
[Team LiB]

• Table of Contents

LDAP Directories Explained: An Introduction and Analysis
By Brian Arkills

Publisher : Addison Wesley

Pub Date : February 21, 2003

ISBN : 0-201-78792-X

Pages : 432

Directory technology promises to solve the problem of decentralized information that has arisen with the

explosion of distributed computing. Lightweight Directory Access Protocol (LDAP) is a set of protocols that has

become the Internet standard for accessing information directories. Until now, however, those curious about

LDAP had no introductory source to learn how the technology can help them centrally manage information and

reduce the cost of computing services.

LDAP Directories Explained provides technical managers and those new to directory services with a

fundamental introduction to LDAP. This concise guide examines how the technology works and gives an

overview of the most successful directory products in an easy-to-reference format.

Key topics include:

An overview of LDAP, including how directories differ from databases

The LDAP namespace, with an overview of DNS, LDAP object structure, and LDAP object naming

Client LDAP operations, including directory-enabled services and applications, searches, and the

LDAP protocol

LDAP schema, including object classes, attributes, syntaxes, matching rules, and more

http://www.informit.com/safari/author_bio.asp@ISBN=020178792X

Directory management, including directory integration strategies, metadirectories, security, and more

LDAP vendors OpenLDAP, Microsoft Active Directory, and Directory Server

A case study of Stanford University's directory architecture, which illustrates how integral an LDAP

directory can become to a business

If you are an information technology manager, LDAP Directories Explained will provide the technical foundation

you need to make sound business decisions about LDAP. If you're a developer, this straightforward reference

will bring you quickly up to speed on LDAP and directories.

[Team LiB]

[Team LiB]

• Table of Contents

LDAP Directories Explained: An Introduction and Analysis
By Brian Arkills

Publisher : Addison Wesley

Pub Date : February 21, 2003

ISBN : 0-201-78792-X

Pages : 432

 Copyright

 Independent Technology Guides

 Foreword

 Preface

 Audience

 About the Book

 Appendixes

 Acknowledgments

 Part I. How LDAP Works

 Chapter 1. Overview of LDAP

 Introducing Directories

 Introducing LDAP

 Vendor LDAP Products

 Why Choose LDAP?

 Chapter 2. LDAP Namespace

 DNS

 LDAP Object Structure

 LDAP Object Naming

 Special LDAP Structural Concepts

 Summary

 Chapter 3. Client LDAP Operations

 Directory-Enabled Services and Applications

 Search

 LDAP Protocol

http://www.informit.com/safari/author_bio.asp@ISBN=020178792X

 APIs

 Summary

 Appendix Material

 Chapter 4. LDAP Schema

 Object Classes

 Attributes

 Syntaxes

 Matching Rules

 OIDs

 Schema Checking

 Extended Schema Definitions

 Summary

 Appendix Material

 Chapter 5. Directory Management

 Replication

 Referrals

 Aliases

 Distributed Directory

 Integrating Independent Directories

 Moving Data Between Directories

 Directory Security

 Administrative Server Parameters

 Other Directory Management Tasks

 Summary

 Part II. How Vendors Have Implemented LDAP

 Chapter 6. OpenLDAP

 Namespace

 Operations and Clients

 Schema

 Management

 Security

 Why OpenLDAP?

 Chapter 7. Microsoft Active Directory

 Namespace

 Operations and Clients

 Schema

 Management

 Security

 Why Active Directory?

 Chapter 8. Directory Server

 Namespace

 Operations and Clients

 Schema

 Management

 Security

 Why Directory Server?

 Appendixes

 Appendix A. Client LDAP Operations Appendix

 Draft Controls

 C language API

 Appendix B. Schema Appendix

 Schema Formats

 Common Syntaxes

 Common Matching Rules

 Appendix C. Stanford University Directory Architecture

 Environment

 Source Systems

 Stanford Registry

 Directory Harvester

 Stanford Directory

 Active Directory Harvester

 Summary

 Appendix D. OpenLDAP Access Control

 <What> Element

 <Who> Element

 <Access> Element

 Evaluation of Access

 Comprehensive Example

 Appendix E. Active Directory Controls Appendix

 Appendix F. Directory Server Appendix

 Default Indexes

 Access Control Instructions (ACIs)

 Plug-ins

 Appendix G. Online Reference Material

 Chapter 1 Topics

 Chapter 2 Topics

 Chapter 3 Topics

 Chapter 4 Topics

 Chapter 5 Topics

 Chapter 6 Topics

 Chapter 7 Topics

 Chapter 8 Topics

[Team LiB]

[Team LiB]

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark

claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied

warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental

or consequential damages in connection with or arising out of the use of the information or programs contained

herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special sales. For

more information, please contact:

U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales

(317) 581-3793

international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Arkills, Brian.

LDAP directories explained : an introduction and analysis / Brian Arkills.

p. cm.

Includes index.

ISBN 0-201-78792-X (alk. paper)

1. LDAP (Computer network protocol) I. Title.

TK5105.5725 .A75 2003

004.6'2—dc21

2002038354

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsontechgroup.com
http://www.awprofessional.com/default.htm

Copyright © 2003 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in

any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior

consent of the publisher. Printed in the United States of America. Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a written request to:

Pearson Education, Inc.

Rights and Contracts Department

75 Arlington Street, Suite 300

Boston, MA 02116

Fax: (617) 848-7047

Text printed on recycled paper

1 2 3 4 5 6 7 8 9 10—MA—0706050403

First printing, March 2003

Dedication

To my wife, Janet, who gave me support when I didn't believe in myself. I look forward to returning the favor on

your book. Hopefully, it won't be a saga of the lark and the owl.

And to Zooba Dooba—I won't know who won the race for another couple months, but you already have my

heart in chains.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Independent Technology Guides

David Chappell, Series Editor

The Independent Technology Guides offer serious technical descriptions of important new software

technologies of interest to enterprise developers and technical managers. These books focus on how that

technology works and what it can be used for, taking an independent perspective rather than reflecting the

position of any particular vendor. These are ideal first books for developers with a wide range of backgrounds,

the perfect place to begin mastering a new area and laying a solid foundation for further study. They also go

into enough depth to enable technical managers to make good decisions without delving too deeply into

implementation details. The books in this series cover a broad range of topics, from networking protocols to

development platforms, and are written by experts in the field. They have a fresh design created to make

learning a new technology easier. All titles in the series are guided by the principle that, in order to use a

technology well, you must first understand how and why that technology works.

Titles in the Series

Brian Arkills, LDAP Directories Explained: An Introduction and Analysis, 0-201-78792-X

David Chappell, Understanding .NET: A Tutorial and Analysis, 0-201-74162-8

Eric Newcomer, Understanding Web Services: XML, WSDL, SOAP, and UDDI, 0-201-75081-3

For more information check out http://www.awprofessional.com/

[Team LiB]

http://www.awprofessional.com/default.htm

[Team LiB]

Foreword

LDAP recently celebrated its tenth birthday. For comparison, that's about the same age as the World Wide

Web, half as old as the domain naming system, and around a third as old as the Internet itself. In its relatively

short life, LDAP has grown from its obscure roots as an easier way to access the X.500 directory into the

Internet standard for directories, used by virtually every e-mail client, browser, and a host of other applications,

with more being developed every day. Like any successful technology, LDAP has taken on a life of its own,

being used in ways its designers never imagined. I, for one, never thought when helping to design LDAP ten

years ago that it would be used in the diversity of applications that it is today.

When I started work on LDAP, my ambitions were much smaller. I was simply trying to solve a problem on my

own campus at the University of Michigan. I wanted to give desktops across the campus access to the central

university-wide directory, which was based on X.500. This desire led to the creation of a protocol similar to

LDAP called DIXIE. The popularity of DIXIE among a small community of similarly minded directory developers

led to my joining forces with Steve Kille and Weng Yeong and to the creation of a standard version in LDAP.

LDAP's breakthrough to the mainstream, so to speak, came in 1996 when Netscape galvanized the industry

around adopting LDAP as the Internet's commercially accepted directory protocol. Soon, all major vendors

were on board, announcing plans to develop their own LDAP implementation, and LDAP was on its way to

being a part of most users' everyday computing lives.

Often people that use LDAP are not even aware they are using it. It is the protocol used to access your

corporate e-mail directory; LDAP may be consulted every time you access a private Web page; LDAP often

stores configuration for the services you access. In these applications and others, LDAP provides the

behind-the-scenes support needed to control access to resources and look up information. LDAP has also

been used for applications ranging from storing and retrieving images to calculating chess moves.

In this book Brian Arkills has put together a broad treatment of LDAP for readers of varying technical

backgrounds. It should prove useful to those seeking a more accessible introduction to the topic than has been

previously available. As for me, I look forward to seeing what the next ten years will bring for LDAP.

Timothy A. Howes, Ph.D.

Opsware Inc.

Co-creator of LDAP

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Preface

Lightweight Directory Access Protocol (LDAP) is the predominant protocol used to communicate with

directories. These days, directories are everywhere. Many enterprise software packages require a directory, for

example, and companies seeking to reduce costs and streamline their business also implement a directory.

Not so long ago, I knew nothing about LDAP. Because Stanford University, my employer, was implementing

and integrating Active Directory with its existing directory, I needed to understand LDAP and how directories

worked. However, I found that the resources for a novice were sparse and hard to find, and that none of the

books on the subject took me from novice to competency. During the course of the Stanford project, I met

David Chappell and worked closely with him. This led to an invitation from Addison-Wesley, and I embarked on

writing this book. I hope it fills the gap I found.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Audience

This book is part of the Independent Technology Guide series, which focuses on providing an independent look

at a technology combined with a no-nonsense approach. David Chappell, the series editor, likes to say that the

series should be called "Big Pictures 'R' Us." Each of the books in the series explains how the technology fits

into the larger world. Technical managers turn to this series for explanations of all the acronyms and

buzzwords they hear.

This book is also appropriate for someone who is more technically savvy, but looking to break into LDAP and

directories. Almost every LDAP book on the market is written for developers, and those who don't write code

are left in the dark. This book takes a different approach by providing a thorough introduction for newcomers

regardless of their orientation or technical background. Once you've finished this book, you might turn to

Understanding and Deploying LDAP Directory Services by Tim Howes, Mark Smith, and Gordon Good to

continue learning about LDAP, especially in the context of developing LDAP code.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

About the Book

The book is divided into two parts. Part I explores how LDAP and directories work in general. This book is

unique in its approach to the topic from a standards-based, non-product-centric perspective. Part II explores

three products to highlight how LDAP is used. If you don't have a lot of time to do research, this overview of the

most popular LDAP products will help you compare existing products.

[Team LiB]

[Team LiB]

Appendixes

There are also several appendixes to augment the material presented in the chapters. When additional material

is available, I have included references in the relevant chapter. I'd like to call your attention to two of the

appendixes in particular. Appendix C is a case study of Stanford University's directory architecture. It is

intended to give you a real-world sense of how integral an LDAP directory can become to your business.

Appendix G contains URLs for all the online reference material that I used while writing this book. Many people

have indicated to me how invaluable this compilation of online resources was to their research.

Brian Arkills, October 2002

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Acknowledgments

I'd like to thank David Chappell, whose friendship and guidance made this book possible. David's openness

about his own technical writing and interest in my writing led to this book. He also provided feedback on the

organization of this book that was priceless.

My editor Stephane Thomas was unfailingly supportive, as were all the production staff at Addison-Wesley.

Special thanks go to Elizabeth Collins for the detailed copyediting. Thank you all!

There are many reviewers whose contributions significantly improved the quality of writing and technical

accuracy. Many thanks to Rob Weltman for reviewing the entire book from start to finish. Other reviewers

include: Megan Conklin, Gabor Liptack, Jim Sermersheim, Ian Redfern, Jeff A. Dunkelberger, and Howard Lee

Harkness.

Ross Wilper made several significant contributions to the Active Directory chapter through his technical expertise.

I'd like to thank two good friends, Brad Judy and Michael Snook, who both gave invaluable feedback

throughout the book. Your honest comments and friendship mean a lot.

I'd also like to thank my father and mother. The discipline and positive attitude you instilled in me were

invaluable in helping me finish this book.

Finally, to my high school English teacher Mrs. Perri, who endured my inane comments about how studying

English lacked importance. You were ultimately right; I use English skills far more now than the math skills I so

highly valued then. Thank you for your persistence, and all the difficult writing assignments.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Part I: How LDAP Works

Chapter 1. Overview of LDAP

Chapter 2. LDAP Namespace

Chapter 3. Client LDAP Operations

Chapter 4. LDAP Schema

Chapter 5. Directory Management

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Chapter 1. Overview of LDAP

Introducing Directories

Introducing LDAP

Vendor LDAP Products

Why Choose LDAP?

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Introducing Directories

Directories are designed to help people find their way. We've all entered an unfamiliar building and used the building's

directory. Without the directory, we'd have to wander the building in search of our destination. We rely on that directory

without thinking much about it, unless the information leads us to the wrong place.

Directories help people by organizing information

With the advent of computers, there is no end of information that needs organizing so people can easily find it. Computers

have always relied on directories. Even early operating systems such as DOS had a file directory so a user could keep

track of data files. Directories seem to be everywhere online today, with directories that list contact information for high

school graduating classes, directories that list all the movies showing, and so on. All directories have the same goal of

helping us eliminate aimless searching for the information we seek.

Directories allow data to be managed

However, a directory should be more than just an efficient way to find information; it should also provide an efficient

means of managing that information. If there are many sources for the information we seek, we may get contradictory or

out-of-date information, and sifting through can be just as frustrating as aimless browsing. The directory should be a

centrally managed repository. It's important to have a single, authoritative source for a particular type of information. That

way, we don't have to search in several places for the information we want, and then painstakingly decide which

information is correct.

Many applications and services can take advantage of data that is centralized in a directory

There are many uses for a directory, beyond the direct interaction a person has when manually looking up information.

Application software can leverage the information in a directory to provide a more informed and better experience.

Backroom services that work without our being aware of them can also make use of centralized information. These

services provide the foundation that lets us interact in the digital world, identifying us to others, establishing our authority,

allowing us to communicate with each other, even protecting us. Each of these foundational services, sometimes called

infrastructure, must either have its own source of information about identities or rely on a common set of information.

Clearly there is a benefit to having only a single set of information to manage, along with a clearly defined method of

accessing this data. And there are many uses for the same piece of data, as the example that follows shows.

The directory can streamline your business processes

A directory should enable an organization to manage its business processes better. Imagine the following scenario as an

example of why directories are making such an impact.

An important new executive joins your place of business. On her first day, the security officer stops her at the front door to

request a long list of information for her security badge. Once she has passed by the security officer, her first visit is to the

HR department, where she is asked to fill out a form with her name, social security number, birth date, home address,

department, supervisor, and so forth so she can be added to the payroll system. Then she is shown to her office. There a

young technician gives her a user account and password for accessing network resources. The technician needs her

name and department to give her access to the appropriate network resources.

Throughout the day, administrative assistants stop by for information. One needs to take down the asset information for

her new computer and assign it to her by name. Another is from the HR department again with a form for benefits.

Another is from the budget department, to give her the proper budget codes for requisitions and spending accounts. The

forms don't seem to stop … and much of the information is requested on multiple forms. Naturally the executive wonders

why all these people can't share her information. Ideally, she would enter the information into the directory and then other

people who needed the information could query the directory without wasting her valuable time. The people performing

these business tasks could manually query the directory for the appropriate information, or better yet software could be

used to interact directly with the directory and automate the entire process after the executive entered the personal data.

The LDAP standard has been widely accepted as the ideal solution

There are as many uses for a directory as there are types of information to organize. The amount of information being

stored on computers is increasing at an exponential rate, so finding a good directory solution has become more important

than ever. Fortunately for the computer industry, a common standard for directories has emerged in LDAP. This chapter

introduces LDAP, highlights its capabilities, and explains why it has garnered widespread support as the best directory

solution.

To this point, I have discussed directories through common examples in everyday experience. Now it is time to look at

what a directory is, and what is unique about the directory structure that makes it useful. This examination focuses on two

properties:

My Company Won't Buy a Directory

Maybe it should. The potential savings over the long run are more substantial than you think. For example,

think of all the business processes that are keyed to correct and up-to-date contact information. When my

contact information changed recently, I notified all the companies with which I did business. But I still had a

difficult time because many businesses didn't use a single, unified repository for tracking that information. In

some cases, I stopped doing business with them because I didn't appreciate spending my time

troubleshooting their poor business process.

On another track, your company may just as easily end up with a directory because it is a required

component for implementing some other essential product. Directories are becoming a common

prerequisite. For example, almost all network operating systems require a directory to get the most out of

product features. A lot of server software requires a directory to store its configuration information. So even if

your company wouldn't buy a directory to actively solve a business need, you will probably end up with one.

Structure— How does a directory store information?

Content and usefulness— What can be put in a directory, and why would someone choose a directory over

something else?

This general examination of directories sets the stage for the following introduction to LDAP.

Structure

The entry is the unit of the directory

A directory is composed of entries. The entry is the basic unit of the directory. These entries usually contain a similar kind

of information. For example, my directory could have entries about people (commonly called person entries) that include a

person's name along with a phone number, and perhaps other relevant personal information. There would be an entry for

each person, and each entry would consist of all the personal information known by the directory about that person. The

term "entry" is synonymous with the term record or directory object; these terms are used interchangeably in the literature

on the subject.

The entry is composed of a set of attributes

The information associated with an entry is called the attributes or properties of the entry. Again, the literature is not

uniform; "attribute" and "property" are used interchangeably. An entry is essentially a collection of attributes. For a person

entry, the person's name is one of the attributes, as is the phone number. Depending on how the directory is defined,

entries can have a set of mandatory attributes as well as a set of optional attributes. For example, my directory might

have entries with mandatory common name (full name) and surname (last name) attributes along with optional phone

number, fax number, and e-mail address attributes. The entry is incomplete, and therefore not allowed, without the

presence of every mandatory attribute. Figure 1-1 shows an example entry for myself.

Figure 1-1. A person entry with two attributes

The attribute is composed of a type and value pair

Each attribute is composed of a pair of elements. The attribute type is a label for the kind of information being stored. The

attribute value is the actual data being stored. For example, cn=Brian Arkills is an attribute pair, where cn (or common

name) is the attribute type, and Brian Arkills is the attribute value. Incidentally, some attributes can have multiple values,

which is an important feature for maximizing the flexibility of the data structure. The ability to have multiple values is a key

advantage that LDAP possesses over common database solutions. Figure 1-2 shows an entry with a multivalued cn
attribute.

Figure 1-2. A person entry with a multivalued attribute

The objectclass attribute defines what rules the entry follows

There is a special attribute that is mandatory to all entries, called the objectclass attribute. This attribute determines

what rules the entry follows. These rules govern the content of the entry by specifying the set of attributes that are

mandatory and another set that is optional. The objectclass attribute is multivalued, so the set of mandatory and optional

attributes for an entry is the union of all the values of the objectclass attribute. The rules may also include the possibility

of restrictions on where entries of that object class can be created. At the most basic level, the object class defines what

attributes can be used in the entry. The schema of the directory determines which object classes are available in the

directory. The schema essentially defines the set of rules the directory data must follow.

Many types of entries are possible

A directory can have many different types of entries. A directory can have person entries with name attributes, phone

attributes, and others. But it can also have entries that represent products with a name, UPN serial number, and

manufacturer attributes. You could delineate these different types of entries by using different object classes, or you could

set up the entries to share the same object class, depending on the class's flexibility. The example shown in Figure 1-3

uses different object classes. Despite what is shown in Figure 1-3, different types of entries can exist side by side as long

as structural rules don't prohibit such juxtaposition.

Figure 1-3. Person and product entries in separate directory containers

What's the Difference Between Object Class and Objectclass?

The terms are closely connected and very similar. Objectclass is an attribute of an entry; you use the term

only when you refer to a specific entry. Every entry in a directory has the objectclass attribute with one or

more values that denote the object classes to which the entry belongs. An object class is a definition of rules

that an entry of that object class will follow. The term "object class" is used to abstractly discuss a set of

entries that follow the same rules. All of these entries have the same objectclass attribute value. It isn't the

entries themselves that are being referenced; it is the set of rules that define that class of entries.

Container entries provide a structure for organization and management

There is a special type of entry known as a container. A container helps to organize other entries by establishing a

parent/child relationship. A commonly used container object class is ou, organizational unit. In my directory, we might

want to place all of the person entries in a container named People while placing all the product entries in a container

named Products. In general, this choice might make it easier to find or manage entries; however, in our example, you

could just as easily find all the product entries by searching the directory for entries with the objectclass attribute equal

to "part". But separating all the product and person entries into different containers makes it easy to delegate

management of the entries to different people. For example, I might delegate management of the People OU to the HR

department and of the Products OU to the product manager.

Containers have rules, but you decide how to use them to organize

Containers can have other containers as children, but child entries can have only a single container as a parent. So a

pyramid (or upside-down tree) organizational structure is possible, but web or hub structures are not possible. To what

extent containers are used is left to the details of implementation. You could choose to have an extensive structure of

containers to provide critical organization, an arbitrary structure of containers, or no containers at all.

Content and Usefulness

The leading alternative to a directory is a database, and comparing the two helps illustrate both the nature of a directory

and its usefulness. After this comparison, this section provides some examples to highlight typical directory content. Note

that the comparison considers only relational databases. Object databases are similar to directories, but the technology is

not widely adopted.

Directories Versus Databases

Directory=read; database=read and write

A directory usually contains entries that are static or change infrequently, because it is designed to provide very fast

response to searches and lookups. A database often contains entries that can change frequently. Databases are

designed to provide data that can be easily manipulated and sustain intense processing, with both reading and writing of

that data. So if you want to keep track of your company's sales, you'd pick a database, not a directory, because (one

hopes that) your company would be constantly writing new sales quotes. In contrast, your company's sales contacts

would be best suited for a directory, because this information doesn't change often. In general, if the entries you'd like to

store change less than once a day, a directory is probably the best solution.

Relational databases and directories have key structural differences

Relational databases and directories also differ in terms of internal structure, and looking at this difference provides

another measure of both what a directory is as well as how it is useful. Entries in databases have certain attributes that

are called keys. Keys provide critical functionality for database technology by allowing you to sort entries. Additionally,

you can use the keys to cross-reference information about an entry in one table to information about an entry in another

table. The entries in a database have no inherent structural relationship to one another, and they don't really have names,

aside from the keys (special attributes) that must be unique among all records in that table. In contrast, a directory is

extremely structured. Each directory entry has a name that also defines that entry's location in a hierarchy. This

relationship is discussed in more detail shortly. Another structural difference is that the attributes of a directory entry

regularly have multiple values, whereas only denormalized relational databases have multiple values per attribute.

The structural differences highlight special uses of databases and directories

These key structural differences mean that each technology has strengths and weaknesses that predispose it toward

specific uses. Databases excel at storing objects that can be sorted in different ways. Databases usually implement a

locking mechanism to prevent two parties from writing the same information, whereas directories don't. Complex queries

that cross-reference multiple entries are typically quicker in a database than in a directory. Databases manage large data

objects pretty well, whereas a directory is not designed for this purpose. The structure of a database lends itself to tables,

whereas a directory is not well suited to store tables. Databases let you store procedures for efficient processing of

complex requests.

Directories are suited for several commonly required purposes

Directories are really specialized data storage systems. Directories are much more suited for objects that need a

hierarchy. Directories can be replicated across servers to allow access from multiple locations. They are more than a

name service, because they allow both searching and retrieval, whereas name services just perform retrieval. Text-based

information is particularly well suited for a directory because it can be easily searched; however, any type of data can be

stored in a directory. Directories manage user attributes and policies well, because most services simply need to search

and retrieve these attributes. Directories also manage information for machines and applications well, especially when the

information is configuration-centered or is management information. Directories usually support a very fine level of

access control, allowing information to be restricted as desired.

Do I Need to Choose Between a Database and a Directory?

No. They simply have different strengths and weaknesses. Each has a valid place, and it is likely that you

will have both databases and directories. In fact, directories usually have a specially configured database

running behind them. It might help you to think of a directory as a layer on top of a database, except that you

can't access the database directly through normal means. In some cases, your company may want to

synchronize some of the data elements stored in a directory and a database. For an example, see Appendix

C.

Typical Directory Use

You can use directories for information about people or real-world objects

You can use a directory to organize or manage just about any kind of information so people can easily find that

information. Directories are most commonly used for personal information, but they can be used just as readily for

information about any real-world object. For example, you could have a directory with products from your place of

business. People could search the directory, based on the part number or type of product, to find information about the

product they need and its physical location in a store. The directory could include pictures of the products and have a nice

application interface (maybe Web-based) integrated with other functionality, such as an online ordering system, so

products could be ordered.

Important personal information abounds, and a directory excels at storing it

The directory excels at storing personal information because information about people is fairly constant. Again, the

directory is optimized to respond to queries about information that remains constant over time. Person-related information

is of high value to the clients of a directory, whether they are people or applications. Person-related information also has a

great need to be centrally managed so it is consistent, up-to-date, and secure. Think about personal contact information.

The list is lengthy: a postal address, home address, office address, multiple phone numbers, e-mail addresses, a URL to a

homepage, and so on. Obviously, there is more personal information than just contact information. However, personal

contact information illustrates one inherent problem that a directory helps solve, in that I must first be in contact with you

in order to get your contact information. A directory can let you store your personal contact information for easy retrieval

by others—subject, of course, to the access controls applied to protect that contact information from untrustworthy folks

who might use it to spam or harass you.

Applications use the directory on our behalf

However, the directory isn't just useful for others to find out about us. Often there are computer applications that need to

check information associated with us. These applications do work for us behind the scenes. For example, it's fairly

common for an e-mail service to query a directory with your e-mail address to find out which server your mailbox resides

on, so it can deliver your e-mail to you. Additionally, some e-mail services automatically create an address book (which is

stored in a central directory) so the user can simply pick a name instead of remembering an e-mail address. Many other

applications and services are capable of looking up information in a directory, and some even provide an interface so

people can modify directory information.

Authentication credentials can be placed in a directory

As another example, almost every time you log in, you are authenticating to some form of a directory. The directory

validates the credentials you provide (a password or a ticket encrypted with your password) so everyone else on the

network knows for certain that you are who you say you are. This authentication is critically important because it prevents

someone else from impersonating you. Many network operating systems (NOSs) use LDAP as the basis of their internal

directory functionality. This close integration can be an incredible benefit but also can have some drawbacks. I'll look a bit

more at how a NOS might use LDAP shortly.

People are more productive with a directory to support them

Without the directory behind the example situations I've explored, people would be much less productive. Managing

e-mail addresses and authenticating to every network resource (instead of authenticating just once) are tasks that people

don't want to be bothered with, and the directory helps people manage this information. Directories have many of these

behind-the-scenes uses, which ultimately benefit all of us. In fact, the major benefits of a directory are behind-the-scenes

types of services, with a computer application or a computer running more smoothly because the directory is there.

Machine and computer management information belong in a directory

Another perfect use for a directory is in managing machines. Networked machines inevitably have configurations that

need to be managed. These configurations are largely static, but keeping the information centrally lets changes be easily

implemented. Networked computers have even more specialized uses for a directory. Computers that are members of a

NOS service usually need to authenticate themselves. This information needs to be centrally maintained. Computers also

have many characteristics such as software, environment configuration, and access privileges. Network administrators

appreciate any tool that will help them manage this information, which generally changes infrequently. Microsoft's Active

Directory (an extension of Windows 2000 Server) provides a good example of a specific implementation of this type of

use. For example, Active Directory allows a directory administrator to define group policy directory entries that are a set of

configuration information, and apply these policy entries to computer entries. This process facilitates computer

management and demonstrates one way in which LDAP can be used.

Directory management of computers helps people

Users also experience the benefit of machine management via a directory. The previous examples may appear to benefit

only computers and computer support personnel, but they also benefit other employees and customers of the company.

Users don't want to memorize obscure naming conventions in order to find a network resource. Directories can help

address this issue by helping users locate network resources via the directory. Imagine, if you will, the harried user who

desperately needs to print a document for an important presentation in a remote location at your place of business. How

does she find a printer? There are no support personnel at hand. The directory comes to the rescue, because it knows

where all the printers are and the user can easily ask the directory for a printer at that location. The directory might

interface with the user's laptop to configure the needed printer settings. The directory might further address the issue of

multiple obscure naming conventions by providing a unified and user-friendly naming convention that hides the real

naming conventions being used.

Benefits of a Directory

Many IT personnel know that implementing a directory is important for their business but don't quite know how to justify

the cost and effort required to their managers. Benefits 1-1 consolidates the relevant points into a useful form that you can

use in such a situation. Benefits 1-2 later in the chapter is a similar summary that focuses on the benefits unique to LDAP.

Use Benefits 1-1, Benefits 1-2, and Figure 1-4 to begin to build a case to your manager for implementing an LDAP

directory.

Benefits 1-1 Benefits of a directory

Make network administration easier

- Central management of people information

- Central management of computer and machine configuration

- Central management of user accounts

- Reduced support costs from centralized management

Unify access to network resources

- Uniform naming convention

- Potential for single login to network resources

Provide single destination for users to search for information

- Contact information

- Central location of network resources

- Potential as a catalog for any data, for example, product documentation

Improve data management

- Improve the consistency of data that is widely used

- Provide centrally managed security for business-critical data

- Organize data in a logical structure

Help streamline business processes

Provide repository and lookup for application and service data

[Team LiB]

[Team LiB]

Introducing LDAP

How does LDAP work? Why has LDAP been adopted as the directory standard by so many large companies, as well as

by all the major software vendors? This section provides an overview of how LDAP technology functions and why LDAP

is considered so highly by the industry. Later chapters in the book expound on this overview in more detail.

LDAP came from X.500

LDAP (Lightweight Directory Access Protocol) originated out of the X.500 series of International Telecommunication

Union (ITU) recommendations. ITU is an international standards body, and X.500 is a set of recommendations about

directories. Because of this relationship, the structure of X.500 and LDAP directories is similar. LDAP directory

implementations are often also X.500 compliant, and gateways between the two directories are also plentiful. LDAP was

pioneered at the University of Michigan, and there is still a free implementation available from their Web site, along with

documentation, source code, and other resources.

A set of nine RFC documents defines LDAP

LDAP is defined by a set of published Internet standards, commonly referenced by their Request For Comment (RFC)

number as published at the IETF Web site: http://www.ietf.org. The Internet Engineering Task Force (IETF) helps manage

a rigorous proposal process in which ideas such as LDAP are reviewed in drafts until they are ready to be published as

an Internet standard. Don't be confused about the number of RFC documents associated with LDAP. LDAP version 3 (v3)

is defined by nine RFC documents. RFC's 2251 through 2256 give the core details, and were later followed by RFC 2829

and 2830. RFC 3377 followed shortly prior to the time this book went to press. It tied all of these RFCs together as the

official LDAP v3 standard. In addition to these nine documents, you will find many other documents that address

technology based on the core LDAP standard. LDAP comprises a wide set of technology and continues to be developed,

so several documents are needed to help define its many facets. This book includes coverage of the material in the core

RFCs as well as most of the other LDAP RFCs. Although the RFC documents define the standards, they don't tell the

whole story, and they are certainly not enjoyable reading. But for further reference, when the RFC documents provide

more detail than is appropriate for this book, they will be cited.

What Happened to X.500?

There were a host of problems with X.500. It was too tied to the OSI (Open Systems Interconnection)

protocols, and so wasn't well suited for the TCP-dominated world that emerged. It used a complicated

encoding mechanism (although to be fair, LDAP uses pretty much the same one). Its creators were very

ambitious, and so X.500 was probably too complicated for the kinds of problems that people really wanted to

solve. And finally, X.500 was meant to be a global directory service, even though it wasn't clear that

everyone thought this was a good problem to solve. In short, LDAP and the Domain Naming System (DNS)

solved in a simpler fashion the real problems that people faced.

To summarize LDAP, we'll be looking at four areas:

Namespace

http://www.ietf.org/default.htm

Client operations

Schema

Management

These four areas coincide with the next four chapters of the book, which expand the summary information found here in

greater detail. In the second section of the book, each of the chapters looks at specific vendor implementations. These

chapters also use these four primary areas to organize the information.

Mycompany.com

Prior to looking at the four LDAP areas, I need to introduce the example company that is used throughout the book to

provide a concrete context for abstract concepts. Mycompany.com is a typical company, with sophisticated technical

requirements for carrying out its business. I've intentionally left the profile of Mycompany generic, to maximize the

relevance of the example. Figure 1-4 shows a representative sample of the types of business applications and IT

infrastructure services that Mycompany has deployed and would like to integrate with an LDAP directory.

Figure 1-4. Integration of Mycompany.com's applications and infrastructure with LDAP

Trying to Read the RFCs?

If you try to read the RFCs on the IETF Web site, you may encounter several problems. You may come

across references to X.500 documents that you can't find online. This is because X.500 is maintained by the

ITU international standards body. ITU asks that you pay to receive a copy of its standards, and you can

order a copy online from its Web site. Alternatively, I've listed a few online X.500 references at the back of

the book, including an entire online book on X.500. Second, you may not understand the special coding

system used in some of the definitions. It is called Backus-Naur Form (BNF), and you can read more about it

in RFC 822. The RFC is oriented toward simplifying the encoding of e-mail; but if you skip several of the

messaging-specific parts, you can get an idea of how to use the BNF format.

Mycompany would like to use an LDAP directory to tie these applications and services together to simplify data

management, cut development and support costs, and provide a single point of IT infrastructure management. Figure 1-4

further shows how each of these applications, databases, and services might interact with data in the LDAP directory.

Arrows out of the directory represent a search operation (also called a query) that is the source of information for the

service or application. Arrows into the directory represent a source of directory data or potential modification of existing

directory data.

Namespace

To find information in a directory, a common set of naming rules is needed; these rules are called a

namespace

Every directory needs a namespace. What, you might ask, is a namespace? As you might expect, namespace refers

primarily to how entries are named. However, it can also imply other things, such as an organizational structure for the

entries. Incidentally, the term "namespace" can also be used in a general sense to refer to all the objects in a specific

container.

The namespace serves two functions: to identify objects and to define the hierarchical structure

In general, the LDAP namespace is the system used to reference objects in an LDAP directory. Each object must have a

name, and the name of each object serves two purposes. First, it allows the object to be referenced. Second, it allows the

object to be organized into a logical structure. Understanding the namespace is the key to understanding the structure of

the directory.

Because each entry indicates a location in the directory, its name must be unique

Each entry in the directory needs a name for the purposes of referencing that entry. These names must be unique in an

LDAP directory so you can designate a specific entry. But instead of simply naming each entry with a unique name, the

namespace goes a step further and designates where in the directory's organizational structure each entry belongs. So if

you know the name of an entry, you also know where that entry resides in the directory structure.

Namespace hierarchy allows management control

Because the namespace is organized in a hierarchical fashion, management control can be delegated at multiple points

in the hierarchical structure. The hierarchy that is inherent in the namespace conveniently provides an effective means for

cooperative delegation of management. This is a significant advantage of LDAP over databases, and it is usually one of

the primary factors in deciding how to organize data in the directory.

DNS is one common namespace

Many of the directories you may have used share a common namespace, which happens to be an Internet standard:

DNS. For example, when you send an e-mail to another person's mailbox across the Internet, you address it in a way

(person@domain.com) that conforms to the DNS namespace. The e-mail is delivered to only one person because the

mail service using the DNS namespace also enforces uniqueness of names. DNS provides a namespace for many

computer services.

The LDAP namespace is very similar to DNS, and DNS can be employed

DNS is by definition hierarchical in nature. The LDAP namespace is hierarchical too. Because the namespaces are so

similar, many LDAP directories leverage the DNS namespace, so the LDAP namespace works seamlessly with DNS.

This reliance helps make LDAP more attractive and provides for future development of globally integrated LDAP

directories. LDAP vendors that adopt DNS compatibility allow for the possibility of seemingly independent directories

being more easily connected in a global hierarchy at a later time, just as an intranet-based DNS zone might be connected

to the global DNS namespace. Chapter 5 examines the integration of independent directories, and Chapter 2 introduces

some of the primary concepts. Formalizing the relationship of LDAP to DNS is one of the tasks of an IETF working group;

Chapter 2 also examines this relationship.

DNS is not required but usually is preferred

With some directory servers, clients or users can automatically locate directory servers for their local DNS zone without

any prior knowledge or configuration (for more detail, see Chapter 2). But to be clear, LDAP does not require that DNS be

used in forming a directory namespace. With the help of a name resolution service like DNS, a client locates a directory

server on the network. Other name resolution services can be used to locate the LDAP server; however, the trend is

definitely to implement LDAP with a reliance on the DNS namespace. The benefits of doing so are greater than the

alternative, but there are reasons not to do so as well. These reasons are usually limited to LDAP directories with an

isolated use.

The root of the directory has a name

Figure 1-5 shows a simple version of Mycompany's directory. The name of the root of the directory is known as the

directory's base DN. The directory root is not necessarily a directory entry. The server's base DN typically matches the

DNS name of the directory server and uses the domain components (dc) attribute to represent the DNS zones. However,

the server's base DN does not necessarily have to coincide with the server's DNS name. The directory server's base DN

might be different to allow greater flexibility in designing a distributed directory architecture across multiple directory

servers. The flexibility to create a distributed directory via the namespace is a key advantage of LDAP over databases.

Chapter 2 covers some of the foundational concepts behind a distributed directory architecture, like referrals, replication,

and the full details of namespace. Chapter 5 addresses distributed directory architecture models, as well as the issues

and solutions to integrating directories.

Figure 1-5. Person and part records with DNs in an LDAP directory that integrates with the DNS namespace

The DN is the name of an entry

But how do you reference an entry within my LDAP directory? Each entry in the directory has a unique name known as

the distinguished name (DN). Each entry also has a name local to its immediate container known as the relative

distinguished name (RDN). The RDN is unique among all entries in that container. For now, think of a container as being

similar to a directory or folder in a file system; Chapter 2 covers containers in more detail. The DN of each entry is formed

by concatenating the RDN of the entry with the RDN of the containers between the entry and the directory root. There is a

comma between the RDNs in the DN. Neither the DN nor the RDN is an attribute of the entry, but the RDN consists of

one of the attributes of the entry.

The RDN is the local name of an entry

The RDN is an attribute type and value pair. More precisely, it can be any attribute pair (or combination of attributes) that

is unique in the entry's immediate directory container. The RDN does not have to be unique across the entire directory.

You can compare the RDN to the hostname, like myserver, which is unique within the mycompany.com DNS zone, but is

not necessarily unique among all DNS zones in the world.

Example to illustrate DN usage

The DN of the person entry shown in Figure 1-5 could have been cn=Brian
Arkills,ou=People,dc=mycompany,dc=com instead of uid=barkills,ou=People,dc=mycompany,dc=com.

Notice that each RDN component includes both the attribute type and value. For example, the single component

cn=Brian Arkills has both the attribute type cn and the attribute value Brian Arkills. The attribute value without the

attribute type would not be sufficient to distinguish the entry, because the value might refer to different attribute types on

many entries. The common name (cn) of the entry in Figure 1-5 is Brian Arkills. Note that cn=Brian Arkills must be

unique among all entries in the container ou=People to qualify as an RDN. As you might realize, uniqueness of a

person's name isn't guaranteed, so another attribute is often used instead as the RDN. Mycompany might choose the

user iden-tity uid=barkills instead as the entry's RDN, because login IDs are unique within Mycompany. The DN

uid=barkills, ou=People,dc=mycompany,dc=com refers to exactly the same record in the directory namespace as

the DN above. This second DN simply uses a different RDN to identify the entry desired, where the uid is my user identity

or account name.

Based on the desired integration noted in Figure 1-4, Mycompany's directory namespace might look something like Figure

1-6. For simplicity, almost no directory entries have been shown, but each of the containers shown (open circles) would

have entries (closed circles) and possibly additional containers for further organization or delegation. For example, the

People namespace might be divided with containers by department, with the entire Sales department in a container and

the entire Engineering department in another. The layout shown in Figure 1-6 could be implemented differently and still

meet the desired integration requirements.

Figure 1-6. Mycompany directory namespace

LDAP's namespace provides many advantages

The namespace that LDAP employs has substantial benefits. First, it provides a naming model that uniquely identifies

entries but is flexible in that more than one name may be valid. Second, it is inherently hierarchical. This allows entries

with the same naming attribute to exist in the directory in different containers. It provides a vehicle for delegation of

management, application of access controls, and organization of data. Third, it usually leverages DNS, which gives an

LDAP directory an advantage in integrating with other technologies, and service location resolution from anywhere.

Fourth, the namespace allows LDAP to distribute a directory across multiple servers. For more detail on this topic, see

Chapter 5. This benefit is significant because greater reliability, distributed load, and localized directory data are

additional benefits that can be realized from this distribution.

Protocol

LDAP is primarily a set of server operations

At its heart, LDAP defines a set of server operations (the directory access protocols) used to manipulate the data stored

by the directory. But there are many other aspects to LDAP, and people are hard at work developing draft standards that

might be added to the accepted Internet standards that comprise LDAP. Some of these extensions may comprise the

rules that govern the method in which data is stored in an LDAP directory, extensions of the protocol and server

operations, standards for secure client authorization, architecture for ensuring directory reliability, and so forth.

Client-Server Model

TCP/IP is required for LDAP

As an Internet protocol, LDAP uses TCP/IP for its communications. For a client to be able to connect to an LDAP

directory, it must open a TCP/IP session with the LDAP server. LDAP minimizes the overhead to establish a session

allowing multiple operations from the same client session. It also gains traffic efficiencies from compression because the

majority of data stored in the directory is discrete text-based information. LDAP employs BER encoding to encode the

attribute value data passed between the server and client. This overly complicated encoding method is retained from

LDAP's X.500 roots.

Any LDAP client can speak with any LDAP server

Interestingly enough, the set of LDAP operations correspond one to one to a set of standard application programming

interfaces (APIs) in different languages. An API is a set of functions that programmers can use in writing software. These

functions provide a higher-level deliverable by hiding the messy guts of the code from those that use it. Some APIs are

closed source, meaning that the guts are intentionally hidden from everyone. Others are open source, meaning that anyone

can view the details and even contribute improvements. The LDAP APIs are all open source. For an example of a function

from an LDAP API, take the server operation used to add entries. There is a standard LDAP function ldap_add() in the

C language API that an application would use to ask the server to perform the add operation. Similarly, the standard APIs

define functions for each of the server operations defined by the LDAP specifications. Any application that used an LDAP

API to interact with an LDAP server is called LDAP-enabled. The standard C language version of the API is documented

in RFC 1823.

Clients

The LDAP client can be standalone or integrated software

The LDAP client can be either standalone software that a person interacts with by typing in the syntax as required, or it

can be an integrated piece of software with much of the operation automated and the syntax requirements hidden from

the user. For example, the Windows 2000 operating system has integrated the LDAP client functionality into several of its

core applications. In Windows 2000, you can choose the Search option from the Start menu, and look up person or printer

entries in the Microsoft Active Directory (in other words, the LDAP server) to which the computer is connected. There are

many LDAP-enabled Web sites that provide a single interface (sometimes called portals) for people to use in searching

and modifying entries in their company's LDAP server. In addition to these Web sites, most modern browsers support the

LDAP protocol and are completely functional clients for retrieving information from LDAP. The flexibility of integration is

one of the primary reasons why many software companies have embraced the LDAP protocol.

The open standards model means LDAP is very easy to integrate

The beauty of the LDAP open standard becomes evident when you realize that any LDAP client or LDAP-enabled

application can successfully communicate with any LDAP server, regardless of the client's or server's particular operating

system. The open standard, multiple-platform model makes integration easy, in a marketplace that makes integration

difficult. This means that implementing LDAP in a complex, nonhomogeneous operating system environment is

significantly easier than implementing other technology.

Operations

LDAP has only ten operations, and this is good

There are ten LDAP operations. The limited number of operations is quite important, in that client programs that interact

with the directory are much simpler than client programs that interact with other similar technologies. These operations

can be grouped into three basic categories with one outlier, as shown in Table 1-1.

Table 1-1. LDAP operations

Category LDAP Operations

Client Session Operations Bind, unbind, and abandon

Query and Retrieval Operations Search and compare

Modification Operations Add, modify, modifyRDN, and delete

Extended Extended

The extended operation is unique among the operations. The extended operation is a placeholder for specific directory

implementations to extend the functionality of the protocol but still have a predefined syntax for doing so. The LDAP

designers showed a lot of forethought by including the extended operation. By standardizing a way to expand the

operational functionality, they eliminated any perceived liability in the limited number of operations.

Session operations affect how the client interacts with the directory

The client session operations help to control the client-server session context for all subsequent LDAP operation requests

from that client. The bind and unbind operations allow the client to establish an identity with the directory. This identity can

be used by the directory to determine authorization to perform the other operations, and can be used to control access to

directory information. The abandon operation allows the client to cancel an outstanding operation request.

Query operations allow data to be found and retrieved

The query operations allow the client to look up information in the directory. Most readers new to LDAP need to know how

to intelligently search an LDAP directory. The search operation is the most frequently used, and skill in using it will be

repeatedly valuable. The search operation has many parameters, in fact, more parameters than any other operation. This

greater complexity is worthwhile, however, because it allows the user to designate sophisticated queries in a search for

data within the directory. Because of the importance of the search operation, be sure to closely peruse the details and

examples provided in Chapter 3. The compare operation allows a client to request a verification of the information

associated with an entry. The client sends the purported value(s) of the entry, and the server responds with success if it

matches or failure if it doesn't.

Modification operations allow a variety of changes to be made

The modification operations allow the client to change information in the directory. These operations might be restricted in

some instances, for example, in the case of a public read-only directory. Of these operations, the modifyRDN operation is

the only one in need of any summary explanation. The modifyRDN operation allows the client to change the name of an

entry and possibly move the entry to a different container.

Referrals and Unicode support extend the functionality of LDAP

Two other notable protocol features of LDAP are referrals and Unicode UTF-8 support. Referrals allow an LDAP server to

redirect a client to a different LDAP server to locate the data the client requests. This functionality enables integration or

cooperation between directory servers and even independent directories. Unicode is a specific method of representing

data in character sets that are specific to a language or locale. This means that any written language can be represented

if Unicode is used to encode the data. Not all data is represented in Unicode; for example, you may have heard of ASCII

encoding. Data encoded in ASCII would not allow most of the languages in the world to be represented. Unicode support

extends the usefulness of LDAP to virtually any language, making LDAP a global solution. For details of the LDAP

protocol, see Chapter 3.

Schema

The schema defines the rules

A game without rules is chaotic and subject to the players' whims. The popular comic strip Calvin and Hobbes's

"Calvinball" game zealously demonstrates how out of control life can be without rules. In this game, Calvin and Hobbes

make up the rules as they play, which inevitably leads to disaster. The set of rules that defines what types of entries can

be in the directory is known as the schema. If a particular object class isn't in the schema, you can't create an entry with

that object class. You extend the schema to include a new object class or to allow new optional attributes on an existing

object class. The schema further defines pertinent rules like what type of value can be placed in an attribute, and what

operators are valid for those attributes. The operators are what the directory uses to compare one attribute's data value to

another value. Greater than, less than, and equality are examples of common data operators.

Is LDAP the Final Word for Directories?

Probably not. In fact, there is evidence that the Web services movement with the XML standards may add

something significant to the future of directories. A new standard called DSML is emerging. This standard,

however, assumes the presence of an LDAP directory. Perhaps in the future it will evolve beyond this. For

more information on DSML, see Chapter 5.

Schema Checking

All new entries must pass the schema-checking process

The addition of any new entry in your directory is subject to a schema-checking process. Should any of the data not meet

the applicable definitions, the addition of the entire entry fails. The schema is not something one can ignore—it has teeth

that bite! Some LDAP implementations allow you to turn off this schema checking, but doing so is not wise. The data

would lose its uniformity.

Default Schema

The LDAP schema comes from X.500

The minimum set of schema objects required by the LDAP standard, as listed in RFC 2252 and 2256, will give

Mycompany a functional directory. The minimum LDAP schema is largely formed from the set of X.500-defined schema

objects and follows the basic rules for the X.500 schema. This is the key reason why so many LDAP products can also be

X.500 compliant. Directory vendors take care of implementing this minimum set of schema objects, so you only need to

be familiar with what these schema objects are and how you might use them. Most software vendors that leverage a

directory find this minimum set insufficient for their purposes and further extend the schema with their own definitions.

Extending the Schema

Schema syntax is hard to read, but it is very flexible

Although the schema is arcane because of its syntax format, it is also the source of most of the flexibility of LDAP.

Mycompany's directory can implement schema extensions to include whatever types of data the company deems

necessary. The schema also lets you define new ways to interact with the directory and new ways to work with the data.

Chapter 4 considers schema extensions that others have found significant.

The schema is published so clients know what is supported

LDAP publishes the directory schema so any client can determine what definitions and rules the server employs. The

location where the schema is published is stored on every entry, and this information tells you where to look for the

schema. The location is called the root DSE (Directory Systems Agent Specific Entry) container. Most LDAP directories

have a single schema that applies to the whole directory, so the location is the same for all entries. Some LDAP servers

may allow the definition of unique schemas for different parts of the directory.

Here is a sample schema definition for the person object class:

person OBJECT-CLASS ::= {

 SUBCLASS OF { top }

 KIND abstract

 MUST CONTAIN { sn, | cn}

 MAY CONTAIN { userPassword | telephoneNumber |

 seeAlso | description }

 ID 2.5.6.6}

If your curiosity is piqued, see Chapter 4, which addresses the schema in more detail.

Management

Information that is centrally organized in an LDAP directory lends itself to management. In fact, an LDAP directory can

become the hub of IT management. Figure 1-4 shows how centrally important the LDAP directory is to Mycompany.com,

and you can easily imagine how this architecture would make management tasks easier. The support for LDAP directory

management functionality is therefore very important. Management functionality that is easy to use or provides ways to

simplify integration is highly desirable. Some directory management functionality is not addressed by the LDAP

standards. For example, LDAP leaves the implementation of storing and retrieving the data on the server up to the

vendor. Usually, a specialized database is used. This functionality can introduce a variety of management tasks and

functionality, depending on what software component is chosen. In most cases, management tools are best left to

vendors and market-driven competition.

Does the Schema Look Complex and Tedious?

For the most part, it is both complex and tedious. Don't underestimate the importance of the schema. You

may feel like the schema is boring, and the syntax not worth learning. However, the schema employed by

LDAP is one of the greatest features of LDAP, because it lets you design how data is represented, what

data is allowed, where it is allowed, and what additional operations can be performed on that data. The

other areas of LDAP may be flashy, but they all derive their functionality from definitions in the schema.

Without the flexible model LDAP uses with the schema, a lot of the flashiness and all of the extensibility

would be gone.

Distributed Directory

The LDAP standard leaves the implementation of replication to vendors

Possessing a fault-tolerant directory is of high importance to Mycompany because the company wants to make the

directory a central focus of critical business data and processes. Most vendors have implemented some form of

replication to allow portions of the directory to be copied to multiple servers. Employing replication copies a directory or

portions of a directory across multiple LDAP servers. Distribution via replication provides several advantages, including

load distribution and protection against data loss. For more details on replication, see Chapter 5.

A distributed directory has many advantages

However, replication is not the only way to have a distributed directory. Different LDAP servers can host different portions

of the directory namespace with references to the other LDAP servers. The namespace can be divided in any way

desired. This type of distribution provides advantages, such as storing information about your European office on LDAP

servers located in that office. This would decrease the dependency on long-distance connectivity between geographical

locations. Another advantage might allow politically divergent departments to run their own server. This would enable

separate management of information that each department feels that it owns. The flexibility that LDAP provides in terms

of namespace provides benefits in simplified management.

Integration and Data Manipulation

Integrating independent LDAP directories and servers from rogue departments or mergers will further empower the value

of Mycompany's directory. As discussed previously, LDAP supports referrals that allow one LDAP server to reference

another. These referrals can be used to connect servers. Integration via other methods can also be critical to keeping

data consistent and authoritatively controlled across your organization. For some other methods, see Chapter 5.

LDIF and other features allow duplication of data between servers

There is also an LDAP standard that allows directory data to be copied between servers. The LDAP Data Interchange

Format (LDIF) standard provides a means for a directory administrator to move directory data between servers in a file

format. The LDIF standard also gives the administrator a way to make batch modifications to many entries using

search-and-replace text-manipulation tools. For more detail on the solutions LDAP provides in this area, see Chapter 5.

Security

Authentication, authorization, and encryption are needed to secure information

The term "security" is used in a broad sense in the computer industry. In discussions of computer security, typically two

areas are of concern: authentication and authorization. Authentication is the means of proving we are who we say we

are.Authorization is the means of designating access permissions to users. When we add the complexity of operating on

a network, there is a third area of concern: privacy. Privacy is the means of ensuring that data is kept safe so that it is

available only to those for whom it is intended. Some form of encryption is usually used to keep data private.

LDAP supports cleartext, Kerberos, and SASL for authentication

LDAP supports many authentication methods. LDAP v2 and v3 both support simple authentication (cleartext), Kerberos,

and digital certificates. LDAP v2 supports Kerberos v4, whereas LDAP v3 adds support for Kerberos v5 via Simple

Authentication and Security Layer (SASL). You can find the standard designation for Kerberos under RFC 1510 and 1964.

LDAP v3 also supports the SASL. SASL offers a way to add authentication mechanisms to any protocol. Examples of

such mechanisms are Kerberos 5 and DIGEST-MD5. The SASL standard designation is specified in RFC 2222. LDAP v3

identifies Transport Layer Security (TLS), the successor to Secure Sockets Layer (SSL), as the way to authenticate with

digital certificates. TLS is documented in RFC 2246. Given that LDAP is an Internet standard, you are probably not

surprised to learn that Kerberos, SASL, and TLS are also Internet standards.

Implementation of authorization is left to the vendor

Currently, LDAP has no specifications for authorization. With authorization or access control, you can control access to

entries and even attributes. You can allow or deny specific users or groups of users access to entries. The access levels

vary between permission levels such as being able to read or write to the entry. Because there is no agreement on

authorization in the LDAP standard, vendors are left to implement their own authorization model. Discussion and work is

under way in the IETF on this subject, so in the future this may be part of the LDAP standard. This lack of standardization

means that this is one of the areas Mycompany will want to scrutinize closely with respect to its choice of a vendor.

LDAP supports SSL and TLS for data encryption privacy

LDAP also supports session encryption for privacy. All information that is communicated during the client-server session

can be encrypted so eavesdroppers are foiled. Both SSL and TLS are supported. TLS is the successor to SSL, and can

be thought of as SSL v3.1. Both SSL and TLS are based on public key certificate technology, which depends on the

server having a certificate from a trusted certificate authority server. Additionally, clients can obtain certificates and in

some cases use them as a valid form of identification (authentication). Although this requirement may pose some hurdles,

including management of certificates, the resulting security can be deemed well worth the trouble. Encrypting the session

can provide privacy to the directory information passed over the wire. The information in your organization's directory may

be some of the most sensitive data you have, possibly personal and proprietary, and your organization won't want this

information passed "in the clear" for the advantage of outsiders. Session encryption is critically important if simple

authentication (cleartext) is the only available authentication method for a specific client.

Does LDAP Provide Security?

I often talk to people who confuse LDAP as a generalized solution to security concerns. There is a

perception that "LDAP" is a security buzzword. LDAP is a directory technology, not a security technology.

LDAP directories commonly use security technology, like Kerberos, to provide secure access to the

directory, and they may also be used to store security-related information such as X.509 certificates or

authorization information. But LDAP itself doesn't provide any security services. LDAP as a standard or a

protocol still has room to grow before I'd associate security with it. Don't get me wrong, in most products it is

implemented relatively securely. However, the IETF should standardize many of the security features that

vendors have implemented. Additionally, the protocol should require some input stream validation

mechanism so a client can't pass commands to the directory server via a buffer overflow or other nastiness.

[Team LiB]

[Team LiB]

Vendor LDAP Products

Part II covers several of the most popular LDAP products. A few notes about the trends and diversity of

offerings are worth mentioning here.

Vendors often use a directory to enable their network operating system

One strong trend has vendors using LDAP to support their network operating system (NOS). This is innovative

and provides nice opportunities to integrate many infrastructure services with all the benefits of LDAP. However,

the offerings from these companies usually limit the integration with products outside that vendor's software

suite. This is made worse when you must employ the vendor's NOS to use the LDAP directory. Integration is

nice, but not integration without freedom to choose the best components.

LDAP has a strong open source movement

Another trend that has continued throughout LDAP's history is the open source movement. This movement is

important in light of the previous trend. The open source movement has helped ensure that some minimum

level of integration is kept standard and, in turn, has put pressure on vendors to work with others. Open source

LDAP software offers the ability to choose components and eliminate dependence on a single vendor.

There are a lot of LDAP product offerings available

A final trend to note is that almost every large software company has an LDAP directory offering. In addition,

several small company offerings also offer LDAP directory products. This diversity of products is great for the

consumer, because it provides greater choice and means that vendors have to provide real competitive

advantages to capture our attention. Table 1-2 lists most of the LDAP server offerings.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Why Choose LDAP?

The reasons to use LDAP are overwhelming. Simply put, LDAP is the best show in town if you want to use a

directory. Consider the many companies and organizations that have already adopted the technology. Benefits

1-2 summarizes a list of advantages of LDAP, but you probably are already familiar with them. This list,

together with Benefits 1-1 and Figure 1-4, would make a good start on justification for deploying a directory.

Table 1-2. LDAP servers

Vendor Product Name

Computer Associates eTrust Directory

Critical Path CP Directory Server

IBM SecureWay

Sun AND Netscape Directory Server (used to be iPlanet and Netscape Directory Server)

Microsoft Exchange 5.5 AND Active Directory

Netscape Directory Server (no longer offered)

Novell eDirectory (formerly NDS)

OpenLDAP OpenLDAP

Oracle Internet Directory

Syntegra Global Directory AND Aphelion Directory

University of Michigan Slapd

Benefits 1-2 Summary of LDAP Advantages

Entries are organized in a distinct hierarchy. This provides the means to delegate administration,

apply access controls, and enjoy other information management benefits. Even the name of an entry

reveals information about the entry.

Attributes of an entry can have more than one value. The structure of an entry doesn't need to be

extended to permit additional data. An entry can also have multiple names, each of which is unique

across the directory.

An LDAP directory can be distributed across multiple servers. This design distributes the load and

provides other management benefits.

LDAP is an open standard, with multiple-platform support. An LDAP client on any platform can

communicate with any LDAP server. So there is less reliance on a single vendor.

The LDAP client requires very few resources to run, and it can easily be integrated into other

software. The LDAP operations are few in number, which makes it easy to interact with the directory.

Session traffic is encoded and uses TCP, so network communications are economical.

LDAP has a standardized API for multiple platforms. As a result, your developers can leverage the

information in the directory when developing new applications instead of having to rebuild this

information. This saves money and time, while opening up the possibility for new cross-functional

applications based on access to data that was not previously available.

LDAP provides easy integration with existing standards because LDAP uses other accepted

standards, including TCP/IP and DNS. Standardization of integration methods with other standards is

an ongoing process. Later chapters note the results of this process.

LDAP supports strong authentication and encryption methods.

LDAP uses Unicode UTF-8 so almost any language character set can be represented. This makes an

LDAP directory capable of supporting international organizations in the native language.

LDAP employs an extensible schema, which allows further operability to be added. Operations and

data must conform to the schema, which improves the quality of data.

The usefulness of LDAP is being extended constantly, because of the widespread adoption of the

view that it is the future of directory services.

Cross-technology integration has become a strength of LDAP

Most organizations are now taking the next step and looking for further ways to integrate LDAP with existing

technologies. This step extends the usefulness and value of the investment made in LDAP. There are many

examples of leveraging other technologies to extend the usefulness of LDAP. This is because LDAP is based

on a clear standard that easily integrates with other existing standards.

