
this print for content only—size & color not accurate spine = 0.765" 344 page count

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Deploying OpenLDAP
Dear Reader,

If you’re a developer, system administrator, or database administrator consid-
ering OpenLDAP, then keep reading! I’ll show you the types of decisions you
need to make regarding the OpenLDAP environment before downloading any
software.

In Deploying OpenLDAP, I discuss how to evaluate your current environ-
ment, consolidate data, plan for data creation and migration, and plan the
most useful directory infrastructure possible. I then cover the configuration
files and the base set of tools. Finally, I discuss APIs and how to integrate
OpenLDAP into your current environment.

With this information, you’ll be able to make essential decisions before
installing and configuring your OpenLDAP environment. In fact, properly
designing and deploying OpenLDAP from the start will give you access to many
of the best features of the technology—features that may otherwise be unusable.

I wrote this book to assist you with practical tasks, not the theory of
OpenLDAP. By carefully evaluating your needs and implementing my sugges-
tions, you’ll be able to build a directory that will make your network run much
more efficiently.

Tom Jackiewicz

US $39.99

Shelve in
Networking

User level:
Beginner–Intermediate

Deploying OpenLDAP
Jackiew

icz

THE EXPERT’S VOICE® IN NETWORKING

Tom Jackiewicz

Deploying
OpenLDAP

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

ISBN 1-59059-413-4

9 781590 594131

53999

6 89253 15134 1

www.apress.com

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

Join online discussions:

Deploying
OpenLDAP

TOM JACKIEWICZ

4134_FM_final.qxd 9/30/04 10:55 AM Page i

Deploying OpenLDAP

Copyright (c)2005 by Tom Jackiewicz

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-413-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jim Sumser

Technical Reviewers: Massimo Nardone, Oris Orlando

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, John Franklin,
Jason Gilmore, Chris Mills, Dominic Shakeshaft, Jim Sumser

Project Manager: Laura E. Brown

Copy Edit Manager: Nicole LeClerc

Copy Editor: Kim Wimpsett

Production Manager: Kari Brooks-Copony

Production Editor: Laura Cheu

Compositor: Linda Weidemann

Proofreader: Nancy Sixsmith

Indexer: John Collin

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, LLC, 233 Spring Street,
6th Floor, New York, New York 10013 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liabil-
ity to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

4134_FM_final.qxd 9/30/04 10:55 AM Page ii

mailto:orders@springer-ny.com
http://www.springer-ny.com
mailto:orders@springer.de
http://www.springer.de
mailto:info@apress.com
http://www.apress.com

This book is dedicated to all those who suffered while I grew up
from a bright and curious kid to the bitter, stubborn, and outspoken

person I’ve become, especially my dad, Zdzislaw Jackiewicz.

4134_FM_final.qxd 9/30/04 10:55 AM Page iii

4134_FM_final.qxd 9/30/04 10:55 AM Page iv

Contents at a Glance

About the Author . xiii

About the Technical Reviewers. xv

Acknowledgments . xvii

Preface. xix

Introduction. xxi

CHAPTER 1 Assessing Your Environment . 1

CHAPTER 2 Understanding Data Definitions . 23

CHAPTER 3 Implementing Deployment, Operations, and
Administration Strategies . 47

CHAPTER 4 Installing OpenLDAP . 65

CHAPTER 5 Implementing OpenLDAP. 93

CHAPTER 6 Scripting and Programming LDAP . 123

CHAPTER 7 Integrating at the System Level . 199

CHAPTER 8 Integrating OpenLDAP with Applications, User Systems,
and Client Tools . 263

INDEX . 289

v

4134_FM_final.qxd 9/30/04 10:55 AM Page v

4134_FM_final.qxd 9/30/04 10:55 AM Page vi

Contents

About the Author . xiii

About the Technical Reviewers. xv

Acknowledgments . xvii

Preface. xix

Introduction. xxi

■CHAPTER 1 Assessing Your Environment . 1

Gathering Information. 1

Name . 3

E-mail. 4
Phone . 4

PKI Information. 5

Badge. 6

Customer Data . 7

Creating an Ongoing Process . 8
Changing Application Sources . 8

Understanding Meta-Directories . 12

Avoiding Mistakes . 15

LDAP As Oracle. 15

LDAP As a Sync Source . 18

Shortsighted Deployment . 20

Summary . 22

■CHAPTER 2 Understanding Data Definitions. 23

Defining Your Schema. 23

Understanding Schemas . 26

ASN Schema Format . 26

Object Identifiers (OIDs) . 27

Attributes . 29

Object Classes . 34

Other Data Definition Information . 35

vii

4134_FM_final.qxd 9/30/04 10:55 AM Page vii

Understanding Distinguished Names (DNs) . 38

Schema Checking . 38

Referential Integrity . 39

Structuring the Directory Information Tree (DIT) . 39

Regional Deployment of Information . 40

Functional Deployment of Information . 40

Organization by Business Function or Group 40

Introducing the LDAP Data Interchange Format (LDIF) 41

LDAP Operations . 41

Chaining Operations . 43

Indexing Data . 44

Summary . 45

■CHAPTER 3 Implementing Deployment, Operations, and
Administration Strategies . 47

Separating Your Environments . 47

Setting Up Classes of Hosts. 50

Using Naming Conventions . 52

Using the Creative Convention. 52

Using the Logical Convention. 55

Reaching a Compromise. 57

Following Standard Procedures . 57

Using the Standard Host Specifications . 57

Using the Standard Host Installation. 58

Using the Standard Application Installation. 60

Running the Application . 60

Starting the Application. 60

Stopping the Application. 61

Using Command-Line Options . 61

Implementing Logs . 62

Summary . 63

■CHAPTER 4 Installing OpenLDAP . 65

Choosing a Distribution . 65

Setting Up Your System . 66

Choosing a Special User . 66

Obtaining the Distribution. 66

Performing the Base Installation. 68

Compiling OpenLDAP . 71

■CONTENTSviii

4134_FM_final.qxd 9/30/04 10:55 AM Page viii

Creating a Local Database. 71

Creating an Offline Database . 73

Using LDAP Search Filters . 75

Using OpenLDAP Utilities . 78

ldapmodify (1) and ldapadd (1) . 79

ldapsearch (1). 81

ldapdelete (1) . 84

ldapmodrdn (1) . 87

slapcat (8C) . 89

slapadd (8C) . 90

slapindex (8C). 91

Summary . 91

■CHAPTER 5 Implementing OpenLDAP . 93

How Much RAM Do You Need? . 93

How Much Disk Space Do You Need? . 94

Considering Security in Your Implementation . 96

Authentication . 96

SASL. 97

X.509 Certificates . 103

Transport Layer Security. 103

Access Control . 104

Kerberos . 104

Understanding Replication. 105

changelog/Replication Log . 106

slurpd . 108

updateref . 109

Importing Databases. 109

slapcat . 110

Testing . 111

Understanding Referrals. 112

DNS Resource Records for Service Location 112

Localized Scope . 113

Understanding the Installation Structure. 114

ldap.conf . 114

slapd.conf . 116

slapd.at.conf . 121

slapd.oc.conf . 121

Summary . 122

■CONTENTS ix

4134_FM_final.qxd 9/30/04 10:55 AM Page ix

■CHAPTER 6 Scripting and Programming LDAP . 123

Utilizing Command-Line Tools. 123

LDAP Controls. 128

LDAP API . 133

Obtaining the LDAP Perl API . 138

Using the LDAP Perl API . 139

Mozilla::LDAP::API . 145

Performing Operations Against Your OpenLDAP Directory 174

Using Java and JNDI. 175

OASIS Standards . 189

Directory Services Markup Language (DSML) 189

Directory Schema . 194

Conformance . 197

Summary . 198

■CHAPTER 7 Integrating at the System Level . 199

Introducing Network Information Services . 199

Introducing Standard NIS Configurations . 200

Performing Synchronization with LDAP . 202

Performing Direct Integration. 203

Configuring the LDAP Client (Host) . 238

Using the ldapclient Utility . 244

Configuring NSS. 249

Configuring PAM. 250

Setting Up Security . 251

Using Sendmail . 252

Enabling the Software . 253

Building the Binaries . 255

Migrating Information . 255

Setting Up LDAP Routing . 259

Summary . 261

■CHAPTER 8 Integrating OpenLDAP with Applications,
User Systems, and Client Tools . 263

Preparing for Integration . 263

Integrating Apache . 264

Integrating Pine . 268

Integrating Samba. 274

■CONTENTSx

4134_FM_final.qxd 9/30/04 10:55 AM Page x

Integrating Eudora. 282

Integrating Exchange . 283

Integrating LDAP Browsers . 286

Integrating Appliances . 286

Summary . 287

■INDEX . 289

■CONTENTS xi

4134_FM_final.qxd 9/30/04 10:55 AM Page xi

4134_FM_final.qxd 9/30/04 10:55 AM Page xii

About the Author

■TOM JACKIEWICZ is currently responsible for global LDAP and e-mail architecture at a Fortune
100 company. Over the past 12 years, he has worked on the e-mail and LDAP capabilities of
Palm VII, helped architect many large-scale ISPs servicing millions of active e-mail users, and
audited security for a number of Fortune 500 companies.

Tom has held management, engineering, and consulting positions at Applied Materials,
Motorola, TAOS, and WinStar GoodNet. Jackiewicz has also published articles on network
security and monitoring, IT infrastructure, Solaris, Linux, DNS, LDAP, and LDAP security. He
lives in San Francisco’s Mission neighborhood, where he relies on public transportation plus
a bicycle to transport himself to the office—fashionably late.

xiii

4134_FM_final.qxd 9/30/04 10:55 AM Page xiii

4134_FM_final.qxd 9/30/04 10:55 AM Page xiv

About the
Technical Reviewers

Born under Vesuvius in southern Italy, MASSIMO NARDONE moved to Fin-
land more than eight years ago, where he now works and lives. He holds
a master’s of science degree in computing science from the University of
Salerno, Italy, and has more than nine years of work experience in project
management and the mobile, security, and Web technology areas for both
national and international projects. Massimo has worked as a technical

account manager, project manager, software engineer, research engineer, chief security
architect, and software specialist for many different software houses and international tele-
communication companies. Massimo is also a visiting lecturer and supervisor at the Network-
ing Laboratory of the Helsinki University of Technology (TKK) for the course “Security of
Communication Protocols.” As a software engineer, he mainly develops Internet and mobile
applications involving different technologies, such as Java/J2EE/WebLogic, ASP/COM+, WAP,
SMS, PKI, and WPKI. As a research engineer, he participated in different research projects involv-
ing PKI, WPKI, WAP, sim applications, SMS, SIP, SAML, BS7799, TTS, security, NGN, and mobile
applications. In his role as chief security architect, he has been researching security standards
and methods, as well as developing a security framework model for different companies. He
researches, designs, and implements security methodologies for Java (JAAS, JSSE, JCE, and so
on), BEA WebLogic, J2EE, LDAP, Apache, Microsoft SQL Server, XML, and so on. He’s an expert
on the security standard BS7799 and the protocols PKI and WPKI, where he holds two inter-
national patent applications.

■ORIS ORLANDO, born in Naples, Italy, in 1971, has been interested in com-
puter science since the ’80s. His first computer was a Computer Intellivision
Module that developed programs written in the limited-edition BASIC lan-
guage. At the end of the ’80s, he began to use 8086 machines. In 1989 he
enrolled at the University of Salerno, in Italy, for computer science. During
his university career, he developed many applications for small businesses
and used the BBS before the Internet became prominent. He graduated in

1997 from the University of Salerno. In December 1997 he began working for Siemens Nixdorf
for two years as an analyst/programmer (Java, C, PL/SQL, CGI, HTML) in the Web environment.
In 1999 he came to work for Bull H.N. For two years he worked with the technical team; in the
third year he became a project leader in the security department, and this year he’s a project
manager. He has had significant experience with Unix, Windows, Linux, DOS, computer pro-
gramming, security, and databases (Oracle and LDAP), and he’s certified for the BS7799 security
standard.

xv

4134_FM_final.qxd 9/30/04 10:55 AM Page xv

4134_FM_final.qxd 9/30/04 10:55 AM Page xvi

Acknowledgments

I’d like to thank all those who have helped me go from bitterly screaming about LDAP (among
other things) to finally writing it down, including Lane Davis, my mentor; Darin Wayrynen,
whose late-night sessions inspired me to get into this systems stuff; Strata Rose, of whom I’m
still in awe after working with her on SMTP and LDAP environments; Susan Surapruik, my
better half, who, with great patience and understanding, has dealt with my opinionated rant-
ings for so many years; and all those who have helped me in the search for the perfect chopped
liver sandwich in the Bay.

And thanks to everyone involved in this project who put this together and dealt with any
of the pain usually associated with geeks such as me.

xvii

4134_FM_final.qxd 9/30/04 10:55 AM Page xvii

4134_FM_final.qxd 9/30/04 10:55 AM Page xviii

Preface

A few years ago I was at an industry conference and saw a session about designing LDAP
directories. At this time, LDAP was a relatively new technology, and even though I was already
significantly exposed to it, I wanted to see what others had to say about the topic. With an
open mind and a thirst for knowledge, I attended the session. From the first few words mum-
bled by the instructor to the very end, my jaw hung wide open, and I began to realize that
although people were familiar with the APIs and how to use a few basic tools, no one really
knew how to deploy LDAP. The same is true today.

What This Book Covers
The goal of this book is to show you the types of decisions you’ll need to make about your
OpenLDAP environment before even downloading any software. I discuss discovering infor-
mation about your current environment, consolidating data, planning for data creation and
migration, and planning the most useful directory infrastructure possible. Once I’ve covered
those topics, I dive into the configuration files and the base set of tools. Finally, I discuss inte-
grating LDAP into your current environment and the available APIs you’ll be using. I chose
OpenLDAP as the platform because the open-source community encourages standardization
and doesn’t focus on the proprietary features of commercial systems. Whether or not OpenLDAP
is your choice for a directory within your organization, the lessons you’ll learn about directory
design and integration will be useful.

Who This Book Is For
This book will help programmers and system administrators deploy OpenLDAP as cleanly and
efficiently as possible. This book is for someone thinking about deploying LDAP six months
from now and for people who are responsible for maintaining LDAP today.

Source Code
Source code and scripts are provided in the generic shell, Perl, C, and Java to complement
the text and give you a running start. You can find them on the Apress Web site at http://
www.apress.com in the Downloads section.

xix

4134_FM_final.qxd 9/30/04 10:55 AM Page xix

http://www.apress.com
http://www.apress.com

4134_FM_final.qxd 9/30/04 10:55 AM Page xx

Introduction

Welcome to the world of directories. Much like the fabled database administrator, you’ll be
walking into a realm of often-complex data structures, mangled sources of information, and
a buzzword-happy executive wanting to push your infrastructure into uncharted territory.
Fortunately, many others have already gone down this path and have already made the initial
mistakes for you.

A directory is basically a subset of the all-too-generic term database. It’s a specialized
database with well-known methods of accessing and presenting information. Essentially, it’s
a simple database used to hold straightforward information that’s accessed by simple meth-
ods from easy-to-understand clients written using solid, yet basic, programming interfaces.
Directories, in the generic sense, have gone wherever the implementers’ imaginations have
taken them. In the beginning, a database or some source of information was used for straight-
forward lookups for a single, simple task. That is, some applications required the ability to
maintain data and, without input (or guidance) for any place, create a general format that fit
its particular need—and only its particular need. These are application-specific directories.
Vendors have their own methods of implementing and storing this data. An example in use
today is the Name and Address Book in Lotus Notes. In a really bad scenario, these could just
be text files that store local information in a format that only the parent application can use.

One of the key limitations of these directories is the inability to share information between
different systems. When information is updated in a directory containing a person’s employee
status, for example, it would have to be updated across multiple environments. Lightweight
Directory Access Protocol (LDAP) and directories in general have been optimized for the vari-
ous tasks I’ll be discussing. They give you higher performance on reads and on retrieving data
than they would on writes. Therefore, certain dynamic information (that requires a significant
amount of updating) isn’t the best candidate for storage within LDAP.

X.500
X.500 is the model used to define directories services in the Open Systems Interconnection
(OSI) world. While considered outdated in the corporate world (and among those using newer
technology that doesn’t depend on legacy applications), X.500 and X.400 e-mail systems still
have their places in the realm of intelligence, military, and aviation. This is primarily because
of the slow pace of upgrades and extensive testing requirements within those industries. A good
sign of LDAP adoption is that currently products exist that serve as X.500-to-LDAP gateways;
in addition, some products are capable of interacting with the data structures of both X.500
and LDAP. X.500 has been around for more than a decade, but adoption has been slow for the
international standard because it’s complex and because its client half, Directory Access Pro-
tocol (DAP), is a hefty load for personal computers. LDAP creates a simple protocol for updat-
ing and searching directories running on Transmission Control Protocol/Internet Protocol
(TCP/IP). LDAP standards have evolved to offer various extensions, including whois++ and

xxi

4134_FM_final.qxd 9/30/04 10:55 AM Page xxi

the Simple Object Lookup (SOLO) service to support wide-area searches. Future extensions
will make LDAP the Internet directory service of choice.

Naming Services
Like directory services, naming services such as Yellow Pages (yp), Domain Name Service
(DNS), or Network Information Service (NIS)/Network Information Service Plus (NIS+) store
information in a central place. Systems or applications can then use this information to facil-
itate further communication across the network. However, unlike directories, the primary
focus of a naming services is machine data (hostnames, Internet Protocol [IP] addresses,
Media Access Control [MAC] addresses), system-level access permissions, and system-level
group membership (for example, print services). Centralized naming services enable each
independent host to look to a central repository for data instead of having to maintain local
copies of information.

Yellow Pages
In the mid-1980s, Sun added the Yellow Pages–distributed naming service to the Solaris oper-
ating environment to complement the advances of its Network File System (NFS). The overall
goal was to create a complete environment that enabled stand-alone workstations to use a
minimal set of protocols to access information stored centrally on other servers. That is, a work-
station containing no local resources—except for a physical monitor, a keyboard, some mem-
ory, and a network interface—is able to remotely access enough configuration information to
connect to the network and access remote resources. Sun was apparently ahead of its time
with this idea because the concept of “the network is the computer” never caught on until the
economic boom of the late 1990s and early 21st century. Because of trademark violations, Sun
gave up the Yellow Pages name and replaced it with NIS. Yellow-page searches generally find
all entries in the directory whose attributes satisfy some search criteria. For example, an
e-commerce application may want to search for all companies that manufacture digital audio
components. A Web application may want to search for all users with signing authority more
than $5,000 in department 3320. Yellow-page capabilities are especially needed for e-commerce,
as potential customers need a way to find all vendors of a given part, for example. Companies
deploying these types of applications must select their directory with care. Some directory
services are more scalable than others are, and organizations must accurately gauge their
application requirements to select a directory that’s capable of handling their anticipated
load. Another yellow-page issue is the eventual adoption of Uniform Resource Names (URNs)
on the Internet.

NIS
As mentioned, NIS eventually replaced Yellow Pages. NIS makes network administration more
manageable by centralizing information necessary for administration of hosts. NIS stores
information about the network, machine names and addresses, users, and network services in
the NIS namespace via NIS maps. These maps replace the standard /etc services on your local
Unix machine.

Some current NIS implementations rely on NIS protocols with LDAP back ends. This is
often seen as a transition step between dependence on NIS and full LDAP support.

■INTRODUCTIONxxii

4134_FM_final.qxd 9/30/04 10:55 AM Page xxii

In an NIS environment, systems can have the following roles:

Master server: This is a system that stores the master copy of the NIS database files, or
maps, for the domain in the /var/yp/DOMAIN directory and propagates them at regular
intervals to the slave servers. Only the master maps can be modified. Each domain can
have only one master server.

Slave server: This is a system that obtains and stores copies of the master server’s NIS
maps. These maps are updated periodically over the network. If the master server is
unavailable, the slave servers continue to make the NIS maps available to clients. Each
domain can have multiple slave servers distributed throughout the network.

Client: This is any system that queries NIS servers for NIS database information. Clients
don’t store and maintain copies of the NIS maps locally for their domain.

NIS+
NIS+ is a more dynamic version of NIS that’s able to better scale across your organization. Some
current NIS+ implementations rely on NIS protocols with LDAP back ends. This is often seen
as a transition step between dependence on NIS+ and full LDAP support.

NIS+, a component of ONC+ in SunSoft’s Solaris 2.0 and beyond, is an enterprise naming
service designed to replace the widely installed ONC NIS in customer environments. NIS+ is
a secure and robust repository of information about network entities (such as users, servers,
and printers) that enables efficient administration of enterprise client-server networks. Admin-
istration tasks, such as adding, removing, or reassigning systems and users, are facilitated
through efficiently adding to or modifying information in NIS+. An important benefit of NIS+
is scalability; it will simplify administration of small networks as well as enterprise-wide net-
works containing tens of thousands of systems and users. As organizations grow and decen-
tralize, NIS+ continues to provide administrative efficiency.

DNS
DNS is the standard repository for hostname-to-IP translation, as well as other relevant host
information that can provide a standardized translation table. Unlike other systems that keep
adapting to change, it’s commonly known that DNS works. By works, this means you have no
real reason to update the type of service provided by DNS and give it LDAP support. This is
a topic you’ll probably run across frequently during your LDAP implementation.

Relational Model
You must understand the fundamentals of the relational database model during your imple-
mentation of a directory. The relational model is concerned with three aspects of data: the
structure (or objects) that’s used in the database, the integrity of the data being stored, and the
manipulation of the information. Having a basic understanding of a database will show you
that there’s a fundamental difference between what can be stored in a database and what
should or shouldn’t be stored within a directory. Similarities, or even directory equivalents, of
the information will also help guide your implementation.

■INTRODUCTION xxiii

4134_FM_final.qxd 9/30/04 10:55 AM Page xxiii

In a relational database model, objects have a complex relationship to each other. This is
unlike a well-defined directory, but it has its uses. Similar to a directory, a relational database
has strongly typed and structured information. The advantages of a relational database are its
ability to deal with this complex set of data. LDAP itself has a great deal in common with object-
oriented programming languages. You can think of each entry in LDAP itself as an object. The
main difference is that an entry within LDAP can inherit values from multiple object classes.

LDAP Standards
LDAP is a term that’s almost as generic as database. LDAP can mean different things in differ-
ent, or the same, contexts. LDAP can mean many different things depending on the intention.
A good reference to LDAP standards is available at http://www.mozilla.org/directory/
standards.html.

As a protocol, the first implementation of LDAP was developed at the University of Michi-
gan in 1992. The whole concept behind LDAP was to create a TCP-based gateway to DAP,
thus eliminating the need to maintain state. As a protocol, the specific methods of access
to this directory are defined, such as the ability to bind, unbind, and perform operations.
The data itself may not necessarily be a factor in this particular definition.

As a data definition, LDAP is the simplification and optimization of the X.500 data struc-
ture. LDAP uses the X.500 data model, based on a hierarchical structure of information.
At the top is the highest level of the organization, with more data being stored in leaves
hanging off branches of this tree.

As an implementation, LDAP may be someone’s view of how the protocol and data can
be combined as an implementation. You can think of this as the directory package known
as OpenLDAP.

I’ll discuss all things LDAP, including the protocol, the definition of data, and the specific
implementation.

What problem was LDAP trying to solve? When LDAP was conceptualized, the problem
statement may have been focused on the outdated OSI model, the overly complex data defini-
tions, or the complexity of the systems required to access this information. The solution was
a TCP-based gateway to DAP. Over a short period of time, the first version of LDAP came into
being with the release of RFC 1487, X.500 Lightweight Directory Access Protocol.

LDAP v2, which stabilized all the brainstorming sessions and came up with a concrete
foundation, is defined in RFC 1777, Lightweight Directory Access Protocol, and RFC 1778, The
String Representation of Standard Attribute Syntaxes. With these, a new era of directory serv-
ices began. The current version of the LDAP protocol, LDAP v3, was completed in 1997.

To further understand the initial development of LDAP, it may be helpful to discuss the
timelines of X.500, the definitions and related protocols LDAP was supposed to supercede,
and the current direction of LDAP.

The following is a brief timeline of X.500 and LDAP:

1989: The first X.500 software package (Quipu) was released.

1990: The first version of the X.500 standard was published.

■INTRODUCTIONxxiv

4134_FM_final.qxd 9/30/04 10:55 AM Page xxiv

http://www.mozilla.org/directory

1992: Software developers at the University of Michigan released the first LDAP software.

1993: The LDAP specification was detailed in RFC 1487.

1995: The first stand-alone LDAP server (slapd) shipped as part of the University of
Michigan’s LDAP 3.2 release.

1996: LDAP was chosen as the Internet directory service protocol of choice by industry
software vendors.

1997: PC Magazine named LDAP v3 the winner of its Award for Technical Excellence
at the fall 1997 COMDEX.

1998: Netscape shipped its first commercial LDAP v3 directory server.

1998: OpenLDAP 1.0 was released.

1999: A Sun-Netscape alliance was formed. The best software from both sides of the
spectrum was combined. It took time for everything to work together, but the final
results pushed LDAP into a new realm of stability. LDAP software from this era (for
example, Netscape Directory Server 4.x) is still in use today.

2000: OpenLDAP 2.0 was released.

2002: Current releases of OpenLDAP (in other words, those being maintained) were
released in June, starting with OpenLDAP 2.1. Version 2.2 followed in December.

It may seem that all is well and good with LDAP. The defined problem was solved, and the
key, which was based on structured simplicity, was still intact. In the following RFC overview,
I’ll discuss the evolution of X.500 and LDAP and where each of these directory models and
implementations went right and ultimately may have lost their paths:

November 1991: RFC 1274, The COSINE and Internet X.500 Schema, was released. This
RFC specifies an Internet Activities Board (IAB) standards-track protocol for the Internet
community. The document suggests the X.500 directory schema, or naming architecture,
for use in the COSINE and X.500 pilots. The schema is independent of any specific imple-
mentation. As well as indicating support for the standard object classes and attributes, it
also defines a large number of generally useful object classes and attributes. This docu-
ment also proposes a mechanism for allowing the schema to evolve in line with emerging
requirements. It also includes ways of carrying out this vision.

November 1991: RFC 1275, Replication Requirements to provide an Internet Directory using
X.500, was released. This RFC considers certain deficiencies of the 1988 X.500 standard,
which need to be addressed before an effective open Internet directory can be established
using these protocols and services. The only areas considered are primary problems, to
which solutions must be found before a pilot can be deployed. The RFC concerns itself
with deficiencies that can be addressed only by using additional protocols or procedures
for distributed operation.

■INTRODUCTION xxv

4134_FM_final.qxd 9/30/04 10:55 AM Page xxv

November 1991: RFC 1279, X.500 and Domains, was released. This RFC considers X.500
in relation to the Internet. It emphasizes a basic model of X.500 that provides a higher
level and a more descriptive naming structure. In addition, it proposed a mapping of
domains into X.500, which gives a range of new management and user facilities beyond
those currently available. This specification proposes an experimental new mechanism to
assess and manage domain information on the Internet. It has no intention of providing
an operational replacement for DNS.

Early on, the creators of the X.500 protocol standard intended that X.500 and DAP,
based around OSI, will take over the Internet and replace TCP/IP. They also hope a more
standardized schema will improve these chances. Later, it was proven that an open schema
standard is a better choice for today’s world. Unfortunately, the nonstandardization of
schemas is also a major deficiency in LDAP today. Go figure!

March 1992: RFC 1308, Executive Instruction to Directory Services Using the X.500 Protocol,
was released. This document briefly discusses the deficiencies in the currently deployed
Internet directory services and then illustrates the solutions provided by X.500. This RFC
is a product of the Directory Information Services (pilot) Infrastructure Working Group
(DISI). It’s a combined effort for the User Services and OSI Integration Areas of the Internet
Engineering Task Force (IETF).

March 1992: RFC 1309, Technical Overview of Directory Services Using the X.500 Protocol,
was released. This document is an overview of the X.500 standard for people not familiar
with technology. It compares and contrasts directory services based on X.500 with several of
the other directory services currently in use on the Internet. This RFC also describes the sta-
tus of the standard and provides references for further information on the X.500 implemen-
tations and technical information. The primary purpose of this paper is to illustrate the vast
functionality of the X.500 protocol and show how it can provide a global directory for
human use and can support other applications that would benefit from directory services.

By this time, the Internet was growing at a phenomenal rate; it had thousands of new
users each month. New networks were added almost every day! And people were already
talking about the deficiencies in X.500. Important directory services at this time were the
Whois service and DNS. Unfortunately, while people were proposing that the centraliza-
tion of information is a good thing, RFC 1309 discusses that centralization of information
is a bad thing. Once again, you can see why X.500, especially as a driver, is obsolete.

February 1993: RFC 1430, A Strategy for Deploying an Internet X.500 Directory Service,
was released. This document describes an overall strategy for deploying directory services
on the Internet, based on the OSI X.500 directory service. It then describes, in more detail,
the initial steps that need to be taken to achieve these goals and how work already under-
taken by the IETF working groups is working toward these goals.

The goals of this RFC were to take away all other directories (such as Whois and DNS)
and replace then with X.500, or rather, DIXIE (which stands for Directory Interface to
X.500 Implemented Efficiently), which is a TCP/IP gateway to X.500. Another loss is that
X.400 is discussed here as a standard Internet message-handling service. Unfortunately
for them, SMTP was already the protocol of choice. This RFC also discusses other goals,
including interfacing current relational databases (RDBMS) into the X.500 model. Imag-
ine turning X.500 into a full-fledged and complex database engine that’s optimized for
complex data types. Unfortunately, others had already filled this need.

■INTRODUCTIONxxvi

4134_FM_final.qxd 9/30/04 10:55 AM Page xxvi

December 1993: RFC 1558, A String Representation of LDAP Search Filters, was released.
Tim Howes, one of the creators of LDAP from the University of Michigan, defines a net-
work representation of a search filter transmitted to an LDAP server. Version 1 of the
LDAP protocol is already out at this time and is simply a TCP gateway to DAP.

While Time Howes was defining simple search filters so that people would actually
start being able to use the functionality of LDAP, the OSI side of the standards world was
still overreaching in its goals and attempting to incorporate traditional TCP services and
simpler directory-based systems into its framework. The concept of small programs or
tools used to perform a single task well was completely lost by this time, and the focus
was more on the creation of an all-encompassing directory system to replace just about
everything that existed. You can see this type of focus in the RFCs I’m discussing.

May 1994: RFC 1617, Naming and Structuring Guidelines for X.500 Directory Pilots, was
released. This document defines a number of naming and structuring guidelines focused
on white-page usage. Alignment to these guidelines is recommended for directory pilots.
This is the time that current technology approaches.

March 1995: RFC 1777, Lightweight Directory Access Protocol, was released. This document
specifies an Internet standards-track protocol for the Internet community. The protocol
described in this document provides access to the X.500 directory while not incurring the
resource requirements of DAP. This protocol is specifically targeted at simple management
applications and browser applications that provide simple read/write interactive access to
the X.500 directory and is intended to be a complement to DAP itself. Here, many of the
current advantages are defined as follows:

• Protocol elements are carried directly over TCP.

• Many protocol elements are encoded as ordinary strings.

• A lightweight encoding scheme is used.

March 1995: RFC 1778, A String Representation of Standard Attribute Syntaxes, was
released. This document defines the requirements that must be satisfied by encoding
rules used to render X.500 directory attribute syntaxes into a form suitable for use in the
LDAP system, and then it defines the encoding rules for the standard set of syntaxes.

March 1995: RFC 1779, A String Representation of Distinguished Names, was released.
This specification defines a string format for representing names, which is designed to
give a clean representation of commonly used names while being able to represent any
distinguished name. At about the same time, OSI was practically dead, so new standards
for making this complex X.500 model user-friendly started to occur. Now the OSI direc-
tory infrastructure based on X.500 has user-friendly naming as a goal. This is one of the
final nails in the coffin of X.500.

March 1995: RFC 1781, Using the OSI Directory to Achieve User-Friendly Naming, was
released. While all the X.500 evangelists and pro-OSI (anti-TCP?) crowd was starting to
define what it can be used for, the LDAP community was getting ready to define LDAP as
a standard and clarify any open-ended standards, as you can see in the following RFCs.

■INTRODUCTION xxvii

4134_FM_final.qxd 9/30/04 10:55 AM Page xxvii

June 1995: RFC 1798, Connectionless Lightweight Directory Access Protocol, was released.
This new protocol provides access to the directory while not incurring the resource require-
ments of DAP. In particular, it avoids the elapsed time that’s associated with connection-
oriented communication, and it facilitates using the directory in a manner analogous to
DNS. It’s specifically targeted at simple-looking applications that require reading a small
number of attribute values from a single entry. It’s intended to be a complement to DAP
and LDAP. The protocol specification draws heavily on that of LDAP.

August 1995: RFC 1823, The LDAP Application Program Interface, was released. Having
an API is always an important step in the adoption of the any system. Without one, you’re
limited to what you can accomplish. Finally, the LDAP system you know today is finally
born with the creation of an API in August of 1995. This document defines a C language
application program interface to LDAP. The LDAP API is designed to be powerful yet simple
to use. It defines compatible synchronous interfaces to LDAP to suit a wide variety of appli-
cations. You can find a good reference for LDAP RFCs at http://www.directory-info.com/
LDAP/DirectoryRFCs.html.

June 1996: RFC 1959, An LDAP URL Format, was released. This defines the URL format.

June 1996: RFC 1960, A String Representation of LDAP Search Filters, was released. This
RFC defines the various supported features of LDAP (AND, OR, NOT, and so on) into spe-
cific text strings that can be used universally.

October 1996: RFC 2044, URF-8, was released. This is a transformation format of Unicode
and ISO 10646. Needless to say, while the LDAP community is coming up with practical
RFCs for actually using the new protocol (and encouraging development within the global
community), the LDAP/OSI/X.500 crowd was creating new encoding formats for theirs.
While it’s always necessary to clarify any components of a system that raise concerns, it’s
more important to actually make the system usable. Imagine if the same life cycle were
necessary for automobiles. Without realizing that a car needed wheels to run, people would
be creating standards for four-cylinder transmissions—which is useless until the car has
the basic ability to function.

January 1998: RFC 2164, Using an X.500/LDAP Directory to Support MIXER Address Map-
ping, was released. MIXER defines an algorithm for using a set of global mapping between
X.400 and RFC 822 addresses.

October 1997: RFC 2218, A Common Schema for the Internet White Pages Services, was
released. This document defines a common schema for use by the various white-page serv-
ices. This schema is independent of specific implementations of the white-page service.
This document specifies the minimum core attributes of a white-page entry for an individ-
ual and describes how new objects with those attributes can be defined and published.

January 1998: RFC 2247, Using Domains in LDAP/X.500 Distinguished Names, was
released. This document defines an algorithm by which a name registered with DNS can
be represented as an LDAP distinguished name.

December 1997: RFC 2251, Lightweight Directory Access Protocol, was released. This is v3,
which supports all protocol elements of LDAP v2 (as defined in RFC 1777).

■INTRODUCTIONxxviii

4134_FM_final.qxd 9/30/04 10:55 AM Page xxviii

http://www.directory-info.com

December 1997: RFC 2252, Lightweight Directory Access Protocol (v3) Attribute Syntax
Definitions, was released. This document defines the standard set of syntaxes for LDAP v3
and the rules by which attribute values are represented as octet strings for transmissions
of LDAP. The syntaxes defined in this document are references by this and other documents
that define attribute types. This document also defines a set of attribute types that LDAP
servers should support.

December 1997: RFC 2253, Lightweight Directory Access Protocol (v3) UTF-8 String Repre-
sentation of Distinguished Names, was released. This RFC standardizes the strings that can
be used for showing a DN.

December 1997: RFC 2254, A String Representation of LDAP Search Filters, was released.
This is a follow-up to RFC 1960; it explains LDAP search filters with more clarity.

December 1997: RFC 2255, The LDAP URL Format, was released. This is a follow-up to
RFC 1959; it defines the URL format with more clarity.

December 1997: RFC 2256, A Summary of the X.500 User Schema for Use with LDAP v3,
was released. This RFC is a start for porting existing X.500 user schemas into an LDAP-
compliant format.

March 1998: RFC 2293, Representing Tables and Subtrees in the X.500 Directory, was released.
This shows how tables and subtrees can be stored within the X.500 directory structure.

March 1998: RFC 2294, Representing the O/R Address Hierarchy in the X.500 Directory Infor-
mation Tree, was released. This document defines a representation of the O/R Address hier-
archy in the directory information tree. This is useful for X.400/RFC 822 (SMTP) address
mappings and mail routing. At this stage of the game, once again, X.500 is trying to be an
all-in-one solution to every data storage problem in existence. The original Unix philosophy
of “do one thing, do it well” is fully lost by this point, as the OSI crowd ties to define more
things that can be, in a very complicated way, stored in X.500.

March 1998: RFC 2307, An Approach for Using LDAP As a Network Information Service,
was released. This document describes an experimental mechanism for mapping entities
related to TCP/IP and the Unix system into X.500 entries so that they can be resolved with
LDAP. It proposes a set of attribute types and object classes, along with specific guidelines
for interpreting them. The intention is to assist the deployment of LDAP as an organiza-
tional name service.

September 1998: RFC 2377, Naming Plan for Internet Directory–Enabled Applications,
was released. Once standards have been established and X.500 is removed from the road
maps of typical organizations, you can take multiple routes involving LDAP without hav-
ing to worry about the restricting nature of X.500. The OpenLDAP project was started as
a collaborative effort to develop a robust, commercial-grade, fully featured, and open-
source LDAP suite of applications and development tools. The first release of OpenLDAP
(1.0) was in August 1998. Since then, OpenLDAP has kept the integrity of LDAP, and the
future of directories, by adhering to the open-source philosophy, by keeping the project
within scope, and by ensuring that all developers involved in the project adhere to open
standards and not develop proprietary methods for commercial gain. In other words, the
OpenLDAP project (and open-source initiatives in general) serves as the protector of
standards from exploitation by private vendors.

■INTRODUCTION xxix

4134_FM_final.qxd 9/30/04 10:55 AM Page xxix

In the timeline of LDAP, you can see rapid advancement of the technology as well as
integration with a key number of popular components. The focus on the technologies
must be commended because, whether by luck of a keen eye for the future, many impor-
tant components of modern infrastructure are addresses and posed for LDAP integration.

April 1999: RFC 2559, Internet X.509 Public Key Infrastructure, was released. The protocol
described in this document satisfies some of the operational requirements within the
Internet X.509 Public Key Infrastructure (IPKI). Specifically, this document addresses
requirements to provide access to Public Key Infrastructure (PKI) repositories for the pur-
pose of retrieving PKI information and managing that same information. The mecha-
nisms described in this document are based on LDAP, as defined in RFC 1777, which
defines a profile of that protocol for using within IPKI and updates encodings for certifi-
cates and revocation lists from RFC 1778.

June 1999: RFC 2587, Internet X.509 Public Key Infrastructure Schema, was released. The
schema defined in this document is a minimal schema to support PKIX in an LDAP v2
environment.

May 1999: RFC 2589, Lightweight Directory Access Protocol (v3), Extensions for Dynamic
Directory Services, was released. This document defines the requirements for dynamic
directory services and specifies the format of request and response extended operations
for supporting client-server interoperation in a dynamic directory environment.

May 1999: RFC 2596, Use of Language Codes in LDAP, was released. This includes prepa-
rations for all LDAP implementations to accept language codes. This is the first step to
LDAP’s global appeal.

September 1999: RFC 2696, LDAP Control Extension for Simple Paged Results Manipula-
tion, was released. Now that data is in the directory, this RFC takes great care that it’s able
to be retrieved efficiently.

October 1999: RFC 2713, Schema for Representing Java Objects in an LDAP Directory, was
released. This shows Sun’s influence in LDAP. Unfortunately, the scope of LDAP is changing.

October 1999: RFC 2714, Schema for Representing CORBA Object References in an LDAP
Directory, was released. Once again the scope of RFCs for LDAP are moving into territo-
ries already explored (and lost) by X.500.

April 2000: RFC 2798, Definition of the inetOrgPerson LDAP Object Class, was released.
This is one of the most basic object classes used to define person data that exists. It’s
a good step toward redefining LDAP as a directory once again.

May 2000: RFC 2829, Authentication Methods for LDAP, was released. To function for the
best of the Internet, it’s vital that security functions be interoperable. Basic threats to an
LDAP directory service include unauthorized access via data-fetching operations, unau-
thorized access to reusable client authentication information via illegal monitoring, spoof-
ing, and others. These concerns, and more, are discussed in this RFC, thus moving it toward
an area of more secure access.

■INTRODUCTIONxxx

4134_FM_final.qxd 9/30/04 10:55 AM Page xxx

May 2000: RFC 2820, Extension for Transport Layer Security, was released. This document
describes the StartTLS extended request and extended response themselves, describes
how to form the request, describes the form of the response, and enumerates the various
result codes the client MUST be prepared to handle.

June 2000: RFC 2849, The LDAP Data Interchange Format, Technical Specification, was
released. This document updates the LDAP Interchange Format (LDIF) used for commu-
nication with the directory.

August 2000: RFC 2891, LDAP Control Extension for Server-Side Sorting of Search Result,
was released. This document explains new server-side features for optimizing LDAP
information searches.

February 2001: RFC 3062, LDAP Password Modify Extended Operation, was released. This
document describes LDAP extended operation, which is intended to allow directory clients
to update user passwords.

April 2001: RFC 3088, OpenLDAP Root Service, was released. This is an experimental LDAP
referral service run by the OpenLDAP project. The automated system generates referrals
based upon service location information published in DNS SRV RRs (location of service
resource records). This document describes this service.

May 2001: RFC 3112, LDAP Authentication Password Schema, was released. This docu-
ment describes schemas that support user/password authentication in an LDAP direc-
tory, including the authPassword attribute type. This attribute type holds values derived
from the user’s password(s) (commonly using a cryptographic-strength one-way hash).
authPassword is intended to be used instead of userPassword.

September 2002: RFC 3377, Light Directory Access Protocol (v3), Technical Specification, was
released. The specification for LDAP v3 comprises eight RFCs that were issued in two dis-
tinct subsets at separate times—RFCs 2251 through 2256 first and then RFCs 2829 and 2830.
RFC 2251 through 2256 don’t mandate the implementation of any satisfactory authentica-
tion mechanisms and hence were published with an “IESG note” discouraging implementa-
tion and deployment of LDAP v3 clients or servers implementing update functionality until
a proposed standard for mandatory authentication in LDAP v3 is published. RFC 2829 was
subsequently published in answer to the IESG note. The purpose of this document is to
explicitly specify the set of RFCs comprising LDAP v3 and formally address the IESG note
through the explicit inclusion of RFC 2829.

September 2002: RFC 3383, Internet Assigned Numbers Authority (IANA) Considerations,
was released. This document provides procedures for registering extensible elements of
LDAP. This document also provides guidelines to IANA that describe conditions under
which new values can be assigned.

A good level of initial growth resulted in LDAP being picked as the directory of choice for
managing commonly used data. Unfortunately, with its new popularity came abuse from mul-
tiple sides. System architects, now seemingly disconnected from current needs, have moved
LDAP into the same area of complexity as the X.500 model. Too much clarification of informa-
tion and the addition of extensions not necessary for a functional directory structure have the

■INTRODUCTION xxxi

4134_FM_final.qxd 9/30/04 10:55 AM Page xxxi

potential to leave LDAP a shell of its initial self. Many people now see LDAP as losing the vision
of the problems it was supposed to solve and see it going toward where X.500 ultimately failed.

The movement of LDAP into various areas of the infrastructure, from e-mail systems to
PKI support, is one of the reasons for LDAP’s current growth and popularity. A good part of
this has to do with luck in adopting technologies that have stuck. While the initial concept of
LDAP was used as a starting point for data storage, there was, initially, a lack of additional sup-
porting layers and standard schema. Everyone liked LDAP, but no real framework existed. The
luck that LDAP had wouldn’t have lasted if the technologies chosen had been replaced by
something else. Imagine what would have happened if LDAP had provided more support for
COBOL, dBase schema, and mechanisms for integrating with Livingston Portmasters for dial-
up Internet service providers. LDAP would have been equated with those technologies, and it
wouldn’t have been adopted appropriately because these technologies are no longer part of
a core infrastructure. For LDAP to be taken seriously, it needs to work with technology that’s
readily available and commonly used.

■INTRODUCTIONxxxii

4134_FM_final.qxd 9/30/04 10:55 AM Page xxxii

Assessing Your
Environment

In a perfect world, the people installing, administering, and planning Lightweight Directory
Access Protocol (LDAP) deployments for your company are involved from the beginning of
setting up your entire infrastructure. Unfortunately, it’s more common that the implementa-
tion of a directory infrastructure within your company is already in place by the time you
come on board. While often a frustrating scenario, your ability to determine the existing state
of information within your company will help you plan your installation and data layout for
the phases in which you’re involved. If you’re tasked with installing directory services, you can
be assured that currently some directories are already prevalent within your environment.
One of the key goals of a directory has become the centralized storage of useful information.

In this chapter, I discuss the process of assessing your existing infrastructure to discover
possible sources of data for your LDAP system. I also cover the potential uses of your direc-
tory. Finally, I cover some of the mistakes that others have made while deploying directory
services so you can avoid making the same ones.

Gathering Information
If you want to have a useful and reliable directory, you must make sure the current directories
in your infrastructure don’t have more useful or accurate information than you have. If they
do, what benefit would someone gain from using your directory? For example, people have no
reason to use your new directory for e-mail address lookups if the current X.500 directory or
Lotus Notes Name and Address Book contain more accurate information.

All data within the directory you’re creating will have an original and authoritative source
of data. For new information, which may not even be currently accessible, you’ll need to take
into account its origin so that you can determine an appropriate path of data flow. One of your
first goals should be, through the discovery phase of your particular project, to determine where
the data currently exists. That task may not be as easy as it sounds. What if people are currently
accessing one system to obtain an e-mail address, but behind the scenes a different depart-
ment is running the real source of data?

The initial result may look something like Table 1-1.

1

C H A P T E R 1

■ ■ ■

4134_c01_final.qxd 9/30/04 11:16 AM Page 1

CHAPTER 1 ■ ASSESSING YOUR ENVIRONMENT2

Table 1-1. Origin vs. Source

Data Origin Source/Access Method

Name Human resources department Oracle database/Define query.
PeopleSoft database/Define query.

E-mail Lotus Notes Name and Address Book Lotus Notes database/Define query.

Phone Telecom department Unknown database.

Badge Security department Lotus Notes database/What’s the
original source of this data?

Customer data Multiple groups Multiple sources/Multiple defini-
tions of data.

As you can see, even when a data source is available, it may not always be the correct place
to obtain information. However, I can’t stress enough how important it is to obtain information
as close to the source as possible. The fewer dependencies on interim data stores, the better.
A typical environment may have the data existing on one system (an Oracle table), crude proce-
dures for extracting data and putting it into another system (a different Oracle table with differ-
ent access rights), and yet another procedure that makes the data available to you via another
directory interface. In this scenario, you aren’t only dependent on the primary data source but
also on all the steps that are involved in you pulling it from another directory three steps away.
You should avoid situations such as these.

You’ll need to evaluate the overall workflow of any data creation process in order to get
the best results for the system’s architecture. It’s a good idea to understand the workflow asso-
ciated with the new hire process to help you make decisions. To illustrate, the new employee
workflow may look something like this:

1. The applicant is hired.

2. The applicant data is inputted into the human resources (HR) database. The data
includes the following: name, birthday, Social Security number, photo, department,
and payroll information.

3. The applicant data is passed from HR to security. The data includes the following:
badge name, badge information, security clearance, roles, and responsibilities.

4. The applicant data is passed from security to the information technology (IT) depart-
ment. The data includes the following: standard logins, passwords, and account data.

As you can see, each step in hiring a new employee (or contractor) within your organiza-
tion has a specific set of inputs and a specific set of output. This is useful in knowing which
values are owned by which organization and which databases may be involved when retriev-
ing information for your directory. If you make the wrong decision, such as obtaining some-
one’s name from the IT department instead of the HR department, you could get unknown
results if HR changed the name and the value wasn’t appropriately reflected in the target sys-
tems. Your ability to map information successfully is based on these decisions.

4134_c01_final.qxd 9/30/04 11:16 AM Page 2

CHAPTER 1 ■ ASSESSING YOUR ENVIRONMENT 3

Name
In typical cases, your HR department is the first group responsible for keeping track of a name.
Someone’s name is often stored in multiple values depending on the look of the data. You could
use the GivenName attribute, which I’ll discuss in later chapters, to store someone’s first name.
You could then map this value to FirstName. You could use the sn attribute to store someone’s
last name. You could then map this value to SurName and LastName.

Understanding all the values you’ll need to use is important. Maintaining consistency
across all environments, so that applications interfacing with your system understand what
they’re getting, is one of the most important parts of the directory design process.

The following are some of the names you’ll run across:

Legal name: This is the legal name, as taken by HR, and will most likely exist on someone’s
driver’s license, Social Security card, or other form of legal identification. Often, this name
isn’t one that’s commonly used throughout the enterprise for identification; it may be used
only on legal documents such as payroll. For example, Wojciech Tomasz Jackiewicz, my
legal name, would exist as part of this data set.

Preferred name: The preferred name may be a nickname that someone prefers to use.
Tom Jackiewicz would exist in this set of data. Depending on internal policies, you can
define this during the initial interview process (thus passed onto other applications for
provisioning) or later, once all the accounts have already been provisioned. However, it’s
unwise to ignore this field for all the Wojciechs (who go by Tom) of the world.

E-mail name: E-mail addresses require uniqueness more so than other systems. Because a
computer, not a human, does the processing, it’s necessary to maintain complete uniqueness
here. The e-mail name may be, depending on the format chosen by your company, a combi-
nation of the first name, middle initial, and last name. I may become Tom W. Jackiewicz in this
set of data.

Application specific: Once your directory has been integrated with a number of compo-
nents (especially utilizing some level of synchronization), you can ensure that the name
field within some of your applications will be writable by the user. That is, if I have access
to Application X, which has a feed from LDAP, and Application X pulls in my common
name (which is usually some form of the first name plus the last name with some delim-
iter) or cn attribute, a good chance exists that the user interface will allow me to modify
this information. It’s always recommended that feeds are either two-way (in which changes
in valid applications are propagated back to LDAP) or one-way and read-only (in which
the data that’s pulled from LDAP is read-only and can’t be modified by any entity other
than LDAP). However, this isn’t always the case; sometimes names are modified, and the
result will be a phone call asking why the name keeps being changed (via LDAP), why it
isn’t updated in another application, or, in a worst case scenario, why the application
(after deciding that this will become the primary key) no longer functions correctly.

Names are also split between first, middle, last, and a combination of all these in different
applications. It’s necessary to note which applications require splitting, which ones are com-
bined, and what the specific format of the information is. If you’re going to maintain consis-
tency, make sure that cn: Jackiewicz, Tom always exists in that specific format and no other,

4134_c01_final.qxd 9/30/04 11:16 AM Page 3

CHAPTER 1 ■ ASSESSING YOUR ENVIRONMENT4

or the data will not longer be appropriately parsable. All this information is stored in
object classes that group the various types of data. Some object classes you may use are
organizationalperson or inetorgperson.

E-mail
One of the driving factors behind the fast adoption of LDAP standards was the ability to inter-
face LDAP and e-mail systems. Up until the late 1990s, the ability to filter, route, rewrite, and
utilize e-mail systems in a large scale (in other words, across multiple systems working as a
single entity) was typically based on customizations to the e-mail server (such as sendmail).
Hosting e-mail across multiple hosts often required a user to have an e-mail address based
on a three- or four-part domain name. That is, if Tom Jackiewicz were to have an account on
ISP.COM, and the service provider wanted to utilize multiple servers, his account may be
tjackiewicz@HOST4.ISP.COM. Susan Surapruik, using the same service provider, may end up
as susan@HOST2.ISP.COM. This created e-mail addresses that were difficult to remember but
easy for computers to route across multiple systems.

Although tools were often created to better route tjackiewicz and susan (and give them
e-mail addresses at just ISP.COM), no accepted methods existed for doing this from one sys-
tem (or independent entity) to another. Fortunately, LDAP came to the rescue by providing
e-mail systems with a repository for e-mail information stemming from the e-mail address,
routing methods, final destination, and other e-mail–related configuration information.

As you can see, e-mail, in the case of LDAP, is a story of two sides. As a system administra-
tor, you can see that during the processing of an e-mail by a Mail Transfer Agent (MTA), LDAP
goes beyond standard Domain Name Service (DNS)–based processing of the e-mail. As an end
user, you may see that LDAP can be used as a centralized address book to look up other users’
e-mail addresses (as well as other information). LDAP should be used in both of these ways,
even relying on each to share information.

You may also encounter X.400 systems. X.400 is the set of standards from International
Organization for Standardization (ISO) and the International Telecommunications Union (ITU)
that describes a messaging service. The transport of e-mail is the primary application. X.400
exists as X.400/84 and X.400/88, which are standards described in the ITU-TU Red Book and
Blue Book. They’re named as such because of the years that the standards were created (1984
and 1988, respectively). X.400/84 has been defined to run over a standard Open Systems Inter-
connect (OSI) stack (X.25, TP0, BAS Session); thus, most implementations, and all that pass con-
formance tests, are able to run over an X.25 network. If you have an e-mail address in the form
of TomJackiewicz@mail.YourCompany.com, realize that this really isn’t your true address in an
X.400 environment. X.400 uses directory services to create maps between your e-mail address
and something that looks remarkably like a distinguished name (DN). For example, the previous
e-mail address may map to C=com;ADMD=;PRMD=yourcompany;O=lab;OU=mail;S=Jackiewicz;G=Tom,
which is a far cry from what you’re accustomed to typing. Other mapping possibilities exist, all of
which rely on directory services.

Phone
The primary goal for deploying directory services is, more often than not, the creation of a
phone directory within your environment. While the task may not seen difficult to accom-
plish, creating this environment will often involve gaining access to an old legacy mess of

4134_c01_final.qxd 9/30/04 11:16 AM Page 4

mailto:tjackiewicz@HOST4.ISP.COM
mailto:susan@HOST2.ISP.COM
mailto:TomJackiewicz@mail.YourCompany.com

CHAPTER 1 ■ ASSESSING YOUR ENVIRONMENT 5

information. Phone systems, unlike modern components of your infrastructure, are built so
well that they often work for many decades. Where new systems may be modern and have
appropriate interfaces for accessing information, you’ll probably have to brush up on RSTE/E
(an old operating system that’s the predecessor to VMS) and a series of dead scripting languages
in order to pull information from the telephone database.

In many environments, this job is done for you in a number of ways. Unfortunately, this
will also create problems, because accessing information away from the direct source often
creates data ownership and maintenance issues.

The format of the telephone number must also be standardized and maintained. Some
companies rely on extensions, and others use the full telephone number. Still others may
choose different formats (see Table 1-2).

Table 1-2. Phone Formats

Data Number

Extension 3261

Telephone number 555-3261

Global telephone number 1-408-555-3261

Global telephone number, presentation (408) 555-3261

Global telephone number, presentation 2 1+408- 555 3261

It’s important to maintain consistency across all the information. However, realize that
various applications may need the various telephone number formats currently in use. An
application will not change its format, and it doesn’t always have the ability to manipulate
information (for example, removing the area code or performing regular expression parsing
against your data). For this reason, keep track of all the formats in use, determine which appli-
cations need a certain format, and provide the appropriate information. Meta-directories and
other methods of parsing information may be necessary if, for example, the original source of
the data provides information in a particular format but other sources, which may be outdated,
provide invalid data in another format.

PKI Information
Public key infrastructure (PKI) is a comprehensive system of policies, processes, and technolo-
gies that enables users of the Internet to exchange information securely and confidentially. PKI
is based on the use of cryptography—the scrambling of information by a mathematical formula
and a virtual key so that only an authorized party using a related key can decode it.

PKI uses pairs of cryptographic keys provided by a trusted third party known as
a certification authority (CA). Central to the workings of PKI, a CA issues digital certificates
that positively identify the holder’s identity. A CA maintains accessible directories of valid cer-
tificates and a list of certificates it has revoked.

PKI brings to the electronic world the security and confidentiality features provided by
the physical documents, handwritten signatures, sealed envelopes, and established trust rela-
tionships of traditional, paper-based transactions. These features are as follows:

4134_c01_final.qxd 9/30/04 11:16 AM Page 5

CHAPTER 1 ■ ASSESSING YOUR ENVIRONMENT6

• Confidentiality: Ensures that only intended recipients can read files

• Data integrity: Ensures that files can’t be changed without detection

• Authentication: Ensures that participants in an electronic transaction are who they
claim to be

• Nonrepudiation: Prevents participants from denying involvement in an electronic
transaction

PKI includes a CA and digital certificates, each containing a private and public key. These
elements work together based on defined certificate policies within your company. Certificates,
based on X.509 technology, as well as other components of your infrastructure, are commonly
stored in LDAP. Determine if and how PKI is used within your environment, and view the exist-
ing layout of its LDAP infrastructure. Having independent LDAP systems work together is often
extremely difficult if the information contained within the system doesn’t match. This is espe-
cially true of security systems.

Badge
We’ve moved away from the model of entry that requires a large set of keys to access certain
buildings, rooms, and cabinets. A more modern physically security infrastructure is in place
throughout corporate America, and it often requires computerized badges and access lists.
No uniform standard for badges is available; therefore, it’s up to you to determine what you
can obtain from your existing system, what you want to obtain, and what can be appropri-
ately be used outside its home. Because this is in the realm of security, red tape and political
hurdles are involved in obtaining access to the system. Once you succeed in gaining access,
you’ll encounter various pieces of information.

• Primary key: Because of the age of some badge systems, the primary key may be poorly
derived by nonstandard methods. That is, a badge system is more likely to rely on a name
rather than an employee number.

• Badge ID: Physical badge IDs are often the primary key used for data on the system.
They’re typically the serial number associated with a given badge.

• Badge name: The name of the badge owner may be included in the database.

• Access information: While it’s often stored in proprietary formats, unreadable and unus-
able by outside applications, access information includes what can and can’t be accessed.
Often, area maps of the office aren’t included as part of this and could be useful for other
applications.

• Expiration date: Especially true for contractors, the expiration date is a good piece of
information to obtain from any badge system.

The overall key is to find out what data may be usable outside the specific system you’re
using. If you can think of a use for the data, others integrating with your application can prob-
ably think of a few more uses.

4134_c01_final.qxd 9/30/04 11:16 AM Page 6

CHAPTER 1 ■ ASSESSING YOUR ENVIRONMENT 7

Customer Data
The scope of a directory server, in recent years, has extended beyond that of the internal enter-
prise. External-facing systems, customer records, supplier information, and other noninternal
sources of information are now part of the overall scope of most deployed LDAP systems. Larger
companies are now sharing information with competitors and forming alliances that require
sharing data electronically.

Often, security profiles for vendors, suppliers, and customers may need to be provisioned
and maintained within your directory. Individual contacts from each of the new sources of
data may also need to be included, depending on the overall need (see Table 1-3).

Table 1-3. External Sources of Data

Potential Need Resulting Data Approach

Vendor profiles for Storing vendor information, including DN: CN=Vendor?
contact list location, delivery address, and contacts Other relevant information

Vendor profiles for a Storing vendor information, including DN: VENDORID=VendorId
delivery system specific identification codes (primary keys Other relevant information

in other databases) used to identify vendor

Vendor contacts Storing vendor contacts, underneath a Vendor branch created
(specific users managing vendor profile, of specific users Specific vendor branch created
specific projects and sets dn: uid=X, ou=VENDORID,
of information) ou=VENDOR

You can see the progression of the vendor data. Where it may be a project that someone
quickly dives into in order to create profile information within your directory, it’s good to know
all the ways various applications could be used in order to create the appropriate hierarchy.
For instance, you may not consider having profiles for vendors stored in separate organiza-
tional units underneath a vendor hierarchy if the original scope of the project includes only
vendor contacts.

Having to rework your directory after the profile information is created one way requires
a significant amount of reworking of your data and will also slow down future projects. Make sure
you have all the information you need from the beginning to make the correct choices for
your deployment.

Looking at existing systems and analyzing the data that’s currently in use will give you
a good start for creating appropriate profiles within your directory. You should use the same
approach for creating external data that you’d use for creating internal data. Unfortunately,
external data is often stored in competing systems and has independent profiles. For example,
if Intel is a vendor, it may have certain information stored in a database that’s tracking the net-
work cards your company is purchasing. As a strategic partner, Intel may have different profile
information (and, as a result, different primary keys for identification) stored in another data-
base. These two sets of data, when merged, will often create difficult-to-manage situations and
competing results of data. You need to consider all this when maintaining a clean directory.

Other systems may even contain data that’s inappropriate for storing in your directory. For
example, a parts inventory may exist in your company that requires complex searches. In this
case, it may not be the best idea to store the information in a directory. This is because the struc-
ture of the information doesn’t logically fit into the provided namespace; further, the queries

4134_c01_final.qxd 9/30/04 11:16 AM Page 7

CHAPTER 1 ■ ASSESSING YOUR ENVIRONMENT8

Figure 1-1. Initial creation of data from a dynamic source

that would be required from an inventory system are more complicated than those that can be
defined and processed easily by LDAP.

Examine your goal, your scope, and your plan appropriately, or the end result may be
a directory that’s unmanageable.

Creating an Ongoing Process
An initial implementation of a directory without a maintenance plan is much like cleaning
a room full of dishes during the lunch hour rush, going home for the day, and being shocked
that the dishes are dirty again. Maintaining a directory that incorporates existing company
information is often an ongoing process that requires not only the importing of company
data but the procedures for future synchronization or, if desired, migration. The first step, as
previously discussed, is to identify the data sources and the information contained within
them that would be beneficial if stored within a directory. The initial step of obtaining this
information is often the easiest. The ability to maintain a record of the changes and propa-
gate them to your directory requires a significant amount of work. Multiple approaches exist.

Changing Application Sources
In a typical scenario, you’ll be obtaining your initial set of data from existing applications.
These applications will rely on back-end data sources, usually consisting of text files or pro-
prietary systems that don’t have the advantages of LDAP. The initial migration of the data from
the source system to a directory may be relatively simple and involve obtaining a text dump of
the existing data, parsing it, and importing it into your directory. Unfortunately, if you want to
have this data available in your directory in the first place, you’ll probably need some external
processes and systems to make sure it’s accurate. This creates a scenario where a dynamic set
of data exists (see Figure 1-1).

This figure shows that while a one-time synchronization occurs, you have no true method
of appropriately obtaining any of the changes that may have occurred within the data source
(by means of an external update procedures or through typical application use) after the ini-
tial synchronization. This creates a gap in the data you have in your directory, which demon-
strates why you need LDAP as a central repository in the first place.

4134_c01_final.qxd 9/30/04 11:16 AM Page 8

CHAPTER 1 ■ ASSESSING YOUR ENVIRONMENT 9

You’ll encounter many scenarios during the discovery phase of your OpenLDAP imple-
mentation. For example, you’ll encounter various sources of data that you won’t know how to
deal with, departments that won’t give you appropriate access to information, and outdated
systems that certain customers will insist need to be imported into your directory. You’ll need
to deal with each case on an individual basis. What may seem like a simple method of retriev-
ing and mapping data could turn into a sea of red tape and headaches. Therefore, plan for the
previous scenarios when mapping your data and design your layout.

User-Facing Applications
User-facing applications are phone directories or other systems that contain information typi-
cally used by nonadministrators. Users will often access a Web-based or graphical user inter-
face (GUI) front end for this application and be accustomed to a base set of information stored
in a particular way. This type of application is just a front end to a back-end database—whether
or not other applications use this information.

Depending on the particular applications, users may be able to modify this information.
Imagine the scenario where Susan Surapruik wants to look up the information for Tom Jack-
iewicz. She could access a user-facing application called PhoneBook by entering the uniform
resource locator (URL) http://PhoneBook.YourCompany.Com. Although it’s often true that people
may be the best source for information about themselves, they’re often unaware of the interde-
pendencies between the data. If Susan Surapruik were to update her location in the phone direc-
tory based on her working in the Campbell satellite office (instead of San Francisco), what would
happen if HR and payroll used this particular field for the payroll record and Campbell didn’t
return an appropriate match?

Be careful when looking at these applications; you should understand where the data origi-
nates and how it’s used. The ultimate solution for systems such as these—that is, simple user-
facing applications where data is presented and where the presentation interface (user interface)
is the only one available—would be to change the source of the data. When a new directory is
deployed within your organization, the directory itself often meets the data needs of other,
smaller, back-end systems (see Figure 1-2). This removes the proprietary method used by the user
interface (or the application itself) to access information in the original source. The replacement
stores information in the OpenLDAP directory directly and uses standard LDAP calls to access the
information. By changing the source of the data, you may require synchronization methods to
populate the information in the original source.

Figure 1-2. Changing the source of your data

4134_c01_final.qxd 9/30/04 11:16 AM Page 9

http://PhoneBook.YourCompany.Com

CHAPTER 1 ■ ASSESSING YOUR ENVIRONMENT10

It’s also important to evaluate your existing environment. For instance, you may decide
that while LDAP can be used immediately for authentication, automounter maps are going to
stay in files or maps for now. Evaluate possible server choices. For instance, you could use
Novell’s eDirectory, Sun’s SunONE Directory Server software, or OpenLDAP.

Start with the your potential clients’ applications. As a suggestion, you can first test that
the clients can actually do what they claim they’ll do, and then you can spend time porting
applications, cleansing and moving data, and maintaining a directory server.

Middleware
In this particular case, I’ll consider middleware to be any application that utilizes existing infor-
mation and adds its own unique data set to it. Take, for example, an application that manages
supplier and vendor interaction. The original set of data used to create profiles for this applica-
tion may currently exist in a database somewhere within your organization. On top of this basic
set of data, new roles and information (often proprietary and used only by this middleware
application) would need to be added. The union of the data that already exists elsewhere, plus
this new set of information, would be necessary for your application to function appropriately.

The methods of changing the source of data from some database to a directory would
apply here as they would for a user-facing application. However, you’d need to add various
roles that may be contained within this system. Whether the additional information can com-
fortably fit into the existing directory you have is up to you. No real guidelines exist for this
except to say that if you have independent role information for multiple integration projects,
your system would be cluttered with information that can be used only by a minimal number
of applications, and a directory may not be the best place to store this information.

However, standardizing role information and leveraging a good framework for the initial
design enables you to store role information for multiple systems in the directory and have
this information be used across multiple systems.

Back-End Systems
Outside the world of middle management and PowerPoint presentations, groups of people (pre-
sumably in dusty caves) actually utilize information for something other than pop-up windows.
Having an appropriate source of information for e-mail addresses, locations, and other such
things helps various systems. Many system administrators utilize scripts to generate this infor-
mation and store it in other formats. For example, e-mail services, often relying on sendmail or
qmail, use directories to generate their access lists. The difficulty in dealing with some of these
systems is that you have no direct way to access information via LDAP. This is changing as time
moves on, but programmers and system administrators often don’t complain about the lack of
software compliance and just create their own interfaces. These scripts, which may currently be
tied into an incorrect (but somewhat accurate) data source, may benefit you if they were rewrit-
ten to utilize the directory for synchronization. While it may be nice to have the /etc/mail/vir-
tusertable directory for sendmail stored directly in LDAP, an easier chore would be to generate
file in its original format, based on LDAP information (see Figure 1-3).

4134_c01_final.qxd 9/30/04 11:16 AM Page 10

CHAPTER 1 ■ ASSESSING YOUR ENVIRONMENT 11

Figure 1-3. LDAP as a source for “well-known” file formats

Similar scripts have existed for integration with NIS/NIS+, Web server access lists, and
other “well-known” services that already have a standardized and accepted format for storing
information. This is often the choice when a system has many utilities already in use that can
check for the integrity of the generated files but not necessarily the integrity of the data stored
in LDAP. As you push toward storing and managing information in a directory, this will be less
common.

Because migrating current directory services to LDAP may not be a trivial or risk-free under-
taking, you may decide to run and maintain proprietary directory services in parallel with LDAP
for some period of time. (Although this is certainly not textbook advice, it may be practical.) This
may also be necessary when you need to keep some of the proprietary services that can’t be sup-
ported with LDAP running for some time. Another common reason for running LDAP and other
directory services in parallel may be a shortage of skills or staff personnel. Table 1-4 shows the
types of applications you may encounter in the wild and their potential problems.

Table 1-4. Types of Applications You’ll Encounter

Application Type Example Solution(s) Problems

User-facing application. Users A user-facing application such as If a user can directly see infor-
are able to modify data, and a phone directory. Users have the mation, they often have a desire
LDAP support as sync source. ability to update their records. to update it. This will have un-

known repercussions on other
systems that may depend on this
information. Problems can arise
if the data shown isn’t kept in
sync with the real source.

User-facing application. Users A user-facing application such as Read-only systems have fewer
are unable to modify data. a phone directory. Users don’t have problems. But problems can

the ability to update information. arise if the data shown isn’t kept
in sync with the real source.

Middleware. Users or admin- A midlevel application, such as a Role information, derived a num-
istrators able to modify supplier/vendor interaction appli- ber of ways, can often be tied to
information. cation that may be tied to a Web individual applications and

server. Users need special infor- doesn’t comply with any set stan-
mation (or roles) specific to this dards. That is, manual role addi-
particular application to interact. tions are more difficult to keep

track of than roles derived based
on certain values. Problems can
arise if the data shown isn’t kept
in sync with the real source.

(Continues)

4134_c01_final.qxd 9/30/04 11:16 AM Page 11

CHAPTER 1 ■ ASSESSING YOUR ENVIRONMENT12

Figure 1-4. The role of a meta-directory

Table 1-4. Types of Applications You’ll Encounter (continued)

Application Type Example Solution(s) Problems

Middleware. Users and admin- A midlevel application, such as a Role information is derived from
istrators are unable to modify supplier/vendor interaction appli- a combination of synchronized
information. cation that may be tied to a Web data. Problems can arise if the

server. Users need special infor- data shown (and used to derive
mation (or roles) specific to this roles) isn’t kept in sync with the
particular application to interact. real source.

Back-end systems. Users and A back-end application, such as an Problems can arise if the data
Administrators are able to e-mail database for a monitoring isn’t kept in sync with the real
modify information, or users application. source. Because this system has
and administrators are unable minimal visibility, problems can
to modify information. often be reported only by a small

subset of users. For simplicity
(and because of a lack of audits),
information may be manually
updated rather than relying on
the original source.

Understanding Meta-Directories
Because the term meta-directory is so generic, you can find entire libraries dedicated to the
concept of a meta-directory—and many of the references would lead you in different direc-
tions. The term meta-directory services is a label for a class of enterprise directory tools that
integrate existing, or disconnected, directories by addressing both the technical and political
problems inherent in any large-scale directory integration project. A meta-directory is the
question mark in Figure 1-4. Technically, meta-directory services consolidate subsets of the
information in multiple directories, including data on people, groups, roles, organizational
units, locations, and other resources. This consolidation creates a join, or unified view, of the
different directories in an organization. The meta-directory makes that unified view accessible
via LDAP and Web-based access protocols. In general, a meta-directory scenario in use at
many companies today involves centralized registration of network operating system (NOS)
accounts; synchronization of e-mail addresses; publication of people data through LDAP
servers; and attribute synchronization with telephone directories, HR systems, and access
management systems such as firewalls or authorization servers. An emerging scenario is one
in which a meta-directory links directory-enabled networks (DENs)–compliant, policy-based
network access and routing controls with the user account information in a NOS directory,
such as Novell Directory Server (NDS) or Active Directory.

4134_c01_final.qxd 9/30/04 11:16 AM Page 12

CHAPTER 1 ■ ASSESSING YOUR ENVIRONMENT 13

A meta-directory is an intermediate layer between one set of data and another. It’s used, in
a number of different ways, as a joiner of information so that the available set of data can be uti-
lized outside its source. That is, each application may store information in its own method (a
database implementation, a directory, flat text files in a number of formats, and so on) using its
own data model so that it can be used effectively by a given application. However, because the
information contained within the data set you’re looking at may be useful for other applications,
deploying a meta-directory solution would help in retrieving, normalizing, and using this data.

As discussed previously, you’ll be relying on a number of sources of information in order
to create a useful OpenLDAP implementation.

The “system,” “method,” or “procedure” used to extrapolate, or derive, data from one data
source before importing it into your LDAP directory is covered by the concept of a meta-directory
that I’ll discuss in a moment. In short, it’s the solution for obtaining data from one source and
importing it into another.

I’ve discussed the importance of standardizing information across your enterprise. A name
should be consistent across all systems, a number should be in the same format, and terms should
be standardized. When referring to a business category in PeopleSoft, for example, it’s a good
idea to keep the same term when implementing your LDAP directory. Unfortunately, this isn’t
always the case, for whatever reason. A meta-directory layer will be able to connect to various
sources of data, read information in the format native to the remote application, and manipu-
late it for use within your LDAP directory.

In a typical meta-directory scenario, you’ll have the following components:

Connector: A connector is the technology (whether advanced or not) that relies on realis-
tic programming interfaces or is just a simple Perl script that enables your meta-directory
to access data on another system. The connector is just an enabler or a mechanism that
gains you access to a given resource much like a key or a combination can gain you access
to a house. Depending on which vendor you choose or whether you program your own
solution, you’ll see connectors for many of the common technologies available today. The
typical lag for a commercial connector is usually a few months after an initial version of
software has been released. That is, if you’re working with version 8.2 of a database, you’ll
see that connectors are available up to version 8.1. This is to be expected. However, realize
that the typical deployment scenario of many large applications give integration candi-
dates time to adjust and engineer appropriate solutions.

Connectivity to a system has a basic set of prerequisites. You must have some sort of
available interface for accessing the information. While this is quite a generic statement,
realize that it’s often difficult to, out of the box, create any sort of a connector to a spread-
sheet. That is, the spreadsheet would have to be copied from one host to another, and no
standard interfaces are available to request a system for the data contained within the
spreadsheet.

Rules and rule sets: When working with any data in any environment, it’s necessary to
define a set of criteria for obtaining, parsing, and moving information. Once a connector
establishes itself to a data source, it relies on defined rules and rule sets to know what to
do. The various components of this are as follows:

• Join or match rule: This is the criterion that shows how to connect information
from your data source to another. That is, this includes the discovery of primary
keys between systems and a rule to obtain this set of information.

4134_c01_final.qxd 9/30/04 11:16 AM Page 13

CHAPTER 1 ■ ASSESSING YOUR ENVIRONMENT14

• Rule: A rule with a meta-directory can be as simple as “pull value X, map to value
X” (or the atomic mapping of information to something complex that manipulates
the information and maintains status between runs).

• Rule sets: Rule sets are the combination of rules. These are then typically associ-
ated with the data that needs to be utilized.

A rule as an individual statement isn’t useful until it’s associated with a rule set. The
rule set is then associated with the connector view.

Connector view: A connector view is the “view” that you have into an application’s data.
For a system relying on Oracle, for example, the connector view may have access to
a table showing information in a specific format. The table may use EmployeeNumber as
a primary key and, underneath this record, may have various attributes that are used by
an application.

Looking at this data, you may the following set of information:

• EMPLOYEE_NUMBER: 013838

• FNAME: TOM

• LNAME: JACKIEWICZ

• TAG: 539

• DEPT: IT09

• EADDRESS1: TOM_JACKIEWICZ

• EADDRESS2: YOURCOMPANY.COM

Your first goal in establishing connectivity, as a connector view, to your target system
is to determine what data needs to be pulled from the host and made usable to LDAP.

Target connector view: The same concepts that apply to the connector view apply to the
target connector view. In fact, the target connector view is just the final connector view.
That is, upon connecting to and retrieving data from the regular connector views and
then processing and normalizing information, the end result is that it’s being written to
your LDAP system. Therefore, just like any other system, a meta-directory will need to
know of your LDAP system and establish the appropriate connectivity—even if all it’s
doing is writing to your system blindly.

Meta-view: Whether this is a requirement based on the particular implementation of
a meta-directory solution you’re using, the concept is the same. This is the “work area”
where information is stored, whether in a temporary directory or in memory, before it’s
effectively processed, parsed, and moved to your target system.

You should understand that a meta-directory architecture, as shown in Figure 1-5, doesn’t
replace existing applications. Instead, it serves as the glue to tie together systems in a struc-
tured and manageable way. The overall role of a structured meta-directory system is to take
away the many scripts that may be used in your current environment and replace them with
a central source of data management. The overall value of doing this really depends on the
organization, but you should definitely explore this.

4134_c01_final.qxd 9/30/04 11:16 AM Page 14

CHAPTER 1 ■ ASSESSING YOUR ENVIRONMENT 15

Figure 1-5. Meta-directory architecture

To evaluate meta-directory products, you should check several general categories of
directory integration functions.

• The virtual directory administration client, which allows administrators to use a single
GUI tool to manage information in multiple directories

• Directory synchronization, which allows companies to synchronize two or more direc-
tories using object and attribute creation and deletion

• The information broker, which enables real-time connectivity by allowing a directory
server to access data in another directory server on behalf of a client or server

• The join, which enables full relationship management through sophisticated synchro-
nization and replication features, creating a unified directory infrastructure

Avoiding Mistakes
One of the most powerful aspects of directories is that they give you the flexibility to do what
you want with them. This can be both a positive and a negative ability, depending on how it’s
utilized. One of the problems with the original X.500 directory implementations was the inabil-
ity to adjust the directory for its contents. That is, the directory itself needed to be created in
such a way that it was always up to standards, whether or not this was necessary for the data
being stored. The objects within a directory needed to be, in order to maintain compatibility
with other systems, described with such detail that it was often prohibitive for certain people
to utilize them. By removing some of the complexity of data that was necessary for base func-
tionality, LDAP entered an area that was inaccessible to X.500—the end user, system adminis-
trator, and manager tasked with a basic goal. By allowing data to be stored in any reasonable
(but still based on the hierarchical) method, LDAP could be used for any application.

Unfortunately, many mistakes were made because of this flexibility.

LDAP As Oracle
When LDAP became the latest industry buzzword, and Oracle (or any other full database
implementation) was considered too large of a project for a simple implementation, the

4134_c01_final.qxd 9/30/04 11:16 AM Page 15

CHAPTER 1 ■ ASSESSING YOUR ENVIRONMENT16

inevitable happened. Many vendors realized that to gain acceptance of their products, and to
show they were at the bleeding edge of the industry, they needed to implement LDAP support.

While this looked like a good idea, the problem was the way it was implemented. When
you see a raw view of the data stored in Oracle, you see it as a series of tables, columns, and
metadata that’s used to create a searchable archive. Each element in the system has the poten-
tial of having a relationship with another object that isn’t necessarily directly connected to it.
Metadata maps these relationships.

Take, for instance, a software company that stores information in Oracle. To meet with
some of its customers’ compliance issues, support for LDAP in the latest version is necessary.
Instead of revisiting the structure of the information contained within its Oracle implementa-
tion and changing it to work better in an LDAP environment, information is directly put into an
LDAP system the same way it would be if it were Oracle. The end result is a mess, as demon-
strated in the following code. For this example, you’ll start with the knowledge that someone
has the employee number 91358. Based on this data, find out as much information as possible
about this person from the LDAP system.

$ ldapsearch -h ldaphost -p 389 -D "cn=directory manager" -w password

-b dc=Your,dc=Company uid=91358 erparent

dn: erglobalid=5368616861693268173,ou=0,ou=people,erglobalid=00000000000000000

000,ou=PRODUCT,dc=Your,dc=Company

name: Tom Jackiewicz

firstname: Tom

lastname: Jackiewicz

uid: 91358

erparent: erglobalid=13132326925877942114,ou=orgChart,erglobalid=0000000000000

0000000,ou=PRODUCT,dc=Your,dc=Company

Upon completion of the first query, you can gather a certain set of data that may be useful
to you. But wait, it looks like the query you generated provided you only with basic informa-
tion about Tom Jackiewicz—most of which you already knew. The query did provide you with
an erparent attribute that may be useful.

$ ldapsearch -h ldaphost -p 389 -D "cn=directory manager" -w password

-b dc=Your,dc=Company

uid=91358 erparent="erglobalid=13132326925877942114,ou=orgChar

t,er globalid=00000000000000000000,ou=PRODUCT,dc=Your,dc=Company" erparent

dn: erglobalid=1855207254792657305,ou=0,ou=people,erglobalid=00000000000000000

000,ou=PRODUCT,dc=Your,dc=Company

erParent: erglobalid=13132326925877942114,ou=orgChart,erglobalid=0000000000000

0000000,ou=PRODUCT,dc=Your,dc=Company

The result of performing multiple queries against this database will lead you across various
seemingly disconnected sets of data (which are outside the standard structure you’re accustomed
to with LDAP). Upon traversing multiple trees and gathering pieces of information from various
sources, you may end up finally gathering all the data for which you’re looking.

If you were looking for someone’s account in Windows NT, their badge, their legal name,
and their other information that’s stored in multiple types of systems (or not associated with

4134_c01_final.qxd 9/30/04 11:16 AM Page 16

CHAPTER 1 ■ ASSESSING YOUR ENVIRONMENT 17

Figure 1-6. Types of queries

a single account), for example, you would have to perform a significant amount of queries to
obtain the valid information (see Figure 1-6).

What’s shown in this figure is that one initial starting point can generate multiple objects.
To obtain information that may be contained in the fifth tier in the figure, you’d need to per-
form multiple queries. The first query would be against uid=91358, in order to find a parent.
Subsequent queries would be for ID=A, ID=(Parent of ID=A), and so on. You can finally retrieve
the information you’re seeking after multiple queries against the system. While this is fine for
databases, it’s a poor use of LDAP and requires too many queries to obtain a simple set of data.
Figure 1-7 shows an example of the information that you could retrieve during each of the tiers.

