen
mail: barbara@example.com
objectClass: person
objectClass: organizationalPerson

Chapter 6

[347]

objectClass: inetOrgPerson
objectClass: labeledURIObject
objectClass: blogOwner

blogDN: blogTitle=Example.Com News,dc=example,dc=com

We have just successfully created and implemented a new schema including new
attributes and object classes.

Summary
The focus of this chapter has been the schema. We began with a theoretical look
at what makes up a schema and how schemas are defined. Then we looked at the
organization of schemas in the directory, focusing on the different types of object
class and how they work together to compose a hierarchical directory. From there
we turned to more practical material. We looked at the accesslog and ppolicy
overlays, each of which requires its own schema. Finally, we ended by creating our
own custom schema, creating a pair of object classes, and a handful of attributes.

In the next chapter we will discuss working with multiple directories, focusing
particluarly on directory replication, the process of keeping two or more directory
servers synchronized with the same content.

Multiple Directories
In the previous chapters we were focused on using a single directory server. But in
a networked environment, you may need to configure multiple directory servers to
interoperate. In this chapter we will be looking at different ways of getting directory
servers to interoperate over a network.

While the focus of this book is OpenLDAP, many of the strategies presented here can
be adopted to integrate OpenLDAP with other LDAP directory servers, such as The
Apache Directory Server, Fedora DS, Microsoft's Active Directory, and the Novell
Directory Server (NDS).

The two main processes we will look at are replication (creating a mirror of a
directory information tree on another directory server) and proxying (allowing
one directory server to act as an intermediary between an LDAP client and another
directory server). In this chapter we will cover:

The basics of synchronizing and replicating directories
Directory replication with SyncRepl
Proxying with the ldap backend
Adding caching with the Proxy Cache overlay
Using the transparency overlay to create a hybrid cache

In this chapter we will be working with two servers—one that will host the
authoritative copy of the directory, and another that will synchronize itself over the
network with the authoritative copy.

•

•

•

•

•

Multiple Directories

[350]

Replication: An Overview
Sometimes it is desirable to have multiple identical copies of a directory server. This
can be particularly effective in cases where LDAP servers sustain large volumes
of traffic, where fail-over protection is required, or in cases where LDAP clients
are geographically dispersed, and having local copies of a directory would greatly
expedite service. These are cases where LDAP replication can provide a solution.

Replication is the process of configuring two or more directories to contain the same
directory information tree (or portion of the directory tree), and to keep the multiple
copies of the directory data synchronized over time. This has been a central feature
of the OpenLDAP suite since its inception. In fact its predecessor, the University
of Michigan LDAP Server, implemented replication early on and, because of this,
replication has long been considered a standard task for an LDAP server.

In the standard LDAP model, replication is done in a hierarchy. One server is
considered the master server (or the master DSA (Directory Server Agent),
sometimes called the provider). This server is responsible for maintaining the
canonical version of the directory information tree.

Beneath the master server are one or more shadow servers (sometimes called
consumer, replica, or slave servers). A shadow server holds a replica of the master
server's directory information tree, and clients can connect to the shadow server and
perform searches of the directory information tree (DIT). Let's have a look at the
following figure:

Master

Clients

Shadow
Directories

Chapter 7

[351]

For all practical purposes, shadow servers have read-only features. While the
shadow servers can handle many LDAP operations, shadow servers are not allowed
to alter the records in the replicated directory information tree. When add, modify, or
delete operations are received, for instance, the shadow server will return a referral
to the client, directing it to contact the master server instead. A referral is a special
type of response that directs the client to contact another server to perform that
operation. Configuring a referral to point from a shadow server to a master server is
a simple matter of adding a referral directive to the slapd.conf file.

When a client receives a referral it has the information it needs to re-try the operation
on the correct server.

Why not allow writing to the slaves? Allowing multiple servers to accept all
the modifications, additions, and deletions makes it possible for the directory
information tree to taken on inconsistent states. What happens if two directory
servers change an attribute at the same time? Or if one modifies a record that another
is simultaneously deleting? By allowing write operations only on the master server,
it is much easier to keep the many replicas consistent.

In the 2.4 release of OpenLDAP, it will be possible to configure
multimaster which will allow multiple servers to act as masters. As
with all multimaster configurations, there will be risks that certain
inconsistencies arise, but these risks should be minimized.

In OpenLDAP there are two different ways to implement replication. The first is by
configuring the master server to keep the shadow servers updated. This is called the
push method. The second is to configure the slaves to periodically check the master
for changes, and update itself accordingly�� this is called the pull method.

Until OpenLDAP 2.2, the first model was the only model supported in OpenLDAP,
and it was done through a stand-alone server called SLURPD. But SLURPD suffered
from a number of problems and inefficiencies, and is now deprecated. It will be
removed from OpenLDAP 2.4. If you are interested in using it to retain backward
compatibility see the OpenLDAP Administrator's Guide at http://openldap.org.

As SLURPD aged the OpenLDAP developers began working on a better,
more robust way of replicating directories. The result was the new
Syncrhonization-Replication (SyncRepl) model, which uses the LDAP
synchronization protocol to keep shadow directories synchronized with a
master server.

Multiple Directories

[352]

SyncRepl
In OpenLDAP 2.2, the developers released a new, experimental form of replication
called LDAP Synchronization-Replication, or SyncRepl for short. This method was
both more reliable and more configurable, and it was further refined and designated
stable when OpenLDAP 2.3 was released. It is now the preferred way of handling
replication for OpenLDAP servers.

Unlike the SLURPD replication process, SyncRepl does not require a second daemon
process. The SLAPD server implements the shadow server portion of the code, and
the provider services (for the master server) are provided in an overlay. SyncRepl
can use either a shadow-from-master pull or a hybrid pull/push method.

In the pull scenario (called the refresh-only operation), the shadow server
periodically connects to the master server and requests all changes since the last time
it checked. The master then sends the shadow all changed records (or, in the case of
deletions, the DN of the deleted record).

SynRepl's second method (called refresh and persist) is a hybrid of the push features
exemplified in the SLURPD model and some of the pull features discussed above
(therefore it is not a true push method).

In this scenario, the shadow server makes an initial connection to the master and
pulls some initial updates. But it leaves the connection open. When the master
modifies its copy of the directory information tree, it pushes information to the
shadow server using that open connection. If the shadow server gets disconnected,
the master server does nothing. The next time the slave server connects though, it
requests all new changes (like in the pull method), and the master sends them.

For more detailed information about LDAP content synchronization
and the SyncRepl implementation included in OpenLDAP, see RFC
4533 (http://www.rfc-editor.org/rfc/rfc4533.txt) and the
OpenLDAP Administrator's Guide at http://openldap.org.

The SyncRepl model has some distinct advantages over SLURPD:

1. Since the shadow server initiates connections and handles updates, a
network outage does not cause problems with the reliability of the directory
information tree. The next time the slave can get back on line it will retrieve
all of its updates.

Chapter 7

[353]

2. There is rarely any need to interrupt service on the master server. When
a new shadow server first connects to the master it downloads the entire
directory information tree, so there is no need to dump the data from
the master server and send it to the shadow (though that method is still
supported, and it might be expedient in cases where there is a large directory
information tree and a slow network connection).

3. The flexibility in choosing between the refresh-only and refresh-and-persist
operations gives you the ability to choose a model that will best match
your needs.

Each mode of replication has its advantages. In highly distributed networks, the
refresh-only replication tends to work better as it doesn't require keeping a constant
connection open across a large and unpredictable network. But since the shadow
server only checks the master periodically, there can be a lag between when the
master is updated and when the shadow picks up the changes. Most times this does
not cause any problems.

On a reliable LAN, the refresh-and-persist (refreshAndPersist) replication may be
a better choice—especially if it is important that changes get from the master to the
shadow in a minimal amount of time. As soon as the master is changed, it will send
the updates to the shadow server. This means that there is less waiting time.

Even in the refresh-and-persist (refreshAndPersist) operation, a
network outage is not catastrophic. The shadow server will simply
attempt to re-connect to the master server, retrieving updates as soon as
it successfully connects.

These comments are intended to serve as general guidelines. Since it is fairly easy to
try both, you may want to experiment to see what works best for you. Generally, on
a LAN, refresh-and-persist is the best choice, while on slower links, refresh-only is
better. In the next section we will cover the process of configuring SyncRepl between
a master and a shadow copy.

Configuring SyncRepl
The SLAPD server comes with all of the functionality necessary for implementing
a shadow server, and the syncprov overlay provides the functionality for
implementing a master server.

Multiple Directories

[354]

SyncRepl was introduced in OpenLDAP 2.2, but configuration was
significantly different. SyncRepl should be avoided in production
environments running OpenLDAP 2.2.

Getting SyncRepl running requires configuration on both the master and the shadow
server. The configuration directives for both are added to the backend sections of the
slapd.conf files.

Configuring the Master Server
The first thing we will do is configure one server as a master. This server will listen
for replication requests from our shadow server and will send updates as requested.
Throughout this book we have been configuring a SLAPD server. Now we will use
that server as the master.

The functionality of the master server is implemented in an overlay called syncprov
(which is short for Synchronization Provider). We need to load and configure
that overlay.

Since our SLAPD server is built using modules, the first step is to add a
module-loading instruction near the top of the slapd.conf file:

modulepath /usr/local/libexec/openldap
moduleload back_hdb
moduleload refint
moduleload unique
moduleload accesslog
moduleload syncprov

When the directory server is restarted the syncprov module will be loaded. Now
we need to make some changes to the configuration section for database that we are
going to replicate. The main portion of this directory configuration looks something
like this:

database hdb
suffix "dc=example,dc=com"
rootdn "cn=Manager,dc=example,dc=com"
rootpw secret
directory /var/lib/ldap
#directory /usr/local/var/openldap-data
index objectClass eq
index cn eq,sub,pres,approx
index uid eq,sub,pres
index sn eq,sub,approx
index member eq

Chapter 7

[355]

Now we want to set this database up for SyncRepl.

The first thing to add is a few additional indexes. These indexes will track a pair
of operational attributes that are frequently accessed in the SyncRepl process: the
entryCSN attribute, and the entryUUID attribute.

The entryCSN attribute is used to store a Change Sequence Number (CSN) in each
record. The value of entryCSN is basically a fine-grained time stamp that indicates
when the attribute was last modified. The entryUUID attribute, the second attribute,
contains a (universally) unique identifier for that entry, and can be used to quickly
identify corresponding entries on master and shadow servers. Like any other
attributes, these attributes can be retrieved through an LDAP search:

$ ldapsearch -LLL -U matt "(uid=matt)" entryCSN entryUUID
SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers

dn: uid=matt,ou=Users,dc=example,dc=com
entryUUID: bec1eb70-c5b0-102a-81bf-81bc30f92d57

entryCSN: 20070122003136Z#000000#00#000000

When SyncRepl searches for these attributes it does equality checking, so we should
configure an index for performing equality tests:

index entryCSN,entryUUID eq

This index directive, which configures two equality indexes—one for each
attribute—can be added to the slapd.conf file just beneath the other
index directives.

Next we need to load and configure the syncprov overlay. There are only two
configuration directives generally used by this overlay, so our complete overlay
configuration for the master server looks like this:

overlay syncprov
syncprov-checkpoint 50 10
syncprov-sessionlog 100

The first line loads the syncprov overlay. The second line specifies how often
SyncRepl information ought to be written to the database. Just as with the BDB and
HDB backends, SyncRepl is tuned to perform operations as fast as possible.
Writing to the underlying database is costly, so streamlining the process can
improve performance.

Multiple Directories

[356]

The syncprov-checkpoint directive instructs the overlay to only write changes
to the database when a new write request comes in and either a certain number of
writes have already occurred (50 in this case), or a certain number of minutes (10)
has elapsed.

The second directive, syncprov-sessionlog, specifies how many modifications and
deletions ought to be stored in the session log. The master uses information in this
log to determine what information needs to be sent to the shadow servers. In this
case, it will store the latest 100 modifications and deletions.

Our finished configuration looks something like this:

##############################
Database 1: Example.Com

database hdb
suffix "dc=example,dc=com"
rootdn "cn=Manager,dc=example,dc=com"
rootpw secret
directory /var/lib/ldap
#directory /usr/local/var/openldap-data
index objectClass eq
index cn eq,sub,pres,approx
index uid eq,sub,pres
index sn eq,sub,approx
index member eq
index entryCSN,entryUUID eq

overlay syncprov
syncprov-checkpoint 50 10
syncprov-sessionlog 100

Once modifications to slapd.conf are finished it is a good idea to run slaptest
to make sure the configuration file can be parsed, and then (for good measure) run
slapindex to update the index files.

Creating a SyncRepl User
The last thing we need to do to prepare the master server is create a special account
for synchronization. The shadow server will connect to the master using this account.

We will create an account similar to the one we use for performing authentication:

dn: uid=syncrepl,ou=System,dc=example,dc=com
uid: syncrepl
ou: System
userPassword: secret

Chapter 7

[357]

description: Special account for SyncRepl.
objectClass: account
objectClass: simpleSecurityObject

We can load this record with the ldapadd client:

 $ ldapadd -U matt -f syncReplUser.ldif

In order for the replication account to work, it will also need permissions to update
the requisite entries in the directory. This means that the ACLs must grant this user
the permissions. While we could spell out detailed ACLs as we did in Chapter 4,
for the sake of expedience we will just add the new SyncRepl user to the cn=LDAP
Admins group with ldapmodify:

$ ldapmodify -U matt
SASL/DIGEST-MD5 authentication started
Please enter your password:
SASL username: matt
SASL SSF: 128
SASL installing layers

dn: cn=LDAP Admins, ou=Groups, dc=example,dc=com

changetype: modify

add: uniqueMember

uniqueMember: uid=syncrepl,ou=system,dc=example,dc=com

modifying entry "cn=LDAP Admins, ou=Groups, dc=example,dc=com"

Now, the uid=syncrepl user is a member of the LDAP administrators group, and
the ACLs that apply to that group will also apply to our new user.

That is all there is to configuring the directory to act as a master. Next, we will
configure the shadow server.

Configuring the Shadow Server
We will configure our shadow server to use refreshOnly replication, where the
slave server periodically checks the master for updates and, if it finds any, retrieves
the changes and loads them into its own directory tree.

Our shadow server will be a fresh instance of SLAPD, running on another server on
the same LAN. Let's start with a basic slapd.conf file. We will change this file as we
configure SyncRepl:

slapd.conf - Configuration file for LDAP SLAPD
##########
Basics

Multiple Directories

[358]

##########
include /etc/ldap/schema/core.schema
include /etc/ldap/schema/cosine.schema
include /etc/ldap/schema/inetorgperson.schema
include /etc/ldap/schema/blog.schema

pidfile /var/run/slapd/slapd.pid
argsfile /var/run/slapd/slapd.args
loglevel none

modulepath /usr/lib/ldap
moduleload back_hdb

#############################
BDB Database Configuration
##############################
Database 1: Example.Com

database hdb
suffix "dc=example,dc=com"
rootdn "cn=Manager,dc=example,dc=com"
#rootpw secret
directory /var/lib/ldap
index objectClass,member eq
index cn,uid,sn eq,sub
index entryCSN,entryUUID eq

#include /usr/local/etc/openldap/acl.conf

This should look familiar, based on the configuration we assembled in Chapters 2
and 3. There are a few things to note though:

All of the schemas that the master uses must be loaded on the shadow
server too.
In this case we are going to replicate the entire master directory onto
this shadow SLAPD server, so we want the suffix to be the same,
dc=example,dc=com.
We do not want a root password for this instance. All updates will come
from the master, and we do not want any changes to be made locally.
There is no requirement that the indexes be the same on the master and the
shadow server (in fact, there is no requirement that the master and shadow
server even run the same database backends), but we do want to make sure
that objectclass, entryCSN, and entryUUID are all indexed, since those are
important for SLAPD's performance.

•

•

•

•

Chapter 7

[359]

This basic slapd.conf file should be capable of running a stand-alone server. But we
don't want to run a stand-alone server�� we want it to get its information from, and
stay synchronized with, the master server.

The syncrepl Directive
When a shadow SLAPD server performs its synchronization operations, it acts like
a special sort of LDAP client. It binds to the master server and performs LDAP
operations—usually the special LDAP synchronization operation defined in
RFC 4533.

It should come as no surprise then, to find that configuring a shadow server to act
like a SyncRepl consumer is similar to configuring other LDAP clients. Most of the
configuration has to do with providing information about how the shadow should
bind to the master and how it should perform searches.

The majority of the configuration work for implementing a shadow server is
done with one slapd.conf directive: syncrepl. This directive takes a number of
parameters, in name=value format, that specify how the shadow server is to behave.
Here is a syncrepl directive that contains all of the parameters necessary to perform
basic synchronization. In the slapd.conf file, this directive goes in the database
configuration section for our example.com backend:

syncrepl rid=001
 provider=ldap://directory.example.com
 type=refreshOnly
 interval=00:00:05:00
 searchbase="dc=example,dc=com"
 binddn="uid=syncrepl,ou=system,dc=example,dc=com"
 credentials=secret

This directive provides the minimum configuration necessary to make SyncRepl
work. The directive has seven name/value parameters: rid, provider, type,
interval, searchbase, binddn, and credentials.

The first parameter is rid, the Replica Identifier (RID). This three-digit number
must be unique among all of the shadow servers that use the same master server.
The master SLAPD instance uses the RID to track which consumer servers are
contacting it. Typically, it is best start with a low RID number and increment it for
each shadow server. Thus, rid=001 indicates that this is the first shadow server. If
we were to add a second shadow copy it would be rid=002.

Multiple Directories

[360]

In earlier versions of OpenLDAP the master had to contain a list of all
RIDs for its consumer servers. That is no longer necessary.

The provider parameter should contain the LDAP URL for the master. Either
ldap:// or ldaps:// protocols can be used. The host portion can be either a host
name or an IP address, and an optional port can be added to the end, separated by
a colon. For example, to connect to a master using LDAPS over a non-standard port
you could use a provider like this: ldaps://10.0.1.34:6868. Note that only this
simple form of LDAP URL can be used. The complete LDAP URL syntax, such as
containing a base DN, search filter, and so on, is not supported here.

Using StartTLS instead of SSL/TLS
You can configure the shadow server to connect over LDAP
(unencrypted) and then issue a StartTLS command to begin TLS
encryption between it and the master server. To do this, add
starttls=yes (or starttls=critical if failure to finish TLS
negotiation should stop the transaction).

The type parameter determines which of the two replication modes the shadow
server will use when connecting to the master. The only acceptable values are
refreshOnly and refreshAndPersist.

In our example we used the refreshOnly option. In a refresh-and-persist
configuration the interval parameter will be ignored.

Otherwise, there are no significant differences between configuring refresh-only and
refresh-and-persist.

The interval parameter indicates how long the shadow server will wait before
checking the master for updates. This applies to the refreshOnly mode where the
consumer server connects, checks for updates, and then disconnects. It will then wait
the period specified by interval before checking again.

The syntax for the interval parameter is dd:hh:mm:ss, where dd is number of
days to wait, hh is hours, mm is minutes, and ss is seconds. If this parameter is not
specified it defaults to one day (01:00:00:00). A shorter interval is often desirable
especially if it is important for shadow servers to provide up-to-date information
right away. In the previous example the shadow server will wait five minutes
(00:00:05:00) between checks.

Chapter 7

[361]

If it is very important for shadow servers to stay closely
synchronized, and the shadow is on the same LAN as the master, the
refreshAndPersist mode is probably a better fit.

One potential difficulty with the refreshOnly mode arises in the case where the
master server becomes unavailable (for example, because of a network outage or a
server failure). How should the shadow server behave? In addition to the interval
parameter, there is an additional parameter that allows tuning of the refresh interval
but this option takes effect only when the master server cannot be reached.

This parameter, retry, provides information about what should be done when the
shadow server cannot contact the master server. It looks like this: retry="120 10".
This instructs the shadow server to retry the connection every 120 seconds up to 10
times when the master server becomes unavailable.

Using the retry Parameter
It is a good idea to set the retry parameter in both refresh-only and
refresh-and-persist configurations. This will ensure that a brief network
failure does not disturb replication.

This parameter can take multiple pairs. For example, we can configure it to check
a couple of times in short intervals, then (if it still cannot connect) to test again at
longer intervals for a longer period of time: retry="30 10 600 20". This time, if
the shadow server cannot connect to the master it will try to reconnect every 30
seconds 10 times in a row. If the master still cannot be connected, then it will wait ten
minutes (600 seconds), and try again. It will repeat this process twenty more times.
But after these attempts the shadow server will give up trying to reach the master.

To configure the shadow server to test indefinitely—to keep trying until it
connects—the special + (plus) symbol can be inserted in lieu of a retry count. For
example, the parameter retry="60 +" would instruct the shadow SLAPD to try
connecting to the master once a minute until it finally succeeds, in which case it will
return to its regular timing as set in the interval parameter.

After the interval parameter is the searchbase parameter. This indicates what the
base DN for the synchronization request will be. Generally, searchbase should be
the same as the database suffix directive for the shadow server.

A shadow server need not replicate the entire directory information tree of the
master server. For example, we could have configured the shadow server to just
replicate the ou=users branch with a database configuration like this:

Multiple Directories

[362]

database hdb
suffix "ou=users,dc=example,dc=com"
rootdn "ou=users,dc=example,dc=com"
directory /var/lib/ldap
index objectClass,member eq
index cn,uid,sn eq,sub
index entryCSN,entryUUID eq
include /etc/ldap/acl.conf

syncrepl rid=001
 provider=ldap://directory.example.com
 type=refreshOnly
 interval=00:00:05:00
 searchbase="ou=users,dc=example,dc=com"
 binddn="uid=syncrepl,ou=system,dc=example,dc=com"
 credentials=secret

Again, note that suffix and searchbase are the same.

The searchbase directive is one of several that compose the search specification.
We could also use scope, filter, attrs, attrsonly, sizelimit, and timelimit
parameters to construct a more complex search specification. Leaving these parameters
off though, we have simply accepted the default which performs a search like this:

scope is set to sub
The filter is set to (objectclass=*).
The attrs field is set to *,+, which will request all regular and
operational attributes
No attrsonly flag is included so both attributes and values are returned
The sizelimit and timelimit parameters are both set to unlimited

The sixth and seventh parameters in the syncrepl directive are binddn and
credentials. These are used to perform a simple bind to the directory.

When configuring the master server we created the uid=syncrepl account. Now
we will use that same DN to connect from the shadow server to the master. As was
noted before, the master server does not automatically grant this account any special
privileges�� the ACLs on the master will be applied to this account.