[Team LiB]

[Team LiB]

Chapter 2. LDAP Namespace

"Namespace" implies that a name is not simply a name, but holds meaning in terms of structure as well. The

term takes two different aspects of the directory and seeks to tie them together: how to name things and how to

organize them. The definition of a service's namespace is critical. It may be obvious, but a namespace lets you

find things. Namespace is the set of conventions used to identify all the objects in a given environment; in other

words, it is the naming system. Without a namespace that we agree on, you and I might be referring to the

same thing, but using different languages. A good namespace also ensures that one object's name doesn't

conflict with that of another object. Namespace is probably the hardest concept presented in this book, so take

solace if it seems confusing. To help introduce the concept of namespaces, the next section examines some

examples and the properties of namespaces. The rest of the chapter focuses on the namespace that LDAP

employs.

The namespace includes more information than just the immediate identifier

A good analogy that illustrates the use of a namespace in the real world is the postal address system used

worldwide. In the postal namespace, a letter is addressed (or named if you will) as follows:

Person's name

Street number Street

City, State/Province/Region Zip code

Country

This name (address) tells us many things by the way it is constructed and the value of each component, while

also uniquely designating the recipient. We know that the person lives in the country listed, in the state listed, in

the city listed, on the street listed, and so on. We further know the letter is intended for the person who lives at

this address, not a person by the same name who lives elsewhere.

By using a hierarchical namespace, you can delegate information management

But consider another point that is well illustrated by this postal example. Because this namespace is organized

in a hierarchical fashion with locales of diminishing scope clearly designated, management involving the object

(in other words, the recipient) can be delegated. In other words, when the reader drops a letter in the mailbox to

this person, it can first be sent to the postal service responsible for the country listed. After that, it can be sent

to the state postal service, and so on, until it reaches the local post office and can be delivered. The hierarchy

that is inherent in this namespace conveniently provides an effective means for cooperative delegation of

management.

You can use the namespace for other management purposes

The postal example illustrates a namespace that is used to uniquely identify objects and establish structured

relationships between those objects. Besides identification and structure, the namespace can be involved in

accomplishing several other directory management operations. As examples of such functionality, most

vendors implement data partitioning and replication. Chapter 5 covers these and other special structural

concepts.

Namespace can also refer to a specific directory implementation

When the term "namespace" is used in the context of a specific directory namespace, a slightly different

meaning is intended. In this context, it isn't the naming system being referenced. In this context, the term refers

to all the objects in that directory and the specific structure that was chosen. With LDAP, there are seemingly

two names for every directory term, so be prepared for a multitude of new vocabulary words with duplicate

meanings. You may hear the term directory information tree (DIT) being used to refer to a specific directory

namespace.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

DNS

The server's DNS name is the basis for the name of the root of the LDAP directory

The domain naming system forms a portion of the foundation for the LDAP namespace, and it is also a good example of a

namespace. Exploring how DNS works will help underline key points about LDAP. As noted in Chapter 1, the DNS name

of the LDAP directory server can be particularly important in determining the name of the root of the directory, which is the

directory's base DN. Whether DNS is used in naming affects the implementation of an LDAP namespace. A directory's

base DN doesn't have to match the DNS name of the directory server, and usually the two don't match when a directory

distributed across multiple servers is desired. Aside from this connection to the namespace, DNS can also play a critical

role in the process of the LDAP client locating the LDAP directory server. DNS does not have to be used in the location of

the server, but frequently it is.

DNS maps a human-readable name to a computer-readable name

DNS is a distributed directory service that is maintained by thousands of servers across the globe. There are billions of

records in this directory, which map an IP address to a computer name and vice versa. IP addresses are numbers that are

the "name" that one computer uses to refer to another computer. People know computers by alphanumeric names. A

sample record could be host.mycompany.com. IN A 127.42.12.6. This record denotes that

host.mycompany.com is the human-readable name of the computer at the IP address 127.42.12.6.

DNS Hierarchy

A hierarchy is employed to provide a clear basis for authoritative name resolution

These records are distributed across millions of files called zones. Each zone holds a copy of records for the DNS

namespace for which it is authoritative. In other words, each zone allows changes to only a small portion of the entire

DNS namespace. The host.mycompany.com computer record belongs to the mycompany zone. The mycompany zone

belongs to the com zone. The com zone belongs to the root zone. The root zone is the topmost zone in all of DNS. Figure

2-1 shows a diagram of the hierarchy of DNS zones. The zone file is kept on the authoritative DNS server for that zone.

Each parent zone is the authority for distinguishing which DNS server is authoritative for any child zone. A single root

zone holds the authoritative records for each of the first-level DNS zones. This forms a hierarchy, which client computers

can query with a reasonable assurance of getting authoritative name resolution.

Figure 2-1. Hierarchy of DNS zones (the DNS namespace)

DNS Resolution

The hierarchy provides an efficient way for a client computer to perform name resolution

The DNS namespace provides a system both for organizing computer name records and for resolving the location of the

computer name. The client computer is typically directed to query the authoritative DNS server of the local zone for name

resolution. For example, the computer host.mycompany.com would be configured to query the DNS server for

mycompany.com. Should host.mycompany.com want to know the IP address for unknown.whitehouse.gov, it would first

ask the DNS server at mycompany.com. mycompany.com would refer it to the com DNS server. The com DNS server

would refer it to the root DNS server. The root DNS server would refer it to the gov DNS server. The gov DNS server

would refer it to the whitehouse.gov DNS server. The whitehouse.gov DNS server would then reply to the client with the

IP address of unknown.whitehouse.gov. Usually DNS servers cache information about important zones like the root and

first-level DNS servers, so in reality the process described would follow a much shorter path.

Basic DNS Record Types

There are several basic types of DNS records. Table 2-1 lists these records along with a short explanation.

How LDAP Uses DNS

Chapter 1 describes an informal connection between LDAP and DNS. This connection primarily provides a mechanism for

an LDAP client to locate the directory server for a particular directory. The RFCs that define LDAP don't refer to DNS, but

they allude to it. For example, RFC 2255 defines the LDAP URL syntax, which I return to later in this chapter. On close

examination, you would find that the hostname component of this syntax clearly relies on DNS, although DNS isn't

mentioned. So the reliance on DNS is informal, but in practice every LDAP product expects LDAP clients to use DNS to

locate their LDAP directory server. There are good reasons for this dependency. One reason is that DNS is the dominant

name resolution standard, and another is that the transmission protocol that LDAP uses is TCP, which relies on DNS.

Table 2-1. Basic types of DNS records

Record

Type

Class Explanation

Address A Address records simply map a computer name to an IP address. More than one IP address can

be assigned to a computer name by using a second A record. More than one computer name can

be assigned to a single IP address, but you should use a canonical name record for this purpose.

Canonical

Name

CNAME The canonical name record is sometimes known as the alias record. It is used to allow a computer

to be referred to by more than one name; the secondary name is entered in a record with the IP

address of the primary name. Multiple canonical name records are allowed.

Mail

Exchange

MX The mail exchange record is used to indicate the IP address e-mail for a given name. You can

designate that all mail for a zone should be delivered to a single IP address.

Pointer PTR The pointer record has the opposite function of an address record. It maps an IP address to a

computer name. This allows computer services to verify that a request coming from a client is not

being hijacked by a nonauthorized computer.

Name

Server

NS The name server record is used to denote the authoritative name servers for the zone.

Start of

Authority

SOA The start of authority record is used to communicate with other authoritative name servers in the

DNS hierarchy. Information on how often to check for updates is stored in this record.

Service SRV The service record is used to indicate a network service. Several LDAP vendors use this record to

provide client location of a server.

DNS is used to register a directory service

One important implication of LDAP using the DNS namespace is that by registering a DNS domain name to connect a

host or zone of hosts to the Internet, you may inadvertently also register for a directory service namespace. There is a

parallel in the e-mail delivery namespace with the MX record and many other network-based services. When I register an

A record for mycompany.com with an authoritative DNS server, mycompany.com may become a valid directory service

namespace. Most vendors currently expect that your LDAP directory has an A record for each directory server. Some

vendors further expect that if you deploy a directory that is distributed across multiple directory servers, you will make

each of the directory servers subordinate in the DNS namespace. So for example, if I distributed the mycompany.com

directory, the directory servers might have A records of dir1.mycompany.com, dir2.mycompany.com, and so on.

LDAP is making increasing use of DNS for its namespace functionality

In addition to the informal expectations that have become practice, there has been some formal work with regard to the

relationship between DNS and LDAP. RFC 2247 provides a clear standard for DNS to easily be incorporated into the

namespace that LDAP uses within the directory. The domain component (dc) attribute is defined, and it can be used as a

naming attribute in the directory for container objects. Within the IETF, there is other extensive work on using DNS to

extend the LDAP namespace functionality. Draft documents include a proposal to use DNS SRV records for clients to

locate an LDAP directory for a given namespace. This proposal has gained significant support, as Microsoft's directory

implementation of it demonstrates. It will probably supplant the existing informal practice within a few years. Another

proposal suggests using DNS SRV records with referrals. Chapter 5 discusses referrals.

[Team LiB]

[Team LiB]

LDAP Object Structure

The internal structure of an LDAP directory primarily provides organization of entries via a hierarchy. The structure is

critical to the usability and manageability of the directory. The structure can also allow the benefits listed in Benefits 2-1 to

be easily provided.

Benefits 2-1 LDAP namespace benefits

The structure can make it easier to distribute information across multiple servers. A directory distributed across

multiple servers in turn provides greater reliability and the possibility of locating directory information close to

remote locations.

The structure can make management of access control simpler.

The structure can enable applications with specific directory requirements to be integrated into your directory.

The structure can simplify directory maintenance by grouping similar entries together.

The structure itself does not provide these benefits. For Mycompany to realize these benefits depends on its directory

implementation and design of the namespace. How each of these benefits is provided is a topic in itself (see Chapter 5).

A namespace with a hierarchy of structure has other benefits

As noted in the postal example, organizing directory objects hierarchically provides an effective means for delegating

management of the entries. To add entries, you would need some type of delegated authority in the appropriate place in

the directory. The layer of management that is created by the existence of a structure helps to enforce consistent data in

entries.

Containers enable structure

A hierarchy is possible in the LDAP directory because of container entries. Container entries are special entries that allow

other entries to be placed hierarchically beneath them. An entry beneath a container is sometimes called a child of the

container, or a subordinate entry to the container. The container is sometimes called the parent of the entries beneath it.

You can also refer to the relationship between the container and entries beneath it by saying the entries are contained by

the parent.

Allowed Structures

Only a specific kind of structure is allowed in LDAP

The namespace in an LDAP directory allows no arbitrary connections within the structure. Structures similar to the linked

relationship between Web pages (in other words, a Web structure) are not allowed. More specifically, a container can

have only a single parent directly above it. A container can have multiple child containers, but only a single parent. This

type of structure is commonly called a tree structure. This term may remind you of the alternate term for namespace:

directory information tree (DIT). Figures 2-2 and 2-3 show examples of valid and invalid namespace structures. The

regulated approach to the structure leads to little service disruption when new entries are added, because only the new

entry is written, and no existing entries must be modified.

Figure 2-2. Example of valid hierarchical namespaces in an LDAP directory

Figure 2-3. Examples of invalid hierarchical namespaces in an LDAP directory

LDAP Containers

With LDAP, any entry can become a container

You may assume that containers in an LDAP directory have an attribute that identifies the entry as a container. But this

isn't the case. An entry becomes a container when entries are placed under it, but the LDAP directory makes no

modification of the container entry when this happens. With LDAP, every entry holds the possibility of becoming a

container, and this design supports many hierarchical opportunities.

You create a container by creating an entry below another entry

You might also assume that container entries have an attribute that lists all the entries that are contained within that

container. This also isn't the case. The hierarchical structure is not stored by any special mechanisms aside from the

name of each entry. You create a container by creating an entry beneath another entry! This concept takes some getting

used to, as logic suggests that the container entry would need to be modified. However, specific LDAP implementations

may go beyond the LDAP specification and have special attributes for child information in order to offer additional

management functionality.

Although every entry can be a container, some object classes may make more sense

In some LDAP server implementations, there may be restrictions on which object classes an entry must have to become a

container. These restrictions are called structure rules (for more details, see Chapter 4). In general, there are several

object classes that are regularly used as containers for historical reasons. These object classes are favorites because

they are the only allowed containers in X.500. Table 2-2 lists these object classes with a short description of each object

class along with why they might be useful as a container.

Among these object classes, the organizational unit is used most widely. It is frequently employed for a wider variety of

purposes than simply political structure. You don't have to use these object classes as the containers in your directory,

but you may find that there are good reasons why these classes are favored.

Structure Rules

Structure rules restrict where an entry of an object class can be created

LDAP also supports structure rules specific to an object class (for detail beyond what's here, see Chapter 4). This

functionality is not necessarily part of the LDAP standard, but it is implemented by several vendors. Object class structure

rules impose restrictions on where an entry of a particular object class may be created. For example, I might associate a

structure rule with the organizational unit object class. This structure rule might require that all entries of

objectclass=organizationalUnit be immediate children of entries of objectclass=organization. This rule imposes an

additional restriction in the namespace, and it also limits functionality. Structure rules are enforced by the

schema-checking process. Mycompany will want to review any structure rules specific to its chosen vendor.

Table 2-2. Common object classes used for containers

Object Class

Type

Attribute

Name
Explanation of Use

Country c The country entry can provide geographical structure. As such, you typically use them

when you want to split directory information across servers based on geography.

Locale l The locality entry also provides geographical structure to subdivide the country container.

Organization o The organization entry provides a political structure.

Organizational

Unit

ou The organizational unit entry also provides a political structure.

Naming Contexts

Naming contexts are used to refer to portions of a directory

The name of each top-level container has the distinction of also being called a naming context. The naming context is

greater than just the container, though. A naming context is a contiguous subtree beginning at a top-level container. For

example, if you referred to the Accounts naming context in Mycompany, you would mean the Accounts container, all its

child entries, and all containers and entries beneath the Accounts container, as shown in Figure 2-4. In this way, you can

conveniently refer to portions of the directory. The naming context is the same terminology as a directory suffix (or a

context prefix in X.500). The Accounts naming context is the Accounts suffix.

Figure 2-4. Example of naming contexts in an LDAP directory

The directory has no single root entry; instead, all the naming contexts are peers connected by the

root DSE

There is really no directory object at the root of an LDAP directory. Instead, there is a special entry that is like a root

object, called the root DSE entry, that lists all the naming contexts on the directory server. The directory uses the naming

contexts to quickly differentiate whether a request for an entry is within the known naming contexts.

A flat namespace allows quick growth

In a directory with a flat structure, organization and management are typically disregarded, while adding new entries is

increasingly easy. As you can see in Figure 2-5, the lack of structure encourages easy growth because there is only a

single organizational container in use, with little to no restriction placed on additions. But in this model, consistency and

scalability can become a nightmare. Scalability becomes an issue when generic queries regularly return large numbers of

entries. Scalability can also be an issue when the number of useful unique names reaches its limit. This limit may be

reached because only one entry in any particular container can be named with any specific name. A hierarchical model

sidesteps these problems by organizing entries at multiple levels in the hierarchy.

Figure 2-5. A flat namespace in an LDAP directory

Don't Be Fooled by the Figures

Note that the figures throughout the book include a root entry, when in actuality there is no such entry. This

is purely to allow you to know the context of the namespace being pictured. It is a common practice in

diagramming directory namespaces, but it fooled me for a long time into thinking there really was a root

entry.

There are four basic divisions of a directory namespace that are useful:

Political/functional— Dividing information based on an organization, or difference in functional needs. For

example, you might separate the HR directory information from the Marketing directory information.

1.

Geographic— Dividing information based on the location of the clients who will be accessing the information or

based on the location of the real objects that the information in the directory represents. For example, you might

separate the personal information for individuals in Europe from the same information for U.S. citizens.

2.

Resource-based— Dividing information based on the type of resource. For example, you might separate the

printer information from the server information, or separate public resources from private resources.

3.

User classification— Dividing information based on users' needs. For example, you might separate

information for managers from information for staff.

4.

How Do I Decide How to Structure My Directory?

The decision on how to structure a directory can be a difficult one. Equally hard can be the decision as to

when to divide up a flat structure or a single container. Hybrid combinations of the four basic divisions of a

namespace can frequently fit a situation very well. Usually a geographical division is accompanied by

distributing the directory namespace across multiple servers. Chapter 5 covers distributed directory servers

in more detail. Another factor in the decision is a requirement to provide certain kinds of directory data in a

more fault-tolerant manner by replicating it across multiple servers. LDAP vendors have differing

requirements on what the smallest unit of replication can be, and this will affect design decisions.

Keep in mind that the single biggest reason to implement structure is to simplify management of the

information. If you implement a structure with no clear management goal, you will come to regret your

choices. While looking at each of the models for implementing a hierarchy, you should consider the following

questions:

Will users of the directory need different levels of access to the information? If so, what structure

can be implemented to simplify the access management?

Does the directory help to provide management of computers or other devices? If so, are there

compelling reasons to manage specific computers differently from others?

Are the political or organizational divisions under consideration? If so, make sure that you make it

easier to manage resources, users, or directory information. The most frequent mistake is to

blindly implement the structure based on internal organizational boundaries that require no

different level of management.

For every new container, ask, "What administrative management purpose does this container

serve?"

Try to keep your directory as flat as possible, while having enough structure to delegate management and

accomplish other goals like those in Benefits 2-1. Too much structure can be restrictive in future situations.

For example, if an extensive political structure is used as the basis of division of the namespace, a later

reorganization or company merger may pose serious issues. Interestingly, the LDAP standard has a

requirement that also may influence the design you implement. LDAP clients are only required to support a

hierarchy with ten levels between the root and any entry. If you implement something more complex, it may

not work! These guidelines may not create your structure for you, but they should help.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

LDAP Object Naming

With a firm grasp on DNS and the acceptable structures allowed in an LDAP directory, you are ready to consider the

internal details of the LDAP namespace. The namespace that LDAP employs is highly flexible, allowing for multiple

names for each entry and the possibility that different attributes can be used in forming the name. The naming flexibility

LDAP provides doesn't come at the cost of ensuring that each entry has a name that is unique across the directory.

Relative Distinguished Name (RDN)

The RDN is an entry's naming attribute; it has a unique value in the container of the entry

The relative distinguished name attribute provides a unique name identifier for each entry within a container. For example,

Figure 2-6 shows a person entry with an RDN of cn=Brian Arkills. There cannot be two entries with the same RDN value

within the same container. So there can be no other person entry in the People container with cn=Brian Arkills, and

within any specific container the cn attribute value must be unique for subordinate person entries to that container. The

RDN attribute is one of the entry's attributes, known as the naming attribute for that type of entry. But generally speaking,

the naming attribute for any particular object class is not forced to be a specific attribute. In the object class definition,

some LDAP vendors do force a specific attribute to be the naming attribute, but this is not part of the LDAP standard. In

the example in Figure 2-6, the cn (common name) attribute is the naming attribute of the person object class.

Figure 2-6. An example of an RDN

You can substitute a unique string of numbers called an object identifier for the attribute type in an

RDN

You can use a special string of numbers called an object identifier (OID) in place of the attribute type. Every attribute type

has a unique OID assigned to it. For example, the cn attribute's OID is 2.5.4.3. The OID is used to uniquely identify an

attribute type. For example, you might define an attribute type called myattribute. I might also define an attribute type

called myattribute. How can we know if they are the same attribute? By comparing the OIDs of the two attributes. For

more detail on OIDs, turn to Chapter 4; for now, you need to know that an OID can be substituted for the name of an

attribute type. The OID is relevant to namespace when an OID is used as the naming attribute. For example, a valid RDN

of the entry in Figure 2-6 is 2.5.4.3=Brian Arkills.

cn is frequently used in RDNs, but other types are possible

The cn attribute is the most commonly used naming attribute; however, there are several other attribute types that are

commonly used (see Table 2-3).

Naming Attributes

You can use any attribute with a unique value in the RDN

You can form the RDN using any attribute type on the entry that has a unique value among the entries in that container.

Although this rule may seem confusing, it allows the client more flexibility to identify an entry in an unexpected form.

Generally speaking, the schema checker must ensure that each new entry or modification to an existing entry leaves the

entry with at least one unique RDN, so the entry has a unique name. Some LDAP implementations do standardize the

naming attribute for any given object class; and in this case, attributes that are designated as naming attributes must

meet the uniqueness rule that the schema checker enforces. Either way, there is a guarantee that every entry has a

name that is unique across the directory.

Table 2-3. Common attributes used as naming attributes

Attribute Type Attribute Used For:

cn common name

l locality name

st state or province name

o organization name

ou organizational unit name

c country name

street street address

dc domain component

uid user identity

You can also use more than one attribute in the RDN. This is called a multivalued RDN. This functionality lets you specify

a unique entry with an intersection of two attribute values when one or both of the attribute values doesn't meet the

uniqueness requirement. For example, consider the situation shown in Figure 2-7. There are two people with the same

phone number, and two people with the same surname. You can't use either the phone number or the surname attribute

to uniquely indicate Luke Skywalker's entry, but a combination of both attribute types will create a unique combination.

The RDN would be sn=Skywalker+telephoneNumber=+1 222 222 2222. Of course, in this case you could more

easily use cn=Luke Skywalker as the RDN; but there might be instances in which you do not know the cn value, so it

would be more efficient to use the multivalued RDN. Not all vendor implementations fully support this functionality. Use it

only with careful planning.

Figure 2-7. An example of a multivalued RDN

Distinguished Name (DN)

A DN provides a name for users to uniquely refer to each directory entry

The DN provides a fully qualified name to each entry, so it is clear exactly which entry is referenced, and also where in

the hierarchical structure that entry is located. Under the LDAP specification, each entry does not store its DN, nor does

the directory index the DNs of directory entries. Instead, a DN is primarily for the users of the directory to be able to

indicate to the directory which entry is desired. A DN is presented by a client operation request, and the directory

dynamically looks to see whether an entry matches this purported DN. Specific vendors may store the DN as an attribute

of the entry or index all the DNs, but this is neither required nor expected.

The DN is a concatenation of the entry's RDN and the RDN of every container between the entry and

the directory root

Forming a DN can be a bit tricky because the user must know the RDNs of all the containers above the entry. The DN is a

string composed of the RDN of the entry concatenated with the RDN of the container of the entry concatenated with each

RDN of every container above that container. Commas delimit each component. Here is a simpler, recursive definition of

a DN: The DN is the string composed of the RDN of the entry concatenated with the DN of its container. As shown in

Figure 2-7, the entry on the right has two possible DNs:

cn=Luke Skywalker,ou=People,dc=mycompany,dc=com

or:

sn=Skywalker+telephoneNumber=+1 222 222

 2222,ou=People,dc=mycompany,dc=com

What's This Phone Number?

Attributes that express a phone number have a commonly accepted syntax so users around the world will

understand the number. The accepted syntax begins with a plus sign and the country code, followed by the

national phone number. There are two plus signs in the previous multivalued RDN example. One is part of

the multivalued RDN syntax to link the two RDNs into a single DN, and the other plus sign is expected in a

phone attribute.

Using Naming Attributes Appropriately

Naming attributes are critically important to your directory. The users of your directory will constantly be

referencing the values of these attributes to find and modify entries. This design has several implications.

The value of these attributes should not contain information that is considered private. Otherwise, you will

need to place access controls on the attribute, and this will prevent the attribute from being used as an RDN.

Using access controls can also lead to some entries being left out of critical business processes. Both

vendors and deployment teams alike can make the mistake of using an attribute with information that may

be considered private as the naming attribute of a critically important object class.

The value of the naming attribute should be static. Changes to a name can cause undesirable behavior in

programs that have been "hardcoded" to use a specific name. Just as a program is hardcoded, so are

people. They won't always know when a name change has been made, and they can have difficulty finding

this renamed entry or knowing that the renamed entry is the same as the original.

One way to sidestep both of these problems is to use an arbitrary, public, but unique value in the naming

attribute. This approach may feel wrong from a design perspective because the name is less personal, but it

is effective. It guarantees that everyone can query all the entries, and that the entry's name won't change.

Naming Special Characters

You should treat some special characters differently when they are used in a DN

You must treat several characters specially when they are used in a DN. You can store these special characters as

naming attribute values without the escape character; but when referring to these characters in a DN, you must escape

them. You specially notate these characters by preceding them with a backslash character (\) to avoid mistakes in

meaning. This is sometimes called commenting or escaping. For example, designating a DN with an RDN that has a

comma in its value would cause confusion because the directory uses commas in the DN to separate the DN

components. Treat the characters listed in Table 2-4 specially by escaping them in DNs.

RFC 2253 makes it clear that vendors can make other characters special, so take care to examine vendor

implementations for special cases.

Table 2-4. Special characters in distinguished names

Character Escaped Character

Comma (,) \,

Plus (+) \+

Double quotation marks (") \"

Backslash (\) \\

Less than (<) \<

Greater than (>) \>

Semicolon (;) \;

Space at beginning or end of an RDN \<space>

Octothorp (#) at beginning of an RDN \#

LDAP Hacking: Possible Code Injection?

Code injection and format string attacks are common security exploits in other technologies these days.

SQL, printf, Web servers, and homegrown Web applications have all exhibited this vulnerability in recent

years. These types of vulnerabilities are based on poor coding of exceptions or parsing of user input, and

they allow a malicious attacker to insert commands or code on a server. These types of vulnerabilities

usually surround special characters and ambiguous behavior on what to do with these special characters

when a user presents them as input. Although there are no known LDAP vulnerabilities in this area, I have to

believe that there will be exploits discovered in the near future. With more organizations centralizing data

into LDAP directories, more scrutiny will produce the trial and error needed to discover the coding mistakes

behind these vulnerabilities.

URL Naming

When using a Web browser as an LDAP client, you should use a special naming format

Most Web browsers today support LDAP client functionality. As a result, you can perform searches conveniently via a

browser. The naming format of the LDAP URL is fully specified in RFC 2255. This format is slightly different from that

used by standard LDAP clients. URLs have a large set of special characters that must be treated in a special way as

designated in RFC 1738, and the different format accommodates this. The LDAP URL-naming format is not exclusively

used by Web browsers; standard LDAP clients must also be able to use it to support referrals.

How to use LDAP URL syntax

An LDAP URL begins with the protocol designation ldap://, followed by the hostname and port of the directory server,

then the base DN and other designations, such as the scope, filter, and attributes desired. The syntax is

ldap://[hostname][/dn[?[attributes][?[scope]

 [?[filter][?[extensions]]]]]

The components of the syntax are

hostname— The hostname specifies the LDAP server and the TCP/IP port used by the LDAP server. As

indicated by the brackets, both the hostname and port are optional. A default of port 389 is used if the port isn't

specified. If the hostname isn't specified, the client must have prior knowledge of which server to contact.

Separate the hostname and port with a colon, mycompany.com:389, as specified in RFC 1738.

DN— The DN component specifies the base distinguished name for the search.

attributes— The attribute component specifies the attribute types to return from the entries that match the

search parameters. If left unspecified, all attributes are returned.

scope— The scope component specifies the scope of directory entries to return. As with typical LDAP

searches, base, one, and sub are possible values. If the value is left unspecified, sub is assumed.

filter— The filter component specifies a limiting filter on which entries should be returned. It follows the same

syntax as typical LDAP searches. If left unspecified, (objectclass=*) is assumed, so that all entries are

returned.

extensions— The extensions component specifies optional LDAP URL extensions. These extensions can be

defined as needed, and they don't necessarily correspond to LDAP extended operations. Only one such

extension has been standardized, called the bindname extension. The bindname extension allows the client to

specify the DN of a directory entry to use in authenticating to the directory. A subsequent authentication

challenge would then be initiated. You can find more details in Section 4 of RFC 2255.

Here is an example of an LDAP URL:

ldap://mycompany.com:389/cn=Brian

 Arkills,ou=People,dc=Mycompany,dc=com?sn

Given the sample directory shown in Figure 2-6, this search would return the sn attribute of the entry cn=Brian
Arkills,ou=People,dc=mycompany,dc=com. The search has the subtree scope, but the entry at the specified base

DN has no children, so only one entry is returned.

Special URL characters must be treated in a unique way

There are several illegal and special URL characters. These characters include the special characters noted earlier in this

chapter as well as almost all nonalphanumeric characters (the notable exceptions include $-_.!*'()). You must escape

these characters when you use them in an LDAP URL component. The escape method is fully described in RFC 1738,

but it amounts to substituting the % character and the two-digit hexadecimal ASCII code for the character in question.

Most browsers automatically translate illegal URL characters into the escaped version.

LDAP v2 Naming Conventions

LDAP v3 must support all LDAP v2 naming conventions

In addition to the special naming syntax restrictions defined by the LDAP v3 standard, LDAP v3-compliant

implementations must also support LDAP v2-compliant naming. LDAP v3 implementations can't generate LDAP

v2-compliant names, but they must accept and process those names by translating the names to the LDAP v3-compliant

standard. RFC 2253 Section 4 spells out this compatibility. There are distinct differences between the two versions. LDAP

v2 differs from LDAP v3 on the following points of syntax:

LDAP v2 uses semicolons as RDN separators.

LDAP v2 allows spaces before and after each of the following:

- RDN separators (either comma or semicolon)

- Equal signs between the attribute type and value

- Plus signs in a multivalued RDN

LDAP v2 allows quotation marks at the beginning and end of an RDN value, which are not part of the RDN

attribute value. If you use quotation marks in this way, all the special DN characters that usually require

escaping do not need to be escaped.

LDAP v2 allows the text OID. or oid. to prefix an OID attribute type string.

Again, an LDAP v3-compliant directory accepts all these differences in syntax, but it automatically translates them to the

correct LDAP v3-compliant syntax for processing.

Designing Your Directory to Be People Friendly

Although you can store the special characters listed in Table 2-4 as naming attribute values, carefully

consider the alternatives. For example, imagine that you are planning to store the cn of a person object in

the format lastname, firstname. Because of the comma in the CN, searches for those person entries would

have to escape the comma to successfully find the entry. Users would have to be familiar with the

characters that are considered special so they could successfully use the directory. Avoiding special

characters in naming attribute values isn't required, but by doing so you will create a more friendly

experience for your users.

[Team LiB]

[Team LiB]

Special LDAP Structural Concepts

As LDAP has matured, extensions to the structural functionality have rapidly developed to reflect the distributed

computing model. Certain structural features are needed to support a directory housed on multiple servers,

greater directory reliability, integration with other directories, and localizing directory data on a geographical

basis. Replication, referrals, and aliases are the advanced features used to enable this functionality. Some of

these special features are part of the LDAP standard, while others are available only in certain vendor

implementations. To explore further how to extend the LDAP namespace, see Chapter 5, which focuses on

directory management.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Summary

The namespace provides the structure to store and find directory information

In summary, the namespace employed by LDAP directories follows an ordered hierarchical model. The

preexisting DNS namespace at an organization is usually used to augment this model. The hierarchical model

provides many advantages, but perhaps the most critical is that knowing the name of an entry tells you where

the entry is located within the directory structure.

[Team LiB]

[Team LiB]

Chapter 3. Client LDAP Operations

While crafting the namespace structure is critical to the directory administrator, the LDAP operations are at the

heart of the client-to-server interaction. The LDAP operations are therefore what the typical user of your

directory needs to know about, although good client software abstracts even this interaction from view. Users

probably need only the search operation, which happens to be the most detailed operation. There are ten

primary operations defined by the LDAP standard. Administrators and programmers use this full set as they

manage directory information and create special business processes that interact with the directory information.

This chapter describes the purpose of each of the ten operations, and along the way I discuss issues that relate

to the client-server interaction.

The LDAP client is what a user sees of a directory

One of the most obvious topics involved in the client-server interaction is the LDAP client itself. The client

software is the key to people finding the LDAP directory useful and easy to use. If the client software requires

people to understand this book, or even a fraction of this chapter, they won't use the directory. Therefore,

well-designed applications that hide LDAP from users are important. Because the search operation is the most

prominent operation, it is addressed early in the chapter. You can explore how to create complex searches, how

to use comparison operators, and what client options affect the search operation. By understanding how the

client should work and what the common client configuration options are, you can educate users even if the

client software isn't friendly.

LDAP operations, extensions, client services, and APIs are examined

After addressing the topics of immediate concern to users, I turn next to other standard operations and

technical topics connected with the LDAP operations. In addition, I examine some extended operations and

controls that can make an LDAP directory more valuable. The chapter ends with a look at the details of using an

LDAP API. An organization that is developing a directory-enabled application or service needs to look at these

details. Directory users will employ LDAP client software that was written using these underlying APIs, but

typical users won't need to know about the API. For example, a programmer might design a program that

automatically fills out all the paper forms needed when a new employee joins the organization. The new

executive at Mycompany that was introduced in Chapter 1 would have a less painful first day with such a

program in place. These standard APIs are the primary reason why LDAP is such a popular choice, because

they work regardless of the client's operating system, making a multiplatform implementation possible.

Appendix A summarizes the standard C version of the API, as defined in RFC 1823. In addition, this chapter

takes a brief look at some of the functions in the C version of the API.

Client Software

The typical user cannot be expected to remember LDAP syntax. Good client software is necessary

to help users interact with the directory. You need to review a vendor's client software just as

carefully as you review the server features. The client software should focus on making the search

operation, especially the creation of a search filter, easy to perform. If a good client isn't available,

your organization may have to create a client interface that fits its needs. A programmer can design

a client with search filter options that include a user-friendly version of the filter and match

operators desired.

[Team LiB]

[Team LiB]

Directory-Enabled Services and Applications

Many applications benefit from being able to interact with the directory to find information. An application or

service that is capable of being an LDAP client is called directory-enabled.

Applications that can interact with a directory are called directory-enabled

Many e-mail services are directory-enabled

Among the most common directory-enabled applications are e-mail services. When an e-mail server receives

an e-mail, it can query the directory to find out whether the e-mail address recipient resides at the local site and

what e-mail server that person's mailbox resides on. Centralizing this information in the directory simplifies the

administration of the e-mail servers by eliminating the need for a synchronized copy of this information on each

e-mail server. For example, sendmail is a common UNIX mail server that can be directory-enabled (for more

details, see Appendix C). Microsoft recognized the importance of directory-enabling their mail server, Microsoft

Exchange 2000, and has integrated it with Active Directory (see Chapter 7).

E-mail clients can also be directory-enabled

Similarly, e-mail clients can be directory-enabled, and they provide a valuable service by looking up a

destination e-mail address given a person's name. Several e-mail clients allow the user to browse a directory

via an interface within the e-mail application and pick out recipients for an e-mail.

A Web-Based Client Interface

Many organizations implement a Web-based client interface for their directory. This approach

removes the cost of distributing client software and locating an adequate client for every platform. It

can even help provide some limited integration of multiple directories. However, if you want to

maximize the potential benefits of a directory, implementing more than a Web-based client

interface would be wise. A Web-based client integrates poorly with other software. Restricting the

client interface to a browser limits the usefulness of the data obtained by searching the directory.

Extending the functionality of existing user applications is a good way to help users take advantage

of the directory. For example, if you configured the users' mail application to search the directory

for an e-mail address through a simple command, users would see how the directory benefits

them.

The limits of directory-enabled services haven't been reached yet

Directory-enabled services have few boundaries. For example, you could use an LDAP directory

As a certificate authority store associated with public-private certificate technology. This also allows

you to provide a service to verify the validity of those certificates.

To catalog the location of HTML and other types of electronic documents. You could then query and

return a list of appropriate documents, just as a library catalog would do.

Microsoft's Active Directory LDAP implementation is a good example of how a variety of directory-enabled

services can be integrated. Via Microsoft's Active Directory, software can be distributed to computers, user and

computer configurations can be set, printers can be advertised to clients, and so on. Clearly, there are

significant benefits to centralizing information in a directory, especially information that helps manage

resources.

Mycompany simply needs creativity and integrated services that take advantage of the directory to realize this

potential.

[Team LiB]

[Team LiB]

Search

An LDAP operation consists of a client request, server work, and the results

All the LDAP operations consist of the client sending the operation request along with parameters to the server. The

server then performs the operation and sends a result code back to the client. The result code indicates the success or

failure of the operation. When the operation is a search operation, the server sends all the entries that match the search

parameters prior to sending the result code. There is no read operation, so if a directory user wants to read a specific

entry, she must perform a search operation specifying the entry.

Search parameters define what entries the server returns to the client and how it finds those entries

The search operation has many parameters that modify how the server performs the operation. There are mandatory

parameters that are required or the search will fail, and there are optional parameters that have default values if not set

otherwise. The search parameters affect only the single search operation for which they are set. Should you want to

modify all LDAP operations for a session, you must use an LDAP option, if there is an appropriate one. LDAP options are

discussed a little later in this chapter. Do not confuse LDAP options with optional search parameters or the attribute

options introduced in Chapter 4.

Mandatory Search Parameters

Where does the server begin looking?

The mandatory search parameters are

A base DN to begin your search— An idea of how the directory is structured is helpful here. In other words, if

you want to look up person entries, are they all in a common container? The base DN is sometimes also called

the baseObject. If I didn't know where to begin, I could start at the root of the directory. In Mycompany's

directory, this would be dc=mycompany,dc=com. So at a minimum, I must know the naming contexts of the

directory.

How far does the server look?

The scope of the search— There are three options for the scope. A base scope means to search only the

single entry at the base DN. A one scope means to search all entries at the same level in the hierarchy within

the container of the base DN. A subtree scope means to search the base DN and all entries beneath the base

DN, regardless of their level in the hierarchy.

What special characteristics do the entries have?

A search filter— Search filters are composed of an attribute type, a comparison operator, and an attribute value.

These three components are surrounded by parentheses and form a search filter item. The simple syntax of the

search filter item is "("attributetype operator attributevalue")" with no spaces between any of these

mandatory elements. The quotation marks enclose text that is constant in the syntax. For example,

(objectclass=person) would be a valid search filter item. One or more search filter items can be combined

with filter operators to form the search filter, so the example is also a valid search filter. Filter operators are

introduced shortly.

To illustrate the use of a search filter, if I wanted to find my entry as shown in Figure 3-1, I might use the following search

parameters:

Base DN: dc=mycompany, dc=com

Scope: Subtree

Search Filter: (cn=Brian Arkills)

Figure 3-1. Mycompany with my person entry

You can use filter operators to combine filters

You can combine filter items within the search filter parameter by using filter operators. Filter operators can modify a filter

item specified within the search filter parameter, and they can be used to combine multiple filters to designate intricate

sets of entries.

The filter operators available are

& AND

| OR

! NOT

These operators should precede the filter they modify. This precession is very similar to how functions in the LISP

language or operations in reverse polish calculators are represented. The following filters illustrate the use of the filter

operators with the directory shown in Figure 3-2. All the examples provided assume a base DN at the root of the directory,

along with a subtree scope.

Figure 3-2. Mycompany example for search filter operators

The filter

(|(cn=Brian Arkills)(cn=Chewbacca))

returns the entries of Chewbacca and me.

The filter

(!(|(cn=Brian Arkills)(cn= Chewbacca)))

returns all entries in the entire directory except Chewbacca or my entry, so it would return the entries of cn=Princess
Leia, cn=Han Solo, uid=barkills, upn=441276, upn=239316, as well as the ten ou entries pictured. Containers are

still entries.

The filter

(&(!(|(cn=Brian Arkills)(cn=Chewbacca)))(objectclass=inetOrgPerson))

finds all the inetOrgPerson entries except Chewbacca's or my entry, so it would return the entries of Princess Leia and

Han Solo.

The Search Operation Is Too Complicated for My Users

Explaining how the search operation works and the valid values for the mandatory parameters (and the

optional parameters that haven't been introduced yet) is a daunting task. Most users won't understand (or

worse, will be intimidated and won't try) even with good documentation for reference. This is where client

software comes into play. Good client software might have the most common search types already defined.

For example, a user could simply enter a name to search for a person. The software would recognize the

type of search and would supply the correct parameters to the directory.

For example, the Pine e-mail program (UNIX, Windows, or Web-based) can be preconfigured to search your

directory with a given base DN and scope. A user enters a name on the To: field of a new e-mail, and the

program looks up the address in the directory and enters it in the e-mail message.

Search filters are the most dynamic and interesting parameter in the LDAP search operation. For more details on search

filters, see the following section, Search Filters.

Optional Search Parameters

Should the server return the entire entry or just some of the attributes?

The optional search parameters are

What attribute information to return— If you don't specify what you want, all the attributes of the entries the

server finds will be returned. You can list the attribute types you want in a list separated by commas. The

operational attributes, which are the attributes that the directory uses for its own purposes, are never returned

unless explicitly specified. You can also specify that no attributes should be returned by denoting the attribute

1.1. This designation holds significance as a special OID number that is not associated with any attribute type.

See Chapter 4 for more information on both operational attributes and OID numbers.

How should the server treat alias entries?

derefAliases— Denotes how to deal with alias entries. An alias entry is a dummy entry that references or

points to another entry. Dereferencing an alias simply instructs the server to go to the object that the alias

references, and for the purposes of the search, treat the referenced object as if it were the alias object. The

following options are available (for more information on alias entries, see Chapter 5):

- neverDerefAliases Don't look up any alias reference.

- derefInSearching Look up all alias references except on the baseObject.

- derefFindingBaseObj Look up alias references only on the baseObject.

- derefAlways Look up all alias references.

How many entries should the server return?

sizeLimit— Limits the number of entries to return on the search. The default value of 0 denotes no limit. If a

search finds more entries than what is specified as the limit, only the first set number is returned. In this case, a

result code of LDAP_SIZELIMIT_EXCEEDED is returned to indicate that more results were available.

Settings in other places can modify the effects of this parameter

Many LDAP server implementations allow the directory administrator to set a mandatory upper sizeLimit for all

client operations. In this case, the client can set a limit with a lower value, but limits greater than the server limit

are disregarded. Some LDAP servers have a special user that can override the size limit. Another modifier

called an LDAP control can be used to tell the server to send the results back to the client in pages. For

example, the directory might have a sizeLimit of 50, and a search that yields 100 entries normally only returns

the first 50. But if I ask for a page size of 50, the server would send the first 50 entries to my client, then the

second 50, and I'd see all the entries. LDAP controls are modifiers that apply to a single LDAP operation. LDAP

controls, including this one, are discussed later in this chapter.

How long should the server work on this request?

timeLimit— Limits the time in seconds allowed to complete the search. The default value of 0 denotes no

limit. If a search operation takes longer to complete than the specified limit, the operation will finish at the time

limit. Only the entries found in this time period are returned. In this case, a result code of

LDAP_TIMELIMIT_EXCEEDED is returned to indicate that more results were available. Some LDAP

server implementations allow the directory administrator to set a mandatory upper timeLimit for all client

operations. Some LDAP servers have a special user that can override the server time limit. The client can set a

limit with a lower value, but limits greater than the server limit are disregarded.

Does the client want the attribute pair or just the type?

typesOnly— If set to true, the results will list only the attribute types, not the values. The default value of false
denotes that both the attribute types and values should be returned.

Search Filters

You use match operators to limit the attribute values specified in the search filter

In addition to the filter operators, other operators, called match operators or comparison operators, can modify the search

filter. Most documentation on the subject confuses match operators with filter operators. But match operators do not

operate on the entire filter expression, only on the attribute value. The match operators are usually common mathematical

operators, such as equality or greater than or equal. You use match operators to help designate the entries that match

the attribute value parameters desired. The operations used to match vary depending on the specific type of data stored

in the attribute. Most attributes store some type of string value, in other words, text. Therefore, the most common match

operators you will use are string match operators. Here are the string match operators:

= Equality— We have already looked at a few examples together.

<= Less than or equal to— (sn<=Arkills) would return entries alphabetically prior to Arkills in addition to

Arkills, for example sn=Adams. Note that in combination with the not filter operator, you can create a

greater-than operation that doesn't include the entry that is equal.

>= Greater than or equal to— (sn>=Arkills) would return entries after Arkills in addition to Arkills, for example

sn=Chewbacca. Note that in combination with the not filter operator, you can create a less than operation.

~= Approximate— (sn~=Cat) would return entries like sn=Scat, sn=Cast, sn=Hat, and sn=Mat. The

algorithm employed for the approximate match filter varies depending on the implementation, so these

examples may not work in your environment. Usually a single character wildcard is permitted in any position, but

this is not standardized, and the approximate match operator isn't always implemented.

Does the Search Operation Really Need These Parameters?

If you omit the optional parameters in a client request, the default values will be assumed. However, in the

larger design sense, yes, all of these parameters are useful. The optional parameters provide a greater level

of control over what information is returned, and how much work the directory performs for any client

request. This level of control makes the interaction more efficient.

You can use a wildcard to match substring values

Finally, you use the asterisk (*) as a wildcard for zero or more characters in the values of strings. You can use the

wildcard by itself to detect the presence of an attribute or in combination with other characters to find substrings. In the

example directory shown in Figure 3-3, a search filter of (cn=*Skywalker) would return the entries of both Luke and

Anakin Skywalker. Both the presence and substring capabilities that the wildcard provides are very useful.

Figure 3-3. Example directory for wildcard match

The available match operators are linked to the type of the attribute

As noted already, the list contains only the match operators for the string type. There are other match operators for other

types of data. However, most of these operators work with other data types because these operators are fairly common

across all the syntaxes.

Extended Match Filters

New match operators can be defined with LDAP v3

LDAP v3 lets you define additional match operators and rules in the schema for specific data types. How you define these

match operators for data and attribute types is covered in Chapter 4, in the section on attribute-matching rules. You can

specify these extended match operators in the search filter by using an extended match filter syntax, which is slightly

different from the simple search filter syntax already described. The extended syntax of the search filter is

"(" attributetype [":dn"] [":" extendedoperator] ":=" attributevalue ")"

The optional elements are in [brackets]. The extended operator is usually an OID, but a descriptive name can also be

assigned in the schema and used here in the filter.

The filter (cn:1.2.3.4.987:=Brian Arkills) would match any entry by comparing "Brian Arkills" with the values in their cn
attributes, using the matching logic defined by the matching rule denoted by OID 1.2.3.4.987. Should this OID not denote

a matching rule that the directory supports (and in this case the OID is a fabrication of the author), the directory will return

an error code.

The DN of entries can be searched with an extended match filter

Extended match filters also let you search the DN of an entry for value matches. This may be a bit confusing at first. An

entry's DN contains all the RDNs of the object above it in the directory structure. These RDNs may or may not be

attributes of the entry. So if you wanted to find all the entries with ou=People in the DN, you would need to use an

extended match filter. Now you may be thinking, "Why wouldn't you use a search with a base DN at the People OU, and

a one-level scope?" This seems to accomplish the same thing. But consider the possibility that a referral might reside in

the People OU. The more simple search would return records via this referral that technically do not have ou=People in

their DN. Also consider the possibility that there might be more than one container with an RDN of ou=People in the

directory. In this case, a single search without extended match filters would fail to capture all the entries. Multiple

searches would work, but that approach might be inconvenient. Not all LDAP servers support extended match filter

searching for DNs.

Special Characters in Search Filters

You must treat special characters differently when they are used in the attribute value portion of an

LDAP search filter

There are several special characters that must be treated differently when used in the attribute value portion of a search

filter. You must escape these characters just as you had to escape the special characters in the DN or LDAP URL format.

Table 3-1 lists the special search filter characters along with the escaped character sequence.

You must use the hexadecimal value of the character, which is different from quoting the special characters in DNs.

[Team LiB]

[Team LiB]

LDAP Protocol

The server does most of the work

The LDAP client-server session minimizes client processing overhead. The server is responsible for performing the

operations requested and bears the processing load, while satisfying the client request. In the client-server model, the

server is designed to handle large computing loads, with larger processing and memory capacity, while the client may

have little to no computing power. After the server performs the requested operation, the client receives a response or

error from the server. The client does little work other than sending the request and receiving the answer.

Table 3-1. Special search filter characters

Character Desired in Attribute Value Escaped Character

* \2A

(\28

) \29

\ \5C

NUL \00

The client can make multiple requests to multiple servers

LDAP is message based, so the client can make multiple requests with a single session. These multiple operations from

the same session each receive server attention at the same time, and therefore a great deal of work can be performed in

parallel. Multiple sessions from the same client are also possible at the same time, so a single client can interact with

more than a single LDAP server.

The result code indicates the end of the client operation

If the client submits a search request that returns several entries, several messages are returned to the client. Each

returned entry is enclosed in a separate message to the client; and when all the entries are returned, a final result code

message is sent to the client. Should a referral be returned, then, depending on the applicable settings, additional client or

server traffic may result prior to the final result code indicating completion of the operation. Asynchronous LDAP APIs

change this behavior; for more details, see the following section, APIs.

LDAP uses TCP/IP and is a very efficient communicator

The LDAP transport makes very efficient use of network traffic. LDAP uses TCP/IP for network communication. TCP/IP is

processor and memory intensive, with error checking built into the protocol, and it is most efficient for sessions of more

than trivial length. Startup and shutdown of TCP sessions can be a costly use of computer and network resources. The

ability to perform multiple operations makes LDAP capable of making good use of communication resources.

The client-server interaction usually follows this pattern:

Client connects to server and requests a bind operation.1.

Server returns bind operation result code (success or the process ends here).2.

Client requests a search operation (or some other operation).3.

Server returns message with located entry or entries from search operation. If no entries are found, no entry

messages will be sent.

4.

Server sends search operation result code to client.5.

Client requests an unbind operation.6.

Server sends unbind result code and closes connection.7.

Note that result codes are important, in that they signal the completion of an operation as far as the server is concerned.

CLDAP uses UDP instead of TCP and uses considerably fewer resources than LDAP

There is a form of interaction with an LDAP directory that uses even less communication overhead than the traditional

LDAP protocol based on TCP interaction. This form is called connectionless LDAP, sometimes abbreviated as CLDAP.

RFC 1798 defines CLDAP, which uses UDP instead of TCP. A CLDAP transaction can use up to a third fewer network

packets than LDAP. CLDAP further simplifies the directory model by restricting the number of operations available.

CLDAP is primarily intended for use by very simple clients that need to quickly look up information in a directory. The low

overhead and even more simplified operations available may be appropriate for some uses at your organization. Very few

LDAP servers or client APIs support CLDAP yet. Messaging Direct is an example of one product that supports CLDAP to

enable a high volume of messaging service queries.

LDAP Operations

The ten operations that LDAP defines cover the necessary interaction with a directory. The limited number of operations

means that both the client and server are simple to implement and require limited resources.

Problems with CLDAP

The primary problem with CLDAP is acceptance and deployment in existing LDAP products. There are many

uses for an even simpler interaction, but only a limited number of products have implemented CLDAP. I'd

like to see the IETF include CLDAP in the LDAP core standard in order to more strongly promote its

acceptance.

A secondary problem arises from the fact that CLDAP is UDP-based. UDP transactions are vulnerable to

attacks, and provide very little in the way of error checking and handling. This might cause problems for

directories on the Internet that support CLDAP. But as long as CLDAP is configurable with an on/off toggle,

I'd rather see it included in all products.

Bind

Bind establishes the identity of the client

The bind operation is the first request a client sends to the server. Binding is the same task as authenticating to the

directory. The client is verifying its identity to the directory, so all future operations can be performed in the context of that

identity. A client that doesn't bind, or that binds with an empty string as the identity, is said to be anonymous. One identity

may be allowed to view directory information that another identity can't. Binding to the directory provides an authorization

context for allowing or denying the subsequent operations. The bind operation has two parameters: a DN and a set of

credentials. Some LDAP directories are configured to support anonymous binding, and others are designed to allow no

requests from anonymous clients. This design choice is typically linked to the sensitivity of the data in the directory.

Search

The search operation is discussed in detail earlier in this chapter.

Compare

Compare verifies that an attribute value is known

The compare operation simply verifies whether the information passed by the client matches the information stored in the

directory. The compare operation is less useful than the search operation, except for one key situation in which it works

differently from the search operation. If you ask to compare an attribute of an entry, but the attribute isn't present on the

entry, a special result code is returned. A search operation for an attribute that isn't there returns no entries but a success

result code. The compare operation has three parameters: a DN, an attribute type, and an attribute value.

For example, a compare operation request with the following parameters, against the directory pictured in Figure 3-1,

would return a TRUE response.

DN: cn=Anakin Skywalker,ou=People, dc=mycompany,dc=com

Attribute: telephoneNumber

Value: +1 212 121 2121

Add

Add creates new entries

The add operation allows the client to create a new entry. For it to be successful, the add operation requires that the client

specify what object class(es) the new entry will contain, and that all mandatory attributes of that object class be supplied

with values. The schema-checking process on the server enforces these requirements. Additionally, the container object

of the new entry must already exist, and no existing entry can have the same DN. If there are structure rules for the

entry's object class, they also must be met. Finally, the DN (and any RDNs) must be in the proper form with any illegal,

special characters escaped. The add operation has primarily two parameters: a DN (of the new entry) and the attribute

pairs (type and value) that you want to include on the entry. You can specify as many attribute pairs as you want (or as

many as are required by the object class).

As an example, an add operation request to the Mycompany directory with the following parameters would be successful.

I've denoted the list of attributes with semicolons delimiting the attribute pairs and with an equal sign connecting each

pair. The actual syntax would depend on the API used.

DN: cn=Boba Fett,ou=People,dc=mycompany,dc=com

Attributes: cn=Boba Fett;sn=Fett;objectclass=person;

Delete

Delete removes entries

The delete operation removes an entry from the directory. All information associated with that entry (the values of the

entry's attributes) is removed. Of course, for the operation to succeed, the entry specified must exist. Additionally, that

entry cannot be a container with child entries. A delete operation has a single parameter: the DN of the entry.

A delete operation request with the following parameter would delete the entry we just created in the previous Add

section.

DN: cn=Boba Fett,ou=People,dc=mycompany,dc=com

Modify

Modify changes the attribute values of an entry

The modify operation allows the client to modify existing attributes of an entry, delete attribute values, or add a value to

one or more attributes. The entry designated must exist for the operation to succeed. All the attribute modifications must

succeed or the entire operation will fail. This condition avoids an inconsistent entry state in which the operation only

partially succeeds. It also avoids the need for the client to order the attribute modifications in a least-to-highest risk order.

The modify operation has two parameters: a DN and the set of attribute modifications desired.

Anakin's phone number has changed, and he is anxious to make sure the directory reflects his new number so he doesn't

miss any calls from any ladies. He would also like to update his homePostalAddress so the Jedi Academy knows

about his new home. A modify request with the following parameters will get the job done:

DN: cn=Anakin Skywalker,ou=People, dc=mycompany,dc=com

Attributes: telephoneNumber=+1 212 121 2121;

homePostalAddress=31580749 Sith Way $ Jedi

Academy $ Coruscant;

ModifyRDN or Rename

ModifyRDN renames the entry or moves the entry within the directory

The modifyRDN operation allows the client to rename the directory entry. The existing DN is specified, and the new RDN

is supplied. The rename operation has four parameters: the DN to be renamed, the new RDN for the entry, a flag to tell

the server whether to keep or delete the old RDN as an attribute of the entry, and an optional parameter for specifying a

new parent container DN. This last optional parameter is important; it doesn't exist in the LDAP v2 standard. It lets you

move an entry anywhere in the directory. The entry being moved can be a container with child entries beneath it. If the

entry (or entries) being moved is being relocated to a DN on another server, the operation may fail depending on the

vendor implementation. In this case, the client should be prepared to receive an affectsMultipleDSAs error in the result

code. Even though the ability to specify a new parent DN is an essential requirement of meeting the LDAP v3 standard,

some LDAP servers that advertise themselves as LDAP v3 compliant do not support this functionality.

The modifyRDN operation's ability to move an entry or even an entire portion of the directory tree can be confusing. The

following examples should help to illustrate how this operation can be used. Each example is accompanied with a figure

that shows how the directory looks before and after the operation.

Leia's name must be updated to reflect her marriage to Han Solo. The following modifyRDN operation parameters are

used.

Original DN: cn=Princess Leia,ou=People, dc=mycompany,dc=com

New RDN: cn=Leia Organa-Solo

Delete-Old-RDN: TRUE

New Parent DN:

Figure 3-4 shows how the directory looks before and after the operation.

Figure 3-4. ModifyRDN used to modify only the RDN

Mycompany's Sales department manages the Customers container in which all customer contact information is kept. The

Sales department is now a division of the HR department. Because the HR department manages the People container,

the HR department wants the Customers container moved under the People container to reflect the organizational

change. The HR department also wants to rename the Customers container to Customer Contacts. The following

modifyRDN operation parameters are used.

Original DN: ou=Customers,dc=mycompany,dc=com

New RDN: ou=Customer Contacts

Delete-Old-RDN: TRUE

New Parent DN: ou=People,dc=mycompany,dc=com

Figure 3-5 shows how the directory looks before and after the operation.

Figure 3-5. ModifyRDN used to both modify the RDN and move the entry

Many people know Chewbacca by his nickname Chewie. His name must be updated to include both his formal name and

nickname. The following modifyRDN operation parameters are used. After this operation, the original RDN will no longer

be a valid DN, but it will remain as an attribute of the entry.

Original DN: cn=Chewbacca,ou=People,dc=mycompany, dc=com

New RDN: cn=Chewie

Delete-Old-RDN: FALSE

New Parent DN:

Figure 3-6 shows how the directory looks before and after the operation.

Figure 3-6. ModifyRDN used to modify the RDN, while leaving the old RDN

You may have expected to see both "Chewie" and "Chewbacca" in the second tree. But because of space restrictions, I

can't list all the attributes of each entry … so pretend you can see the additional attributes associated with all these

entries.

Why Can't the ModifyRDN Operation Have Just Three Parameters?

It seems more efficient to use just these three parameters: the DN to be renamed, the new DN, and the flag

on whether to delete the old RDN. But keeping backward compatibility with LDAP v2 servers is more critical

than simplifying the operation by making a major change between versions. Both LDAP v2 and X.500

support this operation with less functionality, so the LDAP v3 operation has simply added an additional

parameter.

Unbind

Unbind cleanly ends the client session

The unbind operation allows the client to close its existing session with the directory. The directory obliges by discarding

any client credentials it is holding, and it ceases any work on behalf of the client session, effectively terminating the

session. Note that the connection, in other words, the TCP session between the client and server, isn't necessarily

terminated. After an unbind operation, if the client requests a new operation without binding, the new operation will be

evaluated in the context of an anonymous client. The unbind operation has no parameters. If the client terminates the

session without issuing an unbind operation, most LDAP implementations use a session timeout parameter to accomplish

the same end. The directory administrator can set this directory-wide timeout parameter.

Abandon

Abandon cancels a specific client operation request

The abandon operation allows the client to tell the directory to cancel a specific previous operation it requested. This

eliminates the need to unbind and rebind, should the client not want to wait for the results of a lengthy operation. This

operation improves the potential efficiency of the client and server. The abandon operation has a single parameter: the

message ID of the operation the client wishes to cancel. Note that a timing issue is possible with this operation. The client

could send an abandon request that arrives at the server after the server has sent the complete result code (and entries)

from the operation the client is canceling.

Extended

Extended operations allow new operations to be defined and used

The extended operation is a placeholder for specific directory implementations to extend the functionality of the directory

but still have a predefined syntax for doing so. Additional security functionality such as session encryption is a good

example of an extended operation. An extended operation can have parameters just as any other LDAP operation does.

An LDAP directory must advertise what extended operations are available in the root DSE object in the

supportedExtension attribute. The root DSE object is a special directory entry with an empty DN: "".

RFC 3062 defines an extended operation to modify passwords

An example of an extended operation that has reached RFC status is the password modify extended operation as defined

in RFC 3062. This operation addresses a common need of organizations. Traditionally, LDAP directories stored

authentication information internal to the directory so each authentication identity had its own DN. In other words, the

username and password were integrated with the LDAP namespace. Now, however, many LDAP directories use primarily

SASL as the means of authentication. This allows for an external store of authentication information, using a non-LDAP

namespace. Therefore, the traditional method of changing a password using the modify operation won't work in this

instance. This extended operation provides a way to modify a password external to the directory.

