
MMS2R
by Mike Mondragon and Luke Francl

$9

Making email useful

contents

5 Introduction
5 Regional Lingo

6 SMS & MMS protocols

6 Cellular/Mobile Networks

7 Gateways

7 Receiving

8 Sending

8 SMS to Email Gateways

9 A Brief History
13 What Can You Do With Email?

15 Processing MMS
15 TMail

17 The Problem

19 MMS2R Basics

25 Adding support for additional carriers

31 Working with ActionMailer
31 Receiving MMS and Email

34 Daemonizing ActionMailer

39 Fetching email with cron

42 Writing a Fetcher::Base subclass

46 Further Integration
46 MMS2R and attachment_fu

47 Sending & Receiving SMS

49 ActionSMS and other plugins

49 Dealing with spam

51 Testing
52 Test::Unit

53 RSpec

54 Mocking Ruby Network Libraries

55 Advanced topics
55 Strategies for matching

57 Server setup for catchall email address

3

MMS2R: Making Email Useful

©2008 Mike Mondragon and Luke Francl

Every effort was made to provide accurate infor-
mation in this document. However, the publisher
assumes no responsibility for any errors or omis-
sions. The diagrams and code are provided for
educational purposes only and are not covered
under any warranty.

Rails and Ruby on Rails are trademarks of David
Heinemeier Hansson. Other trademarks are
printed with inital capital letters and are the prop-
erty of their owner.

This document is available for US$9 at Peep-
Code.com (http://peepcode.com). Group discounts
and site licenses can also be purchased by
sending email to peepcode@topfunky.com.

other peepcode products

RSpec (•	 http://peepcode.com/products/rspec-
basics) – A three part series on the
popular behavior-driven development
framework.

Rails from Scratch (•	 http://peepcode.com) –
Learn Rails!

RESTful Rails (•	 http://peepcode.com/prod-
ucts/restful-rails) – Teaches the concepts
of application design with REST.

Subscription pack of 10 (•	 http://peepcode.
com/products/subscription-pack-of-10) – Save
money! Buy 10 PeepCode credits.

Javascript with Prototype (•	 http://peep-
code.com/products/javascript-with-prototypejs)
– Code confidently with Javascript!

Rails Code Review •	 PDF (http://peepcode.
com/products/draft-rails-code-review-pdf) –
Common mistakes in Rails applica-
tions, and how to fix them.

http://peepcode.com
http://peepcode.com/products/rspec-basics
http://peepcode.com/products/rspec-basics
http://peepcode.com
http://peepcode.com/products/restful-rails
http://peepcode.com/products/restful-rails
http://peepcode.com/products/subscription-pack-of-10
http://peepcode.com/products/subscription-pack-of-10
http://peepcode.com/products/javascript-with-prototypejs
http://peepcode.com/products/javascript-with-prototypejs
http://peepcode.com/products/draft-rails-code-review-pdf
http://peepcode.com/products/draft-rails-code-review-pdf

4

5

Introduction
chapter 1
Almost everyone has a mobile phone these days. Sending and
receiving text messages with these phones has become a convenient
means of communication for millions of people around the world.
Have you ever asked your significant other to pick up an extra gallon
of milk after they have already left for the grocery store? If you are a
good texter, sending a message will be much quicker than making a
call. Text messaging combines the advantage of asynchronous mes-
saging (unlike a phone call, a text message can be dealt with at the
recipient's convenience) with near-universal availability.

This book will explain how to send and receive SMS, MMS, and email
messages with your Ruby application. Typically this will be using
Ruby on Rails (http://rubyonrails.org) but the code and libraries presented
here can be adapted for use in other web frameworks such as Merb
(http://merbivore.com), Camping (http://camping.rubyforge.org) or a generic
application written without the help of a framework.

Before jumping in, it will be helpful to review at a high level the proto-
cols involved and how the cellular industry allows third-party applica-
tions to interact with their networks.

Regional Lingo
People in the United States and Canada tend to use cell phone
to refer to the mobile phone. In other English-speaking countries,
mobile phone is more common.

http://rubyonrails.org
http://merbivore.com
http://camping.rubyforge.org

6

SMS & MMS protocols
SMS is short for Short Message Service (http://en.wikipedia.org/wiki/
Short_message_service). SMS actually refers to the protocol that is used
to transmit the text that comprises the messages. It is convenient to
refer the text of the messages as SMS and this book will intermingle
technical and non-technical references to SMS. SMS messages are
limited to 160 7-bit characters, though some carriers support mes-
sages encoded with 16-bit Unicode characters with a maximum of 70
characters.

MMS is short for Multimedia Message Service (http://en.wikipedia.org/wiki/
Multimedia_Messaging_Service). We will intermingle the use of MMS (the
protocol) and the content that it comprises. As the name suggests,
an MMS can contain text, images, audio, video and other types of
content. MMS is more ubiquitous in that the container that is used
to transport the media is the common multipart MIME email format.
MMS is transmitted over the HTTP protocol.

For simplicity, we will often use the term MMS to refer to both kinds of
messages.

Cellular/Mobile Networks
Cellular phones operate within cellular networks. These networks are
private and consumers gain access to them by purchasing a cellu-
lar plan that grants access. Some call these private networks walled
gardens, meaning that access is restricted to a cultivated interior.

A benefit of having a private network is that the cellular carriers have
absolute control over what kinds of content traverse it. The consumer
benefits from this privacy by being (generally) protected from SPAM
or unwanted content. Usually, unsolicited MMS or voice calls never
reach their handset.

sms: the world's most expensive
data distribution channel

SMS has a lot of advantages, but the cost on a
per-byte basis is astounding.

On the T-Mobile network in the USA, sending
an SMS message costs a subscriber $0.15. The
maximum size of a message is 140 bytes, for
a cost of 0.1071 cents per byte which is $1.097/
kilobyte or over $1,120/megabyte!

Even worse, the receiver also has to pay. On
T-Mobile, receiving also costs $0.15, which
effectively doubles the price.

This is much higher than the rates charged for
other data transferred over the same network.
Consumerist calculated that SMS messages
were marked up over 7000% (http://consumerist.
com/consumer/cellphones/why-are-text-messages-marked-
up-4876-247518.php) when compared to data
transfer rates on the Verizon network. Another
study concluded that SMS rates were four times
as expensive as downloading data from the
Hubble Space Telescope (http://www.physorg.com/
news129793047.html).

SMS is a very powerful and convenient medium
controlled by the mobile carriers. If you want to
play on their network, you'll have to pay their
prices. Fortunately, bulk senders can get dis-
counts. And for very low volume use, you can
use email-to-SMS gateways.

http://en.wikipedia.org/wiki/Short_message_service
http://en.wikipedia.org/wiki/Short_message_service
http://en.wikipedia.org/wiki/Multimedia_Messaging_Service
http://en.wikipedia.org/wiki/Multimedia_Messaging_Service
http://consumerist.com/consumer/cellphones/why-are-text-messages-marked-up-4876-247518.php
http://consumerist.com/consumer/cellphones/why-are-text-messages-marked-up-4876-247518.php
http://consumerist.com/consumer/cellphones/why-are-text-messages-marked-up-4876-247518.php
http://www.physorg.com/news129793047.html
http://www.physorg.com/news129793047.html

7

To ensure the quality of their networks, cellular carriers place higher
barriers on third party applications, such as your Rails application,
in gaining access to the network. Applications are subjected to strict
terms of service as well as significant fees to make use of the net-
work.

Gateways
In order for an application to gain direct access to a cellular net-
work typical monthly fees on the order of $10,000 US per month are
charged. An extensive audit of the application is also performed by
the carriers before the application is deployed.