Also, size and time limits will be applied to this user. A frequently made mistake
when configuring SyncRepl is to inadvertently subject the SyncRepl user to a size or
time limit that is too low. The result of this is that the shadow server may only get
part of the directory information tree that it is supposed to have, and will not be able
to provide clients with complete directory information.

•

•

•

•

•

Chapter 7

[363]

If system resources allow, you will typically want to allow the SyncRepl user
unlimited time and request size.

The credentials parameter, in the case of a simple bind, holds the password.

Our basic configuration uses a simple bind and an unencrypted (plain
LDAP) connection. This is not secure. Using StartTLS, SSL/TLS, or an
appropriately strong SASL mechanism would provide increased security.

Simple binding is not the only type supported for SyncRepl. SASL authentication can
also be turned on, though this may require additional parameters:

bindmethod=sasl: By default, the bind method is set to simple. To enable
SASL authentication this parameter must be manually set.
saslmech=<SASL Mechanism>: This should be set, for example, to
DIGEST-MD5 to do MD5 hashing of the password prior to transmitting it. See
the SASL section in Chapter 4 for more information.
authcid=<uid>: This should be set to the SASL ID of the account that will
be used to authenticate. The (similar) authzid parameter can be used to
configure an alternate authorization account.
credentials=<SASL Credentials>: The credentials field is used, in SASL
authentication, to pass credential information to the SASL subsystem. In the
DIGEST-MD5 mechanism, for example, credentials holds the account's
password.
realm=<SASL Realm>: Realm information (see Chapter 4) can be passed with
this parameter.
secprops=<SASL Security Props>: Additional SASL security properties can
be passed with this parameter.

Finally, it should be noted that by default, during a SyncRepl operation, the shadow
server does not perform schema checking on the records that it receives from the
master. In other words, if the master sends the shadow server a record that violates
schema constraints, the shadow server will simply store the errant record, making no
attempt to validate or reject it.

Usually, it is desirable to have schema checking disabled. Since the master server
should always be doing schema checking a second set of identical checks is
redundant, and it slows down the replication process. However, on rare occasions
it may be desirable to have that extra layer of evaluation. Schema checking
of replicated records can be enabled in the syncrepl directive by adding the
schemachecking=on parameter.

•

•

•

•

•

•

Multiple Directories

[364]

Configuring a Referral
Operations that write to a replicated directory information tree can only be done on
the master server. You cannot, for example, change an attribute by connecting to a
shadow server and performing an LDAP add operation. In other words, shadow
servers are effectively read-only.

If a client attempts to modify an entry on a shadow server, that server will respond
that it will not perform the modification:

$ ldapmodify -x -W -D "uid=matt,ou=users,dc=example,dc=com" -H \
 ldap://localhost
Enter LDAP Password:

dn: uid=matt,ou=users,dc=example,dc=com
changetype: modify
replace: description
description: testing modify against shadow.

modifying entry "uid=matt,ou=users,dc=example,dc=com"
ldap_modify: Server is unwilling to perform (53)

 additional info: shadow context; no update referral

In this example, when we tried to modify the description attribute value for our own
record, the server responded with unwilling to perform error.

While a shadow server cannot allow updates of its own data, it can be configured to
redirect the client to the master server. This is done by adding an additional directive
to the database section (typically just below the syncrepl directive) to indicate what
server requests should be redirected to. The directive looks like this:

updateref ldap://directory.example.com

Now, when a client attempts to perform a write operation, instead of receiving an
error, it will receive a referral:

$ ldapmodify -x -W -D "uid=matt,ou=users,dc=example,dc=com" -H \
 ldap://localhost
Enter LDAP Password:

dn: uid=matt,ou=users,dc=example,dc=com
changetype: modify
replace: description
description: testing modify against shadow.

modifying entry "uid=matt,ou=users,dc=example,dc=com"
ldap_modify: Referral (10)
 referrals:
 ldap://directory.example.com/uid=matt,ou=users,dc=example,dc=com

Chapter 7

[365]

Many clients can be configured to do what is called referral chasing. That is, when
they receive a referral they can automatically follow the referral. In a case like the
given one, the client would automatically attempt the modification operation against
the master server at directory.example.com.

Starting Replication
At this point we have taken a close look at both the master and shadow configuration
options for SyncRepl. Now we are ready to turn things on.

Once the master server is configured it must be restarted for the configuration
changes to take effect. Once the syncprov overlay is loaded, SLAPD will be
functioning as a master. This should all be done before starting up the configured
consumer server, otherwise the shadow server will try to fetch information from the
master, but the master will not have the necessary LDAP operation available.

After the master is running again the shadow server can be started. For a small to
medium-sized directory on a network with decent bandwidth, there is no reason
to manually load any directory data into the shadow server. Instead, when the
shadow server initially contacts the master, it will fetch a fresh copy of the directory
information tree (to the extent that the master's ACLs allow) and store it all locally.

Within a few minutes, the shadow server should have a correct and complete replica
of the information stored in the master server.

For Larger Directories...
The automatic download of the directory information tree from master to shadow
is definitely easy to do, but with a large directory information tree with gigabytes of
information, performing the update over the network (using the LDAP protocol for
every transaction) can be unduly time-intensive as well as resource-intensive.

In such cases, it is often better to use slapcat on the master to dump the directory
contents (no need to stop SLAPD to do this), and then transfer the LDIF file to the
shadow server and import it with slapadd.

Appendix C contains instructions on using slapcat and slapadd to
dump and load SLAPD databases.

Since the slapcat and slapadd programs do not incur the overhead of the LDAP
network protocol, they can outperform SyncRepl on adding new records. And on
networks where bandwidth cannot be devoted to such large-scale data transfers,
LDIF files can be transported via alternate (offline) media.

Multiple Directories

[366]

Once the directory databases have been populated with slapadd, you can start the
shadow server.

Delta SyncRepl
By default, when the master sends a shadow server a modified or added record, it
sends the entire record, not just the changes. This is done because the master does not
keep track of what information has been sent to the shadow server.

But the accesslog overlay does keep track of what information is sent to the shadow
servers. By configuring SLAPD to use the accesslog overlay to provide logging
information for the the syncprov overlay the replication process can be streamlined,
sending only the changed information instead of the whole record. This is called
Delta SyncRepl. In modification-heavy networks or directories that contain very
large records, this streamlining can result in noticeable performance improvements.

Delta SyncRepl is an advanced configuration. As it involves the
cooperation of a couple of overlays, as well as some fairly-complicated
configuration, it may not be the best solution for all configurations. My
own experience with small and medium-sized directories replicating over
LAN and WAN links has been that regular SyncRepl is sufficient, and
Delta SyncRepl is not necessary.

Configuring Delta SyncRepl requires a few changes on the master server, and a small
change on the shadow server.

The Master Server's Configuration
The master server must be running the accesslog overlay, which we implemented
in Chapter 5. We will start off by setting up the logging database for that overlay.
This configuration is very similar to the one created in Chapter 5:

Database 1: Logging DB
This is used by the access
log overlay

database hdb
suffix cn=log
rootdn "cn=Manager,cn=log"
rootpw secret
directory /var/lib/ldap/accesslog
index reqStart,objectclass,entryCSN,reqResult eq

overlay syncprov
syncprov-nopresent TRUE
syncprov-reloadhint TRUE

Chapter 7

[367]

This section creates a new logging database, named cn=log, into which access log
information will be written.

Only a few lines in this section differ from the configuration in Chapter 5. First,
the index directive now builds indexes on reqStart, objectclass, entryCSN,
and reqResult. While reqStart and entryCSN are used internally, the SyncRepl
consumer will make heavy use of objectclass and reqResult attributes, so
indexing these will speed up the replication process.

The last four directives are new. The syncprov overlay must be added to the
accesslog database configuration in order to configure the accesslog for SyncRepl.
These two flags, syncprov-nopresent and syncprov-reloadhint, both must be
turned on (TRUE) for the Delta SyncRepl to work. In fact, the syncprov-nopresent
flag should only be turned on when doing Delta SyncRepl.

Setting Limits and ACLs
Depending on your sizelimit and timelimit settings, you may need
to explicitly grant the uid=syncrepl user unlimited time and size limits
on the cn=log database. Also, make sure the ACLs for this database
grant read access to uid=syncrepl. See Chapter 4 for more on ACLs,
and Chapter 5 for more on limit directives.

Finally, we want to give the syncrepl user unlimited search time and result size
with the limit directive introduced in Chapter 5.

Next, we need to slightly reconfigure the database that we are going to replicate.
In the slapd.conf file, this should be placed directly beneath the given
accesslog definition:

##############################
Database 2: Example.Com

database hdb
cachesize 500
idlcachesize 1500
suffix "dc=example,dc=com"
rootdn "cn=Manager,dc=example,dc=com"
rootpw secret
directory /var/lib/ldap
index objectClass eq
index cn eq,sub,pres,approx
index uid eq,sub,pres
index sn eq,sub,approx
index member eq
index entryCSN,entryUUID eq

Multiple Directories

[368]

overlay syncprov
syncprov-checkpoint 50 10
syncprov-sessionlog 100

overlay accesslog

logdb cn=log

logops writes

Purge logs for entries one week old, check once every two days.

logpurge 7+00:00 2+00:00

logsuccess TRUE

The highlighted section marks the new addition to the database section of the
replicated backend database. The accesslog overlay here is configured to use the
cn=log database defined previously. The only operations we need to record are
those that write to the database (add, modify, delete, and modrdn).

Depending on your size and time-limit settings, you may also need to add
an explicit limits directive granting uid=syncrepl unlimited time and
result size to finish operations.

These are the only changes that need to be done on the master. Now we will look at
the changes to the shadow server's slapd.conf file.

The Shadow Server's Configuration
On the consumer (shadow server) side, enabling Delta SyncRepl requires the
addition of a couple of parameters in the syncrepl directive:

syncrepl rid=001
 provider=ldap://10.21.77.100
 type=refreshOnly
 interval=00:00:02:00
 searchbase="dc=example,dc=com"
 binddn="uid=syncrepl,ou=system,dc=example,dc=com"
 credentials="secret"
 syncdata=accesslog

 logbase="cn=log"

 logfilter="(&(objectclass=auditWriteObject)(reqResult=0))"

The new portion of the syncrepl directive consists of the addition of the three
highlighted lines at the end of the given example. These lines instruct the
shadow server to consult the master's accesslog database to get information
about synchronization.

Chapter 7

[369]

The syncdata parameter indicates what source SyncRepl should use to get
information about the records which need updating. This should be set to accesslog
to indicate that we are using an accesslog backend.

The logbase directive should be set to the base DN of the access-log on the master
server. In the previous section we set this to cn=log.

Finally, the logfilter parameter defines what filter ought to be used when
searching the master server's accesslog. When it comes to replication, we want
information about any changes to the database—adds, modifies, modRDNs, or
deletes. These are all writing operations and will be recorded in the accesslog
with the auditWriteObject object class. Further, we only want to synchronize
transactions that were done successfully (remember, accesslog records failed
attempts to change the directory and we don't want to replicate those). In cases
where writes are successful the reqResult flag will be set to 0. So we add that to our
filter too.

For a complete set of configuration files doing Delta SyncRepl, see
the following Tech Note on the Connexitor blog: http://www.
connexitor.com/forums/viewtopic.php?t=3 (Connexitor is
Symas's commercially-supported distribution of OpenLDAP).

Now both the master and the shadow servers are configured. When starting things
up for the first time you may want to delete the old shadow database (see the
instructions earlier in this chapter) and start over. Again, restart the master server
before starting the consumer.

That's all there is to configuring Delta SyncRepl. Next, we will take a look at some
strategies for debugging replication problems.

Debugging SyncRepl
One of the frustrating factors of configuring a network-based server-to-server setup
like SyncRepl is the difficulty in debugging. Here are a few tips for making SyncRepl
debugging easier.

Starting Over
Sometimes a first shot at configuring replication fails. It is possible, and in fact quite
easy, to wipe out the entire database for the shadow server and then start over again
from scratch.

Multiple Directories

[370]

If you are using the BDB or HDB backends, all you need to do is delete all of the data
files in the database directory:

 $ sudo /etc/init.d/slapd stop

 $ cd /var/lib/ldap

 $ rm -f *.bdb __db.* log.*

Warning: Make sure you do not delete the DB_CONFIG file!�

The next time you restart SLAPD it will rebuild the data files from scratch.

Similar steps can be taken to migrate databases, fix corrupted backends, and so
forth. But these cases require a little more care. For more detailed instructions,
see Appendix C.

Strategic Logging
Another way of debugging replication is to run the shadow SLAPD instance in the
foreground and turn on the sync log level:

 $ sudo slapd -d sync

This will print verbose information on the synchronization process.

Increasing log information on the master server may also be helpful. The acl logging
level can be useful for evaluating how access rules are applied to the SyncRepl user's
requests. For harder issues, the trace debug level can also be very helpful.

A Few Common Mistakes
There are a few common mistakes made when configuring SyncRepl.

Limits and ACLs: I have already mentioned the time- and size-limit issue:
sizelimit and timelimit directives apply to the SyncRepl user just as they do to
any other non-manager account. If the database has more entries than the maximum
size limit, or the connection takes a long time to replicate, then the replication from
master to shadow may end prematurely, resulting in an incomplete synchronization.

ACLs too can have surprising results in replication. If an ACL denies access to
the SyncRepl user, it will not be able to synchronize that information. That, too,
can result in incomplete synchronization. Fortunately, SLAPD will attempt to
automatically bridge as many of these inconsistencies as it can. Unfortunately, that
may keep the problem invisible for a longer period of time.

Chapter 7

[371]

Untuned DB_CONFIG: In Chapter 5, we looked at the DB_CONFIG file, a special
configuration file for tuning the BDB/HDB database backend. When configuring
a shadow server it is important to put a DB_CONFIG file in the database directory
(/var/lib/ldap). If the DB_CONFIG file is absent or poorly tuned, the database
environment will be much slower. While that may not be noticeable to clients
performing brief occasional searches, this can have detrimental effects on
replication. Larger transactions (like the initial update or transferring of significant
modifications) can be many times slower than they would be with a well-tuned
database environment.

Sometimes, this just increases delay times in updating the database, but when
combined with time limits, it can result in truncated synchronizations.

Failed SASL Authentication: SASL configurations can sometimes cause confusion
when implementing SyncRepl (or SLURPD, for that matter). If you typically use
SASL for authentication, and the SASL information is not stored in the directory
information tree, then you will also need to make sure the external SASL data
is synchronized.

In Chapter 4 we configured SASL to do DIGEST-MD5 authentication using the
external /etc/sasldb2 file for storing passwords. If we are to use SASL
DIGEST-MD5 authentication on our shadow servers, we will need to make sure that
they each have the same /etc/sasldb2 file, which will require using some other
non-OpenLDAP tool, like rsync (http://samba.anu.edu.au/rsync/).

One method of working around this is to store cleartext SASL passwords inside
of the directory, instead of in the sasldb2 file. This is done simply by using the
{CLEARTEXT} password hash instead of {SSHA} or some other mechanism. See
Chapter 3 for more information. The OpenLDAP Administrator's Guide
(http://openldap.org) also explains this configuration.

Simple binding (by DN and user password) should work just fine with replication, as
should the SASL EXTERNAL authentication we configured in Chapter 6.

Configuring an LDAP Proxy
Sometimes, instead of replicating a directory information tree, it is desirable to
proxy the communication with an LDAP directory. In this scenario a SLAPD server
is configured to stand between clients and another LDAP server elsewhere on the
network, and respond to client requests with directory information retrieved from
the other LDAP server.

OpenLDAP supports a couple of different ways of configuring SLAPD to serve as
a proxy.

Multiple Directories

[372]

Using the LDAP Backend
One way of setting up proxying between two servers is to configure one server to use
the ldap backend (instead of BDB or HDB). The ldap backend listens for requests
and, when it gets them, transparently forwards the request to another LDAP server.
For example, say we have two servers, directory.example.com, which stores the
database, and proxy.example.com which uses the ldap backend to proxy requests to
the directory.example.com server.

From the client's perspective, when the client connects to proxy.example.com, it
appears to get results from proxy.example.com. All network traffic moves between
the client and the proxy, and there is nothing in the returned results that indicates
that the result were fetched from another server. In addition, the ldap backend
follows referrals automatically, rather then requiring the client application to do
referral chasing.

From the perspective of directory.example.com, the connection comes from proxy.
example.com.

At the protocol level, the ldap backend transparently forwards all requests from the
client on to the other server. In other words, when the client binds, it is not binding
to proxy.example.com but to directory.example.com.

This too is configurable, and more advanced binding configurations can
be achieved. Such features are discussed in the section Using Identity
Management Features.

Every client gets its own connection from the proxy to the directory, with one
exception. All the clients that connect as the anonymous user are proxied through the
same connection to the remote server.

TLS connections go from the client to the proxy. The proxy can be
configured to use TLS between it and the remote server either when the
client requests TLS, or every time the proxy connects to the remote server.
This is done with the tls directive for the ldap backend.

Configuring the ldap backend to act as a proxy is very simple. Here is a complete
slapd.conf configured for the ldap backend:

slapd.conf - Configuration file for LDAP SLAPD
##########
Basics
##########

Chapter 7

[373]

include /etc/ldap/schema/core.schema
include /etc/ldap/schema/cosine.schema
include /etc/ldap/schema/inetorgperson.schema
include /etc/ldap/schema/blog.schema

pidfile /var/run/slapd/slapd.pid
argsfile /var/run/slapd/slapd.args
loglevel none

modulepath /usr/lib/ldap
moduleload back_ldap

################

LDAP Backend

################

database ldap

uri "ldap://directory.example.com"

suffix "dc=example,dc=com"

The significant points of this example are highlighted.

Once the back_ldap module has been loaded, the backend is defined in just three
directives. The database directive points to the ldap backend (instead of the hdb
backend we have been using in previous chapters).

The uri directive takes as a value a space-separated list of LDAP URLs. In this
case there is only one. Having more than one URL comes in handy when one of the
servers goes down. When there is a list, the ldap backend will try to connect to the
servers in order. If the first server is down, it will move on to the second URL, and so
on until it either runs out of servers or finally makes a connection.

The suffix directive indicates which suffix or suffixes this backend serves. This
should contain the base DN or DNs that the remote directory provides. It is
possible to use the proxy to make available only a branch or two of the remote
server using this method. For example, the remote server might provide access to
dc=example,dc=com. But we could set the suffix on this proxy to ou=users,
dc=example,dc=com, and users of this server would then only be able to search that
part of the directory information tree through this proxy.

A number of OpenLDAP users have reported successfully implementing
the ldap backend to proxy requests to other directory servers, such as
Microsoft's Active Directory.

There are a handful of other configuration options available for the ldap backend, all
of which are document in the slapd-ldap man page: man slapd-ldap. But we will
only look at one subset: the identity management features.

Multiple Directories

[374]

Using Identity Management Features
There are more sophisticated things that can be done with the ldap backend. You
can, for instance, separate the authentication and authorization tasks, authenticating
as the DN supplied by the client but then performing all work as a different user.

This feature, called ID assertion, allows you to set up a proxy (perhaps accessible
on a less secure network) that can allow users to bind as themselves, but then use an
account with lower permissions (such as a system account whose permissions are
restricted by ACLs) to get only a limited subset of information from the directory.

Configuring ID assertion requires only a few additional directives. On the proxy, you
will need to add two directives to the ldap database configuration: idassert-bind
and idassert-authzFrom.

The idassert-bind directive specifies how the proxy server ought to authenticate to
the remote directory server. Here's an example configuration:

idassert-bind
 bindmethod=simple
 binddn="uid=authenticate,ou=system,dc=example,dc=com"
 credentials="secret"
 mode=none

This directive defines the account (and authentication style) that the proxy will use to
connect to the remote directory in order to authenticate the client.

The supported values of bindmethod are simple (to do a simple bind), sasl (to do
SASL binds), and none. If none is used then ID assertion is not done (which achieves
the same effect as not using this directive at all).

The binddn and credentials parameters specify the DN and password for
connecting to the remote directory.

The mode parameter specifies whose identity will be asserted to the remote server. In
the given example we set the mode to none, which means that the proxy will assert
the DN specified in binddn as its identity. In other words, the proxy will perform all
operations on the remote server as the DN in binddn.

For a more complicated proxy, you can set mode to anonymous (which asserts the
anonymous identity to the remote directory) or self (which asserts the identity sent
by the client). These implement the Proxied Authorization (proxyAuth) Control
defined in RFC 4370 (http://www.rfc-editor.org/rfc/rfc4370.txt).

Chapter 7

[375]

For anonymous or self, you may also need to set the authz-policy directive in
ldap.conf, and add authzFrom or authzTo entries to the proxy's or client's DN
(respectively). For more information see the man pages for slapd.conf and
slapd-ldap.

The idassert-authzFrom directive is used to authorize which clients can make use
of the proxy. For example, we could set a rule that allows users to use the proxy if
their DNs are in the ou=users subtree:

idassert-authzFrom dn.subtree="ou=users,dc=example,dc=com"

Like other directives that make use of the dn specifier, this one supports the regular
list of modifiers, like dn.subtree, dn.one, and dn.regex. See the discussion of limits
in Chapter 5 for an explanation of these modifiers.

Turning the Simple Proxy into a Caching
Proxy
As we have configured the proxy so far, every request to the proxy is relayed to the
remote directory server. No results are retained on the proxy. So when the same
request is performed several times, the proxy connects to the remote directory server
each time and forwards the request. It is possible, however, to use the pcache (Proxy
Cache) overlay to add caching to the proxy, storing a subset of the remote directory
on the proxy. This can significantly speed up performance in some cases.

Proxy Cache works by storing a subset of frequently-accessed information in a
database on the proxy SLAPD instance. When the proxy receives a request for
information stored in the cache, it will return the cached data instead of fetching the
records from the remote server.

Records are stored in an LRU (Least Recently Used) cache, which means that once
the cache fills up, the records that were accessed least recently are removed to make
way for new entries. Additionally, an entry is only served out of the cache for a
certain period of time (called Time To Live, or TTL) before the proxy once again
connects to the remote directory to fetch a fresh copy of the entry. This keeps the
proxy from serving stale or out of date information that has changed in the main
directory since the last time the proxy accessed the records.

Binding is not cached by pcache. Every client connection must still bind,
and the behavior of the bind operation depends on the configuration of
the ldap backend. It can use ID assertion, or pass authentication through
to the remote host.

Multiple Directories

[376]

The pcache overlay is configured in the proxy's slapd.conf file. The first few steps
of implementing the pcache overlay are familiar. Near the top of our configuration
file we need to add the moduleload pcache line to load the correct module.