In the first tier (uid=91358), you have information on the uid. In the second tier, you
obtain that this person is a member of group 55 (group=55). The third tier may provide you
with the information that this person has Acct=NT, Acct=Bdge, and Acct=Ph. From this you

Figure 1-7. Retrieving information

4134_c01_final.qxd 9/30/04 11:16 AM Page 17

CHAPTER 1 ■ ASSESSING YOUR ENVIRONMENT18

derive, among other information, that this person has the NT login of tom (NT=tom). A final
query from the fifth tier shows you that this person is active (Status=1). To obtain all this infor-
mation, you had to query the system more times than you would have liked—at least five times,
depending on how far in depth you went on the search results (some searches returned more
than a single entry that could then be explored further).

New implementations of software on top of LDAP rarely have to rely on a structure that
requires this level of querying (though you may be surprised). Instead of the previous struc-
ture, it’s more common, and usually a better idea, to store information under a single DN.

$ ldapsearch -h ldaphost -p 389 -D "cn=directory manager" -w password

-b dc=Your,dc=Company uid=91358

dn: erglobalid=5368616861693268173,ou=0,ou=people,erglobalid=00000000000000000

000,ou=PRODUCT,dc=Your,dc=Company

uid: 91358 \

group: 55 \

Acct: NT \

Acct: Bdge \

Acct: Ph \

NT: Tom \

Status: 1 \

You can obtain the information you previously queried using multiple searches, in this
example, using a single query. Consider this sort of structure for your own implementations of
software that utilize an LDAP structure. As the size of your object base (whether this is users or
parts) grows, it will be beneficial to maximize the amount of data that can be retrieved using
a single query.

Unfortunately, the difficulty of working systems that integrate LDAP in this way often
lands outside your control. If you have no control over the way a system utilizing LDAP stores
information, you have no quick solution for making it compliant. Many vendors, from Tibco
to IBM, use such methods of storing and accessing information. The only hope for true inte-
gration with products such as these is using meta-directories that create the appropriate con-
nections and mapping data between your LDAP environment (utilizing your own standard
LDAP mappings) and the product LDAP environments. Maintaining the mappings of infor-
mation without products such as these adds to the complications of the environment and
will be difficult to maintain.

LDAP As a Sync Source
The poor man’s method of LDAP compliance is often referred to as LDAP as a synchronization
source, in that LDAP queries are performed by one system, and the values are parsed and then
stored in another system, with no regard to the actual LDAP structure that exists at the source.
This is a common way for applications that use other directories (or even databases) within the
back-end configurations to allow some level of LDAP compliance. Typical applications, which
are all listed within the vendor documentation as “Fully LDAP Compliant,” will require that you
go through certain configuration options that are then used to populate another database.

Whether the configurations you’ll be dealing with are available via a GUI, a Web page, or
a configuration file, the basic ideas will be the same. You’ll be prompted for a host, a port,
a base DN, and a search filter. Some configurations let you enter a list of attributes to retrieve

4134_c01_final.qxd 9/30/04 11:16 AM Page 18

CHAPTER 1 ■ ASSESSING YOUR ENVIRONMENT 19

Figure 1-8. LDAP synchronization

and configure in order to map to their application database. Upon entering this data, through
some mechanism, the application connects to the specified LDAP host and performs a query
(see Figure 1-8).

In this figure, you can see that through some generic method, application data is synchro-
nized with the LDAP database. The values used to synchronize this data are inputted into a user
interface. To fully understand this type of LDAP integration, imagine a scenario where an appli-
cation needs to utilize person data within your company. This application may already exist in
the form of a telephone book, a portal, or something else that requires users to log in. Without
some level of integration with an LDAP system, active users in your company (which are stored
in the LDAP database) aren’t in sync with the user base (stored in application database) that’s
being used by the application. The process that currently exists may be manual or scripted. The
authoritative source of users may provide a text file to the application, and a process could exist
that converts this to a series of database calls to input data into the application database. While
this method may work, it doesn’t scale as more applications are added because of the propri-
etary interfaces that are always used. This is where LDAP comes in. Using a standard mecha-
nism (LDAP calls) against a standard system (the LDAP database), a nonstandard application is
able to retrieve an authoritative user base and import it into the application database for use.

At a high level, this is a reasonable solution. The database ends up with users that exist in
LDAP, thus meeting any policies requiring integration with LDAP. Unfortunately, when a synchro-
nization model is part of an already existing application (or one a generation or two removed
from the original application), coming up with a real design is often beyond the scope.

Imagine the scenario where your application uses the custom attributes First Name, Last
Name, Employee Number, and UID within its own database. These may be mapped to firstname,
sn, empnum, and uid, respectively, within your LDAP directory. This wouldn’t cause many prob-
lems; however, if data doesn’t match appropriately or ends up being split between data sources,
the tasks become more difficult. What if, after a synchronization, the application needs to add
new attributes and values to the data source that don’t currently exist in LDAP? This splits the
authority of the data into two, which becomes difficult to maintain.

However, the biggest problem with a synchronization method is requiring a full export
and import of the data whenever a synchronization process is initiated. The time it’d take to
retrieve just the changes between the last-scheduled synchronization process and the current
time is minimal. Even performing a synchronization for a directory of 100 entries may not
consume too much time. Unfortunately, as companies grow and directories increase in size,
the synchronization process may need to retrieve 50,000 records complete with all attributes.

4134_c01_final.qxd 9/30/04 11:16 AM Page 19

CHAPTER 1 ■ ASSESSING YOUR ENVIRONMENT20

Figure 1-9. Example of a typical environment

To fully demonstrate the complexity and speed at which an integration such as this can
happen, I’ll show you a typical environment. The user base you’re dealing with is 50,000 users.
The identity data within this system consists of ten attributes per user (from LDAP) and five
attributes added to the system later, which may or may not be derived based on LDAP data
(see Figure 1-9).

In this example, you can see that you can retrieve all the users in the LDAP database,
which contains 50,000 records and, because of the attributes, 500,000 lines of data. Informa-
tion is then compared between the data that already exists in the application, and relevant
values are updated. The application also contains five attributes of non-LDAP data (which
means 250,000 extra lines of data) that need to be taken into account. In some cases, the non-
LDAP data (such as local groups, custom groups, and specific application roles) is derived
from information that’s contained in LDAP. For example, if a user has an LDAP attribute per-
taining to a certain business category, this attribute may be used to create mappings in the
target application. The comparisons of all this data and the mappings that need to occur as
a result often translate into many hours for the synchronization process.

A method of integration such as this has no easy solution. Often the only mechanism
available for LDAP synchronization is via an application-specific interface. Cutting out the
middleman and directly writing to the application database may be an option when the data
stored is easily understood, but this, once again, becomes a good reason to look into meta-
directories for mapping of information. It’s unfortunate that many vendors choose to use
LDAP synchronization models such as this one.

Shortsighted Deployment
Like anything else, LDAP can be deployed quickly and end up as a usable mess or a com-
pletely unusable data source because of lack of planning. Many applications will be poten-
tially using your system. Take into account the data sources you have (during the integration
phases) to fully understand what your system will need to look like in order to consider all
applications that will be integrating with it. When approaching the initial designs of your

4134_c01_final.qxd 9/30/04 11:16 AM Page 20

CHAPTER 1 ■ ASSESSING YOUR ENVIRONMENT 21

directory information tree (DIT) and schema, keep in mind that the requirements in the
beginning may not appropriately scale in the long run. A common scenario you may run
across during your implementations is the lack of separation of organizationalunits. For
example, take the scenario where you have a base DN of dc=Your,dc=Company with only a sin-
gle level of ou=People below it. Queries will start at the top (dc=Your,dc=Company) and traverse
your tree. If in the future you decide to add separate branches for application configurations,
as well as trees for suppliers and other types of users outside your regular employee base,
you’ll need to modify all existing search queries. That is, if you start with ou=People and along-
side you add ou=Suppliers, existing applications that currently set the search to start at the
base DN will traverse both the ou=People and ou=Suppliers trees needlessly. Create some level
of logical separation so that your filters and search scopes won’t need to be regularly updated
to keep up with the data that’s stored in your directory.

Often you’ll see that some integrated applications choose to create a DIT structure based on
specific application needs. It’s all too common to have the base DN followed by ou=MyApplication,
underneath which all the users in your company will exist. As more applications integrate in
the future, they will be reading a tree that looks like it has been designated for just a particu-
lar application. Try to keep trees generic and the formats of data standard to not give that
impression.

It’s all too common of a scenario during integration to have multiple user bases (that con-
tain the same set of information) existing multiple times in the directory (see Figure 1-10).

As you can see, multiple user trees are in use in this DIT, all containing the same set of
data. This is because each application has chosen to use its own specific structure and can’t
utilize the trees and data in use by the other applications. In this case, the size of your direc-
tory has tripled because it contains redundant information.

Figure 1-10. Example tree

4134_c01_final.qxd 9/30/04 11:16 AM Page 21

CHAPTER 1 ■ ASSESSING YOUR ENVIRONMENT22

■Tip You can’t use LDAP for everything. Realize that the best use of LDAP is for identity information of
a relatively static nature. Putting dynamic nonidentity data into a directory can lead only to heartache.

Summary
Depending on when your involvement in designing your LDAP environment begins, it’s always
good to understand that a significant amount of work should go into creating your environment
at any stage. The more planning that goes into your LDAP environment, the more use you’ll get
out of it. Understand the layout of data within your company, the methods of retrieving it, and
the mistakes others have made in the same situations. The less structure and fewer constraints
you’re initially given during the initial phases of deployment, the more opportunity you have to
create a robust and usable environment.

4134_c01_final.qxd 9/30/04 11:16 AM Page 22

Understanding
Data Definitions

The core of fully understanding Lightweight Directory Access Protocol (LDAP) and OpenLDAP
lies in the definition of the data components. A lack of understanding of these definitions is
akin to considering yourself a mechanic but never looking under the hood. I’ll discuss the vari-
ous components of LDAP used to make your system run. An understanding of the specifics of
schemas and the standards used to define and support these data types and operations are key
to being well-versed in LDAP. I’ll also discuss the methods and standards used to create infor-
mation outside the LDAP world (using object identifiers [OIDs] and Abstract Syntax Notation
One [ASN.1]), cover LDAP-specific schema, and provide an overview of the methods used to
manipulate this information.

A schema is a definition of what data can be stored within a system. That is, it’s a set of
rules by which information in a directory can determine whether data is valid. A schema is
important because it not only defines an object, but also helps maintain the integrity of the data
stored within your directory. A well-defined schema also can help create useful, duplicate-free
data, and applications can use schemas to expect information in specific ways. A schema is
constantly and consistently checked by the directory server while creating, modifying, deleting,
or accessing any data within the directory. Schema definitions determine how a set of values
will be treated.

In addition to schemas, I’ll discuss the layout of your directory information tree (DIT) and
other data elements such as LDAP Interchange Format (LDIF) and how to index information.
After reading this chapter, you’ll understand the layout of data in terms of LDAP and the specifics
as they apply to your OpenLDAP directory. I’ll also discuss OIDs, which are the global identifiers
used to identify information consistently across the LDAP space. These identifiers extend beyond
just LDAP and will be (or at least should be) used with all your enterprise applications.

Defining Your Schema
A schema consists of attribute names, attribute types, and attribute syntax, all held together
and defined as valid data using object classes. The attribute must also be defined further to
include various restrictions (or lack of) on using this data. Unfortunately, the history within
LDAP to date has yielded rather ill-defined object classes and attribute definitions that are not
well understood in deployments. A common schema design and object class deployment will

23

C H A P T E R 2

■ ■ ■

4134_c02_final.qxd 9/30/04 11:18 AM Page 23

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS24

greatly increase the utility of a directory deployment for applications and interinstitutional
authorizations, white pages, and application deployment.

Before going into the OpenLDAP schema details, I’ll start by saying that the schema design
is critical to the planning process. Depending upon the complexity of the directory, you may
need lots of planning or little at all. If all you want to provide is a simple white pages service, then
this document should meet your needs. Beyond white pages, you need to answer at least the
following questions:

• What are the needs of an application?

• What your goals are for the application?

• Where will the data reside?

• What will be the system of record?

• Who can change it?

• How frequently will it change?

• Should it be visible?

The schema ties together all the definitions, object classes, attributes, and any information
necessary for defining your data. OpenLDAP, as other implementations, takes into account stan-
dards and provides a base set of information (core information) that will be used by your direc-
tory. Table 2-1 shows what files need to be modified in order to update your schema definitions
within OpenLDAP. Not only does this provide a standard set of information that will provide you
with a starting point for utilizing your directory, it ensures that you maintain compatibility across
other LDAP systems. Using include lines within configuration files gives you the ability to sepa-
rate configurations into their own files for cleanliness. The following is an example of this:

include /usr/local/etc/openldap/schema/

Table 2-1. OpenLDAP’s File Structure for Schema

File Description

Core.schema Required OpenLDAP core

Cosine.schema Cosine and Internet X.500 schema

Inetorgperson.schema InetOrgPerson default schema

Misc.schema Experimental schema

Nis.schema Network Information Services schema for NIS/NIS+ integration

Openldap.schema OpenLDAP project schema

I’ll use the Openldap.schema file to demonstrate the overall format of schema files that
you’ll be using during your deployment (see Listing 2-1).

4134_c02_final.qxd 9/30/04 11:18 AM Page 24

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS 25

Listing 2-1. OpenLDAP Schema Definitions, Start of Record

$OpenLDAP: pkg/ldap/servers/slapd/schema/openldap.schema,v 1.17 2001/12/07 23:

36:11 kurt Exp $

#

OpenLDAP Project's directory schema items

#

depends upon:

core.schema

cosine.schema

inetorgperson.schema

#

These are provided for informational purposes only.

objectIdentifier OpenLDAProot 1.3.6.1.4.1.4203

objectIdentifier OpenLDAP OpenLDAProot:1

objectIdentifier OpenLDAPattributeType OpenLDAP:3

objectIdentifier OpenLDAPobjectClass OpenLDAP:4

The objectIdentifier is always listed at the top as an organizational component of
schema files.

Further along in the file, you can see specific definitions of data outside the headers or
initial definitions, as shown in Listing 2-2.

Listing 2-2. OpenLDAP Schema Definitions, Object Classes

objectClass (OpenLDAPobjectClass:3

NAME 'OpenLDAPorg'

DESC 'OpenLDAP Organizational Object'

SUP organization

MAY (buildingName $ displayName $ labeledURI))

objectClass (OpenLDAPobjectClass:4

NAME 'OpenLDAPou'

DESC 'OpenLDAP Organizational Unit Object'

SUP organizationalUnit

MAY (buildingName $ displayName $ labeledURI $ o))

objectClass (OpenLDAPobjectClass:5

NAME 'OpenLDAPperson'

DESC 'OpenLDAP Person'

SUP (pilotPerson $ inetOrgPerson)

MUST (uid $ cn)

MAY (givenName $ labeledURI $ o))

4134_c02_final.qxd 9/30/04 11:18 AM Page 25

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS26

objectClass (OpenLDAPobjectClass:6

NAME 'OpenLDAPdisplayableObject'

DESC 'OpenLDAP Displayable Object'

MAY displayName AUXILIARY)

Individual object classes are then listed, along with their schema requirements. That is,
the object class of OpenLDAPorg has a superior object class of organizationalUnit and may
have the attributes of buildingName, displayName, labeledURI, and o.

When designing your schema, you need to take into account how applications intend to
utilize your directory environment and what new attributes and object classes may be required
for new application functionality. Therefore, in this chapter, you’ll see how to define object
identifiers, attributes, and object classes in your schema file.

Understanding Schemas
As mentioned earlier, a schema ties together all the definitions, object classes, attributes, and
any information necessary for defining your data. OpenLDAP, as like other implementations,
takes into account standards and provides a base set of information (core information) that
your directory will use. Chapter 3 discusses specific details.

You can analyze the other default schema files that come with OpenLDAP to get a greater
sense of the organization of schema.

In addition to the core components available to you, you’ll want to extend the schema to
support additional syntaxes, matching rules, attribute types, and object classes. You’ll then need
to include the new schema definitions in your slapd configuration files.

You can use the objectclass and attributeTypes directives within configuration files to
define schema rules within the directory. Local schema shouldn’t mix with the existing schema
within your system, however. You should use a local file, such as local.schema, to contain local-
ized schema. In more complicated environments, creating multiple files for each new object
class defined could separate this even more. In a typical environment, schema files may exist
for the structure shown in Table 2-2.

Table 2-2. Example of Customized Structure for Your Organization

Schema File Description

Local.YourCompanyPerson Schema for internal objects

Local.YourCompanyExternalPerson Schema for external (for example, customers, vendors,
and so on) objects

Local.YourCompanyMeta Schema for meta-directory interaction, such as the map-
pings between various data sources and directory objects

ASN Schema Format
LDAP uses ASN.1 to keep track of schema and many internal components of the directory.
Like Extensible Markup Language (XML), ASN.1 is a standard way to format information to
enable its use across multiple systems.

4134_c02_final.qxd 9/30/04 11:18 AM Page 26

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS 27

ASN.1 is an international standard. The benefits of a standard are that it’s vendor-
independent, platform-independent, and language-independent. It’s a language used for
specifying data structures at a high level of abstraction that enables them to be used across
a large number of different systems. It’s supported by rules that determine the precise bit pat-
terns to represent values of these data structures when they have to be transferred over a
computer network using a variety of encoding methods. It supports a great number of tools
in order to map the ASN.1 notation to data structure definitions in the parsing language of
your choosing. A good place to start when looking at ASN.1 information is the home page of
the ASN.1 Consortium (http://www.asn1.org). There you can find links to many of the tools
available to create and parse ASN.1 data. Common tools include Asnp and Ecnp. ASN.1 exten-
sions are also available for common editors such as emacs. Online translators that convert
from Web-based XML to ASN.1 are also available.

The abstract syntax used by ASN.1 enables you to produce specifications without running
into various encoding issues or the specific binary- or character-based realities of a protocol.
That is, it’s a common language, akin to Hypertext Markup Language (HTML), that, when
used correctly, enables a single set of data to be interpreted by a number of systems with the
same overall results.

Familiarity with ASN.1 isn’t necessary for understanding LDAP, but is required if you want
a better understanding of the data structures used to configure your system. Most of the core
configurations for your directory will be stored in this format. You’ll be able to modify these
files by using a suite of tools or by directly manipulating the configuration files.

Object Identifiers (OIDs)
A globally unique OID defines each element of schema. Like your directory, OIDs are hierar-
chical. You may have run across OIDs if you’ve interacted with a network monitoring system,
because Simple Network Management Protocol (SNMP) relies heavily on OIDs for its hierar-
chy. Table 2-3 shows the common branching of OIDs.

Table 2-3. Common Branching of OIDs

OID Assignment

1.1 Organization’s OID

1.1.1 SNMP elements

1.1.2 LDAP elements

1.1.2.1 AttributeTypes

1.1.2.1.1 MyAttribute

1.1.2.2 Object classes

1.1.2.2.1 myObjectClass

The original intention was that anyone would be able to obtain an OID if they requested
one. IANA, ANSI, and BSI (which is for U.K. organizations) currently maintain OID registries.

OIDs are allocated in a hierarchical manner so that the authority for 1.2.3, for example, is
the only one that can specify the definition for 1.2.3.4. The formal definition of an OID comes
from the ITU-T recommendation X.208 (ASN.1). The dot notation in OIDs comes from the

4134_c02_final.qxd 9/30/04 11:18 AM Page 27

http://www.asn1.org

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS28

IETF. The ITU thought it better to have notation using spaces and braces, with optional text
tables, so that 1.3.6.1 would become something like this:

{iso(1) org(3) dod(6) iana(1)}

{1 3 6 1}

{dod 1}

The IETF considered this illogical and used a dot notation instead.
Following an OID tree is akin to following a hierarchical directory tree. Starting at the top,

you’ll find the highest common denominator that groups all elements below it (such as the
organization name). Below that, you’ll find subcategories and other details up to the final
destination.

The OID structure follows the same hierarchical structure you’ll be familiar with from
your LDAP study. At the top is the head of the tree, and information becomes more detailed
when expanded (see Table 2-4).

Table 2-4. The OID Structure

1 ISO-assigned OIDs

1.3 ISO-identified organization

1.3.6 U.S. Department of Defense

1.3.6.1 OID assignments for Internet

1.3.6.1.4 Internet private

1.3.6.1.4.1 IANA-registered private enterprise

1.3.6.1.4.1.1466 Mark Wahl (Critical Angle)

1.3.6.1.4.1.1466.115 LDAPv3 schema framework

1.3.6.1.4.1.1466.115.121 LDAPv3 syntaxes

It’s possible to look up information on specific OIDs and related subtrees in various OID reg-
istries available on the Internet. The result of inputting 1.3.6.1.4.1.1466.115.121 will yield some
basic information and, often, pointers to future references, including request for comments
(RFCs). Figure 2-1 shows an example of a common interface you can use for performing these
lookups. One such interface is available from France Telecom at http://asn1.elibel.tm.fr/
oid/search.htm. Using this interface, you can search the OID tree by the branch, identifier,
number, description, rules, or even the parties responsible for submitting and registering
specific OIDs.

4134_c02_final.qxd 9/30/04 11:18 AM Page 28

http://asn1.elibel.tm.fr

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS 29

Figure 2-1. A Web-based interface for OID lookups

■Note User Requirements Notation (URN) is a new standard (since a study group was started in November
2000) that targets the representation of requirements for future telecommunication systems and services.
This, along with other notation and language for standardization of notation, is something you can investi-
gate further once you familiarize yourself with schemas. A good starting point is the ITU and ITU-T Web sites.
They serve as comprehensive references for community standards.

Attributes
You can use the attributeType directive to define and describe attribute information in your
directory. The directory uses the RFC 2252 AttributeTypeDescription shown in Listing 2-3.

Listing 2-3. AttributeTypeDescription

AttributeTypeDescription = "(" whsp

Numericoid whsp ; AttributeType identifier

["NAME" qdescrs] ; name used in AttributeType

["DESC" qdstring] ; description

["OBSOLETE" whsp]

["SUP" woid]; derived from the superior AttributeType

["EQUALITY" woid; matching rule name

["ORDERING" woid; matching rule name

["SUBSTR" woid]; matching rule name

["SYNTAX" whsp noidlen whsp] ; syntax OID

["SINGLE-VALUE" whsp]; default multi-valued

4134_c02_final.qxd 9/30/04 11:18 AM Page 29

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS30

["COLLECTIVE" whsp]; default not collective

["NO-USER-MODIFICATION" whsp ; default user modifiable

["USAGE" whsp AttributeUsage]; default userApplications

whsp ") "

AttributeUsage =

"userApplications" /

"directoryOperation" /

"distributedOperation" / ; DSA-shared

"dsaOperation" ; DSA-specific, depending on server

In Listing 2-3, whsp is a space, numericoid is a globally unique OID, qdescrs is one or more
name, woid is either the name or the OID, and qdstring is a directory string.

Using the previous definitions, you can easily define a generic attribute as follows:

AttributeType (1.2.3.4.5.6 NAME 'YourCompanyAttribute'

DESC 'MyCompany Attribute'

EQUALITY caseIgnoreMatch

SUBSTR caseIgnoreSubstringMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15

SINGLE-VALUE)

Attribute Name
As you may have guessed, an attribute name is the specific name of a single piece of data. That
is, telephonenumber could be the attribute name representing someone’s telephone number, for
example. When accessing data, you’ll always (or at least, should always) know that when you
see this particular attribute name, you’ll be dealing with the same type of data.

Although you can easily determine what type of data is held by the attribute named
telephonenumber, this won’t always be the case. You’ll come across attribute names that you
won’t understand unless you’re familiar with the particular data source, you’re familiar with
the application accessing the attribute, or you’ve created the attribute yourself.

In many cases, attribute names used by applications don’t have the base requirement of
being readable (or even usable) by a human traversing the directory. This is because a schema,
and thus attribute names, traverse all layers of the directory, including internally used data.
What applies to you, as an implementer of a specific directory infrastructure, applies to those
who engineered the model originally.

In some cases, depending on the overall design of the system storing data, even having
the same attribute name across different types of data will yield different results. For example,
the cn attribute, typically used for the common name (which, depending on the directory, can
mean many things), may store a person’s first name in one branch of the tree or the Windows
login name in the branch imported from an Active Directory system. Although a common
practice, this is something you should avoid.

To reduce the potential for name clashes, the convention is to prefix names of attributes
with an acceptable company prefix. For example, for a specific set of data, VendorData, in
YourCompany, the resulting attribute name would be yourcompanyVendorData.

4134_c02_final.qxd 9/30/04 11:18 AM Page 30

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS 31

Additional Attribute Information
Additional data will be stored within an attribute definition. The generic information you’d
need to define could include the following:

An OID that will uniquely identify the attribute across your organization or globally.
These are strings of numbers that are (at the highest level) allocated by the ITU to make
sure a namespace exists that your organization can work within to define more informa-
tion. For example, if you were to be assigned 1.2.3.4, you’d be allowed to define data that
would have the prefix of 1.2.3.4. You wouldn’t be allowed to define data outside your spe-
cific prefix and have it recognized.

A set of matching rules and specifics about this data that can be used to process it. For exam-
ple, you may want to know that you should ignore all the data within the telephonenumber
attribute that isn’t a number.

It’s also helpful to know if an attribute is single-valued or multivalued. Many times it’s use-
ful to know whether the information returned is unique for the sake of data processing.

Attribute Syntax
Attributes need to be given a syntax that defines how they’re to be used. This isn’t only for your
use (in that it helps to know that something is an integer, case sensitive, or a binary string), but
it’s also for the directory server when processing the information. You can read about the syn-
tax for the specification of attributes in RFC 1778, The String Representation of Standard Attribute
Syntaxes.

The syntax can be any of the following types:

Cis: This stands for case ignore string, which is a text string. The case of the letters con-
tained within this string is completely ignored. This is case-insensitive data.

Ces: This stands for case exact string, which is a text string. The case is the letters con-
tained within this string. This makes a difference when evaluating this data. This is akin
to the Unix filesystem.

Tel: This stands for telephone number, which is a string that represents a phone number.
This is just like a case ignore string except that spaces and delimiters are ignored during
comparisons.

Int: This stands for integer. The data contained within this string contains integers and
can be used within integer comparisons.

Dn: This stands for distinguished name. The data contained within this string is a DN.
Attributes defined as distinguished names relate a specific set of data to another set.
For example, the attribute manager would contain your manager’s DN, thus allowing
a logical connection between you and your manager. You can use DN information con-
tained within entries to create another hierarchy of information within the directory
outside the defined DIT.

Although these are generic attribute declarations, which are set based on the OID of the
given attribute, you can expand the syntax of an attribute to include others. Table 2-5 shows
that the standard hierarchy, 1.3.6.1.4.1.1466.115.121.1, is the start of standard LDAPv3 syntaxes.

4134_c02_final.qxd 9/30/04 11:18 AM Page 31

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS32

Table 2-5. OIDs for Attribute Syntax

OID Description

1.3.6.1.4.1.1466.115.121.1.3 Attribute type description

1.3.6.1.4.1.1466.115.121.1.5 Binary syntax

1.3.6.1.4.1.1466.115.121.1.6 Bit string syntax

1.3.6.1.4.1.1466.115.121.1.7 Boolean value

1.3.6.1.4.1.1466.115.121.1.8 Certificate

1.3.6.1.4.1.1466.115.121.1.9 Certificate list

1.3.6.1.4.1.1466.115.121.1.10 Certificate pair

1.3.6.1.4.1.1466.115.121.1.11 Country string

1.3.6.1.4.1.1466.115.121.1.12 DN

1.3.6.1.4.1.1466.115.121.1.14 Delivery method

1.3.6.1.4.1.1466.115.121.1.15 UTF-8 string

1.3.6.1.4.1.1466.115.121.1.16 DIT content rule

1.3.6.1.4.1.1466.115.121.1.17 DIT structure rule description

1.3.6.1.4.1.1466.115.121.1.21 Enhanced guide

1.3.6.1.4.1.1466.115.121.1.22 Facsimile telephone number

1.3.6.1.4.1.1466.115.121.1.23 Fax image

1.3.6.1.4.1.1466.115.121.1.24 Generalized time

1.3.6.1.4.1.1466.115.121.1.26 ASCII string

1.3.6.1.4.1.1466.115.121.1.27 Integer

1.3.6.1.4.1.1466.115.121.1.28 JPEG image

1.3.6.1.4.1.1466.115.121.1.30 Matching rule description

1.3.6.1.4.1.1466.115.121.1.31 Matching rule use description

1.3.6.1.4.1.1466.115.121.1.33 MHS or address

1.3.6.1.4.1.1466.115.121.1.34 DN plus UID

1.3.6.1.4.1.1466.115.121.1.35 Name form

1.3.6.1.4.1.1466.115.121.1.36 Numeric string

1.3.6.1.4.1.1466.115.121.1.37 Object class description

1.3.6.1.4.1.1466.115.121.1.38 OID

1.3.6.1.4.1.1466.115.121.1.39 Other mailbox

1.3.6.1.4.1.1466.115.121.1.40 Arbitrary octets

1.3.6.1.4.1.1466.115.121.1.41 Postal address

1.3.6.1.4.1.1466.115.121.1.43 Presentation address

1.3.6.1.4.1.1466.115.121.1.44 Printable string

1.3.6.1.4.1.1466.115.121.1.49 Supported algorithm

1.3.6.1.4.1.1466.115.121.1.50 Telephone number

1.3.6.1.4.1.1466.115.121.1.51 Teletex terminal

1.3.6.1.4.1.1466.115.121.1.52 Telex number

1.3.6.1.4.1.1466.115.121.1.53 UTC time

1.3.6.1.4.1.1466.115.121.1.54 LDAP syntax description

4134_c02_final.qxd 9/30/04 11:18 AM Page 32

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS 33

Matching Rules

The server uses matching rules to determine how data should be processed (see Table 2-6).
Depending on the matching rule used within the attribute definition, the client knows what
to expect, and the server knows how to treat any given request.

Table 2-6. Matching Rules

Name Type Description

BooleanMatch Equality Boolean

OctetStringMatch Equality Octet string

ObjectIdentifierMatch Equality OID

DistinguishedNameMatch Equality DN

UniqueMemberMatch Equality Name with optional UID

NumericStringMatch Equality Numerical

NumericStringOrderingMatch Ordering Numerical

NumericStringSubstringsMatch Substring Numerical

CaseIgnoreMatch Equality Case insensitive, space insensitive

CaseIgnoreOrderingMatch Ordering Case insensitive, space insensitive

CaseIgnoreSubstringsMatch Substring Case insensitive, space insensitive

CaseExactMatch Equality Case sensitive, space insensitive

CaseExactOrderingMatch Ordering Case sensitive, space insensitive

CaseExactSubstringsMatch Substring Case sensitive, space insensitive

CaseIgnoreIA5Match Equality Case insensitive, space insensitive

CaseIgnoreIA5OrderingMatch Ordering Case insensitive, space insensitive

CaseIgnoreIA5SubstringsMatch Substring Case insensitive, space insensitive

CaseExactIA5Match Equality Case sensitive, space insensitive

CaseExactIA5OrderingMatch Equality Case sensitive, space insensitive

CaseExactIA5SubstringsMatch Substring Case sensitive, space insensitive

The matching rules in Table 2-6 are important for describing attributes and for system
indexing. The server must be made aware, via the schema definitions, how to treat an attrib-
ute so that it’s evaluated appropriately.

Attribute Inheritance

Just like other data structures, attributes themselves can inherit information from superior,
or parent, structures. This is useful when creating generic data types that all must follow
a similar syntax. For example, assume that you have generic structures for a set of data that
refers to a name. You’d want all other attributes associated with a name to inherit the same
set of information so that you maintain consistency across your environment. That is, if
a common name, or cn attribute, maintains certain characteristics, logic would lead you to
believe that surname, or sn, would maintain the same characteristics.

4134_c02_final.qxd 9/30/04 11:18 AM Page 33

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS34

For example, the following syntax describes the object name that represents the generic
properties of a name:

AttributeType (2.5.4.41 NAME 'name'

DESC 'name(s) associated with the object'

EQUALITY caseIgnoreMatch

SUBSTR caseIgnoreSubstringMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{32768})

To expand on this definition and create a usable data structure, you could add the
following:

AttributeType (2.5.4.3 NAME ('cn' 'commonName')

DESC 'common name(s) associated with the object'

SUP name)

To not duplicate information provided for the definition of cn, you give only the name.
The rest of the information is inherited from the superior (SUP) data type of name. When defin-
ing your own attribute standards, it’s recommended that you take a similar approach within
your organization. It makes standardizing data quick and easy—not just an afterthought.

Object Classes
The grouping of the attribute data is stored in an object class. An object class definition speci-
fies what attributes should be included. Just like attribute definitions, the object class defini-
tion includes similar data, including the standard OID.

Standard object classes are part of the definition of both X.500 and LDAP systems. Certain
standards are already set to ensure some level of compatibility across multiple LDAP systems.
An object class, as a directive, is defined in RFC 2252, shown in Listing 2-4.

Listing 2-4. RFC 2252’s Object Class Description

ObjectClassDescription = "(" whsp

Numericoid whsp ; Object class identifier

["NAME" qdescrs]

["DESC" qdstring]

["OBSOLETE" whsp]

["SUP" oids]; Superior object classes

[("ABSTRACT" / "STRUCTURAL" / "AUXILIARY") whsp]

; Default structural

["MUST" oids]; Attributetypes

["MAY" oids]; Attributetypes

whsp ")"

In this case, whsp is a space, numericoid is a globally unique OID in numeric form, qdescrs
is one or more name, qdstring is a standard directory string, and oids is one or more name
and/or OID.

You’ll notice that abstract, structural, and auxiliary object classes are available for defini-
tion and use. Each object class is always one of the following three types.

4134_c02_final.qxd 9/30/04 11:18 AM Page 34

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS 35

Abstract Object Classes
You use abstract object classes to derive other object classes, providing the common characteris-
tics of such object classes. An entry can’t belong to just an abstract object class. The object class
top is an abstract object class used as a superclass of all structural object classes.

objectClasses: (2.5.6.0 NAME 'top' DESC 'Standard LDAP objectclass'

ABSTRACT MUST

objectClass X-ORIGIN 'RFC 2256')

Structural Object Classes
A structural object class is defined in the structural specification of the objects (DNs) within
the directory. Structural object classes are the standard type of object class used to group
attributes describing standard entries within the directory. The structural object class of an
entry controls the content of an entry.

objectClasses: (2.16.840.1.113719.2.142.6.1.1

NAME 'ldapSubEntry'

DESC 'LDAP Subentry class, version 1'

SUP top

STRUCTURAL MAY (cn)

X-ORIGIN 'LDAP Subentry InternetDraft')

Auxiliary Object Classes
Auxiliary object classes specify data that supports the rest of the information provided by the
standard data definition. For example, information related to a user’s e-mail information can
be contained in an auxiliary object class. Auxiliary object classes are descriptive of entries or
classes of entries. Besides being a member of a structural object class, an entry may be a mem-
ber of multiple auxiliary object classes.

The scope of data described by an auxiliary object class typically has a smaller scope than
a structural object class does. Think of a structural object class as one that defines that an entry
is a Person, yet an auxiliary object class expands upon that and also says that this Person uses
Mail, has access to a Calendar, and provides other pieces of useful information. Auxiliary object
classes are more dynamic. Typically, application access is stored in auxiliary object classes that
are added to a smaller subset of DNs.

objectClasses: (2.5.6.15 NAME 'strongAuthenticationUser'

DESC 'Standard LDAP objectclass'

SUP top AUXILIARY MUST (userCertificate) X-ORIGIN 'RFC 2256')

Other Data Definition Information
I’ve discussed the types of information that are essential to running the core of the LDAP sys-
tem. In the following sections I’ll discuss the various methods of groups and how to define
information in your system via roles, groups, and proprietary methods.

4134_c02_final.qxd 9/30/04 11:18 AM Page 35

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS36

Figure 2-2. Representation of group-to-user interaction

Groups
Just like groups in any other system that organizes sets of data, groups are the mechanism
commonly used to organize and associate entries within your directory. A typical group entry
contains a list of all the other objects (DNs) that are part of that particular designation. A direc-
tory has multiple types of groups (see Figure 2-2). With standard group configuration, the
group is looked up first. Based on the contents of the group information, the members are
then determined.

Static Groups

Static group information is the most common type of group data you’ll be using within your
LDAP environment. A static group defines information that can stand alone and doesn’t depend
on any specific filters or further action upon obtaining the information. For example, by look-
ing up a group defined as cn=Static Group, dc=Your, dc=Company, you have all the informa-
tion present after your initial query. By referencing the following group, you can see that its
members are Tom Jackiewicz and Big Snoop Dogg. No references within a static group defini-
tion point to other locations within your DIT.

dn: cn=Static Group,dc=Your,dc=Company

description: This is the description for Static Group

objectClass: top

objectClass: groupofuniquenames

uniqueMember: uid=Tom Jackiewicz, ou=People, dc=Your, dc=Company

uniqueMember: uid=Big Snoop Dogg, ou=People, dc=Your, dc=Company

cn: Static Group

Dynamic Groups

Dynamic groups specify a filter that’s then used to evaluate group membership. The dynamic
group cn=All Active may be a filter that searches for YourCompanyactivestatus=A across all
branches of the tree. This specific example is as follows:

dn: cn=Dynamic Group,dc=Your,dc=Company

memberURL: ldap:///dc=Your,dc=Company??sub?

(&(|(objectclass=YourCompanyPerson)

(objectclass=groupofuniquenames))

(YourCompanyActiveStatus=A))

description: This is the description for Dynamic Group

objectClass: top

4134_c02_final.qxd 9/30/04 11:18 AM Page 36

ldap:///dc=Your

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS 37

objectClass: groupofuniquenames

objectClass: groupofurls

cn: Dynamic Group

Because of all the types of data that could be stored within your directory, you should
make the groups apply only to relevant objects. In this example, you’ve limited the scope of
the group not only to everyone whose YourCompanyActiveStatus=A, but to people containing
the object class of YourCompanyPerson.

Combined Groups

Combined groups are a combination of static and dynamic groups. The following is possible
by merging the previous entries:

dn: cn=Combined Group,dc=amat,dc=com

memberURL: ldap:///dc=Your,dc=Company??

sub?(&(|(objectclass=YourCompanyPerson)

objectclass=groupofuniquenames))(YourCompanyActiveStatus=A))

uniqueMember: uid=Tom Jackiewicz, ou=People, dc=Your, dc=Company

uniqueMember: uid=Big Snoop Dogg, ou=People, dc=Your, dc=Company

description: This is the description for Combined Group

objectClass: top

objectClass: groupofuniquenames

objectClass: groupofurls

cn: Dynamic Group

In the example, the memberURL is evaluated first. Upon completion, you then add unique-
Member values to the membership of the group.

Roles
Roles are a relatively new and unstandardized phenomenon in the world of modern LDAP
implementations. Although they still organize or group information, just like standard group
configurations, they do it in the opposite way. Instead of a group specifying its members, the
user specifies to which group they belong (see Figure 2-3). With a role-based group configura-
tion, the user is looked up first. Based on the user’s profile information, data identifying the
user as a member of a particular group is retrieved. The membership information then points
to a particular group.

No standard definitions of roles are available that work in all environments.

Figure 2-3. Representation of role-based group-to-user interaction

4134_c02_final.qxd 9/30/04 11:18 AM Page 37

ldap:///dc=Your

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS38

Class of Service
Another nonstandard development in LDAP, but one that is catching on and that you should
know, is Class of Service. Because one of the disadvantages of the various forms of group is the
inability to agree among vendors, Class of Service was proposed as a solution for grouping sets
of attributes (using proprietary mechanisms) while giving the appearance that they’re part of
the object being retrieved.

For instance, suppose you have a large number of employees spread across multiple offices.
Each office has certain profile information, such as a mailing address, standard extensions, and
such. It’d be useful to pull up a user’s individual profile and have this information available dur-
ing the first lookup, instead of having to rely on searching at the next group or role level to obtain
information. Because each has a way to distinguish to which office they belong, you can create
a simple profile that enables you to display attributes contained within the office profile in each
user’s individual entry. When the office profile is updated, the information is automatically dis-
played in each user’s profile. This prevents you from having to maintain thousands of entries
across multiple objects that display the same profile information.

To clients, the attributes contained with the user’s profiles appear as standard attributes.
It’s unknown to the clients that these attributes really exist only as a Class of Service profile.

Understanding Distinguished Names (DNs)
The primary key is the unique identifier for the specific table within a database. A column or
combination of columns will need to exist with a property that, at any given time, no two rows
of the table contain the same value in that column or column combination. In other words,
the DN will be the unique identifier of the system across which all other database elements
are linked. The reason you could use one of more columns in a database is because in a data-
base all data will be directly linked, using a single logical step, from one set of data to another.
That is, the unique identifier serving as a telephone extension may sort one set of data, and
a unique badge number can sort the other set. It’s the combination of these elements that’s
uniquely identified by an employee number.

An example of a DN is as follows:

dn: uid=Tjackiewicz, ou=People, dc=Your, dc=Company

Schema Checking
Schema checking is an option used to maintain the integrity of your data. Whenever informa-
tion within your directory is manipulated in any way, schema checking validates that the data
within the entry adheres to all the object classes. Although it’s common in many configura-
tions to turn off schema checking for testing, this creates many more problems than it’s gener-
ally worth. Schema checking is there to maintain integrity of your directory by making sure
that all data within an entry is valid. The result of having schema checking turned off is often
a significant amount of data in your system that doesn’t belong.

The schema-checking option is one of the base configuration options available with your
openldap.conf configuration file. I’ll discuss the methods of utilizing this feature in detail in
subsequent chapters.

4134_c02_final.qxd 9/30/04 11:18 AM Page 38

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS 39

Referential Integrity
Referential integrity is a set of rules that you can use to ensure that the relationship between
entries within your directory is valid and that any changes to one set of data doesn’t invalidate
other information within your directory. Referential integrity is common in many databases but
is typically (unfortunately) an afterthought for LDAP. LDAP vendors don’t necessarily address
referential integrity semantics, and each has its own way of addressing the issue. The more you
dive into specific implementation of nonstandardized tools within the world of LDAP, the more
locked into a particular vendor implementation you become. The typical response by OpenLDAP
on the lack of referential integrity standards lets you know that for any object you create in a
directory you’re responsible for, no additional methods are being used to control this data. In
many ways, OpenLDAP’s focus on standards may be commended. However, some leadership
would help ensure that important features are guided by a standards-based community rather
than by commercial interests.

Common thought claims that referential integrity, at the transaction layer, hinders the light-
weight nature of LDAP. LDAP specifies that manipulation to the data is atomic and that entries
don’t necessarily relate to each other. It has no allowance in the protocol specifications and stan-
dards set that allow manipulation of elements of the directory to have any effect on other entries.

If you desire some level of referential integrity in your system, it may be wise to use a rela-
tional database to initially store and process information (because at this point in time your
data may be too complex) and then use LDAP to distribute the information.

Structuring the Directory Information Tree (DIT)
The beauty of directories lies in the hierarchical structure and the way entries in the directory
relate to each other. In a standard database configuration, the primary key is the unique iden-
tifier for a table. It consists of a column or column combination that maintains uniqueness
across the entire table. That is, no column or column combination can serve as a primary key
if more than a single occurrence exists within the database. The primary key in an LDAP sys-
tem is the DN. While the relationship between objects in a database can traverse multiple (yet
well-defined) boundaries, in a directory each entry is a member of the tree and all the
branches (or organizations) that lie above it (see Figure 2-4).

The top of the tree is called the base DN. In other words, it’s the initial set of data that
names the database. This component can either be the organization, defined as an o, or a
series of domain components, which are defined by dc. Using the example of Your Company,

Figure 2-4. DIT structure

4134_c02_final.qxd 9/30/04 11:18 AM Page 39

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS40

you can define the base DN as o=YourCompany or dc=Your, dc=Company. The dc format is histor-
ically a remnant of the X.500 standards. The o format is part of the originally defined LDAP
schema defined in early RFCs. Looking at various implementations of LDAP, the o format is
typically linked hierarchically to the dc components that are used internally. In other words,
o could be considered a link to the data as it’s really represented—an obstruction of the data.

The value of your base DN is one of the first decisions you need to make during the archi-
tecture or installation of the system. Because a hierarchy is involved, every object in your direc-
tory can be traced back to the base DN. Thus, if you choose to change the value of this in the
future, the values of all the data in your directory will change.

You have many ways to approach the overall architecture of your tree, depending on your
company. Common (yet not necessarily correct) methods of organization are regional, func-
tional, and group deployment of information. The following sections describe these in more
detail.

Regional Deployment of Information
Regional deployment of information is extremely common for companies with more than one
office. In the previous example, data is split between the United States and China. Many offices
with global presence have split this into many organizations throughout the world. This is com-
mon, but also relies on a value indicator within the data itself to allow you to organize entries
into each of these respective trees. A prerequisite of this is having the ability to map data as it
comes into a variety of trees. Once this basic obstacle is passed, the future maintenance of the
data requires minimal work.

Functional Deployment of Information
Functional deployment of information is, unfortunately, extremely common. This type of deploy-
ment splits branches of the tree among various functions, thus creating multiple accounts for the
same person across different trees. That is, the Windows NT account of a person may exist in
ou=WinNT while the dial-up information for a particular user exists in ou=Dialup. Imagine a com-
pany with 10,000 employees and 10 functional areas where accounts may exist. This would result
in 100,000 DNs within your directory and would increase the overhead host of maintenance of
your directory. The dynamic nature of some of this information would also require signifi-
cantly more writes than a typical deployment segmented along more traditional lines. How-
ever, depending on your specific deployment and the size of your data, this can enable better
maintenance and security rules based on the ability to create access control lists across branches
of the tree and not individual attributes. Another drawback of this approach is that it would, in
a best-case scenario, require the ability to map all the individual account information across
multiple DNs to a primary account. A structure such as this is better suited for a relational
database environment.

Organization by Business Function or Group
Organization along business lines is also common today. That is, you can organize Sales,
Marketing, and other departments within your company (often defined by a financial hierar-
chy elsewhere) into separate trees. One good way to determine whether this will work for you
requires trying to map out a tree of existing organizations. If this is too much work to do on
paper, it may be too difficult to establish within a directory.

4134_c02_final.qxd 9/30/04 11:18 AM Page 40

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS 41

Introducing the LDAP Data Interchange Format
(LDIF)
The format used for storing data in a directory system is defined as LDIF in RFC 2849, The LDAP
Data Interchange Format—Technical Specification. This is comparable to an SQL statement
because you can use it to generate statements for interfacing with an LDAP directory, describing
LDAP information, or exporting it for use across all LDAP-compliant formats. This is a standard
format that, regardless of the specific implementation or encoding methods used, you can use
across all systems adhering to the defined standards.

A simple LDIF record looks like this:

dn: (RDN+tree)

objectclass: (Objectclass definitions)

attribute (Name): Value

In short, LDIF is the human-readable storage mechanism of entries in a directory or the
translation of the back-end methods into a format that’s easy to understand and manipulate.
It serves as a buffer between the way the bits are stored for system use and the way they’re usable
by humans.

LDAP Operations
Additionally, you can expand records to include various commands for manipulating data
within the directory. LDIF is the common language used to represent this information. You
can add, modify, delete, and, in some cases, move data within a directory (see Table 2-7).

Table 2-7. Available Changetype Operations

Changetype Operation Result

MODIFY Modifies a set of data for an existing DN

ADD Adds a new DN

DELETE Deletes a DN

MODRDN Moves the RDN from one tree to another

MODDN If available, changes the DN of an entry

The changetype operations will need a full DN with which to work (RDN+tree). This is
specified at the top of any legitimate statement. It lets the system know the DN that will be
worked on.

These commands are represented as follows:

dn: (RDN+tree)

changetype: (CHANGETYPE OPERATION)

(ACTION) : (TARGET)

(DATA)

4134_c02_final.qxd 9/30/04 11:18 AM Page 41

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS42

The following is a common example:

dn: uid=tjackiewicz,ou=People,dc=Your, dc=Company

changetype: add

objectclass: top

objectclass: inetorgperson

cn: Tom Jackiewicz

sn: Jackiewicz

uid: tjackiewicz

The changetype in this example is add. Once the changetype is specified, you’ll see lists of
object classes and attributes for input.

Changetype: add
A changetype of add specifies that you want to add a specific DN to the directory. Following the
DN and the changetype operation, you’ll need to specify a list of object classes and attribute
names and values. To add an example to an empty system, use this:

dn: uid=tjackiewicz,ou=People,dc=Your, dc=Company

changetype: add

objectclass: top

objectclass: inetorgperson

cn: Tom Jackiewicz

sn: Jackiewicz

uid: tjackiewicz

The result of this LDIF statement is the previous entry, which I’ll use for further examples.

Changetype: modify
You use the changetype operation of modify when you want to modify an entry. The modify in
this case refers to attribute information within the entry itself. For example, this is the previously
mentioned entry:

dn: uid=tjackiewicz,ou=People,dc=Your, dc=Company

objectclass: top

objectclass: inetorgperson

cn: Tom Jackiewicz

sn: Jackiewicz

uid: tjackiewicz

If you wanted to change the CN from Tom Jackiewicz to Thomas Jackiewicz, you’d also need
to specify a specific operation to be performed on the attribute. In this case, you want to change,
or replace, the value. The resulting operation is as follows:

dn: uid=tjackiewicz,ou=People,dc=Your, dc=Company

changetype: modify

replace: cn

cn: Thomas Jackiewicz

4134_c02_final.qxd 9/30/04 11:18 AM Page 42

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS 43

The end result, assuming the operation is successful, will change the CN attribute within
this entry. When dealing with attributes that have multiple values (such as an object class),
you’ll also need to specify which values need to be modified.

dn: uid=tjackiewicz, ou=People,dc=Your, dc=Company

changetype: modify

replace: objectclass

objectclass: inetorgperson

objectclass: YourCompanyPerson

In this case, you replaced the object class of inetorgperson with YourCompanyPerson by
specifying the existing object class on the first line and the replacement object class on the
next. This will be useful when replacing sets of data stored using the same attribute, such as
multiple telephone numbers, locations, and other such fields.

Changetype: modrdn
You can use the changetype operation of modrdn when the relative DN (RDN) needs to be
changed. The ultimate goal of this operation is to change the naming key used to identify the
entry. In this example, where the RDN is uid=tjackiewicz, you’d use this operation if you wanted
to change tjackiewicz to tomjackiewicz, resulting in an RDN of uid=tomjackiewicz. Only the
RDN can change here, as the object stays in the same location within the tree. Other ele-
ments of the full DN, such as the ou=People,dc=Your, dc=Company component that identi-
ties the object’s location within the tree, remain the same.

A common misconception is that the full DN of the entry, including its location within the
tree, is able to change with this operation. Although that may be the case with certain imple-
mentations of LDAP, this isn’t standards-based, and relying upon a full modification of a DN
is inconsistent at best. To change the full DN of an entry, it’s advised that the current DN be
deleted and re-created in a different branch of the tree.

To use the modrdn operation, use the following statement:

dn: uid=tjackiewicz, ou=People,dc=Your, dc=Company

changetype: modrdn

newrdn: uid=tomjackiewicz

deleteoldrdn: 1

The postoperation deleteoldrdn will then take the binary flag of 0 to maintain the old DN,
thus resulting in entries of uid=tjackiewicz and uid=tomjackiewicz, which both maintain the
same set of data or the flag of 1 to delete the old object.

Chaining Operations
You can chain operations so that multiple operations can be performed on the same target
DN. This provides a benefit because the target DN is specified only once, is imported into the
server’s memory, and is utilized for all the operations that need to be performed against that
specific entry. This saves in server overhead. Imagine that you have 10,000 entries in a direc-
tory and need to add three object classes and five attributes to each. By chaining operations,
it’s possible to have only 10,000 changetype operations instead of 80,000. Like the overall model

4134_c02_final.qxd 9/30/04 11:18 AM Page 43

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS44

of Transmission Control Protocol/Internet Protocol (TCP/IP), it’s the overhead of establishing
the connection (or importing the target DN into memory) that causes the greatest delay.

One problem with chaining operations is that all the operations need to be valid (and not
violate schema), or no operations are processed.

dn: uid=tjackiewicz, ou=People,dc=Your, dc=Company

changetype: modify

add: description

description: Description Field

-

add: invalidattribute

invalidattribute: invalidvalue

What you have in this scenario is an attempt to add description and invalidattribute. If
adding a description field to the value is legitimate and doesn’t violate schema, but adding an
invalid attribute fails, both operations will result in a failure. This is the drawback of chaining
operations.

Indexing Data
Indexes improve the search performance of your directory. Indexes are basically files stored
on disk that are used by your directory. Individual index files are maintained for each database
within the directory and for each specific attribute that’s indexed. An individual index file can
contain many types of indexes. Depending on the types of data in the directory and the meth-
ods that will be used to access this data, many indexes are available to you.

Presence index: This index lists entries that contain a particular attribute. For example,
this will be used to determine whether this entry contains the attribute uid.

Equality index: This index lists entries that contain a specific attribute and value (for
example, uid=tomjackiewicz).

Approximate index: This index allows searches for information that’s approximately
what’s specified in the search filter. For example, a search for cn=Tom Jackiewicz would
also allow cn=Thomas Jackiewicz or cn=Tom W Jackiewicz to be returned.

Substrings index: This index allows for wildcard searches within attribute values. For
example, a search for uid=*ackie* would return uid=tomjackiewicz. It must be noted that
a significant amount of overhead is required for this type of index; use it sparingly. Unfor-
tunately, depending on which products you choose to interact with your directory, many
vendors assume all directory entries have this entry. Performing a substring search against
an attribute that doesn’t contain this entry will result in significant resource utilization
and slow return times for operations.

International index: This index is reserved for OID searches.

Browsing index: While not present in all directory implementations, this index increases
the speed of displaying search branches within your tree.

4134_c02_final.qxd 9/30/04 11:18 AM Page 44

CHAPTER 2 ■ UNDERSTANDING DATA DEFINIT IONS 45

Figure 2-5. Workflow of client operations in a replicated environment

To fully understand indexing, take into account the relative size of the data you’re storing in
your directory. Certain searches, because of their frequency of use, may be required to perform
better than others. A query for a person’s name will be used by multiple applications, from your
phone books to e-mail system. However, doing a partial, substring, or wildcard search for a city
starting with San Fr may be something considerably less common (and discouraged). Indexing
allows you to cache certain information that’s required for lookups on a regular basis and incurs
the system overhead that this would entail. The fundamental advantage of an index is that it
speeds up retrieval. However, the overhead that this takes can be measured in more than just the
amount of memory that needs to be allocated. Each update performed will also need to write
out data to the index cache if the values being updated are indexed. This will decrease the speed
up updates across your system.

With a system with a significant amount of data, you need to consider many things when
determining whether to index an attribute. For example, in a dynamic organization, you should
consider whether you want to index the department number contained within a person’s entry.
Because of the dynamic nature of your organization, this data often changes. Whenever a change
occurs to the indexed attribute representing a department number, the update to the data is
slower than it’d be if no index were used.

Because of the cascading nature of LDAP systems, you’d have good reason to create differ-
ent indexes on different types of hosts. For master systems, which are the ones primarily used to
update data, a minimal amount of indexes may be necessary to speed up the update speed. For
systems that look outwardly at clients, such as random consumers existing in a replicated envi-
ronment, the number of indexes could be greater. This is because updates aren’t performed
directly on the consumers but forwarded to the master hosts (see Figure 2-5).

Summary
You should now be able to understand the various data types and formats that will be used
within your OpenLDAP deployment. Your understanding of OIDs, ASN.1 notation, schemas,
and LDIF will help you get the most out of later chapters. Your understanding of changetype
operations will allow you to manipulate data within the directory to serve your needs.

4134_c02_final.qxd 9/30/04 11:18 AM Page 45

4134_c02_final.qxd 9/30/04 11:18 AM Page 46

Implementing Deployment,
Operations, and
Administration Strategies

For many, simply installing software on a system signals the end of the project. But for system
administrators, the process of maintaining an installation, troubleshooting it, and debugging
it—administering—has just begun. In management’s perfect world, software runs itself, noth-
ing ever breaks, and you can just let something sit untouched until it has outlived its useful-
ness. This isn’t the case—your fun is just beginning.

It will benefit you to understand the basic concepts of environment deployment, name
standardization, and system optimization in order to best run an OpenLDAP environment. In
this chapter, I’ll discuss the basics of environment setup and describe some of the tools required
to successfully run an OpenLDAP environment.

Separating Your Environments
Environment separation, which is your ability to physically or logically isolate environments,
is often quite difficult to accomplish at a well-established company but is achievable at the
beginning. Without having any level of separation within your environment, you reduce your
ability to expand without having to rearchitect your existing systems. That is, your environ-
ment may be so flat that adding new components to your system will have a negative impact
on your existing environment. Although you may not always be able to do something about
the problem, it’s necessary to view the topography of the network you’ll be using to under-
stand complexities in your OpenLDAP deployment.

Unlike an isolated system, OpenLDAP often relies on network services and data stored
outside its own host. The potential for multiple environments that are configured to share
a common set of data to corrupt or cause disruption is high. You can prevent the overlapping
of data between a system being used for testing and one that’s running in a production state
by appropriately separating the two environments. This separation will allow you to perform
tests of varying levels of impact without disrupting existing services. Imagine needing to per-
form an upgrade on a development system that’s tied to your production environment. Your
ability to do this will be hindered because any errors that are made will be introduced into
your production environment. How you implement the separation will depend on the goal of

47

C H A P T E R 3

■ ■ ■

4134_c03_final.qxd 9/30/04 12:19 PM Page 47

CHAPTER 3 ■ IMPLEMENTING DEPLOYMENT, OPERATIONS, AND ADMINISTRATION STRATEGIES48

each environment. In a typical organization, an environment could be split into one (or even
many) groups.

The following are common environments:

• Development: In this environment, standard development on your systems takes
place. Development can mean many things depending on your organization.

• Staging: After software is developed or new system configurations are established, they’re
commonly moved from a development environment to a staging environment.

• Production: The final move of new software or new system configuration is into the
production environment.

The following are some other common environments:

• Engineering: Engineering work is performed in one environment.

• Quality assurance: The result of engineering work goes through the quality assurance
(QA) procedures. Depending on the type of tasks being performed, QA environments
often have a completely different set of network services, such as Domain Name Ser-
vice (DNS) and Simple Mail Transfer Protocol (SMTP) servers.

• Operations: Upon approval by the QA department, information is passed onto opera-
tions. This is where all engineering products that have passed QA end.

All these types of environments can be divided into even more environments depending
on the size and scope of your infrastructure. You could have hosts for internal access, external
access only, external access by internal resources, internal access by external resources, demil-
itarized zones (DMZ) systems, and so on. The ability to manage these different infrastructures
relies on the appropriate separation of the resources and valid (and current) documentation.
It’s also common to separate different departments so that consistency can be maintained on
that (or any other) level. That is, it may be a good idea to have your finance department on a
different network segment than the help desk because of the sensitive nature of the data going
over the wire.

Regardless of the names used for each of these environments, the idea is the same. You
separate different sets of hosts that aren’t meant to specifically interact with each other into
different network segments and split them into different domains or DNS zones.

Imagine a common scenario where YourCompany’s resources exist in a single local area
network (LAN) with the DNS name of YourCompany.com (see Figure 3-1). All machines are
within the same domain, have random ranges of Internet Protocol (IP) addresses, and can
access the same information on the LAN.

4134_c03_final.qxd 9/30/04 12:19 PM Page 48

CHAPTER 3 ■ IMPLEMENTING DEPLOYMENT, OPERATIONS, AND ADMINISTRATION STRATEGIES 49

Figure 3-1. Typical network separation, logical networks

What you see in Figure 3-1 is a simplified network utilizing a single router. All environments
are in the same network. In some cases, production systems and the DMZ (if the illusion of one
exists) just hang off the same physical layer.

What happens if interns with no security clearance are brought in to do data entry for one
department? The interns would have access to the entire network and could actually view net-
work traffic within the entire environment. What happens when traffic patterns between depart-
ments differ (or when someone is doing some performance and load testing)? What happens
when the performance required for external-facing systems isn’t achievable because of out-of-
control internal network traffic?

Many people realize that there needs to be physical separation between environments on
the network level and have created complicated, and often high-performance, network topolo-
gies to take advantage of the technology readily available today. Companies may use expensive
Layer 3 switches, virtual LANs (VLANs), and oddball packet-shaping tools, only to have their
architectures defeated by inadequate planning. What’s often overlooked is the logical separa-
tion between environments on the system side. It seems that while the world of networks has
been advancing at a rapid pace, the concept of naming, often put solely in the domain of sys-
tem administrators, has been at a standstill. Networks will be separated by a number of differ-
ent layers—all controlled by a single DNS server and single domain name. What happens when
YourCompany.com needs different levels of security based on different environments yet you
have no easy way to group the information?

Let’s assume that YourCompany.com has created a LAN environment that allows for easy
scalability. At first it relied on a single connection out to the Internet with limited network hard-
ware. Because of a good level of initial planning, the architects didn’t just dive into the network
architecture and create a large mess that would take months (or years!) to clean up. An environ-
ment was created with logically and (somewhat) physically separated networks to eventually
create an appropriately scalable LAN. Nothing is worse than attempting to create a controlled
network environment only to have it become a mess.

4134_c03_final.qxd 9/30/04 12:19 PM Page 49

CHAPTER 3 ■ IMPLEMENTING DEPLOYMENT, OPERATIONS, AND ADMINISTRATION STRATEGIES50

Figure 3-2. Typical network separation, physical networks

In this configuration (see Figure 3-2), YourCompany.com has each environment hanging
off the same physical network connected by routers, hubs, or switches, giving the illusion of
a physically segmented network. In this newly created environment, YourCompany.com real-
ized that by segmenting areas into physically separate LANs, all changes would be controlled
through individual switches, hubs, or routers. If the company later needs to increase perform-
ance for a particular department or change a network configuration, it can do this through the
network devices themselves.

In addition, YourCompany.com has created separations in DNS for all the networks—for
example, eng.YourCompany.com and 192.168.30.0/24, as well as qa.YourCompany.com and
192.168.20.0/24. This allows for changes per environment and gives you the ability to delegate
control of naming each environment to its own administrators and servers as the environ-
ment grows. This setup gives you no immediate performance benefits but becomes invaluable
as the company needs major architectural changes in the future.

Setting Up Classes of Hosts
Ultimately, you’ll be deploying more than just a generic OpenLDAP host within your infra-
structure. As the infrastructure grows, you may have multiple hosts mastering data, with some
hosts responsible just for replicating data, and a number of different classes of consumers
used for different purposes. It’s important to be able to differentiate each of these hosts.

Master host: The master host (or, in some cases, hosts) is the primary host that’s master-
ing data. This host is typically not accessible to the end user and most clients. Typically,
master hosts have only the indexes necessary for standard operations to reduce overhead.
That is, you may not want to have the same number of indexes on the master host than
that of a consumer used by the phone book. Having the telephone number indexed on
a master host would negatively impact update performance.

Replica head: The replica head is the host in the infrastructure serving as a buffer between
the master and the various consumers. Its only responsibility is to replicate data across the
environment. The same rules for indexing that apply to master hosts would apply to
replica heads.

4134_c03_final.qxd 9/30/04 12:19 PM Page 50

CHAPTER 3 ■ IMPLEMENTING DEPLOYMENT, OPERATIONS, AND ADMINISTRATION STRATEGIES 51

Application host: An application host could be a standard host that exists even outside of
your standard system but maintains the base schema and configurations you’ve standard-
ized throughout your environment. That is, a vendor may need to sit on top of a Lightweight
Directory Access Protocol (LDAP) system and add various configurations you wouldn’t want
to exist throughout your LDAP infrastructure. The vendor installs an LDAP host, but for the
sake of future integration, it’d be wise for even this host (or set of hosts) to maintain at least
the same base distinguished name (DN), schema, and naming schema that your produc-
tion systems do.

Consumer: A consumer is a standard host, configured as an LDAP consumer, that main-
tains all the standard configurations for use by known applications. Because different types
of queries are performed against the system, it’d be wise to investigate the types of queries
that each set of applications may perform and then distribute their loads across a number
of different systems.

Depending on the size of your environment, you may have multiple classes of con-
sumer hosts for different purposes. These hosts often exist to handle certain types of con-
trolled queries. By controlled, I mean that you know the specific types of applications that
are integrated, or querying, your environment. Standard consumers that pull a small range
of data may have a different set of configurations than consumers used to query larger por-
tions of data (in other words, those used for application synchronization). Table 3-1 shows
an example.

Table 3-1. How Applications May Use LDAP

Type of Application Type of Query Scope of Search Target Host

Phone book Simple queries Very specific Consumer 1
Indexed
Returns 0 to 25 entries

Limited scope Specific queries on General queries, specific scope Consumer 1
application department Indexed

Returns up to 250 entries

Synchronization Queries entire user Large scope Consumer 2
application population Unindexed

Returns entire database

Uncontrolled Random, unknown Unknown scope Consumer 2
application queries Indexed and unindexed

Returns random information

Table 3-1 has different types of LDAP interactions split into Consumer 1 and Consumer 2.
For certain applications, where the types of queries are relatively static, or at least have low over-
head, the applications are pointed to one set of consumers, Consumer 1. The type of informa-
tion being pulled is known, and little chance exists of a query hindering system performance
so much that other applications suffer.

The second type of application, one that’s a bit more dangerous to deploy in your environ-
ment, has the advantage of accessing data from Consumer 2. Applications can query your entire
database and even utilize all your LDAP server’s system resources, but they won’t impact the

4134_c03_final.qxd 9/30/04 12:19 PM Page 51

CHAPTER 3 ■ IMPLEMENTING DEPLOYMENT, OPERATIONS, AND ADMINISTRATION STRATEGIES52

other, friendlier applications. Depending on the number of “abusive” applications you have in
your environment, you may want to create multiple consumer groups.

Using Naming Conventions
Lack of naming standards for components within the LDAP environment is one of the biggest
problems facing today’s administrators. I’ll stress the importance of these standards in this
section to make sure they don’t become an afterthought during your OpenLDAP deployment.

When your system is healthy and all components of your infrastructure are working cor-
rectly, it becomes extremely easy to overlook naming as a critical part of your system. By naming,
I’m referring to the implementation of naming conventions within your enterprise for everything
from hosts to disks, including the appropriate labeling of cables. When something goes wrong, it
can mean the difference between a quick fix and a score of mistakes attempting to figure out how
everything is connected and what roles each host on your network plays. You need to envision an
appropriate naming convention for all components that have any relation to your systems,
including routers, disks, filesystems, and even cables. However, this book sticks to the naming of
hosts, as these other components are in the realm of system administration and are beyond the
scope of this book. Many references are available that demonstrate best practices in name stan-
dardization. You can start with the white papers available from Sun Microsystems, request for
comments (RFCs), and industry-standard Web sites.

People have argued about how to name hosts since, well, the first host needed a name.
The following sections describe the two main sides to the issue of how to name a host—
creative and logical.

■Note RFC 2345, Domain Names and Company Name Retrieval, discusses complications related to
naming conventions and DNS. The document proposes a company-name-to-URL-mapping service based
on Whois in order to explore whether an extremely simple and widely deployed protocol can succeed where
more complex and powerful options have failed or, as it usually the case, have been excessively delayed.
You should read this interesting document to gain a deeper perspective of the issues facing the lack of unity
on the Internet today.

Using the Creative Convention
You’ve probably seen creative naming for hosts and other devices for years. The creative namers
are those responsible for TheyKilledKenny, neptune, and RedJumpSuiteWithTwoBrainsInMyHair—
along with various abuses of naming standards focusing on underscores and special characters.
The overall idea is that the name of a host should be easy to remember and not be confused with
other hosts. No one will confuse neptune and Jupiter, but hosts with similar names (with differ-
ent numbers, as I’ll discuss later) are often thought to be a problem point. This side argument is
that nobody expects to learn much about a person by their name (names are just arbitrary tags),
so the same concept applies to computers.

One of the problems with creating naming is the inability to debug systems using the
smallest amount of tool sets available. If one has to rely on a set of spreadsheets, previous

4134_c03_final.qxd 9/30/04 12:19 PM Page 52

CHAPTER 3 ■ IMPLEMENTING DEPLOYMENT, OPERATIONS, AND ADMINISTRATION STRATEGIES 53

knowledge of the hosts, and other tools in order to understand the host infrastructure, it’d be
difficult to, in a panic, quickly discover and resolve problems. Look at the following traceroute
example:

$ /usr/sbin/traceroute pillow.host.com

traceroute to pillow.host.com (192.168.10.31), 30 hops max, 38 byte packets

gino.host.com (192.168.10.3) 0.390 ms 0.315 ms 0.266 ms

fershizzle.host.com (192.168.10.18) ...

b00gab00ga.host.com (192.168.10.99) ...

ILIKEMEAT.host.com (192.168.10.105) ...

Pillow.host.com (192.168.0.31) ...

While slightly amusing (“Dude, they’ve got a host named fershizzle!”), the output of the
traceroute is rendered almost useless. By looking at this output, it isn’t possible to tell what each
of the devices is, the role each plays within the infrastructure, and how to start approaching the
problem you’re attempting to debug.

RFC 1178
RFC 1178, Choosing a Name for Your Computer, shows one method for choosing appropriate
names, as well as inappropriate names, for various hosts within your infrastructure. It shows
simple guidelines for names that you should avoid. By choosing good names for hosts, you
can avoid many problems in host identity, confusion, and conflict.

Don’t use terms already in use, such as reserved words. For example, choosing hostnames
based on things commonly in use during your daily speech is inappropriate. For example, say
a distributed database had been built on top of several computers. Each one had a different
name. One machine was named up, as it was the one that accepted updates. “Is up down?” doesn’t
make the context of up obvious and creates a “Who’s on first?” scenario.

The following are other recommendations:

Don’t choose a name after a project unique to that machine: If a machine is originally
provisioned for a single purpose, and it’s named after that specific purpose, a great deal of
confusion could arise in the future if the initial scope changed. As I discuss other naming
conventions, you’ll learn obvious solutions for when this happens (which is actually quite
desirable at times). However, realize that it’s difficult to choose generic names that stay valid.

Don’t use your own name: Even if a computer is sitting on your desk, it’s a mistake to
name it after yourself.

Don’t use long names: Although it may be hard to quantify, experience has shown that
names longer than eight characters simply annoy people. Most systems allow prespeci-
fied abbreviations, but why choose a name that you don’t need to abbreviate in the first
place? This removes any chance of confusion.

Avoid alternate spellings: Although it’d be a nice tribute to those from the eastern block
of Europe, having a host named after the Polish spelling of Warsaw (Warszawa) isn’t the
best name for a host. Spelling varies, such as those used by gangstah rappyhz t’ hizzify
theirrr fershizzle awrnt n3sessar1leee rell-uh-vent.

4134_c03_final.qxd 9/30/04 12:19 PM Page 53

CHAPTER 3 ■ IMPLEMENTING DEPLOYMENT, OPERATIONS, AND ADMINISTRATION STRATEGIES54

Avoid domain names: In particular, name resolution of nonabsolute hostnames is
problematic.

Avoid organizational (domainlike) names: That is, domain names are either organi-
zational or geographical. Naming yourself after something that conjures up images of
something else could lead to confusion. The name Tahiti sitting in a data center in
Topeka may be misleading.

Don’t use antagonistic or otherwise embarrassing names.

Don’t use digits at the beginning of the name.

Don’t use special, nonalphanumeric characters in a name.

Don’t expect case to be preserved: Hostnames shouldn’t require case sensitivity. However,
in all files, directories, and databases, you should decide on a standard format for names
(in other words, keeping them all lowercase or uppercase) and preserve that consistency.

Rules for proper hostnames, according to RFC 1178, are as follows:

Use words/names that are rarely used: While words such as typical and up aren’t neces-
sarily computer jargon, they’re just too likely to arise in a discussion and throw off one’s
concentration while determining the correct referent. Words such as lurch and squire
would cause less confusion.

Use theme names: Naming groups of machines in a common way is popular and enhances
communality while displaying depth of knowledge and imagination. A simple example is to
use colors. You should avoid certain finite sets, such as the seven dwarfs or good white rap-
pers, because your infrastructure is likely to grow beyond this set. Mythical places, people,
elements, and others are more scalable. Avoid using famous Russian cricket players.

Use real words: Random strings are inappropriate for the same reason they’re so useful
for passwords. They’re hard to remember.

Don’t worry about reusing someone else’s hostname: You should avoid extremely well-
known hostnames since they’re understood in conversations as absolute addresses even
without a domain (for example, uunet and InterNIC).

And, remember, there’s always room for an exception.
Most people don’t have the opportunity to name more than one or two computers, but

site administrators name large numbers of them. By choosing a name wisely, both users and
administrator will have an easier time remembering, discussing, and typing the names of the
computers.

The process of changing your hostname is, according to all your system manuals, extremely
easy. However, you’ll find that lots of obscure software has rapidly accumulated that refers to
computers using their original names. You’d have to find and quickly change all the references
to your old hostname. Everything from e-mail systems to backup software needs to be informed
of the new hostname. So while the process of changing the name is often quick and easily, the
repercussions are often severe and can cause great headaches. Pick hostnames, and stick with
them. This will save you a great deal of time.

4134_c03_final.qxd 9/30/04 12:19 PM Page 54

CHAPTER 3 ■ IMPLEMENTING DEPLOYMENT, OPERATIONS, AND ADMINISTRATION STRATEGIES 55

RFC 2100
RFC 2100 illustrates in a humorous way the need for name standardization (see Listing 3-1).

Listing 3-1. Why People in IT Aren’t Poets

The Naming of Hosts is a difficult matter,

It isn't just one of your holiday games;

You may think at first I'm as mad as a hatter

When I tell you, a host must have THREE DIFFERENT NAMES.

First of all, there's the name that the users use daily,

Such as venus, athena, and cisco, and ames,

Such as titan or sirius, hobbes or europa--

All of them sensible everyday names.

There are fancier names if you think they sound sweeter,

Some for the web pages, some for the flames:

Such as mercury, phoenix, orion, and charon--

But all of them sensible everyday names.

But I tell you, a host needs a name that's particular,

A name that's peculiar, and more dignified,

Else how can it keep its home page perpendicular,

And spread out its data, send pages world wide?

Of names of this kind, I can give you a quorum,

Like lothlorien, pothole, or kobyashi-maru,

Such as pearly-gates.vatican, or else diplomatic-

Names that never belong to more than one host.

But above and beyond there's still one name left over,

And that is the name that you never will guess;

The name that no human research can discover--

But THE NAMESERVER KNOWS, and will usually confess.

When you notice a client in rapt meditation,

The reason, I tell you, is always the same:

The code is engaged in a deep consultation

On the address, the address, the address of its name:

It's ineffable,

effable,

Effanineffable,

Deep and inscrutable,

singular

Name.

Using the Logical Convention
Logical naming is the idea that a host or a device on the network should have names based on
the function of the host, plus a combination of other factors, including the location. You have
many ways to approach this topic.

4134_c03_final.qxd 9/30/04 12:19 PM Page 55

CHAPTER 3 ■ IMPLEMENTING DEPLOYMENT, OPERATIONS, AND ADMINISTRATION STRATEGIES56

Data Center Layout
Many well-organized companies have large data centers that take care of all their data-processing
needs. These large data centers, which were the “next big thing” during the escalation of tech-
nology to the level it’s at today, are well organized based on the physical location of the rack of
equipment being used. You can use lessons learned from these major data centers deploy-
ments to guide you when you’re establishing your naming practices.

A data center, on paper, is a grid comprised of X, Y, and Z coordinates. The grid is formed
using the computer room tiles or some other identifying feature. Often, a pole or support loca-
tion (with a unique number) is also used. Based on the physical location of a particular server
within the data center, you can generate a coordinate. If a particular coordinate is 24B8, which
may represent that a server is located at tiles 24 and B and located 8 units high (on the rack
itself), you can incorporate this particular designation into the hostname.

The end result, depending on the rest of the naming convention being used, could be
DC05-SUN-24B8.

Pure Function
Another way to approach hostnames is based on the role that the particular host plays within
your enterprise. Every system you deploy plays a particular role, and in many cases, these roles
can be split into multiple groups, as shown in the following lists.

For example, a mail services system may have incoming and outgoing mail transport
functions and mail storage in several locations. The hosts could be named as follows:

• MTI01, for [M]ail[T]ransport[I]ncoming01

• MTO05, for [M]ail[T]ransport[O]utgoing05

• MSSC09, for [M]ail[S]torage[S]anta[C]lara09

• MSCH03, for [M]ail[S]torage[CH]ina03

An LDAP application with master, replica head, and slave hosts in various locations could
use names such as these:

• LDAPMCH, for [LDAP][M]aster[CH]ina05

• LDAPRHS, for [LDAP][R]eplica[H]ead[S]eattle01

The idea is to be able to determine the role based on the hostname. You can tell this nam-
ing system is in use when you see hostnames such as LDAP-RH-05.

Function and Major Designation
A variation of functional-based naming also combines other relevant information into the
name of a host. This information can be the location within the data center, the location
within the rack, its significance within the architecture, or some other designation. The
resulting hostname is always cryptic, but to those familiar with the naming convention used,
it’s relevant and often helpful.

4134_c03_final.qxd 9/30/04 12:19 PM Page 56

CHAPTER 3 ■ IMPLEMENTING DEPLOYMENT, OPERATIONS, AND ADMINISTRATION STRATEGIES 57

Reaching a Compromise
While the debate will continue, a compromise exists. The big misconception is that a host can
have only one name—which is either logical or creative. This isn’t the case. Within DNS, multiple
names for a host exist in the form of A or CNAME records. CNAME records are “canonical name”
records in DNS, which often represent the true name or alias of a host. Within your DNS config-
urations, you may see this:

www IN A 216.240.45.70

toaster IN CNAME www

This shows that the A record for the particular host is set to www, and the CNAME is toaster.
Debates surround whether the A record or CNAME record should be used to represent the true
name of a host or the alias, but I’ll leave that up to you to determine.

The overall idea is that a naming scheme can take advantage of aliases to enable the use
of multiple names for different purposes.

Following Standard Procedures
The following are some basic requirements for standard procedures:

• You should have a set of standard operating procedures for everything deployed within
your environment.

• You should have standard procedures for every component.

• Every set of procedures should adhere to the standards.

Additionally, a set of standard operating procedures should exist for everything deployed
within your environment. Any set of procedures should adhere to the standards set within your
organization. Standard procedures should exist for every component within your infrastructure
where there are options. That is, if there is more than one way of doing something, you should
document it. And even if there’s only one way of doing something, a base set of documentation
should exist to ensure that every task is accomplished correctly.

Using the Standard Host Specifications
Documents should exist that list the type of servers used for your LDAP environment. Standard-
ization on the vendor, the model, and the specific internal configurations will always ensure par-
ity within your environment. Maintaining consistent system configurations will alleviate any
problems you may have in future debugging sessions; in addition, hardware that’s the same will
react the same. Many times a specific system problem results from a different physical network
card being configured on a host. Always maintain consistent configurations for the same class of
host (see Table 3-2).

4134_c03_final.qxd 9/30/04 12:19 PM Page 57

CHAPTER 3 ■ IMPLEMENTING DEPLOYMENT, OPERATIONS, AND ADMINISTRATION STRATEGIES58

Table 3-2. Document-Relevant System Information

Host Class System Type OS Version/Patch Level Network Information Vendor Data

MASTER SUNW, 5.8 Generic_108528-26 192.168.0.1/ PO 12345, Informa-
Sun-Fire-880; 255.255.255.0/MAC tion necessary to re-
8192MB RAM address, and so on order, and so on

CONSUMER SUNW,UltraAX-i2; 5.8 Generic_108528-13
1024MB RAM

Using the Standard Host Installation
It’s necessary to know more than just the base hardware specifications of a host. A host with the
same basic hardware profile will react differently based on the installation of the operating sys-
tem, postinstallation parameters, and configurations at other levels. You’ll need to document
the base host parameters in detail, including the following:

Base image or installation instructions: Many system administrators take advantage of
automated installation features available to most modern operating systems. Solaris has
Jumpstart, and Linux has Kickstart. Other organizations have a junior system administrator
to perform the tasks of automating and standardizing basic operating system installations.

Postinstallation parameters: Once the base image of a host is deployed and the system is
accessible, a considerable amount of work needs to be done to configure a host for a par-
ticular task. Appropriate documentation shows what postinstallation parameters need to
be included as part of a specific host deployment.

An example (using Solaris as a starting point) of such a reference document may include
the set of information that would be configured in various operating system–related files. In
the /etc/system file, you may have the following set of data configured:

set rlim_fd_cur=8192

set rlim_fd_max=8192

set eri:adv_autoneg_cap=0

set eri:adv_100T4_cap=0

set eri:adv_100fdx_cap=1

set eri:adv_100hdx_cap=0

set eri:adv_10fdx_cap=0

set eri:adv_10hdx_cap=0

The startup script S69inet (in /etc/rc2.d) may contain the following Transmission Con-
trol Protocol (TCP) parameters that optimize the TCP performance of your host:

ndd -set /dev/tcp tcp_deferred_ack_interval 5

ndd -set /dev/tcp tcp_smallest_anon_port 8192

ndd -set /dev/tcp tcp_strong_iss 2

ndd -set /dev/tcp tcp_ip_abort_interval 60000

ndd -set /dev/tcp tcp_ip_abort_cinterval 10000

ndd -set /dev/tcp tcp_rexmit_interval_initial 500

ndd -set /dev/tcp tcp_keepalive_interval 600000

4134_c03_final.qxd 9/30/04 12:19 PM Page 58

CHAPTER 3 ■ IMPLEMENTING DEPLOYMENT, OPERATIONS, AND ADMINISTRATION STRATEGIES 59

ndd -set /dev/tcp tcp_time_wait_interval 30000

ndd -set /dev/eri adv_autoneg_cap 0

ndd -set /dev/eri adv_100T4_cap 0

ndd -set /dev/eri adv_100fdx_cap 1

ndd -set /dev/eri adv_100hdx_cap 0

ndd -set /dev/eri adv_10fdx_cap 0

ndd -set /dev/eri adv_10hdx_cap 0

The specific parameters may be different depending on your host and the specific inter-
faces used. Some hosts would use /dev/eri, and others would use /dev/hme. Also, these set-
tings may change from host to host.