A solution that has evolved for smaller applications such as what we
are developing is to use a gateway service. The gateway charges
your application a smaller fee that is in proportion to its use of the
network. Gateways charge fees in the range of 2¢ to 8¢ per mes-
sage depending on how many messages are purchased in bulk. The
gateway will have its own terms of service for your application and
will ensure that your application is abiding by the carrier's terms of
service.

Receiving
MMS can be retrieved from the gateway service directly if that is a
part of the service plan you choose. Alternately, MMS can be sent to
a regular email address. Your application then retrieves the MMS as
email and ingests its content based on the logic you create in your
application.

An extra benefit of this setup is that you can also receive regular
email even if it didn't originate on a mobile phone.

8

Sending
All of the MMS gateway providers provide an interface to their ser-
vice. A common interface is to take a message bundled as a XML
document from a HTTP POST. The gateway you choose will likely be
based on its cost and its ease of use from a programming stand-
point.

Specific gateways for sending and receiving MMS will be discussed
later in the book.

SMS to Email Gateways
Some providers offer a way to connect mobile phones on their net-
work to email via a special email address. Usually this takes the form
of phonenumber@carrier.com. These gateways are not very reliable,
but may suffice for low-volume applications.

Many carriers also allow their subscribers to send SMS messages to
an email address, which can allow your application to accept mobile
input without an expensive gateway. But again, this is not universal
and is only suited for low volumes.

9

A Brief History
chapter 2
Likely the first and largest micro blog based on MMS content is
called mobog.com (http://mobog.com) and was created by Philip Kaplan
http://en.wikipedia.org/wiki/Philip_Kaplan in 2003. Although Why the Lucky
Stiff coined the term tumblelog in reference to the Anarchaia (http://
anarchaia.org) blog in 2005, the tumblelog's origins go back at least to
Kaplan's mobog.

FIg. A Mobog

http://mobog.com
http://en.wikipedia.org/wiki/Philip_Kaplan
http://anarchaia.org
http://anarchaia.org

10

Mike

 I have been interested in small
devices as mobile data input since
the late 90's when the Palm with
JVM made its debut at JavaOne
and Bill Joy was pushing Jini
Technology (roaming devices) for
Sun. Around 2000 I wrote a small
Perl script to pull the subject from
my email and send it via SMS to
my cell phone. I admired Philip's
micro blog when it launched and
the notion of it has stuck with me
to this day.

In 2005 I wrote a Perl script to
process MMS, pull out an image,
and post that to a private skate-
board forum in Seattle. The logic
that I discovered for the Perl script
was transferred to Ruby in 2006
as the MMS2R Gem. I receive real
feedback on MMS2R's perfor-
mance from a work queue imple-
mented as a Rails Acts As State
Machine with attachment_fu that
now handles the picture posting.

My friends and I call this work queue cellphotobot and I use it to give
me production feedback about MMS2R's performance for MMS that
are being produced in the wild.

In December 2006 a severe ice storm hit Seattle crippling traffic for
3 or 4 days. On the first morning, pictures of crashed cars and fallen

11

trees started to show up on our forum. One of our members posted
that: "Cellphotobot is better than the news websites."

Luke
I first experimented with mobile development for a citizen journalism
project for my employer in early 2007. We were tasked with accept-
ing mobile submissions of photos and videos. I knew that cell phones
could send photos via email due to my experience with Flickr, and so
I discovered MMS2R and started adding more carrier support.

FIg. B FanChatter

We took that experience forward when developing FanChatter (http://
fanchatter.com), which allows sports fans to post messages and photos
from their phones, email, or the web. This led us to develop a suite
of stadium tools (http://fanchatter.com/stadium) for sports teams, which
allows fans at the stadium to send in photos and have them appear
on the jumbotron during the game. One of the most interesting
things we've noticed is the clever photos that people send in.

http://fanchatter.com
http://fanchatter.com
http://fanchatter.com/stadium

12

FIg. C i pinch you!

You can see the stadium tools in action with the Minnesota Twins
(http://twins.fanchatter.com).

Geoffrey

 Before MMS2R
was widely avail-
able, I imple-
mented an email
system for PNN
(http://pnn.com), a
family journalism
site. Any user
could choose a
custom email
address and send
photos or blog

posts to a specific page in their newspaper.

http://twins.fanchatter.com
http://pnn.com

13

This made it easy for people to send content from their phones with-
out the need for a full SMS shortcode, which are often too expensive
and awkward for small startups to pay for.

We used a Ruby-based script that ran frequently and posted new
emails to a controller on our Rails application. The Rails application
processed the email and matched it up with a user's newspaper.

The hardest problems were parsing the email, and dealing with mas-
sive amounts of SPAM. If you can, you should allocate a utility server
to do the email receiving and parsing so your web servers can be
dedicated to serving web requests.

What Can You Do With Email?
Email is one of the most easily overlooked ways of getting infor-
mation into or out of a web application. It is one of the first things
people learn to do when they start out on the Internet.

Email also comes with expectations. People who receive an email
expect to be able to hit Reply and rarely pay attention to the fact
that they have just sent an email to a do-not-reply-to address that
will disappear into the ether.

If you can give people the ability to email content directly to their
blog, photo gallery, or personal journal, they will be much happier
than if they were restricted to a web interface only.

Here are a few ideas and examples in the wild:

BillMonk (•	 https://www.billmonk.com) is an IOU service for friends. You
can send an SMS describing a bill and BillMonk will parse it and
add it to your tab.

FamSpam (•	 http://famspam.com) is a family mailing list. Although it

https://www.billmonk.com
http://famspam.com

14

has a beautiful web interface, it is also possible to interact with it
completely through email. Family members can send photos from
their phone and it will be carbon copied to all the other family
members. Once received, they can simply reply to continue the
conversation, without needing to visit the website.

Sandy (•	 http://www.iwantsandy.com) is a personal assistant, powered by
email. A powerful text parsing engine extracts times, phone num-
bers, and tags from plain text sent via email or SMS.

Email is also useful as part of a larger application, even if email isn't
the main focus. You may want to integrate MMS with an existing
application such as:

A customer support system could look for keywords and send an •	
immediate response with answers to frequently asked questions.

A bug-tracking system could accept bug reports via email and log •	
them to a database for further investigation.

A document management system could receive documents as •	
email attachments and file them for backup or publishing.

http://www.iwantsandy.com

15

Processing MMS
chapter 3
In order to understand the benefits of MMS2R, we first need to look at
the TMail library for working with email from Ruby.

Then, we'll look at what the MMS2R library can do for you.

TMail
TMail is the semi-official Ruby library for processing email. It is used
by Rails ActionMailer and many other projects. Unfortunately, for a
long time TMail was unmaintained and therefore it was necessary to
maintain patches for TMail in the Rails core. However, development
of TMail has been picked up and is now being actively maintained on
its own as a gem (http://tmail.rubyforge.org).

Creating a TMail::Mail instance is as simple as calling the
TMail::Mail.load method with the path to a file containing mail pro-
tocol formatted text.

Load from a file
mail = TMail::Mail.load('/path/to/mail/file')

You can also create new instance using a string with TMail::Mail.
parse:

Parse from a string
mail = TMail::Mail.parse("To: you@example.com")

In most cases, you'll be using parse to work with mail content

received from a POP or IMAP inbox. However, the file-based method

http://tmail.rubyforge.org

16

is useful when writing tests or debugging issues from a specific

message or carrier.

Once you've created the instance, the TMail API is pretty easy to use:

simple_tmail.rb

mail.from # ["you@example.com"]
mail.to # ["me@example.com"]
mail.subject # "i can has email?"
mail.body # "Body text ftw!"

Both from and to return arrays. Most of the time, you'll want the

first one.

For more examples, see the TMail API documentation (http://tmail.ruby-
forge.org/reference/index.html) and quickstart (http://tmail.rubyforge.org/quickstart/
index.html).