In the database section we need to add the pcache overlay with the usual overlay
directive. Then, there are several directives necessary to configure the pcache
overlay. Here is the entire database configuration section for an ldap database with
the proxy cache overlay:

database ldap
uri "ldap://10.21.77.100"
suffix "dc=example,dc=com"
rootdn "cn=Manager,dc=example,dc=com"

idassert-bind
 bindmethod=simple
 binddn="uid=authenticate,ou=system,dc=example,dc=com"
 credentials="secret"
 mode=none

idassert-authzFrom "dn.subtree:dc=example,dc=com"

overlay pcache
proxycache bdb 1000 1 50 1200
directory /var/lib/ldap/cache
index objectclass eq
index uid,mail eq,sub
index queryid eq

proxycachequeries 100
proxyattrset 0 uid mail cn sn givenName
proxytemplate (uid=) 0 600

The beginning of the file does not differ much from the identity assertion
configuration we used in the previous section. One difference however, is the
addition of the rootdn directive which is required by the database-backed pcache
overlay. It is never used for authentication purposes so using the base DN of the
directory is fine.

Once the overlay has been added to the overlay stack using overlay pcache, the first
proxy cache directive appears:

proxycache bdb 1000 1 50 1200

This directive handles the core configuration of the proxy cache engine. It has five
different parameters:

Chapter 7

[377]

The database type: pcache needs a place to store the cached data, and it can
use one of the underlying database mechanisms such as bdb, hdb, or ldif. If
you want an efficient storage system, bdb or hdb are the best choices. Later in
the configuration, we will have to set some directives for the database.
The maximum number of entries in the cache: You can set an upper limit on
the number of entries that will be cached. You can estimate how many entries
you need based on the number of records in this database and the type of use
that this proxy will get.
The number of attribute sets to store: The proxy cache stores a subset of
information from the remote directory. Which attributes are cached is
controlled by defining attribute sets. This parameter should be set to the
number of attribute sets defined. We will initially define one, so the value
above is 1.
The maximum number of entires per search result. Some searches can return
a large number of entries, and this takes up a lot of space on the proxy
(and introduces inefficiency if this particular large search is not frequently
performed). To avoid such a problem, this parameter specifies the maximum
number of entries that a search can have if its results are to be cached. A
search that returns more than the max (50 in this case) will not be cached.
The consistency check interval. This specifies the number of seconds to wait
between checking records for expired TTLs. If a record's TTL has passed,
then the record is considered stale and is removed from the cache.

The first field in the proxycache directive is the database type, specifying what
database backend will be used to store cached data. Now we need to add a few
directives to configure that database backend:

directory /var/lib/ldap/cache
index objectclass eq
index uid,mail eq,sub
index queryid eq

The directory directive (a familiar one we used when configuring the HDB
backend in Chapter 3) points to the directory where the BDB files will be stored.

If you set directory to a location that doesn't exist yet, make sure to create that
directory on the file system: mkdir /var/lib/ldap/cache. You should also put a
copy of the DB_CONFIG file in the cache/ directory, or else the default Berkeley DB
settings will be used, and those usually result in poor performance.

•

•

•

•

•

Multiple Directories

[378]

After the database directive, there are several index directives which specify which
indexes ought to be created and what types of searches each should support. As
usual, these index files can be used to expedite performance.

There are two indexes that should definitely be included: an equality index on
objectclass, and an equality index on queryid. The queryid index is specific to
the pcache backend which uses queryid to identify queries cached in the database.
Other indexes should be specified where they will increase lookup speeds for the
queries defined in the proxy cache templates (which we will examine in a moment).

You can also use other directives (like cachesize) that are defined for the BDB
backend. See the discussion in Chapter 5 and the man page for slapd-bdb for
more detail.

Now we have a few more pcache-specific directives to examine:

proxycachequeries 100
proxyattrset 0 uid mail cn sn givenName
proxytemplate (uid=) 0 600

The proxycachequeries directive specifies how many queries (not entries) should
be cached.

The proxyattrset directive indicates what attributes ought to be cached. The proxy
cache stores a subset of the remote directory. That subset is not merely a subset of
the total entries, but also a subset of the attributes for each entry. In the example
here, this proxyattrset specifies that only the uid, mail, cn, sn, and givenName
attributes (and their values) should be cached. A request for any other attribute will
be proxied to the remote server.

The proxyattrset directive has two parts:

The first is an integer identifier, 0 for the first proxyattrset, 1 for the
second, and so on
The second part is the list of attributes (separated by spaces) that will be
stored in the cache

There can be more than one proxyattrset, but the total number of proxyattrset
directives must be explicitly specified in the proxycache directive. In our
configuration, we only have one proxyattrset directive, so the third parameter (the
number of attribute sets) in the proxycache directive is set to 1.

The last directive is the proxytemplate directive. A filter template specifies what
sort of searches will be stored in the cache, and indicates which attributes will be
stored for records that match the search filter. The directive has three parameters:

•

•

Chapter 7

[379]

A filter template
The proxyattrset directive to use
The TTL for entries that match this template

A filter template is a variation on a regular LDAP filter. A regular filter might look
like this: (uid=m*), or (&(ou=users)(objectclass=person)). A filter template
is a filter without the asserted value; that is, it is a template with nothing on the
right-side of the equals sign. (uid=) and (&(ou=)(objectclass=)) are filter
templates for the two search filters.

If an incoming search's filter matches the filter template (and it doesn't return
more than the maximum number of results) then it will be handled by the cache.
For example, the filters (uid=*), (uid=mat*) and (uid=dave) all match the filter
template (uid=). They can be handled by the cache, but (&(uid=*)(ou=system))
cannot as it doesn't match a defined filter template.

The second parameter is the numeric identifier for the proxyattrset directive
that should be used. In our example we set this to 0, which uses proxyattrset 0.
Thus, this filter template caches the values of the uid, mail, cn, sn, and
givenName attributes.

The proxyattrset directive is used to determine whether to serve incoming
searches from the cache or by connecting to the remote directory. If the request
matches a search filter template, and the attributes list supplied by the client has
only attributes in proxyattrset, then results may be served out of the proxy cache.
For example, if a request comes in with the search filter (uid=m*) (which matches
the (uid=) template) and requests the uid, mail, and sn attributes, these results
can be served out of the cache. On the other hand, if the attributes list is uid, mail,
and telephoneNumber, then the cache will be skipped and the proxy will fetch
the information from the remote server. Why is this? Simply because one of the
attributes, telephoneNumber, is not stored in the cache at all, and so the pcache
overlay cannot fulfill the entire request.

The third parameter for the proxytemplate directive is the TTL. This specifies how
many seconds an entry can be in the cache before it is considered stale and removed
or refreshed.

There is a special fourth parameter that can be used too: the so-called Negative
TTL. By default, the proxy cache caches only successful requests. That is, if a search
request is made, and the remote directory returns zero records, no information
is cached.

•

•

•

Multiple Directories

[380]

Sometimes, however, it might be useful to cache a "miss," so that if the same query
comes in again it can be immediately served from the cache, instead of requiring
another trip to the remote directory—a trip likely to result in the same empty result
set. The negative TTL parameter allows you to turn on caching of misses, and also set
the number of seconds that a negative result (a record of a miss) should be retained
in the cache.

Notes on the Attribute Sets and Templates
One of the potentially confusing things about the proxy cache overlay is the
relationship between attribute sets and filter templates (and the proxycache
directive's count of attribute sets).

Every attribute set should be referenced by at least one filter template. But
multiple filter templates can use the same attribute set. For example, the following
is legitimate:

proxycachequeries 100
proxyattrset 0 uid mail cn sn givenName
proxytemplate (&(mail=)(objectclass=)) 0 600
proxytemplate (uid=) 0 600

In this case, both filter templates refer to the same attribute set (the one with the
ID number 0).

The same template can be used with different attribute sets. Here's what happens
under such circumstances. Consider the following:

overlay pcache
proxycache bdb 1000 2 50 1200
... skipped a few lines...
proxyattrset 0 uid mail cn sn givenName
proxyattrset 1 uid description
proxytemplate (uid=) 0 600
proxytemplate (uid=) 1 600

The above is legal and works but has interesting results.

Notice that the third parameter of proxycache is now 2 instead of 1.
This reflects the fact that there are now two proxyattrset
directives defined.

If a search is done for (uid=m*) requesting uid and mail, a cache entry will be
generated for the first attribute set.

Chapter 7

[381]

But if a search is done for (uid=m*) requesting uid and description, then an entry
is generated for the second attribute set.

If a search is done for (uid=m*) requesting mail and description, it will miss both
caches and results will be retrieved from the remote server.

The proxy cache overlay can turn the ldap backend into more than just a simple
proxy. By tuning the attribute sets and templates to match frequently used queries,
you can use pcache to improve the responsiveness of the proxy and reduce the
amount of traffic to the remote directory.

A Translucent Proxy
Consider the following situation. A remote directory contains the basic information
that you need. You want to create an LDAP proxy to that directory but there are a
few values that you want to modify on the proxy (but not on the remote directory).

This can be done with the translucent overlay, which proxies requests to a remote
directory, but also allows attributes to be locally modified and stored while not
modifying the remote directory information tree. This sort of hybrid proxy is called a
translucent proxy.

We will briefly take a look at configuring a translucent proxy.

As usual, near the top of the slapd.conf file of the proxy, we will need to load the
translucency module. We will also need the LDAP and BDB module, since both
backends will be used:

moduleload back_ldap
moduleload back_bdb
moduleload translucent

Now we can skip ahead in the configuration file to the database section.

For a translucent proxy we will need to configure it to store some information
locally, but also act like a proxy and retrieve information from a remote directory
server. Here is a sample configuration for the transparent overlay:

database bdb
directory /var/lib/ldap/transparent
suffix "dc=example,dc=com"
rootdn "uid=authenticate,ou=system,dc=example,dc=com"
rootpw secret
index objectclass eq
index uid eq,sub
lastmod off

Multiple Directories

[382]

overlay translucent
uri "ldap://10.21.77.100"

idassert-bind
 bindmethod=simple
 binddn="uid=authenticate,ou=system,dc=example,dc=com"
 credentials="secret"
 mode=none

idassert-authzFrom "dn.subtree:dc=example,dc=com"

The transparent overlay uses a database (in this case the bdb backend) to store
information locally, and then implicitly uses the ldap backend to connect to the
remote directory. As with the pcache overlay, it is best to use BDB or HDB for the
backend data storage mechanism.

For the bdb backend configuration, we need the usual directives: directory, suffix,
rootdn, rootpw, and one or more index directives (we should at least have an
equality index on objectclass).

We also turn off modification timestamps (lastmod off) so that SLAPD doesn't
automatically generate the corresponding modifiersName and modifyTimestamp
operational attributes. You can remove this line if you want that information to be
stored in the proxy's database but, when a client requests a record from the proxy,
it will see different modification information than it would see if connecting to the
remote directory.

The rootdn and rootpw password play a special role in a translucent proxy. This
DN is the only user that can add new records to the proxy's database. And any LDAP
modification, add, or modRDN operations that come from this user will change only
the local copy of the data.

The root DN can only access values on the remote server that it is allowed
to access, but it can add or modify any record on the local translucent
database. This means, effectively, that it may be able to write entries into
branches of the directory tree that it cannot access (because of ACLs on
the remote directory).

Now we have the backend database configured. Next, we want to configure the
translucent overlay.

After the overlay directive, inserting translucent into the overlay stack, we need
to supply the translucent overlay with information about the remote directory.

Chapter 7

[383]

Since the translucent overlay uses the ldap backend, any ldap backend parameters
can be used here:

overlay translucent
uri "ldap://10.21.77.100"

idassert-bind
 bindmethod=simple
 binddn="uid=authenticate,ou=system,dc=example,dc=com"
 credentials="secret"
 mode=none

idassert-authzFrom "dn.subtree:dc=example,dc=com"

The uri directive is used to point the translucent proxy to the remote server. And
again we use the identity assertion discussed earlier in this chapter to handle
authorization to information from the remote server.

Now let's examine a few examples of the translucent proxy in action. First, we can
grab a record proxied from the remote server:

$ ldapsearch -x -W -D 'uid=matt,ou=users,dc=example,dc=com' \
 -H ldap://proxy.example.com -b 'dc=example,dc=com'
 -LLL '(uid=manny)'
Enter LDAP Password:

dn: uid=manny,ou=Users,dc=example,dc=com
sn: Kant
uid: immanuel
uid: manny
ou: Users
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
givenName: Manny
cn: Manny Kant

In this example we use ldapsearch to connect to the proxy
(ldap://proxy.example.com) and retrieve the record with uid=manny.

This operation causes the proxy to retrieve the record from the remote server. It then
compares that record to the information in its own database of modifications and,
if any local modifications to that record apply, they will be inserted into the
resulting record.

Multiple Directories

[384]

Let's say that we want to add a description field to Manny's record, but we only
want that field to exist on the proxy not on the remote directory. We can accomplish
this by using ldapmodify, and authenticating as the root DN for the proxy
(uid=authenticate,ou=system,dc=example,dc=com):

$ ldapmodify -x -W \
 -D 'uid=authenticate,ou=system,dc=example,dc=com'\
 -H ldap://proxy.example.com
Enter LDAP Password:

dn: uid=manny,ou=users,dc=example,dc=com

changetype: modify

add: description

description: This was added only to the proxy.

modifying entry "uid=manny,ou=users,dc=example,dc=com"

This modification simply adds the description attribute along with the message: This
was added only to the proxy.

Note that in this example we bind as the DN listed as the rootdn for the
translucent database. That is because this is the only DN that can write to
the translucent (local) database.

Now the modification should have been written only to the translucent database. As
a result we should be able to repeat our search before against the proxy and see the
new description field:

$ ldapsearch -x -W -D 'uid=matt,ou=users,dc=example,dc=com' \
 -H ldap://proxy.example.com -b 'dc=example,dc=com' -LLL \
 '(uid=manny)'
Enter LDAP Password:

dn: uid=manny,ou=Users,dc=example,dc=com
sn: Kant
uid: immanuel
uid: manny
ou: Users
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
givenName: Manny
cn: Manny Kant
description: This was added only to the proxy.

Chapter 7

[385]

When the proxy receives this search operation, it requests the entire record for
uid=manny from the remote directory. That record looks something like this (plus the
operational attributes, which are not shown):

dn: uid=manny,ou=Users,dc=example,dc=com
sn: Kant
uid: immanuel
uid: manny
ou: Users
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
givenName: Manny
cn: Manny Kant

The translucent proxy then compares that record with its own, which looks like this:

dn: uid=manny,ou=users,dc=example,dc=com
description: This was added only to the proxy.

The two records are then merged, with changes to the translucent database taking
precedence over those from the remote directory. The result is the appending of the
description attribute to the end of the returned record.

The translucent database can be dumped with the slapcat tool, and
backups can be loaded with the slapadd tool.

But how do we know that this modification wasn't written to the remote directory?
We can run a search on that directory and see the unchanged record:

$ ldapsearch -x -W -D 'uid=matt,ou=users,dc=example,dc=com' \
 -H ldap://directory.example.com -b 'dc=example,dc=com' -LLL \
 '(uid=manny)'
Enter LDAP Password:

dn: uid=manny,ou=Users,dc=example,dc=com
sn: Kant
uid: immanuel
uid: manny
ou: Users
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
givenName: Manny
cn: Manny Kant

Multiple Directories

[386]

A transparent proxy can be used to provide local modification of entries that are
otherwise controlled externally. Like the other forms of proxying, there is
no OpenLDAP-specific remote directory, the transparent proxy can use any
standards-compliant LDAP v3 directory as a remote directory.

Summary
In this chapter we have examined several strategies for configuring LDAP servers
to work cooperatively. We first looked at synchronizing and replicating a directory
information tree from a master directory to one or more shadow (subordinate)
directory servers using SyncRepl.

After looking at replication we turned to proxying, and looked at three different
proxy configurations: the simple proxy, a caching proxy, and a transparent proxy.

This chapter concludes our detailed look at the OpenLDAP server suite. Next we
will turn to the tasks of integrating LDAP and extending applications to make use of
directory data. Most of the applications we will examine use the OpenLDAP libraries
to implement their LDAP functionality.

LDAP and the Web
The book thus far has been focused on the LDAP services themselves. In this chapter
we will look at integrating LDAP with other services. The focus of this chapter will
be on integrating OpenLDAP and LDAP-enabled web services. The goal is not only
to provide some concrete examples of certain web services, but also to give a general
idea as to the common features of LDAP-enabled applications. We will make use
primarily of the Apache web server, and of the phpLDAPadmin tool. In this chapter,
we will cover the following topics:

The basics of LDAP-enabled applications
Using OpenLDAP for Apache authentication
Other features of Apache's LDAP module
Installing and configuring phpLDAPadmin
Managing a directory server through the web interface

We will conclude with some general guidance on integrating OpenLDAP and
LDAP-aware applications.

The LDAP-Aware Application
What does it mean to say of an application that it is LDAP-aware? An LDAP-aware
application is an application that can make use of directory information by contacting
a directory server over the LDAP protocol and performing LDAP operations.

While the most common use of directory services is authentication, it is certainly not
the only thing LDAP can be used for. Some DNS servers use a directory server to
store zone information. Sendmail and Postfix can use LDAP to store information on
mail routing. Mozilla Thunderbird, Microsoft Outlook, and many other mail clients
treat LDAP servers as address books. All of these applications are rightly considered
LDAP-enabled applications.

•

•

•

•

•

LDAP and the Web

[388]

While there are many LDAP-aware applications, not all of them support
the LDAP v3 protocol in spite of the fact that LDAP v3 has been around
for a decade (see RFC 2251). Many LDAP-aware applications still use
version 2 of the LDAP protocol, which lacks some important features, like
StartTLS support and SASL binding.

The common feature of an LDAP-enabled application is the ability to connect to
and bind to a directory server. And this is the feature that most often requires
configuration. For that reason, most LDAP-enabled applications will need at
minimum the following pieces of information:

A DN that will be used to bind to the directory.
A password to use when binding.
Information about the location of the LDAP server. This may be in the form
of an ldap URL (ldap://directory.example.com:389) or a host and port
pair (host=directory.example.com, port=389).

Some applications may need additional info, such as a search filter or a list of
attributes to request.

If the DN is for the Anonymous user (which is an empty string), then
password must not be set.

Of course, asking users to remember a full DN when they are normally accustomed
to remembering only a login ID might not be a successful strategy. For this reason,
many LDAP-enabled applications will use the traditional two-stage authentication,
consisting of performing two simple binds.

Such an application will prompt a user for a login ID (usually mapped to the uid
attribute in OpenLDAP) and a password. Then, the application will bind as an initial
DN (often this DN will be anonymous), and then perform a search for the specified
login attribute, in order to get the full DN. Then, the application will rebind with the
newly-located DN and the user's supplied password.

In Chapter 5, we covered the different methods of binding to OpenLDAP.

In this case, the application itself is not doing the password verification. It sends
the password to the directory server, and the directory server does the appropriate
authentication.

•

•

•

Chapter 8

[389]

In rarer cases, applications may attempt a SASL bind instead of a simple bind. Then
the application will not need the full DN. Instead, it will just need the SASL-specific
information for the user (such as login ID and password for DIGEST-MD5, or an
X.509 certificate for the SASL EXTERNAL mechanism).

Applications that just use LDAP for authentication usually only need to perform
the bind operation (or operations). Once the application knows that the user can
successfully bind, the application has found out all it needs to know from the
LDAP server.

Other applications (such as an address book or a DNS server) may continue to
interact with the LDAP server to perform searches, or even to change the directory
information tree.

In this chapter we will first look at the Apache web server's ability to use OpenLDAP
as an authentication source. Then we will move on to services that perform more
substantial interactions with the directory server.

Apache and LDAP
The Apache web server (http://httpd.apache.org) is the most frequently used
web server on the Internet. It runs on most of the major operating systems, and is
known for its stability and rich feature set. Almost every Linux distribution includes
Apache as a supported package.

At the time of writing, Apache 2.2 is the version distributed with Ubuntu. But
Apache 2.0 is still widely in use. Since configuration of LDAP between these
two versions is slightly different, I will focus on Apache 2.2 but include tips on
configuring the older Apache 2.0.

A Short Guide to Installing Apache
Apache has an excellent manual, and the basic configuration provided with
Ubuntu (and most other distributions, as well) is ready for basic use with very little
configuration. So in this section, I will provide a very basic guide to getting started
with Apache.

To learn more, you may want to consult the Apache website
(http://httpd.apache.org), the Ubuntu Apache configuration documentation
(https://help.ubuntu.com/7.04/server/C/httpd.html), or one of the many
guides, online and in print, on configuring Apache.

To install apache on Ubuntu, you will only need to run one command:
 $ sudo apt-get install apache2

LDAP and the Web

[390]

Installation of Apache will likely require that several other dependencies be installed,
but apt-get will resolve the dependencies and merely prompt us to allow these to
be installed.

If you built OpenLDAP from source, you may be prompted to install
another (possibly older) version of the LDAP libraries to satisfy package
dependencies. Doing so will not harm your current LDAP applications.

In the previous version of Apache, version 1.3, an extra module (mod_ldap) needed
to be installed in order to get LDAP support, but from Apache 2.0 onwards, LDAP
support is included in the core Apache distribution. Later, we will install the PHP
module to gain web server support for the PHP language, but for now we need no
additional packages.

The Apache configuration files are located, in Ubuntu, in the /etc/apache2
directory. The directory layout looks like this:

$ ls -1
apache2.conf

conf.d/
envvars
httpd.conf
magic
mods-available/

mods-enabled/

ports.conf
README
sites-available/

sites-enabled/

ssl/

The important ones, as far as we are concerned here, are highlighted.

The apache2.conf file contains the basic settings for Apache. Apache can perform
virtual hosting, where one server instance can host multiple different websites (on
different IP addresses or host names). The apache2.conf file contains configuration
information that applies to the core server and all hosted sites.

Like OpenLDAP, Apache's code is modular. Apart from the basic functionality of the
server, features can be implemented in separate modules and loaded into the server
at startup. When a module is installed, the module's configuration files are put in
the mods-available/ directory. To turn on a module one need only create a
symbolic link in the mods-enabled/ directory to the module's configuration files at
mods-available/ and, when Apache restarts, it will load the desired module. To

Chapter 8

[391]

further simplify this process there are two tools, a2enmod and a2dismod, that can be
used (respectively) for enabling and disabling Apache modules.

The method described here applies to Ubuntu, Debian, and a few
other Apache distributions, but is not universal. Consult your system
documentation for specific notes on how to enable or disable modules on
your server. It is usually as simple as adding a line or two to one of the
Apache configuration files.

