

Richard Blum

A Division of Macmillan USA
201 West 103rd St., Indianapolis, Indiana, 46290

sendmail® for Linux®

00 0672318342 FM 3/29/00 3:02 PM Page i

sendmail® for Linux®

Copyright © 2000 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-31834-2

Library of Congress Catalog Card Number: 99-66163

Printed in the United States of America

First Printing: April 2000

02 01 00 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams cannot attest to the accuracy
of this information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Linux is a registered trademark of Linus Torvalds

sendmail is a registered trademark of sendmail, Inc.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book or from the use of the CD or
programs accompanying it.

ACQUISITIONS EDITOR

Neil Rowe

DEVELOPMENT EDITOR

Tony Amico

MANAGING EDITOR

Lisa Wilson

PROJECT EDITOR

Paul Schneider

COPY EDITOR

Mike Henry

INDEXER

Aamir Burki

PROOFREADERS

Jill Mazurczyk
Mona Brown

TECHNICAL EDITOR

Tim O’Brien

TEAM COORDINATOR

Karen Opal

MEDIA DEVELOPER

Jason Haines

COVER/INTERIOR DESIGNER

Anne Jones

COPYWRITER

Eric Borgert

EDITORIAL ASSISTANT

Angela Boley

PRODUCTION

Angela Calvert
Tim Osborne
Gloria Schurick
Mark Walchle

00 0672318342 FM 3/29/00 3:02 PM Page ii

Overview
Introduction 1

PART I Introduction to Email Services and Linux 9
1 Email Principles and Services 11

2 Using Linux As a Mailserver 29

3. Installing and Configuring Modems in Linux 53

4 DNS and Domain Names 81

5. SMTP Protocol 115

6 POP3 Protocol 147

7 IMAP Protocol 173

8 PPP Protocol 203

9 UUCP Protocol 233

10 The sendmail Program 265

PART II Installing Email Services in Linux 297
11 Installing and Configuring sendmail 299

12 Installing and Configuring POP3 and IMAP 329

13 Connecting the Mailserver to an ISP 349

14 Mailserver Administration 373

15 Configuring LAN Clients 393

PART III Advanced Topics 417
16 Supporting Dial-In Clients 419

17 Mail Aliases and Masquerading 443

18 Mail Lists 459

19 IP Routing with Linux 483

INDEX 505

00 0672318342 FM 3/29/00 3:02 PM Page iii

Contents
INTRODUCTION 1

PART I Introduction to Email Services and Linux

1 Email Principles and Services 11
Mainframe Email Systems ..12
Multi-Mainframe Email Systems ..12
Early UNIX Email Systems ..13

Mail User Agent ..14
Mail Transfer Agent..17

LAN-Based Email Systems ..20
Email Protocols..22

Mail Transfer Agent Protocols ..22
Mail User Agent Protocols ..24

Summary ..26

2 Using Linux As a Mailserver 29
The Linux Kernel ..30

Memory Management ..31
Process Management ..33
Device Driver Management..37
Filesystem Management ..39
Kernel Modules ..40
Kernel Versions ..42

Linux Libraries ..43
The GNU Project ..46

GNU bash ..47
GNU gcc ..49
make..49

Linux Distributions ..51
Summary ..52

3 Installing Communication Devices in Linux 53
Communication Devices and Linux ..54
Installing and Configuring Network Cards ..56

Configuring Network Cards in the Boot Process56
Using ifconfig ..58
Using netcfg..62

Installing Modems ..64
Linux Serial Ports ..64
The setserial Command ..67
Linux Serial Port Init Scripts..70

00 0672318342 FM 3/29/00 3:02 PM Page iv

Linux Modem Support ..72
External Modems..72
Internal Modems ..73
ISA Plug-and-Play Modems ..74
ISDN Modems..76

Controlling Modems in Linux ..78
Summary ..78

4 DNS and Domain Names 81
History of Computer Names..82
Domain Names ..82

DNS Structure ..83
DNS Database Records ..87
A Sample DNS Database for a Domain ..91
DNS Protocol..93
DNS and Email ..96

Linux as a DNS Client ..97
Configuring DNS Client Files..98
Linux Client DNS Utilities ..100

Linux as a DNS Server ..107
Compiling BIND ..108
Using named as a Workstation Cache Server108
Using named As a Zone DNS Server ..111

Summary ..113

5 SMTP Protocol 115
SMTP Protocol Description ..116

Basic SMTP Client Commands..117
Server Responses..126

Message Formats ..129
Standard RFC 822 Header Fields ..129
Using the RFC 822 format in an SMTP Mail Transaction132

MIME and Binary Data ..134
Extended SMTP ..139
SMTP on Linux ..141

sendmail..141
qmail ..143
smail..143
exim ..144

Summary ..145

00 0672318342 FM 3/29/00 3:02 PM Page v

sendmail for Linux
vi

6 POP3 Protocol 147
Description of the Post Office Protocol ..148

POP3 Authentication Methods ..149
POP3 Client Commands ..153
POP3 Server Responses ..162

Linux POP3 Implementations..162
Linux as a POP3 Client ..162
Linux as a POP3 Server ..168

Summary ..170

7 IMAP Protocol 173
Description of the Internet Mail Access Protocol174

IMAP Authentication Methods ..175
IMAP Client Protocol ..177

Linux IMAP Implementation ..198
Linux as an IMAP Server ..198
Linux as an IMAP Client ..199

Using IMAP on Network Clients ..199
Summary ..202

8 PPP Protocol 203
PPP Protocol Overview ..204
PPP Protocol Frames ..205

HDLC Frame..205
PPP Frame ..208

PPP Negotiation Phases ..209
Link Establishment Phase ..209
PPP Authentication Phase ..215
Network Protocol Establishment Phase ..217
Link Termination Phase..218

Linux PPP Implementations ..218
Linux Client PPP Implementation..220
Linux Server PPP Implementation ..227

Summary ..231

9 UUCP Protocol 233
UUCP Protocol Description ..234

Initial Handshake..235
Data Transfer ..237
Closing Handshake ..242
Sample UUCP Session ..242

UUCP Protocol Types..243
g Protocol..244
i Protocol ..247

00 0672318342 FM 3/29/00 3:02 PM Page vi

CONTENTS
vii

t Protocol ..248
e Protocol..248

Taylor UUCP ..248
config File ..249
sys File..250
port File ..253
dial File ..254

UUCP Commands..255
uucico..256
uuxqt ..257
uustat ..258
uucp ..258
uux ..259

Linux UUCP Implementation..259
Linux UUCP Master ..260
Linux UUCP Slave ..262

Summary ..263

10 The sendmail Program 265
sendmail Files and Directories ..266
The sendmail Command Syntax..273

sendmail Command-Line Parameters ..273
sendmail Configuration File ..279

Configuration File Contents ..280
Rule Sets ..290

Summary ..296

Part II Installing Email Services in Linux 297

11 Installing and Configuring sendmail 299
Installing sendmail ..300

Binary Distributions ..300
Downloading from the Internet ..303

Configuring sendmail ..304
The GNU m4 Macro Processor..304
sendmail m4 Directives ..305
Creating the sendmail.cf File ..318

Sample sendmail Configurations ..319
Simple Linux Workstation Configuration319
Full-Time Internet Connection Mailserver321
Part-Time Internet Connection Mailserver324
UUCP Connection Mailserver..326

Summary ..328

00 0672318342 FM 3/29/00 3:02 PM Page vii

sendmail for Linux
viii

12 Installing and Configuring POP3 and IMAP 329
Email Client Protocols ..331

POP3 ..331
IMAP ..332

qpopper ..334
Downloading qpopper ..334
Configuring qpopper ..334

University of Washington IMAP ..342
Downloading and Installing UW IMAP ..343
Configuring UW POP3 ..344
Configuring UW IMAP..346

Summary ..348

13 Connecting the Mailserver to an ISP 349
Preliminary Issues..350

Domain Name Hosting ..350
Mail Drop Options..351
Connectivity Options..353

Sample Mailserver Scenarios ..355
Dedicated Connection with Direct Domain Mail355
Dial-on-Demand PPP Connection with One ISP Mailbox359
Dial-on-Demand PPP Connection with ISP Domain

Mail Spooling ..365
PPP Link Configuration ..365
sendmail Configuration ..366
Dial-Up UUCP Connection with ISP Domain Mail Spooling367

Summary ..372

14 Mailserver Administration 373
Userid Maintenance ..374

The Linux Userid File ..374
Shadow Passwords ..376
The Linux group File..377
Userid Maintenance Utilities..379
Graphical Userid Maintenance Utilities ..382

Monitoring the Mailserver ..385
The Linux syslogd Program ..386
syslogd Parameters ..387
syslogd Configuration File ..388

Watching for Hackers and Spammers ..390
Summary ..391

00 0672318342 FM 3/29/00 3:02 PM Page viii

CONTENTS
ix

15 Configuring LAN Clients 393
Requirements for a LAN Client ..394

Network Connection ..395
IP Address ..397

Netscape Messenger ..402
Downloading Messenger ..402
Installing Messenger ..403
Configuring Messenger ..403
Using Messenger ..406

Microsoft Outlook Express..407
Downloading ..408
Installing Outlook Express ..408
Configuring Outlook Express ..408
Using Outlook Express ..409

Qualcomm Eudora Light ..412
Downloading Eudora Light ..412
Installing Eudora Light ..412
Configuring Eudora Light ..412
Using Eudora Light ..414

Summary ..415

Part III Advanced Topics 417

16 Supporting Dial-In Clients 419
Configuring Dial-In Modems ..420

Using inittab ..420
The uugetty Program..422
PPP Scripts ..425

Revisiting the mgetty Program ..426
Installing mgetty ..427
Configuring mgetty for Automatic PPP Support428
mgetty Log Files ..431

Configuring Windows 95 and 98 Dial-Up Networking434
Configuring Windows NT 4.0 Dial-Up Networking436
Sharing a Modem ..440
Summary ..441

17 Mail Aliases and Masquerading 443
The .forward File ..444
Aliases..446

sendmail aliases File ..446
newaliases Program ..449

00 0672318342 FM 3/29/00 3:02 PM Page ix

sendmail for Linux
x

Masquerading ..449
Single-Host Masquerading ..449
Multi-Host Masquerading ..451
Virtual Hosting ..453

Summary ..456

18 Mail Lists 459
Features of a Full Service Mail List ..460

Open and Closed Mail Lists ..460
Moderated and Unmoderated Mail Lists..461
Remote Administration of Mail Lists ..461
Digests of Mail Lists ..461
Archives of Mail Lists ..461

Introducing Majordomo ..462
Downloading Majordomo ..462
Installing Majordomo ..463
Configuring a Majordomo Mail List ..470

Using Majordomo..475
Mail List User Commands ..477
Mail List Owner Commands ..479

Summary ..481

19 IP Routing with Linux 483
Methods of Network Connectivity Using Linux484

Local Network Has a Valid Internet IP Address Range485
Local Network Is Using a Public IP Address Range488

Using ipfwadm ..490
Using ipchains..494

ipchains Rules ..497
Saving a NAT Configuration ..499
Enabling Masquerading..499

Configuring Network Clients for Routing ..500
Summary ..502

Index 505

00 0672318342 FM 3/29/00 3:02 PM Page x

About the Author
Rich Blum has worked for the past 11 years as a network and systems administrator for the
U.S. Department of Defense at the Defense Finance and Accounting Service. He has been
using the Linux operating system since 1993 as an FTP server, TFTP server, email server, mail
list server, and network monitoring device in a large networking environment. Rich currently
serves on the board of directors for Traders Point Christian Schools, and is active on the com-
puter support team at the school, supporting a Microsoft Windows NT network in the com-
puter lab and classrooms in a small K-8 school. Rich has a Bachelors of Science degree in
Electrical Engineering, and a Masters of Science in Management, specializing in Management
Information Systems, both from Purdue University. When Rich is not being a computer nerd
he is either playing electric bass for the church worship band, or spending time with his wife
Barbara and two daughters Katie and Jessica.

00 0672318342 FM 3/29/00 3:02 PM Page xi

Dedication
This book is dedicated to the memory of my mom, Joyce Blum, who always enjoyed reading, and always
encouraged expanding one’s mind through reading. “We believe that Jesus died and rose again, and so

we believe that God will bring with Jesus those who have fallen asleep in him.” I Thes. 4:14 (NIV)

Acknowledgments
First, all glory, honor, and praise go to God, who through His Son all things are possible, and
gave us the gift of eternal life.

I would like to thank all of the great people at Macmillan for their help, support, and profes-
sionalism. Thanks to Neil Rowe, the acquisitions editor, for offering me the opportunity to
write this book. Also thanks to the copy editors, Rhonda, Mary Ellen, and Mike, for their
excellent work at correcting my grammatical mistakes. The technical editors of this book, Tim
O’Brien and Jim Westveer, did an excellent job of pointing out my technical goofs and setting
me straight. And Laura Robbins, the interior designer, did an excellent job of turning my
scribbles into great pictures. The development editor, Tony Amico, gets an extra special
acknowledgment. Thanks Tony for your help, support, guidance, and mentoring (both for the
book and apart from it). This book would not have been possible without it.

I would also like to thank my family. My parents, Mike and Joyce Blum for the dedication and
support necessary to raise children (especially me), my wife Barbara for her love, faith, and
constant support, and my daughters Katie and Jessica for their love and understanding while I
pined away on this book instead of playing.

And finally, I would like to thank Sister Marie Imelda, C.S.C., who back in the late 70’s
thought that this microcomputer craze might just catch on, and fought and struggled to teach a
bunch of goofy high school kids how to program. Thanks Sister.

00 0672318342 FM 3/29/00 3:02 PM Page xii

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

You can fax, email, or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every mes-
sage.

When you write, please be sure to include this book’s title and author as well as your name
and phone or fax number. I will carefully review your comments and share them with the
author and editors who worked on the book.

Fax: 317-581-4770

Email: opsys_sams@macmillanusa.com

Mail: Mark Taber
Associate Publisher
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

00 0672318342 FM 3/29/00 3:02 PM Page xiii

00 0672318342 FM 3/29/00 3:02 PM Page xiv

Introduction
In just a few years, Internet email has gone from being a novelty to almost a necessity.
Corporations spend thousands of dollars a year to implement email systems to help them com-
municate better both internally and externally with their customers. Email systems have
changed the flow of communications in many corporations. The days of the corporate paper
memo are almost over.

The next wave of the email explosion has been in the home. Many different methods are avail-
able now for home users to gain access to an Internet email account. Internet service providers
(ISPs) offer many attractive packages for providing email accounts to individuals (even one for
every member in the family). Also, a growing number of companies offer free email services
to individuals, as long as they don’t mind seeing commercials downloaded across their email
systems. These days it is not uncommon to meet someone with several different personal email
accounts.

Although large corporations have the resources to implement intricate email systems, many
small organizations do not. There seems to be a middle ground: organizations too small to pur-
chase large commercial email systems, but too large to implement individual ISP accounts for
all their employees. This middle ground often includes nonprofit organizations, such as
schools, churches, clubs, and associations. These organizations usually do not have large IS
departments to implement full-scale commercial email systems.

The main purpose of this book is to help the network administrator of a small organization use
tools currently available for free to implement a commercial-quality email system. If you also
want to connect your email system to the Internet, details are provided regarding what you
need to know to talk about email with your local ISPs. After talking with the ISPs, you can
decide which ISP can connect your office Linux email system to the Internet for the best price.

Another purpose of this book is educational. Often network administrators in smaller organiza-
tions do not have the time or money to get formal training on email systems. Knowledge of the
protocols used in Internet email systems is vital to properly troubleshoot email problems. Most
of the commonly used protocols necessary for Internet email to operate are discussed in detail
in this book. This information can be used either as training material or as reference material
(or both).

01 0672318342 intro 3/29/00 3:02 PM Page 1

sendmail for Linux
2

The final purpose of this book is to help take some of the complication out of the sendmail
program. Although many other email programs are available for the Linux environment, the
sendmail program is still one of the most versatile. Many nice features are available in the
sendmail program that other programs don’t have. Although several very in-depth books have
been written about sendmail, often it is just a matter of setting a few configuration variables to
properly configure the sendmail program for a small environment. This book explains the con-
figuration file for those readers who want to attempt in-depth changes to the sendmail program,
but it also explains the bare minimum configurations needed to connect an office Linux
mailserver to an ISP to provide Internet mail service to an organization.

This book uses examples for setting up a Linux mailserver for a fictitious organization. At the
time of this writing, the example domain name chosen—smallorg.org—is not registered with
the Internet Corporation for Assigned Names and Numbers (ICANN). If, by chance,
smallorg.org is registered at the time you read this, there is no association between this book
and the owner of the registered domain name. Also, all IP addresses used in this book are for
example only. Where possible, public IP addresses are used and should be replaced with the IP
addresses assigned to your particular organization. When that is not possible, fictitious IP
addresses have been selected and are not associated with any existing IP networks. Please con-
sult your Internet service provider before assigning IP addresses to your Linux mailserver.

I was trying to keep the focus of the book on office networks. Although many of the sendmail
concepts apply to larger corporations and ISP networks, I didn’t want this book to become a
reference guide for ISPs. It comes close though. The chapters were written with the small
office mail administrator in mind. The chapters are broken down into the following topics:

Chapters 1, “Email Principles and Services,” and 2, “Using Linux As a Mailserver,” present a
short history and explanation of email and the role of Linux as a mailserver in a corporate
email environment.

Chapter 3, “Installing Communication Devices in Linux,” discusses the basic concepts of the
hardware necessary for a Linux mailserver to connect to a network and to an ISP if necessary.
Modems and Network Interface Cards (NICs) are items often overlooked by mail administra-
tors, but they are nonetheless important for the mailserver.

Chapters 4, “DNS and Domain Names,” through 9, “UUCP Protocol,” present most of the pro-
tocols used on a mailserver. Chapter 4 deals with the topic of the Domain Name System and
how to configure the Linux mailserver to use domain names and, if necessary, how to be a
DNS server.

01 0672318342 intro 3/29/00 3:02 PM Page 2

INTRODUCTION
3

Chapter 5, “SMTP Protocol,” discusses the Simple Mail Transport Protocol (SMTP), which is
the backbone of the mail protocols. A basic understanding of this protocol is often helpful in
troubleshooting email problems.

Chapter 6, “POP3 Protocol,” describes the Post Office Protocol (POP3) used by network
clients to retrieve mail messages from the Linux mailserver. This is an important protocol that,
when understood, can save many hours of troubleshooting.

Chapter 7, “IMAP Protocol,” presents the Interactive Mail Access Protocol (IMAP), another
protocol used by network clients to access mail messages on the Linux mailserver.

Chapter 8, “PPP Protocol,” discusses the Point-to-Point Protocol (PPP) used to establish a ser-
ial IP connection using the modem on the Linux mailserver. Also described are the Linux pro-
grams and utilities used to establish a PPP connection with an ISP.

Chapter 9 describes the older Unix-to-Unix Copy Protocol (UUCP). Although UUCP is an
older protocol, it has become more popular in smaller networks that need only limited access
to the Internet or require a more secure network connection.

Chapters 10, “The sendmail Program,” and 11, “Installing and Configuring sendmail,” discuss
the sendmail program, its configuration, and how to use it to implement a fully functional
Linux mailserver.

Chapter 12, “Installing and Configuring POP3 and IMAP,” describes how to use the POP3 and
IMAP programs to support network clients on the Linux mailserver.

Chapter 13, “Connecting the Mailserver to an ISP,” walks office network administrators
through the different scenarios involved in setting up a mailserver with an ISP.

Chapter 14, “Mailserver Administration,” presents Linux topics that are required for a mail
administrator to properly administer the Linux server. Items such as userid and password main-
tenance and log file monitoring are discussed.

Chapter 15, “Configuring LAN Clients,” changes focus a little to the client workstations.
Software that allows network clients to access mailboxes on the Linux mailserver is presented
and described.

Chapter 16, “Supporting Dial-In Clients,” discusses how to support mail users who want to
dial in to the Linux mailserver from a remote location.

01 0672318342 intro 3/29/00 3:02 PM Page 3

sendmail for Linux
4

Chapter 17, “Mail Aliases and Masquerading,” covers the specialized topics of using mail
aliases and masquerading mailservers. The standard sendmail alias.db and
virtusertable.db files are discussed and explained. The chapter addresses them from the
point-of-view of a small organization setting up several mail spokes that funnel mail through a
single corporate mail server, and how to set up the virtusertable on the corporate hub to han-
dle the spokes.

Chapter 18, “Mail Lists,” introduces the mail administrator to the concept of mail lists, and
how to create and support them on the Linux mailserver.

Finally, Chapter 19, “IP Routing with Linux,” goes a little off the mailserver path by describing
how to use the Linux mailserver as a full-feature IP router, firewall, and gateway. If the Linux
mailserver is on a dedicated connection to the Internet, it can also be used as the network
router.

I don’t argue that I don’t cover every aspect of the sendmail configuration; that was not the
point of this book. As I mentioned earlier, many excellent books just covering sendmail have
been written. The point of this book is to help a small network administrator get just enough of
the basics of sendmail—with a few examples—to get a mailserver running without getting a
doctorate degree in sendmail.

Conventions Used in This Book
As you read through this book, you will notice some features that might not be recognizable.
Typeface conventions are the first of these features.

• Anything that might be considered code, such as listings, appears in a monospace font.

In listings, the code you type in (input) appears in boldface monospace and the output
appears in standard monospace without bold.

• Many code-related terms within the text also appear in a monospace font.

• Placeholders in code appear in italic monospace.

• When a line of code is too long to fit on one line of this book, it is broken at a conve-
nient place and continued to the next line. A code continuation character (➥) precedes
the continuation of a line of code. (You should type a line of code that has this character
as one long line without breaking it.)

• In many cases, a listing line is preceded by a line number. This number enables me to
refer to individual lines as I discuss the text. If you are typing the code lines or snippets,
you shouldn’t enter that number.

01 0672318342 intro 3/29/00 3:02 PM Page 4

INTRODUCTION
5

The last design element I employ are figures that I use to visually depict a complicated rela-
tionship between components or a complicated flow of processing. In these figures, I have
standardized some visual elements. These elements consist of machines (computers, nodes),
processes (programs), and files (folders). Within a machine, I might have multiple processes
connected through functions and multiple files accessed by these programs. In fact, a machine
might even consist of interrelated physical machines that appear as a single computer exter-
nally, such as a cluster. A machine icon will appear in figures as a box, similar to Figure IN.1.

NOTE

Notes explain interesting or important points that can help you understand the
concepts and techniques being discussed—perhaps other ways of viewing the same
concept.

Tips are little pieces of information that help you in real-world situations. Tips often
offer shortcuts or information to make a task easier or faster.

TIP

CAUTION

Cautions provide information about detrimental performance issues or dangerous
errors. Pay careful attention to Cautions.

A second design feature is used to enhance the text material by providing a somewhat indepen-
dent flow. These short topics are subsidiary information and consist of

• Notes

• Tips

• Cautions

01 0672318342 intro 3/29/00 3:02 PM Page 5

sendmail for Linux
6

FIGURE IN.1
Any machine or computer.

In this figure, the name of the node appears in the title line, and its address, if applicable,
appears outside the box—much like your home mailbox.

A process, depicted in Figure IN.2, has a similar appearance except that the corners are
rounded. It, might contain subprocesses.

Program A

Process 1

Process 2

Mail Client

Port handler

Program B

Process 4

Process 3

Mail Server

Port handler

Processing/communication flow

FIGURE IN.2
Any process that has no subprocesses communicating with one that does.

A file or folder looks like the elements in Figure IN.3. The concepts are almost synonymous,
but the idea of a folder is just a little different. A folder brings to mind a collection of dissimi-
lar files.

Process name

Communication link

Description

Machine A

192.168.1.2 192.168.22.33

Machine B

Server Client

Physical Connection

IP Address Computer name

Description

01 0672318342 intro 3/29/00 3:02 PM Page 6

INTRODUCTION
7

FIGURE IN.3
A file and a folder.

MyDesktop

Program A

Process 1

Process 2

DbMaster

Personnel descriptions
and pictures

Folders

Description

Files

Read/write

File name

01 0672318342 intro 3/29/00 3:02 PM Page 7

8

01 0672318342 intro 3/29/00 3:02 PM Page 8

IN THIS PART
1 Email Principles and Services 11

2 Using Linux As a Mailserver 29

3 Installing Communication Devices in Linux 53

4 DNS and Domain Names 81

5 SMTP Protocol 115

6 POP3 Protocol 147

7 IMAP Protocol 173

8 PPP Protocol 203

9 UUCP Protocol 233

10 The sendmail Program 265

Introduction to Email Services
and Linux

PART

I

02 0672318342 pt1 2/14/00 2:11 PM Page 9

02 0672318342 pt1 2/14/00 2:11 PM Page 10

CHAPTER

1
Email Principles and Services

IN THIS CHAPTER
• Mainframe Email Systems 12

• Multi-Mainframe Email Systems 12

• Early UNIX Email Systems 13

• LAN-Based Email Systems 20

• Email Protocols 22

03 0672318342 CH01 2/14/00 2:26 PM Page 11

Email systems have seen many changes over the past dozen years. From the days of sending
simple text messages to the console of another user on the mainframe to sending pictures to
your friends across the Internet, email systems have come a long way. To accomplish these
new email tasks, many protocols had to be invented and implemented to pass both text and
binary information from one person to another. Many of these protocol changes were the direct
result of the rapid growth of the Internet. Just a few years ago, it was not too important for a
user to need access to an Internet service provider (ISP). Now the Point-to-Point and Post
Office Protocols (PPP and POP3) are mainstays of the Internet. As more people became con-
nected, requirements for email changed. In the past, mail systems were just a small subsystem
on the mainframe, taking a backseat to corporate applications. Now many ISPs devote entire
systems just to service their email customers.

This chapter starts by explaining some basic history of email systems. It also explains some
basic terminology used in Internet email systems to help you follow the discussions in the fol-
lowing chapters.

Mainframe Email Systems
Email systems themselves have been around for a long time. In the old days (the 1970s), many
mainframe manufacturers implemented programs that enabled mainframe users to send mes-
sages to other users who were logged on to the same system. The message would appear on the
console of the logged-on user. This system, although crude, was the beginning of the email
messaging system.

The next logical step was to enable a user to send a message to another user who was not cur-
rently logged in to the system. An intricate system was devised to enable each user to have a
special area, called a mailbox, on the mainframe. To send a message to another user, a user had
to run a special mail program that enabled him to put a message in another user’s mailbox. The
other user could then run the mail program to check what messages were in his mailbox.
Figure 1.1 shows how this system looked on the mainframe.

There were many limitations with this system. First, you could send messages only to other
users on the same mainframe system. Mainframes had no means to communicate with each
other. Second, messages sent could only be text messages. No binary files could be sent to
another user on the mainframe.

Multi-Mainframe Email Systems
As mainframes matured, so did their communication systems. It wasn’t long before main-
frames could pass data between themselves on complicated communication networks. This
allowed email systems to communicate between mainframes. Now a user on one mainframe
could send a message to another user on a different mainframe. Figure 1.2 shows an example
of this.

Introduction to Email Services and Linux

PART I
12

03 0672318342 CH01 2/14/00 2:26 PM Page 12

Email Principles and Services

CHAPTER 1
13

1

E
M

A
IL

P
R

IN
C

IPLES
A

N
D

S
ER

V
IC

ES

terminal terminalterminal terminal

Mainframe

rich

Rich Barbara Katie Jessica

mailbox

barbara

mailbox

mail
program

katie

mailbox

jessica

mailbox

FIGURE 1.1
A mainframe email system.

With mainframe communications systems, the email program that users operated became more
complicated. If a user needed to send a message to another user on a remote mainframe, the
email program had to recognize this and forward the message to the mailbox of the appropriate
user on the appropriate remote mainframe. Mainframe names became important, in that no two
mainframes could use the same name on the same mainframe network.

Early UNIX Email Systems
In the 1980s, the UNIX operating system developed at AT&T Bell Labs was gaining popularity
in the university environment. Dubbed minicomputers, these machines were smaller than main-
frames, but had the computing power to perform complex scientific and mathematical research
that university professors and students required. Still operating on mainframe principles, the
UNIX system required users to log in to the system from a dumb terminal connected to the
minicomputer.

The UNIX operating system changed the way software was designed and developed. Instead of
large monolithic programs that performed all functions, smaller specialized programs were
written that performed individual functions more efficiently. This changed the face of email
systems. The email functions were now broken into different programs that performed individ-
ualized functions. Those individualized functions could then be separated from the programs,

03 0672318342 CH01 2/14/00 2:26 PM Page 13

and new programs created to perform the same functions. This section describes the functions
of an email system and some of the programs used to implement them.

Introduction to Email Services and Linux

PART I
14

Front-End
Processor

Mainframe 1

rich

mailbox

barbara

mailbox

mail
 program

katie

mailbox

jessica

mailbox

Mainframe 2

jim

mailbox

alecia

mailbox

mail
 program

riley

mailbox

Jim

mailbox

Message sent from rich on mainframe 1
to jim on mainframe 2

Rich

mailbox

Front-End
Processor

FIGURE 1.2
Mainframe email communication systems.

Mail User Agent
The UNIX email model used a local mailbox for each user to hold messages for that user.
Programs became available that could interface with the mailbox format. Those programs were
called Mail User Agents (MUAs). The MUAs did not receive messages from remote comput-
ers; they only displayed messages that were already placed in the user’s mailbox. Throughout
the years, many different MUAs have been available for the UNIX platform. The Linux operat-
ing system has borrowed many of the programs and methods used by standard UNIX systems.
MUAs are no exception. All the MUA programs in the following sections are available on the
Linux platform.

03 0672318342 CH01 2/14/00 2:26 PM Page 14

The mail Program
The simplest MUA available on the Linux platform is the mail program (not too original a
name). The mail program uses a command-line interface to interact with the user. Commands
to manipulate messages are entered at the command prompt. Listing 1.1 shows a sample mail
session.

LISTING 1.1 Sample mail Program Session

1 [jessica@shadrach jessica]$ mail
2 Mail version 8.1 6/6/93. Type ? for help.
3 “/var/spool/mail/jessica”: 1 message 1 new
4 >N 1 rich@shadrach.smallo Sun Dec 12 17:38 13/485 “This is a test message”
5 & 1
6 Message 1:
7 From rich@shadrach.smallorg.org Sun Dec 12 17:38:09 1999
8 Received: (from rich@localhost)
9 by shadrach.smallorg.org (8.9.1a/8.9.1) id RAA00648
10 for jessica; Sun, 12 Dec 1999 17:38:08 -0500
11 Date: Sun, 12 Dec 1999 17:38:08 -0500
12 From: Rich <rich@shadrach.smallorg.org>
13 Message-Id: <199912122238.RAA00648@shadrach.smallorg.org>
14 To: jessica@shadrach.smallorg.org
15 Subject: This is a test message
16 Status: R
17
18 This is the first test message
19 This is the end of the first test message
20
21 & d
22 & q
23[jessica@shadrach jessica]$

Line 1 shows the email user jessica entering the mail program on the command line. Lines 2
through 4 show the mail program greeting. Line 2 displays the version of mail that is running.
Line 3 displays the location of the user’s home mailbox. By default, the home mailbox should
be located at

/var/spool/mail/username

where username is the username of the user. Line 4 is a synopsis of the messages in the user’s
mailbox. This shows that one message is available to be read. Line 5 shows the command
prompt the mail program uses to enable the user to input new queries. If the user types a 1, the
mail program displays the contents of the first mail message in the user’s mailbox.

Email Principles and Services

CHAPTER 1
15

1

E
M

A
IL

P
R

IN
C

IPLES
A

N
D

S
ER

V
IC

ES

03 0672318342 CH01 2/14/00 2:26 PM Page 15

Lines 6 through 20 display the first mail message in its entirety. Lines 7 through 16 identify the
message header. The message header is a standard format that is used to identify information
regarding the source and destination of the mail message. This header information is often use-
ful when trying to troubleshoot email problems.

Lines 8 through 10 show the Received by header field information. Each node that the mes-
sage traverses to get from the sender to the recipient adds a Received by header field. This is
one method to use to track messages. For example, in one instance, mail messages were taking
more than an hour to get from one host to another. By examining the Received by header
fields of the received message, it was determined that one particular host along the relay path
was queuing messages and not delivering them for approximately 55 minutes. After this infor-
mation was determined, the offending host administrator was contacted and the problem was
resolved. This problem was solved by observing the date and time parts of the Received by
field.

Lines 18 and 19 are the message body. Much like the mainframe email systems, UNIX email
systems allow only text mail messages. However, to compensate for this, UNIX systems pro-
vide a method to convert binary files to ASCII text files for email purposes, and then to convert
the ASCII text file back into the binary file.

The pine Program
The beginning of the graphical revolution brought programs that could utilize terminal screen
graphics to display information. The pine program is one program available to read a user’s
mailbox that graphically displays the messages on the console screen. Figure 1.3 shows a sam-
ple pine session screen.

Introduction to Email Services and Linux

PART I
16

FIGURE 1.3
The UNIX pine program.

03 0672318342 CH01 2/14/00 2:26 PM Page 16

The pine program lists all the messages available in the user’s INBOX folder, which is the
location where new mail messages are stored for the user. Additional folders can be created to
enable the user to store and manipulate messages based on content.

X Window Programs
Almost all Linux distributions support the graphical X Window environment. This allows
fancier graphical programs to run on either the Linux server console or remotely from an X
Window workstation on the network. The Netscape Communicator program includes an email
system that enables the user to read messages from his mailbox and send messages through the
Linux server. Figure 1.4 shows the mail screen from the Netscape mail program.

Email Principles and Services

CHAPTER 1
17

1

E
M

A
IL

P
R

IN
C

IPLES
A

N
D

S
ER

V
IC

ES

FIGURE 1.4
The Netscape mail program main screen.

Mail Transfer Agent
With the MUA responsible for displaying only the email messages already in the user’s mail-
box, a new type of program was needed whose job was to get the messages to the mailbox.
The Mail Transfer Agent (MTA) was created to accomplish just that job. MTAs are responsible
for sending messages from one user to another user. Those users can be on the same system or
they can be on remote systems. The MTA is responsible for routing the mail message to the
remote system through any means possible. Often there can be several email systems between
the sending host and the destination host. Figure 1.5 shows an example of how MTAs commu-
nicate to transfer a message.

03 0672318342 CH01 2/14/00 2:26 PM Page 17

FIGURE 1.5
Using MTAs to route a message to its destination.

If the MTA cannot find a direct path to the destination MTA, it must attempt to determine the
next best place to send the message or return an undeliverable message. Each MTA along a
path must take responsibility for passing the message along to the final destination or it must
return an undeliverable message to the originating sender.

The Linux operating system has several different MTA programs available. Each has features
that make it different from the rest. This section identifies a few of the more commonly used
MTA programs available.

The sendmail Program
The sendmail program is the most popular MTA program available for the Linux platform. It is
maintained by the sendmail Consortium (http://www.sendmail.org), as well as being sup-
ported by the sendmail, Inc. corporation.

The sendmail program is the most robust and versatile MTA program available. Because of its
versatility, it is also one of the most complicated to configure. sendmail gets its configuration
settings from a standard configuration file. It is not uncommon for this file to be a few hundred
lines in length. Within the configuration file are parameters that control how sendmail handles
incoming messages and routes outgoing messages.

Introduction to Email Services and Linux

PART I
18

UNIX system1

MTA

sendmail

MUA

pine

mailbox

rich

UNIX system2

MTA

sendmail

MUA

pine

mailbox

dan

terminal

Rich

terminal

Dan

03 0672318342 CH01 2/14/00 2:26 PM Page 18

Incoming messages are run through a complicated series of rules that can be used to filter mes-
sages from the system. The rules used for filtering are also stored in the configuration file
(hence the large file size). Messages can be checked for header content and handled according
to either the source or destination information available. Outgoing messages must be routed to
the proper location for delivery. sendmail must be configured according to the method used to
connect the mailserver to the Internet. Often a Linux mailserver for a small office is configured
to pass all outgoing messages to the ISP, which can then relay the messages to their proper
destinations. This method is called using a “smart host.”

The purpose of this book is to take some of the complication out of the sendmail program.
There are many nice features available in the sendmail program. Although several very in-
depth books have been written about sendmail, often it is just a matter of setting a few configu-
ration variables to properly configure the sendmail program for a small environment. This book
explains the configuration file for those readers who want to attempt in-depth changes to the
sendmail program, but it will also explain the bare minimum configurations needed to connect
an office Linux mailserver to an ISP to provide Internet mail service to an organization.

The smail Program
The smail program is another popular MTA program available for the Linux platform. It is
maintained by the GNU Project (http://www.gnu.org). The GNU Project is a major software
contributor to Linux, and will be discussed more in detail in Chapter 2, “Using Linux As a
Mail Server.”

The smail program uses many of the same features as the sendmail program, but is much easier
to configure. A standard smail configuration file requires fewer than 20 lines of configuration
code, which is many fewer than sendmail requires.

One of the nice features of smail is its ability to forward mail messages without using mail
queues. The sendmail program places all messages in a queue file to queue them for delivery.
For low-volume mailservers, queuing becomes an unnecessary delay. The smail program
attempts to deliver the message immediately without placing the messages in a queue. This
works great for low-volume mailservers, but unfortunately, this method can get bogged-down
in high-volume mailservers. To compensate, the smail program is configurable to use mail
queues such as sendmail to handle large volumes of mail.

The qmail Program
The qmail program is another MTA program available for Linux. Dan Bernstein
(http://www.qmail.org) maintains it. It is reported to be the most secure email package avail-
able on the Linux platform. To support its high level of security, qmail uses several userids and
groups that must be configured on the Linux system. Each userid is used as the owner of a
restricted area on the Linux server. This enables qmail to restrict access to the mail messages
from outside intruders, while allowing access by a user to his mailbox.

Email Principles and Services

CHAPTER 1
19

1

E
M

A
IL

P
R

IN
C

IPLES
A

N
D

S
ER

V
IC

ES

03 0672318342 CH01 2/14/00 2:26 PM Page 19

Another nice feature of qmail is the method it uses to store messages. Both sendmail and smail
use the standard ASCII text method of storing messages in both mail queues and mailboxes.
The qmail program uses a nonstandard method of writing messages to the queues and mail-
boxes. This method allows for greater recovery in case of a system crash. Often, if the Linux
system crashes when a message is being either retrieved or stored, the message (and sometimes
the mailbox) can become corrupt and unreadable. The qmail program has improved the
chances of maintaining the integrity of the mail message.

The exim Program
The University of Cambridge (http://www.exim.org) maintains the exim program. exim has
recently gained popularity because of its ability to be easily configured to restrict hackers and
spammers. Hackers are people who attempt to break into sites using well-known security holes
in software. Spammers are people who send out mass quantities of (usually) unwanted emails,
mostly for advertisement purposes.

The exim program contains several configuration files that can contain addresses of known
hackers and spammers to restrict any messages from those sites to the mailserver. After a
hacker or spammer has been identified, his address can be added to the configuration files to
prevent any more messages from that address from being received.

LAN-Based Email Systems
In the late 1980s, the computer world was again dramatically changed with the invention of the
personal computer. PCs started popping up in corporations, replacing the dumb terminals that
were used to communicate with mainframes and minicomputers.

Many organizations utilize some type of Large Area Network (LAN) -based network server
that allows network workstations to share disk space on the network fileserver. This has created
a new type of email server that utilizes the shared network disk space.

Modern email packages, such as Microsoft Exchange, Novell GroupWise, and IBM Lotus
Notes, utilize programs that access a common disk area to contain the user mailboxes. The
mailboxes are often contained within a single database. To access the database, the MUA pro-
grams running on the workstations must be able to read and parse the mailbox database. This
method almost always uses a proprietary protocol to access the mailboxes in the database.

The MTA programs often become quite complicated in this environment. Because the email
systems use special databases, the method of sending messages to remote systems depends on
what the remote system is. If the remote system is the same email system as the sending sys-
tem, the same proprietary protocol can be used to transfer the message. If the remote system is
a different type of email system, the MTA must be able to convert the message to a standard
format and use a standard email protocol (discussed later) to send the message. Figure 1.6
shows an example of a proprietary email system on a network.

Introduction to Email Services and Linux

PART I
20

03 0672318342 CH01 2/14/00 2:26 PM Page 20

FIGURE 1.6
A LAN-based proprietary email system.

Often with LAN-based email systems, separate workstations are required to route messages
between destinations. This increases the chance of failure because additional hardware and
software besides the email server are now involved in the email transfer.

Another possible problem with proprietary email systems is the mail database. Because all
messages are stored in one database, the database increases in proportion to the number of
messages saved on the system. It is not uncommon to see databases of more than 1GB in size
for a small organization. Often in this situation, the database becomes corrupt and a database
recovery routine must be run. If the routine is unsuccessful, all the messages in the database
are lost. UNIX-based systems keep individual mailboxes for each user. If one mailbox
becomes corrupt, only one user loses her messages, but the rest of the users are unaffected.

Proprietary LAN-based email systems are very popular, but they tend to be very expensive. As
the mail administrator, you should weigh all the pros and cons involved with purchasing a pro-
prietary email system. Often the same functionality can be obtained by using the Linux
mailserver with open source programs.

Email Principles and Services

CHAPTER 1
21

1

E
M

A
IL

P
R

IN
C

IPLES
A

N
D

S
ER

V
IC

ES

Network File Server

email gateway

email
router

UNIX mailserver

mailbox

sendmail

Local Area Network

MTA

LAN

email
database

Client

email
program

03 0672318342 CH01 2/14/00 2:26 PM Page 21

Email Protocols
Using open source programs means you must use the protocols that are required to transfer
mail messages both between hosts and from the host to the client. There are standard protocols
used by open source programs that allow any open program to communicate with any other
open program. This section defines the protocols that are used to transfer mail messages. Each
protocol is discussed in greater detail later in the book.

Mail Transfer Agent Protocols
The MTA protocols are used to transfer messages from one email host to another. Each proto-
col can be used by any host, either to initiate a connection to a remote host or to accept a con-
nection from a remote host. This section describes the two most popular MTA protocols
available for the Linux platform.

UUCP
The UNIX-to-UNIX-CoPy (UUCP) protocol was developed in the early days of the UNIX
operating system. It was used as a method of transferring data between UNIX hosts using low-
cost modems and standard phone lines. Over the years, it has been replaced by other protocols
that utilize high-bandwidth LAN and WAN connections to transfer data.

With the popularity of Internet service providers utilizing UNIX systems to support dial-in cus-
tomers, UUCP has made a small comeback. It is possible to connect a remote office to an ISP
by using a low-cost UUCP connection for Internet email applications. For small offices look-
ing for inexpensive email, this could be the answer. Figure 1.7 shows a sample UUCP network
configuration.

The UUCP protocol is supported on Linux by using the Taylor uucp program. The uucp pro-
gram uses configuration files to identify remote hosts to connect to for transferring mail mes-
sages. The ISP UUCP host can be identified in the sendmail program as the smart host, so all
outbound mail messages from the Linux mailserver will be forwarded via UUCP to the ISP.
Chapter 9, “UUCP Protocol,” discusses this process in detail.

SMTP
The Simple Mail Transfer Protocol (SMTP) was developed as a protocol for hosts to transfer
mail messages using the Internet. By using a common protocol, any type of host can connect to
and transfer mail to any other type of host across the Internet. The power of the SMTP proto-
col is its simple command structure (that’s why they called it simple). It is easy for software
developers to create an MTA program that communicates with other hosts using SMTP.
Standard SMTP commands solicit standard SMTP replies. All the MTA program must do is
observe the reply codes to determine whether a mail transfer was successful. Figure 1.8 shows
an example of an SMTP connection.

Introduction to Email Services and Linux

PART I
22

03 0672318342 CH01 2/14/00 2:26 PM Page 22

FIGURE 1.7
A sample UUCP connection.

The SMTP protocol uses hostnames to identify hosts for email purposes. With the large quan-
tity of hosts available on the Internet, a method of uniquely identifying each host became nec-
essary. The Domain Name System (DNS) was developed to create domains (or zones) that can
be controlled by a nameserver. It is the responsibility of the nameserver to maintain a database
mapping the hostnames in the domain to the actual IP addresses. A host can determine the IP
address for another host by using the DNS protocol to connect to the proper nameserver for the
remote domain. A hierarchy was developed to help hosts find the proper DNS host responsible
for a particular domain.

The SMTP protocol also requires an IP connection to connect to remote hosts. With hosts
directly connected to the Internet this is not a problem. The typical small office network is not
directly connected to the Internet. This becomes a problem.

To solve this problem, ISPs offer a method to connect the office mailserver to the Internet for
short periods of time to transfer mail messages. The Point-to-Point Protocol (PPP) is used to
connect the Linux mailserver to the Internet via a standard modem on a standard phone line.
After a PPP session is established, IP packets can be transferred between the Linux mailserver
and the Internet. The SMTP protocol can then be used to transfer any mail messages that have

Email Principles and Services

CHAPTER 1
23

1

E
M

A
IL

P
R

IN
C

IPLES
A

N
D

S
ER

V
IC

ES

UNIX system1

MTA

sendmail

mailbox

rich

UNIX system2

MTA

rmail

MUA

Mike

mailbox

mike

uucp

uuicico

uucp

uuicico

MUA

Rich

03 0672318342 CH01 2/14/00 2:26 PM Page 23

accumulated in the mail queues, both outgoing from the Linux mailserver and incoming from
the ISP. Chapter 5, “SMTP Protocol,” discusses this in more detail. Figure 1.9 shows an exam-
ple of this.

Introduction to Email Services and Linux

PART I
24

workstation

Linux system2

sendmail

Local Area Network

MTA

LAN

Linux system1

mailbox

rich

MTA

MUA

Rich

workstation

MUA

Rich

mailbox

tony

SMTP

SMTP

sendmail

FIGURE 1.8
A sample SMTP connection.

Mail User Agent Protocols
When the mail user is on the Linux mailserver’s console, the standard MUA programs listed
earlier can directly access the mailbox to retrieve mail messages. However, in a small office
environment it would be impractical for each user to log in to the Linux server console to read
mail messages. To compensate for this, two different MUA protocols have been developed to
enable a remote client to access his mailbox on a Linux server. This section describes those
protocols.

POP3
The simplest MUA protocol is the Post Office Protocol (POP). Currently the POP protocol is
in its third version, thus the name POP3. The POP3 protocol allows a remote network client to
retrieve messages from a mailbox on a Linux mailserver. Each message must be downloaded to

03 0672318342 CH01 2/14/00 2:26 PM Page 24

the client workstation to be read. Often the message is deleted from the mailbox when it is
download to the workstation. This presents a problem for clients that connect to the mailserver
from two or more workstations. The messages are downloaded to the workstation that the user
used to connect at that particular moment. This results in messages being scattered among dif-
ferent workstations. Chapter 6, “POP3 Protocol,” discusses this protocol in detail. Figure 1.10
shows an example of a client using the POP3 protocol.

Email Principles and Services

CHAPTER 1
25

1

E
M

A
IL

P
R

IN
C

IPLES
A

N
D

S
ER

V
IC

ES

ISP mailserver

smallorg
queue

MTA

sendmail

PPP

Linux mailserver

ispmail
queue

PPP

MTA

sendmail

FIGURE 1.9
A sample PPP connection to the Internet.

IMAP
To solve the problem that POP3 causes by scattering mail messages, the Interactive Mail
Access Protocol (IMAP) was developed. IMAP allows the client to create folders on the
mailserver, and to place messages in those folders for storage. A session can be created to an
IMAP server from any workstation and access the same folders and mailboxes. The messages
are downloaded to the workstation only for display purposes. The messages are kept on the
mailserver in the folder in which they were placed.

03 0672318342 CH01 2/14/00 2:26 PM Page 25

FIGURE 1.10
A sample POP3 session.

Keeping messages on the mailserver does present a problem to the mail administrator in that
disk space on the mailserver can quickly fill up. It is up to the mail administrator to implement
a policy to manage disk space for the server. Chapter 7, “IMAP Protocol,” describes the IMAP
process in more detail. Figure 1.11 shows an example of a client using the IMAP protocol to
retrieve mail messages.

Summary
This chapter discusses the history and theory behind using email in the office environment.
Email began as simply allowing users on the same mainframe system to send messages to one
another. As mainframes began communicating with other mainframes, email grew to be a solu-
tion for communicating with remote users. The UNIX environment included email support
from the start. UNIX email systems are divided into two types of programs: Mail Transfer
Agents (MTAs) and Mail User Agents (MUAs). MTAs are responsible for delivering a message
to another user, either locally on the same UNIX machine or remotely to another UNIX
machine. The MUA programs are responsible for allowing a remote client to access his mail-
box on a mailserver via the network. LAN-based email systems rely on shared disk space on

Introduction to Email Services and Linux

PART I
26

LAN

Linux mailserver

POP3
server

workstation

POP3
client

Rich

mail
folders

mailbox

rich

Local Area Network

03 0672318342 CH01 2/14/00 2:26 PM Page 26

Email Principles and Services

CHAPTER 1
27

1

E
M

A
IL

P
R

IN
C

IPLES
A

N
D

S
ER

V
IC

ES

network fileservers. These systems use a proprietary protocol to store messages in a large data-
base of mailboxes on the system. Often, external devices are required to route messages from
the database to another host on the network. As open systems matured, open network protocols
were developed to create a standard method for transferring information across the Internet.
The UUCP and SMTP protocols were developed to help MTAs transfer messages in a standard
method to remote hosts. Clients can use MUA software that utilizes the standard POP3 and
IMAP protocols to retrieve messages from the mailserver.

LAN

Linux mailserver

workstation

IMAP
server

Rich

mailbox

rich

Local Area Network

mail
folders

IMAP
server

FIGURE 1.11
A sample IMAP session.

03 0672318342 CH01 2/14/00 2:26 PM Page 27

28

03 0672318342 CH01 2/14/00 2:26 PM Page 28

CHAPTER

2
Using Linux As a Mailserver

IN THIS CHAPTER
• The Linux Kernel 30

• Linux Libraries 43

• The GNU Project 46

• Linux Distributions 51

04 0672318342 CH02 2/14/00 2:10 PM Page 29

With the widespread use of Linux, many system administrators are experimenting with various
Linux configurations for various purposes. Although many system administrators use Linux to
replace Microsoft Windows operating systems at the desktop, the real power of Linux is in per-
forming server functions.

To use a Linux server as a mailserver, you must first have a basic understanding of the Linux
operating system. The Linux operating system has been in development for several years, with
many new features added at every new release. This chapter is not intended to teach the Linux
operating system. This chapter describes some of the features of the Linux operating system so
that a system administrator with some familiarity with the Linux operating system will be able
to configure the necessary software to create a mailserver.

The term Linux operating system is somewhat of a misnomer. Many pieces and parts make up
the standard Linux operating system. At the heart of the operating system is the kernel. Linus
Torvalds is credited with creating and maintaining the Linux kernel. The kernel, by itself, is not
very useful. For the operating system to do anything exciting, there must be application pro-
grams and a way to run them. Fortunately for Linus, the GNU Project was already in action.

The goal of GNU, which stands for GNU’s Not UNIX, was to create an open UNIX environ-
ment without the problems of the current UNIX licensing wars. It turned out that the GNU
Project had source code for lots of UNIX utilities laying about, but no operating system kernel
on which to implement them (the GNU Project is working on its version of a UNIX kernel,
hurd). Linus, on the other hand, had a UNIX-like kernel without many UNIX utilities to use.
The combination of the two forces created the Linux operating system. By combining the
Linux kernel with the GNU UNIX utilities, a fully functional UNIX-like operating system was
born. The following sections describe the details involved in the Linux kernel, some of the
major GNU Project UNIX utilities, and the companies attempting to combine the pieces into
what are called Linux distributions.

The Linux Kernel
The operating system kernel is the core of the system. The kernel must control the hardware
and software on the system, allocating hardware when necessary, and executing software when
required. The Linux kernel takes most of its functionality from the UNIX world. Linus
Torvalds states that his work on the Linux kernel was a result of his studying the MINIX oper-
ating system, which itself was an attempt by Andrew Tanenbaum to reproduce the UNIX oper-
ating system on an IBM-compatible PC.

Introduction to Email Services and Linux

PART I
30

04 0672318342 CH02 2/14/00 2:10 PM Page 30

The UNIX kernel comprises functions to control the various hardware and software elements
within the computer system. The kernel is primarily responsible for system memory manage-
ment, software program management, hardware management, and filesystem management. The
following sections describe each of these functions in more detail.

Memory Management
One of the primary functions of the operating system kernel is memory management. Not only
does the kernel manage the physical memory available on the PC, but it can also create and
manage virtual memory, or memory that does not actually exist. The kernel does this by using
space on the hard disk (called the swap space) and swapping memory locations back and forth
from the hard disk to the actual physical memory. This allows the system to think there is more
memory available than what physically exists. The memory locations are grouped into blocks
called pages. Each page of memory is located in either the physical memory or the swap space.
The kernel must maintain a table of the memory pages that indicates which page is where.

The kernel copies memory pages that have not been accessed for a period of time to the swap
space area on the hard disk. When a program wants to access a memory page that has been
swapped out, the kernel must swap out a different memory page and swap in the required page
from the swap space.

To use virtual memory, you must create a swap space on the hard disk. This is often done dur-
ing system installation. The fdisk command is used to partition the installed hard drive on the
system. The format of the fdisk command is

fdisk [option] [device]

where device is the hard disk device being partitioned. Linux uses a naming standard for hard
disk devices. Table 2.1 shows the Linux hard disk naming standard.

TABLE 2.1 Linux Hard Disk Devices

Device Description

/dev/hd[a-h] IDE disk drives

/dev/sd[a-p] SCSI disk drives

/dev/ed[a--d] ESDI disk drives

/dev/xd[ab] XT disk drives

The first available drive of a particular type is labeled as drive a, the second one drive b, and so
on. Within a particular drive, partitions are numbered starting at partition 1. Listing 2.1 shows a
sample partition from a Linux system.

Using Linux As a Mailserver

CHAPTER 2
31

2

U
SIN

G
L

IN
U

X
A

S
A

M
A

ILSER
V

ER

04 0672318342 CH02 2/14/00 2:10 PM Page 31

LISTING 2.1 Sample fdisk Partition Listing

1 [root@shadrach root]# /sbin/fdisk /dev/sda
2
3 Command (m for help): p
4
5 Disk /dev/sda: 64 heads, 32 sectors, 521 cylinders
6 Units = cylinders of 2048 * 512 bytes
7
8 Device Boot Start End Blocks Id System
9 /dev/sda1 1 460 471024 83 Linux native
10 /dev/sda2 461 521 62464 5 Extended
11 /dev/sda5 461 521 62448 82 Linux swap
12
13 Command (m for help): q
14 [root@shadrach root]#

Line 1 shows the fdisk command being run on the first SCSI disk on the Linux system:
/dev/sda. The fdisk program is an interactive program that enables the system administrator to
manipulate the partition table on the disk drive. Line 3 shows the command used to print the
current partition table. Lines 5 through 11 show the information from the disk partition table.
Line 11 shows the partition available on the hard drive for the Linux swap area.

After a swap area has been created on a hard drive, the Linux kernel must know that the swap
area is available and activate it. The swapon program is used to activate memory page swap-
ping. The swapon command sets up the virtual memory information in the kernel. This infor-
mation is lost when the Linux server is rebooted. This means that the swapon command must
be executed at every boot. Most Linux distributions allow the swapon command to be run from
a startup script when the system boots.

The current status of the Linux virtual memory can be determined by viewing the special
/proc/meminfo file. Listing 2.2 shows a sample /proc/meminfo entry.

LISTING 2.2 Sample /proc/meminfo File

1 [root@shadrach /proc]# cat meminfo
2 total: used: free: shared: buffers: cached:
3 Mem: 31535104 29708288 1826816 31817728 3051520 15773696
4 Swap: 63942656 2838528 61104128
5 MemTotal: 30796 kB
6 MemFree: 1784 kB
7 MemShared: 31072 kB
8 Buffers: 2980 kB
9 Cached: 15404 kB
10 SwapTotal: 62444 kB

Introduction to Email Services and Linux

PART I
32

04 0672318342 CH02 2/14/00 2:10 PM Page 32

11 SwapFree: 59672 kB
12 [root@shadrach /proc]#

Line 1 shows the Linux command used to view the /proc/meminfo file. Lines 2 through 11
show the output from the meminfo file. Line 3 shows that this Linux server has 32MB of physi-
cal memory. It also shows that approximately 18MB is not currently being used. Line 4 shows
that there is approximately 64MB of swap space memory available on this system. This corre-
sponds with line 11 in Listing 2.1 that showed a 64MB swap space partition on the /dev/sda
hard drive.

By default, each process running on the Linux system has its own private memory area. One
process cannot access memory being used by another process. No processes can access mem-
ory used by the kernel processes. To facilitate data sharing, shared memory segments can be
created. Multiple processes can read and write to a common shared memory area. The kernel
must maintain and administer the shared memory areas. The Linux ipcs command can be used
to view the current shared memory segments on the Linux system. Listing 2.3 shows the output
from a sample ipcs command.

LISTING 2.3 Sample ipcs Command Output

1 [root@shadrach /proc]# ipcs -m
2
3 ------ Shared Memory Segments --------
4 key shmid owner perms bytes nattch status
5 0x00000000 0 rich 600 52228 6 dest
6 0x395ec51c 1 oracle 640 5787648 6
7
8 [root@shadrach /proc]#

Line 1 shows the ipcs command using the -m option to display only the shared memory seg-
ments. Lines 3 through 6 show the output from this command. Each shared memory segment
has an owner that created the segment. Each segment also has a standard UNIX permission set-
ting that sets the availability of the segment to other users. The key value is used to enable
other users to gain access to the shared memory segment.

Process Management
The Linux operating system handles programs as processes. The kernel controls how processes
are managed in the system. The kernel creates the first process, called the init process, to start
all other processes on the system. When the kernel starts, the init process is loaded into vir-
tual memory. As each process is started, it is given an area in virtual memory to store data and
code that will be executed by the system.

Introduction to Linux

CHAPTER 2
33

2

U
SIN

G
L

IN
U

X
A

S
A

M
A

ILSER
V

ER

04 0672318342 CH02 2/14/00 2:10 PM Page 33

When the init process starts, it reads the file /etc/inittabs to determine what other pro-
cesses it must start on the system. The Linux operating system uses an init system that uti-
lizes run levels. A run level can be used to direct the init process to run only certain types of
processes. There are five init run levels in the Linux operating system.

At run level 1, only the basic system processes are started, along with one console terminal
process. This is called single-user mode. Single-user mode is most often used for filesystem
maintenance. The standard init run level is 3. At this run level most application software, such
as network support software, is started. Another popular run level in Linux is run level 5. This
is the run level at which the X Window software is started. Notice how the Linux system can
control the overall system functionality by controlling the init run level. By changing the run
level from 3 to 5, the Linux system can change from a console-based system to an advanced,
graphical X Window system.

To view the currently active process on the Linux system, you can use the ps command. The
format of the ps command is

ps [options]

where options is a list of options that can modify the output of the ps command. Table 2.2
shows the available options.

TABLE 2.2 ps Command Options

Option Description

l Uses the long format to display

u Uses user format (shows username and start time)

j Uses job format(shows process GID and SID)

s Uses signal format

v Uses vm format

m Displays memory information

f Uses forest format (displays processes as a tree)

a Shows processes of other users

x Shows processes without displaying controlling terminal

S Shows child CPU and time and page faults

c Command name for task_struct

e Shows environment after command line and a +

w Uses wide output format

h Does not display the header

r Shows running processes only

Introduction to Email Services and Linux

PART I
34

04 0672318342 CH02 2/14/00 2:10 PM Page 34

n Shows numeric output for USER and WCHAN

txx Shows the processes controlled by terminal ttyxx

O Orders the process listing using sort keys k1, k2, and so on

Pids Shows only the specified PIDs

Many options are available to modify the ps command output. A sample output is shown in
Listing 2.4.

LISTING 2.4 Sample ps Command Output

1 [rich@shadrach rich]$ ps ax
2 PID TTY STAT TIME COMMAND
3 1 ? S 0:03 init [5]
4 2 ? SW 0:00 [kflushd]
5 3 ? SW 0:00 [kpiod]
6 4 ? SW 0:02 [kswapd]
7 232 ? S 0:00 portmap
8 278 ? S 0:00 syslogd
9 288 ? S 0:00 klogd
10 301 ? S 0:00 /usr/sbin/atd
11 314 ? S 0:00 crond
12 327 ? S 0:00 inetd
13 340 ? SW 0:00 [lpd]
14 369 ? S 0:00 sendmail: accepting connections on port 25
15 383 ? S 0:00 gpm -t ms
16 396 ? S 0:01 httpd
17 415 ? S 0:13 xfs
18 435 tty1 SW 0:00 [mingetty]
19 436 tty2 SW 0:00 [mingetty]
20 437 tty3 SW 0:00 [mingetty]
21 438 tty4 SW 0:00 [mingetty]
22 439 tty5 SW 0:00 [mingetty]
23 440 tty6 SW 0:00 [mingetty]
24 441 ? S 0:05 /etc/X11/prefdm -nodaemon
25 488 ? S 0:00 kwmsound
26 578 ? S 1:01 ora_pmon_test1
27 580 ? S 0:07 [oracle]
28 582 ? S 0:11 ora_lgwr_test1
29 584 ? S 3:34 ora_ckpt_test1
30 586 ? S 19:38 ora_smon_test1
31 588 ? S 0:00 ora_reco_test1

Introduction to Linux

CHAPTER 2
35

2

U
SIN

G
L

IN
U

X
A

S
A

M
A

ILSER
V

ER

Option Description

continues

04 0672318342 CH02 2/14/00 2:10 PM Page 35

32 590 ? S 0:00 ora_s000_test1
33 592 ? S 0:00 [oracle]
34 594 ? S 0:00 ora_arc0_test1
35 9102 ? S 0:00 kwmsound
36 9710 ? S 0:26 /usr/X11R6/bin/X
37 18854 ? S 0:05 /oracle/product/8.1.5/bin/tnslsnr LISTENER -i
38 19607 ? S 0:00 httpd
39 19608 ? S 0:00 httpd
40 19609 ? S 0:00 httpd
41 19610 ? S 0:00 httpd
42 19611 ? S 0:00 httpd
43 19657 ? S 0:00 httpd
44 19658 ? S 0:00 httpd
45 19659 ? S 0:00 httpd
46 24844 ? S 0:00 kwmsound
47 24905 ? S 0:00 -:0
48 25357 ? S 0:00 in.telnetd
49 25358 pts/0 S 0:00 login -- rich
50 25359 pts/0 S 0:00 -bash
51 25404 pts/0 R 0:00 ps ax
52 [rich@shadrach rich]$

Line 1 shows the ps command as entered on the command line. Both the a and x options are
used for the output to display all processes running on the system. The first column in the out-
put shows the process ID (or PID) of the process. Line 3 shows the init process started by the
kernel. The init process is assigned PID 1. All other processes that start after the init process
are assigned PIDs in numerical order. No two processes can have the same PID.

The third column shows the current status of the process. Table 2.3 lists the possible process
status codes.

TABLE 2.3 Process Status Codes

Code Description

D Uninterruptible sleep

R Runnable

S Sleeping

T Traced or stopped

Z A defunct (zombie) process

W Process has no resident pages

< High-priority process

Introduction to Email Services and Linux

PART I
36

LISTING 2.4 continued

04 0672318342 CH02 2/14/00 2:10 PM Page 36

N Low-priority task

L Process has pages locked into memory

The process name is shown in the last column. Processes in square brackets ([]) are processes
that have been swapped out of memory to the disk swap space due to inactivity. For example,
lines 18 to 23 show the mingetty process running on the virtual console sessions on the Linux
server. Because no users have logged in to the virtual sessions, they are inactive, and are thus
swapped out. If a user logs in to a virtual session, the corresponding mingetty process is
swapped back into memory to execute. This creates a small performance problem for the appli-
cation. Lines 26 through 34 show the processes required for an Oracle database server. You can
see that some of the processes have been swapped out, whereas others have not.

Device Driver Management
Another responsibility for the kernel is hardware management. Any device with which the
Linux system must communicate needs driver code inserted inside the kernel code. The driver
code allows the kernel to pass data back and forth to the device. Two methods are used for
inserting device driver code in the Linux kernel.

In the past, the only way to insert a device driver code was to recompile the kernel. Each time
a new device was added to the system, the kernel code had to be recompiled. This process
became more inefficient as Linux supported more hardware. A better method has been devel-
oped to insert driver code into the kernel. Kernel modules were developed to allow driver code
to be inserted into a running kernel and also to be removed from the kernel when the device is
no longer being used. The section “Kernel Modules” later in the chapter describes this process
in more detail.

Hardware devices are identified on the Linux server as special device files. The three different
classifications of device files are

• Character

• Block

• Network

Character files are for devices that can handle data only one character at a time. Most types of
modems are created as character files. Block files are for devices that can handle data in large
blocks at a time, such as disk drives. Network files are used for devices that use packets to
send and receive data. This includes network cards and the special loopback device that allows
the Linux system to communicate with itself using common network programming protocols.

Introduction to Linux

CHAPTER 2
37

2

U
SIN

G
L

IN
U

X
A

S
A

M
A

ILSER
V

ER

Code Description

04 0672318342 CH02 2/14/00 2:10 PM Page 37

Device files are created in the filesystem as nodes. Each node has a unique number pair that
identifies it to the Linux kernel. The number pair includes a major and a minor device number.
Similar devices are grouped into the same major device number. The minor device number is
used to identify the device within the major device numbers. Listing 2.5 shows an example of
device files on a Linux server.

LISTING 2.5 Sample Device Listing from a Linux Server

1 [rich@shadrach /dev]$ ls -al sda* ttyS*
2 brw-rw---- 1 root disk 8, 0 May 5 1998 sda
3 brw-rw---- 1 root disk 8, 1 May 5 1998 sda1
4 brw-rw---- 1 root disk 8, 10 May 5 1998 sda10
5 brw-rw---- 1 root disk 8, 11 May 5 1998 sda11
6 brw-rw---- 1 root disk 8, 12 May 5 1998 sda12
7 brw-rw---- 1 root disk 8, 13 May 5 1998 sda13
8 brw-rw---- 1 root disk 8, 14 May 5 1998 sda14
9 brw-rw---- 1 root disk 8, 15 May 5 1998 sda15
10 brw-rw---- 1 root disk 8, 2 May 5 1998 sda2
11 brw-rw---- 1 root disk 8, 3 May 5 1998 sda3
12 brw-rw---- 1 root disk 8, 4 May 5 1998 sda4
13 brw-rw---- 1 root disk 8, 5 May 5 1998 sda5
14 brw-rw---- 1 root disk 8, 6 May 5 1998 sda6
15 brw-rw---- 1 root disk 8, 7 May 5 1998 sda7
16 brw-rw---- 1 root disk 8, 8 May 5 1998 sda8
17 brw-rw---- 1 root disk 8, 9 May 5 1998 sda9
18 crw------- 1 root tty 4, 64 Nov 29 16:09 ttyS0
19 crw------- 1 root tty 4, 65 May 5 1998 ttyS1
20 crw------- 1 root tty 4, 66 May 5 1998 ttyS2
21 crw------- 1 root tty 4, 67 May 5 1998 ttyS3
22 [rich@shadrach /dev]$

Line 1 shows the ls command being used to display all the entries for the sda and ttyS devices.
The sda device is the first SCSI hard drive and the ttyS devices are the standard IBM PC COM
ports. Lines 2 through 17 show all the sda devices created on the sample Linux system. Not all
are actually used, but they are created in case the administrator needs them. Lines 18 through
21 show all the created ttyS devices.

The fifth column shows the major device node number. Notice that all the sda devices have the
same major device node (8) and all the ttyS devices use 4. The sixth column shows the minor
device node number. Each device within a major number has its own unique minor device node
number.

Introduction to Email Services and Linux

PART I
38

04 0672318342 CH02 2/14/00 2:10 PM Page 38

The first column indicates the permissions for the device file. The first character of the permis-
sions indicates the type of file. Notice that the SCSI hard drive files are all marked as block (b)
files, whereas the COM port device files are marked as character (c) files.

To create a new device node, you can use the mknod command. The format of the mknod com-
mand is

mknod [OPTION] NAME TYPE [MAJOR MINOR]

where NAME is the filename and TYPE is the filetype (character or block). The OPTION parameter
has only one usable option. The -m option enables you to set the permissions of the file as it is
created. You must be careful to select a unique major and minor device node number pair.

Filesystem Management
Unlike some other operating systems, the Linux kernel can support different types of filesys-
tems to read and write data to hard drives. Currently, 15 different filesystem types are available
on Linux. The kernel must be compiled with support for all filesystem types that the system
will use. Table 2.4 lists the filesystems that Linux can use to read and write data.

TABLE 2.4 Linux Filesystems

Filesystem Description

affs Amiga filesystem

ext Extended filesystem

ext2 Second extended filesystem

hpfs OS/2 high-performance filesystem

iso9660 ISO 9660 filesystem (CD-ROMs)

minix MINIX filesystem

msdos Microsoft FAT16

ncp NetWare filesystem

nfs Network File System

proc Access to system information

smb Samba SMB filesystem

sysv Older UNIX filesystem

ufs Solaris and SunOS filesystem

umsdos UNIX-like filesystem that resides on top of MS-DOS

vfat Windows 95 filesystem

xia Similar to ext2, not used

Introduction to Linux

CHAPTER 2
39

2

U
SIN

G
L

IN
U

X
A

S
A

M
A

ILSER
V

ER

04 0672318342 CH02 2/14/00 2:10 PM Page 39

Any hard drive that Linux accesses must be formatted using one of the filesystem types listed
in Table 2.4. Formatting a Linux filesystem is similar to formatting an MS-DOS type disk. The
operating system must build the necessary filesystem information onto the disk before the disk
can be used to store information. Linux uses the mkfs command to format filesystems. The for-
mat of the mkfs command is

mkfs [-V] [-t fstype] [fs-options] filesys [blocks]

where fstype is the type of filesystem to use and blocks is the number of blocks to use. The
default filesystem type is ext2, and the default block count is all blocks available on the parti-
tion.

The Linux kernel interfaces with each filesystem using the Virtual File System (VFS). This
provides a standard interface for the kernel to communicate with any type of filesystem. VFS
caches information in memory as each filesystem is mounted and used.

Kernel Modules
As mentioned previously, in older versions of the Linux kernel, adding new drivers for devices
was not an easy task. The entire kernel had to be recompiled with the new drivers inserted.
Fortunately, this problem has been fixed. Now the Linux kernel supports modules, drivers that
can be inserted and removed from the kernel as it is running. This was a major breakthrough in
the Linux kernel development.

Modules can be inserted into the running kernel using the insmod command. The format of the
insmod command is

insmod [-fkmpsxXv] [-o module_name] object_file [symbol=value ...]

The insmod program attempts to link the module code specified by object_file into the run-
ning kernel. Table 2.5 shows the command-line options that can be used with insmod.

TABLE 2.5 insmod Command-Line Options

Option Description

-f Attempts to load even if it does not match the kernel version

-k Sets the auto-clean flag

-m Outputs a load map

-o Explicitly names the module

-p Probes the module

-s Outputs everything to syslog

-v Uses verbose mode

-X Exports all the module’s external symbols

-x Does not export all the module’s external symbols

Introduction to Email Services and Linux

PART I
40

04 0672318342 CH02 2/14/00 2:10 PM Page 40

The insmod program links the module code to the kernel code, but this is only a temporary
addition. When the Linux server is rebooted, the old kernel loads without the added modules.
The solution to this problem is the modprobe program.

The modprobe program can load a set of modules into the kernel based on a set of configura-
tion files. The formats of the modprobe command are

modprobe module.o [symbol=value ...]
modprobe -t tag pattern
modprobe -a -t tag pattern
modprobe -l [-t tag] pattern
modprobe -r module
modprobe -c

The first format of the modprobe command is used to load an individual module into the ker-
nel. If the module requires any parameters, they can be entered on the command line. The -t
option allows modprobe to load all modules that match a particular tag within a pattern list.
The -r option is used to remove a particular module from the kernel.

The list of modules can be placed in a file accessible at boot time. On Mandrake Linux version
6.0, the location of the modules file is /lib/modules/2.2.9-19mdk/modules.dep.

This file contains a list of all the modules that the modprobe command will attempt to install
into the kernel at boot time. The depmod program can be used to add or delete modules from
the modules file.

Another important configuration file for modprobe is the /etc/conf.modules file. This config-
uration file determines the behavior of the modprobe program. Table 2.6 shows the configura-
tion lines that can be used in this file.

TABLE 2.6 /etc/conf.modules File Commands

Command Description

keep Directs modprobe to add any paths defined to the conf file
instead of replacing them

path=MOD_PATH Specifies directory in which to search for modules

path[tag]=MOD_PATH Specifies a tag for the modules located in the directory

alias module real-name Specifies an alias to use to refer to the module name

pre-install module command Executes command before module is installed

install module command Executes command when module is installed

post-install module command Executes command after module is installed

pre-remove module command Executes command just before module is removed

remove module command Executes command while module is removed

post-remove module command Executes command after module is removed

Introduction to Linux

CHAPTER 2
41

2

U
SIN

G
L

IN
U

X
A

S
A

M
A

ILSER
V

ER

04 0672318342 CH02 2/14/00 2:10 PM Page 41

A sample /etc/conf.modules file is shown in Listing 2.6.

LISTING 2.6 Sample /etc/conf.modules File

1 alias scsi_hostadapter aic7xxx
2 alias eth0 3c59x
3 alias parport_lowlevel parport_pc
4 pre-install pcmcia_core /etc/rc.d/init.d/pcmcia start

Lines 1 through 3 define aliases for generic devices that are loaded in the modules list. Each
generic device points to the real name of the module file that will be loaded. Line 4 shows a
program that should be run before the pcmcia module is loaded.

Kernel Versions
The development of the Linux kernel has taken on a very rapid pace. Linus Torvalds maintains
strict control over the Linux kernel, although he accepts change requests from anyone, any-
where. There have been many advances in the Linux kernel design over the years, such as the
addition of modules.

The kernel developers use a strict version control system. The format of a kernel release is

linux-a.b.c

where a is the major release number, b is the minor release number, and c is the patch number.
Currently, a convention has been established where odd-numbered minor releases are consid-
ered developmental releases, and even-numbered minor releases are considered stable produc-
tion releases.

At the time of this writing, the current stable production release of the Linux kernel is 2.2.13,
whereas the current development release is 2.3.31. Although version 2.2.13 is the current ker-
nel release, most Linux distributions have not released versions using this kernel.

To determine the kernel version your Linux system is using, you can use the uname command
with the -a option. Listing 2.8 shows an example of this command using a Mandrake 6.0
Linux system.

LISTING 2.7 Sample uname -a Output

1 [rich@shadrach rich]$ uname -a
2 Linux shadrach.smallorg.org 2.2.9-19mdk #1 Wed May 19 19:53:00 GMT 1999
➥ i586 unknown
3 [rich@shadrach rich]$

Introduction to Email Services and Linux

PART I
42

04 0672318342 CH02 2/14/00 2:10 PM Page 42

The output from the uname command is shown in line 2. The third field shows the specific
Linux kernel version used. In the case of this example, it is using the 2.2.9 kernel that was
compiled specifically for the Mandrake Linux distribution, thus the extra added -19mdk infor-
mation.

It is possible to download newer versions of the kernel to install in a running Linux system.
You must have the kernel source code files, which are usually available for download from the
Linux Kernel Archives at http://www.kernel.org. Compiling and installing a new kernel is
not for the beginner. Numerous steps are involved in the process. If you decide to upgrade your
Linux kernel, please read all the documentation that comes with the kernel source code and
any tips provided by your specific Linux distribution support group.

Introduction to Linux

CHAPTER 2
43

2

U
SIN

G
L

IN
U

X
A

S
A

M
A

ILSER
V

ER

CAUTION

Installing a new Linux kernel falls under the category of “if it ain’t broke, don’t fix
it.” If your Linux server is not experiencing any problems, don’t attempt to install a
new kernel just because it is newer. Many Linux distributions are fine-tuned to work
with a specific kernel; changing only the kernel can result in unpredictable results.

Linux Libraries
The Linux operating system depends heavily on the C programming language. The kernel,
many device drivers, and almost all the utilities were written using the C language. It is not
surprising that most of the application programs written for the Linux platform were also writ-
ten using the C programming language.

One feature of the C programming language is the capability for a program to load code seg-
ments from a library file as the program is running. Most computer users familiar with the
Microsoft Windows operating system are familiar with the use of DLLs. Program code that
can be shared among several programs can be compiled into a common library (DLL file).
When a program executes, it can load the DLL file into memory as it needs to use the library
functions found in the file.

The Linux operating system uses a similar technique. In Linux, the lib prefix denotes library
files. A library table keeps track of all the shared libraries registered on the system. A common
problem in the Microsoft Windows environment is when one program updates a DLL file,
another program that needed the older version of the DLL stops working. In Linux, this is not
a problem because the library table can maintain multiple separate copies of the same library
file for programs to access.

04 0672318342 CH02 2/14/00 2:10 PM Page 43

The file /etc/ld.so.conf contains the list of libraries that are inserted into the library table.
You can display the current library table on your Linux system by using the ldconfig com-
mand. Listing 2.8 shows a sample partial output from the ldconfig command on a Mandrake
6.0 Linux system. This is only a partial listing because, as shown in line 2, 534 different
libraries are registered on this Linux system.

LISTING 2.8 Sample ldconfig Partial Output

1 [rich@shadrach rich]$ /sbin/ldconfig -p
2 534 libs found in cache `/etc/ld.so.cache’ (version 1.7.0)
3 libzvt.so.2 (libc6) => /usr/lib/libzvt.so.2
4 libzvt.so.2 (libc6) => /usr/lib/libzvt.so.2
5 libz.so.1 (libc6) => /usr/lib/libz.so.1
6 libz.so.1 (libc6) => /usr/lib/libz.so.1
7 libx11amp.so.0 (libc6) => /usr/X11R6/lib/libx11amp.so.0
8 libxml.so.0 (libc6) => /usr/lib/libxml.so.0
9 libxml.so.0 (libc6) => /usr/lib/libxml.so.0
10 libvgagl.so.1 (libc6) => /usr/lib/libvgagl.so.1
11 libvgagl.so.1 (libc5) => /usr/i486-linux-libc5/lib/libvgagl.so.1
12 libvgagl.so.1 (libc6) => /usr/lib/libvgagl.so.1
13 libvgagl.so (libc6) => /usr/lib/libvgagl.so
14 libvgagl.so (libc6) => /usr/lib/libvgagl.so
15 libvga.so.1 (libc6) => /usr/lib/libvga.so.1
16 libvga.so.1 (libc5) => /usr/i486-linux-libc5/lib/libvga.so.1
17 libvga.so.1 (libc6) => /usr/lib/libvga.so.1
18 libvga.so (libc6) => /usr/lib/libvga.so
19 libvga.so (libc6) => /usr/lib/libvga.so
20 libuulib.so.5 (libc6) => /usr/lib/libuulib.so.5
21 libuulib.so.5 (libc6) => /usr/lib/libuulib.so.5
22 libuulib.so (libc6) => /usr/lib/libuulib.so
23 libuulib.so (libc6) => /usr/lib/libuulib.so

Each Linux implementation requires that a version of the standard C library is installed. The
standard C library contains many of the commonly used functions for the system. This is
where Linux has had a checkered past. In the early days of Linux, the Linux C library was
tightly coupled with the kernel. Changes in the kernel required C library changes, and vice
versa. The first version of the Linux C library was called libc1. This version was improved
with the versions libc2, libc3, and libc4. These libraries were used to create many Linux
utilities and application programs during the early years of Linux.

Introduction to Email Services and Linux

PART I
44

04 0672318342 CH02 2/14/00 2:10 PM Page 44

After awhile, Linux developers decided that the old C library method was not good. Not only
was the library too closely related to the Linux kernel, but it also produced executable files in
an older executable format called a.out. Most newer POSIX-type systems had already con-
verted to an Executable and Linking Format (ELF) that proved to be faster and more efficient.
The next version of the C library—libc5—implemented the ELF executable format. Programs
compiled using the libc5 library would not run on older Linux systems that still were using
the a.out-style libraries. However, older programs compiled on the a.out-style would execute
fine on the new libc5 systems. This created the first round of confusion in the Linux applica-
tion world.

At the same time that the libc5 library was being developed and used, the GNU Project devel-
oped its own library that was not tied to a specific kernel. The GNU Project’s C library was
called glibc. With the libc5 library working so well, no one really continued work on the
glibc library.

After a period of dormancy, programmers revisited the glibc code. They thought it could be
made better than the libc5 library. One advantage that glibc had was its independence from
any particular operating system or kernel. Out of the effort of those programmers came the
glibc 2.0 library.

Many Linux distributors decided to bundle the new glibc 2.0 code with their new Linux distri-
butions. Unfortunately, many Linux distributors decided to keep the libc5 library with the new
kernel. This quickly became confusing.

The Linux distributions that used the glibc 2.0 library also included the libc5 library for
backward compatibility. Remember that Linux maintains a table of library files, so using two
separate C libraries at the same time is possible. Because of this, many Linux applications con-
tinued to use the libc5 library for compatibility purposes.

Netscape’s Communicator and Corel’s WordPerfect are two applications that continued to be
written using the libc5 library and could be used on almost every Linux distribution. Some
Linux application programmers decided to take advantage of features of the new glibc 2.0
library and released versions of their software for that platform. Star Division’s StarOffice 5.0
and Oracle’s Oracle8 database software are two applications that use the glibc 2.0 library.
These applications will not run on Linux distributions that exclusively use the libc5 library.

It would be bad enough if the story ended there. Recently the GNU Project released the glibc
2.1 library. What complicated things is that some functions were changed from the glibc 2.0
library, so some applications written with the glibc 2.0 library (such as StarOffice 5.0) crash
when run on a Linux system using the glibc 2.1 library.

Introduction to Linux

CHAPTER 2
45

2

U
SIN

G
L

IN
U

X
A

S
A

M
A

ILSER
V

ER

04 0672318342 CH02 2/14/00 2:10 PM Page 45

If you do not know which library your Linux distribution is using, you can find out by looking
for the libraries in the /lib directory. Table 2.7 shows the different C libraries that might be
present on a Linux system.

TABLE 2.7 List of Linux C Libraries

Library Description

libc.so libc1 a.out library

libc.so.2 libc2 a.out library

libc.so.3 libc3 a.out library

libc.so.4 libc4 a.out library

libc.so.5 libc5 ELF library

libc.so.6 Symbolic link to a glibc library

libc-2.0.x.so glibc 2.0 ELF library

libc-2.1.x.so glibc 2.1 ELF library

The GNU Project
The GNU Project was created in 1984 to create a free UNIX-like operating system. It is
responsible for maintaining open source versions of many common UNIX utilities. Without the
GNU Project, the Linux operating system would not be very exciting. Most of the core pieces
of the Linux operating system are products of the GNU Project. This section describes three
programs that are crucial to the operation of the Linux mailserver: the bash shell, the gcc com-
piler, and the make utility.

Introduction to Email Services and Linux

PART I
46

Linux Libraries
If, after reading this section, you are concerned about your Linux system, don’t be.
For applications distributed in source code (such as all the mailserver programs dis-
cussed in this book), compile the code using whichever C library your system uses and
that code will run just fine. For applications distributed in binary format, just remem-
ber to use the version that is released for the C library on your Linux system (libc5,
glibc 2.0, or glibc 2.1).

04 0672318342 CH02 2/14/00 2:10 PM Page 46

GNU bash
The kernel requires some kind of macro processor to enable a user to execute commands (pro-
grams) on the system. In the UNIX world, that macro processor is called the shell. The most
common shell in the UNIX environment is the Bourne shell, named after its creator, Stephen
Bourne. The Bourne shell is a program that runs as a process on the system, and has an inter-
active session that enables the user to enter commands at a command prompt. The commands
can be executable programs, internal shell commands, or a program file that contains shell
commands (called a script file). The shell launches executable programs by creating a new
process and running the program within that new process. This allows every program that runs
from the shell to have its own process on the system.

The GNU Project developers knew that it was crucial to have a good open source shell to use
with an open source UNIX-like operating system. The shell program they developed was called
bash, for Bourne-Again SHell. The bash shell is compatible with the original Bourne shell
(called sh). The bash shell also includes features from other shells that have been developed in
the UNIX environment—the C shell (csh) and the Korn shell (ksh). bash has become the
default shell for Linux systems. The current version of bash at the time of this writing is ver-
sion 2.03.

The shell a user utilizes after logging in to the Linux system is determined by the user’s entry
in the /etc/passwd file. A typical record in this file looks like this:

riley:x:504:506:Riley M.:/home/riley:/bin/bash

Colons are used to separate the fields in the record. The first field identifies the user login
name. The second field is a placeholder for the user password. This particular Linux system
uses shadow passwords, so the real password is encrypted and placed in a separate file. The
third and fourth fields are the userid and groupid for the user. The fifth field is the text identi-
fier for the user. The sixth field identifies the user’s default, or home, directory when he logs in
to the system. The last field identifies the default shell for the user. This points to the location
of the bash shell executable file on the server.

The bash shell has several different configuration files that can be used to modify the features
of the shell as a user logs in. When bash is invoked as a shell from a login process, any com-
mands present in the /etc/profile file are executed. This occurs for all users who specify the
bash shell as the default login shell in the password file. Listing 2.9 shows the default
/etc/profile file from a Mandrake 6.0 Linux system.

Introduction to Linux

CHAPTER 2
47

2

U
SIN

G
L

IN
U

X
A

S
A

M
A

ILSER
V

ER

04 0672318342 CH02 2/14/00 2:10 PM Page 47

LISTING 2.9 Sample /etc/profile File

1 # /etc/profile
2
3 # System wide environment and startup programs
4 # Functions and aliases go in /etc/bashrc
5
6 PATH=”$PATH:/usr/X11R6/bin”
7 PS1=”[\u@\h \W]\\$ “
8
9 # In bash2 we can’t define a ulimit for user :-(
10 [“$UID” = “0”] && {
11 ulimit -c 1000000
12 }
13
14 if [`id -gn` = `id -un` -a `id -u` -gt 14]; then
15 umask 002
16 else
17 umask 022
18 fi
19
20 USER=`id -un`
21 LOGNAME=$USER
22 MAIL=”/var/spool/mail/$USER”
23
24 HOSTNAME=`/bin/hostname`
25 HISTSIZE=1000
26 HISTFILESIZE=1000
27 export PATH PS1 HOSTNAME HISTSIZE HISTFILESIZE USER LOGNAME MAIL
28
29 for i in /etc/profile.d/*.sh ; do
30 if [-x $i]; then
31 . $i
32 fi
33 done
34
35 unset i

The main thing the /etc/profile file does is create new environment variables for the shell to
identify special characteristics for the session that can be used by application programs running
in the shell. Line 22, the MAIL environment variable, is of special interest to the mail adminis-
trator. It points the user’s mail program to the proper mailbox for the user.

After the common /etc/profile program is executed, bash looks for three more configuration
files in the user’s default (home) directory. If they exist, the .bash_profile, .bash_login, and
.profile files are executed, in order. Each of these files should be located in the user’s home

Introduction to Email Services and Linux

PART I
48

04 0672318342 CH02 2/14/00 2:10 PM Page 48

directory, so these files can be specific for a particular user. One final configuration file is
available for use: .bash_logout. This script file is executed when the user logs out of the inter-
active session. By using a combination of script files, the system administrator can fine-tune
the bash shell for each user on the system.

GNU gcc
If you plan to install software programs that are distributed in source code, you must be able to
compile the code to create an executable file. To do this, you need the proper compiler. All the
Linux programs described in this book are written in the C programming language. This
requires that a C compiler is installed on your Linux server. The most common C compiler
package for Linux is the GNU C compiler (gcc).

The gcc package has itself had quite an interesting past. The GNU Project team developed gcc
and released version 1 in early 1990. The GNU Project continued development of gcc, creating
version 2.0 and continuing with improvements until version 2.8 was released in 1997. At the
same time, another group of developers was working on a C++ compiler called egcs (pro-
nounced “eggs”). After gcc 2.8, both projects were combined into the egcs project and egcs 1.0
was released. egcs 1.0 combined both the C and C++ compilers into one package.

Unfortunately, the egcs project was short-lived (only getting up to version 1.1). Now both the
gcc and egcs projects have been rolled into the gcc project again. At the time of this writing,
the current version of gcc is version 2.95. This version supports both C and C++ compilers. To
complicate things even more, Linux distributions often still call this distribution egcs version
2.95. I hope this confusion will clear up soon.

To determine the version of gcc your Linux distribution uses, you can use the --version
option as follows:

[rich@shadrach rich]$ gcc --version
pgcc-2.91.66
[rich@shadrach rich]$

The sample Mandrake 6.0 Linux system shown is using gcc version 2.91 with patch level 66.

make
Large C and C++ projects often become complicated. There are several different source code
files, each with several different header files. Compiling individual source files creates multiple
object files that must be linked together in specific combinations to create executable files.
Maintaining the source, object, and executable files is often a difficult job. To simplify this
task, most C and C++ compilers utilize a make program. The job of the make program is to
control the creation of executable files, based on changes made to the source code files or to
variables in a standard make configuration file.

Introduction to Linux

CHAPTER 2
49

2

U
SIN

G
L

IN
U

X
A

S
A

M
A

ILSER
V

ER

04 0672318342 CH02 2/14/00 2:10 PM Page 49

The GNU Project has a version of make that is compatible with the gcc compiler. At the time
of this writing, the current version available is version 3.78.1.

The meat and potatoes of the make utility is the Makefile. The Makefile specifies how the
make utility compiles the source code to create the executable program(s). A sample Makefile
is shown in Listing 2.10.

LISTING 2.10 Sample Makefile

1 # Makefile -- Make file for test program
2 #
3
4 # Edit the following for your installation
5
6 CC = gcc
7 #===================================
8
9 # Compiler and linker flags
10
11 CFLAGS = -O
12 LFLAGS = -O
13
14 # This program’s object code files
15
16 OBJS = test.o
17
18 # File dependencies
19
20 all: test
21
22 objs: $(OBJS)
23
24 clean:
25 rm -f $(OBJS)
26 rm -f test
27
28 test: $(OBJS)
29 $(CC) -o $@ $(LFLAGS) $(OBJS) $(LIBS)
30
31 test.o: test.c
32 $(CC) -c $(CFLAGS) -o $@ $<

Introduction to Email Services and Linux

PART I
50

04 0672318342 CH02 2/14/00 2:10 PM Page 50

Lines 6, 11, 12, and 16 show the use of variables within the Makefile. The user can change
these values to the appropriate values for the system. Line 18 declares the make targets for the
system. Each target can be run individually by specifying the target name as a parameter on the
make command line. For example, to run the clean target, which removes any old object and
executable files, you can type

make clean

To create just the object files for the test program, you can type

make objs

If you type only make at the command line, the all target will be executed, which builds the
executable file test.

Linux Distributions
If your head is starting to spin thinking about all the variables required to complete a Linux
system, don’t worry. Fortunately for us, lots of very smart people packaged the different pieces
together for us. A prepackaged set of the Linux operating system is called a Linux distribution.

Many Linux distributions are available both for purchase and for free download. Often people
question how a company can charge for free software. The GNU Project License provides an
answer to this. Its motto is “free” as in “free speech,” not “free beer.” A Linux distributor is
free to charge whatever price he feels the public will pay to purchase a distribution package.
The “free” part comes in because the distribution packages contain the source code for all the
software and you are free to modify anything you want. Most Linux distributors offer free (as
in “free beer”) versions of their distribution packages as a public service.

The main chore of the Linux distributor is to mix and match the various releases of the kernel,
shell, and other Linux utilities into a compatible operating system. This is often not an easy
job. Each utility must be carefully configured and placed in the distribution so that it can be
seamlessly installed with the operating system.