Only specific services would need to start up within your environment to comply with
security standards that are in place. These could be as follows:

K21mwa

K28nfs.server

README

S01MOUNTFSYS

S05RMTMPFILES

S20sysetup

S21perf

S30sysid.net

S40llc2

S60random

S68arm

S69inet

S70hplwdce

S71ldap.client

S71rpc

S71sysid.sys

S72autoinstall

S72inetsvc

S73cachefs.daemon

S73nfs.client

S74autofs

S74syslog

S74xntpd

S75cron

S75flashprom

S75savecore

S77sf880dr

S80PRESERVE

S80lp

S88sendmail

S88utmpd

S92volmgt

S93cacheos.finish

S94ncalogd

4134_c03_final.qxd 9/30/04 12:19 PM Page 59

CHAPTER 3 ■ IMPLEMENTING DEPLOYMENT, OPERATIONS, AND ADMINISTRATION STRATEGIES60

S94vxnm-host_infod

S94vxnm-vxnetd

S95ncad

S95vxvm-recover

S96vmsa-server

S98efcode

S98opensshd

S99audit

S99iplanet

S99local.ldap

s99dtlogin

It’s always necessary to document every parameter that may differentiate the installa-
tion of your host from the standard installation. Oracle installations will have a special set of
requirements, and DNS servers may have their own, so LDAP should have a basic set of post-
configuration parameters to ensure it’s working appropriately and configured in a specific
way. Each of these parameters need to be documented and understood by everyone so there
won’t be any future conflicts or wrong ideas about the system configuration. Also remember
that with each revision of the operating system, you need to reexamine these parameters.

Using the Standard Application Installation
It’s just as important to understand, and automate, all the specific application configurations
you’ve created. The default installation for any application is simple enough, but the customiz-
ations required for an application to run within your environment usually aren’t.

Running the Application
The OpenLDAP server, slapd, is designed to run as a stand-alone application. This allows it to
take advantage of caching, manage concurrency issues with underlying databases, and con-
serve system resources. Typically, you invoke slapd during system startup out of the /etc/rc
scripts. Upon startup, slapd normally forks and disassociates itself from the invoking tty. If
configured, the process will print its process ID into a .pid file for convenience.

Starting the Application
In general, you run slapd like this:

/usr/local/etc/libexec/slapd [<option>]*

Other command-line options are available; the latest options for preferences are available
in the 8C man pages for the application. The general syntax is as follows:

/usr/local/libexec/slapd [-[4|6]] [-T (a|c|i|p)]

[-d debug-level] [-f slapd-config-file]

[-h URLs] [-n service-name] [-s syslog-level]

[-l syslog-local-user] [-r directory]

[-u user] [-g group] [-t] [-c cookie]

4134_c03_final.qxd 9/30/04 12:19 PM Page 60

CHAPTER 3 ■ IMPLEMENTING DEPLOYMENT, OPERATIONS, AND ADMINISTRATION STRATEGIES 61

where /usr/local/etc/libexec is determined by configure and where <option> is one of the
options described in the following sections—or in slapd (8). Unless you’ve specified a debug-
ging level (including level 0), slapd will automatically fork and detach itself from its control-
ling terminal and run in the background.

Stopping the Application
To kill slapd safely, you should give a command like this:

kill -INT `cat /usr/local/var/slapd.pid`

where /usr/local/var is determined by configure.

Killing slapd by a more drastic method (with the -9 switch, for example) may cause infor-
mation loss or database corruption. Your operating system may also have the pkill utility avail-
able. This gives you the ability to kill a process based on the pgrep output of the process listing.

Using Command-Line Options
The following command-line options are available to slapd and can impact how the server runs:

-4: Listen on Ipv4 addresses only.

-6: Listen on Ipv6 addresses only.

-d <debug level>: This turns on debugging as defined by the debug level. If this option has
been specified, even with a zero argument, slapd won’t fork or disassociate itself from the
invoking tty. Some generation operation and status messages are printed for any value of
the debug level specified. This operation is taken as a bit string, with each bit correspond-
ing to a different kind of debugging information.

-s <syslog-level>: This option tells slapd at which level debugging statements should be
logged to the syslog (8) facility.

-n <service-name>: This specifies the service name for logging and other purposes. This
defaults to the basename of argv[0], or slapd.

-l syslog-local-use: Selects the local user of the syslog (8) facility. Values can be LOCAL0,
LOCAL1, and so on, up to LOCAL7. The default is LOCAL4. However, this option is permitted
only on systems that support local users with the syslog (8) facility.

-f slapd-config-file: Specifies the slapd configuration file. The default is
/usr/local/etc/openldap/slapd.conf.

-h URLlist: slapd will by default serve ldap:/// (LDAP over TCP on all interfaces on the
default LDAP port). That is, it will bind using INADDR_ANY and port 389. You can use the -h
option to specify LDAP (and other scheme) uniform resource locators (URLs) to serve. For
example, if slapd is given -h "ldap://127.0.0.1:9009/ ldaps:/// ldapi:///", it will bind
127.0.0.1:9009 for LDAP, 0.0.0.0:636 for LDAP over TLS, and LDAP over IPC (Unix domain
sockets). Host 0.0.0.0 represents INADDR_ANY. A space-separated list of URLs is expected.

4134_c03_final.qxd 9/30/04 12:19 PM Page 61

ldap:
ldap:
ldap://127.0.0.1:9009/ldapi:

CHAPTER 3 ■ IMPLEMENTING DEPLOYMENT, OPERATIONS, AND ADMINISTRATION STRATEGIES62

The URLs should be LDAP (ldap://), LDAP over TLS (ldaps://), or LDAP over IPC (ldapi://)
without a DN or other optional parameters, except an experimental extension to indicate
the permissions of the underlying socket on those operating systems that honor them.
Support for the latter two schemes depends on selected configuration options. You can
specify hosts by name or by Ipv4 and IPv6 address formats. Ports, if specified, must be
numeric. The default ldap:// port is 389, and the default ldaps:// port is 636. You indicate
the socket permissions for LDAP over IPC by x-mod=-rwxrwxrwx, x-mod=0777, or x-mod=777,
where any rwx can be - to suppress the related permission (note, however, that sockets
honor only the w permission), and 7 can be any legal octal digit, according to chmod (1).

-r directory: Specifies a chroot jail directory. slapd will chdir (2) and then chroot (2) to
this directory after opening listeners but before reading any configuration file or initializ-
ing any back end.

-u user: slapd will run slapd with the specified username or ID, and that user’s supple-
mentary group access list as set with init-groups (3). The group ID is also changed to this
user’s GID, unless the -g option is used to override.

-g group: slapd will run with the specified group name or ID.

■Note On some systems, running as a nonprivileged user will prevent passwd back ends from accessing
the encrypted passwords. Note also that any shell back ends will run as the specified nonprivileged user.

-t: slapd will read the configuration file (the default if none is given with the -f switch)
and check its syntax, without opening any listener or database.

Implementing Logs
The ability to store, view, monitor, and analyze log files will make or break the success of your
application. Configuring or running an application blind (in other words, with no use of log
files or low log levels) is dangerous because you’re running without the ability to foresee
potential problems or warning messages.

OpenLDAP log file configurations are set in your slapd.conf configuration file. I’ll use
/var/log/slapd-log for these examples. The information stored in this file is determined by
the log level at which your server is running. This information can be useful in tracking what
operations are performed against your server and your server’s response to them. You can
keep track of the types of applications connecting to your system and track the queries that
are performed. This can ultimately give you ideas on system or application tuning.

To demonstrate the format of information, let’s perform a search against your server. I’ll
ask for all entries that contain an objectclass (filter of objectclass=*) and return the cn and
uid attributes.

$ ldapsearch -b "dc=Your,dc=Company" -x "objectclass=*" cn uid

4134_c03_final.qxd 9/30/04 12:19 PM Page 62

ldap://port
ldaps://port

CHAPTER 3 ■ IMPLEMENTING DEPLOYMENT, OPERATIONS, AND ADMINISTRATION STRATEGIES 63

The resulting entry in your log file is as follows:

Feb 17 12:49:53 ldaphost slapd[4359]: daemon: conn=7448 fd=43 connection from

IP=127.0.0.1:40629 (IP=:: 389) accepted.

Feb 20 12:49:53 ldaphost slapd[4359]: conn=7448 op=0 BIND dn="" method=128

Feb 20 12:49:53 ldaphost slapd[4359]: conn=7448 op=0 RESULT tag=97 err=0

text=Feb 20 12:49:53 ldaphost slapd[4359]: conn=7448 op=1 SRCH

base="ou=people,dc=Your,dc=Company" scope=2 filter="(objectClass=*)"

Feb 20 12:49:53 ldaphost slapd[4359]: conn=7448 op=1 SEARCH RESULT tag=

101 err=0 text=

Feb 20 12:49:54 ldaphost slapd[4359]: conn=7448 op=2 UNBIND

Feb 20 12:49:54 ldaphost slapd[4359]: conn=-1 fd=43 closed

The best thing you can do upon initially configuring your server is to perform various oper-
ations against your new host (using command-line utilities such as ldapsearch) and viewing the
log file. You’ll the see how the OpenLDAP server interprets your command-line options. In the
process of installing new applications or configuring existing applications for LDAP interoper-
ability, it’s always a good idea to view the log files and see exactly what the application is doing.

The following is a log file that shows a user’s authentication:

Feb 20 12:53:14 ldaphost slapd[4359]: daemon: conn=7453 fd=43

connection from IP=127.0.0.1:40648 (IP=:: 389) accepted.

Feb 20 12:53:14 ldaphost slapd[4359]: conn=7453 op=0 BIND

dn="CN=MANAGER,DC=YOUR,DC=COMPANY" method=128

Feb 20 12:53:14 ldaphost slapd[4359]: conn=7453 op=0 RESULT

tag=97 err=0 text=

Feb 20 12:53:14 ldaphost slapd[4359]: conn=7453 op=1 SRCH

base="dc=Your,dc=Company" scope=2 filter="(uid=tjackiewicz)"

Feb 20 12:53:14 ldaphost slapd[4359]: conn=7453 op=1 SEARCH

RESULT tag=101 err=0 text=

Feb 20 12:53:14 ldaphost slapd[4359]: conn=7453 op=2 SRCH

base="ou=Group,dc=Your,dc=Company" scope=1

filter="(&(objectClass=posixGroup)(|(memberUid=tjackiewicz)

(uniqueMember=uid=tjackiewicz,ou=People,dc=Your,dc=Company)))"

Feb 20 12:53:14 ldaphost slapd[4359]: conn=7453 op=2 SEARCH

RESULT tag=101 err=0 text=

Feb 20 12:53:14 ldaphost slapd[4359]: conn=7453 op=3 SRCH

base="ou=People,dc=Your,dc=Company" scope=1

filter="(&(objectClass=shadowAccount)(uid=tjackiewicz))"

Feb 20 12:53:14 ldaphost slapd[4359]: conn=7453 op=3 SEARCH

RESULT tag=101 err=0 text=

Each connection to the server is assigned a number so that you can trace multiple entries
belonging to the same action.

Summary
Upon reading this chapter, you should now be able to deploy a functional and optimized envi-
ronment and run a base configuration of your OpenLDAP directory server.

4134_c03_final.qxd 9/30/04 12:19 PM Page 63

4134_c03_final.qxd 9/30/04 12:19 PM Page 64

Installing OpenLDAP

This chapter covers how to install OpenLDAP, including choosing the version for you, obtain-
ing the distribution, and creating your base configurations. It also introduces some of the util-
ities that are included in the base distribution. The installation instructions provided in this
chapter are for the latest release of OpenLDAP available at the time of this writing—version
2.2.4. You can regularly check the OpenLDAP project Web site (http://www.openldap.org) for
updated installation instructions and any changes that may have occurred. This installation
guide should serve as a base set of installation instructions to help you but shouldn’t be used
as a definitive source for all forthcoming releases.

Choosing a Distribution
OpenLDAP is available for free from many sources. The OpenLDAP project distributes Light-
weight Directory Access Protocol (LDAP) in only its source code form. It’s up to you to compile
your own copy or obtain a precompiled set of binaries from another distribution site. OpenLDAP
has the following development and release types:

OpenLDAP release: This is the latest release of the OpenLDAP software for general use. It
should be used by those familiar with the code itself or those wanting to stay on the
bleeding edge of technology. This release has had minimal public testing.

OpenLDAP stable release: This is the release determined through general use to be the
most stable. This release has gone through significant testing by the OpenLDAP project
and the public.

OpenLDAP test releases: These are beta (or alpha, gamma, and so on) releases some-
times made available by developers. These releases are meant for testing purposes only
and are commonly released so that significant new features can be tested.

Update releases and patches: These are also sometimes made to update and fix problems
in previous releases when a full release isn’t warranted.

Depending on where you obtain it, you can get OpenLDAP as source code (which is how
it’s primarily released and maintained) or as a package of binaries for the platform on which
you choose to run it. The procedures for each type of installation will differ based on the oper-
ating system and version you’ll be using. Regardless, the postinstallation configuration
parameters, which are what this chapter concentrates on, will be the same throughout.

65

C H A P T E R 4

■ ■ ■

4134_c04_final.qxd 9/30/04 11:27 AM Page 65

http://www.openldap.org

CHAPTER 4 ■ INSTALLING OPENLDAP66

Setting Up Your System
OpenLDAP requires that certain software be available on your host for it to compile success-
fully. If the software it’s looking for doesn’t exist on your default host, you must make sure to
install it. You’ll need the following software:

C development environment: Obviously, in order to compile code written in C, it’s
necessary to have a compiler and a standard set of libraries installed on your system. By
default, Linux distributions come with a compiler. Solaris often requires the installation of
a compiler outside the standard operating system installation. If you’re lacking a compiler
in your environment and the standard set of necessary libraries, look into the installation
of the GNU Compiler Collection (GCC). Visit http://www.gnu.org for more information.

OpenSSL: OpenSSL is required to be able to use OpenLDAP with Secure Sockets Layer
(SSL) support within your system. The OpenSSL project is a collaborative effort to develop
a robust, commercial-grade, full-featured, and open-source tool kit implementing SSL ver-
sion 2/3 and Transport Layer Security (TLS) version 1, as well as a full-strength general-
purpose cryptography library. Visit http://www.openssl.org for more information.

Berkeley Database (Berkeley DB) from Sleepycat: Sleepycat is the back-end database
used to store information in OpenLDAP and provides the base set of libraries necessary
for OpenLDAP to function. Berkeley DB is the most widely used application-specific data
management software in the world. It’s used for mission-critical applications throughout
the world and is the back-end storage system for many applications you’ve probably used.
Visit http://www.sleepycat.com for more information.

If, during your installation process, you get complaints about other missing components,
please refer to the installation instructions included with the specific distribution of OpenLDAP
that you’re using.

Choosing a Special User
OpenLDAP can’t be run as root. For this reason, you’ll need to create a special user (such as
nobody) with no shell privileges for slapd. The user should have no password (in other words,
locked out with *), no valid shell, and no privileges in any way. The shell /bin/false is com-
monly used as a false shell. You need to ensure that it exists in /etc/shells for it to be valid
on the system.

Obtaining the Distribution
For the examples in this book, you’ll use /tmp as the base directory for storing all the installa-
tion files for OpenLDAP.

root@linuxhost# pwd

/tmp

Once you’ve verified your starting point, you’ll need to obtain the source code. Listing 4-1
demonstrates this using File Transfer Protocol (FTP).

4134_c04_final.qxd 9/30/04 11:27 AM Page 66

http://www.gnu.org
http://www.openssl.org
http://www.sleepycat.com

CHAPTER 4 ■ INSTALLING OPENLDAP 67

Listing 4-1. Obtaining the Source Code via FTP

root@linuxhost# ftp ftp.openldap.org

Connected to www.openldap.org.

220 boole.openldap.org FTP server (Version 6.00LS) ready.

500 'AUTH GSSAPI': command not understood.

Name (ftp.openldap.org:root): ftp

331 Guest login ok, send your email address as password.

Password: user@linuxhost

230- Copyright 1998-2002, The OpenLDAP Foundation, All Rights Reserved.

230- COPYING RESTRICTIONS APPLY, see:

230- ftp://ftp.openldap.org/COPYRIGHT

230- ftp://ftp.openldap.org/LICENSE

230 Guest login ok, access restrictions apply.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> cd pub

250 CWD command successful.

ftp> ls

200 PORT command successful.

150 Opening ASCII mode data connection for '/bin/ls'.

total 12

drwxrwxr-x 5 2000 20 512 Dec 31 04:18 OpenLDAP

drwxr-xr-x 12 0 65533 512 Dec 14 19:58 UMich-LDAP

lrwxrwxrwx 1 0 65533 8 Apr 7 2003 openldap -> OpenLDAP

drwxr-xr-x 2 2000 20 512 Aug 24 2002 tools

226 Transfer complete.

ftp> cd OpenLDAP

250 CWD command successful.

ftp> ls

200 PORT command successful.

150 Opening ASCII mode data connection for '/bin/ls'.

total 44

-rw-r--r-- 1 2000 2000 2241 Dec 31 18:20 COPYRIGHT

-rw-r--r-- 1 2000 20 2214 Dec 4 23:02 LICENSE

-rw-r--r-- 1 2000 20 1258 Jul 6 2003 MIRRORS

-rw-r--r-- 1 2000 20 848 Dec 4 23:05 README

lrwxrwxrwx 1 0 20 13 Apr 7 2003 openldap-alpha -> openldap-test

lrwxrwxrwx 1 0 20 13 Apr 7 2003 openldap-beta -> openldap-test

lrwxrwxrwx 1 0 20 13 Apr 7 2003 openldap-gamma -> openldap-test

drwxr-xr-x 2 2000 20 4608 Dec 31 04:17 openldap-release

lrwxrwxr-x 1 2000 20 35 Dec 31 04:18 openldap-release.tgz -> openldap-rel

ease/openldap-2.2.4.tgz

drwxr-xr-x 2 2000 20 2048 Dec 18 03:03 openldap-stable

lrwxr-xr-x 1 0 20 44 Dec 18 03:04 openldap-stable.tgz

-> openldap-stable/openldap-stable-20031217.tgz

drwxr-xr-x 2 2000 20 1024 Dec 1 04:22 openldap-test

226 Transfer complete.

4134_c04_final.qxd 9/30/04 11:27 AM Page 67

http://www.openldap.org
ftp://ftp.openldap.org/COPYRIGHT
ftp://ftp.openldap.org/LICENSE

CHAPTER 4 ■ INSTALLING OPENLDAP68

In Listing 4-1, you can see the various versions of OpenLDAP available to you. Versions
exist for a number of operating systems, and you’ll see different types of releases, as discussed
earlier. Once you’ve identified the version you want to download, you can proceed with the
following code:

ftp> binary

200 Type set to I.

ftp> mget openldap-release.tgz

mget openldap-release.tgz? y

200 PORT command successful.

150 Opening BINARY mode data connection for 'openldap-release.tgz' (2429622 bytes).

226 Transfer complete.

2429622 bytes received in 0.89 seconds (2.7e+03 Kbytes/s)

ftp> quit

221 Goodbye.

You should by now have successfully downloaded a copy of the OpenLDAP source code.
To verify that the version of OpenLDAP you’ve obtained is an original and hasn’t been tam-
pered with, check the supplied signature with the Pretty Good Privacy (PGP) key available on
the OpenLDAP Web site.

■Note You can also obtain OpenLDAP from http://www.openldap.org using a Web browser or from
a Concurrent Versions System (CVS) tree. The method of obtaining the binaries (or source code) depends on
your preference.

Performing the Base Installation
Now you must prepare for the base installation of the distribution by running the following
code on your target installation host:

root@linuxhost# ls openldap-release.tgz

openldap-release.tgz

root@linuxhost# mkdir ol

root@linuxhost# mv openldap-release.tgz ol

root@linuxhost# cd ol

root@linuxhost# gzip -d openldap-release.tgz

root@linuxhost# tar xvf openldap-release.tar

openldap-2.2.4/

openldap-2.2.4/doc/

openldap-2.2.4/doc/man/

Complete output of 'tar' removed

..

4134_c04_final.qxd 9/30/04 11:27 AM Page 68

http://www.openldap.org

CHAPTER 4 ■ INSTALLING OPENLDAP 69

Once you’ve uncompressed and untarred the source code, it’s a good idea to review the pro-
vided documentation. You should review the COPYRIGHT, LICENSE, README, and INSTALL
documents contained within the distribution. COPYRIGHT and LICENSE provide information
on acceptable use, copying, and the warranty of the OpenLDAP software distribution.

Now you’re ready to start the process of installing the software. Because you downloaded
and extracted the installation to the /tmp directory, you should move the contents to a base
installation directory of /usr. If you don’t do this, variables related to the software HOME path
will be set to /tmp. It’s here that you’ll either pass the stage without an error or realize that
something may be missing on your system. You may want to modify the options passed to the
configure script to fine-tune your system environment. The configure script accepts many
command-line options that enable or disable optional software features. Usually the defaults
are fine, but you may want to change them for a number of reasons. For example, you may
want to include or exclude certain libraries depending on how your base operating system is
configured. However, this will rarely be necessary if you’re keeping up-to-date with the latest
releases and patch levels of your operating system. To get a compete list of options that configure
accepts, use the -help option, like so:

root@localhost# ./configure -help

You’ll see a large number of options listed here. Don’t be alarmed if you aren’t familiar
with all the options listed. You won’t have to deal with a majority of them. However, flexibility
is always one of the goals of open-source software, so enough rope is always given to the sys-
tem administrator—enough to hang yourself and enough to get out of a hole. The direction
you want to go is up to you. The script relies on environment variables for determining com-
piler and linker options. Table 4-1 describes some of the important ones.

Table 4-1. Environment Variables for Compiler and Linker Options

Variable Description Example

CC C compiler gcc

CFLAGS C flags -O -g

CPPFLAGS CPP flags -I/path/include -DFOO=42

LDFLAGS LD flags -L/usr/local/lib

LIBS Libraries -llib

PATH Command path /usr/local/bin:/usr/bin:/bin

Ensure that your environment variables are set appropriately before continuing with the
installation procedure. If you had to install various sets of libraries on your system as a pre-
requisite for installing OpenLDAP, you have a good chance that your environment is lacking
some vital information necessary for the installation to work.

Take note of where the include and lib files for your prerequisite applications have been
installed and set them appropriately. If you’re linking against shared libraries that reside in
nonstandard locations, you’ll need to tell the dynamic linker where to find them; otherwise
the resulting executable files will not run. The stops are operating system-dependent but usu-
ally involve setting environment variables (or modifying /etc files) before attempting to run
the programs. In most environments, this involves modifying LD_LIBRARY_PATH. You may also

4134_c04_final.qxd 9/30/04 11:27 AM Page 69

CHAPTER 4 ■ INSTALLING OPENLDAP70

need to modify /etc/ld.so.conf. Refer to your operating system manuals or consult your sys-
tem administrator if you have problems.

root@linuxhost# cd openldap-2.2.4/

root@linuxhost# ./configure

Copyright 1998-2003 The OpenLDAP Foundation. All rights reserved.

Restrictions apply, see COPYRIGHT and LICENSE files.

Configuring OpenLDAP 2.2.4-Release ...

checking host system type... i686-pc-linux-gnu

Complete output of './configure' removed

..

One common error that’s often encountered is a script that complains that the Berkeley
DB version is incompatible.

Full output of command removed

checking for db.h... yes

checking for Berkeley DB link (default)... no

checking for Berkeley DB link (-ldb42)... no

checking for Berkeley DB link (-ldb-42)... no

checking for Berkeley DB link (-ldb-4.2)... no

checking for Berkeley DB link (-ldb-4-2)... no

checking for Berkeley DB link (-ldb-4)... no

checking for Berkeley DB link (-ldb4)... no

checking for Berkeley DB link (-ldb)... yes

checking for Berkeley DB thread support... yes

checking Berkeley DB version for BDB backend... no

configure: error: BDB: BerkeleyDB version incompatible

This is one of the most common errors you’ll encounter during your installation. To rem-
edy the situation, install the Sleepycat DB libraries. These libraries are available through Sleepy-
cat Software at http://www.sleepycat.com. However, other situations may arise because of
various features (whether you want them or not) not being compatible with the system on
which you’re installing OpenLDAP.

The configure program is part of a GNUs Not Unix (GNU) suite of tools used to standard-
ize the configuration of utilities you’ll use on your Unix-based systems. It takes the place of
proprietary configuration programs that differ from program to program and from platform to
platform. The options that can be used with the configuration utilities are beyond the scope of
this book and will likely change as new versions are released. Refer to the man pages for spe-
cific configuration options you may find useful for your particular deployment. You can con-
figure nearly everything you can think of via files or via the command line with the configure
program and associated tool kits.

4134_c04_final.qxd 9/30/04 11:27 AM Page 70

http://www.sleepycat.com

CHAPTER 4 ■ INSTALLING OPENLDAP 71

Compiling OpenLDAP
Once you’ve resolved all the errors, you’re ready for the next step. Run the following:

root@linuxhost# make depend

Making depend in /tmp/ol/openldap-2.2.4

Entering subdirectory include

Full output of command deleted

...

This command constructs the dependencies. Now you’re ready for the actual compilation
of the software. Run the following:

root@linuxhost# make

Making all in /tmp/ol/openldap-2.2.4

Entering subdirectory include

Full output of command deleted

...

Once you’ve compiled the software and you’ve received no errors, you can test the results
with the following:

root@linuxhost# make test

cd tests; make test

Full output of command deleted

...

Now you’re ready for the actual installation. Run the following:

root@linuxhost# make install

Making all in /tmp/ol/openldap-2.2.4

Entering subdirectory include

Full output of command deleted

...

Upon the successful installation of your system, all you really have in place are a set of
libraries that can’t be accessed (and used) and subdirectories full of various binaries that aren’t
yet configured. It’s from this point on that you’ll need to modify all the relevant configuration
files to create an OpenLDAP server that will suit your specific needs.

Creating a Local Database
Upon the successful installation of your base OpenLDAP distribution, you’re left with an empty
directory and a large virtual box of tools. For you to have a functional directory server, you need
to install a directory. You have a number of options you can use depending on your particular
scenario.

For small deployments, or if this is a stand-alone instance, creating a database manually
may be sufficient. For larger infrastructures, using LDAP tools to create and maintain your
directory remotely is a more appropriate method.

4134_c04_final.qxd 9/30/04 11:27 AM Page 71

CHAPTER 4 ■ INSTALLING OPENLDAP72

For these examples, you’ll be working with a standard set of assumptions about your
infrastructure, as shown in Table 4-2.

Table 4-2. Environment Assumptions

Token Value Explanation

Suffix "dc=Your,dc=Company" This is the base distinguished name (DN).

Directory /usr/local/var/openldap-data This is where the index files will reside.

rootdn "cn=Directory Manager" This is your directory administrator,
equivalent to the root or administrator of
your systems.

rootpw Password This is the password for your rootdn.

You need to create all the directories specified in Table 4-2 with the appropriate permis-
sions so that slapd can write to them. Additionally, the first accounts you’ll be using to modify
information in your directory should be treated as root accounts—that is, you have full control
of the directory using these accounts. These are special accounts that are hard-coded externally
within your configuration files and will also have the ability to modify your directory.

Finally, you should make sure the database definition within your slapd configuration file
contains the index definitions you want; use the following code:

index {<attrlist> | default} [pres,eq,approx,sub,none]

For example, to index the cn sn, uid, and objectclass attributes, you can use the following
index directives:

index cn,sn,uid pres,eq,approx,sub

index objectClass eq

This creates presence, equality, approximate, and substring indexes for the cn, sn, and uid
attributes and an equality index for the objectClass attribute. Note that not all index types are
available with all attribute types. While it’d be easy to overdo the indexing on your system and
add all types of indexes for every attribute you have available, this method would soon be self-
defeating, as the system resources you have available will not be utilized appropriately.

Once you’ve configured things to your liking, you can start slapd, connect to your new direc-
tory with your LDAP client, and start adding entries to your null database. The initial set of data
you’ll need to add is the base organizational information (the base DN) and the Directory Infor-
mation Tree hierarchy. Create an LDAP Interchange Format (LDIF) file containing this informa-
tion and save it, as it will be used to create the base of all your future systems. A sample LDIF may
look like this:

Base Configuration for Your Company

dn: dc=Your,dc=Company

objectclass: dcObject

objectclass: organization

dc: Your

o: Your Company

description: Your Company dot Com

4134_c04_final.qxd 9/30/04 11:27 AM Page 72

CHAPTER 4 ■ INSTALLING OPENLDAP 73

Figure 4-1. Communication via LDAP API versus implementation-specific methods

Standard INTERNAL Organizational Units

dn: ou=Internal, dc=Your,dc=Company

objectclass: organizationalunit

ou: Internal

description: Internal Components

Standard EXTERNAL Organizational Units

dn: ou=External,dc=Your,dc=Company

objectclass: organizationalunit

ou: External

description: External Components

You can use the ldapadd or ldapmodify commands, which are explained in the next section,
to add these entries to your directory. This method is generic enough to work for almost all LDAP
implementations. This is because standard LDAP methods are used along with standard LDAP
application programming interfaces (APIs). The target systems are treated as generic LDAP hosts,
and no implementation specific tools are used.

Figure 4-1 demonstrates the difference between using LDAP-based tools versus those that
depend on the implementation.

The next section demonstrates a real example of communication via specific implementa-
tion methods. Although communicating with your directory using system tools may be quicker,
it may not scale and may change between implementations and versions.

Creating an Offline Database
Another method of database creation is to do it offline, using the standard slapd database tools
that interact directly with the database files. That is, you can skip the standard LDAP APIs and
use proprietary methods (specific to OpenLDAP as an implementation of LDAP). This method

4134_c04_final.qxd 9/30/04 11:27 AM Page 73

CHAPTER 4 ■ INSTALLING OPENLDAP74

is best if you have a large number of entries to create and if it’d be time prohibitive to simple
add them while the system is running. This is typically the case for systems that are being
restored from backup or when you’re converting an existing directory (from another vendor
or version) to OpenLDAP. This method of database creation requires localized access to tools
that read the slapd configuration files and an input file in LDIF format. Database files are
written directly to the system using nonstandard methods that are proprietary to OpenLDAP.
Ensure that your base configuration files for slapd are configured to your liking. The suffix
and all directory paths need to be configured and valid for all this to work. You’ll also need to
define your list of indexes.

You specify your indexes using the following format:

index {<attrlist> | default} [pres,eq,approx,sub,none]

The following is an example:

index cn,sn,uid pres,eq,approx,sub

index objectClass eq

This creates presence, equality, approximate, and substring indexes for the cn, sn, and uid
attributes and an equality index for the objectClass attribute. Not all index types are available
with all attribute types. An example of usage is as follows:

$ slapindex -b dc=Your,dc=Company

This will reindex your directory, with a base DN of dc=Your,dc=Company using the default
slapd.conf configuration file on your server.

Once you’ve created the base configurations for your system, you can use the slapadd
program to import LDIF entries into your directory. An example of its usage is as follows:

$ slapadd -v -b dc=Your,dc=Company -f slapd2.conf -l file.ldif

This will add the contents of file.ldif to your directory with a base DN of
dc=Your,dc=Company in verbose mode (-v) while reading the alternate configuration file
slapd2.conf.

To view (or cat, which is taken from the Unix command) your directory in database order,
you can use the slapcat program. This outputs the contents of your database into an LDIF file
suitable for importing with slapadd. An example of its usage is as follows:

$ slapcat -l output.ldif -b dc=Your,dc=Company

This will output, to output.ldif, the contents of your directory with the base DN of
dc=Your,dc=Company.

■Note The following sections explain the slapadd and slapcat commands in more detail.

4134_c04_final.qxd 9/30/04 11:27 AM Page 74

CHAPTER 4 ■ INSTALLING OPENLDAP 75

Using LDAP Search Filters
Tools allow you to communicate with a directory, but the real power lies in the search filters that
you’ll be using to retrieve data from your OpenLDAP directory. RFC 1960, A String Representa-
tion of LDAP Search Filters, first defined the network representation of a search filter transmitted
to an LDAP server. It defined a human-readable format that represented the string filters you
have available.

Listing 4-2 shows an LDAP search filter.

Listing 4-2. LDAP Search Filter

Filter::= CHOICE {

And [0] SET OF Filter,

Or [1] SET OF Filter,

Not [2] Filter,

EqualityMatch [3] AttributeValueAssertion,

Substrings [4] SubstringFilter,

GreatOrEqual [5] AttributeValueAssertion,

LessOrEqual [6] AttributeValueAssertion,

Present [7] AttributeType,

ApproxMatch [8] AttributeValueAssertion,

}

SubstringFilter ::= SEQUENCE {

type AttributeType,

SEQUENCE OF CHOICE {

initial [0] LDAPString,

any [1] LDAPString,

final [2] LDAPString

}

}

AttributeValueAssertion ::= SEQUENCE {

attributeType AttributeType,

attributeValue AttributeValue

}

AttributeType ::= LDAPString

AttributeValue ::= OCTET STRING

LDAPString ::= OCTET STRING

LDAPString in Listing 4-2 is limited to the IA5 character set. AttributeType is a string rep-
resentation of the attribute type name and is defined in [1]. AttributeValue OCTET STRING has
the form defined in [2]. Filter is encoded for transmission over a network using the Basic
Encoding Rules (BERs) defined in [3], with simplifications described in [1].

In December 1997, RFC 2254, also named A String Representation of LDAP Search Filters,
replaced RFC 1960 and made modifications to the basic format to include support for LDAP
3’s extended match filters. You should understand both in order to facilitate communication
with both LDAP 2 and LDAP 3 client-server combinations.

4134_c04_final.qxd 9/30/04 11:27 AM Page 75

CHAPTER 4 ■ INSTALLING OPENLDAP76

Listing 4-3 shows a string representation of LDAP search filters.

Listing 4-3. String Representation of LDAP Search Filters

Filter ::= CHOICE {

And [0] SET OF Filter,

or [1] SET OF Filter,

not [2] Filter,

equalityMatch [3] AttributeValueAssertion,

substring [4] SubstringFilter,

greaterOrEqual [5] AttributeValueAssertion,

lessOrEqual [6] AttributeValueAssertion,

present [7] AttributeDescription,

approxMatch [8] AttributeValueAssertion,

extensibleMatch [9] MatchingRuleAssertion

}

SubstringFilter ::= SEQUENCE {

Type AttributeDescription,

SEQUENCE OF CHOICE {

Initial [0] LDAPString,

Any [1] LDAPString,

Final [2] LDAPString

}

}

AttributeValueAssertion ::= SEQUENCE {

AttributeDesc AttributeDescription,

AttributeValue AttributeValue

}

MatchingRuleAssertion ::= SEQUENCE {

MatchingRule [1] MatchingRuleID OPTIONAL,

Type [2] AttributeDescription OPTIONAL,

MatchValue [3] AssertionValue,

DnAttributes [4] BOOLEAN DEFAULT FALSE

}

AttributeDescription ::= LDAPString

AttributeValue ::= OCTET STRING

MatchingRuleID ::= LDAPString

AssertionValue ::= OCTET STRING

LDAPString ::= OCTET STRING

LDAPString in Listing 4-3 is limited to the UTF-8 encoding of the ISO 10646 character set
[4]. AttributeDescription is a string representation of the attribute description and is defined
in [1]. AttributeValue and AssertionValue OCTET STRING have the form defined in [2]. Filter
is encoded for transmission over a network using the BERs defined in [3], with simplifications
described in [1].

4134_c04_final.qxd 9/30/04 11:27 AM Page 76

CHAPTER 4 ■ INSTALLING OPENLDAP 77

The grammar shown in Listing 4-4 uses the string representation of an LDAP search filter.
It uses a prefix format to denote value, which I’ll demonstrate in later examples.

Listing 4-4. String Representation of an LDAP Search Filter

<filter> ::= '(' <filtercomp> ')'

<filtercomp> ::= <and> | <or> | <not> | <item>

<and> ::= '&' <filterlist>

<or> ::= '|' <filterlist>

<not> ::= '!' <filter>

<filterlist> ::= <filter> | <filter> <filterlist>

<item> ::= <simple> | <present> | <substring>

<simple> ::= <attr> <filtertype> <value>

<filtertype> ::= <equal> | <approx> | <greater> | <less>

<equal> ::= '='

<approx> ::= '~='

<greater> ::= '>='

<less> ::= '<='

<present> ::= <attr> '=*'

<substring> ::= <attr> '=' <initial> <any> <final>

<initial> ::= NULL | <value>

<any> ::= '*' <starval>

<starval> ::= NULL | <value> '*' <starval>

<final> ::= NULL | <value>

In Listing 4-4, <attr> is a string representing an AttributeType and has the format defined
in [1]. <value> is a string representing an AttributeValue, or part of one, and has the form
defined in [2]. If a <value> must contain one of the characters *, (, or), these characters should
be escaped by preceding them with the backslash (\) character. Note that although both the
<substring> and <present> productions can produce the attr=* construct, this construct is
used only to denote a presence filter.

While it’s always good to understand the defined set of standards as they apply to search
filters, real-world examples demonstrate their usage in a friendlier way (see Table 4-3).

Table 4-3. Search Filter Examples

Goal of Search Search Filter Explanation

GivenName is Tom givenname=Tom This is a simple search where
an attribute value is on the left
and a search string is on the
right.

GivenName is Tom W (givenname="Tom W") Parentheses and quotes are
recommended to differentiate
this from the command-line
parameters.

GivenName is Tom W and (&(givenname="Tom W") This is prefixed by an amper-
Objectclass is (Objectclass=YourCompanyPerson)) sand (&) to show that you want
YourCompanyPerson both sets of criteria to be met.

4134_c04_final.qxd 9/30/04 11:27 AM Page 77

CHAPTER 4 ■ INSTALLING OPENLDAP78

Using OpenLDAP Utilities
OpenLDAP provides you with a robust set of tools you can use to read, modify, destroy, and
utilize data stored within the directory. A firm grasp of all the tools and parameters is neces-
sary to become an expert in OpenLDAP and the overall world of LDAP. All the OpenLDAP utili-
ties are, in some way or another, direct interfaces to the standard libraries calls given to you.
The utilities (and other components of OpenLDAP, such as configuration files) you’ll be work-
ing with will be divided into the standard man page sections (see Table 4-4).

Table 4-4. Man Page Sections

Man Page
Section Explanation Examples

1 General commands, tools, and utilities. ldapcompare, ldapmodify, ldapdelete,
ldapadd, ldapmodrdn, ldappasswd,
ldapsearch, ldapwhoami, ud

2 System services and error numbers. No information relevant to OpenLDAP

3 User-level library functions. ldap_delete, ldap_add, ldap_search,
ldap_abandon. Refer to the programming-
related chapters of this book.

4 Device drivers, protocols, and network No information relevant to OpenLDAP
interfaces.

5 File formats used or read by various LDIF format, slapd.conf, ldap.conf,
programs. .ldaprc, ud.conf, slapd.replog,

slapd.access

6 Games and demos. No information relevant to OpenLDAP

7 Miscellaneous useful information pages. No information relevant to OpenLDAP

8 System maintenance and operation slapcat, mail500, slapadd, slapd,
commands. slapindex, slapdpasswd, slurpd

9 This system contains information about No information relevant to OpenLDAP
the interfaces and subroutines in the
kernel.

Whenever a number in parentheses follows a component of OpenLDAP, it refers to the
particular man page section to which it refers. This is useful because the same name may be
used for a configuration file and a utility. That is, login (1) may refer to the login command,
and login (5) may refer to a configuration file by the same name. These numbers will help dif-
ferentiate the terms. Each of these sections can also have subsections, as shown in Table 4-5.

4134_c04_final.qxd 9/30/04 11:27 AM Page 78

CHAPTER 4 ■ INSTALLING OPENLDAP 79

Table 4-5. Man Page Subsections

Man Page Section Explanation

C Daemons and related tools that interface with daemons

P Perl utilities

PM Perl modules

M Ncurses, terminal components

X X Window system programs or system libraries

Menu Ncurses, SVR4-compatible screen menus

Ncurses Ncurses terminal screen painting

Curses Curses terminal screen painting

Form Curses, SVR4-compatible screen forms

Nas Network audio system libraries

Readline GNU readline prompt routines

Emacs20 Emacs system commands

Emacs21 Emacs system commands

Vga Svgalib components

Snmp Net-SNMP libraries

Tcl TCL libraries

TclX Extended TCL libraries

Tcsh Tcsh shell components

Gcc GNU C compiler library components

SSL SSL libraries and components

ldapmodify (1) and ldapadd (1)
The ldapmodify (1) and ldapadd (1) programs are interfaces to the ldap_modify (3) and
ldap_add (3) library calls. The following is a synopsis of their command-line options:

ldapmodify [-a] [-c] [-S file] [-n] [-v] [-k] [-K] [-M[M]]

[-d debuglevel] [-D binddn] [-W] [-w passwd]

[-y passwdfile] [-H ldapuri] [-h ldaphost]

[-p ldapport] [-P 2|3] [-O security-properties]

[-I] [-Q] [-U authcid]

[-R realm] [-x] [-X authzid] [-Y mech] [-Z[Z]] [-F][-f file]

ldapadd [-c] [-S file] [-n] [-v] [-k] [-K] [-M[M]]

[-d debuglevel] [-D binddn] [-W] [-w passwd]

[-y passwdfile] [-h ldaphost] [-p ldap-port] [-P 2|3] [-O security-properties]

[-I] [-Q] [-U authcid] [-R

realm] [-x] [-X authzid] [-Y mech] [-Z[Z]][-F] [-f file]

4134_c04_final.qxd 9/30/04 11:27 AM Page 79

CHAPTER 4 ■ INSTALLING OPENLDAP80

The ldapadd (1) program is a hard link to the ldapmodify (1) tool. When ldapadd (1) is
invoked, the -a (add new entry) flag is turned on automatically. The specific command-line
options for these utilities are as follows:

-a: Add new entries. This sets the default changetype to add (changetype: add). The default
for ldapmodify is modify (changetype: modify). If invoked as ldapadd, this flag is set.

-c: Continuous operation mode. Errors are reported, but ldapmodify will continue with
modifications. The default is to exit after reporting an error. Imagine the scenario where
you want to make 10,000 modifications to your directory. For whatever reason, your opera-
tion fails after 8,000. So 8,000 commands have completed successfully, but you have 2,000
left to go. Instead of attempting to figure out where the program left off, you can run the
10,000 operations again in continuous mode and ignore the first 2,000 errors, which will
most likely complain that the modification you’re trying to make has already been done.

-S file: Add or change records that were skipped because of an error are written to file,
and the error message returned by the server is added as a comment.

-n: Show what would be done but don’t actually modify the entries. This option is useful
for debugging in conjunction with the -v flag.

-v: Use verbose mode, with many diagnostics written to STDOUT.

-k: Use Kerberos IV authentication instead of simple authentication. You must compile
with Kerberos support for this option to have any effect.

-K: Same as -k but does only step 1 of the Kerberos IV bind.

-F: Force application of all changes regardless of the contents of the input lines that begin
with replica:. (By default, replica: lines are compared against the LDAP server host and
port in use to decide if a replog record should actually be applied.)

-M[M]: Enable the Manage DSA-IT control. -MM makes control critical.

-d debuglevel: Set the LDAP debugging level to the number specified here. The ldapmod-
ify tool must be compiled with LDAP_DEBUG defined for this option to have any effect.

-f file: Read the entry modification information from file instead of from STDIN.

-x: Use simple authentication instead of Simple Authentication and Security Layer (SASL).

-D binddn: Use the DN binddn to bind to the LDAP directory.

-W: Prompt for simple authentication. This is used instead of specifying the password on
the command line. This is useful when you’re performing operations at a higher security
level than the people who are looking over your shoulder.

-w password: Use password as the password for simple authentication.

-y passwdfile: Use the complete contents of passwdfile as the password for simple
authentication.

-H ldapuri: Specify uniform resource indicators (URIs) referring to the LDAP server(s).

4134_c04_final.qxd 9/30/04 11:27 AM Page 80

CHAPTER 4 ■ INSTALLING OPENLDAP 81

-h ldaphost: Specify an alternative host on which the LDAP server is running. This is pri-
marily used to perform LDAP operations against remote LDAP servers. The default host
that’s being used to perform the command against is local. This option has been depre-
cated in favor of -H.

-p ldapport: Specify an alternate Transmission Control Protocol (TCP) port where the
LDAP server is listening. This option has been deprecated in favor of -H.

-p 2|3: Specify the LDAP version to use.

-O security-properties: Specify SASL security properties.

-I: Enable SASL Interactive mode. Always prompt. The default is to prompt only as needed.

-Q: Enable SASL Quiet mode. Never prompt.

-U authcid: Specify the authentication ID for the SASL bind. The form of the ID depends
on the actual SASL mechanism used.

-R realm: Specify the realm of the authentication ID for the SASL bind. The form of the
realm depends on the actual SASL mechanism used.

-X authzid: Specify the requested authorization ID for the SASL bind. authzid must be
one of the following formats: dn:_distinguished name_ or u:_username_.

-Y mech: Specify the SASL mechanism to be used for authentication. If it isn’t specified,
the program will choose the best mechanism the server understands.

-Z[Z]: Issue StartTLS extended operation. If you use -ZZ, the command will require the
operation to be successful.

The standard input, whether STDIN is used (which is the default mode of operation) or
a file with the -f parameter is used (which is always recommended), you’ll be using the stan-
dard LDIF format to perform commands against the server. In other words, ldapmodify will
serve as one of the primary interfaces you have to your directory. I’ve already discussed vari-
ous operations of the LDIF format, so it’d be redundant to go into much detail here. I’ll cover
the generic file file.ldif to illustrate examples of the ldapmodify utility.

ldapsearch (1)
The ldapsearch (1) utility is an interface to the ldap_search (3) library call. The following is
a synopsis of the available command-line options:

ldapsearch [-n] [-u] [-v] [-k] [-K] [-t] [-A] [-L[L[L]]] [-M[M]]

[-d debuglevel]

[-f file] [-D binddn] [-W] [-w passwd] [-y passwdfile] [-H ldapuri]

[-h ldaphost] [-p ldapport] [-P 2|3] [-b searchbase] [-s base|one|sub]

[-a never|always|search|find] [-l timelimit] [-z sizelimit]

[-O security-properties]

[-I] [-Q] [-U authcid] [-R realm] [-x] [-X authzid] [-Y mech]

[-Z[Z]] filter [attrs...]

4134_c04_final.qxd 9/30/04 11:27 AM Page 81

CHAPTER 4 ■ INSTALLING OPENLDAP82

This utility opens a connection to an LDAP server and performs the searches that you
specify on the command line. It has the following options:

-n: Show what would be done but don’t actually perform the search. This is useful for
debugging in conjunction with -v.

-u: Include the User Friend Name form of the DN in the output.

-v: Run in verbose mode, with many diagnostics written to STDOUT.

-V: Print version information (-VV only).

-k: Use Kerberos IV authentication instead of simple authentication.

-K: Same as -k but does only step 1 of the Kerberos IV bind.

-t: Write retrieved values to a set of temporary files. This is useful for dealing with non-
ASCII values such as jpegPhoto or audio files.

-A: Retrieve attributes only (no values). This is useful when you just want to see if an
attribute is present in an entry and aren’t interested in the specific values.

-L: Search results are displayed in LDIF format. A single -L restricts the output to LDIF 1.
A second -L disabled comments. A third -L disables printing of the LDIF version. The
default is to use an extended version of LDIF.

-M[M]: Enable the Manage DSA-IT control. -MM makes control critical.

-S attribute: Sort the entries returned based on attribute.

-d debuglevel: Set the LDAP debugging level to debuglevel. The ldapsearch binary must
be compiled with LDAP_DEBUG defined for this option to have any effect.

-f file: Read a series of lines from file, performing one LDAP search for each line. In this
case, the filter given on the command line is treated as a pattern where the first occurrence
of %s is replaced with a line from file. If file is a single - character, then the lines are read
from STDIN.

-F prefix: This is the uniform resource locator (URL) prefix for files.

-x: Use simple authentication instead of SASL.

-D binddn: Use the DN binddn to bind to the LDAP directory.

-W: Prompt for simple authentication. This is used instead of specifying the password on
the command line.

-w password: Use password as the password for simple authentication.

-y passwdfile: Use the complete contents of passwdfile as the password for simple
authentication.

-H ldapuri: Specify URI(s) referring to the LDAP server(s).

4134_c04_final.qxd 9/30/04 11:27 AM Page 82

CHAPTER 4 ■ INSTALLING OPENLDAP 83

-h ldaphost: Specify an alternate host on which the LDAP server is running. This option
has been deprecated in favor of -H. Keep in mind that other versions of ldapsearch may
not support this option, so familiarity with both methods is a must.

-p ldapport: Specify an alternate TCP port on which the LDAP server is listening. This
also has been deprecated in favor of the -H ldapuri format.

-b searchbase: Use searchbase as the starting point for the search instead of the default.
This is a useful option in a directory environment that isn’t flat.

-s base | one | sub: Specify the scope of the search to be one of base, one, or sub to
specify a base object, one-level, or subtree search. The default is sub.

-a never | always | search | find: Specify how alias dereferencing is done. Should be
one of never, always, search, or find to specify that aliases are never dereferenced, are
dereferenced when searching, or are dereferenced only when locating the base object for
the search. The default is to never dereference aliases.

-P 2|3: Specify the LDAP version to use.

-l timelimit: Wait at most timelimit seconds for a search to complete. A timelimit of 0
removes the ldap.conf limit. A server may impose a maximum time limit that only the
root user can override.

-z sizelimit: Retrieve at most sizelimit entries for a search. A sizelimit of 0 removes
the ldap.conf limit. A server may impose a maximum size limit that only the root user
can override.

-O security-properties: Specify SASL security properties.

-I: Enable SASL Interactive mode. Always prompt. The default is to prompt only as
needed.

-Q: Enable SASL Quiet mode. Never prompt.

-U authcid: Specify the authentication ID for the SASL bind. The form of the ID depends
on the actual SASL mechanism used.

-R realm: Specify the realm of authentication ID for the SASL bind. The form of the realm
depends on the actual SASL mechanism used.

-X authzid: Specify the proxy authorization for the SASL bind. authzid must be one of the
following formats: dn:_distinguished name_ or u:_username_.

-Y mech: Specify the SASL mechanism to be used for authentication. If it isn’t specified,
the program will choose the best mechanism that’s known by the server.

-Z[Z]: Issue StartTLS extended operation. If you use -ZZ, the command will require the
operation to be successful.

During your initial setup and usage, and especially while you’re experimenting and famil-
iarizing yourself with an LDAP environment, you’ll be working with clear text and basic authen-
tication methods that don’t utilize some of the advanced security features of OpenLDAP. Unlike

4134_c04_final.qxd 9/30/04 11:27 AM Page 83

CHAPTER 4 ■ INSTALLING OPENLDAP84

other LDAP deployments, which often look at security as an afterthought, the default configura-
tions for all your clients will look for a secure infrastructure for communication. That is, upon
issuing a simple command to search for uid=91358, you’ll be prompted for SASL authentication
passwords, like so:

$ ldapsearch -h ldap -p 389 -b dc=Your,dc=Company uid=91358

SASL/DIGEST-MD5 authentication started

Please enter your password:

The examples I’ll use to demonstrate the usage of some of these utilities will have -x
added to their command lines to disable SASL authentication, like so:

$ ldapsearch -h ldap -p 389 -x -b dc=Your,dc=Company uid=91358

Depending on your actual configurations, you may get something like this:

extended LDIF

#

LDAPv3

base <dc=Your,dc=Company> with scope sub

filter: uid=91358

requesting: ALL

#

91358, People,YourCompany.com

The data will be followed by the actual contents of your directory, but the comments
serve as header information for each of your requests—and to help you understand what your
actual request meant to the LDAP server. In the previous example, you can see that the “base”
chosen was dc=Your,dc=Company; the scope, which I didn’t specify, was set to sub, and the filter
chosen was uid=91358. Because I didn’t specify attributes (at the end of the command line) to
return, the entire contents of the entry or entries that satisfied the filter were returned, like so:

$ ldapsearch -h ldap -p 389 -x -b dc=Your,dc=Company uid=91358 dn uid

Adding the trailing data of dn uid to the end of the example request would return only the
dn and uid of the entries being sent back to the client.

ldapdelete (1)
The ldapdelete (1) utility is an interface to the ldap_delete (3) library call. The following is
a synopsis of the available command-line options:

ldapdelete [-n] [-v] [-k] [-K] [-c] [-M[M]] [-d debuglevel] [-f file]

[-D binddn] [-W] [-w passwd] [-y passwdfile] [-H ldapuri] [-h ldaphost]

[-P 2|3] [-p ldapport] [-O security-properties] [-U authcid] [-R realm]

[-x] [-I] [-Q] [-X authzid] [-Y mech] [-Z[Z]] [dn]...

This utility opens a connection to an LDAP server, binds, and deletes one or more entries.
The following list defines the command-line options for this utility:

4134_c04_final.qxd 9/30/04 11:27 AM Page 84

CHAPTER 4 ■ INSTALLING OPENLDAP 85

-r: Delete records recursively.

-n: Show what would be done but don’t actually delete entries. This is useful for debug-
ging in conjunction with -v.

-v: Use verbose mode, with many diagnostics written to STDOUT.

-V: Print version information (-VV only).

-k: Use Kerberos IV authentication instead of simple authentication.

-K: Same as -k but does only step 1 of the Kerberos IV bind.

-c: Continuous operation mode. Errors are reported, but the utility will continue with
deletions. The default is to exit after reporting an error.

-M[M]: Enable the Manage DSA-IT control. -MM makes control critical.

-d debuglevel: Set the LDAP debugging level to debuglevel. The utility must be compiled
with LDAP_DEBUG defined for this option to have any effect.

-f file: Read a series of DNs from a file, one per line, performing an LDAP delete for each.

-x: Use simple authentication instead of SASL.

-D binddn: Use the DN binddn to bind to the LDAP directory.

-W: Prompt for simple authentication. This is used instead of specifying a password on the
command line.

-w password: Use password as the password for simple authentication.

-y passwdfile: Use complete contents of passwdfile as the password for simple
authentication.

-H ldapuri: Specify URI(s) referring to the LDAP server(s).

-h ldaphost: Specify an alternate host on which the LDAP server is running. Deprecated
in favor of -H.

-p ldapport: Specify an alternate TCP port where the LDAP server is listening. Depre-
cated in favor of -H.

-P 2|3: Specify LDAP version to use.

-r: Do a recursive delete. If the DN specified isn’t a leaf, its children, and all their children,
are deleted down the tree. No verification is done, so if you add this switch, ldapdelete
will happily delete large portions of your tree. A typical scenario of where this will be used
is in a system where you have a large system with multiple branches. You’d search for val-
ues you need deleted but are nested extremely deep in the system. Instead of generating
a list of DNs to delete, this would do it for you.

-O security-properties: Specify SASL security properties.

-I: Enable SASL Interactive mode. Always prompt. The default is to prompt only as needed.

4134_c04_final.qxd 9/30/04 11:27 AM Page 85

CHAPTER 4 ■ INSTALLING OPENLDAP86

-Q: Enable SASL Quiet mode. Never prompt.

-U authcid: Specify the authentication ID for the SASL bind. The form of the ID depends
on the actual SASL mechanism used.

-R realm: Specify the realm of authentication ID for the SASL bind. The form of the realm
depends on the actual SASL mechanism used.

-X authzid: Specify the proxy authorization for the SASL bind. authzid must be one of the
following formats: dn:_distinguished name_ or u:_username_.

-Y mech: Specify the SASL mechanism to be used for authentication. If it isn’t specified,
the program will choose the best mechanism that’s known by the server.

-Z[Z]: Issue StartTLS extended operation. If you use -ZZ, the command will require the
operation to be successful.

The ldapdelete tool is similar to ldapmodify or ldapadd in that it takes input in LDIF to be
processed against the server. The command-line options for ldapdelete should be familiar when
looking at the other LDAP tool sets. When using ldapmodify, you need to specify a changetype

operation for each dn that’s being modified. Using ldapdelete assumes that the changetype opera-
tion is delete (or you’re using the wrong tool!) and lets you skip this step.

On the command line, your operation may exist as such:

$ ldapdelete -x -h krakow -p 389 -c -v

A successful operation would return some basic initialization information and allow
input via STDIN, like so:

ldap_initialize(ldap://krakow:389)

If you want to use an LDIF file as input, you’d use the following:

$ ldapdelete -x -h krakow -p 389 -c -v -f file.ldif

The LDIF file would contain a list of the full DNs for all the users you’d like to delete. The
trick here is that if you perform an LDIF search to obtain a list of users (or objects) that need to
be deleted, they’re prefixed by information that isn’t necessarily instantly compatible with the
ldapdelete utility. For example, assume you want to delete a DN in your directory with a rela-
tive distinguished name (RDN) of uid=test_user1. The return from the search would yield you
the following:

dn: uid=test_user1,ou=Special Users,dc=Your,dc=Company

Adding changetype: delete would make the following a valid statement for the
ldapmodify utility:

dn: uid=test_user1,ou=Special Users,dc=Your,dc=Company

changetype: delete

However, the ldapdelete tool would require you cut off the initial dn: in front of the full DN
of the object you want to delete in order for it to be accepted as input. Performing the delete while
including the dn: would yield the following:

4134_c04_final.qxd 9/30/04 11:27 AM Page 86

ldap://krakow:389

CHAPTER 4 ■ INSTALLING OPENLDAP 87

dn: uid=test_user1,ou=Special Users,dc=Your,dc=Company

deleting entry "dn: uid=test_user1,ou=Special Users,dc=Your,dc=Company"

Delete Result: No such object (32)

Matched DN: ou=special users,dc=Your,dc=Company

This is because when the server splits the information, it happens from reverse, using
a comma (,) as the standard delimiter. See Table 4-6 for the objects that are found and known
by the server.

Table 4-6. Matching Logic for ldapdelete

Order Object Explanation

1 dc=com Part of the base DN but existing as its own entity within the
directory.

2 dc=YourCompany Part of the base DN and, technically, a child of dc=com.
However, objects found here would be combined and
known as dc=Your,dc=Company.

3 ou=Special Users The branch of the tree that this account exists within. In this
case, the organizationalUnit is Special Users.

4 dn: uid=test_user1 In this case, your goal is to find and parse uid=test_user1.
However, because a dn: was added to the beginning of this
entry, this is the equivalent of performing a search for (dn:
uid=test_user1). This will not yield any results and, instead,
should be replaced with uid=test_user1.

The end result of all of this is having the LDIF file you’re using contain the following:

uid=test_user1,ou=Special Users,dc=Your,dc=Company

Unfortunately, because all the operations you’re working with here don’t specify any
authentication information (bind DN, credentials, and so forth), you’re connecting as an
anonymous user and don’t have any specific access rights, by default, to the directory. Run-
ning the ldapdelete tool with your desired input will yield the following result:

uid=test_user1,ou=Special Users,dc=Your,dc=Company

deleting entry "uid=test_user1,ou=Special Users,dc=Your,dc=Company"

Delete Result: Insufficient access (50)

Additional info: Insufficient 'delete' privilege to

delete the entry 'uid=test_user1,

ou=Special Users,dc=Your,dc=Company'.

The solution would be to specify credentials on the command line (such as using a special
account that has access rights to the directory that will allow you to complete this operation).

ldapmodrdn (1)
The ldapmodrdn (1) utility is an interface to the ldap_modrdn2 (3) library call. The following is
a synopsis of available command-line options:

4134_c04_final.qxd 9/30/04 11:27 AM Page 87

CHAPTER 4 ■ INSTALLING OPENLDAP88

ldapmodrdn [-r] [-n] [-v] [-k] [-K] [-c] [-M[M]] [-d debuglevel]

[-D binddn]

[-W] [-w passwd] [-y passwdfile] [-H ldapuri] [-h ldaphost] [-p ldapport]

[-P 2|3] [-O security-properties] [-I] [-Q] [-U authcid [-R realm] [-x]

[-X authzid] [-Y mech] [-Z[Z]][-s][-V][-f file] [dn rdn]

This utility opens a connection to an LDAP server, binds, and modifies the RDN of a given
entry or set of entries. The following list defines the command-line options for this utility:

-r: Remove old RDN values from the entry. The default is to keep old values. If old values
are kept, this is just like making a copy of the entry.

-s: newsup: This is a new superior entry.

-n: Show what would be done but don’t actually change entries. This option is useful for
debugging in conjunction with -v.

-v: Use verbose mode, with many diagnostics written to STDOUT.

-k: Use Kerberos IV authentication instead of simple authentication. This is assuming you
already have a valid ticket-granting ticket. This utility must be compiled with Kerberos
support for this option to have effect.

-K: This is the same as -k but does only step 1 of the Kerberos IV bind. This is useful when
connecting to a slapd and no x500dsa.hostname principal is registered with your Kerberos
domain controller.

-c: Continuous operation mode. Errors are reported, but ldapmodrdn will continue with
modifications. The default is to exist after reporting an error.

-n: Show what would be done but don’t actually modify the entries. This option is useful
for debugging in conjunction with the -v flag.

-v: Use verbose mode, with many diagnostics written to STDOUT.

-V: Print version information (-VV only).

-k: Use Kerberos IV authentication instead of simple authentication. You must compile
with Kerberos support for this option to have any effect.

-K: Same as -k but does only step 1 of the Kerberos IV bind.

-F: Force application of all changes regardless of the contents of the input lines that begin
with replica: (by default, replica: lines are compared against the LDAP server host and
port in use to decide if a replog record should actually be applied).

-M[M]: Enable the Manage DSA-IT control. -MM makes control critical.

-d debuglevel: Set the LDAP debugging level to the number specified here. The ldapmodify
tool must be compiled with LDAP_DEBUG defined for this option to have any effect.

-f file: Read the entry modification information from file instead of from STDIN.

-x: Use simple authentication instead of SASL.

4134_c04_final.qxd 9/30/04 11:27 AM Page 88

CHAPTER 4 ■ INSTALLING OPENLDAP 89

-D binddn: Use the DN binddn to bind to the LDAP directory.

-W: Prompt for simple authentication. This is used instead of specifying the password on
the command line. This is useful when you’re performing operations at a higher security
level than the people who are looking over your shoulder.

-w password: Use password as the password for simple authentication.

-y passwdfile: Use the complete contents of passwdfile as the password for simple
authentication.

-H ldapuri: Specify URI(s) referring to the LDAP server(s).

-h ldaphost: Specify an alternative host on which the LDAP server is running. This is pri-
marily used to perform LDAP operations against remote LDAP servers. The default host
that’s being used to perform the command against is local. This option has been depre-
cated in favor of -H.

-p ldapport: Specify an alternate TCP port where the LDAP server is listening. This option
has been deprecated in favor of -H.

-p 2|3: Specify the LDAP protocol version to use.

-O security-properties: Specify SASL security properties.

-I: Enable SASL Interactive mode. Always prompt. The default is to prompt only as
needed.

-Q: Enable SASL Quiet mode. Never prompt.

-U authcid: Specify the authentication ID for the SASL bind. The form of the ID depends
on the actual SASL mechanism used.

-R realm: Specify the realm of the authentication ID for the SASL bind. The form of the
realm depends on the actual SASL mechanism used.

-X authzid: Specify the requested authorization ID for the SASL bind. authzid must be
one of the following formats: dn:_distinguished name_ or u:_username_.

-Y mech: Specify the SASL mechanism to be used for authentication. If it’s not specified,
the program will choose the best mechanism the server understands.

-Z[Z]: Issue StartTLS extended operation. If you use -ZZ, the command will require the
operation to be successful.

slapcat (8C)
The slapcat utility generates LDIF output based on the contents of a slapd database. It selects
the given database determined by the default number or suffix and writes the corresponding
LDIF to STDOUT or a file specified on the command line. The LDIF generated by this tool is suit-
able for use with slapadd (8). As the entries are in database order, not superior first order, they
can’t be loaded with ldapadd (8) without being reordered. That is, in order to create an entry
within ou=People, ou=People first needs to exist. If it doesn’t exist, then a violation exists.

4134_c04_final.qxd 9/30/04 11:27 AM Page 89

CHAPTER 4 ■ INSTALLING OPENLDAP90

The following is a synopsis of the available command-line options:

/usr/local/sbin/slapcat [-v] [-c] [-d level] [-b suffix | -n dbnum]

[-f slapd.conf] [-l ldif-file]

The following list defines the command-line options for this utility:

• -v: Enable verbose mode.

• -c : Enable continue (ignore errors) mode.

• -d level: Enable debugging messages as defined by the specified level.

• -b suffix: Use the specified suffix to determine for which database to generate output.
You can’t use the -b option in conjunction with the -n option.

• -n dbnum: Generate output for the dbnum-th database listed in the configuration file.
You can’t use the -n option in conjunction with the -b option.

• -f slapd.conf: Specify an alternative slapd.conf file.

• -l ldif-file: Write LDIF to the specified file instead of STDOUT.

Your directory should be stopped when utilizing this tool.

slapadd (8C)
The slapadd utility adds entries, in LDIF, to an LDAP directory. It opens the database specified
on the command line and adds entries corresponding to the specified LDIF file to the database
directly. As slapadd is designed to accept LDIF in database order, as produced by slapcat, it
doesn’t verify that superior entries exist before adding an entry, doesn’t perform all user and
system schema checks, and doesn’t maintain operational attributes (such as createTimeStamp
and modifiersName).

The following is a synopsis of available command-line options:

/usr/local/sbin/slapadd [-v] [-c] [-u] [-d level] [-b suffix] [-n dbnum]

[-f slapd.conf] [-l ldif-file]

The following list defines the command-line options for this utility:

• -v: Enable verbose mode.

• -c : Enable continue (ignore errors) mode.

• -u : Enable dry run mode. This won’t write to the database.

• -d level: Enable debugging messages as defined by the specified level.

• -b suffix: Use the specified suffix to determine for which database to generate output.
You can’t use the -b option in conjunction with the -n option.

• -n dbnum: Generate output for the dbnum-th database listed in the configuration file. You
can’t use the -n option in conjunction with the -b option.

4134_c04_final.qxd 9/30/04 11:27 AM Page 90

CHAPTER 4 ■ INSTALLING OPENLDAP 91

• -f slapd.conf: Specify an alternative slapd.conf file.

• -l ldif-file: Read LDIF from the specified file instead of STDIN.

Your directory should be stopped when utilizing this tool.

slapindex (8C)
The slapindex utility regenerates directory indexes based on the current contents of your
directory. It opens the database specified on the command line and updates all indexes for
this particular directory.

The following is a synopsis of the available command-line options:

/usr/local/sbin/slapindex [-v] [-c] [-d level] [-b suffix | n dbnum]

[-f slapd.conf]

The following list defines the command-line options for this utility:

• -v: Enable verbose mode.

• -c : Enable continue (ignore errors) mode.

• -d level: Enable debugging messages as defined by the specified level.

• -b suffix: Use the specified suffix to determine for which database to generate output.
You can’t use the -b option in conjunction with the -n option.

• -n dbnum: Generate output for the dbnum-th database listed in the configuration file. You
can’t use the -n option in conjunction with the -b option.

• -f slapd.conf: Specify an alternative slapd.conf file.

Your directory should be stopped when utilizing this tool.

Summary
After reading this chapter, you’ll be able to install a basic OpenLDAP directory, and you’ll
have a working knowledge of some of the basic tools that have been provided for you. For
many OpenLDAP installations you may encounter in the field, this is about as far as the basic
administrator cares to go. In the next chapters, you’ll be able to utilize your new knowledge
and expand your directory to fit your custom environment.

4134_c04_final.qxd 9/30/04 11:27 AM Page 91

4134_c04_final.qxd 9/30/04 11:27 AM Page 92

Implementing OpenLDAP

The default installation of OpenLDAP will work on almost any host. However, the defaults
may make it difficult, in the future, to appropriately scale your system. Spending an extra few
hours fully planning a system deployment will easily make up for having to reconfigure a
badly installed host once you’re in production mode. So it’s highly recommended that you
appropriately scale the host from the beginning.

For starters, you should know the approximate size of your initial deployment in terms of
distinguished names (DNs). I recommend storing each entry in your directory as a single DN
and not working with a model that requires a relationship between multiple DNs to represent
data that may better be represented in a single object. For example, you can have the primary
relative distinguished name (RDN) be uid=Tjackiewicz with a pointer, within the object, to
cn=Account 1 or bad, number=9305. This model requires relationships, and you end up with
a dynamic number of objects in your directory. That is, you have a single user ID (uid) for Tom
Jackiewicz with all relevant data stored under that particular DN, and it remains a single entry
whether this person has 5 accounts or 50 accounts. Other models would create a new DN for
each of the necessary accounts, which would require you to have 6 DNs if there are 5 accounts
(1 primary DN and 5 additional) or 51 DNs if there are 50 accounts (1 primary DN and 50 addi-
tional). This creates a problem for appropriately scaling and integrating applications, as the
greatest amount of overhead is necessary when manipulating separate objects in the system,
not just attribute names and values.

How Much RAM Do You Need?
The amount of random access memory (RAM) that systems require can vary. Realize that base
requirements for a system really don’t take much RAM into account. Sure, software may require
32 megabytes (MB) of RAM to install and run, but just how useful would that system be? What
if you require additional indexes, or what if multiple applications are connected to it? You should
answer the following questions to determine how much RAM is necessary:

• How many entries, such as individual DNs, do you have in your system?

• How many attributes do you have indexed in your environment?

• How many applications will be accessing your environment, and how many new sets of
data will each of these requirements need?

93

C H A P T E R 5

■ ■ ■

4134_c05_final.qxd 9/30/04 11:28 AM Page 93

CHAPTER 5 ■ IMPLEMENTING OPENLDAP94

Starting with the first question, a good measurement of the number of entries starts with
the total user base of your existing applications. Many factors will come into play that may
make this more complicated. For example, many applications, such as those used by your
human resources (HR) department, often keep records of active and inactive employees.
While your company many have only 10,000 active employees, the total number of records
may exceed 100,000! To have your system be a good replacement or complement to existing
systems, it may need to maintain all records. External-facing applications may also have records
of all your vendors and customers. These could be the same size or even larger than your
active employee population. Take these factors into account during your planning.

Each application has different requirements and will require a specific set of indexes
depending on the data that’s being searched. A phone directory alone may require that infor-
mation pertaining to the department, clearance, variations of your name, and other identity
information is searchable (for equality and presence) and even substring searchable. This will
create a significant load on the system and increase the amount of memory that you’ll require.
Other applications, such as a mail server, may require only that the mail server, mail path, and
e-mail address is searchable. Each application will have different requirements as you continue
investigating your needs. A good integration will show that many of the attributes you’ve already
indexed are the only ones required for a specific integration.

You can actually count the physical index files for your installation. But this assumes you
already have a directory running. When this data isn’t available, you must use estimates based
on the size of the directory entry and how many attributes will be indexed. Envision the scenario
where you have 500,000 entries in your directory and require seven indexes. You can estimate
the dbcachesize and cachesize components of your system as follows:

Dbcachesize: Index file size * Number of indexes

Cachesize: Size per entry * Number of entries

You can then add the results of these operations to estimate the amount of RAM neces-
sary for your application. Always plan for future growth, and estimate how new applications
integrated within your environment will use existing indexes or request new ones.

In the fictional scenario, you may end up with the following:

Dbcachesize: 50 * 7 = 210MB of RAM

Cachesize: 5k * 500,000 = 2500MB of RAM

The final result would be 2710MB of RAM plus the overhead of the other applications and
the operating system.

Obviously, the different types of threading libraries, the types of central processing units
(CPUs), and the way the internals of the operating system work will yield different results.
These tips are merely a baseline that you can use to evaluate system configurations and to
verify whether a given host may be a candidate for a Lightweight Directory Access Protocol
(LDAP) server.

How Much Disk Space Do You Need?
While the CPU and RAM capabilities of your system usually take the highest priorities, you
must also look into other system configurations that, in today’s fast-paced information tech-
nology environment, may be available to you. New technologies will always be emerging; if

4134_c05_final.qxd 9/30/04 11:28 AM Page 94

you choose to use new technologies within your company, you’ll find that this will impact
your server configuration decisions. With RAM being a replacement for physical disks in many
system configurations, basic physical disk requirements (which were once the cornerstone of
system configuration) are often overlooked. The overall performance of a given application is
often bottlenecked or hindered by the speed at which data can be retrieved from storage. Don’t
be caught in the group that asks how much capacity a system needs to deliver. Rather, become
part of the group that asks what the appropriate response time of a system configuration should
be. With standard disk configurations nearly 100 gigabytes (GB), it’s all too common for sys-
tems to be configured with a pair of disks, minimizing the physical number of heads available.

You should use a Redundant Array of Independent Disks (RAID) configuration whenever
possible. RAID is the concept of using multiple disks acting as one. Although many new con-
figurations exist today, the original definition of RAID had levels from 0 to 5, with a total of six
configurations. Each has its strength and weaknesses but serves the common goal of increas-
ing data redundancy and performance.

RAID 0, or standard striping, is a fast and simple configuration that takes two disks and
just concatenates them to form a single disk. Unfortunately, RAID 0 is subject to the failure of
one of the disks. RAID 1 is simply the mirroring of information on one disk across to another.
In this configuration, data is given extra redundancy. RAID 10 (0+1 or 1+0) is a combination
of mirroring and striping disks. RAID 2 protects storage using different functions and isn’t as
common. RAID 3 protects data using a parity scheme. RAID 4 gives you an extra parity disk.
Network Appliance made this common, as the company uses it across its systems. RAID 5
enables you to have better random access of information but decreases write performance.
RAID 6 is similar to RAID 5 but provides even worse write overhead. You should research the
type of RAID configuration necessary for your organization.

Taking into account standard system configuration practices, it’s a good idea to have sep-
arate partitions or physical disks for different types of data being stored within your system.
Because a disk relies on physical heads to appropriately function, it’s beneficial to layer disks
across multiple controllers and have different physically separated filesystems located physi-
cally apart.

Table 5-1 shows the types of information you’ll be dealing with in an LDAP configuration.

Table 5-1. LDAP Configurations

Type of Data Storage Requirements

Operating system The standard operating system installation should be installed
separately from any of your application instances.

Operating system logs The logs related to the running of the base operating system should be
stored on a separate disk.

Application binaries While not requiring specific input/output (I/O) configurations, it’s
advised that the installation instance and the data be separated. This
also enables future movement of information during standard archiving
methods.

Application logs Application logs, though not often recommended in production
environments, should be kept separate from the rest of your
information.

Application data Application data—that is, the database and indexes themselves—should
be kept on a separate disk for maximum I/O throughput.

CHAPTER 5 ■ IMPLEMENTING OPENLDAP 95

4134_c05_final.qxd 9/30/04 11:28 AM Page 95

When provisioning hosts, the response time of your disks is often overlooked in favor of
the physical amount of space. While many advancements in disk technology have been made,
you’re still dealing with physical heads, platters, and spindles that are limited. Space will always
be an issue, but resist the urge to ask for 72GB of disk space, which may be provided to you as
a single hard drive, and instead ask for 72GB of usable disk space with 8 millisecond (ms) maxi-
mum throughput on your system.

Considering Security in Your Implementation
To make up for the overall insecurity of Transmission Control Protocol/Internet Protocol (TCP/IP),
new layers of security have been added to common protocols to decrease the chances of many
types of security violations. To function securely, LDAP relies on many security functions. Meth-
ods of security in an LDAP environment include various types of client authentications, client
authorization by means of access control, data integrity protection, resource limitation, and
server-based authentication and authorization functions.

You may be working with multiple types of LDAP instances.

• A read-only directory containing no sensitive data that’s accessible to anyone; TCP
connection hijacking or IP spoofing isn’t a problem. This directory requires no security
functions except administrative service limits.

• A read-only directory containing no sensitive data where read access is granted based
on identity; TCP connection hijacking isn’t currently a problem. This scenario requires
a secure authentication function.

• A read-only directory containing no sensitive data where the client needs to ensure that
the directory data is authenticated by the server and not modified while being returned
from the server.

• A read-write directory, containing no sensitive data, where read access is available
to anyone, but write access requires authorization. This scenario requires a secure
authentication function.

• A directory containing sensitive information requiring session confidentiality and
secure authentication.

Authentication
Authentication credentials are the information that’s provided by one party (the user) to another
(the server) to show the identity of the user. Authentication is the process of generating, trans-
mitting, and verifying these credentials and the associated identity. Authentication information
is supplied by the “bind” operation. A client initiates a connection, or binds to the system, and
provides the server with the appropriate authentication information.

Anonymous: When a client initiates a connection to the server but doesn’t offer creden-
tials, an anonymous session is created. An anonymous session is also created when a bind
operation hasn’t been completed successfully. An LDAP client may also force anonymous
authentication by using a zero-length string with the simple authentication choice.

CHAPTER 5 ■ IMPLEMENTING OPENLDAP96

4134_c05_final.qxd 9/30/04 11:28 AM Page 96

Password-based or simple authentication: Simple authentication is established with a
client sends an identity (the bind DN) and a simple password during the initiation of a con-
nection. This type of authentication is typically not suitable for an environment that has
access to outside networks.

Certificate-based authentication: LDAP also supports authentication using a client-side
certificate.

The bind operation is defined as follows:

BindRequest ::= [APPLICATION 0] SEQUENCE {

version INTEGER (1 .. 127),

name LDAPDN,

authentication AuthenticationChoice

}

AuthenticationChoice ::= CHOICE {

simple [0] OCTET STRING,

-- 1 and 2 reserved

sasl [3] SaslCredentials

}

SaslCredentials ::= SEQUENCE {

mechanism LDAPString,

credentials OCTET STRING OPERATION

}

In this request, version is a version number indicating the version of the protocol to be
used during this session, name is the name of the directory object that the client is binding as,
and authentication is information used to authenticate the bind DN.

Upon receipt of the request, the server will authenticate the requesting client. The server will
then return a bind response indicating the status of the request. For some authentication mecha-
nisms, it may be necessary for the client to invoke the request multiple times. This depends on
the security requirements of the implementation and the mechanisms used. The authenticated
identity of a session may change during the life of the session with version 3 of LDAP.

SASL
As defined by RFC 2222, Simple Authentication and Security Layer (SASL) is a method for adding
authentication support to connection-based protocols. A security layer between a client and
a server is negotiated during protocol initiation. If a server supports the SASL mechanism, it initi-
ates an authentication protocol exchange. This consists of a series of server challenges and client
responses that are specific to the request mechanism. The challenges and responses are defined
by the mechanisms as binary tokens of arbitrary length. The protocol’s profile then specifies how
these binary tokens are encoded for transfer over the established connection. After receiving the
authentication command or any client response, a server may issue a challenge, indicate failure,
or indicate completion. The protocol’s profile specifies how the server indicates which it’s doing.
After receiving a challenge, a client may issue a response or abort the exchange. The protocol’s
profile specifies how the client indicates which it’s doing.

CHAPTER 5 ■ IMPLEMENTING OPENLDAP 97

4134_c05_final.qxd 9/30/04 11:28 AM Page 97

During the authentication protocol exchange, the mechanism performs authentication,
transmits an authorization identity (a user ID) from the client to the server, and negotiates the
use of a mechanism-specific security layer. If the use of a security layer is agreed upon, then
the mechanism must also define or negotiate the maximum cipher-text buffer size that each
side is able to receive.

If use of a security layer is negotiated, the layer is applied to all subsequent data sent
over a connection. The security layer takes effect immediately following the last response of
the authentication exchange for data sent by the client and the completion indication for
data sent by the server. Once the security layer is in effect, the security layer processes the
protocol stream.

You can implement SASL support in OpenLDAP using Cyrus SASL. You can obtain more
information on the Cyrus SASL project at http://asg.web.cmu.edu/sasl/. The libraries are
available via File Transfer Protocol (FTP) at ftp://ftp.andrew.cmu.edu/pub/cyrus-mail/.
Upon retrieving the package, you’ll want to install and link them against your Sleepycat DB
libraries before running the configuration scripts for installation.

Set CPPFLAGS and LDFLAGS to point to the appropriate locations for your environment,
like so:

$ env CPPFLAGS="-I/usr/local/BerkeleyDB.4.2/include" \

LDFLAGS="-L/usr/local/BerkeleyDB.4.2/lib" ./configure

After setting these parameters, you can follow them with the standard installation instruc-
tions for the base build of the system. You’ll need to create the SASL user database using the
saslpasswd2 command. This command takes the following options:

saslpasswd [-p] [-d] [-c] [-n] [-f file] [-u domain] [-a appname] userid

The server administrator uses this command to set a user’s SASL password for server pro-
grams and SASL mechanisms that use the standard libsasl database of user secrets. Its options
are as follows:

-p: This sets pipe mode. saslpasswd will neither prompt for the password nor verify that it
was entered correctly. This is the default when STDIN isn’t a terminal.

-c: This creates an entry for the user if the user doesn’t already exist. This is mutually
exclusive with the -d (delete user) flag.

-d: This deletes the entry for the user. This is mutually exclusive with the -c (create user) flag.

-n: This doesn’t set the plain-text userPassword attribute for the user.

-u domain: This is the domain. In other words, this is the user realm.