As noted above, Rails uses TMail. For example, when a receive
method is defined in an ActionMailer::Base subclass, the argument
in the method's signature is a TMail::Mail object.

simple_mailer.rb

class SimpleMailer < ActionMailer::Base
 def receive(mail)
 # do something with the mail subject
 logger.info("Got a mail about: #{mail.subject}")
 end
end

We'll use this method later to receive email and process it with
MMS2R.

http://tmail.rubyforge.org/reference/index.html
http://tmail.rubyforge.org/reference/index.html
http://tmail.rubyforge.org/quickstart/index.html
http://tmail.rubyforge.org/quickstart/index.html

17

The Problem
MMS2R was created because it is painful to process MMS messages
from the various mobile carriers. Application developers just want to
access the user-generated content such as an image from the MMS
payload or plain text from the email body.

However, each carrier treats messages differently. For instance, MMS
from AT&T are clean of the carrier's advertising. But MMS from
T-Mobile include an HTML container with the carrier's branding. The
branding is text with image elements that are also transported in the
MMS payload.

Original content

Carrier branding

FIg. D t-Mobile branding as extra image attachments

Sprint is even worse! They add branding like T-Mobile does but the
actual user-generated content resides on an external server. In both

18

cases, a person viewing the MMS in a email reader is subjected to
advertising from the sender's carrier. An application programmer
needs to implement logic to find the user-generated content.

FIg. E Sprint email with mms content

See Luke's article on this subject at Rail Spikes (http://railspikes.

com/2007/5/24/mms2r-with-rails).

MMS2R is able to process MMS from most of the mobile carriers in
North America, many in Europe, and others around the world. What
process means in terms of MMS2R is that the library has the abil-
ity to trim the non-user generated content from the MMS payload.
The result for the application developer is the ability to access the
remaining content that was most likely generated by the user. That
might be an image, but it may also be text that is free of any extra
cruft appended by the carrier, such as a footer with an advertising
message. The MMS2R project welcomes samples from carriers that

supported carriers

At the time of writing, these carriers are sup-
ported in the MMS2R gem. Other carriers can
be added easily.

1nbox.net•	

bellsouth.net•	

mms.3ireland.ie•	

mms.alltel.com•	

mms.att.net•	

mms.dobson.net•	

mms.luxgsm.lu•	

mms.mobileiam.ma•	

mms.mtn.co.za•	

mms.mycricket.com•	

mms.myhelio.com•	

mms.netcom.no•	

mms.o2online.de•	

mms.three.co.uk•	

mobile.indosat.net.id•	

orangemms.net•	

pm.sprint.com•	

pxt.vodafone.net.nz•	

rci.rogers.com•	

sms.sasktel.com•	

tmomail.net•	

vzwpix.com•	

waw.plspictures.com•	

messaging.nextel.•	
com

mms.vodacom4me.•	
co.za

http://railspikes.com/2007/5/24/mms2r-with-rails
http://railspikes.com/2007/5/24/mms2r-with-rails

19

it doesn't currently process so that support of them can be added to
the library.

If MMS2R does not have a processing template for the MMS payload,
it does not attempt to filter any of the message's content. However,
the library will attempt to return the single most likely user generated
content (such as an image from a camera) since that data is typi-
cally the largest part of the MMS.

TMail Issues
Even if the email is properly formatted, it's sometimes awkward to
work with the TMail API. Plain text and HTML are returned together
when fetching the body. Attachments aren't organized by content
type.

The TMail website (http://tmail.rubyforge.org/quickstart/index.html) says:

Right now, TMail does not touch the body of the mail
message, for example, it doesn't encode, decode, handle
character sets etc. It only handles the message and headers
and gives you access to read and write the mail body.

MMS2R provides a more friendly API for working with email of any
kind.

MMS2R Basics
Here is a simple example.

We open an MMS that contains an image from a mobile phone's
container. The subject is also accessed (although many MMS mes-
sages are delivered without a subject).

mms2r: not just for mms!

MMS2R is great for stripping advertising from
MMS messages, but underlying that is a great
API façade for TMail's multipart email parsing.

When a new MMS2R::Media#new is created,
the library takes care of pulling all the multipart
elements of a message into the media hash.
They're organized and query-able by MIME
type.

So next time you need to parse multipart
email, remember that MMS2R is not just for
MMS messages.

http://tmail.rubyforge.org/quickstart/index.html

20

simple_mms2r.rb

require 'rubygems'
require 'tmail'
require 'mms2r'

file = '/path/to/sample.mail'
mail = TMail::Mail.parse(IO.read(file))

mms = MMS2R::Media.new(mail)

subject = mms.subject
plain_text_body = mms.body

Get a file handle that can be
passed to attachment_fu
default_file = mms.default_media
<File:/tmp/topfunky/mms2r/book-screen-preview.png>

This returns the temporary path to the image
png_path = mms.media['image/png'].first
/tmp/topfunky/mms2r/book-screen-preview.png

Other paths to media are available by type
media_types_hash = mms.media
{'text/plain' => ..., 'image/png' => ...}

API Walkthrough
Let's look at this again, step by step.

Here's a sample email in my inbox. It contains HTML, plain text, and
an image attachment.

21

FIg. F a rich text email with an attachment

Most email clients provide a menu item to view the raw message.
Gmail calls this "Show original."

FIg. g Gmail option to view the raw message

For this example, I've copied the raw text and pasted it to a file on
my hard drive. A live application would use a Ruby-based POP or
IMAP client to fetch the message, as we will mention later.

22

FIg. H Raw email message

I've started an IRB session to show how easy this is, and how MMS2R
differs from TMail.

First, we'll load the necessary libraries and read the raw email from
disk. At this point, it's just plain text.

irb_session.rb

>> require 'tmail'
>> require 'mms2r'

>> raw = File.read('code/sample.mail')
=> "Received: by 10.100.124.7 with HTTP..."

Next, we create a TMail object with the contents of the email.

>> mail = TMail::Mail.parse(raw)
=> #<TMail::Mail port=#<TMail::StringPort:id=0x9a6db6>
bodyport=nil>

TMail has parsed the email, but the interface is still a bit awkward.
For example, the email has both plain text and HTML segments, but
TMail returns them both when we ask for the body. This isn't very
useful!

23

In addition, the attachments are presented as an array. Later,
MMS2R will give us an easier way to access these.

irb_session.rb

>> mail.body
=> "Sample message with text and HTML.\n-- \nGeoffrey Gro
senbach\n........................\nPeepCode Screencasts\
nhttp://peepcode.com\n\nSample message with text and
<i>HTML</i>.<div>
</div><div>--
Geoffrey Grosenbach

........................
PeepCode Screencasts
http://peepcode.com
</
div>\n\nAttachment: book-screen-preview.png\n"

>> mail.attachments
=> [#<TMail::Attachment:0x2d9950c>]

Now that you've seen how TMail processes the email, let's see if
MMS2R can do any better. We load the TMail object into a new
MMS2R::Media object.

>> mms = MMS2R::Media.new(mail)
=> #<MMS2R::Media:0x2d95d6c @was_processed=true...

If lazy processing is needed, pass in :process => :lazy to new

when a new MMS2R object is created. However, you'll need to

explicitly call process to trigger processing at a later point within

your application.

This time, it returns the plain text version when we ask for the body.
We can also access the HTML version of this rich text email, but most
web applications will be concerned only with processing the plain text
version.

>> mms.body
=> "Sample message with text and HTML.\n-- \nGeoffrey Gro
senbach\n........................\nPeepCode Screencasts\

24

nhttp://peepcode.com"

The media method returns a hash of all the parts of the email, sepa-
rated by content type. This is much more useful than the blind array
that TMail returned. We can look at the keys of the hash to see
what's available in this message.

>> mms.media.keys
=> ["text/plain", "text/html", "image/png"]

The convenient default_media method returns a file handle to the
photo attachment. If there are several photo attachments, this will
return only one.