Most often Linux distributors package programs so that they can be installed and removed
individually without affecting the operating system as a whole. Many distributions use the Red
Hat RPM distribution packaging method. The RPM program can package into a single distrib-
ution file all the files necessary for a program to operate. The RPM program can then install or
remove an entire software package with one command.

Table 2.8 shows a list of some of the more common Linux distributions available at the time of
this writing and how those distributions package the kernel and C libraries.

Introduction to Linux

CHAPTER 2
51

2

U
SIN

G
L

IN
U

X
A

S
A

M
A

ILSER
V

ER

04 0672318342 CH02 2/14/00 2:10 PM Page 51

TABLE 2.8 Sample Linux Distribution Matrix

Distribution Kernel GLIBC

Caldera OpenLinux 2.3 2.2.10 2.1.1

Debian Linux 2.1 2.0.36 2.1

Mandrake 6.1 Linux 2.2.13pre 2.1.1

Red Hat 6.1 Linux 2.2.12 2.1.2

Slackware 7.0 2.2.13 2.1.2

SuSe 6.2 Linux 2.2.10 2.1.1

As shown in Table 2.8, most of the current Linux distributions are fairly close in the various
release levels of the kernel and C libraries. When selecting a Linux distribution to use for an
office Linux server, make sure it meets any software version requirements necessitated by the
application software you plan to use.

Summary
The main ingredient of a Linux mailserver is the Linux operating system. Many parts make up
a Linux server, but the core of the server is the Linux kernel. The kernel controls many facets
of the operating system, including memory management, process management, device manage-
ment, and filesystem management. Besides the kernel, many utilities are required for the oper-
ating system. The GNU Project team has created a large library of UNIX-compatible utilities
that run on the Linux kernel. The bash shell provides an interactive session for users to start
programs. The gcc compiler enables users to create new executable programs using the C and
C++ programming languages. The make utility is used by prepackaged programs to distribute
the source code needed to build the executable program. Many Linux distributions are avail-
able that include in one package all the required utilities, along with a particular Linux kernel.
Beginners to Linux are often confused by the multitude of Linux distributions available. If you
are purchasing a new Linux package for a business, many distributions cater to business users
by offering advanced support packages

Introduction to Email Services and Linux

PART I
52

04 0672318342 CH02 2/14/00 2:10 PM Page 52

CHAPTER

3
Installing Communication
Devices in Linux

IN THIS CHAPTER
• Communication Devices and Linux 54

• Installing and Configuring Network Cards 56

• Installing Modems 64

• Linux Modem Support 72

• Controlling Modems in Linux 78

05 0672318342 CH03 2/14/00 2:22 PM Page 53

An email server is worthless unless it can communicate with remote hosts and client worksta-
tions. The Linux mailserver uses two different types of communication devices to accomplish
this.

The Linux mailserver must establish an IP connection with the Internet service provider (ISP)
to send and receive mail from the Internet. A modem is used to establish a serial connection
with the ISP. After the serial connection is established, the Linux mailserver can use the Point-
to-Point Protocol (PPP) to transmit and receive IP packets. Chapter 8, “PPP Protocol,”
describes this process in more detail.

Besides the Internet connection, the Linux mailserver must also establish communications with
the local office workstations to allow clients to connect to the mailserver to read and send
email messages. The easiest way to establish connectivity with the office workstations is via an
office Local Area Network (LAN). Several different types of LANs can be installed in small
offices. The type that seems to be the most popular is the Ethernet LAN. Ethernet technology
allows workstations to connect to the LAN at 10 or 100Mbps using network interface cards
(NICs). For the Linux mailserver to connect to the office Ethernet LAN, it must also have a
NIC installed and configured properly.

This chapter discusses the steps necessary to ensure that the Linux mailserver can communi-
cate with both the local office workstations and the ISP. First, an overview of communication
hardware is presented. Then installing and configuring network interface cards are described.
Finally, installing and configuring different types of modems are discussed.

Communication Devices and Linux
Modems and NICs are hardware devices that are connected to the PC, often by using internal
boards plugged into the motherboard. These devices must be recognized by the Linux operat-
ing system before they work properly. Several layers of Linux drivers and software are neces-
sary for these devices to work. Figure 3.1 shows a diagram of the hardware and software layers
necessary for these devices.

As shown in Figure 3.1, each communication device must interface with the Linux kernel. As
discussed in the previous chapter, the kernel is responsible for controlling the interfaces to the
hardware devices. This is usually accomplished with loadable drivers, called modules, that can
be installed at boot time using scripts. The kernel must know the hardware settings of the
devices to be able to communicate with them.

After the Linux kernel recognizes and configures the communication devices, software must be
available to access the device. In the case of a mailserver, the common software layer is the
TCP/IP software.

Introduction to Email Services and Linux

PART I
54

05 0672318342 CH03 2/14/00 2:22 PM Page 54

FIGURE 3.1
A diagram of Linux communication device layers.

The Linux TCP/IP software allows programs to send TCP/IP packets via the network card and
modem to remote devices based on IP addresses. For the TCP/IP software to operate properly,
a valid set of IP parameters must be configured. The parameters necessary for an IP connection
are

• IP address

• IP subnet mask

• IP default router

• DNS nameservers

Installing Communication Devices in Linux

CHAPTER 3
55

3

IN
STA

LLIN
G

C
O

M
M

U
N

IC
A

TIO
N

D
EV

IC
ES

IN
L

IN
U

X

Linux Mailserver

sendmail POP3

ISP

IMAP

PPP

TCP/IP

Linux kernel

Network
Card

Local Area Network

LAN

Internet

Modem

software layers

hardware layers

05 0672318342 CH03 2/14/00 2:22 PM Page 55

The IP address uniquely identifies the Linux mailserver on the office IP network. The IP sub-
net mask identifies the local IP network addressing scheme of the office network. This enables
the Linux mailserver to determine when it must forward IP packets to a router to reach remote
hosts. The default router the mailserver uses to forward packets to remote hosts must also be
configured.

The last parameter required for the Linux mailserver IP configuration is a Domain Name
System (DNS) nameserver. The IP network scheme is based on numerical addresses. The DNS
system equates a hostname with a numerical IP address. This allows users and programs to
refer to remote hosts by their DNS hostnames rather than having to remember IP addresses.
The DNS nameserver returns the IP address for a given DNS hostname.

The next section describes how network cards are installed and configured on the Linux
mailserver.

Installing and Configuring Network Cards
The Linux operating system supports many different types of NICs. Most Linux distributions
can autodetect an installed NIC and configure the kernel software during the software installa-
tion process. If the NIC was not installed before the original Linux system installation, it must
be manually configured into the kernel.

The ifconfig program is used to manually install and configure network cards in the Linux sys-
tem. Several Linux distributions include a graphical X Window program to assist in setting the
parameters that ifconfig sets. The Red Hat and Mandrake Linux distributions use the netcfg
program to configure installed network cards.

This section first describes how Linux uses the ifconfig program in the boot process to recog-
nize and configure the network card, and then it describes both the ifconfig and netcfg pro-
grams in more detail.

Configuring Network Cards in the Boot Process
After the network card has been properly configured (either manually or automatically), the
Linux server can communicate with other devices on the office network. There is only one
problem: When the Linux server is rebooted, the network device information will be lost. The
ifconfig command is used to enter the information for the network devices into a table in the
kernel. The kernel table is rebuilt from configuration scripts when the server is rebooted.

The ifconfig program requires a script file to run at boot time to re-enter the ifconfig com-
mands necessary to get the network card working. All Linux distributions include script files
that are used at boot time to load programs. Unfortunately, different Linux distributions have
different ways of running the script files. The Mandrake, Caldera, and Red Hat Linux distribu-
tions use the UNIX Sys V init method, which is discussed here.

Introduction to Email Services and Linux

PART I
56

05 0672318342 CH03 2/14/00 2:22 PM Page 56

The Sys V initialization method is a very complicated series of script files. The initialization
process is divided into run levels. Each run level executes a set of scripts to initialize certain
devices for the run level. Figure 3.2 demonstrates the script layout used by Linux to load run
level configuration information when booting.

Installing Communication Devices in Linux

CHAPTER 3
57

3

IN
STA

LLIN
G

C
O

M
M

U
N

IC
A

TIO
N

D
EV

IC
ES

IN
L

IN
U

X

Run Level directories in/etc/rc.d scripts at run level 3

5
4
3
2
1
0

rc5.d/
rc4.d/
rc3.d/
rc2.d/
rc1.d/
rc0.d/

S10network
S11portmap
S15netfs
S20random
S30syslog
S40atd
S40crond
S50inet
S60lpd
S75keytable
S80sendmail
S85heepd
S90xfds
S99linuxconf
S99local

FIGURE 3.2
The Linux boot process steps.

The /etc/rc.d directory contains the scripts that are run depending on the current init run
level of the system. A normal Linux server should operate in either run level 3 (for console
mode) or 5 (for X Window mode). Both run levels use the same network initialization script,
S10network, which can be found in the /etc/rc.d/rc3.d and /etc/rc.d/rc5.d directories.
The S10network script starts the network functions for the server. It uses another script, called
ifup, which attempts to start any network interfaces that were configured to start at boot time.
The ifup script is located in the /etc/sysconfig/network-scripts directory.

Each configured network interface on the Linux system is assigned a file in the /etc/syscon-
fig/network-scripts directory. The /dev/eth0 device is assigned the file ifcfg-eth0.
Listing 3.1 shows the file created for the eth0 device on a sample Linux system.

LISTING 3.1 Sample /etc/sysconfig/network-scripts/ifcfg-eth0 File

1 DEVICE=eth0
2 IPADDR=192.168.1.1
3 NETMASK=255.255.255.0
4 NETWORK=192.168.1.0
5 BROADCAST=158.18.1.255
6 ONBOOT=yes
7 BOOTPROTO=none

05 0672318342 CH03 2/14/00 2:22 PM Page 57

The ifcfg-eth0 file defines environment variables that are used in the ifup script to start the
interface. The line in the ifup script that uses these variables looks like this:

ifconfig ${DEVICE} ${IPADDR} netmask ${NETMASK} broadcast ${BROADCAST}

The format of the ifconfig command line in the ifup script is exactly as if it were entered at
the command prompt manually.

If you are creating a script yourself for a new network interface, it does not need to be as com-
plicated and involved and the ones generated by Red Hat. All that is needed is the ifconfig
lines necessary to start the network interface. If you already know the device name and IP
address information, you do not need to use environment variables and separate configuration
files. Just a simple line in the S10network script file suffices.

Using ifconfig
The ifconfig program is standard in the Linux operating system. It is used to identify and con-
figure network devices in the Linux system.

There are two modes of operation for using the ifconfig program:

ifconfig [interface]

ifconfig interface [aftype] options | address ...

The first mode is the report mode. This mode allows the system administrator to extract config-
uration information from the installed network devices. The second mode is the configure
mode. This mode allows the system administrator to set or change configuration parameters for
the network devices. The following sections describe these modes in detail.

Report Mode
In report mode, ifconfig lists information about either a single network interface or all the
installed network interfaces. The information presented is a mixture of hardware and software
parameters for the device, as well as some operational information. Each network device
requires several parameters to operate. Figure 3.3 shows an example of a network device on a
Linux system.

As shown in Figure 3.3, one set of parameters for the network device is the hardware configu-
ration. The hardware interrupt and the base address are used to identify the network card to the
Linux system, and must be unique. The next set of parameters is the software network parame-
ters. For the Linux system to properly communicate on an IP network, it must have the proper
IP parameters. This includes a unique IP address as well as the proper subnet mask and broad-
cast address for the network.

Introduction to Email Services and Linux

PART I
58

05 0672318342 CH03 2/14/00 2:22 PM Page 58

FIGURE 3.3
The network device components.

Listing 3.2 shows an example of using the report mode format of the ifconfig command.

LISTING 3.2 Sample ifconfig Command Output

1 [alex@shadrach alex]$ /sbin/ifconfig
2 eth0 Link encap:Ethernet HWaddr 00:A0:24:9C:69:02
3 inet addr:192.168.1.1 Bcast:192.168.1.255 Mask:255.255.255.0
4 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
5 RX packets:7948525 errors:0 dropped:0 overruns:0 frame:0
6 TX packets:22003 errors:0 dropped:0 overruns:0 carrier:0
7 collisions:72 txqueuelen:100
8 Interrupt:11 Base address:0x8400
9
10 lo Link encap:Local Loopback
11 inet addr:127.0.0.1 Mask:255.0.0.0
12 UP LOOPBACK RUNNING MTU:3924 Metric:1
13 RX packets:38 errors:0 dropped:0 overruns:0 frame:0
14 TX packets:38 errors:0 dropped:0 overruns:0 carrier:0
15 collisions:0 txqueuelen:0
16
17 [alex@shadrach alex]$

Installing Communication Devices in Linux

CHAPTER 3
59

3

IN
STA

LLIN
G

C
O

M
M

U
N

IC
A

TIO
N

D
EV

IC
ES

IN
L

IN
U

X

Linux Mailserver

IP
Address

Subnet
mask

Default
router

DNS
nameservers

TCP/IP

Linux kernel

Network Interface Card

l/O Address Base Memory Address

Local Area Network

LAN

05 0672318342 CH03 2/14/00 2:22 PM Page 59

In Listing 3.2, line 1 shows the ifconfig command as typed at the command prompt. You
might have to include the complete pathname for the command if you are not logged in as the
root user. Lines 2 through 8 show the first network device found on the system. The first
Ethernet NIC card is usually labeled as device eth0. Line 2 shows the Ethernet hardware, or
MAC, address of the network card. Each network card has a unique MAC address. This
enables devices to properly identify other devices on the network at the Ethernet packet layer.
Line 3 shows the IP address information for the network device. This network card has been
assigned the IP address 192.168.1.1 and is using a subnet mask of 255.255.255.0.

Lines 4 through 8 give statistics and information for the network card. These values are often
handy as troubleshooting tools when you are experiencing network problems with the Linux
system. Line 4 gives basic information about the status of the network device. If the network
device is properly running, you should see the UP and RUNNING messages as shown in Line 4.
Lines 5 through 7 can also be used for troubleshooting. If you cannot communicate with other
devices, but see the TX (transmit) and RX (receive) packet counts increasing, that usually indi-
cates that the server is connected to the network, but the IP address might be invalid. If you see
a large number of errors and collisions, it is a good indication that you have a network media
problem, such as a bad cable or defective network hub.

Lines 10 through 15 show information for the second network device found on the Linux sys-
tem. The lo device is a special device called the loopback device. A loopback device is used as
an internal network connection in the Linux system to enable the operating system to commu-
nicate with itself by using standard network protocols. The IP address shown in Line 11,
127.0.0.1, is the standard IP address for loopback devices. It cannot be used as a network
address on a LAN.

Configure Mode
Configuring the ifconfig program enables you to modify information regarding network
devices. The interface being configured must be specified. After the interface, the address fam-
ily (aftype) may be listed. The address family is used for displaying and decoding all protocol
addresses in ifconfig. Table 3.1 shows the available address families that can be used.

TABLE 3.1 ifconfig Address Families

Address Family Description

inet TCP/IP (default family)

inet6 Ipv6

ax25 AMPR packet radio

ddp AppleTalk Phase 2

ipx Novell IPX

netrom AMPR packet radio

Introduction to Email Services and Linux

PART I
60

05 0672318342 CH03 2/14/00 2:22 PM Page 60

If no address family is specified, the default inet family is assumed. After the address family,
various ifconfig options can be listed. Table 3.2 shows the options available for use with
ifconfig.

TABLE 3.2 ifconfig Command Options

Option Description

interface Specifies the device to modify

up Causes the interface to attempt to become active

down Causes the interface to attempt to become inactive

[-]arp Enables (or disables) the ARP protocol

[-]promisc Enables (or disables) promiscuous mode

[-]allmulti Enables (or disables) multicast capability

metric N Specifies the interface metric used for routing

mtu N Specifies the maximum transfer unit

dstaddr address Sets the remote IP address on a point-to-point link

netmask addr Sets the IP subnet mask

add addr/prefixlen Adds an IPv6 address to the interface

del addr/prefixlen Removes an IPv6 address from the interface

tunnel a.b.c.d Creates a new SIT (IPv6 to IPv4) device

irq addr Sets the IRQ address of the device

io_addr addr Sets the I/O address of the device

mem_start addr Sets the starting address of shared memory for the device

media type Sets the physical medium type used by the device

[-]broadcast [addr] Sets the IP broadcast address, or sets (or clears) the broad-
cast flag for the interface

[-]pointtopoint [addr] Enables (or disables) point-to-point mode using addr for
the remote IP address

hw class addr Sets the hardware class and address for the device

multicast Sets the multicast flag

address Sets the IP address of the device

txqueuelen length Sets the transmit queue length of the device

As shown in Table 3.2, many command-line parameters can be used by the ifconfig program to
configure the network device. Multiple parameters can be entered on a single command line.

Installing Communication Devices in Linux

CHAPTER 3
61

3

IN
STA

LLIN
G

C
O

M
M

U
N

IC
A

TIO
N

D
EV

IC
ES

IN
L

IN
U

X

05 0672318342 CH03 2/14/00 2:22 PM Page 61

Setting NIC Parameters
The proper hardware parameters must be configured using ifconfig for the Linux system to
recognize the network card. If the NIC card uses jumpers to set these values, installing the NIC
is easy. If you cannot determine the IRQ and I/O address values, you might need to boot the
server with an MS-DOS boot disk and run the NIC’s diagnostic program to set the values that
the NIC will use. Maybe someday network card manufacturers will include a Linux executable
version of their diagnostic programs.

A sample ifconfig command line could look like this:

ifconfig eth0 irq 9 io_addr 0x310

The command shown sets the /dev/eth0 device to a NIC that is configured with IRQ 9 and
base I/O address 310 (in hexadecimal). After this command is entered at the command line, an
entry is made into the kernel table for this network device, and the Linux system will recognize
the network card. For the Linux system to remember the settings, this ifconfig command
should be placed in a boot script as described previously.

Assigning IP Addresses
After the hardware parameters are configured, the Linux system must have an IP address and
subnet mask configured to communicate properly on the office network.

The ifconfig program can also be used to assign an IP address and subnet mask to the inter-
face. A sample of this command is

ifconfig eth0 192.168.1.1 netmask 255.255.255.0 broadcast 192.168.1.255

This command defines the IP address of the /dev/eth0 device to 192.168.1.1, with a subnet
mask of 255.255.255.0. To verify that the addresses have been configured, you can type the
ifconfig command alone at the command prompt to display the new information. Again, for
Linux to use these parameters on subsequent boots, a boot script must be created with the
ifconfig command.

Using netcfg
Before you go off trying to write a new init script to start the ifconfig program, there is an eas-
ier way. Many Linux distributions include a graphical X Window program that handles most of
the unpleasantness of configuring the network interfaces and writing init scripts. Both Red Hat

Introduction to Email Services and Linux

PART I
62

ifconfig Command Format
The ifconfig program uses a slightly different command-line format than you might
be used to. Command-line options are listed without the customary leading dash (-).

05 0672318342 CH03 2/14/00 2:22 PM Page 62

Linux and Mandrake Linux use the netcfg program. Caldera OpenLinux uses the Caldera Open
Administrator System (COAS) to perform the same network functions as netcfg.

The format of the netcfg command is simple:

netcfg

That’s all. You must be the root user for netcfg to configure the network interfaces. Figure 3.4
shows the main window that will appear.

Installing Communication Devices in Linux

CHAPTER 3
63

3

IN
STA

LLIN
G

C
O

M
M

U
N

IC
A

TIO
N

D
EV

IC
ES

IN
L

IN
U

X

FIGURE 3.4
The main netcfg window.

The first window that appears is the Names window. This window enables you to change the
configured hostname, domain, and DNS nameservers configured for the Linux system.
Multiple nameservers can be configured for the system. Linux allows up to three nameservers
to be specified.

If you click the Hosts button, the window shown in Figure 3.5 appears. The Hosts window
enables you to modify the /etc/hosts file on the Linux server. By default, the loopback
address and the local IP address of the server should be present. The address localhost is a
special name for the loopback IP address 127.0.0.1. Additional hostnames can be added to the
/etc/hosts file from this window. If any commonly used hostnames will be used by your
clients, you can add them to the /etc/hosts file to help speed up DNS lookups. Chapter 4,
“DNS and Domain Names,” describes the function of the /etc/hosts file in more detail.

05 0672318342 CH03 2/14/00 2:22 PM Page 63

FIGURE 3.5
The Hosts netcfg window.

If you click the Interfaces button, the window shown in Figure 3.6 appears. The Interfaces win-
dow enables you to add, remove, and edit network interfaces to the Linux system. The first
interface listed is the loopback interface. If you select an interface and click the Edit button, the
Edit Ethernet/Bus Interface window appears. From this window, you can set the IP address and
subnet mask for the interface. Also, you can specify whether this interface should be activated
at boot time. If your network supports assigning IP addresses automatically using either the
BOOTP or DHCP protocol, you can also specify that as the boot protocol. Each answer will be
automatically added to the ifcfg-eth0 script file described in the “Configuring Network Cards
in the Boot Process” section. This is much easier than adding the network interface scripts
manually.

Installing Modems
For most Linux mailservers, the modem is the gateway to the outside world. Unless your
mailserver is connected to a LAN that is connected to the Internet, you must provide a connec-
tion to an Internet service provider for the mailserver to forward mail. That connection requires
some kind of serial modem device. Today there are lots of different types of modems to choose
from. This section describes how Linux communicates with modems, and gives some insights
into how different types of modems can be used with Linux.

Linux Serial Ports
Most network administrators are familiar with the way the Microsoft MS-DOS and Windows
operating systems interact with serial ports on IBM-compatible computers. The IBM-compati-
ble architecture supports serial devices as COM ports. The ports are numbered 1 through 4,
with each port having a separate IRQ and I/O address pair.

Introduction to Email Services and Linux

PART I
64

05 0672318342 CH03 2/14/00 2:22 PM Page 64

FIGURE 3.6
The Interfaces netcfg window.

Linux recognizes the same COM ports, but does not use the same naming convention. In
Linux, they are called tty devices. Specifically, they are located at /dev/ttySx, where x is the
number of the communication port. Unfortunately, Linux uses a different numbering scheme
than Microsoft. Linux starts numbering serial ports at port 0, not port 1. Table 3.3 shows how
the Linux serial ports match with MS-DOS serial ports.

TABLE 3.3 Linux Serial Ports

MS-DOS Linux IRQ I/O Address

COM1 ttyS0 4 0x3f8

COM2 ttyS1 3 0x2f8

COM3 ttyS2 4 0x3e8

COM4 ttyS3 3 0x2e8

Installing Communication Devices in Linux

CHAPTER 3
65

3

IN
STA

LLIN
G

C
O

M
M

U
N

IC
A

TIO
N

D
EV

IC
ES

IN
L

IN
U

X

Multiport Serial Cards
Linux can also support multiport serial devices. These devices contain multiple serial
ports that may share a single IRQ. They use special software drivers to differentiate
between ports. In this situation, Linux continues the naming convention with ttyS4
and continues for as many ports as are available. Often these devices require special
drivers in the Linux kernel which are normally supplied by the multiport manufac-
turer.

05 0672318342 CH03 2/14/00 2:22 PM Page 65

Listing 3.3 shows the ttySx devices for a standard Mandrake Linux system on an IBM-compat-
ible PC with two COM ports and a modem using COM4.

LISTING 3.3 /dev/ttySx Device Listing

1 [alex@shadrach /dev]$ ls -al ttyS*
2 crw------- 1 root tty 4, 64 Nov 29 16:09 ttyS0
3 crw------- 1 root tty 4, 65 May 5 1998 ttyS1
4 crw------- 1 root tty 4, 66 May 5 1998 ttyS2
5 crw------- 1 root tty 4, 67 May 5 1998 ttyS3
6 [alex@shadrach /dev]$

Listing 3.3 shows that although only three COM ports are used in the PC, by default, the Linux
system created entries for all four basic COM ports. Attempting to use device ttyS2 would pro-
duce an error.

Linux also supports a mirror set of devices named /dev/cuax for each /dev/ttySx device. The
purpose of the cua devices is to simplify the programming required to control the devices. The
cua devices allow programs to connect to the device without a DCD signal being present. A
DCD signal is a signal provided by the modem indicating that a connection is present. This
feature is used mainly for dial-out software because no connection will be present when dialing
out. Thus, the Linux convention was started to use cua for dial-out programs and ttyS for dial-
in programs. Listing 3.4 show the cua devices on the same Mandrake Linux system used in
Listing 3.3.

LISTING 3.4 /dev/cuax Device Listing

[alex@shadrach /dev]$ ls -al cua*
crw------- 1 root root 5, 64 May 5 1998 cua0
crw------- 1 root root 5, 65 May 5 1998 cua1
crw------- 1 root root 5, 66 May 5 1998 cua2
crw------- 1 root root 5, 67 May 5 1998 cua3
[alex@shadrach /dev]$

When using both dial-in and dial-out programs, modem locking becomes a problem. It has
been found that it is easier to write the controlling software for the ttyS type of devices rather
than to maintain code for two different types of device names for the same device.

Introduction to Email Services and Linux

PART I
66

05 0672318342 CH03 2/14/00 2:22 PM Page 66

Another special device that may be present is the /dev/modem device. This is a symbolic link to
the cua device to which the modem is connected. It was intended to simplify programs that
need to communicate with the modem by creating a standard device with which to communi-
cate. Many Linux distributions create this link when the operating system is first installed as
part of the setup program. In the Red Hat and Mandrake Linux distributions, if you install a
modem later, you can use the modemtool X Window program to create the /dev/modem link.
Figure 3.7 shows the modemtool program window.

Installing Communication Devices in Linux

CHAPTER 3
67

3

IN
STA

LLIN
G

C
O

M
M

U
N

IC
A

TIO
N

D
EV

IC
ES

IN
L

IN
U

X

tty versus cua
If the cua devices are present on your Linux distribution, avoid using them. Many
software programs now produce a warning message when cua device names are
used, indicating that they may be deprecated in future Linux kernels. It is best to
refer to the serial lines by their tty names.

FIGURE 3.7
The modemtool utility.

The setserial Command
The setserial command is used to set and modify the configuration information for the indi-
vidual serial ports on the Linux system. Each port that Linux uses must be configured with the
setserial command. As shown in Listing 3.3, the four standard COM ports are configured by
default. If you are using a modem that does not use standard IRQ or I/O port settings, or are
using multiport serial devices, you must use the setserial program to properly configure the ser-
ial ports for Linux.

05 0672318342 CH03 2/14/00 2:22 PM Page 67

There are two formats of the setserial command. They are

setserial [-abqvVW] device [parameter 1 [arg]] ...

setserial -g [-abv] device1 ...

The -g option is used to retrieve information regarding the listed devices. Listing 3.5 shows the
output from using the setserial command on the sample Linux system.

LISTING 3.5 Sample Output from setserial

1 [root@shadrach rich]$ /sbin/setserial -g /dev/ttyS0 /dev/ttyS1 /dev/ttyS2
➥ /dev/ttyS3
2 /dev/ttyS0, UART: 16550A, Port: 0x03f8, IRQ: 4
3 /dev/ttyS1, UART: 16550A, Port: 0x02f8, IRQ: 3
4 /dev/ttyS2, UART: unknown, Port: 0x03e8, IRQ: 4
5 /dev/ttyS3, UART: 16550A, Port: 0x02e8, IRQ: 3
6 [root@shadrach rich]$

In Listing 3.5, line 1 shows the setserial command entered using the -g option to display the
serial port information. You must be the root user to be able to run the setserial command.
Lines 2 through 5 show the output of the command for the Linux system. Each line shows the
information for a single serial port. Notice in line 4 that the unused ttyS2 port produces an
“unknown” UART type. This might be misleading because in reality it does not exist.

You can modify the output from the setserial program by using one of the three available com-
mand-line options. The default output is the -v option, which produces the output shown in
Listing 3.5. The -b option produces a summarized version of the output. An example of this
output is

/dev/ttyS0 at 0x03f8 (irq = 4) is a 16550A

This produces the same information but in a compact method. The -a option can be used to
produce a verbose output. An example of this output is

/dev/ttyS0, Line 0, UART: 16550A, Port: 0x03f8, IRQ: 4
Baud_base: 115200, close_delay: 50, divisor: 0
closing_wait: 3000, closing_wait2: infinite
Flags: spd_normal skip_test auto_irq session_lockout

The -a option displays values for the internal parameters used by Linux to control the device.
These parameters can be set and modified by using the first format of the setserial command
that was shown. Table 3.4 shows the parameters available to use with the setserial command.

Introduction to Email Services and Linux

PART I
68

05 0672318342 CH03 2/14/00 2:22 PM Page 68

TABLE 3.4 setserial Command-Line Parameters

Parameter Description

port N Sets the I/O port number of the device.

irq N Sets the hardware IRQ of the device.

uart type Sets the UART type of the device.

autoconfigure Attempts to autodetect the serial device information.

auto_irq Attempts to determine the IRQ of the serial device.

^auto_irq Does not attempt to determine the IRQ of the serial device during
autoconfigure.

skip_test Skips the UART test during autoconfigure.

^skip_test Does not skip the UART test during autoconfigure.

baud_base Sets the base baud rate of the serial device; normally the clock rate
divided by 16.

spd_hi Uses 57.6kb when the application requests 38.4kb.

spd_vhi Uses 115kb when the application requests 38.4kb.

spd_cust Uses a custom divisor to set the speed when the application requests
38.4kb; set to the baud_base divided by the divisor.

spd_normal Uses 38.4kb when the application requests 38.4kb.

divisor Sets the spd_cust value.

sak Sets the Break key as the Secure Attention Key.

^sak Disables the Secure Attention Key.

fourport Sets the device as an AST Fourport card.

^fourport Disables AST Fourport configuration.

close_delay D Sets the amount of time that DTR should remain low on a line after the
device is closed, in hundredths of a second; default is 50.

closing_wait D Sets the amount of time that the kernel should wait for data to be trans-
mitted from the serial port while closing the port, before the receiver has
been disabled, in hundredths of a second. Default is none, for wait indef-
initely.

closing_wait2 D Sets the amount of time that the kernel should wait for data to be trans-
mitted from the serial port while closing the port, after the receiver has
been disabled, in hundredths of a second. Default is 30.

session_lockout Locks out the dial-out port (cua) access by other sessions when in use.

^session_lockout Does not lock out the dial-out port access by sessions when in use.

pgrp_lockout Locks out the dial-out port (cua) access by other processes when in use.

Installing Communication Devices in Linux

CHAPTER 3
69

3

IN
STA

LLIN
G

C
O

M
M

U
N

IC
A

TIO
N

D
EV

IC
ES

IN
L

IN
U

X

continues

05 0672318342 CH03 2/14/00 2:22 PM Page 69

^pgrp_lockout Dos not lock out the dial-out port access by other processes when in use.

hup_notify Notifies a process waiting on the dial-out line when it is available.

^hup_notify Does not notify a process waiting on the dial-out line when it is
available.

split_termios Treat the termios settings used by the dial-out and dial-in devices as
separate.

^split_termios Does not treat the termios settings used by the dial-out and dial-in
devices as separate.

callout_nohup If the serial port is opened as a dial-out device, does not hang up the tty
when carrier detect is dropped.

^callout_nohup If the serial port is opened as a dial-out device, hangs up the tty when
carrier detect is dropped.

The setserial command must always identify the device on which it is operating. If the
default IRQ and I/O address for the port are being used, they can be omitted from the com-
mand line. After that, parameters can be entered on the command line in any order. A sample
setserial command looks like the following:

setserial /dev/ttyS3 autoconfigure auto_irq skip_test

This command attempts to autodetect the serial device in COM4.

Introduction to Email Services and Linux

PART I
70

TABLE 3.4 continued

Parameter Description

setserial Scripts
Just as with the ifconfig program, entries made by the setserial program in the kernel
table disappear when the Linux server is rebooted. Thus, the setserial command
should be executed for each COM port present in the server at each boot time.
Because this is a common function, most Linux distributions include init scripts to run
the setserial command.

Linux Serial Port Init Scripts
The default location for the setserial scripts is the /etc/rc.d/rc.serial file. Most Linux dis-
tributions include a generic version of this script that can be edited for the particular server
configuration. The script contains many lines for special situations such as multiport serial
boards and specially configured modem cards. Listing 3.6 shows an excerpt from a sample
rc.serial script.

05 0672318342 CH03 2/14/00 2:22 PM Page 70

LISTING 3.6 Excerpt from an /etc/rc.d/rc.serial Script

1 STD_FLAGS=”session_lockout”
2 SETSERIAL=/sbin/setserial
3 WILD=false
4 SUMMARY=true
5
6 echo -n “Configuring serial ports....”
7
8 ###
9 #
10 # AUTOMATIC CONFIGURATION
11 #
12 # Uncomment the appropriate lines below to enable auto-configuration
13 # of a particular board. Or comment them out to disable them....
14 #
15 ###
16
17 # Do AUTOMATIC_IRQ probing
18 #
19 AUTO_IRQ=auto_irq
20
21 # These are the standard COM1 through COM4 devices
22 #
23 SetSerial /dev/ttyS0 ${AUTO_IRQ} skip_test autoconfig ${STD_FLAGS}
24 SetSerial /dev/ttyS1 ${AUTO_IRQ} skip_test autoconfig ${STD_FLAGS}
25 SetSerial /dev/ttyS2 ${AUTO_IRQ} skip_test autoconfig ${STD_FLAGS}
26 SetSerial /dev/ttyS3 ${AUTO_IRQ} autoconfig ${STD_FLAGS}
27
28 ###
29 #
30 # MANUAL CONFIGURATION
31 #
32 # If you want to do manual configuration of one or more of your
33 # serial ports, uncomment and modify the relevant lines.
34 #
35 ###
36
37 # These are the standard COM1 through COM4 devices
38 #
39 #SetSerial /dev/ttyS0 uart 16450 port 0x3F8 irq 4 ${STD_FLAGS}
40 #SetSerial /dev/ttyS1 uart 16450 port 0x2F8 irq 3 ${STD_FLAGS}
41 #SetSerial /dev/ttyS2 uart 16450 port 0x3E8 irq 4 ${STD_FLAGS}
42 #SetSerial /dev/ttyS3 uart 16450 port 0x2E8 irq 3 ${STD_FLAGS}
43
44 echo “done.”

Installing Communication Devices in Linux

CHAPTER 3
71

3

IN
STA

LLIN
G

C
O

M
M

U
N

IC
A

TIO
N

D
EV

IC
ES

IN
L

IN
U

X

continues

05 0672318342 CH03 2/14/00 2:22 PM Page 71

45
46 ###
47 #
48 # Print the results of the serial configuration process
49 #
50 ###
51
52 if [-n “$SUMMARY”]; then
53 SetSerial -bg /dev/ttyS?
54
55 if [‘/dev/ttyS??’ != /dev/ttyS??]; then
56 SetSerial -bg /dev/ttyS??
57 fi
58 fi

In Listing 3.6, lines 23 through 26 use setserial commands that attempt to autodetect the first
four serial ports in the server. If you prefer that the server does not attempt to autodetect the
serial ports, you can comment out these lines and uncomment lines 39 through 42. Lines 39
through 42 use the specific IRQ and I/O port addresses for each serial port in the setserial
command. If you are using a modem configured with a nonstandard IRQ and I/O port setting,
you can customize the appropriate setserial command to the proper values.

Linux Modem Support
Many different types of modems that can be used with the Linux server are available on the
market. Unfortunately, many types of modems are also available on the market that cannot be
used with the Linux server. The choice of modem can make the difference between a simple
installation and a nightmare. This section describes what to look for in a modem if you are
either purchasing a new modem to use or are trying to use one that has been lying around for
awhile.

External Modems
Standard external modems are fairly safe to use with Linux. This type of modem connects to
the Linux server COM port with a standard 9- or 25-pin modem cable, which can be purchased
at nearly every computer store. At the time of this writing, the current standard for modems is
the V.90 specification, which calls for a modem speed of 56kbps. Unfortunately, most of the
time this speed is never realized in actual transmissions. The 56kbps speed is accomplished
using advanced data compression and signaling techniques. On normal voice-grade telephone
lines, the quality of the signal is not adequate for these advanced techniques to operate. It is

Introduction to Email Services and Linux

PART I
72

LISTING 3.6 continued

05 0672318342 CH03 2/14/00 2:22 PM Page 72

common to connect at speeds around 38.4kbps when using a 56kbps modem. Nonetheless, it is
still beneficial to use a V.90 modem to benefit from the advanced error correction methods that
are used.

When using a high-speed modem, you can set the speed at which the modem communicates
with the server using the internal modem registers. If this speed is not set, the modem attempts
to connect to the server at the same speed that the remote modem connected, which can vary,
depending on the phone line and remote modem. By setting the modem interface speed to a
standard 115200bps, you can configure the serial port on the Linux server to a standard value.
This is discussed in more detail later in the chapter.

Internal Modems
Internal modems are not as easy to work with. There are many pitfalls to using internal
modems with Linux. First, avoid modems that are advertised as WinModem compatible. These
modems are specially designed to work with the Microsoft Windows 95 and 98 operating sys-
tems. They do not include the proper interface hardware and will not work with Linux. They
rely on software within Windows 95 and 98 to operate.

PCI modems are another problem to watch for with internal modems. PCI is a bus architecture
that allows devices to be automatically configured at boot time. Depending on the devices
installed, a single device can obtain any IRQ and I/O port setting for any given boot process.
At the time of this writing, the Linux 2.2 kernel is not configured to properly handle PCI
modems. There are rumors in the Linux community that the next version of the kernel will
include advanced PCI card support. If a newer version of the Linux kernel is available, you
might check this feature out.

Currently, if you have a PCI modem, you can try to get Linux to recognize it manually. At boot
time, the PCI card settings are displayed by the system BIOS. Watch what IRQ is assigned to
the modem card at boot time, and run the setserial program manually with the appropriate IRQ
value. Although ugly, this method has been known to work.

Normal ISA type internal modems will work fine. Most often these modems include jumpers
that can be configured to install the modem on a specific COM port. Remember not to use a
COM port that is currently on the server as an external port. Also, be careful about what else is
plugged into the existing COM ports. Those devices might be used at the same time as the
modem. Many servers have pointer devices plugged into COM1 (such as a mouse). Remember
from Table 3.3 that COM1 shares the same IRQ as COM3. If you install the internal modem as
COM3, you will not be able to use the mouse and the modem at the same time. Ouch. To solve
this problem, you should install the modem as the COM4 port. Of course, if you also have
another device plugged into COM2, this might not be a solution. This is exactly the scenario
that forces you to use nonstandard configurations for serial ports. You must pick an IRQ that is

Installing Communication Devices in Linux

CHAPTER 3
73

3

IN
STA

LLIN
G

C
O

M
M

U
N

IC
A

TIO
N

D
EV

IC
ES

IN
L

IN
U

X

05 0672318342 CH03 2/14/00 2:22 PM Page 73

not being used by any other devices on the system. Often, IRQs 9, 10, and 11 can be used for
this purpose.

ISA Plug-and-Play Modems
One oddity in the IBM-compatible PC world is ISA plug-and-play devices. The precursor to
PCI, they bridge the ISA and PCI worlds by using the ISA bus architecture, but attempt to
autoconfigure IRQ and I/O ports at boot time. Much like the PCI situation, Linux cannot auto-
matically detect and use ISA PnP modems.

Thankfully, there is some help. The isapnptools programs were written by Peter Fox to solve
this problem. The isapnp program can read a configuration file that specifies the ISA PnP
devices in the server, and configure them in the Linux kernel. If you do not know the configu-
ration of the ISA PnP devices, don’t worry: The pnpdump program can query them and
attempt to create the configuration file automatically.

The format of the pnpdump program is

pnpdump [--config] [--script[=outputfile]] [--reset]
[--ignorecsum] [--showmasks] [--dumpregs] [[devs] readport]

By default, the pnpdump program scans the ISA PnP cards and displays their resource data to
the standard output. pnpdump resets the internal PnP serial numbers on all PnP cards and then
isolates each card for examination. The devs parameter can be used to specify a number of
devices you want pnpdump to scan. Using this technique, the PnP cards are not isolated and
reset. However, a readport must be provided that matches the value stored in the BIOS.

Also by default, pnpdump displays the resource data for PnP cards, but comments out the con-
figuration lines. By using the --config parameter, you can cause pnpdump to create a configu-
ration file that the isapnp program can use to configure the ISA PnP modem card. Listing 3.7
shows excerpts from the configuration file created by the pnpdump --config command for a
Linux system with an ISA PnP modem.

LISTING 3.7 Sample pnpdump --config Output

1 # $Id: pnpdump.c,v 1.16 1998/10/09 22:19:06 fox Exp $
2 # This is free software, see the sources for details.
3 # This software has NO WARRANTY, use at your OWN RISK
4 #
5 # For details of this file format, see isapnp.conf(5)
6 #
7 # For latest information on isapnp and pnpdump see:
8 # http://www.roestock.demon.co.uk/isapnptools/
9 #
10 # Compiler flags: -DREALTIME

Introduction to Email Services and Linux

PART I
74

05 0672318342 CH03 2/14/00 2:22 PM Page 74

11 #
12 # Trying port address 0203
13 # Board 1 has serial identifier 5b 10 0d 6a 0e 24 00 8c 0e
14 # Board 2 has serial identifier c5 00 00 11 11 01 00 36 10
15
16 # (DEBUG)
17 (READPORT 0x0203)
18 (ISOLATE PRESERVE)
19 (IDENTIFY *)
20 (VERBOSITY 2)
21 (CONFLICT (IO FATAL)(IRQ FATAL)(DMA FATAL)(MEM FATAL)) # or WARNING
22
23 # Card 2: (serial identifier c5 00 00 11 11 01 00 36 10)
24 # Vendor Id DAV0001, Serial Number 4369, checksum 0xC5.
25 # Version 1.0, Vendor version 1.0
26 # ANSI string -->DAVICOM 336PNP MODEM<--
27 #
28 # Logical device id DAV0336
29 # Device support I/O range check register
30 # Device supports vendor reserved register @ 0x39
31 # Device supports vendor reserved register @ 0x3a
32 # Device supports vendor reserved register @ 0x3d
33 #
34 # Edit the entries below to uncomment out the configuration required.
35 # Note that only the first value of any range is given, this may be changed
36 # if required. Don’t forget to uncomment the activate (ACT Y) when happy
37
38 (CONFIGURE DAV0001/4369 (LD 0
39
40 # Multiple choice time, choose one only !
41
42 # Start dependent functions: priority acceptable
43 # Logical device decodes 16 bit IO address lines
44 # Minimum IO base address 0x02f8
45 # Maximum IO base address 0x02f8
46 # IO base alignment 8 bytes
47 # Number of IO addresses required: 8
48 (IO 0 (SIZE 8) (BASE 0x02f8))
49 # IRQ 3.
50 # High true, edge sensitive interrupt (by default)
51 (INT 0 (IRQ 3 (MODE +E)))
52
53 (NAME “DAV0001/4369[0]{DAVICOM 336PNP MODEM}”)
54
55 # End dependent functions
56 (ACT Y)

Installing Communication Devices in Linux

CHAPTER 3
75

3

IN
STA

LLIN
G

C
O

M
M

U
N

IC
A

TIO
N

D
EV

IC
ES

IN
L

IN
U

X

continues

05 0672318342 CH03 2/14/00 2:22 PM Page 75

57))
58 # End tag... Checksum 0x00 (OK)
59
60 # Returns all cards to the “Wait for Key” state
61 (WAITFORKEY)

Listing 3.7 is just a partial listing of the complete file generated by pnpdump. The pnpdump
program generates all possible combinations of settings, but uncomments only the settings it
thinks will work with the PnP card. The output of the pnpdump program can be redirected to a
file to store the PnP card configurations:

pnpdump --config > /etc/isapnp.conf

The /etc/isapnp.conf file is the default location where the isapnp program looks to obtain
configuration information. After the configuration file is created, the isapnp program can be
run. The format of the isapnp command is

isapnp conffile

where conffile is an alternative location of the configuration file. After the isapnp program is
run, the Linux system should recognize the PnP modem as a device. To finish the job, you
must run the setserial program on the serial port that the PnP modem is configured for.

Like the setserial program, information generated by the isapnp program is placed in the kernel
tables and is lost when the system is rebooted. As with the setserial program, the isapnp pro-
gram can be run from an init script at boot time. Many Linux distributions allow for the
isapnp program to be run whenever the /etc/isapnp.conf file is present. Remember that the
setserial program must be run after the isapnp program to properly configure the ISA PnP
modem serial port.

ISDN Modems
ISDN technology was available for several years with no significant uses. Now, with the
Internet producing bandwidth-hungry remote users, ISDN modems have become more popular
with Internet service providers and organizations that want higher speed remote network
access.

ISDN modems can provide two 64kbps digital data channels. Both channels can be combined
to produce an effective 128kbps bandwidth for data. This is ideal for small organizations want-
ing to provide interactive Internet service to the desktops for Web browsing, file transfers, and
email service.

Introduction to Email Services and Linux

PART I
76

LISTING 3.7 continued

05 0672318342 CH03 2/14/00 2:22 PM Page 76

ISDN modem support in Linux has also been a recent (and ongoing) development. The most
recent Linux kernel at the time of this writing (2.2) includes basic ISDN support. Future ker-
nels are promised to contain more ISDN support. Most of the ISDN development work has
been coming out of Germany from the SuSe Linux group. It has created the ISDN4Linux
toolkit, which can be used to set up an ISDN modem on a Linux server. The ISDN4Linux
toolkit contains many useful utilities for configuring the Linux server to use an ISDN modem.
Table 3.5 lists the available utilities.

TABLE 3.5 ISDN4Linux Toolkit Utilities

Utility Description

isdnctrl General link-level setup utility

iprofd Daemon for realizing AT&W0 on ttyI’s

icnctrl Setup utility for icn driver

telesctrl Setup utility for teles driver

hisaxctrl Setup utility for HiSax driver

pcbitctrl Setup utility for pcbit driver

avmcapictrl Setup utility for avmb1 driver

actctrl Setup utility for act2000 driver

eiconctrl Setup utility for eicon driver

divertctrl Setup utility for dss1 diversion services

imon Ncurses-based monitoring utility

imontty tty-based monitoring utility

isdnlog ISDN connection logging utility

ipppstats syncPPP statistics utility

xisdnload xload-like monitor

isdnmon Tcl/Tk based monitoring utility

vbox Answering machine/voice mailbox

ipppd Daemon needed for syncPPP and MPP

Several documents are available with the ISDN4Linux toolkit that describe the necessary steps
to install and configure ISDN modems on Linux servers. Because Linux ISDN support is still
in its infancy, there is no doubt that it will improve in future Linux releases.

Installing Communication Devices in Linux

CHAPTER 3
77

3

IN
STA

LLIN
G

C
O

M
M

U
N

IC
A

TIO
N

D
EV

IC
ES

IN
L

IN
U

X

05 0672318342 CH03 2/14/00 2:22 PM Page 77

Controlling Modems in Linux
After the modem serial port is configured, Linux must run a separate program to monitor the
line and recognize when it is being used. Several programs can be used to control the serial
port device, but the most common one is the getty program. The getty program allows the
modem to be work as both a dial-in and dial-out line. When dialing-in, getty accepts the
incoming call and passes the session to the login program to validate a userid and password
entered from the remote client.

The format of the getty command is

getty [-d defaults_file] [-a] [-h] [-r delay] [-t timeout] [-w waitfor]
➥line [speed [type [lined]]]

The getty program is often started by the init program to monitor the modem line at all times.
For the getty program to be started by init, it must be present in the /etc/inittab file. The
inittab file contains the programs that will be started by the init process when it starts at boot
time. The format for using the getty command in the inittab file is

s1:345:respawn:/sbin/getty ttyS0 38400 vt100

The first field is a label that uniquely identifies the entry in the inittab file. The second field
is a list of the init run levels in which the program will be started. This process will start in run
levels 3, 4, and 5. The third field contains information that the init program uses on how to run
the program. The respawn keyword instructs the init program that if the original getty program
stops, init will start it again. This is necessary to allow getty to monitor the modem after a con-
nection has finished.

The fourth field is the getty command line with its parameters. This example shows the getty
program monitoring /dev/ttyS0 (COM1), with the port speed set to 38400bps. This allows the
modem to be set to a constant interface speed. The last parameter specifies the terminal emula-
tion type used for the line. The getty program can produce a greeting when the modem line
becomes active. The terminal emulation type is necessary to properly format the greeting mes-
sage.

Summary
For the Linux mailserver to communicate with other hosts and workstations, it must have com-
munication devices installed. To communicate with other workstation on the local office net-
work, there must be an Ethernet Network Interface Card (NIC) installed. The ifconfig program
can be used to configure the necessary IP address information on the NIC. There are also
graphical X Window–based programs available for configuring the NIC. The netcfg program is
one example that is used on Mandrake and Red Hat Linux distributions. For the mailserver to

Introduction to Email Services and Linux

PART I
78

05 0672318342 CH03 2/14/00 2:22 PM Page 78

communicate with the remote Internet service provider, it must be able to interface with some
type of modem. Many different types of modems can be used by the Linux server. External
V.90 modems are the easiest to configure and use provided that the Linux server contains at
least one standard COM port. Internal modems can be used if they are standard ISA type
modems. PCI modems are difficult to configure, but can work. The isapnp Linux program can
be used to help configure ISA plug-and-play type modems. After the modem is installed, the
setserial program must be run for Linux to recognize the serial port as a valid device. After
Linux recognizes the device, the getty program can be used to monitor the device for incoming
and outgoing connections.

Installing Communication Devices in Linux

CHAPTER 3
79

3

IN
STA

LLIN
G

C
O

M
M

U
N

IC
A

TIO
N

D
EV

IC
ES

IN
L

IN
U

X

05 0672318342 CH03 2/14/00 2:22 PM Page 79

80

05 0672318342 CH03 2/14/00 2:22 PM Page 80

CHAPTER

4
DNS and Domain Names

IN THIS CHAPTER
• History of Computer Names 82

• Domain Names 82

• Linux as a DNS Client 97

• Linux as a DNS Server 107

06 0672318342 CH04 2/14/00 2:27 PM Page 81

What’s in a name? Plenty if you are a Montague, or are using the Internet. How would you
react if your favorite product was advertised on television with the statement, “visit our Web
site at 198.182.196.56 for more information”? Would you make it as far as your PC before for-
getting the address? I wouldn’t.

Unfortunately humans don’t process numbers as well as computers. To compensate for that, sys-
tems administrators have used names to identify their computer systems. The domain name sys-
tem (DNS) was developed to aid humans in easily locating computer names on the Internet. The
use of DNS is vital in properly processing email. If you choose to let your ISP handle your
domain name and email, you might not need to know the details about DNS configurations, but
it might not be a bad idea to know how DNS works in general (just in case of any problems).
This chapter discusses where DNS came from, why it is so vital to email operations, and how
you can configure your Linux server to use it either as a client or as a DNS server.

History of Computer Names
Back in the old days when the Internet was small (just a few hundred computers), it wasn’t too
complicated to locate another computer. Each Internet computer had a database of hostnames
and IP addresses. Internet hostnames could be anything the administrator desired—Fred,
Barney, Acct1, anything. There was a central clearinghouse for keeping track of new computer
names and addresses. Once a week or so, a system administrator would download a new copy
of the current database. Of course this system did have its drawbacks. When someone brought
a new computer online, he needed to search the database to make sure that nobody had already
used the clever new hostname he wanted to use. It didn’t take system administrators long to
figure out that this method was on a collision course with progress. As the Internet grew, so did
the database. As the database grew, so did the time it took to download and search it. It was
also starting to get difficult to come up with a unique hostname. Something had to be changed,
and it was.

Domain Names
The method that was agreed upon was the domain name system (DNS). DNS uses a hierarchi-
cal distributed database to break up the hostname’s database. That’s a catchy phrase to say that
now no one computer has to maintain the entire database of Internet devices. The database is
distributed among multiple computers, called DNS servers, on the Internet. For client comput-
ers to locate another computer on the Internet, they only need to find the nearest DNS server
and query for the IP address of the remote computer. In order to implement this system, a new
protocol was invented to pass the DNS information from the DNS server to the client, as well
as software created for DNS server computers to implement the new database system.

Introduction to Email Services and Linux

PART I
82

06 0672318342 CH04 2/14/00 2:27 PM Page 82

DNS Structure
The structure of a hierarchical database is similar to an organization chart with nodes con-
nected in a tree-like manner (the hierarchical part). The top node is called the root. The root
node does not explicitly show up in addresses, so it is called the nameless node. Multiple cate-
gories were created under the root level to divide the database into pieces called domains. Each
domain contains DNS servers that are responsible for maintaining the database of computer
names for that area of the database (the distributed part). Figure 4.1 shows a diagram of how
the DNS domains are distributed.

DNS and Domain Names

CHAPTER 4
83

4

D
N

S A
N

D
D

O
M

A
IN

N
A

M
ES

.com .edu .org .us .uk

root

.smallorg .linux

acctg

FIGURE 4.1
A diagram of the Internet domain name system.

The first (or top) level of distribution is divided into domains based on country codes. Additional
top level domains for specific U.S. organizations were created to prevent the .us domain from
getting overcrowded. The domain name is appended to the end of the computer hostname to form
the unique Internet hostname for that computer. This is the popular hostname format that we are
now familiar with. Table 4.1 shows how the top level DNS domains are laid out.

TABLE 4.1 DNS Top Level Domain Names

Name Description

.com U.S. commercial organizations

.edu U.S. educational institutions

.gov U.S. government organizations

.mil U.S. military sites

.net U.S. Internet providers

continues

06 0672318342 CH04 2/14/00 2:27 PM Page 83

.org U.S. non-profit organizations

.us other U.S. organizations

.ca Canadian organizations

.de German organizations

(other country codes) Other countries’ organizations

As the Internet grows, the top level domains are each divided into subdomains, or zones. Each
zone is an independent domain in itself, but relies on its parent domain for connectivity to the
database. A parent zone must grant permission for a child zone to exist and is responsible for
the child zone’s behavior (just like in real life). Each zone has at least two DNS servers that
maintain the DNS database for the zone.

The original specifications stipulated that the DNS servers for a single zone must have separate
connections to the Internet and be housed in separate locations for fault-tolerance purposes.
Because of this stipulation, many organizations rely on other organizations to host their sec-
ondary and tertiary DNS servers.

Hosts within a zone add their domain name to their hostname to form their unique Internet name.
Thus, computer ‘fred’ in the smallorg.org domain would be called fred.smallorg.org. It becomes a
little confusing because a domain can contain hosts as well as zones. For example, the smallorg.org
domain can contain host fred.smallorg.org, as well as grant authority for zone acctg.smallorg.org to
a subdomain, which in turn can contain another host barney.acctg.smallorg.org. Although this sim-
plifies the database system, it makes finding hosts on the Internet more complicated. Figure 4.2
shows an example of a domain and an associated subdomain.

Introduction to Email Services and Linux

PART I
84

TABLE 4.1 continued

Name Description

Internet Domain Names
In the past few years, Internet domain names have become a hot topic. In the past,
one single corporation controlled all U.S. domain names in the .com, .net, and .org
domains—the Internic Corporation. Recently, a nonprofit organization—the
Internet Corporation for Assigned Names and Numbers (ICANN)—was created to
control this process. ICANN is now responsible for the management of all U.S.
domain names. The purchase of a domain name can now be made from multiple
vendors, not just one company. All domain names must be cleared by the ICANN for
use in the U.S. domains.

06 0672318342 CH04 2/14/00 2:27 PM Page 84

FIGURE 4.2
A sample domain and subdomain on the Internet.

DNS allows for three different scenarios to occur in finding an IP address using the DNS system:

1. A computer that wants to communicate with another computer in the same zone queries
the local DNS server in the zone to find the address of the remote computer. The local
DNS server should have the address of the remote computer in its local database and
return the IP address.

2. A computer that wants to communicate with a computer in another zone queries the local
DNS server in its zone. The local DNS server realizes the requested computer is in a dif-
ferent zone and queries a root-level DNS server for the answer. The root DNS server
then walks the tree of DNS servers to find the local zone DNS server and gets an IP
address for the remote computer. It then passes the address to the local DNS server,
which in turn passes the information it receives to the requesting computer. Part of the
information that is returned with the IP address of the remote computer is a time to live
(TTL) value. This instructs the local DNS server that it can keep the IP address of the
remote computer in a local name cache for the amount of time of the TTL value. This
will speed up any subsequent name requests.

3. A computer that wants to communicate with the same remote computer in another zone
queries the local DNS server in its zone. The local DNS server checks its name cache,
and if the TTL value has not expired, the server sends the IP address of the remote com-
puter to the requesting client computer. This is considered a non-authoritative response,

DNS and Domain Names

CHAPTER 4
85

4

D
N

S A
N

D
D

O
M

A
IN

N
A

M
ES

LAN

 NS

pebbles

 NS

bambam barney

fred wilma

LAN

192.168.2.1

192.168.1.1 192.168.1.2
fred.smallorg.org

smallorg.org

acctg.smallorg.org

192.168.1.3
wilma.smallorg.org

192.168.2.2
barney.acct.smallorg.org

06 0672318342 CH04 2/14/00 2:27 PM Page 85

as the local DNS server is assuming that the remote computer’s IP address has not
changed since it was last checked.

In all three instances, the local computer only needs to know the IP address of its local DNS
server to find the IP address of any computer on the Internet. It is the job of the local DNS
server to find the proper IP address for the given hostname. The local computer’s life is now
much simpler. Figure 4.3 shows a diagram of how these different functions operate.

Introduction to Email Services and Linux

PART I
86

LAN

LAN

Internet

Local
NS

DNS root servers

L
A
N

 NS

Client
Machine

remote host

 NS

Local Host
Machine

1 2

FIGURE 4.3
A diagram of different DNS resolution methods.

As the DNS tree grows, new requirements are made on DNS servers. As mentioned, parent
DNS servers are required to know the IP addresses of their children zone DNS servers to prop-
erly pass DNS queries on to them for resolution. The tricky part comes into play with the
lower-level zone DNS servers. In order for them to properly process DNS queries, they have to
be able to start their name searches somewhere in the DNS tree. When the Internet was in its
infancy, most of the name searches were for local hostnames. The bulk of the DNS traffic was
able to stay local to the zone DNS server or, at worst, its parent. However, with the increased
popularity of the Internet and Web browsing, more DNS requests were made for remote host-
names. When a DNS server did not have the hostname in its local database, it would need to
query a remote DNS server.

06 0672318342 CH04 2/14/00 2:27 PM Page 86

The most likely candidate for the remote DNS server is a top level domain DNS server that has
the knowledge to work its way down the tree until it finds the responsible zone DNS server for
the remote host and returns the result to the local DNS server. This puts a great deal of stress
on the root servers. Fortunately there are quite a few of them, and they do a good job of dis-
tributing the load. The local DNS servers communicate with the top level domain DNS servers
using the DNS protocol that is discussed later in this chapter.

DNS is a two-way street. Not only is it useful for finding the IP address of a computer based
on its hostname, but it is also useful for finding the hostname of a computer based on its IP
address. Many Internet Web and FTP sites restrict access based on a client computer’s domain.
When the connection request is made from a client, the host server passes the IP address of the
client to the DNS server as a reverse DNS query. If the client’s DNS zone database is config-
ured correctly, the client’s hostname should be returned to the server, which in turn can decide
whether to grant access to the client.

DNS and Domain Names

CHAPTER 4
87

4

D
N

S A
N

D
D

O
M

A
IN

N
A

M
ES

DHCP and DNS
If your organization uses Dynamic Host Configuration Protocol (DHCP) to dynamically
assign IP addresses to workstations, you might have to create DNS records for all pos-
sible DHCP addresses that can be assigned by the server. Often a generic hostname
can be assigned to each address, such as station1.smallorg.org.

DNS Database Records
Each DNS server is responsible for keeping track of the hostnames in its zone. To accomplish
this, the DNS server must have a method of storing host information in a database that can be
queried by remote machines. The DNS database is a text file that consists of resource records
(RRs) that describe computers and functions in the zone. The Linux server must run a DNS
server software package—usually named—to communicate the DNS information from the data-
base to remote DNS servers. The named program is discussed in detail later in this chapter.

The DNS server’s database first has to declare the zone that it is responsible for. Then, it must
declare each host computer in its zone. Finally, the database can declare special information for
the zone, such as email and name servers. Resource record formats were created to track all the
information required for the DNS server. Table 4.2 shows some of the basic RRs that a DNS
database could contain. DNS database design has become a hot topic lately with researchers
who want to add more information to the database, as well as increase the security of the infor-
mation that is there. New record types are constantly being added to the DNS database. The
record types in Table 4.2 represent the core records needed to establish a zone in the DNS
database.

06 0672318342 CH04 2/14/00 2:27 PM Page 87

TABLE 4.2 DNS Database Resource Record Types

Record Type Description

SOA Start of Authority

A Internet address

NS Name Server

CNAME Canonical name (nickname)

HINFO Host Information

MX Mail Server

PTR Pointer

Each domain DNS server should contain resource records for the hosts in the domain. There
should be one SOA record for the domain listed at the top of the database. Any other resource
records for the domain can be added in any order after that. Figure 4.4 demonstrates how the
DNS database would look for the sample network that was shown previously in Figure 4.2.
The next section describes the DNS records in more detail.

Introduction to Email Services and Linux

PART I
88

pebbles NS
192.168.1.1

Internet

Smallorg.org
NS 192.168.1.1

NS .org

DNS network example

1 - org network NS points to smallorg.org nameserver
2 - pebbles contains records for smallorg.org

 (i.e. fred.smallorg.org)
3 - Pebbles points to NS for acctg subdomain
4 - bambam contains records for acctg.smallorg.org

 (i.e. barney.acctg.smallorg.org)

@
smallorg.org
fred
wilma
acctg.

IN SOA
NS

A
A

NS

smallorg.org
192.168.1.1
192.168.1.2
192.168.1.3
192.168.2.1

bambam NS
192.168.2.1

@
acctg.smallorg.org
barney

IN SOA
NS

A

acctg.smallorg.org
192.168.2.1
192.168.2.2

fred

192.168.1.2

wilma

192.168.1.3

barney

192.168.2.2

smallorg.org

LAN

LAN

FIGURE 4.4
The DNS records for the sample network.

06 0672318342 CH04 2/14/00 2:27 PM Page 88

Start of Authority Record (SOA)
Each database starts with an SOA record that defines the zone in which the database resides.
The format for the SOA record is

domain name [TTL] [class] SOA origin person (
serial number
refresh
retry
expire
minimum)

domain name is the name of the zone that is being defined (the @ sign can be used as a place-
holder to signify the computer’s default domain).

TTL is the time (in seconds) that a requesting computer will keep any DNS information from
this zone in its local name cache. This value is optional.

class is the protocol that is being used (which in our case will always be class IN for Internet).
This value is optional and will default to IN.

origin is the name of the computer where the master zone database is located. Be careful to
include a trailing period . after the hostname, or your local domain name will be appended to
the hostname (unless of course you want to use that feature).

person is an email address of a person responsible for the zone. This is a little different than
usual because the @ sign is already used to signify the default domain name, so it can’t be used
in the mail address. Instead, use a period . in place of the @ sign. For example, instead of using
sysadm@smallorg.org, you would use sysadm.smallorg.org. If there are any periods . in the
name part, they must be escaped out by using a backslash \. An example of this is the address
john.jones@smallorg.org. This address translates to john\.jones.smallorg.org.

serial number is a unique number that identifies the version of the zone database file. Often
the date created plus a version count is used (such as 199908051).

refresh is the time (in seconds) that a secondary DNS server should query a primary DNS
server to check the SOA serial number. If it is different, it will request an update to its data-
base. Specifying one hour (3,600 seconds) is common for this value.

retry is the time (in seconds) that a secondary DNS server should retry after a failed refresh
attempt.

expire is the time (in seconds) that a secondary DNS server can use the data retrieved from
the primary DNS server without getting refreshed. This value should usually be large, such as
3,600,000 (about 42 days).

DNS and Domain Names

CHAPTER 4
89

4

D
N

S A
N

D
D

O
M

A
IN

N
A

M
ES

06 0672318342 CH04 2/14/00 2:27 PM Page 89

minimum is the time (in seconds) that should be used as the TTL in all RRs in this zone. Usually
86,400 (1 day) is a good value.

Internet Address Record (A)
Each host in the zone defined by the database should have a valid A record to define its host-
name to the Internet. The format for the A record is

host [TTL] [class] A address

host is the fully qualified hostname for the computer (including the domain name).

address is the IP address of the computer.

Canonical Name (CNAME)
Besides a normal hostname, many computers also have nicknames. This is useful if you want
to identify particular services without having to rename computers in your domain, such as
www.smallorg.org. The CNAME record links nicknames with the real hostname. The format of
the CNAME record is

nickname [TTL] [class] CNAME host name

Name Server Record (NS)
Each zone should have at least two DNS servers. NS records are used to identify these servers
to other DNS servers trying to resolve hostnames within the zone. The format of an NS record
is

domain [TTL] [class] NS server

domain is the domain name of the zone that the DNS server is responsible for. If it is blank, the
NS record refers to the zone defined in the SOA record.

server is the hostname of the DNS server. There should also be an associated A record to iden-
tify the IP address of the DNS server.

Host Information Record (HINFO)
Additional information about a computer can be made available to DNS servers by using the
HINFO record. The format of the HINFO record is

host [TTL] [class] HINFO hardware software

host is the hostname of the computer the information applies to.

hardware is the type of hardware the computer is using.

software is the OS type and version of the computer.

Introduction to Email Services and Linux

PART I
90

06 0672318342 CH04 2/14/00 2:27 PM Page 90

Pointer Record (PTR)
In addition to an A record, each computer in the zone should also have a PTR record. This
allows the DNS server to perform reverse queries from the IP address of the computer. Without
this information, remote servers could not determine the domain name where your computer is
located. The format of a PTR record is

IN-ADDR name [TTL] [class] PTR name

IN-ADDR name is the reverse DNS name of the IP address. If that sounds confusing, it is. This
name allows the DNS server to work its way backward from the IP address of the computer.
The IN-ADDR.ARPA address is a special domain to support gateway location and Internet
address-to-host mapping. Inverse queries are not necessary because the IP address is mapped to
a fictitious hostname. The IN-ADDR name of a computer with IP address 192.168.0.1 would be
1.0.168.192.IN-ADDR.ARPA.

name is the hostname of the computer as found in the A record.

Mail Server Record (MX)
Most important (at least as far as we mail administrators are concerned) are the MX records.
They instruct remote mail servers where to forward mail for your zone. The format of the MX
record is

name [TTL] [class] MX preference host

name is the zone name (or the SOA zone if it is blank). This can also be a hostname if you want
to redirect mail for a particular host in your network.

preference is an integer signifying the order in which remote servers should try connecting if
multiple mail servers are specified—0 being the highest preference with decreasing preference
for increasing numbers. This is used to create primary and secondary mail servers for a zone.
When a remote mail server queries the DNS server for a mail server responsible for the zone,
the entire list of servers and preferences are sent. The remote mail server should attempt to
connect to the highest priority mail server listed, and if that fails, continue down the list by
preference.

host is the hostname of the mail server. There should also be an associated A record to identify
the IP address of the mail server.

A Sample DNS Database for a Domain
If you allow your ISP to host your domain name and email, they will have records in their
DNS database identifying your domain to the Internet. The SOA record will identify your
domain name, but point to the ISP’s host as the authoritative host. The NS records for your
domain will point to your ISP’s DNS servers, and your MX records will point to your ISP’s

DNS and Domain Names

CHAPTER 4
91

4

D
N

S A
N

D
D

O
M

A
IN

N
A

M
ES

06 0672318342 CH04 2/14/00 2:27 PM Page 91

mail servers. As far as the rest of the Internet is concerned, these computers are part of your
network, even though they do not really exist on “your” network. Listing 4.1 shows a sample
of how your ISP might define your zone definitions in its DNS database.

LISTING 4.1 DNS Zone Database Entry

1 smallorg.org IN SOA master.isp.net. postmaster.master.isp.net (
2 1999080501 ;unique serial number
3 8H ; refresh rate
4 2H ;retry period
5 1W ; expiration period
6 1D) ; minimum
7
8 NS ns1.isp.net. ;defines primary name server
9 NS ns2.isp.net. ; defines secondary name server
10
11 MX 10 mail1.isp.net. ; defines primary mail server
12 MX 20 mail2.isp.net. ; defines secondary mail server
13
14 www CNAME host1.isp.net ;defines your www server at the ISP
15 ftp CNAME host1.isp.net ; defines your FTP server at the ISP
16
17 host1.isp.net A 10.0.0.1
18
19 1.0.0.10.IN-ADDR.ARPA PTR host1.isp.net ; pointer address for
➥reverse DNS

Lines 1-6 show the SOA record for your new domain. The ISP points your domain name
smallorg.org to the ISP server master.isp.net. Lines 8 and 9 define the primary and secondary
DNS servers that will be used to resolve your hostnames (again, belonging to the ISP), and lines
11 and 12 define the primary (mail1.isp.net) and secondary (mail2.isp.net) mail servers that
will receive and spool mail for your domain. Lines 14 and 15 define nicknames for services in
your domain. The hostname www.smallorg.org is a nickname that points to the ISP server that
hosts your Web pages. The address ftp.smallorg.org is also a nickname that points to the same
ISP server that also hosts your FTP site. This is a service that most ISPs provide to customers who
cannot afford to have a dedicated connection to the Internet, but want to provide Web and FTP ser-
vices to their customers. Lines 17 and 19 provide the Internet IP address information so that
remote clients can connect to this server. Often PTR records, such as the one shown in line 19, are
placed in a separate database file on the server to help simplify the databases. In this example with
just one PTR record that is not a problem, but often there can be dozens of them.

When a DNS server has a valid database installed, it must be able to communicate with other DNS
servers to resolve hostname requests from clients and to respond to other DNS servers’ queries
about hosts in its zone. The DNS protocol was invented to accomplish that.

Introduction to Email Services and Linux

PART I
92

06 0672318342 CH04 2/14/00 2:27 PM Page 92

DNS Protocol
The DNS protocol serves two functions in life. It allows client computers to query a DNS
server for an IP address or a hostname, and it allows DNS servers to communicate with each
other and pass DNS database information back and forth. It uses a standard request/response
format, where the client submits a request packet, and the server returns a response packet with
either the information from the database, or an error message stating the reason the query
could not be processed. The DNS protocol uses either TCP or UDP well-known ports 53 to
communicate, although UDP has become the preferred method of transportation across the
Internet. The DNS packet contains five main sections—header, question, answer, authority, and
additional information. Figure 4.5 shows the basic structure for a DNS packet.

DNS and Domain Names

CHAPTER 4
93

4

D
N

S A
N

D
D

O
M

A
IN

N
A

M
ES

ID

QDCOUNT

Header Section

Question Section

Answer Section

Additional Information

Authority Section

ANCOUNT

NSCOUNT

ARCOUNT

QNAME

QTYPE

QCLASS

Domain Name

Type

Class

TTL

RLENGTH

RDATA

QR AA TC RD RA Z RCODEOPCODE

FIGURE 4.5
A DNS protocol packet description.

06 0672318342 CH04 2/14/00 2:27 PM Page 93

Header Section
The header section contains information identifying the packet and its purpose. It gives the
basic information regarding whether the packet is a request or response packet, and how much
of each type of data is contained in the packet. The layout of the header section is shown in
Table 4.3.

TABLE 4.3 DNS Packet Header Section

Bit Description

0-15 ID

16 QR

17-20 OPCODE

21 AA

22 TC

23 RD

24 RA

25-27 Z

28-31 RCODE

32-47 QDCOUNT

48-63 ANCOUNT

64-79 NSCOUNT

80-95 ARCOUNT

The ID bits specify a unique 16-bit identification number for the request packet. The response
packet from the server will use the same identification number so that the client can match the
response to the query. The QR bit signifies whether the packet is a query (0) or a response (1).
The OPCODE section determines the type of query—standard query (0), inverse query (1), or
server status request (2).

The next four bits determine the characteristics of the packet. The AA bit is set when the
response is authoritative (the data came directly from the DNS server responsible for the zone).
Non-authoritative answers come from DNS servers that might have the RR information in their
cache from previous DNS look ups. This information is considered non-authoritative because
there is a possibility that it could be wrong. The TC bit is set when the packet data had to be
truncated to fit the packet into the transportation medium. This is possible when using the UDP
protocol, which limits the packet size to 512 bytes. The RD bit is set when a client desires the
server to pursue the query recursively. If this is set, the DNS server will query other DNS

Introduction to Email Services and Linux

PART I
94

06 0672318342 CH04 2/14/00 2:27 PM Page 94

servers to obtain the answer. If it is not set, the DNS server will just return whatever informa-
tion it has for the query. The RA bit is set to tell the client that recursion is available on the
server. The Z bits are not used at this time, but are reserved for future use.

The RCODE bits are used in response packets. They indicate the status of the response—no
errors (0), query format errors (1), internal errors that prevented the server from processing the
query (2), the name requested in the query does not exist (3), the server does not support the
query type (4) or the server has refused to process the query (5).

The last four items are 16-bit numbers that are used as counters. They count the number of
resource records returned in the packet. QDCOUNT is the number of queries (more than one query
can be encapsulated in a packet). ANCOUNT is the number of answer RRs in the answer section.
NSCOUNT is the number of DNS server RR records in the authority section, and ARCOUNT is the
number of RRs in the additional information section.

Question Section
The question section contains the queries that the client wants to have answered by the DNS
server. A single DNS packet can contain multiple queries. The number of queries present is
indicated by the QDCOUNT parameter in the header section. The question section consists of
three parts—a list of domain names to resolve, the type of records the client wants returned,
and the class of the query. The list of domain names is what the client wants to have resolved
into IP addresses. As there can be multiple names listed, a specific format is used to list the
names. Each name is preceded by a one-byte value that is the length of the name. The end of
the list is signified by a length value of 0. Following the text section, a two-byte QTYPE record
is added. This signifies what kind of information the client wants to receive about the listed
domains. These values are the same as the DNS RR types. For finding the email server for a
domain, you would use the MX record type. The last part of the question section is the QCLASS
area, which defines the class of the query, which in our case is always IN for Internet.

Answer, Authority, and Additional Information Sections
The next three sections in the DNS packet have the same record format. They each return data
using the resource record format that is used in the DNS database. The answers contain the
DNS database RR information available to the server for the resources asked for by the client. If
the AA bit in the header is not set, the authority section lists other DNS servers that the client
can query to obtain authoritative answers. Again, authoritative answers come from the DNS
servers that are responsible for the zone in which the requested hostname is contained. Any
other responses are considered non-authoritative as their information might have been obtained
from an outdated name cache on a DNS server. The additional information section will list any
related RRs that the DNS server felt were relevant to the query.

DNS and Domain Names

CHAPTER 4
95

4

D
N

S A
N

D
D

O
M

A
IN

N
A

M
ES

06 0672318342 CH04 2/14/00 2:27 PM Page 95

An example would be if you request the MX information for a domain, the answer section will
contain the MX records, and the additional information section might contain the A records for
the servers listed in the answer section. That way, you would know the hostname and IP
address of the mail server for the domain in just one DNS query.

The format of a resource record in a DNS packet is shown in Table 4.4.

TABLE 4.4 Answer, Authority, and Additional Record Formats

Section Description

Names The variable-length domain name string that pertains to the resource
record

TYPE The RR type that pertains to the record

CLASS The RR class that pertains to the record

TTL The 32-bit TTL value of the record

RDLENGTH The 16-bit length of the data record

RDATA The variable-length string that describes the record

The RDATA values in the answer section provide the results for the requested query. For MX
records, the format is different from a simple text string. The preference value is added to the
string as well as the mail server name.

Name Compression
In situations where multiple records are returned as a response, there could be duplication of
text data. An example would be if there were two NS records returned—one for ns1.isp.net
and another for ns2.isp.net. It would be more efficient to return the answer as ns1 and ns2 in
domain isp.net. In an attempt to minimize packet size during the DNS query, the DNS proto-
col implements a method of using this type of compression of the information in the packet. A
shorthand method was devised to indicate duplicate domain information. A pointer system was
implemented to track the duplicate information and transmit a minimum amount of bytes. As
previously discussed, the first byte in the names section is a one-byte integer signifying the
length of the domain name. To implement name compression, the meaning of the top two bits
of this value has been changed. If the top two bits are both zero, the byte has the same mean-
ing as before—the length of the domain name. If the top two bits are both ones, the value
becomes a pointer to an offset in the names section that signifies the remainder part of the
domain name to tack onto the name.

DNS and Email
Computers must follow a set process to properly deliver email, and knowing how that process
works sometimes helps out when it comes time to troubleshoot email problems. When a

Introduction to Email Services and Linux

PART I
96

06 0672318342 CH04 2/14/00 2:27 PM Page 96

remote client tries to send an email message to prez@smallorg.org, several steps are taken
before the message is sent:

1. The local DNS server for the client must first determine which computer in
smallorg.org to send the email to. It does this by looking for a MX record for the
smallorg.org domain.

2. If the local DNS server does not contain any information in its local database or name
cache, it must traverse the Internet searching for an answer. The first stop would be one
of the top level domain DNS servers. That server would not have your MX record, but it
would know how to get to a DNS server for the .org domain.

3. That server, in turn, would not have your information, but would (or at least should)
know the IP address of a DNS server for the smallorg.org domain, and query it for an
appropriate MX record. If one or more MX records exist, they are sent back up the chain
until they get to the requesting client computer.

4. When the client has the address(es) in hand, it must then try and establish an SMTP con-
nection (see Chapter 5, “SMTP Protocol”) to the primary mail server for the
smallorg.org domain.

5. If that connection fails, it will then try the secondary mail server address returned in the
answer section, and so on until it either establishes a connection, or runs out of servers to
try. At this point, it is up to the client’s mail program what to do next. Most will try the
same process again a few hours later, up to a set point when it will finally give up.

If your domain database is not configured correctly, the DNS search for your mail host will fail,
and the client will not be able to deliver the mail message. Remember that at no point in the
DNS process was the mail message sent. The purpose of this process is that the remote client
can find the IP address of a computer that would accept mail messages for the smallorg.org
domain. When it finds an address, it can then (hopefully) initiate an SMTP mail session.

Linux as a DNS Client
If you do not have a dedicated connection to the Internet, you should not use your Linux server
as a DNS server for your domain. If someone tried sending email to you at three o’clock in the
morning and your Linux server was not up and connected to the Internet, she might not be able
to resolve your domain name and send your message. Most ISPs provide a DNS server for
their clients that is continually connected to the Internet. The ISP’s DNS server directs the
remote client to the proper email server for your domain. Again, if your network is not directly
connected to the Internet, most likely the ISP will accept the email messages and spool them to
be picked up later by your Linux mailserver when it is convenient.

DNS and Domain Names

CHAPTER 4
97

4

D
N

S A
N

D
D

O
M

A
IN

N
A

M
ES

06 0672318342 CH04 2/14/00 2:27 PM Page 97

If the Linux server has a dedicated connection to the Internet but you still want the ISP to host
your DNS domain records, the Linux server can be configured to use the ISP DNS server to
resolve remote hostnames. The following sections describe how to configure the Linux server
to do this.

Configuring DNS Client Files
Three files are needed to use your Linux server as a DNS client to resolve hostnames. All three
files are normally located in the /etc directory. They are resolv.conf, hosts, and host.conf.

Hostname Resolver File
The /etc/resolv.conf file is used to tell Linux the DNS server where you want to send your
DNS queries. You can list up to three DNS servers. The second and third entries will be used
as backup if no response is received from the first (primary) server. If you have a local DNS
server in your network, you should use that as your primary, although it isn’t required. If you
access other computers in your local network by name, it would increase performance to spec-
ify the local DNS server because it would have the name resolution quickly. If you just use
DNS to access remote computers, there probably won’t be much of any performance increase.
You can also specify a default domain name to use when looking up domain names. If your
domain is smallorg.org, you can specify that as the default domain to search in. That way if
you need the IP address for hostname fred.smallorg.org, you can specify ‘fred’, and
Linux will automatically append the smallorg.org to it. Unfortunately that can work
against you. The DNS software will automatically append smallorg.org to everything that
it tries to resolve. If you try connecting to www.linux.org, it will first attempt to find
www.linux.org.smallorg.org. When that fails, it will try www.linux.org. Listing 4.2 shows
a sample /etc/resolv.conf file used in a Linux client.

LISTING 4.2 Sample /etc/resolv.conf File

1 search smallorg.org
2 nameserver 10.0.0.1
3 nameserver 10.0.0.2
4 nameserver 10.0.0.3

Line 1 shows the search statement that defines the default domain to use in all DNS queries.
Remember that this will slow down queries for hosts not in your domain because the search
text is appended to all queries. Lines 2-4 show the primary, secondary, and tertiary DNS
servers that service this Linux client. Most often they are the DNS servers assigned to you by
your ISP, although you are free to try other DNS servers if you want to (unless of course your
ISP filters out DNS requests).

Introduction to Email Services and Linux

PART I
98

06 0672318342 CH04 2/14/00 2:27 PM Page 98

hosts File
Another method of resolving hostnames is to use a local host database, much like what was
previously done on the Internet. The /etc/hosts file contains a list of hostnames and related
IP addresses. Listing 4.3 shows a sample /etc/hosts file for a Linux client. At the minimum,
this should contain your local hostname and IP address, as well as the common loopback
address 127.0.0.1 for internal communications on the Linux server. If there are remote hosts
that you regularly access, you could find their IP addresses and manually enter them into the
/etc/hosts file. Then every time you accessed those hostnames, Linux would have the
addresses on hand and not have to perform a DNS lookup. This greatly improves the connec-
tion time.

LISTING 4.3 Sample /etc/hosts File

1 127.0.0.1 localhost
2 192.168.0.1 shadrach.smallorg.org
3 10.0.0.1 mail1.isp.net
4 10.0.0.2 mail2.isp.net
5 10.0.0.3 fred.otherplace.com

Lines 1 and 2 show the IP addresses used for the local Linux server. Lines 3–5 show IP
addresses for commonly used computers on your network. This allows the Linux server to
access these sites by name quicker than by using DNS.

DNS and Domain Names

CHAPTER 4
99

4

D
N

S A
N

D
D

O
M

A
IN

N
A

M
ES

The localhost Name
All Linux computers include a special hostname called localhost. This name always
points to the special IP address 127.0.0.1, which is associated with a special network
device called the loopback device. This name and address allow internal processes to
communicate with other processes on the same system using network programming.
Many programs are configured to use the localhost address. Changing localhost to
point to anything else could change the behavior of those programs.

DNS Resolution File
The /etc/host.conf file specifies the methods and order that Linux can attempt to resolve
hostnames. Listing 4.4 shows a sample /etc/host.conf file.

LISTING 4.4 Sample /etc/host.conf File

1 order hosts,bind
2 multi on

06 0672318342 CH04 2/14/00 2:27 PM Page 99

Line 1 lists the order in which hostnames should be resolved. This shows that first Linux
will look up the hostname in its /etc/hosts file, and then attempt to use DNS (bind) if it is
not found.

Linux Client DNS Utilities
Numerous utilities have been written for Linux that help system administrators find DNS infor-
mation for remote hosts and networks. The Internet Software Consortium has created the
Berkeley Internet Name Domain (BIND) package for UNIX systems, which includes three of
my favorite and often-used utilities: host, nslookup, and dig. On most Linux distributions,
these programs come pre-built in the software distribution. The Red Hat and Mandrake Linux
distributions package these together in the bind-utils RPM package.

These utilities often come in handy when trying to troubleshoot email problems on the
Internet. Often a customer will copy an email address incorrectly and get his email rejected. Of
course he will indicate that he is 100 percent sure that he is using the proper address, and can’t
understand why the message is getting rejected. With a little DNS work, you can determine if
the host part of the email address is correct or a typo.

host
The host program does basic DNS name resolution. The format of the host command is as
follows:

host [-l] [-v] [-w] [-r] [-d] [-t querytype] [-a] host [server]

By default, host will attempt to resolve the hostname host by using the default DNS server
specified in the /etc/resolv.conf file. If server is added, host will attempt to use that
instead of the default DNS server. By adding additional parameters to the command line, the
output and behavior of host can be modified. These parameters are shown in Table 4.5.

TABLE 4.5 host Command Parameters

Parameter Description

-l Lists the complete domain info

-v Uses verbose output format

-w Makes host wait for response

-r Turns off recursion

-d Turns on debugging

-t querytype Specifies definite query type

-a Retrieves all DNS records

Introduction to Email Services and Linux

PART I
100

06 0672318342 CH04 2/14/00 2:27 PM Page 100

The -l option can be used to find information about all the hosts listed in a domain. This is
often used with the -t option to filter particular types of information (such as -t MX, which
returns all the MX records for a domain). Unfortunately in this day of security awareness, it is
often difficult to use the -l option because many DNS servers will refuse attempts to access all
the host information contained in the database. If you are trying to get information from a slow
DNS server (or a slow link to the network), you might want to try the -w parameter. This tells
the host program to wait forever for a response to the query. By default, it will time out after
about one minute.

One useful parameter is -r. This tells the DNS server to return only information regarding the
query that it has in its own local DNS database. The DNS server will not attempt to contact a
remote DNS server to find the information.

This is useful in determining whether your DNS server is properly caching DNS answers.
First, try resolving a hostname using the -r parameter. If no one else has gone there, you
should not get an answer back from your DNS. Then try it without the -r parameter. You
should get the normal DNS information back, as the local DNS server was allowed to contact a
remote DNS server to retrieve the information. Next, try the host command again with the -r
parameter. You should now get the same information that you received from the previous
attempt. This means that the DNS server did indeed cache the results from the previous DNS
query in its local name cache. If you did not receive any information back, your local DNS
server did not cache the previous response. You should have noticed a significant decrease in
time that it took to respond with an answer from cache than when it responded after doing the
DNS query on the network.

By default, host attempts to produce its output in human readable format. For example, a typi-
cal output is shown in Listing 4.5. If you use the -v option, the output changes to resemble the
normal RR format found in the DNS database. This can be useful in trying to debug a DNS
problem with the configuration of the DNS server.

LISTING 4.5 Sample host Output

1 [rich@shadrach rich]$host www.linux.org
2 www.linux.org has address 198.182.196.56
3 www.linux.org mail is handled (pri=20) by router.invlogic.com
4 www.linux.org mail is handled (pri=30) by border-ai.invlogic.com
5 www.linux.org mail is handled (pri=10) by mail.linux.org
6 [rich@shadrach rich]$

Line 1 shows the basic format for using the host command—just add the hostname you are
interested in finding information on. Lines 2–5 show the output from the command. First,
line 2 shows that the DNS server was able to resolve the hostname into an IP address. Then,

DNS and Domain Names

CHAPTER 4
101

4

D
N

S A
N

D
D

O
M

A
IN

N
A

M
ES

06 0672318342 CH04 2/14/00 2:27 PM Page 101

lines 3–5 show that the hostname has three different mail server (MX) records that show
computers that can accept email for that host. Notice that host also lists the preference
(OK, maybe they got it a little confused with priority) of each mail server. If you were
sending mail to a person at this host, you would first attempt to send mail to the priority 10
computer (mail.linux.org). If the host command fails, you can try a different DNS server
to send the query to by specifying its address after the hostname address on the command
line. This is a good technique to use if you think your DNS server is not behaving properly.

nslookup
The nslookup program is an extremely versatile tool that can be used in a variety of trouble-
shooting situations. There are two modes that nslookup can be run under. In non-interactive
mode, it behaves much like the host command discussed previously. The interactive mode is
where all the fun can be found. It can give more detailed information about remote computers
and domains because you can change options as you traverse the DNS database. The basic for-
mat of the nslookup command is

nslookup [-option ...] [host-to-find | -[server]]

If you enter the host-to-find parameter on the command line, nslookup operates in non-
interactive mode and returns the result of the query similar to the host command. If no argu-
ments are given, or the first argument is a hyphen -, nslookup will enter into interactive mode.
If you want to use a different DNS server, you can specify that using the -server argument,
where server is the IP address of the DNS server to use. Otherwise nslookup will use the
default DNS server as listed in the /etc/resolv.conf file.

There are three ways to change option settings in the nslookup program. One way is to list
them as options in the nslookup command line. Another way is to specify them on the interac-
tive command line when nslookup starts by using the set command. The third way is to create
a file in your $HOME directory called .nslookuprc and enter one option per line. A list of
options available is shown in Table 4.6.

TABLE 4.6 nslookup Options

Option Description

all Prints current values of options

class Sets the DNS class value (default=IN)

[no]debug Turns debugging mode on (or off) (default = nodebug)

[no]d2 Turns exhaustive debugging mode on (or off) (default = nod2)

domain=name Sets the default domain name to name

srchlist=name1/name2... Changes the default domain name to name1 and the search list to
name1, name2, and so on

Introduction to Email Services and Linux

PART I
102

06 0672318342 CH04 2/14/00 2:27 PM Page 102

[no]defname Appends the default domain name to a single component lookup
request

[no]search Appends the domain names in search list to the hostname (default =
search)

port=value Changes TCP/UDP port to value (default = 53)

querytype=value Changes type of information requested to type value (default = A)

type=value Same as querytype

[no]recurse Tells name server to query other servers to obtain an answer
(default=recurse)

retry=number Sets number of retries to number (default = 4)

root=host Changes name of root server to host (default = ns.internic.net)

timeout=number Changes initial timeout interval to wait for a reply to number (default
= 5 seconds)

[no]vc Always uses a virtual circuit (default = novc)

[no]ignoretc Ignores packet truncation errors (default = noignoretc)

Listing 4.6 shows a sample nslookup session used to get information for host www.linux.org.
The default parameters return the IP address for the hostname. This example demonstrates
changing the parameters to find the mail servers for the domain.

LISTING 4.6 Sample nslookup Session

1 [katie@shadrach katie]$ nslookup
2 Default Server: ns1.isp.net
3 Address: 10.0.0.1
4
5 > www.linux.org
6 Server: ns1.isp.net
7 Address: 10.0.0.1
8
9 Non-authoritative answer:
10 Name: www.linux.org
11 Address: 198.182.196.56
12
13 > set type=MX
14 > www.linux.org
15 Server: ns1.isp.net
16 Address: 10.0.0.1

DNS and Domain Names

CHAPTER 4
103

4

D
N

S A
N

D
D

O
M

A
IN

N
A

M
ES

Option Description

continues

06 0672318342 CH04 2/14/00 2:27 PM Page 103

17
18 Non-authoritative answer:
19 www.linux.org preference = 20, mail exchanger = router.invlogic.com
20 www.linux.org preference = 30, mail exchanger = border-ai.invlogic.com
21 www.linux.org preference = 10, mail exchanger = mail.linux.org
22
23 Authoritative answers can be found from:
24 linux.org nameserver = NS0.AITCOM.NET
25 linux.org nameserver = NS.invlogic.com
26 router.invlogic.com internet address = 198.182.196.1
27 border-ai.invlogic.com internet address = 205.134.175.254
28 mail.linux.org internet address = 198.182.196.60
29 NS0.AITCOM.NET internet address = 208.234.1.34
30 NS.invlogic.com internet address = 205.134.175.254
31 > exit
32 [katie@shadrach katie]$

Line 5 shows the query for the hostname www.linux.org. Lines 6 and 7 show the DNS server
used to process the query, and lines 9–11 show that the server contained a non-authoritative
answer for the IP address. Obviously someone must have accessed this site before and its IP
address was still in the DNS server’s local name cache. In line 13, the option is set to return
information on the mail servers in the domain. Lines 18–30 show the information returned by
the DNS server. Lines 18–21 show the answer section of the DNS packet, which again indi-
cates that the answer is non-authoritative, and lists the three mail servers responsible for the
www.linux.org hostname. Lines 23–30 show the information in the authoritative and addi-
tional sections in the DNS packet. Lines 23–25 show that there are two DNS servers that are
authoritative for the linux.org domain, and would have the RR records for www.linux.org.
Lines 26–30 show the additional information section, listing IP addresses for hostnames con-
tained in the responses. If you want to extend this example, you could change the default DNS
server to one of the authoritative DNS servers listed (by using the server command) and retry
the MX query to see if the information has changed at all from the information returned from
the non-authoritative DNS server.

dig
The dig program uses a simple command-line format to query DNS servers regarding domain
information. The format for the dig command is as follows:

dig [@server] domain [query-type] [query-class] [+query-option]

➥ [-dig-option] [%comment]

Introduction to Email Services and Linux

PART I
104

LISTING 4.6 continued

06 0672318342 CH04 2/14/00 2:27 PM Page 104

server is an optional DNS server that you can specify. By default, dig will use the DNS
server defined in the /etc/resolv.conf file. You can specify the server option by using either
an IP address in numeric dot notation, or as a hostname. If you use a hostname for the server
option, dig will use the default DNS server to resolve the hostname, and then use that DNS
server to find the information on the domain.

query-type is the RR type information that you are requesting, such as the A, SOA, NS, and MX
records. A query-type of any can be used to return all information available about a domain.

query-class is the network class of information that you are requesting. The default is
Internet (IN), which is the type of information we are looking for.