Finally, the virtual-host (or site-) specific configuration files are located at
sites-available/. Such configuration files contain parameters that are specific to
the particular virtual host, but not to the server generally. For example, say
we want to host two websites on our Apache instance: www.example.com and
www.anothersite.com. Each of these two sites would have a separate configuration
file (usually eponymously called www.example.com and www.anothersite.com) in
the sites-available/ directory.

But simply having sites in the sites-available/ folder is not enough to enable the
site. As with modules, Apache checks the sites-enabled directory to see what sites it
should activate at startup. Enabling a site takes nothing more than adding a
symbolic link from the desired configuration file at sites-available/ in the
sites-enabled/ directory. Again, the Apache utilities a2ensite and a2dissite can
be used to manage those links.

Ubuntu comes configured out of the box with a default website. The configuration
file is at sites-available/default, and it is already linked to sites-enabled/.
We need not change this configuration file to have a basic web server running. All
we need to do to get Apache going is start it up:

 $ sudo /etc/init.d/apache2 start

You should now be able to browse the default website by pointing a web browser to
the IP address of the server, for example http://192.168.0.211.

Configuring LDAP Authentication
The HTML files that this website serves are located at /var/www/. Let's create a new
directory in this folder, and then add password protection to it:

 $ sudo mkdir /var/www/private

Inside of this new directory, let's create a new XHTML page called index.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

LDAP and the Web

[392]

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Insiders Only</title>
</head>
<body>
 <p>This page is private, and only authenticated users should
 be able to access it.</p>
</body>
</html>

This is just a simple, no-frills webpage that will set the title to Insiders Only and
display the message: This page is private, and only authenticated users should
be able to access it.

Granting Permissions
Apache runs as the user www-data. In order to serve the page to clients,
Apache will need to be able to read the directory and the page. You may
need to set the correct file system permissions with chmod. Directories
will need to have read and execute permissions for www-data, and
HTML files will need read access.

At this point you should be able to access this page by appending the
directory name to the URL we accessed. In our example, the website URL was
http://192.168.0.211. To access the private/ directory's index page, we should
be able to use the URL http://192.168.0.211/private.

Of course, since we have not yet configured authentication for this directory, we will
be able to see the page without first logging in.

Now that we have our new folder and HTML page, we can go about securing it
from prying eyes. To do this, we will configure Apache to load the LDAP modules
and then add a few lines to the sites-available/default file to turn on LDAP
authentication for that folder and its contents.

Loading the Modules
The LDAP features for Apache are all implemented as Apache modules. By
default, they are not turned on though they are installed. That is, the code is
present on the server, and the default configuration files are located at
/etc/apache2/mods-available, but no symbolic links to those files are present
at /etc/apache2/mods-enabled.

Between Apache 2.0 and Apache 2.2, the names of these modules changed to better
reflect what they are used for.

Chapter 8

[393]

To enable the correct modules in Apache 2.2, run the a2enmod command:

 $ sudo a2enmod authnz_ldap

This will add a link in mods-enabled to mods-available/auth_ldap.load.

In the older Apache 2.0, we will need to run a similar command:

 $ sudo a2enmod auth_ldap

Why the Difference?
One of the major improvements introduced in Apache 2.2 is the
reworking of the "Authentication, Authorization, and Access Control"
features. The result of this reworking is a cleaner separation of
authentication (AuthN) from authorization (AuthZ). This separation is
reflected in module names.

Next, we will need to restart the server so that it will load and configure the module:

 $ sudo /etc/init.d/apache2 restart

Once that has been done we are ready to move on to the site's configuration file and
add some protection to the new /var/www/private directory.

Editing the default Configuration File
The default configuration file is around 45 lines long. It contains all of the
configuration directives necessary for running a rudimentary web server.The
Ubuntu documentation explains the directives in this file.

We are interested in creating a portion of the configuration file with this structure:

<Directory "/path/on/file/system">
 Parameter Value
 Parameter2 Value
 #...
</Directory>

A <Directory> section indicates that the configuration directives enclosed within
the tag apply specifically to the named directory (/path/on/file/system in the
given example) and its contents.

LDAP and the Web

[394]

The path that is contained inside the <Directory> tag is the file system path, not the
relative path component from the URL. That is, our private/ directory is located
at /var/www/private/ on the file system, but it's URL is http://192.168.0.211/
private (and its relative URL, the part of the URL after the server section, is
/private/). In the <Directory> tag, we would use /var/www/private/.

Since the parameters between the <Directory> and </Directory> tags apply
only to the contents of that directory, a directory section can fine-tune permissions,
features, and services at the directory level. We will create our own <Directory>
section to add LDAP authentication to the private/ directory.

To set this up we will need a mixture of parameters from the Apache's mod_auth and
mod_access modules, which provide basic authentication and authorization services
and are loaded by default, and the ldap_auth module, which we just loaded in the
last section.

Again, there is a difference between the Apache 2.0 configuration and the Apache
2.2 configuration. We will first take a close look at the Apache 2.2, and also provide a
brief example of an Apache 2.0 configuration.

The Directory Section—Apache 2.2
Now we are ready to create a new <Directory> section that will apply to the
/var/www/private directory. We will add the following just above the
</VirtualHost> line in the default configuration file:

<Directory "/var/www/private">
 AuthType Basic
 AuthName LDAP
 AuthBasicProvider ldap
 Require valid-user
 AuthzLDAPAuthoritative off
 AuthLDAPBindDN "uid=authenticate,ou=system,dc=example,dc=com"
 AuthLDAPBindPassword "secret"
 AuthLDAPURL ldap://localhost/ou=Users,dc=example,dc=com?uid?? \
 (objectclass=inetOrgPerson)
</Directory>

The <Directory> section applies to our newly-created private/ directory, and the
directives specified in this section will force web users to authenticate when they try
to access the private/ directory or anything in it.

The first two parameters are part of Apache's built-in mod_auth_basic module.

Chapter 8

[395]

The first parameter in the <Directory> section is AuthType. This parameter controls
how the password information is sent from the client to the server and there are two
possible values: Basic and Digest. If Basic is specified then passwords will be sent
to the server in cleartext. Unfortunately, many HTTP clients only support Basic.
Digest is more secure (setting it will instruct the client to hash the password before
sending), but it is not as widely supported. Since this module uses an LDAP simple
bind, the password must be sent unencrypted, which means that only Basic is
currently supported.

Encrypting HTTP Traffic
The best way of securing this authentication process is by configuring
Apache to use SSL/TLS when communicating with the client. The
Ubuntu Apache documentation and the official Apache project
documentation both cover this.

The value of the AuthName field is sent to the browser as a way of indicating what the
authentication is for. For example, when a web browser tries to access a file inside
the private/ directory, the user will be prompted for authentication information
with a dialog box that looks something like this:

The AuthName appears in the first line of the dialog: Enter username and password
for "LDAP" at http://localhost. In general, the value of AuthName ought to be a hint
to indicate to the user what she or he is logging in to.

Moving on to the next line in the <Directory> section, AuthBasicProvider specifies
which service will be used for basic authentication. Along with LDAP, Apache
supports flat files, hash-style databases, relational databases and other sources.

We want to use LDAP authentication. In Apache 2.2, LDAP authentication (AuthN)
and Authorization (AuthZ) services are provided by the module mod_authnz_ldap.
To use the mod_authnz_ldap authentication source, the AuthBasicProvider
parameter should have the value ldap. This means that when the client attempts

LDAP and the Web

[396]

to authenticate to the web server, an LDAP source will be used to process the
authentication tokens. In other words, username and password will be verified
against the directory.

Once authentication has successfully occurred, the next phase is authorization. During
this phase the web server determines whether the authenticated user can access the
requested resource. The next two parameters apply to the authorization process.

The Require directive specifies what requirements must be met for a user to be
granted access to the requested resource. Later, we will examine ways to require
that the user have a particular attribute or be a member of a particular group in
the directory information tree. But in our example the requirement, valid-user,
requires only that the user exists in the specified source (the directory in this case)
and that the user can successfully authenticate.

AuthzLDAPAuthoritative indicates whether LDAP alone ought to be used as a
source of authorization information. By default this is on, which will cause Apache
to use one of the ldap-* Require values. But in the previous example all we want
to do is make sure that the user is a valid user—that is, that the user successfully
authenticated. That alone is sufficient authorization for us. Validity checking, in this
way, is provided outside of the mod_authnz_ldap module, so we need to turn off the
AuthzLDAPAuthoritative flag:

AuthzLDAPAuthoritative off

In order to use the valid-user value for the require parameter, we need to turn
AuthzLDAPAuthoritative off so that another module (mod_auth_basic) can be
used to handle authorization. In this case, LDAP will only do the authentication step.

The next three directives are LDAP-specific:

AuthLDAPBindDN "uid=authenticate,ou=system,dc=example,dc=com"
AuthLDAPBindPassword "secret"
AuthLDAPURL ldap://localhost/ou=Users,dc=example,dc=com?uid?? \
 (objectclass=inetOrgPerson)

AuthLDAPBindDN and AuthLDAPBindPassword specify what DN and password
Apache should use to perform a simple bind to the LDAP server. When a new
authentication request comes in, Apache will bind to SLAPD with this DN and
password and then search the directory information tree to get the DN of the user
who is trying to authenticate. In other words, the bind DN and password are used
for the first phase of the two-stage authentication discussed in the first part of
this chapter.

Chapter 8

[397]

If AuthLDAPBindDN and AuthLDAPBindPassword are omitted, Apache
will bind as the Anonymous user.

For this application, the uid=Authenticate system account will be used to access
the directory. This provides a degree of security (since we don't have to allow
anonymous binding and searching), and it can also provide a better audit trail of
who accessed what in the directory.

Your SLAPD ACLs will need to be configured in such a way as to
allow this DN to bind from the Apache server or else the first stage of
authentication will fail.

The third mod_authnz_ldap directive is AuthLDAPURL. This parameter takes as its
value an LDAP URL, complete with a base DN, a search type, a search pattern, and
the attributes to be returned.

In the previous example we used this LDAP URL: ldap://localhost/ou=Users,
dc=example,dc=com?uid??(objectclass=inetOrgPerson). Apache uses this URL
to extract all of the information it will need to search for the DN of the user.

When a user logs in, as seen in the login dialog box a few pages back, Apache will
get a username and a password. The username should map to the uid attribute
of that user's LDAP record, and the password should match the value of the
userPassword attribute (after SLAPD hashes it of course).

Once it has received this information, Apache will bind as the DN in
AuthLDAPBindDN, and execute a search based on the LDAP URL above, with the goal
of getting the DN for the user who is trying to log in.

Note that it is Apache that does all of the LDAP communication, not the
browser. At no point does the web browser connect directly to the LDAP
server. This means that the directory can be secured behind a firewall. As
long as Apache can contact it, LDAP authentication can be used.

While LDAP URLs are covered in more detail in Appendix B, we will take a brief
look at the one we have just seen to understand its function. The protocol section
says that Apache is to make an unencrypted LDAP connection:

ldap://localhost/ou=Users,dc=example,dc=com?uid?? \
 (objectclass=inetOrgPerson)

LDAP and the Web

[398]

An SSL LDAP connection can be made by using ldaps:// instead of ldap://. (And
you may also need the LDAPTrustedGlobalCert parameter to indicate where the
certificate authority file for the LDAP certificate is located.)

Using StartTLS instead of LDAPS
StartTLS (rather than LDAPS) is the preferred way of making an SSL/
TLS connection to the directory. To use StartTLS in Apache 2.2 add the
directive LDAPTrustedMode TLS to the <Directory> section. Again,
you may need the LDAPTrustedGlobalCert parameter or other SSL/
TLS parameters.

After the protocol section of the URL comes the host:

ldap://localhost/ou=Users,dc=example,dc=com?uid?? \
 (objectclass=inetOrgPerson)

In this case, SLAPD is running on the same server as Apache, so localhost (or
127.0.0.1) will cause Apache to use the loopback interface to connect to SLAPD.

The next section is the base DN, the DN where SLAPD will start its search for
the user:

ldap://localhost/ou=Users,dc=example,dc=com?uid?? \
 (objectclass=inetOrgPerson)

Since our users are all under the ou=Users,dc=example,dc=com branch, that is what
we will use for our base DN.

The rest of the parameters are all separated by question marks (?) instead of slashes.
After the base DN comes the attribute that SLAPD will search for:

ldap://localhost/ou=Users,dc=example,dc=com?uid?? \
 (objectclass=inetOrgPerson)

In this case, the name that the user sent to the directory should be her or his UID, so
we want to look for the uid attribute. Similarly, you can use cn or any other attribute
provided that you know it will return no more than one match.

For Apache authentication to work an identifying attribute must return a unique DN.
The operating principle for this is as follows: if a search for an entry were to return
more than one, Apache would have no way of knowing which of the records was
the appropriate one for the authenticating user. Therefore, if a search returns with
multiple DNs Apache will consider the authentication attempt to have failed, and
will not allow the user to access the site.

Chapter 8

[399]

After uid comes an empty parameter, indicated by the presence of two separators in
a row(??) ??:

ldap://localhost/ou=Users,dc=example,dc=com?uid?? \
 (objectclass=inetOrgPerson)

This section, which is left blank, can be used to specify the search scope. By leaving
this empty, we are accepting the default scope, which is sub (subtree). A subtree
scope instructs SLAPD to look for any records that appear in or subordinate to the
base DN. Other options are base, one, and children.

The last field is the filter:

ldap://localhost/ou=Users,dc=example,dc=com?uid?? \
 (objectclass=inetOrgPerson)

This indicates that only records with the inetOrgPerson object class should be
searched. When Apache processes the URL, it will construct a search filter that
combines the username search with the given filter. The result is something like this:
(&(uid=matt)(objectclass=inetOrgPerson)), where matt is the name of the user
trying to log in.

Against our directory information tree, the search should return one DN, uid=matt,
ou=users,dc=example,dc=com. When the DN is returned to Apache it will then
perform a second bind, this time as uid=matt,ou=users,dc=example,dc=com with
the password submitted by the user. If this bind succeeds then Apache will grant the
user access.

With these parameters in the <Directory> section, we have now configured Apache
to only allow web users to see information in the private/ directory if they exist
in the directory information tree and can supply the information necessary to
successfully bind.

Changes in Apache 2.0
To get basically the same behavior in Apache 2.0, we need to make a few minor
changes to the configuration:

<Directory "/var/www/private">
 AuthType Basic
 AuthName LDAP
 Require valid-user
 AuthLDAPBindDN "uid=authenticate,ou=system,dc=example,dc=com"
 AuthLDAPBindPassword "secret"
 AuthLDAPURL ldap://localhost/ou=Users,dc=example,dc=com?uid?? \
 (objectclass=inetOrgPerson)
</Directory>

LDAP and the Web

[400]

This file differs from the Apache 2.2 configuration only in that it is missing the
AuthBasicProvider and the AuthzLDAPAuthoritative parameters.

Other Features of the Require Parameter
In the previous section we used the Require valid-user parameter to enforce the
authorization requirement that any user that tried to access that section of the site be
present in the directory information tree and be able to successfully bind.

But there are other options that the Require parameter will take. We will briefly see
each. Apache 2.0 used different names for these and I have put them in parentheses
after the name that Apache 2.2 uses:

valid-user: This requires that the user is present in the directory and can
bind. This option is the same in both 2.0 and 2.2.
ldap-user (ler): This requires that the user be in the list of users. For
example, Require ldap-user matt dave would only allow users who are
valid and who have the UID matt or the UID dave.
ldap-dn (dn): This requires that the DN be an exact match to the one in the
Require parameter. For example, Require ldap-dn uid=matt,ou=users,
dc=example,dc=com would require that the user be valid and have the DN
uid=matt,ou=users,dc=example,dc=com.
ldap-group (group): This requires that the user be valid and a member of the
specified group. We will look at this directive more closely later.
ldap-attribute: This parameter is named the same in both 2.0 and 2.2. For
a user to gain access if this is used in a Require parameter, the user must be
valid and must have the attribute as asserted in this parameter. For example,
Require ldap-attribute departmentNumber=001 will only grant access to
users who are valid, and also have the attribute departmentNumber with the
attribute value 001.
ldap-filter (new in Apache 2.2): This takes an LDAP filter and grants access
if a user is valid and if the user's record is returned when an LDAP search is
executed with that filter.

Configuring group-based access can be slightly more complicated than the other
Require directives. A basic use of this requirement looks like this:

Require ldap-group cn=Admins,ou=groups,dc=example,dc=com

•

•

•

•

•

•

Chapter 8

[401]

In Apache 2.0, ldap-group should be replaced by group.

According to this directive, in order to authenticate, the user must be a member of
the group cn=Admins,ou=groups,dc=example,dc=com. When a web user attempts
to log in, Apache will bind as the user in AuthLDAPBindDN, do its search for the user's
DN, bind as that user, and then (again as the user in AuthLDAPBindDN) check to make
sure that that user is in the cn=Admins group.

In order to allow this group search to operate correctly, the user in AuthLDAPBindDN
must have access to group entries. (Our ACLs in Chapter 4 did not allow this.) You
might need to add a rule like this to your ACLs:

Allow anyone to read the groups branch. (Needed for group auth)
access to dn.subtree="ou=groups,dc=example,dc=com"
 by * read

This will allow anyone (including the Anonymous user) the ability to read entries in
the ou=groups subtree.

How does Apache know what type of group attribute to look for? The groupOfNames
object class uses the member attribute, while the groupOfUniqueNames object class
uses the uniqueMember attribute. Both are standard LDAP object classes.

Apache checks both member and uniqueMember attributes. But the case may arise
where you need to treat another attribute as a member attribute. seeAlso, owner,
and roleOccupant are all standard attributes that could be so treated, and you
can also define another one in a custom schema. In such cases, you can use the
AuthLDAPGroupAttribute parameter in the <Directory> section to indicate to
Apache what attribute it should treat as a membership attribute.

phpLDAPadmin
We have configured Apache to use its built-in LDAP modules to perform
authentication with the help of a directory server. Now we are going to turn to a
more complex web-based application, phpLDAPadmin. phpLDAPadmin is an
application, written in PHP, designed to help manage a directory server. While it is
known to work on other directory servers, it was developed against OpenLDAP.

LDAP and the Web

[402]

Prerequisites
Before we can install phpLDAPadmin, we will need to install a few other packages.
In the first part of this chapter we looked at Apache. This (or some other web server)
is required to run phpLDAPadmin. Additionally, some recent version of PHP (we
will use PHP 5) is needed, along with the PHP LDAP module.

For example, to install PHP 5, we would run the following command:

 $ sudo apt-get install libapache2-mod-php5 php5-ldap

Installing PHP may require the satisfaction of several other dependencies, but
apt-get will take care of the heavy lifting for you.

If you built OpenLDAP from source, you may be prompted to install
another (possibly older) version of the LDAP libraries to satisfy package
dependencies. Doing so will not harm your current LDAP applications.

Once PHP is installed, you can restart Apache, and then move on to installing
phpLDAPadmin.

Installing phpLDAPadmin
The easiest way to install phpLDAPadmin is to use the package in the
Ubuntu repository.

phpLDAPadmin is included in the universe repository in Ubuntu. This means
that as long as you have the universe repository enabled in your sources
(see /etc/apt/sources.list), you can install it with a simple apt-get command:

 $ sudo apt-get install phpldapadmin

phpLDAPadmin will be installed on the file system at /usr/share/phpldapadmin,
and Apache is configured to direct requests for http://hostname/phpldapadmin
to the phpLDAPadmin application. The Apache configuration is located at /etc/
phpldapadmin/apache.conf.

It is also easy to install phpLDAPadmin from the source distribution
available at http://phpldapadmin.sourceforge.net. Once
the web server and PHP are installed, it is simply a matter of unpacking
the source code into a folder under the web server's web root directory
(for example /var/www/). For complete instructions, see the installation
guide on the official phpLDAPadmin documentation wiki: http://
wiki.phpldapadmin.info/tiki-index.php?page_ref_id=6.

Chapter 8

[403]

Once phpLDAPadmin is installed, we can move on to configuration.

Is Your Package Broken?
Some versions of the Ubuntu phpLDAPadmin (notably phpldapadmin_0.9.8.3-7)
shipped with a missing configuration file. Because of this, during the installation,
you may see an error like this:

* Forcing reload of web server (apache2)...
grep: /etc/apache2/conf.d/phpldapadmin: No such file or directory

apache2: Syntax error on line 195 of /etc/apache2/apache2.conf: Could
not open configuration file /etc/apache2/conf.d/phpldapadmin: No such
file or directory

[fail]
invoke-rc.d: initscript apache2, action "restart" failed.

The problem is that the file /etc/phpldapadmin/apache.conf (which is linked to
/etc/apache2/conf.d/phpldapadmin) is missing.

Fortunately, we can create a suitable one-line apache.conf file in the
/etc/phpldapadmin directory. The purpose of this configuration file is to map a
suitable URI for phpLDAPadmin to the absolute path on the file system where the
phpLDAPadmin scripts are.

To create this mapping, we need to put only the following line in the /etc/
phpldapadmin/apache.conf file:

Alias /phpldapadmin /usr/share/phpldapadmin/htdocs

After saving this change simply restart the web server:

 $ sudo invoke-rc.d apache2 restart

Apache should then restart without an error.

Configuring phpLDAPadmin
The phpLDAPadmin configuration file is at /etc/phpldapadmin/config.php.
phpLDAPadmin uses a config file format that, while common in PHP and Perl
applications, may seem daunting to one who is used to editing the typical
name/value parameter files that most UNIX applications use.

LDAP and the Web

[404]

There are two major ways in which this configuration file differs from the
standard type:

The way default configuration options are handled
The form of a configuration parameter

Regarding the first, phpLDAPadmin has two configuration files, one that stores all
of the default settings (/usr/share/phpldapadmin/lib/config_default.php),
and one intended for administrators to edit (/etc/phpldapadmin/config.php).
Administrators should only change this second config file. The config_default.php
file should not be altered.

When phpLDAPadmin attempts to access a setting, it will first check to see if there is
a custom setting in the custom settings file (config.php). If one is found, that setting
will be used. If one is not found, the value of the default setting is used.

The advantage of this technique is that upgrades to phpLDAPadmin need not make
any changes to the custom configuration file. Only the default file is modified. The
downside is that sometimes new parameters are added, but go unnoticed, since the
administrator's configuration file remains unchanged.

The second difference, the form of the configuration parameter, is based in part on
the first. Instead of using a simple text file to store parameters, phpLDAPadmin uses
PHP variables to store information. In this sense, the config.php configuration file is
actually a piece of code.