>> mms.default_media
=> #<File:/tmp/topfunky/mms2r/15754f7e0805131116n2c9c57dcs75
d149f55934228mailgmailcom/3/book-screen-preview.png>

Alternately, we can access the array of PNg attachments. Instead of
a file handle, we get the file path to the image. For long-term storage,
you should copy this to a local directory, store the file contents in
your database, or upload the image to a file storage service such as
Amazon S3.

>> mms.media['image/png'].first
=> "/tmp/topfunky/mms2r/15754f7e0805131116n2c9c57dcs75d149f5
5934228mailgmailcom/3/book-screen-preview.png"

Finally, clean up the temporary files created for the text and attach-
ments.

>> mms.purge

25

And that's it! With these few methods, you can extract the most
important text and images from a simple email message.

If the message had contained extra carrier-generated cruft, it would
have been cleaned out by the library as well.

Adding support for additional carriers
While MMS2R supports a number of carriers in North America and
Europe (and has simple heuristics to find "real" content in unsup-
ported carriers), you may need to add support for other carriers. This
is easy to do and we encourage you to submit patches so we may
officially support new carriers. The existing configurations are easily
modified if alternative requirements are needed for your application.

Configuration files
In most cases, new carriers can be added by creating new process-
ing rules in the configuration files located in the conf/ directory. Pro-
cessing rules are contained in files named after the carrier's sending
domain with an appended .yml extension. If MMS emanating from
your carrier has the address pattern of joe.user@mms.yourcarrier.
com, then its configuration file can be found in conf/mms.yourcarrier.
com.yml.

The location of the conf directory can be found by calling

MMS2R::Media.conf_dir. There is also a conf_dir setter if you need

to point MMS2R at a custom directory.

ignore and transform

The format of the configuration is a hash in the YAML file. There are
two root keys in this hash: ignore and transform. Each root key refers

26

to another hash that is keyed by MIME type. Each MIME type refers
to an array that contains strings or regular expressions that are used
to determine if a part of the message has been injected by the car-
rier. In the case of transform, the array itself contains arrays that are
used as arguments for String#gsub.

generic defaults for all carriers

The conf/mms2r_media.yml file contains master defaults for ignore
and transform that will be applied to any MMS that MMS2R pro-
cesses.

This default configuration will ignore subjects with the text "no sub-
ject." It will ignore parts of the message that declare how many
attachments are included. It will strip out iPhone-related signatures
while keeping the rest of the message (Blackberry signatures will also
be stripped…see the gem for the full list).

ignore:
 text/plain:
 - /^\(no subject\)$/i
 multipart/mixed:
 - "/^Attachment: /i"
transform:
 text/plain:
 - - /\A(.*?)Sent from my iPhone$/im
 - "\1"

The Helio carrier's configuration is also illustrative. Its ignore section
contains filenames of gifs that should be ignored. It also has a regu-
lar expression that matches HTML that should be ignored. Finally it
has a transform section that is used to extract any real text that the
user typed in their message as Helio intermingles that text with their
own branding.

27

ignore:
 image/gif:
 - top.gif
 - bottom.gif
 - middle_img.gif
 text/html:
 - /<html>\s+<head>\s+\<meta http-equiv=\"Content-Type\"
content=\"text\/html; charset=iso-8859-1\">\s+<title>MMS
Email<\/title>/im
transform:
 text/plain:
 - - /Note:\s{1,2}.*?\s+message:\s{1,2}(.+)$/m
 - "\1"

aliases

Additionally, cellular carriers tend to be promiscuous in adding
domains for which they provide service. Imagine that Orange begins
to provide mobile service for Vatican City and MMS from these users
has the pattern a.cardinal@orange.va. To process messages from
this source using the Orange master template, add a YAML key/
value of orange.va: orangemms.net to conf/aliases.yml.

In that example, the conf/orangemss.net.yml file serves as the mas-
ter template for domains that are known to be serviced by Orange,
such as orangemms.net, orange.fr, and mmsemail.orange.pl.

MMS2R Template Method Pattern
A configuration template will usually be sufficient to ignore and
transform the content of messages. However, if you need to do more
extensive manipulation by running Ruby code, you can do that, too.

The MMS2R::Media class uses a Template Method Pattern (http://
en.wikipedia.org/wiki/Template_Pattern) as its architecture for process-
ing MMS content. This allows easy customization of MMS2R's pro-

http://en.wikipedia.org/wiki/Template_Pattern
http://en.wikipedia.org/wiki/Template_Pattern

28

cessing logic within your application's codebase. An example is
MMS2R::Sprint::Media for the Sprint carrier. Sprint hosts its users'
images and video on external content servers. To handle this special
case, MMS2R has implemented a web scraping strategy to fetch that
content. Your application doesn't need to concern itself with this since
it happens automatically under the defined MMS2R::Media interface.

See lib/mms2r/media/sprint.rb for an example.

The methods defined are:

Method Description
process The main method encom-

passing the template
methods that divide the
processing of a message.
MMS2R::Media performs
the file transformations by
calling process greedily
from within the intitialize
method.

ignore_media? Should the part of a cer-
tain type be ignored?

process_media Retrieves media to a tem-
porary file, returns path to
the file.

add_file Add the processed file to
the media hash.

transform_text Called by process_media
and strips out advertising.

Your application will be most concerned with

29

Method Description
default_media Returns the most likely

candidate for a single
piece of user-generated
media which is typically an
image or video file. The file
is decorated like a CgI.rb
file so it can be passed to
the uploaded_data method
of an attachment_fu model.

default_text Returns the most likely
candidate for a single
piece of user-generated
text. The file is decorated
like a CgI.rb file so it can
be passed to the uploaded_
data method of an attach-
ment_fu model.

media A hash of mime-type keys
that have array values.
Values in the array are
string paths to a file of the
keyed mime-type.

purge Clean up all of the tem-
porary files that MMS2R
created. If your applica-
tion accessed files through
their paths in the media
hash those files should be
copied to a permanent
location if your application
is to utilize them at a later
point.

30

Lets assume that you redefined some or all of the template meth-
ods defined above in a class named MMS2R::Media::YourCarrier Your
class needs to register itself with MMS2R so that it is known that this
class should be used to process content from the mms.yourcarrier.
com carrier. This is done with the MMS2R class method register.

MMS2R.register(
 'mms.yourcarrier.com',
 MMS2R::Media::YourCarrier
)

31

Working with ActionMailer
chapter 4
Rails is a full-stack web framework. It comes "out of the box" with
everything you need to create a web application. But it also comes
with a library to handle sending and receiving email: ActionMailer
(http://api.rubyonrails.com/classes/ActionMailer/Base.html).

We will discuss both sending and receiving email with ActionMailer.
MMS2R is usually used within ActionMailer to process incoming
email.

Receiving MMS and Email
As has been noted, MMS is multi-part MIME encoded email. There
are two aspects to receiving email with Rails.

First, you need an ActionMailer::Base subclass to process the mail.
Second, you need a way to trigger Rails to run your subclass.

Creating an ActionMailer::Base subclass is easy. Use the Rails gen-
erator script to create a mailer:

ruby script/generate mailer MyMailer

Alternately, you can manually create a new file in your models direc-
tory, subclassing ActionMailer::Base.

class MyMailer < ActionMailer::Base

end

http://api.rubyonrails.com/classes/ActionMailer/Base.html

32

Regardless of how your mailer was created, it needs to have a
receive method that takes one argument: a TMail::Mail instance.

action_mailer_base_subclass_example.rb

class IncomingMailHandler < ActionMailer::Base

 def receive(email)
 logger.info("Got a mail about: #{mail.subject}")
 puts "I can has email?"
 end

end

Your receive method can do whatever you need to do with your mail.