+query-option is used to change an option value in the DNS packet, or to change the format
of the dig output. Many of these options shadow options available in the nslookup program.
Table 4.7 shows the query-options available to use.

TABLE 4.7 dig query options

Option Description

[no]debug Turns on (off) debugging

[no]d2 Turns on (off) extra debugging

[no]recurse (Doesn’t) use recursive lookups

retry=# Sets number of retries

time=# Sets timeout length

[no]ko Keeps open option (implies vc)

[no]vc (Doesn’t) use virtual circuit

[no]defname (Doesn’t) use default domain name

[no]search (Doesn’t) use domain search list

domain=NAME Sets default domain name to NAME

[no]ignore (Doesn’t) ignore truncation errors

[no]primary (Doesn’t) use primary server

[no]aaonly Authoritative query only flag

[no]cmd Echoes parsed arguments

[no]stats Prints query statistics

[no]Header Prints basic header

[no]header Prints header flags

[no]ttlid Prints TTLs

[no]cl Prints class info

DNS and Domain Names

CHAPTER 4
105

4

D
N

S A
N

D
D

O
M

A
IN

N
A

M
ES

continues

06 0672318342 CH04 2/14/00 2:27 PM Page 105

[no]qr Prints outgoing query

[no]reply Prints reply

[no]ques Prints question section

[no]answer Prints answer section

[no]author Prints authoritative section

[no]addit Prints additional section

pfdef Sets to default print flags

pfmin Sets to minimal print flags

pfset=# Sets print flags to #

pfand=# Bitwise AND prints flags with #

pfor=# Bitwise OR prints flags with #

-dig-option is used to specify other options that affect the operation of dig. Table 4.8 shows
some of the other options available to fine-tune the dig command and its output.

TABLE 4.8 dig operation options

Option Description

-x Specifies inverse address mapping in normal dot notation

-f Reads a file for batch mode processing

-T Time in seconds between batch mode command processing

-p Port number to use

-P After a response, issues a ping command

-t Specifies type of query

-c Specifies class of query

-envsav Specifies that the dig options should be saved to become the default
dig environment

A sample dig session output is shown in Listing 4.7. As you can see, the dig program pro-
duces the same information as host and nslookup, but shows more detail on how and where
the answers came from.

Introduction to Email Services and Linux

PART I
106

TABLE 4.7 continued

Option Description

06 0672318342 CH04 2/14/00 2:27 PM Page 106

LISTING 4.7 Sample dig Output

1 [jessica@shadrach jessica]$ dig www.linux.org
2
3 ; <<>> DiG 8.1 <<>> www.linux.org
4 ;; res options: init recurs defnam dnsrch
5 ;; got answer:
6 ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6
7 ;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2
8 ;; QUERY SECTION:
9 ;; www.linux.org, type = A, class = IN
10
11 ;; ANSWER SECTION:
12 www.linux.org. 12H IN A 198.182.196.56
13
14 ;; AUTHORITY SECTION:
15 linux.org. 12H IN NS ns.invlogic.com.
16 linux.org. 12H IN NS ns0.aitcom.net.
17
18 ;; ADDITIONAL SECTION:
19 ns.invlogic.com. 12H IN A 205.134.175.254
20 ns0.aitcom.net. 1d23h31m17s IN A 208.234.1.34
21
22 ;; Total query time: 335 msec
23 ;; FROM: shadrach to SERVER: default – 10.0.0.1
24 ;; WHEN: Sun Aug 22 15:45:45 1999
25 ;; MSG SIZE sent: 31 rcvd: 145
26
27 [jessica@shadrach jessica]$

Linux as a DNS Server
If you have a direct full-time connection to the Internet, you might want to host your own DNS
server for your domain. You can do this with your Linux server. Alternatively, you could also
use your Linux server as a local DNS server in name caching mode. This would save some net-
work time on DNS requests in that your Linux server will implement its local name cache, and
then use it to answer future DNS requests (within the TTL limit of the information).

The popular UNIX DNS package mentioned previously in the client section—the Berkley
Internet Name Domain (BIND) by the Internet Software Consortium—also contains software
for implementing a DNS server. The DNS server software program is called named. Many
Linux distributions contain the named program in a canned binary package. The current Red
Hat 6.0 distribution uses the bind-8.2-6.i386.rpm package to install the named program and its
related configuration files. If you don’t have a pre-built binary package, or you want to use the

DNS and Domain Names

CHAPTER 4
107

4

D
N

S A
N

D
D

O
M

A
IN

N
A

M
ES

06 0672318342 CH04 2/14/00 2:27 PM Page 107

latest version of BIND, you can download the source code from the Internet Software
Consortium at ftp.isc.org. The current version at the time of this writing is BIND 8.2.1. You
must have the GCC compiler installed on your Linux server to be able to compile the new soft-
ware.

Compiling BIND
Currently, the source code for the BIND package can be downloaded as file ftp://ftp.isc.org/
src/8.2.1/bind-src.tar.gz. The steps involved in compiling a new named program are as
follows:

1. Unpack the file into a work directory by typing

tar –zxvf bind-src.tar.gz

2. Change to the newly created src directory

3. Type make clean

4. Type make depend

5. Type make to produce the binaries

6. Type make install to place the binaries and configuration files in the appropriate direc-
tories

After BIND has been installed by either compiling the source or installing a binary distribu-
tion, you can start configuring the named configuration files for the specific situation you want.

Using named as a Workstation Cache Server
The easiest way to use the named program is as a way to cache DNS responses on your local
Linux server for future requests. First, you must configure the /etc/named.conf file for your
local computer. Listing 4.8 shows what the /etc/named.conf file would look like to use it as a
cached DNS server.

LISTING 4.8 Sample DNS /etc/named.conf File for Caching DNS Server

1 options {
2 directory “/var/named”;
3 };
4
5 zone “.” {
6 type hint;
7 file “root.cache”;8
9 };10
11
12 zone “localhost” {

Introduction to Email Services and Linux

PART I
108

06 0672318342 CH04 2/14/00 2:27 PM Page 108

13 type master;
14 file “pri/localhost”;
15 };
16
17 zone “0.0.127.in-addr.arpa” {
18 type master;
19 file “pri/127.0.0”;
20 };

Lines 1–3 define options that are used in the named program. Line 2 shows that the default
directory for the configuration files will be in the /var/named directory. Lines 5–7 define the
‘root’ domain definitions. As discussed previously, each DNS server must know the address of
the root servers to be able to query the DNS tree. Line 7 indicates that the file which contains
the root server addresses is file /var/named/root.cache. This file can be produced by using
the dig command:

dig @f.root-servers.net . ns >> root.cache

Listing 4.9 shows a sample /var/named/root.cache file.

LISTING 4.9 Sample DNS /var/named/root.cache File

1 ; <<>> DiG 8.2 <<>> @f.root-servers.net . ns
2 ; (1 server found)
3 ;; res options: init recurs defnam dnsrch
4 ;; got answer:
5 ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 10
6 ;; flags: qr aa rd; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 13
7 ;; QUERY SECTION:
8 ;; ., type = NS, class = IN
9
10 ;; ANSWER SECTION:
11 . 6D IN NS G.ROOT-SERVERS.NET.
12 . 6D IN NS J.ROOT-SERVERS.NET.
13 . 6D IN NS K.ROOT-SERVERS.NET.
14 . 6D IN NS L.ROOT-SERVERS.NET.
15 . 6D IN NS M.ROOT-SERVERS.NET.
16 . 6D IN NS A.ROOT-SERVERS.NET.
17 . 6D IN NS H.ROOT-SERVERS.NET.
18 . 6D IN NS B.ROOT-SERVERS.NET.
19. 6D IN NS C.ROOT-SERVERS.NET.
20 . 6D IN NS D.ROOT-SERVERS.NET.
21 . 6D IN NS E.ROOT-SERVERS.NET.
22 . 6D IN NS I.ROOT-SERVERS.NET.

DNS and Domain Names

CHAPTER 4
109

4

D
N

S A
N

D
D

O
M

A
IN

N
A

M
ES

continues

06 0672318342 CH04 2/14/00 2:27 PM Page 109

23 . 6D IN NS F.ROOT-SERVERS.NET.
24
25 ;; ADDITIONAL SECTION:
26 G.ROOT-SERVERS.NET. 5w6d16h IN A 192.112.36.4
27 J.ROOT-SERVERS.NET. 5w6d16h IN A 198.41.0.10
28 K.ROOT-SERVERS.NET. 5w6d16h IN A 193.0.14.129
29 L.ROOT-SERVERS.NET. 5w6d16h IN A 198.32.64.12
30 M.ROOT-SERVERS.NET. 5w6d16h IN A 202.12.27.33
31 A.ROOT-SERVERS.NET. 5w6d16h IN A 198.41.0.4
32 H.ROOT-SERVERS.NET. 5w6d16h IN A 128.63.2.53
33 B.ROOT-SERVERS.NET. 5w6d16h IN A 128.9.0.107
34 C.ROOT-SERVERS.NET. 5w6d16h IN A 192.33.4.12
35 D.ROOT-SERVERS.NET. 5w6d16h IN A 128.8.10.90
36 E.ROOT-SERVERS.NET. 5w6d16h IN A 192.203.230.10
37 I.ROOT-SERVERS.NET. 5w6d16h IN A 192.36.148.17
38 F.ROOT-SERVERS.NET. 5w6d16h IN A 192.5.5.241
39
40 ;; Total query time: 10 msec
41 ;; FROM: power.rc.vix.com to SERVER: f.root-servers.net 192.5.5.241
42 ;; WHEN: Thu Jun 3 14:55:57 1999
43 ;; MSG SIZE sent: 17 rcvd: 436

Lines 26–38 show the IP addresses of the root level servers as of June 1999. You will have to
update this file (every 5 weeks, 5 days, and 16 hours according to the TTL values) to make
sure that your DNS server forwards DNS queries to the proper root level servers.

Back in the /etc/named.conf file in Listing 4.8, you also defined two zones that your DNS
server will be responsible for. Each zone must also have its own definition file. Lines 10–13
show the definition for the localhost zone. It is defined in file /var/named/pri/localhost.
Listing 4.10 shows an example of what this file would look like.

LISTING 4.10 Sample /var/named/pri/localhost DNS File

1 ;localhost.
2 @ in soa localhost. postmaster.localhost. (
3 1993050801 ;serial
4 3600 ;refresh
5 1800 ;retry
6 604800 ;expiration
7 3600) ;minimum
8
9 ns localhost.
10
11 a 127.0.0.1

Introduction to Email Services and Linux

PART I
110

LISTING 4.9 continued

06 0672318342 CH04 2/14/00 2:27 PM Page 110

As can be seen in Listing 4.10, the localhost file defines the SOA for your Linux server, stat-
ing that it is its own DNS name server (line 9), and gives the loopback address as its IP address
(line 11). The last section in the /etc/named.conf file is the reverse lookup zone for your
Linux server. Lines 17–19 in Listing 4.8 define the 0.0.127.in-addr.arpa zone, and point to
configuration file /var/named/pri/127.0.0. Listing 4.11 shows what this file would look like.

LISTING 4.11 Sample /var/named/pri/127.0.0 DNS File

1 ; 0.0.127.in-addr.arpa
2 @ in soa localhost. postmaster.localhost. (
3 1993050801 ;serial
4 3600 ;refresh
5 1800 ;retry
6 604800 ;expiration
7 3600) ;minimum
8
9 ns localhost.
10
11 1 ptr localhost.

Line 11 in Listing 4.11 defines the loopback address 127.0.0.1 as the localhost address.

The final piece of the puzzle is to change the /etc/reslov.conf file to point to the local Linux
server. By specifying the loopback address (127.0.0.1) as the primary nameserver, Linux will
“query itself” for DNS name resolutions. This completes the DNS configuration for the work-
station. By running named as a background process, your Linux server will be able to respond
to DNS queries, and cache the responses in memory to answer future requests quicker.

Using named As a Zone DNS Server
The final example will be using your Linux server as a full-blown DNS server for your
domain. This will use the same named configuration files as in the previous example, but will
add two additional zones to the /etc/named.conf file shown in Listing 4.8. The new zones
will define your domain for the named program. Listing 4.12 shows the additional sections that
will be added to the /etc/named.conf file.

LISTING 4.12 Additional /etc/named.conf Sections

1 zone smallorg.org {
2 type master
3 file “pri/smallorg.org”;
4 };
5

DNS and Domain Names

CHAPTER 4
111

4

D
N

S A
N

D
D

O
M

A
IN

N
A

M
ES

continues

06 0672318342 CH04 2/14/00 2:27 PM Page 111

6 zone 0.168.192.in-addr.arpa {
7 type master;
8 file “pri/192.168.0”;
9 };

Much like the other example, the zone sections define the type of zone DNS server this will be
(the master, or primary), and what files the zone definitions will be found in. Listing 4.13
shows a sample zone definition for the smallorg.org zone file.

LISTING 4.13 Sample /etc/named/pri/smallorg.org DNS File

1 @ IN SOA master.smallorg.org. postmaster.smallorg.org. (
2 199802151 ; serial, todays date + todays
➥serial #
3 3600 ; refresh, seconds
4 1800 ; retry, seconds
5 604800 ; expire, seconds
6 3600) ; minimum, seconds
7
8 NS master ; name server
9 MX 10 mail.smallorg.org. ; Primary mail server
10 MX 20 mail.isp.net. ; Secondary mail server
11
12 localhost A 127.0.0.1
13 master A 192.168.0.1
14 mail A 192.168.0.2

Now you’re halfway to hosting your domain. Next you must create the DNS database file for
your reverse domain address as listed in the /etc/named.conf file in Listing 4.12. Listing 4.14
shows an example of what this file would look like.

LISTING 4.14 Sample /etc/named/pri/192.168.0 DNS File

1 @ IN SOA master.smallorg.org. postmaster.smallorg.org. (
2 199802151 ; Serial, todays date + todays serial
3 3600 ; Refresh
4 1800 ; Retry
5 604800 ; Expire
6 3600) ; Minimum TTL
7 NS master
8
9 1 PTR master.smallorg.org.
10 2 PTR mail.smallorg.org.

Introduction to Email Services and Linux

PART I
112

LISTING 4.12 continued

06 0672318342 CH04 2/14/00 2:27 PM Page 112

These configuration files will allow your named program to respond properly to DNS queries
for your domain. Of course, this assumes that you have properly registered your domain with
the Internet Network Information Center (NIC), and that the root DNS servers for the proper
first level domain (.org in this example) has pointers to the IP address of your Linux server
that is serving as your DNS server.

DNS and Domain Names

CHAPTER 4
113

4

D
N

S A
N

D
D

O
M

A
IN

N
A

M
ES

CAUTION

One final word of caution. The examples in this chapter use fictitious IP addresses for
example purposes. To host your own domain, you must have a valid IP address space
on the Internet as assigned by the Internet Assigned Numbers Authority (IANA) and
use a valid IP address for your DNS server so other Internet computers can connect to
it. Also, your domain must be properly registered with ICANN before any DNS
queries will work on your domain. If you choose to let your ISP host your domain,
you can use the public IP address network of 192.168.0.0 to assign IP addresses to
hosts on your network, but these hosts cannot use a valid domain name in your
domain.

Summary
This chapter discusses the domain name system (DNS) and how it relates to email. Each com-
puter connected to the Internet has a unique hostname and a unique IP address. The DNS data-
base system matches the hostnames and IP addresses together. The database is distributed
among many different servers on the Internet, so no one server has to maintain the list of all
computers. You can find a remote computer’s IP address by its hostname by sending a DNS
query to a DNS server. That server has the capability of walking the DNS tree to find the data-
base record that relates the hostname to the IP address, or vice versa. Many domains use their
domain name as a generic email address. Your email server must know how to use DNS to find
a server responsible for receiving email messages for the domain.

06 0672318342 CH04 2/14/00 2:27 PM Page 113

114

06 0672318342 CH04 2/14/00 2:27 PM Page 114

CHAPTER

5
SMTP Protocol

IN THIS CHAPTER
• SMTP Protocol Description 116

• Message Formats 129

• MIME and Binary Data 134

• Extended SMTP 139

• SMTP on Linux 141

07 0672318342 CH05 2/14/00 2:12 PM Page 115

In the previous chapter, you learned how to locate another computer on the Internet using host-
names and DNS servers. Now that you know where the other computer is, you might want to
actually be able to do something with it. This chapter explains how to send a message to a user
on the remote computer from your computer. The Simple Mail Transfer Protocol (SMTP) has
been used since 1982 to relay email messages and attachments to many different types of com-
puter systems. Its ease of use and portability made it the standard protocol used to transfer
messages between computer systems on the Internet. To have an understanding of how email
works, you should get to know SMTP.

SMTP Protocol Description
The SMTP protocol was designed to work on many different types of transport media. The
most common transport medium is the Internet, using a TCP/IP connection on port 25. Many
Linux distributions will automatically install an SMTP package when the IP services are
installed. A common troubleshooting technique to use to check if a remote server is running an
SMTP server package is to telnet to TCP port 25 and see if you get a response. You can test
this out on your own Linux server by telneting to hostname localhost using port 25. Listing
5.1 shows a sample telnet session to a Linux server running an SMTP package.

LISTING 5.1 Sample telnet Session to Port 25

1 [jessica@shadrach jessica]$ telnet localhost 25
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 220 shadrach.smallorg.org ESMTP Sendmail 8.9.3/8.9.3;

➥Wed, 25 Aug 1999 18:35:33 -0500
6 QUIT
7 221 shadrach.smallorg.org closing connection
8 Connection closed by foreign host.
9 [jessica@shadrach jessica]$

Line 1 shows the telnet command format using host localhost and TCP port 25. Line 5
shows a typical response if your Linux server has an SMTP software package installed. The
first number is a three-digit response code. This code can be used for troubleshooting purposes
if mail is not being transferred properly. Next, the hostname of the SMTP server, and a descrip-
tion of the SMTP software package that the server is using are displayed. This server is using
the common sendmail SMTP software package that is maintained and distributed by the send-
mail Consortium. Line 6 shows how you can close the telnet connection by typing the word
QUIT followed by pressing the ENTER key. The SMTP server should send you a closing mes-
sage and kill the TCP connection. As you can tell from this example, the SMTP protocol uses
simple ASCII text commands, and returns three-digit reply codes with optional ASCII text

Introduction to Email Services and Linux

PART I
116

07 0672318342 CH05 2/14/00 2:12 PM Page 116

messages. The SMTP protocol is defined in Internet Request For Comment (RFC) document
number 821 maintained by the Internet Engineering Task Force (IETF) published on August
21, 1982. Several modifications have been made to the SMTP protocol over the years, but the
basic protocol commands still remain in use.

Basic SMTP Client Commands
When a TCP session has been established and the SMTP server acknowledges the client by
sending a welcome banner (as shown in Listing 5.1), it is the client’s responsibility to control
the connection between the two computers. The client accomplishes this by sending special
commands to the server. The server should respond accordingly to each command sent. RFC
821 defines the basic client commands that an SMTP server should recognize and respond to.
Since then, there have been several extensions to the SMTP protocol that not all servers have
used. This section documents the basic SMTP keywords that are defined in RFC 821. The sec-
tion “Extended SMTP” covers some of the new extensions that have been implemented by sev-
eral SMTP software packages.

The basic format of an SMTP command is

command [parameter]

where command is a four-character SMTP command and parameters are optional qualifying
data for the command. Table 5.1 shows the basic SMTP commands that are available. The fol-
lowing sections describe the commands in more detail.

TABLE 5.1 SMTP Basic Commands

Command Description

HELO Opening greeting from client

MAIL Identifies sender of message

RCPT Identifies recipients

DATA Identifies start of message

SEND Sends message to terminal

SOML Send-or-Mail

SAML Send-and-Mail

RSET Resets SMTP connection

VRFY Verifies username on system

EXPN Queries for lists and aliases

HELP Requests list of commands

SMTP Protocol

CHAPTER 5
117

5

SM
TP P

R
O

TO
C

O
L

continues

07 0672318342 CH05 2/14/00 2:12 PM Page 117

NOOP No operation—does nothing

QUIT Stops the SMTP session

TURN Reverses the SMTP roles

HELO Command
This is not a typo. By definition, SMTP commands are four characters long, thus the opening
greeting by the client to the server is the HELO command. The format for this command is

HELO domain name

The purpose of the HELO command is for the client to identify itself to the SMTP server.
Unfortunately, this method was devised in the early days of the Internet before mass hacker
break-in attempts. As you can see, the client can be identified as whatever it wants to use in the
text string. That being the case, most SMTP servers use this command just as a formality. If
they really need to know the identity of the client, they will try to use a reverse DNS lookup of
the client’s IP address to determine the client’s DNS name. In fact, for security reasons many
SMTP servers will refuse to talk to hosts whose IP addresses do not resolve to a proper DNS
hostname. By sending this command, the client indicates that it wants to initialize a new SMTP
session with the server. By responding to this command, the server acknowledges the new con-
nection, and should be ready to receive further commands from the client.

Introduction to Email Services and Linux

PART I
118

TABLE 5.1 continued

Command Description

People Clients Versus Host Clients
In SMTP you must remember to differentiate between people and hosts. When creat-
ing a new mail message the email user is the client of his local host. Once the user
sends his message, he is no longer the client in the SMTP process. His local host com-
puter takes over the process of mailing the message and now becomes the client as
far as SMTP is concerned. When the local host contacts the remote host to transfer
the message using SMTP, it is now acting as the client in the SMTP process. The HELO
command identifies the local host name as the client, not the actual sender of the
message. This terminology often gets confusing.

MAIL Command
The MAIL command is used to initiate a mail session with the server after the initial HELO com-
mand is sent. It identifies from whom the message is being sent. The format of the MAIL com-
mand is

MAIL reverse-path

07 0672318342 CH05 2/14/00 2:12 PM Page 118

The reverse-path argument not only identifies the sender, but it also identifies how to reach
the sender with a return message. If the sender is a user on the client computer that initiated
the SMTP session, the format for the MAIL command would look something like this:

MAIL FROM:rich@shadrach.smallorg.org

Notice how the FROM section denotes the proper email address for the sender of the message,
including the full hostname of the client computer. This information should appear in the text
of the email message in the FROM section (but more on that later). If the email message has
been routed through several different systems between the original sender and the desired
recipient, each system will add its routing information to the <reverse-path> section. This
documents the path that the email message traversed to get to the server. Often, mail from
clients on private networks has to traverse several mail relay points before getting to the
Internet. The reverse-path information is often useful in troubleshooting email problems, or
in tracking down emailers who are purposely trying to hide their identity by bouncing their
email messages off of several unknowing SMTP servers.

RCPT Command
The RCPT command defines who the recipients of the message are. There can be multiple recip-
ients for the same message. Each recipient is normally listed in a separate RCPT command line.
The format of the RCPT command is

RCPT forward-path

The forward-path argument defines where the email is ultimately destined. This is usually a
fully qualified email address, but could be just a username that is local to the SMTP server. For
example, the following RCPT command

RCPT TO:haley

would send the message to user haley on the SMTP server computer that is processing the
message. Messages can also be sent to users on other computer systems that are remote from
the SMTP server to which the message is sent. For example, sending the following RCPT com-
mand

RCPT TO:riley@meshach.smallorg.org

to the SMTP server on computer shadrach.smallorg.org would cause
shadrach.smallorg.org to make a decision. Because the user is not local to shadrach, it must
decide what to do with the message. There are three possible actions that shadrach could take
with the message. They are as follows:

SMTP Protocol

CHAPTER 5
119

5

SM
TP P

R
O

TO
C

O
L

07 0672318342 CH05 2/14/00 2:12 PM Page 119

• shadrach could forward the message to the destination computer and return an OK
response to the client. In this scenario, shadrach would add its hostname to the
<reverse-path> of the MAIL command line to indicate that it is part of the return path to
route a message back to the original sender.

• shadrach would not forward the message, but would send a reply to the client specifying
that it was not able to deliver the message, but verified that the address of
meshach.smallorg.org was correct. Thus the client could then try to resend the message
directly to meshach.smallorg.org.

• Finally, shadrach would not forward the message, and would send a reply to the client
specifying that this operation is not permitted from this server. It would be up to the sys-
tem administrator at shadrach to figure out what happened and why.

In the early days of the Internet, it was common to run across computers that used the first sce-
nario and blindly forwarded email messages across the world. Unfortunately, that technique
became popular with email spammers. Spammers are people who do mass mailings across the
Internet for either fun or profit. They often use unsuspecting SMTP servers that blindly forward
email messages in an attempt to disguise the origin of their mail messages. To combat this situa-
tion, most mail system administrators have either completely turned off mail forwarding, or
have at least limited email forwarding to hosts within their domain. Many ISPs allow their cus-
tomers to relay email from their mail servers, but restrict outside computers from that privilege.

In the case of multiple recipients, it is up to the client how to handle situations in which some
of the recipients are not acknowledged. Some clients will abort the entire message and return
an error to the sending user. Some will continue sending the message to the recipients that are
acknowledged and list the recipients that aren’t acknowledged in a return message.

DATA Command
The DATA command is the meat-and-potatoes of the SMTP operation. After the MAIL and RCPT
commands are hashed out, the DATA command is used to transfer the actual message. The for-
mat of the DATA command is

DATA

Anything after that command is treated as the message to transfer. Usually the SMTP server
will add a timestamp and the return-path information to the head of the message. The client
indicates the end of the message by sending a line with just a single period. The format for that
line is

<CR><LF>.<CR><LF>

When the SMTP server receives this sequence, it knows that the message transmission is done,
and should return a response code to the client indicating whether the message is accepted.

Introduction to Email Services and Linux

PART I
120

07 0672318342 CH05 2/14/00 2:12 PM Page 120

There has been much work done on the format of the actual DATA messages. Technically there
is no wrong way to send a message, although work has been done to standardize a method (see
the “Message Formats” section). Any combination of valid ASCII characters will be transferred
to the recipients. Listing 5.2 shows a sample session sending a short mail message to a local
user on an SMTP server.

LISTING 5.2 Sample SMTP Session

1 [rich@shadrach rich]$ telnet localhost 25
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 220 shadrach.smallorg.org ESMTP Sendmail 8.9.3/8.9.3;
➥Wed, 25 Aug 1999 19:34:02 -050
6 HELO localhost
7 250 shadrach.smallorg.org Hello localhost [127.0.0.1], pleased to meet you
8 MAIL FROM:rich@localhost
9 250 <rich@localhost>... Sender ok
10 RCPT TO:rich
11 250 <rich>... Recipient ok
12 DATA
13 354 Enter mail, end with “.” on a line by itself
14 This is a short, but sweet, mail message.
15 .
16 250 QAA01619 Message accepted for delivery
17 QUIT
18 221 shadrach.smallorg.org closing connection
19 Connection closed by foreign host.
20 You have mail in /var/spool/mail/rich
21 [rich@shadrach rich]$ mail
22 Mail version 8.1 6/6/93. Type ? for help.
23 “/var/spool/mail/rich”: 1 message 1 new
24 >N 1 rich@shadrach.smallor Wed Aug 25 19:34 11/409
25 &1
26 Message 1:
27 From rich@shadrach.smallorg.org Wed Aug 25 19:34:46 1999
28 Date: Wed, 25 Aug 1999 19:34:24 -0500
29 From: rich@shadrach.smallorg.org
30
31 This is a short, but sweet, mail message.
32
33 &x
34 [rich@shadrach rich]$

SMTP Protocol

CHAPTER 5
121

5

SM
TP P

R
O

TO
C

O
L

07 0672318342 CH05 2/14/00 2:12 PM Page 121

Listing 5.2 shows a typical SMTP exchange between two hosts. Line 12 shows the client enter-
ing the DATA command, and line 13 shows the response returned by the SMTP server. Lines 14
and 15 show the text message sent by the client. Line 15 is the terminating period indicating
the end of the message to the server. As you can see in lines 20–33, the SMTP server trans-
ferred the message to the local user’s mailbox account exactly as the server received it. Also
note how in lines 28 and 29 the SMTP server included a timestamp and the return path infor-
mation in the text of the email message.

Much work has been done in an attempt to standardize the format of Internet mail messages.
RFC 822 specifies a standard format for sending text mail messages between hosts. The sec-
tion “Message Formats” covers some of these features.

SEND Command
The SEND command is used to send a mail message directly to the terminal of a logged in user.
This command only works when the user is logged in, and usually pops up as a message much
like the UNIX write command works. This command does have a serious drawback. It is an
easy way for an external user to determine who was logged into a computer system at any
given time without having to log into the system. Hackers have exploited this “feature” by
searching the Internet for unsuspecting victims’ user IDs and when they are logged in. Because
it is such a security threat, most SMTP software packages do not implement this command
anymore.

SOML Command
The SOML command stands for SEND or MAIL. If the recipients are logged onto the computer
system, it behaves like the preceding SEND command. If not, it behaves like the MAIL command
and sends the message to the recipients’ mailbox. The “exploit-ability” of this command has
made it another victim of the Internet world, and it is often not implemented on newer SMTP
server packages.

SAML Command
The SAML command stands for SEND and MAIL. This command tries to cover both bases by both
sending a message to the terminal of a logged in user, as well as placing the message in the
users’ mailbox. Again, the “exploit-ability” of this command has rendered it unsafe to imple-
ment.

RSET Command
The RSET command is short for reset. If the client somehow gets confused by the responses
from the server and thinks that the SMTP connection has gotten out of sync, it can issue the
RSET command to return the connection back to the HELO command state. Thus any MAIL, RCPT,
or DATA information entered will be lost. Often this is used as a “last ditch effort” when the

Introduction to Email Services and Linux

PART I
122

07 0672318342 CH05 2/14/00 2:12 PM Page 122

client either has lost track of where it was in the command series, or did not expect a particular
response from the server.

VRFY Command
The VRFY command is short for verify. You can use the VRFY command to determine if an
SMTP server can deliver mail to a particular recipient before entering the RCPT command
mode. The format of this command is

VRFY username

When received, the SMTP server will determine whether the user is on the local server. If the
user is local to the server, it will return the full email address of the user. If the user is not
local, the SMTP server can either return a negative response to the client, or indicate that it is
willing to forward any mail messages to the remote user—depending on whether the SMTP
server will forward messages for the particular client.

The VRFY command can be a very valuable troubleshooting tool. Often users incorrectly type a
username or hostname in an email message, and don’t know why their mail message did not
get to where they wanted it to go. Of course the first thing they will do is complain about the
lousy mail system, and then contact you—the mail administrator. As the mail administrator,
you can attempt to verify the email address in two ways. First, use the DNS host command to
determine if the domain name is correct and has a mail server associated with it. Then, you can
telnet to port 25 of the mail server and use the VRFY command to determine if the user name
is correct. Listing 5.3 shows an example of using the VRFY command to check the validity of
usernames.

LISTING 5.3 Example of the VRFY Command

1 [riley@shadrach riley]$ telnet localhost 25
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 220 shadrach.smallorg.org ESMTP Sendmail 8.9.3/8.9.3;
➥ Thu, 26 Aug 1999 19:20:16 -050
6 HELO localhost
7 250 shadrach.smallorg.org Hello localhost [127.0.0.1], pleased to meet you
8 VRFY rich
9 250 <rich@shadrach.smallorg.org>
10 VRFY prez@mechach.smallorg.org
11 252 <prez@mechach.smallorg.org>
12 VRFY jessica
13 550 jessica... User unknown
14 QUIT
15 221 shadrach.smallorg.org closing connection
16 Connection closed by foreign host.
17 [riley@shadrach riley]$

SMTP Protocol

CHAPTER 5
123

5

SM
TP P

R
O

TO
C

O
L

07 0672318342 CH05 2/14/00 2:12 PM Page 123

Lines 8 through 13 show the VRFY commands tried and the results. Line 8 shows an attempt to
VRFY a local user rich. The SMTP server’s response in line 9 shows that the username was
indeed valid, and returns the full email address to the client. Line 10 shows a different
approach. On line 10, the client attempts to VRFY a username on a remote computer. The
response in line 11 from shadrach shows a different result code than the result in line 9. The
next section, “Server Responses,” discusses the meaning of this code in greater detail, but the
upshot is that shadrach is telling the client that it is willing to forward mail to the username
prez at the remote computer meshach.smallorg.org. Line 12 shows an attempt to VRFY a non-
existent username. The response from the SMTP server in line 13 is fairly self-explanatory.

Much like some of the other useful commands, the VRFY command has the capability of being
exploited by hackers. Because of this, many sites do not implement the VRFY command. This
will seriously impede your ability to troubleshoot bad email addresses.

EXPN Command
The EXPN command is short for expand. This command queries the SMTP server for mail lists
and aliases. Mail lists are handy ways of sending mass mailings to groups of people with just
one address. Chapter 18, “Mail Lists,” looks at the topic of mail lists more in depth. Mail
aliases can be used to disguise the real username in an email address. Chapter 17, “Mail
Aliases and Masquerading,” covers aliases more in depth. The format of the EXPN command is

EXPN mail-list

where mail-list is the name of the mail list or alias. The SMTP server will either return an
error code if the client does not have privileges to see the list, or the complete mailing list, one
email address per line.

HELP Command
The HELP command is used to return a list of SMTP commands that the SMTP server will
understand. Most all SMTP software packages will understand and process the basic RFC 821
commands listed here (except of course ones that contain security issues). Where differences
occur are with the extended SMTP options. Listing 5.4 shows the output from a HELP com-
mand issued to a Linux server running the sendmail SMTP package version 8.9.3.

LISTING 5.4 SMTP HELP Command Output

1 [katie@shadrach katie]$ telnet localhost 25
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 220 shadrach.smallorg.org ESMTP Sendmail 8.9.3/8.9.3;
➥ Thu, 26 Aug 1999 19:50:57 -050
6 HELO localhost

Introduction to Email Services and Linux

PART I
124

07 0672318342 CH05 2/14/00 2:12 PM Page 124

7 250 shadrach.smallorg.org Hello localhost [127.0.0.1], pleased to meet you
8 HELP
9 214-This is Sendmail version 8.9.3
10 214-Topics:
11 214- HELO EHLO MAIL RCPT DATA
12 214- RSET NOOP QUIT HELP VRFY
13 214- EXPN VERB ETRN DSN
14 214-For more info use “HELP <topic>”.
15 214-To report bugs in the implementation send email to
16 214- Sendmail-bugs@Sendmail.org.
17 214-For local information send email to Postmaster at your site.
18 214 End of HELP info
19 HELP RCPT
20 214-RCPT TO: <recipient> [<parameters>]
21 214- Specifies the recipient. Can be used any number of times.
22 214- Parameters are ESMTP extensions. See “HELP DSN” for details.
23 214 End of HELP info
24 HELP VRFY
25 214-VRFY <recipient>
26 214- Verify an address. If you want to see what it aliases
27 214- to, use EXPN instead.
28 214 End of HELP info
29 QUIT
30 221 shadrach.smallorg.org closing connection
31 Connection closed by foreign host.
32 [katie@shadrach katie]$

As shown in Listing 5.4, there are two levels of help available. By sending the HELP command
alone, the SMTP server will give a brief overview of all of the available commands. By send-
ing the HELP command with an argument that is another SMTP command, the server will
return a more detailed description of the command, including any parameters that are required.

NOOP Command
The NOOP command is short for no operation. This command has no effect on the SMTP server
other than for it to return a positive response code. This is often a useful command to send to
test connectivity without actually starting the message transfer process.

QUIT Command
The QUIT command does what it says. It indicates that the client computer is finished with the
current SMTP session and wants to close the connection. It is the responsibility of the SMTP
server to respond to this command and to initiate the closing of the TCP connection. If the
server receives a QUIT command in the middle of an email transaction, any data previously
transferred should be deleted and not sent to any recipients.

SMTP Protocol

CHAPTER 5
125

5

SM
TP P

R
O

TO
C

O
L

07 0672318342 CH05 2/14/00 2:12 PM Page 125

TURN Command
The TURN command is not implemented on SMTP servers today for security reasons. It is part
of the RFC 821 standard because it was a great idea that, unfortunately, was exploited by hack-
ers. The TURN command idea was modified in the extended SMTP RFCs, and it is discussed in
the section “Extended SMTP.” It is described here as a background reference for the extended
SMTP version ETRN.

The purpose of the TURN command is to allow two-way mail transfer between two computers
during one TCP connection. Normally, the SMTP protocol sends mail in only one direction for
each connection. The client host is in control of the transmission medium, and directs the
actions of the server by the SMTP commands that are sent. Mail can only be sent from the
client to the server. It would be desirable for a computer to make contact with an SMTP server,
and not only be able to send mail to the server, but also be able to receive any mail that the
server had waiting to send back to the client.

As discussed previously, the server uses the domain name indicated by the HELO command text
string to identify the client it is talking to. The idea of the TURN command is to allow the SMTP
server to switch roles with the client and send any mail destined for the client’s domain name
to the client. The problem with this idea was the reliance by the SMTP server that the client
was actually who it says it was. If a hacker connected to the SMTP server and identified him-
self as another computer domain name, the server would unknowingly send all the mail mes-
sages destined for that domain name to the hacker. Ouch!

Server Responses
For each command that the client sends to the SMTP server, the server must reply with a
response message. As you can see from Listings 5.2 and 5.3, response messages are made up
of two parts. The first part is a three-digit code that is used by the SMTP software to identify
whether the command was successful, and if not, why. The second part is a text string that
helps humans understand the reply. Often the text string is passed on by the SMTP software
and displayed to the user as part of a response message.

Usually a space separates the code from the text string. In the case of multi-line responses
(such as the HELP and EXPN commands in Listing 5.4), a dash (-) separates the code from the
text on all but the last line, which conforms to the normal pattern of using a space. This helps
the client host identify when to expect more lines from the server. There are four different
groups, or categories, of reply codes. The following sections explain these codes.

Error SMTP Response Codes
Table 5.2 shows the response codes for error conditions that could occur from various prob-
lems in the SMTP transaction.

Introduction to Email Services and Linux

PART I
126

07 0672318342 CH05 2/14/00 2:12 PM Page 126

TABLE 5.2 SMTP Error Response Codes

Code Description

500 Syntax error, command not recognized

501 Syntax error in parameters

502 Command not implemented

503 Bad sequence of commands

504 Command parameter not implemented

SMTP error responses are not overly descriptive. They just give a general idea of what might
have gone wrong in the SMTP process. When troubleshooting mail problems, it is helpful to be
able to watch the actual SMTP transactions and watch for command errors if you are commu-
nicating with an unfamiliar SMTP server. Often 500, 502, and 504 errors occur when trying to
implement extended SMTP commands with older SMTP software servers.

Informational SMTP Response Codes
The next category of response codes is informational codes. Informational codes are used to
display additional information about a command. Table 5.3 shows these codes.

TABLE 5.3 SMTP Informational Response Codes

Code Description

211 System status, or system help

214 Help message

As shown in Listing 5.4, the 214 response code is used when displaying output from the HELP
command. When there are multiple lines of output, a dash is used after the response code to
signify that more lines are coming. The last line uses a space to separate the response code
from the text.

Service SMTP Response Codes
Another response code category is the service codes. Service codes are used to mark the status
of the SMTP service in the connection. Table 5.4 shows these codes.

TABLE 5.4 SMTP service Response Codes

Code Description

220 Service ready

221 Service closing transmission channel

421 Service not available

SMTP Protocol

CHAPTER 5
127

5

SM
TP P

R
O

TO
C

O
L

07 0672318342 CH05 2/14/00 2:12 PM Page 127

Each of these response codes will include the hostname of the SMTP server in the text string
portion, as well as the text description. The 421 response code is a little misleading. Many mail
administrators think that this response code is returned when there is no SMTP software avail-
able on the remote server. Although this can happen, usually this response code means that
there is an SMTP server, but it is not accepting mail messages at the time. Sometimes this is
the case if a server locks its file system to perform nightly data backups. The SMTP server
would be unable to store mail messages on the locked file system, so the SMTP server shuts
down temporarily while the backup is running. Trying to connect to the same server a little
later in the evening would result in a successful transaction.

Action SMTP Response Codes
The last response code category relates to replying to SMTP client actions. Table 5.5 shows the
action codes used in an SMTP transaction.

TABLE 5.5 SMTP Action Response Codes

Code Description

250 Requested mail action OK, completed

251 User not local, will forward to <forward-path>

354 Start mail input: end with <CRLF>.<CRLF>

450 Requested mail action not taken: mailbox unavailable

451 Requested action aborted: error in processing

452 Requested action not taken: insufficient system storage

550 Requested action not taken: mailbox unavailable

551 User not local: please try <forward-path>

552 Requested mail action aborted: exceeded storage allocation

553 Requested action not taken: mailbox name not allowed

554 Transaction failed

Action codes are a result of the SMTP server trying to perform a function requested by the
client, such as MAIL, RCPT, and DATA commands. They return the status of the requested action
so that the client will know what actions to take next in the SMTP process.

SMTP server response codes are often “behind-the-scenes” players in the SMTP world. Some
email client packages will forward any error response codes that they receive back to the
sender of the email. When this happens, it is easy to check the response codes against the code
lists to determine what went wrong. Sometimes it is difficult to determine what went wrong
with an email message that does not get processed properly. A return email message does not

Introduction to Email Services and Linux

PART I
128

07 0672318342 CH05 2/14/00 2:12 PM Page 128

get routed back properly to the client, so no error text is sent to the user. Often the mail admin-
istrator has to resort to using network analyzers to watch the actual TCP packets on the LAN
to see the response codes that are coming from the SMTP server. Remember that the SMTP
data packets are ASCII text, so they are easy to read and decode.

Message Formats
Listing 5.2 shows a simple example of an SMTP session. The format of the message was
extremely basic—just one line of text. As shown in the example, the resulting email message
was functional, but not too exciting. Today’s email messages are much more complex, and
users are beginning to expect that level of complexity from their email service. Niceties such as
Subject, CC:, and BCC: lines are now the norm in email text. RFC 822 describes a standard
email message format that most SMTP systems implement to somewhat “standardize” the look
and feel of email. Simple one-line text messages are now unacceptable in the business world.

Standard RFC 822 Header Fields
RFC 822 specifies splitting the message into two separate parts. The first part is called the
header. Its job is to identify the message. The second part is the body of the message. The
header consists of data fields that can be used whenever additional information is needed in the
message. The header fields should appear before the text body of the message, and should be
separated by one blank line. Header fields do not need to appear in any particular order, and
the message can have multiple occurrences of any header field. Figure 5.1 shows how a basic
RFC 822 compliant message would look.

SMTP Protocol

CHAPTER 5
129

5

SM
TP P

R
O

TO
C

O
L

RFC 822 compliant email message

Received:
Return-Path:
Reply–To:
From:
Date:
To:

Message body

FIGURE 5.1
The RFC 822 message format.

07 0672318342 CH05 2/14/00 2:12 PM Page 129

Received Header Field
The format for the received header field is as follows:

Received:
from host name
by host name
via pysical-path
with protocol
id message-id
for final e-mail destination

The received header field is used to identify the SMTP servers that were used to relay the
email message from the originating sender to the destination. Each server will add a new
received field to the email message identifying specific details about itself. The subfields in the
received header field further identify the path, protocol, and computers that were used in trans-
ferring the email message.

Return-path Header Field
The return header field format is as follows:

Return-path: route

The last SMTP server in the relay chain adds the return field to the message. Its purpose is to
identify the route that was taken to pass the message to the destination server. If the message
was sent directly to the destination server, there will be only one address in this field.
Otherwise, this will list the path that was taken to transfer the message.

Originator Header Fields
The originator field shows the address from where the message originated. This is extremely
useful on messages that have been bounced around several times on private networks before
making it to the Internet. The format of this field is

Reply-To: address

The originator field is a small subset of the full-blown authentic header field. This serves as an
easier way for smaller SMTP packages to implement this feature without having to implement
a full-blown authentic header field.

Resent Header Field
The resent header field identifies an email message that for some reason had to be resent from
the client. The format for this field is

Resent-Reply-To: address

Introduction to Email Services and Linux

PART I
130

07 0672318342 CH05 2/14/00 2:12 PM Page 130

Authentic Header Fields
The authentic header fields identify the sender of the email message. The format of the authen-
tic field is

From: user-name
Sender: user-name

The From: field identifies the author of the original message. Usually the from and sender
fields are the same user, so only one is needed. If the situation should occur where the sender
of the email is not the original author, both can be identified for return mail purposes.

Resent-authentic Header Fields
The resent-authentic header identifies the sender of an email message that for some reason had
to be resent by the client. The format for this is

Resent-From: user-name
Resent-Sender: user-name

The resent-from and resent-sender fields behave just like the from and sender authentic fields.
They just signify that the email message was resent from the client for some unknown reason.

Dates Header Fields
The dates header fields are used to timestamp the message as the client sends it to the server.
The format for the date field is

Date: date-time
Resent-Date: date-time

The date header field will pass the data information in the message header exactly as it is
entered in the original message. This is useful for tracking message times in responses, espe-
cially multiple responses.

Destination Header Fields
The destination header fields identify email addresses that are the intended recipients of the
mail message. These fields are purely informational. The SMTP server will not send a message
to a user mailbox unless there has been a RCPT command issued for that user (see the “Basic
SMTP Client Commands” section). The formats for the destination fields are

To: address
Resent-To: address
cc: address
Resent-cc: address
bcc: address
Resent-bcc: address

SMTP Protocol

CHAPTER 5
131

5

SM
TP P

R
O

TO
C

O
L

07 0672318342 CH05 2/14/00 2:12 PM Page 131

The To:, CC:, and BCC: fields have set a standard in the way email is processed. Most email
packages now use this terminology to classify the recipients of a message. The To: field is
intended for the main recipient of the message. The CC: fields, much like in a memo, are recip-
ients that should receive a “copy” of the message. One new item that email has brought into
the world is the term BCC:, or blind carbon copy. A blind carbon copy is a recipient that will
receive a copy of the message, but whose address won’t show up on the message for other peo-
ple to see (sneaky). There has been some debate in computer ethics circles over the ethics of
such a tactic, but practically every email package in use today implements this feature.

Optional Header Fields
Optional header fields are fields that further identify the message to the SMTP server, but are
not required for a message to be RFC 822 compatible. These fields are some of the niceties
mentioned earlier that many email customers have now come to expect to see. The formats of
some of the optional header fields are

Message-ID: message-id
Resent-Message-ID: message-id
In-Reply-To: message-id
References: message-id
Keywords: text-list
Subject: text
Comments: text
Encrypted: word

The most useful and often used optional header field is the Subject field. Most email packages
allow the sender to include a one-line subject that identifies the email message for the recipi-
ent. This text string is often used in the email client package when listing multiple email mes-
sages. Other optional header fields help further identify the email message. The message-id
fields give it a unique message ID that can be referred to in return messages. The encrypted
field indicates if the email message has been encrypted for security purposes, and the keyword
field offers keywords that can be used when searching for specific content in multiple mes-
sages.

Using the RFC 822 format in an SMTP Mail Transaction
A sample SMTP mail transaction using full RFC 822 message formats is shown in Listing 5.5.

LISTING 5.5 Sample SMTP RFC 822 Message Transaction

1 [rich@shadrach rich]$ telnet localhost 25
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 250 shadrach.smallorg.org Hello localhost [127.0.0.1], pleased to meet you
6 MAIL FROM:rich@localhost

Introduction to Email Services and Linux

PART I
132

07 0672318342 CH05 2/14/00 2:12 PM Page 132

7 250 rich@localhost... Sender ok
8 RCPT TO:rich
9 250 rich... Recipient ok
10 DATA
11 354 Enter mail, end with “.” on a line by itself
12 Return-Path:rich@localhost
13 received: from localhost by localhost with TCP/IP id 1 for Richard Blum
14 Reply-to:rich@localhost
15 From:rich
16 Date:8/27/99
17 To:rich
18 cc:jessica
19 cc:katie
20 bcc:barbara
21 bcc:haley
22 Message-ID:1
23 Subject:Test RFC 822 message
24
25 This is a test message sent from the local host to rich.
26 This message is a little larger, and sweet.
27 .
28 250 PAA02866 Message accepted for delivery
29 QUIT
30 221 shadrach.smallorg.org closing connection
31 Connection closed by foreign host.
32 You have new mail in /var/spool/mail/rich
33 [rich@shadrach rich]$ mail
34 Mail version 8.1 6/6/93. Type ? for help.
35 “/var/spool/mail/rich”: 1 message 1 new
36 >N 1 rich@shadrach.smallo Fri Aug 27 18:50 18/622 “Test RFC 822
➥message”
37 &1
38 Message 1:
39 From rich@smallorg.org Fri Aug 27 18:50:21 1999
40 From: rich@shadrach.smallorg.org
41 Reply-to: rich@shadrach.smallorg.org
42 Date: 8/27/99
43 To: rich@shadrach.smallorg.org
44 cc: jessica@shadrach.smallorg.org
45 cc: katie@shadrach.smallorg.org
46 Subject: Test RFC 822 message
47
48 This is a test message sent from the local host to rich.
49 This message is a little larger, and sweet.
50
51 &x
52 [rich@shadrach rich]$

SMTP Protocol

CHAPTER 5
133

5

SM
TP P

R
O

TO
C

O
L

07 0672318342 CH05 2/14/00 2:12 PM Page 133

This example is similar to the example in Listing 5.2, but notice the differences. Lines 12–23
show the RFC 822 header fields that were used for the message. Line 36 shows how the email
reader package has used the RFC 822 subject field as a short description of the email message.
Lines 39–46 show how the header fields were displayed by the email reader package in the
message. One thing that stands out is the missing BCC: fields. The BCC: fields are for identify-
ing blind carbon copies. Those are recipients of the message that other recipients shouldn’t
know got copies (tricky). It makes sense that those fields do not show up in the email reader.
Another obvious difference is the date line. Line 28 in Listing 5.2 shows a complete date that
was automatically added by the email package. Line 42 in Listing 5.5 shows the date as it was
set by the RFC 822 message. This email reader package allowed the RFC 822 field to override
its automatic field insertion.

MIME and Binary Data
You might have noticed that the DATA command is the only way to transfer messages to the
SMTP server. You might also have noticed that the DATA command only allows for ASCII text
lines to be entered. You are probably wondering how you can email those great digital pictures
to all of your relatives if SMTP mail only sends text messages. The answer is simple. The
client’s email program must convert the binary data message into an ASCII text message
before it passes it on to the SMTP program. Then of course the recipient’s email program must
be able to convert the ASCII text message back into the binary data message that was origi-
nally sent. That is much easier said than done.

Several years before SMTP was invented, UNIX system administrators were sending binary
data using ASCII text mail programs. The method they used to convert binary data into ASCII
text was called uuencode and uudecode. The uu stands for UNIX-to-UNIX, a protocol suite
that was invented to help transfer data between UNIX computers using modems (see Chapter
9, “UUCP Protocol”). When SMTP became popular, it was natural for UNIX system adminis-
trators to use these existing utilities for transferring binary data within an SMTP message
across the Internet. Many older email packages still use this method for encoding binary data
to send via SMTP. Unfortunately many newer email packages don’t include this capability.

Introduction to Email Services and Linux

PART I
134

uuencoded Messages
If you receive a binary file that used the uuencode coding method and your emailer

can’t decode it, don’t worry, you can save the entire message as a text file and use a
separate uudecode program to extract the binary file. All Linux distributions come
with the uudecode utility, and many DOS and Windows versions of uudecode are
available also.

07 0672318342 CH05 2/14/00 2:12 PM Page 134

The reason many newer email packages don’t use uuencode is because an Internet standard for
encoding binary data had been created. RFCs 2045 and 2046 describe the Multipurpose
Internet Mail Extensions (MIME) format. MIME is more versatile than uuencode. It identifies
the type of binary file that was converted, as well as passes additional information about the
file to the decoder. MIME enables binary data to be directly incorporated into a standard RFC
822 message. Five new header fields were defined to identify binary data types embedded in
the RFC 822 message. Email packages that can handle MIME messages must be able to
process these five new header types. Figure 5.2 demonstrates how this fits together in a stan-
dard email message.

SMTP Protocol

CHAPTER 5
135

5

SM
TP P

R
O

TO
C

O
L

RFC 822 compliant email message

Received:
Return-Path:
Reply–To:
From:
Date:
To:

MIME-Version
Content-type:

MIME header

Message header

MIME body

FIGURE 5.2
The MIME message header fields.

07 0672318342 CH05 2/14/00 2:12 PM Page 135

MIME-Version Header Field
The first additional header type identifies the version of MIME that the sender used to encode
the message. Currently this value is always 1.0.

Content-Transfer–Encoding
The content-transfer–encoding header field identifies how the binary data embedded in the
message is encoded into ASCII text. There are currently seven different ways to encode the
binary data, but the most common is the base64 type. This method encodes the binary data bay
mapping six-bit blocks of data to eight-bit blocks of printable ASCII text.

Content-ID
The content-ID header field is used to identify MIME sessions with some unique identification
code when using multiple contents.

Content-Description
The content-description header field is an ASCII text description of the data to help identify it
in the text of the email message. This comes in handy when sending binary data such as word
processing documents or graphic images that would otherwise be unidentifiable by their
base64 encoding.

Content-Type Header Field
The content-type header field is where the action is. This field identifies the data that is enclosed
in the MIME message. Currently there are seven basic classes of content-type identified by
MIME. Each type has different subtypes that further define the type of data in the message.

The text content-type identifies data that is in ASCII format and should be able to be read as
is. There are two subtypes—plain, which signifies unformatted ASCII text, and enriched,
which signifies formatting features similar to a rich-text format. Many newer email packages
can display the email message in rich-text format (RTF).

The message content-type allows the email package to send RFC 822 messages within a single
RFC 822 message. The subtypes for this content-type are rfc822, which specifies a normal
embedded RFC 822 formatted message, partial, which allows for breaking up long email
messages into separate bodies, and external-body, which allows for a pointer that points to an
object that is not within the email message.

The image content-type defines embedded binary data streams that represent graphic images.
Currently two subtypes are defined—jpeg and gif.

The video content-type defines embedded binary data streams that represent video data. The
only subtype defined at this time is the mpeg format.

Introduction to Email Services and Linux

PART I
136

07 0672318342 CH05 2/14/00 2:12 PM Page 136

The audio content-type defines embedded binary data streams that represent audio data.
Currently its only subtype is basic, which defines a single-channel ISDN mu-law encoding at
an 8kHz sample rate.

The application content-type is used to identify embedded binary data that represents appli-
cation data, such as spreadsheets, word processor documents, and other applications. Currently
there are two formal subtypes defined—postscript and octet-stream. Often the octet-stream
subtype is used when embedding application-specific data, such as Microsoft Word documents
and Microsoft Excel spreadsheets.

The multipart content-type identifies messages that contain different data content-types com-
bined in one message. This format is common in email packages that can present a message in
a variety of ways, such as ASCII text, HTML, and audio formats. A boundary identifier sepa-
rates each content type, and each content type is identified with its own content-type header
field. The multipart content-type has four subtypes.

The mixed subtype identifies that each of the parts are independent of one another and all
should be presented to the recipient in the order they were sent. The parallel subtype identi-
fies that each of the parts are independent of one another and can be presented to the recipient
in any order. The alternative subtype identifies each of the parts that represent different ways
of presenting the same data. The best method available for the recipient is used. The digest
subtype identifies the same method as the mixed subtype, but specifies that the body of the
message is always in RFC 822 format.

Listing 5.6 demonstrates the use of content-type definitions in a multipart email message.

LISTING 5.6 Sample SMTP Multipart MIME Message Session

1 [rich@shadrach rich]$ telnet localhost 25
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 220 shadrach.smallorg.org ESMTP Sendmail 8.9.3/8.9.3;
➥Mon, 30 Aug 1999 07:36:58 -050
6 HELO localhost
7 250 shadrach.smallorg.org Hello localhost [127.0.0.1], pleased to meet you
8 MAIL FROM:rich@localhost
9 250 rich@localhost... Sender ok
10 RCPT TO:rich
11 250 rich... Recipient ok
12 DATA
13 354 Enter mail, end with “.” on a line by itself
14 From:”Rich Blum” <rich@localhost>

SMTP Protocol

CHAPTER 5
137

5

SM
TP P

R
O

TO
C

O
L

continues

07 0672318342 CH05 2/14/00 2:12 PM Page 137

15 To:”rich”<rich@localhost>
16 Subject:Formatted text message test
17 MIME-Version: 1.0
18 Content-Type: multipart/alternative; boundary=bounds1
19
20 --bounds1
21 Content-Type: text/plain; charset=us-ascii
22
23 This is the plain text part of the message that can be read by simple
24 e-mail readers.
25
26 --bounds1
27 Context-Type: text/entriched
28
29 This is the <bold>rich text</bold> version of the <bigger>SAME</bigger>
➥message.
30
31 --bounds1--
32 .
33 250 MAA04305 Message accepted for delivery
34 QUIT
35 221 shadrach.smallorg.org closing connection
36 Connection closed by foreign host.
37 You have new mail in /var/spool/mail/rich
38 [rich@shadrach rich]$

The sample message shown in Listing 5.6 shows a two-part MIME message. Line 18 shows
the content-type definition for the entire message. The multipart/alternative type indicates that
there are multiple content-types included in this message, and that they are separated by the
boundary identifier bounds1. The first content-type starts at line 21 and is a simple plain ASCII
text message that can be read by virtually any email reader.

The second content-type starts at line 27 and is a fancier enriched text message that uses the
standard rich text format for the message. Because the MIME content-type specified for the
message was multipart/alternative, it is up to the discretion of the email reader which content-
type version of the message to present. Figure 5.3 shows a sample of how a Netscape mail
reader would display the message. Notice how the plain ASCII text part of the message was
discarded, and the enriched text part was presented to the reader. In a normal email message,
both parts would have the same message. I made them different here to show which version the
email reader would use.

Introduction to Email Services and Linux

PART I
138

LISTING 5.6 continued

07 0672318342 CH05 2/14/00 2:12 PM Page 138

FIGURE 5.3
Using Netscape mail to read a MIME multipart message.

Extended SMTP
Since its invention in 1982, SMTP has performed well in transporting messages between com-
puters across the Internet. As it got older, system administrators began to recognize its limita-
tions. Instead of trying to replace a standard protocol that was in use all over the world, work
was done to try and improve the basic SMTP protocol by keeping the original specifications
and adding new features.

RFC 1869 was published in 1995 and defined a method of extending the capabilities of SMTP,
calling it “SMTP Service Extensions.”

Extended SMTP is implemented by replacing the original SMTP greeting (HELO) with a new
greeting command—EHLO. When an SMTP server receives this command, it should realize that
the client is capable of sending extended SMTP commands. Listing 5.7 shows a sample EHLO
session and the commands that are available.

LISTING 5.7 Extended SMTP Commands

1 [katie@shadrach katie]$ telnet localhost 25
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 220 shadrach.smallorg.org ESMTP Sendmail 8.9.3/8.9.3;
➥ Mon, 30 Aug 1999 16:36:48 -050

SMTP Protocol

CHAPTER 5
139

5

SM
TP P

R
O

TO
C

O
L

continues

07 0672318342 CH05 2/14/00 2:12 PM Page 139

6 EHLO localhost
7 250-shadrach.smallorg.org Hello localhost [127.0.0.1], pleased to meet you
8 250-EXPN
9 250-VERB
10 250-8BITMIME
11 250-SIZE
12 250-DSN
13 250-ONEX
14 250-ETRN
15 250-XUSR
16 250 HELP
17 HELP DSN
18 214-MAIL FROM: <sender> [RET={ FULL || HDRS}] [ENVID=<envid>]
19 214-RCPT TO: <recipient> [NOTIFY={NEVER,SUCCESS,FAILURE,DELAY}]
20 214- [ORCPT=<recipient>]
21 214- SMTP Delivery Status Notifications.
22 214-Descriptions:
23 214- RET Return either the full message or only headers.
24 214- ENVID Sender’s “envelope identifier” for tracking.
25 214- NOTIFY When to send a DSN. Multiple options are OK, comma-
26 214- delimited. NEVER must appear by itself.
27 214- ORCPT Original recipient.
28 214 End of HELP info
29 HELP ETRN
30 214-ETRN [<hostname> | @<domain> | #<queuename>]
31 214- Run the queue for the specified <hostname>, or
32 214- all hosts within a given <domain>, or a specially-named
33 214- <queuename> (implementation-specific).
34 214 End of HELP info
35 QUIT
36 221 shadrach.smallorg.org closing connection
37 Connection closed by foreign host.
38 [katie@shadrach katie]$

Line 6 shows the new extended SMTP EHLO command used to connect to the SMTP server.
Lines 7–16 show the server’s response. Notice that the server indicates that more commands
are available now that it is in “extended” mode. One of the new groups of commands is the
Delivery Status Notification options. These options can be used on the MAIL and RCPT com-
mands to indicate the delivery status of a particular email message for the client. One com-
mand that we are extremely interested in as mail administrators is the ETRN command.

Introduction to Email Services and Linux

PART I
140

LISTING 5.7 continued

07 0672318342 CH05 2/14/00 2:12 PM Page 140

The TURN SMTP command was briefly mentioned earlier. This command is extremely useful,
but not very secure. To compensate for that, RFC 1985 defines a new method of implementing
the TURN command that is more secure. The ETRN command allows an SMTP client to issue a
request for the SMTP server to initiate another SMTP connection with the client to transfer
messages back to it. This differs from the original TURN command in that the ETRN command is
just a request to start another SMTP session, not to transfer data on the existing session. This
way, the SMTP server can then contact the client computer using the normal DNS hostname
resolution methods. This does not rely on who the client computer says it is. If a hacker estab-
lishes an unauthorized SMTP connection and issues an ETRN command, the SMTP server will
just start an SMTP connection with the real client and send any mail—no harm done. The for-
mat for the ETRN command is

ETRN name

where name can be either an individual hostname, or a domain name if you are requesting mail
for an entire domain. The ETRN command is a valuable tool for the mail administrator. If you
elect to have an ISP spool mail for your email server, you might use this method to notify the
ISP when you are ready to receive your spooled mail. There are several different ways to
accomplish this. One way is to use a canned Perl program that is supplied with the sendmail
SMTP software package that connects to your ISP and issues the ETRN command for your
domain. When the ISP’s mail server receives this command, it will initiate another SMTP con-
nection with your SMTP server (on the same PPP link) and transfer all mail that it has in the
mail queue for your domain.

SMTP on Linux
For a Linux server to implement SMTP, it must run software capable of understanding the
SMTP protocol. Several different software packages are available for Linux that implement both
the SMTP client and server protocols. Some packages are more robust than others, whereas
some are easier to configure than others. Your choice of which SMTP package to use will
depend on several variables that you will need to evaluate. This section lists some of the more
popular SMTP software packages available for Linux to help you get a feel for what to expect.

sendmail
sendmail is the granddaddy of all SMTP software packages. It has been used for many years in
the UNIX environment. It is produced and supported by the sendmail Consortium (http://
www.sendmail.org). At the time of this writing the current version available is version 8.9.3.
Version 8.10 is in beta testing and may be available soon, so watch the Web site for details on
newer releases.

SMTP Protocol

CHAPTER 5
141

5

SM
TP P

R
O

TO
C

O
L

07 0672318342 CH05 2/14/00 2:12 PM Page 141

sendmail is the most robust of the SMTP software packages around. Because of this robust-
ness, it is also the most difficult to configure. Fortunately there are many guides and help docu-
ments available to help the mail administrator properly install and configure it. Most Linux
distributions use sendmail as the default SMTP package when an SMTP package is installed.
When this is the case, a fairly generic configuration file is generated that allows the Linux
server to send and receive SMTP messages assuming that it is directly connected to the
Internet. If this does not fit your situation, you must change the sendmail configuration file to
meet your specific requirements.

Configuring sendmail can be quite an experience. Entire books are dedicated to just configur-
ing and running sendmail. The sendmail Consortium also has devoted a Web site to helping
mail administrators understand and configure sendmail. One nice feature about sendmail is that
it contains a skeleton configuration file and uses an automated system to generate a specific
configuration file from the skeleton. All you need to do is create a text file that includes the
features and options of sendmail that you want to implement. Listing 5.8 shows a sample send-
mail text file that can be used to generate a configuration file.

LISTING 5.8 Sample sendmail Definition File

1 divert(-1)
2 divert(0)dnl
3 include(`../m4/cf.m4’)dnl
4
5 OSTYPE(`linux’)
6
7 FEATURE(`allmasquerade’)dnl
8 FEATURE(`masquerade_envelope’)dnl
9 FEATURE(`always_add_domain’)dnl
10 FEATURE(`nodns’)dnl
11 FEATURE(`nocanonify’)dnl
12 FEATURE(`local_procmail’)dnl
13 FEATURE(`uucpdomain’)dnl
14
15 MAILER(`smtp’)dnl
16 MAILER(`uucp’)dnl
17 MAILER(`procmail’)dnl
18
19 define(`SMART_HOST’, `uucp-dom:mail.isp.net’)dnl

When the definition file is finished, it needs to be processed by the m4 macro processor pro-
gram. The format for using the m4 program is as follows:

m4 mailhost.m4 > Sendmail.cf

Introduction to Email Services and Linux

PART I
142

07 0672318342 CH05 2/14/00 2:12 PM Page 142

This command will generate a sendmail.cf configuration file from the features and options
you configured in the definition file. Chapter 11, “Installing and Configuring sendmail,” dis-
cusses this process in greater detail.

Another nice thing about sendmail is its wide distribution. Many Internet sites use it, so when a
bug or security hole is found, it is quickly fixed. In the spring of 1999, a well-known email
virus named Melissa came on the Internet scene. It was a typical Microsoft Word macro virus
in that it launched itself from a Microsoft Word document. What made it atypical was that it
used the host computer’s Microsoft Outlook email package to send bogus email copies of itself
to other unsuspecting victims in the address book of the infected client. Even though the virus
did not affect the sendmail program directly, programmers were able to define a filter to add to
a sendmail configuration to ensure that any sendmail SMTP server would not forward an email
that contained the Melissa virus. Pretty neat!

qmail
The qmail software package written by Dan Bernstein is a total replacement for the sendmail
package. Its main focus is on security and reliability—two very impressive goals. Dan has put
up a qmail server on the Internet and has offered $1,000 to anyone who could compromise the
security of the SMTP functions on it. As of the date of this writing, no one has claimed the
prize money. qmail also touts an improved method of writing mail messages to a user’s mail-
box using a new mailbox format that is less susceptible to crashes. Maybe the best feature of
qmail is its ease of configuration. It uses simple ASCII text files to configure features. It is a
good choice for a simple mail server site.

The current version of qmail is version 1.03. Currently no Linux distribution comes with a pre-
compiled qmail package, so if you decide to use it you must download it from the qmail site at
http://www.qmail.org and compile it yourself (but that’s half the fun of Linux).

When it is downloaded and compiled, you must install it. To support the high level of security
that it does, qmail must be installed and run using its own separate user ID and groups.
Actually, it uses two different groups and seven different user IDs. qmail uses the /var/qmail
directory to hold its binary and configuration files. If your Linux distribution installed send-
mail, you must make sure that it is uninstalled (or at least disabled) so that qmail can take con-
trol of the SMTP TCP port to receive incoming SMTP requests. Also, the qmail install
instructions describe the steps you must take to ensure that the qmail daemon is properly
started on boot ups and stopped on shutdowns.

smail
The smail package is an SMTP software implementation offered by the GNU Project, which is
responsible for publishing many free Linux utilities. The GNU project has many download

SMTP Protocol

CHAPTER 5
143

5

SM
TP P

R
O

TO
C

O
L

07 0672318342 CH05 2/14/00 2:12 PM Page 143

mirror sites available to obtain the current release of smail, which at the time of this writing is
at release level 3.2. Also, some Linux distributions include smail as a binary install package.

smail has become popular with many mail administrators who want an SMTP package that
has some of the flexibility of sendmail, but is easier to configure. In fact, sites that use the
UUCP protocol to transfer mail need to do little else than add their domain name to the config-
uration file. The main configuration file for smail is /usr/lib/smail/config. Listing 5.9
shows a sample config file for smail.

LISTING 5.9 Sample smail Configuration File

1 #
2 #list all domain names this host will accept mail for
3 hostnames=mail.smallorg.org:smallorg.org:mail
4 #
5 #describe our advertised domain name
6 visible_name=smallorg.org
7 #
8 #identify our default SMTP gateway to the Internet
9 smart_path=mail.isp.net
10 smart_transport=smtp
11 #
12 #list domains we are authoritative for
13 auth_domains=smallorg.org

That’s it—a 13-line configuration file (including comments) for routing all outbound email
messages to a default SMTP host.

One of the nice features of smail is its capability to deliver mail messages immediately with-
out queuing them for delivery. This method speeds up mail delivery, but could cause some
problems with high mail volume. To solve that problem, smail also can be configured to resort
to mail queuing much like sendmail does.

exim
The exim SMTP program was developed at the University of Cambridge under the GNU
General Public License. It is available for most flavors of UNIX, including Linux. The current
version available for use is 3.02. Its capability of restricting SMTP messages from spammers
and hackers has helped its popularity in the Linux community. It has several configuration files
that can restrict or permit access based on hostnames, IP addresses, and domain names. More
information about this software package can be found at the exim Internet Web site http://
www.exim.org.

Introduction to Email Services and Linux

PART I
144

07 0672318342 CH05 2/14/00 2:12 PM Page 144

Summary
The Simple Mail Transfer Protocol (SMTP) allows computers to transfer messages from a user
on one computer to a user (or multiple users) on another computer using a standard method.
The SMTP protocol is defined in RFC 821, and defines a standard set of commands that are
used to identify the mail sender and recipients, as well as transfer the message. The actual mes-
sage can be in any form, but a standard format has been set forth in RFC 822. This format pro-
vides for two different sections—the message header and the message body. The message
header contains fields that identify important parts of the message such as the sender, recipi-
ents, subject, and comments. Binary data must be encoded into an ASCII text stream before it
can be sent via the SMTP protocol. An Internet standard has been implemented for encoding
and transferring binary data within a standard RFC 822 message. RFCs 2045 and 2046
describe new RFC 822 header fields that help identify the binary data encoding as well as its
purpose. Linux supports the SMTP protocol with several different software implementations.
The sendmail software package is standard on many different UNIX platforms. A version of
sendmail has been ported to the Linux environment. Other Linux SMTP packages include
qmail, smail, and exim, which incorporate improvements and/or ease-of-use to the sendmail
SMTP software package.

SMTP Protocol

CHAPTER 5
145

5

SM
TP P

R
O

TO
C

O
L

07 0672318342 CH05 2/14/00 2:12 PM Page 145

146

07 0672318342 CH05 2/14/00 2:12 PM Page 146

CHAPTER

6
POP3 Protocol

IN THIS CHAPTER
• Description of the

Post Office Protocol 148

• Linux POP3 Implementations 162

08 0672318342 CH06 2/14/00 2:24 PM Page 147

The previous chapter describes how to send mail to a user at a remote computer using the
SMTP protocol. Back in the old days (the 1980s), that user would have to sit at a terminal, log
in to the host computer, and read his mail message via a character-based text email processor.
Now things are different. Computer users want to have the freedom of reading their mail from
anywhere at any time, as well as having fancy GUI interfaces to do that. If the user cannot be
at the Linux server using X Window to view the email, the next best thing is to let her connect
to the Linux server via a network to read her mailbox using a client software package on her
local PC. One protocol that allows a client to read email messages on a remote server is
defined in RFC 1939 and is called the Post Office Protocol (POP). Currently, the POP protocol
is at version 3, thus the new name POP3.

Description of the Post Office Protocol
Much like the SMTP protocol (described in Chapter 5, “SMTP Protocol”) the POP3 protocol is
a command-based protocol. The POP3 server listens for connection requests on TCP port 110,
and it responds by issuing a banner line indicating that it is ready for commands. One method
of determining if a host is running a POP3 server is to telnet to port 110 and see if you get a
POP3 greeting banner. Listing 6.1 shows an example of this.

LISTING 6.1 Sample POP3 Client Session

1 [frank@shadrach frank]$ telnet localhost 110
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 +OK POP3 localhost v7.59 server ready
6 QUIT
7 +OK Sayonara
8 Connection closed by foreign host.
9 [frank@shadrach frank]$

Line 1 shows an example of using the telnet command to attempt a connection to the POP3
TCP port on the local computer. Line 5 shows the response banner that the POP3 server issued
to identify itself. Line 6 shows a POP3 command issued by the client to log off of the server,
and line 7 shows the clever exit message issued by the POP3 server. When the connection is
terminated, the POP3 server will initiate closing the TCP connection. Under normal circum-
stances, the client should respond by closing the TCP connection.

In a POP3 session, the first step for the client would be to log into the server. There are several
different methods to do this. After logging in to the POP3 server, the client can query the
server to see if there are any mail messages in the mailbox assigned to the user ID that the
client logged in with. It is not the intent of the POP3 protocol to allow the client to do exten-

Introduction to Email Services and Linux

PART I
148

08 0672318342 CH06 2/14/00 2:24 PM Page 148

sive manipulation of the messages in its mailbox. The POP3 protocol can simply send a list of
messages to the client and transfer each message individually for the client to manipulate
locally.

POP3 Authentication Methods
After the POP3 client has established a TCP connection to the server, it must be able to iden-
tify itself to the server so that the server can know it is sending the right email messages to the
right user. The original method of POP3 authentication uses a user ID/password command set.
Unfortunately, this method uses a clear text transmission of the user ID and password to log
into the server. This method is not preferred, especially if you are connecting to a remote
server where your packets will traverse unknown networks. To provide an alternative for this
problem, RFC 1734 describes a more secure method of logging into a POP3 server using the
AUTH command. The following sections describe both methods of authentication, as well as a
third, newer method called APOP.

USER/PASS Commands
The USER/PASS command combination is the easiest to implement, but again, the most danger-
ous to use. Each time a client wants to log in to the POP3 server to check mail, her complete
user ID and password are transmitted across the network in plain ASCII text format. Ouch!
The format for these commands is

USER username
PASS password

The username parameter must be a valid user ID for the host POP3 server. The password para-
meter must also be the server password associated with that user ID. Listing 6.2 shows a sam-
ple POP3 session with a client using the USER/PASS combination.

LISTING 6.2 Sample USER/PASS POP3 Client Log In

1 [melanie@shadrach melanie]$ telnet localhost 110
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 +OK POP3 localhost v7.59 server ready
6 USER melanie
7 +OK User name accepted, password please
8 PASS toybox
9 +OK Mailbox open, 0 messages
10 QUIT
11 +OK Sayonara
12 Connection closed by foreign host.
13 [melanie@shadrach melanie]$

POP3 Protocol

CHAPTER 6
149

6

PO
P3 P

R
O

TO
C

O
L

08 0672318342 CH06 2/14/00 2:24 PM Page 149

Line 6 shows the client sending the USER command with her user ID in plain text. The POP3
server responded, asking for the matching password for the user ID. Line 8 shows the client
sending her password. After the password is received, the user ID/password combination is
compared for validity. One security feature of POP3 is that it won’t immediately tell the client
if a user ID is invalid until after the password is entered, thus a hacker can’t easily use a POP3
server to find valid user IDs on the host system. Listing 6.3 shows the difference between a
valid user with a bad password, and an invalid user.

LISTING 6.3 Example of POP3 Login Attempts

1 [rich@shadrach rich]$ telnet localhost 110
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 +OK POP3 localhost v7.59 server ready
6 USER rich
7 +OK User name accepted, password please
8 PASS hello
9 -ERR Bad login
10 USER baduser
11 +OK User name accepted, password please
12 PASS hello
13 -ERR Bad login
14 QUIT
15 +OK Sayonara
16 Connection closed by foreign host.
17 [rich@shadrach rich]$

Line 6 shows a valid user login, with the invalid password attempt on line 8. The POP3
server’s response is shown on line 9, and is purposely generic. Next, on line 10, a login attempt
with an invalid user ID is shown, with the POP3 server’s response shown on line 13. Notice
that both situations produce the same error message from the server. In this case, the use of
generic error messages helps prevent a hacker from using the POP3 server to find valid user
IDs on the system. Of course the downside is that it is not very helpful for mail administrators
trying to troubleshoot connection problems with the host.

Using clear text user IDs and passwords in the POP3 connection is even more dangerous if the
client logs in to the POP3 server several times a day (or hour) to check for new mail messages.
Many email client packages can be configured to check for new mail at regular intervals. This
is a great opportunity for a hacker with a network analyzer to capture user IDs and passwords.
To compensate for this situation, RFC 1939 provides some relief with the APOP command.

Introduction to Email Services and Linux

PART I
150

08 0672318342 CH06 2/14/00 2:24 PM Page 150

APOP Command
The client can use the APOP command in place of the USER/PASS combination to log in to the
POP3 server. The APOP command allows the client to log in to the server without sending a
plain text version of the password. Instead, the APOP command uses an MD5 encrypted version
of the password. The format of the APOP command is

APOP name digest

where name is the normal user ID the client wants to log in as. The digest parameter allows
the client to send an MD5 encoded digest value to the server to authenticate who it is. The
MD5 encryption algorithm was invented by Ron Rivest and is described in RFC 1321. It uses a
hashing algorithm to combine a known message with a shared secret word that only both enti-
ties should know. The result of the hashing algorithm is the digest parameter supplied by the
client. Obviously, for this to work, both the client and server must have a predetermined secret
word to use for the algorithm. The known message is supplied by the POP3 server on the
greeting banner issued when the TCP connection is established. The known message is usually
a message-id followed by the hostname of the POP3 server. An example APOP session is illus-
trated in Listing 6.4.

LISTING 6.4 Sample APOP Session

1 [chris@shadrach chris]$ telnet meshach 110
2 Trying 198.162.0.5...
3 Connected to meshach.smallorg.org.
4 Escape character is ‘^]’.
5 +OK POP3 server ready <1896.698370952@meshach.smallorg.org>
6 APOP chris c4c9334bac560ecc928e58001b3e22fb
7 +OK maildrop has 1 message (369 octets)
8 QUIT
9 +OK Sayonara
10 Connection closed by foreign host.
11 [chris@shadrach chris]$

Line 5 shows the greeting banner displayed by the POP3 server. The known message shows the
timestamp and the hostname within angle brackets. The entire value is used for the known
message. Line 6 shows the APOP command using the user ID and the MD5 hash value of the
known message and the shared secret. The actual text password is never transmitted across the
network. Without the knowledge of the shared secret word, it would be extremely difficult to
break the MD5-encoded password for this client.

The APOP command is not a required command for a POP3 server to support. The easiest way
to determine if a POP3 server supports the APOP command is to observe the greeting banner
when you connect to the server. As can be seen in Listing 6.1, the POP3 server on the sample

POP3 Protocol

CHAPTER 6
151

6

PO
P3 P

R
O

TO
C

O
L

08 0672318342 CH06 2/14/00 2:24 PM Page 151

Linux server does not supply the necessary message for the MD5 algorithm. A client would
not be able to use the APOP method of logging into this server. In fact, trying to use the APOP
command produces a negative response error message from the server.

AUTH Command
Another method of secure user identification is the AUTH command described in RFC 1734.
The AUTH command has been adapted from the newer IMAP protocol (see Chapter 7, “IMAP
Protocol”) that has more functionality in handling mailbox messages than the POP3 protocol.
The format of the AUTH command is

AUTH mechanism

where mechanism is a method of authenticating the user that the client can negotiate with the
server. When an authentication method is agreed upon, the actual user ID authentication will
take place.

The client initiates the negotiation method. The client first issues an AUTH command with the
highest level of authentication encryption that it can support. If the server does not support that
encryption technique, a negative response will be sent to the client. The client can then issue
another AUTH command with a different mechanism specified. This negotiation can go back and
forth until the client and server find a common authentication encryption technique, or they
resort to using the USER/PASS technique. Listing 6.5 shows a sample AUTH negotiation session
with a POP3 server.

LISTING 6.5 Sample AUTH Negotiation Session

1 [matthew@shadrach matthew]$ telnet localhost 110
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 +OK POP3 localhost v6.50 server ready
6 AUTH KERBEROS_V4
7 -ERR Bad authentication
8 AUTH GSSAPI
9 -ERR Bad authentication
10 AUTH SKEY
11 -ERR Bad authentication
12 AUTH
13 +OK Supported authentication mechanisms:
14 LOGIN
15 .
16 AUTH LOGIN
17 + VXNlciBOYW1lAA==
18 xxxxxxxxx

Introduction to Email Services and Linux

PART I
152

08 0672318342 CH06 2/14/00 2:24 PM Page 152

19 + UGFzc3dvcmQA
20 xxxxxxxxx
21 -ERR Bad authentication
22 USER matthew
23 +OK User name accepted, password please
24 PASS apple
25 +OK Mailbox open, 0 messages
26 QUIT
27 +OK Sayonara
28 Connection closed by foreign host.
29 [matthew@shadrach matthew]$

Lines 6 through 11 show the client attempting to negotiate some standard IMAP authentication
techniques with the POP3 server, all of which fail. Line 12 shows the client issuing an AUTH
command with no parameters. The server responds by listing the authentication methods it
supports in lines 14 and 15. Line 16 shows the client attempting to use the LOGIN authentica-
tion method supported by the server. Line 17 shows the encrypted response from the server to
the AUTH command. Unfortunately the client was unable to log in with the LOGIN authentication
method, and had to resort to using the USER/PASS combination in lines 22 through 25.

POP3 Client Commands
When the POP3 client has successfully logged in to the server, it enters the transaction mode.
It must issue commands to control the transfer of messages from the server to the client. Each
command will solicit a specific POP3 action from the server.

STAT
The STAT command has no parameters. It is used to obtain a “drop listing” from the POP3
server. The drop listing is a formatted line of text that indicates the current status of the mail-
box. The line is formatted in the following way:

+OK nn mm

The format of the STAT response is standard to allow email clients to parse the response for the
information. The nn value represents the total number of messages in the user’s mailbox.
Messages that have been marked as deleted are not counted in this value, however, messages
that have already been read are counted. The mm value represents the total byte count of the
messages represented by the count number. The STAT command is often used to quickly check
on the status of the mailbox by the email client program. By logging in and issuing a STAT
command, the email package can compare the message count number to the value obtained at
the last mail check. If the number is different, the email package can then proceed further in
obtaining the messages. The only problem with this method is that the email client has no idea
how many of the messages have been downloaded previously that were not deleted.

POP3 Protocol

CHAPTER 6
153

6

PO
P3 P

R
O

TO
C

O
L

08 0672318342 CH06 2/14/00 2:24 PM Page 153

LIST
The LIST command is used to obtain a scan listing of the mailbox. A scan listing is a brief syn-
opsis of the mailbox contents that includes the message number and its size in bytes. The LIST
command issued with no parameters displays the scan listing of all the messages in the mail-
box. By including a message number as a parameter, the LIST command will display the scan
listing for that individual message. A sample LIST command session is shown in Listing 6.6.

LISTING 6.6 Sample LIST Command

1 [alex@shadrach alex]$ telnet localhost 110
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 +OK POP3 localhost v6.50 server ready
6 USER alex
7 +OK User name accepted, password please
8 PASS tarzan
9 +OK Mailbox open, 2 messages
10 LIST
11 +OK Mailbox scan listing follows
12 1 355
13 2 465
14 .
15 LIST 1
16 +OK 1 355
17 LIST 2
18 +OK 2 465
19 LIST 3
20 -ERR No such message
21 QUIT
22 +OK Sayonara
23 Connection closed by foreign host.
24 [alex@shadrach alex]$

Line 10 shows the client issuing the LIST command with no parameters to the server. The
server responds in lines 12 through 14 first with a positive acknowledgment in line 11, and
then the individual message scan listings in lines 12 and 13. In some POP3 server implementa-
tions, the positive acknowledgment response will include the STAT output to summarize the
messages, but the client software cannot count on that being the case (as shown by this listing).
Lines 15 and 17 show the client issuing a LIST command for individual messages, with the
server’s responses shown in lines 16 and 18. Line 19 shows the client issuing a LIST command
for a nonexistent message number. The server responds with a negative response in line 20.

Introduction to Email Services and Linux

PART I
154

08 0672318342 CH06 2/14/00 2:24 PM Page 154

RETR
The RETR command is used to retrieve the text of individual messages from the mailbox. The
parameter used with this command is a message number as returned by the LIST command
described previously. If the message number is valid, the server will respond with a positive
acknowledgment line and the complete text of the message followed by a terminating character
(a single period on a line by itself). The message sent to the client should be the full RFC
822–formatted message contained in the mailbox on the server as received by the host software
(often SMTP). The POP3 server will not format or manipulate the message in any way. The
job of the POP3 server is to transfer the message in its entirety to the client. A sample RETR
command session is shown in Listing 6.7.

LISTING 6.7 Sample RETR Command

1 [rich@shadrach rich]$ telnet localhost 110
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 +OK POP3 localhost v6.50 server ready
6 USER rich
7 +OK User name accepted, password please
8 PASS guitar
9 +OK Mailbox open, 2 messages
10 LIST
11 +OK Mailbox scan listing follows
12 1 355
13 2 465
14 .
15 RETR 1
16 +OK 355 octets
17 Return-Path: <rich>
18 Received: (from rich@localhost)
19 by shadrach.smallorg.org (8.8.7/8.8.7) id KAA00648
20 for rich; Thu, 2 Sep 1999 10:15:25 -0500
21 Date: Thu, 2 Sep 1999 10:15:25 -0500
22 From: rich@shadrach.smallorg.org
23 Message-Id: <199909021515.KAA00648@shadrach.smallorg.org>
24 To: rich@shadrach.smallorg.org
25 Subject: Message 1
26 Status: O
27
28 This is test message 1
29 .
30 QUIT
31 +OK Sayonara
32 Connection closed by foreign host.
33 [rich@shadrach rich]$

POP3 Protocol

CHAPTER 6
155

6

PO
P3 P

R
O

TO
C

O
L

08 0672318342 CH06 2/14/00 2:24 PM Page 155

Line 15 shows the client issuing the RETR command for message number 1. Lines 16 through
27 show the POP3 server sending the message text in its entirety to the client. It is the respon-
sibility of the client to have a storage buffer large enough to store the message after it receives
it (that’s why the LIST command returns the size of the message).

DELE
The DELE command is used for deleting messages from the mailbox on the server. Its single
parameter is the message number as identified from the LIST command. Actually, the DELE
command does not delete the message, it just marks it for deletion. The actual deletion of the
message will not take place until the session is properly terminated with the QUIT command
described later. Care must be taken when using the DELE command in that the message num-
bering system must be closely watched. Listing 6.8 shows the results from deleting a message
from the scan listing.

LISTING 6.8 Results from Using the DELE Command

1 [rich@shadrach rich]$ telnet localhost 110
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 +OK POP3 localhost v7.59 server ready
6 USER rich
7 +OK User name accepted, password please
8 PASS guitar
9 +OK Mailbox open, 3 messages
10 LIST
11 +OK Mailbox scan listing follows
12 1 377
13 2 387
14 3 396
15 .
16 DELE 1
17 +OK Message deleted
18 LIST
19 +OK Mailbox scan listing follows
20 2 387
21 3 396
22 .
23 QUIT
24 +OK Sayonara
25 Connection closed by foreign host.
26 [rich@shadrach rich]$ telnet localhost 110
27 Trying 127.0.0.1...
28 Connected to localhost.

Introduction to Email Services and Linux

PART I
156

08 0672318342 CH06 2/14/00 2:24 PM Page 156

29 Escape character is ‘^]’.
30 +OK POP3 localhost v7.59 server ready
31 USER rich
32 +OK User name accepted, password please
33 PASS guitar
34 +OK Mailbox open, 2 messages
35 LIST
36 +OK Mailbox scan listing follows
37 1 387
38 2 396
39 .
40 QUIT
41 +OK Sayonara
42 Connection closed by foreign host.
43 [rich@shadrach rich]$

Line 10 shows the client issuing a LIST command to check if any messages are in his mailbox.
Lines 11 through 15 indicate that three messages are available. In line 16, the client issues a
DELE command to delete message number 1 (again, it will actually only be marked for dele-
tion). Line 17 shows the confirmation of the action by the POP3 server. The new scan listing
from the server, shown in lines 20 and 21, now show only messages 2 and 3 available for
downloading. The client decides to terminate the POP3 session at that point.

Lines 26 through 42 show a second POP3 session initiated by the client. In this session, a new
LIST command is issued in line 35. As before, the POP3 server indicates that two messages are
available in the mailbox. However, notice that with the new POP3 session, the server renum-
bered the messages. The message that used to be message 2 is now message 1, and the mes-
sage that used to be message 3 is now message 2.

This example shows that message numbers are not static entities. The message numbers are
valid only for the current POP3 session. Any attempt by the client to use the message numbers
between POP3 sessions will almost always end up with unexpected results. The UIDL com-
mand mentioned in a later section is an optional command that some POP3 servers support in
an attempt to uniquely identify messages between sessions.

NOOP
The NOOP command does what is says—nothing. After receiving a NOOP command, the POP3
server will respond with a positive response. This command can be used to determine the con-
nectivity of the POP3 server. It might only be issued after establishing a session by logging
into the server.

RSET
The RSET command will reset the session back to the start of the session after the authentica-
tion of the client with the server (the client will not have to log in again). The important thing

POP3 Protocol

CHAPTER 6
157

6

PO
P3 P

R
O

TO
C

O
L

08 0672318342 CH06 2/14/00 2:24 PM Page 157

to know about the RSET command is that it will cause the server to unmark any messages
marked for deletion. The messages unmarked will return to the scan listing with their original
message numbers.

QUIT
The QUIT command is used to terminate the POP3 session. When the server receives a QUIT
command, it will actually delete any messages marked for deletion from the user’s mailbox
and terminate the TCP session. If the POP3 session should terminate before the client issues a
QUIT command, any messages marked for deletion are restored and not deleted.

TOP
The TOP command is an optional POP3 command that servers might choose to implement. The
TOP command is a handy way for the client to get a brief synopsis of messages available in the
mailbox. It will return the RFC 822 header fields for a message, along with a designated num-
ber of lines from the body of the message. The TOP command has two parameters that are both
required. The format of the TOP command is

TOP msg n

where msg is the message number from a LIST scan listing, and n is an integer representing the
number of lines from the message body that will be displayed. Email clients often use this
command to obtain Subject header fields of messages to display in a list of messages without
having to download the entire text of the messages. Listing 6.9 shows an example of the TOP
command being used.

LISTING 6.9 Sample of the TOP Command

1 [rich@shadrach rich]$ telnet localhost 110
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 +OK POP3 localhost v7.59 server ready
6 USER rich
7 +OK User name accepted, password please
8 PASS guitar
9 +OK Mailbox open, 5 messages
10 LIST
11 +OK Mailbox scan listing follows
12 1 387
13 2 396
14 3 374
15 4 375
16 5 383
17 .