-f file: Use file for sasldb.

-a appname: Use appname as application name.

The following command sets the administrative password:

$ saslpasswd2 -c admin

The previous parameter (admin) refers to the uid of the account; thus, the profile in LDAP
Interchange Format (LDIF) may look like the following:

CHAPTER 5 ■ IMPLEMENTING OPENLDAP98

4134_c05_final.qxd 9/30/04 11:28 AM Page 98

http://asg.web.cmu.edu/sasl
ftp://ftp.andrew.cmu.edu/pub/cyrus-mail

dn: uid=admin, ou=People, dc=Your,dc=Company

objectClass: Top

objectClass: Person

objectClass: Organizationalperson

objectClass: Inetorgperson

uid: admin

userPassword: password

Upon being asked for a password, enter the same password you specified for the
administrative account within your LDAP system. Upon completion of this, you can set
the sasl-regexp directive within the slapd.conf file.

sasl-regexp uid=<username>,cn=<realm>,cn=<mech>,cn=auth

For example:

sasl-regexp uid=(.*),cn=ldaphost,cn=DIGEST-MD5, \

cn=auth uid=$1,ou=People,dc=Your,dc=Company

This username is taken from SASL and inserted into the LDAP search string in the place
of $1.Yours is typically your Fully Qualified Domain Name (FQDN).

Upon restarting slapd, you can test to see if your configuration worked by running an
ldapsearch command, like so:

$ ldapsearch -U admin@realm -b dc=Your,dc=Comapny objectclass=*

You’ll see the following output:

SASL/DIGEST-MD5 authentication started

Now enter your password, like so:

SASL username: admin@realm

SASL SSF: 128

SASL installing layers

This will be followed by the results of the filter you specified during the LDAP search.
I’ll discuss security methods and other integrations with SASL in more detail in subsequent
sections.

SASL Proxy Authorization
SASL allows authenticated users to perform operations as other users. This feature is known as
proxy authorization and occurs after the user has obtained an authentication DN. The server
will then make a decision about whether to allow the authorization to occur. If it’s allowed, the
user’s LDAP connection is switched to have a binding DN derived from the authorization iden-
tity, and the LDAP session proceeds with the access of the new authorization DN.

This sort of service is useful when one entity needs to act on the behalf of many other
users. For example, you could create role accounts for specific tasks that you have to perform
changes as someone else. This gives you the ability to become a user during a help desk call to
perform extra debugging that’s beyond the user’s knowledge.

CHAPTER 5 ■ IMPLEMENTING OPENLDAP 99

4134_c05_final.qxd 9/30/04 11:28 AM Page 99

Once slapd has the authorization DN, the actual approval process begins. You’ll need to
add saslAuthzTo and saslAuthzFrom as attributes within your user profile information in LDAP
to allow basic SASL authentication. Both can be multivalued. The saslAuthzTo attribute is a
source rule, and it’s placed into the entry associated with the authentication DN to tell what
authorization DNs the authenticated DN is allowed to assume. The second attribute is a desti-
nation rule, and it’s placed into the entry associated with the requested authorization DN to
tell which authenticated DNs may assume it.

The choice of which authorization policy attributes to use is up to the administrator.
Source rules are checked first in the person’s authentication DN entry, and if none of the
saslAuthzTo rules specify that the authorization is permitted, the saslAuthzFrom rules in the
authorization DN entry are then checked. If neither case specifies that the request be hon-
ored, the request is denied. Since the default behavior is to deny authorization requests,
rules specify only that a request be allowed; no rules tell what authorizations to deny.

Take a look at the following LDAP entry:

dn: cn=Helpdesk,dc=Your,dc=Company

saslAuthzTo: ldap:///dc=your,dc=company??sub?(objectclass=Person)

Any user who authenticated as cn=Helpdesk,dc=Your,dc=Company could authorize any
other LDAP entry under the search base dc=Your,dc=Company that has an objectClass of
Person. Be careful when assigning this information, as it’s extremely powerful and easy to
abuse. You may want to limit the scope of this attribute as follows:

saslAuthzTo: uid=.*,dc=Your,dc=Company

Shared-Secret Mechanisms
Cyrus SASL supports several shared-secret mechanisms. To do this, it needs access to the
plain-text password (unlike mechanisms that pass plain-text passwords over the wire, where
the server can store a hashed version of the password).

Secret passwords are normally stored in Cyrus SASL’s own sasldb database, but if OpenLDAP
software has been compiled with Cyrus SASL 2.1, then it’s possible to store the secrets in the
LDAP database itself. With Cyrus SASL 1.5, secrets may be stored only in the sasldb database.
In either case it’s important to apply file access controls and LDAP access controls to prevent
exposing the passwords. To use secrets stored in the LDAP directory, place plain-text pass-
words in the userPassword attribute. It will be necessary to add password-hash {CLEARTEXT} to
your slapd.conf file to make sure that passwords changed through LDAP are stored in plain
text. Wherever the passwords are stored, a mapping will be needed from SASL authentication
IDs to regular DNs. The DIGEST-MD5 mechanism produces authentication IDs of the form
uid=<username>,cn=<realm>,cn=digest-md5,cn=auth.

You specify the SASL mechanism you want to use with -Y on the command line. To utilize
DIGEST-MD5, you use ldapsearch -Y DIGEST-MD5 followed by the rest of your command-line
parameters.

The authentication mechanism in the slapd server will use SASL library calls to obtain the
authenticated user’s username, based on whatever underlying authentication mechanism was
used. This username is in the namespace of the authentication mechanism, not in the LDAP
namespace. As stated previously, that username is reformatted into an authentication request
DN of the following form:

CHAPTER 5 ■ IMPLEMENTING OPENLDAP100

4134_c05_final.qxd 9/30/04 11:28 AM Page 100

ldap:///dc=your

uid=<username>,cn=<realm>,cn=<mechanism>,cn=auth

You shouldn’t add LDAP entries of this form to your LDAP database. Chances are you
have an LDAP entry for each of the people who will be authenticating to LDAP, laid out in your
directory tree, and the tree doesn’t start at cn=auth. But if your site has a clear mapping between
the username and an LDAP entry for the person, you’ll be able to configure your LDAP server
to automatically map an authentication request DN to the user’s authentication DN. It isn’t
required that the authentication request DN or the user’s authentication DN resulting from
the mapping refers to an entry held in the directory. However, you’ll need to tell the slapd
server how to map an authentication request DN to a user’s authentication DN. You do this
by adding one or more sasl-regexp directives to the slapd.conf file. This directive takes two
arguments, like so:

sasl-regexp <search pattern> <replacement pattern>

The authentication request DN is compared to the search pattern using regular expres-
sions. If it sees multiple sasl-regexp directives, only the first whose search pattern matches
the authentication identity is used. The string that’s output from the replacement pattern
should be the authentication DN of the user in a legitimate LDAP DN format.

The search pattern can contain any of the regular expression characters listed in regexec
(3C). The main characters of note are a dot (.), an asterisk (*), and the open and close paren-
theses ((and)). Essentially, the dot matches any character, the asterisk allows zero or more
repeats of the immediately preceding character or pattern, and terms in parentheses are remem-
bered for the replacement pattern. The replacement pattern will produce the final authentica-
tion DN of the user. Anything from the authentication request DN that matched a string in
parentheses in the search pattern is stored in the variable $1. That variable $1 can appear in
the replacement pattern and will be replaced by the string from the authentication request
DN. If there were multiple sets of parentheses in the search pattern, the variables $2, $3, and
so on, are used.

For example, suppose the user’s authentication identity is written as the DN string
uid=tjackiewicz,cn=yourcompany.com,cn=DIGEST-MD5,cn=auth and the entry in LDAP is
uid=tjackiewicz,ou=People,dc=Your,dc=Company. You’d write the sasl-regexp to create this
match as follows:

sasl-regexp

uid=(.*),cn=yourcompany.com,cn=DIGEST-MD5,cn=auth

uid=$1,ou=People,dc=Your,dc=Company

Some sites may have people’s DNs spread to multiple areas of the LDAP tree, such as if
an ou=accounting tree and an ou=engineering tree had people interspersed between them. Or
there may not be enough information in the authentication identity to isolate the DN, such
as if the previous person’s LDAP entry looked like this:

dn: cn=tom jackiewicz,ou=person,dc=Your,dc=Company

objectclass: Person

cn: tom jackiewicz

uid: tjackiewicz

In this case, the information in the authentication identity can be used only to search for
the user’s DN, not derive it directly. For both of these situations, and others, the replacement

CHAPTER 5 ■ IMPLEMENTING OPENLDAP 101

4134_c05_final.qxd 9/30/04 11:28 AM Page 101

pattern in the sasl-regexp directives will need to produce an LDAP uniform resource locator
(URL), described in the next section.

When you don’t have enough information in the authentication identity to derive a per-
son’s authentication DN directly, the sasl-regexp directives in the slapd.conf (5) file will need
to produce an LDAP URL. You can then use this URL to perform an internal search of the LDAP
database to find the person’s authentication DN.

An LDAP URL, similar to other URLs, has the following form:

ldap://<host>/<base>?<attrs>?<scope>?<filter>

This contains all the elements necessary to perform an LDAP search: the name of the
server <host>, the LDAP DN search base <base>, the LDAP attributes to retrieve <attrs>, the
search scope <scope> (which is one of the three options base, one, or sub), and an LDAP search
filter <filter>. Since the search is for an LDAP DN within the current server, the <host> por-
tion should be empty. The <attrs> field is also ignored since only the DN is of concern. These
two elements are left in the format of the URL to maintain the clarity of what information goes
where in the string.

Suppose that the person in the previous example did in fact have an authentication user-
name of adamson and that information was kept in the attribute uid in their LDAP entry. The
sasl-regexp directive may be written as follows:

sasl-regexp

uid=(.*),cn=example.com,cn=kerberos_v4,cn=auth

ldap:///ou=person,dc=example,dc=com??sub?(uid=$1)

This will initiate an internal search of the LDAP database inside the slapd server. If the
search returns exactly one entry, it’s accepted as being the DN of the user. If more than one
entry is returned, or if zero entries are returned, the authentication fails, and the user’s con-
nection is left bound as the authentication request DN.

Note that if the search scope <scope> in the URL is base, then the only LDAP entry that
will be returned is the search base DN <base>, so the actual search of the database is skipped.
This is equivalent to setting the replacement pattern in the directive to a DN directly, as in the
previous section.

The attributes that are used in the search filter <filter> in the URL should be indexed to
allow faster searching. If they aren’t, the authentication step alone can take uncomfortably long
periods, and users may assume the server is down.

A more complex site may have several realms in use, each mapping to a different subtree
in the directory. These can be handled with statements of the following form:

Match Engineering realm

sasl-regexp

uid=(.*),cn=engineering.example.com,cn=digest-md5,cn=auth

ldap:///dc=eng,dc=example,dc=com??sub?(&(uid=$1)(objectClass=person))

Match Accounting realm

sasl-regexp

uid=(.*),cn=accounting.example.com,cn=digest-md5,cn=auth

ldap:///dc=accounting,dc=example,dc=com??sub? \

(&(uid=$1)(objectClass=person))

CHAPTER 5 ■ IMPLEMENTING OPENLDAP102

4134_c05_final.qxd 9/30/04 11:28 AM Page 102

ldap:///ou=person
ldap:///dc=eng
ldap:///dc=accounting

Default realm is customers.example.com

sasl-regexp

uid=(.*),cn=digest-md5,cn=auth

ldap:///dc=customers,dc=example,dc=com??sub? \

(&(uid=$1)(objectClass=person))

X.509 Certificates
A public key certificate is a digitally signed statement from one entity, saying that the public
key (and some other information) of another entity has some specific value. You can see the
most visible implementations of X.509 certificates when using your Web browser. However, in
back-end systems, certificates are often utilized for other tasks, such as server-to-server vali-
dation. In a client-to-multiserver environment, you can use certificates at almost every level
of interaction. You can use X.509 certificates as an external source of authentication informa-
tion within SASL.

Transport Layer Security
OpenLDAP clients and servers are capable of using the Transport Layer Security (TLS) framework
to provide integrity and confidentiality protection. TLS uses X.509 certificates for client and server
identification. TLS, according to the Internet Engineering Task Force (IETF), is the successor pro-
tocol to SSL. In fact, original versions of TLS (version 1) were nearly identical to SSL (version 3).
The goal of TLS is to serve as a transport layer protocol that provides the ability to establish an
end-to-end secure channel of communication. Confidentiality, integrity, and key exchange are
required components for a transport layer protocol to be successful. A clear definition of this type
of protocol will include requirements for keys, encryption, and supported authentication mecha-
nisms. Because this is only in the transport layer, TLS runs on top of TCP.

TLS, as implemented within LDAP, is specified in RFC 2830, Lightweight Directory Access
Protocol (v3): Extension for Transport Layer Security. It’s specified that a client may perform a
StartTLS operation by specifying an ExtendedRequest (which is part of the LDAP v3 specifica-
tion) containing the object identifier (OID) for the StartTLS operation (1.3.6.1.4.1.1466.20037).
An LDAP ExtendedRequest is defined as follows:

ExtendedRequest::= [APPLICATION 23] SEQUENCE {

RequestName [0] LDAPOID,

RequestValue [1] OCTET STRING OPTIONAL

}

The RequestValue field is kept empty during the StartTLS request. When a StartTLS
extended request is made, the server must send a positive response for communication to
be established.

ExtendedResponse::= [APPLICATION 24] SEQUENCE {

COMPONENTS OF LDAPResult,

ResponseName [10] LDAPOID OPTIONAL,

Response [11] OCTET STRING OPTIONAL

}

The StartTLS extended response must contain a responseName field that will correspond with
the responseName field during the extended request. The resulting code from the communication

CHAPTER 5 ■ IMPLEMENTING OPENLDAP 103

4134_c05_final.qxd 9/30/04 11:28 AM Page 103

ldap:///dc=customers

initialization can be either “success,” which means the server is willing and able to negotiate TLS,
or another response that can then be used to either try again or completely abort the request. The
available result codes are as follows:

• OperationsError: Operation sequencing is incorrect; for example, TLS is already
established.

• ProtocolError: TLS isn’t supported, or an incorrect structure exists.

• Referral: This particular server doesn’t support TLS, but the one given in the referral may.

• Unavailable: This indicates a significant error with TLS or an unavailable server.

The goals of using the TLS protocol with LDAP are to ensure connection confidentiality and
integrity and to optionally provide for authentication. TLS expressly provides these capabilities.
All security gained via using the StartTLS operation is actually gained from using TLS itself. The
StartTLS operation, on its own, doesn’t provide any additional security. TLS is just one of the tools
provided and incorporated into LDAP that serves as a building block for a security system. That is,
the incorporation of multiple security procedures and protocols as an all-encompassing package
is necessary for running a secure LDAP environment.

Access Control
An access control policy is a set of rules defining the protection of resources, generally in terms
of the capabilities of persons or other entities accessing those resources. A common expres-
sion of an access control policy is an access control list. Security objects and mechanisms
enable the expression of access control policies and their enforcement. Attributes within your
LDAP system store this information. A request, when a server is processing it, may be associ-
ated with a wide variety of security-related factors. The server uses these factors to determine
whether and how to process the request. These are called access control factors (ACFs). They
may include source IP address, encryption strength, type of operation being requested, time
of day, and a variety of others. Some factors may be specific to the request itself, and others
may be environmental. Access control policies are expressed in terms of ACFs, such as “a request
having the ACFs I,j,k can perform operation Y on resource Z.” Currently no standard exists for
access control information in LDAP, which has always been a major cause of concern.

Kerberos
Kerberos is a network authentication protocol. It’s designed to provide strong authentication
for client-server applications by using secret key cryptography. MIT created Kerberos as a
solution to network security problems. The Kerberos protocol uses strong cryptography so
that a client can prove its identity to a server (and vice versa) across an insecure network con-
nection. After a client and server have used Kerberos to prove their identities, all incoming
and outgoing communication is encrypted to assure privacy and data integrity. Kerberos is
a good solution to network security problems and provides tools of authentication and strong
cryptography over the network to help secure information across your infrastructure. The
Generic Security Services Application Programming Interface (GSSAPI) mechanism with SASL
is used to support Kerberos V. GSSAPI is discussed in great detail in RFC 2743 and RFC 1964.

CHAPTER 5 ■ IMPLEMENTING OPENLDAP104

4134_c05_final.qxd 9/30/04 11:28 AM Page 104

To use the GSSAPI mechanism with slapd, you must create a service key with a principal
for LDAP service within the realm for the host on which the service runs. You’ll need to specify
sasl-realm in your slapd.conf file if the LDAP server host’s FQDN isn’t the same as the name
of your realm. You can modify the option sasl-secprops to constrain the mechanisms that
SASL will accept. If you run slapd on ldap.yourcompany.com and your realm is YOURCOMPANY.COM,
you need to create a service key with the following principal:

ldap/ldap.yourcompany.com@YOURCOMPANY.COM

This key will need to exist in the keytab file in /etc/krb5.keytab or wherever your imple-
mentation has set it. To use the GSSAPI mechanism to authenticate to the directory, the user
obtains a ticket-granting ticket (TGT) prior to running the LDAP client. When using OpenLDAP
client tools, the user may mandate the use of the GSSAPI mechanism by specifying -Y GSSAPI
as a command option.

OpenLDAP associates a nonmapped authentication request DN of the following form:

uid=<primary[/instance]>,cn=<realm>,cn=gssapi,cn=auth

A user with the Kerberos principal tom@YOURCOMPANY.COM would have the associated DN of
uid=tom,cn=yourcompany.com,cn=gssapi,cn=auth.

Understanding Replication
Centralized storage of data doesn’t necessarily mean a centralized server. The ability to dis-
tribute information across multiple servers is key to a redundant environment. Replication is
the mechanism used to copy information from one directory to a series of others. The mecha-
nism is also used to keep this information in sync across all LDAP systems.

With replication, you’re able to more easily achieve fault tolerance, better performance,
and localized management of information across multiple nodes.

You need to understand multiple concepts related to replication.

Master: The master server is the authoritative source of your LDAP information. It’s the
server that ultimately controls writes to your directory and pushes data across to other
systems.

Slave or consumer: A slave or consumer is a host that provides read access to directory
data. When a write operation needs to be processed, the request is forwarded to the
master using a referral.

Replica hub: A hub may serve as a buffer between a master and a slave. A hub accepts
replication information from the original source of data (master) and quickly pushes it
to all the slave servers. Typically, because of the excess overhead, a replica hub isn’t con-
figured to accept client reads.

Most modern LDAP deployments (where LDAP is used as it should be, not just a localized
storage area for local configuration files), it’s necessary to support some level of replication.
Often the decisions on how to create your replicated environment are made based on similar
criteria used to create your directory information tree (see Table 5-2).

CHAPTER 5 ■ IMPLEMENTING OPENLDAP 105

4134_c05_final.qxd 9/30/04 11:28 AM Page 105

mailto:com@YOURCOMPANY.COM
mailto:tom@YOURCOMPANY.COM

Table 5-2. Decisions About Server Layout

Input Output Explanation

Single organization, Replication for performance In a small environment without logical
small office and redundancy “nodes,” it may be a good idea to have

Master, some consumers information replicated to allow for higher
availability of information.

Single organization, Replication for performance The more consumers you need to support,
multiple offices and redundancy the more replica heads may be necessary

Master, replica head(s), to support this functionality.
some consumers

OpenLDAP utilizes slurpd to handle replication. This daemon runs in parallel with the
slapd instance on the master server and utilizes standard LDIF statements and LDAP to propa-
gate changes. The slurpd process utilizes a changelog to keep track of what changes take place
on the master server. Based on information contained in this log, slurpd generates LDIF state-
ments and propagates them to the rest of the hosts within the replication model.

changelog/Replication Log
The changelog contains LDIF records showing what has changed on the system since the log
was generated. That is, each time any change to your data is made, that change is stored as
a transaction record within your changelog. This acts as a “journal” that can be used to rebuild
systems from a certain date or to maintain changes across systems that contain a large num-
ber of records. Imagine a host with 100,000 records. If synchronization needs to occur from
one host to another, either the entire directory can be viewed and the changes can be gener-
ated and processed, or the changelog can be viewed and only the 1,000 changes that occurred
since the last synchronization can be processed.

The slurpd process uses the changelog fully. In future integration projects, you’ll see that
meta-directory systems and other applications will also use this. However, realize that the
changelog, if enabled on more than a single host, decreases system performance and is inconsis-
tent. If Host A is on change 10 and Host B is on change 14, any system that relies on the changelog
to update its own records won’t be able to differentiate between the changes. This makes it neces-
sary to rely on a single host with a single changelog for the appropriate consistency.

When slapd is configured to generate a changelog, this file contains LDIF records of changes.
It also contains the relevant replication sites and a time stamp. Operational attributes (such as the
modifier’s name and various time stamps) will also be stored. Using previous examples, imagine
the following scenario:

dn: uid=tjackiewicz,ou=People,dc=Your, dc=Company

objectclass: top

objectclass: inetorgperson

cn: Tom Jackiewicz

sn: Jackiewicz

uid: Tjackiewicz

If you wanted to change the CN from Tom Jackiewicz to Thomas Jackiewicz, you’d generate
an LDIF statement to perform the operation.

CHAPTER 5 ■ IMPLEMENTING OPENLDAP106

4134_c05_final.qxd 9/30/04 11:28 AM Page 106

dn: uid=tjackiewicz,ou=People,dc=Your, dc=Company

changetype: modify

replace: cn

cn: Thomas Jackiewicz

The changelog will also contain a similar statement but may include operational attrib-
utes as well—things you don’t necessarily have to use. Multiple replica lines can, and will,
exist in your environment if you have more than just a single master and single consumer.

replica: LDAPConsumer.YourCompany.com:389

time: 0403030334

dn: uid=tjackiewicz,ou=People,dc=Your, dc=Company

changetype: modify

replace: cn

cn: Thomas Jackiewicz

-

replace: modifiersName

modifiersName: cn=Directory Manager

-

replace: modifyTimestamp

modifyTimestamp: 2004020403030334Z

The other items were also stored in the changelog, but the standard statement, in LDIF,
showing the modification that was made, was included. Almost everything in LDAP can be
broken down into LDIF, which is the most common denominator you’re using. To elaborate,
the record begins with one or more lines, indicating the replicas to which the change is to be
propagated.

replica: <hostname[:portnumber]>

The time the change took place is given, as the number of seconds since Jan. 1, 1970, with
an optional decimal extension to ensure uniqueness.

time: <integer[.integer]>

The DN of the entry being modified is then provided, along with the changetype informa-
tion.

dn: <distinguishedname>

changetype: <[modify|add|delete|modrdn]>

add: <attributetype>

<attributetype>: <value1>

<attributetype>: <value2>

...

-

The terms changelog and replication log will be used interchangeably, as they represent
the same function—the ability to log changes on an LDAP host as they occur. Different imple-
mentations of LDAP use a variety of different formats and terms for this.

CHAPTER 5 ■ IMPLEMENTING OPENLDAP 107

4134_c05_final.qxd 9/30/04 11:28 AM Page 107

slurpd
In summary, slurpd is the process used to propagate changes from the master directory to
others in the hierarchy. When slurpd sees a change, it locks the changelog, makes its own
copy, releases the lock, and forks a copy of itself for each downwind system to which it
needs to push information.

The options for startup and configuration are as follows:

-d debug-level: Turns on debugging as defined by debug-level. If this option is specified,
even with a zero argument, slurpd will not fork or disassociate from the invoking terminal.
Some general operation and status messages are printed for any value of debug-level,
which is taken as a bit string, with each bit corresponding to a different kind of debugging
information. The debug levels that can be used here are consistent with slapd.

-f slapd-config-file: Specifies the slapd configuration file to use.

-r slapd-replog-file: Specifies the name of the slapd replication log file or the changelog.
Normally, the name of the changelog is read from the slapd configuration file. This file
should be located in a readable directory.

-o: Specifies to run in “one-shot” mode. Normally, slurpd processes the changelog file and
then watches for more entries to be appended. In one-shot mode, slurpd processes an
existing changelog and then stops.

-t temp-dir: This is the temporary directory that’s used to store the local locked copy of
the changelog.

-k srvtab-file: Specifies the location of the Kerberos srvtab file that contains keys for
the replica slapd instances. This option overrides the srvtab argument to the replica
directive in the slapd configuration file.

The first step in replication requires the configuration of a master and slapd instance. To
make an existing slapd instance into a replication master, configuration changes are neces-
sary to the slapd.conf configuration file.

On the master, add a replica directive for each replica. The binddn= parameter should
match the updatedn option in the corresponding slave. Add a replogfile directive that speci-
fies the location of the replication log (or changelog).

On the slave, make sure your base configurations are the same as your master. It’s not wise
to attempt to have different base DNs and schemas across multiple hosts that are, in a sense,
acting as a single entity. In a master-to-consumer configuration, it isn’t necessary to include the
previous master changes on the slave (that is, no replica directive and no replogfile). You’ll
need to include the updatedn line and make sure it’s consistent with the master. The DN given
should match the DN given in the binddn= parameter of the corresponding replica= directive
in the master slapd.conf file. The updatedn shouldn’t be the same as the rootdn of the slave
database.

The master configuration modifications may look like the following:

CHAPTER 5 ■ IMPLEMENTING OPENLDAP108

4134_c05_final.qxd 9/30/04 11:28 AM Page 108

replica host=Consumer.YourCompany.Com:389

binddn="cn=Replication Manager"

bindmethod=simple credentials=password

replogfile /var/lib/openldap/replication.log

Another more standard and current method of specifying the host information is as
follows:

replica uri=ldap://Consumer.YourCompany.Com:389

binddn="cn=Replication Manager"

bindmethod=simple credentials=password

replogfile /var/lib/openldap/replication.log

In these configurations, for the consumer Consumer.YourCompany.Com, which is an LDAP
server running on port 389 on this particular host, I’ll connect as cn=Directory Manager using
the password of password and propagate changes stored in the replogfile location.

The same operation, using a more secure method, LDAPS, on port 636 is as follows:

replica uri=ldaps://Consumer.YourCompany.Com:636

binddn="cn=Replication Manager"

bindmethod=simple credentials=password

replogfile /var/lib/openldap/replication.log

The configurations on the individual consumers may exist as follows:

updatedn "cn=Replication Manager"

Ensure that the DN you give has the appropriate permissions to update the directory.

updateref
To ensure that the slave starts functioning with an exact copy of the master data, the master
server needs to be stopped, and the database needs to be appropriately synchronized. During
this synchronization process, it’s necessary to put the master in read-only mode. This way,
changes made during this process are rejected.

You have multiple methods of performing the synchronization. However, to be safe and
to breed good habits, you should use the slapcat program to output the master directory into
LDIF format. Using LDIF instead of directly copying database files (as is often suggested and
documented) avoids any potential incompatibilities between different server configurations.

Importing Databases
I’m working with the assumption that you already have a database you want to import and
create replication agreements in. (If you don’t currently have a set of data you’re working with,
it isn’t necessary to read this section.) You have many ways of accessing and retrieving data in
a usable format such as LDIF. However, you need to be aware of some main differences
between the methods that are available to you (see Table 5-3).

CHAPTER 5 ■ IMPLEMENTING OPENLDAP 109

4134_c05_final.qxd 9/30/04 11:28 AM Page 109

ldap://Consumer.YourCompany.Com:389
ldaps://Consumer.YourCompany.Com:636

Table 5-3. Local vs. Remote LDAP Utilities

Utility Scope Pro/Con

slapcat Local server with physical Pro: Takes into account all directory- and database-
access to the directory. level information that wouldn’t be available when

accessing via other methods.
Con: Need local directory access, privileges.
Proprietary application.

ldapsearch Local or remote server. Pro: Can be used across multiple directories, LDAP
No special access, beyond protocol versions, vendors, and implementations.
access to the directory via Con: Operational attributes and internal data may
the LDAP protocol, is not be retrievable, thus this can’t always be relied
required. upon to completely build a mirror directory.

All LDAP implementations require some method of conversion from an existing directory
(stored in a number of database files) to LDIF format suitable for creating a clone. This is nec-
essary because of the types of data that may exist in a directory, including standard user and
informational records, internal metadata, and various operators used to control information
processing. Much of the “other” data isn’t necessarily accessible using standard tools (or APIs)
to access the information. For example, the entry of uid=tjackiewicz,ou=People,dc=Your,
dc=Company may be made up of five attributes and object classes at first glance. However, inter-
nal attributes (such as entrydn, uniqueid, and others that may be used by meta-directories and
other systems) may be hidden from standard view. Additionally, the specific order of informa-
tion in the record (which shouldn’t matter for most purposes) may also need to be maintained.
For this reason, the ability to export data as it actually exists needs to be available.

slapcat
OpenLDAP provides slapcat for this functionality. The utility is used to generate LDIF output
based on the contents of the slapd database itself. Instead of communicating with standard
APIs to the LDAP server itself, it opens the specific database files stored locally and generates
LDIF output based on their contents. Because the entries processed are in database order, not
superior first order, they can’t be loaded with standard LDAP utilities. That is, because the data-
base may have uid=X,ou=A,ou=B,ou=C,dc=Your,dc=Company in the database first, before all its
dependencies, only the slapadd program can be used to add it. This entry (RDN of uid=X) de-
pends on the existence of all its parents (ou=A, ou=B, and so on), but within the database files
themselves, they may be defined after the actual entry.

The syntax for slapcat is as follows:

slapcat [-v] [-c] [-d level] [-b suffix] [-n dbnum]

[-f slapd.conf] [-l ldif-file]

The options are as follows:

• -v: Enables verbose mode.

• -c: Enables continue (ignore errors) mode.

• -d level: Enables debugging messages as defined by the specified debug level. This
debug level is compatible with those for the slapd server.

CHAPTER 5 ■ IMPLEMENTING OPENLDAP110

4134_c05_final.qxd 9/30/04 11:28 AM Page 110

• -b suffix: Uses the specified suffix to determine for which database to generate out-
put. You can’t use this option in conjunction with the -n option.

• -n dbnum: Generates output for the dbnum-th database listed in the configuration file.
You can’t use the -n option in conjunction with the -b option.

• -f slapd.conf: Specifies an alternative configuration file.

• -l ldif-file: Writes LDIF to the specified file instead of STDOUT.

You must ensure that slapd isn’t running during this process to ensure consistency of the
database being read.

Testing
Upon completion of the replication tasks, you must restart the master directory server. Perform
a basic change in your system (in other words, modify an entry) to see that the corresponding
changelog is being modified.

Now you can start the slurpd process. Upon startup, slurpd should immediately connect
to the consumer LDAP server and propagate your change. When a change is propagated and
slurpd receives an error, it writes the reason for the error and the replication record to a reject
file. The reject file is located in the same directory as the replication log. It maintains the same
name but is appended with .rej. In these examples, if the directive replogfile is set to the value
of /var/lib/openldap/replication.log, the resulting file would be /var/lib/openldap/
replication.log.rej. The format of the rejection list is similar to the replication log itself.
Had the previous example been a rejection, it would look like this:

ERROR: error message

replica: LDAPConsumer.YourCompany.com:389

time: 0403030334

dn: uid=tjackiewicz,ou=People,dc=Your, dc=Company

changetype: modify

replace: cn

cn: Thomas Jackiewicz

-

replace: modifiersName

modifiersName: cn=Directory Manager

-

replace: modifyTimestamp

modifyTimestamp: 2004020403030334Z

A sample rejection log entry follows:

ERROR: No such attribute

It’s possible to use slurpd to process a rejection log with its one-shot mode. In normal
operation, slurpd watches for more replication records to be appended to the replication log
file. In one-shot mode, by contrast, slurpd processes a single log file and exits. slurpd ignores
ERROR lines at the beginning of replication log entries, so it’s not necessary to edit them out
before feeding it the rejection log.

CHAPTER 5 ■ IMPLEMENTING OPENLDAP 111

4134_c05_final.qxd 9/30/04 11:28 AM Page 111

To use one-shot mode, specify the name of the rejection log on the command line as the
argument to the -r flag and specify one-shot mode with the -o flag. For example, to process
the rejection log file /usr/local/var/openldap/replog.slave.YourCompany.com:389 and exit,
use the following command:

slurpd -r /usr/tmp/replog.slave.YourCompany.com:389 -o

Understanding Referrals
Referrals are one way to extend the scope of your directory beyond a single server and, if you
so desire, add it to a global network linked much like DNS. The concept of referrals is inher-
ited from X.500. You can approach the concept of referrals in two ways, described next.

DNS Resource Records for Service Location
The first is to look at them like root server lists in DNS, in that each server has a superior server
that ultimately is authoritative for providing lists (or referrals) to other servers in order to cre-
ate a global directory hierarchy. This is implemented in DNS resource records for service loca-
tions, as defined by RFC 2782. Most existing LDAP implementations don’t support the location
of directory services using DNS SRV resource records. However, most services support genera-
tion of referrals to superior servers.

Using these records in DNS is akin to mail servers discovering and utilizing mail exchange
(MX) hosts or a client looking at a global directory to request information. If an LDAP client
adhering to RFC 2782 standards wants to discover an LDAP server that supports TCP and
provides LDAP services for YourCompany.com, it would look up the following:

_ldap._tcp.YourCompany.com

The format for the SRV RR is as follows:

_Service._Proto.Name TTL Class SRV Priority Weight Port Target

The options are as follows:

Service: This is the symbolic name for the desired service with an underscore prepended
so that it isn’t confused with typical DNS information.

Proto: This is the symbolic name of the desired protocol. Currently, _TCP and _UDP would
be the best candidates for inclusion here.

Name: This is the domain to which this resource record refers.

TTL: This is the RFC 1035-compliant time to live, or the expiration.

Class: This is the RFC 1035-compliant class. SRV records occur in the IN Class.

Priority: This is the priority of this target host. A client must attempt to contact the target
host with the lowest-numbered priority it can reach. Target hosts with the same priority
should be tried in an order defined by the weight field.

CHAPTER 5 ■ IMPLEMENTING OPENLDAP112

4134_c05_final.qxd 9/30/04 11:28 AM Page 112

Weight: This is a server selection mechanism. The weight field specifies a relative weight
for entries with the same priority. Large weights should be given a proportionately higher
probability of being selected.

Port: This is the port on this target host that’s used for this service. LDAP will use port 389
for standard communications and 636 for secure communications.

Target: This is the domain name of the target host. There must be one or more address
records for this name, and it must not be an alias. A target of “.” indicates that the service
isn’t available at this particular domain.

The overall goal of using these resource records in your DNS tables is to provide clients
with a way to retrieve well-known services (WKS) without the need of being preconfigured.
The original problem statement may have been an Internet service provider requiring a list
of configuration options including MAIL, POP3, IMAP4, NNTP, and other services. Resource
records publishing names of these services in a standard way would solve many of the issues
surrounding the maintenance of lists.

Global referrals are a complement to this type of configuration. The root service locates
services associated with a given fully qualified domain name by querying DNS for the LDAP
SRV resource records. For the domain YourCompany.Com, the service would issue an SRV query
for _ldap._tcp.YourCompany.Com, as explained previously. A successful query will return one
or more resource records of the following form:

ldap.tcp.YourCompany.Com. IN SRV 0 0 389 ldap.YourCompany.Com.

For each record that is returned, an LDAP URL is constructed. From this example record,
the URL would be as follows:

ldap://ldap.YourCompany.Com:389/

These URLs are then returned in the referral. The referral is then used to forward information
to various servers configured among the network of LDAP servers to which your host belongs.

Localized Scope
The other, which is more local and not part of a global directory goal, allows LDAP to look at
different trees for different sets of information. This is based on the assumption that some
directories are just too large to be stored within a single entity. In this case, parts of the tree are
stored on alternate hosts. Pointers (or referrals) from the local server’s DN for a particular tree
hold the referral showing the alternate location on another server.

The referral is used in a way similar to a symbolic link in your filesystem. It allows the
linking of directories from certain parts of the tree. For example, in a simple directory infor-
mation tree (DIT) structure that has your company split across ou boundaries of the United
States and China (ou=USA and ou=CHINA), a referral from the directory located in the United
States may have a referral to the directory in China, thus allowing independent control of
information.

dn: ref="ldap://CHINAHOST/ou=CHINA,dc=Your,dc=Company"

objectclass: referral

CHAPTER 5 ■ IMPLEMENTING OPENLDAP 113

4134_c05_final.qxd 9/30/04 11:28 AM Page 113

ldap://ldap.YourCompany.Com:389
ldap://CHINAHOST/ou=CHINA

This would result in any search that traverses this particular tree to establish communi-
cation with a new directory on a new host. LDAP clients will need to be aware of referrals
and appropriately follow them. When fully implemented (and when control over the client
adherence to standards is under your control), this will allow you to master and distribute
information across multiple hosts.

Understanding the Installation Structure
Upon successfully installing the software, perusing the standard file hierarchy of the distribu-
tion will give you greater insight into the system configurations. The file hierarchy can be
divided into multiple sections, each which will be discussed.

Base system configurations exist, as in standard Unix systems, in an /etc directory struc-
ture. However, OpenLDAP, as in other open-source software initiatives, uses /usr/local/etc.
To make configurations easier, I’ll stick with the base system configurations whenever possible.
If this isn’t possible, I’ll note it to maintain consistency throughout. The default installation of
OpenLDAP doesn’t run, thus forcing you to actually configure it. You may notice that other soft-
ware packages you’ve configured in the past let you start the system without any specific con-
figurations and embedded default messages somewhere in the host. This isn’t the case here.
You’ll need to uncomment the system configurations and change them in order for the system
to even start appropriately.

ldap.conf
The configuration file ldap.conf is the first place you’ll be making configurations for your
system. The basic file looks like this:

#

LDAP Defaults

#

See ldap.conf(5) for details

This file should be world readable.

#BASE dc=OpenLDAP, dc=Org

#HOST ldap.openldap.org

#HOST ldap.openldap.org ldap-master.openldap.org:666

#PORT 389

#SIZELIMIT 12

#TIMELIMIT 15

#DEREF never

This configuration file is used to set systemwide defaults for LDAP clients. Realize that
many of the initial configurations you’ll be making may seem redundant, because you’ll not
only be creating configurations for your server but also the default configurations for all your
clients. Setting default client configurations will allow you to use a standard set of LDAP tools

CHAPTER 5 ■ IMPLEMENTING OPENLDAP114

4134_c05_final.qxd 9/30/04 11:28 AM Page 114

without needing to specify all the command-line arguments for each query. While these are
global system configurations, the same file can exist as ldaprc or .ldaprc in an individual home
directory to override these defaults. This is useful for developers who may need to access multi-
ple LDAP servers for information, not just yours.

The following sections describe the configuration options.

Systemwide Configurations
The following are the systemwide configuration options:

BASE <basedn>: This specifies the default base DN to use when performing LDAP operations.

HOST <name[:port] ...>: This specifies the name or names or LDAP servers that should be
accessed by default. The server name can be specified as a host, a FQDN, or an IP address.
Additional ports can be specified after the hostname. The default port used is 389.

PORT <port>: This specifies the default port used when connecting to LDAP servers.

SIZELIMIT <integer>: This specifies a size limit to use when performing searches. Some
directories can be thousands or millions of objects in size. This is a client-enforced limit
that will ensure that the results of a specific query don’t exceed a specific size. A limit of 0
specifies an unlimited number of acceptable results.

TIMELIMIT <integer>: This specifies a time limit to use when performing searches. A set-
ting of 0 specifies an unlimited time.

DEREF <when>: This specifies how alias dereferencing is done when performing a search.
The <when> can be specified as never, in which aliases are never dereferenced; searching,
where aliases are dereferenced in subordinates of the base object; finding, where aliases
are dereferenced when locating the base object of the search; or always, where aliases are
dereferenced in both searching and locating the base object of the search.

User-Only Configurations
The following is the user-only configuration option:

• BINDDN <dn>: This specifies the default bind DN to use when performing LDAP opera-
tions. The bind DN must be specified as a DN.

SASL Options
If OpenLDAP is built with SASL support, more options are available for client configurations.

SASL_MECH <mechanism>: Specifies the SASL mechanism to use. This is a user-only option.

SASL_REALM <realm>: Specifies the SASL realm. User-only.

SASL_AUTHCID <authcid>: Specifies the authentication identity. User-only.

SASL_AUTHZID <authcid>: Specifies the proxy authentication identity. User-only.

SASL_SECPROPS <properties>: Specifies Cyrus SASL security properties. The <properties>
can be specified as a comma-separated list of the following:

CHAPTER 5 ■ IMPLEMENTING OPENLDAP 115

4134_c05_final.qxd 9/30/04 11:28 AM Page 115

• None (without any other properties) causes the properties defaults
(noanonymous,noplain) to be cleared.

• Noplain disables mechanisms susceptible to simple passive attacks.

• Noactive disables mechanisms susceptible to active attacks.

• Nodict disables mechanisms susceptible to passive dictionary attacks.

• Noanonymous disables mechanisms that support anonymous login.

• Forwardsec requires forward secrecy between sessions.

• Passcred requires mechanisms that pass client credentials (and allows
mechanisms that can pass credentials to do so).

Minssf=<factor>: Specifies the minimum acceptable SECURITY STRENGTH FACTOR as an
integer approximating the effective key lengths used for encryption. The setting 0 implies
no protection; 1 implies integrity protection only; 56 allows DES or other weak ciphers;
112 allows triple DES and other strong ciphers; and 128 allows RC4, Blowfish, and other
modern strong ciphers. The default is 0.

Maxssf=<factor>: Specifies the maximum acceptable SSF as an integer. See MINSSF.

Maxbufsize=<factor>: Specifies the maximum security layer receiving buffer size allowed.
0 disables this feature.

slapd.conf
This file contains configuration information for the slapd daemon and other system tools
you’ll be potentially using. This file consists of a series of global configuration options that
apply to slapd as a whole (including all back ends).

#

See slapd.conf(5) for details on configuration options.

This file should NOT be world readable.

#

include /usr/local/etc/openldap/slapd.at.conf

include /usr/local/etc/openldap/slapd.oc.conf

schemacheck off

#referral ldap://root.openldap.org/

pidfile /usr/local/var/slapd.pid

argsfile /usr/local/var/slapd.args

###

ldbm database definitions

###

CHAPTER 5 ■ IMPLEMENTING OPENLDAP116

4134_c05_final.qxd 9/30/04 11:28 AM Page 116

ldap://root.openldap.org

database ldbm

suffix "dc=my-domain, dc=com"

#suffix "o=My Organization Name, c=US"

rootdn "cn=Manager, dc=my-domain, dc=com"

#rootdn "cn=Manager, o=My Organization Name, c=US"

cleartext passwords, especially for the rootdn, should

be avoid. See slapd.conf(5) for details.

rootpw secret

database directory

this directory MUST exist prior to running slapd AND

should only be accessable by the slapd/tools Mode 700 recommended.

directory /usr/local/var/openldap-ldbm

This file contains a significant amount of configuration options that will dictate how your
OpenLDAP server operates. The important options that need to be configured before your server
is functional are database, suffix, rootdn, rootpw, and the paths pointing to other files. Make
sure these options are all configured to your liking.

The more in-depth configuration options for this file are as follows:

Access to <what> [by <who> <access> <control>]+: Grants access to a set of entries
and/or attributes by one or more requestors.

Allow <features>: Specifies a set of features (separated by whitespace) to allow. These
include the following:

• Bind_v2 allows acceptance of LDAPv2 bind requests.

• Bind_anon_cred allows anonymous bind when credentials aren’t empty.

• Bind_anon_dn allows unauthenticated (anonymous) bind when credentials aren’t
empty.

• Update_anon allows unauthenticated update operations to be processed.

Argsfile <filename>: The absolute name of a file that will hold the slapd server’s command-
line options.

Attributeoptions [option-name] ...: Attribute options, such as tags related to languages
and prefixes, are defined here.

Attributetype (<oid> [NAME <name>] [OBSOLETE] [DESC <description>] [SUP <oid>]

[EQUALITY <oid>] [ORDERING <oid>] [SUBSTR <oid>] [SYNTAX <oidlen>] [SINGLE-VALUE]

[COLLECTIVE] [NO-USER-MODIFICATION] [USAGE <attributeUsage>]: Specifies an attribute
type using LDAPv3 syntax as defined in RFC 2252.

Concurrency <integer>: Specifies the desired level of concurrency.

Conn_max_pending <integer>: Specifies the maximum number of pending requests for an
anonymous session. If requests are submitted faster than the server can process them,
they will be queued up to this limit. If the limit is exceeded, the session is closed.

CHAPTER 5 ■ IMPLEMENTING OPENLDAP 117

4134_c05_final.qxd 9/30/04 11:28 AM Page 117

Conn_max_pending_auth <integer>: Specifies the maximum number of pending requests
for an authenticated session.

Defaultsearchbase <dn>: Specifies a default search base to use when client submits
a nonbase search request with an empty base DN.

Disallow <features>: Specifies a set of features to disallow. These include the following:

• Bind_anon disables acceptance of anonymous bind.

• Bind_simple disables simple authentication.

• Bind_krbv4 disables Kerberos V4 authentication.

• Tls_2_anon disables StartTLS from forcing session to anonymous status.

• Tls_authc disables StartTLS if authenticated.

Gentlehup {on | off }: A SIGHUP (kill -HUP): Causes only a gentle shutdown attempt.
slapd will stop listening for new connections but won’t close the connection for active
(already established) clients. Future write operations will return unwilling to perform.
slapd terminates when all clients have closed their connections. This can be useful if you
want to terminate the server and start a new slapd server with another database without
disruption.

Idletimeout <integer>: Specifies the number of seconds to wait before forcibly closing
an idle client connection.

Include <filename>: Reads additional configuration information from the given file
before continuing with the next line of the current file.

Limits <who> <limit> [<limit> [...]]: Specifies time and size limits based on whom
initiated an operation. This is useful when special users (such as those for use by applica-
tions and not connected to real people) are necessary for your system.

Loglevel <integer>: Specifies the level at which debugging statements and operation sta-
tistics should be syslogged. This is useful for various levels of debugging that may be
required during the initial configuration (and error validation) within your environment.
For a production environment, the level should be set to as low as possible to not degrade
performance on your system. The log levels are additive, meaning that the desired level of
logging, which can include any or all of the levels below, need to be added together to ob-
tain the desired level. For example, in order to log debug packet handling (2), and packets
sent and received (16), your log level would be set to 18. The available levels are as follows:

• 1 means trace function calls.

• 2 means debug packet handing.

• 4 means heavy trace debugging.

• 8 means connection management.

• 16 means print packets sent and received.

• 32 means search filtering processing.

CHAPTER 5 ■ IMPLEMENTING OPENLDAP118

4134_c05_final.qxd 9/30/04 11:28 AM Page 118

• 64 means configuration file processing.

• 128 means access control list processing.

• 256 means stats log connections/operations/results.

• 512 means stats log entries sent.

• 1024 means print communication with shell back ends.

• 2048 means entry parsing.

Moduleload <filename>: Specifies the name of a dynamically loadable module to load. The
filename may be an absolute path name or a simple filename. Nonabsolute filenames are
searched for in the directories specified by the modulepath option. This option requires
that slapd be compiled with -enable-modules.

Modulepath <pathspec>: Specifies a list of directories to search for loadable modules. Typi-
cally the path is a colon-separated path, but this depends on the operating system.

Objectclass (<oid> [NAME <name>] [DESC <description>] [OBSOLETE] [SUP <oids>]

[{ABSTRACT | STRUCTURAL | AUXILIARY }] [MUST <oids>] [MAY <oids>]: Specifies an
object class using the LDAPv3 syntax defined in RFC 2252. Object classes are structural
by default.

Objectidentifier <name> { <oid> | <name>[:<suffix>] }: Defines a string name that
equates to the given OID. The string can be used in place of the numeric OID in object
class and attribute definitions. This is typically used when an OID prefix has not been
defined for your organization and temporary values need to be used. For example, with
the object class of YourCompanyPerson, you can use YourCompanyPerson-oid for the OID
string.

Password-hash <hash>: The option sets the hash to be used when generating user pass-
words, stored in userPassword, during the processing of LDAP password modify extended
operations (RFC 3052). The <hash> must be one of {SSHA}, {SHA}, {SMD5}, {MD5}, {CRYPT}, or
{CLEARTEXT}. {SHA} uses the SHA-1 algorithm, and {SSHA} uses a seed. {MD5} and {SMD5} use
the MD5 algorithm, the latter with a seed. {CRYPT} uses crypt (3). {CLEARTEXT} indicates
that the password should be added to userPassword as clear text. This should be a signifi-
cant source of discussion within your company when integrating with legacy applications
that utilize LDAP as a synchronization source because some old applications may not be
able to appropriately utilize certain ciphers.

Password-crypt-salt-format <format>: Specifies the format of the salt passed to crypt (3)
when generating {CRYPT} passwords.

Pidfile <filename>: The absolute name of a file that will hold the slapd server’s process
ID (PID).

Referral <URL>: Specifies the referral to pass back when slapd can’t find a local database
to handle a request.

Require <conditions>: Specifies a set of conditions to require. The directive must be
specified globally or per database. The options are as follows:

CHAPTER 5 ■ IMPLEMENTING OPENLDAP 119

4134_c05_final.qxd 9/30/04 11:28 AM Page 119

• Bind requires a bind operation prior to the directory operations.

• LDAPv3 requires a session to be using LDAP version 3.

• Authc requires authentication prior to the directory operations.

• SASL requires SASL authentication prior to the directory operations.

• None can be used to require no conditions.

Reverse-lookup on | off: Toggles client name lookups.

RootDSE <file>: Specifies the name of an LDIF file containing user-defined attributes for
the root DSE. These attributes are returned in addition to the attributes normally produced
by slapd.

Sasl-authz-policy <policy>: Specifies which rules to use for SASL proxy authorization.
Proxy authorization allows a client to authenticate to the server using one user’s cre-
dentials while specifying a different identity to use for authorization and access control
evaluation.

Sasl-host <fqdn>: Specifies the FQDN used for SASL processing.

Sasl-realm <realm>: Specifies a SASL realm.

Sasl-regexp <match> <replace>: Used by the SASL authorization mechanism to convert
a SASL authentication username to an LDAP DN. When an authorization request is received,
the SASL username, realm, and mechanism are taken and complied into a SASL name in the fol-
lowing form: Uid=<username>[,cn=<realm>],cn=<mechanism>,cn=auth. This SASL name is
then compared against the match regular expression, and if the match is successful, the SASL
name is replaced with the replace string. If wildcard strings exist in the match regular expres-
sion that are enclosed in parentheses—for example, uid=(.*),cn=.*—then regular expres-
sion rules for pattern matching apply.

Sasl-secprops <properties>: Specifies Cyrus SASL security properties.

Schemadn <dn>: Specifies the DN for the subschema subentry that controls the entries on
this server. The default is cn=Subschema.

Security <factors>: Specifies a set of factors to require. An integer value is associated
with each factor and is roughly equivalent to the encryption key length to require (in
other words, 112 for 3DES and 128 for Blowfish). The directive may be specified glob-
ally or per database.

Ssf=<n>: Specifies the overall security strength factor.

Transport=<n>: Specifies the transport security strength factor.

TLS=<n>: Specifies the TLS security strength factor.

SASL=<n>: Specifies the SASL security strength factor.

CHAPTER 5 ■ IMPLEMENTING OPENLDAP120

4134_c05_final.qxd 9/30/04 11:28 AM Page 120

Update_ssf=<n>: Specifies the overall security strength factor to require for directory
updates.

Update_transport=<n>: Specifies the transport security strength factor to require for direc-
tory updates.

Update_tls=<n>: Specifies the TLS security strength factor to require for directory updates.

Update_sasl=<n>: Specifies the security strength factor to require for directory updates.

Simple_bind=<n>: Specifies the security strength factor required for simple
username/password authentication.

Sizelimit {<integer>|unlimited}, sizelimit size[.{soft|hard|unchecked}]=<integer>

[...]: Specifies the maximum number of entries to return from a search operation. The
default size limit is 500.

Sockbuf_max_incoming <integer>: Specifies the maximum incoming LDAP PDU size for
anonymous sessions.

Sockbuf_max_incoming_auth <integer>: Specifies the maximum incoming LDAP PDU size
for authenticated sessions.

slapd.at.conf
This file contains attribute syntax definitions for your directory; in other words, it contains the
data types that can be stored in each attribute. The default value for an attribute is cis; thus,
you don’t necessarily need to include attributes of that type in this file. You need to modify this
file during your implementation of LDAP as you define and document the schema your com-
pany will be using. By default, the file looks like this:

attribute homephone tel

attribute mobiletelephonenumber mobile tel

attribute aliasedObjectName dn

slapd.oc.conf
This file includes object class definitions for your directory. The object class definitions state
which attributes are required and which are optional within your directory. You need to mod-
ify this file during your implementation of LDAP as you define and document the schema your
company will be using. By default, this file looks like this:

objectclass person

requires

objectClass,

sn,

cn

CHAPTER 5 ■ IMPLEMENTING OPENLDAP 121

4134_c05_final.qxd 9/30/04 11:28 AM Page 121

allows

description,

seeAlso,

telephoneNumber,

userPassword

Summary
After reading this chapter, you should understand the base system configurations in your
OpenLDAP directory and some of the configurations you can utilize to create a secure
environment.

CHAPTER 5 ■ IMPLEMENTING OPENLDAP122

4134_c05_final.qxd 9/30/04 11:28 AM Page 122

Scripting and
Programming LDAP

The power of any system lies in your ability to use it. While this is a generic statement, you
can probably agree that systems that provide little to no capability to directly communicate
with their data, structures, or configurations serve you poorly. Storing data in a system that
provides limited tools, besides a graphical user interface (GUI), to retrieve this information—
or one that uses proprietary and undocumented data format—isn’t as extensible as tools that
give you access to well-documented internal information.

This isn’t the case with Lightweight Directory Access Protocol (LDAP), as many methods
are available for searching, storing, manipulating, and utilizing the data stored within the
directory. You’ll never have a shortage of ways of accomplishing the same task using which-
ever method you’re familiar with using.

For many people, the simplest and most straightforward method of using the directory
may be the extensive set of command-line utilities available to you. The standard operations
you’ll need are available to you using ldapsearch and ldapmodify. You can utilize the power of
these utilities within shell scripts, Perl scripts, or any number of other scripting utilities. It’s
good to familiarize yourself with these tools to make your directory your own.

Utilizing Command-Line Tools
Not everyone is a programmer. Not every task requires a well-written program. Many times
you’ll have a base set of tools available to you and realize that you don’t need to bother with
anything else. In these scenarios, you’re able to combine the best set of tools available to you
with a script. Scripting is the process of grouping together a set of commands that are often
repeated. You can use multiple tools that can be used for scripting, the most common of
which are perl or standard shell commands.

You must first familiarize yourself with the command-line utilities you’ll be using for your
scripting. I’ll discuss more specific command-line options in other chapters, but here I’ll review
some of the basic commands you’ll need to use. The most common commands you’ll be utiliz-
ing for scripting are ldapsearch and ldapmodify. You can use the command-line option -h to
specify the hostname you’re connecting to, -p to specify the port, -D to specify the simple bind
credentials, -w to specify your password, and -f to accept input from a file. You use the -c flag
to continually process data even if one of the operations fails. For more verbose output, you

123

C H A P T E R 6

■ ■ ■

4134_c06_final.qxd 9/30/04 11:31 AM Page 123

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP124

can use -v. This information is written to STDERR, and your scripts can parse the output and
generate events based on it.

The differences between scripting and programming are often subtle and debatable. For
your purposes, I’ll show how to script a process that relies on external commands and isn’t self-
contained. That is, scripting involves running perl operations that depend on system() calls, not
internal operations. An example of this is relying on @output = `ldapsearch $hostname`; instead
of @output = ldapsearch_s(parameters);. If you want to perform the same operation across
a number of hosts, it’s a good idea to script this operation rather than typing it multiple times.

For example, you may want to process LDAP Interchange Format (LDIF) files based on the
class of host. In an environment with many machines, it’d be frustrating to keep repeating
the same commands while replacing one or two parameters in each. In the beginning, you
have to execute the set of commands shown in Listing 6-1.

Listing 6-1. Repetitive Tasks

$ /usr/local/bin/ldapmodify -h host1 -p 389 \

-D "cn=directory manager" \

-w password -v -c -a -f file1.ldif

$ /usr/local/bin/ldapmodify -h host1 -p 389 \

-D "cn=directory manager" \

-w password -v -c -a -f file2.ldif

$ /usr/local/bin/ldapmodify -h host1 -p 389 \

-D "cn=directory manager" \

-w password -v -c -a -f file3.ldif

$ /usr/local/bin/ldapmodify -h host1 -p 389 \

-D "cn=directory manager" \

-w password -v -c -a -f file4.ldif

$ /usr/local/bin/ldapmodify -h host1 -p 389 \

-D "cn=directory manager" \

-w password -v -c -a -f file5.ldif

$ /usr/local/bin/ldapmodify -h host1 -p 389 \

-D "cn=directory manager" \

-w password -v -c -a -f file6.ldif

$ /usr/local/bin/ldapmodify -h host2 -p 389 \

-D "cn=directory manager" \

-w password -v -c -a -f file1.ldif

$ /usr/local/bin/ldapmodify -h host2 -p 389 \

-D "cn=directory manager" \

-w password -v -c -a -f file2.ldif

$ /usr/local/bin/ldapmodify -h host2 -p 389

-D "cn=directory manager" \

-w password -v -c -a -f file3.ldif

$ /usr/local/bin/ldapmodify -h host2 -p 389 \

-D "cn=directory manager" \

-w password -v -c -a -f file4.ldif

$ /usr/local/bin/ldapmodify -h host2 -p 389 \

-D "cn=directory manager" \

-w password -v -c -a -f file5.ldif

4134_c06_final.qxd 9/30/04 11:31 AM Page 124

$ /usr/local/bin/ldapmodify -h host2 -p 389 \

-D "cn=directory manager" \

-w password -v -c -a -f file6.ldif

...

The goal of the commands is to update a series of hosts (in this case, host1 and host2) with
a series of LDIF files (file1.ldif through file6.ldif). Which host receives which files has a set
of logic associated with it. Master hosts get one set of files, and consumers get another. Obviously,
having to retype the commands is frustrating at the least. Therefore, you should script opera-
tions such as these. You should set parameters that often change as variables within the script
(see Listing 6-2).

Listing 6-2. Repetitive Tasks Scripted

#!/bin/bash

Paths and passwords

LDIFDIR='/home/tom/global'

BINDDN='cn=directory manager'

BINDPW='password'

LDAPMODIFY='/usr/local/bin/ldapmodify'

Some defaults

TYPE=replica

VERBOSE=

QUIET=

HOSTS=

Print out usage info

Usage() {

echo "Usage: 'basename $0' [-t master|replica] [-v|-q] <hostname[:port]> [

hostname[:port]] ..."

}

Parse out command-line args

while true ; do

if getopts t:vhq arg ; then

case $arg in

t) TYPE="$OPTARG" ;;

v) VERBOSE="yes" ;;

q) QUIET="yes" ;;

h) Usage ; exit 0 ;;

*) Usage ; exit 1 ;;

esac

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 125

4134_c06_final.qxd 9/30/04 11:31 AM Page 125

else

if ["$arg" = "?"] ; then

shift $(($OPTIND - 1))

HOSTS="$*"

fi

break

fi

done

if [-n "$QUIET" -a -n "$VERBOSE"] ; then

Usage

exit 1

fi

if [-z "$HOSTS"] ; then ### Nothing to do :(

Usage

exit 1

fi

Which files do we want to use?

FILES="\

file1.ldif \

file2.ldif \

file3.ldif \

file4.ldif \

file5.ldif \

file6.ldif \

"

These are contingent upon the type of system being installed.

case $TYPE in

master)

FILES="$FILES \

fileMASTER.ldif \

"

;;

replica)

FILES="$FILES \

fileREPLICA.ldif \

"

;;

*)

Usage

exit 1

;;

esac

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP126

4134_c06_final.qxd 9/30/04 11:31 AM Page 126

for HOST in $HOSTS ; do

PORT=389

if echo $HOST | grep ':' >& /dev/null ; then

PORT=${HOST/*:}

HOST=${HOST/:*}

fi

["$QUIET"] || echo "Server Name: $HOST (port: $PORT)"

for FILE in $FILES ; do

["$QUIET"] || echo "$LDAPMODIFY" -h $HOST -p $PORT -D \

"$BINDDN" -w "$BINDP W" -v -c -a -f "$LDIFDIR/$FILE"

["$VERBOSE"] && "$LDAPMODIFY" -h $HOST -p $PORT -D \

"$BINDDN" -w "$BINDPW" -v -c -a -f "$LDIFDIR/$FILE"

["$VERBOSE"] && "$LDAPMODIFY" -h $HOST -p $PORT -D \

"$BINDDN" -w "$BINDPW" -v -c -a -f "$LDIFDIR/$FILE"

["$VERBOSE"] || "$LDAPMODIFY" -h $HOST -p $PORT -D \

"$BINDDN" -w "$BINDPW" -c -a -f "$LDIFDIR/$FILE" >& /dev/null

done

done

The script is basic but gives you the ability to perform multiple (and different) operations
based on set criteria. Scripting such as this is extremely useful and reduces the amount of error
that’s introduced by having to retype commands. Running the script in Listing 6-2 without any
command-line options yields the following results:

$./update.sh

Usage: update.sh [-t master|replica] [-v|-q] <hostname[:port]>

[hostname[:port]] ...

You can use this script to create a replica instance of a directory with the appropriate files
but run it as follows:

$./update.sh -t replica ldaphost

Server Name: ldaphost (port: 389)

...

Additionally, you could also script modifying the LDAP data, which would be a useful tool.
Let’s say you have a basic problem with data in your LDAP server and want to change all users
with cn=Tom to cn=TommyBoy. Going through the data manually or going through an administra-
tive interface is time-consuming and opens up the system to manual errors. Scripting some-
thing such as this would be easy using perl or other scripting tools.

First, you need to find the users with the information you seek.

$ ldapsearch -h ldaphost -p 389 -b dc=Your,dc=Company cn=Tom

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 127

4134_c06_final.qxd 9/30/04 11:31 AM Page 127

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP128

Either this can be outputted to a file with > FILE.IN or can be throw into an array as
follows:

@OUTPUT = `ldapsearch -h ldaphost -p 389 -b dc=Your,dc=Company cn=Tom`;

Second, to view the contents of this data, you may want to do this:

for $line(@OUTPUT) {

print $line;

}

The contents of $line will be the distinguished name (DN) of the users found as a result
of the previous command, as follows:

dn: uid=tjackiewicz,ou=People,dc=Your,dc=Company

dn: uid=tsurapruik,ou=People,dc=Your,dc=Company

dc: uid=tdogg,ou=People,dc=Your,dc=Company

You could, for each $line of output, generate the following LDIF commands:

$line

changetype: modify

replace: cn

cn: TommyBoy

Although not a complicated procedure, the ability to manipulate data within a script
gives you flexibility over controlling information and quickly solving problems.

LDAP Controls
The LDAP v3 protocol allows clients and servers to use a new mechanism, known as a control,
for extending LDAP operations. A control is a way to specify additional information as part of
a request and response. For example, a client can send a control to a server as part of a request
to indicate that a server should sort the search results before sending the results back to the
client. Servers are also given the ability to send a control back to a client during the authenti-
cation process, which lets the client know that a password is about to expire.

A control specifies the unique object identifier (OID), as defined by the creator of this con-
trol, an indication of whether the control is critical to the operation, and optional data related
to the control (for example, for the server-side sorting control, the attributes used for sorting
search results). This LDAP control mechanism serves as a secondary array of information that
can be used by the client to perform additional actions based on its contents.

The OID identifies the control. If you plan to use a control, you need to make sure that the
server supports the control. When your client includes a control in a request for an LDAP oper-
ation, the server may respond in one of the following ways.

If the server supports this control and if the control is appropriate to the operation, the
server should use the control when performing the operation. If the client marks a control as
critical but the server doesn’t support it, a result code indicating an error should be returned.
The error you’ll see most often is LDAP_UNAVAILABLE_CRITICAL_EXTENSION. If a control is marked
as not critical and the server doesn’t support the operation, the server should ignore the control
and perform the operation—completely ignoring the control. Servers also have the ability to
send controls back to clients.

4134_c06_final.qxd 9/30/04 11:31 AM Page 128

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 129

The following data structure represents a control:

typedef struct ldapcontrol {

char *ldctl_oid;

struct berval ldctl_value;

char ldctl_iscritical;

}

LDAPControl, *PLDAPControl;

In this structure, idctl_oid specifies the OID of the control, idctl_value contains a struc-
ture containing data associated with this control, and idctl_iscritical specifies whether the
control is critical to the operation. (LDAP_OPT_ON indicates that the control is critical, and
LDAP_OPT_OFF indicates that the control isn’t critical.)

To include a control in a request, call one of the LDAP v3 application programming inter-
face (API) functions (functions with names ending in _ext and _ext_s). These functions allow
you to pass in an array of server controls and an array of client controls. I’ll discuss these in more
details in subsequent sections. You can also include controls in a request by specifying the array
of controls in the LDAP_OPT_SERVER_CONTROLS option. However, these controls will be sent to the
server with every request. If the control is specific to a certain type of operation, you should
use the _ext and _ext_s functions instead.

When you’re done working with a control or with an array of controls, you should free
them from memory. Failure to do so may result in the reuse of these controls by subsequent
calls to the LDAP API functions that may not need them.

Table 6-1 lists some of the OIDs for server controls.

Table 6-1. Server Control OIDs

OID Defined Name in ldap.h Description of Control

2.16.840.1.113730.3.4.3 LDAP_CONTROL_PRESISTENTSEARCH Persistent search control

2.16.830.1.11.3730.3.4.4 LDAP_CONTROL_PWDEXPIRED Password expired control

2.16.830.1.11.3730.3.4.5 LDAP_CONTROL_PWEXPIRING Password expiring control

1.2.840.11355.6.1.4.473 LDAP_CONTROL_SORTREQUEST Server-side sorting control

According to the LDAP v3 protocol specification, servers should list any controls that they
support in the supportedControl attribute in the root DSA-Specific Entry (DSE). DSA is an X.500
term that refers to an LDAP server, or directory systems agent. The root DSE is the topmost entry
within your LDAP directory. Listing 6-3 shows a simple command-line program that searches
for the root DSE and prints the values of the supportedControl attribute.

Listing 6-3. Print Value of supportedControl

#include "ldap.h"

static char *usage = "Usage: listctrl -h <hostname> -p <portnumber>\n";

4134_c06_final.qxd 9/30/04 11:31 AM Page 129

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP130

/* Associate OIDs of known controls with descriptions. */

struct oid2desc {

char *oid;

char *desc;

};

static struct oid2desc oidmap[] = {

{LDAP_CONTROL_MANAGEDSAIT, "Manage DSA IT control"},

{LDAP_CONTROL_SORTREQUEST, "Server-side sorting control"},

{LDAP_CONTROL_PERSISTENTSEARCH, "Persistent search control"},

{LDAP_CONTROL_VLVREQUEST, "Virtual list view control"},

{LDAP_CONTROL_PWEXPIRED, "Password expired control"},

{LDAP_CONTROL_PWEXPIRING, "Password expiration warning control"},

{ NULL, NULL }

};

int

main(int argc, char **argv)

{

LDAP *ld;

LDAPMessage *result, *e;

char *hostname = NULL;

char **vals;

char *attrs[2];

int i, j, c, portnumber = LDAP_PORT, rc;

LDAPControl **serverctrls = NULL, **clntctrls = NULL;

/* Parse the command line arguments. */

while ((c = getopt(argc, argv, "h:p:")) != -1) {

switch (c) {

case 'h':

hostname = strdup(optarg);

break;

case 'p':

portnumber = atoi(optarg);

break;

default:

printf("Unsupported option: %c\n", c);

printf(usage);

exit(1);

}

}

/* By default, connect to ldaphost at port 389. */

if (hostname == NULL || hostname[0] == NULL) {

hostname = "ldaphost";

}

/* Initialize the connection. */

if ((ld = ldap_init(hostname, portnumber)) == NULL) {

perror("ldap_init");

return(1);

}

4134_c06_final.qxd 9/30/04 11:31 AM Page 130

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 131

/* Set automatic referral processing off. */

if (ldap_set_option(ld, LDAP_OPT_REFERRALS, LDAP_OPT_OFF)

!= LDAP_SUCCESS) {

ldap_perror(ld, "ldap_set_option");

return(1);

}

/* Search for the root DSE and retrieve only the

supportedControl attribute. */

attrs[0] = "supportedControl";

attrs[1] = NULL;

rc = ldap_search_ext_s(ld, "", LDAP_SCOPE_BASE, "(objectclass=*)",

attrs, 0, serverctrls, clntctrls, NULL, NULL, &result);

/* Check the search results. */

switch(rc) {

/* If successful, the root DSE was found. */

case LDAP_SUCCESS:

break;

/* If the root DSE was not found, the server does not comply

with the LDAP v3 protocol. */

case LDAP_PARTIAL_RESULTS:

case LDAP_NO_SUCH_OBJECT:

case LDAP_OPERATIONS_ERROR:

case LDAP_PROTOCOL_ERROR:

printf("LDAP server %s:%d returned result code %d (%s).\n"

"This server does not support the LDAP v3 protocol.\n",

hostname, portnumber, rc, ldap_err2string(rc));

return(1);

break;

/* If any other value is returned, an error must have occurred. */

default:

ldap_perror(ld, "ldap_search_ext_s");

return(1);

break;

}

/* Get the root DSE from the results.

Since there is only one root DSE, there

should be only one entry in the results. */

e = ldap_first_entry(ld, result);

/* Get and print the values of the supportedControl attribute. */

if (e != NULL &&

(vals = ldap_get_values(ld, e, "supportedControl")) != NULL) {

printf("\nControls Supported by %s:%d\n", hostname, portnumber);

printf("==\n");

for (i = 0; vals[i] != NULL; i++) {

printf("%s\n", vals[i]);

for (j = 0; oidmap[j].oid != NULL; j++) {

if (!strcmp(vals[i], oidmap[j].oid)) {

printf("\t%s\n", oidmap[j].desc);

4134_c06_final.qxd 9/30/04 11:31 AM Page 131

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP132

}

}

}

/* Free the values allocated by ldap_get_values(). */

ldap_value_free(vals);

printf("\n");

}

/* Free memory allocated by ldap_search_ext_s(). */

ldap_msgfree(result);

ldap_unbind(ld);

return(0);

}

Upon successfully running this script, you’ll see the following output:

Controls Supported by ldaphost:389

This would then be followed by a list of the controls that are supported by the particular
server to which you’re connecting.

The LDAP_CONTROL_PRESISTENTSEARCH control is one of the most powerful controls you’ll be
using. A persistent search is an ongoing search operation that allows your LDAP client to get
notification of changes to the directory. This is often a better alternative for meta-directories
(for example) than using changelog databases. To use persistent searching for change notifica-
tion, you create a “persistent search” control that specifies the types of changes you want to track.
You include the control in a search request. If an entry in the directory is changed, the server
determines if the entry matches the search criteria in your request and if the change is the type
of change you’re tracking. If both of these are true, the server sends the entry to your client. The
definition for this control could be as follows:

int ldap_create_persistentsearch_control(LDAP *ld, int changetypes,

int changesonly, int return_echg_ctls, char ctl_iscritical,

LDAPControl **ctrlp);

You can specify the following information:

changetypes specifies the type of change you want to track. You can specify any of the fol-
lowing (or any combination of the following using a bitwise OR operator):

• LDAP_CHANGETYPE_ADD indicates you want to track added entries.

• LDAP_CHANGETYPE_DELETE indicates you want to track deleted entries.

• LDAP_CHANGETYPE_MODIFY indicates you want to track modified entries.

• LDAP_CHANGETYPE_MODDN indicates you want to track renamed entries.

• LDAP_CHANGETYPE_ANY indicates you want to track all changes to entries.

4134_c06_final.qxd 9/30/04 11:31 AM Page 132

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 133

changesonly indicates whether you want the server to return all entries that initially
matched the search criteria (zero to return all entries and nonzero to return only the
entries that change).

return_echg_ctls indicates whether you want entry change notification controls
included with every modified entry returned by the server (nonzero to return entry
change notification controls).

LDAP API
LDAP provides access to a powerful API based on the Internet Engineers Task Force (IETF)
C LDAP API draft specification. Both synchronous communication and asynchronous communi-
cation are available to best use any familiar method of access. Refer to http://www.mozilla.org/
directory/ietf-docs/draft-ietf-ldapext-ldap-c-api-05.txt for complete specifications and
additional information.

The basic interaction is as follows: A session handle is created using an initialization
call—ldap_init (3) or ldap_initialize (3). To follow standards and compatibility across
a number of LDAP-compliant systems, ldap_init (3) is the preferred method of use. This call
performs an LDAP bind and is the equivalent of providing host and port information using
any of the standard command-line utilities. Keep in mind that this is simply establishing com-
munication with the LDAP server by establishing communication as LDAP over Transmission
Control Protocol (TCP), LDAP over LDAP, or LDAP over IPC (Unix domain sockets). The con-
nection is raw and established but not yet usable. The API, unlike the command-line utilities,
requires multiple calls to be made in order to establish a usable level of communication with
the server. The calls you have available can be performed in synchronous or asynchronous
modes. The default for calls is asynchronous, but adding _s to the end of the call will allow
you to perform synchronous commands against the system.

The next call during the base establishment of communication is ldap_bind (3) (or
ldap_simple_bind, ldap_sasl_bind (3), or the synchronous equivalents, depending on your
requirements), in which authentication information for the session is provided. This is like
providing the BINDDN and BINDPW parameters in the command-line utilities.

Before doing any work within your available session, you need to construct the parame-
ters for the LDAP operation to be performed. For example, you need to set up the core of the
function that you want to run, such as a search operation. Once you’ve gathered your require-
ments and made them ready, you have an LDAP connection available to you with which you
can perform all the standard (and even more creative) functions against the server. These options
will be discussed in more detail later in this chapter. Results returned from these routines are
interpreted by calling the LDAP parsing routines, such as ldap_parse_result (3). Errors can be
interpreted by calling ldap_err2string (3). Results and errors are returned in an opaque struc-
ture called LDAPMessage. Routines are provided to parse this structure and to step through entries
and attributes returned. Routines are also provided to interpret errors.

The result includes a result code (such as LDAP_SUCCESS, which means all is well) and may
include other error-related information. For some operations, a number of entries will also be
returned.

The communication is halted by calling ldap_unbind_ext (3). That is, once you’ve performed
the desired operations, you’ve received the results you need, and you have no need to keep an
LDAP session active, you’re done.

4134_c06_final.qxd 9/30/04 11:31 AM Page 133

http://www.mozilla.org

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP134

Synchronous vs. Asynchronous
LDAP is completely asynchronous in that multiple operations can be done at the same time.
Like any modern protocol, the results can be sent in one order, and the results can be retrieved
in another. Each function call is originated with a value and returned with the same. This is used
to keep track of which particular thread is associated with the origin.

After an asynchronous operation is initiated, the application must follow up the function
calls in order to appropriately parse the results. In synchronous operations, because a single
set of input and output data is available, this isn’t necessary.

Using the synchronous LDAP operation functions has the disadvantage that the applica-
tion will block (or wait) until the server completes the request, and it returns all entries and the
final result to the application at once. On some systems, you won’t be taking advantage of the
full power of the server capacity by relying on this method. However, for simple operations, it
may be worth the performance degradation for the time saved developing the application.

With synchronous operations, even though multiple operations can be initiated on sepa-
rate threads, the thread safety support will serialize these requests at the client, prohibiting them
from being initiated to the server. To ensure that the operations are initiated to the server, you
should use asynchronous operations when running in an environment where multiple client
program threads may be making calls to the LDAP programming interface.

Various SDKs
You can find the University of Michigan’s LDAP server code (on which everything today is origi-
nally based), a C-language software development kit (SDK), and other links to documentation
and LDAP mailing lists at http://www.umich.edu/~dirsvcs/ldap/.

You can find IBM’s C and Java SDKs at http://www.ibm.com/java.

Downloading the Netscape C SDK
The Netscape Directory SDK gives developers the complete set of software libraries, command-
line utilities, sample code, and documentation needed to build applications that access networked
directory data using LDAP v2 or v3 (RFC 2251, an Internet standard). This is the authoritative set of
APIs that are globally used as the base for any LDAP development. The Netscape C SDK is available
at http://developer.netscape.com/tech/directory/downloads.html. It includes a complete set of
software libraries, command-line utilities, sample code, and documentation needed for your
applications that need to access LDAP v3. The following information on utilizing CVS comes from
the Mozilla site; you can find general updates to the procedures at http://www.mozilla.org.

Anyone can check out the sources via Concurrent Versions System (CVS), but only certain
people have the ability to check in via CVS. I’ll concentrate on giving you the ability to check
out the latest source code.

To check out the sources, you need to be running CVS 1.10, or later, and have your $CVS-
ROOT set to the following:

:pserver:anonymous@cvs-mirror.mozilla.org:/cvsroot

The password for user anonymous is anonymous.
You also need GNU make (also referred to interchangeably as make or gmake) for this to be

functional appropriately. Using your Unix host (Solaris, Linux, or any system with GNU-based
utilities), the following commands will let you check out code:

4134_c06_final.qxd 9/30/04 11:31 AM Page 134

http://www.umich.edu/~dirsvcs/ldap
http://www.ibm.com/java
http://developer.netscape.com/tech/directory/downloads.html
http://www.mozilla.org
mailto:anonymous@cvs-mirror.mozilla.org:/cvsroot

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 135

$ setenv CVSROOT :pserver:anonymous@cvs-mirror.mozilla.org:/cvsroot

$ cvs login

(Logging in to anonymous@cvs-mirror.mozilla.org)

CVS password: anonymous

$ cvs checkout mozilla/client.mk

U mozilla/client.mk

$ cd mozilla

$ make -f client.mk checkout

This automates a CVS checkout process that’s prone to change.
You need to run cvs login only once. It will remember anonymous’s password in your

$HOME/.cvspass file.
The -z3 parameter causes the files (and diffs) to be compressed while in transit. This is

almost always the right thing to do; you should probably just put cvs -z3 in your $HOME/.cvsrc
file to make it the default on all CVS commands.

■Note -z9 offers a logarithmic improvement in compression at an exponential cost in central processing
unit (CPU) time. Therefore, I recommend -z3, which seems to be optimal in most cases.

In a Windows environment, you need CVS version 1.10 or newer. To use CVS under
Windows, you must have unpacked the source from the .tar file, not from a .zip. The .zip file
format doesn’t store dates with enough accuracy for CVS, so updating source unpacked from
a .zip with CVS takes a really long time because the CVS client must send most files to the
server to determine if they’ve changed.

The checkout procedure is similar to that for Unix.

C:\> set CVSROOT=:pserver:anonymous@cvs-mirror.mozilla.org:/cvsroot

C:\> set HOME=\TEMP

C:\> cvs login

(Logging in to anonymous@cvs-mirror.mozilla.org)

CVS password: anonymous

C:\> cvs checkout mozilla/client.mk

U mozilla/client.mk

C:\> cd mozilla

C:\> make -f client.mk pull_all

This automates a CVS checkout process that’s prone to change.
If the -z3 parameter doesn’t work, you don’t have CVS and/or gzip installed correctly. Your

life will be much easier if you correct this, rather than omitting that parameter.
You also need to have the HOME environment variable set to a sensible directory, or CVS

will complain.
You can also use the CVS client to obtain the source code using the following command:

$ cvs co -P DirectorySDKSourceC

4134_c06_final.qxd 9/30/04 11:31 AM Page 135

mailto:anonymous@cvs-mirror.mozilla.org:/cvsroot
mailto:anonymous@cvs-mirror.mozilla.org
mailto:anonymous@cvs-mirror.mozilla.org:/cvsroot
mailto:anonymous@cvs-mirror.mozilla.org

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP136

Pull the code for libraries that LDAP C SDK needs using the following commands:

$ cvs co -r NSPR_4_2_2_RELEASE mozilla/nsprpub

$ cvs co -r NSS_3_7_7_RTM mozilla/security/coreconf mozilla/security/nss

$ cvs co -r DBM_1_61_RTM mozilla/dbm mozilla/security/dbm

Build Netscape Portable Runtime (NSPR) and Network Security Services (NSS) (if not
using binary releases of those components) by executing these commands:

$ cd mozilla/security/nss

$ gmake nss_build_all

Build the LDAP C SDK (libraries and tools), like so:

$ cd mozilla/directory/c-sdk

$./configure --with-nss

$ gmake

If your build is successful, the LDAP C SDK libraries, command-line tools, and header
files will be placed under mozilla/dist/<OSNAME>.OBJ/.

■Note You can build without Secure Sockets Layer (SSL) support by skipping the NSS-related build steps
and omitting the --with-nss on the configure command. You’ll still need a binary copy of NSPR, or you’ll
need to build NSPR from source.

API Calls
You’ll be using many calls to the server during your work. Although the following API is still
supported, its use is deprecated. Using the newer replacement APIs (which are also discussed
in this chapter) is strongly encouraged.

ldap_init (3) and ldap_initialize (3): These initialize the LDAP library without opening
a connection to the server. The TCP connection itself isn’t opened until it’s needed by some
additional LDAP operation.

ldap_result (3): This waits for the result from an asynchronous operation. This processes
the results of each individual LDAP call. These are sorted by a message ID.

ldap_abandon (3): This abandons (aborts) an asynchronous operation.

ldap_add (3) and ldap_add_s (3): These add an entry to the directory.

ldap_bind (3) and ldap_bind_s (3): These bind to the directory. These are deprecated in
favor of ldap_simple_bind and ldap_simple_bind_s.

ldap_simple_bind (3) and ldap_simple_bind_s: These bind to the directory using simple
authentication.

ldap_unbind (3) and ldap_unbind_s (3): These unbind from the LDAP server and close
the connection.