ActionMailer writes a copy of the entire email to the log when

at the info level (this is the default in production mode). If your

application receives a lot of email, your log may fill up quickly. You

may want to increase the level to warn, error, or fatal.

Quick and Dirty
To trigger your ActionMailer::Base subclass, you need to invoke
Rails. One way to do this is with a procmail rule as described on the
Rails wiki (http://wiki.rubyonrails.org/rails/pages/HowToReceiveEmailsWithAction-
Mailer).

Using a procmail rule to start a Rails process with script/runner is
a basic starting point. Invoking script/runner can also be accom-
plished with other mail transfer agents such as QMail (http://qmail.org).
We'll leave investigating other alternatives to you.

However, There are a few disadvantages to this approach.

First, you must have a mail server installed on your Rails web server

http://wiki.rubyonrails.org/rails/pages/HowToReceiveEmailsWithActionMailer
http://wiki.rubyonrails.org/rails/pages/HowToReceiveEmailsWithActionMailer
http://qmail.org

33

(or vice versa). Depending on your hosting setup, this may not be the
case. Or you may want to let someone else have the "fun" of con-
figuring an MTA and making sure that you're not running as an open
relay for spammers. Or, you may want to hook into an existing email
service such as Gmail (http://gmail.com).

Second, this will create a new Rails process for each email received.
A single Rails process uses 30-50 MB of RAM. If you get a lot of
email, this will mean a lot of Rails processes will be spun up and then
almost immediately thrown away.

Third, you can easily lose messages if you are in the middle of a
database migration or if your application throws an error. It would be
much better to have a solution that can retry if errors occur during
any part of the process.

A better approach is to periodically fetch your mail from an IMAP or
POP server with a long-running process. This addresses both of the
problems above, but introduces a new one: keeping the mail fetcher
running.

other options

If you can configure your MTA and are concerned about needlessly
spinning up Rails processes but don't want to run a daemon, check
out Craig Ambrose's solution (http://blog.craigambrose.com/past/2008/2/9/
respond_toemail_or_how_to_handle) in which a Ruby script triggered by
incoming email sends an HTTP POST to your (already running) Rails
application.

Way back in 2006, Rails Podcast (http://podcast.rubyonrails.org/programs/1/
episodes/billmonk) featured the founders of BillMonk (https://www.billmonk.
com) who also use a similar setup to keep track of IOUs between
friends.

Another solution is to use cron to periodically check for email. An

http://gmail.com
http://blog.craigambrose.com/past/2008/2/9/respond_toemail_or_how_to_handle
http://blog.craigambrose.com/past/2008/2/9/respond_toemail_or_how_to_handle
http://podcast.rubyonrails.org/programs/1/episodes/billmonk
http://podcast.rubyonrails.org/programs/1/episodes/billmonk
https://www.billmonk.com
https://www.billmonk.com

34

example of this is presented below.

Daemonizing ActionMailer
Dan Weinand and Luke Francl wrote a Rails plugin called Fetcher
(http://slantwisedesign.com/rdoc/fetcher) to accomplish this. It generates
code and a script to daemonize an instance of your Rails applica-
tion, fetch mail from a mail source (POP and IMAP references are
provided), and then pass the retrieved mail into the receive method
of your designated ActionMailer. The daemonizing module that it uti-
lizes is based on an example that Sharon Rosner (http://snippets.dzone.
com/posts/show/2265) posted at DZone.

Here is an example of installing the Fetcher plugin and generating a
daemon that we'll name MailerDaemon.

rails myapp
cd myapp
ruby script/plugin install \
 svn://rubyforge.org/var/svn/slantwise/fetcher/trunk
ruby script/generate fetcher_daemon MailerDaemon

create config/mailer_daemon.yml
create script/mailer_daemon_fetcher
create /lib/daemon.rb

First, the fetcher's receiver should be modified to point to your
ActionMailer::Base subclass. If you open script/mailer_daemon_
fetcher, you'll see that the default points to nil:

Add your own receiver object below
@fetcher = Fetcher.create({:receiver => nil}.merge(@config))

Using the example above, the receiver should be configured to use
IncomingMailHandler:

http://slantwisedesign.com/rdoc/fetcher
http://snippets.dzone.com/posts/show/2265
http://snippets.dzone.com/posts/show/2265

35

options = {
 :receiver => IncomingMailHandler
}.merge(@config)
@fetcher = Fetcher.create(options)

Configuring the fetcher
The fetcher daemon generator drops a stub configuration in conf/
mailer_daemon.yml. The configuration is a YAML file with connection
details for the development, test, and production Rails environments
(similar to database.yml). You will need to configure the fetcher to use
a POP3 or IMAP server with a username, password, and authentica-
tion method.

The fetcher supports the following configuration options:

Option Description
type POP or IMAP
server The IP address or domain

name of the server
port The port to connect to

(defaults to the standard
port for the type of server)

ssl Set to any value to use SSL
encryption

username The username used to
connect to the server

password The password used to con-
nect to the server

36

Option Description
authentication The authentication scheme

to use (IMAP only). Sup-
ports LOgIN, CRAM-MD5,
and PASSWORD (defaults
to PLAIN)

use_login Set to any value to use the
LOgIN command instead
of AUTHENTICATE. Some
servers, like GMail, do not
support AUTHENTICATE
(IMAP only).

sleep_time The number of seconds
to sleep between fetches
(defaults to 60 seconds)

processed_folder The name of a folder to
move mail to after it has
been processed (IMAP
only). If not specified, mail
is deleted.

error_folder The name a folder to move
mail that causes an error
during processing (IMAP
only). Defaults to bogus.

A typical configuration entry looks like this:

development:
 type: imap
 server: imap.gmail.com
 ssl: true
 username: user@domain.com
 password: hackme
 receiver: IncomingMailHandler
 port: 993

37

 use_login: true

This example shows how to connect to GMail IMAP (note the use of
use_login). No processed_folder has been specified, so messages
will be deleted after processing. The default error_folder named
bogus will be used for mail that causes problems.

Running the fetcher daemon
After generating and configuring the fetcher daemon, you are ready
to start processing mail.

To start the daemon, run the start command with the appropriate
environment:

RAILS_ENV=production ruby script/mailer_daemon_fetcher start

By default, the fetcher daemon deletes email after processing it.

Don't point it at your personal mailbox!

To stop the daemon, use the stop command:

RAILS_ENV=production ruby script/mailer_daemon_fetcher stop

To automate this process when you deploy your application, you
should write an after deploy task to stop and start the fetcher using
Capistrano (http://capify.org) or Vlad (http://rubyhitsquad.com/Vlad_the_Deployer.
html).

Since the fetcher is a long-running process, it will not pick up

changes to your models while running in production mode.

http://capify.org
http://rubyhitsquad.com/Vlad_the_Deployer.html
http://rubyhitsquad.com/Vlad_the_Deployer.html

38

Therefore, it's important to restart the fetcher after deployment.