LDAP Controls

LDAP controls allow a client to ask the server to perform a standard operation in a slightly different

way

LDAP controls constitute an extra parameter that alters the behavior of one of the standard LDAP operations. A control

allows an LDAP client to take advantage of a special feature that an LDAP server supports. An LDAP directory must

advertise what controls are available in the root DSE object in the supportedControl attribute. The special feature

provided by the control can affect how results are returned, allow the client to access entries that are usually ignored,

perform a task that is normally impossible with a single operation, or other added functionality that could accompany one

of the standard LDAP operations. LDAP controls are designated with an OID and are used in the extended versions of

the client API functions.

The paged search control modifies the search operation by asking the server to return entries in

pages

A common example of an LDAP control is the paged search control. This control supports a way to retrieve search results

from the server a few at a time, instead of all at the same time. This capability is helpful when there is low bandwidth

between the client and server, or when the expected number of entries is large. The client specifies a desired page size

(in other words, the number of entries per LDAPMessage), and the server returns the smaller set along with a message

that the results are paged and the expected number of entries so the client can request the rest by asking for the next

paged set. This control provides the only way to circumvent a mandatory upper sizeLimit that is set at the server and

affects all sessions. For example, if a directory administrator set a server mandatory sizeLimit of 500 entries, a normal

client search would return only the first 500 entries and not reveal any other matching entries. But a search using the

paged search control would allow the client to see all the matching entries in pages of 500 at a time. The limit of 500 due

to the sizeLimit is still enforced, but the client can still accomplish its task.

The server-side sort control returns sorted search results

Another well-known LDAP control is the server-side sort control defined in RFC 2891. This control works in conjunction

with the search operation and asks the LDAP server to sort the entries it returns based on the parameters the client

requests. The parameters can include one or more attribute types, matching rules, and ascending or descending order.

This control is intended to save the client processing time and resources.

Persistent search control continues to return results indefinitely

Another extended search control is the persistent search control. This control allows a client to receive constant updates

on entries that fit the search profile submitted, in other words, the base DN, scope, and filter. When the specified entries

change, the client is notified. This type of functionality is extremely useful, especially in a context in which you'd like the

directory to feed information to a program or other directory. Unfortunately, this control is not documented in an RFC, but

several vendors, including Netscape and Microsoft, have implemented it. Three different designs of this control have been

submitted to the IETF for comment: PSEARCH, TSEARCH, and DIRSYNC. These nicknames represent so-called

Internet-drafts, which are proposals that were submitted but didn't make it to Internet standard. To make matters worse,

vendors have begun implementing slight variations of these three. For example, Microsoft's Active Directory implements a

version of PSEARCH with a different OID than that specified in the Internet-draft: 1.2.840.113556.1.4.528. Fortunately, an

effort known as LDAP Client Update Protocol (LCUP) is seeking to bring these three different implementations together in

an RFC. For your reference, you can find information about these draft controls and LCUP in Appendix A.

LDAP controls are constantly in development to extend the functionality of LDAP

There are many other controls under development. For example, one draft control allows the client to direct the directory

server how to handle referrals when chaining is supported. Another draft control called virtual list view lets the client

specify that the server return search results in a special order and number designated by the client. This draft control is

designed to replace the existing paged search control and will help e-mail clients more fully integrate with LDAP, so long

lists of e-mail addresses can be browsed in a list by a specified number of entries. Clearly LDAP controls are an area in

which considerable development is under way, and the functionality of LDAP is being extended to meet many needs.

You'll see more examples of LDAP controls in Part II, when we look at several LDAP server products.

Controls Are More Important Than the Extended Operation

The extended operation provides a mechanism for an additional operation to be defined and used. But

controls allow an existing operation or many existing operations to be modified. This turns out to be far more

important, because the existing operations are comprehensive. As a point of reference, far more new

controls have been defined than extended operations.

LDAP Client Options

The LDAP API is an important component of the LDAP framework

LDAP client options allow the LDAP client to specify standard settings for the duration of an LDAP client session, as

opposed to a single operation. LDAP client options apply to a server session; so if a client has a session open to two

different servers, the options set on one session do not apply to the other server session. LDAP client options are

different from LDAP attribute options (for more detail on these, see Chapter 4). The LDAP C API designates several

standard client options, and any LDAP implementation can define new ones. The following list comprises some of the

options listed in the API RFC:

LDAP_OPT_DEREF

This option allows the client to control how aliases are handled. The valid values are

- LDAP_DEREF_NEVER: Never dereference aliases.

- LDAP_DEREF_SEARCHING: Don't dereference an alias at the base DN, but dereference

otherwise.

- LDAP_DEREF_FINDING: Dereference an alias at the base DN, but don't dereference

otherwise.

- LDAP_DEREF_ALWAYS: Always dereference.

LDAP_OPT_SIZELIMIT

This option controls the maximum number of entries that can be returned.

LDAP_OPT_TIMELIMIT

This option controls the maximum amount of time the server spends completing an operation.

LDAP_OPT_REFERRALS

This option controls whether the client chases referrals. The valid values are

- LDAP_OPT_ON: Chase all referrals.

- LDAP_OPT_SUBORDINATE_REFERRALS: Chase only subordinate referrals.

- LDAP_OPT_EXTERNAL_REFERRALS: Chase only external referrals.

Significant options not defined in the API RFC that Mycompany may want its vendor to support include:

LDAP_OPT_SSL

This option directs the client to use SSL on client connections.

LDAP_OPT_REFERRAL_HOP_LIMIT

This option sets the maximum number of referrals a client will chase on a single operation.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

APIs

LDAP client options set parameters for an entire session

The C language LDAP application program interface (API) specified in RFC 1823 is not part of the LDAP

standard. However, it is critically important because it helps to define a base framework for programmatically

interacting with an LDAP server. Even though this RFC is not part of the standard, almost all vendors

implement it. This RFC is an unofficial part of the standard by sheer use and implementation. This RFC is

based on the LDAP v2 standard. There is work in progress to produce a replacement RFC that covers LDAP

v3.

API calls mostly map to the standard server operations

The function calls specified in RFC 1823 mostly map to the basic LDAP operations. For example, consider the

server operation used to add entries. There is a standard API function called ldap_add() that a client program

would use to ask the server to perform the add operation.

Each function has a real-time version and a version that combines results into a single

response

For each function, there are usually two versions. A synchronous version blocks until all results are available.

The program calling a synchronous version doesn't get control until the server finishes replying to the request.

The asynchronous version immediately returns a message ID. The program can then use other functions

(supplying the message ID) to determine when the server has returned results for the operation. The

synchronous versions are easier to use, but the asynchronous versions give your program greater efficiency

and freedom at the cost of managing multiple requests/replies. The synchronous versions have a "_s"

appended to the end of the function name, while the asynchronous versions do not. For example the

synchronous version of the add operation is ldap_add_s(), whereas the asynchronous version is ldap_add().

Additional versions of functions offer other functionality

Several of the functions have more than just the synchronous and asynchronous versions. Some of the

functions support slightly different functionality. Each set of versions of a function is loosely called a family, or

friends of the primary function.

The LDAPMessage structure holds the results of the client's request, and it can be

manipulated by functions

Results or errors from the primary operation function calls are returned via a special data structure called the

LDAPMessage. The results in this structure can then be accessed by function calls that do not map to the

primary LDAP operations. These other functions allow you to step through results or errors as you see fit. For

example, one such function, ldap_first_entry(), calls the first entry returned in the LDAPMessage. This entry

can then be stepped through with functions like ldap_first_attribute(). The functions ldap_next_entry() and

ldap_next_attribute() allow you to step to the next entry and attribute, respectively.

LDAP API functions are flexible and easy to use

For a list of the functions defined in the LDAP API, see Appendix A. All the functions are included to highlight

the flexibility available, should your organization want to develop applications that use their LDAP directory. In

addition, the complete listing serves as a quick reference for developers getting started with the LDAP API.

Each function is accompanied by a short description. More details on these functions can be found in the RFC,

and programmers will want to consult vendor-specific API implementations for differences or significant

additional functions.

API libraries in almost every language and platform are available

There are many different implementations of LDAP APIs in a multitude of languages. Netscape's LDAP SDK

provides APIs in C, perl, and Java. Sun provides JNDI, a Java API. The PerLDAP SDK uses the perl language.

Microsoft provides the ADSI SDK, which can be used with any COM-compliant language, such as C, C+, Visual

Basic, Java, and VBScript. Many other APIs exist, including ones for PHP, ODBC, server-side JavaScript,

ColdFusion, and others. Books on using the APIs and online resources should make it easy for a programmer

to locate and learn whatever is needed.

[Team LiB]

[Team LiB]

Summary

LDAP operational functionality benefits from a unique blend of standardization and

entrepreneurship

The client-server operational functionality of LDAP directories is largely standardized across every vendor's

product. This provides a baseline of interoperability that is critical to LDAP's success. You will find this baseline

invaluable when you want to centralize directory information. However, the operational functionality is not fixed

or limited by the standards. Both the extended operation and LDAP controls provide a means for operational

extension. This allows vendors to create unique and powerful enhancements that advance the usefulness of

LDAP directories. Not all the operational functionality of LDAP directories is tied to the client-server interaction.

In fact, the standard is largely silent about server-to-server interactions. For more detail on this topic, see

Chapter 5.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Appendix Material

Appendix A contains reference information on the LDAP API functions, as well as the draft controls mentioned.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Chapter 4. LDAP Schema

Chapter 1 introduced the schema and its importance. The schema defines the rules that govern much of what the LDAP

directory can do. When you change the rules of a game, the game can change significantly. The nice thing about the

schema is that users interacting with the directory usually don't need to be aware of it, and certainly they don't need to

understand how it works.

The schema holds a central importance, which is hidden from users

The schema determines the type of data a directory holds

But the schema defines more than just the rules of interaction; it defines what kinds of entries can be created in the

directory. It defines what information the directory can store. So modifying the schema can greatly increase the value of

the LDAP directory and its flexibility.

Modifying the schema can extend the functionality of a directory

You modify the schema to allow new types of objects or to create a new attribute type. The impact of creating a new type

of entry can add greatly to the functionality of a directory. You can also add to the attribute-matching rules and, by doing

so, change how the LDAP directory resolves search operations. I discuss some interesting examples of schema

modifications at the end of this chapter.

The schema components are highly interdependent

The schema consists of several components. Figure 4-1 represents how each of these schema elements relates in the

context of the schema. You can use it to visualize each of these elements as it is explained. There is quite a bit of

interdependency between each of the elements; in fact, each schema element might depend on several other schema

elements. Complex elements such as object classes and attributes are built from simpler elements such as syntaxes and

matching rules. Figure 4-1 shows this dependency among elements.

Figure 4-1. Conceptual diagram of schema

Object classes and attributes are the top level of the schema

An object class defines the kind of entry allowed in the directory. An object class definition consists of content rules,

structure rules, the name form, and additional operational information. Content rules within the object class definition

detail the attributes that an object class contains. Structure rules define how each object class participates in the

namespace, in other words, where entries of the object class can reside. The name form defines what attribute(s) can be

used to name entries of the object class. An attribute defines the kind of information associated with each of these object

classes, and therefore in the entries. The attribute type is the definition of the attribute. An attribute type is defined by

syntax, matching rules, and other operational information about the attribute. The syntax determines how data values are

represented. Matching rules determine how to compare these data values in an LDAP operation.

Syntax is the building block of matching rules and attribute types

Syntax defines the kind and form of the data allowed in the attribute value. An example of syntax is a Boolean value. For

a value to fit the Boolean syntax, it must be either FALSE or TRUE. Other syntaxes allow for data to be represented in

the directory in a variety of forms. Matching rules also use syntax and are included in the attribute type definition.

Schema checking maintains the integrity of the directory

Chapter 1 introduced the concept of schema checking. On every add, modify, or modifyRDN operation, the attribute values

must be checked to see whether they meet the schema requirements for the object class and attribute type. If these

checks fail, the operation fails. The schema-checking process is concerned primarily with ensuring that the data structure

of a directory is consistent. This process is analogous to the work of a referee or official, who makes sure the game is

played according to the rule book.

Several documents define the recommended LDAP schema

The default schema that an LDAP directory begins with is defined by several documents. RFC 2252 describes the

framework for the LDAP schema, in other words, the portion of the schema that supports the internal directory functions

and allows you to define specific components in the schema. This framework includes a set of syntaxes, matching rules,

and attribute types.

RFC 2252 also describes the encoding rules that should be used to represent the data in attribute values during LDAP

operations. Including a description of the encoding method ensures that LDAP will interoperate across implementations.

RFC 2256 describes the user schema, in other words, the portion of the schema with which clients regularly interact.

There are only two requirements in this RFC that every LDAP server must implement. But the RFC contains many

recommendations on object classes and attributes, and nearly all vendors implement these recommendations.

X.500 schema definitions are valid for LDAP

The LDAP schema uses the same schema definitions developed for X.500 directories because X.500 was LDAP's

predecessor. For example, the RFCs noted previously draw heavily on definitions established in standards for X.501,

X.520, and X.521, as documented by the ITU, which is an international standards organization. This close tie to X.500

directories provides a convenient pool of historically tested definitions to build upon, while also allowing vendors to

implement a directory that supports both LDAP and X.500.

How Does X.500 Affect the LDAP Schema?

X.500 is a set of standards that define directory structure and services, whereas LDAP is a protocol used to

interact with directory structures and services. LDAP was initially intended as a gateway service to X.500

directories, so clients didn't need to implement the hefty set of directory access protocols (DAPs) required

for X.500. LDAP therefore never focused on directory structure or services; the X.500 standard and model

were assumed. But as LDAP has developed, vendors have begun implementing LDAP without X.500

support. This trend has spurred debate concerning whether LDAP should include directory structure and

service models in its definition. If you examine the LDAP schema, you will see frequent references to this

relationship to X.500 standards.

The LDAP schema is flexible

The lack of a required default schema means that Mycompany has a great deal of flexibility when implementing its

directory. Vendors can also take advantage of this flexibility to create functionality for their purposes, and individual

organizations can pick and choose schema modifications as they design their directories. Extensions to the schema can

be made after implementation to extend the functionality of a directory.

LDAP v3 publicizes its schema to clients

LDAP v3 requires that the schema be published in a subschema entry that can be found by querying the value of the

subschemaSubentry attribute of any directory entry. The value of this entry is the DN of the subschema entry that

holds the published schema. By publishing the schema, the client can be made aware of functionality that the server

supports. This also can simplify schema maintenance both by making the schema easier to modify, and by leveraging any

other maintenance the directory supports, such as replication.

[Team LiB]

[Team LiB]

Object Classes

An object class defines the types of entries in a directory

Object classes define what entries are possible in an LDAP directory. Every entry in an LDAP directory has an attribute

named objectclass, and the objectclass attribute value(s) corresponds to an object class definition in the schema.

Object classes define what attributes are required and which are optionally available for use with a directory entry. They

also provide a convenient way for a user to query for all the entries with a particular objectclass attribute. For example, I

might want to find all the entries with objectclass=user so I can identify all the user accounts in a Microsoft Active

Directory.

Three categories of object classes create a template for building object classes

There are three categories of object classes: abstract classes, auxiliary classes, and structural classes. Every entry in the

directory has at least one structural class and one abstract class, and it may have auxiliary classes. Some vendor

implementations of LDAP do not distinguish between these categories of object classes, but this doesn't mean that these

categories aren't used by the underlying schema. Any particular object class may build on another object class definition

or pick the attractive parts of another object class definition; object class categories are what enable this functionality,

even if they aren't formally acknowledged by the vendor. Object classes can either include or inherit existing definitions,

thereby forming relationships between object classes. These relationships mean that one object class has a whole set of

object classes depending on it, so a hierarchy is formed. The purpose of each of the categories of object classes, and

how each helps you build new object classes, is discussed shortly.

Elements of an Object Class

The object class definition contains several key fields that help to define an entry of the object class and what rules that

entry follows. The following fields are part of the object class definition:

OID— The unique object identifier for this object class.

Name— The name used to refer to the object class.

Description— Brief description of what the object class represents.

Inactive status— Indicated by OBSOLETE, which means the object class is inactive.

Superior class— Lists the object class(es) on which this object class is based. Some schema formats label this

field SUP while others call it SUBCLASS OF.

Category of object class— Specified with the presence of abstract, auxiliary, or structural. By default,

structural is assumed. The categories indicate to the schema-checking process how to create an entry of that

object class, and what attributes are required or allowed.

Mandatory attributes— Usually noted by a MUST field, which lists all the attributes that must have values for

an entry of this object class to exist.

Optional attributes— Usually noted by a MAY field, which lists all the attributes that are allowed on an entry of

this object class.

Although the following object class fields are not defined in RFC 2252, many LDAP directories also support them:

Naming attribute— Designates which attribute or attributes are used for naming (RDN) of entries of this object

class. You can designate more than one attribute to form multivalued RDNs.

Superior rules— Designate which object classes can contain entries of this object class.

To illustrate, here is an example of the subschema object class definition:

subschema OBJECT-CLASS ::= {

 SUBCLASS OF { top }

 KIND auxiliary

 MAY CONTAIN { dITStructureRules | nameForms |

 ditContentRules | objectClasses |

 attributeTypes | matchingRules |matchingRuleUse }

 ID 2.5.20.1}

Most products store the schema in a text file

Most directory products use a text file to store the schema definitions. This text file can be modified to include new

definitions or change existing ones. Many products require that the LDAP server be restarted for changes to be

recognized. The subschema object class definition uses the ASN.1 schema format. Definitions follow a special format

that is dependent on the vendor. Appendix B examines the common schema formats.

Some products allow schema modifications via LDAP operations

Some directories represent the schema object classes and attributes as directory entries, allowing LDAP clients to search

and modify the schema definitions via LDAP operations. For example, the person object class might exist as an entry at

cn=person,ou=Schema,dc=mycompany,dc=com. In this fictitious example, the mandatory attributes are listed in a

special attribute called must, and the optional attributes in a special attribute called may. An LDAP client with the proper

access control can modify the definitions. Although it doesn't follow the details of this fictitious example, Microsoft's Active

Directory product is an example of a product that allows users to add or modify the schema via LDAP operations.

Creating the Entry You Want

Creating the entry you want may require using multiple object classes

Object class definitions let you create entries that have the attributes, content rules, and name form you want. Let's say

you want to create an entry with a particular profile in Mycompany's directory. But among the existing object classes,

there is no single class that fits the profile you want. You have two choices. Either you pick and choose from among the

existing object classes, and create an entry that has several object classes. Or you design a new object class.

You may have to build a new object class to get the entry you want

Let's further suppose that there isn't any combination of existing object classes that fits the profile you want, because an

attribute is missing or the combination of content rules from multiple classes is too restrictive. But an existing object class

does have some of the elements you need. You must create a new object class, and it would be easier if you could build

on that existing object class. The following two sections explore your options.

Option 1: Use Inheritance and Object Class Relationships

Object class inheritance allows content and structure rules to be shared

Your new object class can inherit name form, content rules, and structure rules from another object class. When a new

object class builds on an existing object class, the new object class is said to be a subclass of the original, and it inherits

the traits of the existing object class. We'll look at what inheritance means shortly. The original class is called the superior

class or superclass of the new object class. This relationship is included in the definition of the new object class in the

superior field.

A hierarchical relationship of object classes is created when you use inheritance

This relationship between object classes is similar to the relationships that scientists observe in biological classifications.

There is a hierarchy among life form classes, just as there is a hierarchy among object classes. If a life form is classified

as human, it is also classified as an animal, a mammal, and a primate. A human shares some characteristics with all

other animals, mammals, and primates, but it also has other unique characteristics. Figure 4-2 shows a concrete example

of the hierarchical relationship between object classes. The ASN.1 schema format is used to represent the object class

definitions.

Figure 4-2. Building object classes using inheritance

Inheritance allows entries of one object class to take the traits of another object class

If I call you human, I don't also need to call you a mammal; everyone assumes that you are a mammal. In a similar

fashion, if you create an entry with an object class that is the subclass of another, you do not need to indicate all the

superior classes. The directory assumes those other classes and automatically includes them in the entry. When you

create an entry of the new subclass, the objectclass attribute value of the new entry will have both the new object class

name and the names of any object classes noted in the SUP field. The new entry is required to follow the rules and

requirements defined in the schema for all these object classes.

Inheritance results in simpler schema definitions

Note that the new subclass does not explicitly include the schema definitions for any of its superclasses. It doesn't need

to. The requirements, rules, and definitions are all inherited when you create the entry. The directory takes care of these

details. Building inheritance into entry creation results in elegant and efficient object class definitions, as well as a

simplified process for creating an entry. Figure 4-3 shows how the elements of object classes are used to create an entry

of a subclass. On the entry, the italicized attributes are optional, the bolded attributes must be supplied by the client

request, and the single attribute shown in regular font is automatically supplied by the directory itself.

Figure 4-3. How elements of inherited object classes are used to create an entry

An example of creating an entry using an inherited object class

An example of how inheritance works will illustrate this concept. Using the definitions shown in Figure 4-2, I send an add

operation to Mycompany's directory with the following parameters:

DN: cn=Boba Fett,ou=People,dc=mycompany,dc=com

Attributes: cn=Boba

Fett;sn=Fett;objectclass=inetOrgPerson;

An entry with the following information is created:

DN: cn=Boba Fett,ou=People,dc=mycompany,dc=com

cn=Boba Fett

sn=Fett

objectclass=inetOrgPerson

objectclass=OrganizationalPerson

objectclass=person

objectclass=top

Note that three additional objectclass values were automatically added. Had I left off the sn attribute in the add operation

parameters, the operation would have failed. Even though I'm creating an entry of inetOrgPerson, I must meet all the

requirements of every superclass of inetOrgPerson, and sn is a requirement of the object class person. I might have

added any of the optional attributes in any of the four object class definitions shown in Figure 4-2. So inetOrgPerson
gives me four object classes even though I have to specify only one.

You use abstract classes to build other object classes

Abstract classes form the building blocks of other object classes. You use an abstract class as a template via inheritance

to build other object classes. There is a special abstract class called top that is the ultimate superclass of all object

classes. To build an object class that doesn't inherit anything, you build an object class that is a direct subclass of top.

The abstract class is the least frequently used, and it is typically used to support internal LDAP operations as opposed to

building a data structure for an entry.

Structural classes are used in every directory entry

Each directory entry must contain one structural class. A structural class always uses inheritance, and it must be a

subclass of another object class. Conversely, only structural classes can use inheritance; abstract classes and auxiliary

classes cannot use inheritance. A structural class can be a superclass of another object class.

Option 2: Use an Auxiliary Class

Instead of using inheritance to create the entry you need in Mycompany's directory, you might use an auxiliary class. The

combination of an existing object class that has some of the elements you require plus a newly defined auxiliary class

would result in the entry you need. To create your entry, you'd need to explicitly add both the existing object class and the

auxiliary class.

You use auxiliary classes to mix and match

An auxiliary class augments the other object classes of an entry without the costs tied to inheritance. The auxiliary class is

never involved in inheritance because an auxiliary class is never the superclass for a structural or abstract class. Instead,

auxiliary classes are explicitly included in an entry rather than included implicitly via inheritance. You use auxiliary classes

to add specific functionality to a standard object class without modifying the original object class definition. The same

auxiliary class may be added to entries with different object classes. This is the most significant advantage of the auxiliary

class. In other words, the auxiliary class is not part of a chain of inheritance, and you can use it with entries of differing

classes. Figure 4-4 shows how the elements of auxiliary classes are combined with other classes in the creation of an

entry. The attributes shown in italics are optional, and the attributes shown in bold must be supplied by the client request.

Figure 4-4. How elements of an auxiliary object class are used to create an entry

Auxiliary classes are outside of class inheritance chains

Many LDAP directories allow an object class to inherit from only a single class, so only one superclass is allowed for any

particular object class. This constraint leads to a dependent chain of object classes that inherit the characteristics of all

the superclasses in the chain. You might want some of the characteristics (usually attributes), but not others. This chain of

dependencies is why the auxiliary class is important; the auxiliary class doesn't participate in an inheritance chain. The

auxiliary classes that maximize this benefit have no mandatory attributes and include only optional attributes, thus truly

allowing the class to extend functionality. You use the features of the auxiliary class to augment object classes that don't

(and shouldn't) have a hierarchical relationship to one another.

For example, Mycompany may want to attach a globally unique identifier (guid) to each group

(objectclass=groupOfUnique Names) and user (objectclass=inetOrgPerson) entry in the directory. The guid is

defined as an attribute. An auxiliary object class guidClass is defined with the guid attribute as an optional attribute.

Then the guidClass object class can be added to each of the group and user entries. We would do this via a modify

request that added objectclass=guidClass. Finally, guid values can be added to all the entries. These values could be

added via the same modify request that added the auxiliary class.

Consider the alternative, assuming a directory that supports only single inheritance. The alternative using class

inheritance would require that you define two distinct object classes that are subclasses of groupOfUniqueNames and

inetOrgPerson, respectively. Call each of these subclasses guidgroupOfUniqueNames and guidinetOrgPerson.

Each of these would effectively have the same purpose—to add the same single optional attribute—but you would have

to provide both definitions to circumvent the single inheritance issue.

[Team LiB]

[Team LiB]

Attributes

An attribute type is described in what is called the AttributeType-Description in RFC 2252, and the AttributeType in RFC

2251.

So Which Is a Better Strategy: Inheritance or Auxiliary Class?

Given my description, you might think that auxiliary classes are a more efficient way to design a new object

class. But consider things from the perspective of users who want to create an entry. They must explicitly

include both object classes. If they use inheritance instead, they need to include only one object class. With

the auxiliary option, problems can occur if a user forgets one of the object classes. The best strategy really

depends on who the users are of the object class. Of course, if you have an LDAP-enabled interface that

hides these details, it may not matter.

Ultimately, this is not an either/or choice. You will find both options useful. In fact, you may have noticed that

the code shown in Figure 4-4 uses both inheritance and an auxiliary class to create entries. You may not

have noticed this fact because the inherited object class is the top class (which has no mandatory or

optional attributes). Tricky, huh? Whichever approach you take, be clear on what you want and aware of

any potential liabilities.

An attribute is defined by an attribute type, which is composed primarily of syntax and matching rules

An attribute type contains several key fields. These fields help to define the attribute as well as what rules that attribute

follows. The critical fields define the syntax and matching rules for the attribute. The syntax defines the kind and form of

the data allowed in the attribute value. The matching rules define how the directory can determine whether an asserted

value matches an attribute value during an LDAP operation. As noted earlier, matching rules also use syntax. The

attribute type also specifies whether multiple attribute values are acceptable. By default, an attribute is multivalued,

meaning that an attribute can have multiple values on each entry.

Elements of an Attribute Type

The following fields are part of the AttributeTypeDescription:

OID— Unique object identifier for this attribute type.

Name— Usually specified with the NAME label, which is the name used to refer to the attribute type.

Description— Usually indicated with the DESC label, which is a brief description of what the attribute type

represents.

Inactive status— Usually specified with the presence of the OBSOLETE label, which means the attribute type

is inactive.

Superior class— Lists the attribute type on which this attribute type is based.

Equality matching rule— Matching rule used to determine whether an asserted value matches an attribute

value.

Order matching rule— Matching rule used to determine whether an asserted value is ordered before or after

an attribute value.

Substring matching rule— Matching rule used to determine whether an asserted string value with a wildcard

character matches an attribute value.

Syntax— The kind and form of the data allowed in the attribute value.

Number of allowed values— Whether only a single value or multiple values are allowed. By default, multiple

values are assumed. The presence of SINGLE-VALUE indicates only a single value is allowed.

Collective— By default, not collective is assumed.

Modifiable— Whether the attribute value can be modified by user-initiated LDAP operations. By default, the

attribute value is user modifiable.

Usage— Type of operations for which the attribute is used. By default, userApplications is assumed.

userApplications, directoryOperation, distributedOperation, and dSAOperation are all valid values;

however, many vendor implementations throw out these values and replace them with only two values: user or

application and operational. Attributes that are not marked userApplications are not returned by default on

a search operation, because they are considered information that only the internal directory needs to support

internal operations.

To illustrate, here is an example of the createTimestamp attribute definition:

(2.5.18.1 NAME 'createTimestamp' EQUALITY

 generalizedTimeMatch

 ORDERING generalizedTimeOrderingMatch

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24

 SINGLE-VALUE NO-USER-MODIFICATION USAGE

 directoryOperation)

This definition is given in the BNF schema format, which is different from the format used for the example object class

earlier in this chapter. For more details on schema formats, see Appendix B.

Attributes can have more than one name

Any particular attribute type can have more than a single name. These names are synonyms for each other. For example,

the attribute facsimiletelephonenumber might have fax as a synonymous name. Or cn might have commonName as

a synonym. The synonymous names are included in the NAME field of an attribute type definition. The first name in the

NAME field of an attribute type definition is called the canonical attribute name. Within a directory that shares a common

schema, a user can generally employ these synonyms interchangeably, but this doesn't necessarily hold true between

directories with different schemas.

How synonymous names are handled is not standardized, which is problematic

Usually LDAP directories prefer to return attribute names in the canonical form, replacing any synonymous name used in

a request. For example, I might ask for fax, but get back facsimiletelephonenumber. Attribute name synonyms are not

governed by the LDAP standards, and how any particular vendor or organization implements them is unregulated. When

Mycompany needs to integrate multiple LDAP directories, the attribute name that one directory allows or prefers may be

different from that of another directory. This difference can cause serious integration problems. Hopefully this oversight in

the standard will be addressed in the future.

Attribute Subtypes

Subtyping is not defined in the LDAP standard, yet it is mentioned as a feature

The existing standards (in RFC 2256, Section 5.50) mention the possibility of subtyping but don't explain it. Subtypes are

common in X.500; and because LDAP was originally thought to be an extension of X.500, the definition was implied. Now

that LDAP directories are being implemented without X.500 support, this omission in the standard presents a problem.

An attribute subtype builds on an existing attribute definition

As you might expect, the concept of subtypes is similar to that of subclasses. Subtypes are for attributes what subclasses

are for object classes. You can extend an existing attribute type into a subtype. The attribute subtype inherits the syntax

and matching rules of its supertype. For example, the cn attribute type is derived from the name attribute type. cn is

therefore a subtype of name. And name would be a supertype of cn. The cn attribute description doesn't include any

syntax or matching rules because it inherits these elements from the name attribute definition. Figure 4-5 shows this

relationship.

Figure 4-5. Conceptual example of attribute subtypes

Subtypes change how the search operation operates

Subtypes extend the functionality of the directory. Searches that ask for the name attribute will return name values as

well as values from all subtypes of name. For example, a search for all the entries with any value present in the name
attribute (in other words, (name=*)) will return all the entries with values in name or cn (and the many other subtypes of

name).

Subtypes are usually seen only in LDAP products with X.500 support

As noted already, subtypes are only a possibility in LDAP, not a requirement. Few LDAP implementations include this

functionality, and these implementations usually include X.500 functionality as well. Subtypes can be a powerful addition,

but they change many of the basic assumptions, so Mycompany will be cautious when using them.

Attribute Options

An Attribute-Description associates special attribute options with an attribute type

The AttributeDescription is defined in RFC 2251 as a superset of the attribute type definition. This is not the attribute type,

but a slightly larger definition. The AttributeDescription encapsulates the attribute type definition, allowing special attribute

options to be specified. These attribute options are largely undefined in terms of their purpose. Historically they have been

used to change the format of the attribute value that is communicated to the client.

Figure 4-6 shows how the AttributeDescription and attribute options relate to an entry in a directory and a client that might

use that attribute option. In the figure, the client would like attribute A of entry Y to be returned with the munge option.

Attribute A's schema definition includes the munge option, so this request is allowed. The directory looks up the value of

attribute A and then reformats that value based on the syntax defined for the munge option. The directory reports to the

client the attribute value seen through this munge reformatting.

Figure 4-6. How attribute options enable directory functionality

The binary option changes the format of the attribute value communicated to the client

For example, RFC 2251 gives an example of the binary option in which you can force the server to change the syntax

format of the attribute value that is communicated to the client to a binary format instead of the typical string-based

syntax. This does not necessarily mean the server must store the attribute value in the binary format, just that it must

communicate the value in a binary format to the client.

Options do not have to change the format

You can also use attribute options to indicate the language in the attribute value. This approach doesn't change the format

of the value, but rather indicates that the value is stored in a specific language. For details on language support via

attribute options, see the following section, Language Support.

Clients specify attribute options by appending them to the attribute type

Users specify the attribute option(s) they want by appending a semicolon and the name of the option to the end of the

attribute type in the relevant search or compare operation parameter. For example, the binary option with the cn attribute

would be specified cn;binary. You could use this approach in a compare operation in which you want to compare a data

value in binary form but the attribute value has a string syntax. You can specify multiple options at once. Servers that

don't recognize a requested option should treat the request as an unrecognized attribute type and the operation will fail.

The only common use of the binary option is with digital certificates, for example, userCertificate:binary. Here it is used

to correct an invalid assumption made in the early days of LDAP about how digital certificates are represented. You

should never search for digital certificates without the binary option.

Language Support

LDAP supports multiple languages in data format, but further support is needed

LDAP supports the possibility of international language support, based on Unicode. LDAP v3 specifically uses Unicode

Transformation Format-8 (UTF-8), which is a character set that can be used to represent virtually all written languages.

Because LDAP uses Unicode, you don't need to specially denote what language an attribute value takes. Using

multivalued attributes, several languages could be supported at once. However, special syntaxes and matching rules that

support a specific language might be required in a multiple-language directory, so a user of a particular language could

search and receive results using the rules of that language.

Attribute-based language code suffixes are used to extend support

The approach to this issue has been standardized somewhat in RFC 2596. For this purpose, the RFC proposes to

specially designate language codes that are associated with an attribute type definition via the attribute option portion of

the Attribute-Description. The attribute option functionality noted in RFC 2251 was intended as a way to allow extensions

to the framework of the LDAP directory.

The language code desired is added to the option field of the attribute type in the schema

In terms of the schema, each attribute type definition can be extended with the desired language codes. RFC 1766

specifies the language code suffix to be used. So for example, Mycompany might choose to extend the description
attribute type with the Spanish language. Mycompany would modify the description AttributeDescription in the schema,

adding lang-es to the option portion of the definition. Then users could specify this option during a search request. In this

example, description; lang-es would be specified as the full attribute type designation, meaning the description
attribute type using the Spanish language.

Entries with the extended attribute option can have a value both for the option format and for the

default format

The entries in the directory that have an attribute with a language option defined can have values for both the language

option and the base attribute type. For example, if the description attribute type were extended with the Spanish language

as noted already, the following entry would be valid:

objectClass=person

cn=Brian Arkills

sn=Arkills

description=He is very crazy.

description;lang-es=Está muy loco.

Each language option desired would have to be individually set because the server does not automatically translate the

value from the default format to the language option format.

Multiple language options can be set

Directory administrators can modify the AttributeDescription to support many language options; then users can set an

attribute value for each of the language options for that attribute type. The syntax of each attribute doesn't need to

change, because UTF-8 supports multiple character sets. Also the data that is communicated to the user is not

transformed in any way, as it is with the binary option.

Searches on attribute options work like they do for attribute subtypes

In terms of search behavior, you can consider each language option a subtype of the attribute type. Just as you can

expect that a search on the attribute supertype will return a match for all the attribute subtypes, so a search on an

attribute type will return a match on that type and all the language options for that type. With attribute subtypes, the

reverse is not true; a search for a specific language option of an attribute type does not return values of the attribute type

without a language option. You can find specific examples that illustrate this behavior in the RFC. Despite this search

behavior, the language option extensions are not subtypes defining a new attribute type; they are options.

Matching rules that support language and cultural rules are needed

RFC 2596 does not supply a complete solution in every case. As mentioned earlier, matching rules that support the

cultural rules specific to a language are needed for full functionality. Matching rules are needed to define many issues of

syntax that are often taken for granted. Examples include:

The order of characters in the language's alphabet

Issues of language type, such as what is a number and what is an alphabetic character

The cultural formats for common data types like time, money, and date

We'll look at matching rules shortly. Mycompany will want to carefully review language support in a potential product if this

is a critical requirement.

Operational Attributes

Operational attributes support internal directory operations

Operational attributes are used by the directory to support internal directory operations, and they are the attributes not

marked with a usage of userApplications. Several of these operational attributes are required by LDAP v3 in the

rootDSE entry and the subschema entry. Other operational attributes can be of value to the client because they contain

information that can reveal what an LDAP server supports, what rules might be used, and even information of critical

importance, such as the last modified time for an entry.

Operational attributes are noteworthy enough to list

The only way to get a handle on the operational attributes is to peruse the standards and your vendor documentation. In

Tables 4-1 and 4-2, the operational attributes from the standard are listed by the type distinction noted in RFC 2252. The

OID, syntax, matching rules, and other information are not listed, so you can focus on the description and intended

function. You can easily obtain this information in RFC 2252, Sections 5.1 through 5.4.3. More detail is outside the scope

of this book and may be dependent on the specific vendor implementation.

Subschema and directoryOperation Attributes

The subschema publishes the schema to clients

The subschema object class is a required element of the LDAP v3 standard; it is one of only two required object

classes. The subschema is used to advertise the supported schema in an LDAP directory. The subschema entry (there

can be more than one in each directory) is used by clients to determine what rules they can expect when interacting with

that specific LDAP directory.

What Exactly Is the Definition of the Subschema?

For the definition of the subschema object class, see RFC 2252. This definition omits the mandatory

attributes required on the subschema entry noted in RFC 2251. RFC 2251 uses language that allows

implementation of additional mandatory and optional attributes, whereas RFC 2252 does not use the same

inclusive language. RFC 2251 is talking about a subschema entry, whereas RFC 2252 is talking about the

subschema object class. Although a subschema entry and a subschema definition are not semantically

identical, the omission can only be viewed as a mistake. Fortunately, the standard does outline what

attributes can be in a subschema entry.

Table 4-1. directoryOperation attributes

Attribute Name Description

createTimestamp Keeps track of when an entry was created.

modifyTimestamp Keeps track of when an entry was last modified.

creatorsName Keeps track of who created an entry.

modifiersName Keeps track of who last modified an entry.

subschemaSubentry Contains the DN of a subschema entry.

attributeTypes Contains a list of the supported attribute types; is located in the subschema entry.

objectClasses Contains a list of the supported object classes; is located in the subschema entry.

matchingRules Contains a list of the supported matching rules; is located in the subschema entry.

matchingRuleUse Contains a list of the supported matching rules that are available via the extended match filter

described in Chapter 3. This attribute is located in the subschema entry.

dITStructureRules Contains the structure rules that this server supports.

nameForms Contains the name forms that this server supports.

ditContentRules Contains the content rules that this server supports.

Table 4-2. dSAOperation Attributes

Attribute Name Description

namingContexts Identifies the naming contexts that this server supports directly or indirectly. An empty

string value indicates that this server should contain the entire directory namespace. The

client can use this attribute to find a suitable namespace to search.

altServer Refers to another LDAP server that is equally capable of providing a response. The value

is in an LDAP URL format. LDAP clients can cache this information so if the server

becomes unavailable, the client can continue operation with the other server(s).

supportedExtension Contains OIDs for the extended operations that the server supports.

supportedControl Contains OIDs for the controls that the server supports.

supportedSASLMechanisms Contains OIDs for the supported SASL mechanisms that the server supports.

supportedLDAPVersion Contains the version of the LDAP protocol that the server supports.

The subschema entry has at least four mandatory attributes and many optional attributes. The mandatory attributes

include cn, objectClass, objectClasses, and attributeTypes. object-Classes contains a list of all the supported

object classes in the directory. attributeTypes contains a list of all the supported attributes in the directory. The optional,

operational attributes of the subschema entry are known as the directoryOperation attributes. See Table 4-1 for these

attributes and a short description. You find the subschema entry by asking for the value of the operational attribute

subschemaSubentry, which is on the rootDSE entry as well as every entry in the directory. The value is the DN of the

subschema entry.

rootDSE Entry and dSAOperation Attributes

The rootDSE entry provides basic information about a directory server. The rootDSE entry has no defined object class

in the standard. It must, however, exist and allow the dSAOperation operational attributes listed in Table 4-2. Additional

attributes may be located in the rootDSE entry to support vendor-specific functionality. The dSAOperation operational

attributes can also be included in other object class definitions.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Syntaxes

ASN.1 is commonly used to build syntax

A syntax defines the data format used by an attribute type or matching rule. A special system called Abstract

Syntax Notation One (ASN.1) is used to convey the definition of a syntax. ASN.1 is defined by X.209 and is

similar to the BNF notation (defined in RFC 822). ASN.1 is a flexible system that can be used to define a variety

of data types, from integers and strings to complex sets and sequences of a variety of data types. It is used to

build type definitions from what you might call a predefined toolbox. This toolbox consists of a small set of

simple types like integer, IA5string (ASCII), or bit string (binary), along with special operators to denote ways to

combine these simple types, using sequences, sets, and multiple choice. Complex type definitions can be built

by referencing less complex definitions via substitution.

ASN.1 helps to provide cross-platform interoperability

ASN.1 has several advantages. One is that ASN.1 has special encoding rules called BER and DER that define

how content represented in ASN.1 can be put in messages fit for transmission. LDAP uses BER encoding,

specifically a simplified subset of BER. ASN.1 messages are placed in a format it calls octet strings. Octet

strings are arbitrarily long strings of 8-byte data. So an octet string's length should always have a factor of 8.

Incidentally, ASN.1 is used by many standards, including X.509 certificates used by SSL and Kerberos version

5, which make those technologies easier to integrate with LDAP.

There are no default syntaxes in the standard, only commonly used ones

RFC 2252 lists 58 default syntaxes for LDAP servers, but only defines 33 of those listed. Vendor

implementations are under no obligation to implement any of these syntaxes, and they may implement new

ones. This is an area of possible extensibility, but it could be at the cost of breaking interoperability with other

clients or servers. For the most common of these syntaxes, see Appendix B.

The syntaxes that an LDAP server supports may be published in the subschema entry in an attribute called

ldapSyntaxes. Unfortunately, including this attribute and the information it contains is not required by the

standard.

[Team LiB]

[Team LiB]

Matching Rules

Matching rules are used to compare data values

Matching rules are used by the LDAP server to compare an attribute value with an assertion value supplied by

the LDAP client search or compare operations. The server also uses matching rules to transform the client

assertion value to an attribute value in add or modify operations. Finally, the server uses matching rules to

compare asserted DN names with the DNs of entries in the directory. Pretty much every LDAP operation uses a

matching rule, and many times a single operation will use matching rules more than once. Matching rules have

a simple definition that link a name and OID with a syntax. Attributes then include the matching rules in their

definitions so at least equality matches are supported for each attribute type.

Extended operations employ matching rule use definitions for the attributes specified in the

definition

Matching rule use definitions are slightly different from matching rule definitions. A matching rule use definition

links a matching rule definition with specific attribute types for use in extended search filters. You employ this

type of definition to associate a matching rule with an attribute type outside the attribute type definition. Values

of the matchingRuleUse attribute, listed earlier in the chapter, denote the matching rules used by the

directory. Each value denotes a matching rule use definition that tells the directory which matching rules to use

with specific attribute types in extended search filter operations.

Syntaxes are used to build matching rules

Both matching rule definitions and matching rule use definitions are dependent on syntax definitions. The

syntaxes Matching Rule Description and Matching Rule Use Description are used to build the matching

rules. Syntaxes are also defined for matching rules whose assertion value syntax is different from the attribute

value syntax. The basic matching rules noted in RFC 2252 are listed in Table B-1 in Appendix B.

[Team LiB]

[Team LiB]

OIDs

An OID is a string of numbers that guarantees the uniqueness of an object

An OID is a special number designed to uniquely identify some object, regardless of the technology. Object

classes, attribute types, syntaxes, matching rules, and controls use them. In fact, an OID is required for every

object definition. OIDs are used outside directory technology in areas in which guaranteeing uniqueness is

important. For example, Management Information Base modules (MIBs) use them. A MIB is commonly used by

management software to understand the status of each entity. One common use of MIBs is monitoring and

managing networked computers. An OID is an arbitrarily long string of integers separated by periods. For

example, 1.4.23.98740 is a valid OID. An OID can be used in place of the object's name.

OIDs are centrally governed, with delegated authority

The Internet Assigned Numbers Authority (IANA) governs the OID space and gives out OIDs by request. Once

an organization has an OID, it owns all extensions of that OID space. If Mycompany were granted the OID

1.4.23.98740, it would also own 1.4.23.98740.1 and 1.4.23.98740.2 and so on. Extending an OID is called

creating an arc. Common convention is to organize each type of object into a separate arc. Mycompany might

put its object classes under 1.4.23.98740.1, attributes under 1.4.23.98740.2, syntaxes under

1.4.23.98740.3, matching rules under 1.4.23.98740.4, controls under 1.4.23.98740.5, and so on. But there

are no rules about this. Mycompany can delegate an arc to you, for example 1.4.23.98740.6, but Mycompany

better not also use that arc, or you and Mycompany may run into problems with the objects in that space have

any interoperation. The Web site http://www.alvestrand.no/objectid/top.html is the only public listing of OIDs. It is

an informal attempt to provide a mapping between the OID space and definitions.

OIDs Are Problematic

OIDs are ugly and hard to use, and their length can be problematic if they need to be used in place

of a named object. To further complicate matters, no one actively manages OID use or associated

definitions. Therefore, you and I might give an object the exact same definition, but with different

OIDs. When our directories interoperated, they wouldn't be able to treat those objects as the same.

One of the directories would have to have its schema definition modified. The only good thing

about OIDs is that they guarantee uniqueness. The IETF should take a serious look at revising how

they are used by LDAP.

OIDs aren't special, but they are required

In summary, OIDs don't enable any special functionality, but they do uniquely identify the definition of objects.

Fortunately, users never have to know about OIDs; only administrators and those who design schema

definitions need to work with them.

[Team LiB]

http://www.alvestrand.no/objectid/top.html
file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Schema Checking

Schema checking ensures that an operation doesn't violate the schema definitions

The schema holds definitions, but the directory must ensure that all requested operations follow those

definitions. To do so, it uses a process called schema checking. Schema checking, which isn't mentioned in the

LDAP standard, is another of the concepts borrowed from X.500. Vendors therefore choose how (and whether)

to implement schema checking. In general, a schema-checking process will ensure that

All attribute values conform to the syntax noted in the schema definitions.

All mandatory attributes for an entry's defined object classes are present.

DN syntax is used properly.

For example, the DN syntax is verified by checking the attribute(s) designated in the name form to see whether

the values meet the DN syntax rules. The DN is not usually an attribute of the entry so it must be checked

independently.

Schema violations cause the entire operation to fail

If the schema-checking process finds a violation of the schema definitions, it will return an error to the client that

requested the operation. The entire operation will fail to ensure that partially completed operations do not result

in a state that is undesirable to the user.

Is Turning Off Schema Checking a Good Idea?

If schema checking is turned off by the administrator, inconsistent data in the directory can result.

This lack of consistency creates major problems when your organization needs the directory data

to implement an enterprise application. The cost of cleaning up data is higher than that of keeping

schema checking on. A better approach would be to leave schema checking on and work through

the problems that prompted turning it off.

You may find what you think is a good reason to turn off schema checking. For example, the

vendor implements an object class in a manner that is inconsistent with your organization's

requirements (or the standards), but doesn't allow any modification to that object class definition.

Turning off schema checking affects all the schema definitions, so you should make every effort to

find an alternate solution.

[Team LiB]

[Team LiB]

Extended Schema Definitions

The following interesting definitions are not mentioned in the LDAP standard. As noted earlier, the schema is

one of the primary places where the directory can be extended and the directory functionality increased. This

makes new schema definitions valuable. Because incongruities in the schema between LDAP directories can

create integration issues, standardization of new schema definitions is even more important. The following

definitions are all noted in standards documents or in documents that are in the process of becoming

standardized.

DNS Extensions

DNS namespace mapping is supported via RFC 2247

RFC 2247 describes the dc attribute as well as the dcObject and domain object classes. These schema

elements are used to allow the use of DNS names within the DN syntax. The dc attribute makes it clear which

part of the DN maps to a DNS name. The dc attribute maps directly to a DNS name, either the name of a zone

or a hostname. It is the naming attribute for entries of both the dcObject and domain object classes. Values of

the dc attribute are not case sensitive, which matches the DNS standard. Nearly every LDAP vendor

implements this RFC.

The dcObject is used to attach a DNS name to an existing container object class

The dcObject object class is an auxiliary object class, and it can be used to extend the definition of existing

entries that are being used as containers, like organizational units, to support a clear mapping to the DNS

namespace. The dc attribute is a mandatory attribute of the dcObject object class.

You use the domain to create objects with DNS names

The domain object class is a structural object class. You use it to represent new entries that do not need to be

based on an existing object class definition. The dc attribute is a mandatory attribute, and there are several

useful optional attributes.

extensibleObject Object Class

The extensibleObject includes every attribute type as an optional attribute

The extensibleObject object class is very interesting indeed. Entries of the extensibleObject object class

allow you to use any attribute type. You might use this flexibility to represent objects that do not conform to a

tidy classification or to give an entry maximum functionality without the hassle of carefully designing an object

class. You can see one such use in Chapter 8.

You can use extensibleObject to extend an existing object class

The extensibleObject object class is auxiliary, and you can add it to another object class definition to extend

its functionality. Mandatory attributes of the other object class are still required. The definition of the

extensibleObject object class does not literally include the hundreds of available attributes in the list of

optional attributes; instead, it implicitly includes them. You can use this object class to avoid turning off the

schema-checking process, because it allows all the optional attributes within the rules of the schema.

dynamicObject Object Class

Use the dynamicObject for transient data

RFC 2589 describes the dynamicObject object class and the extended operations needed to support it. You

use the dynamicObject object class to represent a dynamic entry that expires if the entry is not updated

periodically. This object class is appropriate for representing data that is time dependent. Meetings and

temporary employees are two common examples of short-lived data suited to this object class. The directory

administrator can use this object class to automatically maintain data whose accuracy is guaranteed only for a

certain period of time.

A time-to-live attribute establishes when the object will be deleted, unless a client operation

intervenes

The dynamic functionality is accomplished via a time-to-live attribute that automatically decrements, unless a

client operation intervenes to reset the attribute value. The dynamicObject object class is auxiliary. An entry

that is dynamic can't become static, and vice versa. There are structural rules imposed on entries of the object

class, to prevent the loss of static entries below a dynamic entry, should the dynamic entry expire.

Java

Java object schema allows Java code to be stored in LDAP

One exciting development is the opportunity to store Java objects in an LDAP directory. Combined with the

Java LDAP API, which is in the process of being standardized, this enables Java applications at your

organization to access common sets of code as well as other directory information. RFC 2713 specifies a

standardized way to store a Java object. It includes schema definitions for object classes and attribute types to

represent this data.

inetOrgPerson Object Class

inetOrgPerson is a contemporary definition for a person entry

The common user object classes listed in RFC 2256 don't fully address the type of information associated with

a person. The inetOrgPerson object class defined in RFC 2798 is an attempt to provide a closer definition. It

includes definitions for the following new attribute types: vehicle license number, department number, display

name, employee number, employee type, JPEG photograph, preferred language, MIME certificate, and PKCS

certificate. This object class is implemented in almost all contemporary vendor implementations, and you may

want to find out more about it by reading RFC 2798.

Why Does Java Get This Special Accommodation?

It isn't really a special accommodation. In fact, if you think there is something useful to add to the

LDAP protocol, you should talk with the folks at the IETF and submit your idea. RFCs are simply

suggestions that are watertight enough to be considered worthy of publication. Many of them don't

have any special status; and in the case of LDAP, there are some RFCs that are considered part of

the core protocol definition, and others that are just good ideas. As an example, there are RFCs

(RFC 2549 and 1149) that describe how to implement TCP/IP via carrier pigeons. Look it up if you

don't believe me. But just because you've got an RFC doesn't mean it is useful or implemented in

any widespread fashion. For example, no network products claim to be compliant with the carrier

pigeon RFC (that I know of), and if they were compliant—would you buy them?

Still in Development

Significant extensions to LDAP are constantly being developed. A wise LDAP administrator pays attention to

the public efforts to standardize extensions by participating in IETF proceedings. Table 4-3 lists significant

examples of efforts under development at the time of this book's publication that will probably result in a

published standard.

Table 4-3. Interesting LDAP schema Internet drafts

Internet-Draft Title Description

LDAP Schema for DHCP Defines a schema for DHCP configuration. Entries can represent DHCP

configurations for an entire network. This in turn enables centralized management

of DHCP services.

Kerberos KDC LDAP

Schema

Includes definitions for attributes defining a realm, a realm policy, principals, and

principal policies. This enables central management of Kerberos services, as well

as allowing for the possibility of interoperability between different Kerberos

implementations.

Definition of an object

class to hold LDAP

change records

Used to efficiently support replication.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Summary

The schema determines directory functionality

In summary, the schema employed by an LDAP product is one of the biggest factors contributing to the

functionality of that product. Although the LDAP standard specifies very little of the schema or even the model

employed by a vendor, vendors have followed the X.500 schema model with few deviations.

The object classes, attributes, syntaxes, and matching rules control the behavior of the directory and diversity

of information it can hold. A directory that doesn't support a specific syntax or allow Mycompany to create its

own will prevent Mycompany from creating some special attribute that will either give it an advantage over its

competitors or provide a way to integrate an application or standalone directory.

Understanding the details of the schema is not required, but it can further the usefulness of

a directory

Understanding of what the schema does and how to extend it is important for directory administrators, but most

users do not need to know anything about these topics. Users that create many entries may need to have some

understanding of object classes, inheritance, and interesting attributes. Some directory administrators may not

need to know much detail about the schema, if the vendor supplies a comprehensive schema. But ultimately

understanding of the schema will lead to further use of Mycompany's directory and extend the value it provides.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Appendix Material

For tables of common syntaxes and matching rules, see Appendix B. An overview of the syntax for the different

schema formats, together with examples, is also included.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Chapter 5. Directory Management

Consolidating information into a directory is the primary reason for implementing LDAP. Administrative controls

that allow a directory administrator to more easily manage that LDAP directory are therefore relevant to the

business value LDAP provides. This type of operational functionality differs from the client-server operations I

examined in Chapter 3.

This chapter addresses directory management topics. Of these topics, most are not included in the LDAP

standard yet. Some of the topics are addressed by RFC documents but are not formally associated with the

standard. The first half of the chapter explains advanced LDAP namespace concepts, including replication,

referrals, and aliases. This discussion leads to the management issues surrounding multiple LDAP servers.

Special attention is given to a distributed directory service and the effort required to integrate independent

directories to centralize management. Directory security concepts and recommendations are next, followed by

some of the common server parameters and maintenance tools that you can use with LDAP.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Replication

Centralizing information into an LDAP directory raises the need for fault tolerance

Mycompany's decision to implement an LDAP directory may be stressful. Mycompany will centralize critical information

into a single repository and integrate key business processes with this directory. The implications of the central directory

being unavailable are greater than when the information was in several nonintegrated directories. How can Mycompany

have any peace of mind that its directory will be available if a directory server fails?

Directory replication can provide fault tolerance, but it isn't part of the LDAP standard yet

Replication is the simplest solution. With replication, you deploy more than a single directory server. The information in

the directory is then replicated between multiple directory servers, and the replicated information can be accessed from

several points of distribution. However, LDAP has no specifications on how replication should be accomplished.

Implementation of this feature is left to vendors. Almost every vendor does implement this feature, though. Fortunately,

there is ongoing IETF discussion about what type of replication model should be used to distribute directory information

from one LDAP server to another. An LDAP replication standard should emerge in the future. Mycompany will need to

closely compare how each vendor implements directory replication before choosing a product.

Partitions

A partition is the portion of the directory that is replicated to other servers

A partition is the portion of the directory that is replicated to other servers. The partition is a naming context (or directory

suffix) that forms the element of replication. Some vendors allow flexibility with respect to the portion of the directory that

can be a partition. The directory partition is replicated (by some means chosen by the vendor) to other directory servers.

Usually (but not always), the administrator has some choice of how often replication occurs and can designate which

partition is replicated to which server. The term "partition" designates a unit of the directory that is being replicated. This

unit is usually the same as a naming context, but it might be a smaller or larger portion of the directory.

Replicas

A replica is a replicated copy of directory information

A replica is a copy of a directory partition. The term "replica" refers to the subservient copies of the master partition. The

difference between a partition and a replica is subtle. A replica is the replicated unit of the directory.

Figure 5-1 shows examples of replication used by Mycompany. In the figure, we see part of the Mycompany directory as

well as a separate directory for Mycompany's network operating system directory. The two directories have different base

DNs and even different directory structures. The Accounts and Computers naming contexts of the Mycompany directory

are being replicated to the NOS directory because the Mycompany directory is the primary source of information to make

authoritative changes. The Accounts and Computers naming contexts (of either directory) can be referred to as partitions

because they are the units of replication. You might simply call the Accounts naming context the Accounts partition and

not designate which directory or server it is on, because replication makes the content identical. Each of the Accounts

partitions can also be referred to as replicas because both directories are the destination of replication. The Computers

partition of the NOS directory is also a replica. However, the Computers partition of the Mycompany directory is not a

replica, because it is not the destination of replication, but only a source.

Figure 5-1. Example of replication, partitions, and replicas

In single-master models, directory information must flow from one server; in multimaster models, there

are multiple directions of flow

Some replication models suggest a single-master model, in which one directory server holds the authoritative (writable)

version of any particular partition, and the other servers have this version replicated to them. In the single-master model,

all modifications of data must be made on the single authoritative server and the other servers are read-only replicas. In

Figure 5-1, the Computers partition is being replicated in a single-master model from the Mycompany directory to the

NOS directory. In a multimaster model, all the servers hold an equally authoritative version that can each be modified.

Sometimes a ring topology is used to limit the replication connections, but not always. In Figure 5-1, the Accounts

partition is being replicated in a multimaster model between both servers, so that changes can be made on either server

and propagated to the other. The multimaster model makes the replica and partition terminology much harder to

distinguish, because replication is being done in multiple directions. Therefore, it shouldn't be surprising that the terms

"partition" and "replica" can frequently be used interchangeably in contexts in which they can't be distinguished.

The NOSServer.mycompany.com server has the Computers container replicated to it. The network operating system can

then make use of the authoritative ownership and location information that the Assets department must own.

Server1.mycompany.com is the authoritative server for computer entries.

Which Is Better: Single or Multimaster?

At first glance, a multimaster model seems clearly superior. You are distributing the write operations that

perform poorly on an LDAP server. You also might control the use of WAN links for geographically dispersed

locations. But it really depends on how the multimaster scheme is implemented. For example, many

implementations still have a single point of failure. In most cases, the point of failure has a smaller impact,

but it is still there. Another issue that the multimaster model introduces is the concept of a loosely

synchronized partition. Multiple servers hold the data, and each can have that data changed. Because no

single server is the authority for a given partition, at any given moment in time you can't be sure that the

value you get from an entry is the authoritative value. Still another issue is what happens when the same

entry (or same attribute on the same entry) is changed on two different servers at the same time. This is

called a collision. Obviously, the multimaster model introduces a greater level of complexity. Whether the

multimaster model is truly better really depends on whether the vendor has implemented it well, and what

your requirements are. Are there still points of failure? Does a loosely synchronized directory affect your

business? When a problem happens, is it easy to troubleshoot? I personally prefer the multimaster model,

because it helps reduce the reliance on a single point of failure.

Server1 is authoritative because new computers are first known about by the Assets department at Mycompany, and

because Mycompany considers the Assets department primarily responsible for computers. The people in the Assets

department create a computer entry for a computer and enter any asset tag numbers, ownership information, physical

location, and any other information they need to track the computer as an asset. The Assets department has given NOS

administrators access to the NOS-specific attributes on the computer entries in the central directory so they can do their

work. Note that administrators of the NOSServer shouldn't make any changes to the Computers replica because they

would be overwritten by replication.