Introduction to Email Services and Linux

PART I
158

08 0672318342 CH06 2/14/00 2:24 PM Page 158

18 TOP 1 0
19 +OK Top of message follows
20 Return-Path: <rich>
21 Received: (from rich@localhost)
22 by shadrach.smallorg.org (8.9.3/8.9.3) id MAA00496
23 for rich; Thu, 2 Sep 1999 12:35:51 -0500
24 Date: Thu, 2 Sep 1999 12:35:51 -0500
25 From: rich@shadrach.smallorg.org
26 Message-Id: <199909021735.MAA00496@shadrach.smallorg.org>
27 To: rich@shadrach.smallorg.org
28 Subject: Test message 1
29 Status: O
30
31 .
32 TOP 4 10
33 +OK Top of message follows
34 Return-Path: <rich>
35 Received: (from rich@localhost)
36 by shadrach.smallorg.org (8.9.3/8.9.3) id NAA00588
37 for rich; Thu, 2 Sep 1999 13:32:35 -0500
38 Date: Thu, 2 Sep 1999 13:32:35 -0500
39 From: rich@shadrach.smallorg.org
40 Message-Id: <199909021832.NAA00588@shadrach.smallorg.org>
41 To: rich@shadrach.smallorg.org
42 Subject: Sample message #4
43 Status:
44
45 This is the fourth sample message.
46 .
47 QUIT
48 +OK Sayonara
49 Connection closed by foreign host.
50 [rich@shadrach rich]$

Line 10 shows the client issuing the LIST command to obtain the list of mail message numbers
from the POP3 server. When the client has the message numbers, it can begin using the TOP
command to display the RFC 822 header field information from each message. Line 18 shows
the client requesting the information for message 1, with no lines from the message body. The
server response is shown in lines 19 through 31. In line 32, the client requests the first 10 lines
of message 4. Because the message body only has one line, the server responds by displaying
the entire header and message body.

UIDL
The UIDL command is another optional POP3 server command. Its purpose is to uniquely iden-
tify messages in the mailbox between POP3 sessions. As previously shown for the LIST

POP3 Protocol

CHAPTER 6
159

6

PO
P3 P

R
O

TO
C

O
L

08 0672318342 CH06 2/14/00 2:24 PM Page 159

command, messages are normally sequentially numbered during the POP3 session. When a
client terminates one session and begins another, the messages are renumbered sequentially.
Thus, if the client had ten messages in her mailbox and deleted message six during a POP3
session, the next POP3 session would have nine messages renumbered one through nine. This
is not an easy way for the email client software to keep track of messages.

To solve this problem, some POP3 servers implement the UIDL, or “unique-id listing” com-
mand. Each message is assigned a unique character string ID consisting of from 1 to 70 print-
able ASCII characters. That ID will remain with the message for as long as it is in the mailbox.
Often the UIDL of the message is obtained by performing a hash algorithm on the message
header. Using this technique, it is possible for two identical copies of the same message to
have the same UIDL. The client email software should be capable of recognizing this situation
and handling it accordingly. Listing 6.10 shows an example of listing and deleting messages
identified by a UIDL.

LISTING 6.10 Sample of the UIDL Command

1 [rich@shadrach rich]$ telnet localhost 110
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 +OK POP3 localhost v7.59 server ready
6 USER rich
7 +OK User name accepted, password please
8 PASS guitar
9 +OK Mailbox open, 3 messages
10 LIST
11 +OK Mailbox scan listing follows
12 1 370
13 2 371
14 3 370
15 .
16 UIDL
17 +OK Unique-ID listing follows
18 1 37cabbcb00000009
19 2 37cabbcb0000000a
20 3 37cabbcb0000000b
21 .
22 DELE 1
23 +OK Message deleted
24 LIST
25 +OK Mailbox scan listing follows
26 2 371
27 3 370

Introduction to Email Services and Linux

PART I
160

08 0672318342 CH06 2/14/00 2:24 PM Page 160

28 .
29 UIDL
30 +OK Unique-ID listing follows
31 2 37cabbcb0000000a
32 3 37cabbcb0000000b
33 .
34 QUIT
35 +OK Sayonara
36 Connection closed by foreign host.
37 [rich@shadrach rich]$ telnet localhost 110
38 Trying 127.0.0.1...
39 Connected to localhost.
40 Escape character is ‘^]’.
41 +OK POP3 localhost v7.59 server ready
42 USER rich
43 +OK User name accepted, password please
44 PASS guitar
45 +OK Mailbox open, 2 messages
46 LIST
47 +OK Mailbox scan listing follows
48 1 371
49 2 370
50 .
51 UIDL
52 +OK Unique-ID listing follows
53 1 37cabbcb0000000a
54 2 37cabbcb0000000b
55 .
56 QUIT
57 +OK Sayonara
58 Connection closed by foreign host.
59 [rich@shadrach rich]$

Line 16 shows the client issuing the UIDL command to display the unique IDs of the messages
in the mailbox. Lines 17 through 21 show the server’s response with the unique IDs for each
message. In line 22, the client deletes message number 1. Lines 30 through 33 show that the
remaining message UIDLs have not changed. In the next POP3 session, lines 47 through 50
show that the messages have been renumbered for the new session, but lines 52 through 55
show that the UIDL numbers for the remaining messages have stayed the same between POP3
sessions. Thus the client can identify messages between POP3 sessions.

POP3 Protocol

CHAPTER 6
161

6

PO
P3 P

R
O

TO
C

O
L

08 0672318342 CH06 2/14/00 2:24 PM Page 161

POP3 Server Responses
As shown in the sample POP3 sessions earlier in the chapter, every command the client sends
to the POP3 server generates a response from the server. The format of the server responses is

result text

where result is a result code returned by the POP3 server, and text is a text message describ-
ing the results of the command.

There are two results that can be returned by the POP3 server. The +OK message indicates a
successful command result, and an –ERR message indicates an unsuccessful command result.

Details of the command result are contained in the text portion of the return message. Multi-
line responses are allowed. The end of a multi-line response is indicated with a single period
(.) on a line by itself.

Linux POP3 Implementations
Several software packages are available for Linux that implement POP3 clients and servers.
This section discusses three popular packages used in many Linux distributions.

Linux as a POP3 Client
By far the most popular POP3 client package for Linux is the fetchmail program written by
Eric Raymond. Calling it a POP3 program is actually a misnomer because it does much more
than just POP3 client functions. It can retrieve messages from a mailbox on a remote host
using the POP3, IMAP4, or SMTP ETRN protocols. However, with the popularity of POP3 mail
services being offered by ISPs, fetchmail has become the standard software package for many
Linux users wanting to retrieve their POP3 Internet mail. fetchmail automatically determines
which protocols the remote server supports and attempts to choose the best method to transfer
messages. After it downloads the message, it will attempt to pass it to the local mail processor
on the Linux server for delivery to the local user.

One use of fetchmail that is becoming popular is downloading mail for an entire domain using
a single ISP mailbox. The ISP configures its sendmail to forward any message sent to any user
at a domain to a single user ID. For example, any messages sent to prez@smallorg.org,
viceprez@smallorg.org, or janitor@smallorg.org are forwarded by the ISP to the account
maildrop@smallorg.org. The Linux mail server for smallorg.org then uses fetchmail and
POP3 to download the messages for maildrop@smallorg.org. Although each message is sent
to the same mailbox, they all have different values in the RFC 822 To: header field (see the
section “Message Formats” in Chapter 5, “SMTP Protocol”). The fetchmail program can be
configured to forward each of the received messages to the appropriate local mailbox on the

Introduction to Email Services and Linux

PART I
162

08 0672318342 CH06 2/14/00 2:24 PM Page 162

Linux server based on the To: header field values. Although this is an extremely popular tech-
nique (especially with servers running Windows POP3 utilities), it is not generally recom-
mended because important RFC 822 header information can be lost in the process. The best
method to use is the SMTP ETRN method described in Chapter 13, “Connecting the Mailserver
to an ISP.” This method preserves the proper RFC 822 header fields in the messages.

Installing fetchmail
Because of its popularity, many Linux distributions come with a binary package for fetchmail.
If your distribution did not include a fetchmail package, or you want to use the most current
version (currently 5.0.7), you can download the fetchmail source code from the fetchmail home
page at http://tuxedo.org/~esr/fetchmail/. You should have a current version of the GNU
gcc compiler, as well as a current copy of the flex program installed on your Linux system.
After the source code is downloaded, you can unpack it into a working directory by typing the
following:

tar –zxvf fetchmail-5.0.7.tar.gz

This will create a subdirectory named fetchmail-5.0.7 with the source code and related files
needed for compiling. The steps necessary to create the fetchmail executable are

1. Run the configure program. configure checks for compiler-specific options available on
your Linux distribution necessary for the proper creation of the Makefile. The configure
program will perform tests of libraries, include files, and compiler options and output the
results as it goes along. If you want to customize your fetchmail implementation, you
can use the configure parameters to change parts of the program, such as leaving out
IMAP or SMTP support if they are not needed to produce a smaller binary footprint.

2. Run the make utility to process the Makefile created in the previous step. This
will compile the source code pieces and produce two binary files—fetchmail and
fetchmailconf.

3. As the ‘root’ user, run make install to place the executables in the proper location so
that any user on the Linux system can use them without permissions problems (unless, of
course, you do not want any user to be able to use them).

After the executables are created and installed, you must create a configuration file for each
fetchmail user so that fetchmail can properly connect to the remote server and retrieve your mail.

Configuring fetchmail
Each fetchmail user requires a configuration file. The location of the configuration file is
$HOME/.fetchmailrc. When fetchmail runs, it checks for the existence of this file and com-
plains if it is not found, using the following message:

fetchmail: no mailservers have been specified.

POP3 Protocol

CHAPTER 6
163

6

PO
P3 P

R
O

TO
C

O
L

08 0672318342 CH06 2/14/00 2:24 PM Page 163

The .fetchmailrc file is a standard ASCII text file defining what server fetchmail should con-
nect to, what protocol(s) to use, and what user ID and password method it should use to
retrieve the mail messages. The format of the configuration file takes a kind of odd form—half
configuration and half narrative. A sample .fetchmailrc file is shown in Listing 6.11.

LISTING 6.11 Sample .fetchmailrc File

1 # Configuration created Fri Sep 3 09:16:53 1999 by fetchmailconf
2 set postmaster “rich”
3 set bouncemail
4 set properties “”
5 poll 10.0.0.1 with proto POP3
6 user “rich” there with password “guitar” is rich here

Lines 5 and 6 set the fetchmail configuration parameters for the user ID “rich.” The remote
host address, protocol, user ID, and password are all configured in this file. In line 6, fetchmail
will match the remote user “rich” with the local Linux user ID “rich.” This can be changed if
necessary, but be careful with this because it could get extremely confusing.

An easier way to configure the .fetchmailrc file is to use the fetchmailconf configuration X
Window program. This is a graphical program that queries for the necessary configuration
pieces for fetchmail. Table 6.1 shows which lines the fetchmailconf dialogs generate in the
.fetchmailrc file.

TABLE 6.1 .fetchmailrc Lines Generated by fetchmailconf

fetchmailconf window .fetchmailrc lines

Novice configurator poll, frequency

Host configurator poll, proto, user

User configuration password, properties

Figure 6.1 shows the main screen for fetchmailconf.

To use the configuration features, press the Configure fetchmail button. This produces the
fetchmail configurator menu shown in Figure 6.2.

By choosing the Novice Configuration option, fetchmailconf will assist you in setting the
parameters for the POP3 server you connect to. The first screen queries you for the address of
the POP3 server(s) and how frequently you want to poll them for new mail. If a polling fre-
quency is selected, fetchmail will run in background mode and poll the sites as desired. This
won’t work if you are using a dial-in connection to the ISP though. If this is your situation,
choose a poll frequency of 0 and create a shell script that dials the ISP and runs fetchmail
once; then use that script in a cron file to execute at the desired frequency. Figure 6.3 shows a
sample Novice configurator screen.

Introduction to Email Services and Linux

PART I
164

08 0672318342 CH06 2/14/00 2:24 PM Page 164

FIGURE 6.1
The main fetchmail screen.

POP3 Protocol

CHAPTER 6
165

6

PO
P3 P

R
O

TO
C

O
L

FIGURE 6.2
The fetchmail configurator screen options.

FIGURE 6.3
The fetchmail novice configurator main screen.

08 0672318342 CH06 2/14/00 2:24 PM Page 165

After entering the address of the POP3 server, you can edit parameters for it by highlighting
the address and clicking the Edit button. This produces the host configuration screen. Here you
can configure the protocol required to connect to the remote server. You can even let fetchmail
query the remote server, determine which protocols the remote server supports, and choose the
best one by pressing the Probe for Supported Protocols button. Also, you can configure the list
of user IDs for which you want fetchmail to retrieve mailr. Figure 6.4 shows the host configu-
ration screen.

Introduction to Email Services and Linux

PART I
166

FIGURE 6.4
The fetchmail host configuration screen.

By highlighting an individual user ID and pressing the Edit button, you can configure the para-
meters required to connect to the server as the user. Figure 6.5 shows the fetchmail user config-
uration screen.

FIGURE 6.5
The fetchmail user configuration screen.

08 0672318342 CH06 2/14/00 2:24 PM Page 166

The user configuration screen allows you to configure the password required for the user ID
to log into the POP3 server. Also, there are two check boxes to select other options for the
user account. The first box determines if fetchmail will delete all messages in the mailbox
after downloading them. This option saves disk space on the server, but if the user connects to
the server via multiple PCs, this could cause confusion because different mail messages
would then be scattered among the different PCs. The second option, Fetch Old Messages as
Well as New, allows fetchmail to use the POP3 UIDL feature to attempt to identify messages
already downloaded and not download them again. This is a nice feature in that if users use
multiple PCs to check their mailbox, each PC could not delete the mailbox messages, but only
download new messages since the last download. Although this solves the multiple PC mail
problem, it does not solve the disk space issue associated with keeping all mail messages on
the server.

Using fetchmail
When the .fetchmailrc configuration file is completed, you can use the fetchmail program to
retrieve mail from the POP3 server. In interactive mode, all that is needed is to type the com-
mand fetchmail. This will cause fetchmail to read the configuration file, log in to the config-
ured servers, and transfer the mail messages to the appropriate user ID on the local Linux
computer. fetchmail can also be used with command-line parameters that alter its behavior.
Table 6.2 shows some of the options that are available for using fetchmail in POP3 mode.

TABLE 6.2 fetchmail Command-Line Options

Option Description

-V Displays the version of fetchmail

-c Checks for mail without downloading any messages

-s Silent mode—suppresses output

-v Verbose mode—extra output

-a Retrieves all messages from server

-k Keeps messages on the remote server after they have been down-
loaded

-K Deletes messages on the remote server after they have been down-
loaded (default)

-F Flush—deletes old messages before retrieving new messages

-p Specifies a transfer protocol

-U Uses the UIDL to identify messages

-P Uses a different TCP port

-t Sets a different timeout value

POP3 Protocol

CHAPTER 6
167

6

PO
P3 P

R
O

TO
C

O
L

08 0672318342 CH06 2/14/00 2:24 PM Page 167

fetchmail can also be used as a daemon by specifying the poll frequency in the configuration
file. This allows fetchmail to run in the background and check for new mail messages on a reg-
ular basis.

Linux as a POP3 Server
Linux also supports POP3 server implementations to give remote users the ability to check and
retrieve mail messages on the local host. Each email user must have his own user ID on the
Linux server, and each user ID should have access to a single mailbox. The server can then run
POP3 server software as a background process to watch the network for POP3 connections.
Figure 6.6 shows how the POP3 server software interacts on the Linux server, allowing remote
users to access their mailbox on the Linux server.

Introduction to Email Services and Linux

PART I
168

Linux Mailserver

LAN

mike evonne

ipopd

alex

mike evonne alex

FIGURE 6.6
Linux mailserver running POP3 server software.

ipopd
ipopd is the default POP3 server software available for Linux systems. The ipopd program is
part of the IMAP software project maintained by the University of Washington. The IMAP
software project includes both POP3 and IMAP server implementations. Many Linux distribu-
tions include this software as a binary distribution package. The current version shipped with
Red Hat 6.0 is imap-4.5-3.

08 0672318342 CH06 2/14/00 2:24 PM Page 168

The ipopd software contains implementations for both the POP3 protocol and its older
brother—POP2. All new email client software now implements the POP3 protocol, so the
POP2 software is obsolete. The POP3 program is called ipop3d, and is called from the inetd
server software. The /etc/inetd.conf file should already contain a file for POP3 mail, but is
probably commented out. The line should look like the following:

pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d

The ipop3d program is normally installed in the /usr/sbin subdirectory on the Linux server.

qpopper
The qpopper program is a POP3 server implementation originally written at Berkeley, but cur-
rently maintained by Qualcomm. It is included as a binary package with many Linux distribu-
tions, or the latest version (2.53) can be downloaded from the Eudora Web site at http://
www.eudora.com/free/servers.html. One nice feature of qpopper over the standard ipopd
program is its capability to support APOP connections using a special database of user IDs.
The two binary executables installed for qpopper are in.qpopper and popauth.

The in.qpopper program is a replacement for the ipop3d program normally used in Linux
POP3 servers. The /etc/inetd.conf file must be modified to run this program when a client
established a TCP connection on port 110. The /etc/inetd.conf line to use qpopper should
look like this:

pop3 stream tcp nowait root /usr/sbin/tcpd in.qpopper

After restarting the inetd process, the in.qpopper program should be ready to accept new
POP3 connections.

The popauth program allows qpopper the capability to accept APOP connections from clients.
It creates a user database in the /etc/pop.auth file, and uses utilities to add and delete user
IDs to the database. To add a new user ID to the database, use the command

popauth –user username

This creates a new entry for user ID username in the database. To delete users, use the com-
mand

popauth –delete username

To obtain a list of users in the database, you can use the command

popauth –list

After a user ID is in the pop.auth database, the user can use a POP3 client program that imple-
ments the APOP authentication method to connect to the qpopper server.

POP3 Protocol

CHAPTER 6
169

6

PO
P3 P

R
O

TO
C

O
L

08 0672318342 CH06 2/14/00 2:24 PM Page 169

Summary
After mail has been transferred to the Linux SMTP server, users must be able to connect to the
server to retrieve their mail. The Post Office Protocol Version 3 (POP3) is used to download
the messages to the user’s local PC, so they can be read using graphical email packages. The
POP3 protocol is not as robust as newer protocols used, but its simplicity in configuration and

Introduction to Email Services and Linux

PART I
170

Mail Server Philosophy
Maintaining an email server can be a complicated adventure. Mail administrators
must make several political and philosophical decisions for the proper operation of
the mail server in a multiuser environment. Rules for proper mail procedures must be
established before turning users loose on the server.

One of the biggest concerns for the mail administrator is the accumulation of email
messages on the local server. Most email servers are limited in the amount of disk
space available to store mail messages. The POP3 protocol does not specifically men-
tion the deletion of mail messages after retrieval. It is at the discretion of the mail
user to decide whether mail messages should be deleted from the server after down-
loading them to their local PC.

One method to solve this problem is to impose a strict disk space limit on each user’s
mailbox. When the user’s mailbox has reached its imposed limit, the user cannot
receive any more mail messages. This method often becomes politically impossible to
implement.

Another solution is to impose a rule regarding the retention of messages on a per-
message basis. Rules regarding the deletion of read messages after a certain number
of days will sometimes help, but are often complicated and difficult to implement.

Many POP3 client packages can use the UIDL command to identify messages in the
mailbox and download only new messages, saving download time. Unfortunately
some older POP3 clients do not implement the UIDL command, and thus, must down-
load all messages every time they connect to the server. One way to minimize this
problem is to delete every message after downloading it. But then that causes
another problem.

The problem of deleting messages as soon as they are downloaded is magnified
when users must use more than one PC to view their mail. This often occurs when
users are allowed to connect from home to view their email (discussed in Chapter 16,
“Supporting Dial-in Clients”), as well as viewing their email from their office PCs.
Whichever PC they download their message from is where the message will reside.
This results in “splitting” their mailbox onto two separate and distant computers—
something that most (if not all) users do not appreciate.

08 0672318342 CH06 2/14/00 2:24 PM Page 170

use make it a common tool in use today for mail transfers. Software is available for Linux to
implement the POP3 protocol both as a server and as a client. The ipopd and qpopper pro-
grams are used to provide POP3 server functionality to a Linux server so users can retrieve
their mail messages remotely from the server. The fetchmail program is used to allow a Linux
server to act as a POP3 client and retrieve mail messages from a remote POP3 server, often the
ISP mail server that spools mail messages for the Linux mail server. Unfortunately the POP3
protocol has its limitations, and over the years a trend is starting toward more advanced mail
retrieval programs such as IMAP, covered in the next chapter.

POP3 Protocol

CHAPTER 6
171

6

PO
P3 P

R
O

TO
C

O
L

08 0672318342 CH06 2/14/00 2:24 PM Page 171

172

08 0672318342 CH06 2/14/00 2:24 PM Page 172

CHAPTER

7
IMAP Protocol

IN THIS CHAPTER
• Description of the Internet Mail

Access Protocol 174

• Linux IMAP Implementation 198

• Using IMAP on Network Clients 199

09 0672318342 CH07 2/14/00 2:29 PM Page 173

The previous chapter discusses the POP3 protocol—a popular way of retrieving email mes-
sages from a remote server. Although the POP3 protocol is easy to implement, it does have its
drawbacks. Mainly, it lacks any serious message-handling capabilities. Messages are usually
downloaded in mass from the mail server, and then deleted from the server. This technique is
good for the ISP hosting the mail server because it saves on required disk space, but for the
mail user, this could get confusing. By downloading the messages, they become “tied-down” to
the PC in which the download was performed. If your users only retrieve mail from a single
workstation on the network, that might not be a problem, but if they need to access their mail-
box from home as well as from work, this gets to be a big problem. This means that their mail-
box messages get split between two workstations located in different areas. Ouch!

To compensate for this situation, a new protocol was devised. The Internet Message Access
Protocol (IMAP) was developed at the University of Washington so that email users can access
their mailboxes from multiple locations without splitting their mail between workstations. This
is accomplished by maintaining the mailbox on the mail server and allowing the client PC to
manipulate the messages on the server. Of course the downside to this scenario is that the
Linux mail server must maintain all of the mail on its own disk. This can lead to some scary
disk space situations for the mail administrator. Care must be taken when administering an
IMAP server so that the system does not max out on disk space and not be able to store new
messages.

This chapter outlines the IMAP protocol and demonstrates how it is implemented in a Linux
environment. The current version of IMAP is version 4 revision 1, or IMAP4rev1 for short. It
is fully described in RFC 2060.

Description of the Internet Mail Access Protocol
Just like its cousin POP3, IMAP uses a client/server command method of transferring mes-
sages from the server to the client. The client establishes a TCP connection to port 143 of the
server to initiate the connection. The server should respond with a greeting banner. Listing 7.1
shows a sample IMAP session.

LISTING 7.1 Sample IMAP Session

1 [jessica@shadrach jessica]$ telnet localhost 143
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 * OK shadrach.smallorg.org IMAP4rev1 v12.250 server ready
6 a001 LOGOUT
7 * BYE shadrach.smallorg.org IMAP4rev1 server terminating connection

Introduction to Email Services and Linux

PART I
174

09 0672318342 CH07 2/14/00 2:29 PM Page 174

8 a001 OK LOGOUT completed
9 Connection closed by foreign host.
10 [jessica@shadrach jessica]$

Line 1 shows a telnet session to TCP port 143 (the default IMAP port). Line 5 shows the greet-
ing banner presented by the IMAP server. Line 6 shows the LOGOUT command issued by the
client to the server to close the session. The server then sends a termination banner in line 7,
and then closes the TCP session with the client.

Each command from the client must start with a unique identifier that tags the command. The
server can use this identifier when responding to the command, so the client will know which
command the server is responding to in the case of multiple commands being processed. The
identifier is usually a short alphanumeric string that is generated by the client. Line 6 in Listing
7.1 shows that the client chose the tag a001 to represent the first identifier. If more commands
had been sent by the client, the next identifier used would be a002. Often, client command
identifiers will increment sequentially throughout the IMAP session to simplify things.

When the client establishes a connection, it starts out in an un-authenticated state. For the
client to be allowed to perform any operations with the mailbox, it must first authenticate itself
with the server. After the client has authenticated itself to the host, it can issue IMAP com-
mands to manipulate mail messages on the server. The IMAP protocol supports each user hav-
ing multiple mailboxes on a server. The client can read, transfer, and delete messages to and
from any mailbox that he has access to on the server. This is a vast improvement over the
POP3 protocol.

IMAP Authentication Methods
Also like its cousin POP3, IMAP allows several methods to authenticate a client—some more
secure than others. Unlike POP3 clients, IMAP clients often keep established sessions open for
extended periods of time while they process their messages. Thus the user ID and password
pair are not transferred across the network several times each hour as with POP3. Nonetheless,
it is still beneficial to transmit userid and password information using an encrypted method if
possible.

LOGIN
The LOGIN command allows the client to use plain text userids and passwords to log in to the
IMAP server. Although this is not necessarily the best method to use, sometimes it is the only
method that a client and server can agree on. Listing 7.2 shows a sample IMAP logon session
using the LOGIN command.

IMAP Protocol

CHAPTER 7
175

7

IM
A

P P
R

O
TO

C
O

L

09 0672318342 CH07 2/14/00 2:29 PM Page 175

LISTING 7.2 Sample LOGIN Command Session

1 [katie@shadrach katie]$ telnet localhost 143
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 * OK localhost IMAP4rev1 v12.250 server ready
6 a001 LOGIN katie boxcar
7 a001 OK LOGIN completed
8 a002 LOGOUT
9 * BYE shadrach.smallorg.org IMAP4rev1 server terminating connection
10 a002 OK LOGOUT completed
11 Connection closed by foreign host.
12 [katie@shadrach katie]$

Line 6 shows the IMAP user katie logging in to the server with the LOGIN command. Line 7
shows the server response. Note how the server includes the command identifier code (a001)
from the client’s command to tag the response.

AUTHENTICATE
The AUTHENTICATE command allows a client to use alternative methods to log in to the IMAP
server without having to send a plain text userid/password pair. The implementation of individ-
ual authentication methods is optional, and not all IMAP servers support the same set of meth-
ods. When the client issues a valid AUTHENTICATE command, the server responds with a base64
encoded challenge string. It is the responsibility of the client to respond to the challenge with a
base64 encoded response string. If the IMAP server does not support the authentication
method proposed by the client, it will respond with a NO response message. The client must
attempt to negotiate a common authentication method, falling back to the LOGIN method as a
last resort. Listing 7.3 shows a sample AUTHENTICATE session.

LISTING 7.3 Sample AUTHENTICATE Session

1 [riley@shadrach riley]$ telnet localhost 143
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 * OK localhost IMAP4rev1 v12.250 server ready
6 a1 AUTHENTICATE KERBEROS_V4
7 a1 NO AUTHENTICATE KERBEROS_V4 failed
8 a2 AUTHENTICATE GSSAPI
9 a2 NO AUTHENTICATE GSSAPI failed
10 a3 AUTHENTICATE LOGIN
11 + VXNlciBOYU1lAA==
12 *

Introduction to Email Services and Linux

PART I
176

09 0672318342 CH07 2/14/00 2:29 PM Page 176

13 a3 NO AUTHENTICATE LOGIN failed
14 a4 LOGIN riley firetruck
15 a4 OK LOGIN completed
16 a5 LOGOUT
17 * BYE shadrach.smallorg.org IMAP4rev1 server terminating connection
18 a5 OK LOGOUT completed
19 Connection closed by foreign host.
20 [riley@shadrach riley]$

Lines 6 through 9 show failed attempts by the client to negotiate common IMAP authentication
methods. Line 10 shows a successful method. The server responds by issuing a base64
encoded challenge in line 11. However, the client aborts the login attempt in line 12 and resorts
to a LOGIN command in line 14.

IMAP Client Protocol
When the client is authenticated with the IMAP server, it can begin manipulating messages.
The IMAP protocol provides a large number of commands used to read, move, and delete mail
messages from within different mailboxes on the server. Remember the IMAP protocol pro-
vides that all the messages reside on the server. Downloading messages is purely for display
purposes; no messages should be stored on the client.

The default mailbox for a client is called the INBOX. All new messages appear in the INBOX.
The client has the ability to create new mailboxes (sometimes called folders by email client
software) to move messages from the INBOX to other areas to reduce clutter.

Each message is assigned a unique identifier (UID) to identify it in the mailbox. The UID
should persist between sessions so that the IMAP client software can properly identify mes-
sages. Each mailbox has a unique identifier validity tag (UIDVALIDITY). The UIDVALIDITY tag
should persist between sessions only if the UIDs of the messages in the mailbox remain the
same. If there are any different UIDs in the mailbox, the UIDVALIDITY value for the mailbox
should become larger for the next IMAP session. This allows clients the ability to quickly
determine if anything has changed since the last time a mailbox was opened.

Each message is also tagged with flags that indicate the status of the message. A flag might be
session only or permanent. Permanent flags might be changed by the client and will persist
between sessions. Session-only flags will apply only for the current IMAP session. Table 7.1
shows different flags available for mail messages.

IMAP Protocol

CHAPTER 7
177

7

IM
A

P P
R

O
TO

C
O

L

09 0672318342 CH07 2/14/00 2:29 PM Page 177

TABLE 7.1 IMAP Mail Message Flags

Flag Description

\Seen Message has been read

\Answered Message has been answered

\Flagged Message if marked as urgent

\Deleted Message has been deleted

\Draft Message is not in final form

\Recent New mail in mailbox

A mail message can have zero or more flags associated with it. The flag information is trans-
ferred with the message to the client. It is the responsibility of the client to handle the flag
accordingly.

The following sections define the IMAP commands that a client can issue to the IMAP server.
Although the RFC shows IMAP commands in uppercase, it appears that most IMAP servers
will accept commands in either upper- or lowercase. The server should respond to every com-
mand with the information requested, or a negative response if the command is not formatted
properly or not supported.

SELECT
The SELECT command is used to select an active mailbox. By default, no mailboxes are
selected for use when the client first authenticates to the server. The client must select a mail-
box to work in. Usually the first mailbox selected is the special INBOX mailbox where new
messages are placed. The format of the SELECT command is

SELECT mailbox

where mailbox is the text name of the desired mailbox. Only one mailbox can be active at a
time per IMAP connection. If the mailbox exists and the client has proper access to it, the
server responds with a multiline response describing the status of the mailbox. A sample
SELECT session is shown in Listing 7.4.

LISTING 7.4 Sample SELECT Session

1 [alex@shadrach alex]$ telnet localhost 143
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 * OK localhost IMAP4rev1 v12.250 server ready
6 a1 LOGIN alex drums
7 a1 OK LOGIN completed

Introduction to Email Services and Linux

PART I
178

09 0672318342 CH07 2/14/00 2:29 PM Page 178

8 a2 SELECT INBOX
9 * 2 EXISTS
10 * 1 RECENT
11 * OK [UIDVALIDITY 936033227] UID validity status
12 * OK [UIDNEXT 3] Predicted next UID
13 * FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
14 * OK [PERMANENTFLAGS (* \Answered \Flagged \Deleted \Draft \Seen)]

➥ Permanent fs
15 * OK [UNSEEN 2] first unseen message in /var/spool/mail/alex
16 a2 OK [READ-WRITE] SELECT completed
17 a3 LOGOUT
18 * BYE shadrach.smallorg.org IMAP4rev1 server terminating connection
19 a3 OK LOGOUT completed
20 Connection closed by foreign host.
21 [alex@shadrach alex]$

In line 8, user alex issues the SELECT command for the special mailbox INBOX. The server
response is shown in lines 9 through 15. Line 9 shows that two messages exist in the mailbox,
and line 10 shows that there is one new message for alex. Line 11 shows the UIDVALIDITY
value for the mailbox, and line 12 shows the next available UID that will be used in the mail-
box. Both of these values were discussed in the “IMAP Client Protocol” section.

Lines 13 and 14 show the flags settings supported by the mailbox for both session-only (line
13) and permanent (line 14) use. The client is allowed to change the status of these flags for
each message in the mailbox if it so desires. The IMAP command used to change flags for indi-
vidual messages is the STORE command discussed later.

Line 15 also provides important information. It shows that at least one message in the mailbox
is flagged as UNSEEN and provides the UID identifier for the first unseen message. This enables
the email client to know which message to download to view without having to download the
entire mailbox. Another useful piece of information provided is the location of the message. It
shows that the unseen message is in the /var/spool/mail/alex directory. This is where the
Linux mail program places new mail for users.

Line 16 shows the client’s status in the mailbox. The status indicates the permissions that the
client has in the mailbox. The current status of this client is read/write capabilities. This client
will be able to read any message and write any new message in the mailbox. Alternatively, a
client can be granted read-only status and thus cannot add or delete any messages in the mail-
box.

EXAMINE
The EXAMINE command is used to open the mailbox in read-only mode. The server response to
the EXAMINE command is the same as for the SELECT command. The command-line parameter

IMAP Protocol

CHAPTER 7
179

7

IM
A

P P
R

O
TO

C
O

L

09 0672318342 CH07 2/14/00 2:29 PM Page 179

for EXAMINE is the name of the mailbox to open. When a mailbox is opened using the EXAMINE
command, no manipulation of the messages is allowed. Thus you cannot add or remove flags
from messages.

CREATE
The CREATE command is used to create a new mailbox on the IMAP server for the client. The
pathname of the new mailbox will follow normal Linux pathname specifications. A mailbox
name with no path will be created in the $HOME directory of the client. For example, if the
client’s home directory is /home/haley, and she issues a CREATE command to create a mailbox
called stuff/junk, the new mailbox created on the Linux server will have the pathname
/home/haley/stuff/junk. This example assumes a Linux server that uses the / character as
the hierarchy separator; this is not always the case with other IMAP servers.

Introduction to Email Services and Linux

PART I
180

Folders Versus Mailboxes
Some IMAP clients use the term folder to refer to new mailboxes. Some IMAP clients
also allow users to create folders several layers deep, so use caution when creating
new folders (mailboxes). It is easy to get lost in a chain of pathnames.

Listing 7.5 shows a sample IMAP session that creates a new mailbox and makes it the active
mailbox for a user.

LISTING 7.5 Sample CREATE IMAP Session

1 [alex@shadrach alex]$ ls -l
2 total 0
3 [alex@shadrach alex]$ telnet localhost 143
4 Trying 127.0.0.1...
5 Connected to localhost.
6 Escape character is ‘^]’.
7 * OK localhost IMAP4rev1 v12.250 server ready
8 a1 LOGIN alex drums
9 a1 OK LOGIN completed
10 a2 CREATE stuff/junk
11 a2 OK CREATE completed
12 a3 SELECT stuff/junk
13 * 0 EXISTS
14 * 0 RECENT
15 * OK [UIDVALIDITY 936998958] UID validity status
16 * OK [UIDNEXT 1] Predicted next UID
17 * FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
18 * OK [PERMANENTFLAGS (* \Answered \Flagged \Deleted \Draft \Seen)]

09 0672318342 CH07 2/14/00 2:29 PM Page 180

➥Permanent fs
19 a3 OK [READ-WRITE] SELECT completed
20 a4 LOGOUT
21 * BYE shadrah.smallorg.org IMAP4rev1 server terminating connection
22 a4 OK LOGOUT completed
23 Connection closed by foreign host.
24 [alex@shadrach alex]$ ls -lR
25 .:
26 total 1
27 drwx------ 2 alex alex 1024 Sep 10 16:29 stuff
28
29 stuff:
30 total 1
31 -rw------- 1 alex alex 516 Sep 10 16:29 junk
32 [alex@shadrach alex]$

Line 1 shows our test user Alex listing the contents of his empty home directory. In line 3, he
establishes a telnet connection to the local IMAP server. After logging in, Alex issues a CRE-
ATE command in line 10 to create a new mailbox in his system. In line 11, the server responds
positively by indicating that the new mailbox has been created. Alex then tries to use the new
mailbox by issuing a SELECT command for the new mailbox name in line 12. The IMAP server
responds in lines 13 through 19 showing the relevant information for the new mailbox (there
are no new or old messages in the new mailbox—imagine that!). After being satisfied that the
new mailbox actually does exist, Alex then proceeds to log out of the IMAP server. To com-
plete this example, our hero performs another listing of his home directory in line 24. Lines 25
through 31 show the results—a new directory named stuff, and a new file under the directory
named junk. Notice that the new mailbox is a file, not a directory. Messages placed in this
mailbox will be appended to this file as they come in.

DELETE
The DELETE command refers to mailboxes, not messages. The IMAP server will attempt to
delete the mailbox name specified as the argument to the DELETE command. Again, standard
Linux pathnames apply to the argument, relative to the $HOME directory location unless pre-
ceded with a leading /. Messages in deleted mailboxes are lost and gone forever.

RENAME
The RENAME command allows the client to change the name of a mailbox. The RENAME com-
mand uses two parameters. The first parameter is the name of the mailbox that you want to
change. The second parameter is the new mailbox name. The standard rules for pathnames
applies for both parameters. Remember that pathnames without a leading / are relative to the
$HOME directory of the logged in user. Listing 7.6 shows an example of renaming a mailbox.

IMAP Protocol

CHAPTER 7
181

7

IM
A

P P
R

O
TO

C
O

L

09 0672318342 CH07 2/14/00 2:29 PM Page 181

LISTING 7.6 Sample RENAME Command Session

1 [alex@shadrach alex]$ ls -lR
2 .:
3 total 1
4 drwx------ 2 alex alex 1024 Sep 10 16:48 stuff
5
6 stuff:
7 total 1
8 -rw------- 1 alex alex 918 Sep 10 16:44 junk
9 [alex@shadrach alex]$ telnet localhost 143
10 Trying 127.0.0.1...
11 Connected to localhost.
12 Escape character is ‘^]’.
13 * OK localhost IMAP4rev1 v12.250 server ready
14 a1 login alex drums
15 a1 OK LOGIN completed
16 a2 rename stuff/junk newbox
17 a2 OK RENAME completed
18 a3 select newbox
19 * 1 EXISTS
20 * 0 RECENT
21 * OK [UIDVALIDITY 936998958] UID validity status
22 * OK [UIDNEXT 2] Predicted next UID
23 * FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
24 * OK [PERMANENTFLAGS (* \Answered \Flagged \Deleted \Draft \Seen)]

➥ Permanent flags
25 a3 OK [READ-WRITE] SELECT completed
26 a4 logout
27 * BYE shadrach.smallorg.org IMAP4rev1 server terminating connection
28 a4 OK LOGOUT completed
29 Connection closed by foreign host.
30 [alex@shadrach alex]$ ls -lR
31 .:
32 total 2
33 -rw------- 1 alex alex 918 Sep 10 16:44 newbox
34 drwx------ 2 alex alex 1024 Sep 12 13:59 stuff
35
36 stuff:
37 total 0
38 [alex@shadrach alex]$

Line 1 shows our user Alex displaying the contents of his home directory. As from the last
example, he has a mailbox stuff/junk that created a subdirectory stuff and a file junk. In

Introduction to Email Services and Linux

PART I
182

09 0672318342 CH07 2/14/00 2:29 PM Page 182

line 9, Alex establishes an IMAP session with the localhost. After the usual formalities, Alex
issues the RENAME command in line 16, renaming his old stuff/junk mailbox to a new name
newbox. Line 17 shows the IMAP server’s positive response to the command. In line 18, Alex
tries to make the new mailbox active by issuing the SELECT IMAP command. The server
responds with the current information for the new box. One important thing to see here is on
line 19. Previously, Alex had stored a message in the stuff/junk mailbox. Line 19 shows that
the new mailbox, newbox, has one message in it. This shows that renaming a mailbox does not
change the contents of the mailbox, just the name. After disconnecting the IMAP session, Alex
performs another listing of his home directory. Much to his surprise, the stuff directory is still
there, but the junk file has vanished. The IMAP server properly deleted the junk file from the
stuff/junk mailbox, but left behind the stuff subdirectory, which is now empty. Line 33
shows that the new mailbox was created as a new file named newbox.

SUBSCRIBE
The SUBSCRIBE command is used to add a mailbox to the list of active mailboxes for the client.
The SUBSCRIBE command uses a single parameter, which is the mailbox that you want to add.
The current active mailboxes can be listed using the LSUB command described later. The mail-
box does not necessarily have to exist for it to be added to the active mailbox list. This feature
can be used to add active mailboxes that don’t yet exist, or mailboxes that get deleted when
they are empty.

UNSUBSCRIBE
The UNSUBSCRIBE command is used to remove a mailbox from the list of active mailboxes for
the client. The UNSUBSCRIBE command uses a single parameter, which is the mailbox that you
want to remove from the list. The mailbox itself is not deleted, just removed from the client’s
active list. The current active mailboxes can be listed using the LSUB command described later.

LIST
The LIST command is used to obtain a list of mailboxes available to the client. The LIST com-
mand uses two parameters. The format of the LIST command is

LIST reference mailbox

where reference is the directory where the mailbox names will be relative to. If you use an
empty string (“”) for this parameter, the mailboxes listed will be relative to your $HOME direc-
tory. The second parameter, mailbox is the mailbox name that you want to list. This value can
include wildcard characters much like a normal directory listing. If the mailbox name is an
empty string (“”), the server will return the hierarchy delimiter (/ for Linux) and the root name
of the reference parameter. Listing 7.7 shows a sample LIST session.

IMAP Protocol

CHAPTER 7
183

7

IM
A

P P
R

O
TO

C
O

L

09 0672318342 CH07 2/14/00 2:29 PM Page 183

LISTING 7.7 Sample LIST Session

1 [alex@shadrach alex]$ telnet localhost 143
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 * OK localhost IMAP4rev1 v12.250 server ready
6 a1 login alex drums
7 a1 OK LOGIN completed
8 a2 create new/anotherbox
9 a2 OK CREATE completed
10 a3 list “” *
11 * LIST (\NoInferiors) “/” .Xdefaults
12 * LIST (\NoInferiors \UnMarked) “/” .bash_logout
13 * LIST (\NoInferiors \UnMarked) “/” .bash_profile
14 * LIST (\NoInferiors \UnMarked) “/” .bashrc
15 * LIST (\NoSelect) “/” stuff
16 * LIST (\NoInferiors \UnMarked) “/” .mailboxlist
17 * LIST (\NoInferiors \UnMarked) “/” .bash_history
18 * LIST (\NoInferiors) “/” newbox
19 * LIST (\NoSelect) “/” new
20 * LIST (\NoInferiors) “/” new/anotherbox
21 * LIST (\NoInferiors) NIL INBOX
22 a3 OK LIST completed
23 a4 logout
24 * BYE shadrach.smallorg.org IMAP4rev1 server terminating connection
25 a4 OK LOGOUT completed
26 Connection closed by foreign host.
27 [alex@shadrach alex]$

Line 8 shows our test user Alex issuing a CREATE command to create a new mailbox for our
example. In line 10, he issues a LIST command with the parameters “” and *. The first parame-
ter indicates that the mailbox names specified will be relative to his $HOME directory. The sec-
ond parameter is the * wildcard character, indicating that he wants to obtain a listing of all
mailboxes in his $HOME directory. Lines 11 through 22 show the IMAP server’s response to the
LIST command. The IMAP server sends a listing that shows a whole lot more than just mail-
boxes. The IMAP server assumes that every file in Alex’s $HOME directory is related to the mail
system. Although this is somewhat true, there is a problem with hidden configuration files.
Alex was created as a normal Linux user on this system. Thus, his $HOME directory was created
using the template that is found in /etc/skel. This created a few configuration files used for
things such as the bash shell and X Window. Unfortunately, these files come across the IMAP
server as mailboxes.

Introduction to Email Services and Linux

PART I
184

09 0672318342 CH07 2/14/00 2:29 PM Page 184

Another thing that Listing 7.7 shows is how the LIST command displays the mailboxes that it
lists. Lines 11 through 21 show the mailboxes that the IMAP server thinks are on the server.
Notice how the files listed show the mailbox flag \NoInferior, which indicates that there are
no mailboxes under this name. Also, notice how the subdirectories stuff and new (in lines 15
and 19) have the \NoSelect flag, indicating that they cannot be activated using the SELECT
command. Also notice how in line 21 the LIST command automatically lists the INBOX mail-
box, even though no file actually exists in the $HOME directory for this mailbox.

LSUB
The LSUB command is used to correct the problem previously described with the LIST com-
mand. Although the LIST command returns everything that is in a client’s $HOME directory, the
LSUB command lists only the mailboxes that have been tagged as being active for the client
using the SUBSCRIBE command previously described. The parameters for the LSUB command
are a reference name and a mailbox name. Like the LIST command described previously, the
reference parameter points to the directory in which the mailbox names are relative to ($HOME if
“”), and the mailbox parameter is the mailbox you want to list (including wildcard characters).

Mailboxes can be added to the active mailbox list using the SUBSCRIBE command and removed
from the active list by using the UNSUBSCRIBE command, also described earlier. These com-
mands also can be used to allow an IMAP client to implement the network news feature. Each
network newsgroup is implemented as a separate mailbox on the server that can be SUBSCRIBED
to. Now many email clients also include software to access network news and IMAP does not
need to perform these services. Listing 7.8 shows a sample LSUB session.

LISTING 7.8 Sample LSUB Command Session

1 [alex@shadrach alex]$ telnet localhost 143
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 * OK localhost IMAP4rev1 v12.250 server ready
6 a1 login alex drums
7 a1 OK LOGIN completed

IMAP Protocol

CHAPTER 7
185

7

IM
A

P P
R

O
TO

C
O

L

CAUTION

If you are creating user IDs on a Linux system for purely email purposes, you should
try to avoid using the normal user creation techniques, or at least remember to
remove the standard configuration files that are often created by default.

continues

09 0672318342 CH07 2/14/00 2:29 PM Page 185

8 a2 subscribe new/anotherbox
9 a2 OK SUBSCRIBE completed
10 a3 lsub “” *
11 * LSUB () “/” stuff/junk
12 * LSUB () “/” newbox
13 * LSUB () “/” new/anotherbox
14 a3 OK LSUB completed
15 a4 logout
16 * BYE shadrach.smallorg.org IMAP4rev1 server terminating connection
17 a4 OK LOGOUT completed
18 Connection closed by foreign host.
19 [alex@shadrach alex]$

Line 8 shows Alex adding a new mailbox created in the last example to his list of subscribed
mailboxes. In line 10, he issues the LSUB command to see what mailboxes he has subscribed to.
Notice that the LSUB parameters point to his $HOME directory and use the * wildcard character
to list all the mailboxes under his $HOME directory. The IMAP server’s response is shown in
lines 11 through 14. This response differs greatly from the LIST response shown in Listing 7.7.
Only mailboxes that Alex had subscribed to are listed. Also notice line 11. The stuff/junk
mailbox had been successfully renamed back in Listing 7.6. What happened? Remember that
subscribing to a mailbox does not necessarily mean that the mailbox is still available. The LSUB
command keeps any previously subscribed mailboxes in its active list regardless of the actual
mailbox status. This allows for mailboxes to be temporarily deleted when they are empty and
re-created when they get messages, without the clients having to re-subscribe to them.

STATUS
The STATUS command is used to request the current status of a mailbox. The first parameter for
this command is the name of the mailbox. The second parameter is a list of items the client
wants to receive information on enclosed in parentheses (). The STATUS command can be used
to obtain mailbox information without having to issue the SELECT or EXAMINE commands to
actually open the mailbox.

The items that the STATUS command can retrieve information on are shown in Table 7.2.

TABLE 7.2 STATUS Command Data Items

Item Description

MESSAGES Total number of messages in mailbox

RECENT Number of messages in mailbox flagged with the \RECENT flag

UIDNEXT Next available UID to assign to a new message

Introduction to Email Services and Linux

PART I
186

LISTING 7.8 continued

09 0672318342 CH07 2/14/00 2:29 PM Page 186

UIDVALIDITY The UID validity identifier for the mailbox

UNSEEN Number of messages in mailbox not flagged with the \SEEN flag

A sample IMAP session using the STATUS command is shown in Listing 7.9.

LISTING 7.9 Sample STATUS Command

1 [alex@shadrach alex]$ telnet localhost 143
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 * OK localhost IMAP4rev1 v12.250 server ready
6 a1 login alex drums
7 a1 OK LOGIN completed
8 a2 status inbox (messages recent unseen)
9 * STATUS inbox (MESSAGES 1 RECENT 0 UNSEEN 0)
10 a2 OK STATUS completed
11 a3 status newbox (messages uidnext unseen)
12 * STATUS newbox (MESSAGES 1 UNSEEN 0 UIDNEXT 2)
13 a3 OK STATUS completed
14 a4 logout
15 * BYE shadrach.smallorg.org IMAP4rev1 server terminating connection
16 a4 OK LOGOUT completed
17 Connection closed by foreign host.
18 [alex@shadrach alex]$

Line 8 shows Alex issuing the STATUS command asking for information about the total number
of messages, the number of recent messages, and the number of unseen messages from the spe-
cial INBOX mailbox. Line 9 shows the IMAP server response to the command. Line 11 shows
another STATUS command issued by Alex for another mailbox. Notice the IMAP server
response in line 12. The server responded with the information requested for the mailbox, but
not in the order that it was requested. The IMAP server will always use a consistent order in
returning the information. The order is MESSAGES, RECENT, UNSEEN, UIDNEXT, and UIDVALIDITY.

APPEND
The APPEND command is an interesting addition to the IMAP command family. Normally, the
IMAP protocol is used exclusively for reading mail from mailboxes. The APPEND command
gives the IMAP protocol the ability to send messages to a mailbox by appending the message
to the end of the mailbox file. This is an extremely tricky and dangerous practice, and it is not
recommended as a normal replacement for using SMTP software to deliver messages. It’s more

IMAP Protocol

CHAPTER 7
187

7

IM
A

P P
R

O
TO

C
O

L

Item Description

09 0672318342 CH07 2/14/00 2:29 PM Page 187

of a “nice-to-have” feature of IMAP just in case the need arises. The basic format of the
APPEND command is

APPEND mailbox [(flags)] [date/time string] {message size} message

This is an awkward command to implement (end even more awkward to try and simulate).
Listing 7.10 shows an attempt to push a message into a mailbox. Of course the client needs
read/write capabilities for the mailbox.

LISTING 7.10 Sample APPEND Command Session

1 [alex@shadrach alex]$ telnet localhost 143
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 * OK localhost IMAP4rev1 v12.250 server ready
6 a1 login alex drums
7 a1 OK LOGIN completed
8 a2 create testbox
9 a2 OK CREATE completed
10 a3 append testbox (\SEEN) {23}
11 + Ready for argument
12 This is a test message.
13 a3 OK APPEND completed
14 a4 select testbox
15 * 1 EXISTS
16 * 1 RECENT
17 * OK [UIDVALIDITY 937242636] UID validity status
18 * OK [UIDNEXT 2] Predicted next UID
19 * FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
20 * OK [PERMANENTFLAGS (* \Answered \Flagged \Deleted \Draft \Seen)]

➥ Permanent fs
21 a4 OK [READ-WRITE] SELECT completed
22 a5 logout
23 * BYE shadrach.smallorg.org IMAP4rev1 server terminating connection
24 a5 OK LOGOUT completed
25 Connection closed by foreign host.
26 [alex@shadrach alex]$ mail -f testbox
27 Mail version 8.1 6/6/93. Type ? for help.
28 “testbox”: 2 messages
29 > 1 MAILER-DAEMON@shadra Mon Sep 12 19:11 12/516 “DON’T DELETE THIS

➥ MES”
30 2 alex@shadrach.smallo Mon Sep 12 19:11 8/128
31 & 2
32 Message 2:
33 From alex@shadrach.smallorg.org Mon Sep 12 19:11:18 1999 -0500

Introduction to Email Services and Linux

PART I
188

09 0672318342 CH07 2/14/00 2:29 PM Page 188

34
35 This is a test message.
36 Status: RO
37 X-Status:
38 X-Keywords:
39 X-UID: 1
40
41 & q
42 [alex@shadrach alex]$

Line 8 shows Alex creating a brand new empty mailbox for testing. Line 10 shows the APPEND
command in action. The message appended will be flagged as seen, and will be 23 bytes long.
The message size includes all CR-LF combinations in the message, with the exception of the
terminating CR-LF at the end of the last line entered. For our example, Alex used a very sim-
ple message. After pressing Enter, the IMAP server responded with a positive response, and
prompted Alex to enter the “argument” for the APPEND command in line 11. Alex responded by
typing the message. The new message was successfully added to the client’s mailbox. Line 14
shows Alex issuing a SELECT command to activate the testbox mailbox. The server response to
the SELECT command gives us some information. Notice that line 15 shows there is now one
message in the mailbox, and line 16 shows that it is flagged as recent. However, the SELECT
command did not give Alex an UNSEEN message UID, so all the messages in the mailbox are
flagged as seen. This corresponds to the APPEND command, where Alex used the \SEEN flag for
the appended message. To double check things, Alex exits the IMAP server, and uses his local
Linux mail program to check the testbox mailbox. Line 26 shows Alex issuing the mail –f
testbox Linux command to read the mail in the testbox mailbox. Line 30 shows that there is
indeed a message in the mailbox with no subject line. By displaying the message, we can see
that this message was sent using the APPEND command, although the IMAP server tried to make
a normal message out of the test text. Had this been a real message, Alex (or his email pack-
age) would have sent a properly formatted RFC 822 message, and the IMAP server would have
handled it properly.

CHECK
The CHECK command is used to initiate a checkpoint for the mailbox. Any pending operations,
such as writing data from server memory to disk, should be performed to place the mailbox in
a consistent state. The CHECK command does not use any parameters.

CLOSE
The CLOSE command does what it says—it closes the mailbox. When a mailbox is closed, any
messages tagged with the \DELETED flag are physically removed from the mailbox. The CLOSE
command is also implicitly performed on an open mailbox when a new mailbox is opened.

IMAP Protocol

CHAPTER 7
189

7

IM
A

P P
R

O
TO

C
O

L

09 0672318342 CH07 2/14/00 2:29 PM Page 189

Also, an open mailbox is implicitly closed when a LOGOUT command (described later) is issued.
The CLOSE command does not use any parameters.

EXPUNGE
The EXPUNGE command is used to remove all messages in a mailbox tagged with the \DELETED
flag without closing the mailbox. The EXPUNGE server response is a list of the new status of the
mailbox. Listing 7.11 is a sample EXPUNGE session.

LISTING 7.11 Sample EXPUNGE Session

1 [alex@shadrach alex]$ telnet localhost 143
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 * OK localhost IMAP4rev1 v12.250 server ready
6 a1 login alex drums
7 a1 OK LOGIN completed
8 a2 select newbox
9 * 6 EXISTS
10 * 0 RECENT
11 * OK [UIDVALIDITY 937243866] UID validity status
12 * OK [UIDNEXT 8] Predicted next UID
13 * FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
14 * OK [PERMANENTFLAGS (* \Answered \Flagged \Deleted \Draft \Seen)]

➥ Permanent flags
15 * OK [UNSEEN 1] first unseen message in /home/alex/newbox
16 a2 OK [READ-WRITE] SELECT completed
17 a3 store 1 +flags \DELETED
18 * 1 FETCH (FLAGS (\Deleted))
19 a3 OK STORE completed
20 a4 store 2 +flags \DELETED
21 * 2 FETCH (FLAGS (\Deleted))
22 a4 OK STORE completed
23 a5 status newbox (messages unseen)
24 * STATUS newbox (MESSAGES 6 UNSEEN 6)
25 a5 OK STATUS completed
26 a6 expunge
27 * 1 EXPUNGE
28 * 1 EXPUNGE
29 * 4 EXISTS
30 * 0 RECENT
31 a6 OK Expunged 2 messages
32 a7 status newbox (messages unseen)
33 * STATUS newbox (MESSAGES 4 UNSEEN 4)
34 a7 OK STATUS completed

Introduction to Email Services and Linux

PART I
190

09 0672318342 CH07 2/14/00 2:29 PM Page 190

35 a8 logout
36 * BYE shadrach.smallorg.org IMAP4rev1 server terminating connection
37 a8 OK LOGOUT completed
38 Connection closed by foreign host.
39 [alex@shadrach alex]$

Line 8 shows Alex selecting the mailbox named newbox. Lines 9 through 16 show the IMAP
server’s response with the information pertinent to the mailbox. Line 9 shows that there are six
messages in the mailbox. In lines 17 and 20, Alex uses the STORE command (discussed later) to
flag the first two messages as \DELETED. After flagging the two messages, Alex issues a STATUS
command in line 23 for the mailbox. Line 24 shows that the IMAP server still sees six mes-
sages in the mailbox, even though two of them are now marked for deletion. In line 26, Alex
issues the EXPUNGE command to remove the messages marked for deletion. The server response
in lines 27 through 31 show that two messages were expunged (deleted), and four messages
still exist. This is verified by issuing a STATUS command on the mailbox again in line 32. The
server responds by showing only four messages remaining in the mailbox.

SEARCH
The SEARCH command is a very powerful tool in the IMAP command arsenal. The SEARCH
command searches messages in an active mailbox based on search criteria and displays the
matching message numbers. The format for the SEARCH command is

SEARCH [CHARSET specification] (search criteria)

where CHARSET specification consists of the word CHARSET followed by a registered
CHARSET symbol set. The default CHARSET is US-ASCII, so this parameter is usually omitted.
The search criteria parameter specifies keys and values to search for in the messages as
shown in Table 7.3.

TABLE 7.3 SEARCH Command Defined Search Keys

KEY Description

<message set> Messages with message numbers corresponding to the specified
message sequence number set

ALL All messages in the mailbox

ANSWERED Messages with the \ANSWERED flag set

BCC <string> Messages that contain the specified string in the BCC header field

BEFORE <date> Messages whose internal date is before the date specified

IMAP Protocol

CHAPTER 7
191

7

IM
A

P P
R

O
TO

C
O

L

continues

09 0672318342 CH07 2/14/00 2:29 PM Page 191

BODY <string> Messages that contain the specified string in the body of the
message

CC <string> Messages that contain the specified string in the CC header field

DELETED Messages with the \DELETED flag set

DRAFT Messages with the \DRAFT flag set

FLAGGED Messages with the \FLAGGED flag set

From <string> Messages that contain the specified string in the From header
field

HEADER <field name> <STRING> Messages that contain the specified header field name and speci-
fied string in that field

KEYWORD <flag> Messages with the specified keyword set

LARGER <n> Messages with a size larger than n

NEW Messages with the \RECENT flag set but not the \SEEN flag set

NOT <search key> Messages that don’t contain the search key specified

OLD Messages that do not have the \RECENT flag set

ON <date> Messages whose internal date is the specified date

OR <searchkey 1><searchkey2> Messages that contain either search key

RECENT Messages that have the \RECENT flag set

SEEN Messages that have the \SEEN flag set

SENTBEFORE <date> Messages whose Date header field is before the date specified

SENTON <date> Messages whose Date header field is on the specified date

SENTSINCE <date> Messages whose Date header field is on or after the specified date

SINCE <date> Messages whose internal date is on or after the date specified

SMALLER <n> Messages whose message size is smaller than n

TEXT <string> Messages that contain the specified string in either the header or
body

UID <message set> Messages whose UID corresponds to the message set specified

UNANSWERED Messages that do not have the \ANSWERED flag set

UNDELETED Messages that do not have the \DELETED flag set

UNDRAFT Messages that do not have the \DRAFT flag set

UNFLAGGED Messages that do not have the \FLAGGED flag set

UNKEYWORD <flag> Messages that do not have the specified keyword set

UNSEEN Messages that do not have the \SEEN flag set

Introduction to Email Services and Linux

PART I
192

TABLE 7.3 continued

KEY Description

09 0672318342 CH07 2/14/00 2:29 PM Page 192

As you can see from Table 7.3, there are many things you can search for in messages. This
command is extremely handy when trying to find specific messages in mailboxes that have
become cluttered. Listing 7.12 shows a short example of using the SEARCH command.

LISTING 7.12 Sample SEARCH Command Session

1 [alex@shadrach alex]$ telnet localhost 143
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 * OK localhost IMAP4rev1 v12.250 server ready
6 a1 login alex drums
7 a1 OK LOGIN completed
8 a2 select inbox
9 * 2 EXISTS
10 * 0 RECENT
11 * OK [UIDVALIDITY 936999597] UID validity status
12 * OK [UIDNEXT 5] Predicted next UID
13 * FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
14 * OK [PERMANENTFLAGS (* \Answered \Flagged \Deleted \Draft \Seen)]

➥ Permanent fs
15 * OK [UNSEEN 1] first unseen message in /var/spool/mail/alex
16 a2 OK [READ-WRITE] SELECT completed
17 a3 search header subject test
18 * SEARCH 1 2
19 a3 OK SEARCH completed
20 a4 search header subject another
21 * SEARCH 2
22 a4 OK SEARCH completed
23 a5 search unseen
24 * SEARCH 1 2
25 a5 OK SEARCH completed
26 a6 logout
27 * BYE shadrach.smallorg.org IMAP4rev1 server terminating connection
28 a6 OK LOGOUT completed
29 Connection closed by foreign host.
30 [alex@shadrach alex]$

Lines 17, 20, and 23 show examples of using the SEARCH command. Lines 18, 21, and 24 show
the IMAP server’s response to the SEARCH command. The response will produce a list of mes-
sage numbers that match the search criteria. If no matches are found, the server will return the
word SEARCH with no UIDs.

IMAP Protocol

CHAPTER 7
193

7

IM
A

P P
R

O
TO

C
O

L

09 0672318342 CH07 2/14/00 2:29 PM Page 193

FETCH
The FETCH command is used for retrieving the text of the mail message. This is used for dis-
play purposes only. Unlike POP3, the IMAP client does not retain a copy of the message on
the client PC. It is the responsibility of the server to maintain the messages in mailboxes. The
format of the FETCH command is

FETCH <message set> <data item names>

where <message set> is a list of message numbers you want to retrieve, and <data item
names> is a list of data items from each message you want to retrieve.

The message set can be a single message number, a list of specific numbers separated by com-
mas, or a range of numbers separated by a colon. The IMAP server will return the specified
data items for all the messages in the message set.

The data item names is a complex specification of pieces of the message that can be returned
individually. Three special macros return specific message information: ALL, BODY, and
BODY[section].

The ALL data item does not return the entire message as you might expect, but a formatted syn-
opsis of the message that includes the flags set, the internal date, and the message envelope.
The IMAP client can parse this standard message into the relevant parts to display information
about the message.

The BODY data item does not return the actual text of the body, but a synopsis of the type of text
and the size of the body. Again, the IMAP client can parse this information to provide more
detailed information to the user about the message.

The BODY[section] macro can be used to return individual pieces of the message. RFC 2060
lists each of the specific RFC 822 message parts that can be used in this section. Two of the
most common are HEADER and TEXT. The BODY[HEADER] macro will return the complete header
of the message. You can get even more precise by specifying only certain header fields, such as
BODY[HEADER.FIELDS (SUBJECT)] to return the Subject header field of a message. Multiple
fields can be displayed by separating them with spaces within the parentheses.

The BODY[SECTION] macro can also be modified by using the <partial> field. The <partial>
field consists of two numbers separated by a period. The first number is a starting position
octet in the data output that you want to display. The second number is the number of octets
from the data output you want to display. This feature can be used to further format the desired
output. For example, if you want to display only the first 10 characters in the message body of
message 1, you would use the following command:

FETCH 1 BODY[TEXT]<0.10>

Introduction to Email Services and Linux

PART I
194

09 0672318342 CH07 2/14/00 2:29 PM Page 194

This command fetches the first 10 characters of the body section defined as “text”. If less than
10 characters were in the message body, the whole body would then be displayed. Listing 7.13
shows more examples of using the FETCH command.

LISTING 7.13 Sample FETCH Command Session

1 [alex@shadrach alex]$ telnet localhost 143
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 * OK localhost IMAP4rev1 v12.250 server ready
6 a1 login alex drums
7 a1 OK LOGIN completed
8 a2 select inbox
9 * 6 EXISTS
10 * 0 RECENT
11 * OK [UIDVALIDITY 937321060] UID validity status
12 * OK [UIDNEXT 7] Predicted next UID
13 * FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
14 * OK [PERMANENTFLAGS (* \Answered \Flagged \Deleted \Draft \Seen)]

➥ Permanent flags
15 a2 OK [READ-WRITE] SELECT completed
16 a3 fetch 3:5 body[header.fields (date from subject)]
17 * 3 FETCH (BODY[HEADER.FIELDS (“DATE” “FROM” “SUBJECT”)] {112}
18 Date: Tue, 14 Sep 1999 10:09:50 -0500
19 From: alex@shadrach.smallorg.org
20 Subject: This is the first test message
21
22)
23 * 4 FETCH (BODY[HEADER.FIELDS (“DATE” “FROM” “SUBJECT”)] {113}
24 Date: Tue, 14 Sep 1999 10:10:04 -0500
25 From: alex@shadrach.smallorg.org
26 Subject: This is the second test message
27
28)
29 * 5 FETCH (BODY[HEADER.FIELDS (“DATE” “FROM” “SUBJECT”)] {112}
30 Date: Tue, 14 Sep 1999 10:10:26 -0500
31 From: alex@shadrach.smallorg.org
32 Subject: This is the third test message
33
34)
35 a3 OK FETCH completed
36 a4 fetch 4 body[text]
37 * 4 FETCH (BODY[TEXT] {42}
38 This is the second test message for IMAP

IMAP Protocol

CHAPTER 7
195

7

IM
A

P P
R

O
TO

C
O

L

continues

09 0672318342 CH07 2/14/00 2:29 PM Page 195

39)
40 a4 OK FETCH completed
41 a5 logout
42 * BYE shadrach.smallorg.org IMAP4rev1 server terminating connection
43 a5 OK LOGOUT completed
44 Connection closed by foreign host.
45 [alex@shadrach alex]$

Lines 16 and 36 show samples of using the FETCH command to retrieve message data. Line 16
requests the header Date, From, and Subject fields from messages 3 through 5. Lines 17
through 35 show the IMAP server’s response to the command, listing the data requested for
each message requested. Line 36 requests the text of the body from message 4. Lines 37
through 40 show the IMAP server’s response by displaying the text of the message body.

By default, the BODY[SECTION] data item alters the message by setting the \SEEN flag. If you
want to look at a part of the message without flagging it as being seen, you can substitute the
BODY[SECTION] data item with BODY.PEEK[SECTION]. This performs the same function as the
BODY[SECTION] data item without setting the \SEEN flag for the message.

STORE
The STORE command is used to alter information associated with the message. The format of
the STORE command is

STORE <message set> <data item name> <data item value>

where message set is a list of message numbers to perform the STORE operation on. There are
currently only two data item types available for the STORE command. FLAGS identifies a list of
flags that are set for the message. FLAGS.SILENT identifies a list of flags that are set for the
message also, but with this option, the IMAP server does not return the new value as part of
the response.

The behavior of the two data items can be further modified by preceding them with either a
plus sign (+) or a minus sign (-). The plus sign signifies that the data item value will be added
to the message, whereas the minus sign signifies that the data item value will be removed from
the message.

Listing 7.11 shows a good example of using the STORE command to set flags for messages.
Line 18 shows setting the \DELETED flag for message 1 in the active mailbox. Notice how the
flags parameter was preceded by a plus sign (+). You could use a minus sign (-) to remove the
\DELETED flag from the message (a way to undelete a message before the next checkpoint takes
effect). Remember, when a message is flagged as \DELETED, it is not actually removed from the
mailbox until a checkpoint is performed on the mailbox using either the CHECK, EXPUNGE,
SELECT, or LOGOUT commands.

Introduction to Email Services and Linux

PART I
196

LISTING 7.13 continued

09 0672318342 CH07 2/14/00 2:29 PM Page 196

COPY
The COPY command is used to copy messages from one mailbox to another. The format for the
COPY command is

COPY <message set> <mailbox name>

where message set is a list of messages you want to copy from the active mailbox, and mail-
box name is the mailbox you want the messages to go to.

There is no move command defined in IMAP, but it should be fairly obvious that a move is
nothing more than copying messages to a new mailbox and setting the \DELETED flag on the
original messages. After the next mailbox checkpoint occurs, the original messages will be
deleted and the new messages will be present.

UID
The UID command is used in conjunction with the FETCH, COPY, STORE, or SEARCH commands. It
allows these commands to use actual UID numbers instead of sequence numbers in their mes-
sage sets. The UID number is a 32-bit integer that uniquely identifies the mailbox messages
within the mail system. Normally these functions will use the sequence number to identify the
messages in the mailbox. Using the UID number allows the IMAP client to remember messages
between IMAP sessions.

CAPABILITY
The CAPABILITY command requests a list of capabilities that the IMAP server supports. Listing
7.14 shows a sample CAPABILITY command session.

LISTING 7.14 Sample CAPABILITY Command Session

1 [riley@shadrach riley]$ telnet localhost 143
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 * OK localhost IMAP4rev1 v12.250 server ready
6 a1 login riley firetruck
7 a1 OK LOGIN completed
8 a2 capability
9 * CAPABILITY IMAP4 IMAP4REV1 NAMESPACE IDLE SCAN SORT MAILBOX-REFERRALS

➥ LOGIN-RE
10 FERRALS AUTH=LOGIN THREAD=ORDEREDSUBJECT
11 a2 OK CAPABILITY completed
12 a3 logout
13 * BYE shadrach.smallorg.org IMAP4rev1 server terminating connection
14 a3 OK LOGOUT completed
15 Connection closed by foreign host.
16 [riley@shadrach riley]$

IMAP Protocol

CHAPTER 7
197

7

IM
A

P P
R

O
TO

C
O

L

09 0672318342 CH07 2/14/00 2:29 PM Page 197

Line 8 shows the client issuing the CAPABILITY command, and lines 9 through 11 show the
server’s response, listing the capabilities that this particular IMAP server software supports.

NOOP
The NOOP command does what it says—nothing. It can be used to send automatic commands to
the server to prevent an inactivity logout timer from expiring. The server response to the NOOP
command should always be positive. Because the server is allowed to return status update
information from any command, the NOOP command can often trigger a status report from the
server. If something happened to the mailbox during the period of inactivity with the client,
such as if the server deleted messages because of a mailbox rule set by the mail administrator,
the new status can be returned as a response to the NOOP command.

LOGOUT
The LOGOUT command is used to log the current user ID out of the mail server and close any
open mailboxes. If any messages were flagged \DELETED, they will be removed from the mail-
box at this time.

Linux IMAP Implementation
A few IMAP software packages have been written for the Linux platform, both for IMAP
clients and IMAP servers. With the growing popularity of IMAP4, we should expect to see
more activity in this area of software development in the Linux world. This section looks at the
most popular Linux packages for the IMAP server software and IMAP client software.

Linux as an IMAP Server
The imapd software package is a popular IMAP4 server implementation developed at the
University of Washington. It is included in many Linux distributions as a binary package. If
you do not have a binary distribution or want to install the latest version, you can obtain the
source code from the University of Washington’s FTP site at ftp.cac.washinton.edu. The
most recent version is named imap.tar.Z. At the time of this writing, the version is
imap-4.6.BETA.

The imapd program is invoked by the Internet server inetd and, by default, listens for connec-
tion requests on the standard IMAP TCP port 143. The configuration line in the
/etc/inetd.conf file necessary for inetd to run imapd is

imap stream tcp nowait root /usr/sbin/tcpd imapd

The default mail directory for an IMAP client is the Linux $HOME directory specified in the
/etc/passwd file for the user ID. See Chapter 12, “Installing and Configuring POP3 and
IMAP,” for detailed information on how to install the IMAP server software.

Introduction to Email Services and Linux

PART I
198

09 0672318342 CH07 2/14/00 2:29 PM Page 198

Linux as an IMAP Client
The fetchmail program can be configured to use the IMAP protocol to retrieve mail from mul-
tiple mailboxes on an IMAP server for a user. You can use the fetchmailconf program to con-
figure the basic settings for the IMAP server, specifying IMAP as the mail transport protocol
(see Chapter 6, “POP3 Protocol”). The fetchmailconf program will create a .fetchmailrc con-
figuration file for the default mailbox for the user. This is usually the special INBOX mailbox. If
you want to check other mailboxes that have been configured on the IMAP server, you can use
the -r option in fetchmail:

fetchmail –r mailbox

where mailbox is the name of the mailbox (or folder) that will be checked instead of the
default INBOX mailbox.

IMAP Protocol

CHAPTER 7
199

7

IM
A

P P
R

O
TO

C
O

L

CAUTION

Care should be taken when using this option because fetchmail will forward any
messages that it retrieves to your normal local mailbox on your Linux PC. Messages
that were once separated into different mailboxes will now be combined into a sin-
gle place.

Using IMAP on Network Clients
Many email clients offer a graphical interface for IMAP mailboxes. The Netscape Mail pro-
gram, part of the Netscape Communicator suite, is a graphical program that can be configured
to work with IMAP servers. Figure 7.1 shows the main mail server configuration screen used
to configure the Netscape mail program.

The Incoming Mail Servers section allows you to configure one or more mail servers that the
mail program will retrieve messages from. By clicking the Add button, a new mail server can
be defined. Figure 7.2 shows the configuration screen for adding a new mail server.

The Server Type button allows you to select either a POP or IMAP server. If you select an
IMAP type server, two additional tabs appear on the configuration screen. Figure 7.3 shows the
IMAP tab configuration screen.

09 0672318342 CH07 2/14/00 2:29 PM Page 199

FIGURE 7.1
The Netscape Mail mail server configuration screen.

Introduction to Email Services and Linux

PART I
200

FIGURE 7.2
The Netscape Mail new incoming mail server configuration screen.

09 0672318342 CH07 2/14/00 2:29 PM Page 200

IMAP Protocol

CHAPTER 7
201

7

IM
A

P P
R

O
TO

C
O

L

FIGURE 7.3
The Netscape Mail IMAP server configuration screen.

FIGURE 7.4
The Netscape mail Advanced IMAP configuration options.

The IMAP configuration allows the user to select whether he is connecting to an IMAP server
using the secure socket layer protocol. Because this is not our case, we will not select this
option. Next the IMAP configuration asks how we want our deleted messages handled. After the
discussions about what happens with messages that are flagged as deleted, these options should
make some sense to you. By marking the message as deleted, we should decrease the network
traffic some by saving the checkpoint housekeeping until we are ready to exit the mailbox,
instead of performing a checkpoint after every message is marked as deleted. The Trash folder is
Netscape’s cute way of marking messages as deleted and then performing the checkpoint when
you decide to empty the trash folder. It is also a good idea to perform an EXPUNGE command
when exiting the INBOX to ensure that messages flagged as \DELETED actually are deleted. Figure
7.4 shows the Advanced IMAP options that can be set.

09 0672318342 CH07 2/14/00 2:29 PM Page 201

The Advanced tab allows the user to select an IMAP server directory other than the default
directory to use. Also, a nice feature is the ability to select only folders that have been sub-
scribed to. Remember how the LIST and LSUB commands differed? The LIST command listed
every file and directory in the user’s $HOME directory. Without this option selected, Netscape
will perform a LIST command and show everything in the $HOME directory as a possible mail-
box or folder. If the user’s Linux account is only used for mail, this might not be a problem. If
the user also logs in to the server for other things, this can be an extremely long list of items.

After all the IMAP configuration parameters are set, you can use the graphical Netscape tool to
traverse the various mailboxes configured on the Linux mail server. Messages can be read,
moved, or deleted as necessary, all with the ease of a GUI interface. For more information on
how to use Netscape Mail, see Chapter 15 “Configuring LAN Clients.”

Summary
The Internet Mail Access Protocol (IMAP) was developed to retrieve mail that remains on
remote mail servers. This method of mail retrieval has the advantage that a user’s mail always
stays in one place, and it can’t get scattered among different client PCs. The IMAP protocol
provides for multiple mailboxes, or folders, that reside on the server. The client can move mes-
sages around to different folders on the server. This type of client mail retrieval requires close
administration because all mail messages and mailboxes reside on the server. If the server
crashes, loses connectivity, or the disk space fills up, all users lose their capability of retrieving
mail. The mail administrator responsible for an IMAP server must pay close attention to details
on the mail server. Linux uses the imapd software program to implement IMAP server func-
tions. Also, the standard fetchmail mail client program can be configured to use the IMAP pro-
tocol to retrieve mail from a remote IMAP server.

Introduction to Email Services and Linux

PART I
202

09 0672318342 CH07 2/14/00 2:29 PM Page 202

CHAPTER

8
PPP Protocol

IN THIS CHAPTER
• PPP Protocol Overview 204

• PPP Protocol Frames 205

• PPP Negotiation Phases 209

• Linux PPP Implementations 218

10 0672318342 CH08 2/14/00 2:25 PM Page 203

The previous chapters discussed common network protocols used to send and retrieve mail
messages. Those protocols are all fine and good, as long as you have a network connection to
use them on. Unfortunately, many small businesses do not have an Internet node at their sites.

To connect the Linux mailserver to the Internet requires a middleman. That middleman is most
often an Internet service provider (ISP). An ISP can provide several different options to con-
nect a small business network to the Internet. One method is to use a standalone router con-
nected to the network that can dial into the ISP when connectivity is required. This option is
good if the small business can afford the separate router and the ISP connection necessary to
support the connectivity requirements. Another method is to allow the Linux server to dial
directly into the ISP network using a standard modem and establish a method of transferring
Internet Protocol (IP) packets across the modem line. The Linux mailserver can then treat the
serial modem connection as if it were directly connected to a network and transfer mail or
other IP traffic. After the IP traffic is finished, the Linux mailserver can drop the ISP connec-
tion, saving connection time.

A protocol that allows the Linux mailserver to use a modem to transfer IP packets is the Point-
to-Point Protocol (PPP). PPP is defined in RFC 1661 as a method for two peers to transfer net-
work packets across a full-duplex simultaneous bi-directional connection. After your network
packets are passed to the ISP, it is the job of the ISP’s PPP server to forward them to the appro-
priate place on the Internet.

PPP Protocol Overview
A normal PPP session consists of four phases:

1. Link establishment

2. Authentication (optional)

3. Protocol negotiation

4. Link termination

The PPP protocol uses several different protocols during each of the four phases. At the core of
PPP is a framing protocol that encapsulates the PPP frames for transmission across a serial
modem link—the High-Level Data Link Control (HDLC) protocol.

Before any data can be sent across the line, the link between the two peer devices must be
established. PPP employs a special protocol for negotiating the link—the Link Control
Protocol (LCP). LCP’s main purpose is to negotiate options that the two devices must use to
successfully transfer packets between themselves. Items such as packet size must be deter-
mined before the two devices can transfer data successfully. After the link is in an established
state, the next phase of PPP can begin.

Introduction to Email Services and Linux

PART I
204

10 0672318342 CH08 2/14/00 2:25 PM Page 204

The authentication phase is officially listed in the RFC as optional, but in these days of net-
work security, it is almost always required to establish a PPP connection. Currently, PPP sup-
ports two different types of userid authentication—the Challenge-Handshake Authentication
Protocol (CHAP) and the Password Authentication Protocol (PAP). CHAP is the more secure
of the two protocols, but PAP is easier to implement and, thus, the more popular of the two.
After the remote host has successfully authenticated the connection, the next phase of the PPP
cycle can begin.

The protocol negotiation phase of the PPP connection is what makes PPP unique among other
serial network connections. Its predecessor, the Serial Line Internet Protocol (SLIP), supported
only one protocol type (IP) to transmit across the serial line. PPP allows virtually any network
protocol to be transmitted across the modem connection, as long as both peer devices support
the protocol. After the connection is authenticated, the client PPP device must establish which
protocols it wants to use over the connection. It is the PPP host’s responsibility to refuse proto-
col requests for protocols that it does not support. The Network Control Protocol (NCP) is
used to allow the two devices to negotiate which protocols will be supported on the connec-
tion. During the protocol negotiation, the host and client can determine options for each indi-
vidual protocol. For example, during an IP protocol negotiation, the host can supply the client’s
IP address and the DNS server required for the client to properly talk on the host’s network.
After a protocol has been successfully negotiated, data packets can be transferred between the
host and the client.

When the client wants to disconnect the PPP session, another LCP session is started to prop-
erly terminate the session. The host PPP server must recognize this request and drop the
modem connection with the client.

PPP Protocol Frames
PPP can use modem connections to transfer network packets to another host that is connected
to the Internet. A specific protocol is used to establish the connection between the modem on
the Linux server and the modem on the ISP’s host computer. A standard method of transferring
frames across a serial connection is the HDLC protocol. This protocol can be used in several
different modem environments using several different types of modems. The PPP protocol also
has a specific frame format for transferring the packet information to the host computer. This
section discusses the HDLC and PPP frame specifications and how they are used to transfer
information between the client and host computer systems.

HDLC Frame
HDLC has been in use for many years in the mainframe computer environment. It has proven
to be a stable method of transferring data between two devices connected together with

PPP Protocol

CHAPTER 8
205

8

PPP P
R

O
TO

C
O

L

10 0672318342 CH08 2/14/00 2:25 PM Page 205

modems. RFC 1662 defines the method used to encapsulate the PPP protocol in an HLDC
frame. Figure 8.1 shows the basic frame format for an HDLC frame.

Introduction to Email Services and Linux

PART I
206

01111110

11111111

00000011

01111110

Flag

Address

Control

FCS

Data byte(s)

HDLC Frame Format

Flag

FIGURE 8.1
The HDLC frame format.

The HDLC frame format consists of five separate fields that encapsulate the PPP data sent on
the modem line.

The Flag field is used to identify the start of an HDLC frame. It is defined as the binary value
01111110, or 0x7e in hex. The HDLC software should be able to detect this field and recognize
it as the start of a new frame.

The Address field is always set to binary 11111111, or 0xff in hex. This is the broadcast
address. Each station should recognize data sent to this address. Because there are only two
devices in an HDLC “network,” it is obvious that any data received with the broadcast address
is intended for the device.

The HDLC Control field for PPP packets is always set to binary 00000011, or 0x03 in hex. The
receiving device should discard frames with any other Control field values.

Because the Address and Control fields always contain the same values, they are often omitted
from the frame to conserve bandwidth. Thus, the first value after the Flag field could be the
start of the PPP packet, or the Protocol field (see the following PPP frame description).
Because of this situation, the PPP Protocol field does not use the values 0xff and 0x03 because
the receiver could confuse the PPP Protocol field with the HDLC Address and Control fields.
This method of omitting HDLC fields is called frame compression.

10 0672318342 CH08 2/14/00 2:25 PM Page 206

The Frame Check Sequence (FCS) field is used for error detection during the transmission.
The FCS is calculated using the Address, Control, and data fields of the HDLC packet. The
Flag field and any start and stop bits or transparency bits inserted for various modem configu-
rations are not included in this calculation.

The last Flag field identifies the end of the transmitted frame. If another frame follows, the
closing Flag field must be omitted. The single Flag field identifies both the end of one frame
and the start of a new frame until it is the last Flag field received, indicating the end of the
transmission.

It is possible to have situations in which PPP data might have the same value as the HDLC
Flag field and confuse the receiving device into thinking the frame has ended. To avoid this, a
method called frame transparency is used. After the FCS computation, the sending device
examines the fields between the two proper Flag fields and inserts a Control-Escape octet
(binary 01111101 or hex 0x7d) in front of any data values that match the Flag value. The send-
ing device then performs an Exclusive-OR of the data value with the value 0x20 to make it not
equal to the Flag value. Of course, if a data value is equal to the Control-Escape data value, it
also must be replaced by putting a Control-Escape value inserted before it, and Exclusive-
ORing the value with 0x20. When the receiving device sees the Control-Escape octet, it knows
that the next data value should be converted back to its original value.

It is possible for a PPP host to auto-detect a PPP connection request from a remote modem by
examining the first group of octets transmitted from the client. A PPP connection can be identi-
fied by one of the three octet groups shown in Listing 8.1.

LISTING 8.1 PPP Starting Frames

1: 7e ff 03 c0 21
2: 7e ff 7d 23 c0 21
3: 7e 7d df 7d 23 c0 21

In Listing 8.1, line 1 shows a standard HDLC frame (7e ff 03) with a standard PPP LCP pro-
tocol field (c0 21). Lines 2 and 3 show methods of frame transparency that create the same
frames. When any one of these three frame sequences is received on the modem line, the Linux
server can assume that the client is attempting to initiate a PPP connection and can act accord-
ingly. The mgetty+sendfax program uses this technique to auto-detect a PPP session on a stan-
dard dial-in modem line. If one of the three frame sequences is not received, the Linux server
can assume that the data is not a PPP session. The data could be a user typing in his or her
userid for a normal terminal session across the modem connection, or a fax connection being
attempted on the modem. This allows sharing the same modem line for terminal, fax, and PPP
sessions without forcing the individual user to dial in to a special phone number that supports
their type of connection.

PPP Protocol

CHAPTER 8
207

8

PPP P
R

O
TO

C
O

L

10 0672318342 CH08 2/14/00 2:25 PM Page 207

PPP Frame
The PPP frames are placed within the data fields of the HDLC frame. The basic PPP frame is
shown in Figure 8.2.

Introduction to Email Services and Linux

PART I
208

Protocol byte(s)

Information bytes

PPP frame

FIGURE 8.2
The PPP protocol frame format.

The Protocol field may be either one or two octets in length, and identifies the protocol used in the
Information field. Table 8.1 shows some of the currently supported Protocol field values in PPP.

TABLE 8.1 PPP Protocol Field Values

Value Description

0001 Padding Protocol

0021 Internet Protocol (IP)

002b Novell IPX

002d Van Jacobson Compressed TCP/IP

002f Uncompressed Transmission Control Protocol (TCP)

8021 IP Control Protocol (IPCP)

802b Novell IPX Control Protocol

c021 Link Control Protocol (LCP)

c023 Password Authentication Protocol (PAP)

c223 Challenge Handshake Authentication Protocol (CHAP)

The Information field is used to hold the next layer protocol data. Notice that there is no field
indicating the length of the PPP packet. It is the responsibility of the next layer protocol to pro-
vide this information to the remote device.

10 0672318342 CH08 2/14/00 2:25 PM Page 208

PPP Negotiation Phases
Several protocols must be established for the PPP connection to pass data across the serial line.
Each protocol is identified as a different phase of the complete PPP protocol. The Link
Establishment phase negotiates values for the low-level protocol used for PPP. After the link is
established, the client can authenticate himself to the server using the PPP Authentication
phase. After authentication, each of the higher-level protocols that will be used on the link
must be established in the Network Protocol Establishment phase. The following sections
describe these phases in more detail.

Link Establishment Phase
After an HDLC modem connection is made between the two peer devices, the initiating device
must attempt to negotiate the parameters necessary for the link to transfer data between the
devices. Much like a TCP connection, several connection states are used to identify the con-
nectivity status of the devices. The Link Control Protocol (LCP) is used to accomplish this
task. These connection states are shown in Figure 8.3 and described in the following sections.

PPP Protocol

CHAPTER 8
209

8

PPP P
R

O
TO

C
O

L

PPP
client

PPP
server

Configure-Request

LCP connection states

Configure-ACK/NAK/REJECT

Data packet(s)

Terminate-Request

Terminate-ACK

FIGURE 8.3
The LCP connection states.

LCP Protocol
The LCP protocol consists of formatted packets that transfer information between the two
peers to negotiate connection parameters. Figure 8.4 shows the basic format of an LCP packet.

10 0672318342 CH08 2/14/00 2:25 PM Page 209

FIGURE 8.4
The Link Control Protocol packet format.

The Code LCP field is one byte in length and is used to identify the LCP packet type. LCP
packets are mainly used for negotiating parameters of the link, but can also change the current
state of the link (such as link termination, described later). Eleven different LCP packet types
are defined in RFC 1661 and shown in Table 8.2.

TABLE 8.2 Link Control Protocol Code Field Values

Code Description

1 Configure-Request

2 Configure-Ack

3 Configure-Nak

4 Configure-Reject

5 Terminate-Request

6 Terminate-Ack

7 Code-Reject

8 Protocol-Reject

9 Echo-Request

10 Echo-Reply

11 Discard-Request

The Identifier field is one octet in length and is used to uniquely identify the LCP packet so
that the sending and receiving devices can match the proper reply to the proper request.

Introduction to Email Services and Linux

PART I
210

Code

Identifier

Length
bytes

Data bytes

Link Control
Protocol Frame

10 0672318342 CH08 2/14/00 2:25 PM Page 210

The Length field is two octets in length and is used to indicate the entire length of the LCP
packet (including the Code, Identifier, Length, and Data fields). The total length of the LCP
packet must not exceed the maximum receive unit (MRU) of the link.

The Data fields are multiple octets in length as specified in the Length field, and contain data
as specified by the Code field.

The Code field controls the purpose of the LCP packet. As shown in Table 8.2, there are many
different types of LCP packets. The following sections describe the purposes of some of the
LCP packet types.

Configure-Request LCP Packet
The Configure-Request LCP packet is used to establish the link between two peer devices
using PPP. Configuration options that the client wants to negotiate from the default values are
listed in the Data fields of the packet. All options for which the client is requesting nondefault
values should be included in this packet. Any options that use the default value are not
included in the Configure-Request packet. Some Configure-Request options are defined in
Table 8.3.

Configure-Ack LCP Packet
The Configure-Ack LCP packet is sent by the PPP host if it agrees with all of the option
requests made in the associated Configure-Request packet. The options listed in this packet
must match exactly the options in the Configure-Request packet. If any one of the option
change requests is not acceptable to the server, it must not issue a Configure-Ack packet.

Configure-Nak LCP Packet
The Configure-Nak packet is used to indicate that at least one of the options in the Configure-
Request packet was not acceptable to the PPP server. The server should indicate which option
is not acceptable, and offer a value that would make the option acceptable in the Options fields
of this packet.

Configure-Reject LCP Packet
The Configure-Reject LCP packet is used to indicate options from the Configure-Request
packet that are either not recognized or are not acceptable for negotiation. When the client
receives a Configure-Reject packet, it should recognize that none of the options listed in the
packet is available for negotiation on the PPP server.

Terminate-Request LCP Packet
The Terminate-Request LCP packet is used to indicate that the client wants to terminate the
current PPP session. The Data field of this packet can be zero bytes or can be filled with
insignificant data. The PPP host must be able to recognize and act on this LCP packet at any
time during the PPP session.

PPP Protocol

CHAPTER 8
211

8

PPP P
R

O
TO

C
O

L

10 0672318342 CH08 2/14/00 2:25 PM Page 211

Terminate-Ack LCP Packet
The Terminate-Ack LCP packet is used by the PPP server to acknowledge the client’s request
to close the PPP session. The Data fields can be zero bytes or can be filled with insignificant
data. When a PPP server receives a Terminate-Request LCP packet, it must send a Terminate-
Ack response and initiate closing the PPP session.

Code-Reject LCP Packet
The Code-Reject LCP packet is used if the PPP server receives an LCP packet with an invalid
code from the client. This could indicate that the client is using a different version of PPP or
has some PPP implementation problems. The PPP server should drop the PPP connection
immediately after sending this packet.

Protocol-Reject LCP Packet
The Protocol-Reject LCP packet is used when the PPP server receives a PPP packet with either
an invalid Protocol field or a protocol that it does not support. The Data field should contain a
copy of the packet that was rejected. The PPP client should recognize that the PPP server does
not support the requested protocol and should indicate that to the user.

Echo-Request LCP Packet
The Echo-Request LCP packet is used to provide a loopback method for the PPP connection.
After receiving an Echo-Request LCP packet, the PPP device must issue an Echo-Reply
packet. This is often used to keep data flowing across a connection that is susceptible to being
closed due to inactivity. This can also be used for diagnostic purposes. A Magic-Number can
be negotiated during the Configure-Request phase and be used in this packet to identify the
connection.

Echo-Reply LCP Packet
The Echo-Reply LCP packet is used to respond to an LCP Echo-Request packet. If a Magic-
Number has been negotiated for the connection, it must be included in this packet.