4134_c06_final.qxd 9/30/04 11:31 AM Page 136

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 137

ldap_memfree (3): This disposes of memory allocated by the LDAP routines being used.

ldap_compare (3) and ldap_compare_s (3): These compare directory entries.

ldap_delete (3) and ldap_delete_s (3): These delete a directory entry.

ldap_perror (3): This prints an LDAP error indication to STDERR (standard error).

Ld_errono (3): This indicates an LDAP error.

ldap_result2error (3): This extracts LDAP error indication from LDAP result.

ldap_Errlist (3): This lists LDAP errors and their meanings.

ldap_err2string (3): This converts LDAP error indication to a string.

ldap_first_attribute (3): This returns the first attribute name in an entry.

ldap_next_attribute (3): This returns the next attribute name in an entry.

ldap_first_Entry (3): This returns the first entry in a chain of search results.

ldap_next_entry (3): This returns the next entry in a chain of search results.

ldap_get_dn (3): This extracts the DN from an entry.

ldap_explode_dn (3): This converts a DN into its component parts.

ldap_explode_rdn (3): This converts a relative DN (RDN) into its component parts.

ldap_get_values (3): This returns an attribute’s values.

ldap_get_values_len (3): This returns an attribute’s values with lengths.

ldap_value_free (3): This frees allocation memory by ldap_get_values (3).

ldap_value_free_len (3): This frees memory allocated by ldap_get_values_len (3).

ldap_count_values (3): This returns the number of values.

ldap_count_values_len (3): This returns the number of values.

ldap_modify (3) and ldap_modify_s (3): These modify a directory entry.

ldap_mods_free (3): This frees an array of pointers to mod structures used by ldap_modify (3).

ldap_modrdn2 (3) and ldap_modrdn2_s (3): These modify the RDN of an entry. These are
deprecated in favor of ldap_rename.

ldap_msgfree (3): This frees the results allocated by ldap_result (3).

ldap_msgtype (3): This returns the message type of a message from ldap_result (3).

ldap_msgid (3): This returns the message ID of a message from ldap_result (3).

ldap_search (3) and ldap_search_s (3): These search the directory.

ldap_search_st (3): This searches the directory utilizing a client-side timeout.

4134_c06_final.qxd 9/30/04 11:31 AM Page 137

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP138

ldap_is_ldap_url (3): This checks a URL string to see if it’s an LDAP URL.

ldap_url_parse (3): This breaks up an LDAP URL string into its components.

ldap_sort_entries (3): This sorts a list of search results.

ldap_sort_values (3): This sorts a list of attribute values.

ldap_sort_strcasecmp (3): This compares a case-insensitive string.

Obtaining the LDAP Perl API
Perl is fast becoming the premier language for system administrators, scripters, and application
programmers. Its ease of use and combination of scripts and programming make it a powerful
tool that can be utilized to create a number of applications. The Perl API for LDAP provides
a simple way to facilitate communications with your LDAP server. Many APIs are available.
PerLDAP is written and maintained by a small group of LDAP fanatics: Leif Hedstrom, Michelle
Hedstrom, Kevin McCarthy, and Clayton Donley. The primary Web site for information, mainte-
nance, and information regarding PerLDAP is http://www.perldap.org. This API is a subset of
the formal LDAP version 2 API (referenced in RFC 1823) along with extra functions added by
Software.com to enable you to build provisioning scripts, billing reports, and other such tools.
PerLDAP is an open-source development project and was the result of a joint effort between
Netscape and Clayton Donley, an open-source developer. PerLDAP currently provides basic
functions to allow Perl users to access and manipulate directories easily. Based on developer
feedback and involvement, PerLDAP will continue to evolve in order to include additional
functionality in future releases.

PerLDAP (also known as Perl-LDAP) consists of two main components to write LDAP
clients: an interface to the C SDK API and a set of object-oriented Perl classes. The API interface
is almost 100 percent compatible with Netscape’s C SDK, but it’s harder to use than the object-
oriented layer. The object-oriented interface is meant to be an easier way to write most common
LDAP clients. PerLDAP is a set of modules written in Perl and C that will allow developers to
leverage their existing Perl knowledge to easily write and manage LDAP-enabled directory appli-
cations. PerLDAP makes it easy to search, add, delete, and update directory entries. For example,
Perl developers can easily build Web applications to access information stored in a directory or
create directory synchronization tools that function between different directories.

The source is available via both CVS and File Transfer Protocol (FTP). Building this pack-
age is fairly straightforward but requires some knowledge about using compilers and compiler
tools on your system. If you’re uncomfortable using these tools, I recommend you get one of
the prebuilt binary distributions instead. To build the module, you’ll need the following:

• Perl, version 5.003 or later. I definitely recommend you to use v5.004 or later.

• An ANSI-C compiler (for example, gcc-2.x or Visual C++ 5.0).

• The LDAP client libraries and include files (for example, the SDK from Netscape
Communications).

See the README file for information on retrieving binaries. You can download (or check
out via CVS) the Directory SDK source; see http://www.mozilla.org/directory/ for further
information.

4134_c06_final.qxd 9/30/04 11:31 AM Page 138

http://www.perldap.org
http://www.mozilla.org/directory

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 139

This package uses the normal Perl 5 MakeMaker installation system. To generate a
Makefile appropriate for your platform, run perl on the provided Makefile.PL script, like so:

$ perl Makefile.PL

You may have to use the command perl5 or perl-5.004, depending on how you installed
perl-5. The script will now ask you a few questions to find the necessary library and include
files. A typical configuration session is as follows:

$ perl5 Makefile.PL

The important question is where your LDAP SDK is installed; in the previous example the
base directory is /opt/ldapsdk3. This directory should have two subdirectories, named lib
and include. If you installed the SDK in the standard /usr hierarchy, use the default value as
provided by the install script. Assuming you get no errors or warning, proceed with the build
and install, like so:

$ make

$ make install

Binary distributions are available via FTP from ftp://ftp.perldap.org/pub/perldap/
Binaries. You can navigate branches under this subdirectory to find the appropriate version.
Binary distributions exist for almost every system. You can even obtain RPMs and packages
for Solaris here. The Linux RPM package is at ftp://ftp.perldap.org/Binaries/
perldap-rh16.i386.rpm. Install it using the following command:

$ rpm -i perldap-rhl6.i386.rpm

The Solaris package is at ftp://ftp.perldap.org/pub/perldap/Binaries/
perldap-solaris2-sparc.pkg.gz. Install it using the following command:

$ gzip -d perldap-solaris2-sparc.pkg.gz

$ pkgadd -d perldap-solaris2-sparc.pkg

Windows versions are available on the site as well.

Using the LDAP Perl API
The Perl functions you’ll be dealing with are directly associated with the functions available in
the Netscape C SDK, as there’s a reliance on this API for the Perl libraries to function. The LDAP
Perl API is split between error-processing functions, connection-management functions, func-
tions that perform operations on entries, access control, and memory management.

Error Processing
You can use the ldap_err2string(rc) function for error processing. It returns an error associ-
ated with an LDAP error code. The input taken is denoted as rc, which is any return code from
an LDAP API function call.

my $rc = ldap_xxx(..); # any ldap call

my $errstr = ldap_err2string($rc);

print "Error was: $errstr";

4134_c06_final.qxd 9/30/04 11:31 AM Page 139

ftp://ftp.perldap.org/pub/perldap
ftp://ftp.perldap.org/Binaries
ftp://ftp.perldap.org/pub/perldap/Binaries

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP140

Connection Management Functions
You can use the following functions for managing client connections to an LDAP server.

ldap_open(host, port)

This opens a connection to an LDAP server on a specific host and port. It returns a connection
handle (an LDAP* pointer). Its parameters are as follows:

• host: The name of the network host where the LDAP directory resides

• port: The port the server is listening on (the default is 389)

The following code shows a basic example of using this function:

$ldap_host = "ldaphost";

($LOGIN,$PASSWORD)=('root','');

my $ld=ldap_open($ldap_host, 389);

ldap_simple_ bind_s(ld, login, password)

This function authenticates a user to the directory and returns an LDAP status code. Its
parameters are as follows:

• ld: Connection handle returned by ldap_open

• login: String containing the login name

• password: String containing the password

The following code shows a basic example of using this function:

my $rc = ldap_simple_bind_s($ld,$LOGIN,$PASSWORD);

ldap_unbind(ld)

This function disconnects and unbinds from the LDAP server and returns an LDAP status
code. Its parameter is as follows:

• ld: Connection handle returned by ldap_open

The following code shows a basic example of using this function:

$rc = ldap_unbind($ld);

Functions That Perform Operations on Entries
The following functions perform operations on entries in the LDAP database.

4134_c06_final.qxd 9/30/04 11:31 AM Page 140

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 141

ldap_add_s(ld, dn, data)

This function adds an entry to the LDAP directory and returns an LDAP status code. Its
parameters are as follows:

• ld: Connection handle returned by ldap_open

• dn: DN of the entry to be added.

• data: Hash containing attribute names and values to be added

The following code shows a basic example of using this function:

add a country

$country="myowncountry";

$country_dn="c=$country";

$country_data={

'objectclass'=>['country'],

'c'=>['USA', 'US', 'America'],

'telephonenumber'=>['1'],

};

($dn,$data)=($country_dn,$country_data);

$rc = ldap_add_s($ld,$dn,$data);

add an organization in that country

$org_dn="o='SwampLand Ltd.', $country_dn";

$org_data={

'objectclass'=>['top', 'organization'],

'o'=>['SwampLand Ltd.', 'SLD'],

'telephonenumber'=>['(408)555-5555'],

};

$rc = ldap_add_s($ld,$org_dn,$org_data);>

ldap_modify_s(ln,dn, data)

This function modifies one or more attributes on an entry and returns an LDAP status code.
Its parameters are as follows:

• ld: Connection handle returned by ldap_open

• dn: DN of the entry to be modified

• data: Hash containing attribute names and values to be modified

The following code shows a basic example of using this function:

$new_country_data={

Notice 'r' for REPLACE

'telephonenumber' => {'r' => [123]},

};

$rc = ldap_modify_s($ld,$dn,$new_country_data);

4134_c06_final.qxd 9/30/04 11:31 AM Page 141

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP142

ldap_delete_s(ld, dn)

This function deletes an entry from the LDAP directory and returns an LDAP status code. Its
parameters are as follows:

• ld: Connection handle returned by ldap_open

• dn: DN of the entry to be deleted

The following code shows a basic example of using this function:

$rc = ldap_delete_s($ld,$country_dn);

ldap_modrdn_s(ld, dn, newrdn)

This function modifies the relative distinguished name (RDN) of an entry in the database and
returns an LDAP status code. (This function can move the entry to a new location in the data-
base.) Its parameters are as follows:

• ld: Connection handle returned by ldap_open

• dn: DN of the entry to be modified

• newrdn: New RDN for the entry

The following code shows a basic example of using this function:

$new_c="c=IownFrance";

$rc = ldap_modrdn_s($ld,$country_dn,$new_cn,0);

ldap_rename_s(ld, dn, newrdn, newbase, deleteold)

This function renames an entry in the LDAP directory and returns an LDAP status code. Its
parameters are as follows:

• ld: Connection handle returned by ldap_open

• dn: DN of the entry to be renamed

• newrdn: New RDN for the entry

• newbase: New base DN under which the entry is to be added

• deleteold: 0 means don’t delete the old entry, and 1 means delete the old entry

The following code shows a basic example of using this function:

$new_c1="c=anewcountry";

$rc = ldap_rename_s($ld,$dn,$new_c1,$org_dn,0)');

4134_c06_final.qxd 9/30/04 11:31 AM Page 142

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 143

ldap_search_s(ld, dn, scope, filter, attrs, attrsonly, result)

This function searches the LDAP directory and returns an LDAP status code. Its parameters
are as follows:

• ld: Connection handle returned by ldap_open

• dn: DN of the entry from which the search is to start

• scope: Search scope (LDAP_SCOPE, LDAP_SCOPE_ONELEVEL, LDAP_SCOPE_SUBTREE)

• filter: LDAP search filter

• attrsonly: 0 = Return attributes and values; 1 = Return attribute names only

• result: Opaque pointer containing search results; used in later LDAP calls

The following code shows a basic example of using this function:

$start_from=$org_dn;

$filter="(objectclass=*)";

$attrs=[];

$result;

$rc = ldap_search_s(\

$ld,$start_from,LDAP_SCOPE_ONELEVEL,$filter,$attrs,0,$result)

ldap_count_entries(ld, result)

This returns a count of the number of entries returned by the last search operation. The result-
ing count is an integer value. Its parameters are as follows:

• ld: Connection handle returned by ldap_open

• result: Opaque pointer returned by a previous call to ldap_search_s

For example:

$count=ldap_count_entries($ld,$result);

print "\$count=$count\n";

ldap_get_all_entries(ld, result)

This returns an array containing all entries found in the last search operation. The result of
this operation is an LDAP status code. Its parameters are as follows:

• ld: Connection handle returned by ldap_open

• result: Opaque pointer returned by a previous call to ldap_search_s

4134_c06_final.qxd 9/30/04 11:31 AM Page 143

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP144

For example:

%record = %{ldap_get_all_entries($ld,$result)};

my @dns = (sort keys %record);

print $#dns+1 . " entries returned.\n";

%r=%{ldap_get_all_entries($ld, $result)};

print "Entries are:";

for $n (sort keys %r) {

print "<$n>\n";

for $v (sort keys %{$r{$n}}) {

print ":\t$v\n";

}

}

Access Control Information Function

Access control information (ACI) exists as a set of rules within the directory. Each rule speci-
fies permissions for a set of users accessing a targeted set of LDAP entries. Within a rule, per-
missions may apply to every attribute, to attributes within a particular object class, or to a
single attribute.

ldap_apply_aci_rule_s creates or modifies an ACI rule. It sets the permissions for the
users identified by bindDn, accessing the entries identified by targDn, objclass, attr, and realm.
If a rule already exists for the specified bindDn, bindType, targDn, objclass, attr, and realm, the
permissions are adjusted accordingly. If, after adjustment, all permissions are set to DEFAULT,
the rule is removed.

The parameters using this call include the following:

• ld: Connection handle returned by ldap_open.

• bindDn: DN of the binding entry. You may specify LDAP_DIT_ROOT or LDAP_ACI_SELF here.

• bindType: Type of bind DN (such as subtree or group).

• targDn: DN of the target entry. You may specify LDAP_DIT_ROOT here.

• objclass: Optional object class name. If this isn’t set, this must be null.

• attr: Optional attribute name. If this isn’t set, this must be null.

• realm: Scope of the entry named by targDn or its children.

• perms: A summation of allowed permission values (for example, LDAP_ACI_ALLOW_READ).

An example of this structure is as follows:

int ldap_apply_aci_rule_s(

LDAP * ld,

const char * bindDn,

const LDAPBindType bindType,

4134_c06_final.qxd 9/30/04 11:31 AM Page 144

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 145

const char * targDn,

const char * objclass,

const char * attr,

const LDAPRealm realm,

const LDAPPerms perms);

Memory Management Function

ldap_msgfree(result) frees memory associated with a result returned by ldap_search_s
and returns an LDAP status code. result is an opaque pointer returned by a previous call
to ldap_search_s. For example:

$rc = ldap_msgfree($result)

Mozilla::LDAP::API
The following are the available API methods for Mozilla::LDAP::API.

ldap_abandon(ld,msgid)
This abandons an asynchronous LDAP operation. Its input parameters are as follows:

• ld: LDAP Session Handle

• msgid: Integer

This is its output: status (as an integer). Its availability is V2/V3.
For example:

$status = ldap_abandon($ld,$msgid);

ldap_abandon_ext(ld,msgid,serverctrls,clientctrls)
This abandons an asynchronous LDAP operation with controls. Its input parameters are as
follows:

• ld: LDAP Session Handle

• msgid: Integer

• serverctrls: LDAP Control List Pointer

• clientctrls: LDAP Control List Pointer

This is its output: status (as an integer). Its availability is V3.
For example:

$status = ldap_abandon_ext($ld,$msgid,$serverctrls,$clientctrls);

4134_c06_final.qxd 9/30/04 11:31 AM Page 145

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP146

ldap_add(ld,dn,attrs)
This asynchronously adds an LDAP entry. Its input parameters are as follows:

• ld: LDAP Session Handle

• dn: String

• attrs: LDAP Add/Modify Hash

This is its output: status (as an integer). Its availability is V2/V3.
For example:

$status = ldap_add($ld,$dn,$attrs);

ldap_add_ext(ld,dn,attrs,serverctrls,clientctrls,msgidp)
This asynchronously adds an LDAP entry with controls. Its input parameters are as follows:

• ld: LDAP Session Handle

• dn: String attrs: LDAP Add/Modify Hash

• serverctrls: LDAP Control List Pointer

• clientctrls: LDAP Control List Pointer

• msgidp: Integer

This is its output: status (as an integer) and msgidp (as an integer). Its availability is V2/V3.
For example:

$status = ldap_add_ext($ld,$dn,$attrs,$serverctrls,$clientctrls,$msgidp);

ldap_add_ext_s(ld,dn,attrs,serverctrls,clientctrls)
This synchronously adds an LDAP entry with controls. Its input parameters are as follows:

• ld: LDAP Session Handle

• dn: String

• attrs: LDAP Add/Modify Hash

• serverctrls: LDAP Control List Pointer

• clientctrls: LDAP Control List Pointer

This is its output: status (as an integer). Its availability is V3.
For example:

$status = ldap_add_ext_s($ld,$dn,$attrs,$serverctrls,$clientctrls);

4134_c06_final.qxd 9/30/04 11:31 AM Page 146

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 147

ldap_add_s(ld,dn,attrs)
This synchronously adds an LDAP entry. Its input parameters are as follows:

• ld: LDAP Session Handle

• dn: String

• attrs: LDAP Add/Modify Hash

This is its output: status (as an integer). Its availability is V2/V3.
For example:

$status = ldap_add_s($ld,$dn,$attrs);

ldap_bind(ld,dn,passwd,authmethod)
This asynchronously binds to the LDAP server. Its input parameters are as follows:

• ld: LDAP Session Handle

• dn: String

• passwd: String

• authmethod: Integer

This is its output: status (as an integer). Its availability is V2/V3.
For example:

$status = ldap_bind($ld,$dn,$passwd,$authmethod);

ldap_bind_s(ld,dn,passwd,authmethod)
This synchronously binds to an LDAP server. Its input parameters are as follows:

• ld: LDAP Session Handle

• dn: String passwd: String

• authmethod: Integer

This is its output: status (as an integer). Its availability is V2/V3.
For example:

$status = ldap_bind_s($ld,$dn,$passwd,$authmethod);

4134_c06_final.qxd 9/30/04 11:31 AM Page 147

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP148

ldap_controls_free(ctrls)
This frees a list of LDAP controls. Its input parameters are as follows:

• ctrls: LDAP Control List Pointer

This is its output: status: NONE. Its availability is V3.
For example:

$status = ldap_controls_free($ctrls);

ldap_create_filter(buf,buflen,pattern,prefix,suffix,attr,value,valwords)
This creates an LDAP search filter. Its input parameters are as follows:

• buf: String

• buflen: Integer

• pattern: String

• prefix: String

• suffix: String

• attr: String

• value: String

• valwords: List Reference

This is its output: status (as an integer). Its availability is V2/V3.
For example:

$status = ldap_create_filter($buf,$buflen,$pattern,$prefix, \

$suffix,$attr,$value,$valwords);

ldap_create_persistentsearch_control(ld,changetypes,changesonly,
return_echg_ctrls,ctrl_iscritical,ctrlp)
This creates a persistent search control. Its input parameters are as follows:

• ld: LDAP Session Handle

• changetypes: Integer

• changesonly: Integer

• return_echg_ctrls: Integer

• ctrl iscritical: Integer

• ctrlp: LDAP Control List Pointer

4134_c06_final.qxd 9/30/04 11:31 AM Page 148

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 149

This is its output:

• status (as an integer)

• ctrlp (an LDAP Control List Pointer)

Its availability is V3.
For example:

$status = ldap_create_persistentsearch_control($ld,$changetypes, \

$changesonly,$return_echg_ctrls, $ctrl_iscritical,$ctrlp);

ldap_delete(ld,dn)
This asynchronously deletes an LDAP entry. Its input parameters are as follows:

• ld: LDAP Session Handle

• dn: String

This is its output: status (as an integer). Its availability is V2/V3.
For example:

$status = ldap_delete($ld,$dn);

ldap_delete_ext(ld,dn,serverctrls,clientctrls,msgidp)
This synchronously deletes an LDAP entry with controls. Its input parameters are as follows:

• ld: LDAP Session Handle

• dn: String

• serverctrls: LDAP Control List Pointer

• clientctrls: LDAP Control List Pointer

• msgidp: Integer

This is its output:

• status (as an integer)

• msgidp (as an integer)

Its availability is V3.
For example:

$status = ldap_delete_ext($ld,$dn,$serverctrls,$clientctrls,$msgidp);

4134_c06_final.qxd 9/30/04 11:31 AM Page 149

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP150

ldap_delete_ext_s(ld,dn,serverctrls,clientctrls)
This synchronously deletes an LDAP entry with controls. Its parameters are as follows:

• ld: LDAP Session Handle

• dn: String

• serverctrls: LDAP Control List Pointer

• clientctrls: LDAP Control List Pointer

This is its output: status (as an integer). Its availability is V3.
For example:

$status = ldap_delete_ext_s($ld,$dn,$serverctrls,$clientctrls);

ldap_delete_s(ld,dn)
This synchronously deletes an LDAP entry. Its input parameters are as follows:

• ld: LDAP Session Handle

• dn: String

This is its output: status (as an integer). Its availability is V2/V3.
For example:

$status = ldap_delete_s($ld,$dn);

ldap_err2string(err)
This returns the string value of an LDAP error code. Its input parameter is as follows:

• err: Integer

This is its output: status (as a string). Its availability is V2/V3.
For example:

$status = ldap_err2string($err);

ldap_explode_dn(dn,notypes)
This splits a given DN into its components. Setting notypes to 1 returns the components with-
out their type names. Its input parameters are as follows:

• dn: String

• notypes: Integer

This is its output: status: NONE. Its availability is V2/V3.
For example:

$status = ldap_explode_dn($dn,$notypes);

4134_c06_final.qxd 9/30/04 11:31 AM Page 150

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 151

ldap_explode_rdn(dn,notypes)
This splits an RDN into its components. Its input parameters are as follows:

• dn: String

• notypes: Integer

This is its output: status: NONE. Its availability is V2/V3.
For example:

$status = ldap_explode_rdn($dn,$notypes);

ldap_extended_operation(ld,requestoid,requestdata,serverctrls,clientctrls,msgidp)
This performs an asynchronous extended operation. Its input parameters are as follows:

• ld: LDAP Session Handle

• requestoid: String

• requestdata: Binary String

• serverctrls: LDAP Control List Pointer

• clientctrls: LDAP Control List Pointer

• msgidp: Integer

The output is as follows:

• status (as an integer)

• msgidp (as an integer)

Its availability is V3.
For example:

$status = ldap_extended_operation($ld,$requestoid,$requestdata,$serverctrls, \

$clientctrls,$msgidp);

ldap_extended_operation_s(ld,requestoid,requestdata,serverctrls,
clientctrls,retoidp,retdatap)
This performs a synchronous extended operation. Its input parameters are as follows:

• ld: LDAP Session Handle

• requestoid: String

• requestdata: Binary String

4134_c06_final.qxd 9/30/04 11:31 AM Page 151

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP152

• serverctrls: LDAP Control List Pointer

• clientctrls: LDAP Control List Pointer

• retoidp: String

This is its output:

• status: (as an integer)

• retoidp: Return OID

• retdatap: Return Data

Its availability is V3.
For example:

$status = ldap_extended_operation_s($ld,$requestoid,$requestdata,$serverctrls, \

$clientctrls,$retoidp,$retdatap);

ldap_get_dn(ld,entry)
This returns the DN for an entry. Its input parameters are as follows:

• ld: LDAP Session Handle

• entry: LDAP Message Pointer

This is its output: status (as a string). Its availability is V2/V3.
For example:

$status = ldap_get_dn($ld,$entry);

ldap_get_entry_controls(ld,entry,serverctrlsp)
This returns the controls for an LDAP entry. Its input parameters are as follows:

• ld: LDAP Session Handle

• entry: LDAP Message Pointer

• serverctrlsp: LDAP Control List Pointer

The following is its output:

• status (as an integer)

• serverctrlsp: LDAP Control List Pointer

Its availability is V3.
For example:

$status = ldap_get_entry_controls($ld,$entry,$serverctrlsp);

4134_c06_final.qxd 9/30/04 11:31 AM Page 152

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 153

ldap_get_option(ld,option,optdata)
This gets an option for an LDAP session. Its input parameters are as follows:

• ld: LDAP Session Handle

• option: Integer

• optdata: Integer

Its output is as follows:

• status (as an integer)

• optdata: Integer

Its availability is V2/V3.
For example:

$status = ldap_get_option($ld,$option,$optdata);

ldap_get_values(ld,entry,target)
This gets the values for an LDAP entry and attribute. Its input parameters are as follows:

• ld: LDAP Session Handle

• entry: LDAP Message Pointer

• target: String

This is its output: status: NONE. Its availability is V3.
For example:

$status = ldap_get_values($ld,$entry,$target);

ldap_get_values_len(ld,entry,target)
This gets the binary values for an LDAP entry and attribute. Its input parameters are as follows:

• ld: LDAP Session Handle

• entry: LDAP Message Pointer

• target: String

This is its output: status: NONE. Its availability is V3.
For example:

$status = ldap_get_values_len($ld,$entry,$target);

4134_c06_final.qxd 9/30/04 11:31 AM Page 153

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP154

ldap_init(host,port)
This initializes an LDAP session. Its input parameters are as follows:

• host: String

• port: Integer

This is its output: status: LDAP Session Handle. Its availability is V2/V3.
For example:

$status = ldap_init($host,$port);

ldap_init_getfilter(fname)
This initializes the LDAP filter generation routines to a filename. Its input parameter is as follows:

• fname: Filename String

This is its output: status: LDAP Filter Description Pointer. Its availability is V2/V3.
For example:

$status = ldap_init_getfilter($fname);

ldap_init_getfilter_buf(buf,buflen)
This initializes the LDAP filter generation routines to a buffer. Its input parameters are as follows:

• buf: String

• buflen: Integer

Its output is status: LDAP Filter Description Pointer. Its availability is V2/V3.
For example:

$status = ldap_init_getfilter_buf($buf,$buflen);

ldap_is_ldap_url(url)
This returns 1 if an the argument is a valid LDAP URL. Its input parameter is as follows:

• url: String

Its output is status (as an integer). Its availability is V2/V3.
For example:

$status = ldap_is_ldap_url($url);

4134_c06_final.qxd 9/30/04 11:31 AM Page 154

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 155

ldap_modify(ld,dn,mods)
This asynchronously modifies an LDAP entry. Its input parameters are as follows:

• ld: LDAP Session Handle

• dn: String

• mods: LDAP Add/Modify Hash

Its output is status (as an integer). Its availability is V2/V3.
For example:

$status = ldap_modify($ld,$dn,$mods);

ldap_modify_ext(ld,dn,mods,serverctrls,clientctrls,msgidp)
This asynchronously modifies an LDAP entry with controls. Its input parameters are as follows:

• ld: LDAP Session Handle

• dn: String

• mods: LDAP Add/Modify Hash

• serverctrls: LDAP Control List Pointer

• clientctrls: LDAP Control List Pointer

• msgidp: Integer

Its output is as follows:

• status (as an integer)

• msgidp (as an integer)

Its availability is V3.
For example:

$status = ldap_modify_ext($ld,$dn,$mods,$serverctrls,$clientctrls,$msgidp);

ldap_modify_ext_s(ld,dn,mods,serverctrls,clientctrls)
This synchronously modifies an LDAP entry with controls. Its input parameters are as follows:

• ld: LDAP Session Handle

• dn: String

• mods: LDAP Add/Modify Hash

• serverctrls: LDAP Control List Pointer

• clientctrls: LDAP Control List Pointer

4134_c06_final.qxd 9/30/04 11:31 AM Page 155

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP156

Its output is status (as an integer). Its availability is V3.
For example:

$status = ldap_modify_ext_s($ld,$dn,$mods,$serverctrls,$clientctrls);

ldap_modify_s(ld,dn,mods)
This synchronously modifies an LDAP entry. Its input parameters are as follows:

• ld: LDAP Session Handle

• dn: String

• mods: LDAP Add/Modify Hash

Its output is status (as an integer). Its availability is V2/V3.
For example:

$status = ldap_modify_s($ld,$dn,$mods);

ldap_modrdn(ld,dn,newrdn)
This asynchronously modifies the RDN of an entry. Its input parameters are as follows:

• ld: LDAP Session Handle

• dn: String newrdn: String

Its output is status (as an integer). Its availability is V2/V3.
For example:

$status = ldap_modrdn($ld,$dn,$newrdn);

ldap_modrdn_s(ld,dn,newrdn)
This synchronously modifies the RDN of an entry. Its input parameters are as follows:

• ld: LDAP Session Handle

• dn: String

• newrdn: String

Its ouput is status (as an integer). Its availability is V2/V3.
For example:

$status = ldap_modrdn_s($ld,$dn,$newrdn);

4134_c06_final.qxd 9/30/04 11:31 AM Page 156

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 157

ldap_modrdn2(ld,dn,newrdn,deleteoldrdn)
This asynchronously modifies the RDN of an entry. Its input parameters are as follows:

• ld: LDAP Session Handle

• dn: String

• newrdn: String

• deleteoldrdn: Integer

Its output is status (as an integer). Its availability is V2/V3.
For example:

$status = ldap_modrdn2($ld,$dn,$newrdn,$deleteoldrdn);

ldap_modrdn2_s(ld,dn,newrdn,deleteoldrdn)
This synchronously modifies the relative distinguished name of an entry. Its input parameters
are as follows:

• ld: LDAP Session Handle

• dn: String

• newrdn: String

• deleteoldrdn: Integer

Its output is status (as an integer). Its availability is V2/V3.
For example:

$status = ldap_modrdn2_s($ld,$dn,$newrdn,$deleteoldrdn);

ldap_next_attribute(ld,entry,ber)
This gets the next attribute for an LDAP entry. Its input parameters are as follows:

• ld: LDAP Session Handle

• entry: LDAP Message Pointer

• ber: Ber Element Pointer

Its output is as follows:

• status: String

• ber: BER Element Pointer

Its availability is V2/V3.
For example:

$status = ldap_next_attribute($ld,$entry,$ber);

4134_c06_final.qxd 9/30/04 11:31 AM Page 157

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP158

ldap_next_entry(ld,entry)
This gets the next entry in the result chain. Its input parameters are as follows:

• ld: LDAP Session Handle

• entry: LDAP Message Pointer

Its output is status: LDAP Message Pointer. Its availability is V2/V3.
For example:

$status = ldap_next_entry($ld,$entry);

ldap_parse_sasl_bind_result(ld,res,servercredp,freeit)
This parses the results of an SASL bind operation. Its input parameters are as follows:

• ld: LDAP Session Handle

• res: LDAP Message Pointer

• freeit: Integer

Its output is as follows:

• status (as an integer)

• servercredp

Its availability is V3.
For example:

$status = ldap_parse_sasl_bind_result($ld,$res,$servercredp,$freeit);

ldap_perror(ld,s)
This prints an LDAP error message. Its input parameters are as follows:

• ld: LDAP Session Handle

• s: String

Its output is status: NONE. Its availability is V2/V3.
For example:

$status = ldap_perror($ld,$s);

ldap_result(ld,msgid,all,timeout,result)
This gets the result for an asynchronous LDAP operation. Its input parameters are as follows:

• ld: LDAP Session Handle

• msgid: Integer

4134_c06_final.qxd 9/30/04 11:31 AM Page 158

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 159

• all: Integer

• timeout: Time in Seconds

• result: LDAP Message Pointer

Its output is as follows:

• status (as an integer)

• result: LDAP Message Pointer

Its availability is V2/V3.
For example:

$status = ldap_result($ld,$msgid,$all,$timeout,$result);

ldap_result2error(ld,r,freeit)
This gets the error number for a given result. Its input parameters are as follows:

• ld: LDAP Session Handle

• r: LDAP Message Pointer

• freeit: Integer

Its output is status (as an integer). Its availability is V2/V3.
For example:

$status = ldap_result2error($ld,$r,$freeit);

ldap_sasl_bind(ld,dn,mechanism,cred,serverctrls,clientctrls,msgidp)
This asynchronously binds to the LDAP server using a SASL mechanism. Its input parameters
are as follows:

• ld: LDAP Session Handle

• dn: String

• mechanism: String

• cred: Binary String

• serverctrls: LDAP Control List Pointer

• clientctrls: LDAP Control List Pointer

• msgidp: Integer

4134_c06_final.qxd 9/30/04 11:31 AM Page 159

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP160

Its output is as follows:

• status (as an integer)

• msgidp: Integer

Its availability is V3.
For example:

$status = ldap_sasl_bind($ld,$dn,$mechanism,$cred, \

$serverctrls,$clientctrls,$msgidp);

ldap_sasl_bind_s(ld,dn,mechanism,cred,serverctrls,clientctrls,servercredp)
This synchronously binds to an LDAP server using a SASL mechanism. Its input parameters
are as follows:

• ld: LDAP Session Handle

• dn: String

• mechanism: String

• cred: Binary String

• serverctrls: LDAP Control List Pointer

• clientctrls: LDAP Control List Pointer

Its output is as follows:

• status (as an integer)

• servercredp:

Its availability is V3.
For example:

$status = ldap_sasl_bind_s($ld,$dn,$mechanism,$cred, \

$serverctrls,$clientctrls,$servercredp);

ldap_search(ld,base,scope,filter,attrs,attrsonly)
This asynchronously searches the LDAP server. Its input parameters are as follows:

• ld: LDAP Session Handle

• base: String

• scope: Integer

• filter: String

• attrs: List Reference

• attrsonly: Integer

4134_c06_final.qxd 9/30/04 11:31 AM Page 160

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 161

Its output is status (as an integer). Its availability is V2/V3.
For example:

$status = ldap_search($ld,$base,$scope,$filter,$attrs,$attrsonly);

ldap_search_ext(ld,base,scope,filter,attrs,attrsonly,serverctrls,clientctrls,
timeoutp,sizelimit,msgidp)
This asynchronously searches the LDAP server with controls. Its input parameters are as follows:

• ld: LDAP Session Handle

• base: String

• scope: Integer

• filter: String

• attrs: List Reference

• attrsonly: Integer

• serverctrls: LDAP Control List Pointer

• clientctrls: LDAP Control List Pointer

• timeoutp: Time in Seconds

• sizelimit: Integer

• msgidp: Integer

Its output is as follows:

• status (as an integer)

• msgidp: Integer

Its availability is V3.
For example:

$status = ldap_search_ext($ld,$base,$scope,$filter, \

$attrs,$attrsonly,$serverctrls, \$clientctrls,$timeoutp,$sizelimit,$msgidp);

ldap_search_ext_s(ld,base,scope,filter,attrs,attrsonly,serverctrls,clientctrls,
timeoutp,sizelimit,res)
This synchronously searches the LDAP server with controls. Its input parameters are as follows:

• ld: LDAP Session Handle

• base: String

• scope: Integer

4134_c06_final.qxd 9/30/04 11:31 AM Page 161

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP162

• filter: String

• attrs: List Reference

• attrsonly: Integer

• serverctrls: LDAP Control List Pointer

• clientctrls: LDAP Control List Pointer

• timeoutp: Time in Seconds

• sizelimit: Integer

• res: LDAP Message Pointer

Its output is as follows:

• status (as an integer)

• res: LDAP Message Pointer

Its availability is V3.
For example:

$status = ldap_search_ext_s($ld,$base,$scope,$filter,$attrs,$attrsonly,$servrctrls, \

$clientctrls,$timeoutp,$sizelimit,$res);

ldap_search_s(ld,base,scope,filter,attrs,attrsonly,res)
This synchronously searches the LDAP server. Its input parameters are as follows:

• ld: LDAP Session Handle

• base: String

• scope: Integer

• filter: String

• attrs: List Reference

• attrsonly: Integer

• res: LDAP Message Pointer

Its output is as follows:

• status (as an integer)

• res: LDAP Message Pointer

Its availability is V2/V3.
For example:

$status = ldap_search_s($ld,$base,$scope,$filter,$attrs,$attrsonly,$res);

4134_c06_final.qxd 9/30/04 11:31 AM Page 162

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 163

ldap_set_lderrno(ld,e,m,s)
This sets the LDAP error structure. Its input parameters are as follows:

• ld: LDAP Session Handle

• e: Integer

• m: String

• s: String

Its output is status (as an integer). Its availability is V2/V3.
For example:

$status = ldap_set_lderrno($ld,$e,$m,$s);

ldap_set_option(ld,option,optdata)
This sets an LDAP session option. Its input parameters are as follows:

• ld: LDAP Session Handle

• option: Integer

• optdata: Integer

Its output is status (as an integer). Its availability is V2/V3.
For example:

$status = ldap_set_option($ld,$option,$optdata);

ldap_simple_bind(ld,who,passwd)
This asynchronously binds to the LDAP server using simple authentication. Its input parame-
ters are as follows:

• ld: LDAP Session Handle

• who: String

• passwd: String

Its output is status (as an integer). Its availability is V2/V3.
For example:

$status = ldap_simple_bind($ld,$who,$passwd);

4134_c06_final.qxd 9/30/04 11:31 AM Page 163

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP164

ldap_simple_bind_s(ld,who,passwd)
This synchronously binds to the LDAP server using simple authentication. Its input parame-
ters are as follows:

• ld: LDAP Session Handle

• who: String

• passwd: String

Its output is status (as an integer). Its availability is V2/V3.
Listing 6-4 shows how to initialize and LDAP connection and then successfully clean it up.

Listing 6-4. Initializing/Releasing an LDAP Connection

$status = ldap_simple_bind_s($ld,$who,$passwd);

/* This initializes an LDAP session, followed by cleanup */

#include <stdio.h>

#include <ldap.h> /* pass -I /path/to/ldap.h in CFLAGS */

/* Optionally, these could also be passed as arguments to our function */

#define MY_LDAP_SERVER "ldap-server.yourcompany.com"

#define MY_LDAP_PORT LDAP_PORT

extern LDAP *

my_ldap_init (char *my_DN, char *my_pass)

{

LDAP *ldap_handle;

int ldap_return;

/*

** Calling ldap_init does not actually cause any communication

** between the LDAP client and server, it only creates the LDAP

** session handler variable, in this case, pointed to by ldap_handle:

*/

ldap_handle = ldap_init (MY_LDAP_SERVER, MY_LDAP_PORT);

if (!ldap_handle) {

fprintf (stderr,

"ldap_init: Couldn't init sessin handle for: %s:%d\n",

MY_LDAP_SERVER, MY_LDAP_PORT);

return NULL;

}

4134_c06_final.qxd 9/30/04 11:31 AM Page 164

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 165

/*

** There are two families of LDAP calls, synchronous and asynchronous.

** With synchronous calls the routines block, specifically they will

** wait, until the function has finished.

**

** Note that synchronous calls are called with the same function names

** as their cousins, with the exception that they are given the

** suffix ("_s").

**

** ldap_bind_s(...) are passed four arguments:

**

** ldap_bind_s (LDAP *handle, char *dn, char *password, int auth_type)

**

** Note that if dn and password are passed as NULL, then an anonymous

** (unauthenticated) bind will be attempted. Use the argument

** "LDAP_AUTH_SIMPLE" for simple password based authentication.

*/

ldap_return = ldap_bind_s (ldap_handle, my_DN, my_pass,

LDAP_AUTH_SIMPLE);

if (ldap_return == LDAP_SUCCESS) {

/*

** A successful bind operation has been established with

** the server; you may perform further operations on

** ldap_handle.

*/

return ldap_handle;

}

/*

** This will print an LDAP error associated with the

** handler. */

ldap_perror (ldap_handle, "ldap_bind_s");

/*

** This routine frees all memory allocated by ldap_init() */

ldap_unbind (ldap_handle);

return NULL;

}

4134_c06_final.qxd 9/30/04 11:31 AM Page 165

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP166

Listing 6-5 demonstrates how to add users using the C API.

Listing 6-5. Adding Users

/*

** This code sample adds a brand new DN into the LDAP tree, rooted

** at "ou=People, dc=Your, dc=Company".

*/

#include <stdio.h>

#include <ldap.h>

#define MY_ROOT_DN "ou=People, dc=Your, dc=Company"

/*

** In this example I am allowing the attributes to be passed

** via a fixed number of arguments. An elaborate way to design

** a serious add function would be to pass an array of attribute/value

** pairs, and dynamically malloc (LDAPMod *) entries based on this.

**

** Also, a new entry would probably require some objectclass entries,

** which this function innocently ignores.

*/

extern char *

my_ldap_insert (char *cn, char *sn, char *mail, char *title)

{

LDAP *lh;

/* Remember that attributes are treated in the API as a list,

** even though we are only adding one value per attribute */

char *cndata[2], *sndata[2], *maildata[2], *titledata[2];

/* These each hold a separate attribute field */

LDAPMod modcn, modsn, modmail, modtitle;

/* 4 attributes + NULL */

LDAPMod *modadds[5];

/* We will be building a new DN for this entry */

char new_dn[1024];

/*

** Ensure that cn is a set string, and that none of the other

** entry attributes are NULL values. Note that we are doing

** this before we attempt to bind, in order to attempt to be

** somewhat efficient. */

if (!(cn && *cn && sn && mail && title))

return NULL;

4134_c06_final.qxd 9/30/04 11:31 AM Page 166

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 167

if (! (lh = my_ldap_init (NULL, NULL)))

exit (-1);

/* Create a brand new DN: */

snprintf (new_dn, sizeof(new_dn) - 1, "cn=%s, %s", cn, MY_ROOT_DN);

/* This establishes each attribute list: */

cndata[0] = cn, cndata[1] = NULL;

sndata[0] = sn, sndata[1] = NULL;

maildata[0] = mail, maildata[1] = NULL;

titledata[0] = title, titledata[1] = NULL;

/* This creates each entry in the (LDAPMod **) list,

** One for each attribute: */

modcn.mod_op = LDAP_MOD_ADD, modcn.mod_type = "cn",

modcn.mod_values = cndata;

modsn.mod_op = LDAP_MOD_ADD, modsn.mod_type = "sn",

modsn.mod_values = sndata;

modmail.mod_op = LDAP_MOD_ADD, modmail.mod_type = "mail",

modmail.mod_values = maildata;

modtitle.mod_op = LDAP_MOD_ADD, modtitle.mod_type = "title",

modtitle.mod_values = titledata;

/* Here is where it all comes together */

modadds[0] = &modcn, modadds[1] = &modsn, modadds[2] = &modmail,

modadds[3] = &modtitle, modadds[4] = NULL;

if (ldap_add_s (lh, new_dn, modadds) != LDAP_SUCCESS) {

ldap_perror (lh, "ldap_add_s");

} else {

printf ("New entry added: %s\n", new_dn);

}

ldap_unbind (lh);

exit (0);

}

Listing 6-6 demonstrates how to delete users using the C API.

Listing 6-6. Deleting Users

/* This simply deletes an entry in the LDAP hierarchy. */

#include <stdio.h>

#include <ldap.h>

4134_c06_final.qxd 9/30/04 11:31 AM Page 167

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP168

extern int

my_ldap_delete (char *cn)

{

LDAP *lh;

char dn[1024];

if (!(cn && *cn))

return -1;

if (! (lh = my_ldap_init (NULL, NULL)))

return -1;

/* DN to delete */

snprintf (dn, sizeof(dn)-1, "cn=%s, ou=People, dc=Your, dc=Company", cn);

delval = ldap_delete_s (lh, dn);

ldap_unbind (lh);

return (delval == LDAP_SUCCESS) ? 0 : -1;

}

Listing 6-7 performs a modrdn operation using the C API.

Listing 6-7. The modrdn Operation

/*

** This code sample renames a DN from:

** DN: "cn=Tom Jackiewicz, ou=People, dc=Your, dc=Company"

**

** To:

** DN: "cn=Tom Pickle, ou=People, dc=Your, dc=Company"

**

*/

#include <stdio.h>

#include <ldap.h>

extern int

tom_ldap_rdn (void)

{

LDAP *lh;

char *old_dn = "cn=Tom Jackiewicz, ou=People, dc=Your, dc=Company”;

char *new_dn = "cn=Tom Pickle, ou=People, dc=Your,dc=Company";

int rval = 0;

if (! (lh = my_ldap_init (NULL, NULL)))

return -1;

4134_c06_final.qxd 9/30/04 11:31 AM Page 168

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 169

/*

** ldap_modrdn2_s (ldap_handle, char *old_dn, char *new_dn, int delete_old)

**

** If delete_old is TRUE (not zero) then all of the attributes from the

** DN will be deleted from the entry.

*/

if (ldap_modrdn2_s (lh, old_dn, new_dn, 0) != LDAP_SUCCESS) {

ldap_perror (lh, "ldap_modrdn2_s");

rval = -1;

} else {

printf ("Tom's DN was changed to: %s\n", new_dn);

}

ldap_unbind (lh);

return rval;

}

Listing 6-8 searches your LDAP system for an e-mail address.

Listing 6-8. Search for an Address

/* This searches an LDAP directory for e-mail addresses */

#include <stdio.h>

#include <ldap.h>

extern int

my_ldap_search (void)

{

LDAP *lh;

LDAPMessage *ldap_data,

*ldap_walk;

int ldap_return;

char *attribs[] = {"cn", "mail", "company", "dn"};

if (! (lh = my_ldap_init (NULL, NULL)))

return -1;

/*

** ldap_search_s (LDAP *handle, char *base_DN, int scope

** char *filter, char *attributes[], LDAPMessage **ldap_data)

**

*/

ldap_return = ldap_search_s (lh, "ou=People,dc=Your,dc=Company",

LDAP_SCOPE_SUBTREE, "(mail=*)", attribs, &ldap_data);

4134_c06_final.qxd 9/30/04 11:31 AM Page 169

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP170

if (ldap_return != LDAP_SUCCESS) {

ldap_perror (lh, "ldap_search_s");

ldap_unbind (lh);

return -1;

}

/*

** ldap_first_entry() and ldap_next_entry() both return NULL

** in case of an error (such as no data). */

for (ldap_walk = ldap_first_entry (lh, ldap_data);

ldap_walk; ldap_walk = ldap_next_entry (lh, ldap_walk) {

char *DN,

*ATTRS;

BerElement *BER;

DN = ldap_get_dn (lh, ldap_walk);

if (DN) {

printf("dn: %s\n", DN);

ldap_memfree(DN);

}

/*

** Print the attributes */

for (attrs = ldap_first_attribute (lh, ldap_data, &BER);

attrs; attrs = ldap_next_attribute (lh, ldap_data, BER) {

printf("%s\n", attrs);

ldap_memfree(attrs);

}

putchar('\n');

if (BER) ber_free (BER, 0);

}

ldap_unbind (lh);

return 0;

}

Listing 6-9 shows how to retrieve and sort an entire list of e-mail addresses from your
LDAP directory using the C API.

Listing 6-9. Searching and Sorting Return Data

/* This dumps a sorted list of all e-mail addresses from a domain */

#include <stdio.h>

#include <string.h>

#include <ldap.h>

4134_c06_final.qxd 9/30/04 11:31 AM Page 170

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 171

extern int

my_ldap_domain_listing (char *domain)

{

LDAP *lh;

LDAPMessage *ldap_data,

*ldap_walk;

int ldap_return;

char *attribs[] = {"cn", "mail", "company", "dn"};

char filter[1024];

/* Attempt some sanity checking */

if (!(domain && *domain && rindex(domain, '.')))

return -1;

if (! (lh = my_ldap_init (NULL, NULL)))

return -1;

snprintf (filter, sizeof(filter)-1,

"(&(objectclass=person)(mail=*@%s))", domain);

ldap_return = ldap_search_s (lh, "ou=People,dc=Your,dc=Company",

LDAP_SCOPE_SUBTREE, filter, attribs, &ldap_data);

if (ldap_return != LDAP_SUCCESS) {

ldap_perror (lh, "ldap_search_s");

ldap_unbind (lh);

return -1;

}

/*

** ldap_sort_entries (ldap_handle, LDAPMessage **listp, char *attrib,

** int (*compare)(char *s1, char *s2));

**

** ldap_sort_entries uses the function, pointed to by the "compare"

** argument to sort all entries (pointed to by listp) on the attribute

** field, pointed to by attrib. Fairly straightforward, quite simple.

*/

if (ldap_sort_entries (lh, &ldap_data, "mail", strcmp) != LDAP_SUCCESS)

ldap_perror (lh, "ldap_sort_entries");

/* No break, ldap_data is still valid even if an error

** occurred. */

/*

** ldap_first_entry() and ldap_next_entry() both return NULL

** in case of an error (such as no data). */

4134_c06_final.qxd 9/30/04 11:31 AM Page 171

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP172

for (ldap_walk = ldap_first_entry (lh, ldap_data);

ldap_walk; ldap_walk = ldap_next_entry (lh, ldap_walk) {

char *DN,

*ATTRS;

BerElement *BER;

DN = ldap_get_dn (lh, ldap_walk);

if (DN) {

printf("dn: %s\n", DN);

ldap_memfree(DN);

}

/*

** Print the attributes */

for (attrs = ldap_first_attribute (lh, ldap_data, &BER);

attrs; attrs = ldap_next_attribute (lh, ldap_data, BER) {

printf("%s\n", attrs);

ldap_memfree(attrs);

}

putchar('\n');

if (BER) ber_free (BER, 0);

}

ldap_unbind (lh);

return 0;

}

Listing 6-10 shows how to modify the mail attribute for the DN of cn=Tom Jackiewicz,
ou=People, dc=Your, dc=Company using the C API.

Listing 6-10. Modifying Data

/*

** This code sample updates the DN for:

** DN: "cn=Tom Jackiewicz, ou=People, dc=Your, dc=Company"

**

** It will update the "mail" attribute, replacing it with new data.

**

** Of course this is an over-simplified example; this routine would

** really be useful if the DN (or its componentns) were built by

** supplying it as a parameter, as well as the data being replaced.

**

*/

#include <stdio.h>

#include <ldap.h>

4134_c06_final.qxd 9/30/04 11:31 AM Page 172

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 173

extern char *

tom_ldap_update (void)

{

LDAP *lh;

LDAPMod modent,

*modptrs[2];

char *my_dn =

{"cn=Tom Jackiewicz, ou=People, dc=Your, dc=Company",

/* New e-mail addresses for Tom */

char *tomaddrs[] = { "tom@sun4c.net",

"Tom.Jackiewicz@yourcompany.com",

"tom@upt.org",

NULL

};

if (! (lh = my_ldap_init (NULL, NULL)))

return NULL;

/*

** There is one update occurring: */

modent.mod_op = LDAP_MOD_REPLACE;

modent.mod_type = "mail";

modent.mod_values = tomaddrs;

modptrs[0] = &modent;

modptrs[0] = NULL;

/*

** ldap_modify_s(ldap_handle, char *dn, LDAPMod **ldap_modlist) :

**

** ldap_modlist is a NULL terminated list of `LDAPMOD *' (pointer to

** LDAPMod structure). The structure contains information pertaining

** to the operation type--in this instance, a replace operation,

** the attribute effected and a list of the replacement data.

** (remember that more than one value can be used for a given

** attribute; this is why the API allows for a list of values

** given the (char **) parameter):

**

** ldap_modlist[0] -> LDAPMod *mod_ptr -> {

** mod_op = LDAP_MOD_REPLACE,

** mod_type = "mail",

** mod_values = char **data -> {

** "u@d.com",

** "u2@d.com",

** NULL

** }

4134_c06_final.qxd 9/30/04 11:31 AM Page 173

mailto:tom@sun4c.net
mailto:Jackiewicz@yourcompany.com
mailto:tom@upt.org
mailto:u@d.com
mailto:u2@d.com

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP174

** ldap_modlist[1] -> NULL

**

** }

**

** Since the ldap_modlist is an array of operations, more than one

** operation may appear in the list.

**

** Remember that since we specified that "mail" is being replaced,

** ALL of the values that occured for the mail attribute before

** any call to ldap_modify_s() -- or ldap_modify() are REPLACED

** with the new data, supplied with the mod_values argument.

**

*/

if (ldap_modify_s (lh, my_dn, modptrs) != LDAP_SUCCESS) {

ldap_perror (lh, "ldap_modify_s");

} else {

printf ("The update for Tom was successful.\n");

}

ldap_unbind (lh);

return my_dn;

}

Performing Operations Against Your
OpenLDAP Directory
You’ll need to include the following line at the beginning of all your Perl scripts to appropri-
ately specify the API you’ll be using:

use Net::LDAP qw(:all);

The following code binds to your system:

$ldap = new Net::LDAP('ldapsearch') || die;

$ldap->bind(version => 3);

The following code specifies the connection data:

$mesg = $ldap->search (base => "dc=Your,dc=Company",

filter => "uid=Tom",)

You can also add another parameter to return only a subset of the information. The default
would be to return all information. For example, you can create the array @attrs containing the
attributes you want returned and make another call.

@attrs = ("uid","cn");

$mesg = $ldap->search (base => "dc=Your,dc=Company",

filter => "uid=Tom",

attrs => @attrs")

4134_c06_final.qxd 9/30/04 11:31 AM Page 174

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 175

Upon retrieving the appropriate information, you’re able to process the information.

use Net::LDAP qw(:alforeach $entry ($msg->all_entries) {

$entry->dump;

}

Now you can unbind from the server.

$ldap->unbind;

Using Java and JNDI
A couple of methods exist for utilizing Java in your LDAP development. The Java Naming and
Directory Interface (JNDI) is an API for accessing different kinds of naming and directory serv-
ices. JNDI isn’t specific to a particular naming or directory service; you can use it to access many
kinds of systems, including filesystems; distributed objects such as CORBA, Java RMI, and EJB;
and directory services such as LDAP, Novell NetWare, and NIS+.

You can also download the Netscape Java API (discussed in earlier in this chapter), which
is the Java equivalent of the C API.

I’ll demonstrate some of the basic LDAP functionality you can attain via JNDI. RFC
2251–compliant LDAP operations map to specific JNDI methods. The DirContext and
LdapContext interfaces provide this mapping. You can find a good tutorial by Michael Yee
at http://www.sbfsbo.com/mike/JndiTutorial. JNDI is installed with the Java SDK version
1.3 or better. Visit http://java.sun.com for downloads and additional information. Devel-
opment with Java is somewhat more intensive than Perl. The scripts are longer and execute
much more slowly. If you still want to develop LDAP applications in Java, you’ll find the
basics in the following list. The examples are modified versions from Mark Wilcox’s book,
Implementing LDAP (Peer Information, 1999), which were subsequently modified by
Michael Yee on his Web site.

I’ve divided basic JNDI programs into three sections: context initialization, binding, and
processing. Context initialization and binding rarely change between applications. Context
initialization sets the following global variables:

• INITCTX: The name of the service provider. The following comes from Sun, but IBM has
a version, too.

INITCTX = "com.sun.jndi.ldap.LdapCtxFactory";

• MY_HOST: Intuitively, this specifies the protocol (LDAP), name of your server, and the
port number (389 is default).

MY_HOST = "ldap://ldaphost:389";

• MGR_DN: This is the DN of the LDAP administrator as specified in the rootdn parameter
in slapd.conf.

• MGR_PW: This is the administrator’s password as specified by the rootpw parameter in
slapd.conf.

MGR_PW = "secret";

4134_c06_final.qxd 9/30/04 11:31 AM Page 175

http://www.sbfsbo.com/mike/JndiTutorial
http://java.sun.com
ldap://ldaphost:389

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP176

• MY_SEARCHBASE: This is the root node of your directory as specified in the suffix
parameter in slapd.conf.

MY_SEARCHBASE = "dc=Your,dc=Company";

The binding phase takes these initial variables and sets the environment. The processing
phase does all the work and is unique between programs.

I’ll include the JNDIAdd2.java program as an example. It adds Napoleon Stabone (a smelly
little miniature pinscher) to the example directory.

The key elements for the add process include creating your BasicAttributes objects.
A BasicAttributes object named attrs will be loaded into the directory. It contains single-
value attributes (cn, sn) and references a list of multivalue attributes (objectclassSet). Notice
that this example adds only one cn and one sn attribute (even though LDAP allows more).

BasicAttributes attrs = new BasicAttributes();

attrs.put(objclassSet);

attrs.put("ou", "IT");

attrs.put("cn", "Napoleon Stabone");

attrs.put("sn", "Stabone");

attrs.put("telephoneNumber", "1-800-use-LDAP");

attrs.put("l", "Paris");

The objclassSet refers to another BasicAttributes object that contains a list of object-
Classes including person, organizationalPerson, and inetOrgPerson.

BasicAttribute objclassSet = new BasicAttribute("objectclass");

objclassSet.add("person");

objclassSet.add("organizationalPerson");

objclassSet.add("inetOrgPerson");

Then you add your BasicAttributes objects to the directory.

ctx.createSubcontext(theNewDN, attrs);

Listing 6-11 shows the full program, which adds Napoleon Stabone to the IT team. You
can see the results by checking via your Netscape Navigator 4.0 or better browser at
ldap://ldaphostldaphost/dc=Your,dc=Company?*?sub?(sn=Stabone).

Listing 6-11. Adding My Dog to Your Infrastructure Using JNDI

//--

// File: JNDIAdd2.java

// Desc: This is a basic add program.

// Compile: javac JNDIAdd2.java

// Use: java JNDIAdd2

//--

import java.util.Hashtable;

import java.util.Enumeration;

import javax.naming.*;

import javax.naming.directory.*;

4134_c06_final.qxd 9/30/04 11:31 AM Page 176

ldap://ldaphostldaphost/dc=Your

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 177

public class JNDIAdd2

{

// initial context implementation

public static String INITCTX = "com.sun.jndi.ldap.LdapCtxFactory";

public static String MY_HOST = "ldap://ldaphost:389";

public static String MGR_DN = "cn=Manager,dc=Your,dc=Company";

public static String MGR_PW = "secret";

public static String MY_SEARCHBASE = "dc=Your,dc=Company";

public static void main (String args[])

{

try

{

//--

// Binding

//--

// Hashtable for environmental information

Hashtable env = new Hashtable();

// Specify which class to use for our JNDI Provider

env.put(Context.INITIAL_CONTEXT_FACTORY, INITCTX);

// Specify the host and port to use for directory service

env.put(Context.PROVIDER_URL, MY_HOST);

// Security Information

env.put(Context.SECURITY_AUTHENTICATION,"simple");

env.put(Context.SECURITY_PRINCIPAL, MGR_DN);

env.put(Context.SECURITY_CREDENTIALS, MGR_PW);

// Get a reference to a directory context

DirContext ctx = new InitialDirContext(env);

//--

// Begin the Add process

//--

String theNewDN = "cn=Napoleon Stabone, ou=IT, dc=Your,dc=Company";

// Multi-valued attributes require their own new BasicAttribute

// Create the objclassSet to hold all the entry's objectClasses.

BasicAttribute objclassSet = new BasicAttribute("objectclass");

objclassSet.add("person");

objclassSet.add("organizationalPerson");

objclassSet.add("inetOrgPerson");

4134_c06_final.qxd 9/30/04 11:31 AM Page 177

ldap://ldaphost:389

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP178

// Add single and multi-valued attributes to the

// load variable (attrs).

BasicAttributes attrs = new BasicAttributes();

attrs.put(objclassSet);

attrs.put("ou", "IT");

attrs.put("cn", "Napoleon Stabone");

attrs.put("sn", "Stabone");

attrs.put("telephoneNumber", "1-408-655-4672");

attrs.put("l", "San Francisco");

ctx.createSubcontext(theNewDN, attrs);

//--

// End the Add process

//--

} // End try

catch(Exception e)

{

e.printStackTrace();

System.exit(1);

}

}

}

The process for modifying records in the directory is as follows:

1. Create a ModificationItem array named mods.

2. Define your modifications and load them into the ModificationItem array specifying
the operation: ADD_ATTRIBUTE or REPLACE_ATTRIBUTE (updating the value of an existing
attribute).

3. Call the modifyAttributes() function. Notice that the DN of the record you want to
modify is the first parameter. It could have (and probably should have) been replaced
with a String variable.

Listing 6-12 shows how to modify data within your LDAP system via JNDI calls.

Listing 6-12. Modifying via JNDI

ctx.modifyAttributes("cn=Susan Surapruik, ou=IT, dc=Your,dc=Company", mods);

//--

// File: JNDIMod.java

// Desc: This is a basic modify program.// Compile: javac JNDIMod.java

// Use: java JNDIMod

//--

4134_c06_final.qxd 9/30/04 11:31 AM Page 178

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 179

import java.util.Hashtable;

import java.util.Enumeration;

import javax.naming.*;

import javax.naming.directory.*;

public class JNDIMod

{

// initial context implementation

public static String INITCTX = "com.sun.jndi.ldap.LdapCtxFactory";

public static String MY_HOST = "ldap://ldaphost:389";

public static String MGR_DN = "cn=Manager,dc=Your,dc=Company";

public static String MGR_PW = "secret";

public static String MY_SEARCHBASE = "dc=Your,dc=Company";

public static void main (String args[])

{

try

{

//--

// Binding

//--

// Hashtable for environmental information

Hashtable env = new Hashtable();

// Specify which class to use for our JNDI Provider

env.put(Context.INITIAL_CONTEXT_FACTORY, INITCTX);

// Specify the host and port to use for directory service

env.put(Context.PROVIDER_URL, MY_HOST);

// Security Information

env.put(Context.SECURITY_AUTHENTICATION,"simple");

env.put(Context.SECURITY_PRINCIPAL, MGR_DN);

env.put(Context.SECURITY_CREDENTIALS, MGR_PW);

// Get a reference toa directory context

DirContext ctx = new InitialDirContext(env);

//--

// Begin Modify

//--

ModificationItem[] mods = new ModificationItem[2];

4134_c06_final.qxd 9/30/04 11:31 AM Page 179

ldap://ldaphost:389

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP180

// replace (update) telephone number attribute

Attribute mod0 = new BasicAttribute("telephoneNumber",

"123-456-7890");

// add mobile phone number attribute

Attribute mod1 = new BasicAttribute("mobile",

"123-456-1234");

mods[0] = new ModificationItem(DirContext.REPLACE_ATTRIBUTE, mod0);

mods[1] = new ModificationItem(DirContext.ADD_ATTRIBUTE, mod1);

ctx.modifyAttributes("cn=Susan Surapruik, ou=IT, dc=Your,dc=Company", mods);

//--

// End Modify

//--

} // End try

catch(Exception e)

{

e.printStackTrace();

System.exit(1);

}

}

}

Listing 6-13 is like the previous example, but it shows the syntax for removing an attribute
from a record.

Listing 6-13. Modifying an Attribute via JNDI

//--

// File: JNDIMod2.java

// Desc: This is a basic delete program.

// Compile: javac JNDIMod2.java

// Use: java JNDIMod2

//--

import java.util.Hashtable;

import java.util.Enumeration;

import javax.naming.*;

import javax.naming.directory.*;

public class JNDIMod2

{

// initial context implementation

public static String INITCTX = "com.sun.jndi.ldap.LdapCtxFactory";

public static String MY_HOST = "ldap://ldaphost:389";

4134_c06_final.qxd 9/30/04 11:31 AM Page 180

ldap://ldaphost:389

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 181

public static String MGR_DN = "cn=Manager,dc=Your,dc=Company";

public static String MGR_PW = "secret";

public static String MY_SEARCHBASE = "dc=Your,dc=Company";

public static void main (String args[])

{

try

{

//--

// Binding

//--

// Hashtable for environmental information

Hashtable env = new Hashtable();

// Specify which class to use for our JNDI Provider

env.put(Context.INITIAL_CONTEXT_FACTORY, INITCTX);

// Specify the host and port to use for directory service

env.put(Context.PROVIDER_URL, MY_HOST);

// Security Information

env.put(Context.SECURITY_AUTHENTICATION,"simple");

env.put(Context.SECURITY_PRINCIPAL, MGR_DN);

env.put(Context.SECURITY_CREDENTIALS, MGR_PW);

// Get a reference toa directory context

DirContext ctx = new InitialDirContext(env);

//--

// Begin Modify

//--

ModificationItem[] mods = new ModificationItem[2];

// replace (update) telephone number attribute

Attribute mod0 = new BasicAttribute("telephoneNumber",

"987-654-3210");

// delete mobile phone number attribute

Attribute mod1 = new BasicAttribute("mobile");

mods[0] = new ModificationItem(DirContext.REPLACE_ATTRIBUTE, mod0);

mods[1] = new ModificationItem(DirContext.REMOVE_ATTRIBUTE, mod1);

ctx.modifyAttributes("cn=Susan Surapruik, ou=IT, dc=Your,dc=Company", mods);

4134_c06_final.qxd 9/30/04 11:31 AM Page 181

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP182

//--

// End Modify

//--

} // End try

catch(Exception e)

{

e.printStackTrace();

System.exit(1);

}

}

}

The deletion process requires very little code. One command will do the trick, as shown in
Listing 6-14.

Listing 6-14. Deleting via JNDI

ctx.destroySubcontext(delDN);

//--

// File: JNDIDelete.java

// Desc: This is a basic delete program.

// Compile: javac JNDIDelete.java

// Use: java JNDIDelete

//--

import java.util.Hashtable;

import java.util.Enumeration;

import javax.naming.*;

import javax.naming.directory.*;

public class JNDIDelete

{

// initial context implementation

public static String INITCTX = "com.sun.jndi.ldap.LdapCtxFactory";

public static String MY_HOST = "ldap://ldaphost:389";

public static String MGR_DN = "cn=Manager,dc=Your,dc=Company";

public static String MGR_PW = "secret";

public static String MY_SEARCHBASE = "dc=Your,dc=Company";

public static void main (String args[])

{

try

{

//--

// Binding

//--

4134_c06_final.qxd 9/30/04 11:31 AM Page 182

ldap://ldaphost:389

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 183

// Hashtable for environmental information

Hashtable env = new Hashtable();

// Specify which class to use for our JNDI Provider

env.put(Context.INITIAL_CONTEXT_FACTORY, INITCTX);

// Specify the host and port to use for directory service

env.put(Context.PROVIDER_URL, MY_HOST);

// Security Information

env.put(Context.SECURITY_AUTHENTICATION,"simple");

env.put(Context.SECURITY_PRINCIPAL, MGR_DN);

env.put(Context.SECURITY_CREDENTIALS, MGR_PW);

// Get a reference toa directory context

DirContext ctx = new InitialDirContext(env);

//--

// Begin deletion process

//--

String delDN = "cn=Napoleon Stabone,ou=IT,dc=Your,dc=Company";

ctx.destroySubcontext(delDN);

//--

// End deletion process

//--

} // End try

catch(Exception e)

{

e.printStackTrace();

System.exit(1);

}

}

}

Deleting a record required the least amount of code. Conversely, the search programs
required the most.

JNDISearch.java represents the basic search. The MY_FILTER was added to the global vari-
ables defined in the context initialization section. You define the search constraints here.

public static String INITCTX = "com.sun.jndi.ldap.LdapCtxFactory";

public static String MY_HOST = "ldap://ldaphost:389";

public static String MGR_DN = "cn=Manager,dc=Your,dc=Company";

public static String MGR_PW = "secret";

public static String MY_SEARCHBASE = "dc=Your,dc=Company";

public static String MY_FILTER = "cn=Tom Jackiewicz";

4134_c06_final.qxd 9/30/04 11:31 AM Page 183

ldap://ldaphost:389

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP184

The full program appears in Listing 6-15.

Listing 6-15. JNDISearch.java

//--

// File: JNDISearch.java

// Desc: This is a basic search program. See MY_FILTER.

// Includes authenticated search.

// Compile: javac JNDISearch.java

// Use: java JNDISearch

//--

import java.util.Hashtable;

import java.util.Enumeration;

import javax.naming.*;

import javax.naming.directory.*;

public class JNDISearch

{

// Global Variables

public static String INITCTX = "com.sun.jndi.ldap.LdapCtxFactory";

public static String MY_HOST = "ldap://ldaphost:389";

public static String MGR_DN = "cn=Manager,dc=Your,dc=Company";

public static String MGR_PW = "secret";

public static String MY_SEARCHBASE = "dc=Your,dc=Company";

public static String MY_FILTER = "cn=Tom Jackiewicz";

public static void main (String args[])

{

try

{

//--

// Binding

//--

// Hashtable for environmental information

Hashtable env = new Hashtable();

// Specify which class to use for our JNDI Provider

env.put(Context.INITIAL_CONTEXT_FACTORY, INITCTX);

// Specify the host and port to use for directory service

env.put(Context.PROVIDER_URL, MY_HOST);

// Security Information

env.put(Context.SECURITY_AUTHENTICATION,"simple");

env.put(Context.SECURITY_PRINCIPAL, MGR_DN);

env.put(Context.SECURITY_CREDENTIALS, MGR_PW);

4134_c06_final.qxd 9/30/04 11:31 AM Page 184

ldap://ldaphost:389

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 185

// Get a reference toa directory context

DirContext ctx = new InitialDirContext(env);

//--

// Search the directory

//--

// Specify the scope of the search

SearchControls constraints = new SearchControls();

constraints.setSearchScope(SearchControls.SUBTREE_SCOPE);

// Perform the actual search

// We give it a searchbase, a filter, and the constraints

// containing the scope of the search

NamingEnumeration results =

ctx.search(MY_SEARCHBASE, MY_FILTER, constraints);

// Now step through the search results

while (results != null && results.hasMore())

{

SearchResult sr = (SearchResult) results.next();

String dn = sr.getName();

System.out.println ("Distinguished Name is " +dn);

Attributes attrs = sr.getAttributes();

for (NamingEnumeration ne = attrs.getAll(); ne.hasMoreElements();)

{

Attribute attr = (Attribute)ne.next();

String attrID = attr.getID();

System.out.println (attrID+":");

for (Enumeration vals = attr.getAll();vals.hasMoreElements();)

{

System.out.println ("\t"+vals.nextElement());

}

}

System.out.println ("\n");

} // End while loop displaying list of attributes

//--

// End search

//--

} // End try

4134_c06_final.qxd 9/30/04 11:31 AM Page 185

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP186

catch(Exception e)

{

e.printStackTrace();

System.exit(1);

}

}

}

JNDISearch2.java is a more advanced search that lets you specify the search constraints
and define the attributes you want to display.

public static String INITCTX = "com.sun.jndi.ldap.LdapCtxFactory";

public static String MY_HOST = "ldap://ldaphost:389";

public static String MGR_DN = "cn=Manager,dc=Your,dc=Company";

public static String MGR_PW = "secret";

public static String MY_SEARCHBASE = "dc=Your,dc=Company";

public static String MY_FILTER = "cn=Tom Jackiewicz";

// Specify which attributes we are looking for

public static String MY_ATTRS[] = {"cn", "telephoneNumber", "postalAddress"};

This example adds the MY_ATTRS array to the global variable in the context initialization
section. The output of this query will display only the cn, telephoneNumber, and postalAddress
attributes. Listing 6-16 shows how to search your directory and return only a subset of attrib-
utes, not the entire set of information that’s available to you.

Listing 6-16. Searching and Returning Specific Information via JNDI

//--

// File: JNDISearch2.java

// Desc: This search program specifies a list of attributes

// that should be displayed.

// Compile: javac JNDISearch2.java

// Use: java JNDISearch2

//--

import java.util.Hashtable;

import java.util.Enumeration;

import javax.naming.*;

import javax.naming.directory.*;

public class JNDISearch2

{

// initial context implementation

public static String INITCTX = "com.sun.jndi.ldap.LdapCtxFactory";

public static String MY_HOST = "ldap://ldaphost:389";

public static String MGR_DN = "cn=Manager,dc=Your,dc=Company";

public static String MGR_PW = "secret";

public static String MY_SEARCHBASE = "dc=Your,dc=Company";

public static String MY_FILTER = "cn=Tom Jackiewicz";

4134_c06_final.qxd 9/30/04 11:31 AM Page 186

ldap://ldaphost:389
ldap://ldaphost:389

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 187

// Specify which attributes we are looking for

public static String MY_ATTRS[] = {"cn", "telephoneNumber",

"postalAddress"};

public static void main (String args[])

{

try

{

//--

// Binding

//--

// Hashtable for environmental information

Hashtable env = new Hashtable();

// Specify which class to use for our JNDI Provider

env.put(Context.INITIAL_CONTEXT_FACTORY, INITCTX);

// Specify the host and port to use for directory service

env.put(Context.PROVIDER_URL, MY_HOST);

// Security Information

env.put(Context.SECURITY_AUTHENTICATION,"simple");

env.put(Context.SECURITY_PRINCIPAL, MGR_DN);

env.put(Context.SECURITY_CREDENTIALS, MGR_PW);

// Get a reference toa directory context

DirContext ctx = new InitialDirContext(env);

//--

// Begin search

//--

// Specify the scope of the search

SearchControls constraints = new SearchControls();

constraints.setSearchScope(SearchControls.SUBTREE_SCOPE);

// Perform the actual search

// We give it a searchbase, a filter and the constraints

// containing the scope of the search

NamingEnumeration results =

ctx.search(MY_SEARCHBASE, MY_FILTER, constraints);

// Now step through the search results

while (results != null && results.hasMore())

{

SearchResult sr = (SearchResult) results.next();

String dn = sr.getName() + ", " + MY_SEARCHBASE;

System.out.println ("Distinguished Name is " +dn);

4134_c06_final.qxd 9/30/04 11:31 AM Page 187

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP188

// Code for displaying attribute list

Attributes ar = ctx.getAttributes(dn, MY_ATTRS);

if (ar == null) // Has no attributes

{

System.out.println("Entry "+ dn);

System.out.println(" has none of the specified attributes\n");

}

else // Has some attributes

{

// Determine the attributes in this record.

for (int i=0; i<MY_ATTRS.length; i++)

{

Attribute attr = ar.get(MY_ATTRS[i]);

if (attr != null)

{

System.out.println(MY_ATTRS[i] + ":");

// Gather all values for the specified attribute.

for (Enumeration vals=attr.getAll();

vals.hasMoreElements();)

{

System.out.println ("\t" + vals.nextElement());

}

// System.out.println ("\n");

}

}

}

}

//--

// End search

//--

} // end try

catch(Exception e)

{

e.printStackTrace();

System.exit(1);

}

}

}

The javax.name.ldap API provides support for LDAP v3 extended operations and con-
trols, and it extends JNDI. It extends the ExtendedRequest and ExtendedResponse interfaces to
utilize extended requests and extended results. An application typically doesn’t deal directly
with these interfaces. Instead, it deals with classes that implement these interfaces.

4134_c06_final.qxd 9/30/04 11:31 AM Page 188

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 189

OASIS Standards
OASIS (which stands for Organization for the Advancement of Structured Information Stan-
dards) is a not-for-profit international consortium that drives the development, convergence,
and adoption of e-business standards. The consortium produces more Web service standards
than any other organization; it also produces standards for security, e-business, and standard-
ization efforts in the public sector and for application-specific markets. Founded in 1993,
OASIS has more than 3,000 participants representing more than 600 organizations and indi-
vidual members in 100 countries.

OASIS is distinguished by its transparent governance and operating procedures. Members
themselves set the OASIS technical agenda, using a lightweight process expressly designed to
promote industry consensus and unite disparate efforts. Completed work is ratified by open bal-
lot. Governance is accountable and unrestricted. Officers of both the OASIS Board of Directors
and the Technical Advisory Board are chosen by democratic election to serve two-year terms.
Consortium leadership is based on individual merit and isn’t tied to financial contribution, cor-
porate standing, or special appointment.

The consortium hosts two of the most widely respected information portals on XML and
Web service standards: Cover Pages and XML.org. OASIS member sections include UDDI, CGM
Open, LegalXML, and PKI.

OASIS was founded in 1993 under the name SGML Open as a consortium of vendors and
users devoted to developing guidelines for interoperability among products that support the
Standard Generalized Markup Language (SGML). OASIS changed its name in 1998 to reflect
an expanded scope of technical work, including the Extensible Markup Language (XML) and
other related standards.

Directory Services Markup Language (DSML)
The following is the specification for the Directory Services Markup Language (DSML). Further
information on this emerging technology is available at http://www.dsmltools.org. Markup lan-
guages, such as HTML and XML, are becoming a popular way to communicate between systems
using a known set of parameters. DSML will never be the only way of talking to your directory. It
may not even be the most efficient way. Both LDAP and vendor-specific approaches may pro-
vide better performance in that area. It may not rack up the most directory transactions per way;
Windows-optimized interfaces, driven by Microsoft, could win that honor. However, DSML will
provide a common language for working with directories, combining the qualified of vendor
independence and accessibility to a wide range of programmers and programs.

Introduction
DSML provides a means for representing directory structural information as an XML docu-
ment. The intent of DSML is to allow XML-based enterprise applications to leverage profile and
resource information from a directory in their native environments. DSML allows XML and
directories to work together and provides a common ground for all XML-based applications
to better use directories. More information is available at http://xml.coverpages.org/
DSMLv2-draft14.pdf. DSML v1 provides a means of representing directory information in the
form of an XML document. DSML v2 goes further, providing a method for expressing directory
queries and updates (and the results of those operations) as XML documents. DSML v2 is one
of the major advances in the world of LDAP that’s used to extend the reach of directories.

4134_c06_final.qxd 9/30/04 11:31 AM Page 189

http://www.dsmltools.org
http://xml.coverpages.org

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP190

DSML is intended to be a simple XML schema definition that will enable directories to pub-
lish basic profile information in the form of an XML document so that it can be easily shared via
native Internet protocols (such as HTTP or SMTP), as well as used by other applications. The
principal goal is to ensure that directories are able to make a growing breed of XML-based appli-
cations directory aware.

It’s not an initial goal of DSML to specify the attributes that all directories must contain or
the method with which the directory information is accessed from the directory. The expecta-
tion is that standard protocols (such as LDAP), proprietary access protocols (such as Novell’s
NDAP), and proprietary APIs (such as Microsoft’s ADSI) could produce DSML documents as
an optional output. DSML holds the promise to advance business-to-business e-commerce by
simplifying compatibility with other companies’ applications. Microsoft is involved in DSML
development via the DSML Services for Windows specifications and can serve as a great online
resource for current developments in DSML.

A Note on Ambiguous Terminology
Because this specification discusses both XML and directories, you may confuse terminology
from one domain with that from the other. In particular, the words attribute and schema have
meaning in both the XML and directory domains. For this reason, this specification always
qualifies the word attribute as either XML attribute or a directory attribute and likewise with
the word schema.

The DSML Namespace URI
The vocabulary described in this specification is identified by this URI:

http://www.dsml.org/DSML

This is the DSML namespace URI.
In this specification, the prefix dsml is used on XML elements to indicate that they belong

to the DSML namespace. The prefix (as with all XML namespace prefixes) is arbitrary, so you
can use any suitable prefix (or the namespace declared as default). It’s the URI that ultimately
identifies the namespace, not the prefix.

Conceptual Overview
A DSML document describes directory entries, a directory schema, or both.

Each directory entry has a universally unique name called its distinguished name. A direc-
tory entry has a number of property-value pairs called directory attributes. Every directory entry
is a member of a number of object classes. An entry’s object classes constrain the directory attrib-
utes the entry may take. Such constraints are described in a directory schema, which may be
included in the same DSML document or may be in a separate document.

Top-Level Structure
The document element of DSML is of the type dsml, which may have a child element of the
type directory-entries. This element, in turn, has child elements of the type entry. The dsml
element may also (if the document contains a directory schema) have a child element of the
type directory-schema that, in turn, has child elements of the types class and attribute-type.

4134_c06_final.qxd 9/30/04 11:31 AM Page 190

http://www.dsml.org/DSML

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 191

At the top-level, the structure of a DSML document is as shown in Listing 6-17.

Listing 6-17. Top-Level Structure of a DSML Document

<dsml:dsml xmlns:dsml="http://www.dsml.org/DSML">

<!-- a document with only directory entries -->

<dsml:directory-entries>

<dsml:entry dn="...">...</dsml:entry>

<dsml:entry dn="...">...</dsml:entry>

<dsml:entry dn="...">...</dsml:entry>

...

</dsml:directory-entries>

</dsml:dsml>

<dsml:dsml xmlns:dsml="http://www.dsml.org/DSML">

<!-- a document with only a directory schema -->

<dsml:directory-schema>

<dsml:class id="..." ...>...</dsml:class>

<dsml:attribute-type id="..." ...>...</dsml:attribute-type>

...

</dsml:directory-schema>

</dsml:dsml>

<dsml:dsml xmlns:dsml="http://www.dsml.org/DSML">

<!-- a document with both -->

<dsml:directory-schema>

<dsml:class id="..." ...>...</dsml:class>

<dsml:attribute-type id="..." ...>...</dsml:attribute-type>

</dsml:directory-schema>

<dsml:directory-entries>

<dsml:entry dn="...">...</dsml:entry>

<dsml:entry dn="...">...</dsml:entry>

<dsml:entry dn="...">...</dsml:entry>

...

</dsml:directory-entries>

<dsml:dsml>

The top-level element dsml takes an optional XML attribute complete. A value of true
indicates that the entries under directory-entries contain no external references. Either
all attribute-types and classes referenced are found in the directory-schema section of
the document or no references exist. A value of false indicates that at least one reference is
to an external DSML document containing a directory schema. The default value is true.

Directory Entries
The following sections describe some of the entries, attributes, and object classes that can be
stored in DSML.