There are some clear advantages in doing this:

All of the built-in PHP features can be used in the configuration file (including
dynamically evaluated scripts)
No special configuration file parser is needed, making code size smaller and run
time faster

But there are definitely some drawbacks to this method, and the main one is that
readability of the file can be greatly diminished. The default configuration file, for
example, is almost 400 lines long and contains code (though only a smattering)
mixed with configuration parameters.

Another drawback is that straightforward configuration of the application will still
require some knowledge of the PHP language.

As we look at the configuration file, I will not assume working knowledge of PHP,
and will explain some of the constructs in the configuration file.

•

•

•

•

Chapter 8

[405]

A Basic Look at Configuration Parameters
The configuration parameters in phpLDAPadmin can look daunting at first. In
this section, I will explain the format of each type of configuration parameter. Each
section gives a very brief example of what the parameter form looks like, followed by
a more lengthy description of what is going on.

If you are not a programmer, don't get discouraged if not all of this makes
sense. The important thing is that you understand the structure of each of the
configuration directives.

Since this is not a PHP tutorial, I will only briefly introduce the
concepts that are necessary to understand what we are doing when
we set parameters. For more information on PHP, the PHP team
maintains a very good online manual that can be accessed at
http://www.php.net/manual/en/.

Configuration parameters in phpLDAPadmin's config.php file take one of three
forms: a variable setting, a function call, or an array setting.

Setting a variable
Setting a variable is the simplest of the three. In brief, a variable assignment looks
like this:

$variable_name = 'value';

This is how variable definitions work.

In PHP, all variable names are prefixed with a dollar sign ($). The equals sign (=) is
used to assign a value to a variable. String values should be enclosed in single quotes
(') or double quotes ("). Numbers (integers or floating point) need not be enclosed
in quotation marks of any sort. Every line should end with a semi-colon (;). Here are
two examples:

$name = 'Matt';
$favorite_number = 7;

The first sets the value of the $name variable to the string Matt. The second sets the
value of the $favorite_number variable to the integer 7.

There are only a few of these simple configuration parameters in config.php. Most
take the form of the more complex PHP statements.

LDAP and the Web

[406]

Calling a function
The second form of a configuration parameter in phpLDAPadmin's configuration file
uses a function call. Briefly, a function call looks like this:

$object->function('parameter one', 'parameter 2');

A function may have zero or more parameters, and the number is determined by
the programmer.

Functions can be attached to objects. An object, roughly speaking, is a container for
data and functions. phpLDAPadmin is an object-oriented program, meaning that it
makes frequent use of objects to organize the functional units of the source code.

To call a function that is attached to the object, you will need to use the arrow
(access) operator (->), which is composed of a dash (-) and a greater-than sign (>).
This indicates that the function is a member of the object. Here's an example taken
from the phpLDAPadmin configuration file:

$i = 0;
$ldapservers = new LDAPServers;
$ldapservers->SetValue($i,'server','name','My LDAP Server');

The first line takes the variable named $i, and assigns it the value 0.

The second line creates a new LDAPServers object, and assigns it to the variable
$ldapservers. Now, anytime we work with the variable $ldapservers we are
actually working with an object that has all of the member functions and variables
defined in the LDAPServers class. The LDAPServers class describes the servers that
phpLDAPadmin will connect to.

You can think of a class as defining all of the parts of a machine, and the object as an
instance of that machine. Once we have our copy of our LDAPServers machine, we
can access the data stored in the machine, and also use the machine's functions to
perform certain tasks.

According to the class definition for this object, it has a handful of member functions,
including the SetValue() function. This function stores data in the $ldapservers
object. So the third line in the given example sets some information about the
LDAP server:

$ldapservers->SetValue($i,'server','name','My LDAP Server');

Chapter 8

[407]

This line uses the SetValue() function of $ldapservers. The SetValue() function
takes four different pieces of information:

The number for the server (the value of $i, in this case)
A string representing what sort of setting this is ('server')
A string that names the property being set ('name')
A string representing the value of the property ('My LDAP Server')

Later we will talk about what each one of these does. For the time being, though,
the important thing is to understand the general form of the function:
$object->function(param_1, param_2);. A function can have as many
parameters as the programmer decides upon.

For the most part, the comments in the configuration file will guide us as to what
sorts of parameters each function will need. You should not need to look at any other
piece of code to figure out what to put in an object.

Now let's take a look at the list kind of directive.

Setting an Array Value
The last sort of configuration parameter in phpLDAPadmin is the array. There are
two basic forms of setting an array value:

$my_array[0] = 'My Value';
$my_map['Key Name'] = 'Value';

An array is an organized collection of information. PHP has two different kinds of
arrays: an indexed array (where things are stored in a numbered sequence) and a
map (where things are stored in name/value pairs).

An indexed array can be created like this:

$my_array = array('a', 'b', 'c');

This creates an array with three items, 'a', 'b', and 'c'. The first one, 'a', is stored
in the first slot of the array and can be accessed by index number:

$my_array[0];

Note that the first index number is zero, not one. This would return the value 'a'.
The second one can be accessed using the index number of the second item:

$my_array[1];

•

•

•

•

LDAP and the Web

[408]

This would return 'b'.

In a map-type array, instead of using a number for an index, some string (or other
object) can be used. For example, we can create an map this way:

$my_map = array('First Name' => 'Matt', 'Last Name' = 'Butcher');

This creates an array with two items, one named First Name and one named Last
Name. Now, instead of accessing them by index, I can access them by name:

$my_array['First Name'];

This would return 'Matt'.

Once an array is created using the array() function, you can add elements to an
array by assigning a value to an array slot. For an indexed array, this might look like
the following:

$my_array[3] = 'd';

This would put 'd' at the fourth position (0, 1, 2, 3) in the array.

Likewise, adding a value to a map is similar, except in place of the index number,
you use a key name:

$my_array['First Name'] = 'Dave';

This adds the name 'Dave' to the array item with the key name 'First Name'.

Finally, arrays can be nested inside of each other. Again, here is an example from the
phpLDAPadmin config file:

$q=0;
$queries = array();
$queries[$q]['name'] = 'User List';
$queries[$q]['base'] = 'dc=example,dc=com';

In this example the $queries array is an indexed array where each value is a
mapped array. So $queries[0]['name'] and $queries[1]['name'] represent two
different name values. Each name value is stored in a different slot in the indexed
array. Think of the array as being structured like this bit of pseudo-code:

Queries[0]:
 'name' => 'User List'
 'base' => 'dc=example, dc=com'
Queries[1]:
 'name' => 'Another List'
 'base' => 'dc=demo, dc=net'

Chapter 8

[409]

Now we have two different queries (both stored in the same indexed array): Query 0
and Query 1. Each query has its own name and base.

These are the basic features of arrays—the features that we will be using to configure
phpLDAPadmin. Now we are ready to move on to the actual configuration of
phpLDAPadmin.

Configuring the LDAP Server Settings
The first thing we need to do is configure phpLDAPadmin to connect to our LDAP
server. This is done using the $ldapservers object.

In my installation, Apache and OpenLDAP are running on the same server, so I will
configure phpLDAPadmin to connect to the local instance.

To begin this part of the configuration we need to locate the $ldapservers object in
the configuration file. The line we are concerned with looks like this:

$ldapservers = new LDAPServers;

It is located on line 63 of our default configuration file.

This defines the $ldapservers object. The rest of our configuration directives for our
LDAP server need to go below this line.

The first thing to do is set up the information about our LDAP connection. We want
to giver our LDAP server a name, host and port info, and information on whether we
want this connection to be encrypted with TLS:

$ldapservers->SetValue($i,'server','name','Example.Com');
$ldapservers->SetValue($i,'server','host','localhost');
$ldapservers->SetValue($i,'server','port','389');
$ldapservers->SetValue($i,'server','tls',false);

This names our server Example.Com, and sets it up to connect to localhost on the
default LDAP port 389 without any SSL/TLS encryption.

The $i in the given functions indicates the number of the LDAP server that we
are configuring. $i is set to 0, indicating that this is the first LDAP server we are
configuring. Where we would have to configure a second LDAP server, we would
change $i to 1 and then continue with a second batch of the same sorts of directives.

The second parameter, 'server', indicates that we are setting server parameters.
The third parameter ('name', 'host', 'port', and 'tls') indicates the exact server
parameter we are setting, and the fourth parameter contains the value to be assigned
to the parameter.

LDAP and the Web

[410]

Note that the TLS setting is for turning on and off StartTLS (see Chapter 4).
If you want to use LDAPS (SSL-based LDAP), then use an LDAP URL,
'ldaps://example.com', in the host setting and set the port to the correct
LDAPS port (636 by default).

Next, we need to tell phpLDAPadmin where to store login information. This
information is stored in the auth_type parameter:

$ldapservers->SetValue($i,'server','auth_type','session');

When a user logs into phpLDAPadmin, information used for binding to LDAP gets
stored. There are three places where this information can be stored:

A cookie in the web browser ('cookie')
A server session variable ('session')
(The information can be added by hand to) the configuration file ('config')

In general, we should store the information in a session variable (as the given
example does). If you should choose cookie-based storage make sure you also set
$config->custom->session['blowfish'] to a string of random characters. The
string is used as a key for the Blowfish cipher and it must be at least 32-characters
long. A longer key is better.

For information on the blowfish cipher, see
http://www.schneier.com/blowfish.html.

The next parameter sets the list of naming contexts (base DNs) that phpLDAPadmin
should display:

$ldapservers->SetValue($i,
 'server','base'(,array('dc=example,dc=com'));

This sets up only one context DN: dc=example,dc=com. While this setting is
necessary on some LDAP servers, OpenLDAP should not need it. OpenLDAP
publishes a list of contexts in the Root DSE record, and phpLDAPadmin can get the
information from there. In fact, that is the default configuration for phpLDAPadmin,
so the setting can be left off or set to this:

$ldapservers->SetValue($i,'server','base',array());

This creates an empty list of contexts (array()), and causes phpLDAPadmin to look
up the supported contexts in the Root DSE.

•

•

•

Chapter 8

[411]

There are just two parameters left to look at:

$ldapservers->SetValue($i,'login','anon_bind',false);
$ldapservers->SetValue($i,'appearance','password_hash','ssha');

Let's see these two settings:

The first setting disables anonymous binding. This will prevent users from
accessing phpLDAPadmin without logging in first. Even if this is allowed
though, the ACLs in SLAPD will still prevent such users from modifying the
directory information tree.
The second setting sets the default password hash to be used. Instead of
using the LDAP Password Modify extended operation, phpLDAPadmin
attempts to directly modify the userPassword attribute. In order to do this
it must perform all of the encryption and base-64 encoding before sending
the update to SLAPD. This setting tells phpLDAPadmin which hashing
algorithm should be used when modifying passwords. OpenLDAP uses
SSHA by default, and so we should set phpLDAPadmin to do the same.

If you set a different value in slapd.conf using the password-hash directive,
you should set the same value here.

Not all of the cipher options in phpLDAPadmin are supported by
OpenLDAP (or any other LDAP server, for that matter). You should not
use the blowfish cipher for passwords. OpenLDAP does not support that
cipher and phpLDAPadmin incorrectly labels it as a crypt hash.

While there are many other configurable parameters in the phpLDAPadmin
configuration file, we have the basics configured. We can now test out the
phpLDAPadmin tool with our web browser.

A First Look at phpLDAPadmin
With PHP installed, Apache restarted, and phpLDAPadmin configured, we are now
ready to connect to phpLDAPadmin. Ubuntu installs phpLDAPadmin so that it is
available at the URL http://<hostname or IP address>/phpldapadmin/. In this
case I am running the web browser on the same machine as the Apache server, so
http://localhost/phpldapadmin points to the phpLDAPadmin tool.

•

•

LDAP and the Web

[412]

When phpLDAPadmin first loads, it will look something like this:

The left-hand frame is the navigation frame for phpLDAPadmin. The computer icon
accompanied by the text Example.Com indicates the server that we configured. If
phpLDAPadmin has been configured with multiple hosts, then the left frame will list
them all.

Chapter 8

[413]

Here is the screenshot:

At the top section, just below the version banner (phpLDAPadmin – 0.9.8.3), there
are six links. The Home link points to this page. Request feature, Donate, and
Report a bug all point to various places on the external phpLDAPadmin website.
Help loads an internal page that in turn points back to the phpLDAPadmin
forum website.

Finally, the Purge caches link can be used to purge the internal caches of copies
of LDAP data that phpLDAPadmin uses to optimize performance. This may be
necessary if phpLDAPadmin displays an old copy of some piece of data when it
should display a more recent update.

To log in to our server, click on the Login... link beneath the Example.Com icon. This
will load the login screen in the main frame on the right side.

LDAP and the Web

[414]

Note that unlike Apache by default, phpLDAPadmin by default requires that you
enter your entire DN to log in. It then binds directly as that DN.

The warning message Warning: This web connection is unencrypted
indicates that the connection between the browser and the web server is
HTTP and not the encrypted HTTPS. For an application like this, it is a
good idea to configure Apache to use HTTPS. For more information, see
http://httpd.apache.org/docs/2.0/ssl/.

If the anon_bind parameter in the phpLDAPadmin conf.php file is set to true
instead of false, users will also be able to check a box to log in as the
Anonymous user:

$ldapservers->SetValue($i,'login','anon_bind',true);

In that case they will not need to enter either a DN or a password, but
phpLDAPadmin will allow them to browse the directory information tree to the
extent allowed by the ACLs.

Navigating phpLDAPadmin
Once you have logged in, the navigation frame will display a list of directory
information trees hosted on this directory server, as shown in the screenshot:

Beneath Example.Com, there is now a list of seven links:

schema: Clicking this displays the entire schema (from cn=subschema) that
this LDAP server supports.
search: This loads the main search form for performing simple
LDAP searches.

•

•

Chapter 8

[415]

refresh: This refreshes the data currently displayed in the tree beneath. If
entries get added, but don't immediately show up, clicking refresh should do
the trick.
info: The info link loads the Root DSE information (decoded to make it easier
for humans to read) in the main frame. This can be a very useful resource for
finding out about the directory server. (See Appendix C for more information
about the Root DSE.)
import: This uploads an LDIF file, and then attempts to add the entries to the
directory server (via an LDAP add operation).
export: Using this link you can download a copy of the contents of the
directory. This too uses the LDAP protocol, which means that it is subject
to ACLs and might not export everything. In other words, it is not a
replacement for slapcat. It does have the added advantage though, of being
able to export to LDIF, DSML (an XML format), CSV (comma separated
version), and VCARD.
logout: This link logs the current user out of phpLDAPadmin.

Underneath this list of links are the base entries for the two directory information
trees currently hosted on this server, the cn=log tree,which holds the accesslog, and
the dc=example,dc=com tree which holds the directory entries we have been creating
throughout this book.

Both of these trees show up because the base DN set in config.php looks
like this: $ldapservers->SetValue($i, 'server', 'base',
array());. This caused phpLDAPadmin to use information from the
Root DSE to determine which directory information trees were hosted
here. The Root DSE returned two: cn=log and dc=example,dc=com.

•

•

•

•

•

LDAP and the Web

[416]

Clicking on a plus (+) icon expands that part of the tree, and shows the
subordinate entries:

Navigating the directory information tree then, can be done quickly and efficiently
through the left-pane navigation.

Each entry in the tree has only the RDN portion of the DN displayed. Through
viewing the hierarchy one can build the full DN, but if you wish to display the full
DN by default you can set the following parameter in the config.php file:

$config->custom->appearance['tree_display_format'] = '%dn';

Conversely, if you want to show just the value of the RDN, without the attr= part,
you can set it to %rdnValue in the given parameter instead.

Viewing and Modifying a Record
To view an entire record, simply click on the desired entry in the hierarchy view in
the left-hand navigation frame. For example, if we click on cn=Admins the full record
will be displayed in the main frame:

Chapter 8

[417]

This screen provides a number of tools for manipulating a record, as well as a full
display of all of the record's attributes. The tools are as follows:

Refresh: This refreshes the current record. This may be useful in situations
where the entry may have changed since the last time this page was loaded.
Copy or move this entry: This can be used to relocate (or make a copy of) the
entry to another location in the directory information tree.
Delete this entry: This runs an LDAP delete on the record, removing it from
the directory information tree.
Compare with another entry: This shows a side-by-side editable view of
two different records in the directory. This can be useful to visually scan two
records, or to look at one record as a reference for creating another.

•

•

•

•

LDAP and the Web

[418]

Create a child entry: This creates a new entry that is subordinate to the
presently selected one.
Export: This performs the same function as the Export link in the left
navigation pane except that it selects the present entry by default, instead of
requiring the user to select a point to export.
Show internal attributes: This displays the operational attributes for the
selected record. Of course, operational attributes cannot be modified by a
client application and so these attributes will be read-only.
Rename: This allows you to change the RDN of an entry (such as we have
done with the ldapmodrdn command line tool).
Add new attribute: Using this, you can add new attributes to an entry.
phpLDAPadmin allows you to pick from a list of attributes that the object
classes of the current record allows a record to have. In other words, there
is no danger of accidentally selecting an attribute that is not allowed for
that record.

Beneath this selection of tools is a display of all of the attributes for the current record:

The cn=Admins group record has the following (non-operational) attributes: cn,
member, objectclass, and ou. phpLDAPadmin analyzes the record and presents
options that are fitting for the record.

•

•

•

•

•

Chapter 8

[419]

First, cn cannot be modified since it is used in the RDN (as is noted on the far right-
hand side). Also, it is labeled as required. Clicking on the rename link will do the
same thing as the rename option in the list of tools: it will prompt me to perform a
modrdn operation.

Under the member attribute, which is also required, there are two values: the DNs of
the users who are members of this group.

The arrows ()to the left of the DNs are links pointing to the records of those users.
If you click on the link it will load a page similar to this one that allows you to edit
the record for that DN.

On the other side of the member DN fields are icons that look like a directory with a
magnifying class (). Clicking on this will allow you to navigate the directory tree to
find another DN to place in this field.

We will look at that dialog in just a moment. But first, we will look into adding a new
group member to our group by adding a new attribute value.

Looking at the member section of the record display, we can add a new member by
clicking on the add value link. This will bring up an attribute editing screen:

The attribute editing screen is used to add a new attribute to an existing record.
At the top of the screen, we can see some basic information about what attribute
(member) we are adding to which record (cn=Admins).

Next, the attribute editor lists the existing values of the attribute (since this group
already has two members). Finally, there is a single-text input box to allow us to
enter a new member.

LDAP and the Web

[420]

phpLDAPadmin examines the schema for this attribute and displays the schema
description as well as a human-readable description of the syntax.

Also, since the value of this field is a DN, the find icon (the folder image with the
magnifying glass) appears on the right side. We can click that icon to bring up the
find dialog, and in that window we can navigate the directory information tree in
search of the DN we want to add. This is what it will look like:

Clicking on a plus sign (+) icon will expand that branch of the tree, while clicking on
the DN itself will insert that DN into the field on the attribute editing screen.

This finding dialog is used frequently in phpLDAPadmin, and provides
a simple tree navigation tool for locating entries within the directory
information tree.

Now we have the desired value in the new member field:

Clicking the Add New Value button will provisionally add this attribute to our
cn=Admin group, and return us to the record view. Our new addition is shwon on the
main record view:

Chapter 8

[421]

Now we have three members. At the bottom of this page is a button labeled save
changes. This button saves any changes made directly to fields on this page, but it is
not needed to save the new group member—the user uid=barbara has already been
added to the group.

Notice that the objectClass field does not allow modification of structural object
classes. That is because LDAP does not allow changing an entry's structural object
class. However, new object classes (auxiliary ones) can be added using the add
value link.

Also, next to each object class is an information icon ()—a blue circle with a
white letter i.

Clicking on this icon will load the schema viewer for that object class, which displays
helpful information about an object class:

LDAP and the Web

[422]

The schema viewer shows all of the information stored in the LDAP schema, but in
a much more human-friendly way than the schema files we looked at in Chapter 6.
The schema viewer provides an interface to view object classes, attribute definitions,
matching rules, and syntax information. In this case it is showing the groupOfNames
object class. Attributes and superior object classes are linked which makes it
much easier to navigate through the schemas. Additionally, there is a Jump to an
objectClass drop-down list that provides a fast way to look at some of the other
object classes.

Adding a New Record
New records can be added from many points in phpLDAPadmin. Anywhere there is
a star icon (), it denotes a position where a new subordinate record can be added.

Let's add a simple user account. To do this we will use the tree view in the left-hand
navigation pane to locate the ou=Users branch:

Chapter 8

[423]

Clicking on the star icon (Create new entry here) will load the record creation view
into the main frame. From here we can begin defining our new user's entry.

The first thing to do is select a structural object class for our new user.
phpLDAPadmin gives us a list to choose from:

The phpLDAPadmin system has a number of pre-defined templates for adding
new entries but our LDAP server is not configured with all of the object classes that
phpLDAPadmin supports. (Many of these schemas are defined, though, in the /etc/
ldap/schemas/ directory.)

LDAP and the Web

[424]

Attempting to add a User Account (which uses the posixUser object class, as
defined in nis.schema) will cause problems when you try to create the user.

Those that are defined in phpLDAPadmin but are disabled in the template definition
are marked with a white arrow on a black circle�� they cannot be selected.

New custom templates can be created and added easily. Templates are
simple XML files stored at /etc/phpldapadmin/templates/. To
add a new template, just create a new XML file (or copy and modify an
existing one), save it in the templates/ directory, and then use the
Purge cache tool in phpLDAPadmin to force a reload of the XML files.
See the bundle of examples included with this book (available at the Packt
website: http://www.packtpub.com).

We want to create a new inetOrgPerson object. Since there is no pre-defined
template for an inetOrgPerson, we will use the Custom template.

The first thing to do is create the DN and decide on a structural object class:

Chapter 8

[425]

Our new user's UID will be mary and, as always, we will be using uid as the attribute
in the RDN. The user will be in the ou=Users organizational unit. And we want to
select inetOrgPerson (and person and organizationalPerson) from the list of
object classes. Clicking Proceed >> will bring us to the next screen, where we can fill
out a number of attribute values. Here is the next screen:

The required attributes are at the top of the form. After that, there is a section
for selecting multiple optional attributes and giving them values. If you add a
userPassword value here, it will be properly encrypted and stored on the
directory server.

Scrolling to the bottom of this page there is a button labeled Create Object. Clicking
that will perform an LDAP add operation on the directory server.

Once the new user is created phpLDAPadmin will display the entry.

Other templates streamline this process by automatically selecting the correct object
classes and narrowing down the available attributes to just those used most often.