Discard-Request LCP Packet
The Discard-Request LCP packet is used to provide a mechanism to test the link. The receiv-
ing device will immediately discard the Discard-Request packet. No response to the Discard-
Request packet is made. The Discard-Request packet should contain the Magic-Number
negotiated by LCP.

LCP Negotiated Options
During the Configure-Request phase of the link negotiation, the client PPP device can request
parameter changes for the link. If an option is not included in the Configure-Request packet,
the default value for it is assumed. Figure 8.5 shows the format of the LCP Option portion of
the Configure-Request packet.

Introduction to Email Services and Linux

PART I
212

10 0672318342 CH08 2/14/00 2:25 PM Page 212

FIGURE 8.5
The LCP Configure-Request Option fields.

The Type field is used to identify the option being negotiated. Table 8.3 shows the available
options.

TABLE 8.3 LCP Configure-Request Options

Type Description

0 Reserved

1 Maximum Receive Unit

3 Authentication Protocol

4 Quality-Control

5 Magic-Number

7 Protocol Field Compression

8 Address and Control Field Compression

The Length field is one octet in length and indicates the length of the Option fields. This value
includes the Type, Length, and Data fields.

Maximum Receive Unit Option
The most common LCP option that is negotiated is the Maximum Receive Unit, or MRU. This
value determines the packet size that will be used on the link. The larger the packet size, the
more data that can be transmitted with less overhead. However, too large a packet size can hin-
der the performance of error-prone connections because the entire packet must be retransmitted
if an error does occur. When possible, a value of 1500 is used to simulate the packet size that is
available on an Ethernet network. However, when using slower links, an MRU of 296 is used
to decrease the chance of packet errors and retransmission times.

PPP Protocol

CHAPTER 8
213

8

PPP P
R

O
TO

C
O

L

Type

Length

Data bytes

LCP Configurations
Options Frame

10 0672318342 CH08 2/14/00 2:25 PM Page 213

Quality Control Option
The Quality Control option is used when the devices want to determine the line quality of the
connection. Often, if excessive errors are detected, it is desirable to detect the quality of the
connection and terminate the connection if the quality is below a particular level. By default,
no quality control method is used. The RFC specifies one type of quality control protocol: the
Link Quality Report, type c025. Both devices must agree to implement quality control and
agree to the same quality control type before line monitoring can begin.

Magic-Number Option
The Magic-Number option is used to detect a loopback situation in which the PPP connection
is talking to itself. When the Configure-Request packet is sent with a Magic-Number, the PPP
host compares this number to the Magic-Number sent in the last received Configure-Request
packet. If the numbers match, it is most likely a loopback connection. After a Magic-Number
is determined for a PPP session, that number can be used with the Echo-Request and Echo-
Reply LCP packets to check the connection during the session to determine whether the loop-
back condition exists.

Protocol Field Compression Option
The Protocol Field Compression option is used to identify a compression method that both
devices can use to help conserve bandwidth. By default, the PPP Protocol field is set to two
octets. If both devices agree to use Protocol Field Compression, the Protocol field can be
reduced to just one octet. If several thousand frames are sent during the duration of the PPP
session, significant data bandwidth can be saved. LCP packets cannot use Protocol Field
Compression. Also, the FCS must be computed using the compressed frame, not the original.

Address and Control Field Compression Option
The Address and Control Field Compression option allows the PPP frame to compress the
HLDC Address and Control fields. This saves even more bandwidth for slow-speed links. As
with the Protocol Field Compression Option, LCP packets cannot use Address and Control
Field Compression and the HLDC FCS must be computed using the compressed frame, not the
original.

Authentication Protocol Option
The Authentication Protocol option allows the devices to negotiate which method will be used
to authenticate the client to the host. In these days of network security, it is almost always
required for a client to log in to a host before the PPP session will be established. Currently,
two different values can be negotiated for authentication methods: type c223, the Challenge-
Handshake Authentication Protocol (CHAP); and type c023, the Password Authentication
Protocol (PAP). These two authentication protocols are discussed in further detail in the fol-
lowing section.

Introduction to Email Services and Linux

PART I
214

10 0672318342 CH08 2/14/00 2:25 PM Page 214

PPP Authentication Phase
In an attempt to improve on a plain text userid/password authentication system, two different
authentication methods have been devised. PAP has been more popular in PPP implementa-
tions, but the CHAP method is more secure and is gaining in popularity. The PPP implementa-
tion for Linux supports both authentication methods.

CHAP
The Challenge-Handshake Authentication Protocol is used to implement a level of security in
PPP authentication. The CHAP protocol uses a three-way handshake method to authenticate
the client to the host. RFC 1994 describes the method used to implement the CHAP protocol.
The basic CHAP packet format is shown in Figure 8.6.

PPP Protocol

CHAPTER 8
215

8

PPP P
R

O
TO

C
O

L

Code

Identifier

Length bytes

Data bytes

Challenge-Handshake
Authentication Protocol

 (CHAP) Frame

FIGURE 8.6
The CHAP packet format.

The Code field is one octet in length and identifies the type of the CHAP packet. Table 8.4
shows the possible values for this field.

TABLE 8.4 CHAP Code Field Values

Code Description

1 Challenge

2 Response

3 Success

4 Failure

10 0672318342 CH08 2/14/00 2:25 PM Page 215

The Identifier field is one octet in length and identifies the CHAP packet to help the client and
host match the reply and requests together.

The Length field is two octets in length and indicates the length of the CHAP packet. The
Length value should include the octet count from the Code, Identifier, Length, and Data fields.

The Data fields can be zero or more octets in length, and are used to support the functions
identified by the Code value of the CHAP packet.

Figure 8.7 demonstrates the handshake protocol that CHAP uses to authenticate a client. The
CHAP three-way handshake uses the following system:

• The host sends a Challenge CHAP packet to the client based on a random value.

• The client responds with a Response CHAP packet indicating a value calculated using
the challenge value and a secret word combined using a one-way hash function.

• The host checks the client’s response value with the value that it calculates itself for the
challenge value and secret word. If they match, the host sends a Success CHAP packet
and the PPP session is continued. If not, the host sends a Failure CHAP packet and the
PPP session is terminated with a Terminate-Request LCP packet.

Introduction to Email Services and Linux

PART I
216

client server
Challenge packet

Response packet

Success packet

FIGURE 8.7
The CHAP handshake phases.

Another feature of the CHAP protocol is that the PPP host can reissue a request for the client
to authenticate at any time during the PPP session. This feature can be used to prevent session
hijacking by another device.

PAP
The Password Authentication Protocol is not as sophisticated as the CHAP protocol. It uses a
simple userid/password mechanism to authenticate the user. The userid is sent as plain ASCII
text. The password may or may not be encrypted, depending on the capability of the client.

10 0672318342 CH08 2/14/00 2:25 PM Page 216

After the client is authenticated, the PPP session is continued, and is not reauthenticated for the
duration of the session. If the client does not authenticate properly, the PPP session may or
may not be terminated by the PPP host.

The PAP authentication method is the easier of the two methods to implement, but it is the
least secure. One reason why it has become so popular with ISPs is that even though it does
not have the highest level of security, security on a dial-up connection is not often a determin-
ing factor. Tapping a phone connection to intercept a PPP session is much more difficult than
observing a password sent in text mode across an Ethernet network. Thus, ease of configura-
tion and use overrule level of security.

Network Protocol Establishment Phase
After the link layer has been established through the LCP negotiation phase, individual net-
work layer sessions can be initiated. The PPP protocol allows for multiple network protocols to
be transported across the connection simultaneously. To negotiate the network layer parame-
ters, PPP uses a Network Connection Protocol for each individual protocol that can be trans-
mitted during the PPP session. For the Linux mailserver, only one protocol is necessary: IP.
The NCP used to negotiate an IP connection in a PPP session is called the IP Control Protocol,
or IPCP.

IPCP Protocol
To support an IP network across a PPP session, both PPP devices must support the IP Control
Protocol. IPCP is used to negotiate the IP connection parameters for both sides of the connec-
tion. The PPP Protocol field will have a value of 8021 when it contains an IPCP packet (as
shown in Table 8.1).

IPCP uses the same frame format as LCP (shown in Figure 8.4). The IPCP Code field also uses
the same codes as the LCP packet, but recognizes only codes 1 through 7 (refer to Table 8.2).
The negotiation method is just like the LCP negotiation. A Configure-Request packet is sent
with any options that the client wants to negotiate with the host. The host can respond with a
Configure-Ack if it agrees with the options or a Configure-Nak if it does not agree with any of
the options.

IPCP Options
The IPCP protocol allows the two PPP devices to negotiate IP parameters before the IP con-
nection is established. IPCP options are sent in the Configure-Request packet, similar to the
LCP protocol. Table 8.5 shows the IPCP options listed in the RFC.

PPP Protocol

CHAPTER 8
217

8

PPP P
R

O
TO

C
O

L

10 0672318342 CH08 2/14/00 2:25 PM Page 217

TABLE 8.5 IP Control Protocol Options

Option Description

1 IP Addresses

2 IP Compression Protocol

3 Remote IP Address

Option 1 has been deprecated from the RFC and is no longer in use. Its purpose was to allow
the PPP devices to negotiate the IP addresses used on the link. It was found through experi-
mentation that it was often difficult for the devices to converge on a mutually agreeable set of
IP addresses. Option 3 has been added to replace the functionality of this option.

Option 2 is used to negotiate a method of IP packet compression to conserve bandwidth on the
PPP session. Currently, the Van Jacobson method of TCP/IP header compression is supported
by PPP. This method allows the device to reduce the TCP/IP header to as few as three octets.
The Configure-Request value for requesting IP compression is 002d.

Option 3 is used to negotiate an IP address for the client device. This option allows the client to
specify a desired IP address. If the PPP host is unable to support that address for some reason, it
can return an alternative address for the client to use in the Configure-Nak packet. The client and
host can negotiate a proper IP address for the client to use. The default address is no address.

After a successful IPCP negotiation, IP packets can be passed in the PPP session using one of
three PPP Protocol field values: 0021 for normal uncompressed IP, 002b for compressed
TCP/IP using Van Jacobson compression, or 002f for uncompressed TCP with compressed IP
headers (also called Van Jacobson uncompressed).

Link Termination Phase
When the client wants to drop the PPP session, it can issue the Terminate-Request LCP packet
(refer to the earlier discussion). When the PPP server sees a Terminate-Request LCP packet, it
must reply with a Terminate-Ack LCP packet and drop the connection. This is not dependent
on the current state of any IP connections active at the time the Terminate-Request command is
issued. A client can terminate a PPP session with IP sessions still active. The PPP server can-
not keep the PPP session active until the IP sessions are closed. After the PPP session is
closed, to restart a new session the client must reissue the proper LCP connection request
packets even if the physical layer did not disconnect.

Linux PPP Implementations
The Linux operating system supports PPP by splitting the function into two parts. The first part
is internal to the Linux kernel, whereas the second part resides in a Linux application program.

Introduction to Email Services and Linux

PART I
218

10 0672318342 CH08 2/14/00 2:25 PM Page 218

The PPP functions required to send HDLC packets across the serial line are included as part of
the Linux kernel so that they can access the serial lines more efficiently. Starting with the 2.0
versions of the Linux kernel, kernel modules can load and unload features to the kernel without
recompiling the kernel. Older versions of the Linux kernel needed to recompile the kernel to
add new features. Either way, your Linux kernel must be configured to support PPP. Many
Linux kernels will default to include PPP support because it has become so popular.

You can determine whether your Linux kernel is configured to support PPP by watching the
messages at boot-up. If you see a status line regarding PPP support go by (or see it in the mes-
sages log file), your kernel has PPP support configured. If not, refer to your Linux distribution
documentation or the Linux PPP-HOWTO document for information on how to add PPP sup-
port to your specific Linux distribution.

The second part of Linux PPP support is a program used to control the PPP connection to the
server. The de facto standard PPP software package in the Linux environment has become the
pppd package written by Al Longyear, Paul Mackerras, and Michael Callahan. Most Linux dis-
tributions include a binary distribution of this program. The version included with Red Hat 6.0
is ppp-2.3.7, whereas the version included with Caldera OpenLinux 2.2 is ppp-2.3.5. The
FTP site for the pppd package is located at cs.anu.edu.au in the /pub/software/ppp direc-
tory. The current version available for download at the time of this writing is ppp-2.3.10.
Because this package is highly dependent on kernel configurations, I strongly suggest using the
version that comes with your particular Linux distribution. That version has been fine-tuned to
work with your particular Linux kernel version. However, if you are adventurous or for some
(hopefully serious) reason you need to use the latest version, you can download the source for
this package and compile and install it yourself. At the time of this writing the current version
of pppd could be found at ftp://cs.anu.edu.au/pub/software/ppp/ppp-2.3.10.tar.gz.
After downloading the file and untarring it, use the following steps to install the software:

1. Run the ./configure program from the ppp-2.3.10 directory. This configures the
Makefile to your specific OS (Linux).

2. Run the GNU make program with the kernel option (make kernel). This creates the
include files for your version of Linux with the new kernel pieces for pppd.

3. Recompile and install your new kernel with the new pppd support (refer to your Linux
distribution documentation for specific details on how to do this).

4. Run the GNU make program to compile the pppd program.

5. As the root user, run the GNU make program with the install option (make install)
to place the new executables in their proper places.

After you have installed pppd, either by your Linux distribution’s binary distribution file or by
compiling the source code, you can configure pppd to work as either a PPP client or a PPP server.

PPP Protocol

CHAPTER 8
219

8

PPP P
R

O
TO

C
O

L

10 0672318342 CH08 2/14/00 2:25 PM Page 219

Linux Client PPP Implementation
The pppd program can be configured as a PPP client, allowing your Linux mailserver to con-
nect to an ISP PPP host and establish an IP network connection to pass mail and other IP traf-
fic. Other Linux programs are available to assist the PPP client process. The following sections
describe some of them.

pppd Client Parameters
To use pppd in client mode, you must supply some options that help it connect to the PPP
server and establish the PPP session properly. The basic format for the pppd command is

pppd <tty line> <speed> [options]

where <tty line> is the Linux COM port where your modem is connected (refer to Chapter
3, “Installing Communication Devices in Linux”) and <speed> is the speed at which you want
to connect to the modem. The art of using the pppd program comes in choosing the proper
options for the client and server commands. The rest of this section describes some of the
options available to pppd as a client.

The connect option allows the pppd program to use an executable or shell script to set up the
serial link before the pppd program attempts to connect.

The crtscts option uses RTS/CTS hardware flow control on the serial line.

The defaultroute option adds a default route to the kernel routing table pointing to the
remote IP address of the PPP server. The route table entry is deleted when the PPP session is
terminated. This allows your Linux server to know to send IP traffic destined for other network
devices through the PPP connection.

The lock option is used to create a UUCP-style lock file to indicate that the modem is in use.

The mru and mtu options allow the client to attempt to set the Maximum Receive Unit (mru)
and Maximum Transmit Unit (mtu) sizes during the LCP negotiation phase. Remember that it
is still up to the PPP server to agree to the new sizes. Often this is used on slower modem con-
nections to reduce the PPP packet size.

The modem option allows Linux to use the modem control lines. With this option, the pppd pro-
gram will wait for the CD (carrier detect) modem signal when opening the modem line, and
will drop DTR (data terminal ready) briefly when the PPP connection is terminated.

chat Program
The chat program is a part of the pppd distribution, and is used to simplify the connect string
for pppd. The chat program can use a simple script file and communicate with the modem to
initiate the connection with the PPP server. The chat script uses text strings that it can send to

Introduction to Email Services and Linux

PART I
220

10 0672318342 CH08 2/14/00 2:25 PM Page 220

the remote server in response to text strings received. It tries to match the text strings in a chat
session—one response for each string received. Listing 8.2 shows an example of a sample chat
script used for pppd.

LISTING 8.2 Sample Chat Script isp.chat

1 “”
2 ATDT5551234
3 CONNECT
4 “”
5 “ogin:”
6 rich
7 “word:”
8 guitar
9 “rich]$”
10 “exec /usr/sbin/pppd silent modem crtscts proxyarp 10.0.0.100:10.0.0.2”

In Listing 8.2, line 2 shows the command that pppd sends to the modem to dial the ISP phone
number. Line 3 shows what text string pppd should wait for to establish that a connection has
been made to the PPP server. Line 4 indicates that when the chat program receives a connec-
tion notice from the modem, it should send a single carriage return. Line 5 shows what text
string to wait for from the server. If the server is allowing terminal logins from this modem
line, it should issue a welcome banner with a login prompt. In line 6, pppd sends the userid to
the PPP server; in line 8, it sends the password. When pppd gets a command prompt from the
PPP server (as shown in line 9), it then issues the host pppd command on the PPP server. The
parameters used in this pppd command will be discussed in detail in “Linux Server PPP
Implementation,” later in this chapter.

After a successful chat script is created, it can be used in the client’s pppd configuration to dial
the PPP server when the pppd program is executed. The connect pppd option calls the chat
script using the following format:

pppd ttyS1 38400 connect ‘/usr/sbin/chat –v –f /home/rich/isp.chat’ \
modem crtscts defaultroute

The connect option uses the chat program in its script to connect to the PPP server. The pre-
ceding command line will automatically call the PPP server and start the pppd program on the
server. The –v option used in the chat program allows for extremely verbose output to the
/var/log/messages file. Use this for testing purposes, and then remove it when you have all
the bugs worked out. Listing 8.3 shows the lines that the pppd and chat programs place in the
message log during a client PPP session.

PPP Protocol

CHAPTER 8
221

8

PPP P
R

O
TO

C
O

L

10 0672318342 CH08 2/14/00 2:25 PM Page 221

LISTING 8.3 Lines from /var/log/messages for pppd and chat

Sep 22 06:56:56 shadrach pppd[663]: pppd 2.3.5 started by root, uid 0
Sep 22 06:56:56 shadrach kernel: registered device ppp0
Sep 22 06:56:57 shadrach chat[664]: send (ATZS7=100^M)
Sep 22 06:56:57 shadrach chat[664]: expect (OK)
Sep 22 06:56:57 shadrach chat[664]: ATZS7=100^M^M
Sep 22 06:56:57 shadrach chat[664]: OK
Sep 22 06:56:57 shadrach chat[664]: -- got it
Sep 22 06:56:57 shadrach chat[664]: send (ATDT5551234^M)
Sep 22 06:56:58 shadrach chat[664]: expect (CONNECT)
Sep 22 06:56:58 shadrach chat[664]: ^M
Sep 22 06:57:18 shadrach chat[664]: ATDT5551234^M^M
Sep 22 06:57:18 shadrach chat[664]: CONNECT
Sep 22 06:57:18 shadrach chat[664]: -- got it
Sep 22 06:57:18 shadrach chat[664]: send (^M)
Sep 22 06:57:18 shadrach chat[664]: expect (ogin:)
Sep 22 06:57:18 shadrach chat[664]: 28800/V42BIS^M
Sep 22 06:57:19 shadrach chat[664]: ^M
Sep 22 06:57:19 shadrach chat[664]: ^MRed Hat Linux release 5.2 (Apollo)
Sep 22 06:57:19 shadrach chat[664]: ^MKernel 2.0.36 on an i486
Sep 22 06:57:19 shadrach chat[664]: ^M
Sep 22 06:57:19 shadrach chat[664]: ^M^M
Sep 22 06:57:19 shadrach chat[664]: mail1.isp.net login:
Sep 22 06:57:19 shadrach chat[664]: -- got it
Sep 22 06:57:19 shadrach chat[664]: send (rich^M)
Sep 22 06:57:19 shadrach chat[664]: expect (word:)
Sep 22 06:57:19 shadrach chat[664]: rich^M
Sep 22 06:57:19 shadrach chat[664]: Password:
Sep 22 06:57:19 shadrach chat[664]: -- got it
Sep 22 06:57:19 shadrach chat[664]: send (guitar^M)
Sep 22 06:57:20 shadrach chat[664]: expect (rich]$)
Sep 22 06:57:20 shadrach chat[664]: ^M
Sep 22 06:57:20 shadrach chat[664]: Last login: Tue Sep 21 20:45:47^M
Sep 22 06:57:21 shadrach chat[664]: [rich@mail1 rich]$
Sep 22 06:57:21 shadrach chat[664]: -- got it
Sep 22 06:57:21 shadrach chat[664]: send (exec /usr/sbin/pppd passive
➥ silent modem crtscts^M)
Sep 22 06:57:22 shadrach pppd[663]: Serial connection established.
Sep 22 06:57:23 shadrach pppd[663]: Using interface ppp0
Sep 22 06:57:23 shadrach pppd[663]: Connect: ppp0 <--> /dev/ttyS1
Sep 22 06:57:27 shadrach pppd[663]: local IP address 10.0.0.100
Sep 22 06:57:27 shadrach pppd[663]: remote IP address 10.0.0.2

Using the chat script and the pppd client commands establishes a PPP session with the PPP
server. This can be placed in a script file to create a method to start the PPP session when

Introduction to Email Services and Linux

PART I
222

10 0672318342 CH08 2/14/00 2:25 PM Page 222

needed. However, this method still needs some external event to trigger it to start—an event
such as the cron process running the PPP script whenever mail needs to be checked. The next
program allows the PPP client to start automatically when it is needed.

diald Program
Now that you have your chat script perfected and can dial into the PPP server and establish a
connection, you might want to automate things a little more. If you decide to connect your
Linux mailserver directly to the ISP, you must implement a policy on how often your server
will connect to the ISP to transfer mail (see Chapter 13, “Connecting the Mailserver to an
ISP”). One method is to use dial-on-demand IP routing. This feature automatically starts the
PPP connection whenever it detects data that needs to use the ISP network.

A great program for implementing dial-on-demand routing is the diald program written by Eric
Schenk. Some Linux distributions include a binary package for diald. If your Linux distribu-
tion doesn’t, you can download a version from the new diald Web site at
http://diald.unix.ch.

The format of the diald program is

/usr/sbin/diald [device1....] [options...] [-- [pppd options]]

where device1 is the Linux tty line your modem is connected to, options are diald options,
and pppd options are the options that diald will pass to the pppd program when diald calls it.
It is also possible to set the parameters by using a configuration file for diald.

The diald program’s configuration file is used to set parameters for it to call the chat and pppd
programs as required, as well as list scenarios in which you want diald to start and stop pppd.
The configuration file is located at /etc/diald.conf. Listing 8.4 is a sample diald.conf file
that replaces the pppd options used in the pppd example shown earlier.

LISTING 8.4 Sample /etc/diald.conf Configuration File

1 ###
2 # /etc/diald.conf - diald configuration
3 #
4 # see /usr/lib/diald for sample config files
5 #
6 mode ppp
7 connect ‘/usr/sbin/chat -f /home/rich/isp.chat -t 35000’
8 connect-timeout 180
9 device /dev/ttyS1
10 speed 115200
11 modem
12 lock

PPP Protocol

CHAPTER 8
223

8

PPP P
R

O
TO

C
O

L

continues

10 0672318342 CH08 2/14/00 2:25 PM Page 223

13 crtscts
14 local 10.0.0.100
15 remote 10.0.0.2
16 defaultroute
17 include /usr/lib/diald/standard.filter
18 fifo /etc/diald/diald.ctl

In Listing 8.4, line 7 shows the diald connect parameter that calls the chat program using the
same chat script that was used in the pppd example. Line 8 was added to compensate for the
fact that the PPP host modem is set to answer after four rings (so as not to annoy friends and
family who would call the same line using voice). It allows the chat script up to three minutes
to complete. Line 17 includes a file standard.filter that diald uses to specify the conditions
under which it will start the PPP session and when it will stop the session. Line 18 is used to
specify a special file that a companion program, dctrl, uses to monitor the PPP session. dctrl is
a graphical program that can monitor the PPP link and report any error conditions as well as
the throughput of the connection.

After the diald configurations are set, you can test them. diald runs in background mode. You
must start it as the root userid. When diald detects a network condition that warrants a connec-
tion to the PPP server, it starts the chat program that creates the PPP session with the server, and
then starts the pppd program on the local host. When you are satisfied with the performance of
diald, you can create a startup script for it and put it in the /etc/rc.d area on your Linux distri-
bution so that it starts automatically at boot time. Then, every time a program needs to access a
remote host via IP (such as fetchmail), diald will kick in and start the PPP session. Nice.

kppp Program
If you are using a Linux distribution that has the K Desktop Environment (KDE) window man-
ager, you can use another option to simplify your PPP connection. The kppp program is a
graphical interface that helps you configure and start the pppd program. Figure 8.8 shows the
main screen that appears when you start the program.

Introduction to Email Services and Linux

PART I
224

LISTING 8.4 continued

FIGURE 8.8
The kppp program main screen.

10 0672318342 CH08 2/14/00 2:25 PM Page 224

From the main screen, you can select a configured PPP host and start the pppd connection sim-
ply by entering your password and clicking the Connect button. Clicking the Setup button on
the main screen starts the kppp Configuration screen. Multiple accounts can be preconfigured
by using the Accounts tab on the Configuration screen. Figure 8.9 shows the Accounts tab.

PPP Protocol

CHAPTER 8
225

8

PPP P
R

O
TO

C
O

L

FIGURE 8.9
The kppp Accounts configuration tab.

Individual accounts can be configured by clicking the New button, as shown in Figure 8.10.

FIGURE 8.10
The kppp account setup screen.

Each property for the new account can be configured on the Edit Account screen. You can
input the phone number and authentication method required to initiate the PPP session.

10 0672318342 CH08 2/14/00 2:25 PM Page 225

Authentication methods available include PAP, CHAP, a chat script, and a pop-up terminal ses-
sion that enables you to manually log in and issue the pppd command on the remote PPP
server. The IP tab enables you to determine how your local IP address will be configured—
either dynamically by the PPP host or statically by you. You can use the DNS and Gateway
tabs to select how the PPP client will obtain the DNS server and IP router addresses—either
dynamically from the PPP host or statically by you.

Figure 8.11 shows the kppp configuration Device tab settings. This enables you to configure
the modem that will be used for dialing the ISP and various settings that will affect the
modem, such as the flow control method and the line termination method. The Use Lock File
checkbox allows you to utilize the pppd lock option to create UUCP-style modem lock files so
that another process won’t try to use the modem at the same time.

Introduction to Email Services and Linux

PART I
226

FIGURE 8.11
The kppp Device configuration tab.

Figure 8.12 shows the kppp configuration Modem tab settings. These settings allow you to set
parameters for the modem. The Modem Commands button enables you to add initialization
parameters to your modem to set up the modem for the connection. The Query Modem button
enables you to send query strings to the modem to check current configuration settings. Up to
eight settings can be shown with this option. The Terminal button is definitely handy when try-
ing to create dial-up scripts for the first time. It brings up a mini-terminal that enables you to
talk with the modem and dial in to the PPP server. This feature is great for dialing in to the
server to observe return strings required to set the dial-up script settings properly.

After all the account parameters are configured, connecting is just a matter of selecting the
account you want to dial in to, supplying the proper userid and password, and clicking the
Connect button. The kppp program will automatically start pppd using the parameters that you

10 0672318342 CH08 2/14/00 2:25 PM Page 226

had configured for the account. Speaking of accounts, there is also a handy accounting feature
that will log your total session times and produce a nicely formatted report showing all your
connection times for a given month.

PPP Protocol

CHAPTER 8
227

8

PPP P
R

O
TO

C
O

L

FIGURE 8.12
The kppp Modem configuration tab.

Linux Server PPP Implementation
The same pppd program used to connect as a client to a PPP server can also be used as the
pppd server. Refer to line 10 in Listing 8.2; the client ran the pppd command on the PPP server
to start the PPP session. Besides running pppd manually, programs have been created that
allow the Linux server to run pppd automatically when a PPP request is detected on a dial-in
line. This section also discusses the benefits of using the mgetty+sendfax program with pppd.

pppd Server Parameters
Some pppd options are used to allow the pppd program to behave in a server mode. Although
PPP is a peer-to-peer protocol, one side of the connection acts as a server waiting to establish
PPP connections from client computers. Some of the options used on the server side are dis-
cussed in the following paragraphs.

The passive and silent options are used to allow the pppd program to wait for an LCP
Configure-Request packet to initiate the PPP session.

The proxyarp option is used to allow the PPP host computer to respond to arp requests on the
local network on behalf of the PPP client. This allows other computers to connect to the PPP
client.

10 0672318342 CH08 2/14/00 2:25 PM Page 227

The Local_IP:Remote_IP option allows pppd to assign IP addresses to remote devices. The
Local_IP address is the address of the PPP host, whereas the Remote_IP address is the address
that will be assigned to the remote PPP client.

Instead of using command-line options for pppd, you can place options in configuration files.
By default, pppd will check the /etc/ppp/options file for a list of options to use. Another
handy feature is that the pppd program also checks another options file depending on the tty
line that it is initialized from. This enables you to specify specific options for each tty line,
such as the remote IP address. If you have three modems on tty lines ttyS0, ttyS1, and ttyS2,
you can have three separate pppd options files: /etc/ppp/options.ttyS0,
/etc/ppp/options.ttyS1, and /etc/ppp/options.ttyS2. Each option file will have a differ-
ent Local_IP:Remote_IP pair specified. That way, multiple PPP clients will not accidentally
have duplicate IP addresses assigned to them.

mgetty+sendfax Program
If you want your Linux server to act as a PPP server and be able to listen for clients to connect,
the mgetty+sendfax program is a great utility to have around. Most Linux distributions come
with a binary package for this. If your Linux distribution did not include it, you can find it at
sunsite.unc.edu in the /pub/Linux/system/serial directory. mgetty+sendfax was written
by Gert Doering.

Normally, Linux uses the getty program to monitor serial lines for incoming logon attempts.
When the serial line detects a connection, it uses the login program to authenticate the userid
that is entered. The mgetty+sendfax program includes a new program, mgetty, that replaces
the standard getty program for the serial line. mgetty allows more flexibility than getty by
automatically detecting the type of incoming call and by using lock files.

The mgetty program uses both command-line options and a configuration file to control how it
operates. The Linux file that controls what programs interact with what serial lines is the

Introduction to Email Services and Linux

PART I
228

CAUTION

The proxyarp option allows other computers to connect to the PPP client. When you
establish a PPP connection to the ISP, your Linux server becomes a network device on
your ISP’s network and is susceptible to the same network hacks as any other device
directly connected to the network. I strongly recommended using firewall software
to control access to the Linux server by external clients. Extreme care should be
taken if no firewall software is being used on the PPP connection. Please watch the
system logs for invalid access attempts.

10 0672318342 CH08 2/14/00 2:25 PM Page 228

/etc/inittab file. Each tty line for the Linux server has its own terminal line in the
/etc/inittab file. The entry for the inittab file that allows mgetty to monitor a serial line
looks like this:

Set serial line for modem
s1:12345:respawn:/sbin/mgetty -D -s 38400 -n 4 ttyS0

Colons are used to separate the different parameters. The first parameter is a unique identifier
for the terminal line. The second parameter indicates what init level the terminal will be
active for. This line allows the terminal to be active for init levels 1 through 5. The third para-
meter is used to indicate how the init program will treat the line. The respawn keyword tells
init to start the program at the indicated run level, and then restart it every time it terminates.
This allows the modem line to recycle after a client disconnects from the modem. The fourth
parameter is the program that init will spawn to monitor the terminal line. The format for the
mgetty command is

mgetty [options] ttydevice

where [options] are mgetty options that control the behavior of the modem line and ttydevice
is the Linux tty line that mgetty will monitor. Table 8.6 shows the options available for mgetty.

TABLE 8.6 mgetty Command-Line Options

Option Description

-x LEVEL Sets the debugging level to LEVEL

-s SPEED Sets the line speed to SPEED

-a Tries to autodetect the modem connection speed

-k SPACE Sets the number of kilobytes required in the incoming fax spool
directory to SPACE

-m ‘EXPECT SEND’ Sets a modem initialization chat script

-r Used to indicate a direct line

-p LOGIN_PROMPT Sets the login prompt for the modem line

-n RINGS Sets the number of rings before mgetty answers the modem

-D Locks the modem to data mode

-F Locks the modem to fax mode

-R SEC Enables ring-back mode—callers must call twice

-i ‘issue’ Specifies an issue file to display on a connection

-S ‘FAX DOC’ Specifies a default fax document to send to polling fax machines

PPP Protocol

CHAPTER 8
229

8

PPP P
R

O
TO

C
O

L

10 0672318342 CH08 2/14/00 2:25 PM Page 229

As shown in the inittab example, the modem is locked in data mode at a speed of 38,400
bps. Also, the modem will not answer the phone until after the fourth ring (as noted, so as to
keep my friends and family from hearing my modem when they call). One thing that might
trick you is that mgetty does not place the modem in auto-answer mode. It listens for the
modem to issue RING messages, and performs an ATA to pick up the line after the set number of
RINGs is found. Using this method, the modem should never answer the phone if the mgetty
program locks up—a nice feature for those of us who have had servers answer the modem con-
nection and not been able to issue a logon prompt.

Besides the command-line options, mgetty also uses configuration files to define its operation.
The /etc/mgetty+sendfax/login.conf file is used to define the programs to which mgetty
will pass the established connection. As mentioned earlier, a normal terminal session will be
passed to the login program to process the userid. mgetty has the capability to autodetect an
incoming PPP connection, and automatically pass it to the pppd program. The line in the
/etc/mgetty+sendfax/login.conf file that does this is

/AutoPPP/ - ppp /usr/sbin/pppd auth -chap +pap login modem \
➥crtscts lock proxyarp

The AutoPPP part is case sensitive, so be careful. mgetty will pass the PPP connection to the
pppd program using the parameters specified on the AutoPPP line. These parameters will be
added to any parameters in the pppd options files. The +pap parameter is especially important
for dial-in Windows clients. Chapter 16, “Supporting Dial-In Clients,” describes the AutoPPP
configuration in more detail.

After adding the mgetty information to the /etc/inittab file, you must use the Linux telinit
Q command (or issue a KILL HUP 1) to have the init program reread the inittab file.

mgetty produces its own log files in the /var/log directory. Each modem line has its own log
file by appending the tty line name to the mgetty.log filename. Listing 8.5 shows a sample
mgetty session in the mgetty log file.

LISTING 8.5 mgetty Log File Output

1 09/19 06:43:56 yS0 mgetty: experimental test release 1.1.14-Apr02
2 09/19 06:43:56 yS0 check for lockfiles
3 09/19 06:43:56 yS0 locking the line
4 09/19 06:43:56 yS0 lowering DTR to reset Modem
5 09/19 06:43:57 yS0 send: \dATQ0V1H0[0d]
6 09/19 06:43:57 yS0 waiting for ``OK’’ ** found **
7 09/19 06:43:58 yS0 send: ATS0=0Q0&D3&C1[0d]
8 09/19 06:43:58 yS0 waiting for ``OK’’ ** found **
9 09/19 06:43:58 yS0 waiting...
10 09/19 06:45:23 yS0 waiting for ``RING’’ ** found **

Introduction to Email Services and Linux

PART I
230

10 0672318342 CH08 2/14/00 2:25 PM Page 230

11 09/19 06:45:23 yS0 waiting for ``RING’’ ** found **
12 09/19 06:45:29 yS0 waiting for ``RING’’ ** found **
13 09/19 06:45:35 yS0 waiting for ``RING’’ ** found **
14 09/19 06:45:59 yS0 send: ATA[0d]
15 09/19 06:45:59 yS0 waiting for ``CONNECT’’ ** found **
16 09/19 06:46:13 yS0 send:
17 09/19 06:46:13 yS0 waiting for ``_’’ ** found **
18 09/19 06:46:16 ##### data dev=ttyS0, pid=2766, caller=’none’,
➥ conn=’38400/ARQ/28800 LAP-M’, name=’’, cmd=’/usr/sbin/pppd’, user=’/AutoPPP/’

In Listing 8.5, lines 1 through 9 show mgetty initializing the modem on ttyS0. Lines 10 through
14 show mgetty receiving the RING string from the modem, indicating an incoming call. After
the fourth RING, mgetty issues an ATA command to pick up the line. Line 18 shows that mgetty
autodetected a PPP connection and issued the /usr/sbin/pppd command for the line.

Summary
The Point-to-Point Protocol (PPP) is used for passing network protocols between two devices
using a modem connection. For the Linux mailserver, this means is that you can use a standard
asynchronous modem connected to a COM port on the PC to dial into an Internet service
provider (ISP) to establish an IP connection to the Internet. This allows the mailserver to send
and receive mail messages from other mail hosts on the Internet. Linux supports the PPP proto-
col with the pppd program. It is designed to work both on either end of a PPP connection. It
can behave as a server by waiting for other PPP devices to dial in to it and establish a PPP ses-
sion, or it can be used to dial in to an ISP and establish a session. A companion program to
pppd is the Linux chat program. This allows the Linux server to converse with the modem to
dial into the ISP and start the remote PPP session. Another Linux program, diald, can be used
to automate the PPP process even further. diald will monitor the network watching for IP traf-
fic waiting to use the PPP connection. It then automatically starts the chat script to contact the
ISP and start the PPP session. To create a PPP server, you can use the mgetty+sendfax program
that autodetects an incoming PPP connection and automatically starts the pppd program on the
server. This works very well when supporting Windows 95, 98, and NT PPP clients.

PPP Protocol

CHAPTER 8
231

8

PPP P
R

O
TO

C
O

L

10 0672318342 CH08 2/14/00 2:25 PM Page 231

232

10 0672318342 CH08 2/14/00 2:25 PM Page 232

CHAPTER

9
UUCP Protocol

IN THIS CHAPTER
• UUCP Protocol Description 234

• UUCP Protocol Types 243

• Taylor UUCP 248

• UUCP Commands 255

• Linux UUCP Implementation 259

11 0672318342 CH09 2/14/00 2:31 PM Page 233

The previous chapters described methods of transferring mail from the Linux mailserver across
a network connection to the Internet. In some instances—either for security reasons or
expense—it is not possible to connect the mailserver to the Internet via an IP network. There is
another method of establishing a mailserver without the risk or expense of a dedicated or dial-
up IP network.

The Unix-to-Unix CoPy (UUCP) protocol was used in the early days of UNIX to transfer mes-
sages and files between remote UNIX computers via phone lines and modems. An entire suite
of protocols and programs was written to create a point-to-point mesh network of UNIX com-
puters across the country. When the Internet became available, the popularity of UUCP faded
almost to extinction. Now UUCP is making a comeback because many businesses and ISPs are
looking for more secure and cost-efficient methods to transfer email.

Using a UUCP connection, the mailserver is never connected to the Internet. It is not possible
for intruders to TELNET to the server via the UUCP connection or to perform any kind of net-
work denial-of-service attack. No programs can be executed unless you specifically give your
ISP permission to do so. The UUCP software allows tight control of the connectivity between
the two computers that are using it.

Many businesses opt to use a UUCP mail connection to augment their normal PPP network
connection. If a business has a lot of interactive IP traffic, such as Web and FTP clients, it does
not want to bog down the PPP line with extra traffic for transferring mail. Instead of buying
larger PPP bandwidth, it is possible to purchase a cheaper dial-up UUCP connection to the ISP
that is responsible for just handling mail transfers—leaving the PPP connection for the interac-
tive traffic.

This chapter discusses the protocols used in a UUCP connection. When connecting to an ISP
via UUCP, it helps to know what protocols you are talking about. This chapter also discusses
the most popular Linux UUCP distribution (Taylor UUCP), and provides sample configuration
files for implementing UUCP on a Linux mailserver as either a client or as a server for other
UUCP computers to connect to.

UUCP Protocol Description
The UUCP protocol was developed at AT&T Bell Labs by Mike Lesk in the late 1970s. It’s
purpose was simple: to implement a file- and mail-transfer protocol between two UNIX com-
puters. There are three phases to a UUCP connection:

• Initial handshake

• Data transfer

• Closing handshake

Introduction to Email Services and Linux

PART I
234

11 0672318342 CH09 2/14/00 2:31 PM Page 234

Because UUCP was invented long before the client/server paradigm was devised, its terminol-
ogy is a little different. What would now be called the server is actually called the UUCP slave,
and the client computer is called the master because it controls the UUCP connection (see
Figure 9.1). Either computer can initiate a connection; the initial handshake determines which
host plays which role. Of course, just to confuse things, the computers are allowed to switch
roles during the UUCP session if they want to.

UUCP Protocol

CHAPTER 9
235

9

U
U

C
P P

R
O

TO
C

O
L

Intial Handshake

Closing Handshake

Data Transfer

Server

Host A

Client

Host B

FIGURE 9.1
The UUCP session phases.

Initial Handshake
During the initial handshake, the two computers lay down the ground rules for the UUCP com-
munication. During the initial handshake, a packet is defined by a starting character (0x10 hex)
and an ending character (0x00 hex). When the master computer places a call to the slave, the
slave should respond with the following packet:

Shere=hostname

where hostname is the UUCP name of the slave computer. A UUCP name has nothing to do
with the DNS name of a computer, although attempts are being made to reconcile the two sys-
tems by offering a uucp domain in the Internet community. If the master receives the slave’s
hostname, it can respond with the following:

Shostname options

where hostname is the UUCP name of the master and options are items negotiated by the two
hosts. Table 9.1 shows the options available for negotiation.

11 0672318342 CH09 2/14/00 2:32 PM Page 235

TABLE 9.1 UUCP Initial Handshake Options

Option Description

-Qseq Matches a calling sequence number seq

-xlevel Requests that the slave set its debugging mode to the value of level

-pgrade Requests that the slave transfer only files of priority grade or higher

-N Indicates that the master understands Taylor size limit extensions

The slave computer should respond to any options selected by the master by sending one of the
return codes specified in Table 9.2.

TABLE 9.2 UUCP Slave Return Codes

Code Description

ROK The options are acceptable

ROKN Same as ROK but also understands the Taylor size limit extensions

RLCK The slave computer has a UUCP lock for the master hostname
and can’t continue

RCB The slave will hang up and initiate a callback to the master

RBADSEQ The sequence number in the –Q option did not match; thus, the
connection might be an imposter

RLOGIN The master computer logged in with a wrong login ID to establish
the UUCP connection

RYou are unknown to me The slave computer does not have an entry for the master com-
puter in its config files

If the slave’s response is ROK or ROKN, the next part of the initial handshake phase is started. If
any other return code is returned, the master computer drops the connection.

The next part of the handshake is for the two computers to decide on a UUCP protocol. Over
the years, various methods of encapsulating the core UUCP protocol have been designed. Each
protocol has been assigned a letter from a to z. The original UUCP protocol has been assigned
the letter g. The Taylor UUCP distribution normally uses the i protocol when communicating
with another Taylor UUCP computer. The slave computer will initiate the exchange with the
packet

Pprotocollist

Introduction to Email Services and Linux

PART I
236

11 0672318342 CH09 2/14/00 2:32 PM Page 236

where protocollist is a list of letters of the protocols that the slave supports. If the master
computer can match a supported protocol, it returns

Uprotocol

where protocol is the letter of the matching protocol that the master will use. If there are no
matching protocols, the master computer should return

UN

and drop the connection. After a protocol has been decided, the two computers can perform
any negotiations necessary for the individual protocol (see “UUCP Protocol Types,” later in
this chapter). After the negotiations are complete, the initial handshake phase is over and the
data transfer phase can begin.

Data Transfer
As mentioned earlier, the master computer controls the flow of data across the UUCP connec-
tion. After the initial handshake is complete, the master computer takes control of the session
and can issue commands to the slave. There are five data transfer commands that can be used
by the master. Figure 9.2 shows the five commands and the direction of action that each com-
mand uses.

UUCP Protocol

CHAPTER 9
237

9

U
U

C
P P

R
O

TO
C

O
L

Server

Host A

Client

Host B
S commands

R commands

E commands

X commands

H commands

FIGURE 9.2
The UUCP data transfer commands.

Send a File Command
The S command is used to send a file from the master computer to the slave computer. The
slave computer can either accept or reject the file transfer request. The format of the S com-
mand is

S fileout filein user –options temp mode notify size

11 0672318342 CH09 2/14/00 2:32 PM Page 237

fileout is the name of the file that the master computer wants to transfer. Files located in a
user’s directory are preceded by ~USER/ and files located in the UUCP public area are preceded
by ~/.

filein is the filename that the slave computer should try to use when saving the file. If filein
begins with an X., it represents an execution file that will be run by the slave using the uux
Linux command. If filein begins with D., it represents a data file that will be used by an exe-
cution file.

user is the username of the user who requested the file transfer.

-options are additional options that control the action of the file transfer. Table 9.3 lists the
available options.

TABLE 9.3 S Command Options

Option Description

C The file should be saved in the slave’s UUCP spool directory

c The file should be saved as specified in filein

d The slave should create directories as needed to match the filein filename

f The slave not create any needed directories, but should fail the transfer

m The master should send mail to the user when the transfer is complete

n The slave should send mail to the address specified by notify when the transfer
is complete

temp is the name of the file in the UUCP spool directory to transfer if the C option is used. If
not, temp is a dummy value that will be deleted if the transfer is successful.

mode is an octal number that indicates the UNIX mode of the file. Generally, the mode 0666 is
used to represent read/write privileges for the user, his group, and all other users on the system.
If the file is in the UUCP spool area, it may be set with a mode of 0600 to prevent reading and
writing from other users.

notify is the mail address of the user to send notification messages to. If there is no user to
notify, but the size option is used, the notify option should be set to the dummy value of
either “” or dummy.

size is used for Taylor UUCP implementations to indicate the size of the data file transferred
in decimal bytes.

After the S command is sent, the slave must send a return command to indicate the status of
the transfer. All S command return values begin with S. Table 9.4 shows the possible return
codes by the slave.

Introduction to Email Services and Linux

PART I
238

11 0672318342 CH09 2/14/00 2:32 PM Page 238

TABLE 9.4 S Command Return Codes

Code Description

SY All options are accepted; begin the file transfer

SN2 The file transfer will not succeed as requested

SN4 The slave cannot create the temporary file at this time

SN6 Used by Taylor UUCP; the slave indicates that the file is too large to save at this
time

SN7 Used by Taylor UUCP; the slave indicates that the file is too large to transfer at
any time

If the S command return code is SY, the master starts the file transfer using the appropriate pro-
tocol negotiated by the initial handshake. At the end of the file transfer, the slave must send a
return code indicating the status of the transfer. Table 9.5 shows the possible S command com-
pletion codes.

TABLE 9.5 S Command Completion Codes

Code Description

CY The file transfer was successful

CN5 The temporary file could not be moved to the file location specified by filein

After the master receives the completion code from the slave, the data transfer is finished and
the master is free to initiate another data transfer or close the UUCP session.

Receive a File command
The R command is used for the master to receive a file from the slave. The format for the R
command is

R fileout filein user –options size

fileout is the filename of the file on the slave computer. This file must not reside in the
UUCP spool directory, and it can not use any wildcard characters to indicate multiple files.

filein is the filename used on the master computer to save the file.

user is the username of the user requesting the file transfer.

-options are additional options that control the action of the file transfer. Table 9.6 shows the
options that are available for the R command.

UUCP Protocol

CHAPTER 9
239

9

U
U

C
P P

R
O

TO
C

O
L

11 0672318342 CH09 2/14/00 2:32 PM Page 239

TABLE 9.6 R Command Options

Option Description

d The master should create directories as needed by filein.

f The master should not create directories as needed by filein, and the transfer
should fail.

m The master should send mail to the user to notify him when the transfer is
complete.

size indicates the largest file size that the master computer is able to accept from the slave.

After the R command is sent, the slave computer should send a return code indicating the status
of the file transfer. Table 9.7 shows the possible return codes.

TABLE 9.7 R Command Return Codes

Code Description

RY mode The slave is able to transfer the file. mode indicates the UNIX permissions of
fileout, and should be used for filein.

RN2 The slave is unable to transfer the file because either it does not exist or it has per-
missions that prevent the transfer.

RN6 Used by Taylor UUCP; indicates that the file is too large for the indicated size
limit.

If the R command return code is RY, the slave initiates the file transfer using the appropriate
UUCP protocol. When the file transfer is complete, the master will send a completion code to
the slave. Table 9.8 shows the possible completion codes used.

TABLE 9.8 R Command Completion Codes

Code Description

CY File transfer successful.

CN5 The temporary file could not be moved to the file location specified by filein.

After the master sends the completion code, the file transfer is complete. The master is then
free to initiate another data transfer or close the session.

Introduction to Email Services and Linux

PART I
240

11 0672318342 CH09 2/14/00 2:32 PM Page 240

Execute a Command
The E command is used by Taylor UUCP implementations to execute a command on the slave
computer. As mentioned earlier, the original method used by UUCP to execute commands on
the slave computer was to place the commands in a file beginning with an X. and transfer the
file using the S command. When the slave noticed the X. file, it used the uux command to exe-
cute the commands in the file. Taylor UUCP attempts to improve on this method by imple-
menting the E command. The format of the E command is

E fileout filein user –options temp mode notify size command

The fileout, filein, user, temp, mode, notify, and size parameters behave the same way as
for the S command. The –options recognized by the E command are shown in Table 9.9.

TABLE 9.9 E Command Options

Option Description

C filein has been copied to the UUCP spool directory.

c filein has not been copied to the UUCP spool directory.

N No mail message should be sent indicating the status of the command.

Z A mail message should be sent to the user indicating the status of the command.

R A mail message should be sent to the address specified in notify indicating the
status of the command.

e The command should be executed using /bin/sh instead of uux.

command is the Linux command to be executed by the slave.

After the E command is sent, the slave responds with a return code. The E return codes are the
same as the S return codes, with the exception that the first letter is E instead of S. After the
master receives an EY return code, the data transfer is considered complete and the master is
free to initiate another transfer or close the session.

Remote Host Transfer Command
The X command is used as a way to get the slave to send a file to somewhere else. The X com-
mand causes the slave to execute the uucp command (see “UUCP Commands,” later in this
chapter) using the parameters passed by the X command. The format for the X command is

X fileout filein user

fileout indicates the filename of the file that the slave should transfer using the uucp com-
mand.

UUCP Protocol

CHAPTER 9
241

9

U
U

C
P P

R
O

TO
C

O
L

11 0672318342 CH09 2/14/00 2:32 PM Page 241

filein is the filename and path to which the slave should transfer the file. This uses standard
UUCP transfer conventions, such as hostname!filename, where hostname is the UUCP name
of a remote host. This allows the master to initiate a file transfer from the slave computer to
another remote computer on the UUCP network.

There are only two return codes that the slave can issue. An XY return code indicates that the
slave accepts the command and will queue a job to perform the requested file transfer. An XN
command indicates that the slave will not process the command.

After receiving the return code, the data transfer is complete (no data is transferred in this com-
mand) and the master is free to initiate another command or close the UUCP session.

Halt Command
The H command is used to close the UUCP session by the master computer. It is sent by itself
with no options or parameters. The slave computer responds with one of two possible return
codes.

The HY return code indicates that the slave agrees that the session is done, and allows the con-
nection to terminate. The master then responds with another HY return code and drops the
connection.

The HN command indicates that the slave agrees to terminate the session, but wants to start
another UUCP session with the roles reversed. The slave computer then assumes the role of the
master and issues new commands to transfer files to the old master, which has now assumed
the slave role. When finished, the new master can send an H command and the new slave can
either allow the connection to be closed or reverse the roles again and begin a new session as
the new master (how’s that for client/server bashing?).

Closing Handshake
The closing UUCP handshake is nothing more than a protocol formality. It indicates that both
sides of the UUCP connection agree to drop the connection (as was already established in the H
command communications). As in the initial handshake protocol, packets start with a 0x10 hex
value and end with a 0x00 hex value. The master initiates the closing by sending a packet with
six Os (OOOOOO). If the slave agrees to close the UUCP connection, it responds with a packet of
seven Os (OOOOOOO). At that point, the UUCP connection is officially over and the modem line
should be dropped.

Sample UUCP Session
To help clarify the complex UUCP command structure, Listing 9.1 shows a sample UUCP ses-
sion between a master and a slave.

Introduction to Email Services and Linux

PART I
242

11 0672318342 CH09 2/14/00 2:32 PM Page 242

LISTING 9.1 Sample UUCP Session

1 SLAVE: Shere=ispmail
2 MASTER: Sshadrach
3 SLAVE: ROK
4 SLAVE: Pgi
5 MASTER: Ui
6 MASTER: S test1.txt /home/rich/test1.txt rich x 066 dummy 1000
7 SLAVE: SY
8 -- data transfer begins --
9 SLAVE: CY
10 MASTER: R /home/rich/test2.txt test2.txt rich 1500
11 SLAVE: RY 0666
12 -- data transfer begins --
13 SLAVE: CY
14 MASTER: H
15 SLAVE: HY
16 MASTER: OOOOOO
17 SLAVE: OOOOOOO

After the master host initiates the UUCP connection, the slave issues the initial handshake ban-
ner, shown in line 1. The master host responds with its handshake banner shown in line 2. In
line 4, the slave host queries the master as to which UUCP protocol type it wants to use by
listing the protocols that the slave supports. Line 5 shows the mater host’s choice of protocol
to use.

Line 6 shows the master host using the send file command to send a file to the slave computer.
In line 7, the slave computer accepts the file transfer; and in line 8, the data transfer of the file
occurs. When the transfer is complete, the slave responds with the CY command in line 9.

Line 10 shows another file transfer initiated by the master host. This time, it requests to receive
a file from the slave host. The slave host accepts the file transfer request in line 11; in line 12,
the data transfer of the file occurs. When the transfer is complete, the slave responds with the
CY command shown in line 13.

Line 14 shows the master host requesting that the UUCP connection be terminated. The slave
agrees in line 15, and lines 16 and 17 show the standard closing handshake packets being
traded. At this point, the UUCP protocol is complete, and the modem connection is dropped.

UUCP Protocol Types
During the initial handshake, the two UUCP computers negotiate a UUCP protocol to use. The
core UUCP description earlier can be encapsulated in another protocol to preserve data
integrity on various types of data connections. A noisy phone line requires a higher degree of

UUCP Protocol

CHAPTER 9
243

9

U
U

C
P P

R
O

TO
C

O
L

11 0672318342 CH09 2/14/00 2:32 PM Page 243

error checking than an error-correcting TCP/IP connection. To compensate for this, several fla-
vors of UUCP protocols have been written. Table 9.10 shows some of the more popular UUCP
protocols. This section discusses these protocols in more detail.

TABLE 9.10 UUCP protocols

Protocol Description

g Earliest protocol used, provides large degree of error correction.

i Can transfer data in both directions simultaneously with higher data rates.

t Used for UUCP over TCP/IP, no error correction provided.

e Another TCP/IP implementation, using ASCII control packets.

g Protocol
The g protocol was the first protocol written for UUCP. It was created to help pass UUCP
packets across noisy, error-prone phone lines using low-speed modems. It has the largest
packet overhead of any protocol. Often it is used as a least common denominator when com-
puters are negotiating UUCP protocols because every UUCP implementation must support it.

The g protocol uses a six-byte header attached to each UUCP packet. Besides the normal data
packets for UUCP, the g protocol introduces control packets to further control the UUCP con-
nection above the initial handshake parameters. Figure 9.3 shows the layout of a g protocol
packet header.

Introduction to Email Services and Linux

PART I
244

HEADER = 00010000

UUCP‘g’Protocol Packet

K-byte

Checksum bytes

Control byte

XOR byte

FIGURE 9.3
The UUCP g protocol packet header layout.

11 0672318342 CH09 2/14/00 2:32 PM Page 244

The g protocol uses the 0x10 hex start value from the core UUCP protocol. The next value in
the header packet is the K-byte. The K-byte value represents the length of the data portion of
the packet. The data portion of the g protocol packet contains the core UUCP packet as dis-
cussed earlier. Table 9.11 shows the possible values for the K-byte.

TABLE 9.11 g Protocol K-byte Values

K-byte Value Data Length (Bytes)

1 32

2 64

3 128

4 256

5 512

6 1024

7 2048

8 4096

9 0

A K-byte value of 9 represents a special case; the g protocol packet does not contain data, but
is a control packet. Control packets help the UUCP computers establish the communication
channel and perform error correction for the core UUCP packets.

The checksum bytes are used to detect errors in the transmission of the packet. An algorithm is
used to calculate the checksum of the entire data packet. The receiving computer recalculates
the checksum and compares the values.

The control byte is used in conjunction with the K-byte value to determine the use of the con-
trol packet. The format of the control byte is shown in Figure 9.4. The parameters in the con-
trol byte take different meanings depending on the K-byte value.

UUCP Protocol

CHAPTER 9
245

9

U
U

C
P P

R
O

TO
C

O
L

K-

UUCP‘g’Protocol Control Packet

TT

XXX

YYY

FIGURE 9.4
The UUCP g protocol control byte format.

11 0672318342 CH09 2/14/00 2:32 PM Page 245

If the K-byte value is 9, the control byte does what its name implies—it is a control byte that
identifies a control action that must be taken by one of the two computers. The TT bits will
have a value of 0, and the XXX bits represent a code for the control action. The YYY bits repre-
sent a value for the control action. Table 9.12 shows the possible values of the XXX bits.

TABLE 9.12 g Protocol Control Byte XXX Bits

Value Mnemonic Description

1 CLOSE Indicates to the remote computer that the sending
computer wants to close the UUCP connection. Note
that this means that only the g protocol portion will be
closed, not the actual UUCP connection; although
normally, it triggers the UUCP connection to enter the
closing handshake phase.

2 RJ Indicates the last packet sent by the remote computer
was not received properly. The YYY bits represent the
packet sequence number of the last received packet.

3 SRJ Indicates a particular packet sequence number was not
received properly and should be resent. The YYY bits
represent the sequence number of the bad packet.
UUCP does not use this control code.

4 RR Indicates a packet sequence has been received cor-
rectly. The YYY bits represent the sequence number of
the last received packet.

5 INITC Identifies the last handshake control packet. Both
slave and master computers will send an INITC con-
trol packet. The YYY bits represent the maximum win-
dow size the computer will use in packets. After each
computer receives the other’s INITC packet, the g pro-
tocol handshake is complete.

6 INITB Identifies the second handshake control packet. Both
slave and master computers will send an INITB con-
trol packet. The YYY bits represent the largest packet
size that the computer can accept. The value format is
similar to the K-byte value, but is one number less.
Thus, an INITB value of 1 represents 64 bytes, 2 rep-
resents 128 bytes, and so on.

7 INITA Identifies the starting g protocol handshake. Both
slave and master computers send an INITA control
packet. The YYY bits represent the maximum window
size the computer can receive in packets.

Introduction to Email Services and Linux

PART I
246

11 0672318342 CH09 2/14/00 2:32 PM Page 246

If the K-byte value is less than 9, the control byte serves a different purpose. The control byte
identifies the type of data packet that the packet is. If the TT bits value is 2, the packet is a long
data packet. If the TT bits value is 3, the packet is a short data packet.

In a long data packet, the XXX and YYY bits of the control byte are used to represent the
sequence number (XXX) and the acknowledgement number (YYY). Each packet is sequenced and
acknowledged to trace missing packets. Missing packets are retransmitted. All bytes following
the control byte (up the K-byte value of bytes) are considered data. The core UUCP packet will
be in these bytes.

A short data packet is a little different. The XXX and YYY bits still represent the sequence and
acknowledge numbers, but the first two bytes of the data are used to represent the difference
between the physical and logical packet sizes. As shown in Table 9.11, a K-byte value of 1
indicates that a 32-byte data packet will be sent. If the sender has fewer than 32 bytes of data
to transmit, it must use a short data packet format. The first two bytes represent the difference
between the logical data size (32) and the actual physical size of the data.

If the difference value is less than 128, one data byte is used. If the difference value is 128 or
larger, two data bytes are used. The high bit of the first byte indicates how many bytes are
used: a 0 indicates one byte and a 1 indicates two bytes.

The last byte of the g protocol control header is used for error detection. The XOR byte is used
as an error check for the header. It is an Exclusive OR of the K-byte, the checksum bytes, and
the control byte. It is used as a final double-check to ensure that the g packet is error-free. The
g protocol uses the XOR byte because the g protocol was originally designed for error-prone
phone lines.

i Protocol
The i protocol was written by Ian Taylor, of Taylor UUCP fame. It is similar in operation to the
g protocol, but has the capability to transfer data in both directions simultaneously. It attempts
to use a large window value whenever possible to increase the throughput of the data transmis-
sion. The i protocol uses five different packet types to identify control packets and data. Table
9.13 shows the packet types used by the i protocol.

TABLE 9.13 The UUCP i Protocol Packet Types

Packet Type Description

Data Data packet

SYNC Protocol initialization packet

ACK Acknowledgment packet

NAK Negative acknowledgment

SPOS Change of file position

CLOSE Closes the UUCP session

UUCP Protocol

CHAPTER 9
247

9

U
U

C
P P

R
O

TO
C

O
L

11 0672318342 CH09 2/14/00 2:32 PM Page 247

t Protocol
The t protocol is used for transmitting UUCP packets across a TCP/IP connection. The TCP/IP
connection provides a method for packet sequencing and error correction, so those features are
not used in the t UUCP protocol. The t protocol uses large blocks to transfer packets. Control
packets are sent in multiples of 512 bytes, whereas data packets are sent in blocks that are mul-
tiples of 1,024 bytes.

e Protocol
Similar to the t protocol, the e protocol was designed to work on TCP/IP networks. It does not
perform any error correction or packet sequencing. It uses plain ASCII text to transfer the con-
trol packets. File sizes are sent as decimal ASCII numbers to the receiving computer before the
transfer begins.

Taylor UUCP
The most popular Linux implementation of UUCP was developed by Ian Taylor and is called
Taylor UUCP. Taylor UUCP uses a set of configuration files to define the UUCP hosts, permis-
sions, modems, chat scripts, and communication settings. Red Hat, Caldera, and Mandrake
Linux all place the configuration files in the /etc/uucp directory. Figure 9.5 shows the rela-
tionship between the configuration files. The configuration files use plain ASCII text to define
the parameters used for the UUCP connections.

For the Linux server to communicate as either a master or as a slave with another UUCP host,
the remote host must be configured in the configuration files. There is also a configuration for
an “unknown” host that allows any UUCP host to connect to the server and transmit or receive
files from a public directory. The following sections look at the configuration files needed by
Taylor UUCP.

Introduction to Email Services and Linux

PART I
248

config file sys file port file dial file

nodename
 shadrach

system ispmail
port modem

port modem
dialer normal

Taylor UUCP file relationships

dialer normal

FIGURE 9.5
The Taylor UUCP configuration file relationships.

11 0672318342 CH09 2/14/00 2:32 PM Page 248

config File
The config file defines the local UUCP host. All the items in the config file will take on
default values if not specifically defined in the file. Table 9.14 lists the properties that are valid
in the config file.

TABLE 9.14 Taylor UUCP config File Properties

Property Description

hostname Defines the UUCP name of the node

nodename Same as hostname

uuname Same as hostname

spool Location of the UUCP spool directory

pubdir Location of the UUCP public directory

lockdir Location of the UUCP lock directory

unknown sys file commands allowed for anonymous UUCP hosts

max-uuxqts Maximum concurrent uuxqt processes that can be running

run-uuxqt When the uuxqt program will run relative to uucico

timetable Defines a text definition of times

v2-files Process UUCP Version 2 type configuration files

hdb-files Process UUCP Honeydanber type configuration files

sysfile Location of the sys file(s)

portfile Location of the port file(s)

dialfile Location of the dial file(s)

dialcodefile Location of the dialcode file(s)

callfile Location of the call file(s)

passwdfile Location of the passwd file(s)

logfile Location of the UUCP log file

statfile Location of the UUCP stat file

debugfile Location of the UUCP debug file

debug Set debug level

The hostname, nodename, and uuname properties are synonyms—only one is used. They allow
the UUCP config to specify the UUCP node name of the Linux server.

UUCP Protocol

CHAPTER 9
249

9

U
U

C
P P

R
O

TO
C

O
L

11 0672318342 CH09 2/14/00 2:32 PM Page 249

The spool, pubdir, and lockdir properties are used to override the default locations of the
spool files, public directory, and lock directory. The spool directory is where temporary
UUCP files are placed before they are transmitted and received files are placed before they are
copied to their final destination. The public UUCP directory is a place where remote hosts can
send and receive files without special host file permissions. The lock directory is where UUCP
places its lock files. When UUCP calls a host, it creates a lock file so that no other process can
call the same host at the same time.

The unknown property is used to define allowed behavior for anonymous UUCP hosts. If no
unknown commands are listed, no anonymous UUCP connections are allowed. Normal sys file
properties can be placed after the unknown command to define the behavior, similar to defining
behavior for a known host. Multiple unknown properties can be included in the config file.
This property is not normally needed for processing mail across a UUCP connection. The
unknown property can be used to allow anonymous UUCP hosts access to the UUCP public
directory area.

The timetable property enables you to define special times that can then be used in other con-
figuration files. Normally, times are defined by the day and hour access is allowed. For exam-
ple, Tu0800-2000 means Tuesdays from 8 a.m. to 8 p.m.. You can use the timetable command
to set a name for a particular time range, such as

timetable WorkHours Wk0800-1730

This creates a time named WorkHours that represents the times from 8:00 a.m. to 5:30 p.m.
Monday through Friday. This time tag can then be used in other configuration files as a normal
time definition. Listing 9.2 shows a sample config file.

LISTING 9.2 Sample Taylor UUCP config File

nodename shadrach
logfile /var/log/uucp

Line 1 shows the UUCP hostname of the local system, and line 2 shows an alternate location
for the UUCP log files. This is usually all that is needed in a config file; it is not too compli-
cated.

sys File
The sys file defines other UUCP hosts to the Linux server. Each remote host has its own sec-
tion in the sys file. Each section defines specific parameters for communicating with the
remote host. Table 9.15 shows the properties available in the sys file.

Introduction to Email Services and Linux

PART I
250

11 0672318342 CH09 2/14/00 2:32 PM Page 250

TABLE 9.15 Taylor UUCP sys File Properties

Property Description

system Defines the UUCP name of a remote site

alternate Define alternate properties

default-alternates If set to false, don’t use any alternates

alias Specifies an alias used for the remote system

myname Specifies a different hostname used when calling the specific
remote host

time Specifies when the system can be called

timegrade Specifies the times that specific grades of jobs can be run

max-retries Specifies the maximum times the system can be tried after a
failure

success-wait Specifies how long to wait after a successful connection

call-timegrade Specifies grades of jobs that will be processed if called at the
specified time

speed Specifies the speed of the connection

port Specifies the type of port used from the port file

phone Specifies the phone number used to contact the system

chat Specifies a chat script to use to contact the remote system

chat-timeout Specifies the time to wait for the chat script to succeed

chat-fail Specifies text strings to indicate the chat script failed

call-login Specifies a login userid to use for the chat script

call-password Specifies a login password to use for the chat script

callback Specifies that the remote system should call the local system back

protocol Specifies the UUCP protocols that can be used with the system

send-request Specifies that the remote system is allowed to request files from
the local system

receive-request Specifies that the remote system is allowed to send files to the
local system

local-send Specifies that files in the directories listed can be sent to the
remote system by a local user

remote-send Specifies that files in the directories listed can be sent to the
remote system by a remote user

local-receive Specifies that files in the directories listed can be received by a
local user

UUCP Protocol

CHAPTER 9
251

9

U
U

C
P P

R
O

TO
C

O
L

continues

11 0672318342 CH09 2/14/00 2:32 PM Page 251

remote-receive Specifies that files in the directories listed can be received when
requested by a remote user

forward-to Specifies systems to which files can be forwarded

forward-from Specifies systems from which files can be forwarded

forward Specifies systems that can be both forwarded to and forwarded
from

commands Specifies a list of commands that the remote system can execute
on the local system

The system property starts the section for a remote site. Each property needed for the site is
listed afterward. The port property identifies the section of the port file that is used to call the
remote system. For just transferring email, none of the file permission properties needs to be
defined in the sys file. If no protocol property list is specified, the two UUCP hosts attempt to
auto-negotiate a common protocol to use. If both hosts are using Taylor UUCP, they will most
likely default to the i protocol. Individual protocols also have properties available to fine-tune
parameters.

The commands property is particularly useful as a security check. When a remote site transfers
mail via UUCP, it implements the rmail command on the remote computer. To restrict UUCP
access to mail processing only, you can only allow the rmail command to be executed from
the remote system. Listing 9.3 shows a sample sys file.

LISTING 9.3 Sample Taylor UUCP sys File

system ispmail
time Wk0800-1730
phone 555-1234
port modem1
speed 38400
chat ogin: shadrach word: guitar

system isp2mail
time Wk0800-1730
phone 555-4321
port modem2
speed 38400
chat ogin: backup word: bass

Listing 9.3 shows two UUCP hosts defined for the local host to communicate with. Each
UUCP host has its own section in the sys file. Each section defines the parameters necessary
to connect with the remote UUCP host.

Introduction to Email Services and Linux

PART I
252

TABLE 9.15 continued

Property Description

11 0672318342 CH09 2/14/00 2:32 PM Page 252

port File
The port file is used to define methods of connecting the UUCP session. Multiple ports may
be defined in a single port file. Each new section starts with a port property. Properties that
can be common to all the ports can be listed before the first port property. Table 9.16 shows
the properties available in the port file.

TABLE 9.16 Taylor UUCP port File Properties

Property Description

port Defines a new connection name

type Defines the type of connection

protocol Defines a list of protocols that the port can use

reliable Boolean variable used to help protocol negotiation across an unreliable
connection

half-duplex Boolean variable used to help protocols identify half-duplex connection

device Defines a Linux device that supports this port

speed Speed at which the port runs

carrier Boolean variable that defines whether the port supports carrier detection

hardflow Boolean variable the defines whether the port supports hardware flow control

dialer Defines the dialer to use from the dialer file

service If a TCP connection, defines the TCP port number to use

command Defines the command to use when using a pipe-type of port

Each port definition starts with a port property, specifying the port name as defined in the sys
file for the remote host. The type property defines the type of port to use for the connection.
Table 9.17 shows the available port types.

TABLE 9.17 Taylor UUCP Port Types

Type Description

modem A modem connection

stdin Uses standard input and output

direct A direct connection to the remote system

tcp A TCP/IP connection

tli A TLI connection

pipe A connection using a pipe to another program

UUCP Protocol

CHAPTER 9
253

9

U
U

C
P P

R
O

TO
C

O
L

11 0672318342 CH09 2/14/00 2:32 PM Page 253

The modem type is used to define a modem connection to the remote host. The stdin type is
often used to support a connection that uses uucico as the login shell on a Linux server (see the
“Linux UUCP Implementation” section later in this chapter). The tcp type allows a Linux
server to connect to the UUCP host via a TCP/IP connection. There are several different possi-
bilities to this scenario. If the Linux mailserver shares a modem connection with a PPP link,
the UUCP connection can use an established PPP link to initiate the UUCP session to the mail
host. The pipe type can forward the UUCP connection to another program, specified by the
command property. Listing 9.4 shows a sample port file.

LISTING 9.4 Sample Taylor UUCP port File

port modem1
type modem
device /dev/ttyS0
speed 38400
dialer normal

port modem2
type modem
device /dev/ttyS1
speed 38400
dialer normal

Each port that can be available for UUCP to use is listed in the port file. Listing 9.4 shows
how two modems can be configured, each using a different connection name.

dial File
The dial file defines how a remote host will be called via the modem. The dialer property
defines the start of a dial section. Multiple dialer sections can be included in the dial file, each
separated by the dialer command. Any properties common to all the dialer sections can be
listed at the top of the file before any dialers are defined. Table 9.18 shows the properties avail-
able for the dial file.

TABLE 9.18 Taylor UUCP Dialer Properties

Property Description

dialer Defines a dialer to use

chat Specifies a chat script to use to call the remote host

chat-timeout Specifies a timeout value to wait for a successful chat script

chat-fail Specifies a string to watch for to indicate a failed chat script

dialtone The string to send to the modem to wait for a secondary dial tone

Introduction to Email Services and Linux

PART I
254

11 0672318342 CH09 2/14/00 2:32 PM Page 254

carrier Boolean variable that defines whether the modem supports carrier detection

carrier-wait Specifies how long to wait for a carrier

dtr-toggle Boolean variable that defines whether the host will toggle the DTR line before
using the modem

complete-chat Specifies a chat sequence to send after a UUCP session completes

The chat script has variables that can be used to extract values from other configuration files
without repeating them in the dial file. Table 9.19 shows a list of variables that can be used
with the chat script.

TABLE 9.19 Taylor UUCP Chat Script Variables

Variable Description

\T Phone number with dial code translation

\D Phone number without dial code translation

\M Do not require carrier

\m Require carrier

Listing 9.5 shows a sample dial file that can be used in a Taylor UUCP configuration.

Listing 9.5 Sample Taylor UUCP dial File

dialer normal
chat “” ATZ OK ATDT\T CONNECT

Line 1 defines the dialer name that the port file will use. Line 2 defines the chat script neces-
sary to dial the modem to connect to the remote UUCP host. The \T variable is used in the chat
script to insert the phone number listed in the port file in the modem dial string.

UUCP Commands
After the UUCP configuration files are created, the Linux system is ready to communicate via
UUCP to a remote host. To do this, additional Linux commands are necessary to start the con-
nection and transfer data. The standard UUCP package for Linux is the Taylor UUCP package.
It comes complete with executable commands that control the use of UUCP on the server.
Some commands are reserved for system use, whereas other commands enable the administra-
tor to control the UUCP connections. If you allow users to transfer files to and from your

UUCP Protocol

CHAPTER 9
255

9

U
U

C
P P

R
O

TO
C

O
L

Property Description

11 0672318342 CH09 2/14/00 2:32 PM Page 255

Linux server via UUCP, the Taylor UUCP package has executables that have the ability to do
that also.

uucico
The uucico command is used to process UUCP requests. The requests are normally queued by
users, but could also be generated by the system. The job of the uucico command is to call the
remote sites specified by the job and establish the UUCP transfer of the data. The format of the
uucico command is

uucico [options]

When called with no options, the process starts in slave mode and waits for a request from a
remote device. It is common to create a special Linux userid that uses the uucico program as
the default shell. This allows a remote site to log in to the server and UUCP to start automati-
cally. The options available for uucico are shown in Table 9.20.

TABLE 9.20 uucico Options

Option Description

-r1 Starts in master mode

-r0 Starts in slave mode

-s nodename Calls system nodename

-S nodename Calls system nodename immediately, ignoring any required wait period

-f Ignores any required waiting periods to call

-l Prompts for login name and password

-p port Specifies a port to use to call

-e Enters endless loop of login prompts in slave mode

-w After calling out to a system, enters the –e loop

-q Does not start uuxqt when finished

-c If no calls are allowed at the time, does not call and does not generate an error
in the log

-C Only calls the system specified by –s or –S if there are jobs to be sent.

-D Does not detach from the terminal when finished

-u name Sets the login name to name

-z If the call fails, tries any alternates listed in the sys file

-i type Sets the type of port used to type

-x type Turns on debugging type specified by type

-I file Sets config file to file

Introduction to Email Services and Linux

PART I
256

11 0672318342 CH09 2/14/00 2:32 PM Page 256

-v Reports the version

--help Prints a help message

To start a UUCP session with a particular remote host, enter

uucico -s nodename

where nodename is the UUCP name of the remote system. When the uucico program is run in
host mode, the Taylor UUCP system uses the information available in the configuration files to
establish the UUCP connection with the remote host. After the UUCP connection is estab-
lished, all UUCP jobs waiting to be transferred to the remote site are processed.

uuxqt
The uuxqt command is normally called by uucico after a successful UUCP session to process
any commands that were transferred using uux. To differentiate, the uux program places jobs in
the UUCP job queues to be executed. The uuxqt program is the program that actually
processes the jobs. Normally, this happens automatically if you use uucico to connect to the
remote host.

Sometimes, if there are a lot of jobs in the queue, you might need to individually process the
important jobs. You can manually execute the command to process individual jobs if you used
the –q option for uucico. The format for the uuxqt command is

uuxqt [options]

When no options are specified, uuxqt processes jobs in the UUCP spool that have been placed
there by either local or remote users. Table 9.21 lists options that can be used with uuxqt.

TABLE 9.21 uuxqt Options

Option Description

-c command Executes requests only for the specified command

-s system Executes requests only for the specified system

-x type Turns on debugging type specified by type

The –c option is particularly useful for mail servers. By specifying the –c rmail option,
UUCP processes only mail requests. Thus, no files can enter or leave your mailserver via
UUCP. The rmail executable is restricted to passing messages to the local mail transport agent
on the Linux server; that agent is often sendmail (see Chapter 11, “Installing and Configuring
sendmail”).

UUCP Protocol

CHAPTER 9
257

9

U
U

C
P P

R
O

TO
C

O
L

Option Description

11 0672318342 CH09 2/14/00 2:32 PM Page 257

uustat
The uustat command is an extremely powerful UUCP command. It can be used by the root
user to examine the UUCP spool file and report on jobs waiting to be processed or jobs being
processed, as well as delete or start UUCP jobs in the queue. The uustat command has many
different formats depending on the function you want to perform.

The –a option is used to display all the queued file transfer jobs. The –K option can be used to
kill UUCP jobs. The killed jobs can be selected by job ID, by remote system name, by user-
name, or by many other parameters. Listing 9.6 shows a sample uustat output.

LISTING 9.6 Sample uustat Output

1 [rich@shadrach rich]$ uustat -a
2 ispmail.CLMcwusAADmB ispmail rich 10-02 06:57 Executing rmail
➥ Rich.Blum@isp.net (sending 387 bytes)
3 ispmail.CLNXU37AADmN ispmail rich 10-02 06:58 Executing rmail
➥ rich@smallorg.org (sending 390 bytes)
4 ispmail.CLOJEcNAADmT ispmail rich 10-02 06:59 Executing rmail
➥ prez@microsoft.com (sending 456 bytes)
5 ispmail.CLOpGOZAADmZ ispmail rich 10-02 06:59 Executing rmail
➥ postmaster@linux.org (sending 449 bytes)
6 [rich@shadrach rich]$

In Listing 9.6, lines 2 through 5 show mail jobs queued to be sent via UUCP. The first field is
the job ID. The second field is the remote UUCP hostname, and the third field is the username
of the person who initiated the job.

uucp
The uucp command is used to allow users to transfer files to users on remote UUCP comput-
ers. The format of the uucp command is

uucp [options] source destination

The source file can be specified as either a local or remote filename. A remote filename is
specified in the format

remotehost!filepath

where remotehost is the UUCP name of the computer where the file is located. If the file is on
the local computer, no remotehost name is required. The destination file can be either a file-
name or a directory name on either the local computer or a remote computer.

The success of the uucp command depends on the specified permissions in the UUCP configu-
ration files for the location of the file being transferred and the username of the person per-
forming the transfer.

Introduction to Email Services and Linux

PART I
258

11 0672318342 CH09 2/14/00 2:32 PM Page 258

uux
The uux command is used to execute commands on a remote computer. The requested com-
mand is queued in the UUCP spool directory as a job, and is processed the next time UUCP
calls the remote computer by the uucico program. The uux command is processed as a normal
file transfer, except that it is flagged as an executable file. When the command is sent to the
remote computer, it is executed by the uuxqt command on the remote computer.

Linux UUCP Implementation
As mentioned in the previous section, the Taylor UUCP package written by Ian Taylor has
become the standard UUCP package for Linux systems. Most Linux distributions include a
binary package for it. The Mandrake system included in this book’s CD includes it in file
uucp-1.05.i586.rpm. You can use the RPM installer program as root to install the UUCP
functions.

If your Linux does not include a UUCP distribution, there is a source code package available
that can be compiled for Linux. I found one at the common Linux site sunsite.unc.edu in the
/pub/Linux/systems/network/uucp directory as file uucp-1.05.tar.gz. If you have been
reading along in the book, you should know the standard drill for installing and compiling
Linux source code. If not, here are the basic steps:

1. Unpack the source files into a work directory:
tar –zxvf uuco-1.05.tar.gz

2. Change to the newly created uucp-1.05 subdirectory.

3. Run the configure command to create a Makefile specific to your system. You may add
parameters to configure if you want to change the default location of the UUCP config-
uration or log files. Type configure –help for instructions on how to do that.

4. Run the GNU make utility to compile the source code.

5. As the root user, run the make install option to install the binary files into their proper
directories.

After the binary files are installed, you are ready to start configuring UUCP. The use of UUCP
on a Linux mailserver requires knowledge of how the server will connect to the UUCP slave as
well as what calling method and times will be used. The following sections show an example
of configuring a Linux server both as a UUCP master and as a UUCP slave. The UUCP master
will call a host UUCP site (an ISP) to deliver and check for mail. The UUCP slave will be con-
figured to accept UUCP connections from a remote master UUCP computer. This technique
can be used to move mail from a remote site Linux mailserver to the main office Linux
mailserver. Figure 9.6 shows the relationship between UUCP master and slave hosts.

UUCP Protocol

CHAPTER 9
259

9

U
U

C
P P

R
O

TO
C

O
L

11 0672318342 CH09 2/14/00 2:32 PM Page 259

FIGURE 9.6
The UUCP SOHO master and ISP slave hosts.

Linux UUCP Master
The first UUCP file to configure is the config file. This is a simple task because no parameters
need to be changed. Listing 9.7 shows a sample config file for the client.

LISTING 9.7 Sample Taylor UUCP Master config File

nodename shadrach

The next file to configure is the sys file that defines the remote host we will call. Listing 9.8
shows a sample sys file set to call the ISP UUCP host during normal working hours to check
for mail.

LISTING 9.8 Sample Taylor UUCP Master sys File

system ispmail
time Wk0800-1730
phone 555-1234
port modem
speed 38400
chat ogin: shadrach word: guitar

The chat script defines what text strings to look for and what text strings to send. This allows
uucico to log in to the remote server. This sample chat script assumes that the remote UUCP
host will automatically run uucico as the default shell. If that is not the case, it could be
extended to look for a user prompt and then send the uucico command.

Introduction to Email Services and Linux

PART I
260

Server Client

mgetty

uucico

sendmail

uucico

uux

rmail

11 0672318342 CH09 2/14/00 2:32 PM Page 260

Next is the port file. Listing 9.9 shows the sample port file used to define the modem.

LISTING 9.9 Sample Taylor UUCP Master port File

port modem
type modem
device /dev/ttyS0
speed 38400
dialer normal

The last file needed is the dial file. This file tells uucico how to communicate with the
selected port. Listing 9.10 shows a client dial file.

LISTING 9.10 Sample Taylor UUCP Master dial File

dialer normal
chat “” ATZ OK ATDT\T CONNECT

To test the configuration, type the following command as the root user:

uucico –f –x chat –s ispmail

This command tells uucico to dial the ispmail UUCP system ignoring the time restrictions,
and to log the chat process. After a few seconds, you should hear the modem dialing the
remote site. You should be able to look at the UUCP log file (/var/log/uucp/Log) to see
whether the sites connected properly. The debug lines should be in the file
/var/log/uucp/Debug.

Now that the UUCP connection is working, the next step is to make it run automatically. The
best tool to use for this is the Linux cron program. The cron program runs in the background
and reads a set file looking for programs to execute at set times. By logging in as the root user,
type the following to edit the cron file:

crontab –e

Add the lines shown in Listing 9.11 to the cron file for the root user.

LISTING 9.11 cron Lines to Execute UUCP Automatically

4,9,14,19,24,29,34,39,44,49,54,59 * * * * /usr/sbin/touch
➥ /var/spool/uucp/ispmail/C./C.ispmailA0000
5,10,15,20,25,30,35,40,45,50,55 * * * * /usr/sbin/uucico –s ispmail

UUCP Protocol

CHAPTER 9
261

9

U
U

C
P P

R
O

TO
C

O
L

11 0672318342 CH09 2/14/00 2:32 PM Page 261

The first line creates a file every five minutes that tells uucico to poll the remote site. The sec-
ond line executes the uucico program to process the queued UUCP jobs.

See Chapter 13, “Connecting the Mailserver to an ISP,” for details on how to redirect mail
through the UUCP connection to an ISP mail host.

Linux UUCP Slave
The UUCP slave computer will quietly wait for connections from master UUCP computers.
Again, the first file needed is the config file. Listing 9.12 shows this.

LISTING 9.12 Sample Taylor UUCP Slave config File

nodename ispmail

Next is the sys file. Because the slave computer will not call any remote systems and no
remote systems need access to any file areas, this file becomes trivial. Listing 9.13 shows the
sys file.

LISTING 9.13 Sample Taylor UUCP Slave sys File

system shadrach
port dialin
time Never
commands rmail

The port file to support the dial-in clients is also very simple. As the clients connect and run
uucico themselves, the port file just needs to indicate the type of connection that will be used.
Listing 9.14 shows the port file.

LISTING 9.14 Sample Taylor UUCP Slave port File

port dialin
type stdin

Because the slave computer does not call any remote computers, it does not need any dial
files. The next step is to create a login ID for the remote system to log in as. Userids are kept
in the /etc/passwd file. To allow UUCP to start automatically when the system calls in, you
can specify uucico as the default shell. The line in the /etc/passwd file should look similar to
this:

shadrach:x:510:510:Remote UUCP host:/home/shadrach:/usr/sbin/uucico

Introduction to Email Services and Linux

PART I
262

11 0672318342 CH09 2/14/00 2:32 PM Page 262

This allows the remote system shadrach to log in as userid shadrach and start the uucico pro-
gram in slave mode automatically. The root user must assign a password for the shadrach
userid to use, the remote host will not be able to change this password.

Summary
A relatively simple and secure way to connect the Linux mailserver to an ISP mail host is by
using the UNIX to UNIX CoPy (UUCP) protocol. Although UUCP is an old protocol, it is
extremely efficient in transferring mail across a modem line to a remote computer without
establishing a network connection. Many ISPs support UUCP connections for mail purposes.
Linux implements UUCP using the Taylor UUCP package created by Ian Taylor. It consists of
configuration files and executables to configure and run a full-featured UUCP master or slave
computer on the Linux server. After a UUCP connection is established, the Linux mail soft-
ware can be configured to route all mail through the UUCP connection.

UUCP Protocol

CHAPTER 9
263

9

U
U

C
P P

R
O

TO
C

O
L

11 0672318342 CH09 2/14/00 2:32 PM Page 263

264

11 0672318342 CH09 2/14/00 2:32 PM Page 264

CHAPTER

10
The sendmail Program

IN THIS CHAPTER
• sendmail Files and Directories 266

• The sendmail Command Syntax 273

• sendmail Configuration File 279

12 0672318342 CH10 2/14/00 2:26 PM Page 265

To properly send mail to and receive mail from other systems, the Linux mailserver must have
a Mail Transport Agent (MTA) installed. The MTA’s job is not to deliver mail to local users,
but rather to process remote mail messages. If the MTA receives a message destined for a local
user, it will pass the message off to another program that can properly deliver it. Messages des-
tined for users on remote hosts will be sent off either to the destination host or to another sys-
tem that can forward the message to the final destination. After the message is passed off, the
MTA’s job is done.

Many different MTA programs are available for Linux. Some were written to be more func-
tional, whereas others were written to be more administrator friendly. The granddaddy of all
MTA software on the UNIX platform, the sendmail program, is often described as the most
versatile but also the most complicated MTA program available. This chapter describes the
components of the sendmail program. Chapter 11, “Installing and Configuring sendmail,”
shows how to configure sendmail to be the workhorse of your Linux mailserver.

Introduction to Email Services and Linux

PART I
266

sendmail and Security
The sendmail program has been in use on the Internet for many years on a wide vari-
ety of platforms. In its infancy, it was notorious for having back doors and program-
ming flaws that could allow hackers access to the host server. Two examples of this
were the not-so-secret debug and wiz SMTP commands that sendmail recognized.
Using these two commands via an anonymous SMTP session, a hacker could gain
access to the host computer and use other programs to gain root access. When send-
mail became popular as a production-quality MTA, the back doors were removed;
subsequently, many of the programming flaws have been fixed.

Unfortunately, many mail administrators refuse to use sendmail, citing old security
flaws that have long since been fixed. Yes, new flaws still pop up on occasion, but
that has become common with all mail packages. The sophistication of hackers on the
Internet has increased, so the sophistication of software on the Internet must also
increase. One thing that sendmail has going for it is that a large base of dedicated
software professionals exists. They are willing and able to correct and improve the
sendmail code to increase its stability and security. There aren’t too many mail pack-
ages around that can boast that.

It would be a shame to discount using the sendmail program, with all its advanced
capabilities, simply because of rumors and misinformation.

sendmail Files and Directories
The sendmail program does not work alone. It requires a host of files and directories to prop-
erly do its job. This section lists and describes the files and directories needed by a default

12 0672318342 CH10 2/14/00 2:26 PM Page 266

installation of sendmail. Often other files are required based on configuration options. Chapter
11 describes some of the alternative files used by sendmail.

sendmail Program
Name: /usr/sbin/sendmail

The sendmail program is the mail engine for sendmail. It is normally run as a daemon waiting
for connections for incoming mail, and checking the mail queue at set intervals for outgoing
mail. Alternatively, the inetd TCP wrapper program can configure sendmail to run on demand.
This saves some server memory by not having the sendmail program in background all the
time, but does decrease performance because sendmail must read its configuration file every
time it starts. The sendmail program is setuid to the root user, so it can access directories
owned by root. Non-root users can run sendmail, but will not have access to many of the
default file locations, such as the default mail queue.

Primary Configuration File
Name: /etc/sendmail.cf

For sendmail to operate properly in your environment, you must configure it for your specific
server implementation. All definitions of how sendmail processes mail are stored in the config-
uration file /etc/sendmail.cf. These definitions are called rule sets. sendmail uses the rule
sets to parse the sender and recipient addresses in messages, and determines how to deliver the
messages to intended recipients. sendmail reads the configuration file when it starts up. Any
changes to the configuration file require the sendmail program to be restarted to take effect.

Message Queue File
Name: /var/spool/mqueue

The mqueue directory is created to hold the queued mail messages waiting to be processed. The
owner of this directory will be the root user. sendmail ensures that all queue files stored in
mqueue have the proper permissions that prevent users from reading mail queues. The location
of the mail queue directory can be changed. It can be set by either an entry in the sendmail.cf
file or by an option on the sendmail command line.

Queue Status Program
Name: /usr/sbin/mailq

The mailq executable file is a symbolic link to the sendmail program. When executed as
mailq, sendmail prints a summary of the contents of the mail queue.

Create Alias Database
Name: /usr/sbin/newaliases

The sendmail Program

CHAPTER 10
267

10

T
H

E
SEN

D
M

A
IL

P
R

O
G

R
A

M

12 0672318342 CH10 2/14/00 2:26 PM Page 267

The newaliases executable file is also a link to the sendmail program. When sendmail runs as
the newaliases program, it reads the text aliases file and creates an aliases database using an
installed Linux database package. On Linux systems, it’s common to create a hash database
file.

Alias Text File
Name: /etc/aliases

The /etc/aliases file lets the mail administrator define mail aliases for users. The
/etc/aliases file is the text version of the aliases hash database that the sendmail program
uses. Each alias will be on a separate line, and be in the format

alias: userid

where alias is the desired alias name and userid is the name of a valid local user on the
Linux host.

After the aliases file is created or modified, the mail administrator will run the newaliases pro-
gram to create the hash aliases database, often called /etc/aliases.db. The sendmail program
reads the hash database when processing messages. If a recipient field matches a value in the
aliases database, the message is forwarded to the local address specified.

Often it is advantageous to alias unused usernames to a common username to help monitor
strange behavior. Normally, the Linux distribution will install many unused usernames by
default. You can alias those usernames to a common username that you can log in as to check
for bogus mail messages or even illegal attempts at your Linux system. Listing 10.1 shows a
sample aliases file that uses this technique.