4134_c06_final.qxd 9/30/04 11:31 AM Page 191

http://www.dsml.org/DSML
http://www.dsml.org/DSML
http://www.dsml.org/DSML

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP192

The entry Element Type
Each entry represented in a DSML document is done so using an element of the type entry.
The entry element contains elements representing the entry’s directory attributes. The distin-
guished name of the entry is indicated by the XML attribute dn.

■Note This specification doesn’t provide a canonical form for distinguished names. Because normalization
and ordering can vary between producers of DSML, some form of canonicalization would need to be performed
by a consumer of DSML before string matching the values of the XML attribute dn.

It was decided (by the consortium, not the opressive powers of “The Man”) to express the
distinguished name as an XML attribute rather than a child element because of its identifying
characteristic.

<dsml:entry dn="uid=prabbit,ou=development,o=bowstreet,c=us">

<dsml:objectclass>

<dsml:oc-value>top</dsml:oc-value>

<dsml:oc-value>person</dsml:oc-value>

<dsml:oc-value>organizationalPerson</dsml:oc-value>

<dsml:oc-value>inetOrgPerson</dsml:oc-value>

</dsml:objectclass>

<dsml:attr name="sn"><dsml:value>Rabbit</dsml:value></dsml:attr>

<dsml:attr name="uid"><dsml:value>prabbit</dsml:value></dsml:attr>

<dsml:attr name="mail"><dsml:value>prabbit@dsml.org</dsml:value></dsml:attr>

<dsml:attr name="givenname"><dsml:value>Peter</dsml:value></dsml:attr>

<dsml:attr name="cn"><dsml:value>Peter Rabbit</dsml:value></dsml:attr>

</dsml:entry>

Entry Object Class
The object classes of an entry are represented by the oc-value child elements of an
objectclass element. The content of each oc-value element indicates an object class to
which the entry belongs. In the case where an object class has more than one name, only
one name need be used. Both objectclass and oc-value have an optional XML attribute
ref. An oc-value’s ref is a URI reference to a class element that defines the object class.
An objectclass’s ref is a URI reference to an attribute-type defining the objectclass direc-
tory attribute. The latter wouldn’t often be used but is provided to allow for extension of
the objectclass directory attribute.

<dsml:objectclass ref="#objectclass">

<dsml:oc-value ref="#person">person</dsml:oc-value>

<dsml:oc-value ref="#org-person">organizationalPerson</dsml:oc-value>

</dsml:objectclass>

4134_c06_final.qxd 9/30/04 11:31 AM Page 192

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 193

Directory Attributes
Directory attributes (with the exception of objectclass) are represented by an attr element.
This element has a mandatory XML attribute name that indicates the name of the directory
attribute. (A directory attribute can have more than one name, but only one need be
expressed in the name attribute.)

The value or values of a directory attribute are expressed in child elements of the type value.

■Note The content of value is PCDATA; hence, any XML markup (or characters that could be treated as
markup, namely < or &) must be escaped via the CDATA section, a character reference, or a predefined entity.

Each attr element can have an optional ref XML attribute whose value is a URI reference
(URI plus XPointer) pointing to an attribute-type definition in a directory-schema in the same
or different DSML document.

For example, if a DSML document with a directory-schema accessible at the URL
http://www.bowstreet.com/schemata/physical-attributes.dsml has the following
attribute-type definition:

<dsml:attribute-type id="eye-color">

<dsml:name>eyecolor</dsml:name>

<dsml:description>The color of the person's eyes</dsml:description>

...

</dsml:attribute-type>

Then an entry in directory-entries may have a child element, like so:

<dsml:attr

name="eyecolor"

ref="http://www.bowstreet.com/schemata/physical-attributes.dsml#eye-color">

<dsml:value>blue</dsml:value>

</dsml:attr>

Multivalued Attributes
Where an entry has multiple values for a particular attribute, that attr element has multiple
value children.

<dsml:entry dn="uid=prabbit,ou=development,o=bowstreet,c=us">

<dsml:objectclass>

<dsml:oc-value>top</dsml:oc-value>

<dsml:oc-value>person</dsml:oc-value>

<dsml:oc-value>organizationalPerson</dsml:oc-value>

<dsml:oc-value>inetOrgPerson</dsml:oc-value>

</dsml:objectclass>

<dsml:attr name="sn"><dsml:value>Rabbit</dsml:value></dsml:attr>

<dsml:attr name="uid"><dsml:value>prabbit</dsml:value></dsml:attr>

<dsml:attr name="mail">

4134_c06_final.qxd 9/30/04 11:31 AM Page 193

http://www.bowstreet.com/schemata/physical-attributes.dsml
http://www.bowstreet.com/schemata/physical-attributes.dsml#eye-color

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP194

<dsml:value>prabbit@dsml.org</dsml:value>

<dsml:value>peterr@home.com</dsml:value>

</dsml:attr>

<dsml:attr name="givenname"><dsml:value>Peter</dsml:value></dsml:attr>

<dsml:attr name="cn"><dsml:value>Peter Rabbit</dsml:value></dsml:attr>

</dsml:entry>

Binary Data
Directory attributes containing binary data are encoded using an encoding scheme identified
by the XML attribute encoding on the value element. Currently, DSML supports only base64 as
a value, but the encoding XML attribute is included in order to enable support for other encod-
ing schemes in the future.

■Note base64 encoding, as described in RFC 1521, allows for whitespace characters that are to be
ignored by any decoding software. Furthermore, base64 encoding doesn’t introduce < or & characters, and
therefore no additional encoding is necessary to include base64 in XML character data.

The following shows an example of how to represent the encoding data within an XML
document:

<dsml:attr name="cacertificate">

<dsml:value encoding="base64">

MIICJjCCAY+...

</dsml:value>

</dsml:attr>

Directory Schema
The following sections describe the definition of schema via DSML.

Object Classes
Each directory entry has a number of object classes, indicated by elements of the type object-
class.

An object class is defined with a class element in a directory-schema. The class element
takes an ID XML attribute id to make referencing easier.

4134_c06_final.qxd 9/30/04 11:31 AM Page 194

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 195

The object class definition for the person object class may look like this:

<dsml:class

id="person"

superior="#top"

type="structural">

<dsml:name>person</dsml:name>

<dsml:description>...</dsml:description>

<dsml:object-identifier>2.5.6.6</object-indentifier>

<dsml:attribute ref="#sn" required="true"/>

<dsml:attribute ref="#cn" required="true"/>

<dsml:attribute ref="#userPassword" required="false"/>

<dsml:attribute ref="#telephoneNumber" required="false"/>

<dsml:attribute ref="#seeAlso" required="false"/>

<dsml:attribute ref="#description" required="false"/>

</dsml:class>

id (XML Attribute)

This is a locally unique identifier for the object class. This enables the object class to be refer-
enced across the Web, in particular from the ref XML attribute of an entry’s objectclass or
a subclass’s superior XML attribute.

superior (XML Attribute)

This is the URI reference of class(es) from which this one is derived.

type (XML Attribute)

This is one of structural, abstract, or auxiliary.

obsolete (XML Attribute)

This is one of true or false. This defaults to false.

name (Child Element)

This is the NAME of the object class.

description (Child Element)

This is the optional DESC of the object class.

object-identifier (Child Element)

This is the OID of the object class.

attribute (Child Element)

This is a directory attribute type that entries of this class may or must have.

4134_c06_final.qxd 9/30/04 11:31 AM Page 195

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP196

ref (XML Attribute on the attribute Element)

This is the URI reference of the directory attribute type.

required (XML Attribute on the attribute Element)

This is one of true or false. It indicates whether entries of this class are required to have the
directory attribute.

XML attributes were chosen in those cases where the information provides unique iden-
tification (using an ID attribute not only ensures uniqueness, but allows for ease of reference
via XPointer), is an enumeration (which, in a DTD, can be contained only in attributes), or is
a reference.

Attribute Type Definitions
You can define directory attribute types in a similar way to object classes. For example:

<dsml:attribute-type

id="cn"

superior="...#name">

<dsml:name>cn</dsml:name>

<dsml:description>...</dsml:description>

<dsml:object-identifier>2.5.4.3</dsml:object-identifier>

</dsml:attribute-type>

<dsml:attribute-type

id="mail">

<dsml:name>mail</dsml:name>

<dsml:description>...</dsml:description>

<dsml:object-identifier>0.9.2342.19200300.100.1.3</dsml:object-identifier>

<dsml:syntax bound="256">0.9.2342.19200300.100.3.5</dsml:syntax>

</dsml:attribute-type>

id (XML Attribute)

This is a locally unique identifier for the attribute type. This enables the attribute type to be ref-
erenced across the Web, in particular from the ref XML attribute of an entry’s attr or a derived
directory attribute’s superior XML attribute.

superior (XML Attribute)

This is the URI reference of attribute type from which this one is derived.

obsolete (XML Attribute)

This is one of true or false. This defaults to false.

single-value (XML Attribute)

This is one of true or false. This defaults to false.

4134_c06_final.qxd 9/30/04 11:31 AM Page 196

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP 197

user-modification (XML Attribute)

This is one of true or false. This defaults to true.

name (Child Element)

This is the NAME of the attribute type.

description (Child Element)

This is the optional DESC of the attribute type.

object-identifier (Child Element)

This is the OID of the object class.

syntax (Child Element)

This is an OID indicating the allowed syntax of values of this attribute type.

bound (XML Attribute on Syntax)

This is the suggested minimum upper bound for the attribute type.

equality (Child Element)

This is an OID that indicates the equality matching rule.

ordering (Child Element)

This is an OID that indicates the equality matching rule.

substring (Child Element)

This is an OID that indicates the equality matching rule.
XML attributes were chosen in those cases where the information provides unique iden-

tification (using an ID attribute not only ensures uniqueness, but allows for ease of reference
via XPointer), is an enumeration (which, in a DTD, can only be contained in attributes), or is
a reference.

Conformance
DSML has important implications for security management, which application architects
should be aware of when deciding to support DSML. While LDAP requires a special port to be
opened up on firewalls, initial versions of DSML will use HTTP or HTTPS as a transport. Thus,
DSML documents will traverse firewalls on the HTTP port. Proponents of DSML tout this as
an advantage. Certainly, it simplifies firewall administration. On the other hand, some organi-
zations may not like the idea of a newly empowered HTTP that gives hackers an opportunity
to attack directories as well as Web sites. It’s too early to say how organizations and developers
will deal with this problem, but it’s one that will have to be addressed.

4134_c06_final.qxd 9/30/04 11:31 AM Page 197

CHAPTER 6 ■ SCRIPTING AND PROGRAMMING LDAP198

In defining conformance, it’s useful to divide DSML documents into the following four types:

1. Documents containing no directory schema or any references to an external schema

2. Documents containing no directory schema but containing at least one reference to
an external schema

3. Documents containing only a directory schema

4. Documents containing both a directory schema and entries

A producer of DSML must be able to produce documents of type 1. A producer of DSML
may, in addition, be able to produce documents of types 2 through 4. A producer that can pro-
duce documents of type 1 is a level 1 producer. A producer that can produce documents of all
four types is a level 2 producer. Future specifications will provide a mechanism for specifying
during a request to a level 2 producer which type of document is to be returned.

A consumer of DSML must be able to handle all four document types, but it doesn’t need to
be able to use the directory schema information (either local or externally referenced). A con-
sumer that can handle DSML documents of all four types is a level 1 consumer. A consumer that
can additionally use the directory schema information (either local or externally referenced) is
a level 2 consumer.

Summary
After reading this chapter, you should have a basic understanding of some of the interfaces
available to you for programming and scripting against your directory. You should also be
aware of some of the organizations and standards that are currently being developed to
extend the functionality of the directory into completely new areas of functionality.

4134_c06_final.qxd 9/30/04 11:31 AM Page 198

Integrating at the
System Level

You’ll see the power of LDAP while integrating with existing systems within your environ-
ment. Integration takes existing functional environments, such as a mail system or your Web
browsers, and leverages Lightweight Directory Access Protocol (LDAP) to make the application
utilize data stored within your directory. The integration of LDAP and existing applications
allows you to centralize common data that may be used by multiple systems into a single data
store. Leveraging LDAP in this way will allow you to reduce dependency on multiple data stores
and data formats in use by various applications.

I’ll use Linux as a baseline for many of the following configurations, and the examples are
simple and generic enough to demonstrate the capabilities of your OpenLDAP directory. When
applicable, I’ll also use Solaris. Realize that you can apply the integration examples in this chap-
ter, with often minimal to no modification, to other systems. This chapter should serve as a
baseline for integration and give you ideas on how LDAP may fit into the greater scheme of
your system.

Introducing Network Information Services
To understand how LDAP ties into network information services, you must understand RFC
2307, An Approach for Using LDAP As a Network Information Service. Network information
has traditionally been stored in local files on each host in your infrastructure. Data on network
topology, supported services, and even users falls into this category. As I discussed earlier, the
storage methods evolved over time to utilize services such as Network Information Services
(NIS) and Domain Name Service (DNS). While this works for many applications, technology
needs to evolve. The direction that was chosen for storing this information shifted from pro-
prietary protocols and file formats to LDAP. RFC 2307 describes mechanisms for mapping rel-
evant service information into LDAP Interchange Format (LDIF), which is then loaded into
your LDAP directory.

In an NIS environment, systems can have the following roles:

Master server: This is a system that stores the master copy of the NIS database files, or
maps, for the domain in the /var/yp/DOMAIN directory and propagates them at regular
intervals to the slave servers. Only the master maps can be modified. Each domain can
have only one master server.

199

C H A P T E R 7

■ ■ ■

4134_c07_final.qxd 9/30/04 11:33 AM Page 199

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL200

Slave server: This is a system that obtains and stores copies of the master server’s NIS
maps. These maps are updated periodically over the network. If the master server is
unavailable, the slave servers continue to make the NIS maps available to clients. Each
domain can have multiple slave servers distributed throughout the network.

Client: This is any system that queries NIS servers for NIS database information. Clients
don’t store and maintain copies of the NIS maps locally for their domains.

Introducing Standard NIS Configurations
NIS was originally created to bring efficiency to maintaining a large number of hosts and files.
The maintenance of /etc/hosts and /etc/passwd on a large system often becomes a burden.
Centralizing this information, accessing this information, and keeping this information in sync
are where NIS fits into the picture. NIS is an application layer service that’s used on a variety of
systems. It relies on Transmission Control Protocol (TCP) and Uniform Datagram Protocol
(UDP) for transport and Remote Procedure Call (RPC) for passing information. NIS is a client-
server model that relies on a client process requesting data from the server.

Network information was typically stored in flat text files, also known as source files, and
then loaded into a simple database back end. This is evident in the basic implementations of
NIS. The source files create a set of tables, or maps, that NIS will use to obtain required infor-
mation. The basic NIS environment consists of a master host, which contains the authorita-
tive information, and one or more slave servers. The process of keeping information in sync is
called propagation, and this utilizes the yppush process. This is similar to the method of repli-
cation used in an LDAP environment.

You can create NIS maps with tools that convert the source files (which are just text files)
into database format. Each NIS map has a name that programs use to access the required
information.

When planning an NIS configuration, you must gauge your network administration needs
with regard to the domain structure, the server disposition, your security concerns, and your
network’s physical structure. For each NIS domain you want to configure on your network, you’ll
need to follow a basic set of steps. First, decide which hosts on your network you want to include
in this domain. Second, choose a domain name for the domain, and make a note of it for use
later in the configuration process. Choose a host that has the characteristics described in master
servers. Decide which host, if any, will act as a slave server. Finally, decide which hosts will be
clients in this domain.

To fully demonstrate how to integrate LDAP and NIS, I’ll start with a basic setup of an
NIS master server, demonstrate synchronization services, and ultimately focus on a full LDAP
integration.

The examples in this chapter will be based on a domain name that I’ve set to be YourCompany,
on a master server named NISmaster, and on a slave server named NISslave. To follow along with
the examples, on NISmaster, create the /var/yp/ypdomain file and add the line YourCompany. When
you’ve done this, you can view the contents of this file.

$ cat /var/yp/ypdomain

YourCompany

4134_c07_final.qxd 9/30/04 11:33 AM Page 200

Set your domain to YourCompany with the domainname command. Verify that this has taken
effect by typing the command again without any options. YourCompany should be returned.

$ domainname YourCompany

$ domainname

YourCompany

NIS will be able to understand a large number of maps by default. I won’t explain the
specific maps and will use only a few as an example. The maps you’ll be concerned with are
passwd.byname, passwd.byuid, services, mail.aliases, and ypservers. These maps also have
nicknames that will make administration easier. Mail.aliases has the nickname of aliases,
and passwd.byname has the nickname of passwd. When viewing maps with the ypcat com-
mand, you can use these nicknames. For example, ypcat passwd is really the same as ypcat
passwd.byname.

Upon the initial configuration, you’re ready to set up your basic maps. You do this with
the ypinit command.

$ cd /var/yp

$./ypinit -m

We now need to construct a list of hosts that run NIS servers.

Enter the names or addresses of these hosts one at a time,

Excluding this host, then simply hit <Enter> to end the list.

Name (<Enter> to exit): NISslave

Name (<Enter> to exit):

Parsing configuration files into databases.

The -m flag specified on the command line denotes that this will be the master server. After
initializing your base set of information, you should be able to start your master server. The
default startup scripts in your rc.d directory start up NIS services upon basic system startup.
Or you can do this manually with the following command:

$ /usr/libexec/rpc.passwd /etc/passwd.nis -m passwd

You’ll want to make sure your NIS services are running and communicating with the appro-
priate host. Since the master also functions as a client to itself, you can run the ypwhich command
locally and make sure that the appropriate host is returned.

$ ypwhich

NISmaster

Once you’ve set up a basic NIS master server, you’ll want to have NIS slaves communicat-
ing with it to obtain their information. On the NIS slaves, use the ypset command to point
them to the appropriate NIS master.

NISslave$ ypset NISmaster

NISslave$ ypwhich

NISmaster

The ypinit command with the -s flag will initialize hosts as NIS slaves.

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 201

4134_c07_final.qxd 9/30/04 11:33 AM Page 201

$ cd /var/yp

$./ypinit -s NISmaster

Transferring map passwd.byname from server NISmaster

Transferring map mail.aliases from server NISmaster

Transferring map group.byname from server NISmaster

...

Performing Synchronization with LDAP
The overall goal of setting up NIS services is to be able to obtain certain types of information
from remote hosts instead of just local files. In the beginning, your hosts would read data from
/etc/passwd, /etc/hosts, and other local sources. These files had no mechanism in place to
keep them in sync. A user existing on HOST1 wouldn’t necessarily have an account on HOST2
unless the system administrator manually provisioned it. With NIS, you have the capability of
having the same account on both hosts.

Unfortunately, one drawback of NIS is that NIS uses only the maps. If other types of appli-
cations within your environment require the user of passwd and hosts files that only exist in
NIS, they’d either have to use NIS to query the information or rely on something outside of
NIS to generate them. This is where LDAP comes in.

The first method that was used to integrate LDAP and NIS was based on a synchroniza-
tion model (see Figure 7-1).

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL202

Figure 7-1. Synchronization model

NIS clients still use the same sets of protocols to read information from the same sets of
maps. These maps contain the same information. The difference, in a synchronization model,
is that the maps are generated based on queries from an LDAP system. The queries are per-
formed, and the same maps are generated as before. Nothing changes on the NIS side of the
equation except the methods used to generate data. The authoritative source now becomes
LDAP, but the information is still retrieved in the same legacy methods. Some initial imple-
mentations of the NIS/LDAP synchronization model relied on specific daemons to generate
the particular maps. Tools are provided for converting the existing data into tables that would
be stored in LDAP. Netscape and Sun Microsystems came up with a basic synchronization
model against the Netscape Directory Server and the Solaris operating environment that
expanded this basic model and replaced the NIS services with actual daemons that func-
tioned like NIS clients and servers but retrieved information directly from LDAP.

Taking the example of the aliases file (the mail.aliases map), you can see the progres-
sion. In the beginning, the aliases file may look like this:

mailer-daemon: postmaster

postmaster: root

testuser: tom@sun4c.net

4134_c07_final.qxd 9/30/04 11:33 AM Page 202

mailto:tom@sun4c.net

Through conversion, the resulting entry within LDAP may be the following:

dn: cn=mailer-daemon,ou=Aliases,dc=Your,dc=Company

cn: mailer-daemon

objectClass: nisMailAlias

objectClass: top

rfc822MailMember: postmaster

dn: cn=postmaster,ou=Aliases,dc=Your,dc=Company

cn: postmaster

objectClass: nisMailAlias

objectClass: top

rfc822MailMember: root

dn: cn=testuser,ou=Aliases,dc=Your,dc=Company

cn: testuser

objectClass: nisMailAlias

objectClass: top

rfc822MailMember: tom@sun4c.net

The idea with this aliases example shows that while the data may end up being stored as
the original format, the authoritative source would be stored in LDAP. You’d use script to gen-
erate search filters against the LDAP system in order to generate the resulting /etc/aliases
file. That is, a script can search LDAP as follows:

$ ldapsearch -h ldaphost -b ou=Aliases,dc=Your,dc=Company \

rfc822MailMember=* cn rfc822MailMember

The output of this command can be script that obtains the left side of the aliases file (cn)
and the right side of the aliases file (rfc822MailMember). By creating data in your LDAP system
but still relying on the old data formats and mechanisms, you’ve taken the first step in having
some level of integration with LDAP.

Performing Direct Integration
The next step is to utilize a new set of standards and tools that forego traditional access mech-
anisms and read information directly through LDAP. The most common of these mechanisms
is available via Pluggable Authentication Modules (PAMs). When used correctly, PAM provides
many advantages for a system administrator, such as the following:

• You can use a common authentication scheme with a wide variety of applications.

• You can implement PAM with various applications without having to recompile the
applications to specifically support PAM.

• The administrator and application developer get great flexibility and control over
authentication.

• Application developers don’t need to develop their program to use a particular authen-
tication scheme. Instead, they can focus purely on the details of their program.

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 203

4134_c07_final.qxd 9/30/04 11:33 AM Page 203

mailto:tom@sun4c.net

PADL software (http://www.padl.com) has made significant progress in integrating network
services and LDAP. A set of migration tools is available from PADL that allows you to more easily
migrate your existing system infrastructure to LDAP. If you want to forego some of the manual
configurations required for many Linux or Solaris systems, you can use these migration tools.
Some Linux distributions provide their own specific versions of these migration tools.

Check with your specific version of Linux to determine whether LDAP integration has any
prerequisites. Older Linux systems, which are always evolving, require the installation of the
nss_ldap and pam_ldap modules. The big process you’ll need to deal with is the migration of infor-
mation from existing files to LDAP information. You can use the MigrationTools package (which
is PADL-specific; other distributions of Linux rely on a package called openldap-migration) for
Linux to make this task easier. This package contains a set of scripts that can be used (as well as
viewed for reference) that will make the manual tasks associated with LDAP integration a more
automated process.

The core of the migration scripts relies on the migration_common.ph file. This is the com-
mon configuration file used by the scripts to define your system parameters. You’ll need to
edit this file to include the parameters valid for your system. Some parameters won’t be used
or are there with the assumption that certain services (outside of standard identity components)
are being migrated. Examples of this include DEFAULT_MAIL_DOMAIN and DEFAULT_MAIL_HOST.

$DEFAULT_MAIL_DOMAIN = "yourcompany.com";

$DEFAULT_BASE = "dc=Your,dc=Company";

$DEFAULT_MAIL_HOST = "mailhost.yourcompany.com";

$EXTENDED_SCHEMA = 1;

This file controls the default settings for data that’s to be migrated. DEFAULT_MAIL_DOMAIN is
responsible for setting the default e-mail address of users within your domain. The DEFAULT_BASE
parameter is just another reference to the base distinguished name (DN) of your system. These
should always be consistent. Some systems attempt to grab this information based on the fully
qualified domain name of your host or other identity parameters. Avoid these attempts at plug-
and-play migration and manually configure this setting. The DEFAULT_MAIL_HOST parameter is
the base host that’s used to accept mail. I’ll explain DEFAULT_MAIL_HOST and DEFAULT_MAIL_DOMAIN
(and other similar parameters you will run across) in the “Using Sendmail” section later in this
chapter. You can use the EXTENDED_SCHEMA setting to support object classes beyond the base con-
figuration of your system.

You have the ability to migrate all your data into LDAP. Some of this information may be
useful to have in LDAP, but other sets of data are more static and could just as easily be stored
in the original flat text configuration files. However, it’s a good idea to have a general level of
consistency in your information, so storing bits and pieces of the same system components
in multiple authoritative sources isn’t the best idea.

The migrate_all_online.sh script migrates all your system data (primarily in the /etc
directory) into LDAP.

$./migrate_all_online.sh

Enter the X.500 naming context you wish to import into: [dc=Your,dc=Company]

Enter the name of your LDAP server [ldapmaster]: localhost

Enter the manager DN: [cn=Directory manager]: cn=Directory manager

Enter the credentials to bind with: password

Do you wish to generate a DUAConfigProfile [yes|no]? no

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL204

4134_c07_final.qxd 9/30/04 11:33 AM Page 204

http://www.padl.com

The migration script should be run locally on the host storing the localized master set of
information that will be used to store the resulting LDAP data. The manager DN being asked
for should be consistent with the rootdn directive in your slapd.conf server configuration
file. The password should be the same as the password specified in the rootpw directive. The
DUAConfigProfile should be set to no, as this imports all new configuration data into your
LDAP system. The full migration of all data by the scripts themselves is always a bit danger-
ous, because many available scripts and migration tools aren’t created against your specific
environment and may cause conflicts. Trusting scripts to blindly add data to your system is
asking for trouble. Having data exported into LDIF files for viewing before a forced import
is the best method of migrating any information.

Manually running each migration script can export LDIF files that can be examined,
modified, and then added using the standard set of LDAP tools. Similar packages and tools
exist for Debian and other Linux distributions. I’ll use the Mandrake package as a baseline
in these examples.

You can search the text of the migration_common.ph file using the grep command to see
what variables can be modified and to get a good idea of where you’re starting.

[root@ldaphost MigrationTools-45]# grep ^\\$ migration_common.ph \

| grep -v classmap

$NETINFOBRIDGE = (-x "/usr/sbin/mkslapdconf");

$DEFAULT_MAIL_DOMAIN = "padl.com";

$DEFAULT_BASE = "dc=padl,dc=com";

$DEFAULT_MAIL_HOST = "mail.padl.com";

$EXTENDED_SCHEMA = 0;

Upon modification of this common file, your results will change.

[root@ldaphost MigrationTools-45]# grep ^\\$ migration_common.ph \

| grep -v classmap

$NETINFOBRIDGE = (-x "/usr/sbin/mkslapdconf");

$DEFAULT_MAIL_DOMAIN = "yourcompany.com";

$DEFAULT_BASE = "dc=Your,dc=Company";

$DEFAULT_MAIL_HOST = "mail.yourcompany.com";

$EXTENDED_SCHEMA = 1;

Once you’ve made your modifications, you’re able to run the various migration tools that
have been provided for your convenience. The migrate_base.pl script creates the base contain-
ers (organizational units) within LDAP for storing your newly migrated system information.

Listing 7-1 shows the contents of the migrate_base.pl script.

Listing 7-1. migrate_base.pl

#!/usr/bin/perl

#

$Id: migrate_base.pl,v 1.4 1998/10/20 14:38:52 lukeh Exp $

#

Copyright (c) 1997 Luke Howard.

All rights reserved.

#

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 205

4134_c07_final.qxd 9/30/04 11:33 AM Page 205

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software

must display the following acknowledgment:

This product includes software developed by Luke Howard.

4. The name of the other may not be used to endorse or promote products

derived from this software without specific prior written permission.

#

THIS SOFTWARE IS PROVIDED BY THE LUKE HOWARD "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL LUKE HOWARD BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

#

#

LDIF entries for base DN

#

#

require 'migrate_common.ph';

$PROGRAM = "migrate_base.pl";

$NAMINGCONTEXT = &getsuffix($PROGRAM);

$classmap{'o'} = 'organization';

$classmap{'dc'} = 'domain';

$classmap{'l'} = 'locality';

$classmap{'ou'} = 'organizationalUnit';

$classmap{'c'} = 'country';

$classmap{'nismapname'} = 'nisMap';

$classmap{'cn'} = 'container';

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL206

4134_c07_final.qxd 9/30/04 11:33 AM Page 206

sub gen_suffix

{

@dn_components = split(/,/, $DEFAULT_BASE);

for ($dnloc = $#dn_components; $dnloc >= 0; $dnloc--)

{

&base_ldif;

}

}

sub base_ldif

{

we don't handle multivalued RDNs here; they're unlikely

in a base DN.

Don't escape commas either XXX

local ($rdn) = $dn_components[$dnloc];

local ($remaining_dn) = join(',', @dn_components[($dnloc + 1)..$#dn_components]);

ldif_entry($rdn, $remaining_dn);

}

sub ldif_entry

{

remove leading, trailing whitespace

local ($lhs, $rhs) = @_;

local ($type, $val) = split(/\=/, $lhs);

local ($dn);

if ($rhs ne "") {

$dn = $lhs . ',' . $rhs;

} else {

$dn = $lhs;

}

$type =~ s/$\s*//;

$type =~ s/^\s*//;

$type =~ tr/A-Z/a-z/;

$val =~ s/$\s*//;

$val =~ s/^\s*//;

print "dn: $dn\n";

print "$type: $val\n";

print "objectClass: top\n";

print "objectClass: $classmap{$type}\n";

if ($EXTENDED_SCHEMA) {

if ($DEFAULT_MAIL_DOMAIN) {

print "objectClass: domainRelatedObject\n";

print "associatedDomain: $DEFAULT_MAIL_DOMAIN\n";

}

}

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 207

4134_c07_final.qxd 9/30/04 11:33 AM Page 207

print "\n";

}

sub gen_namingcontexts

{

uniq naming contexts

local (@ncs, $map, $nc);

foreach $map (keys %NAMINGCONTEXT) {

$nc = $NAMINGCONTEXT{$map};

if (!grep(/^nc/, @ncs)) {

push(@ncs, $nc);

&ldif_entry($nc, $DEFAULT_BASE);

}

}

}

sub main

{

if ($ARGV[0] ne "-n") {

&gen_suffix();

}

&gen_namingcontexts();

}

&main;

The resulting output is as follows:

[root@ldaphost MigrationTools-45]# ./migrate_base.pl

dn: dc=Your,dc=Company

dc: Your

objectClass: top

objectClass: domain

objectClass: domainRelatedObject

associatedDomain: yourcompany.com

dn: ou=Hosts,dc=Your,dc=Company

ou: Hosts

objectClass: top

objectClass: organizationalUnit

objectClass: domainRelatedObject

associatedDomain: yourcompany.com

dn: ou=Rpc,dc=Your,dc=Company

ou: Rpc

objectClass: top

objectClass: organizationalUnit

objectClass: domainRelatedObject

associatedDomain: yourcompany.com

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL208

4134_c07_final.qxd 9/30/04 11:33 AM Page 208

dn: ou=Services,dc=Your,dc=Company

ou: Services

objectClass: top

objectClass: organizationalUnit

objectClass: domainRelatedObject

associatedDomain: yourcompany.com

dn: nisMapName=netgroup.byuser,dc=Your,dc=Company

nismapname: netgroup.byuser

objectClass: top

objectClass: nisMap

objectClass: domainRelatedObject

associatedDomain: yourcompany.com

dn: ou=Mounts,dc=Your,dc=Company

ou: Mounts

objectClass: top

objectClass: organizationalUnit

objectClass: domainRelatedObject

associatedDomain: yourcompany.com

dn: ou=Networks,dc=Your,dc=Company

ou: Networks

objectClass: top

objectClass: organizationalUnit

objectClass: domainRelatedObject

associatedDomain: yourcompany.com

dn: ou=People,dc=Your,dc=Company

ou: People

objectClass: top

objectClass: organizationalUnit

objectClass: domainRelatedObject

associatedDomain: yourcompany.com

dn: ou=Group,dc=Your,dc=Company

ou: Group

objectClass: top

objectClass: organizationalUnit

objectClass: domainRelatedObject

associatedDomain: yourcompany.com

dn: ou=Netgroup,dc=Your,dc=Company

ou: Netgroup

objectClass: top

objectClass: organizationalUnit

objectClass: domainRelatedObject

associatedDomain: yourcompany.com

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 209

4134_c07_final.qxd 9/30/04 11:33 AM Page 209

dn: ou=Protocols,dc=Your,dc=Company

ou: Protocols

objectClass: top

objectClass: organizationalUnit

objectClass: domainRelatedObject

associatedDomain: yourcompany.com

dn: ou=Aliases,dc=Your,dc=Company

ou: Aliases

objectClass: top

objectClass: organizationalUnit

objectClass: domainRelatedObject

associatedDomain: yourcompany.com

dn: nisMapName=netgroup.byhost,dc=Your,dc=Company

nismapname: netgroup.byhost

objectClass: top

objectClass: nisMap

objectClass: domainRelatedObject

associatedDomain: yourcompany.com

Whether you use all the integration tools to directly access LDAP or use them as a set of
suggestions to implement a synchronization strategy, it’s good to understand and implement
the ideas and schema to have a good level of RFC 2307 standardization. As shown in Listing 7-1,
each of the specific containers is reserved for a specific purpose. This gives you the ability to
restrict your queries (by specifying the appropriate base DN) to a specific set of data. Thus, if
you want to write a script that queries only the hosts within your infrastructure, you can set the
base DN to ou=Hosts,dc=Your,dc=Company and search for objectclass=* instead of having to
parse all the data if it was stored in a single organizational unit.

Most of the tools you’ll be using require command-line inputs. You use the command-line
inputs to provide the input that’s being translated from its original data format into LDIF. To
convert the /etc/aliases file (used by e-mail systems), you’ll use the migrate_aliases.pl script
shown in Listing 7-2.

The original /etc/aliases file you’ll be using as an example may look like this:

mailer-daemon: postmaster

postmaster: root

testuser: tom@sun4c.net

Listing 7-2 shows the contents of the migrate_aliases.pl script.

Listing 7-2. migrate_aliases.pl

#!/usr/bin/perl

#

$Id: migrate_aliases.pl,v 1.5 1999/07/24 06:29:19 lukeh Exp $

#

Copyright (c) 1997 Luke Howard.

All rights reserved.

#

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL210

4134_c07_final.qxd 9/30/04 11:33 AM Page 210

mailto:tom@sun4c.net

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software

must display the following acknowledgment:

This product includes software developed by Luke Howard.

4. The name of the other may not be used to endorse or promote products

derived from this software without specific prior written permission.

#

THIS SOFTWARE IS PROVIDED BY THE LUKE HOWARD "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL LUKE HOWARD BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

#

#

alias migration tool

thanks to Dave McPike

#

require 'migrate_common.ph';

$PROGRAM = "migrate_aliases.pl";

$NAMINGCONTEXT = &getsuffix($PROGRAM);

&parse_args();

&open_files();

while(<INFILE>)

{

chop;

next unless ($_);

next if /^#/;

s/#(.*)$//;

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 211

4134_c07_final.qxd 9/30/04 11:33 AM Page 211

local($name, $memberstr) = split(/:/,$_,2);

if ($use_stdout) {

&dump_alias(STDOUT, $name, $memberstr);

} else {

&dump_alias(OUTFILE, $name, $memberstr);

}

}

sub dump_alias

{

local($HANDLE, $name, $memberstr) = @_;

local(@aliases) = split(/,/, $memberstr);

print $HANDLE "dn: cn=$name,$NAMINGCONTEXT\n";

print $HANDLE "cn: $name\n";

print $HANDLE "objectClass: nisMailAlias\n";

print $HANDLE "objectClass: top\n";

foreach $_ (@aliases) {

s/^\s+//g;

print $HANDLE "rfc822MailMember: $_\n";

}

print $HANDLE "\n";

}

close(INFILE);

if (OUTFILE != STDOUT) { close(OUTFILE); }

The execution of the script and resulting data are as follows:

[root@ldaphost MigrationTools-45]# ./migrate_aliases.pl /etc/aliases

dn: cn=mailer-daemon,ou=Aliases,dc=Your,dc=Company

cn: mailer-daemon

objectClass: nisMailAlias

objectClass: top

rfc822MailMember: postmaster

dn: cn=postmaster,ou=Aliases,dc=Your,dc=Company

cn: postmaster

objectClass: nisMailAlias

objectClass: top

rfc822MailMember: root

dn: cn=testuser,ou=Aliases,dc=Your,dc=Company

cn: testuser

objectClass: nisMailAlias

objectClass: top

rfc822MailMember: tom@sun4c.net

The migration of user information works in a similar way. The original /etc/passwd on
your system may look like the following:

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL212

4134_c07_final.qxd 9/30/04 11:33 AM Page 212

mailto:tom@sun4c.net

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:/sbin/nologin

daemon:x:2:2:daemon:/sbin:/sbin/nologin

adm:x:3:4:adm:/var/adm:/sbin/nologin

tom:x:90:0::/home/tom:/bin/sh

The complementary /etc/shadow file would be as follows:

root:1S_òwtköb$tzeauc.vfXDFno7gVnDkO.:12156:0:99999:7:::

bin:*:12156:0:99999:7:::

daemon:*:12156:0:99999:7:::

adm:*:12156:0:99999:7:::

tom:1FG0K1GLf$9ORWJILp/a49mdFKygx8k/:12156:0:99999:7:::

Upon running this script, you’ll have LDIF profiles of the information that can be used as
a baseline for any other user information you may want to add.

Listing 7-3 shows the contents of the migrate_passwd.pl script.

Listing 7-3. migrate_passwd.pl

#!/usr/bin/perl

#

$Id: migrate_passwd.pl,v 1.7 1999/06/22 01:10:05 lukeh Exp $

#

Copyright (c) 1997 Luke Howard.

All rights reserved.

#

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software

must display the following acknowledgment:

This product includes software developed by Luke Howard.

4. The name of the other may not be used to endorse or promote products

derived from this software without specific prior written permission.

#

THIS SOFTWARE IS PROVIDED BY THE LUKE HOWARD "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL LUKE HOWARD BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 213

4134_c07_final.qxd 9/30/04 11:33 AM Page 213

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

#

#

Password migration tool. Migrates /etc/shadow as well, if it exists.

#

Thanks to Peter Jacob Slot <peter@vision.auk.dk>.

#

require 'migrate_common.ph';

$PROGRAM = "migrate_passwd.pl";

$NAMINGCONTEXT = &getsuffix($PROGRAM);

&parse_args();

&read_shadow_file();

&open_files();

while(<INFILE>)

{

chop;

next if /^#/;

next if /^\+/;

local($user, $pwd, $uid, $gid, $gecos, $homedir, $shell) = split(/:/);

if ($use_stdout) {

&dump_user(STDOUT, $user, $pwd, $uid, $gid, $gecos, $homedir, $shell);

} else {

&dump_user(OUTFILE, $user, $pwd, $uid, $gid, $gecos, $homedir, $shell);

}

}

sub dump_user

{

local($HANDLE, $user, $pwd, $uid, $gid, $gecos, $homedir, $shell) = @_;

local($name,$office,$wphone,$hphone)=split(/,/,$gecos);

local($sn);

local($givenname);

local($cn);

local(@tmp);

if ($name) { $cn = $name; } else { $cn = $user; }

$_ = $cn;

@tmp = split(/\s+/);

$sn = $tmp[$#tmp];

pop(@tmp);

$givenname=join(' ',@tmp);

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL214

4134_c07_final.qxd 9/30/04 11:33 AM Page 214

mailto:peter@vision.auk.dk

print $HANDLE "dn: uid=$user,$NAMINGCONTEXT\n";

print $HANDLE "uid: $user\n";

print $HANDLE "cn: $cn\n";

if ($EXTENDED_SCHEMA) {

if ($wphone) {

print $HANDLE "telephonenumber: $wphone\n";

}

if ($office) {

print $HANDLE "roomnumber: $office\n";

}

if ($hphone) {

print $HANDLE "homephone: $hphone\n";

}

if ($givenname) {

print $HANDLE "givenname: $givenname\n";

}

print $HANDLE "sn: $sn\n";

if ($DEFAULT_MAIL_DOMAIN) {

print $HANDLE "mail: $user@","$DEFAULT_MAIL_DOMAIN\n";

}

print $HANDLE "objectClass: person\n";

print $HANDLE "objectClass: organizationalPerson\n";

print $HANDLE "objectClass: inetOrgPerson\n";

}

print $HANDLE "objectClass: account\n";

print $HANDLE "objectClass: posixAccount\n";

print $HANDLE "objectClass: top\n";

if ($DEFAULT_REALM) {

print $HANDLE "objectClass: kerberosSecurityObject\n";

print $HANDLE "krbname: $user\@$DEFAULT_REALM\n";

}

if ($shadowUsers{$user} ne "") {

&dump_shadow_attributes($HANDLE, split(/:/, $shadowUsers{$user}));

} else {

print $HANDLE "userPassword: {crypt}$pwd\n";

}

if ($shell) {

print $HANDLE "loginShell: $shell\n";

}

if ($uid ne "") {

print $HANDLE "uidNumber: $uid\n";

} else {

print $HANDLE "uidNumber:\n";

}

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 215

4134_c07_final.qxd 9/30/04 11:33 AM Page 215

if ($gid ne "") {

print $HANDLE "gidNumber: $gid\n";

} else {

print $HANDLE "gidNumber:\n";

}

if ($homedir) {

print $HANDLE "homeDirectory: $homedir\n";

} else {

print $HANDLE "homeDirectory:\n";

}

if ($gecos) {

print $HANDLE "gecos: $gecos\n";

}

print $HANDLE "\n";

}

close(INFILE);

if (OUTFILE != STDOUT) { close(OUTFILE); }

sub read_shadow_file

{

open(SHADOW, "/etc/shadow") || return;

while(<SHADOW>) {

chop;

($shadowUser) = split(/:/, $_);

$shadowUsers{$shadowUser} = $_;

}

close(SHADOW);

}

sub dump_shadow_attributes

{

local($HANDLE, $user, $pwd, $lastchg, $min, $max,

$warn, $inactive, $expire, $flag) = @_;

print $HANDLE "objectClass: shadowAccount\n";

if ($pwd) {

print $HANDLE "userPassword: {crypt}$pwd\n";

}

if ($lastchg) {

print $HANDLE "shadowLastChange: $lastchg\n";

}

if ($min) {

print $HANDLE "shadowMin: $min\n";

}

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL216

4134_c07_final.qxd 9/30/04 11:33 AM Page 216

if ($max) {

print $HANDLE "shadowMax: $max\n";

}

if ($warn) {

print $HANDLE "shadowWarning: $warn\n";

}

if ($inactive) {

print $HANDLE "shadowInactive: $inactive\n";

}

if ($expire) {

print $HANDLE "shadowExpire: $expire\n";

}

if ($flag) {

print $HANDLE "shadowFlag: $flag\n";

}

}

The result of running this script is as follows:

[root@ldaphost MigrationTools-45]# ./migrate_passwd.pl /etc/passwd

dn: uid=root,ou=People,dc=Your,dc=Company

uid: root

cn: root

sn: root

mail: root@yourcompany.com

mailRoutingAddress: root@mail.yourcompany.com

mailHost: mail.yourcompany.com

objectClass: mailRecipient

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

objectClass: account

objectClass: posixAccount

objectClass: top

objectClass: kerberosSecurityObject

objectClass: shadowAccount

userPassword: {crypt}1S_òwtköb$tzeauc.vfXDFno7gVnDkO.

shadowLastChange: 12156

shadowMax: 99999

shadowWarning: 7

krbName: root@YOURCOMPANY.COM

loginShell: /bin/bash

uidNumber: 0

gidNumber: 0

homeDirectory: /root

gecos: root

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 217

4134_c07_final.qxd 9/30/04 11:33 AM Page 217

mailto:root@yourcompany.com
mailto:root@mail.yourcompany.com
mailto:root@YOURCOMPANY.COM

dn: uid=bin,ou=People,dc=Your,dc=Company

uid: bin

cn: bin

sn: bin

mail: bin@yourcompany.com

mailRoutingAddress: bin@mail.yourcompany.com

mailHost: mail.yourcompany.com

objectClass: mailRecipient

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

objectClass: account

objectClass: posixAccount

objectClass: top

objectClass: kerberosSecurityObject

objectClass: shadowAccount

userPassword: {crypt}*

shadowLastChange: 12156

shadowMax: 99999

shadowWarning: 7

krbName: bin@YOURCOMPANY.COM

loginShell: /sbin/nologin

uidNumber: 1

gidNumber: 1

homeDirectory: /bin

gecos: bin

dn: uid=daemon,ou=People,dc=Your,dc=Company

uid: daemon

cn: daemon

sn: daemon

mail: daemon@yourcompany.com

mailRoutingAddress: daemon@mail.yourcompany.com

mailHost: mail.yourcompany.com

objectClass: mailRecipient

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

objectClass: account

objectClass: posixAccount

objectClass: top

objectClass: kerberosSecurityObject

objectClass: shadowAccount

userPassword: {crypt}*

shadowLastChange: 12156

shadowMax: 99999

shadowWarning: 7

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL218

4134_c07_final.qxd 9/30/04 11:33 AM Page 218

mailto:bin@yourcompany.com
mailto:bin@mail.yourcompany.com
mailto:bin@YOURCOMPANY.COM
mailto:daemon@yourcompany.com
mailto:daemon@mail.yourcompany.com

krbName: daemon@YOURCOMPANY.COM

loginShell: /sbin/nologin

uidNumber: 2

gidNumber: 2

homeDirectory: /sbin

gecos: daemon

dn: uid=adm,ou=People,dc=Your,dc=Company

uid: adm

cn: adm

sn: adm

mail: adm@yourcompany.com

mailRoutingAddress: adm@mail.yourcompany.com

mailHost: mail.yourcompany.com

objectClass: mailRecipient

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

objectClass: account

objectClass: posixAccount

objectClass: top

objectClass: kerberosSecurityObject

objectClass: shadowAccount

userPassword: {crypt}*

shadowLastChange: 12156

shadowMax: 99999

shadowWarning: 7

krbName: adm@YOURCOMPANY.COM

loginShell: /sbin/nologin

uidNumber: 3

gidNumber: 4

homeDirectory: /var/adm

gecos: adm

dn: uid=tom,ou=People,dc=Your,dc=Company

uid: tom

cn: tom

sn: tom

mail: tom@yourcompany.com

mailRoutingAddress: tom@mail.yourcompany.com

mailHost: mail.yourcompany.com

objectClass: mailRecipient

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

objectClass: account

objectClass: posixAccount

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 219

4134_c07_final.qxd 9/30/04 11:33 AM Page 219

mailto:daemon@YOURCOMPANY.COM
mailto:adm@yourcompany.com
mailto:adm@mail.yourcompany.com
mailto:adm@YOURCOMPANY.COM
mailto:tom@yourcompany.com
mailto:tom@mail.yourcompany.com

objectClass: top

objectClass: kerberosSecurityObject

objectClass: shadowAccount

userPassword: {crypt}1FG0K1GLf$9ORWJILp/a49mdFKygx8k/

shadowLastChange: 12156

shadowMax: 99999

shadowWarning: 7

krbName: tom@YOURCOMPANY.COM

loginShell: /bin/sh

uidNumber: 90

gidNumber: 0

homeDirectory: /home/tom

Realize that the migration tools that are provided should serve only as guidelines for you.
In other words, the object classes, schema, and general information that are outputted should
be used as an example and not necessarily imported directly into your LDAP system. The user
records that you’ve just generated, for example, may not comply with your existing directory
information tree (DIT), customized schema, or naming convention. You may already have users
in your directory, and you wouldn’t want to have any sort of conflicting namespace. However,
if you have a common identifier between your existing user records and the information gen-
erated by these scripts, you can modify the output (or create an additional script) to match the
independent records and add new information to an existing user base. For example, take the
Linux account tom shown previously. The generated DN is as follows:

dn: uid=tom,ou=People,dc=Your,dc=Company

Within the record, you see uidnumber: 90. Your existing user profile for this user may
already be uid=tom_jackiewicz,ou=People,ou=California,dc=Your,dc=Company. Maybe this
record already had the uidnumber stored within it. You can use this to match data, thus giving
you the ability to take the information generated for uid=tom,ou=People,dcYour,dc=Company
and append it to the uid=tom_jackiewicz,ou=People,ou=California,dc=Your,dc=Company
record that already exists.

You can also store group information in LDAP. The migrate_group.pl script is provided for
you to create the appropriate LDIF file.

Listing 7-4 shows the contents of the migrate_group.pl script.

Listing 7-4. migrate_group.pl

#!/usr/bin/perl

#

$Id: migrate_group.pl,v 1.6 1998/10/01 13:14:27 lukeh Exp $

#

Copyright (c) 1997 Luke Howard.

All rights reserved.

#

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL220

4134_c07_final.qxd 9/30/04 11:33 AM Page 220

mailto:tom@YOURCOMPANY.COM

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software

must display the following acknowledgment:

This product includes software developed by Luke Howard.

4. The name of the other may not be used to endorse or promote products

derived from this software without specific prior written permission.

#

THIS SOFTWARE IS PROVIDED BY THE LUKE HOWARD "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL LUKE HOWARD BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

#

#

Group migration tool

#

#

require 'migrate_common.ph';

$PROGRAM = "migrate_group.pl";

$NAMINGCONTEXT = &getsuffix($PROGRAM);

&parse_args();

&open_files();

while(<INFILE>)

{

chop;

next if /^#/;

next if /^\+/;

local($group, $pwd, $gid, $users) = split(/:/);

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 221

4134_c07_final.qxd 9/30/04 11:33 AM Page 221

if ($use_stdout) {

&dump_group(STDOUT, $group, $pwd, $gid, $users);

} else {

&dump_group(OUTFILE, $group, $pwd, $gid, $users);

}

}

sub dump_group

{

local($HANDLE, $group, $pwd, $gid, $users) = @_;

local(@members) = split(/,/, $users);

print $HANDLE "dn: cn=$group,$NAMINGCONTEXT\n";

print $HANDLE "objectClass: posixGroup\n";

print $HANDLE "objectClass: top\n";

print $HANDLE "cn: $group\n";

if ($pwd) {

print $HANDLE "userPassword: {crypt}$pwd\n";

}

print $HANDLE "gidNumber: $gid\n";

@members = uniq($group, @members);

foreach $_ (@members) {

print $HANDLE "memberUid: $_\n";

}

print $HANDLE "\n";

}

close(INFILE);

if (OUTFILE != STDOUT) { close(OUTFILE); }

Your original /etc/group file may look like this:

root:x:0:root

bin:x:1:root,bin,daemon

daemon:x:2:root,bin,daemon

sys:x:3:root,bin,adm

adm:x:4:root,adm,daemon

After migration, the LDIF would look like Listing 7-5.

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL222

4134_c07_final.qxd 9/30/04 11:33 AM Page 222

Listing 7-5. The Group LDIF

[root@ldaphost MigrationTools-45]# ./migrate_group.pl /etc/group

dn: cn=root,ou=Group,dc=Your,dc=Company

objectClass: posixGroup

objectClass: top

cn: root

userPassword: {crypt}x

gidNumber: 0

dn: cn=bin,ou=Group,dc=Your,dc=Company

objectClass: posixGroup

objectClass: top

cn: bin

userPassword: {crypt}x

gidNumber: 1

memberUid: daemon

memberUid: root

dn: cn=daemon,ou=Group,dc=Your,dc=Company

objectClass: posixGroup

objectClass: top

cn: daemon

userPassword: {crypt}x

gidNumber: 2

memberUid: bin

memberUid: root

dn: cn=sys,ou=Group,dc=Your,dc=Company

objectClass: posixGroup

objectClass: top

cn: sys

userPassword: {crypt}x

gidNumber: 3

memberUid: adm

memberUid: bin

memberUid: root

dn: cn=adm,ou=Group,dc=Your,dc=Company

objectClass: posixGroup

objectClass: top

cn: adm

userPassword: {crypt}x

gidNumber: 4

memberUid: daemon

memberUid: root

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 223

4134_c07_final.qxd 9/30/04 11:33 AM Page 223

Groups are often problematic within LDAP (especially when integrating with multiple
systems and different group hierarchies) because not all applications use the same type of
group. The search string required for retrieving the previous group information would be
(objectclass=posixGroup); however, many applications are, by default, configured to retrieve
information via the query (objectclass=groupofuniquenames). Think about the applications
using groups, the filters being used, and how groups will be used before storing a large mess
of information in your system. The overall structure within your company, the individual
process groups within Unix and Windows systems, and the grouping of information within
certain applications all fall into the generic scope of a group. However, your organization may
find it useful to combine all this data or keep information completely separate. For example,
if someone wants to search your LDAP system for the adm group defined previously, they may
not want to retrieve your entire corporate taxonomy.

Additional problems can occur if you’re migrating generic groups used across certain sys-
tems into your LDAP directory. If the group administrators is a generic definition used across
multiple applications with different members, it’s not in your best interest to have a generic
definition that could conflict. Storing only groups that are necessary and setting a naming
standard for the groups best serves your user community.

Although it may seem logical and familiar to create profiles for information that’s com-
monly stored in LDAP, such as users, group, and aliases, storing additional information out-
side this basic scope requires additional guidance. The problem of storing application (or in
this case, service) data within LDAP is that there has rarely been guidance or schema prede-
fined for your use. As a result, information had been inconsistent depending on the imple-
menters. For these purposes, you benefit from the definitions of certain resource data and
RFC 2307. For information outside this scope, it may benefit from the recent standardiza-
tion of data.

Take, for example, the /etc/fstab file, which defines your disk layout. While not normally
a candidate for being stored in LDAP, migration tools now give you this ability. The benefit may
be the ability to audit system disk configurations via LDAP instead of requiring administrators
to log into each host and read localized data. If you wanted to store this information in LDAP,
the definition of the information in the schema requires a bit of excess planning. With the attrib-
utes already defined for you, it gives you a starting point. The original file in /etc may look
like this:

LABEL=/ / ext3 defaults 1 1

LABEL=/boot /boot ext3 defaults 1 2

none /dev/pts devpts gid=5,mode=620 0 0

LABEL=/home /home ext3 defaults 1 2

none /proc proc defaults 0 0

none /dev/shm tmpfs defaults 0 0

LABEL=/usr /usr ext3 defaults 1 2

LABEL=/var /var ext3 defaults 1 2

/dev/hda7 swap swap defaults 0 0

/dev/cdrom /mnt/cdrom iso9660 noauto,owner,kudzu,ro 0 0

You can run the provided migration script, migrate_fstab.pl, to convert this information to
LDIF, which can then be stored in LDAP. Listing 7-6 shows the contents of the migrate_fstab.pl
script.

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL224

4134_c07_final.qxd 9/30/04 11:33 AM Page 224

Listing 7-6. migrate_fstab.pl

#!/usr/bin/perl

#

$Id: migrate_fstab.pl,v 1.3 1998/10/01 13:14:26 lukeh Exp $

#

Copyright (c) 1997 Luke Howard.

All rights reserved.

#

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software

must display the following acknowledgment:

This product includes software developed by Luke Howard.

4. The name of the other may not be used to endorse or promote products

derived from this software without specific prior written permission.

#

THIS SOFTWARE IS PROVIDED BY THE LUKE HOWARD "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL LUKE HOWARD BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

#

#

fstab migration tool

These classes were not published in RFC 2307.

They are used by MacOS X Server, however.

#

require 'migrate_common.ph';

$PROGRAM = "migrate_fstab.pl";

$NAMINGCONTEXT = &getsuffix($PROGRAM);

&parse_args();

&open_files();

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 225

4134_c07_final.qxd 9/30/04 11:33 AM Page 225

while(<INFILE>)

{

chop;

next if /^#/;

s/#(.*)$//;

local($fsname, $dir, $type, $opts, $freq, $passno) = split(/\s+/);

if ($use_stdout) {

&dump_mount(STDOUT, $fsname, $dir, $type, $opts, $freq, $passno);

} else {

&dump_mount(OUTFILE, $fsname, $dir, $type, $opts, $freq, $passno);

}

}

sub dump_mount

{

local($HANDLE, $fsname, $dir, $type, $opts, $freq, $passno) = @_;

local (@options) = split(/,/, $opts);

print $HANDLE "dn: cn=$fsname,$NAMINGCONTEXT\n";

print $HANDLE "cn: $fsname\n";

print $HANDLE "objectClass: mount\n";

print $HANDLE "objectClass: top\n";

print $HANDLE "mountDirectory: $dir\n";

print $HANDLE "mountType: $type\n";

if (defined($freq)) {

print $HANDLE "mountDumpFrequency: $freq\n";

}

if (defined($passno)) {

print $HANDLE "mountPassNumber: $passno\n";

}

foreach $_ (@options) {

print $HANDLE "mountOption: $_\n";

}

print $HANDLE "\n";

}

close(INFILE);

if (OUTFILE != STDOUT) { close(OUTFILE); }

The result of running this script is as follows:

[root@ldaphost MigrationTools-45]# ./migrate_fstab.pl /etc/fstab

dn: cn=LABEL=/,ou=Mounts,dc=Your,dc=Company

cn: LABEL=/

objectClass: mount

objectClass: top

mountDirectory: /

mountType: ext3

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL226

4134_c07_final.qxd 9/30/04 11:33 AM Page 226

mountDumpFrequency: 1

mountPassNo: 1

mountOption: defaults

dn: cn=LABEL=/boot,ou=Mounts,dc=Your,dc=Company

cn: LABEL=/boot

objectClass: mount

objectClass: top

mountDirectory: /boot

mountType: ext3

mountDumpFrequency: 1

mountPassNo: 2

mountOption: defaults

dn: cn=none,ou=Mounts,dc=Your,dc=Company

cn: none

objectClass: mount

objectClass: top

mountDirectory: /dev/pts

mountType: devpts

mountDumpFrequency: 0

mountPassNo: 0

mountOption: gid=5

mountOption: mode=620

dn: cn=LABEL=/home,ou=Mounts,dc=Your,dc=Company

cn: LABEL=/home

objectClass: mount

objectClass: top

mountDirectory: /home

mountType: ext3

mountDumpFrequency: 1

mountPassNo: 2

mountOption: defaults

dn: cn=none,ou=Mounts,dc=Your,dc=Company

cn: none

objectClass: mount

objectClass: top

mountDirectory: /proc

mountType: proc

mountDumpFrequency: 0

mountPassNo: 0

mountOption: defaults

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 227

4134_c07_final.qxd 9/30/04 11:33 AM Page 227

dn: cn=none,ou=Mounts,dc=Your,dc=Company

cn: none

objectClass: mount

objectClass: top

mountDirectory: /dev/shm

mountType: tmpfs

mountDumpFrequency: 0

mountPassNo: 0

mountOption: defaults

dn: cn=LABEL=/usr,ou=Mounts,dc=Your,dc=Company

cn: LABEL=/usr

objectClass: mount

objectClass: top

mountDirectory: /usr

mountType: ext3

mountDumpFrequency: 1

mountPassNo: 2

mountOption: defaults

dn: cn=LABEL=/var,ou=Mounts,dc=Your,dc=Company

cn: LABEL=/var

objectClass: mount

objectClass: top

mountDirectory: /var

mountType: ext3

mountDumpFrequency: 1

mountPassNo: 2

mountOption: defaults

dn: cn=/dev/hda7,ou=Mounts,dc=Your,dc=Company

cn: /dev/hda7

objectClass: mount

objectClass: top

mountDirectory: swap

mountType: swap

mountDumpFrequency: 0

mountPassNo: 0

mountOption: defaults

dn: cn=/dev/cdrom,ou=Mounts,dc=Your,dc=Company

cn: /dev/cdrom

objectClass: mount

objectClass: top

mountDirectory: /mnt/cdrom

mountType: iso9660

mountDumpFrequency: 0

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL228

4134_c07_final.qxd 9/30/04 11:33 AM Page 228

mountPassNo: 0

mountOption: noauto

mountOption: owner

mountOption: kudzu

mountOption: ro

While it’s good to see the format of data that the migration scripts provide, you can also see
that the specific host that these disk configurations apply to doesn’t apply across all potential
systems in your environment. Creating additional organization units per host or references to
various types of standard disk configurations from other host profiles is necessary in a large
environment.

The process of converting host information (stored in /etc/hosts) follows the same basic
idea. Take the following /etc/hosts file as an example:

Do not remove the following line, or various programs

that require network functionality will fail.

127.0.0.1 ldaphost.yourcompany.com

127.0.0.1 ldaphost localhost.localdomain localhost

192.168.10.40 randomhost

Listing 7-7 shows the contents of the migrate_hosts.pl script.

Listing 7-7. migrate_hosts.pl

#!/usr/bin/perl

#

$Id: migrate_hosts.pl,v 1.4 1998/10/01 13:14:28 lukeh Exp $

#

Copyright (c) 1997 Luke Howard.

All rights reserved.

#

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software

must display the following acknowledgment:

This product includes software developed by Luke Howard.

4. The name of the other may not be used to endorse or promote products

derived from this software without specific prior written permission.

#

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 229

4134_c07_final.qxd 9/30/04 11:33 AM Page 229

THIS SOFTWARE IS PROVIDED BY THE LUKE HOWARD "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL LUKE HOWARD BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

#

#

hosts migration tool

#

#

require 'migrate_common.ph';

$PROGRAM = "migrate_hosts.pl";

$NAMINGCONTEXT = &getsuffix($PROGRAM);

&parse_args();

&open_files();

while(<INFILE>)

{

chop;

next unless ($_);

next if /^#/;

s/#(.*)$//;

local($hostaddr, $hostname, @aliases) = split(/\s+/);

if ($use_stdout) {

&dump_host(STDOUT, $hostaddr, $hostname, @aliases);

} else {

&dump_host(OUTFILE, $hostaddr, $hostname, @aliases);

}

}

sub dump_host

{

local($HANDLE, $hostaddr, $hostname, @aliases) = @_;

local($dn);

return if (!$hostaddr);

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL230

4134_c07_final.qxd 9/30/04 11:33 AM Page 230

print $HANDLE "dn: cn=$hostname,$NAMINGCONTEXT\n";

print $HANDLE "objectClass: top\n";

print $HANDLE "objectClass: ipHost\n";

print $HANDLE "objectClass: device\n";

print $HANDLE "ipHostNumber: $hostaddr\n";

print $HANDLE "cn: $hostname\n";

@aliases = uniq($hostname, @aliases);

foreach $_ (@aliases) {

if ($_ ne $hostname) {

print $HANDLE "cn: $_\n";

}

}

print $HANDLE "\n";

}

close(INFILE);

if (OUTFILE != STDOUT) { close(OUTFILE); }

Listing 7-8 shows the command and resulting LDIF entry.

Listing 7-8. Host LDIF

[root@ldaphost MigrationTools-45]# ./migrate_hosts.pl /etc/hosts

dn: cn=ldaphost.yourcompany.com,ou=Hosts,dc=Your,dc=Company

objectClass: top

objectClass: ipHost

objectClass: device

ipHostNumber: 127.0.0.1

cn: ldaphost.yourcompany.com

cn: ldaphost

cn: localhost

cn: localhost.localdomain

dn: cn=randomhost,ou=Hosts,dc=Your,dc=Company

objectClass: top

objectClass: ipHost

objectClass: device

ipHostNumber: 192.168.10.40

cn: randomhost

The resulting LDIF entry will be suitable as a template for basic host information and can
be expanded to include other information that may be suitable. For example, in an environment
that requires extensive auditing of host information, you may want to take the example in List-
ing 7-8 and expand it to include the MAC address, system owner, system description, and other
information that may be specific to other applications that require this data.

It’s always a good idea to have some of the information that I discussed in your directory
before deploying other LDAP management tools. That is, if you already have templates for infor-
mation defined, it’s much easier to make applications comply with what you already have instead

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 231

4134_c07_final.qxd 9/30/04 11:33 AM Page 231

of you having to comply with nonstandard application templates. If an application that’s already
deployed within your environment uses a completely different format for host information, it’d
be more difficult to modify your tools to retrieve this information.

Another type of information that can be migrated, along with system services and generic
templates for service-style information, are your remote procedure call (RPC) definitions. Hav-
ing the ability to publish your available services with LDAP and the RPC portmapper itself is also
a good thing to have for a system audit.

The following is an example (incomplete) /etc/rpc file:

portmapper 100000 portmap sunrpc rpcbind

rstatd 100001 rstat rup perfmeter rstat_svc

Listing 7-9 shows the contents of the migrate_rpc.pl script.

Listing 7-9. migrate_rpc.pl

#!/usr/bin/perl

#

$Id: migrate_rpc.pl,v 1.4 1998/10/01 13:14:36 lukeh Exp $

#

Copyright (c) 1997 Luke Howard.

All rights reserved.

#

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software

must display the following acknowledgment:

This product includes software developed by Luke Howard.

4. The name of the other may not be used to endorse or promote products

derived from this software without specific prior written permission.

#

THIS SOFTWARE IS PROVIDED BY THE LUKE HOWARD "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL LUKE HOWARD BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

#

#

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL232

4134_c07_final.qxd 9/30/04 11:33 AM Page 232

Rpc migration tool

#

#

require 'migrate_common.ph';

$PROGRAM = "migrate_rpc.pl";

$NAMINGCONTEXT = &getsuffix($PROGRAM);

&parse_args();

&open_files();

while(<INFILE>)

{

chop;

next unless ($_);

next if /^#/;

s/#(.*)$//;

local($rpcname, $rpcnumber, @aliases) = split(/\s+/);

if ($use_stdout) {

&dump_rpc(STDOUT, $rpcname, $rpcnumber, @aliases);

} else {

&dump_rpc(OUTFILE, $rpcname, $rpcnumber, @aliases);

}

}

sub dump_rpc

{

local($HANDLE, $rpcname, $rpcnumber, @aliases) = @_;

return if (!$rpcname);

print $HANDLE "dn: cn=$rpcname,$NAMINGCONTEXT\n";

print $HANDLE "objectClass: oncRpc\n";

print $HANDLE "objectClass: top\n";

print $HANDLE "oncRpcNumber: $rpcnumber\n";

print $HANDLE "cn: $rpcname\n";

@aliases = uniq($rpcname, @aliases);

foreach $_ (@aliases) {

print $HANDLE "cn: $_\n";

}

print $HANDLE "\n";

}

close(INFILE);

if (OUTFILE != STDOUT) { close(OUTFILE); }

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 233

4134_c07_final.qxd 9/30/04 11:33 AM Page 233

Listing 7-10 shows the process and possible result of migration.

Listing 7-10. RPC LDIF

[root@ldaphost MigrationTools-45]# ./migrate_rpc.pl /etc/rpc

dn: cn=portmapper,ou=Rpc,dc=Your,dc=Company

objectClass: oncRpc

objectClass: top

description: RPC portmapper

oncRpcNumber: 100000

cn: portmapper

cn: portmap

cn: rpcbind

cn: sunrpc

dn: cn=rstatd,ou=Rpc,dc=Your,dc=Company

objectClass: oncRpc

objectClass: top

description: RPC rstatd

oncRpcNumber: 100001

cn: rstatd

cn: perfmeter

cn: rstat

cn: rstat_svc

cn: rup

Your standard TCP/IP services stored in /etc/services are also available for migration.
However, keep in mind that just because it’s possible to migrate a file, it’s not always the best
scenario. These files may differ from host to host and can change during patch updates. An
example /etc/services file looks like this:

ftp-data 20/tcp

ftp-data 20/udp

ftp 21/tcp

ftp 21/udp fsp fspd

ssh 22/tcp # SSH Remote Login Protocol

ssh 22/udp # SSH Remote Login Protocol

cfengine 5308/tcp # CFengine

cfengine 5308/udp # CFengine

telnet 23/tcp

telnet 23/udp

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL234

4134_c07_final.qxd 9/30/04 11:33 AM Page 234

Listing 7-11 shows the contents of the migrate_services.pl script.

Listing 7-11. migrate_services.pl

#!/usr/bin/perl

#

$Id: migrate_services.pl,v 1.4 1998/10/01 13:14:37 lukeh Exp $

#

Copyright (c) 1997 Luke Howard.

All rights reserved.

#

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software

must display the following acknowledgment:

This product includes software developed by Luke Howard.

4. The name of the other may not be used to endorse or promote products

derived from this software without specific prior written permission.

#

THIS SOFTWARE IS PROVIDED BY THE LUKE HOWARD "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL LUKE HOWARD BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

#

services migration tool

#

#

require 'migrate_common.ph';

$PROGRAM = "migrate_services.pl";

$NAMINGCONTEXT = &getsuffix($PROGRAM);

&parse_args();

&open_files();

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 235

4134_c07_final.qxd 9/30/04 11:33 AM Page 235

while(<INFILE>)

{

chop;

next unless ($_);

next if /^#/;

s/#(.*)$//;

local($servicename, $portproto, @aliases) = split(/\s+/);

if ($use_stdout) {

&dump_service(STDOUT, $servicename, $portproto, @aliases);

} else {

&dump_service(OUTFILE, $servicename, $portproto, @aliases);

}

}

sub dump_service

{

local($HANDLE, $servicename, $portproto, @aliases) = @_;

local($port, $proto) = split(/\//, $portproto);

return if (!$servicename);

print $HANDLE "dn: cn=$servicename+ipServiceProtocol=$proto, \

$NAMINGCONTEXT\n";

print $HANDLE "objectClass: ipService\n";

print $HANDLE "objectClass: top\n";

print $HANDLE "ipServicePort: $port\n";

print $HANDLE "ipServiceProtocol: $proto\n";

print $HANDLE "cn: $servicename\n";

@aliases = uniq($servicename, @aliases);

foreach $_ (@aliases) {

print $HANDLE "cn: $_\n";

}

print $HANDLE "\n";

}

close(INFILE);

if (OUTFILE != STDOUT) { close(OUTFILE); }

Listing 7-12 shows the process and possible result of this migration.

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL236

4134_c07_final.qxd 9/30/04 11:33 AM Page 236

Listing 7-12. Result

[root@ldaphost MigrationTools-45]# ./migrate_services.pl /etc/services

dn: cn=ftp-data,ou=Services,dc=Your,dc=Company

objectClass: ipService

objectClass: top

ipServicePort: 20

ipServiceProtocol: udp

ipServiceProtocol: tcp

cn: ftp-data

dn: cn=ftp,ou=Services,dc=Your,dc=Company

objectClass: ipService

objectClass: top

ipServicePort: 21

ipServiceProtocol: udp

ipServiceProtocol: tcp

cn: ftp

cn: fspd

cn: fsp

dn: cn=ssh,ou=Services,dc=Your,dc=Company

objectClass: ipService

objectClass: top

ipServicePort: 22

ipServiceProtocol: udp

ipServiceProtocol: tcp

cn: ssh

dn: cn=telnet,ou=Services,dc=Your,dc=Company

objectClass: ipService

objectClass: top

ipServicePort: 23

ipServiceProtocol: udp

ipServiceProtocol: tcp

cn: telnet

dn: cn=smtp,ou=Services,dc=Your,dc=Company

objectClass: ipService

objectClass: top

ipServicePort: 25

ipServiceProtocol: udp

ipServiceProtocol: tcp

cn: smtp

cn: mail

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 237

4134_c07_final.qxd 9/30/04 11:33 AM Page 237

dn: cn=cfengine,ou=Services,dc=Your,dc=Company

objectClass: ipService

objectClass: top

ipServicePort: 5308

ipServiceProtocol: udp

ipServiceProtocol: tcp

cn: cfengine

Although the most relevant information from the file is shown in LDIF format, you can see
that some comments that were included in the original no longer exist. It may be beneficial, espe-
cially for the sake of less-seasoned system administrators, to add comments and descriptions
back into the LDIF. You can use these fields, while not necessary for system-level applications, in
any interfaces that you create for retrieving and administering this information.

Configuring the LDAP Client (Host)
You’ll need to configure each system that will rely on information from LDAP as a client. Even
the server that will be authoritative for this LDAP information will need to be configured as a
client accessing itself. You’ll need to start by modifying the /etc/ldap.conf configuration file
that’s present in your Linux host.

@(#)$Id: ldap.conf,v 1.24 2001/09/20 14:12:26 lukeh Exp $

#

This is the configuration file for the LDAP nameservice

switch library and the LDAP PAM module.

#

PADL Software

http://www.padl.com

#

Your LDAP server. Must be resolvable without using LDAP.

host 127.0.0.1

Your LDAP host will be the value of the host directive. It’s a good idea to standardize the
configuration of your ldap.conf file. Even if you’re making configurations on the master LDAP
system (and the host will be binding to itself), you should specify the specific IP address of the
LDAP system itself. Relying on local won’t work on other systems in your environment.

The distinguished name of the search base.

base dc=example,dc=com

For these purposes, you’ll be specifying the base directive as dc=Your,dc=Company.

Another way to specify your LDAP server is to provide an

uri with the server name. This allows to use

Unix Domain Sockets to connect to a local LDAP Server.

#uri ldap://127.0.0.1/

#uri ldaps://127.0.0.1/

#uri ldapi://%2fvar%2frun%2fldapi_sock/

Note: %2f encodes the '/' used as directory separator

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL238

4134_c07_final.qxd 9/30/04 11:33 AM Page 238

http://www.padl.com
ldap://127.0.0.1
ldaps://127.0.0.1

The configuration files support various methods of specifying the LDAP system to which
you’ll be connecting. Additionally, you can use and expand the uri directive and notation to
increase the scope of your LDAP searches.

The LDAP version to use (defaults to 3

if supported by client library)

#ldap_version 3

The default version of the LDAP protocol you’ll be using is LDAPv3.

The distinguished name to bind to the server with.

Optional: default is to bind anonymously.

#binddn cn=proxyuser,dc=example,dc=com

The credentials to bind with.

Optional: default is no credential.

#bindpw secret

The distinguished name to bind to the server with

if the effective user ID is root. Password is

stored in /etc/ldap.secret (mode 600)

#rootbinddn cn=manager,dc=example,dc=com

Because LDAP integration replaces the standard mechanisms of reading local files and
databases on your Unix system, you have the ability to increase the security of your system
profiles. Where traditional files that you’re migrating are world-readable by design, thus giving
everyone access to this information, LDAP allows you to restrict this information to be read-
able only by certain bind DNs in your system. However, by default, an anonymous query can
retrieve this information.

The rootbinddn directive sets the LDAP equivalent of root on your host. This DN will,
by default, give someone with the password excessive access rights on your host. While the
password for this DN is protected by file permissions, storing this information on multiple
hosts isn’t advised because your LDAP environment, with its control over many new things,
may be compromised. This can lead to a cracker having full control over your environment,
and it defeats many of the benefits of using new security features in LDAP. The primary
reasons this account and password are configured are to be able to perform certain privi-
leged system operations, such as changing passwords, and performing more significant
system configurations. During integration, it’s a good idea to log the operations that this
account is performing and create individual user accounts (tied to the host) with access
controls that allow these operations. For example, on LDAPSLAVE10, the rootbinddn may
be cn=ldapslave10-manager,dc=your,dc=compancn=ldapslave10-manager,dc=your,dc=company.
That way, operations you see while auditing log files show you where any questionable opera-
tions originated. This suggestion applies to any superuser accounts you may need to use.

You can also omit this configuration option on many client machines. You can specify the
root account only on certain trusted hosts with increased host security and a controlled envi-
ronment of administrators.

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 239

4134_c07_final.qxd 9/30/04 11:33 AM Page 239

The port.

Optional: default is 389.

#port 389

The search scope.

#scope sub

#scope one

#scope base

The LDAP port and search specifications are also definable within the configuration file.

Search timelimit

#timelimit 30

Bind timelimit

#bind_timelimit 30

You can modify time limits for your LDAP binds and transactions within the configura-
tion file to allow you to tune your system appropriately.

Idle timelimit; client will close connections

(nss_ldap only) if the server has not been contacted

for the number of seconds specified below.

#idle_timelimit 3600

Because the greatest overhead in a network transaction is establishing the original con-
nectivity, clients often establish one (or more) connections to the remote host and keep the
connection alive. This will typically increase system performance. However, if a connection
has been idle for a certain amount of time, it’s a good idea to refresh the connection by closing
it and reopening it again. In some buggy interfaces, the connection is often still open but no
longer able to retrieve LDAP information.

Filter to AND with uid=%s

#pam_filter objectclass=account

The user ID attribute (defaults to uid)

#pam_login_attribute uid

User profiles within LDAP will differ depending on your environment. As I demonstrated
during the migration of standard user profiles, the base configurations of a system won’t always
work. You’re able to, within the ldap.conf configuration file, specify how a user is defined and
what attribute will be used to log into a system. The generic uid attribute, in the existing envi-
ronment, won’t always translate directly to the login name within a Linux host. You may see
that the uid attribute is used as a generic profile identifier, and the loginname attribute may be
used to define the Linux login name. You can specify these parameters as follows:

Search the root DSE for the password policy (works

with Netscape Directory Server)

#pam_lookup_policy yes

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL240

4134_c07_final.qxd 9/30/04 11:33 AM Page 240

Check the 'host' attribute for access control

Default is no; if set to yes, and user has no

value for the host attribute, and pam_ldap is

configured for account management (authorization)

then the user will not be allowed to login.

#pam_check_host_attr yes

Group to enforce membership of

#pam_groupdn cn=PAM,ou=Groups,dc=example,dc=com

Group member attribute

#pam_member_attribute uniquemember

The pam_groupdn directive is useful when an LDAP server provides authentication infor-
mation to a pool of clients but only when the user should be authorized on a set of clients.
This directive can provide the same functionality of NIS netgroups, as shown in Listing 7-13.

Listing 7-13. PAM Configurations

Specify a minimum or maximum UID number allowed

#pam_min_uid 0

#pam_max_uid 0

Template login attribute, default template user

(can be overridden by value of former attribute

in user's entry)

#pam_login_attribute userPrincipalName

#pam_template_login_attribute uid

#pam_template_login nobody

HEADS UP: the pam_crypt, pam_nds_passwd,

and pam_ad_passwd options are no

longer supported.

Do not hash the password at all; presume

the directory server will do it, if

necessary. This is the default.

#pam_password clear

Hash password locally; required for University of

Michigan LDAP server, and works with Netscape

Directory Server if you're using the UNIX-Crypt

hash mechanism and not using the NT Synchronization

service.

#pam_password crypt

Remove old password first, then update in

cleartext. Necessary for use with Novell

Directory Services (NDS)

#pam_password nds

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 241

4134_c07_final.qxd 9/30/04 11:33 AM Page 241

Update Active Directory password, by

creating Unicode password and updating

unicodePwd attribute.

#pam_password ad

Use the OpenLDAP password change

extended operation to update the password.

#pam_password exop

PAM-specific configurations are also made within the ldap.conf configuration file. Within
these PAM configurations, you specify values to enable your systems to function appropriately.
One issue that you’ll encounter during configuration in a centralized environment is that if multi-
ple passwords are used across systems, a good chance exists that multiple formats for storing
these passwords are being used. Imagine the scenario where you have a legacy system that stores
information on {crypt}, and newer systems rely on {SSHA}. While newer systems may have the
ability to read multiple formats, the legacy systems would instantly be confused (and stop func-
tioning) if the password they encounter is stored in a format that isn’t understood. Verify the
methods of encryption that each of your systems uses, and determine a common denominator
that’s functional across the greatest number of systems, as shown in Listing 7-14.

Listing 7-14. NSS Configurations

RFC2307bis naming contexts

Syntax:

nss_base_XXX base?scope?filter

where scope is {base,one,sub}

and filter is a filter to be &'d with the

default filter.

You can omit the suffix eg:

nss_base_passwd ou=People,

to append the default base DN but this

may incur a small performance impact.

#nss_base_passwd ou=People,dc=example,dc=com?one

#nss_base_shadow ou=People,dc=example,dc=com?one

#nss_base_group ou=Group,dc=example,dc=com?one

#nss_base_hosts ou=Hosts,dc=example,dc=com?one

#nss_base_services ou=Services,dc=example,dc=com?one

#nss_base_networks ou=Networks,dc=example,dc=com?one

#nss_base_protocols ou=Protocols,dc=example,dc=com?one

#nss_base_rpc ou=Rpc,dc=example,dc=com?one

#nss_base_ethers ou=Ethers,dc=example,dc=com?one

#nss_base_netmasks ou=Networks,dc=example,dc=com?ne

#nss_base_bootparams ou=Ethers,dc=example,dc=com?one

#nss_base_aliases ou=Aliases,dc=example,dc=com?one

#nss_base_netgroup ou=Netgroup,dc=example,dc=com?one

This section relates directly to the containers that were created during the migration
process. It allows you to move configurations elsewhere if the default configurations being
used don’t work for your environment. However, if integrating LDAP with other applications is

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL242

4134_c07_final.qxd 9/30/04 11:33 AM Page 242

necessary, it’s good to use the defaults. Other applications can hard-code these location values
within their configurations. Storing these organizational units deep within an LDAP tree may
create unnecessary complexity.

The ?one flag at the end of the container defines the search scope being used for each of the
searches being performed. This is helpful because a global search scope won’t be easily used on
all systems, especially those with flatter namespaces and larger databases.

Listing 7-15 shows how to map data between NSS and PAM objects to attributes and
object classes within the directory.

Listing 7-15. Mapping Information

attribute/objectclass mapping

Syntax:

#nss_map_attribute rfc2307attribute mapped_attribute

#nss_map_objectclass rfc2307objectclass mapped_objectclass

configure --enable-nds is no longer supported.

For NDS now do:

#nss_map_attribute uniqueMember member

configure --enable-mssfu-schema is no longer supported.