Generally speaking, most vendors support only a single-master replication model. A read-only server (in other words, a

server that contains only replicas) will usually generate a referral to the master server when a modification is attempted.

This eliminates client confusion and simplifies management.

[Team LiB]

[Team LiB]

Referrals

LDAP v3 implements referrals to provide cross-reference to other LDAP directories

LDAP v2 had problems garnering widespread support because a centralized directory was limited to a single server. This

single server could become a bottleneck or a single point of failure. LDAP v3 provides considerably more structural

flexibility with referrals. A referral is a response returned to the LDAP client that instructs the client to contact another

LDAP server to perform the operation the client requested. The client then automatically contacts the other LDAP server.

Typically, referrals are encountered during search operations, but modify, delete, and all the other operations can follow

referrals as well. The process of contacting a second LDAP server to follow a referral is called chasing the referral. All

LDAP client software should support this functionality to be in compliance with the LDAP standard. Referrals will cause a

greater latency in response time because the client must do additional work by contacting the second server after

receiving the referral response from the first server. This additional complexity for the client was initially given great weight

in designing the standard, and it was one of the reasons LDAP v2 didn't have much support for referrals. But this gain of

functionality at what is a small cost of client complexity has become one of the most significant features of LDAP v3.

Referrals allow greater flexibility in directory architecture

By using referrals, you can create a cohesive structure of LDAP servers with different namespaces, as demonstrated in

Figure 5-2. Each individual LDAP server may contain referrals to the other servers at the appropriate place within the

internal directory structure. This allows Mycompany to break up a namespace into contiguous pieces on several servers

or connect two independent directory servers. Referrals can help overcome scaling problems, in which a single server's

response is poor, but multiple servers could handle the capacity for millions of entries.

Figure 5-2. How referrals work

Referral Resolution

The client must resolve referrals

The client must replace any host, port, and base DN components of the original LDAP operation with components

supplied by the referral. If the referral contains a different base DN, the base DN of the referral is used, and the original

base DN is discarded for the purpose of chasing the referral. Similarly, if a search filter is designated in the referral, it is

used. But if a component isn't designated in the referral, the component from the original request is used. The client forms

a new composite request from the merging of the original request and the referral, and then acts on this request.

What About a Referral Loop?

Can a referral on one server trigger a referral (directly or via a search with a subtree scope) back to the

originating referral? Isn't this a critical flaw in referrals? Yes, this is possible. However, the LDAP standard

addresses this issue. LDAP clients must not repeatedly query a server with the same base DN, scope, and

filter. However, experience shows that vendors pay lots of attention to the LDAP standard with respect to

server code, and not a lot of attention when it comes to client code. You might want to test this case out

yourself with the software your organization implements so you know what to expect.

Figure 5-2 demonstrates the client-server interaction when referrals are involved. The client requests the search operation

noted in message #1. The server replies with message #2, which includes the entries for person1, person2, person3, and

a referral to the server2.mycompany.com servers, with a specific DN, in the URL format covered earlier. The client then

automatically chases this referral with a new request in message #3. This request simply replaces the BaseDN parameter

of the original request. The second server replies with message #4, which includes Gonzo, Miss Piggy, and the Swedish

Chef. Finally, the client reports all six entries as the results of the original request. In some cases, the results are reported

in real time as they return.

You can turn off referral chasing

Incidentally, some LDAP client implementations can be configured to not chase referrals. In some cases, this ability

extends to designating which kinds of referrals should or shouldn't be chased. For example, you might want to stop the

client from chasing external referrals or from chasing subordinate referrals. The ability to designate this choice can either

be a persistent setting for all subsequent searches or a parameter for single searches.

A variety of referral types provide a means of directory integration and organization

Referrals that point to DN locations that are contiguous with the server's directory namespace are called subordinate or

superior referrals depending on whether they point up or down in the namespace. You can even use a referral to point to

any place on the same directory server. More importantly, you can also connect directory servers with disparate

namespaces. Referrals that point to DN locations outside the server's directory namespace are called external referrals.

You can also specify default referrals, which are returned on all requests for entries that aren't located within the

directory's local namespace and for which the directory has no other name resolution information. The variety of referral

types supports an incredible amount of flexibility in directory design, interoperation, and integration. Later in the chapter,

we will examine the usefulness of referrals in the context of directory integration solutions.

If an LDAP directory contacted by a client doesn't know about an attribute used in the DN and the entry holds a

subordinate referral, the referral will fail. In this case, the attribute's OID can be substituted for the attribute type, and the

referral will be successfully generated. This rare situation might happen if all the LDAP servers involved didn't have the

same schema definitions.

Referral Syntax

Referrals are represented with the LDAP URL syntax

LDAP referrals follow the syntax of the LDAP URL format. Each referral must have at least a single URL, and it can have

more than one. But if there is more than one URL, each must be equally capable of completing the operation. In other

words, if multiple URLs are listed in a referral, each of the destinations must return the same results. By following the

LDAP URL format, the hostname, port, base DN, and search filter are easily communicated to the LDAP client. An

interesting side note is that a referral doesn't need to designate the LDAP protocol, and it might designate another

protocol operation. But the LDAP client would need to support such an operation.

The Real Meaning of Referrals

LDAP operations with a scope of one level or subtree never return referrals, according to the LDAP

standard as specified in RFC 2251. Instead, continuation references are used and returned to the client

when these scopes are used. So technically speaking, only what I've called default referrals are really

referrals. However, continuation references are identical in type and syntax to referrals. For this reason,

almost all literature (including the most popular vendor implementation documentation) dealing with referrals

and continuation references simply calls both referrals. The terminology introduced here in the text is

commonly accepted, and I will follow this precedent and ignore the unused term. Anyone interested in the

full details can refer to Sections 4.1.11 and 4.5.3 of RFC 2251.

Referral Examples

Using a variety of referrals can produce a distributed directory with greater functionality

Figure 5-3 shows examples of subordinate, external, and default referrals. In the example, mycompany.com has a

subordinate referral in the People container to the Muppets container on the server2.mycompany.com server. The

namespace on server2.mycompany.com extends the namespace on server1.mycompany.com, with an additional

container (ou=Muppets) that isn't present on the server1.mycompany.com server. The example also shows an external

referral to the deathstar.net server. Again, the People container in the mycompany.com directory holds the referral, but

this time it is a referral external to the directory namespace. Note how the namespace on deathstar.net is not contiguous

with the namespace on mycompany.com. Finally, the example shows a default referral in the root of the mycompany.com

directory to the People container in the rebelscum.org directory. The default referral is external to the directory

namespace.

Figure 5-3. Distributed directories connected by referrals

An LDAP client might have the following searches:

1. Server: server1.mycompany.com

Base DN: cn=Mon Mothma,dc=rebelscum,dc=org

Scope: one

Search Filter: (objectclass=person)

2. Server: server1.mycompany.com

Base DN: cn=People,dc=mycompany,dc=com

Scope: subtree

Search Filter: (objectclass=person)

Example of default referral in URL form

In the first search, server1.mycompany.com would find that the base DN was outside the namespace contained on the

server. The server would then check all referrals within the scope to locate the appropriate namespace. In this case, it

happens to have a default referral to the namespace in question, and it will pass this referral back to the client. The

referral will take the following form:

ldap://rebelscum.org/ou=People,dc=rebelscum,dc=org??

 one?objectclass=person

Note that the referral is passed in URL form. This format allows both the hostname and other pertinent LDAP information

to be communicated. Note that the same scope is carried forward on the referral. The client will use this referral to search

rebelscum.org. The Mon Mothma person entry should be returned as a result of this process. Had the original base DN

been cn=Fred Flintstone,dc=Bedrock,dc=gov, the default referral to the rebelscum.org server still would have been

passed to the client. The client would fail to find Fred's entry, but the referral would still be passed. The default referral is

the last resort, so to speak, and is passed when the directory doesn't have any valid reference to the namespace desired.

Example of multiple referrals on a search

In the second search, the client has contacted server1.mycompany.com and would like all person entries below the

People container in the mycompany.com namespace. The server responds with a list of the two person entries contained

on the server (person1 and person2), as well as two separate referrals:

ldap://deathstar.net/ou=People,dc=deathstar,dc=net??

 sub?objectclass=person

ldap://server2.mycompany.com/ou=People,dc=mycompany,

 dc=domain,dc=com??sub?objectclass=person

The LDAP client then chases these referrals. The server2.mycompany.com server reports three person entries (Miss

Piggy, Gonzo, and Swedish Chef), while the deathstar.net server reports one entry (Darth Vader). The LDAP client

reports the results (six entries) from all three servers in a response and indicates successful completion after all the

referrals have been chased, and there are no outstanding server responses.

Chaining

With chaining, the server chases the referrals

Chaining can also provide a way to connect LDAP servers together. Chaining is similar to referrals, except that the server

initially contacted by the client chases the referrals for the client and provides a complete response to the client, instead

of making the client chase referrals and compose this complete response. This approach results in a more efficient

response time for the client, but it places additional burden on the server. Chaining is not part of the LDAP standard, and

it is not widely implemented by vendors. The chaining concept comes from the X.500 directory standard, and you may

find that LDAP directory implementations that are also X.500 compliant may support chaining. Some LDAP vendors

implemented chaining support during the LDAP v2 timeframe, and this support was called server-side referral handling.

Referral Usage

You should carefully think out use of referrals. As you might realize by this point, you could create a complex

web of referrals, adding administrative headaches and poor client response. A referral loop in which a client

chases a referral back to the originating namespace is just one of the possible snares that could be deadly.

A wise directory administrator limits referrals to the root of other directory servers, or at least to significant

naming contexts. To avoid referral problems, devote the effort to fully understand the architecture of the

external directory. It may also be beneficial to have a similar structural architecture in all the directories that

are connected by referrals. Other facilities exist to redirect searches to the same directory server, so resist

using referrals for this purpose. Finally, don't forget that external directories probably employ different

methods of access control. In general, most LDAP clients use the same bind credentials provided in the

originating search when chasing referrals. The architecture you hope to use should be well planned out, so

your user community won't be bothered with cryptic authentication errors and slow response.

Extending LDAP Beyond the Norm

One example of work to extend the usefulness of LDAP is the European-based project group DESIRE.

DESIRE completed a software toolkit in the year 2000 that enables independent LDAP directories to be

integrated into regional (or political) LDAP index servers. The index servers are an entry point for all LDAP

clients in that region, holding just the name of each entry and a referral to the server holding that entry.

Furthermore, the index servers are fully integrated with the Web, extending the accessibility of the data to

Web search engines. This work solves two issues: unifying disparate directory namespaces, and simplifying

the problem of how a client finds information in directory servers. However, adoption of this solution hasn't

been impressive—probably because these issues aren't seen as critical problems in need of solutions. For a

different approach to the same problems, see Chapter 6.

[Team LiB]

[Team LiB]

Aliases

An alias provides a means to refer to a single entry

Aliases are another concept inherited from the X.500 standards. An alias is a special type of entry that provides

a redirection mechanism to an entry in the same directory. The alias is a "dummy" record that simply points to a

"real" record, which is called the target of the alias. An alias differs from a referral conceptually in three ways.

First, an alias can point at only another entry within the same directory. A referral can do this as well, but it can

also point to other directories (or any valid URL destination). Second, an alias can point at only a single entry. In

contrast, a referral can point at a single entry, an entire directory, or something between. A referral can be very

complex when a filter is used. Third, the server resolves the alias, while a client must chase referrals. There are

a few other differences between a referral and alias that I'll cover later, but these are the primary ones. So an

alias is simple in contrast, but still useful.

Aliases allow an entry to be in two places at once

An alias provides a useful means of placing an entry in two or more locations in the directory. The LDAP

namespace prohibits a Web-like structure; but by using an alias, you can circumvent this restriction for a single

entry. This functionality can help to eliminate problems that a structure introduces. For example, Luke

Skywalker's person entry might belong in both the Sales and Marketing OUs because he fills two functional

roles for Mycompany. But these functional roles are not under the same branch in the directory, so this isn't

possible. The alias solves this problem; an alias could be placed in one of the OUs and the real entry placed in

the other OU. Aliases are not specifically documented in the LDAP RFC standards. The LDAP RFC standards

refer to the possibility of their use but do not require that an LDAP server implementation support them. The

LDAP standards also reference the X.500 documentation regarding aliases. Mycompany will keep alias support

on its list of items to check when examining LDAP vendor implementations.

The alias name is different from the target name

An alias entry can have a different RDN than the target entry. This provides a layer of abstraction for protecting

names that require privacy. The alias with an abstracted name can be located in a container with public access,

while the entry with a private name resides in another hidden container. The user never knows about the real

entry's private name and assumes the alias's public name is the real thing.

Aliases are good only for searches

Aliases redirect the client only on the LDAP search operation. Modify and delete operations are performed on

the alias entry itself to allow you to make changes to it. The add operation also does not redirect aliases. This

setup may sound like nonsense, but an example will illustrate the point. If an add operation created an entry

beneath an alias that targeted a container, the operation would place the new entry not in the targeted

container, but instead beneath the alias.

Should I Use an Alias or a Referral?

The fact that add, modify, and delete operations do not follow aliases is significant when you

consider whether to use an alias or a referral to implement a redirection. Referrals are preferred in

almost all cases. You should always use referrals for containers, and only consider aliases for

entries that will be searched and not changed in any way. Aliases are primarily useful for situations

like the Luke Skywalker example. An alias lets you circumvent a structural limitation of LDAP, so an

entry can seem to have relationships that aren't normally allowed. For example, an entry with an

alias seems to have two parents, one for the real entry and one for the alias.

Alias behavior is influenced by client search parameters

The LDAP server resolves aliases differently depending on the client configuration. The client must also specify

whether the server should dereference the alias. One of the LDAP search parameters designates the behavior

the server should use in handling aliases. These parameters are covered in Chapter 3. You should be aware of

the default setting of this parameter for the client implementation deployed, so the desired behavior is taken

without the need to manually designate the parameter on each search operation.

[Team LiB]

[Team LiB]

Distributed Directory

A distributed directory can improve service

A distributed directory service employs more than a single server to provide service to clients. These multiple directory

servers can contain identical information, or only part of the whole directory. The reasons to distribute an LDAP directory

across multiple servers are many and varied. This design allows regional specific directory entries to be placed on a

server local to the region and supports physically separate servers for management by different political departments

within the same organization. You can achieve a distributed directory with referrals or with replication.

Figure 5-4 shows a distributed directory with people entries based in distinct regions as well as political departments

divided across different servers. Recall that Mycompany had a reorganization that placed the Customer Contact

information managed by the Sales department under the People information managed by the Human Resources

department. After this reorganization, the Sales department received a separate directory server

(customers.mycompany.com) for the customer contact information. The directory implementation with this new server is

shown in Figure 5-4. Additionally, the people at Muppet headquarters are all on the server2.mycompany.com server, to

consolidate the administration duties at Muppet headquarters to a single server.

Figure 5-4. Distributed directory by region and political division

Reliability

A distributed directory increases service reliability

Distribution across multiple servers can improve the client's perception of availability and reliability by distributing the

operational load. Distribution of the directory can also decrease the risk of service outage or data loss by replicating the

entire directory partition to multiple servers. For example, the people located at Muppet headquarters might see improved

directory performance because their directory data is kept on a server local to their site.

Replication achieves distribution with a minimum of administrative overhead

In most cases, distributing an LDAP directory across multiple servers is preferable because of the associated

management benefits. Centralization of resources increases the impact of service outages, but distributing the service

across multiple servers can decrease this overall risk. In particular, replication of the directory is valuable because it

distributes the points of failure while keeping management of the directory simple.

Replication Topology

Figures 5-5 and 5-6 show distributed directories with single-master and multimaster replication, respectively.

Figure 5-5. Distributed directory with single-master replication

Figure 5-6. Distributed directory with multimaster replication in a ring topology

Replication makes distribution easy

You can more easily accomplish server and directory maintenance if the directory is distributed via replication. Distribution

across multiple servers can also happen because of organizational circumstances such as the merger of two companies.

The issues associated with integrating two initially disparate LDAP directories with one another are addressed later in the

chapter.

The directory namespace flexibility plus replication can combine into creative solutions

The flexibility of the directory namespace means that replication can be creatively used to distribute information. In Figure

5-5, the Documents naming context on server1.mycompany.com is used as a partition in a single-master replication

model to two different directory servers. The two replica servers serve different purposes and have slightly different

partitions replicated. The entire Documents partition is replicated to server4.mycompany.com to provide load balancing

for company employees who use the directory heavily to work with documents. The Public partition is replicated to the

public.mycompany.com server. This server allows anonymous access to public clients, and all public information, such as

the public documents, can be replicated to it. Other public information, such as public calendar events, might also be

replicated to it even though this isn't shown in Figure 5-5. If public calendar events were replicated to this server, the best

approach would be to have a second top-level naming context for these entries. Although all the examples so far have

only a single top-level naming context, more than one top-level naming context can exist. For example, the directory

products discussed in the last three chapters (Part II) all have multiple top-level naming contexts. Also note that the

top-level naming context on the public server is not identical to the other server namespaces. There is no requirement

that all distributed directory servers have an identical top-level namespace.

In Figure 5-6, the Mycompany's NOS directory (see Figure 5-1) is shown in more detail. There are three directory servers

in a ring replication topology in the NOS directory, which means that changes made at any of the servers will be

propagated to the others. This arrangement provides load balancing for the NOS directory that is heavily used daily to

support computer services, authentication, and other infrastructure at Mycompany. There is a brief lag before a change is

propagated across all the servers, and a vendor-specific change-tracking system ensures that the last change made to

any particular entry is the one that wins. You may recall that portions of the NOS directory have replication relationships

with the Mycompany central directory. As a refresher, the Computers naming context in the NOS directory is a replica of

the Computers partition in the central directory, whereas the Accounts naming context shares a multimaster replication

relationship with the central directory. These replication relationships help to ensure that the relevant information in the

NOS directory is integrated with other business systems at Mycompany. What is noteworthy about the replication

between the NOS directory and the central Mycompany directory is that replication can occur across directories with

different topologies and partitions employed.

Maintenance

Sometimes replication creates greater maintenance requirements

In some instances, replicating a directory across multiple servers is not a good thing. These instances typically are related

to protecting the access and integrity of directory data. For example, if your directory data includes security information

such as account passwords or private certificate keys, you may want to limit the number of servers this critical information

is stored on, especially if the physical security of the directory servers can't be guaranteed. The security of distributed

directory servers should not be ignored. Another example of when replication wouldn't be a good idea is when

connectivity between directory servers is poor or bandwidth is low. The value of the directory depends on the quality and

timeliness of the data it holds. When replication cannot complete in a timely manner, users will complain.

Maintenance on a distributed directory may have additional costs

A directory that is distributed in a nonreplicated manner may have additional maintenance costs. A good example of such

a situation is a directory with distributed naming contexts based on the geographical location. This directory may require

data maintenance tasks that affect all these regional directory servers. For example, a schema modification that affects

the entire directory might require a modification on each directory server. Coordination and implementation of these tasks

would be more challenging.

[Team LiB]

[Team LiB]

Integrating Independent Directories

Vendors create management problems when they implement standalone LDAP directories

LDAP provides a directory standard that cuts across platform divisions and seems to provide an interoperable panacea for

your enterprise. But in actual implementation, this is messier than it seems. Frequently, vendors implement a product that

makes use of LDAP, but in a very narrow way. For example, a vendor product might run only in a proprietary directory or

with a specific nonstandard schema. There are network operating system directories based on LDAP that are designed to

support only a single operating system or with key functionality that works only if the directory is on a specific platform, as

well as application products with a standalone application directory that is designed for that application's use. The

examples are numerous and annoy the practical nature in all of us.

Disparate directories pose a problem of management

Because we want our directories to be centralized so data is consistent and up-to-date, managing these disparate

directories poses a problem. This is the problem that the metadirectory products try to solve; and regardless of whether

you use metadirectories, you need good approaches to solving this integration problem.

The following section on integration addresses practical implementation concerns instead of analyzing how the

technology works, as the rest of the book does. Here I focus on the abstract approach and concepts behind directory

integration instead of trying to cover every possible permutation of integration scenarios. This section looks at the roles

involved in directory integration, forms a set of questions about directory data usage that will be invaluable to you as you

design a real-world architecture, looks briefly at metadirectories as a possible instant solution, and finally examines the

common approaches used to integrate disparate directories. Appendix C includes the real-world example of Stanford

University's existing directory integration, which illustrates most, if not all, of the concepts introduced here.

Data Architecture Management

You can employ many different products to meet the business needs of your organization. Weaving these products

together into a distributed directory service so the data each product uses is shared and consistent is the ultimate goal of

integration. Distinguishing sets of data, the source of each set, uses of each set, and any special concerns is critical to

finding successful solutions. This process of creating a data architecture for a distributed directory may involve more than

finding just technical solutions, because the data sets may have political or legal issues that govern their use. Business

policies about the use of some data may be needed, as well as development or purchase of software solutions to help

manage data consistency. Figure 5-7 shows a directory at the center of an enterprise data architecture at Mycompany.

The following sections refer to this diagram.

Figure 5-7. Directory at center of enterprise data architecture

Sources and Owners

Where does the data come from?

Consider carefully the source of the data to be managed. The data may come from several different sources. Some data

may come from a Human Resources system. Other data may come from a certificate authority. Mycompany may have

multiple suborganizations that are sources of data for the directory. The source of data is critical to the design of an

integrated solution.

Who "owns" the data?

A person or division within Mycompany may be given the responsibility of handling a set of data. Noting ownership of sets

of data is critical to an integrated design, because the owner may want to restrict where that data is replicated, and how it

can be accessed. The owner may also have special privacy concerns about access to the data. In cases of overlapping

data sources, the owner is the arbiter of what information is authoritative.

What is the data?

Sometimes the nature of the data determines whether it can be distributed across multiple servers. For example,

distributing shared secret key information or passwords has many implications regarding the level of security needed on

each of the distributed servers. Some data related to people is considered private. For example, users would complain if

salary information were distributed across directory servers needlessly.

Subscribers and Consumers

Who/what needs the data?

Consumers of data can be services, users, or business systems that provide a critical administrative task. The consumer

needs access to data and performs actions based on that data. For example, an HR application at Mycompany might

query the directory for all the person entries and print a physical phone book. In contrast, a subscriber is another directory

service or application that other consumers use to access the data that is passed to the subscriber. For example, an

e-mail service at Mycompany might offer an organization-wide address book. This address book service might

periodically pull person entry information from the directory to republish this information to e-mail clients. But the

difference between consumers and subscribers is slight.

Evaluating the needs of consumers includes examining

How consumers use the data

What access controls consumers use on any subsequent products or data

How to manage authoritative data modification

An example of this evaluation process illustrates the interdependencies that are involved. The basic questions that an

administrator at Mycompany might ask are noted in italics.

What products or systems need to have access to which data sets? Let's say an e-mail system needs access to portions

of the human resource data, including the person's name, contact information, and particularly e-mail address.

How will a consumer service or product use the data that it has access to? Specifically, how does the e-mail system use

this data? It might publish an e-mail address book, and by doing so expose users to undesirable spam or violate privacy

policies. Clearly this use needs to be accounted for, and you need to ask the following:

Will a consumer service apply a consistent level of access control to the data? Some access controls might limit who can

view this address book, or whether someone is put into the address book at all.

Will the consumer service want to make changes to the data? Specifically, what if users of the e-mail system want to

update their e-mail address data via the e-mail system? Changes to the local copy of data need to be reconciled with the

authoritative source.

How does the consumer service manage data modification? Does the service redirect the user's changes directly to the

source, or are local changes reconciled somehow with the directory service? If the e-mail service uses LDAP, we might

be able to use a referral to redirect client modifications to the source; but otherwise, we may need to disallow direct

modifications within the address book or design our own process to push changes back to the source directory. Clearly,

the consumers of data are also critical to the design of an integrated solution.

Privacy Concerns

The privacy of data in a directory can be a legal issue

Many organizations have privacy statements about personal information, legal regulations on certain information, or

critical business reasons that necessitate protecting data in their directory. Governments, hospitals, and educational

institutions all have federal restrictions (some with jail time for offenses) for publishing sensitive data that might be stored

in a directory. The Family Educational Rights and Privacy Act of 1974 (FERPA) and Health Insurance Portability and

Accountability Act of 1996 (HIPAA) are two examples of legislation that mandates privacy protections on some personal

data. These types of restrictions typically allow sensitive data to be used to support business functions, but not beyond

these functions.

Some vendors disregard privacy legal issues

A vendor implementation might make the establishment of privacy protection more difficult. Some vendors design the

default schema in a way that undermines modifications that would support privacy. Others assume that some information

is public that your organization (or the federal government via legislation) considers private. Imagine that the RDN for a

person entry is forced to be the person's name and this attribute is assumed to be public in order for the product to work

successfully. In other words, the directory doesn't allow access controls that restrict naming attributes. This design is

clearly unacceptable, and Mycompany will avoid products with such privacy issues.

Metadirectories: Glue Together Your Directories

Metadirectories promise to seamlessly integrate these standalone directories, but they may not stand

the test of time

Metadirectories promise to solve the issue of managing many disparate directories by seamlessly integrating the data

among them. Products take diverse approaches to this task. This area is still in the early stages of maturity, despite

several years of product launches. The challenge of integrating standalone directories involves complex issues that are

not simple to solve.

Tread Lightly as a Directory Administrator

Determining where to draw the line and establishing clear access controls to implement privacy restrictions

are tasks sometimes left to the directory administrator when the organization's leadership doesn't address

privacy in a clear and specific policy. The directory administrator should therefore be cognizant of privacy

issues and push for a business policy to govern what is implemented. Take implementation of privacy

controls seriously or your organization will be embarrassed.

Learning a metadirectory product is not simple and in most cases requires special training. Most metadirectories require

additional custom extension via scripts to deal with the business rules needed. Because of all these factors, metadirectory

products may fail completely, and the basic approaches employed by metadirectories may instead become the common

solution deployed by organizations. In other words, some organizations may choose to develop their own custom

metadirectory that uses many of the same approaches.

Metadirectories aren't standardized, but the discussion here should help you understand the products

Many of the companies that offered these products a few years ago are now out of business, and more may follow.

Therefore, this discussion focuses on the basic concepts and architectures used by metadirectories rather than on

specific products. You can use these concepts when your organization looks at metadirectory products to solve your

directory integration problems. You should realize that no standard currently addresses this area, and there is very little

public information available. The alternative to buying a metadirectory product is to develop and maintain a custom

solution to meet your needs.

Master Directory

Referrals and chaining can glue standalone directories together into a master directory

This approach involves taking each existing directory service and integrating it as a part of a master directory service. The

master directory might be one of the existing directories, based on some choice by your organization, perhaps the one

that is most used or with the best integration functionality. Or the master directory might be a new directory with no data of

its own. The end result is that all the directory services can be accessed from the master directory, and from the user

standpoint the directories are merged into one. A master directory that supports both X.500 and LDAP will accommodate

the widest range of technology. Existing standalone directories are integrated with LDAP referrals and chaining. The

master directory server returns LDAP referrals to the client, directing the client to the correct directory server for the

question being asked. Figure 5-8 shows how this configuration works conceptually. Alternatively, with chaining the master

directory server connects to the LDAP server on behalf of the client.

Figure 5-8. Master directory architecture

Index directories only hold referrals and become a single entry point for many directories

Some organizations and indeed some countries go a step further and implement what are called directory index servers.

These index servers hold referrals to many independent directories rather than data. Clients can use these index servers

to find information across all the linked directories. In other words, each entry in an independent directory has a

corresponding referral entry in the index server, in an identical hierarchy to that of the independent directory. The index

server then becomes a one-stop destination for many directories. Index servers represent the same idea as a master

directory, but they may implement additional functionality, such as a gateway for the Web so search engines can access

the data in all the indexed directories.

Implementing a master directory is not trivial

Creating a master directory or index directory can require quite a bit of work. The independent directories must support

some common authentication method so clients are not required to authenticate multiple times. Additionally, the

authorization model employed on each directory should be similar, so a user doesn't have widely different experiences

while being redirected.

There are resources available to help implement an index server

Earlier in this chapter I referred to the Dante DESIRE project that provided resources to implement an index server with

these types of functionality. Additionally, some vendors are beginning to implement this type of functionality. Microsoft, for

example, implements a simple version of an index server (which they call a global catalog) with Active Directory.

Directory Synchronization

Synchronization can glue standalone directories together into a master directory

This approach allows the multiple directories to exist but works to share the information between them via directory

synchronization. In other words, the directory entries or the data in those entries is copied from one directory to another.

You can employ different techniques to share data between directory services, but generally there is duplication of data. It

doesn't matter that there are multiple directories because the data in each is centrally available. The end result of this

approach is that the multiple directory services share common data. The user perception is that each of the directories

contains the same information. Figure 5-9 demonstrates how this approach is configured. When the business needs that

mandate the different directory servers (or vendors) evaporate, eliminating the unnecessary server is simple with this

approach because the data has been duplicated already.

Figure 5-9. Directory synchronization

Creating a directory synchronization mechanism can be simple if a common schema is shared. Both directories should

also share a common method of synchronization. For example, replication, LDIF, or DSML can be used as a method of

synchronization. If both directories support a common way to move directory data between them, some automation can

be introduced, which makes management much easier. The topic of moving data across directories is discussed later in

this chapter.

Loose Directory Interconnection

Clever user interfaces can make users unaware of multiple directories

A loose directory interconnection approach leaves multiple directories with different information in place and provides the

user with a convenient mechanism to access each of these independent services via a single interface (see Figure 5-10).

The LDAP-enabled Web interface discussed in Chapter 3 is a good example of such an approach. Loose directory

interconnection focuses on providing a common user interface to multiple directories. This approach is sometimes called a

gateway or proxy. Many problems are left by this approach if it is used alone, as it doesn't unify the data in the separate

directories into a consistent version. Providing only a common client interface to the independent data sets may be useful,

though. Elimination of the work involved in integrating the disparate directories is usually at the cost of integration with

client applications and services. However, the cost of educating users on multiple directories is reduced.

Figure 5-10. Loose directory interconnection

Harvesting Data (Connectors)

The data harvester approach is often used in conjunction with the prior approaches to build the specific architecture

desired. The idea is to have LDAP-enabled software that harvests data from one directory to another. By harvest, I mean

both a pull and push of data—a pull from one source directory and a push to a subscriber directory. This approach is also

called data brokering, with the software agent called a broker.

A harvester moves a specified set of data from one directory to another, but this is not replication

I call this software a harvester because its primary function is to harvest data. Harvesters have only a slightly different

effect than replication. Replication pushes an entire partition of data within a directory, whereas a harvester copies only a

very specific subset of data. For example, a harvester might copy (or harvest) all entries with objectclass=user or

entries in a specific container. Replication also differs from harvesting in that replication is initiated by one of the directory

servers and is a server-to-server operation. Whereas harvesting is intrinsically a client-server model, the harvester is a

client of both directories. The software usually resides on a computer separate from the two LDAP directory servers it

connects, which means an additional point of failure. Another implication is the need to encrypt the sessions between the

harvester and both directories. Figure 5-11 shows how this approach might be configured.

Figure 5-11. Harvester directory connection

Metadirectory products have harvesters called connectors, but you can build your own harvester

Almost all metadirectory products use a similar approach and call the software connectors. The term "connector" implies

more functionality than the harvester, and in fact metadirectory products usually do implement more

functionality—therefore the slight difference in terminology. A typical metadirectory connector provides the additional

ability to map attributes with different names between the two directories. Mycompany can build its own custom software

to provide all this functionality, and creating a simple version isn't difficult. More complex functionality provided by a

metadirectory might modify the attribute values to make them conform to a specific limitation between the two directories.

The advantage of using a harvester or connector is that it is more configurable than replication, but it has the same

disadvantage as replication in that it is time dependent and collisions are possible.

Harvesters use the LDAP APIs and are more flexible than replication

A harvester uses the LDAP operations to search for data in one directory and push it to another directory. This reliance

on existing functions eases the creation of a custom harvester. This is also why a harvester is considerably more flexible

than replication. The harvester can specify distinct sets of data by using complex search filters and base DNs that aren't

the same as a partition. However, if either the source or subscriber is not an LDAP directory, building a harvester is

obviously more complex.

The harvester must solve the problem of getting notified of changes

A harvester has one critical problem. It is time dependent. A harvester can copy data between directories, but it needs

either some intelligent way to determine when to harvest or notification that the data it is interested in has changed. There

are several solutions to this problem, depending on the sophistication needed.

Three solutions lend themselves to this problem

One solution is to simply harvest on a periodic basis. Mycompany must live with the possibility that data could be

inconsistent and unreliable between these periodic updates. This approach is the same as the most basic replication

technologies. Another solution is to use an LDAP control. Chapter 3 describes three LDAP controls—PSEARCH,

TSEARCH, and DIRSYNC—that can be used to notify the harvester of directory changes. Some of these controls have

the added benefit of being able to distinguish important information about directory changes. Some products support one

of these controls. In the future, the IETF LCUP effort should produce a standard that helps address this issue. Another

solution involves implementing an event database to track changes. This solution is applicable only in an environment in

which all changes to the master directory are tracked. For more detail on this kind of solution, see Appendix C, which

describes the directory architecture and harvesters at Stanford University.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Moving Data Between Directories

Aside from using a connector or harvester to move data between directories, you can take advantage of two file

format standards that enable bulk importation and exportation of directory data or bulk modifications of existing

directory data. Almost all LDAP directories provide support for LDIF, and an overwhelming majority of vendors

have committed to supporting DSML. Both these standards define file formats for representing the directory

data in an easily transmittable format. Neither of these standards addresses how an LDAP directory should

provide support for operations that import or export these formats. For these formats to be truly valuable in

automating directory integration across vendors, some standardization of the operational aspect of these

formats is needed.

LDIF

LDIF is a file format for LDAP directory entries

LDIF stands for the LDAP Data Interchange Format. LDIF is used to represent the entries of an LDAP directory

or a set of changes to an LDAP directory in a text-based file format. You can use LDIF for a variety of

management functions, including directory backup, replication, schema modifications, and bulk import or

modifications of directory information.

LDIF allows complex manipulations on large sets of entries

Manipulation of directory information while it is in the LDIF format is much easier than in an LDAP directory.

Text manipulation programming languages such as perl can be used to do more complex operations and

perform bulk modifications on many directory entries while they are in a text-based file format. The LDIF format

lends itself to simplifying changes to data sets that would be more difficult without it. For example, imagine that

Mycompany has moved to a new city. As the administrator, you need to modify the postalCode attribute of

employees to 87345, which is the postal code at the new site. Without LDIF, you could find all the entries with

the postalCode set by using a presence filter (postalCode=*), but modifying all the entries would require

painstaking work. With LDIF, you could dump all the entries to a file. Using perl or even a text editor like

Microsoft Word, you could search and replace using the postalCode string as a match phrase.

LDIF Standard

RFC 2849 standardizes the LDIF specification, but it doesn't address several points that I consider

critical. For example, why isn't there a definition of the process for an LDAP server to import or

export to this format? How should the directory treat error conditions that arise from an imported

LDIF file? Can a client present an LDIF file? If so, how? Or is this considered an unacceptable

security risk? Another basic, but unaddressed issue is whether an LDAP server should advertise

support for LDIF. Allowing for flexibility in vendor implementations is good, but these omissions are

disconcerting when you consider that LDIF is a key component in moving directory information

between servers.

The LDIF format can be used to request LDAP operations

The LDIF file format is specified in RFC 2849, and it is used to define an operation on an entry and the data

elements needed for such operations. Each LDIF file can describe either LDAP directory entries or a set of

changes to LDAP directory entries, but not both. If the LDIF file describes directory changes, each entry is

preceded by a changerecord statement that indicates the LDAP operation associated with the entry that

follows. Entries are separated by a line separator, and comment lines are permitted. Controls can be specified

in LDIF.

LDIF Examples

The easiest way to become familiar with LDIF is to view a few examples. As a point of reference, most of the

example entries used in this book are represented in the LDIF format without the changerecord statement. For

your convenience, some explanatory comments are interspersed in Examples 5-1 and 5-2.

Example 5-1 LDIF entry with folding and encoding in both base64 and UTF-8

version: 1

dn: cn=Han Solo, ou=People, dc=myserver, dc=domain, dc=com

objectclass: top

objectclass: person

objectclass: organizationalPerson

cn: Han Solo

sn: Solo

uid: hsolo

telephonenumber: +1 650 555 1212

Comment lines are marked with a pound character

Note that the postalAddress value is base64 encoded.

This is noted by the double colon between type and value.

postalAddress:: NzIyLTM0MyBOZXJmaGVyZGVyIERpc3RyaWN0LCBDb3J1c2NhbnQ=

Note the folding of a line that is too long, with a space to

denote a continuation of the previous line.

description:Mister Solo is a retired smuggler, who loves to take

 unnecessary risks.

Note the language code use, as well as the UTF8 encoding of the

value. Spanish largely uses the ascii character set, but the ñ

character in Señor is notably translated.

description;lang-es:: SeÃ±or el Solo es un contrabandista jubilado,

 que ama de tomar los riesgos innecesarios.

Example 5-2 LDIF file containing a series of change records including use of a control

version: 1

Add an entry

dn: cn=Mara Skywalker, ou=People, dc=myserver, dc=domain, dc=com

changetype: add

objectclass: top

objectclass: person

objectclass: organizationalPerson

cn: Mara Skywalker

sn: Skywalker

sn: Jade

uid: mara

jpegphoto:[left] file:///bin/photos/mara.jpg

Note that URLs are supported

Delete an entry

dn: cn=Chewbacca, ou=People, dc=myserver, dc=domain, dc=com

changetype: delete

Modify a relative distinguished name

dn: cn=Part2, ou=Xwing Parts, ou=Parts, dc=myserver, dc=domain, dc=com

changetype: modrdn

newrdn: cn=Hyperdrive spanner

deleteoldrdn: 1

Rename an entry and move all of its children to a new location

dn: ou=Droid Parts, ou=Xwing Parts, ou=Parts, dc=myserver, dc=domain, dc=com

changetype: modrdn

newrdn: ou=Droids

deleteoldrdn: 0

newsuperior: ou=People, dc=myserver, dc=domain, dc=com

Modify an entry: add an additional value to the postaladdress

attribute, completely delete the description attribute, and

delete a specific value from the organization attribute

dn: cn=Luke Skywalker, ou=People, dc=myserver, dc=domain, dc=com

changetype: modify

add: postaladdress

postaladdress: 1 Jedi Academy $ Old Temple $ Yavin 4

-

delete: description

-

replace: title

title: Jedi Knight

title: Jedi Master

-

delete: o

o: Rebel Alliance

Delete a container and all subordinate entries with the

Tree Delete control. The criticality field is "true" so the

operation will fail if the control isn't supported.

dn: ou=Xwing Parts ou=Parts, dc=myserver, dc=domain, dc=com

control: 1.2.840.113556.1.4.805 true

changetype: delete

DSML

DSML represents directory data in an XML language intended for browsers

Directory Services Markup Language (DSML) is the proposed XML open standard for directories. XML is a

metalanguage used to represent data in a text-based format. The format is very similar to HTML, because they

both use tags, but it is not HTML. XML is not meant for human consumption; rather, it is code. XML is generally

more readable than typical code, but its power lies in its flexibility. DSML is simply a specific set of

recommendations that translate an XML document into something meaningful to a directory. And a directory

might create an XML document as output to a client or in a batch dump like LDIF.

DSML has widespread vendor support

DSML is supported by significant software companies like IBM, Microsoft, Novell, Oracle, and Netscape, which

also happen to be the leading LDAP directory vendors. DSML seeks to represent not only directory data in

terms of XML but also LDAP directory operations. DSML v1 defines the directory data structures that can be

employed, and DSML v2 defines the LDAP operations.

Directory operations can also be represented in DSML

Representing directory operations in a textual format is not unique, as the LDIF standard also represents

directory operations in this format. In fact, the approach taken is strikingly similar to LDIF, except DSML has a

clear operational model whereas LDIF does not. DSML uses the HTTP protocol for operation, whereas LDIF

has nothing. DSML v2 lets you send one or more operations in a single request document, and a single

response document returns the results of these operations. Two bindings (or transport mechanisms) have been

defined for DSML v2 so far: Simple Object Access Protocol (SOAP) and files. SOAP uses an XML encoding of

a request and response to deliver a message over a protocol such as HTTP.

DSML enables organizations to easily build Web-based applications that leverage the

directory

DSML allows Web-based applications to easily integrate with a directory. As a result, Web developers don't

have to find a way to represent or format directory data. Using the XML language, they can take advantage of

the DSML components to represent directory data within their Web-based applications. Users see a consistent

data format, and they don't have to wait for a more lengthy development process. DSML should open another

way for disparate directories to easily communicate and represent data in each other. Novell's eDirectory

already has an XML interface that allows XML-based LDAP operations, and several other vendors have

incorporated support in their SDKs or via gateway products that act as a middle-tier interface. It will be only a

matter of time before all the directories adopt DSML functionality.

DSML requires programming to be used

Note that DSML is only a language, and as such it is only a tool that can be used with one of the approaches

just described. But clearly, DSML should eventually make the job of a metadirectory, whether it be a product or

a custom solution, much easier. You can find out more about DSML at http://www.dsml.org and

http://www.oasis-open.org/committees/dsml/. Keep your eye on this technology and on how it affects directory

functionality. Clearly the potential to make a directory interoperate better with other technology is significant.

[Team LiB]

http://www.dsml.org/default.htm
http://www.oasis-open.org/committees/dsml/default.htm

[Team LiB]

Directory Security

The LDAP v3 standard was marred by lack of security

Securing an LDAP directory is a significant concern. It was such a significant concern for the IETF that the existing LDAP

v3 standards were "marred" with a warning note indicating that the standard did not address security. Fortunately, several

LDAP v3 standard documents have emerged since then to address this oversight. RFC 3377 removed the warning by

revising the standard to include these later documents that address security.

Authentication, authorization, and encryption are common ways to provide security

Computer security is concerned with several primary concepts. One is the idea of proving who you are. This is called

authentication, and usually there are two parties involved with a third party of mutual trust. Another is the idea of assigning

certain access rights or privileges to someone, and requiring certain rights to access resources or perform actions on

resources. This is called authorization, and it usually involves something called the ACL, or access control list, which holds

the authorization information. Another is the idea of transmitting or storing data securely so it is kept private. This is called

encryption, and it usually involves a public-private key technology.

RFCs 2829 and 2830 standardize security recommendations for LDAP

These basic security concepts are addressed in two RFCs: RFC 2829 and RFC 2830. RFC 2830 addresses the specifics

of data encryption issues via the Transport Layer Security (TLS) standard, while RFC 2829 standardizes a minimum set

of requirements for authentication, authorization, and encryption depending on the intended use of an LDAP directory.

Because RFC 2829 comes late in the development of the LDAP standard, it is understandably more abstract as it seeks

to maintain interoperability between existing implementations, while establishing a minimum set of security standards.

The RFC does an excellent job of addressing these issues, and it is successful in providing some specific

recommendations.

Authentication

Authentication establishes identity

Authentication is the process of asserting and proving that you are who you say you are. In other words, it establishes the

identity of a client. This identity in general terms is known as the authentication identity, but in practice it is usually a

username, user identity (uid), ticket, or certificate. Authentication is a fairly complex process, because it involves multiple

parties and those parties generally must trust a third party as the authority for establishing (in other words, verifying)

identity. The verification stage usually involves a password, but different authentication schemes use the password in

different ways.

Password-based authentication methods are generally less secure

The less secure authentication methods communicate the password in some form to the party that is verifying identity.

The basic authentication method (known as cleartext) does this, as do several other methods that use an encryption

algorithm to make the password harder for malicious listeners to decode. These types of methods are less secure

because a malicious listener can capture the password even if it is encrypted and eventually decode it for personal use.

Some password-based authentications are more secure by design

Some methods of shared secret authentication methods don't transmit the password on the wire. These authentication

methods are considered secure, because it is much harder to steal someone else's identity. Kerberos is one example of

this type of authentication method, as is DIGEST-MD5. Generally speaking, the party that verifies identity and the user

share a secret (a password). The user enters the password, but the process on his computer doesn't send this password.

Instead, it uses the password to encrypt and decrypt a challenge and response from the party that verifies identity. This

party has assurance that only someone who knows the shared secret can pass the challenge.

Public key authentication methods are more secure

Public-private key authentication methods are considered more secure, because they do not subject a password to

transport. These methods protect the password by using an encryption algorithm that uses the password as the private

key to encode and decode nonsensitive information that is communicated. In this way, the password is never exposed

because the server-authority doesn't know it (it knows the public key) and the local client never communicates the

password.

Both SASL and TLS are recommended by RFC 2829

RFC 2829 proposes specific authentication requirements for specific circumstances. Public directories that allow only

read operations can use anonymous authentication. Anonymous authentication occurs when a client has not successfully

completed an LDAP bind operation or has completed one using empty credentials. Nonpublic directories that support the

range of LDAP client operations should support both TLS data encryption as well as SASL authentication.

You should use a strong authentication method

However, supporting these technologies does not mean that access requires their use, or that trivial encryption is what is

employed. For example, there is an anonymous SASL mechanism that provides no better protection than no

authentication at all. To address this, RFC 2829 imposes the following authentication requirements. Directories that

support password-based authentication must support the DIGEST-MD5-SASL mechanism described in RFC 2831, and

are encouraged to require this mechanism or a stronger one for access. This guideline helps to ensure that malicious

intermediaries must spend a substantial amount of effort to compromise a password.

Authorization

Authorization determines access to a resource

Authorization is the process of establishing whether a client is authorized to access resources. Authorization can be

determined by a combination of access control factors like authentication identity, source IP address, encryption strength,

authentication method, operation requested, and resource requested.

Access control factors help determine the access control policy

An access control policy defines the restrictions on a resource. The access control policy is expressed in terms of the

access control factors and the resources that are restricted. The common access rights available can vary from

implementation to implementation, but Table 5-1 lists the typical rights employed. The rights listed apply to an entry, but

most directories support setting access rights at the attribute or container level as well.

Inheritance makes access control management easier

It is also common for access control to be inherited by subordinate resources. In the context of a directory, access control

inheritance would mean that access controls applied to a container would apply to all the entries under that container,

including other containers and their subordinate entries. Applying access control to the logical root of a directory with

inheritance would affect all the directory entries.

LDAP operations are easily linked to access control rights

One can see how applying the typical access rights listed in Table 5-1 to entries would affect how client operation

requests were handled. An authorization identity (in other words, client user) might be permitted to read entries, and

therefore successfully complete an LDAP search operation; but that identity might not be permitted to modify entries and

might fail to complete an LDAP modify operation. The typical access rights map fairly directly to LDAP operations.

Table 5-1. Typical directory access rights

Access Right Description

No Access No access is allowed to this entry.

List Enumerate name(s) of entry.

Read Read attribute value of entry.

Add Add a new entry or add new attributes to existing entry.

Modify Modify the existing attributes of an entry.

Rename Rename entry.

Delete Delete entry.

Admin Change the ACL of the entry.

Access control lists link specific identities to specific access rights to a resource

A common implementation of the access control policy is the ACL. An ACL is associated with a resource to provide an

access control policy. An ACL usually consists of a list of access control entries (ACEs). Each ACE designates an

authorization identity and access rights. An access control list is associated with a specific resource, and therefore the

ACEs within that access control list designate what level of access any authorization identity has to that resource.

The authentication identity is usually the authorization identity

Generally, an authorization identity is mapped to the authentication identity. This makes the most sense—if you are going

to go to the trouble of authenticating a user, you might as well use that authentication identity. Usually the authentication

identity is mapped to the DN of an entry that represents the person. RFC 2829 requires that an LDAP directory support

DN mapping if a password or credentials are stored in the directory. However, the implementation doesn't have to actually

do this mapping; it just must support it. The mapping is usually a one-to-one relationship: one authentication identity to

one DN. But it can be a many-to-one relationship, with many authentication identities mapping to a single DN.

The authorization identity can be many other access control factors

However, the authorization identity doesn't have to correspond to the authentication identity at all. Other access factors,

like source IP, authentication method, encryption level, or membership in a group, can be used as the authorization

identity. Source IP as an authorization factor uses the IP of the client to allow or deny the operation requested. This is

less sophisticated than using an authentication identity, because client IP addresses are easily spoofed, and IP

addresses are not authenticated. Authentication method as an authorization factor uses the method requested by the

client to help determine whether to allow an operation. For example, if a client uses cleartext authentication, the client

might not be allowed to access any entries because of the poor security employed by the client. This approach would help

prevent malicious users impersonating the client from accessing sensitive directory entries. Encryption level is used as an

authorization factor in a similar manner, if you want some resources or operations to be more highly protected via

encryption. When group membership is used as an authorization identity, the DN that maps to the authentication identity

must be listed in the membership attribute of the group entry. These methods are less commonly employed, but are

valuable factors in helping to secure resources. Sometimes they are used in combination to provide a much more robust

authorization control.

RFC 2829 recommends a few authorization requirements

RFC 2829 recommends very few authorization requirements. RFC 2829 requires that the root DSE be available to

anonymous clients. Additionally, the RFC recommends that idle connections should be timed out, and expensive requests

from unauthenticated clients should fail. The scarcity of authorization requirements in the standard should not be

considered poor, because almost no authorization factors are required by the standard, and more abstract

recommendations allow different implementations to address authorization in the manner deemed most appropriate to

the vendor. The standard does require that the authorization identity be supported by all implementations via the SASL

authentication mechanism, and this provides for a clear point of interoperability between implementations.

Encryption

Encryption provides privacy

Encryption is the process of making the information passed between two parties private by use of a transformation of the

information. This encryption protects all the data passed between these parties from snooping, and it provides a level of

privacy. The value of this privacy is directly proportional to the strength of the encryption technology employed, and the

algorithm used. The basics of encryption are presented here.

Encryption strength is based on the algorithm used and the length of the key employed

Any encryption is based on two elements, namely an algorithm and a key. The algorithm is a special mathematical

function that transforms the data into an unintelligible form. There are many common algorithms that are publicly known

and used. The fact that these algorithms are known does not affect the strength of the encryption, because the key forms

the basis of the encryption strength.

The key length is the basis of encryption strength

The key is a special string that is used by the algorithm in the transformation process. The key can usually be used to

transform the data both ways, but this isn't always true. The length of the key determines how many possible keys can be

used with the encryption. For example, encryption with a key of 4-bit length would have only 16 possible keys. The length

of the key determines the strength of the encryption. An encryption with a 4-bit key length would be considered so trivial

that not even a calculator would be needed to break it. The recommended key length for a minimum strength is

dependent on the processing power available. Several years ago a key length of 40 bits was considered strong enough,

but no longer. You should choose the longest key length supported, taking the extra processing time to support

encryption with a longer key into account. 128 bits is a common choice.

How Encryption Relates to LDAP Management

The encryption technologies described here relate to LDAP in two primary ways. First, LDAP client-server sessions

transmit data across public wires. To ensure privacy of directory data, SSL or TLS must be employed. This implies that

certificates for the LDAP directory must be supported and maintained on an ongoing basis. Optimally, you would also

require that clients have their own certificates as well. In some instances, depending on the vendor product, this

requirement may require implementing a certificate authority to provide the LDAP directory certificate. Second, certificate

authorities need a place to store and publish certificates and certificate revocation lists. The LDAP directory fits this need

very well. Encryption underlies any authentication that the directory requires for access. A good grasp of encryption will

help guide implementation decisions that ensure the integrity of the directory data is reasonably protected.

For these reasons, LDAP directory administrators usually are familiar with the organization's encryption policies and PKI

(public key infrastructure) architecture. Additionally, the directory administrator is likely to be in charge of managing

certificates. In any event, a familiarity with encryption is worthwhile so the administrator has a sense of the strength of the

privacy and access control LDAP can provide.

Shared Secret Key Encryption

Both parties share the same key in secret key encryption

Encryption in which the key can be used to both encrypt data and decrypt it is called shared secret key encryption. The

key in this instance is known as a shared secret key. Shared secret key encryption generally requires very little

processing time, which makes it attractive for encrypting large amounts of data. We were talking about shared secret

encryption when we discussed Kerberos and DIGEST-MD5 in the previous section, Authorization.

Secret keys must be communicated safely and stored safely

However, secret key encryption has a problem. How do the two parties decide on and communicate the shared secret key

to each other? Without some prior encryption protecting their communication, it is difficult to share a secret key. This

problem gets worse as one imagines all the parties one might wish to communicate with, and the number of different

secret keys needed to support encrypted communication between all these parties. Usually scalability isn't a problem

because a single authority holds all the shared secret keys, and everyone agrees to trust that single authority. However,

that single authority and the party still must somehow communicate the secret they share. Public key encryption handles

this issue.

Public Key Encryption

A pair of specially linked keys is used with public key encryption

Public key encryption uses a pair of keys with an algorithm that has a special feature. The pair of keys consists of a public

key and a private key. The public key is published for anyone to know, whereas the private key is kept secret from

everyone but the user. Only the private key can decrypt data that is encrypted with the algorithm and the public key.

Similarly, only the public key can decrypt data that is encrypted with the private key. Attempts to decrypt an encrypted

message without the opposite paired key will fail. This technique solves the problem of distributing and choosing a key for

the two parties, because the two parties don't share the same key. It doesn't matter who knows your public key, because

the public key can't be used to impersonate you. Figure 5-12 shows the relationship of the pair of keys to the encryption

process. All the arrows in Figure 5-12 going in a clockwise direction could just as easily go in a counterclockwise direction.

Figure 5-12. Public key encryption

Let's say I want to send a shared secret to you. I would encrypt the shared secret using my private key. This would

indicate that the shared secret came from me. Then I'd encrypt the results of that with your public key. This would

guarantee that only you could decrypt the shared secret.

Public key encryption is slower and requires an outside authority to verify identity

Public key encryption, however, has a few problems. It requires more significant processing time, so it is not ideal for

encrypting large amounts of data. There is also an issue of authentication that is somewhat outside the scope of the

problem it is designed to solve. Say I get an encrypted message from Bill Gates along with a public key. I decrypt it with

the public key, and this proves that the person who sent it has the private key that corresponds to the public key. But it

doesn't prove that the message was sent by Bill Gates. This problem is solved by certificates, which I discuss after

looking at one particular use of public key encryption.

Digital Signatures

Digital signatures provide authentication and data integrity to data messages

A digital signature for me connotes a picture of my signature scanned in a computer. Because my signature is illegible, I'm

glad this isn't what digital signatures really are. A digital signature is a specific application of public key encryption. The

idea is to encrypt a representation of the message and append it to the message to provide a measure of authentication,

as well as proof that the message wasn't altered in transit.

The encrypted message digest is the digital signature

A special algorithm called a hash function takes the message and computes a brief string that is based on the message

body. This string of characters is called a message digest or checksum. For example, one commonly used hash using

SHA-1 results in a 20-byte message digest. The message digest is then encrypted with the private key and the result is

appended to the end of the message. The recipient can use your public key to decrypt the appended message digest,

compute a personal message digest of the body of the message, and compare the two results. Assuming they match, the

recipient knows that you sent the message and that no one has tampered with the message in transit.

A digital signature does not provide privacy, nor does it prove identity without an outside authority

source

Note that a digital signature does not encrypt the message. It does not provide privacy, but it is a way to provide message

authentication and data integrity. However, there are several problems with digital signatures. For example, let's say the

CEO of Mycompany sends an e-mail to Han Solo that says, "You're fired!" The CEO attaches his digital signature to

verify that he sent it. Luke Skywalker just happens to intercept this e-mail. He saves the e-mail and later sends it to

several other employees to trick them into thinking they have been fired. Unless the checksum protects the message

header that includes the recipient and time, this scenario could happen. Also note that if the public key is sent along with

the message, there still is no real verification of the identity of the sender. This is what certificates are about. A digital

signature is designed to provide authentication, but one still needs a trusted authority to reliably associate the key pair

with a specific person.

Certificates and Certificate Authority

Certificates map a public key to an identity. A CA is the authority other parties can trust

Certificates associate a public key with an identity. To learn more about certificates, review RFC 2459. As described in the

previous section, you need a trusted authority to manage these certificates and assert that the certificate is valid, in other

words, that the public key is really associated with the identity. This authority is called a certificate authority or CA.

The CA issues certificates and places its signature on each as a mark of authenticity

Figure 5-13 shows a simplified representation of a CA and a certificate. The CA issues certificates. The CA is in turn

referenced as the source of authority in all certificates that the CA has issued. A user can know that a CA really issued a

certificate because the CA puts its digital signature on each certificate it issues. You verify that a certificate is valid by

checking this digital signature, which requires getting the public key (and certificate) of the CA. A certificate usually has a

time period for which it is valid.

Figure 5-13. CA with certificate

CAs have a hierarchy of authority, but ultimately the user decides whether to trust each CA

A CA's certificate in turn references other CAs as the source of authority. This hierarchy of authority helps the user and

applications check how authentic the certificate might be. Additionally, each CA provides a list of certificates that have

been revoked. You are probably now wondering how you know whether to trust the identity of a CA. After all, anyone

might bring up a CA and have it create a certificate with Bill Gates's name on it. This doesn't mean that messages that

use this certificate really are from Bill Gates, because the CA isn't necessarily trustworthy. There are several public CAs,

such as VeriSign, that are fairly well trusted by organizations. But ultimately, you must decide to trust the chain of CAs

listed for any given certificate, just as you must decide to trust authorities in other systems of authentication. This element

of trusting a third party (and that party's security of their CAs and policies verifying identity before issuing a certificate) is

one of the reasons certificates haven't completely replaced other technologies yet. Other reasons include solving how to

easily deploy the certificate to users, and how the certificate can physically follow the user. It is important to note that

solutions to these issues are sometimes included with the software or operating system deployed. For example, it is fairly

common for operating systems to trust a list of well-known public CAs by default.

SSL and TLS

SSL combines public and secret key encryption

Secure Sockets Layer (SSL) is the most commonly used implementation of public key encryption. SSL is used to encrypt

the session traffic between two hosts. SSL uses public key encryption to pass a shared secret key. This shared secret key

is then used by both systems to implement secret key encryption on all subsequent session traffic between the two hosts.

This elegant combination of both public and secret key encryption avoids the slow processing that comes with public key

encryption, while solving the problem of safely distributing a secret key.

SSL can be used to encrypt a service session between any two parties

SSL is typically used to encrypt traffic to Web sites such as a commercial Web site. Browsers are passed certificates and

understand how to deal with the encryption with a minimum of user intervention, while the details below the surface are

fascinating and complex. However, other services make use of SSL. In fact, any service that passes data between two

parties that needs to be kept private should consider using SSL.

TLS is the successor to SSL, and it is an Internet standard

SSL is not a formal standard in the sense that many other technologies are. Netscape owns the SSL standard. Transport

Layer Security (TLS) is a similar technology that is a formal standard. RFC 2246 describes the TLS standard in detail and

briefly outlines the relationship between SSL and TLS. Basically, TLS is a successor to SSL, and it will likely subsume

SSL. TLS implementations can downgrade to act like SSL.

[Team LiB]

[Team LiB]

Administrative Server Parameters

Server-based parameters help control directory operations

Most LDAP vendors implement server-side configuration parameters that allow the directory administrator to

control some of the behavior of the server. In almost every case, the LDAP client options noted in Chapter 3 are

also implemented on the server as a global control. Recall that client options apply only to the client's session.

In this case, these server parameters would affect all client sessions and override client options when there is

disagreement. Some vendors include additional parameters that provide help to control directory behavior and

maintenance. The following section discusses the more common parameters, but again these parameters are

not necessarily in all implementations and are certainly not required by the LDAP standard.

Server-based parameters also indirectly affect directory security

The session timeout parameter controls the maximum period of time the server will process an operation for a

client. The search query limit controls the maximum number of entries to return on any operation. These two

limits can help in limiting the effectiveness of a denial-of-service attack based on resource consumption.