LISTING 10.1 Sample /etc/aliases File

1 #
2 # @(#)aliases 8.2 (Berkeley) 3/5/94
3 #
4 # Aliases in this file will NOT be expanded in the header from
5 # Mail, but WILL be visible over networks or from /bin/mail.
6 #
7 # >>>>>>>>>> The program “newaliases” must be run after
8 # >> NOTE >> this file is updated for any changes to
9 # >>>>>>>>>> show through to sendmail.
10 #
11
12 # Basic system aliases -- these MUST be present.
13 MAILER-DAEMON: postmaster
14 postmaster: root
15

Introduction to Email Services and Linux

PART I
268

12 0672318342 CH10 2/14/00 2:26 PM Page 268

16 # General redirections for pseudo accounts.
17 bin: root
18 daemon: root
19 games: root
20 ingres: root
21 nobody: root
22 system: root
23 toor: root
24 uucp: root
25
26 # Well-known aliases.
27 manager: root
28 dumper: root
29 operator: root
30
31 # trap decode to catch security attacks
32 decode: root
33
34 # Person who should get root’s mail
35 root: rich

In Listing 10.1, lines 13 and 14 define standard email error usernames (how often have you
seen the message “send all complaints to postmaster” at the bottom of Web sites?), pointing
them to the root user. Lines 17 through 24 point standard default usernames that would not
normally log in to the system to the root username. Lines 27 through 32 point some standard
alias names also to the root username. Finally, because most good mail administrators hardly
ever log in as the root user, line 35 points any mail going to the root user to the username of
the administrator who logs in daily and faithfully checks his or her mail.

The sendmail Program

CHAPTER 10
269

10

T
H

E
SEN

D
M

A
IL

P
R

O
G

R
A

M

The Postmaster Account
With the popularity of the Web and Web servers, the postmaster account has become
an important generic account. Most Web sites include it as a way for people to con-
tact the administrator of the Web site. For busy sites, it is often beneficial to create a
special mail administrator account and point the postmaster alias to that account
rather than using a normal user account. Just remember to log in as the mail adminis-
trator account daily to check for messages.

Report Host Status
Name: /usr/sbin/hoststat

The hoststat executable is another link to the sendmail program. When executed as
hoststat, sendmail will attempt to read the host statistics file and display the status of the last
mail transaction to all the remote hosts where it has sent mail.

12 0672318342 CH10 2/14/00 2:26 PM Page 269

Clear Host Status
Name: /usr/sbin/purgestat

The purgestat executable is also a link to the sendmail program. When executed as
purgestat, sendmail will delete all the information in the host statistics file.

Host Status File
Name: /var/spool/mqueue/.hoststat

The directory /var/spool/mqueue/.hoststat holds files that contain statistics for each
accessed remote host. The hoststat program uses these files to show the status of remote host
transactions.

Statistics Collection Switch File
Name: /etc/sendmail.st

The presence of the sendmail.st file indicates that the mail administrator wants to collect sta-
tistics about the outgoing mail traffic. This is initially created as a null file. Although the /etc
directory is the default location, many Linux distributions, including Red Hat, Caldera, and
Mandrake, change the default location to /var/log/sendmail.st.

Personal Mail Forwarding File
Name: $HOME/.forward

Each local user on the system can create a .forward file in his $HOME directory. Before send-
mail attempts to pass mail for the local user to the local mail processor, it will check for this
file. If the file exists and contains valid email addresses, sendmail will instead forward the
message to the indicated email addresses. The email addresses will be in standard format
(username@hostname) with one email address per line.

Introduction to Email Services and Linux

PART I
270

CAUTION

Beware of forwarding loops. If user katie has her mail forwarded to user jessica, and
jessica has her mail forwarded to katie, sendmail will endlessly loop trying to for-
ward the messages. This is often a difficult problem to troubleshoot because no mes-
sages are ever generated.

Help File Format
Name: /usr/lib/sendmail.hf

The sendmail.hf file produces a help file for the SMTP HELP command. The help file is in a
special format that sendmail can parse while remote SMTP hosts request information using the

12 0672318342 CH10 2/14/00 2:26 PM Page 270

SMTP HELP command. As shown in Chapter 5, “SMTP Protocol,” remote clients can issue
either a general SMTP HELP command or specific HELP commands along with the command
that they want help on. To parse the information in the help file, sendmail uses tags at the start
of each line. Listing 10.2 shows a partial sendmail.hf file.

LISTING 10.2 Partial /usr/lib/sendmail.hf File

1 cpyr
2 cpyr Copyright (c) 1998 sendmail, Inc. All rights reserved.
3 cpyr Copyright (c) 1983, 1995-1997 Eric P. Allman. All rights reserved.
4 cpyr Copyright (c) 1988, 1993
5 cpyr The Regents of the University of California. All rights
➥reserved.
6 cpyr
7 cpyr
8 cpyr By using this file, you agree to the terms and conditions set
9 cpyr forth in the LICENSE file which can be found at the top level of
10 cpyr the sendmail distribution.
11 cpyr
12 cpyr @(#)sendmail.hf 8.18 (Berkeley) 11/19/1998
13 cpyr
14 smtp Topics:
15 smtp HELO EHLO MAIL RCPT DATA
16 smtp RSET NOOP QUIT HELP VRFY
17 smtp EXPN VERB ETRN DSN
18 smtp For more info use “HELP <topic>”.
19 smtp To report bugs in the implementation send email to
20 smtp sendmail-bugs@sendmail.org.
21 smtp For local information send email to Postmaster at your site.
22 help HELP [<topic>]
23 help The HELP command gives help info.
24 helo HELO <hostname>
25 helo Introduce yourself.
26 ehlo EHLO <hostname>
27 ehlo Introduce yourself, and request extended SMTP mode.
28 ehlo Possible replies include:
29 ehlo SEND Send as mail [RFC821]
30 ehlo SOML Send as mail or terminal [RFC821]
31 ehlo SAML Send as mail and terminal [RFC821]
32 ehlo EXPN Expand the mailing list [RFC821]
33 ehlo HELP Supply helpful information [RFC821]
34 ehlo TURN Turn the operation around [RFC821]
35 ehlo 8BITMIME Use 8-bit data [RFC1652]
36 ehlo SIZE Message size declaration [RFC1870]

The sendmail Program

CHAPTER 10
271

10

T
H

E
SEN

D
M

A
IL

P
R

O
G

R
A

Mcontinues

12 0672318342 CH10 2/14/00 2:26 PM Page 271

37 ehlo VERB Verbose [Allman]
38 ehlo ONEX One message transaction only [Allman]
39 ehlo CHUNKING Chunking [RFC1830]
40 ehlo BINARYMIME Binary MIME [RFC1830]
41 ehlo PIPELINING Command Pipelining [RFC1854]
42 ehlo DSN Delivery Status Notification [RFC1891]
43 ehlo ETRN Remote Message Queue Starting [RFC1985]
44 ehlo XUSR Initial (user) submission [Allman]
45 mail MAIL FROM: <sender> [<parameters>]
46 mail Specifies the sender. Parameters are ESMTP extensions.
47 mail See “HELP DSN” for details.
48 rcpt RCPT TO: <recipient> [<parameters>]
49 rcpt Specifies the recipient. Can be used any number of times.
50 rcpt Parameters are ESMTP extensions. See “HELP DSN” for details.
51 data DATA
52 data Following text is collected as the message.
53 data End with a single dot.
54 rset RSET
55 rset Resets the system.
56 quit QUIT
57 quit Exit sendmail (SMTP).

In Listing 10.2, lines 14 through 21 show the standard help message that will be returned in
response to an SMTP HELP command. After that, each individual command is listed with the
command on the left side and the HELP message displayed. For example, the SMTP command
‘HELP MAIL’ will result in lines 45, 46, and 47 being sent to the client. To test this we can log
in to the sendmail TCP port and issue the SMTP command ourselves, as demonstrated in
Chapter 5 and shown again in Listing 10.3.

LISTING 10.3 Sample SMTP HELP Command

1 [kevin@shadrach kevin]$ telnet localhost 25
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 220 shadrach.smallorg.org ESMTP sendmail 8.9.3/8.9.3; Tue, 5 Oct 1999
➥19:19:39 -0500
6 HELP MAIL
7 214-MAIL FROM: <sender> [<parameters>]
8 214- Specifies the sender. Parameters are ESMTP extensions.
9 214- See “HELP DSN” for details.
10 214 End of HELP info
11 QUIT
12 221 shadrach.smallorg.org closing connection
13 Connection closed by foreign host.
14 [kevin@shadrach kevin]$

Introduction to Email Services and Linux

PART I
272

LISTING 10.2 continued

12 0672318342 CH10 2/14/00 2:26 PM Page 272

The sendmail Command Syntax
The sendmail program’s command syntax can often become as complicated as its configuration
file. This section will describe the parameters and options that modify the behavior of the send-
mail program.

The format of the sendmail command is

sendmail [flags] [address ...]

By default with no flags specified, sendmail will read the standard input until it reaches an
end-of-file marker or a line with a single period (.). It will then consider that text a message
and attempt to mail it to the addresses listed in the command line. This behavior mimics the
normal behavior present in the Linux mail command. This is not the normal way to use the
sendmail program. It does, however, demonstrate the versatility of the sendmail program. For
the purposes of the Linux mailserver, we will use the sendmail program running as a back-
ground daemon process using command-line flags.

Flags can be added to the command line to control the behavior of sendmail. Flags are sepa-
rated into two groups. The first group is considered parameters that can modify the sendmail
actions taken, whereas the second group is considered options that override the default values
of items in the configuration file. At no time are the configuration file values changed.

sendmail Command-Line Parameters
The sendmail program controls its behaviors with command line parameters. The functionality
of sendmail vastly changes depending on what command-line parameters are used when it is
run. By default, the sendmail program reads a configuration file when it is launched to set
operating values. Command-line parameters can also be used to modify these values on the fly
instead of creating a new configuration file. This section describes the parameters used and
how they change the default sendmail behavior.

Message Body Format
Parameter: -B

The -B parameter tells sendmail the format of the message body. Values can be either 7BIT or
8BITMIME.

sendmail Operational Mode
Parameter: -b

The -b parameter sets sendmail’s mode of operation. Table 10.1 shows the values available for
this parameter.

The sendmail Program

CHAPTER 10
273

10

T
H

E
SEN

D
M

A
IL

P
R

O
G

R
A

M

12 0672318342 CH10 2/14/00 2:26 PM Page 273

TABLE 10.1 sendmail -b Modes

Mode Description

a ARPANET mode

d Runs as a background daemon

D Runs as a foreground daemon

h Prints the persistent host database (same as hoststat)

H Purges the persistent host database (same as purgestat)

i Initializes the alias database

m Delivers mail (default)

p Prints a listing of the mail queue (same as mailq)

s Uses the SMTP protocol on the input and output

t Runs in test mode

v Verifies names only; doesn’t deliver messages

Many of the parameters require root privileges to use. sendmail prevents unauthorized users
from using these parameters. For normal operation the -bd parameter lets sendmail work in the
background as a daemon process. When testing new configuration files, the -bt parameter is
used. The -bt parameter places sendmail in testing mode. This mode allows sendmail to
process a rule set and produce the results of the rule set without responding to normal mail
traffic on the server. This allows any user to run sendmail with the -bt parameter, as well as
allowing users to run sendmail without conflicting, even when an existing sendmail daemon is
running in background.

Alternate Configuration Setup
Parameter: -C

The -C parameter specifies a different configuration file from the default (/etc/sendmail.cf).
When this parameter is present, sendmail will not run as the root user and will instead run as
the user executing sendmail. This parameter is normally used to test new configuration files,
although it can be used to specify an alternative configuration file. When testing a new config-
uration file with the -bt parameter, the -C parameter is normally used so that the original con-
figuration file does not need to be changed.

Turn On Debugging Mode
Parameter: -d

The -d parameter activates debugging flags in sendmail. The multiple debugging flags each
have multiple debugging levels. Multiple flags can be specified in the -d parameter.

Introduction to Email Services and Linux

PART I
274

12 0672318342 CH10 2/14/00 2:26 PM Page 274

The debugging flags allow for more verbose output in the normal mail logging files. Each
debug flag produces more verbose logging for a particular mail function. Table 10.2 shows
some examples of using the debug parameter.

TABLE 10.2 Sample sendmail -d Parameters

Parameter Description

-d1 Sets debug flag 1 to level 1

-d1.4 Sets debug flag 1 to level 4

-d2-5.2 Sets debug flags 2 through 5 to level 2

-d12.9,15.9 Sets debug flags 12 and 15 to level 9

The sendmail Program

CHAPTER 10
275

10

T
H

E
SEN

D
M

A
IL

P
R

O
G

R
A

M

CAUTION

Be careful when using additional debugging modes. By adding higher debugging
modes, additional logging lines are added to the log files. Debug levels that are too
high can create huge log files and fill up disk space.

Set Sender Name
Parameter: -F

The -F parameter sets the full name of the message sender. When sendmail delivers the mes-
sage to the remote site, this value will be used as the “From:” parameter in the message.

Set Sender Username
Parameter: -f

The -f parameter lets users set the “From:” username to a different username from what they
are logged in as. Only a “trusted” user such as root or daemon can use this.

Set Hop Count
Parameter: -h

The -h parameter sets the total hop count allowed for the sent message. As a mail router for-
wards a message, the message’s hop count is incremented. If the hop count is incremented past
the set value, sendmail will discard the message. This option can be used to help stop mail
routing loops.

Change End of Message Indicator
Parameter: -i

The -i parameter tells sendmail to ignore periods that are alone on a line. By default, a single
period on a line indicates the end of the message. This parameter is often used when reading

12 0672318342 CH10 2/14/00 2:26 PM Page 275

data from a file where it is possible to have a period on a line by itself without indicating the
end of the message. When this parameter is used, the end of message is denoted by a
Control+D character (ASCII 0x04).

Set Notification Option
Parameter: -N

The -N parameter sets the delivery status notification of the message. Possible values are NEVER
for no notification, FAILURE if sendmail wants to be notified of a failure to deliver the message,
DELAY if sendmail wants to be notified of a delay in delivering the message, and SUCCESS if
sendmail wants to be notified when the message is successfully delivered.

Set No Forwarding Option
Parameter: -n

The -n parameter tells sendmail not to do address aliasing or forwarding of the messages.

Set Mail Transport Protocol
Parameter: -p

The -p parameter defines a protocol for transferring the message. Protocol values can be set as
just the protocol name, such as SMTP or UUCP, or can be set as a protocol name and a relay host
separated by a colon, such as smtp:mail.isp.net or uucp-dom:ispmail. When the -p parame-
ter is present, sendmail will attempt to use the protocol and optional host specified to deliver
the message; otherwise it follows the normal settings from the configuration file. Use this to
temporarily redirect mail to another host if your primary relay host is down.

Set Queue Processing Option
Parameter: -q

The -q parameter defines methods for processing the mail queue. When the -q parameter is
used alone, sendmail will process the mail queue once and exit.

Alternatively, a time can be specified after the -q parameter to indicate an interval at which
sendmail will repeat mail queue processing. Times are indicated by seconds “(s)”, minutes
“(m)”, hours “(h)”, days “(d)”, and weeks “(w)”. For example, -q30m sets sendmail to check the
mail queue every 30 minutes and to process any mail that needs to be sent. This format is often
used with the -bd parameter, to enable sendmail to run in the background and process the mail
queue at a regular interval.

Still another format of the -q parameter uses a substring match to process messages in the mail
queue. These formats search in specific mail header locations for messages containing the
string string and processes any messages found. Types of formats include

Introduction to Email Services and Linux

PART I
276

12 0672318342 CH10 2/14/00 2:26 PM Page 276

• -qIstring—Searches for string in queue identifier

• -qRstring—Searches for string in recipient’s field

• -qSstring—Searches for string in the sender field

Multiple -q parameters of this type are allowed on the command line. This feature enables a
mail administrator to process only certain types of mail from a mail queue without sending all
the messages out. This technique is often used when a mail system has been down and lots of
mail has backed up in the mail queue. Often in this case, it is advantageous to process certain
mail messages before others.

Undeliverable Message Response Option
Parameter: -R

The -R parameter specifies what information sendmail will return if the message is undeliver-
able. The value for this parameter can be either “full” to return the entire message or “hdrs”
to return just the RFC822 header.

Extract Recipients from Message Header
Parameter: -t

The -t parameter extracts addresses to send the message from the RFC822 header of the mes-
sage. All To:, CC:, and BCC: lines are scanned, and receiving addresses are processed. The
message is then sent.

The sendmail Program

CHAPTER 10
277

10

T
H

E
SEN

D
M

A
IL

P
R

O
G

R
A

M

Blind Carbon Copies
The purpose of BCC: is to forward a message to other recipients without the main
recipients knowing. That is why the BCC: lines should be deleted from the message
before it is sent.

Identify Message Source
Parameter: -U

The -U parameter indicates that the message has been sent from a Mail User Agent (MUA),
and not passed from another MTA. This allows sendmail the option to handle the mail message
differently depending on where it originated. Currently sendmail does not implement any mes-
sage-handling capabilities based on this parameter.

Set Envelope ID
Parameter: -V

The -V parameter sets an envelope ID to the value provided. The envelope ID is used in an RFC
822–formatted message header to identify the message. By setting the envelope ID value from

12 0672318342 CH10 2/14/00 2:26 PM Page 277

sendmail, the mailer can identify the specific messages from this host. This parameter can be
used along with the –N parameter to identify messages that are undeliverable by the remote MTA.

Verbose Option
Parameter: -v

The -v parameter specifies that sendmail will use verbose mode. All tasks that sendmail per-
forms will be displayed to the standard output. This parameter is used for debugging problems
in mail transport, and should not be used in a normal production environment.

Set Logging Option
Parameter: -X

The -X parameter specifies a logfile to which sendmail can log all incoming and outgoing mes-
sages. An extremely large log file results, hence the -X parameter should only be used for
debugging purposes.

End of Parameters
Parameter: --

The -- parameter indicates that the parameter section is finished and that any further data on
the command line will be considered as addresses.

Change Option Configuration File
Parameter: -O

-o

The -O and -o parameters are used to replace option values specified in the configuration file.
Options define characteristics of how sendmail interacts with remote sites and how it behaves
on the local computer. Previously, sendmail used single-character option names. As single
characters quickly ran out, new option names were created that used longer text strings to
describe the option.

The -o parameter sets the value of any short (single character) format options. The format of
the -o parameter is

-ox value

where x is the single character option name and value is the desired new value of the option.

The -O parameter replaces the value of options that use the long name format. The format of
the -O parameter is

-O option=value

where option is the name of the option and value is the desired new value of the option. The
next section, “sendmail Configuration File,” describes sendmail options and how they can be
used to control the behavior of the sendmail program.

Introduction to Email Services and Linux

PART I
278

12 0672318342 CH10 2/14/00 2:26 PM Page 278

sendmail Configuration File
The sendmail program needs to be told how to handle messages as they come into the server.
As an MTA, sendmail processes incoming mail and redirects it to another mail package, either
on a remote system or on the local system. The configuration file tells sendmail how to manip-
ulate the destination mail addresses to determine where and how to forward the message. The
default location for the configuration file is /etc/sendmail.cf.

The /etc/sendmail.cf file consists of rule sets that parse the incoming mail message and
determine what actions to take. Each rule identifies certain mail formats and instructs sendmail
on how to handle that message. As a message is received, its header is parsed and passed
through the various rule sets to determine what action to take on the message. Rules are cre-
ated to let sendmail to handle mail in many different formats. Mail received from an SMTP
host has different header fields than mail received from a UUCP host. sendmail must know
how to handle any mail situation.

Rules also have helper functions defined in the configuration file. Classes define common
phrases that help the rule sets identify certain types of messages. Macros are values set to sim-
plify the typing of long strings in the configuration file. Options are defined to set parameters
for the sendmail program’s operation (see the sendmail command in the previous section).

The configuration file is made up of a series of text lines. Each line begins with a single char-
acter that defines the action for that line. Lines that begin with a space or a tab are continuation
lines from a previous action line. Lines that begin with a pound sign (#) indicate comments and
are not processed by sendmail. Table 10.3 shows the standard sendmail configuration file lines
and what they represent.

TABLE 10.3 sendmail Configuration File Lines

Configuration Line Description

C Defines classes of text

D Defines a macro

F Defines files containing classes of text

H Defines header fields and actions

K Defines databases that contain text to search

M Defines mailers

O Defines sendmail options

P Defines sendmail precedence values

R Defines rule sets to parse addresses

S Defines rule set groups

The sendmail Program

CHAPTER 10
279

10

T
H

E
SEN

D
M

A
IL

P
R

O
G

R
A

M

12 0672318342 CH10 2/14/00 2:26 PM Page 279

Configuration File Contents
The configuration file’s main job is to support the rule sets used to process mail messages.
Macros, classes, files, and databases are all used to simplify the rule writing process. After
a macro, class, file, or database is defined, it is used to represent the data in a rule. This
greatly reduces the amount of code required to create a rule. This section describes the for-
mat of the configuration file lines and what actions they represent to the sendmail program.

Macro D Lines
Configuration lines that start with a D define macros used in the rule sets. A macro is a long
word or phrase that is represented by a single macro name, similar to environment vari-
ables. A macro name is defined as a single character, or as a word enclosed in braces ({}).
sendmail uses lowercase letters and special symbols internally to predefine some macros.
The mail administrator can use uppercase letters to define site-specific values. The format
of the D line is

Dx value

where x is the macro name and value is the value of the macro. After the macro is defined,
it can be expanded by the command $x, where x is the macro name.

Conditional macros can be created that test whether a macro has been previously defined.
The format for a conditional macro is

$?x value1 $| value2 $

where x is the macro name to test, value1 is the value that the macro will take if the macro
name has been set, and value2 is the value that the macro will take if the macro name has
not been set. The ‘$|’ does not have to be included in the command.

As stated previously, sendmail uses some predefined macros to substitute for commonly
used phrases. Table 10.4 shows some of the predefined macro names used in sendmail.

Introduction to Email Services and Linux

PART I
280

CAUTION

The sendmail configuration file is case sensitive. All lines must begin with an upper-
case configuration line character or sendmail will not recognize them.

12 0672318342 CH10 2/14/00 2:26 PM Page 280

TABLE 10.4 sendmail D Macros

Macro Description

$a The date of the message from the ‘Date:’ field

$b The current date in RFC822 format

$c The hop count of the message

$d The current date in UNIX format

$f The sender address

$g The sender address relative to the recipient (includes hostname)

$h The recipient host

$i The queue ID

$j The full domain name for the site

$k The UUCP node name for the site

$m The domain part of the gethostname value

$n The name of the sendmail daemon

$p sendmail’s process ID

$q Default format of sender address

$r Protocol used to receive the message

$s Sender’s hostname

$t A numeric representation of the current time

$u The recipient user

$v The version number of sendmail

$w The hostname of the site

$x The full name of the sender

$z The home directory of the recipient

$_ The validated sender address

${bodytype} The message body type

${client_addr} The IP address of the SMTP client

${client_name} The hostname of the SMTP client

${client_port} The TCP port number of the SMTP client

${envid} The envelope ID passed to sendmail

${opMode} The current operation mode (using the –b parameter)

${deliveryMode} The current delivery mode (from the DeliveryMode option)

The sendmail Program

CHAPTER 10
281

10

T
H

E
SEN

D
M

A
IL

P
R

O
G

R
A

M

12 0672318342 CH10 2/14/00 2:26 PM Page 281

Categorize Phrases with C Lines
Configuration lines that begin with a C define classes of phrases that can be used in the rules.
Classes group phrases that have something in common so that the rule sets can scan the class
for matches. The format of a C line is

Ccphrase1 phrase2 ...

where c is the name of the class, and phrase1, phrase2, and so on are phrases that will be
grouped together in the class. Similar to the D line command, class names must be either a sin-
gle character or a word enclosed in braces ({}). Class names that are a lowercase letter or a
special character are reserved for internal sendmail use. Mail administrators can use uppercase
letters to define site-specific classes. Table 10.5 shows a list of some predefined class names
used internally in sendmail.

TABLE 10.5 sendmail C Classes

Class Description

e Content-Transfer-Encodings (can be 7-bit, 8-bit, or binary)

k The UUCP node name

m The domain name

n Set of MIME body types that cannot be encoded as 7-bit

q Set of Content-Types that cannot not be encoded as base64

s Set of subtypes of messages that can be treated recursively

t Set of trusted users

w Set of all names this host is known by

Identify Classes Within Files with F Lines
Configuration lines that begin with an “F” also define classes that can be used by the rule sets,
but a little differently than the C lines. F lines point to filenames that contain the list of phrases
to use in the class. The format of an F line is

Fc filename

where c is the single character class name, and filename is the full pathname of the file con-
taining the phrases. Each phrase will be on a separate line in the file.

As with C lines, sendmail uses lowercase letters and special characters as internal class names.
Mail administrators can use uppercase letters to define site-specific class names.

Introduction to Email Services and Linux

PART I
282

12 0672318342 CH10 2/14/00 2:26 PM Page 282

Define Database Class with K Lines
Like the F lines, K lines are used to define a file that contains multiple phrases used in a rule.
However, K lines define a special type of file. Configuration lines that begin with a “K” define
special mapped databases that sendmail uses to look up different types of information. By
using a database, sendmail can access the information in the file quicker and more efficiently
than the F-type files. The format of the K line is

Kmapname mapclass arguments

where mapname is the name of the database as used in the configuration file, mapclass is the
type of database generated, and arguments are passed to sendmail to help create the database.
Often arguments include the location of the database and flags used to help in processing the
database.

Maps are referenced by the rule sets using the following syntax:

$(map key $@ arguments $: default $)

where map is the mapname, key and arguments are passed to the mapping function to obtain
the return record, and default is a value to use if no record is returned.

The mapclass is the type of database that sendmail uses to access the data. Each database type
has its own specific methods of indexing and accessing data. There are many different types of
mapclasses that sendmail can use. Table 10.6 lists some of the more common classes available.

TABLE 10.6 sendmail K Mapclasses

Mapclass Description

dbm Uses the ndbm(3) library

btree Uses the btree interface to the Berkeley DB library

hash Uses the hash interface to the Berkeley DB library

nis Uses NIS lookups

ldapx Uses LDAP x.500 directory lookups

text Uses text file lookups

implicit Used to get default lookups for alias files

user Uses the getpwnam() function to look up usernames

host Uses DNS to find hostnames

bestmx Uses DNS to find the best MX record for a host

sequence Uses a list of multiple maps for lookups

program Uses an external program for lookups

The sendmail Program

CHAPTER 10
283

10

T
H

E
SEN

D
M

A
IL

P
R

O
G

R
A

M

12 0672318342 CH10 2/14/00 2:26 PM Page 283

Currently Linux supports only the btree and hash types of mapclasses. Of those two, hash
database maps are the more commonly used for sendmail database maps.

Mapped databases can be created from text files by using the makemap command. The format
used for the makemap command is

makemap mapclass outputfile < textfile

where mapclass is the type of database map to use, textfile is the text database file used for
input, and outputfile is the converted database.

Header Definition with H Lines
Configuration lines that begin with an “H” define the format of header lines that sendmail
inserts into the message. The header lines make use of macros and macro flags to determine
the proper syntax for a mail message header, depending on the protocol used to transfer the
message. SMTP hosts expect mail headers to be in a different format than UUCP hosts. The
format of the H line is

H[?mflags?]hname:htemplate

where mflags are the macro flags that must be specified if this is present, hname is the name of
the header line, and htemplate is the format of the header line using macros. The macros are
expanded to their normal names before being placed in the outgoing message.

Another format of the H line will pass the message to a particular rule set if a specific header is
present. The format for this is

Hheader:$>Ruleset

where header is the header field that will be present, and Ruleset is the rule set number (see
the “Rule Sets” section later in the chapter). A sample of H lines is shown in Listing 10.4.

LISTING 10.4 Sample sendmail H Lines

1 H?P?Return-Path: <$g>
2 HReceived: $?sfrom $s $.$?_($?s$|from $.$_)
3 $.by $j ($v/$Z)$?r with r. id i?u
4 for $u; $|;
5 $.$b
6 H?D?Resent-Date: $a
7 H?D?Date: $a
8 H?F?Resent-From: $?x$x <$g>$|g.
9 H?F?From: $?x$x <$g>$|g.
10 H?x?Full-Name: $x
11 # HPosted-Date: $a
12 # H?l?Received-Date: $b

Introduction to Email Services and Linux

PART I
284

12 0672318342 CH10 2/14/00 2:26 PM Page 284

13 H?M?Resent-Message-Id: <$t.$i@$j>
14 H?M?Message-Id: <$t.$i@$j>

In Listing 10.4, line 1 shows a simple H line that is conditional upon a macro being defined. If
the P macro is defined, which was defined earlier in this sendmail.cf as a period (.), sendmail
will add a Return-Path header field using the $g macro as the data value. As you remember
from Table 10.4, the $g macro will expand to the sender’s address relative to the receiver. Thus
this H line will cause sendmail to add the fully qualified username and hostname in the Return-
Path header field of the message if the P macro flag is specified.

Mailer Forwarding with M Lines
Configuration lines that begin with an “M” define a mailer that sendmail uses to forward mes-
sages. Each different type of mailer sendmail uses must have an M line definition for sendmail
to know how to use the mailer. The format for the M line is

Mprog,[field=value]...

where prog is the name of the mailer program, and each field=value pair defines attributes
required for sendmail to use the mailer. Field names can use the whole field name, but send-
mail uses only the first character of the field name. Table 10.7 shows the M line fields that can
be used.

TABLE 10.7 sendmail M Line Fields

Field Description

Path The pathname of the mailer

Flags Flags used for the mailer

Sender Rule sets used for the sender address

Recipient Rule sets used for the recipient address

Argv Any arguments passed to the mailer

Eol The end-of-line string used by the mailer

Maxsize The maximum message length used by the mailer

Linelimit The maximum line length used by the mailer

Directory The working directory of the mailer

Userid The default userid and groupid to use when running the mailer

Nice The UNIX nice() value for the mailer

Charset The default character set for 8-bit characters

Type The MTS-type information used by error messages

The sendmail Program

CHAPTER 10
285

10

T
H

E
SEN

D
M

A
IL

P
R

O
G

R
A

M

12 0672318342 CH10 2/14/00 2:26 PM Page 285

The Flags field is used to identify how sendmail will use the mailer. Flags define actions that
sendmail might use when calling the mailer program. Multiple values can be used in the Flags
field. Multiple flags are written as a string with no spaces between flag values. Table 10.8
shows sample flags.

TABLE 10.8 sendmail M Line Flags

Flag Description

a Use ESMTP.

A Use the aliases database.

b Force a blank line at the end of the message.

c Do not include comments in addresses.

C Add the local domain name to received addresses without an @ sign.

d Do not include angle brackets around route-address syntax addresses.

D Include a “Date:” header field.

F Include a “From:” header field.

h Preserve uppercase in hostnames.

l The mailer is local.

m The mailer can send to multiple users in one transaction.

M Include a “Message-Id:” header field.

n Do not insert a UNIX-style “From” line.

S Do not reset the userid before calling the mailer.

u Preserve uppercase usernames.

U Use UUCP-type “From” lines.

5 If no aliases are found, use rule set 5 to find an alternative resolution.

9 Do limited 7 to 8-bit MIME conversion.

Listing 10.5 shows some M configuration lines from a sample sendmail.cf file.

LISTING 10.5 Sample M Configuration Lines

1 ### SMTP Mailer specification ###
2 Msmtp, P=[IPC], F=mDFMuX, S=11/31, R=21, E=\r\n, L=990,
➥T=DNS/RFC822/SMTP,
3 Mesmtp, P=[IPC], F=mDFMuXa, S=11/31, R=21, E=\r\n, L=990,
➥T=DNS/RFC822/SMTP,
4 Msmtp8, P=[IPC], F=mDFMuX8, S=11/31, R=21, E=\r\n, L=990,
➥T=DNS/RFC822/SMTP,

Introduction to Email Services and Linux

PART I
286

12 0672318342 CH10 2/14/00 2:26 PM Page 286

5 Mrelay, P=[IPC], F=mDFMuXa8, S=11/31, R=61, E=\r\n, L=2040,
➥T=DNS/RFC822/SMTP,
6 ### UUCP Mailer specification ###
7 Muucp, P=/usr/bin/uux, F=DFMhuUd, S=12, R=22/42, M=100000,
8 Muucp-old, P=/usr/bin/uux, F=DFMhuUd, S=12, R=22/42, M=100000,
9 Msuucp, P=/usr/bin/uux, F=mDFMhuUd, S=12, R=22/42, M=100000,
10 Muucp-new, P=/usr/bin/uux, F=mDFMhuUd, S=12, R=22/42, M=100000,
11 Muucp-dom, P=/usr/bin/uux, F=mDFMhud, S=52/31, R=21, M=100000,
12 Muucp-uudom, P=/usr/bin/uux, F=mDFMhud, S=72/31, R=21, M=100000,
13 ### PROCMAIL Mailer specification ###
14 Mprocmail, P=/usr/local/bin/procmail, F=DFMSPhnu9, S=11/31, R=21/31,
➥T=DNS/RFC822/X-Unix,
15 ### Local and Program Mailer specification ###
16 Mlocal, P=/usr/local/bin/procmail, F=lsDFMAw5:/|@qSPfhn9, S=10/30,
➥R=20/40,
17 Mprog, P=/bin/sh, F=lsDFMoqeu9, S=10/30, R=20/40, D=$z:/,

In Listing 10.5, lines 2 through 5 define SMTP mailers, lines 7 through 12 define UUCP mail-
ers, line 14 defines the procmail mailer, and lines 16 and 17 define mailers used on the local
host. The mailer path is defined to point sendmail to the executable file that executes the
mailer. For SMTP type connections, sendmail can use an internal IPC connection to forward
the mail using its own SMTP software.

Line 11 shows a special mailer that is often used for offices using UUCP connections to the
Internet. The uucp-dom mailer is special in that it uses the UUCP protocol to transfer the mail
message, but retains the original RFC822 message headers. We can decode how sendmail for-
wards messages to this mailer by reading the M line flags:

• The path (P) for the executable is /usr/bin/uux.

• The flags (F) sent to the executable are

1. m—sendmail can send message to multiple users in one transaction.

2. D—sendmail forwards the original RFC822 Date field.

3. F—sendmail forwards the original RFC822 From field.

4. M—sendmail forwards the original RFC822 Message ID field.

5. h—sendmail preserves uppercases and lowercases in hostnames.

6. u—sendmail preserves uppercase usernames.

7. d—sendmail does not include any special angle brackets in the routing information.

• The Sender rule sets are rules 52 and 31.

• The Recipient rule set is 21.

• The maximum message size forwarded is 100,000 bytes.

The sendmail Program

CHAPTER 10
287

10

T
H

E
SEN

D
M

A
IL

P
R

O
G

R
A

M

12 0672318342 CH10 2/14/00 2:26 PM Page 287

One thing that is interesting about line 11 is what flag is not present. Notice in lines 7 through
10 that the U flag is present. This instructs sendmail to forward the message using UUCP-style
From fields. Because the uucp-dom protocol does not change the format of the message, this
flag must be left off.

Precedence Priority with P Lines
Configuration lines that begin with a “P” define precedence values. Each RFC822-formatted
message can use the Precedence: header field to define the urgency of the message. The pur-
pose of the Precedence field is to allow for special handling of important messages. The P con-
figuration lines help sendmail assign a numeric priority value based on the Precedence: field
text string. Mail forwarding is based on the Precedence field. The format of the P line is

Ptext=value

where text is the Precedence: field string, and value is a numeric value that sendmail uses to
rank messages. Higher values indicate higher priority messages than lower values do. Some
sendmail configuration implementations assign negative values to the Precedence: field val-
ues of “bulk” and “junk” to ensure that those classes of mail get lowest priority when transfer-
ring mail to remote hosts. A common message ranking in a configuration file is

Pfirst-class=0
Pspecial-delivery=100
Plist=-30
Pbulk=-60
Pjunk=-100

This configuration allows mail set to first-class to have higher priority, whereas spam messages
(labeled as junk) get lowest priority.

Defining Options with O Lines
Configuration lines that begin with an “O” define options that control the behavior of the send-
mail program. A large number of global options can be set. Besides specifying options in the
configuration file, you can also specify them from the command line using the -o or -O para-
meters.

Older versions of sendmail used single-character option names. The format of the O lines using
these options is

Oo value

where o is the single-character option name, and value is the value for the option. Currently
sendmail recognizes long option names. The format for the O lines using long option names is

O option=value

Introduction to Email Services and Linux

PART I
288

12 0672318342 CH10 2/14/00 2:26 PM Page 288

where option is the long option name, and value is the value for the option. Depending on the
option, value can be a string, an integer, a Boolean, or a time interval.

Lots of options are available to control the behavior of sendmail—too many to cover in this
chapter. Table 10.9 shows some of the more common options for configuring sendmail on a
standard mailserver.

TABLE 10.9 sendmail Options

Option Description

AliasFile File to specify mail aliases.

DefaultUser Sets the userid and groupid for sendmail to run under.

DontBlamesendmail Allows world-writable files and directories—very dangerous.

HoldExpensive Allows sendmail to queue mail for expensive mailers to process
when desired.

CheckpointInterval Performs a checkpoint on the mail queue as specified.

DeliveryMode Sets delivery mode of sendmail to interactive, background, queued,
or deferred.

ErrorMode Sets method to report errors via print or mail, or to not report them.

SaveFromLine Keeps all UNIX-style “From:” header lines, even if redundant.

MaxHopCount Sets number of times messages can be processed by an MTA.
Discards message if number is exceeded.

IgnoreDots Ignores dots in incoming messages. Always disabled for SMTP.

SendMimeErrors Sends error messages in MIME format.

ConnectionCacheTimeout Sets the maximum amount of time a cache connection can be idle.

LogLevel Sets the log level. Default is 9.

MeToo Sends message to username even if it is in an alias expansion.

CheckAliases Validates aliases when rebuilding the alias database.

OldStyleHeaders Assumes headers might be in old format using spaces to delimit
names.

QueueDirectory Specifies the mail queue directory.

StatusFile Logs summary statistics in a file for mail status.

Timeout.queuereturn Sets how long to wait for a message.

UserDatabaseSpec Sets the user database specification.

ForkEachJob Uses a separate process to deliver each job in the queue.

SevenBitInput Strips input to seven bits.

The sendmail Program

CHAPTER 10
289

10

T
H

E
SEN

D
M

A
IL

P
R

O
G

R
A

M

continues

12 0672318342 CH10 2/14/00 2:26 PM Page 289

EightBitMode Sets method of handling 8-bit data.

MinQueueAge Only processes jobs that have been in the queue longer than a set
time.

DefaultCharSet Sets character set to convert non-MIME data to MIME.

DialDelay Allows a delay time for dial-on-demand networks to establish the
connection.

NoRecipientAction Sets action to take for messages that have no valid recipients.

MaxDaemonChildren Sets number of sendmail children that can process incoming mail
simultaneously.

ConnectionRateThrottle Sets number of incoming daemon connections enabled concurrently.

Some examples of options used in a standard configuration file are

O AliasFile=/etc/aliases
O DefaultUser=8:12
O DeliveryMode=background
O HelpFile=/usr/lib/sendmail.hf

This group of O lines sets specific values to commonly used sendmail options.

Rule Sets
The core of the configuration file is the rule set. Rule sets instruct sendmail on how to parse
the incoming messages and determine how to deliver a message to the intended recipients.
Rule sets use the R and S configuration lines. R configuration lines define the actual processes
to perform on the message, whereas S configuration lines are used to define groups of rule sets.
The following sections describe the R and S configuration lines.

Identifying Actions for Received Messages with (R) Lines
The R lines use tokens and parsing to process an incoming message to determine the proper
recipient(s) and the method(s)used to send the message to the recipient(s). Each R line repre-
sents a separate rule. A rule has two parts—the left-hand side (LHS) and the right-hand side
(RHS). The LHS defines what tokens to look for in the incoming message. The RHS defines how
to rewrite the address based on tokens found in the LHS. The format of an R line is

Rlhs rhs comments

Each field must be separated by at least one tab character. Any macros and classes used in the
rule set are expanded to match the parsed information. The LHS defines new metasymbols to
use to parse the messages. Table 10.10 shows the metasymbols used in the LHS macros.

Introduction to Email Services and Linux

PART I
290

TABLE 10.9 continued

Option Description

12 0672318342 CH10 2/14/00 2:26 PM Page 290

TABLE 10.10 sendmail Rule Set LHS Metasymbols

Symbol Description

$* Matches zero or more tokens

$+ Matches one or more tokens

$- Matches exactly one token

$@ Matches zero tokens

$=x Matches any item in class x

$~x Matches any item not in class x

When tokens match a metasymbol in the LHS, they are assigned as macro values to the RHS
part. Each new macro name has the form $n, wherein n is the numeric index of the token in the
message. For example, if the LHS “$-:$+” is applied to an input of uucp-dom:ispmail, the val-
ues passed to the RHS are $1 equal to “uucp-dom” and $2 equal to “ispmail”.

If the LHS metasymbols do not match the message, nothing is done with the rule set. If the LHS
metasymbols do match an incoming message, the input is rewritten using the format of the
RHS. The RHS also uses metasymbols as it rewrites the message. Table 10.11 shows the meta-
symbols used for the RHS.

TABLE 10.11 sendmail Rule Set RHS Metasymbols

Symbol Description

$n Substitutes token n from LHS

$[name$] Canonicalizes a name

$(map key $@ arguments Generalized key mapping function
$:Default $)

$>n “Calls” rule set n

$#mailer Resolves to mailer

$@host Specifies host

$:user Specifies user

As shown in Table 10.9, any hostnames that are passed to the RHS enclosed with $[and $] are
expanded to their full hostname to include the domain name. Also as shown in Table 10.9, one
rule set can directly pass off to another rule set using the $>n metasymbol, where n is the S line
identifier of the next rule set to process the tokens.

The sendmail Program

CHAPTER 10
291

10

T
H

E
SEN

D
M

A
IL

P
R

O
G

R
A

M

12 0672318342 CH10 2/14/00 2:26 PM Page 291

Forming a Rule Set with S lines
Configuration lines that begin with an “S” identify a group of rules that form a rule set. send-
mail rule sets are normally identified by a numerical value. The sendmail program uses rule
sets to parse the mail messages and find the recipients to forward the message to. There are six
standard rule sets that sendmail uses for messages, shown in Table 10.12.

TABLE 10.12 sendmail S Rule Set Numbers

Rule Set Description

0 Resolves a mailer, host, and user

1 Applied to all sender addresses

2 Applied to all recipient addresses

3 Turns addresses into canonical form

4 Translates internal addresses to external addresses

kj Applied to local addresses that do not have aliases

As shown previously in the R line section, there can also be special rule sets that begin with the
string check. These rule sets identify messages that will be forwarded to the error or discard
mailers. Figure 10.1 shows the typical path that a message takes through the standard rule sets.

As shown in Figure 10.1, all messages are first passed through rule set 3. This rule set “cleans
up” the addresses by turning hostnames into the proper canonical format. After rule set 3 is fin-
ished, rule set 0 extracts the mailer, hostname, and username from the address. It then passes
the message off to the appropriate mailer system.

Likewise, rule set 1 rewrites any sender addresses, and rule set 2 rewrites any recipient
addresses. That information is then passed to rule set 4 to resolve the addresses to an external
format.

You can watch the various rule sets in action by using the sendmail program with the -bt
option. This option tests an intended address and shows how rule sets act given the

Introduction to Email Services and Linux

PART I
292

CAUTION

Rule sets are not for the faint-of-heart. In almost all situations, the default rule sets
are sufficient to handle all the normal email requirements of a small business. New
rule sets are sometimes implemented to ward off possible email problems by filter-
ing out certain types of messages.

12 0672318342 CH10 2/14/00 2:26 PM Page 292

configuration file and the address that was input. Often this option is used with the -C option to
test a new configuration file. Listing 10.6 shows a sample sendmail session that uses the -bt
and -C options.

The sendmail Program

CHAPTER 10
293

10

T
H

E
SEN

D
M

A
IL

P
R

O
G

R
A

M

RFC822
message

mailer, host, username

sender

recipient

external
addressrule set 3

rule set 2

rule set 4

rule set 1

rule set 0

FIGURE 10.1
sendmail rule set paths.

LISTING 10.6 Sample sendmail -bt Session

1 [rich@shadrach rich]$ /usr/sbin/sendmail -bt -C test.cf
2 ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
3 Enter <ruleset> <address>
4 > 3,0 rich
5 rewrite: ruleset 3 input: rich
6 rewrite: ruleset 96 input: rich
7 rewrite: ruleset 96 returns: rich
8 rewrite: ruleset 3 returns: rich
9 rewrite: ruleset 0 input: rich
10 rewrite: ruleset 199 input: rich
11 rewrite: ruleset 199 returns: rich
12 rewrite: ruleset 98 input: rich
13 rewrite: ruleset 98 returns: rich
14 rewrite: ruleset 198 input: rich
15 rewrite: ruleset 198 returns: $# local $: rich
16 rewrite: ruleset 0 returns: $# local $: rich
17 > 3,0 president@whitehouse.gov
18 rewrite: ruleset 3 input: president @ whitehouse . gov
19 rewrite: ruleset 96 input: president < @ whitehouse . gov >

continues

12 0672318342 CH10 2/14/00 2:26 PM Page 293

20 rewrite: ruleset 96 returns: president < @ whitehouse . gov >
21 rewrite: ruleset 3 returns: president < @ whitehouse . gov >
22 rewrite: ruleset 0 input: president < @ whitehouse . gov >
23 rewrite: ruleset 199 input: president < @ whitehouse . gov >
24 rewrite: ruleset 199 returns: president < @ whitehouse . gov >
25 rewrite: ruleset 98 input: president < @ whitehouse . gov >
26 rewrite: ruleset 98 returns: president < @ whitehouse . gov >
27 rewrite: ruleset 198 input: president < @ whitehouse . gov >
28 rewrite: ruleset 95 input: < uucp-dom : ispmail > president < @
➥whitehouse . gov >
29 rewrite: ruleset 95 returns: $# uucp-dom $@ ispmail $: president < @
➥whitehouse . gov >
30 rewrite: ruleset 198 returns: $# uucp-dom $@ ispmail $: president < @
➥whitehouse . gov >
31 rewrite: ruleset 0 returns: $# uucp-dom $@ ispmail $: president < @
➥whitehouse . gov >
32 >

In Listing 10.6, line 1 shows using the sendmail program with the -bt option to test a configu-
ration file, specified with the -C option. In line 4, the address ‘rich’ is tested using first rule set
3, then rule set 0. Lines 5 through 8 show that rule set 3 is called with ‘rich’ as the input. Rule
set 3 calls rule set 96 to process the input, and then returns with ‘rich’ as its output. Lines 9
through 16 show rule set 0 in action. The input to rule set 0 is again ‘rich’. Rule set 0 calls
rule sets 199, 98, and 198, which are further rules used to parse the messages on the local
sendmail configuration. The output of rule set 0 shown in line 16 is the mailer, local, and the
address, rich. Not too exciting.

Lines 17 through 31 show a more interesting trial. Again rule sets 3 and 0 are tested using an
external address—president@whitehouse.gov. Lines 18 through 21 show rule set 3 process-
ing the input. This time the output of rule set 3 is different from the original input. Rule set 3
separated the username portion (president) from the hostname portion (whitehouse.gov) to
pass on to rule set 0. Lines 22 through 31 show how rule set 0 processed the input. Many inter-
mediate rules were called by rule set 0 before it came up with its return value. As stated
earlier, rule set 0 produced the mailer that was required to send the message (uucp-dom),
the hostname to forward the message to (ispmail), and the username of the recipient
(president@whitehouse.gov). This shows that the sample configuration file is set to
forward any external mail messages via UUCP to the host ispmail. To exit this mode, press
the Ctrl-D keys.

Sample Rule Set
It might do some good to look at an example of a rule set to help understand how the configu-
ration lines work together in sendmail. On March 26, 1999, the Melissa virus took the Internet

Introduction to Email Services and Linux

PART I
294

LISTING 10.6 continued

12 0672318342 CH10 2/14/00 2:26 PM Page 294

by storm. Melissa was a Microsoft Word macro virus that used an unsuspecting victim’s
Microsoft Outlook directory to mail copies of itself to up to 50 other victims. A few hours after
Melissa was identified, sendmail Inc., a company dedicated to the use and support of the send-
mail program, released a new rule set that allowed sites using sendmail to block any suspected
Melissa virus messages from entering the mailserver.

Remember that sendmail is an MTA; its job is just to forward mail. By using a rule set that did
not forward a suspected virus message, mailservers using sendmail were able to stem the
spread of Melissa. Listing 10.7 shows the configuration file update that was released by send-
mail, Inc.

LISTING 10.7 sendmail Melissa Virus Update

1 HSubject: $>Check_Subject
2 D{MPat}Important Message From
3 D{MMsg}This message may contain the Melissa virus.
4
5 SCheck_Subject
6 R${MPat} $* $#error $: 553 ${MMsg}
7 RRe: ${MPat} $* $#error $: 553 ${MMsg}

In Listing 10.7, lines 1 through 3 define some macros that should look familiar by now. Line 1
defines an H line that forwards any message with a Subject header to the rule set labeled
Check_Subject. Line 2 defines a macro with text that was commonly found in messages
infected by the Melissa virus. With the newer advent of Melissa variants, you can easily
expand this to be an F line that defines a separate file containing multiple lines that can be
checked. Line 3 defines another macro that is used as a return message when an infected mes-
sage is detected.

Line 5 defines the start of the new rule set, called Check Subject. As defined in the H line, any
message that has an RFC822 Subject field will be passed to this rule during processing. Lines
6 and 7 define the new rules to stop Melissa.

The Melissa virus was known to create bogus mail messages that included the subject field
“Important Message From” and the name of the victim who sent the messages. The rule set in
line 6 looks for subject lines that include that subject phrase along with zero or more other
tokens (the $* metasymbol). It then forwards the message to the error mailer, with an appropri-
ate rejection notice to the sender of the message.

Line 7 duplicates the process for messages where the subject had been mistakenly replied to
and added the standard “Re:” to the subject line. Again, it forwards the message to the error
mailer with a rejection notice sent to the sender of the message.

The sendmail Program

CHAPTER 10
295

10

T
H

E
SEN

D
M

A
IL

P
R

O
G

R
A

M

12 0672318342 CH10 2/14/00 2:26 PM Page 295

Although the Melissa virus did not affect the sendmail program, sendmail was able to effec-
tively block infected messages from getting into the mailserver to infect users’ Microsoft
Outlook clients. This example demonstrates the flexibility of the sendmail program.

Summary
The Linux mailserver requires a Mail Transport Agent (MTA) to transfer mail to intended
recipients. The sendmail program is one of the oldest and most advanced MTA packages avail-
able for the Linux platform. Configuring the sendmail program to process mail properly for
your Linux environment is done with the /etc/sendmail.cf configuration file. The configura-
tion file consists of rule sets that let sendmail parse incoming message headers and determine
the proper recipients, and what mailers to use to transfer the message to them. Rule sets can
also be used to configure mail filters to stop unwanted messages from being transferred.
Concerns about sendmail’s difficult and confusing configuration file should now be resolved
because this chapter stepped through each configuration file process. The next chapter,
“Installing and Configuring sendmail,” shows an easier way to custom configure the sendmail
configuration file.

Introduction to Email Services and Linux

PART I
296

12 0672318342 CH10 2/14/00 2:26 PM Page 296

IN THIS PART
11 Installing and Configuring sendmail 299

12 Installing and Configuring POP3 and IMAP 329

13 Connecting the Mailserver to an ISP 349

14 Mailserver Administration 373

15 Configuring LAN Clients 393

Installing Email Services
in Linux

PART

II

13 0672318342 pt2 2/14/00 2:48 PM Page 297

13 0672318342 pt2 2/14/00 2:48 PM Page 298

CHAPTER

11
Installing and Configuring
sendmail

IN THIS CHAPTER
• Installing sendmail 300

• Configuring sendmail 304

• Sample sendmail Configurations 319

14 0672318342 CH11 2/14/00 2:34 PM Page 299

The previous chapter discussed the details of the sendmail program and its configuration file.
This chapter explains how to download and install the sendmail program. Also explained in
this chapter is the GNU m4 macro processor. sendmail uses the m4 macro processor to sim-
plify the configuration file building process. Short, simple macro files can be created to incor-
porate the functions that the mail administrator wants to include in the configuration file. The
m4 processor can parse the macro file and create a full-blown configuration file.

Installing sendmail
Over the years, the sendmail program has been through many different versions. The current
version is 8.9.3. Because many upgrades to sendmail involve security fixes, it is often wise to
install the latest version as it becomes available. Version 8.9.3 was released mainly to fix a
TCP Denial of Service attack that sendmail was vulnerable to. After you determine your proper
configuration file details, you can often upgrade the binary programs without having to re-
create your configuration file. This section describes how to install the sendmail program by
either the binary distribution packages included with most Linux distributions, or by download-
ing the sendmail source code from the sendmail Web site and compiling it.

Binary Distributions
Most Linux distributions come with sendmail binary packages. These packages contain the
compiled sendmail programs and skeleton configuration files necessary to implement sendmail
on the particular Linux distribution. Unfortunately, many Linux distributions do not include the
latest version of sendmail. Although usually older versions of sendmail work fine for small
internal mailservers, if you plan on putting your Linux mailserver on the Internet, it would be
wise to download the most recent version. You can check the sendmail.org Web site
(http://www.sendmail.org) to see the latest version of sendmail. If your Linux distribution
comes with the latest version—great, use it! If not, you can download the latest version using
the instructions detailed in the next section.

Most Linux distributions that use the RPM method of installing binary packages (Red Hat,
Mandrake, and Caldera), split the sendmail package into three separate packages. The
Mandrake Linux 6.0 distribution uses sendmail-8.9.3-9mdk.i586.rpm, sendmail-cf-8.9.3-
9mdk.i586.rpm, and sendmail-doc-8.9.3-9mdk.i586.rpm. These distribution files use send-
mail version 8.9.3. You can use an RPM package utility to see what files are contained in each
sendmail distribution package. Figure 11.1 shows the X Window utility kpackage as it displays
the information screen on the sendmail-8.9.3-9mdk.i586.rpm package.

Installing Email Services in Linux

PART II
300

14 0672318342 CH11 2/14/00 2:34 PM Page 300

FIGURE 11.1
A kpackage display of sendmail-8.9.3-9mdk.i586.rpm.

Listing 11.1 shows the files included in the sendmail-8.9.3-9mkd.i586.rpm distribution pack-
age. This RPM package contains the main sendmail binaries and support files as configured for
Mandrake Linux.

LISTING 11.1 sendmail-8.9.3-9mdk.i586.rpm Files

1 /etc/aliases
2 /etc/aliases.db
3 /etc/mail
4 /etc/mail/deny
5 /etc/mail/deny.db
6 /etc/mail/ip_allow
7 /etc/mail/name_allow
8 /etc/mail/relay_allow
9 /etc/rc.d/init.d/sendmail
10 /etc/rc.d/rc0.d/K30sendmail
11 /etc/rc.d/rc1.d/K30sendmail
12 /etc/rc.d/rc2.d/S80sendmail
13 /etc/rc.d/rc3.d/S80sendmail
14 /etc/rc.d/rc4.d/S80sendmail
15 /etc/rc.d/rc5.d/S80sendmail
16 /etc/rc.d/rc6.d/K30sendmail
17 /etc/sendmail.cf
18 /etc/sendmail.cw
19 /etc/smrsh

Installing and Configuring sendmail

CHAPTER 11
301

11

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
SEN

D
M

A
IL

continues

14 0672318342 CH11 2/14/00 2:34 PM Page 301

20 /etc/sysconfig/sendmail
21 /usr/bin/hoststat
22 /usr/bin/mailq
23 /usr/bin/makemap
24 /usr/bin/newaliases
25 /usr/bin/purgestat
26 /usr/bin/rmail
27 /usr/lib/sendmail
28 /usr/lib/sendmail.hf
29 /usr/man/man1/mailq.1.bz2
30 /usr/man/man1/newaliases.1.bz2
31 /usr/man/man5/aliases.5.bz2
32 /usr/man/man8/mailstats.8.bz2
33 /usr/man/man8/makemap.8.bz2
34 /usr/man/man8/praliases.8.bz2
35 /usr/man/man8/rmail.8.bz2
36 /usr/man/man8/sendmail.8.bz2
37 /usr/sbin/mailstats
38 /usr/sbin/makemap
39 /usr/sbin/praliases
40 /usr/sbin/sendmail
41 /usr/sbin/smrsh
42 /var/log/sendmail.st
43 /var/spool/mqueue

In Listing 11.1, lines 21 through 26 show some of the sendmail executables located in the
/usr/bin directory on Mandrake Linux. The actual sendmail program is located in the
/usr/sbin directory. Lines 9 through 16 show the sendmail scripts used for starting and stop-
ping sendmail automatically at different init levels. Lines 29 through 36 show the files neces-
sary for the sendmail man pages. In line 43, the /var/spool/mqueue directory is created to
store mail messages waiting for delivery. All the configuration, support, and manual files nec-
essary for sendmail are included in this distribution.

To install the sendmail rpm distribution, you can use the automated kpackage installer from an
X session. You can also use the rpm program from an X terminal window or the console
screen. To do this enter the following as the root user:

rpm –Uvh sendmail-8.9.3-9mdk.i586.rpm

The second distribution file—sendmail-cf-8.9.3-9mdk.i586.rpm—includes the files neces-
sary for rebuilding the configuration file using the GNU m4 macro processor (see the “Config-
uring sendmail” section later in this chapter). After it is installed, the necessary sendmail con-
figuration files are located in the /usr/lib/sendmail-cf directory. You can install the rpm
package using the rpm –Uvh command as shown previously.

Installing Email Services in Linux

PART II
302

LISTING 11.1 continued

14 0672318342 CH11 2/14/00 2:34 PM Page 302

The third distribution file—sendmail-doc-8.9.3-9mdk.i586.rpm—includes the documenta-
tion files for sendmail. The documentation files are located in the /usr/doc/sendmail direc-
tory. They include the “sendmail Installation and Operation Guide” and the “Introduction to
sendmail” documents, both in PostScript format. You can also install the documentation files
using the rpm –Uvh command shown previously.

Downloading from the Internet
It is always advisable to watch the sendmail.org Web site for new releases of sendmail. When
there is a new release, you can download the source code from the ftp.sendmail.org FTP
site. The sendmail distributions are located in the /pub/sendmail directory. Several different
versions of sendmail are available for download, so be careful. The current version available at
the time of this writing is sendmail.8.9.3.tar.gz. This is a UNIX tarred file that has been
zipped with the GNU zip program. Alternatively, there is also another version named send-
mail.8.9.3.tar.Z, which uses the UNIX compress method. Because that file is larger, most
Linux users should opt to download the GNU zipped version.

Installing and Configuring sendmail

CHAPTER 11
303

11

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
SEN

D
M

A
IL

Linux Compression Techniques
The Linux operating system supports multiple methods of file compression. The three
most common methods are the UNIX compress utility (.Z files), the GNU gzip utility
(.gz files), and the block-sorting file compression utility (.bz2 files). Often, distribu-
tion files are offered in all three methods. Linux users can download the smallest file
to save download time. For .Z and .gz files, using the tar command with the –z
option automatically decompresses the source code.

When the source code file has been downloaded to a working directory, the source code can be
extracted using the Linux tar command:

tar –zxvf sendmail.8.9.3.tar.gz

This command extracts the source code files into a base subdirectory called sendmail-8.9.3
in the current working directory.

The next step is to compile the binary executables from the source code. You can change
directories to the sendmail-8.9.3 subdirectory and type the make all command. The send-
mail distribution includes a subdirectory called BuildTools that helps the compiling process.
A script file named Build is used to step through the various Makefiles to create the binary
distribution. The Build script determines the system it is running on by issuing a uname –a
command and creates subdirectories based on the uname value that contain the built executa-
bles. On my Mandrake 6.0 system, it created directories named obj.Linux.2.2.9-
19mdk.i586.

14 0672318342 CH11 2/14/00 2:34 PM Page 303

To install the newly created sendmail files, type make install from the sendmail-8.9.3 sub-
directory. Make sure that you are the root user when you do this, or you will not have permis-
sion to place the files in the proper directories on your Linux system.

Configuring sendmail
After sendmail has been properly installed, it must be configured to operate in the environment
that your Linux mailserver must work in. Chapter 10, “The sendmail Program,” described the
sendmail configuration file and the vast quantity of configuration options available. If you are
getting worried, don’t. There is an easier way to configure sendmail than plugging through the
entire configuration file line by line. sendmail uses the GNU m4 macro processor to enable a
mail administrator to create a small and simple macro file that describes the sendmail features
and settings desired. The macro file is combined with a sendmail skeleton macro file by the m4
processor to create a complete sendmail.cf configuration file. This section describes the GNU
m4 macro processor and the format of the macro file used to create a sendmail configuration
file.

The GNU m4 Macro Processor
The GNU m4 macro processor is used to create the sendmail configuration file from a set of
macro files. As a macro file is read into the input, macros are expanded before being written to
an output file.

Some macro definitions are built into the m4 processor program. Other macro definitions may
be defined separately and included in the macro processor at run time. Besides expanding
macros, the m4 macro processor can also contain built-in functions such as running shell com-
mands, manipulating text, and performing integer arithmetic. The most current version of GNU
m4 is version 1.4 and is available on most Linux distributions. Figure 11.2 demonstrates how
the m4 processor reads the created macro file and parses it into the configuration file using the
predefined sendmail macro files.

The sendmail configuration distribution includes m4 macro files that define commonly used
configuration options and features. The location of the sendmail configuration distribution
varies. The Mandrake Linux configuration distribution package is called sendmail-cf-8.9.3-
9mdk.i586.rpm. When it is installed, it creates a subdirectory /usr/lib/sendmail-cf that
includes the sendmail macro files. If you downloaded the sendmail distribution from send-
mail.org, the configuration macro files are located in the cf subdirectory located in the source
directory (sendmail-8.9.3 for the most recent version).

Installing Email Services in Linux

PART II
304

14 0672318342 CH11 2/14/00 2:34 PM Page 304

FIGURE 11.2
A GNU m4 macro processor operation.

Installing and Configuring sendmail

CHAPTER 11
305

11

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
SEN

D
M

A
IL

m4

macro processor

User created
macro file

sendmail
configuration

file

sendmail default macro files

sendmail and m4
Don’t let this section confuse you, the sendmail program configuration file can be
built entirely by hand without the help of m4. However, the sendmail developers
have utilized the m4 macro processor to assist mail administrators in the configura-
tion process. The m4 processor uses its own directives language to generate the
appropriate sendmail configuration file lines. Learning the m4 sendmail directives in
this section is an alternative to learning the sendmail configuration lines and creating
the configuration file by hand. Generating a configuration file using the m4 macro
processor is intended to be easier than creating one by hand. Often, only a short m4
macro file is necessary to create a fully functional sendmail configuration file.
Knowing what features your sendmail environment requires helps to determine what
m4 directives to include in your m4 macro file. If this section seems confusing, take a
peek at the examples at the end of this chapter to see how the m4 directives fit
together to produce a complete sendmail configuration file.

sendmail m4 Directives
m4 reads the input macro file and creates a configuration file based on predefined macro
directives. Each m4 macro directive in the macro file expands to produce a section in the out-
put sendmail configuration file. For example, the m4 directive

FEATURE(`virtusertable’, `hash /etc/virtusertable’)

produces the following K line in the generated sendmail configuration file:

Virtual user table (maps incoming users)
Kvirtuser hash /etc/virtusertable

14 0672318342 CH11 2/14/00 2:34 PM Page 305

By knowing what sendmail features and options are required, a small m4 macro file with direc-
tives can be created. The m4 processor can then create a fully functional sendmail configura-
tion file from the small m4 macro file. Although this example was trivial, often a single macro
directive can expand to dozens of lines in the configuration file, saving time and effort.

This section describes the macro directives that are available to use when creating a macro file.
The following section demonstrates how to combine the directives to produce a functional
sendmail configuration file for specific sendmail environments.

Installing Email Services in Linux

PART II
306

CAUTION

The m4 macro processor is case sensitive. Make sure that all macro directives are
entered into the macro file with the proper case, or they will not get processed into
the output configuration file properly. Also, note that many directives use the back-
tick character (`) to start a parameter. This must be a backtick, it is not a normal sin-
gle quote. The ending character for a parameter is a single quote (‘). These items
often result in errors in the sendmail configuration file.

Identify New Configuration File
Often, the first two directives used in macro files are

divert(-1)
divert(0)

The divert(-1) directive is used to clean out the macro buffer of any previous macro
attempts. The divert(0) directive is used to identify the start of the new macro file.

Include Other Macro Files
Another necessary directive is the include directive. This directive includes lines from another
macro file to be used in the current macro file. To properly process your macro file, you must
include the cf.m4 macro file usually located in the m4 subdirectory of the sendmail configura-
tion file location. Depending on where your sendmail configuration files are located, the
include directive should look something like this:

include(`/usr/lib/sendmail-cf/m4/cf.m4’)dnl

The dnl at the end of the include directive is used to tell the m4 macro processor about line
breaks. The m4 macro processor is stream based, and does not recognize end-of-line returns.
Thus, to reduce blank lines in the output configuration file, the dnl tag is used to indicate the
end of a directive.

14 0672318342 CH11 2/14/00 2:34 PM Page 306

Identify Operating System Parameters
Directive: OSTYPE

The OSTYPE directive must be defined in the macro file. It directs m4 to the proper location to
find executables and configuration files dependent on the operating system. The format of the
OSTYPE directive is

OSTYPE(`os’)dnl

Where os is the name of the operating system on which you are running sendmail. Because
this is a book on Linux mailservers, we should use the linux OSTYPE. The OSTYPE declared
relates to a macro file of the same name that defines variables overridden by m4. Using an
OSTYPE of linux includes a macro file called linux.m4. Listing 11.2 shows a linux.m4 file
defined in the Mandrake Linux 6.0 distribution.

LISTING 11.2 linux.m4 Macro File

1 divert(-1)
2 #
3 # Copyright (c) 1998 sendmail, Inc. All rights reserved.
4 # Copyright (c) 1983 Eric P. Allman. All rights reserved.
5 # Copyright (c) 1988, 1993
6 # The Regents of the University of California. All rights reserved.
7 #
8 # By using this file, you agree to the terms and conditions set
9 # forth in the LICENSE file which can be found at the top level of
10 # the sendmail distribution.
11 #
12 #
13
14 divert(0)
15 VERSIONID(`@(#)linux.m4 8.7 (Berkeley) 5/19/1998’)
16 define(`PROCMAIL_MAILER_PATH’, `/usr/bin/procmail’)dnl
17 # define(`LOCAL_MAILER_FLAGS’, `ShPfn’)dnl
18 # define(`LOCAL_MAILER_ARGS’, `procmail -a $h -d $u’)dnl
19 define(`STATUS_FILE’, `/var/log/sendmail.st’)dnl

In Listing 11.2, lines 16 and 19 redefine the locations of the procmail executable and the
sendmail.st status file for this particular Linux distribution. These values will appear in the
final sendmail.cf configuration file. The procmail path appears in the procmail mailer defin-
ition, and the status file path appears in the STATUSFILE option. The define directive will be
discussed in more detail later in this section.

Installing and Configuring sendmail

CHAPTER 11
307

11

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
SEN

D
M

A
IL

14 0672318342 CH11 2/14/00 2:34 PM Page 307

Specify Message Handling Methods
Directive: DOMAIN

The DOMAIN directive is used to identify special methods used to handle messages if required
by the sendmail environment. Table 11.1 shows the available DOMAIN values that can be used.

TABLE 11.1 DOMAIN Values

Value Description

BITNET_RELAY The host that will accept BITNET addressed mail

DECNET_RELAY The host that will accept DECNET address mail

FAX_RELAY The host that will accept mail to the .FAX pseudo-domain

LUSER_RELAY The host that will handle addresses that appear to be local users

UUCP_RELAY The host that will accept UUCP addressed mail

The format of the DOMAIN directive is

DOMAIN(relay, `mailer:hostname’)

where relay is the value identified in Table 11.1, mailer is the mailer type used to transport
the messages, and hostname is the name of the remote host to transfer the messages to.

Identify sendmail Features
Directive: FEATURE

The FEATURE directive allows m4 to processes predefined features of sendmail into the configu-
ration file with a minimum amount of work on the mail administrator’s part. The format of the
FEATURE directive is

FEATURE(`value’, `[options]’)

where value is the feature name included in the sendmail configuration file, and options are
any options required to implement the feature. This section describes the features available as
of sendmail version 8.9.3.

accept_unqualified_senders
The accept_unqualified_senders feature allows sendmail to accept mail where the FROM:
header field addresses do not have fully qualified hostnames. This may be necessary if your
local mailer sends messages without appending the local hostname in the FROM: field.

accept_unresolvable_domains
The accept_unresolved_domains feature allows sendmail to accept mail where the FROM:
header field addresses do not have a valid domain name. In normal operation, sendmail

Installing Email Services in Linux

PART II
308

14 0672318342 CH11 2/14/00 2:34 PM Page 308

attempts to verify the domain name of any addresses extracted from the FROM: RFC822 header
field. If the domain name is not resolved, sendmail will not accept the message. If your mail
gateway is unable to perform DNS name resolutions, you may have to include this feature to
allow sendmail to accept messages.

access_db
The access_db feature enables the access database for sendmail. The access database allows
the mail administrator to list domains and users that need special processing. This includes
sites that are allowed to use the mailserver as a mail relay, or sites that need to be blocked from
sending mail through the mailserver. This feature comes in handy if you identify mail spam-
mers that need to have their messages blocked.

By default, access_db creates a database using the Berkeley hash database type, with the data-
base located at /etc/mail/access. The default access_db values can be changed by using the
options format:

FEATURE(`access_db’, `db [options]’)

where db is the database map type, and options are any options required to create the data-
base. For example, the default database could be created using the following directive:

FEATURE(`access.db’, `hash –o /etc/mail/access’)

This directive creates a hash database at the default location of /etc/mail/access. Because
the type of the database is ‘hash’, the Linux makemap function must be used to create the hash
database from a text file. The text file contains a list of domain names or IP addresses and
actions. Each specific location must be tagged as to the action that sendmail should take. Table
11.2 shows the tags that can be used in the access database.

TABLE 11.2 Access Database Tags

Tag Description

OK Accept mail even if other rules might reject it

RELAY Accept mail from the specified domain or destined to the specified
domain for relay

REJECT Refuse any messages with the specified sender or recipient and send an
error message

DISCARD Refuse any messages with the specified sender or recipient without any
error messages

nnn text Refuse any messages with the specified sender or recipient and send a
message with RFC821 error message number nnn and text

Installing and Configuring sendmail

CHAPTER 11
309

11

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
SEN

D
M

A
IL

14 0672318342 CH11 2/14/00 2:34 PM Page 309

Listing 11.3 shows a sample access text database that can be used to block mail from specific
locations.

LISTING 11.3 Sample Access Text Database

1 spammer@ispmail.net REJECT
2 microsoft.com DISCARD
3 linux.org OK
4 smallorg.org RELAY
5 198.162.10 550 Sorry, I can’t relay mail for your domain

In Listing 11.3, line 1 shows that any mail message received from or destined to the address
spammer@ispmail.net will be rejected. Line 2 indicates that any messages sent to or received
from anyone at microsoft.com will be silently discarded. In line 3, any message from anyone
at linux.org will be accepted. Line 4 shows an example of allowing the mailserver to relay
messages from hosts in a subdomain. Line 5 shows an example of using the access_db to
block mail coming from a specific IP subnet and return a specific SMTP error message.

To create the access database from the access.txt file, type the following command:

makemap hash /etc/mail/access < /etc/mail/access.txt

The Linux makemap utility will create a hash database from the text file for sendmail to use.

allmasquerade
The allmasquerade feature is used if masquerading is being used by the sendmail configura-
tion (see the “MASQUERADE_AS” section later in the chapter). If masquerading is being used, the
allmasquerade feature will cause recipient addresses to also show as being from the host
defined in the MASQUERADE_AS directive. Be careful when using this feature because it can con-
fuse sendmail if you are using local aliases. This feature is often used when the mailserver is
masquerading multiple hosts.

always_add_domain
The always_add_domain feature is used to include the local host domain to all addresses even
if the messages are just being delivered to local users. By default, messages sent to local users
from other local users do not include the hostname in the message address fields.

bitdomain
The bitdomain feature allows sendmail to look up BITNET hosts in a lookup table defined in
the directive. The format of this directive is

FEATURE(`bitdomain’, `db [options]’)

Installing Email Services in Linux

PART II
310

14 0672318342 CH11 2/14/00 2:34 PM Page 310

where db is the database map type used, and options are any options required to create and
access the database. The default values are the hash map type and the filename /etc/bitdo-
main.db.

bestmx_is_local
The bestmx_is_local feature allows sendmail to accept mail as if it were locally addressed
from hosts that use this mailserver as the best possible MX record. The format for this direc-
tive is

FEATURE(`bestmx_is_local’, `domains ...’)

If domains are listed, the feature will be limited to the listed domains.

blacklist_recipients
The blacklist_recipients feature allows sendmail to include lists of users who should not
receive mail to the access database described previously in the access_db feature. This
expands on the access_db feature because you may blacklist a single email address or host-
names as well as domains.

domaintable
The domaintable feature allows sendmail to create a domain name database to map domain
names. This is not an ordinary function, although there may be instances where you want to
change a domain name on-the-fly (such as if you recently changed domain names and your
clients forget). This feature creates a database based on a map type and a default location,
which by default are the hash map type and /etc/domain. The first field of the text database
should be the old domain name, with the second field being the new domain name. As always,
use the makemap program to create the mapped database.

genericstable
The genericstable feature allows sendmail to create a table of usernames and/or domain
names that allow sendmail to change names on-the-fly. Again, this is also not an ordinary func-
tion, but may come in handy if an email system is in the process of changing either usernames
or domain names. As in the other database features, a map type and options can be specified to
create the database, and the makemap program needs to be used to convert a text database into
the mapped database.

limited_masquerade
The limited_masquerade feature allows sendmail to selectively use the masquerade feature.
Instead of using the masquerade feature on all hostnames listed in the Cw or Fw configuration
lines, limited_masquerade only masquerades hostnames in the DM configuration lines.

Installing and Configuring sendmail

CHAPTER 11
311

11

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
SEN

D
M

A
IL

14 0672318342 CH11 2/14/00 2:34 PM Page 311

local_lmtp
The local_lmtp feature allows sendmail to use an LMTP capable mailer when delivering local
mail. Usually, this is not the case on Linux systems, so this feature is often not used.

local_procmail
The local_procmail feature tells sendmail to use the procmail program as the local mailer.
This feature is often used on Linux mailservers because the procmail program is normally
included in Linux distributions. The format of this directive is

FEATURE(`local_procmail’, `pathname’)

where pathname is the location of the procmail program. The default location is the
PROCMAIL_MAILER_PATH variable as defined in the OSTYPE directive. By default, this is
/usr/local/bin/procmail. As shown in Listing 11.2, Mandrake Linux changes this value to
/usr/bin/procmail.

loose_relay_check
The loose_relay_check feature changes the method that sendmail uses when handling mail
addresses that use the % symbol. This has become an obsolete method of addressing mail, so
this feature is normally not necessary.

mailertable
The mailertable feature allows sendmail to create a database of hosts describing the methods
required to transport mail to them. The format of the mailertable directive is

FEATURE(`mailertable’, `db [options]’)

where db is the database map type, and options are any options required to create and access
the database. As in the other database features, mailertable uses the makemap program to
create the mapped database from a text file. The format of the text file is

host mailer:domain

where host is the destination host or domain name, mailer is the mailer type required to trans-
port the message, and domain is the remote host to forward the message to. The mailertable
database can forward messages destined for either a particular host or for an entire domain to a
remote host. This feature is particularly useful in UUCP sites that need to create a database of
where to forward messages to hosts that are not directly connected via the UUCP links.

masquerade_entire_domain
The masquerade_entire_domain feature allows sendmail to masquerade any messages coming
from hosts within a domain rather than just messages coming from the mailserver host. If the
mailserver is acting as a mail gateway for an entire domain of hosts, this feature allows all the
users on all the hosts in the domain to use the masqueraded domain name.

Installing Email Services in Linux

PART II
312

14 0672318342 CH11 2/14/00 2:34 PM Page 312

For example, if there are three mail servers in a domain—shadrach.smallorg.org,
meshach.smallorg.org, and abednego.smallorg.org—any mail messages sent through the
mail gateway from a user on any of the three mail servers would not have the original host-
name in the addresses part. Instead it would include the single masquerade name, which could
be set to smallorg.org. This is a handy way to hide individual mailservers on a large network.

masquerade_envelope
The masquerade_envelope feature allows sendmail to use the masquerade domain name on the
envelope sender and recipient as well as any header fields.

nocanonify
The nocanonify feature tells sendmail not to attempt to pass addresses to the rule sets to add
the fully qualified host domain name to the address. This is a common feature for email gate-
ways because the messages sent to them usually already have the full email address included.
Further processing of the address is not necessary.

nodns
The nodns feature has been deprecated from sendmail 8.9.3. You may still encounter it in some
older macro files, so it is still worth knowing about. The nodns feature indicates that the
mailserver does not use DNS to look up hostnames. Now if you use this feature, the m4
processor reports the following error message:

FEATURE(nodns) is no-op.
Use ServiceSwitchFile (/etc/service.switch) if your OS does not provide its own
instead.

In sendmail version 8.9.3, hostname lookups attempt to follow the order set by the operating
system’s /etc/service.switch file. In Linux, this file is normally located at
/etc/nsswitch.conf. The variable host lists the order in which both Linux and sendmail will
attempt to resolve hostnames.

nouucp
The nouucp feature tells sendmail not to attempt to change UUCP-formatted addresses but to
keep them “as-is.”

nullclient
The nullclient feature is usually used alone in a macro file for a special case. This feature
tells sendmail that the mailserver is really a workstation that does not do mail processing, but
instead passes any mail (including mail to “local” users) to another mailserver. The only other
feature that may be used with the nullclient feature is the nocanonify feature described pre-
viously.

Installing and Configuring sendmail

CHAPTER 11
313

11

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
SEN

D
M

A
IL

14 0672318342 CH11 2/14/00 2:34 PM Page 313

If you use Linux or other UNIX workstations on your network, this is a great feature. If users
are accustomed to moving around to different workstations throughout the day, it would be dif-
ficult to find a host and username to use to send messages to. By establishing a central
mailserver and pointing each of the workstations to that mailserver, there becomes a common
location to send messages to. Each user would then send messages to other users on the central
mailserver, even if the recipient has an account on the same workstation. Users could then
retrieve their mail from the central mailserver from whichever workstation they happened to be
using.

The format of the nullclient directive is

FEATURE(`nullclient’, `address’)

where address is the hostname of the central mailserver. This address can be entered as a
numeric IP address to avoid any DNS problems with the workstation. If a numeric IP address
is used, it must be enclosed in square brackets ([]).

promiscuous_relay
The promiscuous_relay feature allows sendmail to accept messages from hosts outside your
domain and forward them to other hosts outside your domain. By default, sendmail will not
forward messages from one external domain to another external domain. Spammers rely on
this feature to help hide their original location. Turning on promiscuous_relay is extremely
dangerous if your Linux mailserver is constantly connected to the Internet. Eventually, some-
one will find you and exploit your mailserver for spamming purposes. A better method is to
use one of the controlled relay features described later, or the access_db feature described ear-
lier.

rbl
The rbl feature allows sendmail to reject messages based on an Internet-wide spammers list
(how convenient). The Realtime Blackhole List is maintained on server rbl.maps.vix.com.
sendmail will query this server to determine whether a username or hostname has been black-
listed on the Internet. You can find out more about the RBL by visiting the Web site
http://maps.vix.com/rbl/.

redirect
The redirect feature allows sendmail to return an error message for users whose addresses
have been identified as being redirected to another host using the .REDIRECT tag.

relay_based_on_MX
The relay_based_on_MX feature allows sendmail to accept an incoming message based on the
DNS MX record for the hostname in the recipient header fields. This feature can be used to
allow your mailserver to accept mail for other hosts as long as they point their MX records to
your mailserver in the DNS configuration (see Chapter 4, “DNS and Domain Names”).

Installing Email Services in Linux

PART II
314

14 0672318342 CH11 2/14/00 2:34 PM Page 314

relay_entire_domain
The relay_entire_domain feature allows sendmail to accept mail messages destined from any
host in your domain. This feature can be used to create a central mail gateway where messages
for any host in your domain will be relayed through a central mailserver.

relay_hosts_only
The relay_hosts_only feature allows sendmail to use hostnames in the access_db database
and declare them with the RELAY tag. Normally, only domain names can be used in the
access_db database (see the access_db feature described earlier).

relay_local_from
The relay_local_from feature allows sendmail to relay messages that appear to be coming
from the local host. This feature can be handy for users using remote clients and forwarding
mail using SMTP through your mailserver. By default, the clients can use the local host
domain name as the sender address. Unfortunately, spammers can also use this feature to fake
your local domain name on their emails and push them through your mailserver.

smrsh
The smrsh feature instructs sendmail to use the restricted smrsh shell instead of the normal
/bin/sh shell on the mailserver. This helps the mail administrator control what programs can
be run through email.

stickyhost
The stickyhost feature changes the way sendmail handles messages that use the local domain
name in the address. Normally messages sent to a user at the local host are matched against the
user database. By using the stickyhost feature, you can distinguish between the email
addresses user and user@localhost.

use_ct_file
The use_ct_file feature allows sendmail to read a file of trusted users for the –f command-
line parameter (see Chapter 10, “The sendmail Program”). By default, the filename is
/etc/sendmail.ct. To change the default filename, you can redefine the confCT_FILE
variable.

use_cw_file
The use_cw_file feature allows sendmail to read a file of alternate names for the mailserver.
By default, the filename is /etc/sendmail.cw. If you want to change the location of the file-
name, you can redefine the confCW_FILE variable (see the “Specify sendmail Options” section
below).

Installing and Configuring sendmail

CHAPTER 11
315

11

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
SEN

D
M

A
IL

14 0672318342 CH11 2/14/00 2:34 PM Page 315

uucpdomain
The uucpdomain feature allows sendmail to create and use a mapped database of UUCP hosts.
This feature uses the same techniques as the domaintable feature to map old UUCP hostnames
to new UUCP hostnames. The default location of the mapped database is
/etc/uucpdomain.db. As with the domaintable feature, this is not a frequently used sendmail
feature unless you are changing UUCP hostnames.

virtusertable
The virtusertable feature allows sendmail to alias users from other domains and directs the
mail messages to a specific location. The receiving location can be an individual or another
mailserver. This feature is often used to virtually host multiple domains on the same
mailserver. The format of the virtusertable directive is

FEATURE(`virtusertable’, `db [options]’)

where db is the database map type, and options are any options required to create and access
the database. The default is the Berkeley hash database map type using the /etc/
virtusertable database file. The format of the text virtusertable file is

alias location

where alias is the virtual alias that will be hosted, and location is the hostname or email
address sendmail will send messages to.

This feature can be used to redirect mail for an entire domain to a specific host or userid, as
well as redirect mail for a single user to another userid. Listing 11.4 shows some examples of
the virtusertable values.

LISTING 11.4 Sample virtusertable Text File

1 @smallorg.org mailbox@ispmail.net
2 @anotherorg.org %1@smallorg.org
3 webmaster@smallorg.org rich@smallorg.org

In Listing 11.4, line 1 shows an example of redirecting all mail for the domain smallorg.org
to a single mailbox called mailbox@ispmail.net. This technique has become popular with
ISPs because they can give a customer a single mailbox to deliver any messages destined to an
entire domain. The messages can then be downloaded using the POP3 protocol (see Chapter 6,
“POP3 Protocol”) and redistributed to the proper userid on the domain mailserver (see Chapter
13, “Connecting the Mailserver to an ISP”).

Line 2 shows an example of redirecting messages for one host to another. The %1 variable is
used as a token to replicate the username in the first address. Thus, a message destined to
prez@anotherorg.org would be redirected to prez@smallorg.org.

Installing Email Services in Linux

PART II
316

14 0672318342 CH11 2/14/00 2:34 PM Page 316

Line 3 shows an example of redirecting a single user mailbox to another location.

Specify sendmail Options
Directive: define

The define directive is used to set specific option values in the sendmail configuration file.
Many of the sendmail configuration options can be overridden using the define directive. The
format of the define directive is

define(`option’, `value’)

where option is the option to be defined, and value is the new value for the option.
Configuration file option names are usually preceded by ‘conf’.

The most common option that you may have to override for a Linux mailserver is the
SMART_HOST option. This allows sendmail to declare a remote host that will receive any mail
messages that are not for the local host. The format of the SMART_HOST options directive is

define(`SMART_HOST’, `mailer:host’)

where mailer is the mail protocol needed to transport the message, and host is the hostname
of the relaying host.

Specify Alternate Mail Host Name
Directive: MASQUERADE_AS

The MASQUERADE_AS directive is used to allow sendmail to pretend to be something else. The
format of the MASQUERADE_AS directive is

MASQUERADE_AS(`hostname’)

where hostname is a fully qualified host and/or domain name. sendmail will replace the host-
name value in all outgoing messages with the MASQUERADE_AS hostname value. This includes
the RFC822 “FROM:” header fields in the message.

Although at first it may seem odd to want to pretend to be a different host, the MASQUERADE_AS
directive is useful. It has become a common Internet occurrence to use domain names as email
addresses. For example, the address prez@smallorg.org is “cleaner” than having to use
prez@mailhost1.smallorg.org. The MASQUERADE_AS directive allows this to happen.

By using the domain name as the MASQUERADE_AS value, sendmail will replace the normal host-
name of the mailserver with the domain name. Thus the FROM: header fields will show the
cleaner address rather than the normal full hostname address. Of course the DNS MX record
for the domain must point to the mailserver or the return address will not work properly (see
Chapter 13, “Connecting the Mailserver to an ISP”).

Installing and Configuring sendmail

CHAPTER 11
317

11

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
SEN

D
M

A
IL

14 0672318342 CH11 2/14/00 2:34 PM Page 317

Define Message Transport Systems
Directive: MAILER

The MAILER directives define mail systems that will be used by sendmail to transport messages.
Each protocol used to transport mail must be defined by a MAILER directive. The format of the
MAILER directive is

MAILER(`mailer’)

where mailer is the name of the mailer type used. Table 11.3 lists the MAILER types that are
available in sendmail.

TABLE 11.3 sendmail MAILER Types

Mailer Description

cyrus Defines cyrus and cyrusbb mailers.

fax Defines a facsimile mailer.

local Defines the local and prog mailers. This is included automatically.

mail11 Defines the DECnet mail11 mailer.

phquery Defines the phquery program.

pop Defines the POP3 mailer

procmail Defines the procmail mailer.

smtp Defines the SMTP mailer.

uucp Defines the UUCP mailer.

usenet Defines the Usenet network news mailer.

All mailers used should be declared at the end of the macro file. Also, if you declare both the
smtp and uucp mailers, you must declare the smtp mailer first or the uucp-dom (sending smtp
formatted mail across a UUCP connection) function won’t work properly.

Creating the sendmail.cf File
When the configuration macro file has been built, it can be run through the GNU m4 macro
processor and the output redirected to a test configuration file. The format for doing this is

m4 test.mc > test.cf

The output of this command is the test.cf file, which is a complete sendmail configuration file.
In the next section of this chapter, we will create some sample configuration files by running
the m4 macro processor on our created macro file and redirecting the output to a test configu-
ration file.

Installing Email Services in Linux

PART II
318

14 0672318342 CH11 2/14/00 2:34 PM Page 318

Afterwards, you can test the newly created configuration file using the sendmail program’s –bt
and –C options as shown in Chapter 10, “The sendmail Program.” If the configuration file pro-
duces the results you want, back up the current /etc/sendmail.cf file and copy the new con-
figuration file to that location. Because the sendmail program only reads the configuration file
when it first starts up, you may need to send a SIGHUP signal to the currently running sendmail
program to force it to read the new configuration file. Listing 11.5 shows an example of this
procedure.

LISTING 11.5 Sending a SIGHUP to the sendmail Program

1 [carol@shadrach carol]$ su
2 Password:
3 [root@shadrach carol]# ps ax | grep sendmail
4 14061 ? S 0:00 sendmail: accepting connections on port 25
5 26666 pts/0 S 0:00 grep sendmail
6 [root@shadradh carol]# kill -HUP 14061
7 [root@shadrach carol]# ps ax | grep sendmail
8 26667 ? S 0:00 sendmail: accepting connections on port 25
9 26670 pts/0 S 0:00 grep sendmail
10 [root@shadrach carol]#

Sample sendmail Configurations
Creating sendmail configuration files using m4 macro files is simple and straightforward.
Knowing what directives to include in the macro files for specific mailserver installations is the
difficult part. This section describes several mailserver environments and sample macro files
that would create configuration files necessary to process mail messages in the given environ-
ment.

Simple Linux Workstation Configuration
When a Linux workstation is connected to an office network, it must know how to send mail to
other users on other workstations, as well as send mail to external users. The easiest way to
accomplish this is to use a central mailserver that everyone sends mail to. This mail “hub”
should handle the local in-house users’ mailboxes, as well as be the mail gateway for the office
to route any external mail to the ISP. Figure 11.3 shows how this scenario is set up.

Under this scenario, a Linux workstation forwards all mail messages directly to the mail hub,
whether they are intended for local in-house users or external users. Listing 11.6 shows a sam-
ple sendmail macro file that can be used to generate a configuration file for the workstation.

Installing and Configuring sendmail

CHAPTER 11
319

11

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
SEN

D
M

A
IL

14 0672318342 CH11 2/14/00 2:34 PM Page 319

FIGURE 11.3
The Linux workstation mail setup.

LISTING 11.6 Sample Linux Workstation Macro File

1 divert(-1)
2 divert(0)
3 include(`/usr/lib/sendmail-cf/m4/cf.m4’)dnl
4 OSTYPE(`linux’)dnl
5
6 FEATURE(`nullclient’, `[192.168.1.1]’)dnl

In Listing 11.6, lines 1 through 4 show the standard macro file beginning directives. Line 6
uses the nullclient feature. This indicates that sendmail on this Linux system will forward all
mail messages to the IP address 192.168.1.1. This configuration is common for using a Linux
workstation to send messages through a mailhub.

By saving the macro file in Listing 11.6 as test1.mc, a test sendmail configuration file is gen-
erated by typing

m4 test1.mc > test1.cf

Installing Email Services in Linux

PART II
320

Internet

Mail hub

Linux Workstation Workstation

192.168.1.1

Local Area Network

sendmail

sendmail
configuration
file

14 0672318342 CH11 2/14/00 2:34 PM Page 320

The output configuration file, test1.cf, can be tested using the sendmail program. Listing
11.7 demonstrates a test of this file.

LISTING 11.7 Testing the Linux Workstation Configuration File

1 [carol@shadrach carol]$ /usr/sbin/sendmail -bt -C test1.cf
2 ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
3 Enter <ruleset> <address>
4 > 3,0 rich
5 rewrite: ruleset 3 input: rich
6 rewrite: ruleset 3 returns: rich @ [192 . 168 . 1 . 1]
7 rewrite: ruleset 0 input: rich @ [192 . 168 . 1 . 1]
8 rewrite: ruleset 0 returns: $# nullclient $@ [192 . 168 . 1 . 1]
➥ $: rich @ [192 . 168 . 1 . 1]
9 > 3,0 rich@otherhost.org
10 rewrite: ruleset 3 input: rich @ otherhost . org
11 rewrite: ruleset 3 returns: rich @ otherhost . org
12 rewrite: ruleset 0 input: rich @ otherhost . org
13 rewrite: ruleset 0 returns: $# nullclient $@ [192 . 168 . 1 . 1]
➥ $: rich @ otherhost . org
14 >
15 [carol@shadrach carol]$

In Listing 11.7, line 1 shows the sendmail command used to test the newly generated configu-
ration file. The sendmail test mode allows the mail administrator to perform what-if situations
with the test configuration file. Line 4 shows a test using sendmail rules 3 and 0 on a local
email address. Line 8 shows the final results from the sendmail configuration file. The message
will be forwarded to the user rich on the remote host 192.168.1.1, just as we wanted. As a
final test, a remote email address is tested in line 9. Line 13 shows that the result is for send-
mail to forward the complete message to the 192.168.1.1 mail host. This behavior matches
what we expected from the nullclient feature in the macro file. To exit the sendmail test mode,
press Control+D. After you have a proper configuration file, you can replace the current con-
figuration file—normally located at /etc/sendmail.cf—with the new one and restart the
sendmail program.