For MSSFU now do:

#nss_map_objectclass posixAccount User

#nss_map_attribute uid msSFUName

#nss_map_attribute uniqueMember posixMember

#nss_map_attribute userPassword msSFUPassword

#nss_map_attribute homeDirectory msSFUHomeDirectory

#nss_map_objectclass posixGroup Group

#pam_login_attribute msSFUName

#pam_filter objectclass=User

#pam_password ad

configure --enable-authpassword is no longer supported

For authPassword support, now do:

#nss_map_attribute userPassword authPassword

#pam_password nds

For IBM SecureWay support, do:

#nss_map_objectclass posixAccount aixAccount

#nss_map_attribute uid userName

#nss_map_attribute gidNumber gid

#nss_map_attribute uidNumber uid

#nss_map_attribute userPassword passwordChar

#nss_map_objectclass posixGroup aixAccessGroup

#nss_map_attribute cn groupName

#nss_map_attribute uniqueMember member

#pam_login_attribute userName

#pam_filter objectclass=aixAccount

#pam_password clear

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 243

4134_c07_final.qxd 9/30/04 11:33 AM Page 243

As I discussed earlier, the default attributes used for information may not be relevant for
your system configuration, and it may be necessary to change the attributes that are being
used to store certain information. Listing 7-16 shows the configurations you’ll need to modify
in order to utilize some of the security features of OpenLDAP.

Listing 7-16. Security Configurations

Netscape SDK LDAPS

#ssl on

Netscape SDK SSL options

#sslpath /etc/ssl/certs/cert7.db

OpenLDAP SSL mechanism

start_tls mechanism uses the normal LDAP port, LDAPS typically 636

#ssl start_tls

#ssl on

OpenLDAP SSL options

Require and verify server certificate (yes/no)

Default is "no"

#tls_checkpeer yes

CA certificates for server certificate verification

At least one of these are required if tls_checkpeer is "yes"

#tls_cacertfile /etc/ssl/ca.cert

#tls_cacertdir /etc/ssl/certs

SSL cipher suite

See man ciphers for syntax

#tls_ciphers TLSv1

Client certificate and key

Use these, if your server requires client authentication.

#tls_cert

#tls_key

ssl no

pam_password md5

You can use other configuration options to enable Secure Sockets Layer (SSL) and Trans-
port Layer Security (TLS) if these are used within your environment.

Using the ldapclient Utility
You can use the ldapclient utility to initialize LDAP client machines, restore network service
environment on LDAP clients, and list the contents of the LDAP client cache in human-readable
format. This utility can output the appropriate LDIF files for initialization of an LDAP client or
can directly connect to specific hosts and make the configurations for you.

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL244

4134_c07_final.qxd 9/30/04 11:33 AM Page 244

/usr/sbin/ldapclient [-v| -q] init [-a proxyName=profile] \

[-adomainName=domain] [-a proxyDN=proxyDN] [-a proxyPassword=password] \

[-a certificatePath=path] LDAP_server_addr[:port_number]

/usr/sbin/ldapclient [-v| -q] manual [-a attrName=attrVal]

/usr/sbin/ldapclient [-v| -q] mod [-a attrName=attrVal]

/usr/sbin/ldapclient [-v| -q] list

/usr/sbin/ldapclient [-v| -q] uninit

/usr/sbin/ldapclient [-v| -q] genprofile -a profileName=profileName

[-a attrName=attrVal]

You can run the utility in the init, manual, or mod form. In the init form, ldapclient retrieves
profile information from an LDAP server (specified by the server_addr parameter) and makes the
appropriate changes in the configurations for functionality. In manual mode, the configuration
options for the host configuration are specified on the command line, and profiles that may exist-
ing in your LDAP server aren’t used. You can use the mod mode to make changes to a host that has
already been configured using the manual directive. If any file is modified during installation, it
will be backed up to /var/ldap/restore. The files that are typically modified during initialization
are the same ones that would be modified during any NIS or NIS+ initialization. These files are
as follows:

• /etc/nsswitch.conf

• /etc/defaultdomain (if it exists)

• /var/yp/binding/`domainname` (for an NIS or YP client)

• /var/nis/NIS_COLD_START (for an NIS+ client)

• /var/ldap/ldap_client_file (for an existing LDAP client)

• /var/ldap/ldap_client_cred (for an existing LDAP client)

The list form of the ldapclient utility is used to list the LDAP client configuration. The
output will be human readable. LDAP configuration files are typically readable except by
LDAP administrators.

The uninit form of the ldapclient utility uninitializes the network service environment,
restoring it to the state it was in prior to the last execution of ldapclient using init or manual.
The restoration will succeed only if the machine was initialized with the init or manual form
of ldapclient, as it uses the backup files created by these options.

The genprofile option writes an LDIF-formatted configuration profile based on the
attributes specified on the command line to standard output. This profile can then be
loaded into an LDAP server to be used as the client profile, which can be downloaded by
means of the ldapclient init command. You can load the LDIF-formatted profile to the
directory server through ldapadd (1) or through any server-specific import tool.

To access the information stored in the directory, clients can either authenticate to the
directory or use an unauthenticated connection. The LDAP client is configured to have a cre-
dential level of either anonymous or proxy. In the first case, the client doesn’t authenticate to
the directory. In the second case, client authenticates to the directory using a proxy identity.

The following command-line modes (as discussed previously) for the ldapclient utility
are supported:

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 245

4134_c07_final.qxd 9/30/04 11:33 AM Page 245

• init: Initialize client from a profile on a server.

• manual: Manually initialize the client with the specified attribute values.

• mod: Modify attribute values in the configuration file after a manual initialization of
the client.

• list: Write the contents of the LDAP client cache to standard output in human-
readable form.

• uninit: Uninitialize an LDAP client, assuming that ldapclient was used to initialize
the client.

• genprofile: Generate a configuration profile in LDIF format that can then be stored
in the directory for clients to use, with the init form of this command.

The following attributes are supported:

AttributeMap: This specifies a mapping from an attribute defined by a service to an attrib-
ute in an alternative schema. You can use this to change the default schema used for a given
service. The syntax of attributeMap is defined in the profile Internet Engineers Task Force
(IETF) draft. You can specify this option multiple times. The default value for all services is
NULL. In the example attributeMap: passwd:uid=employeeNumber, the LDAP client would
use the LDAP attribute employeeNumber rather than uid for the passwd service. This is a
multivalued attribute.

AuthenticationMethod: This specifies the default authentication method used by all serv-
ices unless overridden by the serviceAuthenticationMethod attribute. You can specify mul-
tiple values, using a comma-separated list. The default value is none. For those services that
use credentialLevel and credentialLevel of anonymous, this attribute is ignored. Services
such as pam_ldap will use this attribute, even if credentialLevel is anonymous. The sup-
ported authentication methods were described previously.

BindTimeLimit: This is the maximum time in seconds that a client should spend perform-
ing a bind operation. Set this to a positive integer. The default value is 30.

CertificatePath: This is the certificate path for the location of the certificate database.
The value is the path where security database files reside. This is used for TLS support,
which is specified in the authenticationMethod and serviceAuthenticationMethod attrib-
utes. The default is /var/ldap.

CredentialLevel: This specifies the credential level the client should use to contact the
directory. The credential levels supported are either anonymous or proxy. If a proxy creden-
tial level is specified, then the authenticationMethod attribute must be specified to deter-
mine the authentication mechanism. Further, if the credential level is proxy and at least one
of the authentication methods requires a bind DN, the proxyDN and proxyPassword attribute
values must be set.

DefaultSearchBase: This specifies the default search base DN. This has no default. You can
use the serviceSearchDescriptor attribute to override defaultSearchBase for given services.

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL246

4134_c07_final.qxd 9/30/04 11:33 AM Page 246

defaultSearchScope=one | sub: This specifies the default search scope for the client’s
search operations. This default can be overridden for a given service by specifying a ser-

viceSearchDescriptor. The default is a one-level search.

DomainName: This specifies the DNS domain name. This becomes the default domain for
the machine. The default is the current domain name. This attribute is used only in client
initialization.

followReferrals=true | false: This specifies the referral setting. A setting of true implies
that referrals will be automatically followed; false results in referrals not being followed.
The default is true.

ObjectclassMap: This specifies a mapping from an objectclass defined by a service to an
objectclass in an alternative schema. You can use this to change the default schema used
for a given service. The syntax of objectclassMap is defined in the profile IETF draft. You can
specify this option multiple times. The default value for all services is NULL. In the example,
objectclassMap=passwd:posixAccount=unixAccount, the LDAP client would use the LDAP
objectclass of unixAccount rather than the posixAccount for the passwd service. This is
a multivalued attribute.

PreferredServerList: This specifies the space-separated list of preferred server IP
addresses to be contacted before servers specified by the defaultServerList attribute.
The port number is optional. If not specified, the default LDAP server port number 389
is used, except when TLS is specified in the authentication method. In this case, the
default LDAP server port number is 636. You can also use fully qualified hostnames. If you
use fully qualified hostnames, you must configure nsswitch.conf to use files or DNS, not
LDAP, to resolve host lookup. If you fail to configure nsswitch.conf properly, then your
system or certain processes can hang if you use a hostname value.

ProfileName: This specifies the profile name. For ldapclient init, this attribute is the
name of an existing profile that may be downloaded periodically depending on the value
of the profileTTL attribute. For ldapclient genprofile, this is the name of the profile to
be generated. The default value is default.

ProfileTTL: This specifies the TTL value in seconds for the client information. This
is relevant only if the machine was initialized with a client profile. If you don’t want
ldap_cachemgr (1M) to attempt to refresh the LDAP client configuration from the
LDAP server, set profileTTL to zero. Valid values are either zero (for no expiration)
or a positive integer in seconds. The default value is 12 hours.

ProxyDN: This specifies the bind DN for the proxy identity. This option is required if the
credential level is proxy and at least one of the authentication methods requires a bind
DN. It has no default value.

ProxyPassword: This specifies the client proxy password. This option is required if the cre-
dential level is proxy and at least one of the authentication methods requires a bind DN.
It has no default.

SearchTimeLimit: This specifies the maximum number of seconds allowed for an LDAP
search operation. The default is 30 seconds. The server may have its own search time limit.

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 247

4134_c07_final.qxd 9/30/04 11:33 AM Page 247

ServiceAuthenticationMethod: This specifies authentication methods to be used by a
service. You can specify multiple values with a comma-separated list. The default value
is no service authentication methods, in which case each service would default to the
authenticationMethod value. The supported authentications were described previously.
Three services support this feature: passwd-cmd, keyserv, and pam_ldap. The passwd-cmd
service defines the authentication method to be used by passwd (1) to change the user’s
password and other attributes. The keyserv service identifies the authentication method
to be used by the chkey (1) and newkey (1M) utilities. The pam_ldap service defines the
authentication method to be used for authenticating users when pam_ldap (5) is config-
ured. If this attribute isn’t set for any of these services, the authenticationMethod attribute
defines the authentication method. This is a multivalued attribute.

ServiceCredentialLevel: This specifies the credential level to be used by a service. You
can specify multiple values in a space-separated list. The default value for all services is
NULL. The supported credential levels are anonymous or proxy. At present, no service uses
this attribute. This is a multivalued attribute.

ServiceSearchDescriptor: This overrides the default base DN for LDAP searches for a given
service. The format of the descriptors also allows you to override the default search scope
and search filter for each service. The syntax of serviceSearchDescriptor is defined in the
profile IETF draft. The default value for all services is NULL. This is a multivalued attribute.
In the example serviceSearchDescriptor=passwd:ou=people,dc=a1,dc=acme,dc=com?one,
the LDAP client would do a one-level search in the ou=people,dc=a1,dc=acme,dc=com serv-
ice rather than the ou=people,defaultSearchBase for the passwd service.

The ldapclient utility supports the following command-line options:

• -a: Specify attrName and its value.

• -q: Quiet mode. No output is generated.

• -v: Verbose output.

It supports the following operands:

DefaultServerList: This is a space-separated list of server IP addresses. The port number
is optional. If not specified, the default LDAP server port number 389 is used except when
TLS is specified in the authentication method, in which case the default LDAP server port
number is 636.

You can also use fully qualified hostnames. If you use fully qualified hostnames, you must
configure nsswitch.conf to use files or DNS, not LDAP, to resolve host lookup. If you fail to
configure nsswitch.conf properly, then your system or certain processes can hang if you
use a hostname value.

To initialize a new host using the default profile stored on your LDAP service (at
192.168.10.10), you’d use the following command.

example# ldapclient init 192.169.10.10

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL248

4134_c07_final.qxd 9/30/04 11:33 AM Page 248

The following example shows how to set up a client using only one server. The authenti-
cation method is set to none, and the search base is set to dc=Your,dc=Company.

example# ldapclient manual -a authenticationMethod=none \

-a defaultSearchBase=dc=Your,dc=Company \

-a defaultServerList=192.168.10.10

The following example shows how to set up a client using only one server. The credential
level is set to proxy. The authentication method of is sasl/CRAM_MD5, with the option not to fol-
low referrals. The domain name is domainname.YourCompany.com, and the LDAP server is run-
ning on port number 386 at IP address 192.168.10.10.

example# ldapclient manual \

-a credentialLevel=proxy \

-a authenticationMethod=sasl/CRAM_MD5 \

-a proxyPassword=secret \

-a proxyDN=cn=proxyagent,ou=profile,dc=domainname,dc=Your,dc=Company \

-a defaultSearchBase=dc=domainname,dc=Your,dc=Company \

-a domainName=domainname.YourCompany.com \

-a followReferrals=false \

-a defaultServerList=192.168.10.10:386

Configuring NSS
Your host needs to be configured, via Name Service Switch, to use LDAP. Your base configura-
tion is stored in /etc/nsswitch.conf. The default file on a system within LDAP could look like
the following:

passwd: db files nisplus nis

shadow: db files nisplus nis

group: db files nisplus nis

hosts: nisplus [NOTFOUND=return] files dns

This configuration tells your host where to look for various types of information. For exam-
ple, it looks for a host via nisplus, then local files, and then dns. The NOTFOUND option lets you
stop if the previous option wasn’t returned. To reduce your master server’s dependency on net-
work services, its critical systems (and itself) should be stored within the /etc/hosts file. If cer-
tain critical hosts in your environment, such as LDAP slaves, aren’t in this file, you’ll have too
much dependency on DNS and other network services for your environment to function.
Reducing this dependency also speeds up certain operations. This is advised only for static
data, because many configurations are dynamic and cause conflict if there are IP conflicts
because of external DNS changes.

For your system to know to use LDAP to retrieve information, you add the line ldap to
your configuration file. The resulting file looks like the following:

passwd: ldap files

shadow: ldap files

group: ldap files

hosts: ldap dns [NOTFOUND=return] files dns

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 249

4134_c07_final.qxd 9/30/04 11:33 AM Page 249

The basic idea is to use LDAP whenever the information is available and to fall back on
other sources of data if it’s not. The specific options to use within this file depend on services
available within your environment, which is the authoritative source for information. Retriev-
ing host information via LDAP may not be the best thing for your particular environment. The
specific search order also depends on how services are configured, because NIS may be the
authoritative source for some users with LDAP storing information only for certain external
users or role accounts.

Because pure LDAP integration with products is relatively new, consider integration with
the existing migration tools and software optional, not a requirement. That is, just because you
can do something using LDAP, it may not always be the best option for you. DNS, for example,
has established tools and a proven set of APIs that already work well. Moving this information
to LDAP may not give you any benefits. Certain flat text files that are relatively static (but may
be appended during patches or operating system upgrades) are already maintained well as
files. Administrators rarely modify these files manually. Therefore, storing this data via LDAP
(and having hosts rely on this data) may conflict with system patches and system upgrades, as
no mechanisms currently exist that update these files via LDAP.

Configuring PAM
You’ll be making many system modifications in order to utilize PAM LDAP modules. The con-
figuration file for the pam_ldap.so module is /etc/pam_ldap.conf.

Ldaphost$ cat /etc/pam_ldap.conf

uri ldaps://ldap.example.com/

base dc=example,dc=com

pam_password exop

The uri directive points PAM to your LDAP server. Your base DN is configured using the
base directive. The directive pam_password exop tells pam-ldap to change passwords in a way
that allows OpenLDAP to apply the hashing algorithm specified in /etc/ldap/slapd.conf,
instead of attempting to hash locally and write the result directly into the database.

The base configurations for PAM are stored in /etc/pam.d. They define the libraries and
other information necessary for utilizing various system services, such as authentication. The
base configuration file on your existing Linux system may look like this:

#%PAM-1.0

auth required /lib/security/pam_env.so

auth sufficient /lib/security/pam_unix.so likeauth nullok

auth required /lib/security/pam_deny.so

auth required /lib/security/pam_nologin.so

account required /lib/security/pam_unix.so

password required /lib/security/pam_cracklib.so retry=3 type=

password sufficient /lib/security/pam_unix.so nullok use_authtok md5 shadow

password required /lib/security/pam_deny.so

session required /lib/security/pam_limits.so

session required /lib/security/pam_unix.so

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL250

4134_c07_final.qxd 9/30/04 11:33 AM Page 250

ldaps://ldap.example.com

To give LDAP capabilities to your hosts via PAM requires modification of the /etc/pam.d/
system-auth configuration file. The basic idea is to use pam_ldap.so for functions that will uti-
lize LDAP, as follows:

auth sufficient /lib/security/pam_ldap.so use_first_pass

Add this line after the base configurations that already exist. In the case of auth, you’d add
it before the last deny line.

auth required /lib/security/pam_deny.so

You append the account directive as follows upon the addition of LDAP support:

account required /lib/security/pam_unix.so

account sufficient /lib/security/pam_ldap.so

The other directives may look like the following upon completion:

password required /lib/security/pam_cracklib.so retry=3 \

minlen=4 dcredit=0 ucredit=0

password sufficient /lib/security/pam_unix.so nullok use_authtok md5 shadow

password sufficient /lib/security/pam_ldap.so use_authtok

password required /lib/security/pam_deny.so

session required /lib/security/pam_limits.so

session required /lib/security/pam_unix.so

session optional /lib/security/pam_ldap.so

These configurations insert LDAP support via pam_ldap.so so that it’s utilized during certain
system procedures. Much like older NIS configurations, you’re able to utilize local files first and
then retrieve additional information using LDAP. Additional modules exist that will add other
functionality to your system. PAM serves as a great solution for customizing system authentica-
tion methods that were previously hard-coded. Upon configuring PAM to use LDAP, software
that supports PAM will be able to use LDAP. Viewing system and LDAP logs to verify how certain
software components utilize this and what data they require may be necessary when issues arise.
You may require some attributes that you haven’t defined in your schema for certain software
and that would be queried unsuccessfully against your LDAP host. Legacy software won’t be
able to utilize PAM and will react strangely to your new system configurations.

Specific configurations related to specific system services and function are included in
/etc/pam.d as well. The passwd command, for example, utilizes /etc/pam.d/passwd, and sudo
utilizes /etc/pam.d/sudo. You also need to insert the pam_ldap.so value into these specific files
to enable these programs to utilize LDAP. You need to add new lines for all the directives (auth,
account, password, and session) to reference new information much in the same way they
were inserted in the base configuration file.

Setting Up Security
When implementing any centralized authentication system, control of authentication and
authorization is passed onto the new system. Security products, such as those available from
RSA, need to take this into account. Before, a user could be added and removed from local

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 251

4134_c07_final.qxd 9/30/04 11:33 AM Page 251

password files, but this is no longer the case. Base configurations allow any user able to
authenticate to log into any host that utilizes these centralized systems. PAM allows you to
modify the /etc/ldap.conf configuration file to check for attributes that control host access.
You need to add the following line:

pam_check_host_attr yes

This option will, upon user authentication, check for the host attribute within a user’s
LDAP profile to see if the Fully Qualified Domain Name (FQDN) of the specific hosts exists.
While not necessary for all hosts, systems that require a higher security level benefit from this
option. Be careful in the case of users with no host attributes, because you could be denying
them access to all servers. You can create manual functions to manage these scenarios.

Additionally, because information is now stored in LDAP, you should apply access con-
trols to allow only specific accounts and hosts to retrieve certain information via LDAP.

Using Sendmail
Sendmail is the most popular Mail Transfer Agent (MTA) in use today. An MTA transfers mail
between computers and starts working as soon as your Mail User Agent (MUA) sends a mes-
sage. Sendmail, qmail, and Postfix are examples of popular MTAs that are probably used within
your company. Microsoft Outlook, Eudora, and pine are examples of MUAs. In corporate envi-
ronments, it’s common to have a single system that has the capabilities (though separate) of an
MUA and MTA. Lotus Notes is an example of such a system. Because of the popularity of send-
mail and its historical dependence on flat files stored on the server, I’ll discuss integrating this
MTA with OpenLDAP.

In a traditional Sendmail environment, information associated with the lookup and routing
of user Simple Mail Transfer Protocol (SMTP) information has been individually stored on each
Sendmail server in the form of database maps or flat files. While this doesn’t pose a problem for
a single server, multiple Sendmail services had to somehow keep these files in synchronization
with each other or required the e-mail administrator to update these files on each server individ-
ually. LDAP enables Sendmail to access a cross-platform, standards-based central repository of
user information. Another key benefit of LDAP is that now companies can use standards-based
tools, using almost any development language that’s LDAP-enabled, to create a customized direc-
tory of information for company-wide access by all applications (not limited to e-mail).

Additionally, e-mail systems (in the world of TCP/IP) were quite primitive and didn’t allow
for the advanced routing of e-mails. When a mail to Tom_Jackiewicz@host1.YourCompany.com was
sent, host1.YourCompany.com accepted the message, and the process was over. As e-mail systems
scaled and more hosts were added, the routing of the message was contained within your e-mail
address. This led to Susan_Surapruik@host25.YourCompany.com. This became a hassle and cus-
tom solutions were developed to allow for all people to exist at @YourCompany.com without having
specific routing information contained within the e-mail address. One of the first standard ways
of doing this was with LDAP. Using LDAP, a standard mail exchange (MX) record could be set up
for a single domain, and routing was performed internally, without requiring the sender to have
any knowledge of the routing required for a mail message to end up in the recipient’s mailbox.

Figure 7-2 shows “modern” mail routing as it existed before LDAP became an integral
component of e-mail systems. (Note that I won’t discuss legacy X.400 and X.500 electronic
mail systems in this chapter.)

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL252

4134_c07_final.qxd 9/30/04 11:33 AM Page 252

mailto:Jackiewicz@host1.YourCompany.com
mailto:Surapruik@host25.YourCompany.com
mailto:@YourCompany.com

In this example, e-mail is sent to a user at a specific host. The MX for this domain (or for that
specific host) is contacted, and e-mail is routed to the final destination. It was necessary for the
sender to know which host the recipient existed on in order for the mail to be handled appropri-
ately. If e-mail for user@host1.domain.com was mistakenly sent to user@host2.domain.com, the
message would be invalid and inappropriately handled. Enabling LDAP support within Sendmail
allowed you to store alias maps and other information used to route e-mail within your central
directory.

Enabling the Software
You need to verify that the Sendmail you’ll be working with is compiled with support for LDAP.
To do this, execute the following command:

$ sendmail -d0.1 -bv root

Version 8.12.8

Compiled with: DNSMAP HESIOD HES_GETMAILHOST LDAPMAP LOG MAP_REGEX

MATCHGECOS MILTER MIME7TO8 MIME8TO7 NAMED_BIND NETINET NETINET6

NETUNIX NEWDB NIS PIPELINING SASL SCANF STARTTLS TCPWRAPPERS

USERDB USE_LDAP_INIT

============ SYSTEM IDENTITY (after readcf) ============

(short domain name) $w = ldaphost

(canonical domain name) $j = ldaphost.yourcompany.com

(subdomain name) $m = yourcompany.com

(node name) $k = ldaphost.yourcompany.com

==

Notice: -bv may give misleading output for non-privileged user

can not chdir(/var/spool/mqueue/): Permission denied

Program mode requires special privileges, e.g., root or TrustedUser.

$

In the output, you can see that the version of Sendmail you’re working with has been
compiled with LDAPMAP, which gives you native support for LDAP.

To compile Sendmail with LDAP support, do this:

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 253

Figure 7-2. “Modern” mail routing

4134_c07_final.qxd 9/30/04 11:33 AM Page 253

mailto:user@host1.domain.com
mailto:user@host2.domain.com

APPENDDEF(`confMAPDEF', `-DLDAPMAP')

APPENDDEF(`confINCDIRS', `-I/path/to/openldap-1.2.11/include')

APPENDDEF(`confLIBSDIRS', `-L/path/to/openldap-1.2.11/libraries')

APPENDDEF(`confLIBS', `-lldap -llber')

The first line tells Sendmail to include the -DldapMAP option in the build process. The sec-
ond and third lines tell Sendmail where to find the OpenLDAP include and libraries directories
so that the necessary files can be located while building the Sendmail executable.

The following is the base configuration you need to add to your sendmail.mc configur-
ation file:

LDAPROUTE_DOMAIN('yourcompany.com')dnl

Define(confLDAP_DEFAULT_SPEC,

-h ldap.yourcompany.com

-b dc=yourcompany.com

To define a group of hosts, use this:

Define(`confLDAP_CLUSTER', `Servers')

To enable LDAP aliases, use this:

Define(`ALIAS_FILE’, `ldap:')

To enable other lookups, use this:

FEATURE(`access_db', `LDAP')

FEATURE(`virtusertable', `LDAP')

To enable classes, use this:

RELAY_DOMAIN_FILE(`@LDAP')

Invoke Sendmail in test mode to verify that the LDAP maps are being processed correctly.
You can do this while Sendmail is running in daemon mode with no problems.

example: sendmail -bt

Sendmail will return a > prompt and wait for user input. Use /parse jradford@foo.com,
and observe the last line Sendmail returns. The final result is a triple returning the mailer, host,
and recipient, as follows:

mailer esmtp, host mailhost1.foo.com, user my_user@foo.com

The mailer is esmtp (or smtp), the host is mailhost1.foo.com (as set by the mail host’s LASER
attribute for the jradford entry), and the final username (as set by the mailroutingaddress
LASER attribute) is the clean e-mail address of the user within your domain, such as
tom@yourcompany.com. The returned mail host DNS name will now be looked up in DNS for
valid MX records and be delivered based upon these returned values from DNS. To exit from
test mode, simply press Ctrl+D.

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL254

4134_c07_final.qxd 9/30/04 11:33 AM Page 254

mailto:jradford@foo.com
mailto:user@foo.com
mailto:tom@yourcompany.com

Building the Binaries
From the root of the Sendmail archive, execute the build command to compile the Send-
mail binaries and the appropriate support programs. You should see the -dldapMAP and
-lldap -llber options on the command line while Sendmail is compiling.

[root@ldap02 sendmail-8.12.11]# pwd

/usr/src/sendmail-8.12.11

[root@ldap02 sendmail-8.12.11]# ./Build

Making all in:

/usr/src/sendmail-8.12.11/libsm

...

Migrating Information
During the migration of basic system information earlier, you already migrated various alias
information into your system. The /etc/aliases file you migrated looked like the following:

dn: cn=mailer-daemon,ou=Aliases,dc=Your,dc=Company

cn: mailer-daemon

objectClass: nisMailAlias

objectClass: top

rfc822MailMember: postmaster

dn: cn=postmaster,ou=Aliases,dc=Your,dc=Company

cn: postmaster

objectClass: nisMailAlias

objectClass: top

rfc822MailMember: root

dn: cn=testuser,ou=Aliases,dc=Your,dc=Company

cn: testuser

objectClass: nisMailAlias

objectClass: top

rfc822MailMember: tom@sun4c.net

By initially defining the ALIAS_FILE directive with a pointer to LDAP, you enable the
default search that Sendmail performs.

define(`ALIAS_FILE', `ldap:')

This creates the default search parameters as follows:

ldap -k (&(objectClass=sendmailMTAAliasObject)

(sendmailMTAAliasGrouping=aliases)

(|(sendmailMTACluster=${sendmailMTACluster})

(sendmailMTAHost=$j))

(sendmailMTAKey=%0))

-v sendmailMTAAliasValue

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 255

4134_c07_final.qxd 9/30/04 11:33 AM Page 255

mailto:tom@sun4c.net

You can see that the object classes that were migrated were generic, but the format was
clear. Other data files that Sendmail is familiar with are similar. The following is a base example:

dn: sendmailMTAKey=postmaster,dc=Your,dc=Company

objectclass: sendmailMTA

objectclass: sendmailMTAAlias

objectclass: sendmailMTAAliasObject

sendmailMTAAliasGrouping: aliases

sendmailMTACluster: Servers

sendmailMTAKey: postmaster

sendmailMTAAlias: tjackiewicz

dn: sendmailMTAKey=testuser,dc=Your,dc=Company

objectclass: sendmailMTA

objectclass: sendmailMTAAlias

objectclass: sendmailMTAAliasObject

sendmailMTAAliasGrouping: aliases

sendmailMTACluster: Servers

sendmailMTAKey: testuser

sendmailMTAAlias: tom@sun4c.net

While avoiding a conflict, you have the flexibility of taking the existing set of information
that has been migrated and appending the object classes that Sendmail understands. Or, you
could modify the search filters used within Sendmail to perform searches based on the infor-
mation you’ve already populated into your system. You can expand the definitions beyond
Sendmail’s own way of using LDAP by modifying the initial definitions. You do this as follows:

define(`ALIAS_FILE', `ldap:-k (&(objectClass=nisMailAlias) \

(mail=%0)) -v mgr pRFC822MailMember')

This will create a custom search that Sendmail will then perform to obtain the appropriate
set of DNs that will be used for aliases. Although in the default example Sendmail expected cer-
tain values, you can consider this a suggestion and use your own schema. The new definition
you’ve created will search for the object class of nisMailAlias that you created during migration.

Besides aliases and users, Sendmail uses other data for storing routing and delivery infor-
mation that it will use internally. Table 7-1 lists all Sendmail maps.

Table 7-1. Values for sendmailMTAMapName

FEATURE() sendmailMTAMapName

access_db access

authinfo authinfo

bitdomain bitdomain

domaintable domain

genericstable generics

mailertable mailer

uucpdomain uucpdomain

virtusertable virtuser

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL256

4134_c07_final.qxd 9/30/04 11:33 AM Page 256

mailto:tom@sun4c.net

Each feature of Sendmail and the maps will expand to a base definition that can, as you
saw with the alias data, be used as-is or modified to be more compliant with your system
infrastructure.

By setting FEATURE(`mailertable', `LDAP'), the following sendmailMTAMap would be used:

Kmailertable ldap -k (&(objectClass=sendmailMTAMapObject)

(sendmailMTAMapName=mailer)

(|(sendmailMTACluster=${sendmailMTACluster})

(sendmailMTAHost=$j))

(sendmailMTAKey=%0))

-1 -v sendmailMTAMapValue

The following is an example LDAP LDIF entry:

dn: sendmailMTAMapName=mailer, dc=your,dc=company

objectClass: sendmailMTA

objectClass: sendmailMTAMap

sendmailMTACluster: Servers

sendmailMTAMapName: mailer

dn: sendmailMTAKey=yourcompany.com, sendmailMTAMapName=mailer, dc=your, \

dc=company

objectClass: sendmailMTA

objectClass: sendmailMTAMap

objectClass: sendmailMTAMapObject

sendmailMTAMapName: mailer

sendmailMTACluster: Servers

sendmailMTAKey: yourcompany.com

sendmailMTAMapValue: relay:[smtp.yourcompany.com]

As with other maps, you can modify values to include your own specific searches. How-
ever, with features that are more specific to Sendmail (and not global sets of data such as
users, groups, and aliases) you should keep the original values. If you need to create your own,
you do so but define the feature as follows:

FEATURE(`mailertable', `ldap:-1 -k (&(objectClass=customClass) \

(key=%0)) -v value')

You’ll also want to include the following lines, depending on your specific configuration
needs and operating system:

OSTYPE(line)dsl

MAILER(smtp)

MAILER(local)

You must define an operating system environment for your configuration. These configu-
rations are stored within the ostype directory and define various base components of your
system. Many of these configurations are the same, but the definitions exist for future com-
patibility. You should define the OSTYPE option immediately after any version information and
before any other definitions. The MAILER definitions define what type of functionality your sys-
tem will support. The MAILER(local) configuration defines local and prog mailers—basically

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 257

4134_c07_final.qxd 9/30/04 11:33 AM Page 257

your local delivery agents. The MAILER(smtp) configuration sets up support for SMTP, support
for extended SMTP (esmtp), SMTP support for 8-bit data, support for on-demand delivery, and
support for relaying. Additionally, you can set up support for legacy mailers such as UUCP or
specific implementations of other applications that may work with your Sendmail system
(such as QuickPage or Cyrus).

Classes, which function like macros within Sendmail, are also candidates for storage within
your directory. Within base Sendmail configurations, classes are defined with the lead character
of F, as follows:

F{ClassName}mapkey@mapclass:mapspec

mapkey is optional, and if not provided, the map key will be empty. You can use this with
LDAP to read classes from LDAP. Note that the lookup happens only when sendmail is ini-
tially started. As with other definitions that I’ve previously discussed, you can use the special
value `@LDAP' to use the default LDAP schema. For example, take a look at the definition for
RELAY_DOMAIN_FILE in the following line:

RELAY_DOMAIN_FILE(`@LDAP')

This definition puts all the attribute sendmailMTAClassValue values of LDAP records
with objectClass sendmailMTAClass and an attribute sendmailMTAClassName of 'R' into the
class $={R}. The default set of queries being performed against LDAP is as follows:

F{R}@ldap:-k (&(objectClass=sendmailMTAClass)

(sendmailMTAClassName=R)

(|(sendmailMTACluster=${sendmailMTACluster})

(sendmailMTAHost=$j)))

-v sendmailMTAClassValue

Table 7-2 shows the full set of classes and resulting sendmailMTAClassNames.

Table 7-2. Sendmail Class Names

Command sendmailMTAClassName

CANONIFY_DOMAIN_FILE() Canonify

EXPOSED_USER_FILE() E

GENERICS_DOMAIN_FILE() G

LDAPROUTE_DOMAIN_FILE() LDAPRoute

LDAPROUTE_EQUIVALENT_FILE() LDAPRouteEquiv

LOCAL_USER_FILE() L

MASQUERADE_DOMAIN_FILE() M

MASQUERADE_EXCEPTION_FILE() N

RELAY_DOMAIN_FILE() R

VIRTUSER_DOMAIN_FILE() VirtHost

You can create custom classes as follows:

F{ClassName}@LDAP

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL258

4134_c07_final.qxd 9/30/04 11:33 AM Page 258

The resulting LDIF for your default class definition is as follows:

dn: sendmailMTAClassName=R, dc=your,dc=company

objectClass: sendmailMTA

objectClass: sendmailMTAClass

sendmailMTACluster: Servers

sendmailMTAClassName: R

sendmailMTAClassValue: sendmail.org

sendmailMTAClassValue: yourcompany.com

sendmailMTAClassValue: 10.56.23

As with other definitions, you can customize the set of information that Sendmail will uti-
lize to create this information by expanding from the @LDAP definition to include other infor-
mation.

Setting Up LDAP Routing
The basic functionality that LDAP initially gave Sendmail (and other mail systems) was the
ability to route mail based on an attribute information contained within a user’s profile (or
DN). This was the “killer app” that gave LDAP global acceptance. So far I’ve discussed storing
profile information that Sendmail uses internally within your LDAP directory, but haven’t dis-
cussed the feature of actually utilizing mail routing information via LDAP. You enable this
basic feature using the following:

FEATURE(`ldap_routing')

LDAPROUTE_DOMAIN('yourcompany.com')

LDAPROUTE_EQUIVALENT()

LDAPROUTE_EQUIVALENT_FILE()

Using this feature enables the routing of user mail to a particular host or moves it com-
pletely out of the environment using an alternate e-mail address. Enabling the ldap_routing
feature allows Sendmail to route mail via LDAP information. LDAPROUTE_DOMAIN sets the base
domain for which this is done. For example, if your company has the domain of yourcompany.com,
this is the base domain that will be controlled via LDAP. You can specify alternate domains
and subdomains with the LDAPROUTE_EQUIVALENT and LDAPROUTE_EQUIVALENT_FILE features,
which will allow you to, for example, control mail for randomhost1.yourcompany.com or
differentdepartment.yourcompany.com.

The LDAP routing feature can, like other definitions that are stored within LDAP, utilize
extra parameters to fully customize the behavior of your LDAP searches. You do this as follows:

FEATURE(`ldap_routing', <mailHost>, <mailRoutingAddress>, <bounce>, <detail>)

In this example, <mailHost> is a map definition that describes how to look up an alterna-
tive mail host for a particular address. <mailRoutingAddress> is a map definition that describes
how to look up an alternative address for a particular address; the <bounce> argument, if pres-
ent and not the word passthru, dictates that mail should be bounced if neither a mailHost nor
mailRoutingAddress is found. <detail> indicates what actions to take if the address contains
+detail information. `strip' tries the lookup with the +detail and, if no matches are found,
strips the +detail and tries the lookup again; `preserve' does the same as `strip', but if
a mailRoutingAddress match is found, the +detail information is copied to the new address.

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 259

4134_c07_final.qxd 9/30/04 11:33 AM Page 259

The default <mailHost> map definition is as follows:

ldap -1 -v mailHost -k (&(objectClass=inetLocalMailRecipient)

(mailLocalAddress=%0))

The default <mailRoutingAddress> map definition is as follows:

ldap -1 -v mailRoutingAddress -k (&(objectClass=inetLocalMailRecipient)

(mailLocalAddress=%0))

The following possibilities exist as a result of an LDAP lookup on an address:

mailHost is mailRoutingAddress is Results in

----------- --------------------- ----------

set to a set mail delivered to

"local" host mailRoutingAddress

set to a not set delivered to

"local" host original address

set to a set mailRoutingAddress

remote host relayed to mailHost

set to a not set original address

remote host relayed to mailHost

not set set mail delivered to

mailRoutingAddress

not set not set delivered to

original address *OR*

bounced as unknown user

The following are examples of users you’d have within your environment that utilize this
information:

dn: uid=tjackiewicz,ou=People,dc=your,dc=company

objectclass: inetlocalmailrecipient

maillocaladdress: tom@yourcompany.com

mailroutingaddress: tom@mailhost8.yourcompany.com

This record would enable the delivery of mail directed at tom@yourcompany.com to
tom@mailhost8.yourcompany.com. What this means is that whenever your Sendmail system
accepted mail for this address, it’d know that the real address that needs to be used is stored
in the mailroutingaddress attribute. This mailroutingaddress would be used, and the mail
would be routed to the appropriate mail host. This is a legacy configuration, because LDAP
now enables you to route mail using mailhost attributes instead of storing the routing infor-
mation within the e-mail address itself. LDAP entries that define mail recipients within your
directory need to have the objectClass of inetLocalMailRecipient defined, and the address
needs to be listed in the mailLocalAddress attribute. If present, there must be only one

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL260

4134_c07_final.qxd 9/30/04 11:33 AM Page 260

mailto:tom@yourcompany.com
mailto:tom@mailhost8.yourcompany.com
mailto:tom@yourcompany.com
mailto:tom@mailhost8.yourcompany.com

mailhost attribute, and it must contain a fully qualified host name as its value. Similarly, if
present, there must be only one mailRoutingAddress attribute, and it must contain an RFC
822–compliant address.

The following example demonstrates mail routing:

dn: uid=susan_surapruik, ou=People,dc=your,dc=company

objectClass: inetLocalMailRecipient

mailLocalAddress: susan_surapruik@yourcompany.com

mailHost: smart.yourcompany.com

This particular entry understands that the ultimate destination of
susan_surapruik@yourcompany.com relies on the mailhost attribute. Upon a Sendmail sys-
tem receiving this mail and looking up the entry within LDAP, the system would then route
information to smart.yourcompany.com. Upon receipt of this mail at the destination mail
host, smart.yourcompany.com would understand that the mail is local and is to be delivered
(or, depending on configurations, handled and routed again). The
susan_surapruik@yourcompany.com e-mail address would be retained.

You can combine these routing and mail-handling features. If you need to change the pre-
vious address for susan_surapruik upon receipt at the mail host, the entry would look like this:

dn: uid=susan_surapruik, ou=People,dc=your,dc=company

objectClass: inetLocalMailRecipient

mailLocalAddress: susan_surapruik@yourcompany.com

mailHost: smart.yourcompany.com

mailroutingaddress: susan@surapruik.yourcompany.com

This particular example would still send mail to the same smart.yourcompany.com host,
but instead of retaining the original address, it’d rewrite it to be the address stored within the
mailroutingaddress attribute.

As you can see, the use of LDAP now gives Sendmail the powerful features necessary to han-
dle large e-mail environments while maintaining simplicity in the naming conventions that are
used and distributed to the people outside your company. No longer is it necessary to have host-
based routing and different e-mail addresses for each mail system within your environment.

Summary
After reading this chapter, you should become a bit more familiar with what is takes to
integrate OpenLDAP into your environment. IETF drafts, RFCs, and migration information
is available to you in this book as well as online and should serve as a guide for populating
information into your directory.

CHAPTER 7 ■ INTEGRATING AT THE SYSTEM LEVEL 261

4134_c07_final.qxd 9/30/04 11:33 AM Page 261

mailto:surapruik@yourcompany.com
mailto:surapruik@yourcompany.com
mailto:surapruik@yourcompany.com
mailto:surapruik@yourcompany.com
mailto:susan@surapruik.yourcompany.com

4134_c07_final.qxd 9/30/04 11:33 AM Page 262

Integrating OpenLDAP with
Applications, User Systems,
and Client Tools

Although not quite as complicated as the process of deploying Lightweight Directory Access
Protocol (LDAP) and integrating it with your operating system and back-end applications, the
ability to integrate LDAP with some of your existing clients and applications will quickly show
you the benefits of LDAP within your environment. Many tools today utilize LDAP in some
capacity, from Web browsers to mail clients. You can even use a base set of graphical user inter-
face (GUI) tools to browse your LDAP structure for information.

You’ll be configuring many types of applications that fall into the LDAP-enabled category.
Just like integration at a system level (discussed in the previous chapter), you’ll see a definite
evolution in how applications support LDAP.

Originally, applications needed a certain level of LDAP synchronization, and they relied
on native files and authentication technology. That is, Web servers such Apache or e-mail
applications such as Sendmail synchronized via LDAP and stored information locally; in other
words, they generated data via an LDAP interface. As applications evolved and LDAP became
more of a requirement in corporate infrastructures, applications gained better native LDAP
support.

Preparing for Integration
You must take various steps before configuring a client application against your server. Much
like the configurations discussed in the previous chapter on server integration, you need to
understand the configurations on which your LDAP server will depend. That is, if your client
is expecting a certain set of attributes to describe a subset of data, you must understand how
this information is configured on the server side. Some applications don’t allow you to config-
ure the way information is queried, which could stop you in your tracks or require you to work
with the system administrators to gain interoperability.

Understanding how clients interact with your system is the most important step in
preparing for integration. The following are some of the specific types of information you’ll
want to understand and research:

263

C H A P T E R 8

■ ■ ■

4134_c08_final.qxd 9/30/04 11:35 AM Page 263

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS264

• Is the client requesting specific attributes? As I just mentioned, certain clients associate
certain field names with specific LDAP attributes. For example, is the e-mail address
expected to be rfc822mailrecipient or mail? Can you configure this for a specific
search, or is this information hard-coded?

• Are wildcards automatically appended to searches? That is, when searching for
uid=3261, will the search automatically become uid=3261*?

• How does the client handle referrals? Are they ignored, returned as errors, or followed?

• Is the client making any updates to the system that are unexpected?

• Is the client requesting specific object classes? That is, when configuring an applica-
tion, are there any custom schema requirements for which your client is looking?

Between versions (even minor versions), clients often change how they interact with a
system. Keep this in mind when making modifications. For example, Internet Explorer 3.02
performs searches differently than Internet Explorer 4.0 does, and they may not be docu-
mented well or may be hidden somewhere in the release notes. Also, some clients handle
error messages, such as a “DSA is unwilling to perform” error, in different ways. The inter-
pretation of error messages is a significant problem. For example, when error 10 (a referral)
is returned to a client, some handle it appropriately, and others look at this as a significant
failure and return no information.

Integrating Apache
Apache can use LDAP to extend its functionality. The Apache Web server has long supported
LDAP for authentication and access control as an alternative to text files stored within its con-
figurations. Two LDAP modules exist for this purpose. Unfortunately, these modules perform
authentication in a manner that’s both a security risk and nonportable. The process involves
searching an entry, retrieving its password, and checking for a match against the password
supplied. The crypt mechanism for password storage (like in older versions of Unix) is required
for this level of integration. The Apache LDAP modules require that the userPassword attribute
is either opened completely or restricted to a directory user whose username and password
are listed in the Apache configuration files.

The Apache::AuthLDAP module for mod_perl leverages the power of the Net::LDAPapi
module to provide extensible LDAP authentication and authorization handlers for Apache.
This module has excellent performance and supports Apache on both Unix and Windows NT.
It also supports LDAP over Secure Sockets Layer (SSL), as well as a mode that lets Microsoft
FrontPage clients manage their Web permissions while still using LDAP for authentication.
You can find Apache::AuthLDAP at http://perl.apache.org/ in the list of modules. Installation
is relatively straightforward on any system where mod_perl and Net::LDAPapi have already
been installed.

The module itself is actually divided into two parts. The first is the AUTH handler, which
authenticates a user based on a given login name and password. The second part is the AUTHZ
handler, which analyzes the require statements in an Apache access control file to provide
access control. mod_perl must have both AUTH and AUTHZ handlers enabled in order to use this
module.

4134_c08_final.qxd 9/30/04 11:35 AM Page 264

http://perl.apache.org

The following is an example of an Apache access control file (in other words, access.conf
or .htaccess) that restricts access for a particular area to people who can authenticate as some-
one with required attribute values:

<Directory /foo/bar>

Authentication Realm and Type (only Basic supported)

AuthName "Foo Bar Authentication"

AuthType Basic

Any of the following variables can be set. Defaults are listed

to the right.

PerlSetVar BaseDN dc=Your,dc=Company # Default: Empty String ("")

PerlSetVar LDAPServer ldapserver.yourcompany.com # Default: localhost

PerlSetVar LDAPPort 389 # Default: 389 (standard LDAP port)

PerlSetVar UIDAttr uid # Default: uid

PerlAuthenHandler Apache::AuthLDAP

Require lines can be any of the following:

#

require valid-user # Any Valid LDAP User

require user uid1 uid2 uid2 # Allow Any User in List

require ldapattrib val1 val2 # Allow Any User w/ Entry Containing

Matching Attribute and Value

</Directory>

The Apache::AuthLDAP module supports access control based on Valid-User, User,
Attribute, Groups, or Filter. Valid-User checks that a user exists in LDAP. User checks that
a user exists in a static list. For example, the directive require user tjackiewicz would require
that the user have the username of tjackiewicz for the authentication to pass. Attribute veri-
fies that users contain a certain attribute within their profiles. Groups requires a user to exist
within a particular group. Filter requires that a user exist as a result of a particular LDAP fil-
ter. For example, require group "cn=Managers,dc=Your,dc=Company" requires that the user
exist within the group profile for managers. User-based access controls simply require that
the user’s login name matches one in the require line.

Finally, filter-based access controls allow complex LDAP search filters to be created to
control access based on one or more attribute-value combinations. This is currently the only
way to implement access controls with multiple conditions. For example, a filter requiring
that an authorized user’s entry must contain a profile attribute with the value app1 and a
department attribute with a value of IT may look like this:

require filter (&(profile=app1)(department=IT))

Each of the attributes defined within the filter should be indexed for performance.
Entries in an LDAP directory may contain attributes with uniform resource indicator

(URI) values. Such attributes usually contain the home page for the given directory entry. Web
servers can use these attributes to rewrite URIs based on directory information. In general, URI
rewriting based on LDAP entries can be a good replacement for rewriting based on passwd file
entries for sites that distribute users’ personal Web pages across multiple servers but don’t want
to interconnect them using a network filesystem or other means. For example, you could auto-
matically redirect all queries to ~username on a Web server to a URI residing in the LDAP entry
for username. One way to add this functionality to Apache would be to develop a module similar

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS 265

4134_c08_final.qxd 9/30/04 11:35 AM Page 265

to mod_userdir bundled with Apache. Such a module would simply parse an existing URI, sub-
stituting the results from an LDAP query as necessary. Another way to add this functionality is
to have a Common Gateway Interface (CGI) perform the URI rewriting.

Apache::TransLDAP is a reference implementation of a mod_perl Apache module that
will rewrite URIs based on LDAP attributes. You can find it in the Apache module list at
http://perl.apache.org/.

Listing 8-1 is a short example of how to use this module to rewrite URIs from /users/
username on the current server to the labeledURI attribute in the username’s LDAP entry.

Listing 8-1. TransLDAP

Set the TransHandler to be TransLDAP

PerlTransHandler Apache::TransLDAP

Set Server and Search Information

PerlSetVar LDAPServer ldapserver.yourcompany.com

PerlSetVar LDAPBase "dc=your,dc=company"

PerlSetVar UIDAttr "uid"

This is the standard attribute for

URIs within an LDAP entry

PerlSetVar URIAttr "labeleduri"

The Virtual Home Page URI

PerlSetVar UserDir "/users/"

With this module enabled, each request to the Apache server will call the Apache::TransLDAP
module as a Perl TRANS handler. To work, TRANS handlers must be enabled in mod_perl, and
Net::LDAPapi must already be installed. For each request, the module will first check to see if
the URI begins with UserDir. If not, it declines to make changes and passes control back to
Apache. Otherwise, a connection is opened to the LDAP server to find the entry for the speci-
fied user. If an entry isn’t found, or the entry doesn’t contain a value for the required URI attrib-
ute, the module will pass control back to Apache without making changes. Upon success, the
initial part of the URI is translated to the LDAP attribute’s value. This new URI is then returned
to the Web client as a redirect, with response code 301. Although the previous technique works
well for redirecting based on attributes within users, you can also use it to create virtual home
pages for organizations, groups, and other object classes within the directory.

One of the most powerful features of Apache and mod_perl is the ability to have Perl-based
configuration sections within httpd.conf and other server configuration files. Combined with
the Net::LDAPapi module, the Apache server has the ability to obtain configuration informa-
tion from an LDAP server. You can easily compile this module on various platforms. In fact, it
has been tested extensively under Solaris and verified to work under HP/UX 10, AIX, BSD/OS,
and Red Hat Linux. Additionally, as of version 1.39, the module has been verified to work with
Windows NT 4.0 and Perl 5.004+. This is most useful in using an LDAP directory to control
configuration for a cluster of servers. Prior to actually configuring a server via LDAP and Perl,
it’s first necessary to create an object class on the directory server that contains the configura-
tion attributes needed by the server. For this example, the following attributes could make up
an object class used for location access controls:

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS266

4134_c08_final.qxd 9/30/04 11:35 AM Page 266

http://perl.apache.org

LocationURI

AuthType

authName

require

validClusterNumber

Once you create the object class on the server, you can populate entries in the directory
with the information that’s shown in Listing 8-2.

Listing 8-2. Apache Access Control Lists in LDAP

dn: cn=apacheACL1,ou=Apache,ou=Config,dc=your,dc=company

objectClass: apacheACL

location: /protected

authType: basic

authName: Protected

require: valid-user

dn: cn=apacheACL2,ou=Apache,ou=Config,dc=your,dc=company

objectClass: apacheACL

location: /private

authType: basic

authName: Private

require: user tom susan napoleon

require: group people

These LDAP entries could then be read using a <Perl> section within the Apache configu-
ration files. Such a section could look like Listing 8-3.

Listing 8-3. Sample Code

Create a new connection and bind

my $ldap = new Net::LDAPapi($server);

$ldap->bind_s;

Search the directory for objects of

the type I'm looking for.

if ($ldap->search_s($BASE, LDAP_SCOPE_SUBTREE, \

"objectclass=apacheACL", [], 0) == LDAP_SUCCESS)

{

Get all returned entries.

my $locations =

$ldap->get_all_entries;

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS 267

4134_c08_final.qxd 9/30/04 11:35 AM Page 267

Go through each entry returned and

create an access control for that

location based on information in the

directory.

foreach my $dn (keys %{$locations})

{

my %entry = %{$locations->{$dn}};

Here we actually build the ACL

$Location{$entry{"location"}->[0]}=

{

AuthType=>$entry{"authType"}->[0],

AuthName=>$entry{"authName"}->[0],

Limit => {

METHODS=> `GET POST',

require=> [@$entry{"require"}],

}

};

}

}

The segment in Listing 8-3 would allow the Web server to retrieve all access control infor-
mation from the directory server. Multiple servers using the same code segment would have
identical access controls, and localized changes could also be added to local configuration
files without affecting global controls. You could even extend the object class schema used for
this example to include a cluster identifier, thus allowing different clusters to read different
configurations. The only part of the code you’d have to change to support such functionality
is the search. You could also do this by having each cluster configured within different parts
of the directory tree. In this case, you’d have to change $BASE in the previous example to cor-
respond with the correct part of the tree.

Integrating Pine
Pine is a tool for reading, sending, and managing electronic messages. Computing and Com-
munications at the University of Washington (http://www.washington.edu) developed Pine.
Though originally designed for inexperienced e-mail users, Pine has evolved to support many
advanced features and an ever-growing number of configuration and personal preferences.
Pine is available for Unix as well as for personal computers running a Microsoft operating sys-
tem (PC-Pine). I’ll concentrate on the Unix version of Pine for the configurations I’ll be dis-
cussing. Pine has been successfully built with OpenLDAP 2.0.x, with OpenLDAP 1.x, with the
University of Michigan LDAP library (ldap-3.3), and with the Netscape Directory software
development kit (SDK) 1.0 LDAP library.

When using OpenLDAP as the library (or the older University of Michigan library), set up
the symlink so that it points to the base of the LDAP source tree. The ldap-setup script looks
for the directory ldap/libraries/liblber and the libraries ldap/libraries/libldap.a and
ldap/libraries/liblber.a during the initial setup. To use the Netscape Directory SDK library,
make a directory called ldap in the top-level pine directory (where Pine’s build script is located).

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS268

4134_c08_final.qxd 9/30/04 11:35 AM Page 268

http://www.washington.edu

That directory should contain two subdirectories: include and libraries. The include direc-
tory is where you should put the include files from the Netscape SDK. The libraries directory
is where you should put the library libldap.a.

Pine uses the LDAP v2 protocol. When using the LDAP v3 protocol, the results are returned
in the UTF-8 character set. Pine isn’t yet ready to deal with that, so it tells the server to use the
LDAP v2 protocol.

The base configurations for Pine are stored in your home directory in the file .pinerc.
This file contains all the basic configurations for your environment, including your username,
e-mail folders, and any remote hosts you may want to contact during your session. The LDAP
configurations are also stored within this configuration file. The protocols that Pine will be uti-
lizing are Internet Message Access Protocol (IMAP), Simple Mail Transfer Protocol (SMTP), and
LDAP. IMAP will allow you to retrieve messages via folders stored on an IMAP-compatible server.
SMTP allows you to send outgoing mail from your client. LDAP will facilitate access to various
address books (stored within LDAP directories) that may exist within your environment or, in
some cases, on the Internet. You may need to make multiple configuration changes across dif-
ferent Pine configuration files. As I mentioned earlier, you should have the .pinerc file stored
in your home directory (~/.pinerc).

The ~/.pinerc directory stores configurations for just your instance of Pine, and anything
configured in this file will impact only your Pine session. The file could look something like
Listing 8-4.

Listing 8-4. ~/.pinerc

Pine configuration file

#

This file sets the configuration options used by Pine and PC-Pine. These

options are usually set from within Pine or PC-Pine. There may be a

systemwide configuration file that sets the defaults for some of the

variables. On Unix, run pine -conf to see how system defaults have been set.

For variables that accept multiple values, list elements are separated by

commas. A line beginning with a space or tab is considered to be a

continuation of the previous line. For a variable to be unset, its value must

be blank. To set a variable to the empty string, its value should be "".

You can override system defaults by setting a variable to the empty string.

Lines beginning with # are comments and are ignored by Pine.

Overrides your full name from Unix password file. Required for PC-Pine.

personal-name=Tom Jackiewicz

Sets domain part of From: and local addresses in outgoing mail.

user-domain=yourcompany.com

List of SMTP servers for sending mail. If blank: Unix Pine uses sendmail.

smtp-server=smtp.yourcompany.com

Path of (local or remote) INBOX, e.g. ={mail.somewhere.edu}inbox

Normal Unix default is the local INBOX (usually /usr/spool/mail/$USER).

inbox-path={mail01.yourcompany.com:143/imap/user=tom_jackiewicz}INBOX

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS 269

4134_c08_final.qxd 9/30/04 11:35 AM Page 269

Overrides default path for your sent-mail folder, e.g. =old-mail (using first

folder collection dir) or ={host2}sent-mail or ="" (to suppress saving).

Default: sent-mail (Unix) or SENTMAIL.MTX (PC) in default folder collection.

default-fcc={mail01.yourcompany.com:143/imap/user=tom_jackiewicz}sent-mail

Overrides default path for saved-msg folder, e.g. =saved-messages (using 1st

folder collection dir) or ={host2}saved-mail or ="" (to suppress saving).

Default: saved-messages (Unix) or SAVEMAIL.MTX (PC) in default collection.

default-saved-msg-folder={mail01.yourcompany.com:143/imap/user=tom_jackiewicz}SAVE

LDAP servers for looking up addresses.

ldap-servers=ldap.yourcompany.com:389 "/base=dc=your,dc=company"

In the configuration in Listing 8-4, I’ve removed various lines that don’t specifically relate
to Pine and external system integration (IMAP and LDAP). A default pine configuration will
utilize local files for mailboxes and local resources (such as a locally installed sendmail binary)
to function as a mail client. Local files are also used for address books and user lookups.

The file /etc/pine.conf.fixed, which is looked up first during the Pine session, looks like
Listing 8-5 by default.

Listing 8-5. Default pine.conf.fixed Configuration File

#

Pine systemwide enforced configuration file - customize as needed

#

This file holds the systemwide-enforced values for Pine configuration

settings. Any values set in it will override values set in the

systemwide default configuration file (/etc/pine.conf) and

the user's own configuration file (~/.pinerc).

For more information on the format of this file, read the

comments at the top of /etc/pine.conf

For systems with a static set of configurations that need to be enforced, the system
administrator (root) creates this file, which provides defaults that override any configurations
that may exist in a user’s local configuration file. That is, if a default signature or SMTP server
needs to be used, it’d be configured in this file. This removes flexibility for you to make your
own client configurations and have Pine function in a way outside your system administra-
tor’s default configurations. Sometimes system administrators configure this file to ensure
a static environment and a base set of servers for use, which helps in troubleshooting prob-
lems if an administrator knows there’s only one place to look for configuration problems.

You can think of the /etc/pine.conf file as a set of suggestions from the administrators
for your configurations. This file can contain the same set of information that the other
configuration files contain, but any user with the ~/.pinerc file can overwrite the values
stored here.

For the ~/.pinerc file, the user can change the settings directly from Pine by going into
the Setup and then the Config area (press S and then press C). For LDAP settings, go into Setup
and then Directory (press S and then press D). The following are the important settings for
communicating with an LDAP server:

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS270

4134_c08_final.qxd 9/30/04 11:35 AM Page 270

user-domain: This sets the domain name portion of your e-mail address. From
tom@yourcompany.com, this would be yourcompany.com. Nonqualified e-mails sent from
your client will default to this domain. That is, sending e-mail to just susan would default
to susan@yourcompany.com.

customized-hdrs: This is the From header that will appear in the message you compose
before you send it. If you don’t specify this header, the username and full name are taken
from the GECOS field of the Unix password file.

smtp-server: This is the hostname of the SMTP server that will be used to send mail.
By default, the sendmail binaries are invoked directly by the application to send mail.

inbox-path: This contains the default path to your inbox. By default, this is a local file
within your home directory. When integrating Pine with other systems, this can become
a remote folder on an IMAP server.

folder-collections: This contains points to other folder collections you want to view. You
should concern yourself with only two sets. The first is your inbox folders (personal folders
you create in your inbox), and the second is your mailbox folders, which are default folders
(in other words, Sent Items, Deleted Items, Drafts, Outbox, Public Folders, and so on). By
default, these files are local files within your home directory. When integrating Pine with
other systems, these can become remote folders on an IMAP server.

ldap-server: This is the hostname of your LDAP server in the LDAP URI format. That is,
you can point to the server name, port, base distinguished name (DN), and other search
information within this configuration.

From your shell, start Pine as follows:

$ pine

You’ll be given a set of configuration choices. Press S to configure pine’s options. Then
press C to configure new options. The options I just discussed, and many others, are available
from this configuration.

Another option (from the S menu) that’s interesting is Z (RemoteConfigSetup). This is a
command you’ll probably want to use only once, if at all. It helps you transfer your Pine con-
figuration data to an IMAP server, where it will be accessible from any of the computers you
read mail from (using Pine). The idea behind a remote configuration is that you can change
your configuration in one place and have that change show up on all the computers you use.
This command doesn’t show up on the menu at the bottom of the screen unless you press O
(for Other Commands), but you don’t need to press O to invoke the command.

The configuration to set up directories is also available from the standard S menu by
pressing D. You can view existing configurations by pressing A to add a new directory to use
for address book lookups. Listing 8-6 is an example of what you’ll see when entering this
configuration.

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS 271

4134_c08_final.qxd 9/30/04 11:35 AM Page 271

mailto:tom@yourcompany.com
mailto:susan@yourcompany.com

Listing 8-6. Pine Configurations

ldap-server = ldaphost.yourcompany.com

search-base = dc=your,dc=company

port = <No Value Set: using "389">

nickname = Primary LDAP Server

Features =

Set Feature Name

--- ----------------------

[] use-implicitly-from-composer

[] lookup-addrbook-contents

[] save-search-criteria-not-result

[X] disable-ad-hoc-space-substitution

search-type =

Set Rule Values

--- ----------------------

(*) name

() surname

() givenname

() email

() name-or-email

() surname-or-givenname

() sur-or-given-or-name-or-email

search-rule =

Set Rule Values

--- ----------------------

() contains

(*) equals

() begins-with

() ends-with

email-attribute = <No Value Set: using "mail">

name-attribute = cn

surname-attribute = <No Value Set: using "sn">

givenname-attribute = <No Value Set: using "givenname">

timelimit = 300

sizelimit = <No Value Set: using "0">

custom-search-filter = (&(objectclass=person)(mail=*)(sn=%s))

? Help E Exit Setup P Prev - PrevPage A Add Value % Print

In the previous configuration, you can see where configurations for your LDAP address book
are. Older versions of Pine prefer to store configurations via IMAP folders. This was a legacy
method that worked well for quite some time. The directives you’ll be utilizing are as follows:

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS272

4134_c08_final.qxd 9/30/04 11:35 AM Page 272

The ldap-server directive is the specific LDAP server you’ll be using for your address
book lookups. This takes the form of a standard hostname, not the LDAP URI format.
For this example environment, you can use ldaphost.yourcompany.com.

The search-base directive is the base DN you’ll be using for your address book lookups.
For this environment, you’ll use dc=your,dc=company.

The port directive is the default LDAP port is 389. You’ll want to configure this option if
your LDAP server is listening on a port other than 389.

The nickname directive is the nickname you’ll use with your Pine client for searches. This
is useful if you have multiple LDAP servers that you’ll be using for searching if you want
to configure different search filters against the same LDAP server. For this example envi-
ronment, you can settle on “Primary LDAP Server” for the nickname.

Underneath the Features tab, you’re able to configure the way your Pine client will act and
utilize this LDAP address book information.

Underneath the Search-Type tab, you’re able to configure the types of searches being
performed. You’re able to search by name, surname, givenname, email, name-or-email,
surname-or-givenname, or sur-or-given-or-name-or-email. These are the default search
options (and combinations of options) that your Pine client supports. I’ll explain what
these specific values map to in a moment. For this example environment, you can use
the default of name for the search type.

The Search-Rule tab defines the type of search being used. You’re given the options
of contains, which is for substring searches; equals, for standard searches (=); and
begins-with or ends-with, which are also variations of substring searches. For this
environment, you can use equals.

The attributes that are mapped from the Search-Type tab can then be defined with
the directives of email-attribute, name-attribute, surname-attribute, and
givenname-attribute. For example, in a standard e-mail environment, the attribute
name of mail is used for the e-mail attribute. If you want these values to change, you
can define them here. For the name-attribute, for example, I’ll be using cn.

You define timeout limits using the timelimit directive. This is the maximum time given
to complete a search. This is defined in seconds.

You define the maximum number of entries returned from a search using the sizelimit
directive. When the value isn’t set or is set to 0, this means there’s no maximum number
of entries returned.

The previous directives make things easier for the novice LDAP user or a default LDAP
environment. If you want to customize your filters, you’ll want to modify the
custom-search-filter directive. You can use standard LDAP search filters here, which can
include ANDs, ORs, or a combination of values. You can use the %s attribute to store value
given for the input during the invocation of the address book search.

Using the default configuration provided in this example, when you compose a new mes-
sage and enter a name in the To box, Pine will first check your local address book for the nick-
name. If it doesn’t find it, it will then run an LDAP query by default, using the default name

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS 273

4134_c08_final.qxd 9/30/04 11:35 AM Page 273

you typed as the search string. Depending on the speed of the LDAP server, you should get
a response relatively quickly. From the results you can choose the entry you were looking for
and continue writing your e-mail. If you enter an e-mail address in the To box, it won’t per-
form an LDAP search or any other address book search (in other words, susan@yourcompany)
because it realizes you already know the e-mail address of the person to whom you want to
send a message. If you just want to do a search, without actually composing a new message,
you can go directly to your address book, select the LDAP server, and enter the search string
from there (in other words, press M and then A). In case you don’t want Pine to do an auto-
matic LDAP lookup every time you compose a new message, you can change the parameter
/impl=1 in the ldap-server setting to /impl=0. This will allow you to do a manual LDAP query
if you want.

Integrating Samba
Samba is an open-source/free software suite that provides seamless file and print services to
Server Message Block (SMB)/Common Internet File System (CIFS) clients. Samba is freely
available under the GNU General Public License (GPL). Samba consists of two key programs:
smbd and nmbd. They implement the four basic modern-day CIFS services, which are as follows:

• File and print services

• Authentication and authorization

• Name resolution

• Service announcement (browsing)

File and print services are, of course, the cornerstone of the CIFS suite. These are pro-
vided by smbd, the SMB daemon. smbd also handles “share mode” and “user mode” authenti-
cation and authorization. That is, you can protect shared file and print services by requiring
passwords. In share mode (the simplest and least recommended scheme), a password can be
assigned to a shared directory or printer (simply called a share). This single password is then
given to everyone who is allowed to use the share. With user mode authentication, each user
has a username and password, and the system administrator can grant or deny access on an
individual basis. The OpenLDAP server needs to be configured to serve as a Security Access
Manager (SAM) database. For Samba 2.2.4, you need to configure various things. Specifically,
you need to import the Samba 2.2.4 LDAP v3 schema, you need to configure the base DN
appropriately, and you need to import a minimum set of Samba-related DNs as part of the
installation.

The Windows NT domain system provides a further level of authentication refinement
for CIFS. The basic idea is that a user should have to log in only once to have access to all the
authorized services on the network. The NT domain system handles this with an authenti-
cation server, called a domain controller. An NT domain (which shouldn’t be confused with
a Domain Name System [DNS] domain) is basically a group of machines that share the same
domain controller.

The NT domain system deserves special mention because, until the release of Samba ver-
sion 2, only Microsoft owned code to implement the NT domain authentication protocols. With
version 2, Samba introduced the first non-Microsoft-derived NT domain authentication code.

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS274

4134_c08_final.qxd 9/30/04 11:35 AM Page 274

The eventual goal, of course, is to completely mimic a Windows NT domain controller. When
authenticating with Samba 2.2.4 and OpenLDAP, you’ll store the following set of information:

• Windows user accounts using the sambaAccount object class (contained in
samba.schema)

• Windows computer accounts (in other words, workstations) using the sambaAccount
object class

• User-only user accounts using the shadowAccount object class (contained in nis.schema)

• User groups (Windows and Unix, as it doesn’t make a difference to Samba 2.2.4) using
the posixGroup object class

nmbd handles the other two CIFS pieces: name resolution and browsing. These two
services basically involve the management and distribution of lists of NetBIOS names.

Name resolution takes two forms: broadcast and point-to-point. A machine can use
either or both of these methods, depending upon its configuration. Broadcast resolution is
the closest to the original NetBIOS mechanism. Basically, a client looking for a service named
Trillian will call out “Yo! Trillian! Where are you?” and wait for the machine with that name to
answer with an Internet Protocol (IP) address. This can generate a bit of broadcast traffic (a lot
of shouting in the streets), but it’s restricted to the local area network (LAN) so it doesn’t cause
too much trouble.

The other type of name resolution involves using a NetBIOS Name Service (NBNS)
server. (Microsoft called its NBNS implementation WINS, for Windows Internet Name
Service, and that acronym is more commonly used today.) Clients on different subnets can
all share the same NBNS server, so, unlike broadcast, the point-to-point mechanism isn’t
limited to the LAN. In many ways the NBNS is similar to the DNS, but the NBNS name list
is almost completely dynamic, and few controls ensure that only authorized clients can
register names. Conflicts can, and do, occur fairly easily.

Finally, there’s browsing. Samba’s nmbd handles this. This isn’t the Web browsing you know
and love, but is a browsable list of services (file and print shares) offered by the computers on
a network. This is similar to the remote procedure call (RPC)/portmapper services under Unix.

On a LAN, the participating computers hold an election to decide which of them will
become the local master browser (LMB). The “winner” then identifies itself by claiming a
special NetBIOS name (in addition to any other names it may have). The LMB’s job is to keep
a list of available services, and it’s this list that appears when you click the Windows Network
Neighborhood icon.

In addition to LMBs, domain master browsers (DMBs) coordinate browse lists across NT
domains, even on routed networks. Using the NBNS, an LMB will locate its DMB to exchange
and combine browse lists. Thus, the browse list is propagated to all hosts in the NT domain.
Unfortunately, the synchronization times are spread apart a bit. It can take more than an
hour for a change on a remote subnet to appear in the Network Neighborhood.

Samba comes with a variety of utilities. The most commonly used are as follows:

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS 275

4134_c08_final.qxd 9/30/04 11:35 AM Page 275

• smbclient: This is a simple SMB client, with an interface similar to that of the File Trans-
fer Protocol (FTP) utility. It can be used from a Unix system to connect to a remote SMB
share, to transfer files, and to send files to remote print shares (printers).

• nmblookup: This is the NetBIOS name service client. You can use mblookup to find NetBIOS
names on a network, look up their IP addresses, and query a remote machine for the list
of names the machine thinks it owns.

• swat: This is the Samba Web Administration Tool (SWAT). SWAT allows you to configure
Samba remotely, using a Web browser.

You can download smbldap-tools (for Samba and LDAP interaction) at
http://www.idealx.org. This is a good package that contains useful scripts for managing users
and groups when you’re using LDAP as a source of information for your environment. Samba
2.2.3 needs to be compiled with the -with-ldapsam option. You need to import the schema pro-
vided with these tools into your OpenLDAP schema directory. You do this via the slapd.conf
file, as shown in Listing 8-7.

Listing 8-7. slapd.conf for Samba

Schema and objectClass definitions

include /etc/ldap/schema/core.schema

include /etc/ldap/schema/cosine.schema

include /etc/ldap/schema/nis.schema

include /etc/ldap/schema/inetorgperson.schema

include /etc/ldap/schema/misc.schema

include /etc/ldap/schema/samba.schema

The main configuration file used for configurations is smb.conf. The file looks like
Listing 8-8.

Listing 8-8. smb.conf File

[global]

workgroup = GROUP

security = user

wins support = yes

os level = 80

domain master = true

domain logons = yes

local master = yes

preferred master = true

passwd program = /usr/local/sbin/smbldap-passwd.pl -o %u

ldap suffix = dc=your,dc=company

ldap admin cn = cn=Directory Manager

ldap port = 389

ldap server = ldaphost.yourcompany.com

ldap ssl = No

add user script = /usr/local/sbin/smbldap-useradd.pl -w %u

domain admin group = @"Domain Admins"

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS276

4134_c08_final.qxd 9/30/04 11:35 AM Page 276

http://www.idealx.org

logon path = \\%N\profiles\%u

logon drive = H:

logon home = \\homesrv\%u

logon script = logon.cmd

[netlogon]

comment = Network Logon Service

path = /data/samba/netlogon

guest ok = yes

writable = no

share modes = no

; share for storing user profiles

[profiles]

path = /data/samba/profiles

read only = no

create mask = 0600

directory mask = 0700

You can edit various defaults for the smbldap tools via the
/usr/local/sbin/smbldap_conf.pm configuration file. Listing 8-9 shows the default file, which
is followed by an explanation of the directives.

Listing 8-9. LDAP Configurations for Samba

###

#

LDAP Configuration

#

###

Notes: to use to dual LDAP servers back end for Samba, you must patch

Samba with the dual-head patch from IDEALX. If not using this patch

just use the same server for slaveLDAP and masterLDAP.

#

Slave LDAP : needed for read operations

#

Ex: $slaveLDAP = ``127.0.0.1'';

$slaveLDAP = ``localhost'';

#

Master LDAP : needed for write operations

#

Ex: $masterLDAP = ``127.0.0.1'';

$masterLDAP = ``localhost'';

#

LDAP Suffix

#

Ex: $suffix = ``dc=SMELUG,dc=ORG'';

$suffix = ``dc=SMELUG,dc=ORG'';

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS 277

4134_c08_final.qxd 9/30/04 11:35 AM Page 277

#

Where are stored Users

#

Ex: $usersdn = ``ou=Users,$suffix''; for ou=Users,dc=SMELUG,dc=ORG

$usersou = q(Users);

$usersdn = ``ou=$usersou,$suffix'';

#

Where are stored Computers

#

Ex: $computersdn = ``ou=Computers,$suffix''; for ou=Computers,dc=SMELUG,dc=ORG

$computersou = q(Computers);

$computersdn = ``ou=$computersou,$suffix'';

#

Where are stored Groups

#

Ex $groupsdn = ``ou=Groups,$suffix''; for ou=Groups,dc=SMELUG,dc=ORG

$groupsou = q(Groups);

$groupsdn = ``ou=$groupsou,$suffix'';

#

Default scope Used

#

$scope = ``sub'';

#

Credential Configuration

#

Bind DN used

Ex: $binddn = ``cn=Manager,$suffix''; for cn=Manager,dc=SMELUG,dc=org

$binddn = ``cn=Manager,$suffix'';

#

Bind DN passwd used

Ex: $bindpasswd = 'secret'; for 'secret'

#$bindpasswd = ``secret'';

$bindpasswd = ``smelug'';

#

Notes: if using dual LDAP patch, you can specify to different configuration

By default, we will use the same DN (so it will work for standard Samba

release)

#

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS278

4134_c08_final.qxd 9/30/04 11:35 AM Page 278

$slaveDN = $binddn;

$slavePw = $bindpasswd;

$masterDN = $binddn;

$masterPw = $bindpasswd;

##

#

Unix Accounts Configuration

#

##

Login defs

#

Default Login Shell

#

Ex: $_userLoginShell = q(/bin/bash);

$_userLoginShell = q(/bin/bash);

#

Home directory prefix (without username)

#

#Ex: $_userHomePrefix = q(/home/);

$_userHomePrefix = q(/home/);

#

Gecos

#

$_userGecos = q(System User);

#

Default User (POSIX and Samba) GID

#

#$_defaultUserGid = 100;

$_defaultUserGid = 201;

#

Default Computer (Samba) GID

#

$_defaultComputerGid = 553;

#

Skel dir

#

$_skeletonDir = q(/etc/skel);

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS 279

4134_c08_final.qxd 9/30/04 11:35 AM Page 279

##

#

SAMBA Configuration

#

##

#

The UNC path to home drives location without the username last extension

(will be dynamically prepended)

Ex: q(\\\\My-PDC-netbios-name\\homes) for \\My-PDC-netbios-name\homes

$_userSmbHome = q(\\\\SMELUG-PDC\\homes);

#

The UNC path to profiles locations without the username last extension

(will be dynamically prepended)

Ex: q(\\\\My-PDC-netbios-name\\profiles) for \\My-PDC-netbios-name\\profiles

##$_userProfile = q(\\\\GOULDNET\\profiles\\);

$_userProfile = q(\\\\SMELUG-PDC\\);

#

The default Home Drive Letter mapping

(will be automatically mapped at logon time if home directory exist)

Ex: q(U:) for U:

$_userHomeDrive = q(D:);

#

The default user netlogon script name

if not used, will be automatically username.cmd

#

##$_userScript = q(startup.cmd); # make sure script file is edited under dos

#$_userScript = q(STARTUP.BAT); # make sure script file is edited under dos

##

Within the configuration file, you can modify various LDAP parameters and the way your
system interacts with the directory. Separate slave and master LDAP servers (the slave for reads
and the master for writes) are supported with the following directives so that referrals don’t need
to be supported:

$slaveLDAP = ``ldapslaveserver'';

$masterLDAP = ``ldapmasterserver'';

You can configure your base DN using the following directive:

$suffix = ``dc=Your,dc=Company'';

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS280

4134_c08_final.qxd 9/30/04 11:35 AM Page 280

You can define separate containers for the various types of objects you’ll be storing in
your LDAP system (users, computers, and groups) in the following directives:

$usersou = q(Users);

$usersdn = ``ou=$usersou,$suffix'';

$computersou = q(Computers);

$computersdn = ``ou=$computersou,$suffix'';

$groupsou = q(Groups);

$groupsdn = ``ou=$groupsou,$suffix'';

The suffix is a variable that was previously defined as $suffix.
The following directive defines the scope of your searches:

$scope = ``sub'';

You can configure special users and passwords that you’ll use to bind in the following
directives:

$binddn = ``cn=Manager,$suffix'';

$bindpasswd = ``smelug'';

$slaveDN = $binddn;

$slavePw = $bindpasswd;

$masterDN = $binddn;

$masterPw = $bindpasswd;

You can define the defaults for your accounts, which would typically exist in /etc/passwd
and other profile sources, in the following directives:

$_userLoginShell = q(/bin/bash);

$_userHomePrefix = q(/home/);

$_userGecos = q(System User);

$_defaultUserGid = 201;

$_defaultComputerGid = 553;

$_skeletonDir = q(/etc/skel);

You can set specific configurations for Samba account information using the following
directives:

$_userSmbHome = q(\\\\SMELUG-PDC\\homes);

$_userProfile = q(\\\\SMELUG-PDC\\);

$_userHomeDrive = q(D:);

$_userScript = q(startup.cmd);

While application profiles need their own sets of schema and configuration trees, user
profiles for SMB would just be complementary to the existing user environment you’ve cre-
ated. For example, you may have accounts in LDAP for tjackiewicz and ssurapruik in LDAP
as shown in Listing 8-10.

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS 281

4134_c08_final.qxd 9/30/04 11:35 AM Page 281

Listing 8-10. Existing DNs in Your Directory

dn: uid=tjackiewicz,ou=People,dc=your,dc=company

dn: uid=ssurapruik,ou=People,dc=your,dc=company

You’ll need to modify the profiles to add object classes for posixAccount and sambaAccount
and attributes that would be useful for configurations. The resulting accounts for Tom and
Susan would end up like those in Listing 8-11.

Listing 8-11. Resulting LDIFs After SMB Modification

dn: uid=tjackiewicz,ou=People,dc=your,dc=company

objectclass: inetorgperson

objectclass: posixaccount

objectclass: sambaaccount

cn: Tom Jackiewicz

sn: Jackiewicz

uid: tjackiewicz

gidNumber: 100

homeDirectory: /home/tjackiewicz

loginShell: /bin/bash

description: Tom's account

acctflags: [UX]

homedrive: H:

smbhome: \\smbserver\home

profilepath: \\smbserver\profiles\tjackiewicz

scriptpath: tjackiewicz.cmd

uidnumber: 100

Integrating Eudora
Qualcomm Eudora is a common mail client you may run into within your existing environ-
ment. I’ll use this as a base example for GUI mail client configurations. You can use Eudora’s
Web site at http://www.eudora.com as a reference for current configurations and any help you
may need. It’s strongly recommended that you use Eudora 4.2 or later before configuring it for
LDAP interoperability.

Eudora gives you the ability to utilize directory services for address book lookups instead
of relying on a local address book or proprietary database. It also gives you the ability to utilize,
natively, remote directories providing yellow pages and white pages information such a Four11,
BigFoot, and Yahoo. Eudora utilizes the following LDAP uniform resource locator (URL) format
for referencing LDAP information:

ldap://host[:port]/[base][?fields-to-return]

This has the following parameters:

• host: Set this value to the LDAP server within your environment. For the example
environment, I’ll use ldaphost.yourcompany.com.

• port: Set this value to the port of the LDAP server within your environment. The default
is 389.

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS282

4134_c08_final.qxd 9/30/04 11:35 AM Page 282

http://www.eudora.com
ldap://host[:port

• base: This value configures the base DN for your LDAP environment. For this environ-
ment, I’ll use dc=your,dc=company.

• fields-to-return: These are the field names that are returned during your LDAP
search. When multiple fields are returned, each should be separated by a comma, such
as name1=value1,name2=value2.

If you want to connect to ldaphost.yourcompany.com on port 389 with a base DN of
dc=your,dc=company and then return the values of cn, sn and mail, you’d use the following
filter:

ldap://ldaphost.yourcompany.com:389/dc=Your,dc=Company?cn,sn,mail

Setting up filters for address book searches in Eudora is simple, because Eudora follows
the standard LDAP URI format. In general, the various LDAP-capable clients (such as Com-
municator, Eudora, and Outlook 98/Express) vary greatly in the actual LDAP query they gen-
erate based on the user searching for a name. These variations in the query often result in
a different set of “hits” being returned to the same query, depending on which client is being
used. In many cases, despite the variations, the user will still likely find the person for whom
they were looking. But this won’t always be the case, particularly with Win Eudora (which
generates such an open-ended query that often the search limits imposed will cause only
a partial result to be returned to the user).