Anonymous user controls can be used to limit what operations a server will perform for a client that hasn't

completed a bind operation successfully. Allowed authentication methods denote which authentication methods

clients can use with the bind operation. Administrators should follow the security recommendations noted in this

chapter and, in particular, pay close attention to the lowest strength authentication method allowed. IP

restrictions can be used as an access control factor in denying or allowing a client access to the directory

server. A referral chaining parameter controls whether the directory server should chase referrals for the client.

This parameter has implications on server resources when referrals are used widely.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Other Directory Management Tasks

There are a multitude of other management tasks associated with a directory. Although it is not useful to

address the specifics of all those tasks here, mentioning the common ones is worthwhile so you are familiar

with some of the tasks directory administrators and technical managers should be prepared to support. Use this

list as a useful starting point for further research and implementation planning.

Certificate authority management— Management of certificates, revocation lists, and the

certificates used to establish trust between CAs is a critical function.

User account management— People have to log in, and LDAP directories often store the

organization's user accounts. Providing account management is a common task.

Directory server storage management— The directory must have space to grow.

DNS records— The records that provide access to the directory are a critical dependency. There is

no maintenance needed; but should the records break, you will want to know how to fix them quickly.

Schema maintenance— The initial implementation will require an in-depth examination of your

needs and will translate these needs into the specific schema elements that support your goals. The

need to store new types of data in the directory will be an ongoing process, and having a clear

methodology on how to propose and evaluate schema changes will be useful. Failure to deal with the

schema usually results in the need for a lengthy data cleanup effort later.

Replication troubleshooting— If there are collisions or failures in the replication process, you will

need to intervene.

Bulk modifications— The directory administrator may be called on to make bulk modifications to the

directory data.

Performance monitoring— Perception is everything. Performance monitoring will help you provide a

reliable directory that doesn't seem slow to users. It will help you gauge when to upgrade or add

additional servers, and maybe help detect a problem before users do.

Backups— Loss of data is still far too common an occurrence. Have a backup system in place before

bringing up a directory.

Documentation— People have to use what is designed. You need up-to-date user documentation,

in-depth developer documentation, internal directory administrator documentation that addresses

architecture, maintenance, and management, and probably one high-level overview for managers

explaining how the directory can be used to enable other technical projects.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Summary

Distribution and integration of LDAP directories relies on several critical functionalities

Distributing LDAP directories across multiple servers increases reliability and makes maintenance more

manageable. Replication, referrals, chaining, aliases, and LDIF are all critical functionality for providing

distribution. These same functionalities also provide the means for integrating both distributed and disparate

directories. But the problem of integration can be very difficult, and it may require extensive development or an

expensive metadirectory product. Fortunately, DSML may provide some critical relief in the near future.

Directory security differs between products and will require investigation

Directory security is an area in which products differ widely. Access control factors, authentication methods, and

encryption strength provide some key areas to investigate when you are comparing products. LDAP directories

can also provide a convenient distribution and storage mechanism for PKI.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Part II: How Vendors Have Implemented LDAP

Chapter 6. OpenLDAP

Chapter 7. Microsoft Active Directory

Chapter 8. Directory Server

[Team LiB]

[Team LiB]

Chapter 6. OpenLDAP

OpenLDAP is a directory solution that is rapidly being adopted. However, the reasons for this rapid adoption

are quite different from the reasons Active Directory was rapidly adopted. Open-LDAP embraces the open

source philosophy of software development. In addition, development of OpenLDAP is on a volunteer basis,

and the software is available free of charge. This combination of philosophical differences appeals to many

organizations, and it has rapidly made OpenLDAP a major contender in the directory space.

OpenLDAP embraces the open source philosophy

The OpenLDAP directory server is OS independent

The OpenLDAP Server is unlike Active Directory in another way. OpenLDAP is not oriented or even tied to a

specific network operating system. Because the OpenLDAP code base is open source, anyone is welcome to

port the code to an operating system, compile, and implement it. This kind of operating system independence

represents a movement within the directory space that other vendors, including traditional NOS vendors like

Novell, are embracing.

Open or Closed Source?

A debate is raging on whether software should be open or closed source. One of the issues in this

argument is whether seeing the source code results in more security and stability. Being able to

see the code lets people find problems and fix them proactively, instead of being dependent on the

vendor. This preference sounds reasonable, but there are also drawbacks to this approach.

Opening the source code means that a company might lose valuable intellectual property and open

the code to people with malicious intent. When a company loses business because people take or

attack its code, it is less able to provide dedicated support for it. This is only one topic in the larger

debate, which is likely to be with us for a long time.

OpenLDAP targets general functionality, which appeals to a wider audience

Although some vendors implement an LDAP directory primarily to support a NOS, this is not the primary aim of

OpenLDAP. OpenLDAP is focused on implementing the LDAP standard and directory features that are useful

to a wide audience, instead of enabling platform-specific technology. This approach may be especially relevant

for organizations in which a significant portion of the clients of the directory don't interoperate well with specific

network operating system features. In addition, directory implementation features are simpler to understand and

explain.

The OpenLDAP code has a positive history, and it lends itself to flexibility

The OpenLDAP server code base comes out of the open source University of Michigan code that pioneered the

LDAP standard. Some organizations still run this University of Michigan code. Migration to OpenLDAP will be

appealing to these organizations because of the larger customer base and contemporary development.

Additionally, the OpenLDAP server code has a high degree of component interchangeability. Having

interchangeable components supports a higher degree of flexibility. For example, being able to select the

authentication module or database of your choice, instead of being limited to your vendor's choice, is a valuable

benefit.

Two processes are at the heart of the OpenLDAP server

OpenLDAP has two special processes—slapd and slurpd—that are central to understanding how the directory

server functions. Both these special processes come from the University of Michigan code; and because the

Michigan code came first, several other LDAP directory servers also have them. This similarity might be

considered a benefit by directory administrators who are familiar with LDAP.

The slapd process handles the LDAP operations

The slapd process runs the DSA and processes client operations. The behavior of the slapd process is easily

controlled via a text configuration file. The slapd configuration file holds a great deal of importance for operation

of the OpenLDAP server.

The slurpd process handles replication

The slurpd process is used to replicate partitions between two servers running the slapd process. The slurpd

process works in conjunction with the local slapd process, reading all changes that the slapd process commits

out of a special log file, and sends corresponding modify operations to the remote slapd process. One way of

thinking of the slurpd process is as a harvester that uses a log file.

What Is the DSA?

DSA stands for Directory System Agent, a term that comes from X.500. X.500 defined what we

understand as the LDAP server process as the DSA, and what we think of the LDAP client as the

DUA or Directory Service Agent. These terms are confusing and out of date, though they are still

occasionally used. You will see these terms in literature about replication, such as a reference to "a

DSA to DSA operation." If you also see the term "DSP" or "Directory Service Protocol," the

document is referring to an X.500 directory; but otherwise, it is likely to be an LDAP directory.

The client library is popular because it is openly developed

In addition to the OpenLDAP server software, the OpenLDAP client library is becoming a rising star among

LDAP client libraries. This is largely because open feedback and development generates a greater amount of

active development and peer use. The OpenLDAP effort is also known for adhering closely to the LDAP

standards and not implementing proprietary additions. Using the OpenLDAP client library to create a piece of

code means that it should work with any LDAP server.

Version releases are frequent

The OpenLDAP solution is a constantly moving target because the latest version is sometimes released on a

weekly or monthly basis. This frequency makes it difficult to cover the feature set without being outdated by

press time. To accommodate this timing issue, I've taken a little liberty in mentioning functionality that hasn't

been implemented yet but is planned in the near future at the time of writing. The OpenLDAP group tests each

release for stability and also announces the latest stable release, so instable releases can be avoided.

[Team LiB]

[Team LiB]

Namespace

OpenLDAP supports using DNS for directory service location

Thankfully, by default OpenLDAP does not implement a complex namespace. The OpenLDAP namespace

follows the existing LDAP standards described earlier. OpenLDAP leverages DNS in its namespace per RFC

2247 and supports using DNS SRV records to locate directory servers.

OpenLDAP hosts a root server to provide referrals for LDAP service location

In fact, OpenLDAP has taken the DNS SRV record functionality to its logical conclusion, in RFC 3088. RFC

3088 provides a mechanism to begin tying together all the LDAP servers on the Internet. OpenLDAP runs a

special root server,root.openldap.org, which, given an RFC 2247 DN string, will determine whether there is a

DNS SRV record for the server indicated by the string.

If so, the root server returns an LDAP URL directed to this server.

Your directory can use the OpenLDAP root server

Obviously, this service works correctly only when the destination LDAP server has the appropriate SRV record.

So for example, assume you submitted a DN of dc=mycompany,dc=com to the special root server. The root

server would generate a DNS query for the SRV record _ldap._tcp.mycompany.com. If the DNS query

returned a valid record that pointed atserver1.mycompany.com, the root server would generate an LDAP URL

of ldap://server1.mycompany.com/. An administrator for an LDAP server can direct its default external

referral reference to this special server and know that requests for an entry outside the namespace of the local

LDAP server will be properly referred to the correct LDAP server.

Naming Contexts and Partitions

Multiple naming contexts are allowed, and each corresponds to a separate database

An OpenLDAP server can have multiple naming contexts. Generally speaking, each naming context has a

separate database. In reality, multiple suffixes can be associated with a single database, but the OpenLDAP

team discourages this practice. You can potentially use different kinds of databases on the same OpenLDAP

server, but there is little practical reason to do so.

Something for Free?

You don't often get something for nothing. But OpenLDAP is providing more than just the software

for free, the movement is also providing the root namespace service for free. I think this choice

reflects the classy nature of the folks in the OpenLDAP community. You may wonder where the

money comes from. OpenLDAP receives some support from Sourceforge, Net Boolean, and

Internet Software Consortium, but support is largely on a volunteer basis. Hopefully the IETF will

formally embrace this idea of tying together directory namespaces.

Design flexibility is created by separating each naming context into a separate database

Because each naming context is a separate database, greater design flexibility is possible. For example, each

naming context can have different configuration settings, including different replication topology, attribute

indexing, or forcing the naming context to be read-only. These different configuration settings are set in the

slapd configuration file under the appropriate database directive section. Alternative maintenance and

optimization configurations for each naming context are also possible, which may be useful depending on the

type of data in each naming context. For example, one naming context might contain data that is accessed

frequently and needs a great deal of indexing for optimal performance. Another naming context might contain

highly confidential data that is accessed infrequently and requires more frequent backups.

Distributed Directory Functionality

OpenLDAP supports subordinate and external referrals

As you might have gathered already, OpenLDAP supports referrals. Both subordinate and superior referrals are

supported, and the referrals can be internal or external to the directory namespace.

Subordinate referrals and a control to provide maintenance are supported

You can create subordinate referrals by creating an objectclass=referral entry in the appropriate location

within the namespace. OpenLDAP supports the ManageDsaIT control with the add, modify, and delete

operations to allow changes to referral entries. This control allows an administrator to suppress the usual

behavior of the referral entry to return a client referral to another location.

Superior referrals are created outside the LDAP directory

Superior referrals are created in the slapd configuration file as a directive. A superior referral to the OpenLDAP

root server noted above would consist of the following line:

referral ldap://root.openldap.org/

Referral support enables the possibility of a distributed directory

OpenLDAP's referral support allows the creation of a directory distributed across multiple servers. Each server

might host a separate portion of the namespace, depending on the needs of the organization. As noted in

Chapter 5, there are many possible reasons for such a design, including segmenting data to a specific location

or segregating client groups to a specific server.

OpenLDAP supports single-master replication via the slurpd process

As noted earlier, OpenLDAP supports directory replication across multiple servers. The slurpd process

performs this functionality. OpenLDAP supports only single-master replication at this time. Multimaster

replication is possible with the existing versions, but it is considered experimental and is poorly documented.

The slapd configuration file controls the replication behavior

The slurpd process works closely with the slapd process running on the same server. The slapd configuration

file controls much of the behavior of the slurpd process. Two things are needed in the master server's slapd

configuration file. First, a replica directive is needed that specifies what server the replication should be directed

toward as well as the authentication method and credentials that should be used in the LDAP session with this

other server. The slurpd process uses the LDAP operations to perform the replication. Second, a replogfile

directive is needed to instruct the slapd process to log all changes to file. This file is in turn used by the slurpd

process to determine what operations need to be replicated. You may have wondered how the portion of

directory to be replicated is specified in this scheme. The replication directives are placed in the same database

section as the naming context that you want to replicate. You are really replicating a database via LDAP

operations, and the databases on the server represent the partitions you can replicate. You'll notice this same

approach to replication in many other LDAP products. In fact, Chapter 8 describes something remarkably

similar with slight improvements.

Database Functionality

OpenLDAP has special support features for the LDBM database type

OpenLDAP gives administrators a choice of databases to support the directory functionality. OpenLDAP favors

the LDBM database type, and it has built-in configuration options for this database type.

You can use other databases with OpenLDAP

However, OpenLDAP can use other types of databases, including SQL. OpenLDAP accomplishes this

functionality via what it calls the Shell backend database type. The Shell backend is really just the basic

interface that OpenLDAP supports to interact with other types of databases. In the slapd configuration file, you

would specify an external database command for each of the ten LDAP operations. After this configuration, the

OpenLDAP directory would be able to use the external database. In this case, database configuration,

indexing, and optimization would all be external to OpenLDAP.

Database support customization is possible

For more integrated database support, you can write your own backend. A backend is code that redirects LDAP

operations to a database, thus acting as a proxy. By writing your own backend, you can allow any special

database functionality to interoperate more closely with the LDAP configuration.

Indexing

Determining what attributes to index is at the heart of optimization

Indexing is an important consideration as a directory grows. When the commonly searched attributes are

indexed, performance is better. Indexing all the attributes would require more resources and performance

would suffer, so you should index only those attributes that are frequently used in search filters.

Indexing support is provided for LDBM, but other databases must provide their own

The level of indexing support OpenLDAP provides is dependent on the database employed. OpenLDAP favors

the LDBM database type, and you can include indexing directives in the slapd configuration file only when you

are using this type of data base. The indexing directives for an LDBM database are specific and support a

higher degree of optimization than LDAP servers from other vendors.

Which match operators are indexed is important

The OpenLDAP indexing directives let you optimize the indexing to the type of search filter match operator that

is most relevant. For example, imagine a directory with the following frequently used search filters:

(st=CA)

(userCertificate=*)

The following indexing directives would optimize the indexing:

index st eq

index userCertificate pres

The first directive indexes the st attribute for the equality operator, which means that the DN of every entry that

has a st value needs to be kept in the index, and further that every value of the st attribute must be kept in the

index so each value can be quickly matched. The second directive indexes the userCertificate attribute for the

presence operator, which means that the DN of every entry that has a user certificate value needs to be kept in

the index, but the values of that attribute are not needed.

All the standard match operators are supported for inclusion in indexing

In addition to the equality and presence index parameters, OpenLDAP supports several others. These include

the approximate operator (the "sounds like" operator), attribute subtyping, and language attribute options (which

OpenLDAP calls language tags).

Indexing is not the only factor in optimizing OpenLDAP performance. For example, the access controls

employed can greatly affect directory performance.

[Team LiB]

[Team LiB]

Operations and Clients

OpenLDAP has fallen behind other solutions in terms of number of features

OpenLDAP has focused on performance and standards in the area of server operation functionality. This

strength together with its low cost results in an attractive option. However, in comparison with other LDAP

servers, OpenLDAP lags behind in terms of additional features.

OpenLDAP has implemented many additional LDAP RFCs, but neglected others

In its favor, OpenLDAP has implemented the password modify control (RFC 3062), strong SASL-based

authentication (RFC 2829), session encryption via TLS (RFC 2830), and language tags (RFC 2596). But

common features that have been implemented by the majority of LDAP server vendors, such as server-side

sorting control (RFC 2891) and the paged search control, have yet to be implemented.

OpenLDAP got a late start

The lack of features seems to be attributed largely to OpenLDAP's late entry. The initial OpenLDAP code was

taken directly from the final version of the University of Michigan's open source release in 1996. In fact, today's

OpenLDAP administration guide and the Michigan administration guide are still remarkably similar. Other

vendors worked for years while the code that OpenLDAP uses sat without development.

Clients

A basic set of client tools is provided

A variety of client-based tools are provided with the OpenLDAP distribution. These tools range from ones to

support the basic

Intangibles Often Make a Difference

OpenLDAP hosts one of the few LDAP discussion mailing lists. Its developers are among the most

active in the IETF LDAP working groups. If you follow the LDAP drafts being proposed, you'll note

that many of the ideas come from someone associated with OpenLDAP. All these things add up to

a positive feeling about the direction and support for OpenLDAP.

LDAP operations to a few more advanced tools. Support for these tools is an integral part of the distribution,

because each one uses the API library that OpenLDAP provides.

Client tools include all the standard LDAP operations

A command-line executable for a client is included in the distribution for each of the LDAP operations. The

client executables include ldapdelete, ldapmodify, ldapadd, ldapmodrdn, ldapsearch, ldap_abandon, ldap_bind,

and ldap_compare. Variants of each of these executables are also offered. All of the client tools are fully

documented at the online OpenLDAP man pages at http://www.openldap.org/software/man.cgi, and this

documentation is included in the distribution.

A few support tools are also included

In addition to these basic commands, executables that support basic functionality are also included. These

include operations to use the password modify control, encode elements using BER, and format the output

from an entry, as well as the operations needed to step through the LDAPMessage returned by the primary

operations.

Directory-Enabled Applications

A couple of directory-enabled mail services are provided

The OpenLDAP distribution comes with a few applications that closely integrate with an LDAP directory. The

majority of these applications allow sendmail to query an LDAP directory (or an X.500 directory with an LDAP

gateway in front) with an e-mail address. The returned message contains information regarding where to route

the mail. Additional functionality includes routing resolution to mail-enabled groups via a special object class

called rfc822MailGroup. There are a few other directory-enabled applications distributed with OpenLDAP, but

they are unremarkable.

Programming Support

Programming support is very good

Support for LDAP programmers using OpenLDAP is quite good. The support for OpenLDAP tools is perhaps

better than with any other vendor. The support is not without quirks or need of improvement, but it is amazing

when you figure cost into the equation.

The public OpenLDAP forum provides solutions that are satisfactory to customers

Support is given primarily via online documentation, documentation distributed with the development tools, and

mailing lists. As with other vendors, the online documentation is good for beginners, but it is sparse on issues of

greater complexity. However, the mailing lists really fill this gap. Posts to the mailing list go to developers

worldwide, and the hardest ones are regularly answered by the core programmers who volunteer their time.

Most vendors filter access to their core programmers, but OpenLDAP gives you a direct and public forum to

interact with them. This approach provides a real benefit to the OpenLDAP effort, because it draws new

http://www.openldap.org/software/man.cgi

developers into donating their time to add a new feature to the code base that is shared by all.

Controls

OpenLDAP offers only a single control by default

By default, OpenLDAP supports only two LDAP controls. In addition to the aforementioned Password Modify

Control, the ManageDsaIT control (2.16.840.1.113730.3.4.2) is supported. It allows an LDAP client to add,

modify, or delete a referral internal to the directory namespace. The referral must be an entry of

objectclass=referral. External referrals cannot be modified with this control. The small number of controls

implemented is indicative mostly of how long OpenLDAP has been around. After a year, I'd expect that many of

the common controls will be implemented. But for the time being, the lack of control support is a weakness of

OpenLDAP when compared to other offerings.

Is a Shared Code Base a Benefit?

Some people would argue that an openly developed code base creates the possibility that a

contributor might introduce malicious code. But when you weigh this risk against your other option,

you realize neither option is desirable. If you purchase your software, you will find that vendors are

reluctant to add features you want because there isn't enough demand to justify their costs. So your

organization is left out to dry. If only there were a middle ground. Some software products do offer

a middle ground, where they expose an API that you can use, and allow you to plug your own code

module into their product. Directory Server (see Chapter 8) offers something like this.

[Team LiB]

[Team LiB]

Schema

The OpenLDAP schema follows all the standards

The default OpenLDAP schema includes every definition in an IETF RFC document, along with several draft

and experimental definitions. Definitions follow the BNF schema format used in the RFC specifications, as

described in Appendix B. The schema definitions do not follow the slapd.conf schema format, even though

OpenLDAP uses a slapd.conf file like several other LDAP servers.

Several files define the default OpenLDAP schema

The default schema definitions are in a set of nine schema files, which are included by directives in the default

slapd configuration file. If desired, you can remove these directives or modify the default schema files

themselves. Exactly what is included in the default definitions is documented only in the text files for the code

base itself. This is an oversight that should be corrected.

You can add definitions singly or in a set

In addition to the default schema definitions, directives in the slapd configuration file define schema elements.

Modifications to the schema are fairly easy to make, with a short service outage required to put modifications

into place. You can add schema definitions directly to the slapd configuration file, or you can place any number

of schema definitions in a file(s) and include the file(s) with a directive in the slapd configuration file.

Incidentally, OpenLDAP does allow you to turn off the schema-checking process, although this isn't

recommended.

OpenLDAP supports a large number of syntaxes and allows extension

OpenLDAP supports 58 syntaxes by default and allows additional syntaxes to be added. OpenLDAP supports

33 matching rules by default and allows additional matching rules to be added. The syntaxes and matching

rules are not referenced by the slapd configuration file and are listed only in the source code, in a file named

schema_init.c. The slapd.conf man page does list syntaxes, but the list is incomplete and the placement of the

information illogical. This poor documentation makes it harder to use. You would use the schema_init.c file to

define additional syntaxes and matching rules. The file notes 20 additional matching rules, which may be added

in future releases. Despite the poor documentation, the number of syntaxes and matching rules supported by

default, along with the easy extensibility, represents a key benefit that OpenLDAP holds over competitors.

Classes

By default, 81 classes are defined, each of which corresponds to a definition in a

documented standard

By default, the OpenLDAP schema supports 81 classes. As noted earlier, these classes are primarily standard

classes denoted in RFC standards. In fact, there is little in the default schema that isn't documented in an

Internet standard. And unlike other vendors, OpenLDAP doesn't arbitrarily change the standards to meet some

proprietary need. The only modifications to the schema elements are minor changes to allow all the schema

elements to be implemented despite minor discrepancies between the standards.

Multiple-class inheritance is supported

OpenLDAP uses a multiple-class inheritance model, in which more than one class can be superior for any

given object class. For example, the openLDAPperson class has both inetOrgPerson and pilotPerson as

superior classes. This class inheritance model provides greater flexibility than the single-class model that most

LDAP servers employ, and it is a nice feature for organizations looking to design a new class combining several

existing definitions.

Aliases and referrals are supported

OpenLDAP implements the alias object class, which provides a level of intra-directory redirection. OpenLDAP

also implements the ref object class, to support referral functionality. The combination of these two classes

allows for any organizational hierarchy or distribution of a directory across multiple servers.

Attributes

OpenLDAP provides the basic level of attribute support

By default, the OpenLDAP schema supports 192 attributes. As mentioned earlier, attribute subtypes are

supported as well as attribute options, including language tags. This diversity of basic attribute support means

that organizations can easily implement custom attributes.

Several OpenLDAP operational attributes are automatically maintained

OpenLDAP implements several operational attributes. These include the modifiersName,

modifyTimestamp, creatorsName, and createTimestamp attributes to track modifications to entries.

These attributes will be automatically maintained by slapd if the lastmod on | off directive is set in the slapd

configuration file. By default, the lastmod directive is on. Following the LDAP standards, the

subschemaSubentry operational attribute is also on every entry.

Design Flexibility

OpenLDAP has the greatest flexibility of the products examined if you are designing your own

schema elements. Lack of flexibility can be a showstopper when you have to integrate a directory

into a complicated existing infrastructure. OpenLDAP gives you the ability to create any schema

element from scratch, beginning from syntaxes on up. Most other products limit you to only

attributes and object classes. Some products even have limitations that restrict your ability to

modify default schema elements. This can be especially problematic in scenarios in which directory

integration is required.

A few unorthodox attributes enable access control functionality

There are also a few interesting attributes that OpenLDAP requires for basic functionality. Among these are the

entry and children attributes. These cannot be modified by users and are maintained by the slapd process.

They are used primarily to enable access control settings, but there may be secondary uses. The entry

attribute allows access control of the modifyRDN operation, so when a client wants to change the name (RDN

and DN) of an entry, there is an attribute to be used as a target in an ACL. The children attribute is used for a

similar purpose to indicate the names of all the entries that are immediate children of the entry. How these

attributes are used is covered in more detail in Appendix D.

[Team LiB]

[Team LiB]

Management

OpenLDAP provides several management tools to make administration easier. Two tools are provided to

support LDIF functionality, and a third tool helps manage directory indexing.

LDIF import is done via slapadd

You use the slapadd program to create the initial database (and therefore directory) along with the indexes. The

slapadd command takes an LDIF file as input to create entries. The syntax of the slapadd command is

slapadd -l <inputfile> -f <slapdconfigfile>

 [-d <debuglevel>] [-n <integer> | -b <suffix>]

-l is the LDIF input file.

-f is the slapd configuration file.

-d indicates the level of debugging desired.

The -n and -b arguments specify which database to modify.

The arguments in brackets are optional.

LDIF export is done via slapcat

You use the slapcat program to dump a database to LDIF, either to back up the directory or to have a template

for changing multiple entries at the same time. For example, assume I want to change the value of the mail

attribute for every person entry in the directory. The current value is in the form user@mycompany.com; but for

some reason, I need to change them all to the form user@mail.mycompany.com. I'd use the slapcat program to

create a file. Then I might use pattern-matching software like perl to replace every instance of

@mycompany.com with @mail.mycompany.com in the mail attribute. I could then clean up the file and use it

with the slapadd program to modify all the entries. This solution would be quick compared to writing an

LDAP-based application that did the same thing.

The syntax of the slapcat command is

slapcat -l <filename> -f <slapdconfigfile> [-d

 <debuglevel>] [-n <databasenumber>|-b <suffix>]

The arguments are identical to those of the slapadd command.

To rebuild the index, use slapindex

You use the slapindex program to rebuild the indexing on a database. When the index is rebuilt, it reflects all

the data in the database. Rebuilding the index is necessary when you add new attributes or operators to the

indexing directives. If the index isn't rebuilt after an indexing configuration change, only new entries will reflect

the changed indexing configuration. The syntax of the slapindex command is

slapindex -f <slapdconfigfile> [-d <debuglevel>] [-n

 <databasenumber>|-b <suffix>]

Again, the arguments match those of the slapadd command.

Special Configuration Parameters

Configuration parameters are primarily set in the slapd configuration file via directives. But because the code

base is open source, motivated organizations can implement their own changes and settings as needed. We've

already discussed most of the directives that can be set, except for a few omissions, which are covered here.

The backend directive allows new modules to be added to slapd

Backends are a way to support databases smoothly. Backends can be any module that you want to implement

to extend the functionality of the slapd process. They are not limited to new database functionality. To create a

backend, you use a backend directive.

Basic limit and log settings are configurable

OpenLDAP supports the typical limit settings that most LDAP servers support. An idletimeout directive

specifies how long slapd should wait before forcibly closing idle connections. A sizelimit directive specifies the

maximum number of directory entries that can be returned from a search operation. A directive called loglevel

controls the logging performed by the slapd process and the level of detail.

[Team LiB]

[Team LiB]

Security

OpenLDAP supports all the security elements suggested by RFC 2829 and 2830. It provides a diversity of

authentication methods, each of which also can be used as an access control factor. The authorization support

it provides is diverse, with a great number of possible access control factors, but configuration changes are

subject to service interruption. Privacy support is provided, but the management features are basic. OpenLDAP

takes security seriously, and future development should address some of the shortcomings.

Authentication

SASL support comes from Cyrus SASL

Carnegie Mellon University's Cyrus Project provides the SASL module used with OpenLDAP. The code is

freely available and widely used. The Cyrus SASL module supports several strong authentication mechanisms.

The full set of supported mechanisms consists of ANONYMOUS, CRAM-MD5, KERBEROS_V4, PLAIN,

SCRAM-MD5 (deprecated), GSSAPI (MIT Kerberos 5 or Heimdal Kerberos 5), DIGEST-MD5, LOGIN, and

SRP.

An authentication identity should be mapped to an authorization identity

After installing and configuring the SASL module to support authentication, you must perform additional work to

establish an authorization identity on the OpenLDAP server. When a user has successfully authenticated, the

SASL module passes an authentication identity to OpenLDAP. This identity does not necessarily exist within

the LDAP namespace, but it does exist within the namespace of the authentication mechanism used. Usually

you will map this successful authentication identity to the DN of a directory entry. This step simplifies interaction

within the directory and clearly establishes the identity of the user in the context of the LDAP namespace, so

the directory entry can be used as authorization information. This step isn't strictly required, however, because

you can use the native authentication identity that SASL returns in access control lists.

For example, the SASL module might pass to OpenLDAP the authentication identity:

uid=barkills,cn=MYCOMPANY.COM, cn=KERBEROS_V4,cn=AUTH. This identity appears to

correspond to an LDAP DN, but it does not exist within the directory namespace (but it could if you just

happened to use this model). The authentication identities that are passed correspond to the following format:

uid=<username>,cn=<realm>,cn=<mechanism>, cn=auth. The cn=<realm> component is not used by

all the mechanisms, and it may be absent.

Directives in the slapd configuration file perform the authentication mapping

To map the SASL authentication identity to a directory entry, you need to create one or more directives in the

slapd configuration file that effectively transform the identity to correspond to a valid directory entry. The

saslRegexp directives perform this transformation by using a few simple text-based pattern-matching rules to

search and replace text. You must use great care in forming these directives so the wrong entry isn't mapped.

The Regular Expression (regex) format is used to match a pattern and substitute a DN

The regex or Regular Expression documentation is at http://www.openldap.org/software/man.cgi. This man

page can be consulted for details. Regular expressions are a lengthy subject unto themselves, but a brief

example will illustrate their use. I want to map the identity I noted above to the directory entry with the DN

uid=barkills,ou=People,dc=Mycompany,dc=com. I might use the following directive to accomplish my goal:

saslRegexp

 uid=(.*),cn=MYCOMPANY.COM,cn=Kerberos_v4,cn=auth

 uid=$1,ou=People,dc=Mycompany,dc=com

The first line has the pattern match statement that must be met for the second line to be triggered. The pattern

match statement uses parentheses to denote what text to save for later use. The first set of parentheses is

saved to a temporary variable called $1, and additional sets of parentheses would likewise be saved to

temporary numbered variables. The period character is used as a wildcard to denote any character. The

asterisk character is used to denote one or more occurrences of a character. So a period followed by an

asterisk could potentially match any text string, if the two were all that was used in a pattern match. The

pattern-matching statement used here basically says match any identity that employs Kerberos 4 and is in the

MYCOMPANY.COM realm, while saving the uid value. The second line has the replacement statement that

maps to a directory entry. The variable $1 is used and would be replaced by barkills, in my example. This would

yield the DN I wanted.

Complex regular expressions are supported

More complicated statements are possible, including replacement statements that use an LDAP URL with a

search filter. This would be especially useful if the DN of entries in Mydirectory didn't use the uid attribute as the

RDN, but the uid attribute was a mandatory attribute. An example of this might be

saslRegexp

uid=(.*),cn=MYCOMPANY.COM,cn=Kerberos_v4,cn=auth

ldap://server1.mycompany.com/ou=People,dc=Mycompany,

 dc=com??sub?uid=$1

OpenLDAP supports impersonation of another authorization identity

OpenLDAP also offers an impersonation feature within its authentication support. An impersonation feature

helps to simplify authorization and allows special directory services to act on behalf of other identities. The

online OpenLDAP documentation calls the impersonation functionality "authorization," which is a less

descriptive name than is deserved and can be confusing.

Two attributes are used to delegate impersonation authorization

Impersonation is directed using the same syntax as was used with the regex directive, but it is not done via the

http://www.openldap.org/software/man.cgi

slapd configuration file. Instead, two attributes are used on the authorization entry that is mapped from the

authentication identity. The attribute saslAuthzTo is used as a source rule, and the attribute saslAuthzFrom is

used as a destination rule. The source rule lists what other authorization identities can impersonate this

authorization entry. The destination rule lists what authorization identities this authorization identity can

impersonate.

You can use either attribute, and each is equally effective

You can use both source and destination rules, but only one is required. Suppose I wanted to allow my entry,

DN cn=Brian Arkills,ou=People,dc=Mycompany,dc=com, to be able to impersonate Han Solo's entry

with DN cn=Han Solo,ou=People, dc=Mycompany,dc=com. I could enable this impersonation in either of

two ways. Using my entry, I could set saslAuthzTo= cn=Han

Solo,ou=People,dc=Mycompany,dc=com. Using Han Solo's entry, I could set saslAuthzFrom= cn=Brian

Arkills, ou=People,dc=Mycompany,dc=com. Either is effective and would accomplish the same end.

Impersonation is useful

But impersonation is more useful than this example illustrates. For example, let's say I have a special Web site

where users can change their directory entry without having to use unfriendly LDAP syntax. Users authenticate

to the Web site, view their directory entry, and visually edit their information. Behind the scenes, an application

service running at the Web site retrieves their entries using an LDAP search and makes modifications using

LDAP operations. To do this, the application service must have an authorization entry in the directory, and that

entry must be granted the ability to impersonate each of the users. For this purpose, its entry might have

saslAuthzTo=uid=.*,ou=People, dc=Mycompany,dc=com or saslAuthzTo=ldap://host/

ou=People,dc=Mycompany,dc=com??sub?objectclass=Person. Many entries are indicated by the

value. Another approach would be set the saslAuthzFrom attribute of every person's entry to the service's DN.

Impersonation also can enable the access controls to be simpler

Some directory administrators use the concept of impersonation in a manner similar to how security groups are

used in most file systems. They set a simple set of access controls on naming contexts that give access rights

to a small set of authorization identities. These authorization identities are effectively proxy accounts that are

used to provide different levels of access. Then users are given impersonation rights to these special accounts

depending on the level of access they need. This scheme simplifies the access controls that need to be set on

the directory while also simplifying the delegation needed. But it also obscures the audit trail and makes it

difficult to monitor access. This is bad security practice but optimizes performance. However, if you keep this

fault in mind and minimize the impact, you can use impersonation to simplify the access controls.

Which Impersonation Approach Should I Use?

Deciding which approach to take requires investigation and an understanding of the benefits and

costs involved. In the example, the first approach, with references to many entries, might cause

performance problems: during the authorization context switch, each of the entries must be

evaluated. The second approach is more time-consuming to initially configure and harder to

maintain over a period of time. Key factors in which approach I take are the computing power of the

directory server and the confidence I have in my administration.

Authorization

Access control is set by a policy, using directives

Speaking of access controls, it's high time to discuss how OpenLDAP provides this functionality. OpenLDAP

implements an access control in the form of an open, flexible access control policy. A traditional access control

list (ACL) model would place a separate ACL on each entry, possibly with inherited settings from parent entries.

With OpenLDAP, there is not a separate access control list for each entry. Instead, directives in the slapd

configuration file form the basis for an access control policy. The directives are set at two levels, one at the

database level (in other words, the naming context level) and one at the global level. Access is determined by

the first matching access directive, starting at the database level and proceeding to the global level. A simple

example of an access directive is provided here. For more details and examples, see Appendix D.

Access control directives look like an ACE

The access directives themselves resemble access control entries (ACEs) with the added information of the

directory entries to which the ACE applies. There are three primary elements to an access directive: <what>

entries, <who> should have access, and what level of <access>. As you might expect, most of the format of

these elements relies on the formatting expected by the regex command. The basic format of an access

directive is:

access to <what> by <who> <access>

There can be multiple instances of the by <who> and <access> elements for each <what> element.

Here is an example access directive:

access to dn=_.*,ou=People,dc=Mycompany,dc=com

 by dn=_cn=Han Solo,ou=People,dc=Mycompany,dc=com

 write

 by dn=_.*,ou=People,dc=Mycompany,dc=com read

This directive gives control access to all the entries immediately subordinate to the People OU. The user

authenticated as the Han Solo entry has write-level access, and users authenticated as one of the entries within

the People OU have read-level access.

OpenLDAP supports many access control factors

In addition to this traditional ACL approach, OpenLDAP supports many different access control factors. These

factors include wildcards (used in the example above), membership in a group, dynamic access control, the

DNS domain of the client, and the IP address of the client. Multiple combinations of these factors are also

supported. You can also use authentication method as an access control factor, but not as part of the access

directive. With a require directive, a certain type of authentication method can be mandated either on a global

basis or by database. For example, you might accept access only via Kerberos authentication.

A service outage is required for every access control change

There is one problem with all of these access control methods. All of them are created in the slapd

configuration file, and additions require that the slapd process be stopped and restarted. This means a short

directory service outage on any access control configuration, which may not be acceptable in some

environments. You can minimize this problem by configuring access controls that encompass all expected

situations, but there will inevitably be situations that require a change.

Service Interruption Is Expected?

Stopping a service to make a routine change is an unacceptable design weakness. Companies

can't afford downtime. If OpenLDAP wants to take over a larger market share, it needs to eliminate

this weakness or offer reasonable alternatives. ACI expressions suggest this problem has been

recognized by the OpenLDAP community, but this functionality is still experimental and not fully

supported.

An experimental feature eliminates the need for a service outage

OpenLDAP supports an experimental access control factor that is not subject to this problem. Experimental

features in OpenLDAP are not fully supported, and assistance is on a best-effort basis. ACI expressions are

considered experimental, mostly because the standard governing the definition hasn't been completed, but also

because the full set of functionality in the existing definition hasn't been implemented in the code base yet. ACI

expressions move the configuration and evaluation of access control from the slapd configuration file to an

attribute on the entry. This approach provides a major benefit: access control changes can be made without

restarting the slapd process. Appendix D includes pointers on how to find out more about ACI expressions.

A special entry has unrestricted access to the directory

There is a special entry called the rootdn that is not limited by any authorization factors. Administrators can

use this account for various activities. Within the slapd configuration file, two directives are required to initially

identify this account. The rootdn directive specifies the DN of this entry. The rootpw directive specifies a

password for the entry specified by the rootdn directive. This password will work regardless of the

userPassword attribute that is set on the entry. This password is in cleartext in the configuration file. You

should take measures to restrict access to this file because it holds the key to all of your directory data.

Privacy

Transport Layer Security is provided by the OpenSSL libraries for SSL and TLS. OpenSSL is open source

software, just as OpenLDAP is. You download the code, compile it for your platform, then install and configure

it. The OpenSSL Web site, http://www.openssl.org/, documents common issues, as well as providing support

http://www.openssl.org/default.htm

and instructions.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Why OpenLDAP?

It runs on any platform and is free!

OpenLDAP's biggest strength compared to other LDAP server options is the fact that it can be run on any

operating system platform. This strength is tempered by the fact that the entire solution is free. Because the

product is free, the support model is not formal; but OpenLDAP provides open interaction with the developers,

which can be better than formal support.

You have an active part in what you implement, instead of being at the mercy of a cold

vendor

Another key strength of OpenLDAP is an openly available code base that you can modify. This strength lends

itself to other benefits. For example, you can obtain greater control of performance because you can get closer

to the code. Another example is the high degree of interchangeable components that OpenLDAP supports.

Being able to choose components like a database is a significant benefit. No other LDAP vendor allows this

kind of choice. Another benefit is that you can pool development resources with other organizations to get a

commonly desired feature implemented.

A diverse choice of security features is nice

The diversity of security features that OpenLDAP offers is useful. In particular, the variety of access control

factors is impressive, when compared to a product that implements only a traditional ACL model. But this

strength is marred by the service interruption issue, which hopefully will be addressed in the future.

OpenLDAP is riding a wave of intangibles

A number of intangibles also fall in OpenLDAP's favor. For example, primary contributors to the code have key

roles in the current IETF LDAP working groups. OpenLDAP has a sense of historical familiarity. The University

of Michigan package was widely used by organizations when LDAP was emerging, and many administrators

are familiar with slapd already. OpenLDAP comes with the Red Hat Linux distribution, and many organizations

are introduced to it in this way. Finally, OpenLDAP follows the standards closely, which means that long-term

stability and interoperability are more assured.

The special features don't compare well

On the negative side, the special features that OpenLDAP provides aren't at all impressive compared to those

of other LDAP servers. Some of the basic features that nearly every package provides, such as server-side

sorting of search results (RFC 2891), haven't been implemented. Inclusion of extra functionality lags behind and

may continue to lag behind because of the voluntary nature of development. The adage "you get what you pay

for" closely fits the comparison of feature sets.

OpenLDAP is a quality package that many organizations are using

Although it may be cheap in cost, OpenLDAP isn't cheap in quality. The package is extremely resilient and

dependable. The developers are constantly looking for ways to improve performance, dependability, and

security. One can check the mailing list archives and read about many large deployments that have little or no

problems running over long periods of time.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Chapter 7. Microsoft Active Directory

Microsoft is among several vendors who have implemented LDAP in the context of supporting a network

operating system. Microsoft's Active Directory (AD) uses LDAP to support its directory technology, so a

Windows enterprise network has basic directory functionality in addition to many cool management features.

Active Directory is a huge step for Microsoft because it is a departure from the company's traditional model of

employing proprietary technology. It is nice to see Microsoft instead use open standards as the basis of

products.

AD requires the Windows platform

Active Directory supplies primarily Windows 2000 or newer Windows platform functionality, so this chapter

digresses at times to explain basic Windows concepts. This tight reliance on the Windows Server platform

makes Active Directory less attractive as an LDAP server solution. Many organizations prefer to choose their

server platform. After all, one of the biggest strengths of LDAP is its cross-platform integration. However, the

LDAP directory underlying Active Directory does interoperate with any cross-platform client, just as it should.

Non-Windows LDAP clients can still fully interact with Active Directory entries. Just the advanced features of

Active Directory are limited to Windows clients.

AD offers several advanced features that promise to lower management costs

These advanced features, as well as the tight integration with Windows clients, are attractive. The ability to

automate software distribution to client computers, integrate public certificate management, and have network

documents intelligently synchronized for a roaming laptop user are among the features that Active Directory

offers to Windows clients only. Other notable features include people-friendly LDAP client integration for

Windows clients and an impressive number of extensions to the LDAP server functionality via LDAP controls.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Namespace

An NT4 domain directory offers only authentication

An NT4 domain directory consists of only user, computer, and group entries and is limited to authentication and

authorization services. By participating in a Windows NT domain, a computer or user trusts the domain to provide

authentication services. Belonging to the domain means you can use the entries in the NT4 domain's directory to control

access to your computer and to network resources.

The flat namespace of NT4 is problematic

A Windows NT4 domain directory, which is based on the Netbios protocol, has a flat structure with only a single

container. This flat namespace leads to many problems with naming conflicts, with administrators having to support both

the native Netbios resolution and the Internet standard DNS resolution. Other problems include limitations on the number

of objects in the directory. The NT4 domain directory also did not support LDAP, and interaction with the directory was

limited to proprietary methods. This limitation meant that cross-platform integration was difficult.

Active Directory offers authentication, directory, and name resolution services and also provides

backward compatibility

In transitioning to Active Directory, Microsoft needed to drastically change much of the underlying technology while still

providing backward compatibility to NT4 domains. Active Directory still offers authentication services, both the preexisting

authentication services as well as Kerberos authentication. But the support for this activity is now an LDAP directory that

is fully hierarchical. The directory is not limited to user, computer, and group entries. In addition to offering authentication

and directory services, Active Directory can offer DNS name resolution services without Netbios support. Netbios is still

supported for backward compatibility, but it isn't required if that compatibility isn't needed.

DNS

Microsoft transitioned from a flat namespace to a hierarchical one by implementing RFC 2247

With Active Directory, Microsoft implemented a DNS-based namespace along with LDAP's hierarchical namespace. RFC

2247 is implemented in Active Directory to provide a close tie between LDAP and DNS. For more details, see the

following section, Directory Namespace; for now, focus on the fact that the services supporting each Active Directory

domain partition require a DNS zone of their own.

Can I Get Rid of Netbios?

Netbios uses an ugly name resolution standard. It is a frequent cause of administrator headaches. The

typical complaint is, "I don't see such and such computer in my network neighborhood." If you are lucky, you

will be able to get rid of it, but much Microsoft technology still relies on it. For example, NT4-style domain

trusts require Netbios support. In order to migrate from an NT4 domain to Active Directory, you need to set

up this kind of trust. Many other technologies rely on Netbios. Unfortunately there isn't a good resource to

determine which technologies use Netbios. The bottom line is that you will need to do some research before

turning Netbios off.

AD maps DNS domains to LDAP domains and partitions the directory on this segment

The solution Microsoft implemented, however, goes beyond being able to use DNS names in the LDAP namespace.

Microsoft had to solve the problem of integrating a flat namespace (NT4 and Netbios) with a hierarchical one (AD and

LDAP). To solve this problem, Microsoft defined the NT4 Netbios domains as DNS domains in Active Directory and

defined each of these domains as directory partitions that are hosted separately. Each computer and user still has the

older Netbios name that is unique only in the domain partition, but each one also has a new LDAP-based name (with DC

components) that is unique across the entire Active Directory. This approach ensures that every computer and user entry

has a unique, fully qualified name while maintaining backward compatibility with Windows NT4 network functionality.

Because the Active Directory namespace is mapped so tightly to the DNS namespace, the names of entries are actually

unique worldwide (at least on all net-works that are connected to the Internet). In the future, Microsoft could propose

linking all the Active Directory namespaces together.

DNS SRV records are used to locate an AD server

Active Directory also implements the IETF Internet draft that allows clients to locate an LDAP directory server using DNS

SRV records. A client requests the LDAP SRV record for a given DNS namespace and receives the IP address of the

LDAP directory server(s) that hold the directory for that namespace. Multiple directory servers can be listed in the DNS

SRV record, which provides a round-robin resolution for client load-balancing. Microsoft also uses several special name

conventions for the SRV records so clients can be configured to request the SRV record that corresponds to the closest

directory server. Windows clients automatically request the closest directory server. This extension to the Internet-draft

forms a powerful solution for localizing network traffic and minimizing problems associated with network latency. Active

Directory is alone among LDAP servers in providing this level of service resolution functionality.

Which Kind of Domain Do You Mean?

In general, when I use the term "domain" in this chapter, I am referring to a Windows domain. When I mean

a DNS domain, I specifically label it "DNS." Fortunately, the two different meanings are beginning to

converge, so confusion should lessen in the future.

AD integrates with DNS services

Finally, you can configure a Microsoft DNS server to use Active Directory to store and replicate the DNS records for that

service. Such a configuration integrates management, simplifies network management, and provides fault tolerance for

the DNS records via directory replication.

Directory Namespace

An entire AD namespace is called a forest or tree

The Active Directory namespace consists of multiple naming contexts that are tied to a DNS zone. When you first create

an Active Directory domain, you must pick a DNS zone for its name. This Active Directory domain is the root domain of

what Microsoft calls a tree or domain tree. A single tree can also be called a forest (a forest contains one or more trees).

DNS zones subordinate to the DNS zone of the root domain can become subordinate Active Directory domains in a tree.

The root domain is not the same as the DNS root domain introduced in Chapter 2. A root domain is simply the first

Windows domain in a tree. The first domain in a forest is called the forest root domain. Figure 7-1 shows a tree with a root

domain and two child domains. A triangle represents a domain.

Figure 7-1. Active Directory domain tree

Noncontiguous DNS zones can participate in the same forest

Active Directory also supports noncontiguous DNS zones. Each noncontiguous DNS zone would be a separate tree.

These multiple trees can be connected in a single directory namespace (the forest). Each tree holds a contiguous DNS

zone in which each Windows child domain is a DNS child domain of the Windows domain immediately above it. Figure

7-2 shows a forest with two noncontiguous domain trees.

Figure 7-2. Active Directory forest with two domain trees

Multiple domain controllers host a single domain partition, and changes are replicated via a delta-only

system

Each domain consists of an independent domain directory that is hosted by directory servers called domain controllers. A

domain can have as many domain controllers as desired. Each domain controller replicates the domain partition to the

other controllers for that domain. Client computers can join the domain by accepting it as their primary source of

authentication and authorization. These client computers are also loosely considered part of the domain, because by

default they share the same security context. As a result, other security principals that reside in that domain partition may

have some level of access to those client computers by default. From a directory standpoint, each of the client computers

that joins the domain has an entry that represents it in the domain partition.

A forest has properties that are consistent across all the domain directories. For example, there can be only one schema

in a forest, and it is replicated across all domain controllers. Additionally, configuration information for each of the pieces

of Active Directory is replicated across all the domain controllers.

Figure 7-3 shows the logical directory namespace of the forest pictured in Figure 7-2 and how each domain relates to the

partitions and overall directory namespace. Each partition is pictured as an ellipse with a tree structure to simulate the

entries within that partition. Each of the partitions of this logical structure does not correspond to a single physical

location. Figures 7-4 and 7-5 will illustrate how the namespace is distributed on the domain controllers.

Figure 7-3. Active Directory forest namespace

Figure 7-4. Domains distributed across sites

Figure 7-5. Active Directory naming contexts

Sites

Sites allow distribution of the directory with respect to physical connectivity issues

Sites are how Active Directory addresses connectivity and bandwidth issues that might affect the operations of the

directory. A site is a network with adequate connectivity and bandwidth, as arbitrarily decided by an administrator. The site

architecture has no dependencies on the directory hierarchy, and it is external to LDAP namespace design. However, site

configuration information is stored in the directory, and it is a factor in determining both replication flow and which

directory server any particular client uses. Every computer that participates in AD, including the domain controllers, knows

the site to which it belongs. This information in turn affects the client-server interaction; the client automatically prefers to

interact with domain controllers in its own site.

Sites and domains can overlap with no restrictions

The administrator can create multiple sites, which are independent of the directory namespace I just described. For

example, a domain might have multiple sites, with a domain controller in each site to provide localized service to clients.

In Figure 7-4, the root domain illustrates this configuration (DC stands for domain controller). Alternatively, a site might

contain multiple domains so controllers for different domains can provide services to clients from each domain in that site.

In Figure 7-4, the Mycompany Main Site demonstrates this configuration.

Replication is scheduled between sites

Domain controllers from the same domain in separate sites replicate the domain partition via a site bridge, according to

the schedule and topology in the configuration partition. The configuration partition is conveniently stored local to each

domain controller. Root domain controllers replicate the configuration and schema partitions between themselves and all

other domain controllers using the site bridge when necessary. When a new domain controller is initially installed, it must

be able to receive the existing configuration and schema partitions over the network. If this domain controller is across a

low-bandwidth link, this requirement can be extraordinarily painful. Many companies circumvent this problem by building

the new domain controller locally and shipping it to the remote site. Microsoft plans to fix this problem with .NET Server

2003 so the initial replication can be done via media.

Sites help maximize the efficiency of network traffic because of to client-server directory interactions

Sites provide useful functionality in controlling network traffic across WAN links. Clients can simply interact with domain

controllers that are local, and domain controllers can replicate at times scheduled to be least disruptive. This type of

functionality is uncommon among LDAP server products, and it is one of the many significant benefits in choosing Active

Directory.

Naming Contexts and Partitions

Every domain controller holds exactly three partitions

Each domain directory holds three naming contexts, each of which is a replicated partition. One partition is the domain

naming context. The domain naming context is where most of the action takes place. Most of the entries that clients need

to interact with are held in this naming context. The domain naming context is replicated only to the domain controllers of

that domain. Another partition is the configuration naming context, which is replicated to all the domain controllers in a

forest. This context holds all the configuration information for Active Directory. The definitions of Active Directory

architecture, replication schedules, and replication topology are held here. Finally, there is the schema naming context,

which holds the schema definitions for Active Directory. The schema naming context is subordinate to the configuration

naming context, but it has been implemented as a separate namespace. The schema partition is replicated to all the

domain controllers in a forest. The following sections explore the purpose of each of the naming contexts; for the details of

replication, see the section Replication later in the chapter.

Sites Are Out of Sight!

Sites are one of the best improvements that Microsoft brought to its network operating system with Active

Directory, though the company is often not given enough credit for the change. Automatic directory location

for clients and the flexibility to schedule intersite communications are major innovations that were lacking in

prior Microsoft products. In fact, I'd argue that Active Directory performs these tasks better than any of its

competitors. .NET Server 2003 brings more enhancements and control to this functionality.

Each domain controller can operate semi-independently of the others

The replication topology used by AD ensures that each domain controller has a copy of the rules, the overall architectural

configuration, along with the local domain partition information. No other domain's partition information is replicated to a

domain controller. For example, a domain controller for the Muppet HQ domain would host the three naming contexts or

partitions shown in Figure 7-5. The naming context, dc=Muppet HQ,dc=root,dc=mycompany,dc=com, is the

domain partition that is multimaster-replicated between all Muppet HQ domain controllers. The naming context,

cn=Configuration,dc=root, dc=mycompany,dc=com, is the configuration partition. The naming context,

cn=Schema,cn=Configuration,dc=root,dc=mycompany,dc=com, is the schema partition. The schema and

configuration partitions are stored on every domain controller in every domain, and the information within them is the

same throughout the forest. Also note that the container that would make these three naming contexts a contiguous

namespace, dc=root,dc=mycompany,dc=com, is not hosted on this domain controller, but it is hosted elsewhere in

the Active Directory forest.

Configuration Partition

The configuration partition holds the directory-wide settings

The configuration partition contains a variety of AD configuration information. The container itself, as you can see in

Figure 7-6, has several attributes (among others) that are used to keep track of the last replicated update sequence

number for various directory operations.

Figure 7-6. Configuration partition

The DisplaySpecifiers container subordinate to the configuration partition stores displaySpecifier entries for special

user interface components built with the Component Object Model (COM). COM is a programming model used to simplify

development of software. These entries allow object classes to be associated with graphical elements so they can be

managed in a graphical user interface via the Microsoft Management Console (MMC). The MMC is a special new

interface that all of Microsoft's administrative applications now use. The displaySpecifier object class, COM, and MMC

are outside the scope of this book, but you can consult Microsoft's online MSDN documentation as well as Gil

Kirkpatrick's Active Directory Programming. These resources should prove helpful for the other technical topics in this

chapter too.

The ExtendedRights container subordinate to the configuration partition stores controlAccessRights entries that allow

an administrator to create their own set(s) of access rights for object classes. This approach allows an administrator to

extend the security functionality of a custom-designed object class in ways the AD designers didn't anticipate.

The LostAndFoundConfig container stores all entries received via replication that don't have an existing parent entry.

The entries in this container are said to be orphaned because they have no parent. This situation can occur if a parent

entry is created, but the replication of the parent doesn't occur prior to the creation of the child. It can also happen if a

child is created prior to the replication of the deletion of the parent.

The Partitions container stores entries of object class crossRef. Each crossRef entry represents a naming context in

the directory, an AD naming context external to the forest, or a naming context in an external directory. These entries

represent the referrals present in the Active Directory topology.

Group policies are stored under the Services container

The Services container stores information about network services. Each service has a subordinate container. In this

container the AD stores the administrative parameters, such as maximum page size, for the LDAP servers. A default

forest-wide policy is stored at cn=Default Query Policy,cn=Query-Policies, cn=Directory Service,cn=Windows
NT,cn=Services, CN=Configuration,DC=Mycompany,DC=com. The lDAPAdminLimits attribute on this entry

stores these settings in a string format. Additional policies can be created and linked to specific domain controllers, so

individual domain controllers have settings different from the default.

The Sites container stores information about the AD sites. Each site has its own subordinate container with objects for

every domain controller in the site. These objects hold important information, such as whether the domain controller is a

global catalog and links to administrative policy objects in the Services container. For information on global catalogs, see

the following section, Global Catalog. The subordinate Inter-Site Transports container stores Link and Link Bridge

entries that help AD know how and when to replicate between sites.

The WellKnownSecurityPrincipals container contains the built-in user accounts and groups that Windows uses to

implement security for various types of service functionality. For example, the built-in group Authenticated Users is

defined here and dynamically refers to every account in the forest. Instead of statically putting every account's unique

identifier on this group's membership attribute, AD uses these special entries to apply dynamic membership at the time of

access. The built-in groups and users here are the only dynamic ACL feature that AD offers, but there are a number of

useful principles here (for more details, see the section titled Security later in this chapter).

Domain Partition

The domain partition holds the meat of the directory

The domain partition holds the most active information in AD. Everything that users will want to interact with is stored in a

domain partition. The domain partition for any particular domain is held only on the domain controllers for that domain.

Each domain controller can host only its own domain partition, not that of any other domain. This is a limitation built into

Active Directory.

Figure 7-7 shows the default entries in the Muppet HQ domain partition. The Builtins container holds the default groups

that a Windows domain supports. By default, all entries in this container are of the group object class.

Figure 7-7. Domain partition

By default, the Computers container holds the entries of object class computer that represent computers that join the

domain. These computers implicitly trust the domain to provide authentication services. Computer entries are placed by

default in this container, but you can move the computer entries anywhere within the domain partition. To apply group

policies to the computers, move the entries into a container that is of the organizationalUnit (OU) object class. This

rearrangement lets you automatically manage the computers. The Computers container doesn't permit automated

management; consequently, it is usually abandoned.

The ForeignSecurityPrincipals container holds entries of object class foreignSecurityPrincipal. These entries

represent accounts from outside the forest. The entries are used as proxy accounts for the external accounts.

The LostAndFound container serves the identical function as the LostAndFoundConfig container in the configuration

partition.

The System container holds a variety of containers and entries of different object classes. These entries represent

configuration settings critical to the internal workings of the domain. The entries that represent these settings under this

container include other trusted domains, the holders of each of the Flexible Single Master Operation (FSMO) roles, group

policies internal to this domain, DNS records (if MS DNS is used and integrated with AD), and several other network

services.

The Users container by default holds the entries of the object class user as well as group entries. User or group entries

don't have to reside here: you can move them to an OU or other container so you can have greater automated control in

applying group policies to user entries. The Users container doesn't permit automated management; consequently, it is

usually abandoned.

The Domain Controllers container holds the entries of object class computer for the domain controllers. This container

is an OU. The domain controller entries are kept separate from those of other computers because you will want to

configure them with more stringent security settings.

FSMO?

FSMO is generally pronounced "fizz-mo." The Flexible Single Master Operation roles are special services

that ensure the consistency of certain directory features. For example, the Infrastructure FSMO role is held

by a single domain controller in the domain. This service checks the membership attribute of group entries in

other domain partitions for all references to user account entries. The point is to ensure that the user

accounts in the references still exist. If not, the value is removed to maintain consistency between partitions.

There are several other FSMO roles. The RID Master is a single domain controller in a domain to create

unique identifiers for entries. The Schema Master is the single domain controller in the forest responsible for

being the authoritative master for schema modifications. The Domain Naming Master is the single domain

controller in a forest that controls which domain partitions are part of a forest (in other words, it controls the

AD namespace). And the PDC Emulator Master is the single domain controller in a domain that provides

backward compatibility with NT4 domain functionality.

I like the idea of separating the consistency-checking functionality from the core LDAP server. Separating

these processes gives administrators a greater ability to troubleshoot problems as well as the ability to direct

these loads onto servers that are more reliable.

Schema Partition

Entries that represent the schema definitions in AD are contained by the schema partition

The schema partition holds all the schema definitions that AD uses forest-wide. Only two object classes are allowed in the

schema partition. attributeSchema entries define attributes, while classSchema entries define object classes. Each

entry corresponds to a class or attribute. With appropriate authority, you can modify these entries in a variety of ways. To

do so, you must be a member of the special Schema Administrators group.

By default, there are 142 classes and 863 attributes defined, but you can define new classes and attributes. Of the default

classes, 14 are abstract, 4 are auxiliary, and 124 are structural. One very common extension of the AD schema is to

support Exchange 2000. Exchange 2000 adds another 158 object classes and 853 attributes to the schema.