Full-Time Internet Connection Mailserver
The second scenario is a Linux mailserver connected to the Internet all the time via a dedicated
connection. Because the Internet connection is full time, this server can forward mail for exter-
nal users directly to the destination mailserver as defined in the DNS MX record. Figure 11.4
shows how this scenario is set up.

Because the mailserver is on a dedicated Internet connection, precautions need to be made to
ensure that spammers can’t use the mailserver to forward their email messages. However,

Installing and Configuring sendmail

CHAPTER 11
321

11

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
SEN

D
M

A
IL

14 0672318342 CH11 2/14/00 2:34 PM Page 321

FIGURE 11.4
A Linux mailserver on a dedicated Internet connection.

LISTING 11.8 Sample Dedicated Linux Mailserver Macro File

1 divert(-1)
2 divert(0)dnl
3 include(`/usr/lib/sendmail-cf/m4/cf.m4’)dnl
4 OSTYPE(`linux’)dnl
5
6 FEATURE(`allmasquerade’)dnl
7 FEATURE(`masquerade_envelope’)dnl
8 FEATURE(`always_add_domain’)dnl
9 FEATURE(`virtusertable’)dnl
10 FEATURE(`local_procmail’)dnl

Installing Email Services in Linux

PART II
322

Internet
otherhost.org

Remote host

Workstation Workstation

Local Area Network

Linux mailserver

sendmail

sendmail
configuration
file

because this is the mail gateway for internal users to send mail out to the Internet, it should
allow domain clients access to relay messages. Listing 11.8 shows a sample macro file that will
produce the necessary sendmail configuration file.

14 0672318342 CH11 2/14/00 2:34 PM Page 322

11 FEATURE(`access_db’)dnl
12 FEATURE(`blacklist_recipients’)dnl
13
14 MASQUERADE_AS(`smallorg.org’)dnl
15
16 MAILER(`smtp’)dnl
17 MAILER(`procmail’)dnl

In Listing 11.8, lines 6 through 12 define features needed by the mailserver for this environ-
ment. Line 11 creates an access database that can contain the domain name or the subnet IP
address of the local network. This allows local users to relay messages intended for external
users through the mail gateway. Line 14 sets the masquerade name as the domain name of the
organization. This sets all mail messages as coming from the domain name rather than the
hostname. After using the m4 macro processor to generate a test sendmail configuration file as
before, Listing 11.9 shows a test of the new configuration file.

LISTING 11.9 Testing the Dedicated Linux Mailserver Configuration File

1 [kevin@shadrach kevin]$ /usr/sbin/sendmail -bt -C test2.cf
2 ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
3 Enter <ruleset> <address>
4 > 3,0 rich@otherhost.org
5 rewrite: ruleset 3 input: rich @ otherhost . org
6 rewrite: ruleset 96 input: rich < @ otherhost . org >
7 rewrite: ruleset 96 returns: rich < @ otherhost . org >
8 rewrite: ruleset 3 returns: rich < @ otherhost . org >
9 rewrite: ruleset 0 input: rich < @ otherhost . org >
10 rewrite: ruleset 199 input: rich < @ otherhost . org >
11 rewrite: ruleset 199 returns: rich < @ otherhost . org >
12 rewrite: ruleset 98 input: rich < @ otherhost . org >
13 rewrite: ruleset 98 returns: rich < @ otherhost . org >
14 rewrite: ruleset 198 input: rich < @ otherhost . org >
15 rewrite: ruleset 95 input: < > rich < @ otherhost . org >
16 rewrite: ruleset 95 returns: rich < @ otherhost . org >
17 rewrite: ruleset 198 returns: $# esmtp $@ otherhost . org $:

➥ rich < @ otherhost . org >
18 rewrite: ruleset 0 returns: $# esmtp $@ otherhost . org $:

➥ rich < @ otherhost . org >
19 >
20 [kevin@shadrach kevin]$

In Listing 11.9, line 1 shows the command to test the new configuration file generated from the
macro file in Listing 11.8. Line 4 shows testing a remote email address using rule sets 3 and 0.
The final result is shown in line 18; the message would be sent directly to the receiving mail
host using ESTMP, just as we wanted.

Installing and Configuring sendmail

CHAPTER 11
323

11

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
SEN

D
M

A
IL

14 0672318342 CH11 2/14/00 2:34 PM Page 323

FIGURE 11.5
A Linux mailserver on a part-time Internet connection.

The main detail to configure in this scenario is the smart host necessary to forward any outgo-
ing mail messages. Because the dial-up connection supports the IP protocol, you can still use
SMTP to send messages to the smart host. Listing 11.10 shows a sample macro file that would
create a sendmail configuration file to support this environment.

LISTING 11.10 Sample Part-Time Linux Mailserver Macro File

1 divert(-1)
2 divert(0)dnl
3 include(`/usr/lib/sendmail-cf/m4/cf.m4’)dnl
4 OSTYPE(`linux’)dnl

Installing Email Services in Linux

PART II
324

Internetotherhost.org

Local Area Network

mail.isp.net

ISP

PPP

Linux mailserver

sendmail
configuration
file

PPP link

PPPsendmail

Part-Time Internet Connection Mailserver
The third scenario is using the Linux mailserver as a mail gateway with a dial-up PPP connec-
tion to the Internet. In this scenario, the Linux mailserver forwards any messages destined for
external hosts to a common mail gateway, or “smart host.” Figure 11.5 shows how this scenario
is set up.

14 0672318342 CH11 2/14/00 2:34 PM Page 324

5
6 FEATURE(`allmasquerade’)dnl
7 FEATURE(`masquerade_envelope’)dnl
8 FEATURE(`always_add_domain’)dnl
9 FEATURE(`virtusertable’)dnl
10 FEATURE(`local_procmail’)dnl
11 FEATURE(`access_db’)dnl
12 FEATURE(`blacklist_recipients’)dnl
13
14 MASQUERADE_AS(`smallorg.org’)dnl
15
16 MAILER(`smtp’)dnl
17 MAILER(`procmail’)dnl
18
19 define(`SMART_HOST’, `smtp:mail.isp.net’)dnl

In Listing 11.10, lines 6 through 12 again define basic features that the Linux mailserver will
use. Lines 6 and 7 instruct sendmail to use the masquerade name defined in line 14 for all mes-
sages. Line 19 differentiates this configuration example from the previous example in Listing
11.8. Instead of sending mail messages directly to the destination host, line 19 defines a smart
host that all external mail will be forwarded to. Any mail not destined for the local host will be
sent via SMTP to the host mail.isp.net. It is then the job of the smart host to forward the
messages to the destination hosts. Listing 11.11 shows the results of the sendmail test of this
configuration file.

LISTING 11.11 Testing the Part-Time Linux Mailserver Configuration File

1 [lizzy@shadrach lizzy]$ /usr/sbin/sendmail -bt -C test3.cf
2 ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
3 Enter <ruleset> <address>
4 > 3,0 rich@otherhost.org
5 rewrite: ruleset 3 input: rich @ otherhost . org
6 rewrite: ruleset 96 input: rich < @ otherhost . org >
7 rewrite: ruleset 96 returns: rich < @ otherhost . org >
8 rewrite: ruleset 3 returns: rich < @ otherhost . org >
9 rewrite: ruleset 0 input: rich < @ otherhost . org >
10 rewrite: ruleset 199 input: rich < @ otherhost . org >
11 rewrite: ruleset 199 returns: rich < @ otherhost . org >
12 rewrite: ruleset 98 input: rich < @ otherhost . org >
13 rewrite: ruleset 98 returns: rich < @ otherhost . org >
14 rewrite: ruleset 198 input: rich < @ otherhost . org >
15 rewrite: ruleset 95 input: < smtp : mail . isp . net >
➥ rich < @ otherhost . org >

Installing and Configuring sendmail

CHAPTER 11
325

11

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
SEN

D
M

A
IL

continues

14 0672318342 CH11 2/14/00 2:34 PM Page 325

16 rewrite: ruleset 95 returns: $# smtp $@ mail . isp . net $:
➥ rich < @ otherhost . org >
17 rewrite: ruleset 198 returns: $# smtp $@ mail . isp . net $:
➥ rich < @ otherhost . org >
18 rewrite: ruleset 0 returns: $# smtp $@ mail . isp . net $:
➥ rich < @ otherhost . org >
19 >
20 [lizzy@shadrach lizzy]$

In Listing 11.11, line 1 shows the sendmail test of the new configuration file. Line 4 shows the
test sample of sending a message to a user on a remote mail host. After several iterations, line
18 shows the final results—the message is forwarded to the host mail.isp.net using SMTP,
just as we configured it to do. That host will hopefully forward the message on to
otherhost.org for us.

UUCP Connection Mailserver
The last scenario that will be examined is the situation where the Linux mailserver is con-
nected to the ISP via a UUCP connection. Again, this scenario requires the mailserver to for-
ward any external mail to a smart host. This time, the smart host is connected via UUCP, so it
doesn’t need complicated relay blocking features to stop spammers. Figure 11.6 shows how
this scenario is set up.

For the UUCP connection to work, the ISP must be able to accept and spool all mail destined
for the local Linux mailserver. This requires the ISP to host the mailserver’s domain as a vir-
tual domain. Listing 11.12 shows a sample macro file that can be used to create a sendmail
configuration file to work in this environment.

LISTING 11.12 Sample UUCP Linux Mailserver Macro File

1 divert(-1)
2 divert(0)dnl
3 include(`/usr/lib/sendmail-cf/m4/cf.m4’)dnl
4 OSTYPE(`linux’)dnl
5
6 FEATURE(`allmasquerade’)dnl
7 FEATURE(`masquerade_envelope’)dnl
8 FEATURE(`always_add_domain’)dnl
9 FEATURE(`local_procmail’)dnl
10
11 MASQUERADE_AS(`smallorg.org’)dnl
12

Installing Email Services in Linux

PART II
326

LISTING 11.11 continued

14 0672318342 CH11 2/14/00 2:34 PM Page 326

13 MAILER(`smtp’)dnl
14 MAILER(`procmail’)dnl
15 MAILER(`uucp’)dnl
16
17 define(`SMART_HOST’, `uucp-dom:ispmail’)dnl

Installing and Configuring sendmail

CHAPTER 11
327

11

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
SEN

D
M

A
IL

Internetotherhost.org

Local Area Network

ispmail

ISP

UUCP

Linux mailserver UUCP link

UUCPsendmail

sendmail
configuration
file

FIGURE 11.6
A Linux mailserver on a UUCP connection.

In Listing 11.12, lines 1 through 9 use the same features as the previous example in Listing
11.10. The main difference between these two scenarios is the addition of line 15 to define the
UUCP mailer type and line 17 that defines the different smart host. The uucp-dom mailer type
is used to transfer mail messages across a UUCP connection without rewriting the header file
to match the UUCP method. This keeps the mail message headers intact to be forwarded by the
smart host onto the Internet. After using the m4 macro processor to produce a test configura-
tion file, Listing 11.13 shows the results of the sendmail test of this configuration file.

14 0672318342 CH11 2/14/00 2:34 PM Page 327

LISTING 11.13 Test of UUCP Linux Mailserver Configuration File

1 [erin@shadrach erin]$ /usr/sbin/sendmail -bt -C test4.cf
2 ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
3 Enter <ruleset> <address>
4 > 3,0 rich@otherhost.org
5 rewrite: ruleset 3 input: rich @ otherhost . org
6 rewrite: ruleset 96 input: rich < @ otherhost . org >
7 rewrite: ruleset 96 returns: rich < @ otherhost . org >
8 rewrite: ruleset 3 returns: rich < @ otherhost . org >
9 rewrite: ruleset 0 input: rich < @ otherhost . org >
10 rewrite: ruleset 199 input: rich < @ otherhost . org >
11 rewrite: ruleset 199 returns: rich < @ otherhost . org >
12 rewrite: ruleset 98 input: rich < @ otherhost . org >
13 rewrite: ruleset 98 returns: rich < @ otherhost . org >
14 rewrite: ruleset 198 input: rich < @ otherhost . org >
15 rewrite: ruleset 95 input: < uucp-dom : ispmail > rich
16 ➥ < @ otherhost . org >
17 rewrite: ruleset 95 returns: $# uucp-dom $@ ispmail $:
➥ rich < @ otherhost . org >
18 rewrite: ruleset 198 returns: $# uucp-dom $@ ispmail $:
➥ rich < @ otherhost . org >
19 rewrite: ruleset 0 returns: $# uucp-dom $@ ispmail $:
➥ rich < @ otherhost . org >
20 >
21 [erin@shadrach erin]$

In Listing 11.13, line 1 again shows the sendmail command used to test the new configuration
file, and line 4 shows the command used to test a remote email address using rule sets 3 and 0.
The final results shown in line 19 indicate that the message will be forwarded to UUCP host
ispmail using the uucp-dom protocol. This is exactly what we configured in the macro file.
Again, we assume that the remote host ispmail will forward our message onto the final destina-
tion for us.

Summary
sendmail is a versatile MTA program that is available for the Linux platform. New versions
can be downloaded from the Internet and installed without too much difficulty. After sendmail
is installed, it must be properly configured to work in the desired environment. The GNU m4
macro processor can be used to create the sendmail configuration file from small macro files
that define features desired in the configuration. Different mail environments require different
configuration features and options. After the required features are defined, the configuration
file can be built and the sendmail program can become operational.

Installing Email Services in Linux

PART II
328

14 0672318342 CH11 2/14/00 2:34 PM Page 328

CHAPTER

12
Installing and Configuring
POP3 and IMAP

IN THIS CHAPTER
• Email Client Protocols 331

• qpopper 334

• University of Washington IMAP 342

15 0672318342 CH12 2/14/00 2:43 PM Page 329

After successfully installing the sendmail program, your Linux mailserver should be receiving
email messages from other mail hosts. However, this only gets the messages to the Linux
mailserver. It is still up to the individual email clients on the mailserver to retrieve their own
mail.

Users who have physical access to the mail host can log in to an interactive session such as a
console screen or an X Window session. When logged in to the mailserver, a user can use a
Mail User Agent (MUA) program such as pine, elm, or kmail to access the local mailbox and
manage their messages. These types of programs allow users to view and delete mail messages
from an interactive session on the local mailserver.

Unfortunately, many users do not have physical access to the mailserver host. In fact, in most
cases it is impossible for all users on the network to have physical access to read their email
messages on the same mailserver. The next possible solution for remote email clients is to uti-
lize the telnet or X terminal programs to establish a connection with the remote mailserver.
Although this works, it is inefficient for reading mail messages. Both telnet and X terminal
sessions create a large network overhead for just reading a few lines of text messages.

The best solution mail administrators have available are Mail Delivery Agents (MDAs). MDAs
offer a method for remote users to access their mailboxes on the local mailserver without a
large network overhead. The MDA can access the remote mailbox and download just the infor-
mation necessary for the client computer to present the message to the user. Figure 12.1 shows
remote clients accessing mail messages residing on the mailserver using an MDA.

Installing Email Services in Linux

PART II
330

Workstation Client

LAN

Fetchmail

Workstation Client

Eudora

Workstation Client

Outlook
Express

POP3

Mail Server

IMAP

FIGURE 12.1
Remote network clients retrieving mail messages from server.

15 0672318342 CH12 2/14/00 2:44 PM Page 330

Two protocols that allow remote access of mailboxes were discussed in Chapter 6, “POP3
Protocol,” and Chapter 7, “IMAP Protocol.” The POP3 and IMAP protocols allow remote users
to view and delete mail messages on the local mailserver from a remote workstation using an
email client program. The Linux mailserver must have server software that supports either the
POP3 or IMAP protocols to allow remote users access to their mailboxes.

This chapter describes two server software packages that allow the Linux mailserver to support
the POP3 and IMAP protocols. The qpopper program allows the Linux mailserver to accept
POP3 connections from remote hosts to access local mailboxes. The University of Washington
IMAP program supports both the POP3 and IMAP protocols to access the local mailboxes.

Email Client Protocols
Although POP3 and IMAP programs perform similar functions, the methods they use to access
mailboxes are totally different. Both protocols are used by client workstations to retrieve mail
from the mailserver, but each protocol uses a different philosophy in how the mail messages
are stored. This philosophical difference must be understood by the mail administrator because
it is crucial to the operation of the mailserver.

This section compares and contrasts the two most common email client protocols to help the
mail administrator decide which protocol(s) to implement and for what reasons.

POP3
The Post Office Protocol (POP) has been extremely popular. Currently, it is on its third official
release version (thus the name POP3). Figure 12.2 demonstrates how the POP3 protocol can be
used to retrieve mail from a mailserver.

The user’s client computer can use the POP3 protocol to download messages from the user’s
mailbox on the mailserver to folders on the workstation. When downloaded, the message can
be deleted from the mailserver, or the user can elect to keep the mail message on the
mailserver. In either situation, the message is downloaded in its entirety for the user to be able
to view it on the remote client computer using email client software.

The POP3 protocol is popular with Internet service providers (ISPs) who must maintain hun-
dreds of email mailboxes on servers. The POP3 protocol allows the ISP to force the messages
to be deleted from the server as they are downloaded, thus saving on server disk space. One
unfortunate consequence of this scenario is that the user’s mail is kept on the computer that he
or she happened to check the mail from. If this is always the same computer, then there is not a
problem. However, today many people must have the capability to check email messages from
home as well as from the office. This is where POP3 becomes a problem. If the user checks for
email at home and downloads 20 new messages, those messages will remain on the home PC.
When the user gets to work, the messages will not be on the email server, and thus unobtain-
able. This is where IMAP comes in.

Installing and Configuring POP3 and IMAP

CHAPTER 12
331

12

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
PO

P3 A
N

D
IM

A
P

15 0672318342 CH12 2/14/00 2:44 PM Page 331

FIGURE 12.2
An overview of the POP3 protocol.

IMAP
The Interactive Mail Access Protocol (IMAP) has been a less-known protocol in the email
world, but it is quickly gaining popularity. Currently, it is at release version 4 revision 1 (com-
monly called IMAP4rev1). Figure 12.3 demonstrates how the IMAP protocol works.

The main difference between the IMAP and POP3 protocols is where mail is located. For
POP3, the mail messages are spooled on the mailserver but downloaded to the client for further
manipulation. Often the messages on the server are deleted as soon as the client downloads
them. In contrast, the IMAP protocol maintains all the messages in folders on the server. Each
user has a default folder named the INBOX. New messages are placed in the INBOX to be read.
Each time the client connects to the IMAP server, a listing of the INBOX messages can be
obtained, and any of the messages can be retrieved—even from different client computers. This
is a great advantage to users who must check mail from multiple workstations throughout the
day. Also, separate folders can be created on the server to organize mail messages. These fold-
ers reside on the server, not on the client workstation. Although this is a great feature for
remote email users, it makes life much more difficult for the mail administrator. Because all
the mail messages are retained on the mailserver, server disk space becomes a crucial issue.

Installing Email Services in Linux

PART II
332

Workstation

LAN

POP3

Mail Server

Messages

Folders

Server moves messages
into folders on client.

Client views messages.

15 0672318342 CH12 2/14/00 2:44 PM Page 332

FIGURE 12.3
Overview of the IMAP protocol.

Installing and Configuring POP3 and IMAP

CHAPTER 12
333

12

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
PO

P3 A
N

D
IM

A
P

Workstation

LAN

IMAP

Mail Server

Messages

Folders

Messages are moved
into folders on the server.

Client views messages
 located on the server.

POP3 Versus IMAP
The choice of POP3 or IMAP is not mutually exclusive. Many sites run both email pro-
tocols to allow clients to retrieve mail using either method. It is common for in-house
workstations to use the IMAP protocol to maintain messages on the mailserver,
whereas dial-in clients use the POP3 protocol to read messages from the mailserver.
When using this scenario, be careful that the dial-in clients using POP3 do not delete
the messages from the server after they are downloaded to the workstation, or they
will not be present for the IMAP sessions. This presents a “best of both worlds” sce-
nario to the client. Unfortunately, this also presents a large administration overhead
for the mail administrator.

The two software packages examined in this chapter exhibit behavior that is common for Linux
POP3 and IMAP servers, to include encrypted passwords and the use of the shadow password
file.

15 0672318342 CH12 2/14/00 2:44 PM Page 333

qpopper
The qpopper program is freeware originally released by the University of California at
Berkeley, but now maintained by the Qualcomm corporation, that also supports the Eudora
email client software (discussed in Chapter 15, “Configuring LAN Clients”). qpopper was
written to provide POP3 server software for most types of UNIX servers. It works great on
Linux. qpopper supports both the normal user/password POP3 logins and the APOP POP3
encrypted authentication. The user/password login feature also supports Linux shadow pass-
word files. The APOP feature supports encrypted passwords using a separate password data-
base file that must be maintained separately by the mail administrator.

Information about qpopper can be found on its Web site at

http://www.eudora.com/freeware/servers.html

The current release version of qpopper is version 2.53. A beta version also is available for
use—version 3.0b18. If you happen to come across a version of qpopper earlier than version
2.41, don’t use it. Earlier versions contained some serious buffer overflow problems that could
allow a hacker root access to your mailserver.

Downloading qpopper
The Qualcomm FTP site hosts the most current version of qpopper. The FTP server is located
at ftp.qualcomm.com. The directory where qpopper is located is /eudora/servers/unix/
popper. At the time of this writing, three qpopper distributions are in this directory—versions
2.53, 3.0b17, and 3.0b18. All three utilize the UNIX tar and compress utilities to compact the
distribution files. Make sure that you are using the FTP BINARY mode and download the ver-
sion that you want to use. For this example, the file qpopper3.0b18.tar.Z will be used:

ftp://ftp.qualcomm.com/eudora/servers/unix/popper/qpopper3.0b18.tar.Z

After the file is downloaded (the 3.0 beta version is a little more than 2.5MB), you can extract
the source code files into a working directory:

tar –zxvf qpopper3.0b18.tar.Z

The Linux tar utility creates a subdirectory qpopper3.0 and places the source code files in sub-
directories beneath it.

Configuring qpopper
The qpopper program utilizes the configure program to examine the operating environment and
create a Makefile that references the specific locations of the C compiler, libraries, and include
files. The configure program also uses command-line parameters to change specific features

Installing Email Services in Linux

PART II
334

15 0672318342 CH12 2/14/00 2:44 PM Page 334

that you may want to include in your implementation of the qpopper server. These will be
described later in this section.

The default qpopper configure environment uses no extra command-line parameters and can be
built by using the commands ./configure and make. This creates a default POP3 server that
does not recognize the APOP authentication method and also does not recognize the shadow
password database if one exists. The qpopper executable program is called popper and is
located in the popper subdirectory beneath the qpopper3.0 directory. You will need to copy
this program to a common location as the root user. The qpopper documentation recommends
using the /usr/local/lib directory.

The popper program can use command-line parameters to modify the behavior of the POP3
server. Table 12.1 shows the available command-line parameters.

TABLE 12.1 popper Command-Line Parameters

Parameter Description

-b Changes the default directory for bulletins

-c Changes all usernames to lowercase

-d Enables debugging

-e Sets POP3 extensions

-k Enables Kerberos support

-s Enables statistics logging

-t Defines an alternate debug and log file

-T Changes the default timeout waiting for reads

-R Disables reverse client address lookups

The qpopper program uses the inetd program to execute. The inetd program listens for network
connections and passes those connections to the appropriate program depending on the TCP or
UDP port number that the connection is established on. The first part of the inetd configuration
is to make sure that it recognizes the POP3 TCP port (number 110). This information is in the
/etc/services file. The pertinent line should look like the following:

pop-3 110/tcp # POP version 3

After ensuring that the /etc/services file supports POP3, the next step is to configure the
inetd configuration file to support POP3. The inetd configuration file is /etc/inetd.conf. A
line should be added to the configuration file that corresponds to the tag in the /etc/services
line (pop-3) and identifies the program to start when a connection is established. The new line
should look like the following:

#pop-3 stream tcp nowait root /usr/local/lib/popper popper –s

Installing and Configuring POP3 and IMAP

CHAPTER 12
335

12

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
PO

P3 A
N

D
IM

A
P

15 0672318342 CH12 2/14/00 2:44 PM Page 335

This inetd.conf entry assumes that the popper program is located in the /usr/local/lib
directory and that statistics logging is enabled (the –s option). By default, statistics will be
logged in the Linux default syslog file. On Mandrake Linux 6.0, this is the /var/log/
messages file.

To activate the new inetd.conf settings, the currently running inetd daemon must be restarted.
This can be accomplished by sending a SIGHUP signal to it. The following commands can be
used to accomplish this:

[root@shadrach lizzy]# ps ax | grep inetd
327 ? S 0:00 inetd

12600 pts/2 S 0:00 grep inetd
[root@shadrach lizzy]# kill -HUP 327
[root@shadrach lizzy]#

You can test the qpopper installation by using the telnet program and connecting to port 110 on
the Linux mailserver as shown in Listing 12.1.

LISTING 12.1 Sample POP3 Session

1 [erin@shadrach erin]$ telnet localhost 110
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 +OK QPOP (version 3.0b18) at shadrach.smallorg.org starting.
6 QUIT
7 +OK Pop server at shadrach.smallorg.org signing off.
8 Connection closed by foreign host.
9 [erin@shadrach erin]$

In Listing 12.1, line 1 shows the user telneting to port 110 of the local host. Line 5 shows the
greeting banner produced by the qpopper program.

The default qpopper configuration will work fine in some simple POP3 implementations run-
ning on basic Linux mailservers. However, other features can be implemented to make qpopper
more versatile.

Shadow Password Support
A common Linux feature is shadow passwords. In a traditional Linux configuration, userids
and passwords are kept in the /etc/passwd file. Unfortunately, this file must be readable by
every user on the Linux system. This is so that the login program can authenticate new logon
requests. This leaves the file vulnerable to hackers who can download the /etc/passwd file and

Installing Email Services in Linux

PART II
336

15 0672318342 CH12 2/14/00 2:44 PM Page 336

run password cracking programs against it. Usually, users who use such unique passwords as
their first names or the names of professional sports teams are the first to be cracked.

Installing and Configuring POP3 and IMAP

CHAPTER 12
337

12

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
PO

P3 A
N

D
IM

A
P

Linux and Passwords
Chapter 14, “Mailserver Administration,” discusses maintaining Linux userids and
passwords in more detail.

To combat this problem, many Linux distributions have incorporated the use of a shadow pass-
word file. The normal /etc/passwd file still contains userids, but now the encrypted passwords
are stored in a separate file that can be made inaccessible to other users. When a shadow pass-
word file is used, programs that verify userids must be aware of its existence.

A way to determine whether your Linux setup is using shadow passwords is to look at the
/etc/passwd file. Listing 12.2 shows a sample Linux password file from a system using
shadow passwords.

LISTING 12.2 Sample Linux /etc/passwd File

1 root:x:0:0:root:/root:/bin/bash
2 bin:x:1:1:bin:/bin:
3 daemon:x:2:2:daemon:/sbin:
4 adm:x:3:4:adm:/var/adm:
5 lp:x:4:7:lp:/var/spool/lpd:
6 sync:x:5:0:sync:/sbin:/bin/sync
7 shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
8 halt:x:7:0:halt:/sbin:/sbin/halt
9 mail:x:8:12:mail:/var/spool/mail:
10 news:x:9:13:news:/var/spool/news:
11 uucp:x:10:14:uucp:/var/spool/uucp:
12 operator:x:11:0:operator:/root:
13 games:x:12:100:games:/usr/games:
14 gopher:x:13:30:gopher:/usr/lib/gopher-data:
15 ftp:x:14:50:FTP User:/home/ftp:
16 nobody:x:99:99:Nobody:/:
17 postgres:x:100:101:PostgreSQL Server:/var/lib/pgsql:/bin/bash
18 lists:x:500:500:BeroList:/dev/null:/dev/null
19 xfs:x:101:103:X Font Server:/etc/X11/fs:/bin/false
20 rich:x:501:501:Rich:/home/rich:/bin/bash
21 barbara:x:502:502:Barbara’s logon id:/home/barbara:/bin/bash
22 katie:x:503:503:Katie’s logon id:/home/katie:/bin/bash
23 jessica:x:504:504:Jessica’s logon id:/home/jessica:/bin/bash

15 0672318342 CH12 2/14/00 2:44 PM Page 337

Listing 12.2 shows several userid listings in the /etc/passwd file. Colons (:) are used to sepa-
rate the fields. The first field is the username. The second field is normally the encrypted pass-
word. In this file, though, the second field is always the letter x. This indicates a system that is
using shadow passwords. On this particular system, the real password file is located at
/etc/shadow. Listing 12.3 shows this file.

LISTING 12.3 Sample Linux /etc/shadow File

1 root:1wkRtb3BgrTSWmezOiXx.ZGAtG/zGKU1:10863:0:99999:7:-1:-1:134537880
2 bin:*:10863:0:99999:7:::
3 daemon:*:10863:0:99999:7:::
4 adm:*:10863:0:99999:7:::
5 lp:*:10863:0:99999:7:::
6 sync:*:10863:0:99999:7:::
7 shutdown:*:10863:0:99999:7:::
8 halt:*:10863:0:99999:7:::
9 mail:*:10863:0:99999:7:::
10 news:*:10863:0:99999:7:::
11 uucp:*:10863:0:99999:7:::
12 operator:*:10863:0:99999:7:::
13 games:*:10863:0:99999:7:::
14 gopher:*:10863:0:99999:7:::
15 ftp:*:10863:0:99999:7:::
16 nobody:*:10863:0:99999:7:::
17 postgres:!!:10863:0:99999:7:::
18 lists:!!:10863:0:99999:7:::
19 xfs:!!:10863:0:99999:7:::
20 rich:LMQ0lb3GwZr1s:10863:0:99999:7:::
21 barbara:MDOb23ddXdgPP:10863:0:99999:7::
22 katie:1ORlQdo1l$ggBH8mFNPGCBUUHMEjXWe1:10863:0:99999:7:-1:-1:

➥134537888
23 jessica:1XEd8PKaP$AhJre7HN3UBcKjB0GeL1d1:10882:0:99999:7:-1:-1:

➥134537872

Listing 12.3 shows that now the second field contains encrypted versions of the passwords for
the users. To access the shadow password file, qpopper must be compiled to look for the
shadow password file.

If you have previously compiled a version of qpopper, you must clean the object and exe-
cutable files from the build directory. You can accomplish this by using the following com-
mand from the qpopper3.0 directory:

make clean

Installing Email Services in Linux

PART II
338

15 0672318342 CH12 2/14/00 2:44 PM Page 338

This command removes files that have been added or modified by the install script. The next
step is to run the configure script with the parameter that includes shadow password support.
The format of this command is

./configure --enable-specialauth

This re-creates the Makefile using parameters necessary for the GNU gcc compiler to add sup-
port for shadow password files. After the configure program finishes building the Makefile,
you can then run the GNU make program against it to create a new popper executable program
in the popper subdirectory. Again, you must copy this file to the location specified in the
inetd.conf file as the root user. There is no need to restart the inetd daemon because the con-
figuration file /etc/inetd.conf was not modified.

After copying the new executable popper file to the appropriate directory, you can test the con-
figuration by telneting to port 110 and attempting to log in as a user. Listing 12.4 demon-
strates an example of this.

LISTING 12.4 Sample POP3 Login Session

1 [riley@shadrach riley]$ telnet localhost 110
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 +OK QPOP (version 3.0b18) at shadrach.smallorg.org starting.
6 USER riley
7 +OK Password required for riley.
8 PASS firetruck
9 +OK riley has 3 messages (1162 octets).
10 QUIT
11 +OK Pop server at shadrach.smallorg.org signing off.
12 Connection closed by foreign host.
13 [riley@shadrach riley]$

In Listing 12.4, line 1 shows a telnet session to port 110 (the POP3 port) of the local
mailserver. Line 5 shows the greeting banner produced by qpopper, indicating that it is indeed
up and running. In lines 6 and 8, the user enters his userid and password, and in line 9, qpop-
per accepts the login attempt and informs the user that he has three messages waiting to be
downloaded.

APOP Authentication Support
As shown in Listing 12.4, the poor email client had to send his userid and password in clear
text to the qpopper server. Had Riley been checking his mail from across the Internet, it is pos-
sible that this information could have been captured by a hacker and used for illegal purposes.

Installing and Configuring POP3 and IMAP

CHAPTER 12
339

12

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
PO

P3 A
N

D
IM

A
P

15 0672318342 CH12 2/14/00 2:44 PM Page 339

However, the POP3 protocol provides a solution for this problem.

As described in Chapter 6, POP3 can use alternative methods to authenticate a user. The qpop-
per program supports the APOP method of authenticating a user. To add this capability to the
popper executable program, you must recompile the program.

First, you must remove the object and executable files that were created from any previous
builds using the following command:

make clean

Next, you must run the configure script again, including parameters to define the location of
the APOP password database and the userid of the APOP administrator:

./configure --enable--apop=/etc/pop.auth --with-popuid=pop

This creates a new Makefile using the values /etc/pop.auth for the authentication database
location and the user pop being the database administrator. You can then create the new exe-
cutables by using the GNU make command as before. With the APOP option, two executable
files are created: popper and popauth.

As before, copy the popper executable file to the location specified in the inetd.conf file
(such as /usr/local/lib). The popauth file created allows the APOP administrator to add
users to the APOP authentication database specified in the configure command line.

To test the new qpopper configuration, you can telnet to port 110 and observe the new greet-
ing banner. Listing 12.5, shows an example of a qpopper server using APOP authentication.

LISTING 12.5 Sample qpopper Greeting Banner Using APOP

1 [carol@shadrach carol]$ telnet localhost 110
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 +OK QPOP (version 3.0b18) at shadrach.smallorg.org starting.

➥ <17166.940368317@shadrach.smallorg.org>
6 QUIT
7 +OK Pop server at shadrach.smallorg.org signing off.
8 Connection closed by foreign host.
9 [carol@shadrach carol]$

In Listing 12.5, line 1 shows the telnet command to connect to the POP3 service port. Line 5
shows the new greeting banner generated by qpopper. It differs from the greeting banner shown
in Listings 12.1 and 12.4 in that it includes the APOP seed information. As described in
Chapter 6, the APOP protocol requires a seed value to hash with a known secret word—in this

Installing Email Services in Linux

PART II
340

15 0672318342 CH12 2/14/00 2:44 PM Page 340

case the password. The POP3 server supplies this seed value on the greeting banner. Both sides
of the POP3 connection must know the secret word so that the hashed value can be matched.
The qpopper server stores the secret words in the authentication database.

To create the APOP authentication database, as the root user enter the following command:

./popauth –init

This creates a new authentication database in the location specified (/etc/pop.auth in the
example). The userid specified in the –with-popuid parameter is now the APOP administrator
and can add users to the authentication database. One strange characteristic about qpopper is
that after a userid is added to the authentication database, that user must use APOP authentica-
tion to connect to the POP3 server.

To add a new user to the authentication database, the APOP administrator can type the com-
mand

popauth –user user

where user is the Linux username of the user. The popauth program will query the administra-
tor for a password for the user to be used for APOP authentication. This password can be dif-
ferent from the normal Linux login password. To remove a user from the authentication
database the administrator can type

popauth –delete user

where user is the Linux username of the user to be removed. Individual users can change their
APOP passwords by using the popauth command without any parameters.

qpopper Bulletins
Another feature that can be added to qpopper is the use of bulletins. Bulletins allow users the
capability to send messages to all POP3 users. When a user connects via POP3 to the
mailserver, qpopper checks the bulletin directory and determines which bulletins have not been
read. Any unread bulletins are added to the normal mail messages for the user. The mail admin-
istrator can restrict who can send bulletins by controlling the access of the bulletins directory.

First, as before, if you have already compiled a version of qpopper, you must delete any exist-
ing object and executable files:

make clean

Next the configure program must be run with the bulletins parameter added. You can run the
configure program with multiple parameters if you also need shadow password and/or APOP
support as well as bulletins. The format for using bulletins with shadow password support
would look like this:

./configure --enable-bulletins=/var/spool/bulls --enable-specialauth

Installing and Configuring POP3 and IMAP

CHAPTER 12
341

12

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
PO

P3 A
N

D
IM

A
P

15 0672318342 CH12 2/14/00 2:44 PM Page 341

where the --enable-bulletins parameter points to the directory where you want the bulletins
to reside. After the configure script completes, you must run the GNU make utility to create
the popper executable. When this completes, you must again copy the popper executable to the
directory pointed to by the inetd.conf configuration file.

To use the bulletins feature, you must create a separate file for each bulletin and place them in
the bulletins directory. The filenames should be in the format

nnnnn.string

where nnnnn is a five-digit number to identify the bulletin number, and string is text used to
identify the bulletin. An example would be 00001.Test_Bulletin. Bulletins must be num-
bered sequentially for qpopper to keep track of which bulletins each user has seen. When a
POP3 client has downloaded the bulletin, it will not appear in the user’s mailbox again. The
text of the bulletin file must follow strict RFC 822 message formats. Listing 12.6 shows a sam-
ple bulletin.

LISTING 12.6 Sample qpopper Bulletin Text

1 From pop Wed Oct 20 18:25:00 1999
2 Date: Wed, 20 Oct 1999 18:25:00 (EST)
3 From: “Mail Administrator” <postmaster@shadrach.smallorg.org>
4 Subject: Test bulletin
5
6 This is a test of the Qpopper mail bulletin system. This is only a test
7 Had this been a real bulletin you would have been instructed to do
8 something important, like log off of the system.
9 This is the end of the bulletin test.

The bulletin will be checked for download as long as it is in the bulletins directory. If you
remove the bulletin file, new POP3 clients will not see the bulletin in their mail.

University of Washington IMAP
The most common POP3 and IMAP package used on the Linux platform was developed by the
University of Washington. It includes both a POP3 server as well as an IMAP4rev1 server.
This section describes how to install and configure the UW IMAP software to support remote
POP3 and IMAP clients from your Linux mailserver.

Installing Email Services in Linux

PART II
342

15 0672318342 CH12 2/14/00 2:44 PM Page 342

Downloading and Installing UW IMAP
Many Linux distributions already come with a UW IMAP binary package. Mandrake Linux
6.0 uses package imap-4.5-5mdk.i586.rpm. To install this package, you can use the normal
RPM package installer. The command for installing the package is

rpm –Uvh imap-4.5-5mdk.i586.rpm

The University of Washington currently supports a Web site for the IMAP software project.
The URL of this site is

http://www.washington.edu/imap/

This site contains information about the UW IMAP project at the university, as well as links to
the current release of UW IMAP—version 4.6. You can download the source code distribution
of this version by the link provided at the Web site. Alternatively, you can also connect directly
to the FTP site at ftp.cac.washington.edu and check the /imap directory for the current
release version. A link named imap.tar.Z is always set to the current release version. By
checking the FTP site, you can see that a beta test version of the next release, version 4.7, is
also available for download. The source code distribution comes as a compressed tarred file—
imap-4.7.BETA.tar.Z. Remember to use BINARY mode when retrieving the file.

When the source code distribution file is downloaded, it can be untarred into a working direc-
tory using the following command:

tar –zxvf imap-4.7.BETA.tar.Z

This produces a subdirectory named imap-4.7.BETA and places the source code in subdirecto-
ries underneath it.

The UW IMAP program does not have any feature options that are necessary to add at compile
time like qpopper does. The main requirement for building the IMAP distribution executables
is to know what type of system you are compiling the source code on and use the appropriate
Makefile section. Table 12.2 shows common IMAP make options for Linux systems.

TABLE 12.2 UW IMAP make Options

Option Description

lnx Traditional Linux systems

lnp Linux with Pluggable Authentication Modules (PAM)

sl4 Linux using –lshadow for passwords

sl5 Linux using shadow passwords

slx Linux using –lcrypt for passwords

Installing and Configuring POP3 and IMAP

CHAPTER 12
343

12

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
PO

P3 A
N

D
IM

A
P

15 0672318342 CH12 2/14/00 2:44 PM Page 343

For Mandrake Linux 6.0 with shadow passwords enabled, you can use the slx option:

make slx

This compiles the source code and produces the IMAP executables located in the subdirecto-
ries in the distribution. The next step is to install and configure the individual pieces of IMAP.

Configuring UW POP3
For the UW POP3 server software to work properly it must be set up and configured after it is
compiled. The first step is to copy the executables into a common directory. Because the
ipop3d and imapd programs were written to be used by the tcpd wrapper program, it is best to
locate them in the same directory—/usr/sbin. The ipop3d program is located in the ipopd
subdirectory under the imap-4.7.BETA directory. Also included in this directory is a POP2
server—ipop2d. This is mainly for compatibility with older mail clients that do not support the
POP3 protocol. If you are establishing a new email system, you should stick with the POP3
implementation. Plenty of new clients are available that use the POP3 protocol (see Chapter
15, “Configuring LAN Clients”). Make sure that you are the root user when copying the
ipop3d file to the /usr/sbin directory or the copy will fail.

When the executable is placed in the proper directory, the inetd configuration files must be
modified. The first file to modify is the /etc/services file. Make sure that the POP3 TCP port
is configured. The POP3 line should look like this:

pop-3 110/tcp # POP version 3

This indicates that the inetd program will monitor TCP port 110 and pass any connection
attempts off to the program defined by the pop-3 tag in the /etc/inetd.conf file.

The /etc/inetd.conf configuration file should indicate where the executables are located
when a connection is passed off to it. The necessary POP3 lines in the /etc/inetd.conf file
are

pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d

These lines assume that the tcpd and ipop3d programs are both located in the /usr/sbin direc-
tory. The pop-3 tag relates to the pop-3 tag in the /etc/services file.

To activate the new inetd.conf settings, the currently running inetd daemon must be restarted.
This can be accomplished by sending a SIGHUP signal to it. The following commands can be
used for this:

[root@shadrach erin]# ps ax | grep inetd
327 ? S 0:00 inetd

12600 pts/2 S 0:00 grep inetd
[root@shadrach erin]# kill -HUP 327
[root@shadrach erin]#

Installing Email Services in Linux

PART II
344

15 0672318342 CH12 2/14/00 2:44 PM Page 344

With the inetd daemon restarted, you can now test the UW IMAP installation. Listing 12.7
shows an example of testing the POP3 server.

LISTING 12.7 Sample POP3 Session

1 [lizzy@shadrach lizzy]$ telnet localhost 110
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 +OK POP3 localhost v7.63 server ready
6 USER lizzy
7 +OK User name accepted, password please
8 PASS SINGING
9 +OK Mailbox open, 5 messages
10 QUIT
11 +OK Sayonara
12 Connection closed by foreign host.
13 [lizzy@shadrach lizzy]$

In Listing 12.7, line 1 shows a telnet session to the POP3 port—110. Line 5 shows the greeting
banner generated by the UW POP3 server, indicating that it is indeed running.

One optional feature that is available for the UW POP3 server is the capability to use APOP
user authentication. The method of implementing APOP that UW POP3 uses is not as sophisti-
cated as that of the qpopper POP3 server, but it serves its purpose.

If the UW POP3 server detects that the file /etc/cram-md5.pwd exists, it will support the
APOP and CRAM-MD5 authentication protocols. Both methods use the same technique of
hashing a seed value with a secret word to create the encrypted password used for authentica-
tion. As described in Chapter 6, the seed value is displayed on the POP3 greeting banner. Both
the server and the client must already know the secret word that will be hashed with the seed
value.

In the case of UW POP3, the secret words are stored in the /etc/cram-md5.pwd file. Each line
of the file contains the username and the secret word that the user will use. Listing 12.8 shows
a sample /etc/cram-md5.pwd file.

LISTING 12.8 Sample /etc/cram-md5.pwd File

1 rich guitar
2 barbara reading
3 riley firetruck

Installing and Configuring POP3 and IMAP

CHAPTER 12
345

12

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
PO

P3 A
N

D
IM

A
P

continues

15 0672318342 CH12 2/14/00 2:44 PM Page 345

4 haley starwars
5 katie boxcar
6 jessica sharks

As seen in Listing 12.8, the cram-md5.pwd database is a plain text database. To protect the
passwords, make sure that the file is set to mode 600 so that other users cannot view it. This
means that the mail administrator must have root access to modify passwords. Also, this means
that users cannot modify their own passwords.

To check whether the APOP feature is available, telnet to the POP3 port. The new greeting
banner should be present showing the seed value. Listing 12.9 shows an example of an APOP-
enabled POP3 server.

LISTING 12.9 Sample APOP-Enabled POP3 Server Greeting Banner

1 [kevin@shadrach kevin]$ telnet localhost 110
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 +OK POP3 v7.63 server ready <4d61.380e35cc@localhost>
6 USER kevin
7 +OK User name accepted, password please
8 PASS dinosaur
9 +OK Mailbox open, 0 messages
10 QUIT
11 +OK Sayonara
12 Connection closed by foreign host.
13 [kevin@shadrach kevin]$

In Listing 12.9, line 1 again shows a sample telnet session to the POP3 server port. This time,
line 5 shows a different greeting banner than the example in Listing 12.7. Included in the greet-
ing banner is the APOP seed value. Line 6 demonstrates a nice feature of the UW POP3 server
implementation of APOP. Unlike qpopper, where if a user is defined as using APOP he cannot
connect in any other way, UW POP3 will allow a user to connect using either the APOP or
user/password methods. This is particularly good for users who may connect to the mailserver
using different PCs and different email client software packages.

Configuring UW IMAP
Much like the POP3 server software, the UW IMAP software utilizes the inetd program. This
requires new lines in the inetd configuration files to specify the actions for the IMAP server.
The first line required is in the /etc/services file:

imap2 143/tcp imap # Interim Mail Access Proto v2

Installing Email Services in Linux

PART II
346

LISTING 12.8 continued

15 0672318342 CH12 2/14/00 2:44 PM Page 346

The preceding line was defined in my Mandrake Linux 6.0 configuration file. As you can tell,
it was originally set up for the IMAP2 protocol. However, it uses an alias of imap, thus the
inetd program will look for either tag in the inetd.conf file. (Mandrake also managed to get
the comment wrong, too!)

The /etc/inetd.conf file should also be modified to contain the information necessary for the
IMAP server. This is an example of what the configuration line should look like:

imap stream tcp nowait root /usr/sbin/tcpd imapd

This example assumes that the tcpd and imapd programs are located in the /usr/sbin subdi-
rectory.

To activate the new inetd.conf settings, the currently running inetd daemon must be restarted.
This can be accomplished by sending a SIGHUP signal to it as shown in the “Configuring UW
POP3” section.

After the inetd daemon is restarted, you can test the installation of the IMAP server by
telneting to the IMAP port—number 143. Listing 12.10 shows an example of this.

LISTING 12.10 Sample IMAP Session

1 [jessica@shadrach jessica]$ telnet localhost 143
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ‘^]’.
5 * OK localhost IMAP4rev1 v12.261 server ready
6 a1 LOGIN jessica sharks
7 a1 OK LOGIN completed
8 a2 SELECT INBOX
9 * 0 EXISTS
10 * 0 RECENT
11 * OK [UIDVALIDITY 940284862] UID validity status
12 * OK [UIDNEXT 2] Predicted next UID
13 * FLAGS (\Answered \Flagged \Deleted \Draft \Seen)
14 * OK [PERMANENTFLAGS (* \Answered \Flagged \Deleted \Draft \Seen)]

➥ Permanent flags
15 a2 OK [READ-WRITE] SELECT completed
16 a3 LOGOUT
17 * BYE shadrach.smallorg.org IMAP4rev1 server terminating connection
18 a3 OK LOGOUT completed
19 Connection closed by foreign host.
20 [jessica@shadrach jessica]$

Installing and Configuring POP3 and IMAP

CHAPTER 12
347

12

IN
STA

LLIN
G

A
N

D
C

O
N

FIG
U

R
IN

G
PO

P3 A
N

D
IM

A
P

15 0672318342 CH12 2/14/00 2:44 PM Page 347

Summary
When mail is on the Linux mailserver, clients must have a way to retrieve it. The two most
popular protocols used by remote clients to retrieve mail from mailboxes on mailservers are the
POP3 and IMAP protocols. Each protocol has strengths and weaknesses. Two software pack-
ages that can be used on the Linux mailserver are the qpopper POP3 server, and the University
of Washington POP3 and IMAP servers. These packages are easy to install and configure.
Many software packages are available that allow remote clients to connect via POP3 or IMAP
to the mailserver to check their mailboxes. Chapter 15, “Configuring LAN Clients,” demon-
strates how to configure client email software packages to connect with the POP3 and IMAP
server programs. The next chapter discusses how to configure a complete Linux mailserver for
different Internet environments.

Installing Email Services in Linux

PART II
348

15 0672318342 CH12 2/14/00 2:44 PM Page 348

CHAPTER

13
Connecting the Mailserver to
an ISP

IN THIS CHAPTER
• Preliminary Issues 350

• Sample Mailserver Scenarios 355

16 0672318342 CH13 2/14/00 2:46 PM Page 349

Internet service providers (ISPs) offer several different methods that can be used to connect the
Linux mailserver to the Internet. No one method is clearly better than the others are. The deci-
sion of which method to use often depends on external factors such as company resources or
politics. The purpose of this chapter is to explain the Internet mail options available to a Linux
mailserver administrator. This information should help prepare you to make an informed deci-
sion as to which method is best to implement in your particular office environment. After dis-
cussing the options available, this chapter offers four detailed examples to help you configure
your Linux mailserver according to your Internet mail environment.

Preliminary Issues
Before any hardware is installed or any software is configured, some issues must be decided.
Often this is the most difficult part of the mailserver installation. After the main questions are
answered, it is fairly straightforward to choose the mailserver configuration that satisfies your
office environment.

Three main issues must be addressed with the ISP before the mailserver can be configured and
built:

• Domain name hosting

• Mail drop options

• Connectivity options

Each of these issues involves services that can be provided by the ISP. Each issue has multiple
ways of being accomplished. All of these issues are discussed in the following sections.

Domain Name Hosting
The most important decision you can make as the mail administrator is how mail will be
addressed to people in your organization. Email addresses and Web site addresses have come
to be a hot item on the Internet. Companies often pay considerably more than the standard
name registration fee to buy back a domain name being used by another organization.

In the past, the Network Information Center (NIC) was responsible for all domain name regis-
trations. Recently, in an agreement with the US Department of Commerce, the NIC has
allowed other companies to start handling domain name registrations. The process for obtain-
ing a new domain name is still fairly simple. Connect to the Web site http://www.networkso-
lutions.com and follow the directions. There is also a query feature that allows you to check
whether your potential domain name is already in use. After you have purchased an appropriate
domain name, you must decide how that domain name will be hosted on the Internet.

Installing Email Services in Linux

PART II
350

16 0672318342 CH13 2/14/00 2:46 PM Page 350

Local Hosting of Domain Names
If you are on a dedicated Internet connection (see “Dedicated PPP Connection” later in this
chapter), you can also use the same Linux server to be the mailserver and to host the DNS
domain records for your domain. Chapter 4, “DNS and Domain Names” discusses how to use
the Linux named program and the files necessary for it to host your DNS domain.

One requirement for a DNS domain is that there must be at least two DNS servers for the
domain. The tricky part of this requirement is that the two DNS servers should not share the
same network connections or electrical power. This almost ensures that one of the servers must
be offsite. With this requirement, it is often cost-prohibitive for a small organization to host its
DNS domain. Fortunately, companies are willing to provide this service.

ISP Hosting of Domain Names
When negotiating with ISPs for your Internet service, one item of discussion will be the DNS
domain hosting. Almost all ISPs provide this service as part of a connectivity package.

For a fee, most ISPs will register your domain name with the Network Information Center and
host your DNS domain records on their servers. That means the NS records for your domain
will point to the ISP’s servers. Often, ISPs will contract with other ISPs to provide the sec-
ondary DNS domain services required. Thus, there will be several NS records for your domain
that might point to several different ISPs.

The drawback to you is if you want to register individual host names on your network. Every
time you want to register a new host name, you must go to your ISP and have the A and PTR
records for the new hosts added to your domain database.

Connecting the Mailserver to an ISP

CHAPTER 13
351

13

C
O

N
N

EC
TIN

G
TH

E
M

A
ILSER

V
ER

TO
A

N
ISP

Mail Drop Options
The second decision to make when thinking about connecting your mailserver to the Internet is
how Internet email will get to your Linux mailserver. There are three common options to
receiving Internet email. This section describes the pros and cons of each method.

Primary DNS Service
One trick that can be used to solve this problem is to configure the Linux server to be
the primary DNS server for your domain, and allow the ISP to be the secondary DNS
server. By using this scheme, you are in control of registering new hosts on your net-
work.

16 0672318342 CH13 2/14/00 2:46 PM Page 351

Direct Mail Connection
The simplest method of receiving Internet email is for it to be directly delivered from the
sending sites to your Linux mailserver. This method is available only if your Linux mailserver
has a dedicated connection to the Internet or is connected to a network that has a dedicated
connection.

The Linux mailserver must be running an SMTP server program such as sendmail or smail, and
must have the proper IP network configuration to allow remote sites to establish SMTP connec-
tions. Wherever the DNS database for your domain resides, it will contain an MX record pointing
to the IP address of your Linux mailserver as the mailserver for your domain. Internet hosts that
want to deliver mail to your domain will query the DNS database to find the mailserver. If the
Linux mailserver’s IP address is the only MX record available for the domain, it must be running
and able to accept SMTP connections or the mail messages might not be delivered.

Outbound mail is also delivered directly to the destination site using the sendmail program and
SMTP. The advantage to this method is that mail is sent and delivered in realtime. There are no
delays waiting for mail to be spooled from a central mail hub.

The disadvantage to this method is that the Linux mailserver must be available 24 hours a day,
7 days a week. Any downtime could mean the possible loss of mail. Downtime not only means
server downtime, but also network connection downtime.

For many sites, it is not possible to maintain a 24-hour, 7-day-a-week connection to the
Internet. Because of this, the next two methods were developed.

All Domain Mail to One ISP Mailbox
One of the nice features of ISPs is that they have hosts that are connected to the Internet 24
hours a day. It makes perfectly good sense to allow the ISP to host all the mail for your
domain. This requires the DNS database to point the MX record for your domain to the ISP
mailserver. This directs any Internet mail destined to your domain to the ISP mailserver. It is
then the job of the ISP to place the mail for your domain in a location where your Linux
mailserver can download it.

One method of doing this is to forward any message destined for a user on your domain to a
special mailbox on the ISP mailserver. As shown in Chapter 11, “Installing and Configuring
sendmail,” it is possible to create a virtual user table entry to allow sendmail to forward all
mail for a domain to a single mailbox (as shown in Listing 11.4).

The Linux mailserver can use the POP3 protocol to connect to the ISP mailserver as the userid
related to the domain mailbox. Using this userid, the Linux mailserver can download all the
mail destined for users in the domain. After the mail has been downloaded to the Linux
mailserver, it must be parsed and delivered to the proper userids that the messages were origi-
nally intended for.

Installing Email Services in Linux

PART II
352

16 0672318342 CH13 2/14/00 2:46 PM Page 352

Although this method works, it is not always efficient and not always recommended. The mail
distribution program must parse the RFC822 message headers to determine the proper destina-
tion userid. Sometimes the distribution program fails to recognize the proper recipient of the
mail message. Also, some mail distribution programs have been known to mangle the original
RFC822 header when they transfer the message to the appropriate userids, thus making return
mail difficult if not impossible. The next method has a more robust way of delivering domain
mail messages.

ISP Spools Domain Mail for Delivery
A better method of receiving mail messages for your domain is to use virtual mail hosting. The
DNS database still points the MX record for your domain to the ISP mailserver. The sendmail
program on the ISP mailserver can be configured to accept mail destined for your domain and
spool it for delivery in a mail queue directory. Until the time your Linux mailserver connects to
the ISP mailserver, the mail remains in the mail queue on the ISP mailserver.

By forwarding the mail via SMTP or UUCP, the RFC822 message headers are not adversely
affected as they are in the previous method. This allows return address schemes to have a better
chance of working properly.

After the mail is sitting in the ISP’s mail queue, multiple methods can be used by the Linux
mailserver to retrieve it. The most common method is for the Linux mailserver to establish an
SMTP connection with the ISP mailserver and send the SMTP ETRN command. This command
tells the ISP to establish an SMTP connection with the Linux mailserver and forward any mail
that is destined for your domain name (refer to Chapter 5, “SMTP Protocol”).

Connectivity Options
The third decision that must be made is how the Linux mailserver will connect to the ISP.
Often ISPs offer a variety of methods to accomplish this. Although some ISPs might prefer one
method to another, they are all valid methods for transferring mail messages to and from the
Linux mailserver.

Often, other Internet connectivity requirements determine the choice of which method to use.
For example, if other devices on your network must establish Internet connections, you might
not want to use the UUCP protocol for mail. On the other hand, many companies use dedicated
PPP connections for interactive Internet traffic and a separate UUCP connection for mail traf-
fic. That way, mail transfers do not slow down interactive traffic. Again, resources and politics
often play a vital role in this decision process. This section describes the methods that are
available from most ISPs to connect a mailserver to the Internet.

Connecting the Mailserver to an ISP

CHAPTER 13
353

13

C
O

N
N

EC
TIN

G
TH

E
M

A
ILSER

V
ER

TO
A

N
ISP

16 0672318342 CH13 2/14/00 2:46 PM Page 353

Dedicated PPP Connection
A dedicated connection to the Internet is often the most desirable method to implement.
Unfortunately, it is usually the most expensive. There are two methods of establishing a dedi-
cated connection from the Linux mailserver to the Internet.

The first, and maybe most preferred, option is to use an external device to establish the connec-
tion. Often, ISPs provide small network routers to connect a client’s internal network to the
ISP network via either a dial-up or dedicated line. In this scenario, the Linux mailserver
requires only a standard connection to the internal network to communicate with the Internet.

The second option is to use the Linux mailserver itself as the dedicated connection to the
Internet. As described in Chapter 8, “PPP Protocol,” a Linux mailserver is fully capable of
using the pppd program to establish a PPP connection with an ISP server. By connecting a
modem to the Linux mailserver, you can allow it to perform both the mailserver and IP routing
functions for the network. In this scenario, it is better to use a PC with a large processor and as
much memory as possible.

Dial-on-Demand PPP Connection
The next method of connecting the Linux mailserver to the Internet is to use a dial-on-demand
PPP connection. A dial-on-demand PPP connection is established only when the Linux
mailserver needs to transfer data. It does not need to be active 24 hours a day. This method is
often the most economical method of connecting the mailserver to the Internet.

Special programming must be utilized to allow the mailserver to establish the PPP connection
when needed. Usually the Linux diald program, discussed in Chapter 8, can be used along with
the standard pppd program to detect outgoing IP traffic and automatically start the PPP link as
necessary.

Dial-Up UUCP Connection
The last method of communicating with the Internet is by using the UNIX-to-UNIX CoPy
(UUCP) protocol described in Chapter 9, “UUCP Protocol.” ISPs are not always willing to
support the UUCP protocol. Often, ISPs that do not have UNIX administrators onsite are
unwilling to tackle UUCP connections.

On the other hand, many ISPs offer considerable discounts to customers who connect via
UUCP only to transfer mail. You will have to check the ISPs in your area to decide whether
UUCP is a valid option for you. There also are a few national ISPs that offer UUCP connectiv-
ity via 1-800 numbers. Be careful about connectivity charges however; some ISPs that support
UUCP charge by the hour of connectivity time. If your organization is thinking about mailing
lots of large file attachments, connectivity time might become a large hidden cost for you.

Installing Email Services in Linux

PART II
354

16 0672318342 CH13 2/14/00 2:46 PM Page 354

The biggest advantage to using the UUCP protocol to transfer mail is security. At no time dur-
ing the UUCP session is your Linux mailserver connected directly to the Internet. This helps
prevent hackers from attempting to access your server. The less opportunity hackers have to
access your server the better.

Sample Mailserver Scenarios
The previous section outlined the different issues that should be considered by the mail admin-
istrator for a Linux mailserver. This section describes four Linux mailserver scenarios that
incorporate some of these methods:

• Dedicated PPP connection to the Internet with direct mail

• Dial-on-demand PPP connection using a single ISP mailbox

• Dial-on-demand PPP connection using an ISP mail queue

• Dial-up UUCP connection using an ISP mail queue

Each of these scenarios includes sample configuration files for each piece that is required to
implement the scenario. Remember that in each of these examples, fictitious hostnames and
addresses are used. You must substitute the hostnames and addresses shown with ones suitable
for your ISP environment.

Dedicated Connection with Direct Domain Mail
By far the easiest mail configuration scenario is using the Linux mailserver on a dedicated PPP
connection to the Internet. As described earlier, there are two methods to use to obtain a direct
connection to the Internet. Assuming that your internal network does not have a router connect-
ing it to the Internet, your Linux mailserver must provide a PPP link. Figure 13.1 shows an
example of how this network configuration would work.

In this scenario, you will want to configure the PPP link to connect at all times and the send-
mail program to deliver mail directly to remote Internet hosts. Even though the PPP link is
connected all the time, this scenario assumes that the ISP is providing all our DNS domain
name services to the Internet so that the Linux mailserver does not have to. The following sec-
tions describe the configuration files necessary to implement this scenario.

PPP Link Configuration
As described in Chapter 8, the pppd program is used to establish a PPP connection to the ISP
server. The pppd program requires a chat script that tells it how to connect to the remote server
via the modem. Listing 13.1 shows a sample chat script that can be used to contact the ISP
server.

Connecting the Mailserver to an ISP

CHAPTER 13
355

13

C
O

N
N

EC
TIN

G
TH

E
M

A
ILSER

V
ER

TO
A

N
ISP

16 0672318342 CH13 2/14/00 2:46 PM Page 355

FIGURE 13.1
A Linux mailserver using a dedicated Internet connection.

LISTING 13.1 Sample pppd Chat Script isp.chat

1 “”
2 ATDT5551234
3 CONNECT
4 “”
5 “ogin:”
6 rich
7 “word:”
8 guitar
9 “rich]$”
10 “exec /usr/sbin/pppd silent modem crtscts proxyarp 10.0.0.100:10.0.0.2”

Installing Email Services in Linux

PART II
356

Linux Mailserver

sendmail

rich barbara prez jessica katie riley haley

ppp

Inbound Message

prez@small.org.org

Outbound Message

postmaster@linux.org

16 0672318342 CH13 2/14/00 2:46 PM Page 356

In Listing 13.1, line 2 should be replaced with the phone number required to call your ISP, and
lines 6 and 8 should be replaced with the userid and password required to connect to your ISP.
Line 9 should be replaced with the command-line prompt used by your ISP’s server. Line 10
demonstrates the string required to start the pppd server on the ISP. Your ISP most likely has a
different command string for you to use. Consult your ISP for the proper pppd command line
to use. Save the chat script in a location that can be accessed only by the root user (remember:
it contains your ISP userid and password).

After the chat script is created, you can run the pppd program to connect the Linux mailserver
to the ISP server:

pppd ttyS1 38400 connect ‘/usr/sbin/chat -v -f /root/isp.chat’
➥modem crtscts defaultroute

Remember to replace ttyS1 with the Linux device name of your modem and the isp.chat
filename and path with your specific chat filename and path. After this command is run, the
PPP link should be established. If you want, you can save the pppd command line as a script
file. This makes it easier to execute if the PPP link drops for any reason.

To allow the Linux mailserver to correctly resolve Internet domain names, you must point the
/etc/resolv.conf nameserver variable to the ISP’s domain name server. The
/etc/resolv.conf file can contain up to three nameserver variables. The line to define the
nameserver should look like this:

nameserver 192.168.10.6

The IP address should point to the IP address of your ISP domain name server. This allows the
sendmail program to properly identify domain names used in mail messages and to obtain the
proper MX hosts for those domains.

sendmail Configuration
The sendmail configuration file for this scenario is about as easy as possible for sendmail. The
main items that must be addressed in the configuration file are

• Send all mail using the domain name, not the hostname

• Send all mail directly to the destination host

• Use the procmail program to deliver local mail

• Allow local network users to relay mail to the Internet

Using these guidelines, the sendmail configuration macro file should look similar to the exam-
ple shown in Listing 13.2.

Connecting the Mailserver to an ISP

CHAPTER 13
357

13

C
O

N
N

EC
TIN

G
TH

E
M

A
ILSER

V
ER

TO
A

N
ISP

16 0672318342 CH13 2/14/00 2:46 PM Page 357

LISTING 13.2 Sample sendmail Macro File direct.mc

1 divert(-1)
2 divert(0)dnl
3 include(`/usr/lib/sendmail-cf/m4/cf.m4’)dnl
4 OSTYPE(`linux’)dnl
5
6 FEATURE(`allmasquerade’)dnl
7 FEATURE(`masquerade_envelope’)dnl
8 FEATURE(`local_procmail’, `/usr/bin/procmail’)dnl
9 FEATURE(`access_db’, `/etc/mail/access.db’)dnl
10 FEATURE(`nocanonify’)dnl
11
12 MAILER(`smtp’)dnl
13 MAILER(`procmail’)dnl
14
15 MASQUERADE_AS(`smallorg.org’)dnl

In Listing 13.2, lines 6,7, and 15 define the masquerading feature that allows all outgoing mail
to use the masquerade name (in this case, the domain name for the sample domain). This fea-
ture enables users to have email addresses that use only the domain name, such as
prez@smallorg.org. Line 8 defines the procmail mail delivery agent for local mail, and line 9
defines the access.db hash database file to use to define the hosts allowed to relay mail
through the server. You can use the m4 macro processor to create the new sendmail configura-
tion file:

m4 direct.m4 > sendmail.cf

After the new configuration file is created, you can replace the old sendmail.cf configuration
file located in the /etc directory with the new one generated by m4.

To allow local network clients to relay messages through the Linux mailserver (see Chapter 15,
“Configuring LAN Clients”), you must create an access database that allows the local network
addresses RELAY capabilities. Listing 13.3 shows the text version of this database.

LISTING 13.3 Sample sendmail Access Database /etc/mail/access

192.168.1 RELAY

Listing 13.3 assumes that the local IP network addresses are all in the 192.168.1.0 network.
You must change this value to reflect your local IP network addresses. To create the new data-
base from the text file, use the makemap utility:

makemap hash /etc/mail/access.db < /etc/mail/access

Installing Email Services in Linux

PART II
358

16 0672318342 CH13 2/14/00 2:46 PM Page 358

With the new sendmail configuration file and access database file in place, the sendmail pro-
gram can be either started or restarted if it is already running. The sendmail command line
should include the -q option to set a time period for checking the mail queue for new messages:

/usr/sbin/sendmail -bd -q30m

This allows the sendmail program to run as a background daemon process and to check the
mail queue every 30 minutes for any mail that must be processed.

Automating the Mail Process
The sendmail program can be added as part of the automated startup scripts in the Linux system
to start at boot time. Most Linux distributions already incorporate a startup script for sendmail.
The linuxconf program can be used to add the sendmail program to the startup scripts. Figure
13.2 shows the linuxconf configuration screen for enabling the sendmail script at boot time.

Connecting the Mailserver to an ISP

CHAPTER 13
359

13

C
O

N
N

EC
TIN

G
TH

E
M

A
ILSER

V
ER

TO
A

N
ISP

FIGURE 13.2
The linuxconf configuration screen.

Dial-on-Demand PPP Connection with One ISP Mailbox
The second scenario is often used by small organizations that do not have direct 24-hour access
to the Internet. By using a dial-on-demand PPP connection, the mailserver can call the ISP
server when outbound mail is detected and, at regular intervals, check for new inbound mail
messages at the ISP. This scenario also assumes that the ISP will configure its mailserver to
forward any mail destined to your domain to a single user mailbox on the system. The Linux

16 0672318342 CH13 2/14/00 2:46 PM Page 359

fetchmail program is utilized to retrieve the mail from the ISP mailbox and distribute that mail
to the proper local users on the Linux mailserver. Figure 13.3 shows how this network configu-
ration works.

Installing Email Services in Linux

PART II
360

FIGURE 13.3
A Linux mailserver using a dial-on-demand PPP connection and one ISP mailbox.

PPP Link Configuration
The dial-on-demand PPP link configuration uses the same technique as the direct PPP link.
The difference in this scenario is that the PPP link is started and stopped each time the
mailserver needs to contact the ISP server. This feature requires the Linux diald program to
start and stop the pppd service created in the previous scenario.

If your Linux distribution does not come with a binary distribution of the diald program, one can
be obtained from the Web site http://diald.unix.ch. At the time of this writing, the current
version of diald is diald-0.99. The following steps can be used to install the diald program:

1. Unpack the source distribution:

tar -zxvf diald-0.99.tar.gz

Linux Mailserver

sendmail

ppp

ISP MailserverInbound Message

prez@small.org.org

ppp

sendmail

rich barbara prez jessica katie riley haley

rich

16 0672318342 CH13 2/14/00 2:46 PM Page 360

2. Change to the new diald-0.99 directory:

cd diald

3. Run the GNU make program with the depend option:

make depend

4. Run the GNU make program alone to compile:

make

5. As root, run GNU make with the install option:

make install

When diald is installed, you must create a configuration file for it. The diald configuration file
is located at /etc/diald.conf. Listing 13.4 shows a sample diald configuration file.

LISTING 13.4 Sample /etc/diald.conf File

1 ###
2 # /etc/diald.conf - diald configuration
3 #
4 # see /usr/lib/diald for sample config files
5 #
6 mode ppp
7 connect ‘/usr/sbin/chat -f /root/isp.chat -t 35000’
8 connect-timeout 180
9 device /dev/ttyS1
10 speed 115200
11 modem
12 lock
13 crtscts
14 local 192.168.1.1
15 remote 192.168.1.2
16 dynamic
17 defaultroute
18 include /usr/lib/diald/standard.filter
19 fifo /etc/diald/diald.ctl

In Listing 13.4, line 7 defines the location of the same pppd chat script that was created in the
previous scenario to start the PPP link. The diald program does not create the PPP session, it
just automatically starts the existing pppd program when it detects network activity. Line 9
uses a modem connected to the Linux /dev/ttyS1 port (DOS COM2). Refer to Chapter 3,
“Installing Communication Devices in Linux,” to determine where your modem is connected
on your Linux system. Lines 14 and 15 define temporary IP addresses that are used to establish
the PPP link between the ISP and the Linux mailserver. Line 18 defines the standard diald fil-
ter that determines when the PPP link is established and disconnected.

Connecting the Mailserver to an ISP

CHAPTER 13
361

13

C
O

N
N

EC
TIN

G
TH

E
M

A
ILSER

V
ER

TO
A

N
ISP

16 0672318342 CH13 2/14/00 2:46 PM Page 361

Only the root user can run diald. When diald is run, it automatically goes to background mode,
watching for IP traffic to start the PPP link. After the IP traffic is finished, diald automatically
disconnects the PPP link after 30 seconds.

The combination of diald and pppd allows the Linux mailserver to connect to the ISP when-
ever outgoing mail is detected. This includes mail relayed from the local clients to the ISP.

sendmail Configuration
As in the previous scenario, a new sendmail configuration file is built to incorporate the new
configuration scenario. This scenario differs from the previous one in that this time the Linux
mailserver can not deliver or receive messages directly from the remote hosts. This scenario
relies on the use of a smart host to help the Linux mailserver forward mail messages. Any out-
going messages are stored in the mail queue until sendmail can contact the smart host.
Incoming mail messages are stored in the mail queue of the ISP mailserver until the Linux
mailserver connects to retrieve the mail via the fetchmail program.

The smart host is defined as the ISP mailserver that allows mail forwarding for your Linux
mailserver. Listing 13.5 shows a sample sendmail configuration file that supports this scenario.

LISTING 13.5 Sample sendmail Macro File dialup.mc

1 divert(-1)
2 divert(0)dnl
3 include(`/usr/lib/sendmail-cf/m4/cf.m4’)dnl
4 OSTYPE(`linux’)dnl
5
6 FEATURE(`allmasquerade’)dnl
7 FEATURE(`masquerade_envelope’)dnl
8 FEATURE(`local_procmail’, `/usr/bin/procmail’)dnl
9 FEATURE(`access_db’, `/etc/mail/access.db’)dnl
10 FEATURE(`nocanonify’)dnl
11
12 MAILER(`smtp’)dnl
13 MAILER(`procmail’)dnl
14
15 MASQUERADE_AS(`smallorg.org’)dnl
16 define(`SMART_HOST’, `smtp:mail.isp.net’)dnl

As in the previous scenario, Listing 13.5 defines the domain name for the mailserver to mas-
querade as, and defines the procmail program as the local mail delivery program. The differ-
ence is in line 16. Line 16 defines the SMART_HOST as the ISP’s mailserver. You should change
the mail.isp.net hostname to point to your specific ISP mailserver. After the macro file is
saved, it can be used by the m4 macro processor to generate a new sendmail.cf file (as shown
in the previous example).

Installing Email Services in Linux

PART II
362

16 0672318342 CH13 2/14/00 2:46 PM Page 362

As in the previous scenario, for local network clients to be able to use the Linux mailserver as
a mail relay, you must create the access database file and use the makemap utility to create the
access.db hash file.

Also as in the previous scenario, you want to have the sendmail program run as a daemon in
the background. This can be accomplished by adding the sendmail start script to the init scripts
for the run level you plan to use for your Linux mailserver, or by using the linuxconf graphical
program shown in Figure 13.2.

fetchmail Configuration
The fetchmail program is extremely versatile in retrieving mail messages from remote
mailservers. For this scenario, the fetchmail program is configured to retrieve messages from a
single mailbox on the ISP mailserver using the POP3 protocol.

After fetchmail retrieves the mail messages from the ISP mailserver, it must be able to parse
the RFC822 header fields to determine the local user for whom the message is intended. This
feature can be configured in the fetchmail configuration file.

Each user on the Linux mailserver has a unique fetchmail configuration file. The location of
the file is $HOME/.fetchmailrc. In this scenario, the root user uses a fetchmail configuration
file that is set up to log in to the ISP mailserver using the POP3 protocol with the ISP-assigned
userid and password. Also, each local user who will receive mail from the Internet must be
defined in the root user’s .fetchmailrc file. Any mail retrieved by fetchmail that is not des-
tined for a defined local user is stored in the mailbox of the userid running the fetchmail pro-
gram (in this case, the root user). Listing 13.6 shows a sample .fetchmailrc file that can be
used for this scenario.

LISTING 13.6 Sample $HOME/.fetchmailrc Configuration File

1 poll mail.isp.net with proto POP3
2 localdomains smallorg.org
3 no envelope
4 no dns
5 user “rich” with password “guitar” is
6 rich
7 barbara
8 katie
9 jessica
10 haley
11 riley
12 chris
13 matthew
14 here

Connecting the Mailserver to an ISP

CHAPTER 13
363

13

C
O

N
N

EC
TIN

G
TH

E
M

A
ILSER

V
ER

TO
A

N
ISP

16 0672318342 CH13 2/14/00 2:46 PM Page 363

In Listing 13.6, line 1 defines the ISP mailserver that fetchmail connects with to retrieve the
domain mail. Line 1 also indicates to use the POP3 protocol for the connection. Lines 2
through 4 define options that are used for the connection. Line 2 indicates what domain fetch-
mail will look for as the local domain address in message headers. Thus, it recognizes the
address prez@smallorg.org as the local mailserver user prez. Line 3 indicates not to use the
X-Envelope-To: header field to parse the recipient address. These header fields are often
added by MTAs as the mail passes from one site to another. They can be confusing to fetch-
mail. Line 4 indicates not to use DNS to confirm the identity of the sending host. Line 5 identi-
fies the ISP mailbox userid and password that fetchmail uses to connect to the ISP mailserver.
These should be provided by your ISP.

Lines 6 through 13 list all the local users on the Linux mailserver who can receive mail.
Fetchmail parses the RFC822 message header fields and looks for these usernames. If one is
found, fetchmail forwards the message to that local user. If the destination user does not match
any of the local usernames listed, fetchmail delivers the message to the userid that ran fetch-
mail (the root user, in this scenario). It is the job of the mail administrator to add new local
users to the list. Line 14 indicates that the local usernames are located on the local host on
which fetchmail is running.

After the .fetchmailrc file is created and stored in the $HOME directory of the userid that will
run fetchmail (for this example the root user), the program can be run. By typing fetchmail on
the command line, the diald program should automatically start the PPP link, and fetchmail
should automatically connect to the ISP mailserver and download any mail messages waiting
in the common ISP mailbox. If this is successful, the next step is to automate the mail retrieval
process.

Automating Mail Retrieval
After all the individual pieces of the Linux mailserver are configured, the next step is to auto-
mate the mail checking and retrieval process. The only function that must be performed at reg-
ular intervals is the fetchmail operation. The sendmail program should already be running as a
background process.

Running the fetchmail operation at a regular interval can be accomplished by using the Linux
cron utility. The cron utility reads a table containing lines of scripts to execute at specific
times. Each user on the Linux system has a separate cron table. For this example, the root user
will run the fetchmail program, so the root user’s cron table must be modified. The method
used to modify the table is the crontab utility. By logging in as the root user and typing
crontab -l, you can view the existing cron table for the root user. To change the cron table,
you must type crontab -e. This edits the cron table using the Linux vi editor.

To make the fetchmail program execute every 15 minutes, you would add the line shown in
Listing 13.7 to the root user’s cron table.

Installing Email Services in Linux

PART II
364

16 0672318342 CH13 2/14/00 2:46 PM Page 364

LISTING 13.7 Sample cron Entry for Fetchmail

0,15,30,45 * * * * /usr/bin/fetchmail

This line indicates that for every hour, day, week, and year at 0, 15, 30, and 45 minutes past
the hour, the fetchmail program will be executed. You can modify this to suit your needs. Be
careful not to check the ISP mailbox too often or the diald PPP link might not have a chance to
properly drop between connections.

Dial-on-Demand PPP Connection with ISP Domain Mail
Spooling
The third scenario also uses the dial-on-demand PPP connection to transfer mail messages to
the ISP server. The difference in this scenario is that the domain mail for your domain is
spooled to a mail queue on the ISP mailserver instead of being delivered to a single mailbox.
Again, this is a feature of sendmail that the ISP must configure on its mailserver.

After the Linux mailserver establishes a PPP connection, it can establish an SMTP connection
with the ISP mailserver and request that any mail in the mail queue be sent back to it using the
SMTP ETRN command. As described in Chapter 5, the SMTP ETRN command instructs the ISP
mailserver to create a second SMTP connection with the Linux mailserver and send any mail
messages queued for delivery. This method does not alter the message headers as in the previ-
ous scenario. Figure 13.4 shows an example of this configuration.

PPP Link Configuration
The PPP link for this scenario is exactly like the previous scenario. To utilize dial-on-demand
PPP connections, you must install the diald and pppd programs and use a diald.conf file sim-
ilar to the one shown in Listing 13.4. The diald program runs as a background process and
watches for IP traffic. Any outgoing messages trigger the diald program to start the PPP link.
After the IP traffic stops, the diald program waits 30 seconds and then drops the PPP link. In
this scenario, depending on your ISP server, you might have to extend the timeout value to
ensure the ISP server has enough time to establish the SMTP connection back to the Linux
mailserver. To do this, you can edit the /usr/lib/standard.filter file that comes with the
diald program. The last line of the file should look like this:

accept any 30 any

This allows for the 30-second timeout. To increase the timeout, change the 30 to a value appro-
priate for your ISP environment and save the new file.

Connecting the Mailserver to an ISP

CHAPTER 13
365

13

C
O

N
N

EC
TIN

G
TH

E
M

A
ILSER

V
ER

TO
A

N
ISP

16 0672318342 CH13 2/14/00 2:46 PM Page 365

FIGURE 13.4
A Linux mailserver using a dial-on-demand PPP connection and the ISP spooling domain mail.

sendmail Configuration
Because the PPP link is not continually active, the sendmail program has to utilize the ser-
vices of a remote smart host as in the last scenario. Also as before, sendmail should allow
local clients to relay outbound messages through the Linux mailserver. With this scenario, you
can use the same sendmail configuration file as the previous scenario. It should look similar
to one shown in Listing 13.5: dialup.mc. Also, the access database should be created as
shown in Listing 13.3 to allow remote network clients to relay SMTP mail through the Linux
mailserver.

fetchmail Configuration
This scenario differs from the previous scenario in the method used to retrieve messages from
the ISP mailserver. This time the fetchmail program must retrieve messages in the mail queue
on the ISP mailserver.

Installing Email Services in Linux

PART II
366

Linux Mailserver

sendmail

ppp

ISP MailserverInbound Message

prez@small.org.org

small.org.org

ppp

sendmail

rich barbara prez jessica katie riley haley

16 0672318342 CH13 2/14/00 2:46 PM Page 366

To accomplish this task, fetchmail utilizes the SMTP ETRN command described in Chapter 5.
Thus, the fetchmail program does not actually retrieve any messages; it instructs the ISP
mailserver to initiate another SMTP connection back to the Linux mailserver and exits. Listing
13.8 shows a sample .fetchmailrc file that can be used to call the ISP using the SMTP ETRN
command.

LISTING 13.8 Sample .fetchmailrc File for SMTP Mail

1 poll mail.isp.net with proto ETRN
2 localdomains smallorg.org
3 no dns
4 no envelope

In Listing 13.8, line 1 indicates the remote host to which to connect, and that fetchmail should
use the SMTP ETRN command to initiate the mail transfer from the remote host. Line 2 indi-
cates the alternative domain name as which the Linux mailserver will receive mail. You should
replace that alternative domain name with your domain name. Lines 3 and 4 indicate that
fetchmail will not use DNS to verify domain names in message headers and that it will not
look at the X-Receive-To: RFC822 header field for recipients.

Automating Mail Retrieval
As in the previous scenario, this scenario must be able to automatically run the fetchmail pro-
gram at set intervals to check the ISP for new mail. The easiest way to do this is to use the
Linux cron utility. Again, a script file can be created similar to the one shown in Listing 13.7
and added to the cron table for the root user. As before, the cron table schedule can be set to
check mail at the frequency that you choose. Each time the fetchmail program is run by the
cron daemon, the diald program should initiate a PPP connection with the ISP mailserver.

Dial-Up UUCP Connection with ISP Domain Mail Spooling
The last scenario discussed uses the UUCP protocol to establish a connection with the ISP
mailserver. Any outgoing mail is queued in the UUCP spool area on the Linux mailserver and
transferred when the UUCP connection is established. Likewise, any inbound mail destined for
the Linux mailserver is queued by the ISP mailserver and transferred when the UUCP connec-
tion is established. This is demonstrated in Figure 13.5.

UUCP Configuration
For the Linux mailserver to establish a UUCP connection with the ISP, UUCP software must
be installed. The most common UUCP package available for the Linux platform is the Taylor
UUCP package. Many Linux distributions come with a binary distribution package for Taylor
UUCP. On Mandrake Linux 6.0, the package is called uucp-1.06.1-10mdk.i586.rpm. You can
use the standard rpm package installer to install Taylor UUCP.

Connecting the Mailserver to an ISP

CHAPTER 13
367

13

C
O

N
N

EC
TIN

G
TH

E
M

A
ILSER

V
ER

TO
A

N
ISP

16 0672318342 CH13 2/14/00 2:46 PM Page 367

FIGURE 13.5
A Linux mailserver using a dial-up UUCP connection and ISP spooling domain mail.

If your Linux distribution does not include a binary distribution package for UUCP, you can
download the source code from sunsite.unc.edu in the /pub/Linux/systems/network/uucp
directory. The most current version available at that location is uucp-1.05.tar.gz. Chapter 9,
“UUCP Protocol,” details how to compile and install the source code package.

After the Taylor UUCP package is installed, it must be configured to support UUCP commu-
nications with the ISP UUCP server. Taylor UUCP requires four configuration files. The con-
figuration files are normally located in the /etc/uucp directory. The first configuration file
defines the UUCP nodename of the Linux mailserver. Listing 13.9 shows an example of the
config file.

Installing Email Services in Linux

PART II
368

Linux Mailserver

ISP MailserverInbound Message

prez@small.org.org

sendmail ispmail

rich barbara prez jessica katie riley haley

uucp

sendmail
smallorg.org

uucp

16 0672318342 CH13 2/14/00 2:46 PM Page 368

LISTING 13.9 Sample Taylor UUCP config File

nodename smallorg

The next required file is the sys file. The sys file defines each remote UUCP site with which
the Linux mailserver will communicate. For this example, the only site that must be entered is
the ISP UUCP server. Listing 13.10 shows an example of the sys file.

LISTING 13.10 Sample Taylor UUCP sys File

1 system ispmail
2 time Any
3 phone 555-1234
4 port modem
5 speed 38400
6 chat ogin: rich word: guitar

In Listing 13.10, line 1 defines the remote UUCP node with which the Linux mailserver will
communicate. You must replace this value with the name of your ISP UUCP server. Line 2
defines the times of day the server can connect. For this example, there are no restrictions
when the two UUCP servers can connect. Line 3 defines the phone number required to connect
to the ISP server. Again, you need to replace this value with the appropriate phone number for
your ISP’s UUCP server. Line 4 points to a definition in the port file to use for the connection.
Line 5 defines the speed that is used on the connection. Line 6 defines the login chat sequence
required to connect to the ISP UUCP server. You need to replace the userid and password with
the correct ones for your ISP connection.

The third UUCP configuration file was alluded to in the sys file. The port file defines the
modem ports that can be used by Taylor UUCP to attempt connections to the remote UUCP
servers. Listing 13.11 shows an example of a port file.

LISTING 13.11 Sample Taylor UUCP port File

1 port modem
2 type modem
3 device /dev/ttyS1
4 speed 38400
5 dialer normal

In Listing 13.11, line 1 defines the port name referenced in the sys file. Line 2 defines the type
of port used. In this case, the Linux mailserver uses a modem to connect to the remote UUCP
server. Line 3 defines the device name of the modem. ttyS1 defines the second COM port on

Connecting the Mailserver to an ISP

CHAPTER 13
369

13

C
O

N
N

EC
TIN

G
TH

E
M

A
ILSER

V
ER

TO
A

N
ISP

16 0672318342 CH13 2/14/00 2:46 PM Page 369

the server. Line 4 again defines the modem speed used, and line 5 points to a dialer type from
the dial file that is used to communicate with the modem.

The last UUCP configuration file is the dial file. The dial file is used to define the chat script
used to communicate with the modem and dial the remote UUCP server. Listing 13.12 shows
an example of the dial file.

LISTING 13.12 Sample Taylor UUCP dial File

1 dialer normal
2 chat “” ATZ OK ATDT\T CONNECT

In Listing 13.12, line 1 defines the dial type referenced by the port file. Line 2 defines the chat
script necessary to dial the remote UUCP server’s phone number. The \T variable is used to
insert the phone number listed in the sys file.

When the Taylor UUCP configuration files are created, you should be able to establish a
UUCP connection with the ISP UUCP server. To do this, you can use the command

/usr/sbin/uucico -s ispmail

where ispmail is the UUCP nodename of the ISP’s UUCP server. When this command is
entered, the modem should dial the ISP’s UUCP server and establish a connection. The con-
nection should drop quickly if there are no mail messages to transfer. The session should be
logged in the UUCP log file, as specified by your particular Linux distribution. On Mandrake
Linux, the UUCP log file is located at /var/log/uucp/Log.

sendmail Configuration
The sendmail configuration for this scenario is similar to the configurations used in the two
previous scenarios. Because the Linux mailserver is not directly connected to the Internet, it
must make use of a smart host to deliver any outgoing mail messages. The difference this time
is that the Linux mailserver must use UUCP to connect to the smart host. Again, sendmail
must also support relaying mail from local network clients. Listing 13.13 shows a sample
macro file that can be used to create a sendmail.cf file.

LISTING 13.13 Sample sendmail Macro File Using UUCP

1 divert(-1)
2 divert(0)dnl
3 include(`/usr/lib/sendmail-cf/m4/cf.m4’)dnl
4 OSTYPE(`linux’)dnl
5
6 FEATURE(`allmasquerade’)dnl

Installing Email Services in Linux

PART II
370

16 0672318342 CH13 2/14/00 2:46 PM Page 370

7 FEATURE(`masquerade_envelope’)dnl
8 FEATURE(`local_procmail’, `/usr/bin/procmail’)dnl
9 FEATURE(`access_db’, `/etc/mail/access.db’)dnl
10 FEATURE(`nocanonify’)dnl
11
12 MAILER(`smtp’)dnl
13 MAILER(`procmail’)dnl
14 MAILER(`uucp’)dnl
15
16 MASQUERADE_AS(`smallorg.org’)dnl
17 define(`SMART_HOST’, `uucp-dom:ispmail’)dnl

In Listing 13.13, lines 1 through 13 are the same as the previous two scenarios. Line 14 defines
the UUCP mailer functions for sendmail. Line 17 defines a smart host, ispmail, which can be
contacted using the uucp-dom protocol. This is a special format of the UUCP protocol that
sendmail uses to transfer mail by using the UUCP protocol but retaining the SMTP headers of
the messages.

As in the previous scenarios, the sendmail program should run in background mode. You can
use the linuxconf program as shown in Figure 13.2 to set the sendmail program to start at boot
time.

Automating Mail Retrieval
To make the mail process automatic, the UUCP connection must be established at a regular
interval. As before, you can use the Linux cron utility to execute a script that initiates the
UUCP connection to the ISP UUCP server. Again, you must use the crontab program to enter
the scripts that cron will execute.

Two scripts can be entered into the cron table to execute at regular intervals. The uucico pro-
gram is used to call the remote UUCP site. This can be set to call at set times throughout the
day. To force uucico to call the remote UUCP host even if there are no queued jobs to transfer,
you can manually create a poll file in the UUCP job queue area for the remote host. The poll
file can be created just prior to execution of the uucico program. The uucico program deletes
the poll file when it is finished. Listing 13.14 shows a sample script file that can be used to
poll the ISP UUCP server.

LISTING 13.14 Sample UUCP cron File

14,29,44,59 * * * * /usr/sbin/touch /var/spool/uucp/ispmail/C./C.ispmailA0000
0,15,30,45, * * * * /usr/sbin/uucico -s ispmail

Connecting the Mailserver to an ISP

CHAPTER 13
371

13

C
O

N
N

EC
TIN

G
TH

E
M

A
ILSER

V
ER

TO
A

N
ISP

16 0672318342 CH13 2/14/00 2:46 PM Page 371

The first entry in the script file creates a poll file for the remote UUCP host ispmail. You can
substitute the UUCP nodename of the ISP UUCP server to create a poll file for your Linux
mailserver. Similarly, the uucico command parameter should also be the UUCP nodename of
the ISP UUCP server.

This configuration allows the Linux mailserver to call the ISP UUCP server every 15 minutes
throughout the day. If you are paying for UUCP connection charges, you might want to set up
several cron table entries to call uucico at one interval during business hours and at a less-fre-
quent rate during non-business hours.

In this scenario, all mail is batched for delivery. Mail received by SMTP from the local clients
is batched for transmission to the smart host. Mail received by the ISP mailserver from the
Internet is stored in a UUCP queue until the UUCP connection is established.

Summary
This chapter defined some of the issues that a mail administrator must resolve before imple-
menting a mailserver in the business network. There are many options to choose from regard-
ing DNS name hosting, mail hosting, and ISP connectivity. This chapter also described four
scenarios that demonstrated various configuration options available to use to transfer mail to
and from the Internet via a Linux mailserver and an ISP. The direct Internet connection method
is useful for sending and receiving mail in realtime. The dial-on-demand options are good for
sending mail in realtime, but received messages are queued by the ISP and are downloaded by
the Linux mailserver at set times. However, this option is usually inexpensive to implement.
The last method examined was the use of the UUCP protocol to batch both outbound and
inbound mail messages. Often, UUCP connections are all a small organization needs to support
a solid Internet mail environment. Sometimes, a UUCP connection is the cheapest way to
implement an Internet mail solution.