LDAP and the Web

[426]

Searching with phpLDAPadmin
The last task we are going to look at with phpLDAPadmin is searching.
phpLDAPadmin comes with a set of searching utilities that can be used to find
information in the directory information tree.

To get to the search screen, click on search in the left-hand navigation frame. This
will take you to the basic search screen:

Here, we will search for any entries whose UID starts with the string ma. Pressing the
Search button will execute the search, which, for our directory, returns four records:

Chapter 8

[427]

This returned all of the users who had a UID that starts with ma. Note that, by
default, the search will check all available directory contexts. That might mean that
one directory information tree will have zero search results and another may have a
host of matches.

Sometimes it is nice to have more control over the LDAP search though. Clicking the
Advanced Search Form link at the top of the simple search screen will load a search
screen with more options:

This allows us to explicitly set the base DN, the scope, and the search filter, as
well as specify a list of attributes that we want returned. In short, this search form
contains the fields we are accustomed to seeing in other LDAP applications, like the
ldapsearch command-line client.

This too will return a list of items matching our specification.

The third search option is Predefined Searches. This tool is especially helpful for
running searches with the same parameters time after time.

The searches are predefined at the bottom of the config.php file in the
/etc/phpldapadmin/ directory. The predefined search section begins like this:

$q=0;
$queries = array();

The first line sets up a query counter and the second line creates a new array of
queries. We are going to add configuration directives to the $queries array.

LDAP and the Web

[428]

A search definition looks like this:

$queries[$q]['name'] = 'Users with Email Addresses';
$queries[$q]['base'] = 'ou=Users,dc=example,dc=com';
$queries[$q]['scope'] = 'sub';
$queries[$q]['filter'] = '(&(objectClass=inetOrgPerson)(mail=*))';
$queries[$q]['attributes'] = 'cn, uid, mail';

Each line adds a new name/value pair to the first slot in the $queries array
(remember, $q is 0, which indicates the first slot of the array). By now, the format of
such a filter ought to look pretty familiar:

name: The human-readable name of the pre-defined search.
base: The base DN that the search will start with.
scope: The search scope (base, one, sub, children).
filter: The LDAP filter.
attributes: The list of attributes that should be returned to the user. Note
that the attribute list is enclosed by quotes and values are separated
by commas.

If we were to create a second filter, we would first increment the $q variable, and
then define a new set of parameters:

$q++;
$queries[$q]['name'] = 'Entries with SeeAlso attributes';
$queries[$q]['base'] = 'dc=example,dc=com';
$queries[$q]['scope'] = 'sub';
$queries[$q]['filter'] = '(seeAlso=*)';
$queries[$q]['attributes'] = 'cn, description';

The line $q++ changes the value of $q from 0 to 1, putting the next five parameters in
the next indexed slot of the $queries array.

Once we have defined the filters and saved the file, we are ready to test them
out. There is no need to restart Apache or SLAPD�� phpLDAPadmin reads its
configuration file with every new request, and will pick up our changes immediately.

•

•

•

•

•

Chapter 8

[429]

Here is the screen for Predefined Searches:

With the predefined search, all we must do to run it is select the desired search from
the drop down list at the top of the page and press the Search button. Since the
filter is stored in the configuration file, phpLDAPadmin doesn't need any additional
information from us.

We've now looked at the main features of phpLDAPadmin, a well-developed tool for
managing an LDAP directory through a web interface.

phpLDAPadmin is not the only Open Source program for managing directory
servers. There are standard desktop tools like GQ (http://gq-project.org),
and dozens of other web-based LDAP tools. There are also plugins to bring LDAP
support to other popular web-based applications (like Squirrelmail, Joomla, and
OpenCms).

LDAP and the Web

[430]

There are also tools available to bring LDAP services to other authentication tools.
For example, the libpam-ldap package provides PAM (Pluggable Authentication
Modules) with the capabilities for performing LDAP lookups. And saslauthd,
an SASL daemon that provides authentication services, can also be configured to
connect to an LDAP server for authentication purposes.

Finally, there are a whole host of DNS servers, mail servers, file servers, and other
packages that can be configured to use LDAP to store and retrieve information,
particularly authentication information.

Summary
In this chapter, we have looked at configuring other tools to interoperate with
OpenLDAP. We began with the Apache web server, using LDAP as a source of
authentication and authorization. Next we installed phpLDAPadmin, a web-based
program for managing directory servers. We looked at the main features and did
some custom tuning.

Of course, this is only scratching the surface of the applications that are LDAP-enabled.
The information presented in this chapter should get you going on implementing
any LDAP-enabled application, since they all require the same basic configuration
information: host, port, bind information, and search filters.

To find out more about LDAP-enabled applications, you may want to take a look at
some of the Open Source package websites like Freshmeat.Net (http://freshmeat.
net) and Source Forge (http://sourceforge.net).

Building OpenLDAP
from Source

In this appendix, we will walk through the process of building OpenLDAP
from source code. We will begin by configuring our Linux platform to compile
OpenLDAP. Then we will configure, compile, and install OpenLDAP. Compiling
OpenLDAP might sound daunting, but it is not, and I have attempted to provide
instructions straightforward enough that even those without experience of C will be
able to quickly compile from source.

Why Build from Source?
Many Linux and UNIX distributions are slow to migrate from one version of
OpenLDAP to another. The reasons for this are open to speculation, but one reason
may be that distribution maintainers are reluctant to quickly adopt new versions
of software when it already performs well, is integrated with other services,
and performs a task that is security-sensitive and functionally central to many
organizations. OpenLDAP, providing authentication services, is just such a service.

Because of this reluctance, you may not find the latest and greatest version of
OpenLDAP included in your Linux or UNIX distribution of choice. If you need (or
want) the newest features that OpenLDAP has to offer, you may want to fetch a
clean copy of the source code and build from scratch.

Getting the Code
To get the latest version of the code visit the official OpenLDAP website at
http://openldap.org. This site is hosted by the OpenLDAP Foundation, a
non-profit group that governs and oversees the OpenLDAP project.

Building OpenLDAP from Source

[432]

On the home page you will find a link to the current release in a highlighted box in
the lower right-hand corner,as shown in the screenshot:.

You can download the most recent stable version directly from there, or you can visit
the download page (listed as Download!) in the center column of the table of links to
find other versions (past versions, current experimental and beta versions,
and so on).

Appendix A

[433]

The Tools for Compiling
Whenever you build an application from source code, you need the right set of tools
and libraries. OpenLDAP is no exception. Thankfully, OpenLDAP is a little lighter
on requirements than some server applications out there.

Compiling is done on the command line, so you will need to open a terminal or
otherwise gain access to the shell.

Build Tools
You will need the standard tool chain for working with C and C++ applications�� a C
compiler, a linker, and a make program. Fortunately, all of these come as standard
with almost every Linux distribution available. You can test your system for the
appropriate tools using the which command, which will tell you where the tools are
located on your filesystem (assuming they are in one of the directories listed in your
$PATH environment variable).

Here's a quick example of how you can check to see where the tools are and what the
current version of each tool is. My system is Ubuntu Linux 6.06. Version numbers on
your own system may vary. That's okay. OpenLDAP should compile on all modern
Linux distributions, and probably on all modern UNIX distributions as well.

$ gcc --version
gcc (GCC) 4.0.3 (Ubuntu 4.0.3-1ubuntu5)
Copyright (C) 2006 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.
$ which ld
/usr/bin/ld
$ ld --version
GNU ld version 2.16.91 20060118 Debian GNU/Linux
Copyright 2005 Free Software Foundation, Inc.
This program is free software; you may redistribute it under the terms
of the GNU General Public License. This program has absolutely no
warranty.
$ which make
/usr/bin/make
$ make --version
GNU Make 3.81beta4
Copyright (C) 2003 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.
This program built for i486-pc-linux-gnu
$

Building OpenLDAP from Source

[434]

In each case I used the which tool to know where the tool was located. The programs
I checked were gcc, ld, and make—the compiler, linker, and make program
(respectively). As long as some path is returned, this indicates that the tool is
installed. If no command is found, which returns without any output. Thus, if I
searched for a fake command, blah, the output would look like this:

$ which blah
$

Thus, if you run which for any of the programs (gcc, ld, or make), and get no output,
it indicates that you do not have the required tool.

On some UNIX systems, the GCC compiler (gcc) may not be present, but
another C compiler may exist. The de facto name for C compilers is cc,
and if which gcc yields no result, you may want to try which cc.

After the which command in the given example, I ran each command with the
--version flag (with two dashes before version) to tell me which version was
installed. The --version flag is a GNU standard, but non-GNU programs (such as
other versions of make or cc) may not support it.

The next thing to do is set a couple of environment variables that will provide some
basic settings for the given tools. While there are many options that you can provide
to your tools through environment variables, here we will just provide the basics for
building OpenLDAP.

Some Linux and UNIX distributions set the necessary environment
variables for you. In such cases, it is almost always better to use the
already-defined environment variables, which are often optimized
specifically for your system, rather than the generic ones we will
be setting now.
To find out if you have the necessary environment variables, run the env
command (with no arguments) and check the output to see if CC, CFLAGS,
and PATH are defined.

One way to set environment variables is with the export command. When you use
the export command, the environment variables will be stored for the duration of
your shell session (in other words, until you exit from the shell or close the terminal
window). Here we will set the necessary environment variables using export:

$ export CC=gcc
$ export CFLAGS="-O2"

Appendix A

[435]

The first export sets the $CC environment variable to gcc. The make program will use
this to determine which compiler to use. (If you are using the cc compiler instead,
then adjust the example to point to cc instead of gcc). Note that when you set an
environment variable, you do not use the dollar sign ($) before the variable name.
When you reference the variable however, you will need to include the dollar sign.

The second line sets the $CFLAGS variable. The $CFLAGS variables are the options
that get passed to the compiler during compilation. In this case, we are passing it the
option -O2 (that's a captial letter O, not a zero). This tells the compiler to use level 2
optimization when compiling the code.

The $PATH environment variable should also be set. However, by using the which
command to see where our tools were, we have already verified that the necessary
directories (that is, the directories that contain our tools) are specified in the
$PATH variable.

If you are dealing with a non-standard system or non-standard builds of any of the
libraries, or if you are interested in passing some other options to the build tools,
you may also have to use some additional environment variables. You can use
$CPPFLAGS to pass options to the C preprocessor (cpp, part of GCC). Likewise, you
can pass the linker (ld) options with the $LDFLAGS variable. Finally, if you have
libraries (compiled modules of code used by other applications) that are stored in
non-standard places, you can use the $LIBS variable to specify the location of these
libraries. If you need to use the variables you should consult the documentation for
the tools and libraries.

At any point you can check your environment variables with some simple
commands. The env command (executed with no arguments) will list all of the
environment variables currently defined, as well as their values. You can also check
an individual environment variable with the echo command. Simply type echo,
followed by the name of the environment variable to display the value of that
environment variable:

$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/bin
/X11:/usr/games

In this example echo $PATH shows the list of directories the shell searches to find
programs. As you may recall the which command, when run, printed out the
location of the specified tool. To find tools it searched each of the directories specified
in the $PATH variable.

At this point we are ready to move on to the next step: installing the
necessary dependencies.

Building OpenLDAP from Source

[436]

Installing Dependencies
Dependencies are packages that OpenLDAP will require to compile and to run.
Installing these dependencies will vary from platform to platform (and from Linux
distro to Linux distro). Here, I will use the Debian tools (included in Ubuntu Linux)
to install packages.

OpenLDAP requires standard C libraries, regular expression libraries, and the
Berkeley DB 4.2 (or later) libraries. These are almost always included in modern
Linux distributions. In addition to the libraries, the header files are also required.
Often these are stored in separate packages (usually called DEV packages). To install,
for example, the Berkeley DB 4.2 development package in Ubuntu, you can execute
the following command from the command line:
 $ sudo apt-get install libdb4.2-dev

This will fetch and install the required package.

There are various other packages that are useful to install, and we will need them in
order to build all of the features that we use in this book. You will need to install:

OpenSSL (for SSL and TLS support)
SASL 2 (for SASL authentication support)

If you are interested in storing your directory in a relational database engine,
such as MySQL or Oracle, you might also want to install iODBC2 (for database
backend support).

All of these packages are common on modern Linux system. Make sure that the
packages are installed, and that the DEV (or -dev) add-ons for each of these is
installed as well. In Ubuntu 6.06 these can be installed with one (rather long)
command:
 $ apt-get install libssl0.9.8 libssl-dev libiodbc2 libiodbc2-dev

 libsasl2 libsasl2-dev

Other distributions may use different installers, and even different package names,
but you should have no problem finding them based on the bullet list of names that
have been provided.

OpenLDAP includes many optional modules that provide additional
functionality (such as debugging or integration with other services).
These modules are not covered in this book, though you may choose to
explore them on your own. Some of these modules require additional
libraries. Consult the OpenLDAP documentation included in the source
code for more specific information.

•

•

Appendix A

[437]

At this point you have all the tools and requirements necessary for building
OpenLDAP. Now we move onward to the actual compiling process.

Compiling OpenLDAP
In the last section we prepared all of the tools and libraries for building OpenLDAP.
In this section we will configure, compile, and test OpenLDAP.

First, we need to get our OpenLDAP server source code moved into a temporary
directory for building. Copy the openldap-2.3.x.tgz file into the appropriate
directory and then unpack the file:

$ mkdir build/
$ cp openldap-2.3.37.tgz build/
$ cd build
$ tar -zxf openldap-2.3.37.tgz

Here, I created a new directory (called build/), copied the OpenLDAP source code
archive into the new directory, changed the working directory to build/, and then
unpacked the file with the tar utility (the flags -zxf instruct tar to uncompress (z)
and extract the contents (x) of the file (f) openldap-2.3.37.tgz). Once this is done,
the build/ directory should contain a directory called openldap-2.3.37. Use cd to
change to that directory: cd openldap-2.3.37.

Configuring
Now we need to run the configuration script to prepare the source code for
compiling. This script determines how OpenLDAP will be built, and what options
will be enabled or disabled by default. OpenLDAP is very configurable, and there
are many different options from which to choose. To see the complete list of options,
you can run the configuration script with the --help flag:

 $./configure --help

This command will print out a list of every option available for configuring
OpenLDAP. It will also indicate whether or not the option is on by default. For
example, the first few lines of the SLAPD database backend section looks like this:

SLAPD Backend Options:
 --enable-backends enable all available backends no|yes|mod
 --enable-bdb enable Berkeley DB backend no|yes|mod [yes]
 --enable-dnssrv enable dnssrv backend no|yes|mod [no]

Building OpenLDAP from Source

[438]

We can see that each option has three possible states: yes, no, and mod (which builds
the component as a pluggable module instead of building it into slapd). Of those
listed, only the flag --enable-bdb, which enables the Berkeley DB backend, is on
by default.

For the most part, the defaults are good. All of the crucial options are turned on by
default. However, there are a few additional modules discussed in this book that are
not on by default, and we will want to turn them on manually. They are:

--enable-ldap: Enables the LDAP backend storage mechanism (see Chapter 7)
--enable-ppolicy: Enables the password policy overlay (see Chapter 6)

If you do not plan to use the ODBC database backend, you can add
--enable-sql, but you will need to make sure that you install the iODBC2
packages discussed in the previous section.

By default, OpenLDAP will be installed (with the final make install step)
into subdirectories at /usr/local. This is the recommended place to put
applications and libraries that are "local" applications. Packages that are
not distributed as standard pre-configured applications (like deb or RPM
packages) are considered local packages. If you want to put the package
somewhere else, use the --prefix and --exec-prefix flags.

Now we are ready to run the configuration command:
 $./configure --enable-ldap --enable-sql --enable-ppolicy

This will kick off an evaluation process that may take several minutes. The
configuration script will systematically evaluate your system settings, determining
what tools you are using, how it should build, and whether or not the system has all
of the necessary libraries.

If the configure process terminates with an error, it will indicate why it failed.
Usually, this failure will indicate that one of the required libraries or tools is not
present. For example, if it dies with an error stating that sql.h is missing, this
indicates that the iODBC2 header files (from libiodbc2-dev in Ubuntu) were not
found. This usually indicates that they are not installed at all, though it may also
indicate that they were installed in a non-standard location.

Some missing libraries will not stop configure from running. Such packages will
generate errors instead of warnings. Two examples of this are the OpenSSL libraries
and the SASL libraries. Once the configuration script has completed, scroll back
through the results and make sure there are no lines that look like this:

configure: WARNING: Could not locate TLS/SSL package
configure: WARNING: TLS data protection not supported!

•

•

Appendix A

[439]

or

configure: WARNING: Could not locate Cyrus SASL
configure: WARNING: SASL authentication not supported!

If you see these you will probably want to make sure the appropriate packages
(remember the DEV packages) are installed, and then re-run the ./configure script.

Once the configuration script has run through, and there are no warnings or errors,
you are ready to build OpenLDAP's source code.

Building with make
Building with make is a two-step process. First, the auxiliary libraries must be built,
then the main tools and servers must be built. Fortunately, all this hard work can be
done in one short command:

 $ make depend && make

This will compile all of the libraries (make depend) and then, if the first part was
successful, it will run the main build (make). Compiling may take a long time.

Usually, the configuration script makes sure everything is in order before the main
compilation begins. On rare occasions though, one of the two make commands
may fail. If this happens you will have to evaluate the error message and determine
what steps to take to fix the problem. In most cases the problem has to do with
an unsatisfied dependency—some package or tool that OpenLDAP requires is
not installed, and (for one reason or another), this gap was not noticed by the
configuration script.

Sometimes the documentation included with OpenLDAP (README, make, and the
documentation in the docs/, libraries/, and servers/ directories) will point out
possible problems.

If the make fails and you cannot find the problem, your best bet
may be to search the OpenLDAP mailing list archives (visit
http://openldap.org) or, if all else fails, subscribe to the mailing
list and ask about the problem there.

Once the compiling process ends, it is a good idea to run the automated testing
procedure to make sure that the code was built correctly. This is also done
with make:

 $ make test

Building OpenLDAP from Source

[440]

Because the test includes frequent programmatic delays and performs dozens of
tests, this process may take several minutes to complete. When it is done, review the
output and make sure there are no errors. Note that some of the test will be skipped
because we did not compile OpenLDAP with all of the possible options turned on.
Skipped tests are normal and are nothing to worry about.

Now we are ready to install our fresh new OpenLDAP server.

Installation
Installing is done with one additional command:

 $ sudo make install

On some versions of Linux or UNIX, instead of using sudo, you will need to switch
users (su) to root and run the make install command as root: su -c ‘make install'.
You will be prompted to enter the password for your account (or, if you use su
instead of sudo, the root password). Once you have correctly entered the password,
the necessary OpenLDAP files will be copied to subdirectories of /usr/local.

On some systems, the directories that contain local executable files
(/usr/local/bin and /usr/local/sbin) are not included in the $PATH
environment variable. As a result, simply typing an OpenLDAP command at a
command line may return an error. One way to get around this problem is to type
in the entire path to the command:

 $ /usr/local/sbin/slapcat

But this can be tedious. You can also append the appropriate paths to your $PATH
environment variable. Then you will be able to simply issue the command without
specifying the absolute path to the command:

 $ export PATH= /usr/local/bin:/usr/local/sbin:$PATH

 $ slapcat

In this example the export command re-sets $PATH for the current session. So the
variable $PATH is assigned the values /usr/local/bin, /usr/local/sbin, and the
contents of the current $PATH variable (which likely contains /bin, /sbin, /usr/bin,
and other directories). Order is important. When the shell is searching for a command
(slapcat, in the given example), it will search from the first directory in $PATH on to
the last directory. As soon as it finds a match, it will stop searching. So, for example, if
there were two slapcat commands, the shell would use the first one it found. In our
case, it is best to put the two /usr/local directories early in the path just in case an
older version of LDAP is installed elsewhere on the file system.

Appendix A

[441]

Usually, the export command should be added to the shell configuration file (for
example ~/.bash_profile) so that the additional path information is automatically
added every time you start a shell session.

You are now ready to configure the new version of OpenLDAP.

Building Everything
In the build mentioned in the previous section we compiled only the basics. This gets
us what we need to run just the basics. But there are lots of OpenLDAP backends
and overlays that can be useful (many of which are covered in this book). In cases
where we want to build everything, typically it is best to compile OpenLDAP with
module support, and compile all of the overlays and backends as modules. That way
we can have all of the extras available, but only the ones needed (and configured in
slapd.conf) get loaded at runtime.

Many of the additional backends and overlays have their own
dependencies. For example, the Perl backend requires that the Perl
libraries be installed. Most of the necessary dependencies are installed
by default in Ubuntu. If you don't have the requisite libraries for a
module, the configure or make programs will let you know what
library is missing, and you will have to track down which package
contains that library. For this process, you may find the package search
on Debian's website useful (http://www.us.debian.org/distrib/
packages#search_contents).

Since we are building OpenLDAP with modules, we will need to make sure that
libtool and the libtool header files are installed. In Ubuntu, it is not installed by
default. Also, since the Perl backend (back_perl) will be installed, we will need to
install the Perl development package. You can install all of these with one command:

 $ sudo apt-get install libtool libltdl3 libltdl3-dev libperl-dev

The libltdl3 library is usually installed by default, but the others are also needed to
compile OpenLDAP with module support. Now we are ready to build OpenLDAP
with modules.

To build OpenLDAP with all of the extra modules, we just need to use the correct
flags with configure:

 $./configure --enable-dynamic --enable-modules --enable-backends=mod \\

 --enable-overlays=mod

Building OpenLDAP from Source

[442]

To build everything we need only four flags. The first, --enable-dynamic enables
shared libraries. Second, --enable-modules simply tells configure that we want
to use modules. The next two indicate what backends and overlays we want
built: --enable-overlays, which is set to mod in order to build modules, and
–enable-backends (also set to mod) to build all of the available backends.

Once configure completes, you can run make:

 $ make depend && make && make test

This will build all the dependencies, then build OpenLDAP (and all of the modules),
and then test everything. When you are ready to install, you can follow the
instructions in the previous section.

Summary
In this appendix we have briefly examined the process of building OpenLDAP
from source. At this point you should have the information necessary for building
OpenLDAP from source.

We have looked at a very basic build and also a complete build using modules.
But there are many other available options. You can learn more about building
OpenLDAP from the documentation included with OpenLDAP.

LDAP URLs
To query a directory a client must send the server several different pieces of
information. To make it possible to group all of this information together into one
standards-based string format, LDAP developers proposed a standard LDAP URL
syntax, which follows the URL standard (RFC 3986). In this appendix we will take a
look at the format of LDAP URLs.