The subschema subentry for AD is in the schema partition, at DN

cn=Aggregate,cn=Schema,cn=Configuration,dc=mycompany,dc=com. The attributes of this entry hold

important information about the supported object classes and attributes for clients unfamiliar with the directory.

Global Catalog

The global catalog has a copy of every entry, but with only a subset of attributes

There is another directory server role outside the FSMO roles for a domain controller called the global catalog (GC). A

global catalog assists the AD by holding a copy of every entry in all the domain partitions in the forest. However, each of

these entries is not complete; instead, each entry is only a subset of the most interesting attributes. Some attributes are

marked by default to participate in the global catalog, and you can designate additional ones in each attribute's schema

definition.

A GC is read-only

A global catalog server holds a read-only partial replica of every domain partition in AD. When a global catalog–enabled

attribute is changed anywhere in AD, the change must be replicated to all the global catalog servers. Information about

which domain controllers are global catalog servers is stored in the configuration partition. The global catalog service is

separate from the normal directory operations that a domain controller handles. The global catalog is accessible only via

port 3268; whereas all operations that interact with the other partitions, including the domain partition, are accessible via

the default port 389. A client can't accidentally search the global catalog; it must instead choose to search the global

catalog.

The GC provides several critical functions

The global catalog performs several critical roles that integrate the distributed domain partitions in AD. Because it has a

copy of all the entries in AD, it can be used as a beginning point to simplify search operations. With a GC, you can

accomplish a search without a referral between domain partitions. A global catalog server provides another critical

function during authentication; at least one global catalog server must be available for a user to authenticate. The global

catalog locates the correct domain partition to verify user credentials, and it is required to form part of the authorization

information that is placed in the authentication token when authentication is successful.

Some referrals external to a GC fail

A global catalog search does not return subordinate referrals to attributes that aren't part of the GC replica. Instead, you

would need to query the appropriate domain controller. However, an external referral outside the forest namespace is

valid with a GC search.

[Team LiB]

[Team LiB]

Operations and Clients

AD is compliant with the LDAP v3 standard, and it also supports the LDAP v2 standard. There are a few

nonstandard choices with the schema, but the LDAP standard doesn't mandate any specific schema

implementation choices. These nonstandard schema choices don't violate the standard, but they can provide a

significant hurdle to interoperability.

Microsoft integrates LDAP functionality into client software better than any other vendor

The level of integration Microsoft has achieved with LDAP-enabled client applications is impressive. Users have

more direct access to the directory and the benefits it provides, while working with a user-friendly interface. The

majority of other LDAP solutions don't have anywhere near the level of integration or the user-friendly interface

that Microsoft provides. This is significant because the successful adoption of any technology depends on its

accessibility. Until other vendors develop well-integrated client software, Microsoft will continue to take market

share in this space.

LDAP controls extend the functionality of AD significantly

Another strength of AD is the number of useful controls that Microsoft supports by default. AD supports more

controls by default than any other directory implementation—even though Microsoft has only just brought a

product to market while many other large software companies have had products for some time. Their support

of controls shows that Microsoft is committed to extending the usefulness of their LDAP directory server.

Clients

Microsoft provides several LDAP-integrated clients

Microsoft distributes several LDAP-enabled applications by default that can interact with the AD in a seamless

fashion. However, all of these applications run only on the Windows platform. The Address Book application

supports simple search functionality through the built-in Search command on the Start menu on most Windows

systems. Microsoft provides numerous administrative applications that plug into the MMC interface to support

specialized LDAP functionality for accomplishing administrative tasks. Microsoft also offers a complete

graphical-based LDAP client with extensive support for security, controls, and options, with all the bells and

whistles you might want.

Windows strongly supports LDAP-based programming

In addition to integrated clients, Microsoft provides extensive LDAP programming support from the Windows

platform. A complete LDAP API library is offered in all modern languages for Windows-based code. Microsoft

has fully developed a service interface called Active Directory Services Interface (ADSI), which allows a

Windows-based programmer to create abstracted code that will interact with LDAP directory implementations,

including AD, NDS, and others.

Integrated Clients

The Address Book is tightly integrated with Windows and several other Microsoft products

The Address Book is installed as part of Windows 2000 or XP, and Internet Explorer 4.0 or higher also installs

it. Earlier Windows operating systems have a version of Address Book with limited functionality. The Address

Book is a generic search application that can bind using the existing user's credentials to a global catalog

server. The Address Book can be launched manually, or it can be called by other applications. It searches

primarily for contact information for people. Name, organization, and e-mail address attributes are within the

scope of its search capabilities. When entries are found, the resulting information can be saved local to the

client in the Address Book for later use, the contact-related attributes can be browsed, or you can take

messaging actions directly from the entry. These messaging actions include sending an e-mail, dialing a phone

number, browsing a home Web page, or initiating a videoconference Net meeting. The Address Book can also

search other LDAP directories, and it comes preconfigured with several large public directories that hold

contact information.

Thankfully, the Search Assistant hides the search syntax and filters

The built-in search functionality in the Windows platform, called the Search Assistant, enables users to search

for entries of several classes. You can access the Search Assistant from several places, and the chosen

location affects the types of objects that you can query. To access the Search Assistant, select Search from the

Start menu, click the Search button in the Windows Explorer interface in My Network Places or the Printers

folder, or click the Search button in the Internet Explorer browser. You can locate people, printers, and

computers in LDAP directories from the same interface you use to perform more common searches like file or

Internet searches. The search functionality lets you search a global catalog server or just a domain partition. It

makes a lot of sense to integrate LDAP functionality into a client tool that is used to search for other things.

Administrators have a nice interface too

Several administrative applications allow an administrator to search and modify entries. For example, the Active

Directory Users and Computers interface lets an administrator work with all the entries in a domain partition. It

is designed primarily to ease the administration of users, groups, and computers, but the administrator can

interact with all types of entries. There are many other interfaces, which are not covered in detail here, that

allow an administrator to focus on management of specific types of entries.

Programming Support

Microsoft has developed a set of Windows-based LDAP APIs that are part of the Windows Software

Development Kit (SDK). A Windows programmer can get off the ground quickly after obtaining a few dynamic

link library (DLL) files with the API functions from the SDK. I recommend Gil Kirkpatrick's Active Directory

Programming for LDAP programmers who want to work with AD.

ADSI provides a layer of abstraction and an easy way to script directory changes

ADSI is a directory-independent interface for working with directories. Microsoft prefers that you use ADSI

instead of using the underlying LDAP APIs. ADSI uses the COM programming model, which any modern

programming language supports. ADSI helps administrators who don't want to get their hands too dirty with the

lower-level LDAP API, by providing a layer of abstraction that is simpler to use. ADSI does, in fact, use the

LDAP API below the surface. ADSI currently will interact with AD, its predecessor the NT4 Security Accounts

Manager (SAM), Novell Directory Services (NDS), and Novell Netware 3.x binderies. It should work with any

LDAP v3 directory. ADSI has interfaces to other applications such as Microsoft's Internet Information Server

(IIS) that make it even more useful. System administrators should read Inside Active Directory by Sakari Kouti

and Mika Seitsonen for many useful ADSI scripts as well as a detailed description of Active Directory.

Controls

Active Directory supports 16 LDAP controls by default. One of the default controls, called Statistics by one

Microsoft source, is completely undocumented, but it will apparently be documented and supported with .NET

Server 2003, the next version of AD, which will add three new controls to the default supported controls.

ADSI Was Long Overdue

ADSI is a major improvement for Windows administrators. With NT4, the only real option for

programmatically managing the directory was a package called adminmisc with perl. You might

also piece together resource kit utilities, but this wasn't a comprehensive solution. In contrast, ADSI

supports most languages, and you can use the other new controls that Microsoft offers like WMI

and ADO (or ADO.NET) to control more than just the directory.

The AD controls are extremely useful but not widely known

The AD LDAP controls are not well understood and therefore are underutilized by organizations that have

implemented Active Directory, but these controls represent one of the key strengths of Active Directory

compared to other vendors. For a description of the controls, including the three new ones, see Appendix E. In

addition, you can find detailed information about programmatically using these controls at the Microsoft MSDN

Web site: http://msdn.microsoft.com/library/en-us/netdir/ldap/extended_controls.asp.

Directory-Enabled Services

http://msdn.microsoft.com/library/en-us/netdir/ldap/extended_controls.asp

You can place service information in the configuration partition

With Active Directory, you can use the configuration partition to store information about directory-enabled

services. Because the configuration partition is replicated across every domain controller, this service

information is readily available to clients.

An excellent example of integration of a service with Active Directory is Microsoft Exchange 2000, which is an

e-mail, calendar, and messaging service. Exchange 2000's predecessor, Exchange 5.5, offered limited LDAP

functionality in an application-specific directory. Exchange 5.5's directory held both service configuration

information and user information. Exchange 2000 stores all this information in Active Directory. The service

configuration information in stored in the configuration partition at DN cn=Microsoft

Exchange,cn=Services, cn=Configuration,dc=mydomain,dc=com. User-specific information, such as

the location of a user's mailbox, is now simply an attribute of the user entry in the domain partition. A variety of

user-specific messaging information like the instant message (IM) connected status is stored in Active

Directory.

What Impact Does Exchange Have on Active Directory?

In terms of AD usage, it depends on how many users are mailbox-enabled. There are a couple of

Exchange processes that regularly interact with AD. Exchange servers query the GC concerning

mail routing. The frequency of this traffic suggests that any Exchange server should have solid

connectivity to a GC. In addition to this process, there is a service called RUS (Recipient Update

Service) that interacts with AD. In contrast to the mail-routing process, there is one RUS for each

domain that has Exchange users. Each of these RUS services interacts with a domain partition,

ensuring that Exchange users have the proper Exchange attribute values. RUS runs from an

Exchange server, but that server doesn't have to be in the domain for which it is responsible. RUS

is an example of software that uses the Change Notification and Dirsync controls noted in

Appendix E.

In addition to these system processes, there are a few user-driven processes that impact Active

Directory. When addressing an e-mail, you can use several preconfigured queries (such as All

Users or your Default Address List) to find lists of Exchange users. These lists result in LDAP

queries, but the results of common queries are cached locally. Additionally, the scope of these

predefined queries can be redefined—although Microsoft doesn't tell you this. The user-driven

public folder functionality is based on entries in the domain partition. Therefore, changes to public

folders can result in replication traffic. So in summary, the impact largely depends on how you

implement, and how Exchange is used. I'd strongly recommend testing your configuration prior to

deployment.

Exchange 2000 extends the user object class by modifying the schema with auxiliary classes. Exchange 2000

goes overboard in terms of schema modifications. It doubles the total number of both classes and attributes in

AD, and it recreates many existing user attributes with little reason. This practice goes against the X.500

directory standard recommendations. In addition to the user schema modifications, Exchange 2000 defines

several object classes to support the service configuration information stored in the configuration partition.

Exchange 2000 extensively modifies the schema

Exchange 2000 offers many impressive features that are worth further examination, but such a discussion is

beyond the scope of this book.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Schema

The AD schema has a strong set of default definitions, but a weak model for additional

changes

The schema employed by Active Directory has been discussed a little, in the previous section Schema

Partition. AD employs a schema that is consistent forest-wide. Should a schema modification be needed in one

domain partition, all the domain partitions must have this modification. The schema is fairly fragile in the existing

AD implementation, because some portions of definitions are immutable: they cannot be modified. In some

cases, if you define a class or attribute incorrectly, your only choice is to deactivate it. As a result, any error in

schema definition input could be fatal. This shortfall in functionality is supposed to be remedied with the .NET

Server 2003 release. With that product, you can deactivate a definition, modify it, and then reactivate it.

Some nonstandard Microsoft decisions threaten directory integration

The AD schema can be an area of integration problems because of a few nonstandard implementation

decisions made by Microsoft. These decisions don't violate the LDAP standard, but they do violate some of the

X.500 standards that most LDAP directories follow. For example, Microsoft has implemented the surname

(sn) attribute in a nonstandard way. The X.500 definitions are clear that sn is a multivalued attribute, whereas AD

implements sn as a single-valued attribute. This kind of issue can cause serious problems when multiple

values are expected in interactions between the two directories.

The lack of flexibility to add syntax definitions is a failing of the AD schema

Another example of a lack in the AD schema is that syntaxes are hardcoded into AD, without the possibility of

manual additional of a syntax definition beyond the default 18 syntaxes. .NET Server 2003 will add 9 new

syntaxes for a total of 27 default syntaxes, but it doesn't promise to allow manual definition of your own

syntaxes. This limitation is serious, because all attributes and matching rules are built on top of syntaxes, and a

limitation to creating your own syntax translates into a limitation on designing your own attributes, which means

a limit to the types of useful and customized data you can store in the directory. Should you want another LDAP

directory to interoperate with AD, this might also be a limiting factor. In fairness, several other LDAP

implementations do not allow new syntaxes to be defined; nonetheless, hardcoded syntaxes remain a

limitation.

AD employs class inheritance and structural rules

Classes

AD uses a single class inheritance model in which only one class can be superior for any given object class.

This inheritance model is common among directories despite the limitations it imposes. AD also makes use of

structural schema rules. The attribute possSuperiors contains the names of the classes allowed to contain

entries of a particular class. The attribute systemPossSuperiors serves the same purpose, except it cannot

be modified. A series of attributes with the system prefix serve this same purpose of keeping some definitions

constant so AD won't stop working as Microsoft designed. The allowedChildClasses attribute on an entry

lists the names of all classes that an entry of this object class is allowed to contain.

An object class definition is stored in an entry of the classSchema object class. This entry has four attributes

that define which attributes can be associated with an entry of that object class: mustContain, mayContain,

systemMustContain, and systemMayContain. The values of these attributes are the mandatory and

optional attributes for the object class, along with the required system attributes.

Operational attributes are included in the top class definition

Microsoft chose to add operational attributes to the definition of the top class. So the AD top class has 69

optional attributes and 4 mandatory attributes. This nonstandard modification of the top class guarantees that

every entry will have the operational attributes that AD requires for basic functionality, but the modification is not

compliant with the X.500 standards. Microsoft also chose not to implement the abstract class alias. Alias

entries represent an entry in one place but point to the real entry elsewhere in the directory. Microsoft

downplays this lack of functionality, claiming it can be produced via other mechanisms; but I disagree, and lack

of support severely limits interoperability with other vendors. Although you can add your own alias class, the

LDAP-integrated client software from Microsoft is missing the alias support specified in the LDAP standard,

thus violating the standard and creating a problematic situation.

The user object class holds a lot of information and importance

User entries are the most important entry in AD. Several attributes of the user object class have unique values

and are valid as an RDN: cn, userPrincipalName, canonicalName, sAMAccountName, objectGUID,

and objectSID. The user-PrincipalName attribute is the fully qualified Kerberos account name, for example

brian@mycompany.com. This is the account brian, in the Kerberos realm mycompany.com. Although the

format is similar to an e-mail address, it is not the e-mail address of the person associated with the user entry.

The objectGUID and objectSID attributes both are used to assign a unique identifier to the entry. These

identifiers are assigned by the domain controller with the RID Master FSMO role. The value of objectSID plays

an important part in AD security, as it is placed in ACLs associated with entries. The DN of an entry is not

placed in an ACL to denote to whom to give access, but rather the value of the objectSID of an entry. The

altSecurityIdentities attribute links the user account with an external Kerberos principal or external public key

certificate. The userCertificate attribute stores an entry's public key certificate, issued by a certificate authority

(CA) trusted by Active Directory. There are many other user attributes that hold various settings, but these are

too numerous to detail here.

The computer object class helps manage the client

Entries of the computer object class are also prominent in AD. Information about the computers that have

joined a Windows domain is stored in the corresponding computer entry. The computer object class is a

subclass of the user object class, and several of the security-related user attributes are used to support basic

functionality. Additionally, the fully qualified domain name (FQDN) is kept in the dNSHostName attribute.

Information about the operating system of the computer is kept in the operatingSystem,

operatingSystemHotfix, and operating-SystemVersion attributes. The servicePrincipalName attribute

serves a critically important purpose. It denotes the Kerberos authentication service names supported by the

computer. These names are required for a specific service on that computer to support Kerberos

authentication.

Linked attributes provide an automated method for an attribute of one entry to be

automatically connected to an attribute of another entry

Attributes

Active Directory uses attributes in a standard way, with few surprises. By default, AD supports a lot of attribute

definitions, which can be very useful.

One interesting feature AD implements is the idea of linked attributes. A linked attribute creates a connection

between two entries in the directory. For example, my user entry in AD will have an attribute manager with a

link to the RDN of my manager's user entry. My manager's user entry has a directReports attribute that links

to the RDN of my user entry and possibly other entries. Adding a value to my manager's manager linked

attribute automatically results in a modification to another entry's corresponding directReports linked attribute.

AD makes use of linked attributes in several novel ways to ease administration of the directory. For example,

user and group entries have a special link via the member and memberOf attributes respectively. If I add a

user entry to the member attribute of a group entry, the group's entry is automatically added to the user's

memberOf attribute. This functionality has obvious benefits in terms of managing the consistency of

information. You can manually define your own linked attributes. For details on this functionality and guidelines

for creating your own, see the relevant URL list in Appendix G.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Management

The directory management features of Active Directory are also substantial. As discussed earlier, AD uses a distributed

directory design and offers a well-designed administrative application interface (MMC). In addition to these management

features, AD provides multimaster replication, LDIF, control of what attributes are indexed by the directory, an amazing

graphical administrative application called ADSI Edit, and outstanding security features. Microsoft also has an additional

product called Microsoft Metadirectory Services (MMS) that offers automated management of directory integration.

ADSI Edit provides powerful directory browsing and editing in an easy format

ADSI Edit allows an administrator to browse the directory namespace. You can examine each entry in detail. Attributes

are interactively listed by menu so you can view unfamiliar entries and easily make changes. ADSI Edit uses the ADSI

components described earlier in the chapter, which in turn use the LDAP protocol.

Active Directory supports LDIF and offers some extended capabilities

Active Directory's LDIF functionality follows the standards presented in Chapter 5. Microsoft offers an application interface

called LDIFDE to process LDIF input and output. In addition to LDIF format, LDIFDE supports a variant format using

comma-separated values (CSV). The CSV format is convenient for an administrator who is unfamiliar with LDIF, because

Microsoft Excel can be used to quickly make bulk changes.

Replication

In the section Naming Contexts and Partitions, I discussed the three types of partitions that Active Directory allows. The

schema and configuration partitions are replicated across every domain controller in the forest. The many domain

partitions are replicated across each domain controller in a domain, as well as partially replicated to each of the global

catalog servers in the forest. The section Sites discussed the details of how domain controllers in one site can pass

replication traffic to domain controllers in another site. But I didn't cover how Active Directory accomplishes replication

within the same site, nor the features that are used to accomplish the replication.

AD uses multimaster replication

Every domain controller can be written to, and it is considered an authoritative master for the partitions it holds. As a

result, Active Directory must use a multimaster replication topology for these partitions. The multimaster model used

employs a ring topology in which any domain controller is linked to two other domain controllers. Changes that are

passed to one domain controller are also passed along to its partners. Redundant connections are automatically created

for large rings so every domain controller is at most three hops from all the others. Figure 7-8 shows a possible replication

topology of the entire AD forest namespace that was last pictured in Figure 7-3. In the figure, the squares represent

domain controllers (DCs). The circles represent domain controllers that are also global catalog (GC) servers. Each

domain controller is named by the first letter of the domain followed by a number. The root domain has two DCs. The

Muppet domain also has two DCs. The Yourdomain domain has three DCs. The Sales domain has five DCs. The global

catalog (GC) role is held by only two domain controllers: R1 and Y1. The number of DCs and GCs is arbitrarily chosen in

this example; AD allows as many DCs per domain and GCs per forest as desired.

Figure 7-8. Active Directory replication topology

AD replication traffic is efficient

Only changes are ever replicated across the wire to minimize the network traffic between domain controllers. In addition,

the mechanism used to replicate the changes ensures propagation dampening. Propagation dampening prevents a

change from endlessly replicating around the ring, or to the same domain controller more than once. If the entry simply

disappears, there isn't anything left for a replication partner to discover, which makes it difficult for deletions to replicate

properly to all domain controllers. AD makes use of a tombstone to ensure that a deletion replicates properly. A

tombstone is an entry that has been deleted. Users can no longer access it, but replication partners can do so to ensure

that they know that the entry is no longer accessible. After a period of 60 days, the tombstones disappear automatically.

These Active Directory features ensure that replication is efficient.

Changes are passed between replication partners using a notification and request

Imagine a change is made to a partition on a domain controller, or it has been passed changes from another domain

controller. After five minutes, that domain controller contacts its replication partners about this change (and any that have

been made in that five-minute period). It sends a change notification that there is new information to be replicated, and

this notification includes a special tracking number called an update sequence number (USN). The USN is unique to each

domain controller and tracks each change to that domain controller. The partners use this USN to track what changes

they need to request. The partners then check their internal database of the changes they have already requested to

make sure it isn't a USN that they have requested before. If it is new, the partner requests the change and updates its

information. It is important to remember that replication takes time to propagate across all the domain controllers, so

information in Active Directory should be considered loosely consistent at any one point in time.

Collisions can occur, but the effect is minimized

Because changes can be written to the same entry on more than one domain controller, a collision during replication is

possible. One factor that limits collisions is that AD tracks changes on an attribute level. For example, imagine someone

changes the cn attribute of Brian Arkills's entry on one domain controller, and at the same time someone else changes the

member attribute of Brian Arkills's entry on another domain controller. Because the changes are tracked at the attribute

level, they will not collide during replication, and both will be replicated without problem. AD also uses other factors to limit

collisions. Every attribute in AD has a corresponding version number that uniquely tracks how many times that attribute

has been changed during its lifetime. This version number eliminates most collisions at the attribute level. Timestamps

and the unique identifier number of the originating domain controller help to decide which change wins collisions on the

same attribute of an entry. When a change is made to the same attribute of an entry on two different domain controllers,

the attribute version number, a timestamp, and the domain controller's unique ID number are stored as part of the USN in

case alternative resolution methods are needed. The latest version number wins first; but if the change is made before the

replication cycle is complete, the different changes may have the same version number. Then the modification with the

later timestamp wins the collision. System time between domain controllers is synchronized by default. If the timestamp is

identical on the colliding changes, the change that originates from the domain controller with a lower ID number wins. This

is a purely arbitrary factor, but it ensures that there is a clear winner in every collision. This combination of factors works

well to reduce any negative effects from collisions.

Indexing

Indexed attributes speed directory response

Attributes that are frequently searched on, like objectClass, cn, or sn, are indexed by the directory. Indexing makes an

attribute more readily available on the domain controller that hosts that domain partition. This design can decrease the

overall time spent responding to queries. In addition to the default set, you can index other attributes by modifying their

schema definitions. However, be aware that there are performance implications of selecting additional attributes for

indexing. Indexing multivalued attributes or attributes with nonunique values can be costly in terms of storage space and

time to write to disk and can also affect search operation performance. Perform a careful analysis to determine which

attributes should be indexed to optimize search performance.

AD's Replication Model Surpasses That of Other Vendors

The flexibility of Active Directory's replication model enables it to host multiple master servers. The features

employed to perform replication are impressive when compared to those used by other vendors' solutions.

When other vendors allow multimaster replication, it is usually at the cost of some other functionality. This is

an area of strength for the product, which is surprising given its time on the market relative to other products.

Data Architecture

MMS provides full-featured metadirectory functionality

Microsoft Metadirectory Services is a metadirectory product similar to those mentioned in Chapter 5. MMS has

connectors for most major directories and database products. You use a connector to import data into the MMS database.

Once data has been imported, data manipulation and business rules can be applied to the data from multiple sources.

MMS offers some standard data manipulation functionality in addition to supporting more customized scripting. After the

data has been assimilated into a consistent form via manipulation and rules, MMS can push the data back to the source

systems. The processed data can overwrite the original data in the source system or alternatively create a parallel

instance of the updated data.

Special Configuration Parameters

You can configure many Active Directory administrative parameters for the LDAP interface. All of the configurable

parameters are stored in the Policies container in the configuration naming context, as noted in the earlier section

Configuration Partition. You can modify all of these parameters with a variety of methods, although Microsoft usually

prescribes a specific method that you can find in its knowledge base for each specific parameter.

What Tool Should I Use to Change Parameters?

In general, you can use any LDAP client (like ldp.exe or ADSIEdit) to modify these settings. In some cases,

there is a special MMC snap-in. You should understand that no matter what method you use, LDAP is

employed to change the directory information. Generally speaking, there is no special "voodoo" provided by

one tool over another. Even Microsoft support personnel can lose sight of this. Personally, I find that ldp.exe

gives me the most diversity in functionality. I'd rather have a single tool that works for all jobs than a plethora

of MMC snap-ins for each job.

Here are the parameters you can configure:

MaxPageSize parameter— Determines the largest page size allowed in a search using the paged control;

default=1000

MaxActiveQueries parameter— Determines the largest number of outstanding queries that the DSA will

support; default=20

InitRecvTimeout parameter— Determines how long the DSA will wait for an RPC request to another DSA;

default=120 seconds

MaxConnections parameter— Determines how many TCP connections the DSA will support at any one

time (only clients that have successfully completed the bind operation count against the limit); default=5000

MaxConnIdleTime parameter— Determines how long an LDAP client can remain idle before the DSA will

drop the connection; default=900 seconds

MaxNotificationsPerConn parameter— Determines how many searches using the notification control

(as described in Appendix E) are allowed per connection; default=5

MaxQueryDuration parameter— Determines how long the DSA will work on any particular requested

client operation (paged searches are counted by each page, and when the limit is reached, the partial results

are returned); default=120 seconds

MaxResultSetSize parameter— Determines the largest amount of data in bytes the DSA will return for any

search operation; default=262144 bytes

MaxTempTableSize parameter— Determines the largest temporary table that can be created to calculate

the result for a search using the sort control; default=10000 entries

MaxPoolThreads parameter— Determines how many threads the DSA process will have available to

process client requests; default=4

[Team LiB]

[Team LiB]

Security

AD security integration is impressive

Active Directory employs all three of the security concepts introduced in Chapter 5: authentication,

authorization, and privacy via encryption. AD's security model is fairly robust and offers a level of integration

that is rare when compared to other products. For example, the rigors of deploying a public key infrastructure

(PKI) is made simpler by the built-in secure key distribution that AD supports. This will fuel future security

developments in digitally signed code within an AD environment.

Authentication

AD authentication is primarily Kerberos via SASL support

AD employs SASL-based authentication and supports Kerberos v5 as well as the preexisting NTLM

authentication. The account used to authenticate to AD can be stored internally or externally to AD. If the

account is stored externally, a proxy shadow account must be created internal to AD, with a mapping to the

external Kerberos account or PKI certificate. Generally speaking, users don't need to specify the full DN of their

account entry to bind but can just specify the RDN, along with the domain partition. The RDN of account entries

is unique across the domain partition. But a fully qualified account name (in other words, a DN) is also

accepted.

Smart cards are supported by default

Active Directory also supports the use of smart cards as an authentication method. Smart cards look like credit

cards, but they have a limited processor and memory. They store a user's private key and can do the

encryption and decryption calculations required to support PKI. The smart card together with a personal

identification number (PIN) can be used instead of the traditional username and password.

Doesn't Microsoft's Kerberos Violate the Standards?

There was quite a bit of hysteria when Microsoft first released Windows 2000. Microsoft passed

some authorization data inside the Kerberos TGT, and some people felt this design violated the

Kerberos standard. This customization meant that existing KDCs (key distribution centers) couldn't

replace a Microsoft KDC. However, after further examination, the furor dissipated. Microsoft simply

used a field that had been set aside for any data that a vendor might want to place in it. And a

precedent from another vendor with this field had already been implemented. Although it's true you

can't replace a Microsoft KDC, there are ways to reduce your dependence on a Microsoft KDC,

should you need to deploy Active Directory.

Since then, MIT (the driving force behind Kerberos) and Microsoft have worked together more

closely, resulting in greater interoperability and more reliability. Many organizations take advantage

of the Kerberos interoperability features to eliminate the unnecessary proliferation of accounts.

Some organizations rely on a preexisting MIT KDC and then configure shadow accounts in Active

Directory to supply the authorization data.

Authorization

AD authorization uses ACLs exclusively

AD uses an ACL model for authorization. An ACL can be applied to a partition, container, entry, or attribute.

The ability to specify an ACL at any level in the directory is useful. The attribute-level ACLs are particularly

helpful when you want to give access to the entry, but not to private information in one or more attributes on

that entry. The actual ACL definition is stored on the ntSecurityDescriptor attribute of the entry being

secured. This attribute stores the access settings, owner information, and auditing configuration. The access

settings are known as the discretionary access control list (DACL). These include access control entries (ACEs)

that specify the identity, the level of access being granted or denied, and possibly the affected attributes of the

entry. The level of access can be defined by permission sets or via 13 incremental permissions (see Table 7-1).

In a similar fashion, if you are defining attribute-level access, you can use attribute sets (called extended rights)

or individual attributes in ACLs. For more detail on incremental permissions and extended rights, see Kouti and

Seitsonen's Inside Active Directory.

Table 7-1. Permissions available in Active Directory

Incremental Permission Read Access Set Write Access Set Full Control Set

All Validated Writes X X

All Extended Rights X

Create All Child Objects X

Delete X

Delete All Child Objects X

Delete Subtree X

List Object X

List Contents X X

Modify Owner X

Modify Permissions X

Read All Properties X X

Read Permissions X X

Write All Properties X X

Authentication identities correspond to four sets

You can use only authentication identities, which loosely correspond to four groupings: users, computers,

groups, and well-known security principals. The well-known security principal grouping corresponds to the

dynamic entries discussed at the end of a prior section Configuration Partition. What exactly these entries

represent is dynamically calculated at the time of access. Some of the more useful dynamic entries available

are listed in Table 7-2. Several of these entries are useful in the context of ACL inheritance, which is described

next.

AD supports static inheritance of ACLs

A further ACL feature is support for inherited container permissions, so you can specify an ACL on a container

to apply to all subordinate entries of that container. Inherited permissions are statically applied, not dynamically,

which means that when a change is made, it is applied to the ntSecurityDescriptor attribute of each of the

subordinate objects. Dynamic inheritance doesn't copy the ACL to the subordinate entries; instead, at the time

of access, the ACL of the entry and all parent containers are checked. Perhaps Microsoft will change from

static to dynamic inheritance in a future release.

Table 7-2. Well-known security principals

Name Purpose

Authenticated

Users

Any principal (process, computer, or user) that has been authenticated.

Creator Owner The entry that creates another entry. This can be set on a container as a placeholder for

new entries subordinate to the container.

Everyone Anything, whether or not it has authenticated.

Interactive Any principal that has authenticated to the same local computer as the resource.

Network Any principal that has authenticated at a different computer than the resource.

Self A placeholder for the entry itself. This can be set on a container to give each entry beneath

access to itself.

AD's default ACLs can be modified

In addition, a directory administrator can define the default ACL for an object class so all entries of that class

automatically inherit a certain default ACL. This approach can be useful when your entire environment is

different from the assumptions Microsoft made. The combination of all of these ACL features is powerful.

Dynamic authorization and other factors would be nice additions to AD

However, AD uses only standard ACLs for authorization factors. Client IP addresses, client encryption (along

with algorithm and key strength), and dynamic authorization are not supported as authorization factors. You

cannot—but should be able to—prohibit access either via a specific authentication method like cleartext or to

specific IP addresses. Several other vendors do support these features. Dynamic authorization, like that which

the Directory Server product offers, allows access control to be based on the value of the attributes of the

requesting user. This type of access control may seem esoteric, but it can prove to be incredibly useful. For

example, if you wanted to give access to all users who are members of a particular organizational unit (OU),

dynamic access would permit you to do so directly, without explicitly creating a security group for this purpose.

Microsoft is aware of this product weakness and of its customers' desire for this functionality. Enhancements

and features are in the pipeline for future upgrades to Active Directory.

Privacy

Certificate integration with Active Directory is without equal among directory vendors

An overview of Active Directory security wouldn't be complete without mention of the public key support. The

public key certificate integration is nothing short of impressive. Microsoft supplies certificate authority server

software as a standard service in Windows 2000. These certificate authority servers can be configured to

publish certificates that contain the public key for a user directly to AD. This integration eliminates much of the

grueling administrative work that other certificate solutions demand. CRLs are also automatically published in

AD. Certificates can even be automatically allocated to users or computers via policies. Certificate policies are

flexible and can reduce the amount of manual intervention needed. Because manual intervention is the leading

drawback to certificate technology, this is a significant feature. Certificate integration provides the basis for

many other security features, like SSL support for the directory itself, the Windows Encrypted File System

(EFS), and other applications.

[Team LiB]

[Team LiB]

Why Active Directory?

The adoption rate of Active Directory is high

Active Directory's comprehensive LDAP functionality and advanced features have compelled many

organizations to choose it for their LDAP directory. The rate at which companies are adopting AD is impressive

compared to that achieved by other vendors.

Active Directory scales well

Performance, scalability, and usability are critically important to the success of a directory. Independent tests

indicate that AD performs very well with extremely large numbers of entries. Many companies have found that

Active Directory can run their enterprise directory without issue. Perhaps more telling is how easy Active

Directory is to use. General users are shielded from the messy syntax and details of LDAP, exactly as they

should be.

Integration features are abundant, but there is rampant distrust of Microsoft

Also important is the ability to integrate with your organization. AD incorporates an above-average number of

integration features, along with additional useful services that make it very attractive. However, Microsoft

pushes its customers toward Microsoft solutions in none too subtle ways. As a result, true integration with other

platforms and software solutions is usually poor, with an emphasis on encouraging migration onto a

Microsoft-only solution. Microsoft's history has bred a level of distrust that is dangerous even with a clear

dominance of the software market. Despite the number of excellent integration features, your organization may

still distrust Active Directory's ability to integrate in your environment. However, Active Directory does integrate

well with other products.

Active Directory is easy to manage

Microsoft designed AD with the goal of simplifying management. In addition to ADSI and the MMC interfaces,

Microsoft continues to develop tools, applications, and scripts to make a directory administrator's job easier.

Replication is easily managed and has few problems. The design supports distribution across physical

locations very well, with a wealth of options. Installation and configuration are simple and well documented, and

the delegation of authority is extensive. Manageability is a clear strength of AD.

Active Directory security is very good

The security employed by AD is lacking little. Support for strong authentication methods, strong and integrated

encryption support, and an authorization model to protect resources are among the features that make AD a

secure choice. I think Microsoft needs to go further with its authorization model and include support for more

authorization factors. But Active Directory's existing security support is impressive compared to that of other

directory solutions.

The bottom line is whether AD meets your NOS needs; the Windows client integration

features are without equal

The major factor in evaluating whether AD will meet your LDAP directory needs is answering whether AD

meets your network operating system needs. AD is built primarily to support and extend the functionality of the

Windows network operating system. It is clear that the wealth of features AD offers is available only to Windows

clients operating within the context of the Windows network operating system. If the strengths and functionality

that Windows offers aren't relevant to your organization, AD definitely won't be the best solution for you.

However, if the majority of your clients are Windows-based, you will be hard pressed to find another solution

that is as well integrated or fully featured.

The future looks bright for Microsoft's directory products

Microsoft is on record with a promise that some of the strict design specifications that are in place to support

the Windows network operating system will be removed in a parallel Microsoft LDAP directory offering in the

near future. You can read more about this by looking for information about AD/AM (Active Directory Application

Mode) on the Microsoft Web site under .NET Server 2003. This new offering removes the domain namespace

boundaries so you have complete freedom in designing the namespace, and it offers schema flexibility. You

are, however, required to provide any advanced external security authentication and authorization. Though

AD/AM still requires the Windows platform, this is an exciting development that will help Microsoft compete

more directly with other products. Hopefully wider platform support will follow. When taken with the many other

enhancements in the works, like dynamic authorization, Microsoft's late entry in the directory space doesn't

seem to be holding the company back at all.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Chapter 8. Directory Server

Several key IT staff at the University of Michigan introduced LDAP to the world, and they led the process to

standardize it. Later, several of these innovators left the University of Michigan to work at Netscape, helping to

create an LDAP server product. For many years Netscape Directory Server was the only commercial LDAP

server product and it continued to be the dominant product even after other products appeared. As a result,

Netscape Directory Server has considerable name recognition.

There is a rich history behind this product

The Directory Server product has changed hands many times

Many years after its emergence, Netscape Directory Server became iPlanet Directory Server when the

Sun-Netscape Alliance was formed. After the dissolution of the Alliance, Netscape reverted to the original name

for its product, while the Sun product became Sun ONE Directory Server. Although the company associated

with the product has changed, the product name itself, Directory Server, has never changed. Currently, both

company's products and documentation are remarkably similar, so this chapter is equally applicable to either

product. Many people are still confused about which company owns Directory Server, especially now that there

are two separate and nearly identical products. However, the companies themselves have added to the

confusion by leaving references to Netscape and iPlanet within the software and documentation. For the

purpose of limiting confusion, I'll refer to the products as simply Directory Server.

Performance and stability are strengths of Directory Server

The experience gained by Directory Server's long history is undeniable when you compare reliability and

performance benchmarks to those of other vendors. Independent reviews of LDAP servers such as the one by

Network World, http://www.nwfusion.com/reviews/2000/0515rev2.html, show that Directory Server clearly leads

in performance comparisons. Comparison reviews also favor the stability of Directory Server over other LDAP

servers. For large enterprises, performance comparisons and stability are critical factors in choosing a product.

Directory Server integrates with other products

Both Sun and Netscape offer several complementary products that integrate with Directory Server. These

include server products for identity management, metadirectory management, enterprise calendar, e-mail, and

certificate management among others. Some of these products are briefly touched on later in the chapter.

Sun or Netscape: Confusion Reigns

The dissolution of iPlanet has created a great amount of confusion about the future of the product.

This confusion has been compounded by a lack of clear explanation on the iPlanet Web site and by

the difficulty in getting previously available documentation. Much change continues to occur. For

http://www.nwfusion.com/reviews/2000/0515rev2.html

example, I've changed all the URLs associated with this product more than once. These URLs may

have changed again by the time you read this book.

As far as advice on which vendor to choose, I can't say that the dust has settled enough yet for me

to offer an opinion. Your choice may be influenced by other complementary server products you

select or the responsiveness of product support. I had a hard time starting any dialog with Sun over

the course of two months, but perhaps my experience wasn't typical.

Directory Server supports multiple platforms

Directory Server is not tied to a network operating system. Although the majority of implementations are on the

Solaris platform, a significant number are implemented on Windows. Sun Solaris, Linux, Microsoft Windows

NT4, Microsoft Windows 2000, Hewlett-Packard HP-UX, and IBM AIX comprises the supported server

platforms.

Directory Server is also integrated into the operating system

Starting with Solaris version 8, Directory Server is included with the operating system. Many system functions

rely on the Directory Server. Sun customers may use the Directory Server for any purpose up to a certain

number of user entries, after which a license must be purchased.

Flexibility

Directory Server supports the widest diversity of platforms of any LDAP product. This flexibility to

choose the platform is important to many customers. One side note is that the directory path of

critical components will vary between platforms, although this is documented reasonably well

online.

[Team LiB]

[Team LiB]

Namespace

Directory Server employs a standard LDAP namespace

The namespace employed by Directory Server doesn't employ any unique technology or complexities, as we saw with

Active Directory. The product documentation encourages modeling your namespace after DNS using RFC 2247;

however, it also supports the use of X.500 style naming. LDAP service location for clients (for example, by using DNS

SRV records) has not been specially addressed, as it has in other products. There is support for automatic configuration

of Solaris-based LDAP clients.

Other software and services rely on the Directory Server namespace

Several other Sun and Netscape products use Directory Server as the source of their namespace. For example, the Sun

ONE Identity Server stores its identity information in the Directory Server namespace. This information incorporates

identities, roles, policies, application and service configuration, preferences, access controls, and administrative rights.

Other products make similar use of Directory Server as a namespace. For a limited overview of these directory-enabled

services, see the section, Directory-Enabled Applications.

The LDBM database underlies the Directory Server namespace

Directory Server makes use of LDBM database technology to support directory naming contexts. Many databases might

be used to support a directory namespace, and multiple databases can even support a single naming context. For more

on this support, see the section, Database Functionality.

Some default configuration information is stored in a special naming context

Some information related to the Directory Server configuration is created by default in the directory namespace. Directory

Server uses this information to enable and disable operation. How Directory Server responds to any particular client

request is affected by the values stored in this special naming context. To explore this default information further, see the

following section, Naming Contexts.

Naming Contexts

Creating a Directory Server naming context requires three steps

With Directory Server, a naming context is one of the root suffixes of the directory namespace. Every naming context

corresponds to a database. To create a naming context, you complete three steps:

Add a DN value to the namingContexts attribute of the root DSE.1.

Create a root entry for this naming context.2.

Create a database corresponding to the naming context and associate it with the naming context.3.

Two initial naming contexts are created by default; you must complete additional steps to create more

naming contexts

The installation process creates two default naming contexts that correspond to a special configuration naming context

and a naming context intended for user data. You can create additional naming contexts during installation following the

steps I just outlined. If you create a naming context after installation via the administrative console, Directory Server

performs the first and third steps for you; you must then manually create the corresponding entry via LDIF or an add

operation.

The configuration naming context can be confusing

The online documentation that refers to the configuration naming context is confusing, and it does a poor job of explaining

the two configuration naming contexts. Every Directory Server has a cn=config naming context that holds the local

configuration data for that server. In addition, there is another configuration naming context named o=NetscapeRoot,
which exists on only a single Directory Server. The o=NetscapeRoot naming context stores configuration data for

administration of one or more servers. This naming context stores the entire distributed directory's configuration

information. In addition to being used by Directory Server, other products including Mail, Certificate, and Metadirectory

use it to store their configuration information. By directing the Administrative Console toward the server with

o=NetscapeRoot, you can view and manage all the servers in one spot.

Good Documentation

Learning a new product is difficult without good documentation, and Directory Server has an excellent set.

My experience with the online Directory Server documentation has been very positive. The examples are

diverse, and there is a decent level of detail. Directory Server also offers supplementary material on how to

design and implement. However, the default naming contexts are poorly documented.

The configuration naming context stores critical information

The configuration naming context includes special authentication identities, plug-in configuration (under cn=plugins,
cn=config), the database configuration settings (under cn=ldbm database,cn=plugins,cn=config), indexing

information (under cn=index,cn=databaseName,cn=ldbm database, cn=plugins,cn=config), and support for all

actions that cannot be performed through existing LDAP operations, such as start or stop of the service. Figure 8-1 shows

the layout of cn=config. To find details about the configuration parameters stored within this naming context, see the

following sections: Database Functionality, Indexing, Chaining, Plug-ins, Replication, and Special Configuration

Parameters.

Figure 8-1. Configuration naming context

The other initial naming context is configurable and waiting for use

The second naming context initially created during installation is intended for user data. By default, you choose the name

of this naming context; however, if you select express installation, Directory Server uses a name that matches the LDAP

dc component string of the DNS suffix of the server. So if I ran express installation on dir1.mycompany.com, this naming

context would be dc=mycompany,dc=com. This naming context is empty and only needs to be populated with

Mycompany's directory data.

Database Functionality

A database underlies every naming context

Like OpenLDAP, LDBM database technology underlies Direc tory Server. The database is the unit of indexing,

replication, and storage. All indexing, replication, and storage activities are performed on a database as a whole.

Therefore, if you need a different configuration for any of these functionalities on different portions of the directory, you will

need to configure multiple databases. By default there is a single database, but multiple databases are supported. In

contrast to OpenLDAP, you can dynamically add databases without service outage.

You can configure where Directory Server sends a request

Naming contexts are associated with a database that processes all operations. A special attribute, nsslapd-state, at the

root entry of a naming context determines what the directory does with requests for entries in a given suffix. The value

backend indicates the normal state where the database processes all operations. In contrast, the value disabled
prevents any operations from succeeding. The value referral indicates that the directory should return the referral value

stored in the nsslapd-referral attribute for all requests to this naming context. In contrast, the value referral on update
indicates that only update-oriented requests return the referral, and all other requests are processed by the database.

You can associate multiple databases with a naming context, but there are drawbacks

The attribute nsslapd-backend is used to specify the name of the database or database link associated with a naming

context. This attribute is multivalued; but to make use of multiple values, you must employ special distribution functions to

determine which value is used for any given request. Mycompany might specify two databases for a naming context if the

number of entries in the naming context is significantly large. Special assistance from Sun or Netscape is needed to

obtain the plug-in necessary for proper distribution when you use multiple databases per naming context. There are also

several restrictions on this type of naming context that result in your not being able to move an entry out of a database.

Indexing

Indexing options are flexible

You may configure separate indexing options on each database. Presence, equality, approximate, substring,

international, and browsing (virtual list view) are all the possible indexes for attri butes. Multiple types of indexing are

allowed for each attribute, and a different collection of indexing types is allowed for each attribute.

Some of the index types are limited to usefulness in specific situations

The approximate match (or soundex) index implemented by Directory Server works only with the English language. The

details of what types of matches work with the approximate index are in the online documentation. The international index

is used to associate special language-specific matching rules with attributes so they can be sorted and searched for in

accordance with the rules of the language. This approach enables a directory in one locale to have different language

behavior from a server in another locale—even if the directory entries are identical on both servers. The browsing index

speeds use of the virtual list view control—a control you may remember from previous chapters. The Directory Server

management console uses this control.

The indexing configuration is represented in directory entries

The indexing configuration information is in entries within the configuration naming context in three different locations.

Each entry that represents an index has five attributes that specify the indexing applied to that database.

nsSystemIndex is a Boolean value that indicates whether the index is mandatory for basic directory operation.

Mandatory indexes cannot be removed. nsMatchingRule denotes the OID of a collation order. This allows the index to

order attributes as desired. cn specifies the attribute to be indexed. Description is used to provide a meaningful

description of what the index does. nsIndexType denotes the type of indexing to perform, as well as which attribute

values should be indexed. Valid values of this attribute include those listed in Table 8-1.

Index entries are stored within the cn=config naming context

In general, when you want to create an index on a database, you create an entry under the container cn=index,
cn=databaseName,cn=ldbm database,cn=plugins,cn=config where databaseName is the name of the

database to which the index applies. There are a couple of exceptions. International indexing requires the use of

matching rules together with the OID for the locale desired. The browsing or virtual list view indexing is configured via a

different mechanism that is executed via the vlvindex command. There are two initial sets of indexes. The system

indexes are required for Directory Server to work properly, and can't be deleted or modified. The system indexes are

listed in Table F-1 in Appendix F. The default indexes, which apply to all databases, are listed in Table F-2 in Appendix F.

You can modify the default indexes. To find the default indexes, look in the container cn=default indexes,
cn=config,cn=ldbm database,cn=plugins,cn=config.

Table 8-1. Valid indexing types

Index Type Kind of Index

 No value indicates all indexes should be created

none Disables indexes for that attribute

pres Presence index

eq Equality index

approx Approximate index

sub Substring index

Referrals

You can use default referrals to redirect wide scopes

An external referral is called a default referral within the product documentation. One default referral is allowed for the

directory. In addition, you can set one default referral per naming context (per database). The documentation calls these

latter instances suffix referrals. Suffix referrals are valid regardless of whether that naming context is disabled. All these

default referrals are not entries in the directory; instead, they are a configuration option stored as an attribute of the

naming context. Using this design, default referrals work even if the database associated with the naming context is

disabled or unreachable.

Smart referrals redirect specific entries

The documentation calls all other referrals smart referrals. Smart referrals redirect clients from any directory entry that

isn't a suffix. A smart referral simply uses the ref attribute as specified in the Internet-draft regarding LDAP referrals.

Smart referrals have two options that let you specify whether the referral redirects on all requests for the entry or just on

modify requests.

All Directory Server referrals use the LDAP URL syntax according to the standard.

Chaining

Directory Server supports chaining via schema definitions and plug-ins

Chaining is supported by Directory Server, and the way it is implemented deserves more detail than the brief coverage in

Chapter 5. You will recall that with chaining, the LDAP server chases the referral instead of the client. With Directory

Server, chaining is enabled via a special object class that directs the server to channel requests to a chaining plug-in. The

chaining plug-in is enabled by default. An entry of this object class can have no children, and it holds only a single

attribute. This attribute is a database link to another directory server, not an LDAP URL as referrals normally are.

Chaining is supported only to other instances of Directory Server, not to LDAP servers from other vendors.

Chaining eliminates some restrictions of referrals

Directory Server chaining can sidestep another issue that referrals don't. With referrals, the client must bind again to the

server to which it is redirected. With chaining, this action is handled by the first server. Not only that, but with referrals you

usually need a copy of the binding entry on each server. Chaining can eliminate this requirement.

Chaining can traverse multiple levels, but loops and excessive chaining can be prevented

Multiple levels of chaining are allowed. This is called cascading chaining. Loops in chaining are detected and prevented

by a special LDAP control called Loop Detection. By default, you must enable this control on each database. To enable

the control on the database specified by the entry, add the OID of the Loop Detection control,

1.3.6.1.4.1.1466.29539.12, to the nsTransmittedControls attribute in the cn=config, cn=chaining
database,cn=plugins,cn=config entry. The Loop Detection control then uses the nsHopLimit attribute described next

to detect loops.

A hop limit restricts the number of chaining operations from a single request

The nsHopLimit attribute limits the number of times a request can be passed to another server via chaining. This

attribute is used to prevent looping or to limit operations that cause excessive chaining. There are several other attributes

that affect the behavior of chaining; for more detail, turn to Appendix G for the URLs to the online documentation.

By default, special operations may fail during chaining

Plug-ins and requests that use controls have implications when chaining is encountered. Additional configuration to allow

plug-ins and controls to work is required by default. This default lack of functionality limits the security exposure and is

therefore a good thing. Adding the OID of an LDAP control to the nsTransmittedControls attribute of the cn=config,
cn=chaining database,cn=plugins,cn=config entry allows requests using that control to chain for the chaining

database specified by the entry.

Chaining Is a Great Idea

Chaining is a powerful feature that represents the maturity of this product. One of the key differences

between LDAP and X.500 directories is that the LDAP client must chase referrals, whereas the X.500 client

has chaining to do this extra work. By borrowing this key functionality, Directory Server has made up for one

of LDAP's weaknesses and placed itself ahead of other products.

The chaining configuration details are stored in a variety of special attributes

The database links associated with a naming context that is chaining to a remote server are stored under the entry

cn=chaining database,cn=plugins,cn=config. The nsslapd-referral attribute is used to indicate the remote naming

context that this database link will manage. The nsMultiplexorBindDN attribute stores the binding account, whereas

nsMultiplexorCredentials stores the password. The remote server is indicated by specifying an LDAP URL to just the

server's hostname via the nsFarmServerURL attribute.

[Team LiB]

[Team LiB]

Operations and Clients

Directory Server feature functionality can be extended, but the default functionality is quite

handy

Directory Server is fully LDAP v3 compliant, and the product has actively implemented IETF drafts related to

LDAP. Func tionality special to Directory Server is typically implemented via a plug-in API that has been

documented to allow further extension. For details on the plug-ins provided by default, see the following section

titled Plug-ins. Directory Server offers a good selection of LDAP controls, featuring the most critical and useful

IETF drafts that have been proposed. Client integration is adequate but can't be considered a strength of the

product.

Clients

The command-line applications are the primary client

Directory Server relies primarily on command-line executables for client functionality. The command-line

executables ldapsearch, ldapmodify, and ldapdelete are provided to enable normal client operations. Full online

documentation is available at http://docs.sun.com/source/816-5608-10/utilities.htm#12904. In addition to this

user-oriented client software, the primary tool for administering the server and the directory contents is the

Administrative Console, a graphical Java application that can be run remotely.

The Netscape browser also provides client support

However, there are also some graphical interface clients available for typical users. For example, the Netscape

Communicator browser is designed to work well with Directory Server. It provides support for

Searching for users, groups, phone numbers, and other attributes

Sending an e-mail message to multiple recipients using LDAP lookups

Configuring the list of LDAP servers to search

Importing LDIF files

LDAP URL support

There are also a few other Sun products that provide a graphical interface that may be appropriate for client

users that have special directory roles. iPlanet Delegated Administrator and iPlanet Console are two such

products (for more information, see the following section, Management).

http://docs.sun.com/source/816-5608-10/utilities.htm#12904

Directory-Enabled Applications

A plethora of directory-enabled applications use Directory Server

Sun and Netscape provide several useful LDAP-enabled applications and utilities that are designed for

Directory Server in their respective Directory Server Resource Kits. In addition, many other server products

from Sun and Netscape use Directory Server. The Sun ONE Web Server, Netscape Enterprise Server, Sun

ONE Calendar Server, Netscape Calendar Server, Sun ONE Messaging Server, Netscape Messaging Server,

and Sun ONE Web Proxy Server all use Directory Server to authenticate users, and to provide some

authorization information like group membership for access control. Sun ONE and Netscape Messaging Server

also store distribution lists in Directory Server and use it to determine mail routing. Sun ONE and Netscape

Certificate Server store user certificates and CRLs within Directory Server. Some of the other products that

make use of Directory Server include Sun Directory Proxy Server, iPlanet BillerXpert, iPlanet ECXpert, iPlanet

SellerXpert, iPlanet Market Maker, Sun Portal Server, and Netscape Certificate Management System.

Programming Support

Directory Server development support is rich

As you might expect with a product with such a long history, there are a wide range of resources available for

developers. Sun and Netscape provide software development kits (SDKs) for the LDAP API in C and Java, and

a perl version is available at http://mozilla.org. In addition to these development kits, there are code samples

and other software kits. Vendor documentation is pretty good but tends to lag behind the product release.

Appendix G lists several relevant URLs for this documentation. Sun and Netscape host answer forums that can

be a source of information. In terms of additional help, I'd recommend these books:

LDAP Programming with Java by Rob Weltman and Tony Dahbura

LDAP: Programming Directory-Enabled Applications with Lightweight Directory Access Protocol by

Tim Howes and Mark Smith

Of course, if you'd rather not do your own development, Sun or Netscape's Professional Services will do the

work for you for a fee.

Controls

Directory Server supports many controls enabling further functionality

By default, Directory Server provides ten controls that extend the functionality of the server. Some of these

http://mozilla.org/default.htm

controls provide support for functionality I have already mentioned, like chaining, while others support

functionality I haven't discussed yet, like proxy authorization. What follows is a short description of each control.

For greater detail, go to the online documentation at

http://docs.sun.com/source/816-5616-10/controls.htm#999558, although note that not all the controls are well

documented.

Manage DSA IT control (2.16.840.1.113730.3.4.2)— Used to access entries that return referrals on

client requests. This enables an LDAP client to manage the reference entry.

Persistent Search control (2.16.840.1.113730.3.4.3)— Similar to the other persistent search

controls discussed in Chapter 3, Appendix A, and E. You can specify tracking specific types of

changes or all changes. The specific types break into the common modify-oriented LDAP operations:

add, delete, modifyRDN, and modify. Results are returned with a special reference that can be used

to obtain additional information about the type of change, the change number within that server's

change log, and the old DN of the entry (if applicable). You use the reference with the Entry Change

Notification control to query the server for the additional information. To end execution of the

Persistent Search control, you can either send an abandon operation or unbind.

Entry Change Notification control (2.16.840.1.113730.3.4.7)— Used to discover additional

information about a specific change. It is returned to a client that has issued a search with the

Persistent Search control.

Password Expired control (2.16.840.1.113730.3.4.4)— Notifies a user to immediately change a

password. This control is sent to the client if a password has been reset or if this is the client's first

time logging in. If password policy has been enabled on the server, the user is allowed to send only an

operation changing the password; all other operations are refused.

Password Expiration Warning control (2.16.840.1.113730.3.4.5)— Used to indicate to the client

that a password will expire soon. The number of seconds until expiration is included in the client

message.

Virtual List View Request control (2.16.840.1.113730.3.4.9)— Used with the search operation, this

control allows the client to specify that the server return a subset of the search results in a special

order and number and starting at a specific index. This capability is particularly useful for

LDAP-enabled applications like e-mail clients, which allow users to scroll through a potentially huge

number of user entries but display only a limited number of sorted entries beginning with a specific

entry. This control is mentioned in Chapter 3 and Appendix E.

Virtual List Response control (2.16.840.1.113730.3.4.10)— The matching pair to the Virtual List

View Request control. This control is returned to a client that has issued a Virtual List View Request.

Server-Side Sort control (1.2.840.113556.1.4.473)— Used with the search operation. It allows a

client to retrieve results in sorted order as specified by the client. This control is described in Chapter

3 and Appendix E. Directory Server doesn't deploy the matching pair to this control, Sorted Search

Response control (1.2.840.113556.1.4.474), a design that does not follow the draft standard

specification.

Proxy Authorization control (2.16.840.1.113730.3.4.12)— Used to assume the identity of another

entry for the duration of a request. The control is intended primarily for use by servers that act on

http://docs.sun.com/source/816-5616-10/controls.htm#999558

behalf of other users. This control can be used with any operation other than bind. A server process

can have a single connection to the LDAP server but execute various client requests in the context of

the user submitting the request. Within the operation, you also specify the proxy DN, the DN of the

entry you are impersonating. Success requires that the proxied entry has granted your DN the

appropriate proxy rights.

Chaining Loop Detection control (1.3.6.1.4.1.1466.29539.12)— Used to detect and prevent an

arbitrarily long sequence of chaining references that might be a loop. When a chain reference first

occurs, the server sets this control with a maximum number of hops when it sends the request to the

next server. This number is configurable using the nsHopLimit attribute, which by default is set to 10.

Each subsequent server decrements the hop count. If a server receives a request with this control set

and a hop count of 0, then the server returns an error message to the client.

Plug-ins

Plug-ins extend directory functionality

Directory Server allows the directory functionality to be extended via plug-ins. These plug-ins are special code

components that can be installed and enabled to provide functionality that is outside the default configuration.

This description sounds very similar to that of an LDAP control. But in general, plug-ins are used to provide

functionality that isn't directly related to a client request or response. More specifically, plug-ins let you extend

and control the directory functionality without relying on the client invoking a control. Many plug-ins are related

to checking the validity of client input for a specific syntax for searching and sorting. For example, many of the

language- and locale-specific syntax rules are implemented via syntax plug-ins. These plug-ins are called by

the search system for ordering and matching.

Plug-ins give you greater control over built-in functionality

You can also write your own custom syntax-checking plug-in to enforce specific rules not known to the

vendor-supplied plug-ins. For example, say that as the directory administrator you wanted every access control

specifier to be checked for validity (further suppose that there is no schema-checking process). Because

controls require that the client invoke them, if you deployed this validity check via a control, you would have no

guarantee that every access control specifier was valid. Other LDAP servers incorporate this type of

functionality in the schema-checking process without giving any choice on the configuration. As the directory

administrator, you have no control over whether the access control specifier is checked for validity, aside from

turning off the entire schema-checking process. But with Directory Server, you can control this smaller piece of

functionality, electing to turn it off or on without affecting any other functionality. You might still turn off all

schema checking, but you now have the luxury of picking and choosing which syntaxes to check. You can also

write your own custom syntax-checking plug-in to enforce specific rules not known to the vendor-supplied

plug-ins.

Plug-ins Are Also a Great Idea

The ability to write your own component that will augment an off-the-shelf product is a wonderful

idea. In a way, this ability takes a bite out of part of the open source argument. If I can augment the

product to do what I want, I'm less eager to see the core code. The company holds the

responsibility for the core code, and I have the flexibility I desire. It's too bad that other LDAP

vendors haven't given us this option. Kudos to Directory Server for wisdom.

Plug-ins are represented by entries in the directory

The configuration for each Directory Server plug-in has a separate entry and set of attributes under

cn=plugins,cn=config. Because many of the plug-ins supply syntax-checking, their configuration is limited to

an on/off toggle. But some plug-ins are more complex and have extensive configuration. All plug-ins are

instances of the nsSlapdPlugin object class, which inherits from the extensibleObject object class. As you'll

recall, extensibleObject is the most flexible object class, with every defined attribute available to it.