Keeping the daemon running
To keep the fetcher running, you will need process monitoring tool
such as God (http://god.rubyforge.org) or Monit (http://www.tildeslash.com/
monit). When the fetcher daemon starts, it writes out a PID file in the
Rails log directory. Both monitoring systems will read the PID file to
know which process in the operating system is to be monitored. If the
process crashes, the process monitor can restart it. In the example
above, this file would be called log/MailerDaemonFetcherDaemon.pid.

monit

An example monitoring task for Monit would be as follows.

check process mailer_daemon_fetcher with pidfile /app/
shared/log/MailerDaemonFetcher.pid
 start program = "/usr/local/bin/ruby /app/current/
script/mailer_daemon_fetcher start production"
 stop program = "/usr/local/bin/ruby /app/current/
script/mailer_daemon_fetcher stop production"
 if 5 restarts within 5 cycles then timeout

Monit runs in a very limited environment, so you must use full paths

to executables and directories. Double check that the commands

point to the right locations.

god

There is a default God script for Mongrels on the God project page
(http://god.rubyforge.org) . The following is the start/stop/restart stanza
that would be used with the script/mailer_daemon_fetcher

daemon.god

http://god.rubyforge.org
http://www.tildeslash.com/monit
http://www.tildeslash.com/monit
http://god.rubyforge.org

39

FETCHER_SCRIPT = "#{RAILS_ROOT}/script/mailer_daemon_fetcher"
w.name = "fetcher-daemon"
w.interval = 30.seconds # default
w.start = "#{FETCHER_SCRIPT} start"
w.stop = "#{FETCHER_SCRIPT} stop"
w.restart = "#{FETCHER_SCRIPT} restart"
w.start_grace = 10.seconds
w.restart_grace = 10.seconds
w.pid_file = File.join(RAILS_ROOT, 'log',
'MailerDaemonFetcher.pid')

w.behavior(:clean_pid_file)

Starting up when the system boots
To make sure your fetcher daemon starts when you server reboots,
you will need an init.d script. You may already have one for your
Rails application which can be modified. If God is being used on the
system, then a master init.d script would be created for God, and the
God daemon would then be responsible to starting Mongrels, Fetcher
daemons, etc.

Fetching email with cron
As we've seen above, a daemon ensures only one Rails process is
started to process your mail, but keeping it running can be a pain.

Another solution is to use cron, the old standby for running back-
ground tasks. The fetcher plugin can be used here as well, making
it very easy to write a cron-based email solution. The advantage of
cron is that it runs once a minute, so you don't have to worry about
keeping your fetcher running for a long period of time. This tends to
make it more reliable. The disadvantages include the slower process-
ing time (you can only check for email at most once a minute) and
frequently creating and disposing of Rails processes.

40

Another disadvantage of cron is that it has no concept of process
synchronization, so you could have multiple mail fetchers running
simulatenously. Fortunately, that is easy to fix with the Lockfile (http://
raa.ruby-lang.org/project/lockfile) gem.

sudo gem install lockfile

Using Lockfile, we create a guard around the processing code, and
rescue and ignore the exception that occurs when another cron-
spawned process tries to start up.

cron_fetcher.rb

begin
 Lockfile.new('cron_mail_fetcher.lock', :retries => 0) do
 config = YAML.load_file("#{RAILS_ROOT}/config/mail.yml")
 config = config[RAILS_ENV].to_options

 puts "Running MailFetcher in #{RAILS_ENV} mode"
 options = { :receiver => MailReceiver }
 fetcher = Fetcher.create(options.merge(config))
 fetcher.fetch

 puts "Finished running MailFetcher in #{RAILS_ENV} mode"
 end
rescue Lockfile::MaxTriesLockError => e
 puts "Another fetcher is already running. Exiting."
end

Next, configure cron so this code is run with script/runner once a
minute.

http://raa.ruby-lang.org/project/lockfile
http://raa.ruby-lang.org/project/lockfile

41

This is stored in source control in a file called crontab. Upon deploy-
ment, Capistrano is used to replace the server's crontab entry.

cron_capistrano.rb

after :symlink, :configure_crontab

desc "Install crontab from the repository"
task :configure_crontab, :roles => :app do
 run "crontab #{current_path}/config/crontab"
end

This example assumes that you are deploying to one server. If you

have a cluster of servers, you could define a utility role and restrict it

to a single server.

Getting scripts running under cron can be frustrating because of the
lack of feedback. Here are some tips:

Fully specify all paths.•	

Redirect •	 STDOUT and STDERR to a file for easier process monitor-
ing.

Test your scripts on the command line, just as they will be run from •	
cron.

Double check that your server's time is the same as what you think •	
it is!

42

Read the server's local mail account, which sometimes logs cron-•	
related errors.

Writing a Fetcher::Base subclass
The Fetcher::Imap implementation found in vendor/plugins/
fetcher/lib/fetcher/imap.rb should work for most situations (and
patches are welcome!) but if needed you can either modify or create
your own implementation that adds extra features.

To create a Fetcher::Base subclass, you need to implement four
methods.

Method Description
establish_connection Connect to the server.

Called at the beginning of
the fetcher cycle.

get_messages Retrieve the messages
from the server and pass
each one to process_mes-
sage.

close_connection Close the connection.
Called after processing
the messages, ending the
fetcher cycle.

handle_bogus_
message(message)

Called when the receiver
throws an exception pro-
cessing a message. This
could move the message
to an error folder, or log it.

Take the following example for Fetcher::Imap2.

43

It will use GMail as its IMAP source and is able to recover when your
application experiences network problems while communicating with
GMail. Additionally, when Fetcher::Imap2 encounters an error it will
place the mail in an IMAP folder named errors. When Fetcher::Imap2
successfully processes a mail it will place the original in a folder
named processed.

In this manner you can use GMail to provide storage for the mail that
you've processed. If there is an error, you will have a copy of the mail
involved with the error as it may illustrate a bug in your application
and can be processed later by moving it to the INBOX.

Here is the class definition:

module Fetcher
 class Imap2 < Base

Here is a custom get_messages method that moves messages to the
processed folder if the message is successfully fetched.

fetcher_imap2.rb

Retrieve messages from server
def get_messages
 uids = nil
 begin
 @connection.select('INBOX')
 uids = @connection.uid_search(['ALL'])
 rescue => err
 @logger.error err
 @logger.error "#{err.backtrace.join("\n")}"
 end
 return if uids.nil? || uids.size == 0
 messages = @connection.uid_fetch(uids, [
 'ENVELOPE', 'FLAGS', 'INTERNALDATE'
])
 require 'parsedate'
 messages.sort_by do |data|
 ParseDate.parsedate(data.attr['INTERNALDATE'])
 end.each do |data|

44

 begin
 uid = data.attr['UID']
 msg = @connection.uid_fetch(uid, ['RFC822']).first
 process_message(msg.attr['RFC822'])
 rescue => err
 @logger.error err
 @logger.error "#{err.backtrace.join("\n")}"
 handle_bogus_message(uid)
 else
 # copy message into the copy folder
 @connection.create('processed') rescue
 @connection.uid_copy([uid], "processed")
 end
 # Mark message as deleted
 @connection.uid_store(uid, "+FLAGS", [:Seen, :Deleted])
 end
end

Finally, we move messages to the errors folder if there has been an
error fetching the message.

fetcher_imap2.rb

Store the message for inspection if the receiver errors
def handle_bogus_message(uid)
 @connection.create('errors') rescue
 @connection.uid_copy([uid], "errors")
 @connection.uid_store(uid, "+FLAGS", [:Seen, :Deleted])
end

In order to use this custom class, you would configure conf/mailer_
daemon.yml to point to the custom imap2 class. The type key which
has a value of imap2 corresponds to your Fetcher::Imap2 class.

production:
 type: imap2
 receiver: MailReceiver
 server: imap.gmail.com
 port: 993
 ssl: true
 username: me

45

 password: hackme

46

Further Integration
chapter 5
MMS2R works well with other libraries and plugins. Here are a few you
might want to work with.

MMS2R and attachment_fu
attachment_fu (http://svn.techno-weenie.net/projects/plugins/attachment_fu/
README) is a popular Rails file upload plugin written by Rick Olson
(http://techno-weenie.net). Since MMS2R is merely one part of the flow of
messages, images, and other attachments, we've customized MMS2R
to work smoothly with attachment_fu.

When using attachment_fu, you set the form upload data to a virtual
attribute called uploaded_data. Under the covers, CgI.rb adds some
metadata from the HTTP request to the uploaded file, including MIME
type and the original filename. attachment_fu uses this to process
your file according to the rules you've set up.