The LDAP URL
The LDAP URL is composed of eight different parts:

1.	 The protocol, which is usually LDAP (ldap://), though the non-standard
LDAPS protocol (ldaps://) is used.

2.	 The domain name (or IP address) of the server. The default is localhost.
3.	 The port number of the server. The default is the standard LDAP port, 389.
4.	 The base DN for the search.
5.	 The list of attributes to be returned. The default is to return all the attributes.
6.	 The scope specifier. The default is to use the base scope.
7.	 The search filter. The default is (objectclass=*).
8.	 The extension field. If the server supports extensions, parameters for those

extensions can be passed in the last field.

Combining seven of the eight parts (we will skip the extension field) we can create a
URL that looks something like this:

ldap://example.com:389/ou=Users,dc=example,dc=com?mail?sub?(uid=matt)

This URL is composed of the seven parts in this way:

<protocol>://<domain>:<port>/<basedn>?<attrs>?<scope>?<filter>

LDAP URLs

[444]

Where we have to use an extension we would simply append a question mark (?)
and the extension information to the end of the given URL.

Using this URL to perform an LDAP search, the result would be as follows:

The client would connect to Example.Com on port 389 using the
LDAP protocol.
The based DN would be set to ou=Users,dc=example,dc=com.
The client would request the mail attributes for all the entries in the subtree
of ou=Users,dc=example,dc=com where the UID was matt.

To use LDAPS (the non-standard practice of using LDAP over a dedicated
SSL/TLS port), use ldaps:// instead of ldap://.

In many cases it is convenient to shorten the URL and accept the default options.
For example, the default domain is localhost (or the IP address 127.0.0.1), the
address of the server on which the URL is executed. And the default port is 389
(unless the protocol is ldaps:// instead of ldap://, in which case the default port is
the LDAP port 636).

The port can be left off in most cases. But the domain portion of the URL can be
omitted too:

ldap:///ou=Users,dc=example,dc=com?mail?sub?(uid=matt)

Note that there are now three slashes at the beginning, ldap:///. The domain name,
which normally appears between the second and third slash, is not specified. If this
URL were used, the LDAP application would connect to the localhost (the default
host) at port 389 (the default LDAP port), and then proceed to run the search.

Now let's say that instead of wanting the LDAP server to return just the mail
attribute, we want it to return all of the standard (non-operational) attributes. To do
this, we simply leave the attribute specification empty:

ldap:///ou=Users,dc=example,dc=com??sub?(uid=matt)

Now, the attribute position has no value, though the two adjacent question marks
(??) indicate where the empty attribute position is.

In the previous two examples, when we have omitted specific field values, we
have had to leave the designators in the URL, so we have ldap:/// for the domain
portion of the URL, and ? without a value for the attribute specification (which looks
like ?? in the given example).

•

•

•

Appendix B

[445]

But when we drop values from the end of the URL we do not need to leave the empty
position designators. For example, if we were to drop the filter from the end, we do
not need to leave trailing ? at the end of the URL. Here's an example:

ldap:///ou=Users,dc=example,dc=com?mail?sub

In this example the mail attributes for every entry under ou=Users,dc=example,
dc=com are returned.

Common Uses of LDAP URLs
Throughout this book LDAP URLs have been used for various purposes.

In Chapter 4 we used LDAP URLs to perform searches in the authz-regexp
directive in slapd.conf.

While a full LDAP URL, as we examined, can be a useful way to formulate a search,
this is probably not the primary use of LDAP URLs. More commonly the LDAP URL
syntax is simplified and used to capture only basic information.

Not all LDAP URLs are for Searching
In Chapter 3 we used LDAP URLs to connect to SLAPD from the ldapsearch utility,
but we were not using the LDAP URL as a way to specify a search string. In many
cases in fact, an LDAP URL may be used simply to provide protocol, host, and port
information in one convenient string:

ldap://example.com:646

In this example the LDAP URL provides sufficient information for a client to use
the plain LDAP protocol when connecting to the server Example.Com on the
non-standard port 646.

Directory referrals, handled in the slapd.conf file by the referral directive, also use
LDAP URL syntax, but only use the protocol, domain, and port settings.

LDAP URLs then, are used for two main purposes, and the purpose of each
determines the form:

LDAP search URLs follow the sophisticated eight-field format, and can
convey all the information needed for an LDAP agent to perform a search

•

LDAP URLs

[446]

LDAP connection URLs utilize only protocol, host, and port information, and
are used mainly to convey information about how to connect to a directory

There are currently no LDAP URL forms for modifying or deleting LDAP records.

For More Information on LDAP URLs...
The LDAP URL format is described in the standards-track RFC 4516.
The RFC is loaded with examples, and covers the use of extensions and
encoding of special characters. The RFC is available online at
http://rfc-editor.org/rfc/rfc4516.txt.

Summary
This brief primer provides an overview of the LDAP URL syntax. LDAP URLs are
used in a variety of contexts, to provide connection information, and sometimes (in
their more sophisticated form) to provide information necessary for performing an
LDAP search.

•

Useful LDAP Commands
In the course of this book we looked at all the command line tools that come in the
OpenLDAP distribution. But the scope of this book requires the discussion of each
of these tools briefly. There are some advanced uses of these tools that can come in
handy at times. In this appendix I have provided examples of such uses.

In this appendix, we will cover

Getting information about the directory using ldapsearch
Creating backups of the directory using two different strategies
Rebuilding a BDB/HDB database

Getting Information about the Directory
Many LDAP servers provide information about their configuration and functional
abilities. This information is stored in such a way that LDAP clients can directly
access it using a search operation. For example, a client can fetch the root DSE record
to find out the basic capabilities of the server. It can also access the subschema of the
server and find out what object classes, syntaxes, matching rules, and attributes
are supported.

The Root DSE
The root DSE (DSA-Specific Entry, where DSA stands for Directory Service Agent)
is a special entry that provides information about the server itself. The DN of the root
DSE is an empty string (""). To retrieve it we need a carefully-crafted LDAP search
that will set an empty search base and then retrieve that root entry:

 $ ldapsearch -x -LLL -b '' -s base -W -D \

 'cn=Manager,dc=example,dc=com' '+'

•

•

•

Useful LDAP Commands

[448]

Note that the base is set to an empty string, and the search scope is limited to the
base record. These parameters combined have the effect of requesting only the
record that has an empty DN. Also, since most of the attributes in the root DSE are
operational attributes, we need to specify '+' at the end of the search.

The results of running this search look something like this:

dn:
structuralObjectClass: OpenLDAProotDSE
configContext: cn=config
namingContexts: dc=example,dc=com
supportedControl: 2.16.840.1.113730.3.4.18
supportedControl: 2.16.840.1.113730.3.4.2
supportedControl: 1.3.6.1.4.1.4203.1.10.1
supportedControl: 1.2.840.113556.1.4.319
supportedControl: 1.2.826.0.1.334810.2.3
supportedControl: 1.2.826.0.1.3344810.2.3
supportedControl: 1.3.6.1.1.13.2
supportedControl: 1.3.6.1.1.13.1
supportedControl: 1.3.6.1.1.12
supportedExtension: 1.3.6.1.4.1.1466.20037
supportedExtension: 1.3.6.1.4.1.4203.1.11.1
supportedExtension: 1.3.6.1.4.1.4203.1.11.3
supportedFeatures: 1.3.6.1.1.14
supportedFeatures: 1.3.6.1.4.1.4203.1.5.1
supportedFeatures: 1.3.6.1.4.1.4203.1.5.2
supportedFeatures: 1.3.6.1.4.1.4203.1.5.3
supportedFeatures: 1.3.6.1.4.1.4203.1.5.4
supportedFeatures: 1.3.6.1.4.1.4203.1.5.5
supportedLDAPVersion: 3
supportedSASLMechanisms: NTLM
supportedSASLMechanisms: DIGEST-MD5
supportedSASLMechanisms: CRAM-MD5
entryDN:
subschemaSubentry: cn=Subschema

Among other things, this record gives us information about what controls, features,
and extensions are understood by and enabled on the server. For example, there is a
supportedFeature line that reads:

supportedExtension: 1.3.6.1.4.1.4203.1.11.1

This line indicates that this LDAP server supports an LDAPv3 extension for
Change Password operations as defined in RFC 3062
(http://www.rfc-editor.org/rfc/rfc3062.txt).

Appendix C

[449]

Using this information, a well-crafted LDAP client would be able to perform a
server-side Change Password operation instead of changing the password on the
client side and then using a Modify operation to send the change to the server.

The advantage of the Change Password operation is in the server's
storage. If the client changes a password through a Modify operation it
must know in advance what types of encryption are supported on the
server, it must do the encrypting itself, and then submit the encrypted
password to the server. Usually, it is better to have the client securely
contacting the server (over TLS, for example), and then using a Change
Password operation so that the server can do the storage.

The root DSE record also points to the configuration (cn=config) and subschema
(cn=subschema) records.

The Subschema Record
The subschema record is stored in cn=subschema. This record contains detailed
information about the schemas supported by the server, including what types of
matching rules it has available, what sort of syntaxes are allowed in attributes, and
what attributes and object classes are recognized by the server.

This information can be used by client applications to correctly craft records or
searches, and then correctly interpret the responses.

The subschema record can be retrieved with ldapsearch using the
following command:

 ldapsearch -x -LLL -b 'cn=subschema' -s base -W \

 -D 'cn=Manager,dc=example,dc=com' '+'

In this example we request the desired record by setting the base DN to cn=config,
and then requesting a search type of base (-b 'cn=subschema' -s base). This
returns the exact record with the DN cn=subschema.

Also, most of the attributes we want are operational attributes, which means they
will not be returned in a normal search, so at the end we specify '+' to indicate that
we want the operational attributes.

The record returned looks like this:

dn: cn=Subschema
structuralObjectClass: subentry
createTimestamp: 20061216235843Z
modifyTimestamp: 20061216235843Z

Useful LDAP Commands

[450]

ldapSyntaxes: (1.3.6.1.1.16.1 DESC 'UUID')
ldapSyntaxes: (1.3.6.1.1.1.0.1 DESC 'RFC2307 Boot Parameter')
... lots of lines removed

objectClasses: (2.16.840.1.113730.3.2.2 NAME 'inetOrgPerson'
 DESC 'RFC2798: Internet Organizational Person'
 SUP organizationalPerson STRUCTURAL
 MAY (audio $ businessCategory $ carLicense $ departmentNumber $
 displayName $ employeeNumber $ employeeType $ givenName $
 homePhone $ homePostalAddress $ initials $ jpegPhoto $
 labeledURI $ mail $ manager $ mobile $ o $ pager $ photo $
 roomNumber $ secretary $ uid $ userCertificate $
 x500uniqueIdentifier $ preferredLanguage $ userSMIMECertificate $
 userPKCS12))
objectClasses: (1.3.6.1.4.1.4203.666.11.1.4.2.1.2 NAME
 'olcHdbConfig' DESC 'HDB backend configuration'
 SUP olcDatabaseConfig STRUCTURAL
 MUST olcDbDirectory
 MAY (olcDbCacheSize $ olcDbCheckpoint $ olcDbConfig $ olcDbNoSync
 $ olcDbDirtyRead $ olcDbIDLcacheSize $ olcDbIndex $
 olcDbLinearIndex $ olcDbLockDetect $ olcDbMode $
 olcDbSearchStack $ olcDbShmKey $ olcDbCacheFree))
entryDN: cn=Subschema
subschemaSubentry: cn=Subschema

A subschema record contains all of the schema information and thus, it may be well
over a thousand lines.

Subschema records can be particularly useful to learn about what schemas a
server supports, or when developing and debugging custom schemas, as discussed
in Chapter 6.

The Configuration Record
An experimental feature of OpenLDAP 2.3 (and one that will probably reach
production quality in OpenLDAP 2.4) is the ability to store the LDAP configuration
inside of the directory. To do this you must first re-create your configuration in
LDIF format using a special configuration schema, and instruct SLAPD to read its
configuration from this new LDIF file.

The configuration is stored inside of the directory with the DN cn=config. It can be
accessed with a search similar to the one used in the previous section:

 ldapsearch -x -LLL -b 'cn=config' -s base -W \

 -D 'cn=Manager,dc=example,dc=com' '*'

Appendix C

[451]

In OpenLDAP 2.3, not all of the overlays and features of OpenLDAP work correctly
with this new configuration style, and that is a significant drawback to its use. But
improving this alternate configuration mechanism is a priority for development in
OpenLDAP 2.4.

What might be the advantages of storing your configuration in the directory? Here
are a few:

Easy access to configuration information through ldapsearch and other
LDAP clients.
The ability to edit configuration information through directory tools
like ldapmodify.
Replication support for SLAPD configuration. You may be able to use
SyncRepl to synchronize directory configurations across the network.

If you would like to implement the new LDAP-based configuration file format, you
can learn about it in the LDAP Administrators Guide at the OpenLDAP site:
http://www.openldap.org/doc/admin23/slapdconf2.html.

Making a Directory Backup
There are two common strategies for backing up the contents of your directory. One
is to make a backup of the directory database. The other is to dump the contents of
the directory into an LDIF file.

A Backup Copy of the Directory Database
Different backends locate the contents of the directory in different locations. For
example, the BDB and HDB backends store data in special Berkeley DB database
files. SQL-based backends store the information in a relational database management
system. Special backends like the LDAP and Perl backends may not store data at all,
but might simply access other sources.

Each of these backends will require a different backup procedure. Here we will just
look at backing up BDB and HDB databases—the types we've used throughout
the book.

This method is not portable. BDB/HDB files are version sensitive.
Each new release of OpenLDAP (or of Berkeley DB) may use different
structures for these databases, so this backup method only works when
the backup and the restore are done on the same software versions.

•

•

•

Useful LDAP Commands

[452]

In Ubuntu these database files are located at /var/lib/ldap. All of the files in this
directory, including the indexes (those that end with the bdb extension), the main
database files (__db.???) and the log files (log.??????????). It is also a good idea to
make a copy of the DB_CONFIG file, though it rarely changes and does not store any
directory data.

When backing up these files it is best to stop SLAPD. Here's a very simple example
using common shell tools:

 $ sudo invoke-rc.d slapd stop

 $ sudo cp -a /var/lib/ldap/* /usr/local/backup/ldap/

 $ sudo invoke-rc.d slapd start

This will stop SLAPD and copy all of the files at /var/lib/ldap/ to /usr/local/
backup/ldap/. Then, SLAPD will be started again.

An LDIF Backup File
The second, and more portable, strategy for backing up the directory is to dump the
contents of the directory to an LDIF file. There are several distinct advantages to
this approach:

There is no need to stop SLAPD
The output is more portable, and data can be moved from one database
backend to another, and from one OpenLDAP version to another

There is less redundant data, so backup files are much smaller than the BDB/
HDB files.To make an LDIF backup file of the contents of a directory server with
only one database (that is, it has only one directory root), the command is simple:

 $ sudo slapcat -l /usr/local/backup/my_directory.ldif

This command uses slapcat to dump the contents of the directory, in the LDIF
format, into the file /usr/local/backup/my_directory.ldif. It can be loaded back
into the directory using the slapdadd tool discussed in Chapter 3.

If your directory contains more than one directory information tree, you will need to
run the slapcat routine once for each server, using the -b flag to identify the suffix
(base DN) of the directory information tree you want to dump:

 $ cd /usr/local/backup

 $ sudo slapcat -b "dc=example,dc=com" -l example_com.ldif

 $ sudo slapcat -b "dc=test,dc=net" -l test_net.ldif

In this example we backup each directory into its own LDIF file.

•

•

Appendix C

[453]

Rebuilding a Database (BDB, HDB)
Sometimes it is necessary to rebuild a backend database. This process differs
depending on the database backend. For instance, with a SQL backend, it might
entail dumping, dropping, and re-creating tables in the database.

Moving to a new server and transferring contents to a new slave server
are also processes similar to rebuilding a database, and the differences are
mentioned within the text here.

The most commonly-used backends for OpenLDAP are the HDB and BDB backends
(both based on the Berkeley DB lightweight database). In this section, I want to cover
the process of rebuilding these databases.

This process consists of five steps:

1. Stop SLAPD
2. Dump the directory data into a file
3. Delete the old directory files
4. Create a new database
5. Start SLAPD

None of these steps is particularly difficult. In fact, for a small to medium-sized
directory, this process can be done in less than ten minutes.

Moving from Server to Server
Moving a directory from one server to another is done by a process very
similar to that described here. Only step three, as mentioned later, differs.
In this case, instead of deleting directory files, the LDIF file would be
transferred from the original server to the new server. Steps one and two
would be run on the original server, and steps four and five would be
done on the new server.

Step 1: Stop the Server
The purpose of stopping the server is to prevent additional changes to the directory
information tree while we are working on it.

Useful LDAP Commands

[454]

If you are just dumping the contents of a master directory to import into a
shadow server that will use SyncRepl, you need not stop the server. Any
changes that happen after the directory has been dumped will be retrieved
by the shadow server during its first LDAP synchronization operation.

This can be done either by killing the server's process ID, or by running the startup
script with the stop command:

 $ sudo invoke-rc.d slapd stop

Now that the server is stopped, we can dump the database.

Step 2: Dump the Database
In Chapter 3 I covered the OpenLDAP utilities. One of the tools I discussed was the
slapcat program, which is a tool for dumping the contents of the directory into an
LDIF file. That is the program we will use in this step.

Why use slapcat instead of an ldapsearch? There are two reasons.

First, slapcat preserves all of the attributes (and records for that matter) that the
LDAP server uses, including the operational attributes that are stored. (Those
operational attributes that are generated at runtime are not generated by slapcat,
and that is good. We wouldn't want to import those, anyway.)

Second, slapcat accesses the database directly, instead of opening an LDAP
connection to the server. That means that ACLs, time and size limits, and other by
products of the LDAP connection are not evaluated, and hence will not alter the data.

The BDB/HDB database is stored in a small set of files located at /var/lib/ldap (or
/usr/local/var/openldap-data if you built from source). Usually access to those
files is restricted to only the ID of the SLAPD user. By default this is root or ldap.
In order to extract information using slapcat, you will need to have access to
those files.

We have this command:

 $ sudo slapcat -l /tmp/backup.ldif

This command executes slapcat as root. The -l flag is used to pass in the name of
the output file. In this case the file backup.ldif will be created in the /tmp directory.

Appendix C

[455]

You may prefer putting the LDIF file in a folder other than /tmp,
especially if you plan on keeping the LDIF file for more than a
few minutes.

In most cases the -l flag is the only one you will need. If you have more than one
backend and you only want to dump one, you can use the -n flag to specify which
backend to dump.

Once the slapcat is complete, we are done with this step.

Before continuing however, you may want to check the contents of the LDIF file to
make sure that it is not corrupt. Do this before deleting the database files.

Step 3: Delete the Old Database Files
If you are re-building a database you will want to delete the old database files before
building new ones.

You do not need to do this if you are either migrating from an old server
to a new server or configuring SyncRepl shadow servers.

These files are stored at /var/lib/ldap (or /usr/local/var/openldap-data if you
built from source). However, not all of the files in that directory should be deleted.
We only want to delete:

The index files: files that end in '.bdb'.
The main database files: files named __db.???, where the question marks are
replaced by numbers in sequence (__db.001, __db.002, and so on).
The alock file: a file used internally for storing locking information. (Usually,
this can be left with no negative consequences, but if SLAPD crashed, this
can be left in an unstable state.)
The BDB log files: files named log.??????????, where the ten question
marks are replaced by numbers in sequence: log.0000000001,
log.0000000002, and so on.

There is one file we definitely do not want to delete. This is our database
configuration file, DB_CONFIG. Deleting it would cause the BDB engine to use its
default settings, which are not tuned to our needs, and generally cause OpenLDAP
to perform poorly.

•

•

•

•

Useful LDAP Commands

[456]

So, to delete the files, we can do the following:

$ cd /var/lib/ldap
$ sudo rm __db.* *.bdb alock log.*

To reduce the risk of data loss, you may want to backup the __db.*, *.bdb, and
log.* files before removing them. Or instead of doing an rm, you may use mv to
move the files to a different location:

$ cd /var/lib/ldap
$ sudo mkdir backup/
$ sudo mv *.bdb log.* alock __db.* backup/

Now the database directory has been cleared. We are ready to create new
database files.

Step 4: Create a New Database
The new database can be created and populated with the data all in one step, using
the slapadd utility that we covered in Chapter 3. Still in the OpenLDAP data
directory, run the following command:

 $ sudo slapadd -l /tmp/backup.ldif

This will create all of the necessary files, import the LDIF file, and handle all of the
data indexing as well.

If you are running your LDAP server as a user other than root (and it
is a good idea to do so), you will also need to use chown to change the
ownership on all of the files at /var/lib/ldap to be owned by the
SLAPD userID: sudo chown openldap *.bdb log.* __db.*.

All we need to do now is restart the server.

Step 5: Restart SLAPD
If you stopped the server in step 1 you will need to restart it.

Restart the server in one of the usual ways. Using the init script is usually the
best way:

 $ sudo invoke-rc.d slapd start

That's all there is to it. Now you should have SLAPD running with a fresh copy of
the database.

Appendix C

[457]

Troubleshooting Rebuilds
As long as the LDIF file exported with slapcat is good, there is not much that can go
wrong in this process. Even if you have to delete and recreate several times, as long
as the LDIF file is safe, no important data is at risk.

If SLAPD is running as a user other than root, the main problem with importing is
usually the permissions on the database files at /var/lib/ldap. Permissions on the
configuration files in /etc/ldap directory may also be the source of SLAPD failures.
Make sure they are owned by the appropriate user.

When switching versions of OpenLDAP, occasionally an old LDIF file will not be
valid in the new server (this happened between OpenLDAP 2.0 and OpenLDAP
2.2, and again between 2.2 and 2.3�� it could happen again in the future). While the
standard schemas are fairly stable over time, operational attributes, which are not
usually standardized, are more volatile, and do change from release to release.

Often, the fix will be tweaking records in the LDIF file to match the attributes used
in new version. One other common issue has to do with starting up the server.
Sometimes, when using the init script, you will not be able to get the server to start,
but no informative message will be sent to the console or the log files. (One common
reason for the failure to start is the permissions issue I noted earlier).

A good first step in solving startup problems is to run slapd from the command line,
with debugging enabled: sudo slapd -d trace.

Summary
In this appendix we looked at a couple of useful commands, including some
designed to get detailed information about the directory server itself. Also, we saw
two ways of making directory backups, and examined the process of rebuilding a
directory database.