Many of the features that Directory Server offers are enabled via plug-ins

There are 31 plug-ins provided with Directory Server. Roles, class of service, multimaster replication, chaining,

database operation, language-specific LDAP operation, password encryption, and ACL resolution are each

supported directly or indirectly via plug-ins. As alluded to earlier, each of the 12 supported syntaxes is

implemented via plug-ins. I don't discuss these plug-ins in detail here, but you can find a complete list with

descriptions in Appendix F.

[Team LiB]

[Team LiB]

Schema

Directory Server employs all schema elements defined in Internet standards

The core schema deployed by Directory Server includes all schema elements included in any Internet standard related to

LDAP. There are some inconsistencies based on proprietary changes to classes, attributes, and syntaxes. In total, the

core schema defines 12 syntaxes, 45 object classes, and 126 attributes. The schema can be extended from the default

core that is supplied. Many supplemental schemas are available to support companion products that leverage Directory

Server. Directory Server supports turning off the schema-checking process.

The schema comes from LDIF files and is placed in a special directory entry

Schema definitions are defined in LDIF format and are integrated at Directory Server startup. These files are stored in a

special file directory on the server, which varies based on the underlying platform. Definitions are stored within the

directory in an entry with a special DN: cn=schema. This entry doesn't have its own naming context (with a separate

database) but is created from the schema file definitions at the service startup. Every object class and attribute supported

are listed on this entry, under the objectclasses and attributes attributes. In addition to this file-based initialization, the

schema are replicated between Directory Servers.

Schema inconsistencies can occur within the model employed by Directory Server

Schema replication is supported in both single-master and multimaster models. In either model, the schema must be

consistent across all the servers. Otherwise, errors will ensue, and both schema and directory replication can fail. The

schema can become inconsistent if a schema element is defined differently via the local LDIF schema files. When

schema changes that overlap are made on the same master, they are resolved by the last change made. However,

serious functional issues can occur in a multimaster model. If schema changes are made on two different masters,

inconsistencies will result. Because of this functional limitation, it is strongly recommended that you always make schema

modifications to the same master.

Groups

Directory Server provides both static and dynamic groups

Both static and dynamic groups are supported. Static groups are of object class groupOfNames, with a multivalued

member attribute with the DN of each entry that is a member. The DN of another static or dynamic group can also be a

value of member. This is called a nested group. Dynamic groups are of the object class groupOfURLs, with a

multivalued memberURL attribute that contains a URL search filter. These search filters are evaluated at the time of

access to generate the list of group membership. In contrast to static groups, the DN of another static or dynamic group is

not a valid value of memberURL. However, you can create an entry with both the groupOfNames and the

groupOfURLs object classes. This group entry would allow you to define both dynamic and static membership with

nested groups. Because Directory Server uses dynamic membership and doesn't implement a back reference (called a

linked attribute in Chapter 7) like Active Directory does, there is no simple way to enumerate all the groups to which a

given entry belongs.

Roles

Roles provide a different approach to grouping entries

Roles are like groups, but they take the opposite approach. Instead of listing the DN of member entries on the role entry,

the DN of the role entry is listed on each of the member entries. In other words, the user entry asserts its memberships,

instead of the role asserting the membership. This is more conducive to being able to list every role assigned to a given

entry, while being less conducive to listing every entry that belongs to a role.

Two special operational attributes enable this functionality

To enable this functionality, every user entry has two special operational attributes called nsRole and nsRoleDN.

nsRoleDN provides a mechanism to explicitly add the entry to a role. If I wanted to add myself to a role, I'd add the DN

value of the desired role to my nsRoleDN attribute. nsRole is a read-only attribute maintained by the directory itself, and

it lists every role to which the entry belongs. In actuality, the value of this attribute isn't statically maintained; it is

dynamically calculated upon request. As a result, nsRole can't be used in any search filter. The value of nsRole is based

on the value of nsRoleDN for that entry plus any of the dynamic and nested roles that may apply.

Group Functionality Is One of Only a Few Weaknesses

This lack of functionality of groups represents one of the few weaknesses of Directory Server—other

products have superior functionality on this point. There are definitely ways to overcome this weakness, but

it doesn't appear that this problem is being actively worked on. For nested memberships, I can imagine a

control or plug-in that would do the recursive checks and limit looping within this recursion. For dynamic

memberships, a back reference would suffice and eliminate the need for roles.

Although there are many object classes, only three are used in practice

There are several types of role entries, with many object classes representing them. Table 8-2 lists all these role object

classes and gives a brief description of each. In practice, only three of the object classes are used to create entries:

nsNestedRoleDefinition, nsManagedRoleDefinition, and nsFilteredRoleDefinition. Managed roles are the basic

role entry. Nested roles provide a mechanism to have one role belong to another role. Filtered roles allow the membership

of a role to be determined dynamically via a search filter.

Two limitations require careful planning to enable effective access control via roles

Roles are not compatible with chaining in all cases. Both an entry and its role entry must exist on the chained server or

else the role mechanism (which automatically updates nsRole) will fail. If your servers are fully replicated, using roles will

not be an issue; but otherwise, it will require careful planning. Of course, you probably wouldn't use chaining if you had a

fully replicated environment. Roles are also dangerous with respect to user access control. Users are typically given full

control of their entries, but this design lets them join any role they want, thus compromising access control based on

roles. This limitation requires careful access control definition and awareness among directory administrators.

Table 8-2. Role object classes

Object Class Superior Special Characteristics

nsRoleDefinition ldapSubEntry Just a cn and description

nsSimpleRoleDefinition nsRoleDefinition Just a cn and description

nsManagedRoleDefinition nsSimpleRoleDefinition Just a cn and description

nsComplexRoleDefinition nsRoleDefinition Just a cn and description

nsNestedRoleDefinition nsComplexRoleDefinition Equivalent to a nested group; a DN-based mandatory

nsRoleDN attribute enables the nesting

nsFilteredRoleDefinition nsComplexRoleDefinition Equivalent to a dynamic group; a search filter in a

mandatory nsRoleFilter attribute enables the dynamic

membership

You can inactivate or delete role entries

You can inactivate role entries, a step that inactivates all the entries that belong to that role. This might be an effective

way to temporarily disable authentication to a set of entries. Reactivation of the role re-enables access to that set of

entries. You can also delete role entries, though deletions can cause problems because of the way roles are

implemented. Each entry that asserts membership in a deleted role is not automatically updated, unless the Referential

Integrity plug-in is configured to search the nsRoleDN attribute for deleted role entries. For more information on plug-ins,

see the earlier section Plug-ins, and for additional material on the Referential Integrity plug-in, see Appendix F.

Class of Service (CoS)

Class of Service (CoS) is used to assert an attribute value on many entries

The Class of Service (CoS) mechanism is used to associate a single attribute value on many entries. This is an important

mechanism in simplifying management of recurring data. CoS values are calculated dynamically at the time of the request

for the attribute. This results in a significantly smaller storage profile. However, the attribute that is dynamically asserted

cannot be used in a search filter. The usefulness of CoS is limited to attributes that you wouldn't use to find entries. But

regardless, CoS is somewhat useful, and it represents an important feature that deserves further development. In fact,

this is the only mechanism of its kind on any LDAP server.

CoS's usefulness demonstrated

An example of a situation in which CoS might be used demonstrates its usefulness. At Mycompany all of the person

entries at Muppet HQ have the same address. If Muppet HQ moved, it would be annoying to modify all the addresses

manually, although LDIF could be used to speed this process. CoS simplifies this process even further by providing a way

to make a single modification that affects all these entries at once.

Dynamic values can be dynamically asserted via CoS

You can use the Class of Service mechanism to dynamically assert a static attribute value or to assert a dynamically

determined value. In the Muppet HQ example, a static value is asserted. However, the value could be asserted in a

dynamic fashion. Consider another example: Luke Skywalker is the manager of a team of people within the Engineering

organization at Mycompany. Each of their person entries reflects this relationship with an o=Engineering attribute pair.

However, there is a big shakeup at Mycompany, and Luke's entire team is reorganized into the Marketing organization

within Mycompany. CoS allows Luke's team members to have their o attributes dynamically linked to the value of Luke's o
attribute. Each team member's o attribute is linked to the manager entry, which in this case indicates Luke's entry. CoS

follows this path to Luke's entry and uses his o value for each team member's entry. Sounds pretty tricky, huh? Let's take

a look at how this works.

There are three kinds of CoS definition entries and only one CoS template entry

Table 8-3 lists all the CoS object classes. Of these object classes, only four are commonly used: cosTemplate,

cosClassicDefinition, cosIndirectDefinition, and cosPointerDefinition. cosClassicDefinition,

cosIndirectDefinition, and cosPointerDefinition are used to specify the scope of affected entries and are called CoS

definition entries. A CoS definition entry determines the scope of affected entries by its placement in the directory; all

child entries below the parent of a CoS definition entry are affected. All the CoS definition entries have a mandatory

cosAttribute. The cosAttribute specifies which attribute will have its value asserted. The cosAttribute can be

multivalued; more than one attribute can be asserted. Each of the three types of CoS definition entries also has an

attribute called a specifier. The specifier is used in determining the value of the attribute specified in cosAttribute. The

specifier attribute is used differently for each object class, allowing fine-grained control of how attributes are evaluated

based on the object classes of an entry. This diversity in how the attribute is used provides a richer mechanism.

Table 8-3. CoS object classes

Name Mandatory Allowed

cosDefinition aci,cn,cosAttribute,cosSpecifier, cosTargetTree,cosTemplateDN,uid

cosSuperDefinition cosAttribute cn,description

cosClassicDefinition cosAttribute cn,description,cosSpecifier, cosTemplateDN

cosIndirectDefinition cosAttribute cn,description,cosIndirectSpecifier

cosPointerDefinition cosAttribute cn,description,cosTemplateDN

cosTemplate cn,cosPriority

The CoS template entry determines the attribute value indicated by cosAttribute

Before looking at the details of each of the specifier attributes, we first need to take a look at the cosTemplate object

class. A cosTemplate entry is called a CoS template. A CoS template is usually placed in the same directory container

as the CoS definition entry, but this placement isn't required. You use a CoS template to assert one or many attribute

values, and it can have an assigned priority in case more than one template matches a specifier (more on specifiers

later). Higher numbers have higher priority, but zero is the highest priority. The key purpose of a CoS template is to

statically define the value of the attribute being asserted. To achieve this purpose, all attributes need to be available to it.

So in summary, I define a CoS template with the static value of the attribute I'm asserting via CoS.

How Does cosTemplate Have All Attributes Available to It?

I don't know, and I couldn't get any answers about it. The documentation and configuration files indicate that

cosTemplate inherits from the top class, but I suspect that the extensibleObject object class is also

involved in an undocumented, behind-the-scenes hack. This would give entries of this object class the ability

to add any defined attribute, which is clearly required for the functionality provided by this object class.

Isn't CoS Neat?

I really like CoS. I think the ability to quickly modify a bunch of disparate entries is a dandy of a feature. It

might be a little complicated, but system administrators are paid to understand complexities. Directory

Server needs to overcome the search filter weakness of CoS in future releases for CoS to be worthwhile.

Otherwise, as a systems administrator, I'd rather just write a script that manually does all the modifications.

Pointer CoS

Pointer CoS determines resolution by directly pointing to a template entry with the value

The simplest type of CoS is pointer CoS. With pointer CoS (a cosPointerDefinition entry), the specifier attribute is

cosTemplateDN. cosTemplateDN indicates a DN of a CoS template. A base-level search commences using this DN

as the baseDN, and a presence search filter with the value of the cosAttribute (which is the name of an attribute). The

value returned from the template is then asserted on all the affected entries. Consider Figure 8-2, which uses the Muppet

HQ example (where the address was changed) to illustrate how pointer CoS works.

Figure 8-2. Pointer CoS example

The CoS definition determines that the postalAddress value will be asserted for all entries below the Muppets OU. It

specifies the CoS template for resolution of the value. The CoS template specifies the postalAddress value, and this

value overrides the static value on Gonzo's entry as well as all the other entries under ou=Muppets.

Classic CoS

Classic CoS determines resolution using a dynamic mechanism to point to a template entry with the

value

The second type of CoS is called classic CoS. Classic CoS (a cosClassicDefinition entry) is similar to pointer CoS in

that a CoS template provides the value of the attribute indicated by cosAttribute. However, the DN of the CoS template

is not completely indicated by the specifier attribute cosTemplateDN.

The DN of the CoS template is formed by prepending "cn=" to the value in the classic CoS attribute cosSpecifier and

appending the DN in cosTemplateDN. Figure 8-3 provides an example of classic CoS.

Figure 8-3. Classic CoS example

The CoS definition determines that the postalAddress value will be asserted for all entries below the People OU. It

specifies the CoS template for resolution of the value is also under the ou=People container, and that the cn of the

template should be determined by the value of the o attribute on the target entry. For Luke's entry, the value of o is

Engineering, so the CoS template that applies is cn=Engineering. This CoS template specifies the postalAddress
value, and this value overrides the static value on Luke's entry. In combination with many more CoS templates, this

approach could be used to dynamically assign everyone's address based on the organization to which each person

belongs.

Indirect CoS

Indirect CoS determines resolution by using a normal entry instead of a template entry

The third type of CoS is called indirect CoS. With indirect CoS (a cosIndirectDefinition entry), the specifier attribute is

cosIndirectSpecifier. cosIndirectSpecifier indicates an attribute on the target entry. The target entry's attribute

contains a DN value. This DN value is used as if it were a CoS template (but it doesn't need to be a CoS template). The

attribute indicated by cosAttribute is queried on this DN, and the value returned is asserted by CoS. With indirect CoS,

each target entry's attribute may have a different DN value and thus have a different value for the CoS attribute. Consider

Figure 8-4, which uses the Luke Skywalker reorganization example (when the o was asserted via the manager's entry) to

illustrate how indirect CoS works.

Figure 8-4. Indirect CoS example

The CoS definition determines that the o value will be asserted for all entries below the Staff OU. It specifies the manager
attribute will specify the DN used to resolve the value. On Wedge's entry, his manager attribute indicates Luke's entry.

Luke's entry has an o attribute value of Marketing, so Wedge's entry gets the same value. However, on the Stormtrooper

entry, the manager attribute indicates Anakin's entry. Anakin's entry has an o attribute value of Sales, which is applied to

Stormtrooper's entry.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Management

Many Sun products provide additional directory management functionality

Sun offers many products that provide additional management control. A short summary of the most interesting

of these products follows, and you can find more information and management products under Sun's online

documentation at http://docs.sun.com/.

An LDAP proxy provides a layer of privacy control

Sun Directory Proxy Server provides an LDAP proxy (or gateway) that, together with customer-defined rules,

intelligently redirects LDAP client requests to an LDAP server and vice versa. Mycompany might deploy this

proxy product to provide an extra layer of privacy to keep its directory information safe.

A GUI-based console provides an alternative to the command line

iPlanet Console provides a GUI-based interface for administration of users and groups and for editing ACI

statements. This is a useful tool for anyone who doesn't like the command line, and it reduces the level of detail

you need to understand by walking you through many actions. It also includes a graphical Directory browser for

operating directly on individual entries or subtrees.

An HTML-based interface is also provided

iPlanet Delegated Administrator provides an HTML-based interface (via Java) for administration of user and

group management, roles, Class of Service, and user certificates, among many other things. But even more

important is how it predefines six levels of delegated directory administration via special roles. This layered

delegation can help Mycompany give the most appropriate level of control to its staff.

Sun's metadirectory provides a diversity of interoperability

iPlanet MetaDirectory's connectors speak primarily LDAP and SQL. In addition, custom connectors provide

connectivity to specific products like Active Directory. Finally, a special customizable connector allows

file-based input sources. This diversity maximizes the directories and data sources that can be integrated.

Mycompany might use this metadirectory product to integrate an application-specific or NOS directory.

Useful management tools are provided

On a more mundane topic, Sun also provides a set of management tools and scripts for Directory Server.

These tools support easy backups, LDIF operations, configuration activities, and service management. Online

documentation is available at http://docs.sun.com/source/816-5606-10/index.html.

http://docs.sun.com/default.htm
http://docs.sun.com/source/816-5606-10/index.html

Replication

Three types of replication roles determine the replication model used by Directory Server

Directory Server defines three types of replicas. Labeling these types differently is largely for the purpose of

understanding the replication functionality employed. A master replica allows both read- and write-oriented

LDAP operations. A consumer replica is read-only and is a replicated copy of another master replica. The

consumer server returns a referral to the master replica for all add, modify, modifyRDN, and delete operations.

This referral reflects the fact that the consumer server is read-only, and that writes must be made to the master

server. A hub replica is a consumer replica that distributes directory entries via replication to other consumer

replicas. Directory Server replication follows a push model. In other words, the master replica (which might also

be a hub) initiates replication. A consumer replica cannot request updates.

A replication agreement defines the configuration of replication

Replication agreements control which consumer replicas receive replication from a master replica. These

agreements determine the target consumer, the database to replicate, scheduling for the replication, the

authentication for the connection, and the encryption used for the traffic. The scheduling options include

recurring periodic replication, a specific schedule, or immediate replication as changes happen. SSL encryption

is fully supported via replication. Multiple-master replication is configured by setting up two replication

agreements, one on each of the two master replicas. Each replication agreement uses a server thread as well

as a file descriptor.

A change log is used to track the modifications that should be replicated

A change log tracks all changes to a master replica. This change log is used to determine what changes should

be replicated to consumer replicas. Only the directory uses the change log; however, this data can be shared

with clients through the Retro Change Log plug-in, which allows access to a parallel copy of the change log via

LDAP. This separate and parallel change log can be enabled and disabled independently of the one used

strictly by the replication process. Changes for multiple replicas on a master server are logged to a shared

change log.

Replication collision resolution is handled automatically in most cases

In a multiple-master architecture, collision resolution is determined by the last change made. Each change

includes a timestamp that is used for determining collision resolution. If the server can't determine a resolution

for a collision, manual resolution by a directory administrator is required. The replication process automatically

flags the entry with a special operational attribute nsds5ReplConflict. Naming collisions result in the second

entry having its DN appended with the nsUniqueID attribute, so the second entry has a globally unique value.

Some configuration requirements are required in a replicated environment

There are some requirements when you use replication. A special entry called the Replication Manager entry is

required to support replication. This entry exists on both the master and consumer replica servers. This entry

has a special level of authorization on the consumer server and is not restricted by access controls set on the

consumer server. Because of the sensitivity of this entry, it cannot be in the replication data. The Attribute

Uniqueness plug-in cannot be used with multiple-master replication. The Referential Integrity plug-in can be run

only on a single-master server in a multiple-master architecture.

The schema is replicated

The directory schema is replicated with the replica by default. In fact, the first steps performed in every

replication transaction are verifying and replicating the schema as required. These steps help to ensure that the

remainder of the replication can succeed. If part of the schema was missing and an entry included that schema

element, the directory would have problems. After the schema has been replicated, the remainder of directory

data replication proceeds.

Special Configuration Parameters

cn=config holds all the configuration parameters

The earlier section Naming Context highlights the importance of the information stored within cn=config. Most

of the feature-specific configuration options available have been covered; however, there are many more

options that can be configured.

Common configuration options are offered, only with greater functionality

These configuration options include the common ones that other products offer. However, Directory Server

adds an additional layer of control. For example, the directory administrator can set resource limits on a

per-user basis to restrict the basic LDAP functionality that a client is capable of performing. These limits include

the maximum number of entries returned in an operation, a time limit, an idle timeout, and the maximum

number of entries that will be examined to perform a single operation. Of course, these limits can be set at the

server level as with other products, but Directory Server provides a greater degree of flexibility than its

competitors.

Many options are configurable

Other options include turning off all access control checking, control over what operations are audited to a log

file, control over what level of detail is written to the error log, control over the number of nested groups allowed,

password lockout features, and SSL settings. Performance tuning options like maximum number of file handles

available or threads per connection are also available.

See online documentation for more details

The full details of the information stored in the configuration naming context are well documented online at

http://docs.sun.com/source/816-5608-10/config.htm#12904.

[Team LiB]

http://docs.sun.com/source/816-5608-10/config.htm#12904

[Team LiB]

Security

Directory Server offers a diversity of security features, with significant authorization features

Directory Server uses a variety of security features ranging from traditional access control to advanced features

that are unique in the marketplace. Along with groups and roles, I introduced some of the basic functionality that

enables the security features in the earlier section Schema. In addition, a full range of authentication and

encryption methods is supported. However, the really exciting features are within the authorization support,

where Directory Server exceeds all other LDAP server products in sophistication and sheer number of

authorization factors available.

The authorization features form an overwhelming list

The authorization features include the ability to proxy authorization to another account, dynamic group-based

authorization, role-based authorization, and authorization based on the comparison of attribute values. Also

available is the ability to restrict access based on the client's authentication method, IP address, DNS

hostname, or the time of access. Directory Server also supports dynamic inheritance of authorization controls

as well as access control macros for repetitive access controls. The number of authorization features and the

complexity of functionality they provide are overwhelming.

Authentication

Directory Server supports common authentication methods

Among the authentication methods that Directory Server provides are anonymous authentication, simple

authentication, simple authentication over TLS, authentication via certificate-based identity, and DIGEST-MD5

authentication with SASL. Like most LDAP servers, the basic unit of authentication is focused on the entry

representing the client user. The password is stored as an attribute of the user entry, and other authorization

information is stored as part of this entry. For example, password history can be stored to keep a user from

reusing old passwords. If nsAccountLock is set to TRUE, it will inactivate an entry's ability to bind. It can also

be set on role entries to inactivate all the users associated with that role.

Certificate authentication is supported

In addition to password-based authentication, you can configure clients to use certificate-based authentication.

You use the userCertificate attribute of the user's entry to store the certificate in binary format for the client.

The DN indicated by the certificate must either match the DN of the user's entry or be mapped to this entry.

Pass-thru authentication simplifies the client experience

Directory Server supports pass-thru authentication. This means that one Directory Server passes credentials to

another Direc tory Server so the client user doesn't have to bind to each server separately. It also means that

the user's entry doesn't have to be replicated to every Directory Server to access data stored in that server.

This functionality requires the Pass Thru Authentication (PTA) plug-in. This plug-in has a few useful

configuration options. For example, you can specify that the two Directory Servers encrypt all pass-thru

authentication communications. For more details, go to the online documentation, Chapter 16 of the

Administrator's Guide, at http://docs.sun.com/source/816-5606-10/pasthru.htm#1068035.

Support for proxy authorization lets you access the directory with my rights

Although proxy authorization isn't an authentication method, it is used to impersonate another identity. As a user

with access to specific directory resources, I can give the proxy right for my user entry to another user's entry.

That user can then impersonate me, accessing directory resources as if a bind operation had been issued with

my user entry. This other user does not need the password of my account to exercise the proxy right I've

delegated. Instead, the other user employs proxy authorization at the time of each request to the directory by

specifying the Proxy Authorization control. The control requires a single value known as the ProxyDN. Only

users who have been specifically given proxy rights can impersonate my entry. To give the proxy right to

another user, I must define a special statement called an access control instruction (ACI) that gives the other

user account some specific subset of the directory access rights I hold.

Authorization

The ACI is the basic unit of access control

With Directory Server, an ACI is the essential unit used to define the directory access controls. A collection of

access control instructions is called an access control list. An ACI is logically represented as an attribute of an

entry, called the aci attribute. Each ACI can have multiple values that together form an access control list.

There are four components to an ACI entry: a target, heading, permissions, and bind rules. By default, the

access control specified in the aci attribute of an entry affects that entry and every child entry below that entry.

This default behavior occurs only when the ACI target isn't specified. Application of the ACI to all child entries is

accomplished via a feature unique to Directory Server called dynamic inheritance.

Directory Server employs dynamic inheritance, and multiple ACIs may apply

Inheritance occurs when a configuration setting, in this case an access control, propagates to children entries.

With static inheritance, the access control is copied to each of the entries below it. Microsoft's Active Directory

is an example of an LDAP server that uses static inheritance. With dynamic inheritance, the access control is

never copied to subordinate objects. Instead, when a user tries to access an entry, the access control of that

entry and every parent container must be checked. When more than one ACI applies, the union is effective.

Denying access takes precedence over allowing access, so a deny all at the root of the directory would

effectively restrict everyone from the entire directory.

Inheritance has an implication on performance

There is a subtle difference between static inheritance and dynamic inheritance. This difference can affect

performance dramatically, depending on how you make use of access controls in your directory. Static

http://docs.sun.com/source/816-5606-10/pasthru.htm#1068035

inheritance inflicts a load at the time of applying access controls, whereas dynamic inheritance increases the

potential burden at the time of access. Minimizing this burden involves carefully crafting the ACIs. This task can

almost be an art form, and it is best to test the configuration for performance impact.

The syntax of ACIs is complex; Appendix F covers ACIs in detail

In fact, the syntax and specific access control factors that ACIs provide are complex enough that they require

extended coverage and study. For this reason, I've placed the extended over view of ACIs in Appendix F. Each

of the components of an ACI is given specific attention, the access control factors offered are highlighted, and a

number of examples are presented to illustrate the proper use of ACIs.

Macros can simplify complex or repetitive ACIs

Because ACIs can become complex and lengthy, Directory Server offers a feature to help simplify them. This

feature is called macros. Macros can reduce the number of ACI statements needed when a repeating pattern of

ACIs is required. They can also simplify a nonrepetitive ACI.

Macros allow variable substitution within an ACI

Macros are placeholders that are used to represent a DN, or a portion of a DN, in an ACI. In other words, a

portion of the target DN can be saved as a variable to be plugged in later in the ACI statement. Macros are

essentially dynamic DNs in ACIs. You might use a macro to save a DN in the target and later use this saved DN

in the bind rule of the ACI. When used with wildcards, a single macro ACI can replace multiple ACI statements

throughout the directory. Having many ACIs is bad for performance and also harder to administer. Macro ACIs,

including examples, are also covered in detail in Appendix F.

Privacy

Directory Server supports both SSL and TLS

SSL v2, SSL v3, and TLS are available by default for session encryption. Several encryption algorithms are

provided, including RC2, RC4, DES, and Triple DES. Key lengths of 1024 bits are supported with TLS.

The encryption settings are highly configurable

The cn=encryption,cn=config entry holds the server encryption settings. On this entry you can configure the

SSL session timeout, whether encryption is allowed or required, and enable which of the available algorithms

can be used by clients. These settings transcend the authorization controls specified in ACI statements. So if

you require session encryption here, all client access must be encrypted whether or not the ACI access control

requires it.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Why Directory Server?

Multiplatform support and widespread deployment are good signs

The strengths of Directory Server are numerous. Along with these features, it enjoys a great number of

deployments and a historical advantage. Directory Server also benefits from broad multiplatform support,

enabling server platforms of Solaris, Microsoft Windows NT or 2000, HP-UX, and IBM AIX. Sun has plans to

support Linux this year. Sun also has plans to implement DSML support this year.

Directory Server has the best performance on the market

Of course, the most critical performance number is how many client search operations can be performed per

second. Direc tory Server ranks well ahead of all competitors, with only Active Directory coming close. An

independent head-to-head comparison of LDAP servers two years ago gave Directory Server the highest marks

in almost every performance test run. You can view those results at

http://www.nwfusion.com/reviews/2000/0515rev2.html.

The documentation is also the best

The product documentation is clearly the best of all the LDAP server products. The administrator's guide does

an excellent job of documenting the features. All confusing topics are illustrated with several examples. An

installation guide walks through the installation process. In addition, performance recommendations are given.

Deployment and design documentation is extremely helpful, and this is provided in the form of an excellent

deployment guide. This guide outlines the key steps Mycompany should take to deploy Directory Server. This is

the only product that publishes this type of information, although much of the deployment guide could certainly

be used for other products. Look in Appendix G for URLs for all this documentation.

Directory Server offers the most security features

Earlier I noted that Directory Server has the most access control factors of any product. Dynamic groups and

values are very useful features to reduce management costs, and other products don't have them. The security

features offered are clearly the most extensive, and ongoing development is under way. But several of the

dynamic features have a major limitation that limits usefulness. For example, the attribute value that has been

asserted via CoS can't be returned in a search filter. I'd also like to see the redundancy provided by groups and

roles merged. I think an approach using linked attributes would be very beneficial.

The basic server functionality is significant

While supporting most of the functionality its competitors do, Directory Server also implements unique

functionality. The plug-ins are a great idea, and other vendors should follow this direction, under a common

standard. The CoS (Class of Service) is very cool and holds the promise to simplify directory management.

http://www.nwfusion.com/reviews/2000/0515rev2.html

Chaining support is nice, and the pass-thru authentication support makes this even nicer. The chaining support

lets you increase server (and directory) capacity without any additional client configuration or headache.

Directory Server leads the pack

In summary, Directory Server is clearly still the leading LDAP server product. The product has set a high mark

for other products to meet. Directory Server should satisfy any company's needs.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Appendixes

Appendix A. Client LDAP Operations Appendix

Appendix B. Schema Appendix

Appendix C. Stanford University Directory Architecture

Appendix D. OpenLDAP Access Control

Appendix E. Active Directory Controls Appendix

Appendix F. Directory Server Appendix

Appendix G. Online Reference Material

[Team LiB]

[Team LiB]

Appendix A. Client LDAP Operations Appendix

Draft Controls

C language API

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Draft Controls

PSEARCH

M. Smith, "A Simple LDAP Change Notification Mechanism," INTERNET-DRAFT

<draft-ietf-ldapext-psearch-01.txt>, August 1998.

http://www.ietf.org/proceedings/98dec/I-D/draft-ietf-ldapext-psearch-01.txt

TSEARCH

M. Wahl, "LDAPv3 Triggered Search Control," INTERNET-DRAFT <draft-ietf-ldapext-trigger-01.txt>, August

1998.

http://www.uni.torun.pl/~mgw/internet-drafts/draft-ietf-ldapext-trigger-01.txt

DIRSYNC

M. Armijo, "Microsoft LDAP Control for Directory Synchronization," INTERNET-DRAFT

<draft-armijo-ldap-dirsync-00.txt>, August 1999.

http://sunsite.ics.forth.gr/pub/systools/internet-drafts/draft-armijo-ldap-dirsync-00.txt

LCUP

M. Smith, "LDAP Client Update Protocol," INTERNET-DRAFT <draft-ietf-ldup-lcup-01.txt>, June 2001.

http://www.ietf.org/internet-drafts/draft-ietf-ldup-lcup-01.txt

http://www.ietf.org/proceedings/98dec/I-D/draft-ietf-ldapext-psearch-01.txt
http://www.uni.torun.pl/~mgw/internet-drafts/draft-ietf-ldapext-trigger-01.txt
http://sunsite.ics.forth.gr/pub/systools/internet-drafts/draft-armijo-ldap-dirsync-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-ldup-lcup-01.txt

Table A-1. LDAP persistent search control OIDs

Control OID

PSEARCH 2.16.840.1.113730.3.4.3

TSEARCH 1.3.6.1.4.1.1466.29539.10

DIRSYNC 1.2.840.113556.1.4.841

Chaining

http://search.ietf.org/internet-drafts/draft-sermersheim-ldap-chaining-01.txt

Virtual List View

http://search.ietf.org/internet-drafts/draft-ietf-ldapext-ldapv3-vlv-04.txt

[Team LiB]

http://search.ietf.org/internet-drafts/draft-sermersheim-ldap-chaining-01.txt
http://search.ietf.org/internet-drafts/draft-ietf-ldapext-ldapv3-vlv-04.txt
file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

C language API

Table A-2 lists the functions in the C language API for LDAP.

Table A-2. LDAP API functions

Function Description

ldap_open()

ldap_bind()

ldap_bind_s()

ldap_simple_bind()

ldap_simple_bind_s()

ldap_kerberos_bind()

Opens a connection to the LDAP server. Returns a connection handle that is used

by all other function calls based on this connection.

ldap_kerberos_bind_s() Used to authenticate to the directory via the methods described by the function name.

ldap_unbind()

ldap_search()

ldap_search_s()

Unbinds and closes the connection.

ldap_search_s()

ldap_modify()

Searches the directory. The _s version works synchronously, but has a time limit

parameter.

ldap_modify_s()

ldap_modrdn()

Modifies an entry.

ldap_modrdn_s()

ldap_add()

Changes the RDN of an entry.

ldap_add_s()

ldap_delete()

Adds an entry.

ldap_delete_s() Deletes an entry.

ldap_abandon() Abandons the operation in progress (in other words, the synchronous operation in

progress).

ldap_result() Reads LDAPMessage structure for an asynchronous operation.

ldap_msgfree() Frees the memory space from the LDAPMessage structure from a previous

ldap_result(), ldap_search_s(), or ldap_search_s().

ldap_result2error() Converts the LDAPMessage structure into more usable error codes.

ldap_err2string() Converts a numeric error code into a descriptive error string.

ldap_perror()

ldap_first_entry()

ldap_next_entry()

Prints the error message.

ldap_count_entries()

ldap_first_attribute()

Retrieves entries from the LDAPMessage structure in an orderly fashion.

ldap_next_attribute()

ldap_get_values()

Retrieves attributes in an orderly fashion from an entry in the LDAPMessage structure.

ldap_get_values_len()

ldap_count_values()

Retrieves an attribute value. Non _len version used for nonbinary string data only.

ldap_count_values_len()

ldap_value_free()

Counts the values returned by the two functions above.

ldap_value_free_len() Frees memory space used by the attribute values returned by the functions above.

ldap_get_dn() Gets the DN of an entry specified in the LDAPMessage structure.

ldap_explode_dn() Separates the DN returned by the function above into an array of RDNs.

ldap_dn2ufn() Converts the DN returned by the function above into a user-friendly format.

[Team LiB]

[Team LiB]

Appendix B. Schema Appendix

Schema Formats

Common Syntaxes

Common Matching Rules

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Schema Formats

The schema can be defined in several different formats, which can be confusing unless you know to expect

slightly different formats. Different vendors use different formats. The LDAP RFCs generally use the BNF

format, but vendors are not required to use this format in their documentation or implementation. The ASN.1

format is also used throughout the LDAP standard, and it is generally the choice of vendors. Vendors that

developed from the first LDAP implementation at the University of Michigan use the slapd.conf format.

The schema must be defined in a predetermined format

Each format has the syntax for an object class and attribute presented, followed by examples of each. Chapter

1 includes an example of the person object class definition in the ASN.1 format. To quickly illustrate the basic

differences between formats, let's look at the same person definition and at the definition for the cn attribute.

For your convenience, I've included the ASN.1 person definition again.

ASN.1 Object Class Syntax

Brackets indicate optional parameters, CAPS indicate required elements, lowercase indicates supplied

variables. These notes are different from those for the slapd format!

objectclassname OBJECT-CLASS ::= {

 SUBCLASS OF { superclass }

 [KIND objectclasskind]

 [MUST CONTAIN { attribute1 | attribute2 ...}]

 [MAY CONTAIN { attribute3 | attribute4 ...}]

 ID oid}

Example

person OBJECT-CLASS ::= {

 SUBCLASS OF { top }

 KIND abstract

 MUST CONTAIN { sn, | cn}

 MAY CONTAIN { userPassword | telephoneNumber |

 seeAlso | description }

 ID 2.5.6.6}

ASN.1 Attribute Syntax

attributename ATTRIBUTE ::= {

[SUBTYPE OF supertype]

[WITH SYNTAX syntaxname {syntaxbounds}]

[EQUALITY MATCHING RULE equalmatchingrulename]

[ORDERING MATCHING RULE ordermatchingrulename]

[SUBSTRINGS MATCHING RULE submatchingrulename]

[SINGLEVALUED]

ID oid}

Example

commonName ATTRIBUTE ::= {

SUBTYPE OF name

WITH SYNTAX DirectoryString {ub-common-name}

ID id-at-commonName }

BNF Object Class Syntax

Brackets indicate optional elements, CAPS indicate required elements, lowercase indicates supplied variables.

These notes are different from those for the slapd format!

(oid NAME 'objectclassname' SUP superclass

objectclasskind MUST (attribute1 $ attribute2) MAY

(attribute3 $ attribute4))

Example

(2.5.6.6 NAME 'person' SUP top STRUCTURAL MUST (sn

$ cn) MAY (userPassword $ telephoneNumber $

seeAlso $ description))

BNF Attribute Syntax

(oid NAME 'attributename' [DESC 'description']

[OBSOLETE] [SUP supertype] [EQUALITY

equalmatchingrulename] [ORDERING

ordermatchingrulename] [SUBSTR submatchingrulename]

SYNTAX syntaxname {syntaxbounds} [SINGLE-VALUE]

[NO-USER-MODIFICATION] [USAGE attributeusage])

Example

(2.5.4.3 NAME 'cn' SUP name)

Slapd.conf Object Class Syntax

Brackets indicate optional parameters, CAPS indicate supplied variables, lowercase indicates required

elements.

objectclass OBJECTCLASSNAME

[oid OID]

[superior SUPERIORCLASS]

[requires LISTOFATTRIBS]

[allows LISTOFATTRIBS]

Example

objectclass person

oid 2.5.6.6

superior top

requires

 sn

 cn

allows

 userPassword

telephoneNumber

seeAlso

description

Slapd.conf Attribute Syntax

attribute ATTRIBUTENAME [ALIAS] [OID] SYNTAX

[ATTRIBUTEOPTIONS]

ATTRIBUTEOPTIONS allows the nondefault values of "operational" or "single" to be specified. These show

that the attribute is operational, not generally returned to clients, and single valued. I believe you can also

define attribute options, such as language code support, here.

Example

attribute cn commonName 2.5.4.3 cis

Even with the simple examples I have chosen, there is more going on here than I can cover briefly. Some of the

differences can be explained by lack of support for schema functionality like subtyping. Some of the differences

result from definitions working together with other definitions like syntax and matching rule definitions, and

some of the formats link the definitions in different places.

The formats are summarized here; you can find full details online

Knowing the formal syntax of these formats is worthwhile only if you want to extend the schema of a directory

or understand the relationship between existing schema elements. The syntax of the formats can be complex;

so if you aren't interested in modifying the schema, the knowledge isn't useful. You can find good resources for

all the formats and common schema elements online. These resources explain the basics of the syntax, so you

can decipher schema definitions for yourself. For the URLs of these online resources, see Appendix G. The

BNF format is what is used by the LDAP standards documents to describe the recommended schema

definitions, but any of the formats can be used. The LDAP standard does not require that the BNF format be

used by an implementation.

[Team LiB]

[Team LiB]

Common Syntaxes

Table B-1 lists common syntaxes that are used in other schema definitions. These syntaxes will be of interest to

you if you modify the schema of your directory or need to understand what values are allowed in specific

attribute types.

Table B-1. Common schema syntaxes

Name OID Description

Binary 1.3.6.1.4.1.1466.115.121.1.5 0 or 1

Bit String 1.3.6.1.4.1.1466.115.121.1.6 Strings of binary

Boolean 1.3.6.1.4.1.1466.115.121.1.7 TRUE or FALSE

Certificate 1.3.6.1.4.1.14666.115.121.1.8 Binary encoding of X.509 certificate

Certificate Pair 1.3.6.1.4.1.14666.115.121.1.10 Sequence of two certificates

Country String 1.3.6.1.4.1.1466.115.121.1.11 Two-character code as defined in ISO 3166

DirectoryString 1.3.6.1.4.1.1466.115.121.1.15 UTF-8–based text string

DistinguishedName 1.3.6.1.4.1.1466.115.121.1.12 DN string

DIT Content Rule

Description

1.3.6.1.4.1.1466.115.121.1.16 Used to define content rules for an object class

Facsimile Telephone

Number

1.3.6.1.4.1.1466.115.121.1.22 Telephone number with fax parameters included

Fax 1.3.6.1.4.1.1466.115.121.1.23 Fax images in octet string syntax; oddly, octet

string syntax isn't noted in the RFC

Generalized Time 1.3.6.1.4.1.1466.115.121.1.24 Time with time zone specified

IA5 String 1.3.6.1.4.1.1466.115.121.1.26 International Alphabet 5 String; contains ASCII and

some nonprintable escape characters

INTEGER 1.3.6.1.4.1.1466.115.121.1.27 An integer

JPEG 1.3.6.1.4.1.1466.115.121.1.28 JPEG images encoded in JFIF

Matching Rule

Description

1.3.6.1.4.1.1466.115.121.1.30 Used to define matching rules

Matching Rule Use

Description

1.3.6.1.4.1.1466.115.121.1.31 Used to define matching rule use definitions

MHS OR Address 1.3.6.1.4.1.1466.115.121.1.33

Name AND Optional UID 1.3.6.1.4.1.1466.115.121.1.34 A DN string with optional UID string

Name Form Description 1.3.6.1.4.1.1466.115.121.1.35 Used to define the name form of an object class, in

other words, specify an RDN

Numeric String 1.3.6.1.4.1.1466.115.121.1.36 A string of numbers

Object Class Description 1.3.6.1.4.1.1466.115.121.1.37 Used to define an object class

OID 1.3.6.1.4.1.1466.115.121.1.38 An OID string

Other Mailbox 1.3.6.1.4.1.1466.115.121.1.39 String used to denote mail system and mailbox

location

PostalAddress 1.3.6.1.4.1.1466.115.121.1.41 Sequence of directory strings denoting a postal

address

Presentation Address 1.3.6.1.4.1.1466.115.121.1.43

PrintableString 1.3.6.1.4.1.1466.115.121.1.44 Text string with a restricted set of printable

characters

Telephone Number 1.3.6.1.4.1.1466.115.121.1.50 Telephone number string in international phone

format

UTC Time 1.3.6.1.4.1.1466.115.121.1.53 Printable string with time

LDAP Syntax Description 1.3.6.1.4.1.1466.115.121.1.54 Used to define a syntax

DIT Structure Rule

Description

1.3.6.1.4.1.1466.115.121.1.17 Used to define a structural rule for an object class

OctetString 1.3.6.1.4.1.1466.115.121.1.40 Binary data in BER form

In several cases, the RFC 2252 authors deviated from established types and redefined the existing types for no

clear reason. Some of the preexisting definitions are listed in Table B-2, because some LDAP vendors may

choose to use the definitions with a differing OID.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Common Matching Rules

Tables B-3 through B-6 list common matching rules that are used in LDAP schema definitions. These rules will

be of interest to you if you modify the schema of your directory or need to understand how values are compared

in specific attribute types. All the common matching rules noted in RFC 2252 are included, as well as a few

critical ones not noted in the RFC. The rules are listed in four separate tables by the type of matching rule:

equality, ordering, substring, or subschema.

Table B-2. Common syntaxes with OIDs that deviate from original

Name OID

PrintableString 2.1.0.1.1

Boolean 2.5.5.8

PostalAddress 2.5.4.16

Table B-3. Equality matching rules

ASN.1 Matching Rule OID OID of Syntax Description

objectIdentifierMatch 2.5.13.0 1.3.6.1.4.1.1466.115.121.1.38 Used to match OIDs

and other numeric

identifiers

distinguishedMatch also

known as

distinguishedName
Match

2.5.13.1 1.3.6.1.4.1.1466.115.121.1.12 Follows the rules for

DNs, with each RDN

checked

caseIgnoreMatch 2.5.13.2 1.3.6.1.4.1.1466.115.121.1.15 Case ignored, and

spaces ignored if at

beginning or end, or

used in repetition

numericStringMatch 2.5.13.8 1.3.6.1.4.1.1466.115.121.1.36 Matches numeric

strings and ignores

spaces

caseIgnoreListMatch 2.5.13.11 1.3.6.1.4.1.1466.115.121.1.41 Uses

caseIgnoreMatch to

compare lists of

DirectoryStrings

integerMatch 2.5.13.14 1.3.6.1.4.1.1466.115.121.1.27 Matches values as

integers

bitStringMatch 2.5.13.16 1.3.6.1.4.1.1466.115.121.1.6 Compares bit strings

to ensure that bits

match

telephoneNumberMatch 2.5.13.20 1.3.6.1.4.1.1466.115.121.1.50 Case ignored, and all

spaces and hyphens

are ignored

presentationAddress
Match

2.5.13.22 1.3.6.1.4.1.1466.115.121.1.43 Compares

PresentationAddress

strings

uniqueMemberMatch 2.5.13.23 1.3.6.1.4.1.1466.115.121.1.34 Uses

distinguishedMatch

rule to compare DN

strings, and uses

bitStringMatch to

compare uid RDNs

protocolInformation
Match

2.5.13.24 1.3.6.1.4.1.1466.115.121.1.42 Uses

octetStringMatch rule

to compare

ProtocolInformation

strings

generalizedTimeMatch 2.5.13.27 1.3.6.1.4.1.1466.115.121.1.24 Matches strings of

GeneralizedTime.

Unspecified minutes

or seconds are

assumed to be zero

caseExactIA5Match 1.3.6.1.4.1.1466.109.114.1 1.3.6.1.4.1.1466.115.121.1.26 Matches an IA5

string, case does

count

caseIgnoreIA5Match 1.3.6.1.4.1.1466.109.114.2 1.3.6.1.4.1.1466.115.121.1.26 Matches an IA5

string, case is ignored

caseExactMatch 2.5.13.5 1.3.6.1.4.1.1466.115.121.1.15 Matches strings; case

is significant, but

spaces are ignored if

at beginning or end,

or used in repetition

booleanMatch 2.5.13.13 1.3.6.1.4.1.1466.115.121.1.7 Matches a boolean

octetStringMatch 2.5.13.17 1.3.6.1.4.1.1466.115.121.1.40 Matches a sequence

of octet strings

Table B-4. Ordering matching rules

ASN.1 Matching Rule OID OID of Syntax Description

generalizedTimeOrdering
Match

2.5.13.28 1.3.6.1.4.1.1466.115.121.1.24 Orders strings of

GeneralizedTime

caseIgnoreOrderingMatch 2.5.13.3 1.3.6.1.4.1.1466.115.121.1.15 Orders strings while ignoring

case

Table B-5. Substring matching rules

ASN.1 Matching Rule OID OID of Syntax Description

caseIgnoreSubstringsMatch 2.5.13.4 1.3.6.1.4.1.1466.115.121.1.58 Matches a string with a wildcard

in any position, while ignoring

case

telephoneNumberSubstrings
Match

2.5.13.21 1.3.6.1.4.1.1466.115.121.1.58 Matches a PrintableString with a

wildcard in any position; case

does count, but spaces and

hyphens are ignored

numericStringSubstrings
Match

2.5.13.10 1.3.6.1.4.1.1466.115.121.1.58 Matches a NumericString with a

wildcard in any position, spaces

are ignored

Table B-6. Subschema matching rules

ASN.1 Matching Rule OID OID of Syntax Description

IntegerFirstComponentMatch 2.5.13.29 1.3.6.1.4.1.1466.115.121.1.27 Matches the first integer

in a sequence of integers

objectIdentifierFirstComponentMatch 2.5.13.30 1.3.6.1.4.1.1466.115.121.1.38 Matches the first OID

component in an OID

sequence

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Appendix C. Stanford University Directory Architecture

Environment

Source Systems

Stanford Registry

Directory Harvester

Stanford Directory

Active Directory Harvester

Summary

[Team LiB]

[Team LiB]

Environment

The Stanford community consists of approximately 1,500 faculty, 8,000 staff, and 14,000 students. The

extended community includes over 25,000 alumni. The university is organized in seven schools, several of

which regularly receive top honors in national reviews. Many notable research projects are undertaken in over

100 locations, including the Stanford Linear Accelerator Center (SLAC) and the Stanford Hospital.

This environment demands sophisticated IT resources that can be easily accessed in a distributed computing

model. Some IT support is provided centrally, but each school and research project has autonomy and may

deploy computing resources. Central IT helps support resources that must have centralized management. The

Stanford directory architecture is an example of such a resource.

Stanford employs a network-wide user identity system for authentication that is based on Kerberos. This system

is known as the SUNet ID system, and it can be used to access many network services, including e-mail, the

directory, Web sites, a Windows infrastructure, and other services.

The Stanford directory architecture has evolved over time to meet Stanford's diverse needs. Some of the

elements of the architecture are vendor provided, while others are custom written. This composite nature of the

directory architecture, along with the large, diverse environment, provide an interesting example of a data

architecture that is worth a closer look.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Source Systems

Stanford has several systems of record. These systems hold authoritative data about Stanford's business. Each of these

source systems is owned by offices that are responsible for the data, not the central IT organization. For example, one

source system comes from the Registrar, is based on Peoplesoft, and contains authoritative information about students.

Another source system comes from Human Resources and contains authoritative information about staff and faculty.

Other sources include data from SLAC and the Stanford Hospital. An ID card system for all Stanford-affiliated people also

is a source system. This system maps a person's name to a unique ID card number. Figure C-1 shows the relationship

between the many source systems and the central repository that integrates each of these source systems. This central

repository is called the Stanford Registry.

Figure C-1. Stanford source systems

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Stanford Registry

The Stanford Registry is neither an LDAP directory nor any other kind of directory, but rather a database. The

rationale behind the Registry being a database centers on the purpose and functionality it serves. A database

meets several key requirements. Most notable among these requirements is the ability to make a large number

of modifications and also to roll back data to a previously known state. The Stanford Registry provides a

custom metadirectory functionality by amalgamating all the relevant data in one single repository. The Registry

eliminates any potential duplication of information from the multiple sources, and it uses business logic specific

to Stanford. For example, imagine a student who also works for the university as a staff member. At least two

of the source systems hold authoritative information about this person. The Registry takes all the information

and applies a rule that decides which information has more priority. In this example, some of the information

from the student source is taken, and some from the staff source. The level of modification activity, reporting,

and rollback-commit functionality required led to the decision to use a database for this metadirectory purpose.

The Registry gets information from the source systems via a periodic process involving XML formatted data.

Because each of the source systems runs on a different platform, and each has a schema with slight variations

from the others, the level of abstraction that XML provides is very useful. The Registry can then use the

business rules it has defined to judge which source is ultimately more important or more current and whether

values from multiple sources can coexist.

The Stanford Registry is a copy of the authoritative data, and not a referral that points back to the source

database or directory. This means that any subsequent use of this data is read-only, or the authority of the

source systems is put in jeopardy. So modification of data should be redirected to the authoritative source.

However, for a subset of the data from the various source systems, specifically the person-related data set, the

Registry is a co-owner of the authoritative data. Changes made to this subset of the data in the Registry

propagate back to the source systems, just as all changes propagate to the Registry from the source systems.

In other words, person data is replicated both ways.

In addition to information replicated from source systems, the Registry hosts a few other central information

repositories. The Organization Registry holds an authoritative table of all the officially recognized departments,

schools, and organizations associated with Stanford University. This organization data helps to provide

unambiguous name resolution for applications that must differentiate between possibly ambiguous department

names. For example, one application might call a department the business school, while another calls it the

Graduate School of Business, while still another calls it the GSB. In addition to providing clear names, this

data set also authoritatively establishes the hierarchical relationship between each department.

The Workgroup Registry provides a central place to define groups of people, such that the group definition can

be reused for multiple services. This is similar to how groups are used in network operating systems like

Windows, but it is platform independent so a group definition can be made once and be used by many services

uniformly. Both departments and individual users can define groups for their own use.

The Authority Registry is something still in development, but its intent is to provide a central definition of who

holds authority for specific responsibilities and administrative tasks. This will tie into the Organization Registry

and will be used by network services to provide definition of roles and delegate administration. The

Organization, Workgroup, and Authority Registries are incredibly important because the university employs a

noncentralized computing administration model, and these repositories help to unify the distributed services that

have been deployed by centrally defining groups and roles to make administration and interaction easier.

The Registry must provide privacy controls for information. As mandated by the federal law known as the

Family Educational Rights and Privacy Act (FERPA), Stanford is liable for the privacy of student personal data.

The university must honor a student's request to protect personal information. The Stanford Registry therefore

has privacy settings for applicable data. Access controls are set on personal data attributes to protect the

privacy of this data. All subsequent reuse of the data must also employ the same or a stricter level of privacy

control.

Privacy Controls

The Registry provides the privacy control in an interesting fashion that is different from traditional access control

list (ACL) methods. All users (student or otherwise) can specify three different privacy settings for each piece of

information about their person. These settings are: World, Stanford, or Self. A World setting means that the

information can be accessed by anyone. A Stanford setting means that the information can be accessed only

by people who are members of the Stanford community. A Self setting means that the information is completely

private, and only the person can access it. Of course, Stanford business processes and Stanford administrators

must access data regardless of these settings to provide basic Stanford services. But these privacy settings

ensure that general directory searches respect the rights of the person.

Each of the three privacy settings are placed in a special visibility attribute that is informally associated with the

attribute it is intended to protect. For example, the suVisibEmail attribute holds the privacy settings that

correspond to the mail attribute for each person entry. Almost every attribute that holds personal information

has a corresponding visibility attribute. Even the person's name can be protected. Some attributes are grouped

together in logical sets. For example, the suVisibAffiliation attribute protects the affiliation, o, and ou

attributes. An other set covers all the personal attributes to simplify situations in which someone wants to treat

all the information in the same manner.

These visibility attributes are then used as an authorization factor to determine whether any particular person

has authority to access the informally linked attribute(s). Netscape Directory Server supports access control

information (ACI) statements that provide this interesting authorization factor functionality. These statements

can be associated with any container in the directory; but in Stanford's case, they are set at the root of the

directory. The ACI statement allows a content-based access control to be implemented. In other words, the ACI

statement specifies that the value of a special attribute of the requestor's binding entry must match a special

attribute value of the targeted entry.

For example, imagine that I specify that my e-mail address has a privacy setting of Stanford

(suVisibEmail=Stanford). Users who want to access the mail attribute of my entry must have a

suPrivilegeGroup attribute on their entry with a value of Stanford to indicate that they are authorized to view

my e-mail address. Otherwise, they will not get access. This functionality can be duplicated via traditional ACLs,

but ACI statements allow for a much more dynamic application of access control than traditional ACLs do.

Stanford's experience with the Netscape Directory Server product has been that the overhead involved with

managing and processing attribute-level ACLs is greater than using ACI statements. For contrast, I will show

how a comparable visibility is implemented in a traditional ACL model shortly when I turn to the Stanford

Windows Infrastructure and Microsoft's Active Directory product.

Once all the data has been unified into the Registry, it is published in an LDAP directory, called the Stanford

Directory, for subsequent use by services and applications. The method of moving the data from the Registry to

the LDAP directory is a custom-designed process that is very interesting.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Directory Harvester

The directory harvester moves information from the Registry to the master directory server for the Stanford

Directory. The directory harvester moves information in close to real time: as an update is made in the Registry,

it is also reflected in the Directory. This functionality is enabled with the help of a special event database, which

provides notification to the harvester of each change to the registry. The directory harvester is interested in only

a subset of the information in the Registry. For example, it is not interested in the organization information, but

it is interested in the people information. Stanford has more than one harvester, but the directory harvester is

the most critical. It is unique among all the other harvesters: the directory harvester is the only one that retrieves

information from the Registry for publication. All the other harvesters retrieve information from the Stanford

Directory. These other harvesters tend to feed applications that require their own copy of the information, and

can't look up the data via LDAP.

Event Database

The event database provides a way to track each change to an entry in a fairly simple manner. Each change

results in an event posted to the Events database. The harvester keeps track of the last event ID it knows about

and periodically checks the Events database for new events. So when a new event is posted, the harvester

knows about it. The harvester queries the entry noted in the event and creates/deletes/modifies the

corresponding directory entry. Events are triggered by each source system, but how each system accomplishes

this event posting process differs between systems. For example, one source system parses an audit log of

entry modifications every five minutes and creates events based on this information.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Stanford Directory

The Stanford Directory is currently run on the Netscape Directory Server product. A single-master replication

model is employed, and this single master replicates the entire directory to two sets of directory servers. The

first set of directory servers primarily provides mailbox resolution for the campus e-mail services. The second

set of directory servers primarily provides a general white page service via a custom-designed Web interface.

Each set provides a failover backup for the other set, but helps to isolate service-intensive load to specific

servers so users from one service aren't arbitrarily impacted by other services. Incidentally in the short term,

Stanford is actively migrating off Netscape Directory Server onto OpenLDAP. In the longer term, Stanford will

closely evaluate each of the products to see which best meets its business requirements.

E-mail Service Integration

Stanford primarily runs a sendmail-based e-mail service in addition to other mail offerings. The sendmail

service is integrated to perform its lookup and routing of user SMTP information against the LDAP directory.

Usually this information is stored on each individual sendmail server in the form of a database mapping or flat

file; but when there are multiple sendmail servers involved, the process of keeping these local mapping files

synchronized while also up-to-date can be difficult. Information about how you might integrate your sendmail

service with an LDAP directory can be found at

http://www.iconimaging.net/~jradford/sendmail/sendmail-ldap.html. Jason Christopher Radford has provided

these helpful online tips.

Web UI Integration

Currently at Stanford, directory searches are provided exclusively through a Web interface. In the future, LDAP

protocol-based clients may be allowed access. The Web interface, called Stanford.Who, is quite friendly. A

Web-based form is provided, and the user can search based on name. You can also designate a person's

affiliation (student, staff, faculty) to help refine the name search. Alternatively, you can search based on e-mail

address, campus phone number, or Stanford's network ID called the SUNet ID. Results include only the

personal information that is publicly accessible. A special Web authentication system tied to the SUNet ID

enforces the privacy access controls.

Updating Your Personal Information

In general, users can update their personal information via a Web interface called Stanford.You. This interface

http://www.iconimaging.net/~jradford/sendmail/sendmail-ldap.html

provides a portal for users to interface with the Registry (which co-owns their authoritative person data), without

needing to know any specifics about the source system or Registry and the software it runs on. Users can view

their personal information and modify it as needed. Additionally, users can choose privacy settings in this

interface. This is a good example of the loose directory interconnection approach noted in Chapter 5.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Active Directory Harvester

The Active Directory of the Stanford Windows Infrastructure is a subscriber to the Stanford Directory via its own event

harvester, as shown in Figure C-2. Stanford chose to harvest a minimum of person-related information to AD, so only

name, the primary department affiliation, authorization group information (suPrivilegeGroup), and privacy settings were

harvested. The primary department affiliation is used to determine where in the root domain of AD the user's account

should reside. A hierarchy of organizational units that mimic the department hierarchy relationship at the university exists

in the root domain for the accounts to be created within. A person's primary department affiliation determines the location

of the account in this OU hierarchy. As a result, account administration can be easily delegated to the decentralized

departmental Windows administrators across campus. The harvester is capable of moving accounts between

departmental OUs when the primary departmental affiliation changes.

Figure C-2. Active Directory harvester

As shown in Figure C-2, the password information for a person's account is also written to AD. This is done via a separate

process from the harvester, and tight security restrictions are placed on this data. The AD employs a Kerberos realm

trust, which along with using the altSecurityIdentities attribute, allows the existing MIT-style Kerberos 5 realm to

authenticate all Kerberos ticket granting ticket (TGT) requests from Windows clients. The corresponding Windows

account just functions as a shadow proxy account containing the proprietary Microsoft information. The passwords are

written to AD to ensure that down-level clients that don't support Kerberos authentication can participate. At a later time

when these down-level clients are no longer supported, this password synchronization will be discontinued.

Privacy Control in AD

Active Directory doesn't provide many authorization factors. For example, the ACI statement functionality discussed

earlier isn't supported. Active Directory, however, does support inherited ACLs. When a person's entry is created by the

AD harvester, it is placed somewhere beneath an Accounts OU. This OU has an inherited ACL that allows only the owner

of that entry access to the entry. Inherited ACLs are statically applied in AD, so at the time of creation the setting is copied

to the entry. This establishes the minimum level of access that all entries shares.