MMS2R also adds these metadata to the files it extracts from mail
messages. When they are accessed through the default_media and
default_text methods on MMS2R::Media, the resulting filehandle
looks just like a CgI upload object. In this regard MMS2R integrates
seamlessly with ActiveRecord models that use attachment_fu.

attachment_fu_example.rb

An ActiveRecord model decorated for attachment_fu.
class Photo < ActiveRecord::Base
 has_attachment :content_type => :image,
 :storage => :file_system
end

Process a mail message
mms = MMS2R::Media.new(mail_message)

http://svn.techno-weenie.net/projects/plugins/attachment_fu/README
http://svn.techno-weenie.net/projects/plugins/attachment_fu/README
http://techno-weenie.net

47

media = mms.default_media

Send the attachment to the model
Photo.create!(:uploaded_data => media) if
 media.content_type.split('/').first == 'image'

The end result is that you can use all the features of attachment_fu
to post-process email and MMS payloads. Here are a few ideas to
get you started:

Resize images or make thumbnails.•	

Upload attachments to Amazon S3.•	

Store attachment metadata in the database for further processing.•	

Store word processing documents and import text to your content •	
management system.

Sending & Receiving SMS
Sending and receiving from a SMS gateway service such as Open-
Market (http://www.openmarket.com) is a matter of POSTing or receiving
XML from their service and parsing it in a manner that is suitable for
your application. There are any number of other ways to send and
receive SMS, from a proxy service solution to hosting a Linux Kan-
nel SMS Gateway server (http://www.kannel.org) Your options are virtually
unlimited, so the cost of maintenance of the service for your applica-
tion should be considered before investing a lot of time and money
into your solution.

Dave Myron of Contentfree (http://contentfree.com) provides this example
of formating a SMS message and posting to the OpenMarket gate-
way as follows.

Builder is used to format the •	 XML that OpenMarket's gateway

http://www.openmarket.com
http://www.kannel.org
http://contentfree.com

48

expects.

account_id•	 and account_password in the configuration Hash are
your application's OpenMarket credentials.

source_number•	 is your application's number that the recipient will
reply to.

service•	 is the OpenMarket service that accepts the Net::HTTP
POST.
openmarket_example.rb

def send_sms_message(message, to_number, config)

 destination_number =
 (to_number =~ /^\+/) ? to_number : '+' + to_number

 builder = Builder::XmlMarkup.new
 xml_data = builder.request({
 :version => '3.0',
 :protocol => 'wmp',
 :type => 'submit'
 }) do |r|

 r.user :agent => 'XML/SMS/1.0.0'
 r.account({
 :id => config['account_id'],
 :password => config['account_password']
 })
 r.source :ton => '0', :address => config['source_number']
 r.destination({
 :ton => '0',
 :address => destination_number
 })
 r.message :text => message

 end

 service_uri = URI.parse(config['service'])
 Net::HTTP.post_form(service_uri, { 'xml' => xml_data })

 xml_data
end

49

ActionSMS and other plugins
A Rails plugin called ActionSMS (http://open.movilforum.com/wiki/index.
php/ActionSMS) exists that adds SMS sending ability to ActionMailer.
The plugin appears to be in a beta state and its documentation is in
Spanish. Also its reference gateway is the Spanish Movistar (http://
www.movistar.es) service.

That said, it does provide good example of integrating SMS func-
tionality into ActionMailer, which keeps application logic within Rails
conventions. The code (http://action-sms.googlecode.com/svn/tags/action_sms)
for ActionSMS is hosted on Google Code.

Dealing with spam
Likely you'll have to deal with SPAM that is targeted to the mail
addresses that represents your application and eventually passes
through its ActionMailer#receive method. A few simple solutions
you might consider to combat spam are:

SpamAssassin (•	 http://spamassassin.apache.org) – pass incoming mail
through a SpamAssassin process that you control. SpamAssassin
can be customized for your application's specific needs.

GMail (•	 http://mail.google.com) – route your application's mail through
GMail. GMail has excellent spam controls and can be trained to
handle special cases for your application. Having a human inspect
GMail's spam bin will ensure that the mail that your application
receives is free of spam.

CRM114 – the Controllable Regex Mutilator (•	 http://crm114.sourceforge.
net) is a type of machine learning algorithm that can have nearly
99.9 percent accuracy in spam prediction. See the CRM114 Wiki
(http://crm114.sourceforge.net/wiki) for examples of implementing the
algorithm in conjunction with your application. CRM114 Wikipedia

http://open.movilforum.com/wiki/index.php/ActionSMS
http://open.movilforum.com/wiki/index.php/ActionSMS
http://www.movistar.es
http://www.movistar.es
http://action-sms.googlecode.com/svn/tags/action_sms
http://spamassassin.apache.org
http://mail.google.com
http://crm114.sourceforge.net
http://crm114.sourceforge.net
http://crm114.sourceforge.net/wiki

50

page (http://en.wikipedia.org/wiki/CRM114_%28program%29)

http://en.wikipedia.org/wiki/CRM114_%28program%29

51

Testing
chapter 6
There many examples of testing mail that is sent with ActionMailer.
However, information about testing the reception of mail is sparse.
Fortunately, it's quite easy.

Consider a simple ActionMailer that receives MMS and creates a Pic-
ture object with attachment_fu.

First, create the receiver.

ruby script/generate mailer MailReceiver

Next, define the behavior in the MailReceiver#receive method. In this
example, an attachment_fu based Picture with a title is created.

mail_receiver.rb

require 'mms2r'

class MailReceiver < ActionMailer::Base

 def receive(mail)
 mms = MMS2R::Media.new(mail)
 title =
 mms.subject.empty? ? "default title" : mms.subject
 Picture.create!(:uploaded_data => mms.default_media,
 :title => title)
 end

end

If your code writes images to disk, as this one does, you may need

to clean them up afterwards in a teardown method (Test::Unit) or

after(:all) block (RSpec).

52

Test::Unit
When we generated MailReceiver, the shell of a test was created in
test/unit/mail_receiver_test.rb for us to expand upon. To test the
functionality of MailReceiver, we want to check that a picture is cre-
ated and that its title is the same as the original subject of the MMS.

To test this, we will need a sample MMS message. You can get one by
sending an MMS from your phone to your email address, then saving
the raw text to a file such as sample-mms.mail. In a real project, you'll
probably need many samples from many different carriers, so a bet-
ter naming scheme with subdirectories is in order.

It is also helpful to write re-usable helper code to read the sample
message. This can be placed in the lib directory and will be included
by tests that need it.

mail_fixture.rb

module MailFixture
 FIXTURES_PATH = File.dirname(__FILE__) + '/../fixtures'
 CHARSET = "utf-8"

 def read_fixture(fixture)
 IO.read("#{MailFixture::FIXTURES_PATH}/mmses/#{fixture}")
 end

end

Now our test becomes quite simple:

mail_receiver_test.rb

class MailReceiverTest < ActionMailer::TestCase

 include MailFixture

 def test_picture_created_with_title_from_mms_subject
 mms = read_fixture('sample-mms.mail')
 assert_difference 'Picture.count', 1 do
 MailReceiver.receive(mms)

53

 end

 pic = Picture.find(Picture.maximum(:id))

 assert_equal TMail::Mail.parse(mms).subject, pic.title
 end

end

You should also write a test for the default subject behavior, but this
is left as an exercise for the reader.

RSpec
RSpec (http://rspec.info) is is a Behaviour Driven Development frame-
work. It is not packaged in the standard Rails installation but it does
install as a plugin and has a generator to enable using it in your
project.