You can modify LDAP configurations for Eudora via the Esoteric Settings 4.x plug-in file
within your Eudora installation folder. Copy the Esoteric Settings 4.x folder into the Eudora
Stuff folder, and restart Eudora. Upon reloading the application, you’ll be able to access LDAP
configurations via the Special/Settings tab. You’ll be presented with the following options:

• Directory services host: This is the LDAP server or remote yellow pages or white pages
directory (as discussed previously).

• Wordwise search filter template: This is the attribute search filter you’ll be using. For
example, it could be (|(givenname=*^0*)(cn=*^0*)(givenname=*^0*)(sn=*^0*)).

When creating filters, the ^0 will be replaced by the input query during a dialog box. The *
is a wildcard. You’ll need to make sure that the remote server has substring indexing on the
attributes you search via a wildcard.

With these configurations, LDAP will be utilized for lookups of information. To make
LDAP the default protocol used to look up information, select Special ➤ Settings ➤ Hosts. In
the Directory Services text box, you’re able to input the same host you’ve configured as direc-
tory services host in the previous configuration as a complete LDAP URI. Through this tab,
you can also configure your Post Office Protocol (POP) and SMTP servers.

Integrating Exchange
While still relatively immature for most Microsoft-based products, LDAP v2 is implemented
in Microsoft Exchange 5.0 as a way to access information stored within its internal Microsoft
Access database.

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS 283

4134_c08_final.qxd 9/30/04 11:35 AM Page 283

ldap://ldaphost.yourcompany.com:389/dc=Your

The gateway is configured and turned on by default. This configuration works well in the
simplest of environments, but requires additional configuration when your LDAP environment is
customized. You’ll need to configure the authentication methods that users will use to securely
access the directory. The authentication methods available to you are as follows:

• Clear text

• Clear text with SSL

• Both

If you require secure access to your directory, you should enable SSL access only. To enable
SSL, you must register your Exchange Server and obtain a certificate from a certificate authority
(CA), which can be a local or enterprise CA or a third party, such as VeriSign.

Next, you have to decide whether to permit anonymous access from users outside the
organization. Depending on the configuration of your LDAP environment, critical data may or
may not be exposed via an anonymous search. For example, if telephone numbers are consid-
ered intellectual property or have different security requirements, that may require authenti-
cation to see. Make sure all your LDAP clients follow security rules set within your company.
With Exchange, you can’t control overall access to the directory based on username and pass-
word, but you can selectively control access to attributes by anonymous or authenticated
users or replicated sites. So an anonymous user could see the directory, but they’ll see only the
selected information. Other LDAP implementations offer more robust authentication. The
ideal security would be public key, but this isn’t available in current LDAP implementations.

You’ll need to configure the search types that determine how the directory will treat sub-
string searches—that is, partial and wildcard searches. Depending on your back-end server
configurations, certain searches that contain wildcards aren’t indexed and will cause signifi-
cant delay on the client and server. For example, if a username search for uid=tjackiewicz will
append an asterisk to the end of it, the search becomes uid=tjackiewicz*. Despite you inputting
the entire search and not expecting a wildcard to be performed, the server will interpret the *
as a wildcard search and take significantly longer to return results. The default treats any sub-
string search as an initial search, providing better response to the user. Other default options
involve allowing only initial searches (fast) or all substring searches (slow). Within this config-
uration, you can specify the maximum number of search results returned by the directory to
the user. The default value is 100. You can raise or lower this number depending on how many
directory entries you have or how much data you want to transmit to the user. In Exchange
5.5, you can configure the directory to return search results in chunks, such as 100 entries
at a time.

The final step during your configuration is to select the idle timeout interval for LDAP
connections. The default setting in Exchange 5.0 is ten minutes. This is extremely high, and
you should change this to a small value (such as 30 seconds) to improve directory access and
query response times.

For the sake of security, you’ll need to access the Exchange Site Addressing configuration
area to select which attributes you want internal users and the public to see in their search
results. This is where you permit or deny access by attributing and publishing a subset of the
Exchange global address list to the Internet as white pages, which are accessed by LDAP clients.
(You can compare this feature to a meta-directory that serves as an intermediate layer between
your authoritative data and a published set of information that exists on another server.)

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS284

4134_c08_final.qxd 9/30/04 11:35 AM Page 284

Exchange doesn’t permit you to dynamically extend your directory schema in 5.0, but it
does provide ten custom directory attributes. More features will be available as the LDAP inter-
operability matures and becomes more standardized.

You’ll need to make various decisions based on information available from your direc-
tory. For example, what will you do about users with several e-mail addresses in the direc-
tory? One solution is to publish only the user’s Internet mail address to anonymous users.
For internal users, you can publish all the addresses (cc:Mail, Microsoft Mail, X.400) if you’re
certain this wouldn’t cause too much confusion. Senders would select the one address that
would be handled correctly by their own messaging system. You can select any or all of the
attributes in Exchange for public view, but be aware that not all LDAP clients support all
attributes. In addition, some expect only certain attribute names or have other limitations
that will prevent them from appropriately dealing with the information you provide. Most of
the current LDAP-compliant clients can search and view Exchange’s attributes, but may not
fully support all the basic or extended operations. For example, the Exchange 5.0 LDAP server
doesn’t support “sounds like” or Boolean searching. If a client tries to invoke these methods,
Exchange Server returns a protocol error to the user. Although you can specify which attrib-
utes can be seen by anonymous or authenticated users and for intersite replication, you can’t
restrict a specific user or group from accessing the directory.

Listing 8-12 is an example of how to identify and fetch user data in Internet Information
Services (IIS) using Exchange and LDAP.

Listing 8-12. Identifying and Fetching User Data in IIS

<%

Dim LUser, strQuery, strServerName, oConn, oRS, GreetName, ITuser

LUser = Request.QueryString("LogonUser")

strServerName = Put here your Exchange Server Name

strQuery = "<LDAP://" & strServerName & ">;(uid=" & LUser & "); adspath,cn;subtree"

'Create ADO connection and set its properties

Set oConn = Server.CreateObject("ADODB.Connection")

oConn.Provider = "ADsDSOOBJECT"

'Pass the credentials to Exchange Server.

oConn.Properties("User_ID") = "IUSR_MAIL"

oConn.Properties("Password") = "IUSR_MAIL"

oConn.Properties("Encrypt Password") = False

oConn.Open "Active Directory Provider"

Set oRS = oConn.Execute(strQuery)

If oRS.BOF OR oRS.EOF Then

Response.Write "Unable to retrieve information."

Else

Response.Write "CN: " & oRS.Fields("cn").Value

End If

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS 285

4134_c08_final.qxd 9/30/04 11:35 AM Page 285

oRS.Close

oConn.Close

Set oRS = Nothing

Set oConn = Nothing

%>

Integrating LDAP Browsers
LDAP browsers are typically GUI tools that are alternatives to basic command-lines tools for
viewing information that exists within your LDAP directory. While systems administrators
often prefer command-line tools for looking at information, some LDAP users within your
environment, such as junior administrators and those in your help desk, may prefer a more
aesthetically pleasing approach. Many LDAP browsers are available to you by searching online.
One of the most common tools available is LDAP Browser provided by Softerra via
http://www.softerra.com. The LDAP browser is designed for viewing and searching entries
inside an LDAP directory. It doesn’t support creating, removing, editing, or importing data.

Softerra LDAP Browser provides a convenient Explorer-like interface for LDAP directory
viewing and searching. It has been developed specifically for Win32 platforms and connects to
any LDAP v2 and v3 servers. If you’re a professional software developer or system administra-
tor, LDAP Browser will let you view and analyze LDAP directories easily and comfortably under
a Win32 platform. The browser has the same look and feel as LDAP Administrator, including all
its interface improvement. It’s much more powerful and convenient than the previous version
(LDAP Browser 1.0 beta) because it has a full multithreaded engine, SSL support, directory
search, favorites, improved LDAP v3 support, X.509 certificate viewer, and much more to facili-
tate your work with LDAP.

You can download this browser from Softerra’s home page and install it on a number of
platforms.

Another browser that’s popular is creatively named LDAP Browser/Editor, which is avail-
able online at http://www.iit.edu/~gawojar/ldap/. This browser allows you to edit informa-
tion, so it doesn’t serve as just a read-only browser. It even includes modrdn functionality that
isn’t common among many other GUI-based LDAP clients.

Integrating Appliances
The latest trend in information technology has been the creation of an appliance. An appli-
ance is typically an all-in-one solution to a problem that once fell into the realm of system
administrators and application developers. That is, where you once had a machine running
Solaris and Sendmail, you’d now have a rack-mounted unit that replaces the basic functional-
ity of your Sendmail environment and gives your support staff a set of interfaces to view con-
figurations and traffic flow online. In come the appliances, and out go the tasks of keeping
your operating system and applications up-to-date. The reduction in the total cost of owner-
ship of your environment is often a good enough reason to forego the traditional solutions
deployed for e-mail systems and Web services. All the components of your infrastructure that
once required significant training, maintenance, and an above-average level of expertise are
now being transitioned to appliance-based solutions.

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS286

4134_c08_final.qxd 9/30/04 11:35 AM Page 286

http://www.softerra.com
http://www.iit.edu/~gawojar/ldap

Vendors such as IronPort and Mirapoint provide appliances for e-mail that give you basic
LDAP functionality out of the box. Mirapoint even provides an LDAP server in an appliance
model. There’s no typical configuration for any of the LDAP configurations you can have with an
appliance or any set of standard rules that apply to each appliance you’ll encounter. For-profit
companies typically release appliances with no requirements set on them in order to standard-
ize configurations or keep their profile data the same from version to version. You should read
the manuals for each appliance you’ll be configuring and ensure you aren’t dependent on data
that may exist in one version that may not be available in the next release. Just like configuring
a new server, it may be best to wipe out configurations and start over during a major upgrade, as
interoperability with LDAP is often dynamic in nature. The best thing to know and appreciate is
that LDAP has become the common protocol, access method, and storage system that’s used by
everyone to standardize information.

Summary
In this chapter, I discussed various applications and the methods they use to integrate into an
LDAP environment. This should give you a good start in understanding how some of the other
applications in your environment will utilize LDAP.

CHAPTER 8 ■ INTEGRATING OPENLDAP WITH APPLICATIONS, USER SYSTEMS, AND CLIENT TOOLS 287

4134_c08_final.qxd 9/30/04 11:35 AM Page 287

4134_c08_final.qxd 9/30/04 11:35 AM Page 288

Index

289

■A
-a option

ldapadd, 80
ldapmodify, 80
ldapsearch, 83
saslpasswd, 98

-A option
ldapsearch, 82

abandon functions
see ldap_abandon() methods

abstract object classes, schema, 35
Abstract Syntax Notation One (ASN.1), 26
Access configuration option, 117
access control information

see ACI
access control policy

security on implementation, 104
ACI (access control information)

ACI rules, 144
add function

see ldap_add() methods
alias dereferencing

-a ldapsearch option, 83
configuration, 115

aliases
aliases file, mail.aliases map, 202
aliases nickname, 201
ALIAS_FILE directive, 255
migrate_aliases.pl script, 210
original /etc/aliases file, 210
Sendmail enabling, 254
Sendmail migrating information, 255
storing alias maps, 253

Allow configuration option, 117
anonymous authentication

security on implementation, 96
Apache web server

integrating OpenLDAP, 264–267
Apache::AuthLDAP module

integrating Apache, 264
Apache::TransLDAP module

integrating Apache, 266
APIs

C API
see C API

javax.name.ldap API, 188
JNDI API, 175
LDAP API

see LDAP API

Mozilla::LDAP::API, 145
Perl API

see Perl API for LDAP
specifying, Perl scripts, 174

appliances
integrating OpenLDAP, 286

application host, 51
application name

-a saslpasswd option, 98
application sources

directory maintenance, 8
back-end systems, 10
middleware, 10
user-facing applications, 9

applications
directory maintenance

application types, 11, 12
types using LDAP, 51

apply_aci_rule function, 144
approximate index

directory search, 44
architecture

meta-directories, 15
Argsfile configuration option, 117
arguments

testing validity, 154
ASN.1 (Abstract Syntax Notation One), 26
asynchronous operations

abandoning, 145
LDAP API, 134

AttributeMap attribute, ldapclient, 246
Attributeoptions configuration option, 117
attributes

attribute or schema, DSML, 190
attribute (Child Element), 195

attribute type definitions
directory attribute types, 196
OID, 197
unique identifier for, 196

directory entries, DSML, 193
getting next attribute for entry, 157
removing from records, JNDI, 180
retrieval of, 82
schema attributes, 29

AttributeTypeDescription, 29
definition, 31
inheritance, 33
name, 30
syntax, 31

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 289

■INDEX290

attributes (continued)
sorting entries returned based on

-S ldapsearch option, 82
Attributetype configuration option, 117
Authc condition, Require configuration

option, 120
AUTHCID, SASL_AUTHCID option, 115
authentication

binds, 96
configuring LDAP client, 251
credentials, 96
mapping authentication request, 101
password for simple authentication

-w ldapadd option, 80
-w ldapdelete option, 85
-w ldapmodrdn option, 89
-w ldapsearch option, 82, 123
-y ldapadd option, 80
-y ldapdelete option, 85
-y ldapmodrdn option, 89
-y ldapsearch option, 82

pattern matching, 101
prompt for simple authentication

-W ldapadd option, 80
-W ldapdelete option, 85
-W ldapmodrdn option, 89
-W ldapsearch option, 82

security on implementation, 96
specifying authentication ID for SASL

bind
-U ldapadd option, 81
-U ldapdelete option, 86
-U ldapmodrdn option, 89
-U ldapsearch option, 83

specifying SASL mechanism for
authentication

-Y ldapadd option, 81
-Y ldapdelete option, 86
-Y ldapmodrdn option, 89
-Y ldapsearch option, 83

using Kerberos IV instead of simple
-k ldapdelete option, 85
-k ldapmodify option, 80
-k ldapmodrdn option, 88
-K ldapsearch option, 82

using simple authentication instead of
SASL

-x ldapadd option, 80
-x ldapdelete option, 85
-x ldapmodrdn option, 88
-x ldapsearch option, 82

AuthenticationMethod attribute, ldapclient,
246

AuthLDAP module
integrating Apache, 264

authorization
proxy authorization, SASL, 99
specifying proxy authorization for the

SASL bind
-X ldapdelete option, 86
-X ldapsearch option, 83

specifying requested authorization ID for
SASL bind

-X ldapmodify option, 81
-X ldapmodrdn option, 89A

UTHZID, SASL_AUTHZID option, 115
auxiliary object classes, schema, 35

■B
-b option

ldapsearch, 83
slapadd, 90
slapcat, 90, 111
slapindex, 91

back-end systems
directory maintenance, 10, 12

BASE configuration option, 115
base directive

configuring LDAP client, 238
PAM configurations, 250

base DN
Directory Information Tree, 39

base64 encoding, 194
BasicAttributes objects

JNDI binding phase, 176
Berkeley DB from Sleepycat

software requirements, 66
binary data

directory attributes, DSML, 194
Bind condition, Require configuration

option, 120
bind functions

see ldap_bind() methods
see also ldap_parse_sasl_bind_result()

method; ldap_sasl_bind() methods;
ldap_simple_bind() methods;
ldap_unbind() methods

BINDDN configuration option, 115
binding

asynchronously to LDAP server, 163
using SASL, 159

authenticating binds, 96
bind operation definition, 97
JNDI, 176
parsing results of SASL bind operation,

158
specifying authentication ID for SASL

bind
-U ldapadd option, 81
-U ldapdelete option, 86
-U ldapmodrdn option, 89
-U ldapsearch option, 83

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 290

specifying realm of authentication ID for
SASL bind

-R ldapadd option, 81
-R ldapdelete option, 86
-R ldapmodrdn option, 89
-R ldapsearch option, 83

synchronously to LDAP server, 164
using SASL, 160

BindTimeLimit attribute, ldapclient, 246
Bind_Xyx features

Allow configuration option, 117
Disallow configuration option, 118

BooleanMatch matching rule
schema attribute syntax, 33

bound (XML Attribute on Syntax)
attribute type definitions, 197

browsing index
directory search, 44

■C
-c option

ldapadd, 80
ldapdelete, 85
ldapmodify, 80
ldapmodrdn, 88
ldapsearch, 123
slapadd, 90
slapcat, 90, 110
slapindex, 91
saslpasswd, 98

C API
adding users, 166
deleting users, 167
modifying mail attribute for DN, 172
performing modrdn operation, 168
retrieving e-mail address, 170

C development environment
software requirements, 66

C man page section, 79
CaseXyzMatch matching rules

schema attribute syntax, 33
CC variable

environment variables, 69
certificate-based authentication, 97
CertificatePath attribute, ldapclient, 246
certification authority (CA)

public key infrastructure, 5
Ces (case exact string)

schema attribute syntax, 31
CFLAGS variable

environment variables, 69
chain operations, LDIF, 43
changelog log

replication, 106
testing, 111

slurpd processing
-o slurpd option, 108

storing local locked copy of
-t slurpd option, 108

changesonly
LDAP_CONTROL_PRESISTENTSEARCH,

133
changetypes

-a ldapadd/ldapmodify option, 80
LDAP_CONTROL_PRESISTENTSEARCH,

132
Changetype operations, 41

add, 42
modify, 42
modrdn, 43

chroot jail directory, specifying
-r slapd option, 62

Cis (case ignore string)
schema attribute syntax, 31

Class option
DNS SRV resource records, 112

client role, NIS, 200
CNAME records

host naming conventions, 57
combined groups, schema, 37
command-line options, ldapclient, 248
command-line tools, 123
commands

man page sections, 78
comments

adding back into LDIF, 238
compiler options, environment variables

configure script, base installation, 69
compiling OpenLDAP, 71
components

naming conventions, 52
number in parentheses following, 78

Concurrency configuration option, 117
Concurrent Versions System (CVS), 134
configuration

ldap.conf configuration file, 114
reading configuration file

-t slapd option, 62
slapd daemon, 116
slapd.at.conf configuration file, 121
slapd.conf configuration file, 116
slapd.oc.conf configuration file, 121
specifying alternative configuration file

-f slapcat option, 111
specifying configuration file

-f slapd option, 61
-f slurpd option, 108

storage requirements, 95
system wide options, 115
user-only options, 115

configure script/program
base installation, 69, 70

configuring LDAP client
system level integration, 238

■INDEX 291

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 291

conformance
Directory Services Markup Language, 197

connection management functions
using Perl API for LDAP, 140

connections
initializing/realizing, 164

connector view/connectors
meta-directories, 13, 14

Conn_max_pending configuration options,
117

consumer
conformance, DSML documents, 198

consumer hosts, 51
context initialization, JNDI, 175

global variables, 175
continue (ignore errors) mode

-c slapadd option, 90
-c slapcat option, 90, 110
-c slapindex option, 91

continuous operation mode
-c ldapdelete option, 85
-c ldapmodify option, 80
-c ldapmodrdn option, 88

controls, 128
control specific to certain type of

operation, 129
critical controls, indicating, 129
freeing from memory, 129, 148
including in request, 129
listing supported controls, 129
Object Identifiers (OIDs), 128
returning control for entry, 152

controls_free function, 148
Core.schema file, 24
Cosine.schema file, 24
count_entries function, 143
CPPFLAGS variable

environment variables, 69
create functions

see ldap_create_xyz() methods
CredentialLevel attribute, ldapclient, 246
credentials

see authentication
cryptography

Password-crypt-salt-format configuration,
119

public key infrastructure, 5
Curses man page section, 79
customer data

gathering information, 7
CVS (Concurrent Versions System), 134

■D
-D option

ldapadd, 80
ldapdelete, 85

ldapmodrdn, 89
ldapsearch, 82, 123

-d option
ldapadd, 80
ldapdelete, 85
ldapmodify, 80
ldapmodrdn, 88
ldapsearch, 82
saslpasswd, 98
slapadd, 90
slapcat, 90, 110
slapd, 61
slapindex, 91
slurpd, 108

data definitions
see schema

data sources
changing, 9
directory maintenance, 8

back-end systems, 10
middleware, 10
user-facing applications, 9

dynamic sources, 8
gathering information, 1

customer data, 7
e-mail data, 4
name data, 3
phone data, 4
public key infrastructure, 5
security badges, 6
vendor data, 7

original and authoritative sources, 1, 2
well-known file formats, 11

databases
creating local database, 71
creating offline database, 73
importing, 109

dbnum-th database
generating output for

-n slapadd option, 90
-n slapcat option, 90, 111
-n slapindex option, 91

debugging
debugging level, 80
enabling debugging messages

-d slapadd option, 90
-d slapcat option, 90, 110
-d slapindex option, 91

ldapsearch, 82
logging debugging statements

-s slapd option, 61
setting LDAP debugging level

-d ldapdelete option, 85
-d ldapmodify option, 80
-d ldapmodrdn option, 88
-d ldapsearch option, 82

■INDEX292

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 292

showing not modifying entries
-n ldapadd option, 80
-n ldapdelete option, 85
-n ldapmodrdn option, 88
-n ldapsearch option, 82

turning on
-d slapd option, 61
-d slurpd option, 108

DefaultSearchBase attribute, ldapclient, 246
Defaultsearchbase configuration option, 118
defaultSearchScope attribute, ldapclient, 247
DefaultServerList operand, ldapclient, 248
DEFAULT_BASE parameter, 204
DEFAULT_MAIL_DOMAIN parameter, 204
DEFAULT_MAIL_HOST parameter, 204
delete functions

see ldap_delete () methods
deleting records recursively

-r ldapdelete option, 85
deployment

environment separation, 47
implementing OpenLDAP, 93
information deployment, 40
mistakes, avoiding, 20
naming conventions, 52
operating procedures, 57
setting up classes of hosts, 50
standard host installation, 58

DEREF configuration option, 115
description (Child Element)

attribute type definitions, 197
DSML object classes, 195

development environment
described, 48
environment separation, 47
JNDI API, 175
utilizing Java in, 175

directives
ALIAS_FILE directive, 255
base directive, 238

PAM configurations, 250
host directive, 238
manual directive, 245
pam_groupdn directive, 241
pam_password_exop directive, 250
rootbinddn directive, 239
rootdn directive, 205
rootpw directive, 205
uri directive, 239

PAM configurations, 250
directories

access control information, 144
adding entries, 141
counting entries, 143
deleting entries, 142
directory design process, 3
Directory Information Tree, 39

DSML directory entries/schema, 190
functions affecting entries, 140
gathering information, 1
indexing data, 44
maintenance, 8
modifying records in directory, JNDI, 178
performing operations against, 174
renaming entries, 142
retrieving entries, 143
scope, 112
searching, 143
security

implementation, 96
updating, 121

XML and directories working together, 189
directory attribute types

attribute type definitions, 196
bound (XML Attribute on Syntax), 197
description (Child Element), 197
equality (Child Element), 197
id (XML Attribute), 196
name (Child Element), 197
object-identifier (Child Element), 197
obsolete (XML Attribute), 196
ordering (Child Element), 197
single-value (XML Attribute), 196
substring (Child Element), 197
superior (XML Attribute), 196
syntax (Child Element), 197
user-modification (XML Attribute), 197

directory attributes, DSML, 193
directory entries, DSML, 191
Directory Information Tree (DIT), 39

creating replicated environment, 106
directory services

meta-directory services, 12
Directory token

creating directory during installation, 72
Disallow configuration option, 118
disc space

implementation requirement, 94
disk layout

file defining, 224
distinguished names (DNs), 38

base DN reference, 204
binding to LDAP directory

-D ldapadd option, 80
-D ldapdelete option, 85
-D ldapmodify option, 80
-D ldapmodrdn option, 89
-D ldapsearch option, 82, 123

deleting
-f ldapdelete option, 85

implementing OpenLDAP, 93
modifying mail attribute for, using C API,

172
modifying RDN, 156, 157

■INDEX 293

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 293

distinguished names (DNs) (continued)
modifying relative DN, 142
primary keys, 38
referential integrity, 39
returning DN for entry, 152
scalability, 93
schema attribute syntax, 31
schema checking, 38
Schemadn configuration option, 120
splitting into components, 150
splitting RDN into components, 151
User Friend Name form

-u ldapsearch option, 82
DistinguishedNameMatch matching rule

schema attribute syntax, 33
distributions, 65, 66
DldapMAP option, Sendmail, 254
DN (distinguished names)

see distinguished names
DNS resource records

referrals, 112
SRV resource record options, 112

DomainName attribute, ldapclient, 247
dry run mode, enabling

-u slapadd option, 90
DSA (directory systems agent), 129

see also Manage DSA-IT control
DSE (DSA-Specific Entry), 129
DSML (Directory Services Markup

Language), 189
attribute or schema, 190
binary data, 194
conformance, 197
definition of schema via DSML, 194
directory attributes, binary data, 194
directory entries, 191

attributes, 193
entry element type, 192
multiple value attributes, 193

document structure, 190
DSML document, 190

directory attributes, 193
DSML namespace URI, 190
object classes, 194

attribute (Child Element), 195
description (Child Element), 195
entry object class, 192
id (XML Attribute), 195
name (Child Element), 195
object-identifier (Child Element), 195
obsolete (XML Attribute), 195
ref (XML Attribute on the attribute

Element), 196
required (XML Attribute on the

attribute Element), 196
superior (XML Attribute), 195

type (XML Attribute), 195
dynamic groups, schema, 36

■E
/etc/system file

standard host installation, 58
e-mail

data sources, 4
list of name types, 3
Pine, 268
Sendmail, 252

Emacs man page sections, 79
engineering environment, 48
entries

adding asynchronously, 146
adding synchronously, 146
deleting asynchronously, 149
deleting entry for user

-d saslpasswd option, 98
deleting synchronously, 150
directory entries, DSML, 190
functions affecting, 140
getting next attribute for, 157
getting next entry in result chain, 158
modifying asynchronously, 155
modifying RDN asynchronously, 156, 157
modifying RDN synchronously, 156, 157
modifying synchronously, 155
removing old RDN values from

-r ldapmodrdn option, 88
retrieving limited entries for search

-z ldapsearch option, 83
returning control for entry, 152
returning DN for entry, 152
shown not modified

-n ldapadd option, 80
sorting entries returned based on

attribute
-S ldapsearch option, 82

entry attributes
getting values for, 153
modifying, 141

entry change notification, 133
entry element type, DSML, 192
entry modification information

-f ldapmodify option, 80, 81
-f ldapmodrdn option, 88

entry object class, DSML, 192
environments

assessing, 1
common environments, 48
data replication across, 50
environment separation, 47
environment variables, 69
logical separation, 49
physical separation between, need for, 49

■INDEX294

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 294

equality (Child Element)
attribute type definitions, 197

equality index
directory search, 44

equality matching rule, OID, 197
err2string function

see ldap_err2string() method
errors

continue (ignore errors) mode
-c slapcat option, 110

getting error number for result, 159
LDAP_UNAVAILABLE_CRITICAL_EXTENS

ION, 128
perror function

see ldap_perror() method
printing LDAP error message, 158
returning LDAP error code, 150
setting LDAP error structure, 163
using Perl API for LDAP, 139

escaping characters
search filters, 77

Eudora mail client
integrating OpenLDAP, 282, 283

Exchange
integrating OpenLDAP, 283, 284, 285

explode functions
see ldap_explode_xyz() methods

_ext functions
control specific to certain operations, 129

extended operations, 151
ExtendedRequest/~Response interfaces

javax.name.ldap API, 188
extended_operation functions, 151
EXTENDED_SCHEMA parameter, 204

■F
-F option

ldapadd, 80
ldapmodrdn, 88
ldapsearch, 82

-f option
ldapadd, 80
ldapdelete, 85
ldapmodify, 80, 81
ldapmodrdn, 88
ldapsearch, 82, 123
saslpasswd, 98
slapadd, 91
slapcat, 90, 111
slapd, 61
slapindex, 91
slurpd, 108

file formats
man page sections, 78

file hierarchy
installation structure, 114

ldap.conf configuration file, 114
slapd.at.conf configuration file, 121
slapd.conf configuration file, 116
slapd.oc.conf configuration file, 121

File Transfer Protocol (FTP)
obtaining distribution, 66

filters
initializing, 154
using search filters, 75

followReferrals attribute, ldapclient, 247
Force application of all changes

-F ldapmodify option, 80
-F ldapmodrdn option, 88

Form man page section, 79
formats

ASN.1 schema format, 26
fstab file, 224
fully qualified hostnames, ldapclient, 248

■G
-g option

slapd, 62
Gcc man page section, 79
generic information

generic scope of a group, 224
migrating generic groups, 224
migrating RPCs, 232

Generic Security Services Application
Programming Interface (GSSAPI)
mechanism

Kerberos network authentication
protocols, 104

genprofile option, ldapclient, 245, 246
Gentlehup configuration option, 118
get functions

see ldap_get_xyz() methods
global referrals, 113
grep command

searching migration_common.ph file, 205
group information

group LDIF, 223
migrate_group.pl script, 220
migrating generic groups, 224
original /etc/group file, 222
problems, 224
running with specified group name

-g slapd option, 62
search string required to retrieve, 224
storing, 220

■H
-H option

ldapadd, 80
ldapdelete, 85
ldapmodrdn, 89
ldapsearch, 82

■INDEX 295

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 295

-h option
ldapadd, 81
ldapdelete, 85
ldapmodify, 81
ldapmodrdn, 89
ldapsearch, 83, 123
slapd, 61

HOST configuration option, 115
hosts

application host, 51
consumer hosts, 51
converting host information, 229
giving LDAP capabilities to, 251
-h ldaphost command-line option, 81
host directive, 238
host LDIF, 231
master host, 50
naming conventions, 52

appropriate names, 53
case sensitivity, 54
CNAME records, 57
creative naming, 52
logical naming, 55
multiple names, 57
physical location, 56
recommendations, 53
reserved words, 53
RFC 1178 rules, 54
RFC 2100, 55
role based, 56

primary host, 50
replica head host, 50
Sendmail defining group of, 254
setting up classes of, 50
specifying an alternative

-h ldapdelete option, 85
-h ldapmodify option, 81
-h ldapmodrdn option, 89
-h ldapsearch option, 83, 123

standard host specifications, 57
hubs

replica hub, 105

■I
-I option

ldapadd, 81
ldapdelete, 85
ldapmodrdn, 89
ldapsearch, 83

id (XML Attribute)
attribute type definitions, 196
DSML object classes, 195

Idletimeout configuration option, 118
ignore errors mode

see continue (ignore errors) mode
implementation, 93

disc space requirement, 94

file hierarchy, 114
importing databases, 109
RAM requirement, 93
referrals, 112
replication, 105
scalability, 93
security, 96

access control policy, 104
authentication, 96
Kerberos, 104
public key certificate, 103
SASL, 97
SASL proxy authorization, 99
SASL shared-secret mechanisms, 100
Transport Layer Security, 103
X.509 certificates, 103

storage requirements, 95
Include configuration option, 118
include files

base installation, 69
indexes

creating during installation, 72
creating offline database, 74
directory search performance, 44
master host, 50

Inetorgperson.schema file, 24
information deployment

Directory Information Tree, 40
infrastructure

assessing the environment, 1
init form, ldapclient, 245, 246
init functions

see ldap_init() methods
INITCTX global variable, JNDI, 175
installation

base installation, 68
choosing distribution, 65
compiling OpenLDAP, 71
creating local database, 71
creating offline database, 73
file hierarchy, 114
preparing system, 66

creating special user, 66
obtaining distribution, 66
running OpenLDAP as root, 66

software requirements, 66
standard host installation, 58

instances, types of
security on implementation, 96

Int (integer)
schema attribute syntax, 31

integrating LDAP
Apache, 264
appliances, 286
clients and applications, 263
configuring LDAP client, 239
considerations, 250

■INDEX296

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 296

Eudora, 282
Exchange, 283
LDAP browsers, 286
LDAP synchronization, 19
mistakes, avoiding, 15

LDAP as Oracle, 15
LDAP as synchronization source, 18
shortsighted deployment, 20

Pine, 268
prerequisites, 204
Samba, 274
system level integration, 199

configuring LDAP client, 238
Network Information Services (NIS),

199
Sendmail, 252

Interactive mode, enabling SASL
-I ldapdelete option, 85
-I ldapmodify option, 81
-I ldapmodrdn option, 89
-I ldapsearch option, 83

international index
directory search, 44

Ipv addresses, listening on
-4/-6 slapd options, 61

is_ldap_url function
see ldap_is_ldap_url() method

■J
Java

utilizing in LDAP development, 175
javax.name.ldap API, 188
JNDI (Java Naming and Directory Interface)

binding, 176
context initialization, 175
deleting records, 182
modifying records in directory, 178
removing attributes from records, 180
searching and returning specific

information, 186
utilizing in LDAP development, 175

JNDISearch.java, 183

■K
-K option

ldapsearch, 82
-k option

ldapadd, 80
ldapdelete, 85
ldapmodify, 80
ldapmodrdn, 88
slurpd, 108

Kerberos
security on implementation, 104
specifying location of srvtab file

-k slurpd option, 108

Kerberos IV authentication
disabling, 118
-K command-line option, 80
simple authentication, using instead of

-k ldapdelete option, 85
-k ldapmodify option, 80
-k ldapmodrdn option, 88
-K ldapsearch option, 82

■L
-L option

ldapsearch, 82
-l option

ldapsearch, 83
slapadd, 91
slapcat, 90, 111
slapd, 61

LAN environment
scalability, creating for, 49

LDAP (Lightweight Directory Access
Protocol)

see also OpenLDAP
assessing the environment, 1
configuring LDAP client, 238

host directive, 238
LDAP port, 240
LDAP search specifications, 240
ldapclient utility, 244
NSS configurations, 242, 249
PAM configurations, 241, 250
security configurations, 244

gathering information about data, 1
maintenance of directory, 8
meta-directories, 12
mistakes, avoiding, 15

LDAP as a synchronization source, 18
LDAP as Oracle, 15
shortsighted deployment, 20

modifying time limits, LDAP binds, 240
user profiles, 240

LDAP API, 133
API calls

see ldap_xyz() methods
asynchronous operation, 134
Concurrent Versions System, 134
errors, 133
establishing communication, 133
halting communication, 133
IETF specification, 133
including control in request, 129
Mozilla::LDAP::API, 145
Perl API for LDAP, 138, 139
result codes, 133
software development kits, 134

LDAP browsers
integrating OpenLDAP, 286

LDAP connections, 164

■INDEX 297

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 297

LDAP Data Interchange Format
see LDIF

LDAP routing
Sendmail, 259

LDAP xyz
see xyz (for example, LDAP utilities see

utilities)
ldap.conf configuration file

file hierarchy, installation, 114
ldap_abandon() method

API methods for Mozilla, 145
described, 136

ldap_abandon_ext() method, 145
ldap_add() method

API methods for Mozilla, 146
described, 136

ldap_add_ext() method, 146
ldap_add_ext_s() method, 146
ldap_add_s() method

API methods for Mozilla, 147
database operations, 141
described, 136

ldap_apply_aci_rule_s() method
access control information, 144

ldap_bind() method
API calls, 133
API methods for Mozilla, 147
described, 136

ldap_bind_s() method
API calls, 133
API methods for Mozilla, 147
described, 136

LDAP_CHANGETYPE_XYZ, 132
ldap_compare() method, 137
ldap_compare_s() method, 137
ldap_controls_free() method, 148
LDAP_CONTROL_PRESISTENTSEARCH, 129

changesonly, 133
changetypes, 132
return_echg_ctls, 133

LDAP_CONTROL_PWDEXPIRED, 129
LDAP_CONTROL_PWEXPIRING, 129
LDAP_CONTROL_SORTREQUEST, 129
ldap_count_entries() method, 143
ldap_count_values() method, 137
ldap_count_values_len() method, 137
ldap_create_filter() method, 148
ldap_create_persistentsearch_control(), 148
ldap_delete() method

API methods for Mozilla, 149
described, 137

ldap_delete_ext() method, 149
ldap_delete_ext_s() method, 150
ldap_delete_s() method

API methods for Mozilla, 150
database operations, 142
described, 137

ldap_err2string() method
API calls, 133
API methods for Mozilla, 150
described, 137

ldap_Errlist() method, 137
ldap_errono() method, 137
ldap_explode_dn() method

API methods for Mozilla, 150
described, 137

ldap_explode_rdn() method
API methods for Mozilla, 151
described, 137

ldap_extended_operation() method, 151
ldap_extended_operation_s() method, 151
ldap_first_attribute() method, 137
ldap_first_entry() method, 137
ldap_get_all_entries() method, 143
ldap_get_dn() method

API methods for Mozilla, 152
described, 137

ldap_get_entry_controls() method, 152
ldap_get_option() method, 153
ldap_get_values() method

API methods for Mozilla, 153
described, 137

ldap_get_values_len() method
API methods for Mozilla, 153
described, 137

ldap_init() method
API calls, 133
API methods for Mozilla, 154
described, 136

ldap_init_getfilter() method, 154
ldap_init_getfilter_buf() method, 154
ldap_is_ldap_url() method

API methods for Mozilla, 154
described, 138

ldap_memfree() method, 137
ldap_modify() method

API methods for Mozilla, 155
described, 137

ldap_modify_ext() method, 155
ldap_modify_ext_s() method, 155
ldap_modify_s() method

API methods for Mozilla, 156
database operations, 141
described, 137

ldap_modrdn() method, 156
performing modrdn operation using C

API, 168
ldap_modrdn2() method

API methods for Mozilla, 157
described, 137

ldap_modrdn2_s() method
API methods for Mozilla, 157
described, 137

ldap_modrdn_s() method

■INDEX298

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 298

API methods for Mozilla, 156
database operations, 142

ldap_mods_free() method, 137
ldap_msgfree() method

described, 137
memory management, 145

ldap_msgid() method, 137
ldap_msgtype() method, 137
ldap_next_attribute() method

API methods for Mozilla, 157
described, 137

ldap_next_entry() method
API methods for Mozilla, 158
described, 137

ldap_open() method, 140
LDAP_OPT_SERVER_CONTROLS option, 129
ldap_parse_result() method, 133
ldap_parse_sasl_bind_result() method, 158
ldap_perror() method

API methods for Mozilla, 158
described, 137

ldap_rename_s() method, 142
ldap_result() method

API methods for Mozilla, 158
described, 136

ldap_result2error() method
API methods for Mozilla, 159
described, 137

ldap_sasl_bind() method
API calls, 133
API methods for Mozilla, 159

ldap_sasl_bind_s() method
API calls, 133
API methods for Mozilla, 160

ldap_search() method
API methods for Mozilla, 160
described, 137

ldap_search_ext() method, 161
ldap_search_ext_s() method, 161
ldap_search_s() method

API methods for Mozilla, 162
database operations, 143
described, 137

ldap_search_st() method, 137
ldap_set_lderrno() method, 163
ldap_set_option() method, 163
ldap_simple_bind() method

API calls, 133
API methods for Mozilla, 163
described, 136

ldap_simple_bind_s() method
API calls, 133
API methods for Mozilla, 164
connection management, 140
described, 136

ldap_sort_entries() method, 138
ldap_sort_strcasecmp() method, 138

ldap_sort_values() method, 138
LDAP_UNAVAILABLE_CRITICAL_EXTENSIO

N error
LDAP controls, 128

ldap_unbind() method
connection management, 140
described, 136

ldap_unbind_ext() method, 133
ldap_unbind_s() method, 136
ldap_url_parse() method, 138
ldap_value_free() method, 137
ldap_value_free_len() method, 137
ldapadd utility, 79

command-line options, 80–81
LDAPapi module

integrating Apache, 266
ldapclient utility

AttributeMap attribute, 246
AuthenticationMethod attribute, 246
BindTimeLimit attribute, 246
CertificatePath attribute, 246
command-line options, 248
configuring LDAP client, 244
CredentialLevel attribute, 246
DefaultSearchBase attribute, 246
defaultSearchScope attribute, 247
DefaultServerList operand, 248
DomainName attribute, 247
followReferrals attribute, 247
forms, 245
fully qualified hostnames, 248
ObjectclassMap attribute, 247
PreferredServerList attribute, 247
ProfileName attribute, 247
ProfileTTL attribute, 247
ProxyDN attribute, 247
ProxyPassword attribute, 247
SearchTimeLimit attribute, 247
ServiceAuthenticationMethod attribute,

248
ServiceCredentialLevel attribute, 248
ServiceSearchDescriptor attribute, 248

ldapdelete utility, 84
command-line options, 85–86

ldapmodify utility, 79
command-line options, 80–81

ldapmodrdn utility, 87
command-line options, 88–89

LDAPROUTE_DOMAIN, Sendmail, 259
LDAPROUTE_EQUIVALENT, Sendmail, 259
ldapsearch utility, 81

command-line options, 82–83
summarized, 123

scope, LDAP utilities, 110
testing configuration, 99

LDAPv3 condition, Require configuration
option, 120

■INDEX 299

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 299

LDFLAGS variable, 69
LDIF (LDAP Data Interchange Format), 41

chain operations, 43
comments, 238
displaying search results, 82
example creating file, 72
genprofile option, 245, 246
group LDIF, 223
host LDIF, 231
initializing LDAP client, 244
LDAP operations, 41

Changetype: add, 42
Changetype: modify, 42
Changetype: modrdn, 43

LDIF profile as baseline, 213
LDIF record, 41
mapping relevant service information

into, 199
migrate_fstab.pl script, 224
migrating information, 205
processing files based on host class, 124
RPC LDIF, 234
search results displayed, 82
Sendmail LDIF entry, 257
storing group information in LDAP, 220
writing to specified file

-l slapadd option, 91
-l slapcat option, 90, 111

legal name
list of name types, 3

library
functions, man page sections, 78
initializing LDAP library, 136
lib files, base installation, 69

LIBS variable, 69
Limits configuration option, 118
linker options, environment variables

configure script, base installation, 69
Linux

integrating network services and LDAP,
204

list form, ldapclient, 245, 246
local database

creating during installation, 71
localized scope

referrals, 113
log files, slapd

implementing, 62
information format, 62
showing user authentication, 63

logging, slapd
local user of syslog facility

-l slapd option, 61
logging debugging statements

-s slapd option, 61
service name for logging

-n slapd option, 61

logical networks
typical network separation, 49

Loglevel configuration option, 118

■M
-M/MM options

ldapadd, 80
ldapdelete, 85
ldapmodify, 80
ldapmodrdn, 88
ldapsearch, 82

M man page section, 79
Mail Transfer Agent (MTA)

using Sendmail, 252
MAILER definitions, Sendmail, 257
man page sections, 78

number in parentheses following
components, 78

subsections, 79
Manage DSA-IT control

-M ldapadd option, 80
-M ldapdelete option, 85
-M ldapmodify option, 80
-M ldapmodrdn option, 88
-M ldapsearch option, 82

manual form, ldapclient, 245, 246
mapping

between NSS and PAM objects, 243
master host, 50
master server

replication, 105
master configuration, 108

master server role, NIS, 199
matching rules

schema attribute syntax, 33
Maxbufsize configuration option, 116
Maxssf configuration option, 116
MECH, SASL_MECH option, 115
memory management

Perl API for LDAP, 145
Menu man page section, 79
meta-directories

architecture, 15
connector view, 14
connectors, 13
evaluating meta-directory products, 15
meta-directory services, 12
meta-view, 14
role of, 12
rule sets, 13
target connector view, 14

MGR_DN/MGR_PW global variables
JNDI context initialization, 175

Microsoft Exchange, 283, 284, 285
middleware

directory maintenance, 10, 11
migrate_aliases.pl script, 210, 212

■INDEX300

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 300

migrate_all_online.sh script, 204
migrate_base.pl script, 205, 208
migrate_fstab.pl script, 225, 226
migrate_group.pl script, 220, 222
migrate_hosts.pl script, 229, 231
migrate_passwd.pl script, 213, 217
migrate_rpc.pl script, 232, 234
migrate_services.pl script, 235, 236
migration

converting host information, 229
LDIF migrating information, 205
migrating generic groups, 224
migrating RPCs, 232
migration tools

as guidelines, 220
file defining disk layout, 224

TCP/IP services, 234
migration_common.ph file

integrating network services and LDAP,
204

searching using grep, 205
Minssf configuration option, 116
Misc.schema file, 24
mod form, ldapclient, 245, 246
modify functions

see ldap_modify() methods
modrdn functions

see ldap_modrdn() methods
Moduleload configuration option, 119
Modulepath configuration option, 119
Mozilla::LDAP::API, 145
msgfree functions

see ldap_msgfree() methods
MY_ATTRS global variable, JNDI, 186
MY_FILTER global variable, JNDI, 183
MY_HOST global variable, JNDI, 175
MY_SEARCHBASE global variable, JNDI, 176

■N
-n option

ldapadd, 80
ldapdelete, 85
ldapmodify, 80
ldapmodrdn, 88
ldapsearch, 82
saslpasswd, 98
slapadd, 90
slapcat, 90, 111
slapd, 61
slapindex, 91

name (Child Element)
attribute type definitions, 197
DSML object classes, 195

name data, 3
Name option

DNS SRV resource records, 112

names
list of name types, 3

namespace URI
DSML namespace URI, 190

naming conventions
hosts

creative naming, 52
logical naming, 55

OpenLDAP deployment, 52
Nas man page section, 79
Ncurses man page section, 79
Netscape Directory SDK

LDAP API, 134
PerLDAP, 138

network authentication protocols
Kerberos, 104

Network Information Services (NIS), 199
maintaining files, 200
NIS maps, creating, 200
roles

client role, 200
master server role, 199
slave server role, 200

source files, 200
standard configuration, 200
storing NIS database files, 199
system level integration, 199

networks
logical networks, 49
network separation, 49
physical networks, 50

Net::LDAPapi module
integrating Apache, 266

new superior entry
-s ldapmodrdn option, 88

next functions
see ldap_next_xyz() methods

nicknames, 201
NIS configuration

appropriate host communication, 201
converting source files into database

format, 200
direct integration, 203
information from remote hosts, 202
initializing hosts as NIS slaves, 201
integrating network services and LDAP,

204
migration

all system data, 204
default settings for data, 204
existing files to LDAP information, 204
migrate_aliases.pl script, 210
migrate_all_online.sh script, 204
migrate_base.pl script, 205
migrate_fstab.pl script, 225
migrate_group.pl script, 220
migrate_hosts.pl script, 229

■INDEX 301

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 301

NIS configuration (continued)
migrate_passwd.pl script, 213
migrate_rpc.pl script, 232
migrate_services.pl script, 235
migrating generic groups, 224
migration_common.ph file, 204
RPC definitions, 232

migration tools, 204
network administration, 200
Pluggable Authentication Modules, 203
pointing slaves to masters, 201
synchronization with LDAP, 202
synchronizing information, 200
ypcat command, 201
ypinit command, 201
yppush process, 200
ypset command, 201
ypwhich command, 201

NIS maps
creating, 200
setting up basic maps, 201
viewing maps, 201

Nis.schema file
OpenLDAP file structure for schema, 24

nmbd program
integrating Samba, 275

None condition, Require configuration
option, 120

NSPR (Netscape Portable Runtime), 136
NSS (Name Service Switch) configurations

configuring LDAP client, 249
NSS (Network Security Services), 136
NSS configurations

configuring LDAP client, 242
mapping between NSS and PAM

objects, 243
NumericStringXyzMatch matching rules

schema attribute syntax, 33

■O
-o option

slurpd, 108
-O option

ldapadd, 81
ldapdelete, 85
ldapmodrdn, 89
ldapsearch, 83

OASIS (Organization for the Advancement of
Structured Information Standards)

standards, 189
conformance, 197
directory schema, 194
DSML, 189

objclassSet attribute
JNDI binding phase, 176

object classes, DSML, 194
object classes, schema, 34

abstract object classes, 35
auxiliary object classes, 35
objectclass element, 194
OID, 197
OpenLDAP Schema Definitions, 25
RFC 2252’s description, 34
structural object classes, 35
unique identifier for, 195

Object Identifiers
see OIDs

object-identifier (Child Element)
attribute type definitions, 197
DSML object classes, 195

Objectclass configuration option, 119
objectclass element

entry object class, DSML, 192
object classes, 194

ObjectclassMap attribute, ldapclient, 247
objectIdentifier

schema file format, 25
Objectidentifier configuration option, 119
ObjectIdentifierMatch matching rule

schema attribute syntax, 33
obsolete (XML Attribute)

attribute type definitions, 196
DSML object classes, 195

OctetStringMatch matching rule
schema attribute syntax, 33

offline database
installation, creating during, 73

OIDs (Object Identifiers), 27
attribute type definitions, 197
common branching of OIDs, 27
equality matching rule, 197
hierarchical structure, 27, 28
LDAP controls, 128
object classes, schema, 197
OIDs for attribute syntax, 32
server control OIDs, 129
web-based interface for OID lookups, 29

open function, 140
OpenLDAP

see also LDAP
compiling, 71
implementing, 93
integrating

Apache, 264
appliances, 286
Eudora, 282
Exchange, 283
LDAP browsers, 286
Pine, 268
Samba, 274
with clients and applications, 263

running as root, 66
OpenLDAP releases

choosing distribution, 65

■INDEX302

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 302

OpenLDAP xyz
see xyx (for example, OpenLDAP utilities

see utilities)
Openldap.schema file, 24
OpenSSL

software requirements, 66
operating procedures

deployment, 57
operation commands

man page sections, 78
operation functions

see ldap_extended_operation() methods
operations

Changetype operations, 41
getting result for asynchronous operation,

158
performing against directories, 174
performing asynchronous extended

operation, 151
performing synchronous extended

operation, 151
operations environment, 48
OperationsError

TLS result code, 104
options

getting for LDAP session, 153
Oracle, LDAP as

mistakes, avoiding, 15
ordering (Child Element)

attribute type definitions, 197
ostype directory, Sendmail, 257

■P
-P command-line option

ldapadd, 81
ldapdelete, 85
ldapmodrdn, 89
ldapsearch, 83

-p option
ldapadd, 81
ldapdelete, 85
ldapmodify, 81
ldapmodrdn, 89
ldapsearch, 83, 123
saslpasswd, 98

P man page section, 79
PADL software

integrating network services and LDAP,
204

pam_groupdn directive, 241
PAMs (Pluggable Authentication Modules)

configuring LDAP client, 250
giving LDAP capabilities to hosts, 251
mapping between NSS and PAM

objects, 243
NIS configuration, 203
PAM configurations, 241

parentheses
number in, following components, 78

parse_sasl_bind_result function, 158
passwd

complementary /etc/shadow file, 213
migrate_passwd.pl script, 213
original /etc/passwd file, 212
passwd nickname, 201

password for simple authentication, 80
password-based authentication, 97
Password-crypt-salt-format configuration

option, 119
Password-hash configuration option, 119
passwords

password for simple authentication
-w ldapadd option, 80
-w ldapdelete option, 85
-w ldapmodrdn option, 89
-w ldapsearch option, 82, 123
-y ldapadd option, 80
-y ldapdelete option, 85
-y ldapmodrdn option, 89
-y ldapsearch option, 82

prompt for simple authentication
-W ldapadd option, 80
-W ldapdelete option, 85
-W ldapmodrdn option, 89
-W ldapsearch option, 82shared-secret

mechanisms, 100
patches

choosing distribution, 65
PATH variable, 69
pattern matching

authentication, 101
Perl API for LDAP, 138

access control information (ACI), 144
connection management functions, 140
error processing, 139
functions affecting directory entries, 140
introduced, 138
memory management, 145
obtaining, 138
PerLDAP, 138
specifying API for Perl scripts, 174
using, 139

perror function
see ldap_perror() method

persistent searches, 132
creating persistent search control, 148
entry change notification, 133
returning entries initially matched, 133
specifying change types, 132

PGP (Pretty Good Privacy) key, 68
phone data, 4
phone formats, 5
physical networks

typical network separation, 50

■INDEX 303

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 303

Pidfile configuration option, 119
Pine

integrating OpenLDAP, 268
base configurations, 269
configuration, 269–274
configuring options, 271
custom-search-filter directive, 273
customized-hdrs setting, 271
default pine configuration, 270
directives, 272
example configuration, 272
Features tab, 273
folder-collections setting, 271
inbox-path setting, 271
ldap-server directive, 273
ldap-server setting, 271
nickname directive, 273
pine.conf.fixed configuration file, 270
pinerc file, 269, 270
port directive, 273
protocol used, 269
search-base directive, 273
Search-Rule tab, 273
Search-Type tab, 273
sizelimit directive, 273
smtp-server setting, 271
timelimit directive, 273
user-domain setting, 271

pipes, setting pipe mode
-p saslpasswd option, 98

PKI (public key infrastructure), 5
Pluggable Authentication Modules

see PAMs
PM man page section, 79
PORT configuration option, 115
Port option

DNS SRV resource records, 113
specifying alternative TCP port

-p ldapadd option, 81
-p ldapdelete option, 85
-p ldapmodrdn option, 89
-p ldapsearch option, 83, 123

preferred name
list of name types, 3

PreferredServerList attribute, ldapclient, 247
presence index

directory search, 44
Pretty Good Privacy (PGP) key

obtaining distribution, 68
primary host, 50
primary keys

distinguished names, 38
Priority option

DNS SRV resource records, 112
procedures, standard

basic requirements, 57

standard host installation, 58
standard host specifications, 57

producer
conformance, DSML documents, 198

production environment
described, 48
environment separation, 47

ProfileName attribute, ldapclient, 247
ProfileTTL attribute, ldapclient, 247
programming

scripting, differences, 124
propagation

NIS configuration, 200
Proto option

DNS SRV resource records, 112
ProtocolError

TLS result code, 104
protocols

default version, 239
Kerberos network authentication

protocol, 104
negotiation during initiation, 97

proxy authorization, SASL, 99
specifying proxy authorization for the

SASL bind
-X ldapdelete option, 86
-X ldapsearch option, 83

ProxyDN attribute, ldapclient, 247
ProxyPassword attribute, ldapclient, 247
public key certificate, 103
public key infrastructure, 5

■Q
-Q option

ldapadd, 81
ldapdelete, 86
ldapmodrdn, 89
ldapsearch, 83

quality assurance environment, 48
queries

LDAP as Oracle, 16
new implementations on top of LDAP, 18
types of, 17

Quiet mode
see SASL Quiet mode, enabling

■R
-R option

ldapadd, 81
ldapdelete, 86
ldapmodrdn, 89
ldapsearch, 83

-r option
ldapdelete, 85
ldapmodrdn, 88
slapd, 62
slurpd, 108

■INDEX304

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 304

RAID (Redundant Array of Independent
Disks)

implementation, 95
RAM

implementation requirement, 93
RDN (relative distinguished name)

see distinguished names (DNs)
RDN values, removing

-r ldapmodrdn option, 88
Readline man page section, 79
REALM, SASL_REALM option, 115

specifying realm of authentication ID for
SASL bind

-R ldapadd option, 81
-R ldapdelete option, 86
-R ldapmodrdn option, 89
-R ldapsearch option, 83

user realm
-u saslpasswd option, 98

records
add or change skipped records

-S ldapadd option, 80
-S ldapmodify option, 80

deleting records recursively
-r ldapdelete option, 85

deleting records, JNDI, 182
modifying records in directory, JNDI, 178
removing attributes from, JNDI, 180

ref (XML Attribute on the attribute Element)
DSML object classes, 196

referential integrity
distinguished names (DNs), 39

Referral configuration option, 119
TLS result code, 104

referrals, 112
DNS resource records, 112
global referrals, 113
implementation, 112
localized scope, 113

releases
choosing distribution, 65

rename functions
ldap_rename_s() method, 142

replica: lines
forcing application of all changes

-F ldapmodify option, 80
-F ldapmodrdn option, 88

replication, 105
changelog log, 106

testing, 111
creating replicated environment, 105
implementation, 105
master configuration, 108
replica head host, 50
replica hub, 105
replication log, 106
slurpd, 108

specifying name of slapd replication log
file

-r slurpd option, 108
updateref, 109

Require configuration option, 119
required (XML Attribute on the attribute

Element)
DSML object classes, 196

reserved words
host naming conventions, 53

result chains
getting first entry in, 137
getting next entry in, 137, 158

result functions
ldap_result_xyz() methods

results
getting error number, 159
getting result for asynchronous operation,

158
retrieval of attributes

-a ldapsearch option, 82
retrieving information

LDAP as Oracle, 17
return_echg_ctls

LDAP_CONTROL_PRESISTENTSEARCH,
133

Reverse-lookup configuration option, 120
RFC 1178

host naming conventions, 53
RFC 1521

base64 encoding, 194
RFC 1823

Perl API for LDAP, 138
RFC 2100

host naming conventions, 55
RFC 2222

SASL definition, 97
RFC 2251

mapping JNDI methods, 175
RFC 2307

Network Information Services, 199
storing application data within LDAP, 224

RFC 2782
DNS resource records, 112

RFC 2830
Transport Layer Security, 103

RFC 3052
Password-hash configuration option, 119

root user
running OpenLDAP as root, 66
specifying root account on trusted hosts,

239
rootbinddn directive

configuring LDAP client, 239
security, 239

Rootdn token
creating directory during installation, 72

■INDEX 305

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 305

RootDSE configuration option, 120
Rootpw token

creating directory during installation, 72
routing, Sendmail, 259
RPC (remote procedure call)

NIS configuration, 232
RPC LDIF, 234

rule sets
meta-directories, 13

■S
-S option

ldapadd, 80
ldapsearch, 82

-s option
ldapmodrdn, 88
ldapsearch, 83
slapd, 61

Samba
integrating OpenLDAP, 274

authentication and authorization, 274
browsing, 275
configuring base DN, 280
configuring special users, 281
defining account defaults, 281
defining separate containers, 281
directives, 281
DNs, 282
domain controller, 274
file and print services, 274
LDAP configurations, 277
LDIFs after SMB modification, 282
name resolution, 275
nmbd program, 275
nmblookup utility, 276
setting specific configurations, 281
slapd.conf file, 276
smb.conf file, 276
smbclient utility, 276
smbd program, 274
smbldap-tools, 276
swat utility, 276

SASL (Simple Authentication and Security
Layer), 97

administrative password, setting, 98
asynchronously binding to LDAP server,

159
creating SASL user database, 98
Cyrus SASL security properties, 115
implementing SASL support, 98
security on implementation, 97

SASL proxy authorization, 99
shared-secret mechanisms, 100

specifying SASL mechanism for
authentication

-Y ldapadd option, 81
-Y ldapdelete option, 86

-Y ldapmodrdn option, 89
-Y ldapsearch option, 83

synchronously binding to LDAP server,
160

userPassword attribute for user
-n saslpasswd option, 98

using file for sasldb
-f saslpasswd option, 98

using simple authentication instead of
-x ldapadd option, 80
-x ldapdelete option, 85
-x ldapmodrdn option, 88
-x ldapsearch option, 82

SASL bind operation
parsing results of, 158

SASL bind
specifying authentication ID for

-U ldapadd option, 81
-U ldapdelete option, 86
-U ldapmodrdn option, 89
-U ldapsearch option, 83

specifying proxy authorization for
-X ldapdelete option, 86
-X ldapsearch option, 83

specifying realm of authentication ID
-R ldapadd option, 81
-R ldapdelete option, 86
-R ldapmodrdn option, 89
-R ldapsearch option, 83

specifying requested authentication ID for
-X ldapmodify option, 81
-X ldapmodrdn option, 89

SASL configuration option, 120
SASL condition, Require configuration

option, 120
SASL Interactive mode, enabling

-I ldapdelete option, 85
-I ldapmodify option, 81
-I ldapmodrdn option, 89
-I ldapsearch option, 83

SASL Quiet mode, enabling
-Q ldapadd option, 81
-Q ldapdelete option, 86
-Q ldapmodrdn option, 89
-Q ldapsearch option, 83

SASL security properties
-O ldapadd option, 81
-O ldapdelete option, 85
-O ldapmodrdn option, 89
-O ldapsearch option, 83

Sasl-xyz configuration options, 120
saslpasswd command, 98
saslpasswd2 command, 98
sasl_bind functions

ldap_sasl_bind_xyz(), 159, 160
sasl_bind_result function

ldap_parse_sasl_bind_result(), 158

■INDEX306

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 306

SASL_XYZ configuration options, 115
scalability

distinguished names, 93
schema, 23–38

ASN.1 schema format, 26
attribute definition, 31
attribute name, 30
attribute or schema, DSML, 190
attribute syntax, 31

attribute inheritance, 33
matching rules, 33

attributes, 29
AttributeTypeDescription, 29

Class of Service, 38
directory schema, DSML, 190
distinguished names, checking, 38
groups, 36

combined groups, 37
dynamic groups, 36
group-to-user interaction, 36
role-based group-to-user interaction,

37
static groups, 36

object classes, 34
Object Identifiers (OIDs), 27
OpenLDAP file structure for, 24
OpenLDAP Schema Definitions

Object Classes, 25
roles, 37
schema file format

Openldap.schema file, 24
storing application data within LDAP, 224
User Requirements Notation, 29

Schemadn configuration option, 120
scope

LDAP utilities, 110
localized scope

referrals, 113
referrals, 112
specifying scope of search

-s ldapsearch option, 83
scripting

command-line tools, 123
programming, differences, 124
repetitive tasks, 124

scripting example
processing LDIF files based on host class,

125
SDK (software development kit)

LDAP API, 134
Netscape Directory SDK, 134

search filters, 75
creating, 148
examples, 77
string representation of, 76, 77

search functions
see ldap_search() methods

searching
see also ldapsearch
displaying results in LDIF format, 82
JNDISearch.java, 183
line by line search, 82, 123
persistent searches, 132

creating persistent search control, 148
retrieving limited entries for search

-z ldapsearch option, 83
searchbase

-b ldapsearch option, 83
specifying scope of the search

-s ldapsearch option, 83
specific information, JNDI, 186

SearchTimeLimit attribute, ldapclient, 247
SECPROPS, SASL_SECPROPS option, 115
security

access control policy, 104
authentication, 96
badges, 6
configuring LDAP client, 251

security configurations, 244
configuration option, 120
Cyrus SASL security properties, 115
implementation, 96
Kerberos, 104
layer, protocol initiation, 97
network authentication protocols, 104
public key certificate, 103
public key infrastructure, 5
rootbinddn directive, 239
SASL

proxy authorization, 99
security on implementation, 97
shared-secret mechanisms, 100

SASL security strength factor, 120
specifying root account on trusted hosts,

239
standard host installation, 59
superuser accounts, 239
Transport Layer Security, 103

security strength factor, 120
transport security strength factor, 120
X.509 certificates, 103

Sendmail, 252
ALIAS_FILE directive, 255
base configuration, 254
building binaries, 255
defining group of hosts, 254
DldapMAP option, 254
enabling aliases, 254
enabling classes, 254
enabling other lookups, 254
enabling with LDAP, 253
FEATURE(), 257
LDAP routing, setting up, 259
LDAPROUTE_DOMAIN, 259

■INDEX 307

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 307

Sendmail (continued)
LDAPROUTE_EQUIVALENT, 259
LDIF entry, 257
LDIF for default class definition, 259
MAILER definitions, 257
migrating information, 255
ostype directory, 257
routing and delivery information, 256
sendmailMTAClassName values, 258
sendmailMTAMapName values, 256
system level integration, 252
version, 253

separation
environment separation, 47
network separation

logical networks, 49
physical networks, 50

servers
asynchronously binding, 147, 163

using SASL, 159
asynchronously searching, 160
specifying URI referring to the LDAP

server
-H ldapdelete option, 85
-H ldapmodify option, 80
-H ldapmodrdn option, 89
-H ldapsearch option, 82

synchronously binding, 147, 164
using SASL, 160

synchronously searching, 161
system information, 57

service name for logging
-n slapd option, 61

Service option
DNS SRV resource records, 112

ServiceAuthenticationMethod attribute,
ldapclient, 248

ServiceCredentialLevel attribute, ldapclient,
248

ServiceSearchDescriptor attribute,
ldapclient, 248

sessions
creating session handle, 133
getting option for, 153
initializing, 154
setting LDAP session option, 163

set functions
see ldap_set_xyz() methods

shadow files
complementary /etc/shadow file, 213

shared-secret mechanisms
mapping authentication request, 101
SASL, security on implementation, 100

SIGHUP command, 118
simple authentication

password for
-w ldapadd option, 80

-w ldapdelete option, 85
-w ldapmodrdn option, 89
-w ldapsearch option, 82, 123
-y ldapadd option, 80
-y ldapdelete option, 85
-y ldapmodrdn option, 89
-y ldapsearch option, 82

prompt for simple authentication
-W ldapadd option, 80
-W ldapdelete option, 85
-W ldapmodrdn option, 89
-W ldapsearch option, 82

SASL, using instead of
-x ldapadd option, 80
-x ldapdelete option, 85
-x ldapmodrdn option, 88
-x ldapsearch option, 82

security on implementation, 97
using Kerberos IV instead of

-k ldapdelete option, 85
-k ldapmodify option, 80
-k ldapmodrdn option, 88
-K ldapsearch option, 82

Simple_bind configuration option, 121
simple_bind functions

see ldap_simple_bind() methods
single-value (XML Attribute)

attribute type definitions, 196
size limit

-z ldapsearch option, 83
SIZELIMIT configuration option, 115, 121
skipped records

add or change skipped records
-S ldapadd option, 80
-S ldapmodify option, 80

slapadd utility, 90
command-line options, 90

slapcat utility, 89, 110
command-line options, 90, 110
scope, LDAP utilities, 110
syntax, 110

slapd
command-line options, 61–62
creating directory during installation, 72
creating offline database, 73
creating special user, system preparation,

66
implementing log files, 62
introduction, 60
invoking, 60
kill command, 61
running slapd, 60
specifying configuration file, 61

-f slurpd option, 108
starting application, 60
stopping application, 61

■INDEX308

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 308

slapd.at.conf configuration file
file hierarchy, installation, 121

slapd.conf configuration file
file hierarchy, installation, 116
integrating Samba, 276
slapd daemon configuration information,

116
specifying alternative

-f slapadd option, 91, 111
-f slapcat option, 90
-f slapindex option, 91

slapd.oc.conf configuration file
file hierarchy, installation, 121

slapindex utility, 91
command-line options, 91

slave server
replication, 105

base configurations, 108
slave server role, NIS, 200

Sleepycat
base OpenLDAP installation, 70
software requirements, 66

slurpd, 108
command-line options, 108

smb.conf file
integrating Samba, 276

smbd program
integrating Samba, 274

Snmp man page section, 79
Sockbuf_xyz configuration options, 121
Softerra LDAP browser

integrating OpenLDAP, 286
software requirements

installation, 66
sorting

see also ldap_sort_xyz() methods
entries returned based on attribute

-S ldapsearch option, 82
source code

choosing distribution, 65
source files

Network Information Services (NIS), 200
sources

see data sources
Ssf configuration option, 120
SSL man page section, 79
staging environment, 48
standard host installation, 58
standard host specifications, 57
standard procedures

see procedures, standard
StartTLS

disabling, 118
issuing StartTLS extended operation

-Z/-ZZ ldapadd options, 81
-Z/-ZZ ldapdelete options, 86

-Z/-ZZ ldapmodrdn options, 89
-Z/-ZZ ldapsearch options, 83

static groups, schema, 36
storage requirements

implementation, 95
structural object classes, schema, 35
substring (Child Element)

attribute type definitions, 197
substrings index

directory search, 44
Suffix token

creating directory during installation, 72
suffix, determining output database

-b slapadd option, 90
-b slapcat option, 90
-b slapindex option, 91

superior (XML Attribute)
attribute type definitions, 196
DSML object classes, 195

superior entry
new superior entry

-s ldapmodrdn option, 88
superuser accounts

security, 239
supportedControl attribute, 129
synchronization

API calls, 133
integrating LDAP, 19
LDAP API, 134
LDAP as synchronization source

mistakes, avoiding, 18
NIS configuration, 202

syntax (Child Element)
attribute type definitions, 197

syslog facility, local user of
-l slapd option, 61

system disk configurations
auditing, 224

system information
retrieving e-mail address using C API, 170
searching for e-mail address, 169
standard host specifications, 58

system level integration
configuring LDAP client, 238
Network Information Services, 199
Sendmail, 252

system maintenance
man page sections, 78

■T
-t option

ldapsearch, 82
slapd, 62
slurpd, 108

target connector view
meta-directories, 14

■INDEX 309

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 309

Target option
DNS SRV resource records, 113

Tcl/TclX/Tcsh man page sections, 79
TCP (Transmission Control Protocol)

parameters, 58
specifying alternative TCP port

-p ldapadd option, 81
-p ldapdelete option, 85
-p ldapmodrdn option, 89
-p ldapsearch option, 83, 123

TCP/IP services, 234
Tel (telephone number)

schema attribute syntax, 31
temporary files

storing local locked copy of changelog
-t slurpd option, 108

writing retrieved values to
-t ldapsearch option, 82

testing
changelog log, replication, 111

time limit
-l ldapsearch option, 83

TIMELIMIT configuration option, 115
timeout, specifying, 118
TLS (Transport Layer Security)

configuration option, 120
result codes, 104
security on implementation, 103

Tls_xyz features, Disallow configuration
option, 118

tokens
creating directory during installation, 72

tools
see also utilities
implementation-specific methods

compared, 73
installation, creating directory during, 71
man page sections, 78

TransLDAP module
integrating Apache, 266

Transmission Control Protocol (TCP)
see TCP

Transport configuration option, 120
TTL option

DNS SRV resource records, 112
type (XML Attribute)

DSML object classes, 195

■U
-U option

ldapadd, 81
ldapdelete, 86
ldapmodrdn, 89
ldapsearch, 83

-u option
ldapsearch, 82
saslpasswd, 98

slapadd, 90
slapd, 62

Unavailable
TLS result code, 104

unbind functions
see ldap_unbind() methods

uniform resource indicators
see URIs

uniform resource locators
see URLs

uninit form, ldapclient, 245, 246
UniqueMemberMatch matching rule

schema attribute syntax, 33
update releases

choosing distribution, 65
updateref, replication, 109
Update_anon feature, Allow configuration

option, 117
Update_xyz configuration options, 121
URIs (uniform resource indicators)

DSML namespace URI, 190
specifying URI referring to the LDAP

server
-H ldapdelete option, 85
-H ldapmodify option, 80
-H ldapmodrdn option, 89
-H ldapsearch option, 82

uri directive
configuring LDAP client, 239
PAM configurations, 250

URLs (uniform resource locators)
prefix for files

-F ldapsearch option, 82
specifying URLs to serve

-h slapd option, 61
url function

see ldap_is_ldap_url() method
User Friend Name form of DN

-u ldapsearch option, 82
User Requirements Notation (URN), 29
user-facing applications

directory maintenance, 9, 11
user-modification (XML Attribute)

attribute type definitions, 197
username, running slapd with specified

-u slapd option, 62
userPassword attribute for user

-n saslpasswd option, 98
users

adding, using the C API, 166
creating an entry for user

-c saslpasswd option, 98
deleting an entry for user

-d saslpasswd option, 98
deleting users using C API, 167
preparing system for installation

creating special user, 66

■INDEX310

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 310

user profiles, 240
user realm

-u saslpasswd option, 98
utilities

see also tools
local and remote, 110
man page sections, 78
using OpenLDAP utilities, 78

■V
-V option

ldapmodrdn, 88
ldapsearch, 82

-VV option
ldapdelete, 85
ldapmodrdn, 88
ldapsearch, 82

-v option
ldapadd, 80
ldapdelete, 85
ldapmodify, 80
ldapsearch, 123
slapadd, 90
slapcat, 90
slapindex, 91

validity
arguments, 154

vendor data
data sources, 7

verbose mode
diagnostics written to STDOUT

-v ldapadd option, 80
-v ldapdelete option, 85
-v ldapsearch option, 123

enabling
-v slapadd option, 90
-v slapcat option, 90, 110
-v slapindex option, 91

versions
printing version information

-V/VV ldapdelete options, 85
-V/VV ldapmodrdn options, 88
-V/VV ldapsearch options, 82

specifying LDAP version
-P ldapadd option, 81
-P ldapdelete option, 85
-P ldapmodrdn option, 89
-P ldapsearch option, 83

Vga man page section, 79

■W
-W option

ldapadd, 80
ldapdelete, 85
ldapmodrdn, 89
ldapsearch, 82

-w option
ldapadd, 80
ldapdelete, 85
ldapmodify, 80
ldapmodrdn, 89
ldapsearch, 82, 123

Weight option
DNS SRV resource records, 113

■X
-X option

ldapadd, 81
ldapdelete, 86
ldapmodrdn, 89
ldapsearch, 83

-x option
ldapadd, 80
ldapdelete, 85
ldapmodify, 80
ldapmodrdn, 88
ldapsearch, 82

X man page section, 79
X.500 directory implementations

problems with, 15
X.509 certificates

security on implementation, 103
XML

DSML and, 189
XML and directories working together, 189

■Y
-Y option

ldapadd, 81
ldapdelete, 86
ldapmodrdn, 89
ldapsearch, 83

-y option
ldapadd, 80
ldapdelete, 85
ldapmodify, 80
ldapmodrdn, 89
ldapsearch, 82

ypcat command, NIS, 201
ypinit command, NIS, 201
yppush process, NIS, 200
ypset command, NIS, 201
ypwhich command, NIS, 201

■Z
-Z/-ZZ options

ldapadd, 81
ldapdelete, 86
ldapmodrdn, 89
ldapsearch, 83

-z option
ldapsearch, 83

■INDEX 311

4134IDXcmp1.qxd 9/30/04 11:37 AM Page 311

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let
anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

BOB_Forums7x925 8/18/03 Page ______

http://forums.apress.com

	Cover
	Copyright
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Preface
	What This Book Covers
	Who This Book Is For
	Source Code

	Introduction
	X.500
	Naming Services
	Yellow Pages
	NIS
	NIS+
	DNS

	Relational Model
	LDAP Standards

	Assessing Your Environment
	Gathering Information
	Name
	E-mail
	Phone
	PKI Information
	Badge
	Customer Data

	Creating an Ongoing Process
	Changing Application Sources
	User-Facing Applications
	Middleware
	Back-End Systems

	Understanding Meta-Directories

	Avoiding Mistakes
	LDAP As Oracle
	LDAP As a Sync Source
	Shortsighted Deployment

	Summary

	Understanding Data Definitions
	Defining Your Schema
	Understanding Schemas
	ASN Schema Format
	Object Identifiers (OIDs)
	Attributes
	Attribute Name
	Additional Attribute Information
	Attribute Syntax

	Object Classes
	Abstract Object Classes
	Structural Object Classes
	Auxiliary Object Classes

	Other Data Definition Information
	Groups
	Roles
	Class of Service

	Understanding Distinguished Names (DNs)
	Schema Checking
	Referential Integrity

	Structuring the Directory Information Tree (DIT)
	Regional Deployment of Information
	Functional Deployment of Information
	Organization by Business Function or Group

	Introducing the LDAP Data Interchange Format (LDIF)
	LDAP Operations
	Changetype: add
	Changetype: modify
	Changetype: modrdn

	Chaining Operations

	Indexing Data
	Summary

	Implementing Deployment, Operations, and Administration Strategies
	Separating Your Environments
	Setting Up Classes of Hosts
	Using Naming Conventions
	Using the Creative Convention
	RFC 1178
	RFC 2100

	Using the Logical Convention
	Data Center Layout
	Pure Function
	Function and Major Designation

	Reaching a Compromise

	Following Standard Procedures
	Using the Standard Host Specifications
	Using the Standard Host Installation
	Using the Standard Application Installation

	Running the Application
	Starting the Application
	Stopping the Application

	Using Command-Line Options
	Implementing Logs
	Summary

	Installing OpenLDAP
	Choosing a Distribution
	Setting Up Your System
	Choosing a Special User
	Obtaining the Distribution

	Performing the Base Installation
	Compiling OpenLDAP
	Creating a Local Database
	Creating an Offline Database
	Using LDAP Search Filters
	Using OpenLDAP Utilities
	ldapmodify (1) and ldapadd (1)
	ldapsearch (1)
	ldapdelete (1)
	ldapmodrdn (1)
	slapcat (8C)
	slapadd (8C)
	slapindex (8C)

	Summary

	Implementing OpenLDAP
	How Much RAM Do You Need?
	How Much Disk Space Do You Need?
	Considering Security in Your Implementation
	Authentication
	SASL
	SASL Proxy Authorization
	Shared-Secret Mechanisms

	X.509 Certificates
	Transport Layer Security
	Access Control
	Kerberos

	Understanding Replication
	changelog/Replication Log
	slurpd
	updateref

	Importing Databases
	slapcat
	Testing

	Understanding Referrals
	DNS Resource Records for Service Location
	Localized Scope

	Understanding the Installation Structure
	ldap.conf
	Systemwide Configurations
	User-Only Configurations
	SASL Options

	slapd.conf
	slapd.at.conf
	slapd.oc.conf

	Summary

	Scripting and Programming LDAP
	Utilizing Command-Line Tools
	LDAP Controls
	LDAP API
	Synchronous vs. Asynchronous
	Various SDKs
	Downloading the Netscape C SDK
	API Calls

	Obtaining the LDAP Perl API
	Using the LDAP Perl API
	Error Processing
	Connection Management Functions
	Functions That Perform Operations on Entries

	Mozilla::LDAP::API
	ldap_abandon(ld,msgid)
	ldap_abandon_ext(ld,msgid,serverctrls,clientctrls)
	ldap_add(ld,dn,attrs)
	ldap_add_ext(ld,dn,attrs,serverctrls,clientctrls,msgidp)
	ldap_add_ext_s(ld,dn,attrs,serverctrls,clientctrls)
	ldap_add_s(ld,dn,attrs)
	ldap_bind(ld,dn,passwd,authmethod)
	ldap_bind_s(ld,dn,passwd,authmethod)
	ldap_controls_free(ctrls)
	ldap_create_filter(buf,buflen,pattern,prefix,suffix,attr,value,valwords)
	ldap_create_persistentsearch_control(ld,changetypes,changesonly, return_echg_ctrls,ctrl_iscritical,ctrlp)
	ldap_delete(ld,dn)
	ldap_delete_ext(ld,dn,serverctrls,clientctrls,msgidp)
	ldap_delete_ext_s(ld,dn,serverctrls,clientctrls)
	ldap_delete_s(ld,dn)
	ldap_err2string(err)
	ldap_explode_dn(dn,notypes)
	ldap_explode_rdn(dn,notypes)
	ldap_extended_operation(ld,requestoid,requestdata,serverctrls,clientctrls,msgidp)
	ldap_extended_operation_s(ld,requestoid,requestdata,serverctrls, clientctrls,retoidp,retdatap)
	ldap_get_dn(ld,entry)
	ldap_get_entry_controls(ld,entry,serverctrlsp)
	ldap_get_option(ld,option,optdata)
	ldap_get_values(ld,entry,target)
	ldap_get_values_len(ld,entry,target)
	ldap_init(host,port)
	ldap_init_getfilter(fname)
	ldap_init_getfilter_buf(buf,buflen)
	ldap_is_ldap_url(url)
	ldap_modify(ld,dn,mods)
	ldap_modify_ext(ld,dn,mods,serverctrls,clientctrls,msgidp)
	ldap_modify_ext_s(ld,dn,mods,serverctrls,clientctrls)
	ldap_modify_s(ld,dn,mods)
	ldap_modrdn(ld,dn,newrdn)
	ldap_modrdn_s(ld,dn,newrdn)
	ldap_modrdn2(ld,dn,newrdn,deleteoldrdn)
	ldap_modrdn2_s(ld,dn,newrdn,deleteoldrdn)
	ldap_next_attribute(ld,entry,ber)
	ldap_next_entry(ld,entry)
	ldap_parse_sasl_bind_result(ld,res,servercredp,freeit)
	ldap_perror(ld,s)
	ldap_result(ld,msgid,all,timeout,result)
	ldap_result2error(ld,r,freeit)
	ldap_sasl_bind(ld,dn,mechanism,cred,serverctrls,clientctrls,msgidp)
	ldap_sasl_bind_s(ld,dn,mechanism,cred,serverctrls,clientctrls,servercredp)
	ldap_search(ld,base,scope,filter,attrs,attrsonly)
	ldap_search_ext(ld,base,scope,filter,attrs,attrsonly,serverctrls,clientctrls, timeoutp,sizelimit,msgidp)
	ldap_search_ext_s(ld,base,scope,filter,attrs,attrsonly,serverctrls,clientctrls, timeoutp,sizelimit,res)
	ldap_search_s(ld,base,scope,filter,attrs,attrsonly,res)
	ldap_set_lderrno(ld,e,m,s)
	ldap_set_option(ld,option,optdata)
	ldap_simple_bind(ld,who,passwd)
	ldap_simple_bind_s(ld,who,passwd)

	Performing Operations Against Your OpenLDAP Directory
	Using Java and JNDI
	OASIS Standards
	Directory Services Markup Language (DSML)
	Introduction
	A Note on Ambiguous Terminology
	The DSML Namespace URI
	Conceptual Overview
	Top-Level Structure
	Directory Entries
	The entry Element Type
	Entry Object Class
	Directory Attributes
	Multivalued Attributes
	Binary Data

	Directory Schema
	Object Classes
	Attribute Type Definitions

	Conformance

	Summary

	Integrating at the System Level
	Introducing Network Information Services
	Introducing Standard NIS Configurations
	Performing Synchronization with LDAP
	Performing Direct Integration

	Configuring the LDAP Client (Host)
	Using the ldapclient Utility
	Configuring NSS
	Configuring PAM
	Setting Up Security

	Using Sendmail
	Enabling the Software
	Building the Binaries
	Migrating Information
	Setting Up LDAP Routing

	Summary

	Integrating OpenLDAP with Applications, User Systems, and Client Tools
	Preparing for Integration
	Integrating Apache
	Integrating Pine
	Integrating Samba
	Integrating Eudora
	Integrating Exchange
	Integrating LDAP Browsers
	Integrating Appliances
	Summary

	Index