Index
Symbols
[resources], accessing

access specifiers, combining 190
attrs used 187, 188
DN used 186
filters used 189

A
abstract object class

about 296, 298
working of 298-300

Access Control Lists. See ACLs
access to phrase 35
accesslog overlay

about 308
backend, configuring 309, 310
directory for log files, creating 310, 311
logging, enabling 311-313
logging with 308
log records 313-320
module, loading 308

ACLs
[resources], accessing 185-190
about 34
access to phrase 35
access types 36
authorization, controlling 184
basics 184, 185
by phrase 37, 190
debugging 211
example 213-217
regular expressions 209
slapd.conf file structure 221

addition operation 58

Apache
Apache 2.0 399
Apache 2.2 directory section 394
installing 389-391
LDAP authentication, configuring 391-401

attribute definition
about 267, 274
allowed fields 280, 281
approximation operator 275
COLLECTIVE flag 279
comparison operators 275
entry collections 280
equality operator 275
fields description 274
greater-than-or-equal-to operator 275
indexes 278
less-than-or-equal-to operator 275
NO-USER-MODIFICATION flag 280
OBSOLETE flag 279
SINGLE-VALUE flag 279
SYNTAX parameter 278
USAGE field 280

attribute hierarchy
about 293
features 293
searching 294, 295
subordinate attributes 294, 295

attribute sets 380
auxiliary object class

about 296, 305
working of 305-307

B
binding

about 53

[460]

distinguished name, verifying 53, 54
SASL binding 54
simple bind 53

by phrase
* specifier 195
about 190
access field 191-194
anonymous specifiers 195
connection 199
control field 208, 209
default by phrase 37
dn specifier 196, 197
groups 197-199
member-based record access 199
members 197-199
network 199
regular expressions 201
security 199
self specifier 195
set specifier, using 203-207
specifiers, combining 200
users specifier 196
who field 195

C
caching proxy 375
certificate, creating

CA certificate, installing 152
Certificate Request, creating 147, 148
Certificate Request, signing 149
configuring 150
installing 150
pass phrase, removing 150
relocating 151

clients, OpenLDAP
about 22
common command line flags 108
ldapadd 119
ldapcompare 129
ldapdelete 128
ldapmodify 121
ldapmodrdn 130
ldappasswd 133
ldapsearch 110
ldapwhoami 135

COLLECTIVE flag 279

compare operation 61
configuration parameters, phpLDAPadmin

about 405
array value, setting 407, 408
function, calling 406, 407
LDAP server settings, configuring 409-411
variable, setting 405

configuration record
about 450
advantages 451

consumer 350

D
daemons

SLDAP 52
SLURPD 62

database, rebuilding
about 453
database, dumping 454
new database, creating 456
old database files, deleting 455, 456
rebuilds, troubleshooting 457
server, stopping 453
SLAPD, restarting 456

database section, directives
chache, controlling 241
disk I/O latency, reducing 242
index 238-240
index, rebuilding 240
limits 234
read-only directives 235-237
restrict directives 235-237

DB_CONFIG file
about 243
BDB/HDB transaction logging 246, 247
Berkeley DB 243, 248
cache size, setting 245
corrupt BDB/HDB database, recovering

246
data directory, configuring 246
lock files, tuning 248

delete operation 59
Delta SyncRepl

about 366
master server configuration 366-368
shadow server configuration 368, 369

[461]

denyop overlay
about 250, 252
configuring 252
module, loading 252
overlay, adding 253
specific directives, adding 254

digital signature
about 140
X.509 certificate 140

directory
about 8
attributes 9
directory entry 9
directory entry, example 12-15
directory entry, structure 10, 11
directory information tree 16
directory server 8
object class attribute 14
operational attribute 15
operations, clients used 108
preparing, utilities used 89

directory, users authenticating
about 162
Cyrus SASL, configuring 167
SASL binding 165
simple binding 162
SLAPD configuring, SASL support 168
SSL/TLS certificates, for authentication 175

directory, utilities using
about 89
slapacl 101
slapadd 90
slapauth 102
slapcat 98
slapdn 103
slapindex 97
slappasswd 104
slaptest 107

directory backup
creating 451
directory database 451
LDIF backup file 452

directory data
complete LDIF file 87
creating 62
directory tree, creating 69
LDIF file format 63

directory information tree
about 15
base entry 16
subordinate entry 16
superior entry 17

directory operations using clients
about 108
command-line flags 108
common flags 109
ldap.com, defaults setting 110
ldapadd 119
ldapcompare 129
ldapdelete 128
ldapmodify 121
ldapmodrdn 130
ldappasswd 133
ldapsearch 110
ldapwhoami 135

directory overlays. See overlays
directory tree

base DN record, defining 70-72
creating 69
directory, structuring 73-78
group records, adding 84-86
Organizational Units 73
outside requests, handling 72
root defining types 69
system records, adding 82, 83
user records, adding 78-82

distinguished name
about 11
relative DN 60

DIT content rules
about 268, 284
auxiliary object class 285
NAME field validation 286
structural object class 284
supported fields 290

DN. See distinguished name

E
entry collection

about 279
working of 280

Extended operation 61

[462]

F
fast bind 163

G
global directives

about 227
hard limit, time limits 228
idle timeouts 229
size limits 230
soft limit, time limits 228
threads 231
time limits 227
time limits, setting 228

I
ID assertion 374
index directive

about 238
optimization types 239
rebuild, avoiding 240
schema 239

installation, OpenLDAP. See also
OpenLDAP, from source code

prerequisites 25, 26

L
LDAP

about 7
Apache, installing 389
application 387
authentication 138
authorization 138
commands 447
connection security 138
directory 8
directory entry structure 10
directory information tree 15
distinguished name 11
LDAP entry 12
object class attribute 14
operational attribute 15
proxy, configuring 371
security 137
server side 52

URLs 443
ldapadd

about 119
records, adding from file 120

LDAP authentication
configuring 391
modules, loading 392

LDAP clients
configuring 43-46

ldapcompare 129
LDAP Data Interchange Format. See LDIF
ldapdelete 128
ldapmodify

about 121
record, adding 121, 122
record, deleting 128
record, modifying 122-125
record moving, modrdn used 126, 127
relative DN, modifying 125, 126

ldapmodrdn
about 130
superior DN, modifying 131-133

ldappasswd 133
LDAP schemas. See schemas
ldapsearch

about 110
operational attributes, requesting 114-116
returned fields, restricting 113
searching, file using 116-118
simple search 110

LDAP server
history 19
SLAPD 52

LDAP suite 51
LDAP syntaxes 268
LDAP URLs

about 443
attributes 443
base DN 443
components 443
domain name 443
extension 443
port number 443
protocol 443
scope 443
search filter 443
uses 445

[463]

ldapwhoami 135
LDIF

about 63
attribute values, representing 66-69
complete file 87-89
directory tree, creating 69
document object class 65
DSML 63
file anatomy 64

libraries 22
Lightweight Directory Access Protocol. See

LDAP
log records 313

M
master server 350

configuring 354
SyncRepl user, creating 356

matching rule definitions
about 268
indexes 278
ordering rule 275

matching rule uses 268
modification operation

about 58
add request 58
attributes 58
delete request 59
replace request 59

ModifyDN operation 60
multiple database backends

about 219
config file 220
second directory, creating 223-225
second directory, importing 223-225
slapd.conf 220
structure, slapd.conf 220, 221
useful scenarios 219, 220

N
name forms 268
NO-USER-MODIFICATION flag 280

O
object class definition

about 267
attribute name validation 271, 272
example 270
Object Identifier 271
OID 271
Root DSE 271

object class hierarchy
about 292
abstract object class 296
attribute hierarchy 293
auxiliary object class 296
object class types 295
overview 296
structural object class 296

object identifiers
about 268, 271, 282
advantage 283
schema, creating 283

OBSOLETE flag 279
OpenLDAP

building from source 431
clients 22
commercial distribution 24
history 19
installing 25
libraries 22
master server 350
OpenLDAP suite 23
overview 20
passwords, generating 105, 106
passwords, storing 104, 105
passwords, using 104, 105
prerequisites 23
security 137
servers 21, 26
shadow server 350
SLAPD server, configuring 26
source code, compiling 25
using 51
utilities 22
versions 25

OpenLDAP, from source code.
See also installation, OpenLDAP

about 431
building with make 439
build tools 433-435
code, downloading 431, 432

[464]

compiling 437
compiling tools 433
configuring 437, 438
dependencies, installing 436
installing 440, 441
need for 431

OpenLDAP suite 23
operators

approximation operator 275
comparison operators 275
equality operator 275
greater-than-or-equal-to operator 275

overlays
about 249
accesslog 250, 308
auditlog 250
chain 250
collect 279
denyop 250
denyop, configuting 252-254
dyngroup 250
dynlist 250
glue 250
lastmod 251
official overlays 250
password policy 320
pcache 251
ppolicy 251
refint 251
refint, working with 254-260
retcode 251
rwm 251
stacked overlays 249
syncprov 251
translucent 251
unique 251
unique, working of 261-263

P
password policy overlay

about 320
attributes used 323
global directives, setting 321, 322
operational attributes 333, 334
overlay directives, configuring 326-330
password policy, creating 322-326

testing 330-333
performance directives

about 226
database section directives 233
global directives 227

phpLDAPadmin
about 401
array value, setting 407, 408
configuration parameters 405
configuring 403, 404
function, calling 406, 407
installing 402, 403
LDAP server settings, configuring 409-411
navigating 414-416
prerequisites 402
record, adding 422-425
record, modifying 416-422
record, viewing 416-422
recovering 403
searching with 426-430
variable, setting 405

provider 350
proxying

attribute sets 380
caching proxy 375-379
identity management 374, 375
LDAP background 372, 373
templates 380
translucent proxy 381-385

R
Referential Integrity Overlay.

See refint overlay
refint overlay

about 251, 254
configuring 255, 256
disadvantages 260
records, modifying 257-259
seeAlso 256

replication
about 349
graphical representation 351
implementing 351
master server 350
overview 350
pull method 351

[465]

push method 351
shadow server 350
SyncRepl 352

Requests for Comments 19
RFCs 19
root DSE

about 447
directory, information getting 447-449

S
SASL binding

about 165
ACL 172
Cyrus SASL, configuring 167
Kerberos ticket-based authentication 166
mapping failure 173
OTP 166
realm specifying need, removing 173, 174
replacement string, using 169, 170
SASL configuration, debugging 174
SASL configuration file 167
SASL EXTERNAL mechanism 166
search filter, using 171, 172
SLAPD, configuring 168, 169
user password, setting 167

schemas
about 265
attribute definition 267
creating 336
definitions 267
difficulties with 266, 267
DIT content rules 268
loading 344
object class definition 267
object identifiers 268
retrieving from SLAPD 290-292
troubleshooting the loading process 345

schemas, creating
attributes, creating 342-344
attributes, naming 340
directory string syntax 342
new schemas, loading 344
new schemas, troubleshooting 345
object classes, creating 340, 341
object classes, naming 340
OID, getting 337-339

OID, naming 339
searching

attribute descriptions 55
attributes 55
comparison operators 275
components, filters 55, 56
filters 55
filters, creating 55
logical operators for filters 56
prerequisites 54
server response 57
substring search 56

Secure Sockets Layer. See SSL/TLS
security

about 137
LDAP security 137
network-based directory connections 138
SSL/TLS 138

server performance, tuning
about 226
performance directives 226

shadow server 350
configuring 357
configuring, StartTLS used 360
referral, configuring 364, 365
syncrepl directive 359

simple binding
about 162
authentication user, using 164, 165
fast bind 163
slow bind 163

SINGLE-VALUE flag 279
slapacl 101
slapadd

about 90
directory files, destroying 95, 96
directory files, recreating 95, 96
ldapadd, running in test mode 91-93
LDIF file, loading 91
operational attributes 94
records, importing 93, 94
server, stopping 91
troubleshooting 95
using criteria 90
working 91

slapauth 102

[466]

slapcat
about 98
operational attributes 99-101

slapdn 103
SLAPD server

about 21, 52
addition operation 58
binding 53
configuring 26
compare operation 61
delete operation 59
Extended operation 61
modification operation 58
ModifyDN operation 60
schemas, retrieving 290
searching 54
slapd.conf 220
slapd.conf file structure 220, 221
starting, init script used 41
starting, SLAPD directory used 41-43
stopping, init script used 41
stopping, SLAPD directory used 41-43
testing 46-50
working of 52

SLAPD server, configuring
about 26
ACLs 34-38
basics 28-31
configuration file, verifying 38-40
database, configuring 31-34
directives, basics 29, 30
modules, basics 30, 31
performance, tuning 226
schemas, basics 29

slapindex
about 97
using criteria 97

slappasswd
about 104
passwords, generating 105, 106
passwords, storing 104, 105
passwords, using 104, 105

slaptest 107
slave server 350
slow bind 163
SLURPD 62
SSL/TLS

about 139
authenticity 139
certificate, creating 147
Certificate Authority, creating 143-146
certificates for authentication 175
client TLS, configuring 153-155
digital signature 140
encryption 141
LDAPS, configuring 155-157
OpenSSL client, debugging 157
security 157
security directive 158-161
StartTLS 142
StartTLS, configuring 152
X.509 certificate 140

SSL/TLS certificates, for authentication
about 175
client, configuring 178, 179
client certificate, creating 176-178
ldapwhoami, testing 181-183
SASL 183
server, configuring 179-181

StartTLS
about 142
configuring 152
shadow server, configuring 360
versus LDAPS 142

structural object class
about 296, 300
working of 300-304

structure rules 268
subschema record

about 449
directory, information getting 449, 450

substring search 56
SyncRepl

about 352
advantages 352
configuring 353
debugging 369
Delta SyncRepl 366
refresh-only operation 352
refresh and persist operation 352

SyncRepl, configuring
Delta SyncRepl 366
master server, configuring 354, 355
referral, configuring 364

[467]

replication, starting 365
shadow server, configuring 357-359
StartTLS 360
syncrepl directive 359
user, creating 356

SyncRepl, debugging
ACL errors 370
common errors 370
limit errors 370
SASL authentication failure 371
strategic logging 370
untuned DB_CONFIG 371

SYNTAX parameter 278

T
translucent proxy 281
Transport Layer Security. See SSL/TLS

U
uniqueness overlay

about 251, 261
configuring 261-264

module, loading 261
USAGE field 280
utilities

about 22
directory, preparing 89
slapadd 90
slapauth 102
slapcat 98, 101
slapdn 103
slapindex 97
slappasswd 104
slaptest 107

X
X.509 certificate

about 140
digital signature 140

	Mastering OpenLDAP
	Table of Contents
	Preface
	Chapter 1: Directory Servers and LDAP
	LDAP Basics
	What is a Directory?
	The Structure of a Directory Entry
	A Unique Name: The DN
	An Example LDAP Entry
	The Object Class Attribute
	Operational Attributes

	The Directory Information Tree
	What to Do with an LDAP Server?

	The History of LDAP and OpenLDAP
	A Technical Overview of OpenLDAP
	The Server
	Clients
	Utilities
	Libraries

	Summary

	Chapter 2: Installation and Configuration
	Before Getting Started
	OpenLDAP Binaries for Operating Systems
	Commercial OpenLDAP Distribution
	Source Code Compilation

	A Quick Note on Versions

	Installation
	Dependencies
	Installing OpenLDAP

	Configuring the SLAPD Server
	Basics
	Schemas
	More Directives
	Module Directives

	Database Configuration
	ACLs
	Verifying a Configuration File

	Starting and Stopping the Server
	Using the Init Script
	Running SLAPD Directly

	Configuring the LDAP Clients
	A Basic ldap.conf File
	Size and Time Limits

	Testing the Server
	Summary

	Chapter 3: Using OpenLDAP
	A Brief Survey of the LDAP Suite
	LDAP from the Server Side
	SLAPD
	The Binding Operation
	The Search Operation
	More Operations: Additions, Modifications, and Deletions
	Infrequent Operations
	SLAPD Summary

	SLURPD

	Creating Directory Data
	The LDIF File Format
	Anatomy of an LDIF File
	Representing Attribute Values in LDIF

	Example.Com in LDIF
	Defining the Base DN Record
	Structuring the Directory with Organizational Units
	Adding User Records
	Adding System Records
	Adding Group Records

	The Complete LDIF File

	Using the Utilities to Prepare the Directory
	slapadd
	When Should slapadd be Used?
	What Does slapadd Do?
	Loading the LDIF File

	slapindex
	slapcat
	Operational Attributes

	slapacl
	slapauth
	slapdn
	slappasswd
	Storing and Using Passwords in OpenLDAP
	Generating a Password with slappasswd

	slaptest

	Performing Directory Operations using the Clients
	Common Command-Line Flags
	Common Flags
	Setting Defaults in ldap.conf

	ldapsearch
	A Simple Search
	Restricting Returned Fields
	Requesting Operational Attributes
	Searching using a File

	ldapadd
	Adding Records from a File

	ldapmodify
	Adding a Record with ldapmodify
	Modifying Existing Records
	Modifying the Relative DN
	Deleting Entire Records

	ldapdelete
	ldapcompare
	ldapmodrdn
	Modifying the Superior DN with ldapmodrdn

	ldappasswd
	ldapwhoami

	Summary

	Chapter 4: Securing OpenLDAP
	LDAP Security: The Three Aspects
	Securing Network-Based Directory Connections with SSL/TLS
	The Basics of SSL and TLS
	Authenticity
	Encryption
	StartTLS

	Creating an SSL/TLS CA
	Creating a Certificate
	Creating a New Certificate Request
	Signing the Certificate Request
	Configuring and Installing the Certificates

	Configuring StartTLS
	Configuring Client TLS
	Configuring LDAPS
	Debugging with the OpenSSL Client

	Using Security Strength Factors
	The security Directive

	Authenticating Users to the Directory
	Simple Binding
	Using an Authentication User for Simple Bind

	SASL Binding
	Configuring Cyrus SASL
	Configuring SLAPD for SASL Support

	Using Client SSL/TLS Certificates to Authenticate
	Creating a New Client Certificate
	Configuring the Client
	Configuring the Server
	Testing with ldapwhoami
	Going Further with SASL

	Controlling Authorization with ACLs
	The Basics of ACLs
	Access to [resources]
	Access using DN
	Access using attrs
	Access using Filters
	Combining Access Specifiers

	By [who] [type of access granted] [control]
	The Access Field
	The who Field
	The control Field

	Getting More from Regular Expressions
	Debugging ACLs
	A Practical Example

	Summary

	Chapter 5: Advanced Configuration
	Multiple Database Backends
	The slapd.conf File
	Creating and Importing a Second Directory

	Performance Tuning
	Performance Directives
	Global Directives
	Directives in the Database Section

	The DB_CONFIG File
	Setting the Cache Size
	Configuring the Data Directory
	Optimizing BDB/HDB Transaction Logging
	Tuning Lock Files
	More about Berkeley DB

	Directory Overlays
	A Brief Tour of the Official Overlays

	Configuring an Overlay: denyop
	Loading the module
	Adding the Overlay
	Adding Overlay-Specific Directives

	Referential Integrity Overlay
	Configuring the Overlay
	Modifying the Records
	Drawbacks
	A Useful Note

	The Uniqueness Overlay
	Summary

	Chapter 6: LDAP Schemas
	Introduction to LDAP Schemas
	Why Do They Look So Complicated?
	Schema Definitions
	Object Classes and Attributes
	Object Class Definitions
	Attribute Definitions
	Object Identifier Definitions
	DIT Content Rules
	Retrieving the Schemas from SLAPD

	The ObjectClass Hierarchy
	Attribute Hierarchies
	Subordinate Attributes and Searching

	Object Class Types: Abstract, Structural, and Auxiliary
	The Object Class Hierarchy: An Overview
	Abstract Classes
	Structural Object Classes
	Auxiliary Object Classes

	Moving Onward

	Schemas: Accesslog and Password Policy Overlays
	Logging with the Accesslog Overlay
	Loading the accesslog Module
	Configuring the Access Log Backend
	Creating A Directory for the Access Log Files
	Enabling Logging for the Main Backend
	The Log Records

	Implementing a Complex Overlay: Password Policy
	Setting the Global Directives in slapd.conf: Schema and Module
	Creating a Password Policy
	Configure the Overlay Directives
	Test the Overlay
	Password Policy Operational Attributes
	Summary of ppolicy Operational Attributes

	Creating a Schema
	Getting an OID
	Giving Our OID a Name
	Creating Object Classes
	Creating Attributes
	Loading the New Schema
	Troubleshooting Schema Loading

	A New Record

	Summary

	Chapter 7: Multiple Directories
	Replication: An Overview
	SyncRepl

	Configuring SyncRepl
	Configuring the Master Server
	Creating a SyncRepl User

	Configuring the Shadow Server
	The syncrepl Directive
	Configuring a Referral

	Starting Replication
	For Larger Directories...

	Delta SyncRepl
	The Master Server's Configuration
	The Shadow Server's Configuration

	Debugging SyncRepl
	Starting Over
	Strategic Logging
	A Few Common Mistakes

	Configuring an LDAP Proxy
	Using the LDAP Backend
	Using Identity Management Features

	Turning the Simple Proxy into a Caching Proxy
	Notes on the Attribute Sets and Templates

	A Translucent Proxy

	Summary

	Chapter 8: LDAP and the Web
	The LDAP-Aware Application
	Apache and LDAP
	A Short Guide to Installing Apache
	Configuring LDAP Authentication
	Loading the Modules
	Editing the default Configuration File
	Other Features of the Require Parameter

	phpLDAPadmin
	Prerequisites
	Installing phpLDAPadmin
	Is Your Package Broken?

	Configuring phpLDAPadmin
	A Basic Look at Configuration Parameters
	Configuring the LDAP Server Settings

	A First Look at phpLDAPadmin
	Navigating phpLDAPadmin
	Viewing and Modifying a Record
	Adding a New Record
	Searching with phpLDAPadmin

	Summary

	Appendix A: Building OpenLDAP from Source
	Why Build from Source?
	Getting the Code
	The Tools for Compiling
	Build Tools
	Installing Dependencies

	Compiling OpenLDAP
	Configuring
	Building with make

	Installation
	Building Everything
	Summary

	Appendix B: LDAP URLs
	The LDAP URL
	Common Uses of LDAP URLs
	Not all LDAP URLs are for Searching

	For More Information on LDAP URLs...
	Summary

	Appendix C: Useful LDAP Commands
	Getting Information about the Directory
	The Root DSE
	The Subschema Record
	The Configuration Record

	Making a Directory Backup
	A Backup Copy of the Directory Database
	An LDIF Backup File

	Rebuilding a Database (BDB, HDB)
	Step 1: Stop the Server
	Step 2: Dump the Database
	Step 3: Delete the Old Database Files
	Step 4: Create a New Database
	Step 5: Restart SLAPD
	Troubleshooting Rebuilds

	Summary

	Index