In our specification for the behavior of MailReceiver, we check that
a picture is created. We also confirm that its title is the same as the
original subject of the MMS. Again, MailFixture (see above) is used
to load the sample MMS for parsing.

mail_receiver_spec.rb

describe 'Ingesting MMS files' do
 include MailFixture

 it 'creates a picture and extracts title from MMS' do
 mms = read_fixture('sample-mms.mail')
 lambda {
 MailReceiver.receive(mms)
 }.should change(Picture, :count).by(1)

 pic = Picture.find(Picture.maximum(:id))

 pic.title.should == TMail::Mail.parse(mms).subject
 end

http://rspec.info

54

end

Mocking Ruby Network Libraries
RSpec is great because it makes it easy to mock objects and thus
verify that various methods are being invoked at different times (i.e.
testing expected behavior). When we are testing our applications
at the edge of where they are interacting with the network, it's not
always clear that we can actually mock Ruby's network libraries.

Take the following Mocha (http://mocha.rubyforge.org) mocking example.
We mock the behavior of the Net::HTTP.post_form method but our
real code will never actually call out to the network since Net::HTTP is
mocked.

mocha_example.rb

def test_openmarket_sms_post
 uri = URI.parse('http://wmp.simplewire.com/wmp')
 builder = mock()
 xml_data = mock()
 Builder::XmlMarkup.expects(:new).once.returns(builder)
 builder.expects(:request).once.returns(xml_data)
 Net::HTTP.expects(:post_form).once.with(uri, { 'xml' =>
xml_data })

 assert_nothing_raised { send_sms_message }
end

http://mocha.rubyforge.org

55

Advanced topics
chapter 7

Strategies for matching
If you are building a site that allows users to interact with it through
email, you need a way to match user accounts with email addresses.
There are two ways to do this.

Unique Address
One way is to follow Flickr's example and generate a unique email
address for each user.

FIg. I a secret address for each user

When you receive an email addressed to a user's secret, unique
address, you know it is from them.

user = User.find_by_secret_address(mail.to.first.downcase)

To do this, you need to configure your mail server with a catch-all
address. Because this dramatically increases the amount of SPAM
you will receive, some mail providers are hesitant to do this.

56

plus (or minus) addressing

Another option is to use plus or minus addressing. Many email serv-
ers will deliver mail to the bart user if a message is addressed to
bart+special@example.com.

bart+0028272@example.com
bart+2928273@example.com
bart+9983780@example.com

So you could create a unique address with the plus qualifier and
read it from a single, non-catchall inbox.

However, this may be confusing for some users. It may be appropri-
ate for an automated system as opposed to an address that users
will type into their phone or email program.

Plus or Minus Addressing (•	 http://en.wikipedia.org/wiki/E-mail_
address#Plus_.28or_Minus.29_addressing)

QMail extension addresses (•	 http://www.lifewithqmail.org/lwq.html#extension-
addresses)

Activation Code
The second way to match users to email addresses is to have your
users prove they own an email address.

You do this by generating some unique code and having the user
send in that code from their email or mobile device. By correlating
the code with the email it came from, you know that the user with
that code owns that device. Twitter handles this by having users SMS
in a random, unique code from their phone.

Twitter's random code is made only of characters that can be typed

http://en.wikipedia.org/wiki/E-mail_address#Plus_.28or_Minus.29_addressing
http://en.wikipedia.org/wiki/E-mail_address#Plus_.28or_Minus.29_addressing
http://www.lifewithqmail.org/lwq.html#extension-addresses
http://www.lifewithqmail.org/lwq.html#extension-addresses

57

with a single key press on a mobile phone: a, d, h, j, m, p, t, and w.

Email address claiming can work one of two ways.

Email first. When you receive an email from an unknown user, save •	
the From: address and reply with a code. The new user goes to the
site and finishes registration with the code.

Web first. A user registers on the site, and then activates their email •	
address by sending in a code displayed on the site.

Don't try to infer email addresses
One thing you should not do is assume that you can match up a
user's mobile email address based on their phone number and SMS
carrier.

We originally tried this because many phone carriers have your_
phone_number@carrier.com type of email From: addresses. But not
all of them do. And some carriers have different email addresses for
SMS and MMS messages sent to an email address.

As examples, US T-Mobile SMS messages sent to an email address
come from an address like 555123456789@tmomail.net, whereas the
same phone sending an MMS message to an email address comes
from 1555123456789@tmomail.net. Verizon text messages don't have
numbers at all, but Verizon MMS messages do. And so on.

Many carriers use the some variation on the phone_number@gateway.
com pattern, but by no means all. You can find an extensive list of
email to SMS gateways (http://en.wikipedia.org/wiki/SMS_gateways) on Wiki-
pedia.

Server setup for catchall email address

http://en.wikipedia.org/wiki/SMS_gateways

58

Lets assume that you would like to create an ActionMailer receiver
for support requests. When it receives an email to support@example.
com, a support ticket is created. Otherwise, the address of the To:
portion of the mail received is treated as a lookup token into the sup-
port system. If the token is not found, then the mail is ignored.

First, you'll need to setup your mail server to funnel all unmatched
email to a specific mailbox. This will differ based on the mail software
you are using.

FIg. J Gmail for domains catch-all setup

A catch-all email address will receive a huge amount of email, most

of which will be SPAM.

Next, you'll need to filter incoming messages based on the To
address. The SupportMailer#receive method is just a multiplexer for
messages mailed to the support system.

support_mailer.rb

def receive(mail)
 if(mail.to.first.downcase == 'support@example.com')
 ticket = SupportTicket.create_from_mail(mail)
 SupportMailer.deliver_new_ticket(ticket)
 else
 token = mail.to.first.downcase.split('@').first
 ticket = SupportTicket.find_by_token(token)
 return unless ticket
 ticket.append_reply(mail)
 SupportMailer.deliver_reply_received(mail, ticket)

59

 end
end

The response that the support ticket was created could be

support_mailer.rb

def new_ticket(ticket)
 @subject = "MyCo: Ticket [#{ticket.token}] created"
 @from = "#{ticket.token}@support.example.com"
 @recipients = ticket.customer_mail
 @body["ticket"] = ticket
end

The customer's reply was appended to the support thread. We'll
assume that notification to the support personnel takes place
through the ticket model. And a brief response is sent back to the
customer.

support_mailer.rb

def reply_received(mail, ticket)
 @subject = "MyCo: Ticket [#{ticket.token}] received"
 @from = "#{ticket.token}@support.example.com"
 @recipients = ticket.customer_mail
 @body["ticket"] = ticket
end

The code used to trigger a reply by the support personnel from a
controller or model could then be

SupportMailer.deliver_reply_to_thread(ticket, message)

And the setup of replying to the customer would be

support_mailer.rb

def reply_to_customer(ticket, message)
 @subject = "MyCo: Ticket [#{ticket.token}] response"
 @from = "#{ticket.token}@support.example.com"

60

 @recipients = ticket.customer_mail
 @body["ticket"] = ticket
 @body["message"] = message
end

Additionally you would probably want a generic acknowledgement
to be sent immediately to the customer whenever a mail from them
is received. This will happen when the support ticket is first created
but it should also happen when a customer's response is appended
to the support thread in append_to_thread. We'll leave that for you to
implement perhaps as an after create or after update ActiveRecord
filter.

	Introduction
	Regional Lingo
	SMS & MMS protocols
	Cellular/Mobile Networks
	Gateways
	Receiving
	Sending
	SMS to Email Gateways

	A Brief History
	What Can You Do With Email?

	Processing MMS
	TMail
	The Problem
	MMS2R Basics
	Adding support for additional carriers

	Working with ActionMailer
	Receiving MMS and Email
	Daemonizing ActionMailer
	Fetching email with cron
	Writing a Fetcher::Base subclass

	Further Integration
	MMS2R and attachment_fu
	Sending & Receiving SMS
	ActionSMS and other plugins
	Dealing with spam

	Testing
	Test::Unit
	RSpec
	Mocking Ruby Network Libraries

	Advanced topics
	Strategies for matching
	Server setup for catchall email address