A special Windows-based service using LDAP code helps establish the more open access settings that people may have

chosen. Active Directory supports the persistent search LDAP control, which enables this service to know whenever an

entry has been modified. The service then checks the entry for two things, and takes action as needed. First, it creates

membership in groups that match the values of the suPrivilegeGroup attribute of the entry. So a World and Stanford
group are dynamically maintained by this service with memberships of all the appropriate entries. In actuality, there are far

more groups dynamically created and maintained, and these groups correspond to the Workgroup Registry functionality

described earlier. But for the purposes of privacy control, focus on just the two groups. Second, the service reads the

privacy attributes set on the entry. The service compares the value of each of these attributes to the ACL it finds on the

entry. If one of the informally linked attributes needs to have more access given (or access taken away), it has the

authority to add an ACE to that entry's ACL. And of course, it uses the groups it is dynamically maintaining. This approach

works quite well. If the special Windows service fails, no data is put at risk, because the default setting is more restrictive

than the actual privacy desired.

[Team LiB]

[Team LiB]

Summary

As has been demonstrated already, a great number of applications and services participate in the overall

directory architecture. I've purposely simplified the number of interactions that actually happen, so the general

architectural concepts can be shown in a specific real-world environment. I cannot describe fully the schema

definitions, data architecture, and directory functionality in the Stanford architecture. Hopefully this snapshot will

be useful in illustrating how integration can be accomplished in a real-world setting. I appreciate the opportunity

Stanford has allowed me to take in describing its environment.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Appendix D. OpenLDAP Access Control

<What> Element

<Who> Element

<Access> Element

Evaluation of Access

Comprehensive Example

[Team LiB]

[Team LiB]

<What> Element

The <what> element uses a DN string or one of the common authorization groups

You can form the <what> element in two ways. First, the asterisk * by itself indicates all the entries in the

directory. Second, you can use a DN string. By default, the DN string is evaluated with regex pattern matching.

For example, dn=".*,ou=People, dc=Mycompany,dc=com" would match all entries subordinate to the

People OU in the Mycompany directory. Instead of using regex to evaluate the DN string, you can choose

several other evaluation options (which OpenLDAP calls target styles) that closely correspond to the basic

LDAP search scopes. These evaluation options include base, one, subtree, and children. Each of these

options, except children, corresponds to a standard search scope and should be self-explanatory. For

example, the one option indicates just the immediate child entries of the DN, not including the DN entry. The

children option is similar to subtree in indicating all child entries of the DN, but it doesn't include the DN entry

itself.

Attribute matching and search filters are also valid in <what> elements

Further flexibility on the <what> element is supported. You can replace or supplement the DN string option by

either an LDAP search filter or an attribute list. The LDAP search filter is formed per the LDAP standard. The

attribute list can be any valid attribute(s) of the entries indicated by the DN string or any valid attribute(s) in the

entire directory, if the DN string is omitted. You would use the attribute list to control access to the attributes of

an entry. In addition to the attributes noted above, two special attribute values are allowed: entry and children.

entry denotes the DN of the entry specified by the DN string. children denotes the DN of entries that are

subordinate to the DN string specified. The DN is not an attribute in the strict sense, but you must be able to

indicate the DN of an entry so access to rename an entry can be controlled.

Several examples of valid <what> elements follow, and these illustrate the diversity of options.

access to dn=".*,ou=People,dc=Mycompany,dc=com"

 filter=(objectclass=user)

indicates all user entries subordinate to the People OU.

access to dn.base="ou=People,dc=Mycompany,dc=com"

 attr=entry

indicates the DN of just the People OU.

access to attr=cn

indicates the cn attribute of every entry.

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

[Team LiB]

<Who> Element

The <who> element uses a DN string or one of the common authorization groups

You can form the <who> element, sometimes called the authorization identity, in a multitude of ways. The two

primary options are by a DN string or by inclusion in a special authorization group. The DN string option works

as just described.

There are four possible values of the special authorization group: anonymous, users, self, and *.

anonymous refers to any user who has authenticated anonymously or has not authenticated. users refers to

any user who has successfully authenticated. self refers to an authorization identity that matches the DN of the

entry specified in the <what> element.

IP address, DNS domain, attribute value matching, and group membership are also valid in

<who> elements

In addition to these two primary elements, you can include these optional restrictions: inclusion in the

membership of a group entry, a match of a DN-valued attribute indicated and the DN of the authorization

identity, a match of the DNS domain of the client, a match of the IP address and port of the client, and a match

of the server IP address and port that the client uses to connect.

Two advanced elements, ACI and logical sets, are also possible in <who>

You can use two other optional elements, but these are difficult to describe simply. One is called the set option,

and it permits evaluation of complex combinatory logic of multiple expressions of DN strings, the special

authorization designations, or DN-valued attributes. You can use the And & and Or | logical operators in these

set expressions. The other optional element is called an ACI expression, and I covered it cursorily in Chapter 6.

Note: The <who> Options Aren't Fully Covered Here

For the sake of brevity, the full details of the less common options aren't included. To delve into

these details, look at the OpenLDAP Administration Guide (http://www.openldap.org/doc/admin/)

and the OpenLDAP FAQ-O-Matic (http://www.openldap.org/faq), search the OpenLDAP mailing list

archives (http://www.openldap.org/lists/#archives), and, as a last resort, mail a query to the mailing

lists.

I've included several examples here of valid <who> elements, and these should illustrate the diversity of

options.

by dn=".*,ou=People,dc=Mycompany,dc=com"

matches any entry within the People OU.

http://www.openldap.org/doc/admin/default.htm
http://www.openldap.org/faq
http://www.openldap.org/lists/#archives

by self

indicates the authorization identity mapped to the entry associated with the <what>.

by dnattr=manager

indicates the entry specified by the DN values of the manager attribute of the entry(s) specified in <what>.

by domain=.*\.mycompany\.com

indicates a client with any DNS hostname in the mycompany.com DNS zone.

by peername.exact=IP=10.123.123.123:1679

indicates a client with the IP address indicated, using port 1679.

by group=cn=mygroup,ou=Groups,dc=Mycompany,dc=com

indicates the entries specified by the DN values of the member attribute of the mygroup entry. Both the

member attribute and the groupOfNames object class are assumed by default, but others can be specified.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

<Access> Element

The <access> element sets common access settings or discrete privileges

The <access> element specifies the level of access that should be granted. You can use the set of six

common access settings, or you can specify the underlying five discrete privileges incrementally. The six

common settings are none, auth, compare, search, read, and write. Table D-1 describes these settings. As

listed, the settings are in increasing order of access.

Table D-1. Common access settings

Setting Privilege Explanation

none No access allowed

auth x Allows authentication

compare cx Allows the compare operation

search scx Allows entry to be enumerated on a search operation

read rscx Allows entry to be returned on a search operation

write wrscx Allows any type of modify operation

Discrete privileges can be set in uncommon combinations or incrementally

Instead of using the common settings, you can employ the discrete privileges in custom combinations. The

underlying five privileges are w (write), r (read), s (search), c (compare), and x (authenticate). You can set them,

or add and subtract them from existing privileges, in whatever combination you desire. Later examples

demonstrate adding and subtracting from existing privileges and how the order of resolution affect this option.

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Evaluation of Access

There is a specific order to the evaluation of access control directives. By default, the first

match is the only control applied

Evaluation of access control follows a specific order. First, the <what> element is matched, then the <who>

element is matched within that <what> directive. The first <what> element to be matched is the only directive

that is applied, and any other matching <what> elements that come later are ignored. By default, the first

<who> match determines the only <access> applied. Directives can be set at two levels, at the database level

(the naming context level) and at the global level. Each of these levels can have multiple directives, and the

order in which they appear determines the order of evaluation. Also recall that each <what> directive can have

multiple <who> <access> pairs, and again the order in which they appear determines the order of evaluation.

You can set multiple access controls if you use the optional <control> element

However, the default behavior of the <who> element matching is configurable. Earlier when I stated there were

only three primary elements in an access directive, I didn't mention that there is a fourth optional element. This

optional element is the <control> element, which tells the access evaluation what to do once a <who> match

has been met. The valid values are stop, continue, and break. The stop value is the default value when the

<control> element isn't specified. Stop means that once the <who> is matched, no further <who> elements are

evaluated. The continue value means that additional <who> elements will be evaluated, and the next <who>

element to match will also be applied. Note that the next directive might stop further evaluation by setting a

different <control> value.

[Team LiB]

[Team LiB]

Comprehensive Example

The following example slapd configuration file demonstrates the multiple access control levels at the database

level and at the global level and the flexibility of access control factors. It also shows what a basic configuration

file looks like. I've added line numbers to make the commentary easier, but there are no line numbers in a real

file.

1 include /usr/local/etc/schema/myschema.schema

2 referral ldap://root.openldap.org

3 access to * by * read

Line 1 defines the schema by including a file. Line 2 configures the default referral. Line 3 is a global access

directive and gives read access to anyone, if a directive at the database level isn't matched. This can be

dangerous from a security perspective, so think over this approach.

4 database ldbm

5 suffix "dc=mycompany,dc=com"

6 directory /usr/local/var/openldap

7 rootdn="cn=Admin,dc=mycompany,dc=com"

8 rootpw=n01c@ncU

9 index uid,cn,pres,eq,approx,sub

10 index objectclass eq

Line 4 initiates a database, and all that follows applies to this database, until another database is initiated. Line

5 defines the suffix that is in the database, and line 6 is where the database file resides. Lines 7 and 8 set up

the all-powerful administrative account. Lines 9 and 10 create indexes for the database. The uid and cn

attributes have presence, equality, approximate, and substring operator indexes, and the objectclass attribute

has an equality index. Note that all the subsequent access directives apply to this database.

11 access to attr=userPassword

12 by self write

13 by anonymous auth

14 by group=cn=admingroup,ou=Groups,dc=Mycompany,

 dc=com +w

Lines 11 through 14 are the first access directive for the database. This directive matches any access of the

userPassword attribute throughout the database. Line 12 allows a user to write (and read) a personal

password; but if the entry that is being accessed isn't your own entry, this line won't be matched. Line 13 allows

an anonymous user to authenticate, which is important, because prior to authenticating you are anonymous.

Note that authenticated users won't match this line. Line 14 allows the entries indicated by the DN values of the

member attribute of the groupOfNames admingroup entry to overwrite (but not read) the password of any

entry. Note that the order of the <who> directives doesn't really matter in this example, because there isn't an

overlap.

15 access to dn.exact="cn=Brian

 Arkills,ou=People,dc=mycompany,dc=com"

16 by dn="cn=Brian

 Arkills,ou=People,dc=mycompany,dc=com" write

17 by peername.exact=IP=10.123.123.123:1679 write

Lines 15 through 17 are the second access directive. Line 15 establishes that this directive applies to accesses

to Brian Arkills's entry. Note that accesses of Brian Arkills's password would have been caught by the previous

access directive. Line 16 allows Brian Arkills to write to his own entry. The DN string could just as easily have

been replaced by self. Line 17 allows clients from the specified IP address and port to write to the entry. This IP

address might be Brian's computer, so he has a backdoor in case he forgets his own password but is too

embarrassed to have another administrator change it.

18 access to dn=".*,ou=People,dc=Mycompany,dc=com"

 filter=(objectclass=inetOrgPerson)

19 by dnattr=manager write

20 by self write

21 by dn=".*,ou=People,dc=Mycompany,dc=com" read

22 by domain=.*\.mycompany\.com search

Lines 18 through 22 are the third access directive. Line 18 matches an access to any inetOrgPerson entry

that is immediately subordinate to the People OU. Note that both the previous access directives have a

possible overlap with this directive, and they might apply prior to this directive, rendering this directive null. Line

19 allows managers to write to their staff's inetOrgPerson entries. Line 20 gives everyone write access to

their own entry. Line 21 allows entries in the People OU to read each other's entry. This might not fit with

Mycompany's privacy policy as it might be too permissive. Line 22 gives computers in the mycompany.com

zone the ability to search the People OU for inetOrgPerson entries. This would only apply if the binding DN

was outside of the People OU or anonymous.

23 access to dn.subtree="ou=Documents,dc=Mycompany,

 dc=com"

24 by dnattr=documentAuthor write

25 by users read

Lines 23 through 25 are the fourth access directive. Line 23 determines that this directive applies to entries

beneath the Documents OU. Line 24 gives the author of a document write access. Line 25 gives the special

users group, which stands for all authenticated users, the ability to read entries in this OU.

[Team LiB]

[Team LiB]

Appendix E. Active Directory Controls Appendix

The controls are presented in the order listed in the rootDSE entry.

Paged Search control— Used with the search operation. This control allows a client to retrieve a

result in small pieces. The OID 1.2.840.113556.1.4.319 specifies this control. This control is described

in Chapter 3.

Get Security Descriptor control— Used with the search operation. This control allows a client to

retrieve the nTSecurityDescriptor attribute. The nTSecurityDescriptor attribute is not returned

normally, even if explicitly requested. There are four flags used with this control to retrieve the

different portions of the attribute. 0x01 is used to get the owner information, 0x02 is used to get the

group information, 0x04 is used to get the DACL information (list of ACEs), and 0x08 is used to get

the SACL information (audit settings). The OID 1.2.840.113556.1.4.801 specifies this control.

Sorted Search Request control— Used with the search operation. This control allows a client to

retrieve results in sorted order as specified by the client. The OID 1.2.840.113556.1.4.473 specifies

this control. This control is described in Chapter 3.

Change Notification (PSEARCH) control— Used with the search operation. This control allows a

client to receive results from the server as long as the client-server session is kept alive. The

operation never completes. It runs and returns results as new entries meet the search criteria. The

OID 1.2.840.113556.1.4.528 specifies this control. This control is introduced in Chapter 3.

Show Deleted Objects control— Used with the search operation. This control allows a client to find

entries that have been deleted but not yet purged from the underlying directory database. Deleted

entries are not normally returned by search operations, but this control includes them. The OID

1.2.840.113556.1.4.417 specifies this control.

Lazy Commit control— Used with any of the operations that modify or add entries. This control

allows a client to tell AD to postpone writing the results of the operations to disk, and to just store

them in cache. This control allows a client to make a large number of changes without any loss of

performance due to disk writes and therefore optimizes large changes. However, if the directory

server crashes before the cache is written, the changes are lost. The OID 1.2.840.113556.1.4.619

specifies this control.

Directory Synchronization (DIRSYNC) control— Used with a search operation. This control allows

a client to find all changes to a directory partition since a point in time. The client presents information

indicating a replication USN. The server returns all changed entries that are after this USN and before

the current replication USN of the directory partition, and that match the search filter. The OID

1.2.840.113556.1.4.841 specifies this control. This control is introduced in Chapter 3.

Return Extended DN control— Used with a search operation. This control allows a client to get a

special DN for an entry that is guaranteed to remain accurate regardless of subsequent rename or

move operations. The control returns a DN with the globally unique identifier (GUID) as a component.

The GUID for an entry in AD never changes. This special DN could then be stored for an extended

period of time, and still be used at a later time to reference the entry. The OID

1.2.840.113556.1.4.529 specifies this control.

Tree Delete control— Used with a delete operation. This control allows a client to delete a container

and all children of the container. The operation is subject to access controls and will not cross

directory partitions. The OID 1.2.840.113556.1.4.805 specifies this control.

Cross Domain Move control— Used with the modifyRDN operation. This control allows a client to

move an entry from one domain partition to another. There are implications to moving any entry

between domains that are used in conjunction with access control security, and you should read more

about this control before using it. The OID 1.2.840.113556.1.4.521 specifies this control.

Statistics control— Has little to no documentation. This control is installed on the Windows 2000 AD

and apparently will return statistics on directory queries. There is some documentation of the control

at http://msdn.microsoft.com/library/en-us/dnactdir/html/efficientadapps.asp. Microsoft has indicated it

will be fully documented for the .NET Server release. Apparently it hasn't been documented to

discourage use because the initial implementation of the control isn't robust. One wonders how this

feature made it past the beta screening. The OID 1.2.840.113556.1.4.970 specifies this control.

Verify Server Name control— Used with the search operation. This control allows a client to specify

which global catalog server to use when performing the search. This can be useful when replication

may not have created the entry in all partitions. The OID 1.2.840.113556.1.4.1338 specifies this

control.

Sorted Search Response control— The response paired with the request detailed above. The OID

1.2.840.113556.1.4.474 specifies this control.

Search with Local Scope control, also known as Do Not Generate Referrals control— Used with

the search operation. This control allows the client to disable the generation of referrals by the server.

Note that this is different from the client option not to chase referrals. Telling the server not to

generate the referrals can reduce the client's processing time because entries with referrals aren't

returned at all to the client. The OID 1.2.840.113556.1.4.1339 specifies this control.

Server Search Operations control— Used with the search operation. This control allows a client to

specify several options to control how the request is handled. Only two options are documented, one

that does the same thing as the Search with Local Scope control, and another that enables the

directory to honor search requests with a base DN outside the partition's base DN. By default, AD will

give an error instead of returning a default referral for requests with a base DN outside the partition's

base DN, but this flag changes that behavior. The OID 1.2.840.113556.1.4.1340 specifies this control.

Permissive Modify control— Used with the modify operation. This control allows a client to perform

operations that are usually illegal. Usually adding an optional single-valued attribute that already

exists or deleting an optional attribute that doesn't exist on an entry returns an error. This control

changes that behavior so the operation returns a success message. The OID

1.2.840.113556.1.4.1413 specifies this control.

ASQ control— Used with the search operation. This control allows the client to perform an extended

http://msdn.microsoft.com/library/en-us/dnactdir/html/efficientadapps.asp

match filter (described in Chapter 3), which lets you search the directory for values in an entry's DN.

This control requires that you specify a single naming attribute to perform the extended match filter

against. This control will be supported in the .NET Server release. The OID 1.2.840.113556.1.4.1504

specifies this control.

Virtual List View Request control— Used with the search operation. This control allows the client to

specify that the server return search results in a special order and number. This is particularly useful

for LDAP-enabled applications like e-mail clients, which want to display a limited number of sorted

entries beginning with a specific entry. This control was mentioned briefly in Chapter 3 and will be

supported in the .NET Server release. The OID 2.16.840.1.113730.3.4.9 specifies this control.

Virtual List View Response control— The response paired with the request detailed above. The

OID 2.16.840.1.113730.3.4.10 specifies this control.

[Team LiB]

[Team LiB]

Appendix F. Directory Server Appendix

Default Indexes

Access Control Instructions (ACIs)

Plug-ins

[Team LiB]

[Team LiB]

Default Indexes

The default indexes initially available are listed in Tables F-1 and F-2.

Table F-1. System indexes

Attribute Indexes

dnComp eq

objectClass eq

entryDN eq

parentID eq

nsUniqueID eq

aci pres

numSubordinates pres

Table F-2. Default indexes

Attribute Indexes

cn pres, eq, sub

givenName pres, eq, sub

mail pres, eq, sub

sn pres, eq, sub

telephoneNumber pres, eq, sub

mailHost eq

member eq

owner eq

seeAlso eq

uid eq

uniqueMember eq

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Access Control Instructions (ACIs)

As noted in Chapter 8, ACIs are a topic worthy of extended study. This appendix gives an overview that

illustrates their use and provides a handy reference.

ACI Targets

The ACI target indicates which entries or attributes are affected by the access control

The target of an ACI specifies a set of entries and attributes that are affected by this access control. The target

can specify a single attribute of a single entry, every entry, or something in between. Specifying the target

component is optional; no target means that the ACI applies to this entry and every child entry. You can use

several different methods to designate the target entries. These methods let you target a set of entries in a

particular subtree, a set of entries that match a LDAP search filter, a set of attributes, or a type of operation.

You can specify a set of entries using a DN-based method

You can indicate a set of entries by specifying the DN of the target entries using a slightly modified LDAP URL

format. The customizations to this format involve substituting a forward slash (/) for the hostname and port,

allowing use of an asterisk as a wildcard for attribute values, and disallowing search filters, options, or controls.

For example, both the following targets are valid examples of this method:

(target = "ldap:///cn=Brian Arkills,ou=People,dc=my

 company,dc=com")

(target = "ldap:///cn=*,ou=*,dc=mycompany,dc=com")

The first target matches only my entry, whereas the second matches any entry with a cn attribute directly under

any OU entry, under the mycompany.com namespace.

You can also use an LDAP search filter to specify a set of entries

You can indicate a set of entries by specifying an LDAP search filter. Both the following targets are valid

examples of this method:

(targetfilter = "(|(objectclass=person)(uid=b*))")

(targetfilter = "(&(sn=Skywalker)(telephoneNumber=*))")

The first target matches all person entries or entries with a uid beginning with the letter "b." The second target

matches entries with both a surname of Skywalker and a valid telephone number.

You can target a set of attributes

You can indicate a set of attributes using a special format. Both the following targets are valid examples of this

method:

(targetattr = "cn || sn || telephoneNumber")

(targetattr = "uid")

The first target matches all the attribute types noted, so every cn, sn, and telephoneNumber attribute would

be targeted. The second target matches only the uid attribute.

You can target LDAP operations

Finally, you can target specific LDAP operations in combination with a valid LDAP search filter. The following

targets are valid examples of this method:

(targattrfilters="add=objectClass:

 (objectClass=person)")

(targattrfilters="del=department:(department=Sales)")

The first target matches the add operation of the objectclass attribute with a value of person, in other words,

whenever a person entry is created. The second target matches the delete operation of the department

attribute with a value of Sales, or in other words whenever an entry leaves the Sales department.

ACI Heading

The ACI heading contains mandatory operational information and names the ACI

The ACI heading is essentially the version plus the name of the ACI. The version is a required string that

identifies the ACI version. "Version 3.0" is the most recent version. The name is also required and can be any

string that identifies the ACI. Use the name to help you remember what the ACI does. An example that shows

all the components of an ACI follows the ACI component sections.

ACI Permissions

The ACI permissions denote what operations are allowed to target entries

The ACI permissions specify what rights apply to the target entries. In addition, the ACI permissions specify

whether these rights are allowed or denied. Recall that several ACI statements might apply to a specific target

entry and a specific user. Table F-3 identifies all the valid permissions and what rights they give.

ACI Bind Rules

ACI bind rules specify who is affected by the ACI

The credentials and bind parameters that a user must provide to match the ACI are defined by the ACI bind

rules; the bind rule designates the authorization identity. The methods to designate the user affected are varied,

like the ACI target component. These methods employ the greatest diversity of access control factors of any

LDAP server on the market. They include specifying entries via a variety of means, including client computer

identity, day or time, the client authentication method, and a dynamic access control factor that matches the

value of attributes.

Table F-3. Valid ACI permissions

Permission Rights Given

Read Allows or denies whether directory data can be read

Write Allows or denies whether directory data can be modified or created; attributes can be deleted,

but not entries

Search Allows or denies whether directory data can be searched; if the search permission isn't given on

an entry, that entry will never be returned even in the event of a match

Compare Allows or denies whether directory data can be compared; with the compare operation, the value

of the attribute is not returned, just a Boolean

Selfwrite Allows or denies whether the entry can add or delete itself from a group

Add Allows or denies whether a child entry can be created

Delete Allows or denies whether an entry can be deleted

Proxy Allows or denies another entry to impersonate the targeted entry or entries using proxy

authorization

All Allows or denies all permissions

You can specify entries directly

You can indicate a set of entries by specifying the DN of the target entries using a slightly modified LDAP URL

format. This parallels the target method, except the prefix is different. For example,

(userdn = "ldap:///cn=Brian Arkills,ou=People,dc=my

 company,dc=com")

designates my entry as the authorization identity. Wildcards are allowed, just as they were in the parallel target

method. In addition to what I described in the earlier section ACI Targets, several special values are supported

by this bind rule method. Table F-4 lists these special values.

You can dynamically specify entries

In addition to directly specifying an entry, you can dynamically target entries via an LDAP URL subtree search

filter. Only subtree search filters are allowed via this method. This method lets you specify entries based on

whether they match a search filter at the time of access. Who is given access will change over time based on

the search filter employed. A valid example of this method is

userdn = "ldap:///dc=mycompany,dc=com??sub?

 (|(sn=Skywalker)(sn=Solo))"

This example gives access to any entry under the mycompany.com namespace with an sn value of Skywalker

or Solo. Wildcards are not allowed in the search filter, but you can use them in the base DN.

You can specify entries via groups or roles

You can also indicate a set of entries by specifying the DN of the target group or role in an LDAP URL format.

Wildcards are not allowed via this method, nor are any LDAP URL options or search filters. However, you can

specify multiple groups by delimiting the group DNs with || characters. The following example illustrates a valid

use of this method of targeting groups:

Groupdn="ldap:///cn=Rebel Sympathizers,ou=Groups,

 ou=People,dc=mycompany,dc=com || cn=Imperial

 Stormtroopers,ou=Groups,ou=People,dc=mycompany,

 dc=com"

Table F-4. Special values for bind rule by entry method

Special Value Specifies Which Entries

ldap:///all All defined directory entries have access

ldap:///anyone All entries including anonymous users have access

ldap:///self The entry being targeted

ldap:///parent The parent entry of the entry being targeted

This example specifies all the entries that are members of the Rebel Sympathizers group as well as all the

entries that are members of the Imperial Stormtroopers group. The following example illustrates a valid use

of this method of targeting roles:

roledn="ldap:///cn=Sith,ou=Roles,ou=People,

 dc=mycompany,dc=com || cn=Jedi,ou=Roles,

 ou=People,dc=mycompany,dc=com"

This example specifies all the entries that are members of the Sith role as well as all the entries that are

members of the Jedi role.

You can specify client computers by IP or DNS name

The client computer's IP address or DNS hostname can control access. Although this isn't a very effective

means of restricting access control by itself, you can use it in conjunction with other bind rule methods to

provide greater access control. Wildcards are allowed via these methods. This is a good thing, because adding

every IP address on a single basis would make this method unusable otherwise. Valid examples of these

methods are

ip="10.87.42.*"

dns="*.mycompany.com"

The first example allows all client computers on the 10.87.42.0/24 network. The second example allows all

client computers with a DNS hostname suffix of "mycompany.com."

You can control the time of access

You can use the time of day and day of the week to control access. These methods are useful in combination

with other methods, for example to allow only members of the temporary employee group access during

business hours. This method is also useful to temporarily disable access during a directory maintenance

window. Examples of usage are

dayofweek="tue"

timeofday="2359"

The first example allows access on Tuesday. Valid values are the first three characters of the name of the day.

The second example allows access at 11:59 PM. Valid values are between 0 and 2359, where zero means

midnight.

The method of authentication can restrict access

The authentication method negotiated by the client can help to control access. Again, this method is best

applied in combination with another method. This method is especially useful in controlling access to entries

with highly sensitive data. Requiring SSL is an effective means to protect the privacy of an entry. Most other

LDAP servers support SSL but don't give you this level of authorization control. A valid example of this method

is

authmethod="sasl DIGEST-MD5"

This example requires SASL DIGEST-MD5 authentication. Valid values include none, simple, ssl, and sasl

(along with the specific sasl method).

You can use attribute values to dynamically restrict access

You can use a comparison of an attribute value of the target entry and the binding entry as a bind rule method.

To pass this bind rule method, the value of the attribute specified on your binding entry must match the value of

the corresponding attribute on the target entry. This is the most complex of the methods, but it offers

functionality that isn't possible otherwise. For example, say you want to easily give a manager access to all the

person entries of the people she manages. Without using this method, you would need several ACI

statements—one for each entry. But using this method, you can specify the manager attribute and the value

matching the DN of the manager's entry.

This method has two variations; typically, just the attribute pair is required

This method has two variations, which I describe separately. Typically, you specify the attribute type and value.

A valid example of normal usage is

userattr = "favoriteDrink#Bantha Milk"

This allows entries with favoriteDrink=Bantha Milk to access each other. A more practical example is:

userattr = "relationshipToMycompany#employee"

The attribute relationshipToMycompany is a custom attribute on person entries, which Mycompany uses to

specify the relationship each person has to Mycompany. This example allows all employees of Mycompany

access to each other's entries. This might fulfill Mycompany's privacy policy without the use of groups with a

large number of members. This specific approach is behind the privacy controls used by Stanford University

described in Appendix C.

Attributes with a DN string syntax are treated specially

If the attribute specified has a value with a DN string, the value of the attribute isn't specified. Instead, you must

specify one of four options: USERDN, GROUPDN, ROLEDN, or LDAPURL. These options indicate which

DN of the user should be compared to the target entry attribute value. USERDN indicates the DN of the user's

entry. GROUPDN indicates the DN of one of the groups the user's entry belongs to, including dynamic groups.

If dynamic groups are used, this option requires extra processing and can become highly resource intensive.

ROLEDN indicates the DN of one of the roles to which the user's entry belongs. If filtered roles are being used,

this option can also be highly resource intensive. LDAPURL indicates that the DN of the user's entry should be

compared to the value of the attribute. However, the value of the attribute must be an LDAP search filter. The

DN of the user's entry then must match the resolution of the LDAP search filter.

A valid example of the DN string option of this method is

userattr = "manager#USERDN"

This example grants a manager's entry access to her employees' entries.

Putting an ACI Together

Multiple components are allowed, and comprehensive examples follow

Now that I have explained all the components of an ACI, let's see what a complete ACI looks like and explore a

comprehensive example. An ACI follows this format:

aci: (target1)...(targetX)(version 3.0;acl

 "name1";permission1 bind_rules1; ... permissionX

 bind_ruleX;) ... (version 3.0;acl "nameX";

 permission bind_rules;)

Note that many components allow multiples. Multiple targets, permissions, and bind rules can be specified.

When multiple targets are designated, the resulting target is the union of the targets. Each of the following

header/permission/bind rule pairs apply to this union.

A simple example that gives access to just my entry

Some examples will help illustrate how ACIs translate into practical access controls.

aci: (target="ldap:///uid=barkills,ou=Accounts,

 dc=Mycompany,dc=com")(targetattr=*)

(version 3.0; acl "Self access"; allow (read,

 search, compare) userdn="ldap:///self";)

This example targets my user account and all attributes of my entry. The header designates the version and

names the ACI for reference. The permissions allow read, search, and compare access. The bind rules specify

that the authorization identity must match the target entry. So I'd be able to write to my own entry with this ACI.

This aci attribute would need to be set on my entry or on a parent entry anywhere above my entry.

Where the ACI is applied is critical

Where an ACI is applied is important and can simplify the target. For example, if I want to give all account

entries write access to themselves, the following ACI on ou=Accounts,dc=Mycompany,dc=com would do

the trick:

aci: (targetattr=*)(version 3.0; acl "Self access";

 allow (write) userdn="ldap:///self";)

This example gives a group access to entries that match a search filter

The following example gives members of the Sales-HR-admins group access to all the members of the Sales

HR admins department:

aci: (targetfilter="(businessCategory=Sales)")

 (version 3.0; acl "Sales-HR-admins-write"; allow

 (write) groupdn ="ldap:///cn=Sales HR

 admins,ou=Groups,ou=People,dc=Mycompany,dc=com";)

This example demonstrates multiple bind rules and also the use of an inequality operator

The following example is an ACI on ou=People,dc=Mycompany, dc=com. It gives users the right to add

any role, except the Admin role, to their own entry. This ACI additionally restricts the use of this right with an

exhausting list of conditions. The add operation must be made using SSL encryption, from a client computer

with a DNS host suffix of Mycompany.com, on a weekday during normal business hours, and from a specific

class C IP address range.

aci: (targetattr="*") (targattrfilters=

 "add=nsRoleDN:(nsRoleDN != "cn=Admin,dc=Mycompany,

 dc=com")") (version 3.0; acl "Add Roles"; allow

 (write) userdn= "ldap:///self" and

 dns="*.Mycompany.com" and (authmethod="ssl") and

 (dayofweek="Mon,Tues,Wed,Thu,Fri") and (timeofday

 >= "0800" and timeofday <= "1700") and

 (ip="10.87.42.*");)

This example shows the use of the complex attribute value method

The following example ACI is applied to ou=Documents,dc=Mycompany,dc=com. It gives all authors full

control over all their document entries:

aci: (targetattr="*") (version 3.0; acl

 "Doc author"; allow (all)

 userattr="documentAuthor#USERDN";)

You can find more information about ACIs online in the administrator's guide, Chapter 6, at

http://docs.sun.com/source/816-5606-10/acl.htm#997355.

Macro ACIs

As noted in Chapter 8, you use macros to simplify ACI statements by saving a portion of the target's information

for later substitution in the bind rule. This section briefly introduces the syntax and specific functionality that

macros enable.

Three macro variables are available

You can use three macro variables. Two of these variables match the target's DN, and the other matches an

attribute of the target entry. ($dn) is an exact DN match. It saves the DN of the resource targeted in a request

for later use. [$dn] is a sub-RDN match. It saves the DN of the target for later use. When substituted in the bind

rule, the DN of the targeted resource is examined multiple times, each time dropping the left-most RDN

component until a match is found. ($attr.attrName) is an attribute value match. It evaluates to the value of the

attribute named by attrName in the target. This can be used in combination with the complex attribute value

matching bind rule method. Table F-5 lists each of the variables and the methods that are compatible with each.

http://docs.sun.com/source/816-5606-10/acl.htm#997355

Table F-5. Which methods support each macro variable

Macro Used In:

($dn) target, targetFilter, userDN, roleDN, groupDN, userAttr

[$dn] targetfilter, userDN, roleDN, groupDN, userAttr

($attr.attrName) userDN, roleDN, groupDN, userAttr

The following example grants search access to the members of any cn=Admins group in any subtree to the

ou=Groups subtree under the same DN:

aci: (target="ldap:///ou=Groups,($dn),

 dc=Mycompany,dc=com") (targetattr="*") (version

 3.0; acl "Domain access"; allow (read,search)

 groupdn="ldap:///cn=Admins,ou=Groups,[$dn],

 dc=Mycompany,dc=com";)

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Plug-ins

As noted in Chapter 8, plug-ins are an integral part of enabling the features of Directory Server. Table F-6 lists all

the available plug-ins and gives a description of their purpose.

The plug-ins are documented in the online Configuration, Command and File Reference Guide, Chapter 3, at

http://docs.sun.com/source/816-5608-10/plugconfig.htm#11284.

Table F-6. Plug-ins

Plug-in Description

ACL Enables ACL access checking

ACL Preoperation Insufficient documentation is available

Chaining Database Enables the use of DN syntax during a chaining operation

Class of Service Allows sharing of attribute data

Internationalization Processes collation orders and locales

Ldbm Implements the local databases used by naming contexts

Legacy replication Allows a Directory Server 5.1 to be a consumer of a Directory Server 4.1 master

Multimaster Replication Allows two or more servers to be masters

Clear Password Storage

Scheme

Enables the password encryption used by the CLEAR password storage Scheme

Crypt Password Storage

Scheme

Enables the password encryption used by the Crypt password storage scheme

NS-MTA-MD5 Password

Storage Scheme

Enables the password encryption used by the NS-MTA-MD5 password storage

scheme; new passwords cannot be encrypted with this plug-in, but old

passwords can be decrypted for authentication

SHA Password Storage

Scheme

Enables the password encryption used by the SHA password storage scheme

SSHA Password Storage

Scheme

Enables the password encryption used by the SSHA password storage scheme

PTA (Pass-Thru

Authentication)

Enables one server to accept credentials from another server

Referential Integrity

Postoperation

Checks dynamic attributes (member, seeAlso, uniqueMember, and owner)

after a delete or rename operation; other attributes can be added to the search

configuration, like nsRoleDN

Retro Changelog Used to enable replication with older Directory Servers

http://docs.sun.com/source/816-5608-10/plugconfig.htm#11284

Roles Enables the use of roles

UID Uniqueness Ensures that every uid value is unique

7-Bit Check Checks that specified attributes in a specific suffix are 7-bit clean

Binary Syntax Checks for binary data

Boolean Syntax Checks for Boolean data

Case Exact String Syntax Checks for case-sensitive strings

Case Ignore String Syntax Checks for case-insensitive strings

Country String Syntax Checks for a country string

Distinguished Name Syntax Checks for a DN string

Generalized Time Syntax

Zone

Checks for a date and time qualified with a time

Integer Syntax Checks for integer data

Octet String Syntax Checks for octet strings

Postal Address String

Syntax

Checks for a postal address string

Telephone Syntax Checks for a telephone number

URI Syntax Checks for Unique Resource Identifiers, including URLs

[Team LiB]

file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Appendix G. Online Reference Material

Chapter 1 Topics

Chapter 2 Topics

Chapter 3 Topics

Chapter 4 Topics

Chapter 5 Topics

Chapter 6 Topics

Chapter 7 Topics

Chapter 8 Topics

[Team LiB]

[Team LiB]

Chapter 1 Topics

Articles

An Introduction to LDAP, http://ldapman.org/articles/intro_to_ldap.html

What is LDAP, http://www.gracion.com/server/whatldap.html

LDAP Introduction, http://www.pinds.com/software/ldap-in-general

Directories and the Internet, http://www.networkmagazine.com/article/NMG20000508S0030

Directories and LDAP—Universal Access To Directory Information,

http://developer.netscape.com/viewsource/rose_ldap.html

Intro to Directories and LDAP, http://www.stanford.edu/%7Ehodges/talks/mactivity.ldap.97/index2.html

Special Report on Directories, http://www.networkmagazine.com/article/NMG20000510S0002

ComputerBooksOnline: Understanding and Deploying LDAP Directory Services Sample, Ch. 1

http://www.computerbooksonline.com/chapters/ldapchap.htm

Database 101, http://www.jobsecurity.com/jobsecurity/courses/db101.htm

Why Do I Need a Directory When I Could Use a Relational Database?

http://www.stanford.edu/~hodges/talks/EMA98-DirectoryServicesRollout/Steve_Kille/index.htm

Understanding X.500—Contents, http://www.isi.salford.ac.uk/staff/dwc/Version.Web/Contents.htm

LDAP Supersites

An LDAP Roadmap & FAQ

http://www.kingsmountain.com/ldapRoadmap.shtml

LDAP World

http://www.critical-angle.com/ldapworld/ldapv3.html

LDAP World—LDAP v3 Core Specifications

http://ldapman.org/articles/intro_to_ldap.html
http://www.gracion.com/server/whatldap.html
http://www.pinds.com/software/ldap-in-general
http://www.networkmagazine.com/article/NMG20000508S0030
http://developer.netscape.com/viewsource/rose_ldap.html
http://www.stanford.edu/_257Ehodges/talks/mactivity.ldap.97/index2.html
http://www.networkmagazine.com/article/NMG20000510S0002
http://www.computerbooksonline.com/chapters/ldapchap.htm
http://www.jobsecurity.com/jobsecurity/courses/db101.htm
http://www.stanford.edu/~hodges/talks/EMA98-DirectoryServicesRollout/Steve_Kille/index.htm
http://www.isi.salford.ac.uk/staff/dwc/Version.Web/Contents.htm
http://www.kingsmountain.com/ldapRoadmap.shtml
http://www.critical-angle.com/ldapworld/ldapv3.html

http://www.innosoft.com/ldapworld/v3core.html

University of Michigan LDAP v2 Resources

http://www.umich.edu/~dirsvcs/ldap/doc/

Implementing Directory Services Resources Site

http://www.directoryservice.com/defaultmain.htm

The Burton Group—Directory Resources Center

http://www.tbg.com/directoryrc/

LDAPguru. Are You Ready for the LDAP Revolution?

http://www.ldapguru.com/

Directory Service Guides

http://compnetworking.about.com/cs/directoryservices1/

iPlanet—Home Page

http://www.iplanet.com/index.html

iPlanet Directory FAQ

http://www.iplanet.com/products/iplanet_directory/directory_faq.pdf

iPlanet Directory Server Administrator's Guide Chapter 5 Advanced Entry Management

http://docs.iplanet.com/docs/manuals/directory/50/html/ag/roles.htm#1115331

LDAP and NDS

http://www.nwconnection.com/nov.99/ldapn9/

[Team LiB]

http://www.innosoft.com/ldapworld/v3core.html
http://www.umich.edu/~dirsvcs/ldap/doc/default.htm
http://www.directoryservice.com/defaultmain.htm
http://www.tbg.com/directoryrc/default.htm
http://www.ldapguru.com/default.htm
http://compnetworking.about.com/cs/directoryservices1/default.htm
http://www.iplanet.com/index.html
http://www.iplanet.com/products/iplanet_directory/directory_faq.pdf
http://docs.iplanet.com/docs/manuals/directory/50/html/ag/roles.htm#1115331
http://www.nwconnection.com/nov.99/ldapn9/default.htm
file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Chapter 2 Topics

DNS

DNS Overview and General References

http://www.dns.net/dnsrd/docs/whatis.html

Allegiance Internet: An Explanation of DNS Records

http://support.digex.net/cst/dns/dns2.html

Referrals

Planning Referrals

http://developer.netscape.com/docs/manuals/directory/deploy30/referral.htm

Escaping Special Characters

Re Escaping the special meaning of + in attribute value

http://www.openldap.org/lists/openldap-software/199911/msg00215.html

[Team LiB]

http://www.dns.net/dnsrd/docs/whatis.html
http://support.digex.net/cst/dns/dns2.html
http://developer.netscape.com/docs/manuals/directory/deploy30/referral.htm
http://www.openldap.org/lists/openldap-software/199911/msg00215.html

[Team LiB]

Chapter 3 Topics

Programming Resources

ldap@umich.edu list by thread

http://www.umich.edu/~dirsvcs/ldap/archive/index.html#605

Netscape Directory SDK_ Source Code Release

http://www.mozilla.org/directory/

Lighting Up LDAP: A Programmer's Guide to Directory Development, Part 2

http://sunsite.uakom.sk/sunworldonline/swol-09-1999/swol-09-ldap2.html

PHP Manual—Function Reference—LDAP Functions

http://www.zend.com/manual/ref.ldap.php

IBM Redbook: Understanding LDAP

http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg244986.pdf

Encoding Resources

Sample Base 64 Encoding and Decoding (Q191239)

http://support.microsoft.com/support/kb/articles/Q191/2/39.ASP

Base64 Encode and Decode Base64 Files

http://www.fourmilab.ch/webtools/base64/

Directory Integration

Sendmail+LDAP HOWTO

mailto:ldap@umich.edu
http://www.umich.edu/~dirsvcs/ldap/archive/index.html#605
http://www.mozilla.org/directory/default.htm
http://sunsite.uakom.sk/sunworldonline/swol-09-1999/swol-09-ldap2.html
http://www.zend.com/manual/ref.ldap.php
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg244986.pdf
http://support.microsoft.com/support/kb/articles/Q191/2/39.ASP
http://www.fourmilab.ch/webtools/base64/default.htm

http://www.iconimaging.net/~jradford/sendmail/sendmail-ldap.html

eMailman(sm)—Public LDAP Servers

http://www.emailman.com/ldap/public.html

Desire Services Directory Services

http://www.desire.org/html/services/directoryservices/

PC-Pages Integrated LDAP Client

http://www.dante.net/np/ldap/

[Team LiB]

http://www.iconimaging.net/~jradford/sendmail/sendmail-ldap.html
http://www.emailman.com/ldap/public.html
http://www.desire.org/html/services/directoryservices/default.htm
http://www.dante.net/np/ldap/default.htm

[Team LiB]

Chapter 4 Topics

X.500

Overview of X.500

http://www.stanford.edu/group/networking/directory/doc/ldap/2.x500.html

X.500 Resources

http://www.nexor.com/x500frame.htm

"Understanding X.500—The Directory" online book by David Chadwick

http://www.isi.salford.ac.uk/staff/dwc/Version.Web/Contents.htm

ASN.1

Layman's Guide to ASN.1

ftp://ftp.rsa.com/pub/pkcs/ascii/layman.asc

ASN.1: Wherefore Art Thou?

http://www.isi.edu/gost/brian/security/asn1.html

ASN.1

http://www.netice.com/advice/Reference/Networking/Encoding/ASN.1/

Schema Resources

LDAP Schema Viewer / Proposer

http://ldap.hklc.com/objectclass.html

Directory Schema Element References

http://www.stanford.edu/group/networking/directory/doc/ldap/2.x500.html
http://www.nexor.com/x500frame.htm
http://www.isi.salford.ac.uk/staff/dwc/Version.Web/Contents.htm
ftp://ftp.rsa.com/pub/pkcs/ascii/layman.asc
http://www.isi.edu/gost/brian/security/asn1.html
http://www.netice.com/advice/Reference/Networking/Encoding/ASN.1/default.htm
http://ldap.hklc.com/objectclass.html

http://www.cenorm.be/isss/Workshop/dir/Details/schemref.htm

Automated Schema Documentation Program

http://www.microsoft.com/windows2000/techinfo/administration/activedirectory/schema.asp

Windows 2000 Schema

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/netdir/adschema/w2k.asp

iPlanet Internationalization

http://docs.iplanet.com/docs/manuals/directory/50/html/ag/i18n.htm#2836267

ISSS-WS-DIR Directory Schema Definitions

http://www.cenorm.be/isss/Workshop/dir/Details/f_schema.htm#objcl

Netscape Schema Reference

http://home.netscape.com/eng/server/directory/schema/ocindex.htm

iPlanet Schema Reference

http://docs.iplanet.com/docs/manuals/directory/schema/contents.htm

[Team LiB]

http://www.cenorm.be/isss/Workshop/dir/Details/schemref.htm
http://www.microsoft.com/windows2000/techinfo/administration/activedirectory/schema.asp
http://msdn.microsoft.com/library/default.asp@url=_2Flibrary_2Fen-us_2Fnetdir_2Fadschema_2Fw2k.asp
http://docs.iplanet.com/docs/manuals/directory/50/html/ag/i18n.htm#2836267
http://www.cenorm.be/isss/Workshop/dir/Details/f_schema.htm#objcl
http://home.netscape.com/eng/server/directory/schema/ocindex.htm
http://docs.iplanet.com/docs/manuals/directory/schema/contents.htm

[Team LiB]

Chapter 5 Topics

Metadirectories

The Meta-Directory FAQ

http://www.directoryservice.com/WP/TBG/The%20Meta-Directory%20FAQ.htm

Enterprise Directory Infrastructure: Meta-Directory Concepts and Functions

http://www.directoryservice.com/WP/TBG/edimd.pdf

Meta Directory: The Technology Differences

http://www.directoryservice.com/WP/ISOCOR/MDTTD.htm

Microsoft Metadirectory Services Concepts and Architecture

http://www.microsoft.com/windows2000/techinfo/howitworks/activedirectory/MMSintro.asp

Active Directory Interoperability and Metadirectory Overview

http://www.microsoft.com/windows2000/techinfo/howitworks/activedirectory/identity.asp

Microsoft and Novell Take Fight to Metadirectory Front

http://www.nwfusion.com/archive/2000/88590_02-28-2000.html

iPlanet for Developers—Netscape Metadirectory Services

http://developer.iplanet.com/docs/articles/directory/metadirectory.htm

Sync or Swim? Will Your Merged Mail System Float Together or Drift into Chaos?

http://www.networkcomputing.com/901/901f22.html

Meta Directory

http://www.calendra.com/en/home/meta_directory.htm

Meta-Directories Cutting Through the Hype White Paper

http://www.esys.ca/publications/IC-6087.html

http://www.directoryservice.com/WP/TBG/The%20Meta-Directory%20FAQ.htm
http://www.directoryservice.com/WP/TBG/edimd.pdf
http://www.directoryservice.com/WP/ISOCOR/MDTTD.htm
http://www.microsoft.com/windows2000/techinfo/howitworks/activedirectory/MMSintro.asp
http://www.microsoft.com/windows2000/techinfo/howitworks/activedirectory/identity.asp
http://www.nwfusion.com/archive/2000/88590_02-28-2000.html
http://developer.iplanet.com/docs/articles/directory/metadirectory.htm
http://www.networkcomputing.com/901/901f22.html
http://www.calendra.com/en/home/meta_directory.htm
http://www.esys.ca/publications/IC-6087.html

Directory Integration and the Metadirectory

http://www.win2000mag.com/Articles/Index.cfm?ArticleID=5584

Critical Path Ships Rearchitected Metadirectory

http://www.techinformer.com/english/crd_injoin_472707.html

MetaDirectory FAQ

http://www.netapps.org/Events/HTMLDocs/workshopmetadirectoryfaq.htm

Strategies & Issues Unifying Diverse Directories

http://www.networkmagazine.com/article/NMG20010126S0001/1

DSML

DSML Helps Directories Work Together

http://www.nwfusion.com/news/tech/1122tech.html

Strategies & Issues Unifying Diverse Directories

http://www.networkmagazine.com/article/NMG20010126S0001

Directory Services Markup Language (DSML)

http://www.oasis-open.org/cover/dsml.html

Security

Transport Layer Security (tls) Charter

http://www.ietf.org/html.charters/tls-charter.html

Keep Your Data Secure from Prying Eyes: An Encryption Primer—SunWorld—March 1997

http://sunsite.uniandes.edu.co/sunworldonline/swol-03-1997/swol-03-encrypt.html

Data Encryption Techniques

http://catalog.com/sft/encrypt.html

http://www.win2000mag.com/Articles/Index.cfm@ArticleID=5584
http://www.techinformer.com/english/crd_injoin_472707.html
http://www.netapps.org/Events/HTMLDocs/workshopmetadirectoryfaq.htm
http://www.networkmagazine.com/article/NMG20010126S0001/1
http://www.nwfusion.com/news/tech/1122tech.html
http://www.networkmagazine.com/article/NMG20010126S0001
http://www.oasis-open.org/cover/dsml.html
http://www.ietf.org/html.charters/tls-charter.html
http://sunsite.uniandes.edu.co/sunworldonline/swol-03-1997/swol-03-encrypt.html
http://catalog.com/sft/encrypt.html

Stanford University

Stanford Directory Data Architecture Overview

http://www.stanford.edu/group/itss-ccs/project/registry/info_infra_overview.html

Registries Project, Person Registry

http://www.stanford.edu/group/itss-ccs/project/registry/person_registry/

Project Space Dog—Registry Extensions

http://www.stanford.edu/group/itss-ccs/project/spacedog/

Project Horton Main Index

http://www.stanford.edu/group/itss-ccs/project/horton/

Stanford Windows Infrastructure Documentation

http://windows.stanford.edu/doc.shtml

[Team LiB]

http://www.stanford.edu/group/itss-ccs/project/registry/info_infra_overview.html
http://www.stanford.edu/group/itss-ccs/project/registry/person_registry/default.htm
http://www.stanford.edu/group/itss-ccs/project/spacedog/default.htm
http://www.stanford.edu/group/itss-ccs/project/horton/default.htm
http://windows.stanford.edu/doc.shtml
file:///c:/Windows/Temp/Addison%20Wesley%20-%20LDAP%20Directories%20Explained.chm/020178792X_

[Team LiB]

Chapter 6 Topics

U of Mich. Introduction to slapd and slurpd

http://www.umich.edu/~dirsvcs/ldap/doc/guides/slapd/1.html#RTFToC1

OpenLDAP 2.0 Administrator's Guide

http://www.openldap.org/doc/admin/

OpenLDAP 2.1 Administrator's Guide (unreleased at time of print)

http://www.openldap.org/devel/admin/

OpenLDAP Faq-O-Matic Software FAQ

http://www.openldap.org/faq/data/cache/2.html

OpenLDAP Access Control FAQ

http://www.openldap.org/faq/data/cache/447.html

OpenLDAP Mailing List Archives

http://www.openldap.org/lists/#archives

OpenLDAP, OpenSSL, SASL, and KerberosV HOWTO

http://www.bayour.com/LDAPv3-HOWTO.html

OpenLDAP Release Roadmap

http://www.openldap.org/software/roadmap.html

OpenLDAP Manual pages

http://www.openldap.org/software/man.cgi

Building OpenLDAP

OpenLDAP Quick-Start Guide

http://www.openldap.org/doc/admin/quickstart.html

http://www.umich.edu/~dirsvcs/ldap/doc/guides/slapd/1.html#RTFToC1
http://www.openldap.org/doc/admin/default.htm
http://www.openldap.org/devel/admin/default.htm
http://www.openldap.org/faq/data/cache/2.html
http://www.openldap.org/faq/data/cache/447.html
http://www.openldap.org/lists/#archives
http://www.bayour.com/LDAPv3-HOWTO.html
http://www.openldap.org/software/roadmap.html
http://www.openldap.org/software/man.cgi
http://www.openldap.org/doc/admin/quickstart.html

Configuring Solaris8 with OpenLDAP

http://www.ypass.net/solaris8/openldap/

How to Port OpenLDAP to Windows

http://www.fivesight.com/downloads/openldap.asp

OpenSSL

http://www.openssl.org/

MIT Kerberos

http://web.mit.edu/kerberos/www/

Heimdal Kerberos

http://www.pdc.kth.se/heimdal/

Cyrus's SASL Library

http://asg.web.cmu.edu/sasl/sasl-library.html

[Team LiB]

http://www.ypass.net/solaris8/openldap/default.htm
http://www.fivesight.com/downloads/openldap.asp
http://www.openssl.org/default.htm
http://web.mit.edu/kerberos/www/default.htm
http://www.pdc.kth.se/heimdal/default.htm
http://asg.web.cmu.edu/sasl/sasl-library.html

[Team LiB]

Chapter 7 Topics

Proposed SAMBA AD schema

http://www.unav.es/cti/ldap-smb/ldap-smb-AD-schemas.html#AD_schemas

Active Directory Replication

http://www.microsoft.com/windows2000/techinfo/reskit/samplechapters/dsbh/dsbh_rep_jfbg.asp

Microsoft TechNet

http://www.microsoft.com/technet/tcevents/itevents/spring00/tnq40004.asp

MS Directory Services

http://www.microsoft.com/windows2000/technologies/|directory/default.asp

Schema in Active Directory

http://www.unav.edu/cti/ldap-smb/AD-gluser.html

Linked Attributes in Active Directory

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/netdir/ad/linked_attributes.asp

Microsoft Windows 2000 Server Documentation

http://www.microsoft.com/windows2000/en/server/help/

LDAP Reference

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/netdir/ldap/ldap_reference.asp

Tracking Updates

http://www.microsoft.com/WINDOWS2000/techinfo/reskit/en/Distrib/dsbh_rep_zcil.htm

Tracking Changes

http://msdn.microsoft.com/library/en-us/netdir/ad/polling_for_changes_using_usnchanged.asp

Active Directory Schema Documentation Program

http://www.microsoft.com/windows2000/techinfo/administration/activedirectory/schema.asp

The Inside Active Directory Book

http://www.kouti.com/

http://www.unav.es/cti/ldap-smb/ldap-smb-AD-schemas.html#AD_schemas
http://www.microsoft.com/windows2000/techinfo/reskit/samplechapters/dsbh/dsbh_rep_jfbg.asp
http://www.microsoft.com/technet/tcevents/itevents/spring00/tnq40004.asp
http://www.microsoft.com/windows2000/technologies/_7Cdirectory/default.asp
http://www.unav.edu/cti/ldap-smb/AD-gluser.html
http://msdn.microsoft.com/library/default.asp@url=_2Flibrary_2Fen-us_2Fnetdir_2Fad_2Flinked_attributes.asp
http://www.microsoft.com/windows2000/en/server/help/default.htm
http://msdn.microsoft.com/library/default.asp@url=_2Flibrary_2Fen-us_2Fnetdir_2Fldap_2Fldap_reference.asp
http://www.microsoft.com/WINDOWS2000/techinfo/reskit/en/Distrib/dsbh_rep_zcil.htm
http://msdn.microsoft.com/library/en-us/netdir/ad/polling_for_changes_using_usnchanged.asp
http://www.microsoft.com/windows2000/techinfo/administration/activedirectory/schema.asp
http://www.kouti.com/default.htm

[Team LiB]

[Team LiB]

Chapter 8 Topics

Server Documentation

SUN Directory Servers

http://wwws.sun.com/software/products/directory_srvr/home_directory.html

SUN Directory Server Documentation

http://docs.sun.com/db/prod/s1dirsrv

SUN Directory Server Documentation—Installation Guide

http://docs.sun.com/source/816-5610-10/index.html

SUN Directory Server Documentation—Deployment Guide

http://docs.sun.com/source/816-5609-10/index.html

SUN Directory Server Documentation—Administrator's Guide

http://docs.sun.com/source/816-5606-10/index.html

SUN Directory Server Documentation—Reference

http://docs.sun.com/source/816-5608-10/index.html

SUN Directory Server Documentation—Schema

http://docs.sun.com/source/816-5613-10/index.html

SUN Blueprints: Naming and Directory Services

http://www.sun.com/solutions/blueprints/browsesubject.html#nds

Programming Resources

Directory Server Plug-ins Programmer's Guide

http://docs.sun.com/source/816-6683-10/index.html

LDAP SDK for C

http://docs.sun.com/source/816-5616-10/index.html

http://wwws.sun.com/software/products/directory_srvr/home_directory.html
http://docs.sun.com/db/prod/s1dirsrv
http://docs.sun.com/source/816-5610-10/index.html
http://docs.sun.com/source/816-5609-10/index.html
http://docs.sun.com/source/816-5606-10/index.html
http://docs.sun.com/source/816-5608-10/index.html
http://docs.sun.com/source/816-5613-10/index.html
http://www.sun.com/solutions/blueprints/browsesubject.html#nds
http://docs.sun.com/source/816-6683-10/index.html
http://docs.sun.com/source/816-5616-10/index.html

Directory Server SDK 4.0 for Java Programmer's Guide

http://docs.sun.com/source/816-6388-10/index.html

Directory Server Resource Kit 5.1

http://wwws.sun.com/software/download/developer/5175.html

[Team LiB]

http://docs.sun.com/source/816-6388-10/index.html
http://wwws.sun.com/software/download/developer/5175.html

Brought to You by

	Main Page
	Table of content
	Copyright
	Independent Technology Guides
	Foreword
	Preface
	Audience
	About the Book
	Appendixes

	Acknowledgments
	Part I: How LDAP Works
	Chapter 1. Overview of LDAP
	Introducing Directories
	Introducing LDAP
	Vendor LDAP Products
	Why Choose LDAP?

	Chapter 2. LDAP Namespace
	DNS
	LDAP Object Structure
	LDAP Object Naming
	Special LDAP Structural Concepts
	Summary

	Chapter 3. Client LDAP Operations
	Directory-Enabled Services and Applications
	Search
	LDAP Protocol
	APIs
	Summary
	Appendix Material

	Chapter 4. LDAP Schema
	Object Classes
	Attributes
	Syntaxes
	Matching Rules
	OIDs
	Schema Checking
	Extended Schema Definitions
	Summary
	Appendix Material

	Chapter 5. Directory Management
	Replication
	Referrals
	Aliases
	Distributed Directory
	Integrating Independent Directories
	Moving Data Between Directories
	Directory Security
	Administrative Server Parameters
	Other Directory Management Tasks
	Summary

	Part II: How Vendors Have Implemented LDAP
	Chapter 6. OpenLDAP
	Namespace
	Operations and Clients
	Schema
	Management
	Security
	Why OpenLDAP?

	Chapter 7. Microsoft Active Directory
	Namespace
	Operations and Clients
	Schema
	Management
	Security
	Why Active Directory?

	Chapter 8. Directory Server
	Namespace
	Operations and Clients
	Schema
	Management
	Security
	Why Directory Server?

	Appendixes
	Appendix A. Client LDAP Operations Appendix
	Draft Controls
	C language API

	Appendix B. Schema Appendix
	Schema Formats
	Common Syntaxes
	Common Matching Rules

	Appendix C. Stanford University Directory Architecture
	Environment
	Source Systems
	Stanford Registry
	Directory Harvester
	Stanford Directory
	Active Directory Harvester
	Summary

	Appendix D. OpenLDAP Access Control
	<What> Element
	<Who> Element
	<Access> Element
	Evaluation of Access
	Comprehensive Example

	Appendix E. Active Directory Controls Appendix
	Appendix F. Directory Server Appendix
	Default Indexes
	Access Control Instructions (ACIs)
	Plug-ins

	Appendix G. Online Reference Material
	Chapter 1 Topics
	Chapter 2 Topics
	Chapter 3 Topics
	Chapter 4 Topics
	Chapter 5 Topics
	Chapter 6 Topics
	Chapter 7 Topics
	Chapter 8 Topics