Installing Email Services in Linux

PART II
372

16 0672318342 CH13 2/14/00 2:46 PM Page 372

CHAPTER

14
Mailserver Administration

IN THIS CHAPTER
• Userid Maintenance 374

• Monitoring the Mailserver 385

• Watching for Hackers and
Spammers 390

17 0672318342 CH14 2/14/00 2:35 PM Page 373

Chapter 13, “Connecting the Mailserver to an ISP,” described how to connect the Linux
mailserver to the Internet using the Internet service provider. After everything has been config-
ured and connected, mail will flow back and forth. Now your job as the mail administrator is
done. Wrong. Your job has just begun.

The mail administrator must constantly be doing things with the mailserver. One of the most
important tasks is userid maintenance. Another task is to watch the mailserver logs to deter-
mine whether things are going well. Depending on the type of Internet connectivity you chose,
you might also have to constantly watch for hackers trying new and improved methods of
breaking into your mailserver. You always need to be on the lookout for spammers flooding
your mailboxes with useless mail, or trying to use your mailserver as an unknowing relay par-
ticipant. The job of the mail administrator never ends. This chapter will describe some of the
tools and techniques used by Linux mail administrators in maintaining a healthy mailserver.

Userid Maintenance
Each user who wants to receive mail via your mailserver must have a valid userid and pass-
word on the system. The mail administrator is continually adding and deleting userids.
Depending on your organization, this can be either a daily task or a once-in-a-while task.
Whichever it is, at some time you will need to add and delete userids. Also, don’t forget about
the occasional user who forgets his password—at some time, you will run across him, too.

Many Linux distributions include fancy graphical programs to assist in userid maintenance.
The following section first describes the basics of Linux userids and passwords, and then
examines some of the more popular Linux graphical userid maintenance programs.

The Linux Userid File
By default, Linux userids are stored in the /etc/passwd file. This file was discussed briefly in
Chapter 12, “Installing and Configuring POP3 and IMAP.” Listing 14.1 shows an example of a
typical /etc/passwd file.

LISTING 14.1 Sample Linux /etc/passwd File

1 root:unaoBNGut6giH2:0:0:root:/root:/bin/bash
2 bin:*:1:1:bin:/bin:
3 daemon:*:2:2:daemon:/sbin:
4 adm:*:3:4:adm:/var/adm:
5 lp:*:4:7:lp:/var/spool/lpd:
6 sync:*:5:0:sync:/sbin:/bin/sync
7 shutdown:*:6:0:shutdown:/sbin:/sbin/shutdown
8 halt:*:7:0:halt:/sbin:/sbin/halt

Installing Email Services in Linux

PART II
374

17 0672318342 CH14 2/14/00 2:35 PM Page 374

9 mail:*:8:12:mail:/var/spool/mail:
10 news:*:9:13:news:/usr/lib/news:
11 uucp:*:10:14:uucp:/var/spool/uucppublic:
12 operator:*:11:0:operator:/root:/bin/bash
13 games:*:12:100:games:/usr/games:
14 man:*:13:15:man:/usr/man:
15 postmaster:*:14:12:postmaster:/var/spool/mail:/bin/bash
16 nobody:*:65535:100:nobody:/dev/null:
17 ftp:*:404:1::/home/ftp:/bin/bash
18 rich:cLafgrY5tfHiw:501:101:Rich B.:/home/rich:/bin/bash
19 usenet:*:502:13:News master:/home/usenet:/bin/bash
20 bbs:*:503:200:BBS User:/home/bbs:/home/bbs:/bin/bash
21 barbara:*:504:100:Barbara B.:/home/barbara:/bin/bash
22 katie:*:505:100:Katie B.:/home/katie:/bin/bash
23 jessica:Ru7vx4rgypupg:506:100:Jessica B.:/home/jessica:/bin/bash
24 haley:WfNervHPbUxUk:507:100:Haley S.:/home/haley:/bin/bash
25 riley:VHA1qqu/pqjMU:508:100:Riley M.:/home/riley:/bin/bash
26 chris:5MLvL/waxN276:509:100:Chris W.:/home/chris:/bin/bash
27 matthew:nZF35ripKCbXQ:510:100:Matthew W.:/home/matthew:/bin/bash
28 alex:9QJ.MQWbSpBG.:511:100:Alex P.:/home/alex:/bin/bash

Listing 14.1 shows the common format of the /etc/passwd file. Each line represents informa-
tion for one userid; the information is divided into fields separated by colons. The first field is
the Linux username with which the user logs in. The second field is an encrypted version of
the user’s password. You’ll notice that for some users the password field is just an asterisk (*).
This is equivalent to locking the userid, as no combination of characters can be encrypted to
just an asterisk. The third field is the userid number by which Linux tracks file access for the
user. The fourth field is the group ID number assigned to the user. The next section describes
Linux groups in detail.

The remaining fields further identify the user. The fifth field, a text identifier of the user, often
contains the full name of the user to help document information for the mail administrator. The
sixth field identifies the location of the user’s default home directory. If your users are using
the IMAP protocol to retrieve their mail (see Chapter 7, “IMAP Protocol”), each user must
have a separate home directory. The Linux IMAP software uses the user’s home directory as
the default location to create new folders requested by the user. Each user must have the proper
read and write permissions to the home directory.

The last field identifies the default Linux shell program the user will execute if she logs in
interactively. For the purposes of a mailserver, it is safe to use the default Linux bash shell
(/bin/bash) for this field. Some advanced mail administrators concoct complex login shells to
prevent users from logging in interactively. Those techniques are beyond the scope of this
book.

Mailserver Administration

CHAPTER 14
375

14

M
A

ILSER
V

ER
A

D
M

IN
ISTR

A
TIO

N

17 0672318342 CH14 2/14/00 2:35 PM Page 375

Shadow Passwords
You might have noticed one bad thing about the default Linux userid file—all users can read it.
The logon programs run as the userid and need to be able to read the /etc/passwd file to com-
pare the attempted password with the real password. Creative users can copy the password file
and run commonly found cracker programs against it to determine the passwords of other
users. This is a potentially bad situation (especially if senior managers use simple passwords so
they can remember them).

To combat this problem, most Linux distributions offer the ability to use a shadow password
file. The shadow password file is a separate file that contains the user’s passwords and other
related housekeeping information. Passwords are not kept in the /etc/passwd file. The shadow
password file is not readable to normal Linux users, so they won’t be able to copy the file and
attempt to crack it. Listing 14.2 shows a sample shadow password file.

LISTING 14.2 Sample Linux Shadow Password File

1 root:1wkRtbOwr46TSWmezOiXx.ZGAtG/zGKU1:10863:0:99999:7:-1:-1:134537880
2 bin:*:10863:0:99999:7:::
3 daemon:*:10863:0:99999:7:::
4 adm:*:10863:0:99999:7:::
5 lp:*:10863:0:99999:7:::
6 sync:*:10863:0:99999:7:::
7 shutdown:*:10863:0:99999:7:::
8 halt:*:10863:0:99999:7:::
9 mail:*:10863:0:99999:7:::
10 news:*:10863:0:99999:7:::
11 uucp:*:10863:0:99999:7:::
12 operator:*:10863:0:99999:7:::
13 games:*:10863:0:99999:7:::
14 gopher:*:10863:0:99999:7:::
15 ftp:*:10863:0:99999:7:::
16 nobody:*:10863:0:99999:7:::
17 postgres:!!:10863:0:99999:7:::
18 lists:!!:10863:0:99999:7:::
19 xfs:!!:10863:0:99999:7:::
20 rich:LMQ0vbvbnZpZr1s:10863:0:99999:7:::
21 barbara:1ORlQdo1l$GK/H8tjwPGCBUUHMEjXWe1:10863:0:99999:7:::
22 katie:1XEd8PKaP$AuwsgfeN3UBcKjB0GeL1d1:10882:0:99999:7:::
23 jessica:1ashasfha4hasfhasfhwr$asfgas44rgs:10885:0:99999:7:::

Listing 14.2 shows the common format of the shadow password file. On most Linux distribu-
tions, it is located at /etc/shadow. As in the normal /etc/passwd file, each line represents
information for one userid. The information is divided into fields separated by colons. The first

Installing Email Services in Linux

PART II
376

17 0672318342 CH14 2/14/00 2:35 PM Page 376

field is the username. This name should exactly match the username field in the /etc/passwd
file. The second field is the encrypted password. You might notice a difference between the
encrypted passwords in Listing 14.2 and the ones in Listing 14.1. The Linux system shown in
Listing 14.2 was configured to use MD5 encryption of passwords. MD5 produces a stronger
encryption than the standard UNIX password encryption technique that is used by default in
Linux.

The shadow file itself can be used for more than just hiding passwords. Each of the other fields
has special meanings when used by other Linux utilities. The third field shows the number of
days after January 1, 1970, that the password was last changed. The fourth field contains a 0
for all the users in the example, indicating that they are all allowed to change their own pass-
words. Changing this to a 1 prevents a user from changing his own password. The fifth field
shows the number of days after January 1, 1970, that the password will expire. All the fields in
the example are set to high values that, for all practical purposes, will keep the passwords from
expiring.

The sixth field indicates the number of days before your password expires that Linux will fore-
warn you of the expiration. The seventh field shows the number of days you have after the
password expires before Linux prevents that userid from logging in. The eighth field is used
for expired passwords, and contains the number of days since January 1, 1970, that a password
has been out of use.

The downside to using a shadow password file is that any program which verifies userids needs
to be compiled to use the file. This includes FTP, POP3, and IMAP servers. Fortunately, most
common network software packages have this capability already.

Mailserver Administration

CHAPTER 14
377

14

M
A

ILSER
V

ER
A

D
M

IN
ISTR

A
TIO

N

Mail User Passwords
The mail administrator can use the Linux shadow password file features to control
password usage among mail users. Just remember that most mail users do not log in
to the Linux mailserver interactively, so changing a user password is often not an easy
task.

The Linux group File
The other important file employed in user administration, the /etc/group file, identifies user-
names with groups. Assigning users to groups allows access to files for a large subset of users.
Listing 14.3 shows a sample /etc/group file.

17 0672318342 CH14 2/14/00 2:35 PM Page 377

LISTING 14.3 Sample Linux /etc/group File

1 root::0:root
2 bin::1:root,bin,daemon
3 daemon::2:root,bin,daemon
4 sys::3:root,bin,adm
5 adm::4:root,adm,daemon
6 tty::5:
7 disk::6:root
8 lp::7:daemon,lp
9 mem::8:
10 kmem::9:
11 wheel::10:root
12 mail::12:mail
13 news::13:news
14 uucp::14:uucp
15 man::15:
16 games::20:
17 gopher::30:
18 dip::40:
19 ftp::50:
20 nobody::99:
21 users::100:
22 postgres:x:101:
23 utmp:x:102:
24 lists:x:500:
25 floppy:x:19:
26 console:x:11:
27 xfs:x:103:
28 pppusers:x:230:
29 popusers:x:231:
30 slipusers:x:232:
31 slocate:x:21:
32 rich::501:
33 dba:x:502:
34 oinstall:x:503:oracle
35 oracle:x:504:
36 pop:x:505:

Listing 14.3 shows the common format for the Linux group file. Each line represents a differ-
ent group; group information is divided into fields separated by colons. The first field is the
group name. The second field is the group password. If this field is blank, no password is
required to access group files. As shown in Listing 14.3, this group file uses shadow passwords
(identified by the x). The third field is the group ID that identifies the group when members
access files and directories. The fourth field lists userids with access to the group. In line 34,

Installing Email Services in Linux

PART II
378

17 0672318342 CH14 2/14/00 2:35 PM Page 378

the userid oracle has access to the group oinstall besides having its own group, oracle.
This demonstrates that a userid can be a member of multiple groups.

Mailserver Administration

CHAPTER 14
379

14

M
A

ILSER
V

ER
A

D
M

IN
ISTR

A
TIO

N

Groups and Mail Users
Linux groups are not commonly used in mailserver installations. It is often safest to
designate a new group for each userid created, so that no accidental sharing of files
can occur between users. Groups are useful for allowing mail users access to co-
workers’ mailboxes when necessary without having to grant special privileges.

Userid Maintenance Utilities
If your Linux system does not use shadow passwords, you can add and delete userids by edit-
ing the /etc/passwd file. However, this is not recommended; making mistakes in the
/etc/passwd file can render your Linux system useless. It is best to use the user administra-
tion utilities to add and delete userids, whether you use shadow passwords or not.

The most common user administration utility in Linux is the useradd utility. The format of the
useradd utility is

useradd [-c comment] [-d home_dir]
[-e expire_date] [-f inactive_time]
[-g initial_group] [-G group[,...]]
[-m [-k skeleton_dir] | -M] [-s shell]
[-u uid [-o]] [-n] [-r] login

Table 14.1 describes the command parameters available for the useradd utility.

TABLE 14.1 useradd Parameters

Parameter Description

-c Adds a comment to the passwd file record

-d The home directory

-e The expiration date of the password

-f The number of days after the password expires that it is disabled

-g The default group

-G A list of other groups to which the userid can belong

-m Creates the user’s home directory if it does not exist

-k skeldir Uses an alternate skel directory

continues

17 0672318342 CH14 2/14/00 2:35 PM Page 379

-M The user’s home directory will not be created if it does not exist

-n In Red Hat Linux variants, a group with the same name as the username will
not be created

-r Creates a system account rather than a user account

-s Specifies the default logon shell

-u Specifies a user ID number

Listing 14.4 shows an example of creating a new Linux user with the useradd utility.

LISTING 14.4 Creating a New User

1 [root@shadrach /root]# useradd -c “Riley M.” riley
2 [root@shadrach /root]# cat /etc/passwd | grep riley
3 riley:x:504:506:Riley M.:/home/riley:/bin/bash
4 [root@shadrach /root]# cat /etc/group | grep riley
5 riley:x:506:
6 [root@shadrach /root]# ls -al /home/riley
7 total 21
8 drwx------ 5 riley riley 1024 Nov 1 16:48 .
9 drwxr-xr-x 7 root root 1024 Nov 1 16:48 ..
10 -rw-r--r-- 1 riley riley 1899 Nov 1 16:48 .Xdefaults
11 -rw-r--r-- 1 riley riley 24 Nov 1 16:48 .bash_logout
12 -rw-r--r-- 1 riley riley 230 Nov 1 16:48 .bash_profile
13 -rw-r--r-- 1 riley riley 434 Nov 1 16:48 .bashrc
14 -rw-r--r-- 1 riley riley 2626 Nov 1 16:48 .emacs
15 drwxr-xr-x 3 riley riley 1024 Nov 1 16:48 .kde
16-rw-r--r-- 1 riley riley 1416 Nov 1 16:48 .kderc
17 -rw-r--r-- 1 riley riley 185 Nov 1 16:48 .mailcap
18 -rw-r--r-- 1 riley riley 3846 Nov 1 16:48 .vimrc
19 -rw-r--r-- 1 riley riley 397 Nov 1 16:48 .zshrc
20 drwxr-xr-x 5 riley riley 1024 Nov 1 16:48 Desktop
21 drwxr-xr-x 2 riley riley 1024 Nov 1 16:48 tmp
22 [root@shadrach /root]#

In Listing 14.4, line 1 shows the useradd utility being used to create a new username, riley,
with a text comment added to the comment field. The default userid value and login shell are
used in this example. Line 3 shows the result in the /etc/passwd file. A new line is added for
the new username with the next available userid (504) and the next available groupid (506). By
default, the useradd utility created a default home directory of /home/riley. Also by default,

Installing Email Services in Linux

PART II
380

TABLE 14.1 continued

Parameter Description

17 0672318342 CH14 2/14/00 2:35 PM Page 380

the logon shell was set to /bin/bash. By listing the newly created home directory in line 6,
you can see that several new files have been created already. This is definitely overkill for a
simple email userid. Where did all these defaults come from?

By using the -D option on the useradd utility, you can view the defaults that useradd uses when
creating a new user account. Listing 14.5 shows an example of this.

LISTING 14.5 Sample useradd -D Output

1 [root@shadrach /root]# useradd -D
2 GROUP=100
3 HOME=/home
4 INACTIVE=-1
5 EXPIRE=
6 SHELL=/bin/bash
7 SKEL=/etc/skel
8 [root@shadrach /root]#

In Listing 14.5, line 3 shows the default home directory location that useradd appends to the
username to create the new directory. You can change this value if you want to create user
home directories somewhere other than /home. The mail administrator might be most interested
in line 7, which declares a directory that will be copied to the newly created user home direc-
tory. Listing 14.6 shows the contents of the /etc/skel directory.

LISTING 14.6 Sample /etc/skel Directory

1 [root@shadrach /root]# ls -al /etc/skel
2 total 23
3 drwxr-xr-x 5 root root 1024 Sep 29 05:18 .
4 drwxr-xr-x 31 root root 3072 Nov 1 16:48 ..
5 -rw-r--r-- 1 root root 1899 Apr 27 1999 .Xdefaults
6 -rw-r--r-- 1 root root 24 Jul 13 1994 .bash_logout
7 -rw-r--r-- 1 root root 230 Aug 22 1998 .bash_profile
8 -rw-r--r-- 1 root root 434 May 17 21:15 .bashrc
9 -rw-r--r-- 1 root root 2626 Apr 27 1999 .emacs
10 drwxr-xr-x 3 root root 1024 Sep 29 05:18 .kde
11 -rw-r--r-- 1 root root 1416 May 17 14:44 .kderc
12 -rw-r--r-- 1 root root 185 May 18 10:16 .mailcap
13 -rw-r--r-- 1 root root 3846 May 11 12:49 .vimrc
14 -rw-r--r-- 1 root root 397 Apr 27 1999 .zshrc
15 drwxr-xr-x 5 root root 1024 Sep 29 05:18 Desktop
16 drwxr-xr-x 2 root root 1024 May 18 10:12 tmp
17 [root@shadrach /root]#

Mailserver Administration

CHAPTER 14
381

14

M
A

ILSER
V

ER
A

D
M

IN
ISTR

A
TIO

N

17 0672318342 CH14 2/14/00 2:35 PM Page 381

Listing 14.6 looks suspiciously familiar. It is exactly the same directory as shown in Listing
14.4. The useradd utility took the contents of the /etc/skel directory and copied them to the
user home directory when it was created. As you can see, there are lots of configuration files
here that users logging in to the system from an X Window session will need, but almost none
that an email client will need.

To make the user home directories simpler (especially if you are using the IMAP protocol to
store mail folders in the users’ home directories), you can move the template files from the
/etc/skel directory. By leaving the /etc/skel directory empty, nothing will be copied into
new users’ home directories.

Installing Email Services in Linux

PART II
382

CAUTION

Although leaving the skel directory empty is preferred for mail users, other users
(especially X Window users) might need those files and directories. If you are sup-
porting a mixed environment, it might be easier to use the -k option in the useradd
program and create a separate, empty skel directory just for mail users.

After the userids are created, each user must have a password to log in to the mailserver.
Although the useradd program creates the user account, it does not create a password for it.
By default, the user account is locked and not allowed to be used until a password is assigned.
The passwd program is used to assign new passwords to userids. The format of the passwd
program is

passwd username

where username is the username of the user you want to change the password for. To change
passwords for users other than yourself, you must be logged in as the root user. The passwd
program queries for a new password, and then repeats the query to ensure that no typos were
made.

Graphical Userid Maintenance Utilities
Most Linux distributions that support a windowing environment include a graphical userid
maintenance utility. For Mandrake Linux it is the kuser program. To use kuser, you will need
to either log in as root, or use the su program to change your effective userid to the root user.
Figure 14.1 shows the main kuser window.

17 0672318342 CH14 2/14/00 2:35 PM Page 382

FIGURE 14.1
The kuser main window.

The main window displays the existing userids on the Linux system. The kuser program can be
used to add, delete, and modify usernames. By selecting the Add button, and entering in a new
username, the User properties window, shown in Figure 14.2, appears. The User properties
window queries for the same values that were entered for the useradd program and the
/etc/passwd file.

Mailserver Administration

CHAPTER 14
383

14

M
A

ILSER
V

ER
A

D
M

IN
ISTR

A
TIO

N

FIGURE 14.2
The kuser User properties window.

17 0672318342 CH14 2/14/00 2:35 PM Page 383

Clicking on the Extended tab reveals values present in the shadow password file /etc/shadow.
Figure 14.3 shows the results of this action.

Installing Email Services in Linux

PART II
384

FIGURE 14.3
The kuser User properties Extended tab window.

Figure 14.3 shows fields that can be changed with the Extended User properties window.
Dates can be entered in standard format instead of worrying about calculating the days since
January 1, 1970. If you are not using shadow passwords, these fields will be unavailable for
you to enter data. Figure 14.4 shows the Groups tab from the User properties window.

The Groups window lists existing groups on the Linux server, and allows the administrator to
pick and choose which groups a new user will belong to.

Finally, Figure 14.5 shows the Properties window for the kuser program. This enables the
administrator to set the defaults as defined in the -D option of the useradd program.

As shown in Figure 14.5, the Edit Defaults window enables you to set the default shell and
home directories for all new users created. Also, you can disable copying the /etc/skel direc-
tory to the new home directories. This is handy for mail administrators.

17 0672318342 CH14 2/14/00 2:35 PM Page 384

FIGURE 14.4
The kuser User properties Groups tab window.

Mailserver Administration

CHAPTER 14
385

14

M
A

ILSER
V

ER
A

D
M

IN
ISTR

A
TIO

N

FIGURE 14.5
The kuser Edit defaults window.

Monitoring the Mailserver
As the mail administrator, it is your responsibility to monitor the activity on the mailserver.
Sometimes this is much easier said than done. There are often many things happening at the
same time on the mailserver, and watching them all is difficult. You must be able to monitor
the Internet connection to ensure that mail is properly flowing both into and out of the
mailserver, as well as ensure that no hackers or spammers have discovered your mailserver

17 0672318342 CH14 2/14/00 2:35 PM Page 385

and are attempting to take advantage of it. On the other side, you must monitor the POP3
and/or IMAP services to ensure your customers can properly access their mailboxes. Speaking
of mailboxes, how’s the disk space doing on the mailserver?

The mail administrator must monitor all these topics to ensure proper mail service for the
office. Fortunately, the mail administrator has some help from Linux. This section discusses
the Linux system logging programs that can help watch the mailserver activity and report any
problems that may occur.

The Linux syslogd Program
The Linux system’s syslogd program tracks events that occur on the system and logs messages
for each event in system log files. As the mail administrator, you will be able to locate log files
and track any problems that might appear there. You should get in the habit of scanning
through the log files at least once a day to watch for possible system or security problems.

The syslogd program is normally started at boot time by an init script and quietly runs in
background mode. Most Linux distributions start syslogd by default. You can check to see
whether syslogd is running on your Linux system by using the command

ps ax | more

The syslogd program will show up in the list of processes running on your system. When sys-
logd starts, it reads a configuration file to determine what types of messages to log and how to
log them.

The events that syslogd logs in the log files can be configured by the mail administrator. You
can create as many different log files as you feel necessary. Each log file can contain informa-
tion regarding particular types of system and program events. Table 14.2 shows the different
event types available on the Linux system.

TABLE 14.2 syslogd Event Types

Event Description

auth Security/authorization events

authpriv Private security/authorization events

cron Cron daemon events

daemon System daemon events

kern System kernel events

lpr Line printer events

mail Mail program events

Installing Email Services in Linux

PART II
386

17 0672318342 CH14 2/14/00 2:35 PM Page 386

mark Internal check

news Network news program events

syslog Internal syslogd events

user User-level events

uucp UUCP program events

localn Locally defined events (n = 0 through 7)

Each event type has a hierarchy of message priorities. In Table 14.3, the priorities are listed
from debug (the lowest priority) to emerg (the highest priority). Lower priorities mean smaller
problems. Higher priorities mean bigger problems.

TABLE 14.3 syslogd Message Priorities

Priority Description

debug Debugging events

info Informational events

notice Normal notices

warning Warning messages

err Error condition events

crit Critical system conditions

alert System alerts

emerg Fatal system conditions

The following sections describe the syslogd program and how to configure it to log events in
log files.

syslogd Parameters
The format of the syslogd command is

syslogd options

where options is a list of options to modify the behavior of the syslogd program. Table 14.4
shows the options available to use with syslogd.

Mailserver Administration

CHAPTER 14
387

14

M
A

ILSER
V

ER
A

D
M

IN
ISTR

A
TIO

N

Event Description

17 0672318342 CH14 2/14/00 2:35 PM Page 387

TABLE 14.4 syslogd Options

Option Description

-a socket Specifies additional sockets to listen to for remote connections

-d Turns on debugging mode

-f config Uses the configuration file specified by config

-h Forwards any remote messages to forwarding hosts.

-l hostlist Specifies a list of hosts that are logged only by hostname

-m interval Sets the MARK timestamp interval in the log file; Setting to 0 disables the
timestamp

-n Avoids auto-backgrounding

-p socket Specifies an alternative socket to listen to for remote syslog connections

-r Enables receipt of remote syslog connections

-s domainlist Specifies a list of domain names that will be stripped off before logging.

-v Prints syslogd version.

A Linux server has the capability of becoming a remote syslog server. By default, this option is
turned off. By using the -r option for the syslogd program, the Linux server accepts syslog
messages sent from remote hosts and logs them in its own log files. This technique is handy if
you have several Linux servers and want to redirect their logs to a single place.

Installing Email Services in Linux

PART II
388

CAUTION

You should use the -r option with caution if you are directly connected to the
Internet. A well-known hacker technique involves sending massive numbers of bogus
syslog messages to a remote host’s syslog port to flood the server and create a
denial-of-service situation.

By default, the syslogd program reads a configuration file at startup to determine the actions
that it should take for particular events. The next section describes the format of the syslogd
configuration file.

syslogd Configuration File
The syslogd configuration file is located by default at /etc/syslog.conf. It contains direc-
tives that tell the syslogd program what type of events to log, and how to log them.

17 0672318342 CH14 2/14/00 2:35 PM Page 388

The format of the /etc/syslog.conf file is

event.priority action

Each line in the /etc/syslog.conf file represents different actions. There are three actions
that can be taken for events:

• Displaying the event message to the system console

• Logging the event message to a log file

• Sending the event message to a remote log host

The syslogd configuration file consists of combinations of events and actions that define the
characteristics of the syslogd program. Listing 14.7 shows a sample /etc/syslog.conf file.

LISTING 14.7 Sample /etc/syslog.conf File

1 # Log all kernel messages to the console.
2 # Logging much else clutters up the screen.
3 kern.* /dev/console
4
5 # Log anything (except mail) of level info or higher.
6 # Don’t log private authentication messages!
7 *.info;mail.none;authpriv.none /var/log/messages
8
9 # The authpriv file has restricted access.
10 authpriv.* /var/log/secure
11
12 # Log all the mail messages in one place.
13 mail.* /var/log/maillog
14
15 # Everybody gets emergency messages, plus log them on another
16 # machine.
17 *.emerg *
18 *.emerg @meshach.smallorg.org
19
20 # Save mail and news errors of level err and higher in a
21 # special file.
22 uucp,news.crit /var/log/spooler

Listing 14.7 shows an /etc/syslog.conf file from a Mandrake Linux 6.0 system. Lines 1 and
2 start off by showing how to use comments within the configuration file. These lines are not
processed by syslogd. Line 3 shows wildcard characters in the configuration, which indicates
that all kernel event messages of any priority will be sent to the system console. Line 7 is a
good example of a complex configuration.

Mailserver Administration

CHAPTER 14
389

14

M
A

ILSER
V

ER
A

D
M

IN
ISTR

A
TIO

N

17 0672318342 CH14 2/14/00 2:35 PM Page 389

Multiple events can be configured for a single action line. A semicolon separates event and pri-
ority pairs. The first pair is *.info. This defines all events of priority info and higher.
Remember that specifying a particular priority also specifies the priorities higher in the list.

The second pair, mail.none, might look confusing. You might be wondering why there is no
none priority. This event pair excludes all mail events of any priority from the previous defini-
tion. The next pair, authpriv.none, does the same. This statement, in effect, logs all events
except mail and authpriv events, of priority info and higher to the log file /var/log/mes-
sages.

Lines 10 and 13 define what is happening to the authpriv and mail events. Line 10 defines
that all authpriv events of any priority get logged to a separate file /var/log/secure.
Similarly, line 13 defines that all mail events of any priority get logged to a separate file named
/var/log/maillog. This is an extremely handy way of parsing event messages by separating
them into their own log files. As the mail administrator, you’ll want to define a separate place
to put all mail-related event messages to make it easier to spot mail problems on the system.

Line 18 shows an example of using a remote syslog server to log messages. Any emergency
priority messages are sent to the remote host meshach.smallorg.org. If there is a serious error
on the host, you might not get a chance to see the log file on it, so it is often a good idea to
send these messages elsewhere (assuming that the serious error does not prevent the Linux sys-
tem from sending the messages).

Watching for Hackers and Spammers
One of the most difficult jobs of the mail administrator is trying to protect the integrity of the
mailserver. It is crucial that individual users’ mail messages not be compromised in any way.
Often the mail administrator can get clues about illegal activity from the log files. Listing 14.8
shows part of a sample /var/log/maillog file from a Mandrake Linux mailserver.

LISTING 14.8 Sample Log File with SMTP Session

1 Nov 2 19:09:12 shadrach sendmail[5365]: NOQUEUE: “wiz” command from
➥ [192.168.1.15] (192.168.1.15)
2 Nov 2 19:09:14 shadrach sendmail[5365]: NOQUEUE: “debug” command from
➥ [192.168.1.15] (192.168.1.15)

Listing 14.8 shows two attempts to access the sendmail program via the network. Both times
the hacker attempted to use the archaic sendmail hacker commands “wiz” and “debug” that
have long since been disabled. By reading the log file, you can determine the source address
from which the commands were sent. It is proper Internet protocol to inform your ISP of this
illegal attempt on your Linux mailserver. With any luck the ISP can track down the source of
the hacking attempts.

Installing Email Services in Linux

PART II
390

17 0672318342 CH14 2/14/00 2:35 PM Page 390

Besides sendmail event messages, you might also find other types of mail messages in the
/var/log/maillog log file. Listing 14.9 shows an example of a client trying to log in to the
POP3 server.

LISTING 14.9 Sample Log File with POP3 Session

1 Nov 2 16:24:49 shadrach ipop3d[5373]: port 110 service init from
➥ 192.168.1.15
2 Nov 2 16:24:49 shadrach ipop3d[5373]: Login failure user=rich
➥ host=[192.168.1.15]
3 Nov 2 16:24:52 shadrach ipop3d[5373]: AUTHENTICATE LOGIN failure
➥ host=[192.168.1.15]
4 Nov 2 16:24:52 shadrach ipop3d[5373]: Command stream end of file while
➥ reading line user=??? host=[192.168.1.15]
5 Nov 2 16:24:55 shadrach ipop3d[5374]: port 110 service init from
➥ 192.168.1.15
6 Nov 2 16:24:55 shadrach ipop3d[5374]: Login failure user=rich
➥ host=[192.168.1.15]
7 Nov 2 16:24:58 shadrach ipop3d[5374]: AUTHENTICATE LOGIN failure
➥ host=[192.168.1.15]

Listing 14.9 shows the log file for the mail events generated by a mail user who did not know
his password. Notice how in lines 2 and 6 the POP3 server program generated warning mes-
sages regarding the failed login attempts that include the source IP address of the site attempt-
ing to log in. Had this been a real hacker, your ISP could attempt to trace the IP address back
to determine where the hacker was trying to log in from.

Summary
Administrating a mailserver is more than just installing software. Userids must be created and
maintained to allow users to connect and read their mail messages. Linux provides several
methods of manipulating userids. The useradd program is a console-based tool that can add
and modify userids. The kuser program is a graphical tool that can be used to manipulate
userids. Both produce the same results—userids are kept in the /etc/passwd file, and, option-
ally, the /etc/shadow file contains the user passwords. The mail administrator is also responsi-
ble for watching the Linux syslogd log files for improper behavior, both from the server and
from users. Any hardware or software problems will be logged in the log file, and should be
addressed as quickly as possible to prevent unnecessary server downtime. Attacks on the server
can also be monitored by closely watching mail events. Excessive bad logins and invalid con-
nection attempts are clues either that one of your users is going to call you with a problem, or
that someone is trying to hack into your mailserver.

Mailserver Administration

CHAPTER 14
391

14

M
A

ILSER
V

ER
A

D
M

IN
ISTR

A
TIO

N

17 0672318342 CH14 2/14/00 2:35 PM Page 391

392

17 0672318342 CH14 2/14/00 2:35 PM Page 392

CHAPTER

15
Configuring LAN Clients

IN THIS CHAPTER
• Requirements for a LAN Client 394

• Netscape Messenger 402

• Microsoft Outlook Express 407

• Qualcomm Eudora Light 412

18 0672318342 CH15 2/14/00 2:44 PM Page 393

After the Linux mailserver is configured and operational, the next step is to allow network
clients to access their mailboxes on the server. First, the network clients must be configured to
work in an IP environment on the network. This chapter describes the steps necessary to install
Microsoft Windows 95, 98, and NT 4.0 workstations on the network. This chapter also
describes the software required to connect to the Linux mailserver from the workstation clients.
As discussed in Chapter 6, “POP3 Protocol,” and Chapter 7, “IMAP Protocol,” several client
software packages are available to read mail messages from the mailserver. Because this book
relates to creating an email environment as inexpensively as possible, this chapter discusses
only email client software packages that are freely available, such as

Netscape Navigator

Outlook Express

Eudora Light

Both Netscape Navigator and Outlook Express are parts of larger, more complex programs.
Although they are good products, they tend to only work well on high-end Pentium worksta-
tions. They also tend to use up a lot of disk space on the workstation. Eudora Light is an excel-
lent package for offices that have older, underpowered workstations, such as 486s, or
workstations that do not have a lot of available disk space.

There are also other free email client software packages available besides those discussed in
this chapter. The three packages described are representative of POP3 and IMAP client soft-
ware packages. If you find another email client package available on the Internet, you can use
these packages for comparison purposes to determine what features meet the requirements for
your office mail system.

Requirements for a LAN Client
The mail administrator must make several decisions when choosing email client software.
Much like choosing a method of connecting the mailserver to the Internet, choosing an email
workstation client package often comes down to political decisions. This section describes the
technical requirements that an email client should meet in order to properly read mail mes-
sages from the Linux mailserver. One of the political decisions that this section assumes is that
the user workstations are running the Microsoft family of operating systems: Windows 95, 98,
and NT 4.0. Similar features are also required for workstations running either an Apple- or
UNIX-based operating system. Another assumed political decision is that the Linux mailserver
is running either POP3 or IMAP server software. Chapter 6 discusses how to configure a POP3
server, whereas Chapter 7 discusses how to configure an IMAP server.

Installing Email Services in Linux

PART II
394

18 0672318342 CH15 2/14/00 2:44 PM Page 394

Configuring LAN Clients

CHAPTER 15
395

15

C
O

N
FIG

U
R

IN
G

LA
N

 C
LIEN

TS

Windows 2000
At the time of this writing, Microsoft’s newest operating system, Windows 2000, has
not officially been released. The details available with the beta release versions of
Windows 2000 indicate that the information presented in this chapter will also apply
to a Windows 2000 workstation installation. If in doubt please consult the Windows
2000 documentation.

Network Connection
The most basic requirement for a network client is a connection to the network. To accomplish
this, the client workstation must have some type of network card installed. Microsoft Windows
95, 98, and NT workstations all support the use of network cards to connect to a local net-
work. Additionally, some kind of network system must be in place in the organization to con-
nect the network workstations and Linux mailserver together. 100MB Ethernet hubs or
switches are often used to connect network devices. For a small office network that is used pri-
marily for email and maybe some file sharing, older (and cheaper) 10MB hubs will work just
fine.

Microsoft Windows 95 and 98 Network Card Setup
Installing a network card in a Windows 95 or 98 computer is often an easy job. Windows 95
and 98 utilize the plug-and-play feature to autodetect new network cards that are inserted in
the computer. After the network card is detected, the Install Wizard walks you through the
steps necessary to load the appropriate drivers. If your network card was not detected, you can
manually add it using the Network function available in the Control Panel. Figure 15.1 shows
the Windows 95 and 98 Network window.

If the network card was detected at boot, it appears in the list of Configuration items. If not,
you can click the Add button to install the network card. The Select Network Component Type
window should appear, asking you what to add. Select the Adapter icon and then click the Add
button.

After selecting the Add button, you should get the Select Network adapters window shown in
Figure 15.2. From here, you can either select one of the adapters defined in Windows 95 or 98
or you can click the Have Disk button to use the driver disk that came with your network
adapter. After the driver loads, Windows 95 or 98 should recognize your network card. You
can determine that your card is recognized by observing the main Network window shown in
Figure 15.1.

18 0672318342 CH15 2/14/00 2:44 PM Page 395

FIGURE 15.1
The Windows 95 and 98 Network window.

Installing Email Services in Linux

PART II
396

FIGURE 15.2
The Windows 95 and 98 Select Network adapters window.

Existing Drivers
Often if a workstation is upgraded from Windows 3.1 to Windows 95 or 98, any pre-
existing NDIS or ODI drivers are migrated to the Windows network setup (as shown
in Figure 15.2). This does not produce the most efficient network configuration. If
your network card supports Windows 95 or 98 drivers, use those instead of the NDIS
or ODI driver.

18 0672318342 CH15 2/14/00 2:44 PM Page 396

Microsoft NT 4.0 Workstation Network Card Setup
Installing network cards in a Microsoft Windows NT 4.0 workstation is not as easy as for
Windows 95 and 98 workstations. Windows NT 4.0 does not support the plug-and-play archi-
tecture, so the network card must be manually added. As with Windows 95 and 98 worksta-
tions, you can access this function from the Network function in the Control Panel window.
Figure 15.3 shows the main Network window.

Configuring LAN Clients

CHAPTER 15
397

15

C
O

N
FIG

U
R

IN
G

LA
N

 C
LIEN

TS

FIGURE 15.3
The Windows NT 4.0 workstation Network window.

You must select the Adapters tab to view the current network cards installed or to add a new
network card. Figure 15.4 shows the Adapters tab of a Windows NT 4.0 workstation.

Clicking the Add button causes the Select Network Adapter window to appear. From the Select
Network Adapter window, you can either select a preconfigured Windows NT driver for your
network card or select the Have Disk button to use the driver disk that came with your network
card. Figure 15.5 shows the Select Network Adapter window. After installing the appropriate
driver for your network card, Windows NT 4.0 workstation should now recognize the network
card. This can be determined by observing the Adapters tab shown in Figure 15.4.

IP Address
The second item that must be configured on the client workstation is a valid IP address for
your network. The workstation must use the IP protocol to communicate with the Linux
mailserver. Configuring an IP address for a workstation is a relatively simple task. Many net-
works have network administrators who manually assign IP addresses. Other networks have

18 0672318342 CH15 2/14/00 2:44 PM Page 397

DHCP servers that automatically assign an IP address as the workstation boots up. You will
have to consult your network administrator to determine which method your network uses. If
you are the network administrator, that should not be a problem.

Installing Email Services in Linux

PART II
398

FIGURE 15.4
The Windows NT 4.0 workstation Network Adapters window.

FIGURE 15.5
The Windows NT 4.0 workstation Select Network Adapter window.

If your network does not already have an IP address scheme, you must decide on one to use.
The most common scheme for local networks is to use the Internet class B public IP domain:
192.168.0.0. This is an address range set aside by the Network Information Center to be used
for local networks not directly connected to the Internet or connected through an IP proxy
server (see Chapter 19, “IP Routing with Linux”). You can then choose to use either the entire
192.168.0.0 address range or a subset of it; for example, just the 192.168.1.0 network. This

18 0672318342 CH15 2/14/00 2:44 PM Page 398

determines the subnet mask that you will use on your workstations. Each workstation on the
network should use the same subnet mask. The most common method is to use a subnet of
192.168.1.0, with a subnet mask of 255.255.255.0. This allows for 254 hosts on the network.

After the IP address scheme has been determined for your network, each device on the network
must have its own address. The following sections describe how to configure an IP address on
Microsoft Windows 95, 98, and NT 4.0 workstations.

Microsoft Windows 95 and 98 IP Configuration
Configuring an IP address on a Windows 95 or 98 workstation is a simple task. First, you must
ensure that the TCP/IP protocol is added to the networking software. The IP address function
can be accessed from the Network function on the Control Panel. Figure 15.1 showed the
Network window for a Windows 95 or 98 workstation.

To add TCP/IP protocol support to the workstation, you can click the Add button in the main
Network window. This produces the Select Network Component Type window discussed ear-
lier. From there, you can select the Protocol icon and click the Add button. This produces the
Select Network Protocol window shown in Figure 15.6.

Configuring LAN Clients

CHAPTER 15
399

15

C
O

N
FIG

U
R

IN
G

LA
N

 C
LIEN

TS

FIGURE 15.6
The Windows 95 and 98 Network Select Network Protocol window.

From this window, you can click once on the Microsoft icon, select the TCP/IP icon. This will
install the TCP/IP protocol on the Windows 95 or 98 workstation. You might need to insert the
Windows 95 or 98 media with which you installed the operating system as new files are
loaded onto the system.

The next step is to configure the IP address necessary to communicate on your network. By
selecting the TCP/IP icon on the main Network window, you will see the TCP/IP Properties
window shown in Figure 15.7.

18 0672318342 CH15 2/14/00 2:44 PM Page 399

FIGURE 15.7
The Windows 95 and 98 Network TCP/IP Properties window.

Within the TCP/IP Properties window, you can select the method by which the workstation
will receive an IP address: either automatically by a DHCP server on your network or manu-
ally by specifying an IP address and subnet mask in the appropriate fields. After you click the
OK button, these values will take effect after the workstation reboots.

Microsoft Windows NT 4.0 Workstation IP Configuration
Configuring an IP address for a Windows NT 4.0 workstation uses a similar technique as for
Windows 95 and 98 workstations. You must first select the Network function from the Control
Panel window to get the Network window shown in Figure 15.3. From that window, you must
select the Protocols tab to view the installed protocols on the workstation. Figure 15.8 shows
an example of the Network Protocols window.

If the TCP/IP protocol does not appear in the Network Protocols list, you must click the Add
button to install it. This produces the Select Network Protocol window shown in Figure 15.9.
Select the TCP/IP icon to install the protocol. You might have to insert the media disk that was
used to install the operating system because Windows NT must install several new files to sup-
port the TCP/IP protocol.

Installing Email Services in Linux

PART II
400

18 0672318342 CH15 2/14/00 2:44 PM Page 400

FIGURE 15.8
The Windows NT 4.0 workstation Network Protocols window.

Configuring LAN Clients

CHAPTER 15
401

15

C
O

N
FIG

U
R

IN
G

LA
N

 C
LIEN

TS

FIGURE 15.9
The Windows NT 4.0 workstation Select Network Protocol window.

After the TCP/IP protocol is installed, you can return to the main Network window and select
the Protocols tab. Now the TCP/IP protocol should appear as an installed protocol, as shown in
Figure 15.8. Now, you can select the TCP/IP icon and click the Properties icon to display the
Microsoft TCP/IP Properties window shown in Figure 15.10.

18 0672318342 CH15 2/14/00 2:44 PM Page 401

FIGURE 15.10
The Windows NT 4.0 workstation Microsoft TCP/IP Properties window.

The Microsoft TCP/IP Properties window enables you to select the method that the Windows
NT 4.0 workstation will use to obtain an IP address: either automatically by using a DHCP
server on your network or manually by specifying an IP address and subnet mask in the appro-
priate fields. You can click the Apply button for these values to take effect immediately.

Netscape Messenger
After the network card and IP protocol are configured for the workstation, you must install an
email client software package to enable the user to connect to the Linux mailserver and read
mail messages. This section covers installing and using the Netscape Messenger email client
software.

Netscape Messenger is part of a larger software package, Netscape Communicator. Netscape
Communicator includes Web browsing and Web page creation software as well as email client
software. If your network clients will not do any Web browsing, this software package might
be overkill. However, it does have the nice feature of being able to use either the POP3 or
IMAP protocols to retrieve mail from the mailserver.

Downloading Messenger
The Netscape Communicator software package is freely available for downloading from
Netscape’s home page at http://www.netscape.com. You can also order a CD-ROM that con-
tains the latest version of the software package. If you are planning to install lots of network
clients, it might be easier to obtain the CD-ROM version of the software.

Installing Email Services in Linux

PART II
402

18 0672318342 CH15 2/14/00 2:44 PM Page 402

At the time of this writing, the latest version of Netscape Communicator is version 4.7. You
can also directly download the software from the ftp.netscape.com FTP site using the userid
anonymous, and your email address as the password. Currently, Communicator 4.7 is located in
the directory

/pub/communicator/english/4.7/windows/windows95_or_nt/complete_install

When there, you can use the BINARY FTP mode to download the file cc32e47.exe, which is the
self-extracting installation file for Netscape Communicator version 4.7.

Installing Messenger
Installing the Netscape Communicator software is easy. If you downloaded the program from
the Web site or the FTP site, you can double-click the cc32e47.exe icon from Windows
Explorer to start the installation process. If you are installing Communicator from a CD-ROM,
the installation program automatically starts when you insert the CD. After the initial
InstallShield progress screens, the main Netscape Communicator Setup screen appears.

After clicking the Next button and agreeing to the licensing agreement, the Setup Type window
appears. From this window, you can choose how to load the Communicator program. The
Typical install option installs the complete package—about 44MB. If you do not need all the
fancy multimedia player software used in the Web browser, you can select the Custom install
option and opt not to install those pieces to save some disk space. Either option will install the
main Netscape Communicator software that you need.

After selecting the type of install you want, the InstallShield wizard asks a few more house-
keeping questions, and then verifies that you want to install using the options you selected.
After clicking the Install button, InstallShield copies the Netscape Communicator files to the
location you selected.

After the installation program is complete, a new program group should appear on the worksta-
tion’s Program list for Netscape Communicator, as well as a new desktop icon for the
Communicator package. To access the Netscape Messenger program directly, select it from the
Netscape Communicator program group.

Configuring Messenger
The first time you run Netscape Messenger, it asks you to create a profile. Profiles are used to
track individual configuration information that is created while using Communicator. After
clicking the Next button, Messenger asks for a specific profile name to use. If only one person
will use the workstation, you can select the default profile. If more than one person will use the
workstation, you can create a separate profile for each user so that they can all access their
own mail. Netscape user profiles, although a nice feature, do not provide any privacy between

Configuring LAN Clients

CHAPTER 15
403

15

C
O

N
FIG

U
R

IN
G

LA
N

 C
LIEN

TS

18 0672318342 CH15 2/14/00 2:44 PM Page 403

users on the same workstation. You should remember that profiles are not protected and any
user can access any other user’s profile.

Installing Email Services in Linux

PART II
404

Windows Default Mail Applications
After the profile has been created, Messenger asks whether you want Netscape
Messenger to be the default mail application for the workstation. If Messenger is the
only mail application you are to use, select Yes. If you have another mail application,
select No.

To start Netscape Messenger, select it from the Programs Start menu item. Figure 15.11 shows
the main Netscape Messenger window that will appear.

FIGURE 15.11
The Netscape Messenger main window.

To configure Messenger for your Linux mailserver, you must go to the Edit, Preferences menu
option. The Preferences window will appear, allowing you to modify the settings within
Messenger.

By clicking the Mail Servers menu item, the Mail Servers configuration window appears, as
shown in Figure 15.12.

To configure Messenger to access the Linux mailserver, click the Add button. The Mail Server
Properties window shown in Figure 15.13 enables you to configure the details for the remote
Linux mailserver. You must select the type of access you need: either POP3 or IMAP.
Additional configuration information is required depending on which type of email server

18 0672318342 CH15 2/14/00 2:44 PM Page 404

access you select. Remember that for POP3 connections, all mail messages are downloaded to
the local workstation; for IMAP connections, the mail messages remain on the mailserver at all
times. You might notice the options available for each method change. For a POP3 server,
Messenger asks whether you want to delete the message from the server after downloading. In
this environment, that is probably the best thing to do. For an IMAP server, Messenger enables
you to configure any predefined folders that are available on the mailserver.

Configuring LAN Clients

CHAPTER 15
405

15

C
O

N
FIG

U
R

IN
G

LA
N

 C
LIEN

TS

FIGURE 15.12
The Netscape Messenger Mail Servers configuration window.

FIGURE 15.13
The Netscape Messenger Mail Server Properties window.

After creating a default mailserver, Messenger is ready to connect to the server and retrieve
new mail messages. To send messages from this workstation, you must configure the Outgoing
Mail Server parameters as shown in Figure 15.12. The Outgoing mail (SMTP) server address

18 0672318342 CH15 2/14/00 2:44 PM Page 405

field is the IP address of the Linux mailserver. This configuration uses the Linux mailserver to
relay outgoing messages from the workstation to the Internet or other local network users.
Remember to configure the sendmail program on the Linux mailserver to allow local worksta-
tions to relay mail messages (see Chapter 13, “Connecting the Mailserver to an ISP”). Also,
you must set your identity in Messenger using the Edit, Preferences menu item, and selecting
the Identity option as shown in Figure 15.14. You should enter the email address of the person
using the workstation in the email address field. This string is used as the return address in all
outgoing messages.

Installing Email Services in Linux

PART II
406

FIGURE 15.14
The Netscape Messenger Identity configuration window.

Using Messenger
After configuring Messenger for the local Linux mailserver, you can use it to send and receive
mail. After you click on the Get Msgs icon at the top of the main window, Messenger will ask
for your password, and then attempt to connect to the Linux mailserver and retrieve any mes-
sages in your INBOX folder using the mail protocol that you specified. If you specified the
IMAP protocol, Messenger will show a separate INBOX for the remote Linux mailserver
(remember that the IMAP protocol keeps the messages on the mailserver). Either way, new
messages will appear in the INBOX folder. The message headers are shown in the list on the
rightmost side. By clicking on the message header, the body will appear in the lower window.
Messenger supports messages sent in HTML format by displaying them as a Web page in the
window.

18 0672318342 CH15 2/14/00 2:44 PM Page 406

Sending messages is just as easy. Clicking on the New Msg button produces the Composition
window shown in Figure 15.15. The top section specifies the recipients of the message. You
can change a recipient from a To: to a CC: or BCC: by clicking on the To: icon. As in received
messages, Messenger supports sending HTML-formatted messages. By default, Messenger
attempts to convert the message to text format if the receiving mail host can not accept HTML-
formatted mail. You can change the default behavior by using the Edit, Preferences menu item
and selecting the Formatting option from the Mail & Newsgroups area. Messenger also sup-
ports attaching binary files to messages using the MIME encoding method. This greatly simpli-
fies file transfers between people within the office.

Configuring LAN Clients

CHAPTER 15
407

15

C
O

N
FIG

U
R

IN
G

LA
N

 C
LIEN

TS

FIGURE 15.15
The Netscape Messenger Composition window.

The Netscape Messenger mail package is a good email client package. Its support of both
POP3 and IMAP protocols makes it extremely versatile. Unfortunately, the large installation
size of Netscape Communicator can sometimes be a problem with small offices that might
have underpowered workstations to support.

Microsoft Outlook Express
Another popular free email software package is Microsoft Outlook Express. This is a trimmed-
down version of the standard Microsoft Outlook email program often used with the Microsoft
Exchange email server. Much like Netscape Messenger, Microsoft Outlook Express is a piece
of a larger software package; in this case, Internet Explorer. Internet Explorer version 5.0 is
the default Web browsing software in the Windows 98 operating system. This section describes
how to get and install the Microsoft Internet Explorer package and how to configure and use
the Outlook Express package with a Linux mailserver.

18 0672318342 CH15 2/14/00 2:44 PM Page 407

Downloading
The Microsoft Internet Explorer software package is freely available for downloading from
Microsoft’s home page at http://www.microsoft.com. From there, you can also order a CD-
ROM that contains the latest version of the software package. Again, if you are planning on
installing many network clients, it might be easier to spend the few dollars and obtain a CD-
ROM version of the software.

At the time of this writing, the current version of Internet Explorer is version 5.0. The Internet
Explorer 5.0 package includes Outlook Express version 5. It is available from a link on
Microsoft’s Web home page. Unlike the Netscape installation in which you download the com-
plete install file, Microsoft’s installation does things a little bit differently. All you download is
a setup file: ie5setup.exe. That file does not contain the entire installation for Internet
Explorer. When you run the ie5setup.exe program, it uses a Web connection to download the
rest of the Internet Explorer program to the workstation. This requires each workstation to be
able to communicate with the Internet for the installation to work. If that is not the case with
your office network, you should request Internet Explorer on CD-ROM.

Installing Outlook Express
When you install Internet Explorer from either the CD-ROM or the Web page install, the
Install Wizard appears and guides you through the installation. You have the option of
installing just the Web browser software or the complete package. To get the Outlook Express
software, you must install the complete package. The complete Internet Explorer package takes
about 17MB of disk space.

After the Install Wizard is complete, Internet Explorer reboots the system. When the system
starts up, the Install Wizard completes a few more tasks and then starts the Internet Connection
Wizard to enable you to configure the software for your Internet and mail environments.

Configuring Outlook Express
After rebooting, the Internet Connection Wizard window appears. It offers you several choices
of how to connect to the Internet. Select the option to manually configure the Internet connec-
tion. The wizard steps you through defining your network connection. Select the local area net-
work (LAN) option because that is how you will connect to the Linux mailserver.

When the Internet connection part is completed, the Internet Connection Wizard asks whether
you want to set up an Internet mail account. You can answer Yes to this question to configure
your Linux mailserver account in Outlook Express. As in the Netscape Messenger installation,
Outlook Express queries for specific information regarding the Linux mailserver: your user-
name, email address (including domain name), and server address. Remember to enter the

Installing Email Services in Linux

PART II
408

18 0672318342 CH15 2/14/00 2:44 PM Page 408

proper domain name for your email address or your messages might not have the proper return
address on them.

Outlook Express also gives you the option of using either the POP3 or IMAP protocols to con-
nect to the mailserver. Remember that when you select the IMAP option, all the mail messages
remain in folders on the Linux mailserver. The POP3 option downloads the messages to the
local workstation. It is advisable to not allow Outlook Express to remember the password for
the user account on the Linux mailserver. This could be a security risk if other people have
access to the workstation.

After Outlook Express is configured, you can go back and change the mailserver settings by
using the Tools, Accounts menu item. This produces the Internet Accounts dialog box shown in
Figure 15.16.

Configuring LAN Clients

CHAPTER 15
409

15

C
O

N
FIG

U
R

IN
G

LA
N

 C
LIEN

TS

FIGURE 15.16
The Microsoft Outlook Express Internet Accounts dialog box.

By clicking the Properties button, values can be changed for the mailserver connection. By
clicking the Add button, a new mailserver connection can be defined. Figure 15.17 shows the
Properties dialog box for the mailserver connection.

The General tab contains information about the name and email address that the user will be
using in mail messages. The Servers tab contains information about the type of mailserver
(POP3 or IMAP) and the network addresses of the inbound and outbound mail servers. The IP
address of the Linux mailserver should be used in both these fields. Again, remember to con-
figure the sendmail program on the Linux mailserver to allow local network users to relay
SMTP messages, or the outbound mail function on Outlook Express will not work.

Using Outlook Express
The first time you attempt to connect to the Linux mailserver, Outlook Express will query for
the password needed to connect to the Linux mailserver mail account. Figure 15.18 shows the
connection dialog box.

18 0672318342 CH15 2/14/00 2:44 PM Page 409

FIGURE 15.17
The Microsoft Outlook Express mailserver Properties dialog box.

Installing Email Services in Linux

PART II
410

FIGURE 15.18
The Microsoft Outlook Express connection dialog box.

After entering the appropriate password, Outlook Express connects to the Linux mailserver
and retrieves any messages waiting for the user. The basic layout of Outlook Express is similar
to that of the Netscape Messenger package. As shown in Figure 15.19, message headers are
listed in a small window at the right side of the main window. The message body is displayed
in a window beneath the headers list. Separate mail folders are listed on the left side. If you
select the IMAP protocol to retrieve messages from the mailserver, the mailserver folders are
listed separate from the local workstation folders. Thus, for IMAP servers, the Inbox for the
server is different than the Inbox on the workstation.

To compose new messages, click the New Mail icon at the top of the main window. The New
Message window shown in Figure 15.20 appears. You can enter the recipient email names in
either the To: or Cc: line. You must use the full domain email name of the recipients when

18 0672318342 CH15 2/14/00 2:44 PM Page 410

entering addresses here. If you want, you may enter addresses into the Outlook address book,
assigning nicknames to fully qualified domain email addresses to simplify things. As with
Netscape Messenger, Outlook Express enables you to send and receive HTML-formatted mail
messages. Also, Outlook Express supports binary file attachments to messages by clicking the
Attach icon at the top of the New Message window.

Configuring LAN Clients

CHAPTER 15
411

15

C
O

N
FIG

U
R

IN
G

LA
N

 C
LIEN

TS

FIGURE 15.19
The Microsoft Outlook Express main window.

FIGURE 15.20
The Microsoft Outlook Express New Message dialog box.

18 0672318342 CH15 2/14/00 2:44 PM Page 411

The Microsoft Outlook Express email client is a nice email tool to have in the office. If your
office does not do Web browsing, there might be too much overhead though with this package.
As with the Messenger package, Internet Explorer is not for offices that must support worksta-
tions that are a little underpowered. The next package described solves this problem.

Qualcomm Eudora Light
The Qualcomm corporation was already mentioned before in this book. Chapter 6 discussed
using the Qpopper POP3 server program for the Linux mailserver. Qualcomm maintains the
Eudora Pro email client package as well. Besides the Eudora Pro package, Qualcomm pro-
duces a free version of Eudora Pro called Eudora Light. This section describes how to down-
load, install, and use the Eudora Light email client package.

Downloading Eudora Light
The Eudora Light software package can be downloaded from the Eudora Web site at
http://www.eudora.com/eudoralight/. You must fill in a short questionnaire before you are
allowed to download the software. If you are not into completing questionnaires, you can FTP
the file from the Eudora FTP server:

ftp://ftp.eudora.com/eudora/eudoralight/windows/english/306/eul306.exe

The file is about 4.6MB in size. As before, remember to use the BINARY FTP mode when
downloading. The eul306.exe file contains the complete Eudora Light installation program, so
it can be copied and used on any workstations that must have email client software installed.

Installing Eudora Light
Eudora Light uses InstallShield to install the software, so installation is easy. By running the
eul306.exe program, InstallShield begins. There are a few questions that you will have to
answer first. One screen prompts you to select either the 16-bit or 32-bit version of Eudora
Light. If you are using Windows 95, 98, or NT you should select the 32-bit version.

After the InstallShield program is finished, there should be a new program group, named
Eudora Light, in the program listing that contains the Eudora Light executable program icon.

Configuring Eudora Light
After Eudora Light is installed, it can be configured. Start Eudora Light by clicking on the
Eudora Light program icon from the Eudora Light program group in the program listing. The
main client window appears as shown in Figure 15.21.

Installing Email Services in Linux

PART II
412

18 0672318342 CH15 2/14/00 2:44 PM Page 412

FIGURE 15.21
The Eudora Light main client window.

To get to the configuration window from the main client window, select the Tools, Options
menu items. The Options window shown in Figure 15.22 appears.

Configuring LAN Clients

CHAPTER 15
413

15

C
O

N
FIG

U
R

IN
G

LA
N

 C
LIEN

TS

FIGURE 15.22
The Eudora Light Options window.

Several options must be configured for Eudora Light to work properly with the Linux
mailserver. First, you must select the Checking Mail icon to configure basic information on
where your mailbox is located. As shown in Figure 15.22, you must enter your username and

18 0672318342 CH15 2/14/00 2:45 PM Page 413

the IP address of the Linux mailserver in the POP account field. One nice feature of Eudora
Light is that it supports encrypted POP authentication methods. As shown in the figure, this
example uses the APOP authentication method. Remember that the POP3 server must also be
configured to support the APOP authentication or the client will not be able to log in to the
POP3 server.

After the Checking Mail fields have been completed, you must select the Sending Mail icon to
configure how Eudora Light will send messages. As in the other software packages, use the IP
address of the Linux mailserver as the SMTP server. Also as before, ensure that the sendmail
program on the Linux mailserver is configured to relay SMTP messages from clients on your
local network.

Using Eudora Light
The first time you use Eudora Light, it asks for the password to your account on the Linux
mailserver. After you enter your password, Eudora Light attempts to connect to the mailserver
and download any new messages. To check for new messages after you have logged in to the
mailserver, click the Check Mail icon at the top of the main window.

The main window shown in Figure 15.21 shows the message headers in the rightmost window
and the mailbox folders in the leftmost window. To view a message, double-click the message
header. The message header list will be replaced with the message body. To return to the Inbox
listing, double-click the In icon on the left side.

To compose a new message, click the New Message icon at the top of the main window. This
produces the New Message window shown in Figure 15.23.

In the New Message window, you can insert recipient addresses in the To: and Cc: lines. As in
Messenger and Outlook, you can configure commonly used email addresses in the Address
Book to simplify adding them to email messages. Unlike Messenger and Outlook, Eudora does
not support mail in HTML format. It does, however, support binary file attachments like the
other packages.

Eudora Light is a nice lightweight email client package that can meet the basic email needs of
any office. It works great for offices that might have some older underpowered workstations
still in use.

Installing Email Services in Linux

PART II
414

18 0672318342 CH15 2/14/00 2:45 PM Page 414

FIGURE 15.23
The Eudora Light New Message window.

Summary
Installing network clients to communicate with the Linux mailserver on the office network
requires two things: a network card and an IP address. You can use the Control Panel Network
function to install the network card in a Windows 95, 98, or NT 4.0 workstation. Also, you can
use the Network function to install the TCP/IP protocol and assign an IP address to the work-
station. Besides network services, workstation should have some kind of POP3 or IMAP client
software to connect to the Linux mailserver. Many high-quality products are available for free.
Three software packages described in this chapter are Netscape Messenger, Microsoft Outlook
Express, and Qualcomm Eudora Light. All three packages allow the workstation to connect to
the Linux mailserver by using either the POP3 or IMAP protocol, to process mail messages on
the server, as well as to send messages through the mailserver to other mail recipients.

Configuring LAN Clients

CHAPTER 15
415

15

C
O

N
FIG

U
R

IN
G

LA
N

 C
LIEN

TS

18 0672318342 CH15 2/14/00 2:45 PM Page 415

416

18 0672318342 CH15 2/14/00 2:45 PM Page 416

IN THIS PART
16 Supporting Dial-In Clients 419

17 Mail Aliases and Masquerading 443

18 Mail Lists 459

19 IP Routing with Linux 483

Advanced Topics
PART

III

19 0672318342 pt3 2/14/00 2:47 PM Page 417

19 0672318342 pt3 2/14/00 2:47 PM Page 418

CHAPTER

16
Supporting Dial-In Clients

IN THIS CHAPTER
• Configuring Dial-In Modems 420

• Revisiting the mgetty Program 426

• Configuring Windows 95 and 98 Dial-Up
Networking 434

• Configuring Windows NT 4.0 Dial-Up
Networking 436

• Sharing a Modem 440

20 0672318342 CH16 2/14/00 2:35 PM Page 419

If this were a perfect world, there would be no hunger, no war, and no dial-in mail clients.
Unfortunately, you have to live with all three. As a Linux mail administrator, it will most likely
be your job to support clients who want to read their mail messages from a remote location
outside of the office network. The easiest way to accomplish this task is for the Linux
mailserver to support dial-in PPP clients (see Chapter 8, “PPP Protocol”). After a remote client
establishes a PPP connection with the Linux mailserver, the client can behave just as if it were
connected through the local network. This means running one of the email client packages dis-
cussed in Chapter 15, “Configuring LAN Clients.” This chapter describes some methods to
support users dialing in with Windows 95, 98, or NT 4.0 workstations to read their mail mes-
sages on the Linux mailserver.

Configuring Dial-In Modems
If you use a separate modem to support dial-in customers, Linux must first be able to recog-
nize and handle the modem in dial-in mode. Chapter 3, “Installing Communication Devices in
Linux,” discussed methods of connecting a modem to a Linux mailserver. The following sec-
tion describes the software details required to enable the Linux mailserver to support remote
clients dialing into the modem.

Using inittab
After you have installed the modem and created a Linux device, you should ensure that the
Linux mailserver recognizes the modem device and is capable of establishing a session on it.
All Linux devices used for logging in to the system require an entry in the /etc/inittab file.

The /etc/inittab file is used by Linux to execute specific processes at specific init run-levels.
In this situation, the /etc/inittab file defines the Linux devices where users can log in and
know how to handle each individual device. The init program reads the /etc/inittab file
and spawns the required programs to listen to the indicated devices for login attempts. Listing
16.1 shows an example of an /etc/inittab file.

LISTING 16.1 Sample /etc/inittab File

1 # inittab This file describes how the INIT process should set up
2 # the system in a certain run-level.
3 #
4 # Author: Miquel van Smoorenburg, <miquels@drinkel.nl.mugnet.org>
5 # Modified for RHS Linux by Marc Ewing and Donnie Barnes
6 #
7 # Default runlevel. The run-levels used by RHS are:
8 # 0 - halt (Do NOT set initdefault to this)
9 # 1 - Single user mode

Advanced Topics

PART III
420

20 0672318342 CH16 2/14/00 2:35 PM Page 420

10 # 2 - Multiuser, without NFS (The same as 3, if you do not have networking)
11 # 3 - Full multiuser mode
12 # 4 - unused
13 # 5 - X11
14 # 6 - reboot (Do NOT set initdefault to this)
15 #
16 id:3:initdefault:
17 # System initialization.
18 si::sysinit:/etc/rc.d/rc.sysinit
19 l0:0:wait:/etc/rc.d/rc 0
20 l1:1:wait:/etc/rc.d/rc 1
21 l2:2:wait:/etc/rc.d/rc 2
22 l3:3:wait:/etc/rc.d/rc 3
23 l4:4:wait:/etc/rc.d/rc 4
24 l5:5:wait:/etc/rc.d/rc 5
25 l6:6:wait:/etc/rc.d/rc 6
26
27 # Things to run in every runlevel.
28 ud::once:/sbin/update
29
30 # Trap CTRL-ALT-DELETE
31 ca::ctrlaltdel:/sbin/shutdown -t3 -r now
32
33 # When our UPS tells us power has failed, assume we have a few minutes
34 # of power left. Schedule a shutdown for 2 minutes from now.
35 # This does, of course, assume you have powerd installed and your
36 # UPS connected and working correctly.
37 pf::powerfail:/sbin/shutdown -f -h +2 “Power Failure; System Shutting Down”
38
39 # If power was restored before the shutdown kicked in, cancel it.
40 pr:12345:powerokwait:/sbin/shutdown -c “Power Restored; Shutdown Cancelled”
41
42# Run gettys in standard runlevels
43 1:12345:respawn:/sbin/mingetty tty1
44 2:2345:respawn:/sbin/mingetty tty2
45 3:2345:respawn:/sbin/mingetty tty3
46 4:2345:respawn:/sbin/mingetty tty4
47 5:2345:respawn:/sbin/mingetty tty5
48 6:2345:respawn:/sbin/mingetty tty6
49
50 # Set serial line for modem
51 s1:2345:respawn:/sbin/uugetty ttyS0 38400 vt100
52
53 # Run xdm in runlevel 5
54 x:5:respawn:/usr/bin/X11/xdm –nodaemon

Supporting Dial-In Clients

CHAPTER 16
421

16

S
U

PPO
R

TIN
G

D
IA

L-IN
C

LIEN
TS

20 0672318342 CH16 2/14/00 2:35 PM Page 421

The format of each record in the inittab file is

id:runlevels:action:process

where id is a unique ID within the inittab file used to identify the action, runlevels is a list
of init run levels when the action will be taken, action is the init action that will be per-
formed on the process, and process is the specific program that will be run. In Listing 16.1,
lines 43 through 48 demonstrate this format. These lines define the virtual terminals present in
most Linux distributions. They use the standard mingetty program to monitor the appropriate
tty line. Each record represents one tty line. They are set to the respawn action, which
“respawns” a new terminal session when you log off. You might also notice that tty1, the main
console screen, is started at all run levels, but tty2 through tty6 only start at run level 2. In
Linux, init run level 1 is considered the single user mode, thus only one terminal session is
required.

Line 51 defines the dial-in modem on the Linux mailserver. It specifies the inittab id s1,
which is activated on init run levels 2, 3, 4, and 5. The respawn action indicates that the
process defined will be restarted by init whenever the process terminates. The program can
then be restarted automatically after a user terminates the dial-in session. The uugetty program
will be run. It also contains a few command line parameters included in the line to define its
behavior. The uugetty program handles any login attempts coming in on the modem con-
nected to device /dev/ttyS0 (because of the command line parameter ttyS0).

The uugetty program can be used to monitor dial-in lines and establish logins, as well as for
dial-out sessions. It uses UUCP-style lock files to determine whether the modem is already in
use. The uugetty program also can initialize the modem device and listen for login attempts
by default when it respawns after a session. When a connection is made to the modem,
uugetty will send a login prompt and pass the login data to the login program. The following
section describes the uugetty program in more detail.

The uugetty Program
The format of the uugetty command line is

uugetty [-d defaults_file] [-a] [-h] [-r delay] [-t
timeout] [-w waitfor] line [speed [type [lined]]]

Table 16.1 describes the different parameters that are available for the uugetty command line.
These parameters can be used when using uugetty in the /etc/inittab file, as shown in
Listing 16.1.

Advanced Topics

PART III
422

20 0672318342 CH16 2/14/00 2:35 PM Page 422

TABLE 16.1 uugetty Parameters

Parameters Description

-d defaults Defines the location of a defaults file

-h Does not force a hang-up when it starts

-r delay Waits for a single character and then waits the specified number of delay seconds

-t timeout Causes uugetty to exit if no login name is given for timeout seconds

-w waitfor Causes uugetty to wait for the specified string of characters

line Specifies the /dev/line to monitor

speed Specifies the /etc/gettydefs speed definition

type Specifies the termcap terminal definition

lined Specifies the line discipline

The minimum parameters that uugetty needs to operate is the line parameter, which tells it
which device to monitor. In Listing 16.1, uugetty monitors device /dev/ttyS0, or COM1 on
the PC, expecting to talk to the modem at 38400 speed, and expecting a connection with a
remote workstation using the VT100 terminal emulation protocol. The terminal emulation pro-
tocol is important if uugetty is configured to clear the terminal screen or send a greeting ban-
ner (more on that later).

Each line of the configuration file defines a variable representing an action for uugetty. The
format of the lines is

NAME=value

where NAME is a string variable representing the action, and value is the value that is assigned
to the action. Table 16.2 shows the actions that can be defined in the configuration file.

TABLE 16.2 uugetty Configuration File Variables

Variables Description

SYSTEM=name Defines the system name for the @S substitution

VERSION=string Defines the version name for the @V substitution

LOGIN=name Defines the program used to log in the client

INIT=string Defines the initialization string sent to the modem

ISSUE=string Defines a greeting banner sent to the remote terminal

CLEAR=value Clears the remote terminal screen if value=YES

Supporting Dial-In Clients

CHAPTER 16
423

16

S
U

PPO
R

TIN
G

D
IA

L-IN
C

LIEN
TS

continues

20 0672318342 CH16 2/14/00 2:35 PM Page 423

TABLE 16.2 continued

Variables Description

HANGUP=value Same as -h parameter if value=NO

WAITCHAR=value If value=YES, waits for character from device before continuing

DELAY=seconds Adds a delay after WAITCHAR character is received before continuing

TIMEOUT=number Same as -t parameter

CONNECT=string Defines an expected string sequence to receive from the modem for a
connection

WAITFOR=string Defines a string of characters to wait for

ALTLOCK=line Defines an alternative line to check and lock

ALTLINE=line Defines an alternative line to initialize

RINGBACK=value Enables ringback mode if value=YES

SCHED=range1 range2 ... Defines a schedule when the line can enable logins

OFF=string Defines a string to send to the modem when turning it off

By creating configuration files for each modem line, you can customize the behavior of
uugetty depending on the type of modem or dial-in required for a particular device. A sample
configuration file is shown in Listing 16.2.

LISTING 16.2 Sample /etc/conf.uugetty Configuration File

1 CLEAR = YES
2 HANGUP=YES
3 INIT=”” ATS0=1\r OK
4 ALTLOCK=modem
5 ALTLINE=modem
6 TIMEOUT=60

In Listing 16.2, line 1 indicates that the uugetty program will attempt to clear the screen of the
remote terminal when it establishes the connection. Line 2 indicates that uugetty will attempt
to hang up the line when it starts up (in case the previous session did not force a hang-up).
Line 3 demonstrates a sample initialization chat script. This string sets the modem to answer
after one phone ring (ATS0=1), and expects a response of “OK” back from the modem. Lines 4
and 5 define an alternative device name to check for locks on. Many Linux distributions use a
link named /dev/modem that points to the actual tty name. It can be confusing if some pro-
grams lock the tty line and some lock the /dev/modem link. These lines cause uugetty to check
both. The last line indicates that uugetty will wait 60 seconds after answering the line for the
user to try to log in to the system. After 60 seconds, it will exit the program.

Advanced Topics

PART III
424

20 0672318342 CH16 2/14/00 2:35 PM Page 424

You might have noticed some special codes in Listing 16.2 and Table 16.2. uugetty defines
such special codes to be used in configuration files and in the command line as a shorthand
method for defining variables or actions. Table 16.3 shows the codes that can be used.

TABLE 16.3 uugetty Special Codes

Code Description

\\ Backslash

\b Backspace

\c Prevents newline

\f Formfeed

\n Newline

\r Carriage return

\s Space

\t Tab

\nnn ASCII character with octal value nnn

@B Baud rate

@D Current date

@L Line

@S System name

@T Current time

@U Number of currently signed-on users

@V Version

@@ Single @ character

These codes can come in handy, especially when customizing greeting banners for the uugetty
line. By default, the standard banner sent to a remote device produced when uugetty connects
is located in the file /etc/issue. This file can be customized to report specific information
using the special uugetty codes.

PPP Scripts
After the remote user logs in to the mailserver, he must be able to establish a PPP session to
run the email client software across the modem line. As described in Chapter 8, Linux can act
as a PPP server using the pppd program. After the client’s workstation chat script logs him in
to the mailserver, it must then run the pppd program on the mailserver to establish the PPP ses-
sion. Usually, the pppd program requires a lot of command line parameters to be used for it to

Supporting Dial-In Clients

CHAPTER 16
425

16

S
U

PPO
R

TIN
G

D
IA

L-IN
C

LIEN
TS

20 0672318342 CH16 2/14/00 2:35 PM Page 425

work properly. If you must support dial-in access for non–computer-literate clients, this might
not be an easy thing to accomplish. Expecting a user to type

pppd silent modem crtscts proxyarp 192.168.1.100:192.168.1.2

when he establishes a connection might be a little too much. Fortunately, there is an easier way
to get pppd to recognize all the necessary parameters without unduly burdening your users.

The pppd program recognizes configuration files where command line parameters can be
placed to simplify the pppd command line. When pppd starts, it checks the configuration files
and processes any parameters there just as if they were entered on the command line. The
default location for the pppd configuration file is /etc/ppp/options. Listing 16.3 shows a
sample pppd configuration file.

LISTING 16.3 Sample /etc/ppp/options File

1 lock
2 silent
3 modem
4 crtscts
5 proxyarp
6 192.168.1.100:192.168.1.2

When the pppd parameters are saved in the configuration file, all the user needs to enter at the
command prompt is the pppd program name. In Listing 16.3, line 6 assigns a static IP address
to the dial-in device. If you are supporting multiple dial-in devices, this will not work. Each
dial-in device will be assigned the same static IP address, which will not be good. To solve this
problem you can remove the IP address assignment from the /etc/ppp/options file, and use
separate /etc/ppp/options.ttyxx files for each tty line xx that supports a dial-in modem. The
individual options files can then each assign a different static IP address.

One final word about the pppd program. In Listing 16.3, line 5 shows the proxyarp command
line parameter, which enables the remote device to connect to other IP devices on the network
that the Linux mailserver is connected to. This feature can come in handy if there are other
devices on the office network to which you need to support dial-in access. If you prefer that
your dial-in clients be restricted to just the Linux mailserver, you can remove the proxyarp
command line parameter from the configuration file. The dial-in client can then connect only
to the Linux mailserver.

Revisiting the mgetty Program
One problem with using the uugetty program to support dial-in lines is that each client must
construct a chat script for logging in to the mailserver and executing the pppd program.

Advanced Topics

PART III
426

20 0672318342 CH16 2/14/00 2:35 PM Page 426

Supporting Dial-In Clients

CHAPTER 16
427

16

S
U

PPO
R

TIN
G

D
IA

L-IN
C

LIEN
TS

Microsoft Windows 95, 98, and NT 4.0 workstations support automatic PPP authentication in
their dial-up software. It would be nice if the Linux mailserver could use this feature to enable
a Windows client to establish the PPP session without having to use a complicated chat script.
There is a way it can—it is called the mgetty+sendfax program.

Chapter 8 discussed the mgetty+sendfax program written by Gert Doering. mgetty has the
capability to autodetect an incoming fax or PPP connection on the modem. You can use this
feature to seamlessly support dial-in Windows 95, 98, and NT 4.0 workstations. The home Web
page for mgetty+sendfax is

http://alpha.greenie.net/mgetty/

The latest official release is version 1.0.0. The latest beta test release is version 1.1.21. Many
Linux distributions include a binary distribution package for mgetty+sendfax. You can also
download a version of mgetty+sendfax from the sunsite.unc.edu FTP site in the
/pub/Linux/system/serial directory.

Installing mgetty
If your Linux distribution includes an RPM binary package for mgetty+sendfax, you can
install it using the RPM package installer:

rpm –Uvh mgetty-sendfax-1.1.14-9mdk.i586.rpm

If you elected to download a version of mgetty+sendfax, you must unpack and compile the
source code. The following steps can be taken to accomplish this task:

1. Untar the mgetty+sendfax source code distribution:

tar -zxvf mgetty+sendfax-1.0.0.tar.gz

2. Change directory to the newly created mgetty-1.0.0 directory.

3. Edit the policy.h-dist file to match your desired environment, and copy it to policy.h.

4. Run the GNU make utility.

5. Run the GNU make utility with the parameter testdisk.

6. Change to the root user and run make install to place the binary executables in their
proper locations.

After compiling and installing mgetty, you can use it in the /etc/inittab file as a controlling
process for the modem line. The format of the mgetty command is

mgetty [options] ttydevice

where [options] are mgetty options that control the behavior of the modem line and ttyde-
vice is the Linux tty line that mgetty will monitor. Table 16.4 shows the options available for
mgetty.

20 0672318342 CH16 2/14/00 2:35 PM Page 427

TABLE 16.4 mgetty Command-Line Options

Option Description

-x LEVEL Sets debugging level to LEVEL

-s SPEED Sets line speed to SPEED

-a Tries to autodetect the modem connection speed

-k SPACE Sets number of kbytes required in the incoming fax spool directory to SPACE

-m ‘EXPECT SEND’ Sets a modem initialization chat script

-r Used to indicate a direct line

-p LOGIN_PROMPT Sets the login prompt for the modem line

-n RINGS Sets the number of rings before mgetty will answer the modem

-D Locks modem to data mode

-F Locks modem to fax mode

-R SEC Enables ring-back mode—callers must call twice

-i ‘issue’ Specifies an issue file to display on a connection

-S ‘FAX DOC’ Specifies a default fax document to send to polling fax machines

A sample /etc/inittab line using mgetty will look like this:

s1:12345:respawn:/sbin/mgetty -D -s 38400 -n 4 ttyS0

The sample line shows the mgetty program being used for a data connection on line
/dev/ttyS0. It is set to a constant baud rate of 38400, and is set to answer after the fourth ring.

One word of caution about mgetty: Unlike the uugetty program that must set the modem to
autoanswer mode, mgetty listens for the RING string when the phone rings and picks up the
line. This is handy, in that sometimes with uugetty the process might hang, but the modem
might still answer the line. With mgetty, it is up to mgetty to answer the line. If mgetty hangs,
it will not answer the phone. The oddity with this scenario is that if your modem has an
autoanswer LED on it, it won’t be lit. Don’t worry; that is not a problem, but a feature of
mgetty.

To configure mgetty to autodetect a PPP connection requires settings in the mgetty configura-
tion file as well as a new file to control the PPP access. The following section describes the
steps necessary to configure mgetty to autodetect PPP connections.

Configuring mgetty for Automatic PPP Support
Enabling automatic PPP connections from Windows clients starts with the mgetty configura-
tion file. The default location for the configuration file is /etc/mgetty+sendfax/

Advanced Topics

PART III
428

20 0672318342 CH16 2/14/00 2:35 PM Page 428

login.config. If you build the mgetty executable yourself from the source code, you can
change this location.

The login.config file tells mgetty how to handle the different types of connection attempts
that it detects. Listing 16.4 shows a sample login.config file.

LISTING 16.4 Sample /etc/mgetty+sendfax/login.config File

1 # login.config
2 #
3 # This is a sample “login dispatcher” configuration file for mgetty
4 #
5 # Format:
6 # username userid utmp_entry login_program [arguments]
7 #
8 # Meaning:
9 # for a “username” entered at mgettys login: prompt, call
10 # “login_program” with [arguments], with the uid set to “userid”,
11 # and a USER_PROCESS utmp entry with ut_user = “utmp_entry”
12 #
13 # username may be prefixed / suffixed by “*” (wildcard)
14 #
15 # userid is a valid username from /etc/passwd, or “-” to not set
16 # a login user id and keep the uid/euid root (needed for /bin/login)
17 #
18 # utmp_entry is what will appear in the “who” listing. Use “-” to not
19 # set an utmp entry (a must for /bin/login), use “@” to set it to the
20 # username entered. Maximum length is 8 characters.
21 #
22 # login_program is the program that will be exec()ed, with the arguments
23 # passed in [arguments]. A “@” in the arguments will be replaced with the
24 # username entered. Warning: if no “@” is given, the login_program has
25 # no way to know what username the user entered.
26 #
27 #
28 # SAMPLES:
29 # Use this one with my Taylor-UUCP and Taylor-UUCP passwd files.
30 # (Big advantage: tuucp can use the same passwd file for serial dial-in
31 # and tcp dial-in [uucico running as in.uucpd]). Works from 1.05 up.
32 #
33 #U* uucp @ /usr/lib/uucp/uucico -l -u @
34
35 #
36 # Use this one for fido calls (login name /FIDO/ is handled specially)
37 #

Supporting Dial-In Clients

CHAPTER 16
429

16

S
U

PPO
R

TIN
G

D
IA

L-IN
C

LIEN
TS

continues

20 0672318342 CH16 2/14/00 2:35 PM Page 429

LISTING 16.4 continued

38 # You need Eugene Crosser’s “ifmail” package for this to work.
39 # mgetty has to be compiled with “-DFIDO”, otherwise a fido call won’t
40 # be detected.
41 #
42 /FIDO/ uucp fido /usr/local/lib/fnet/ifcico @
43
44 #
45 # Automatic PPP startup on receipt of LCP configure request (AutoPPP).
46 # mgetty has to be compiled with “-DAUTO_PPP” for this to work.
47 # Warning: Case is significant, AUTOPPP or autoppp won’t work!
48 # Consult the “pppd” man page to find pppd options that work for you.
49 #
50 # NOTE: for *some* users, the “-detach” option has been necessary, for
51 # others, not at all. If your pppd doesn’t die after hangup, try it.
52 #
53 # NOTE2: “kdebug 7 debug” creates lots of debugging info. If all works,
54 # remove those!
55 #
56 /AutoPPP/ - ppp /usr/sbin/pppd auth -chap +pap login modem crtscts lock
57 proxyarp
58
59 #
60 #
61 # An example where no login name in the argument list is desired:
62 # automatically telnetting to machine “smarty” for a given login name
63 #
64 #telnet-smarty gast telnet /usr/bin/telnet -8 smarty
65 #
66 # This is the “standard” behavior - *dont* set a userid or utmp
67 # entry here, otherwise /bin/login will fail!
68 # This entry isn’t really necessary: if it’s missing, the built-in
69 # default will do exactly this.
70 #
71 * - - /bin/login @

In Listing 16.4, line 56 shows the entry that is required for mgetty to autodetect a PPP connec-
tion. The configuration file is case sensitive, so make sure that the /AutoPPP/ header is entered
exactly as shown or mgetty will not recognize it. The line also includes the pppd command
exactly as it would be entered if using pppd from the command prompt. If you already have
entered pppd command line parameters in a pppd configuration file, you do not need to enter
them here as well. Line 71 is important. It instructs mgetty on what to do if it does not autode-
tect a special signal such as a fax or PPP connection. In this case it assumes that it must be a

Advanced Topics

PART III
430

20 0672318342 CH16 2/14/00 2:35 PM Page 430

normal terminal connection and passes it to the login program to produce the standard login
prompt.

The next step needed to enable automatic PPP connections is a method to authenticate userids
and passwords automatically. You might notice that one of the parameters used in the pppd
command line in line 56 is +pap. This instructs mgetty to use pppd’s PAP authentication
method when initializing the PPP connection. Chapter 8 describes the PAP authentication in
detail.

For pppd to use PAP authentication, there needs to be a password file that contains userids and
passwords of users who will dial into the Linux mailserver. The default location of the file is
/etc/ppp/pap-secrets. Listing 16.5 shows a sample pap-secrets file.

LISTING 16.5 Sample /etc/ppp/pap-secrets File

1 # Secrets for authentication using PAP
2 # client server secret IP addresses
3 rich * guitar 192.168.1.100
4 barbara * aslsign 192.168.1.100
5 katie * boxcar 192.168.1.100
6 jessica * clifford 192.168.1.100

Each line in the pap-secrets file represents information for a separate user. The format of the
pap-secrets file is

client server secret addresses

where client is the username that the user is assigned, server is the server that this entry
applies to, secret is the password entered into the Microsoft dial-in software, and addresses
is the local IP address that the user can use. In Listing 16.5, an asterisk (*) is used to enable the
client username to be used on any server that the user connects to. This feature is generally
used if the client dials out to several different servers and needs a different secret word for each
server. The IP address field can also be left blank if you do not know what IP address will be
assigned to the user, such as if there are multiple dial-in lines.

mgetty Log Files
After configuring the mgetty and pppd software, you can test it out by connecting with a
Microsoft Windows 95, 98, or NT 4.0 workstation (see the following sections for Windows
configuration information). When a client connects, or attempts to connect, mgetty produces
an entry in a log file. On the Red Hat, Mandrake, and Caldera Linux distributions, the log file
is located in /var/log/mgetty.log.ttyxx, where xx is the tty line that the mgetty process is
monitoring. Listing 16.6 shows a sample mgetty log file.

Supporting Dial-In Clients

CHAPTER 16
431

16

S
U

PPO
R

TIN
G

D
IA

L-IN
C

LIEN
TS

20 0672318342 CH16 2/14/00 2:35 PM Page 431

LISTING 16.6 Sample /var/log/mgetty.log.ttyS0 File

1 11/07 07:16:13 yS0 mgetty: experimental test release 1.1.14-Apr02
2 11/07 07:16:13 yS0 check for lockfiles
3 11/07 07:16:13 yS0 locking the line
4 11/07 07:16:14 yS0 lowering DTR to reset Modem
5 11/07 07:16:14 yS0 send: \dATQ0V1H0[0d]
6 11/07 07:16:15 yS0 waiting for ``OK’’ ** found **
7 11/07 07:16:15 yS0 send: ATS0=0Q0&D3&C1[0d]
8 11/07 07:16:15 yS0 waiting for ``OK’’ ** found **
9 11/07 07:16:16 yS0 waiting...
10 11/07 07:16:16 yS0 checking if modem is still alive
11 11/07 07:16:16 yS0 mdm_send: ‘AT’ -> OK
12 11/07 07:16:16 yS0 waiting...
13 11/08 07:16:27 yS0 checking if modem is still alive
14 11/08 07:16:27 yS0 mdm_send: ‘AT’ -> OK
15 11/08 07:16:28 yS0 waiting...
16
17 11/08 07:44:10 yS0 waiting for ``RING’’ ** found **
18 11/08 07:44:10 yS0 waiting for ``RING’’ ** found **
19 11/08 07:44:16 yS0 waiting for ``RING’’ ** found **
20 11/08 07:44:22 yS0 waiting for ``RING’’ ** found **
21 11/08 07:44:46 yS0 send: ATA[0d]
22 11/08 07:44:46 yS0 waiting for ``CONNECT’’ ** found **
23 11/08 07:44:59 yS0 send:
24 11/08 07:44:59 yS0 waiting for ``_’’ ** found **
25 11/08 07:45:02 ##### data dev=ttyS0, pid=10089, caller=’none’,
➥ conn=’38400/ARQ/2
26 6400 LAP-M’, name=’’, cmd=’/usr/sbin/pppd’, user=’/AutoPPP/’

In Listing 16.6, lines 1 through 12 show the log entries generated by starting mgetty. The date,
time, and device name are all logged on the lines. Lines 13 through 15 show the periodic
checks that mgetty makes to ensure that the modem is still operating properly. mgetty contin-
ues checking the line until a connection is made. In line 17, the first sign of activity appears.
mgetty detects the first RING string from the phone line. This particular mgetty is set on the
command line parameters to answer after the fourth ring (one method used to fool war dialers).
As shown in line 21, after mgetty receives the fourth phone RING, it issues the ATA command to
instruct the modem to pick up the line, and then waits for a CONNECT string from the modem.
Lines 25 and 26 show the end result of the connection: mgetty detected a PPP signal, and
started the pppd program.

After viewing the mgetty log and determining that mgetty detected a PPP connection, you can
then look at the pppd program log to determine if pppd was able to establish a connection. In
the Red Hat, Mandrake, and Caldera Linux distributions, the pppd program sends its event logs

Advanced Topics

PART III
432

20 0672318342 CH16 2/14/00 2:35 PM Page 432

to the /var/log/messages file. Listing 16.7 shows sample entries from the pppd program after
mgetty has established the modem connection.

LISTING 16.7 Sample pppd Log Entries in /var/log/messages

1 Nov 8 07:45:02 shadrach mgetty[10089]: data dev=ttyS0, pid=10089,
➥ caller=’none’
2 , conn=’38400/ARQ/26400 LAP-M’, name=’’, cmd=’/usr/sbin/pppd’,
➥ user=’/AutoPPP/’
Nov 8 07:45:04 shadrach kernel: CSLIP: code copyright 1989 Regents
➥ of the University of California
4 Nov 8 07:45:04 shadrach kernel: PPP: version 2.2.0 (dynamic channel
➥ allocation)
5 Nov 8 07:45:04 shadrach kernel: PPP Dynamic channel allocation code
➥ copyright 1995 Caldera, Inc.
6 Nov 8 07:45:04 shadrach kernel: PPP line discipline registered.
7 Nov 8 07:45:04 shadrach kernel: registered device ppp0
8 Nov 8 07:45:04 shadrach pppd[10089]: pppd 2.3.5 started by ppp, uid 0
9 Nov 8 07:45:04 shadrach pppd[10089]: Using interface ppp0
10 Nov 8 07:45:04 shadrach pppd[10089]: Connect: ppp0 <--> /dev/ttyS0
11 Nov 8 07:45:06 shadrach PAM_pwdb[10089]: (ppp) session opened for
➥ user rich by (uid=0)
12 Nov 8 07:45:06 shadrach pppd[10089]: user rich logged in
13 Nov 8 07:45:07 shadrach pppd[10089]: found interface eth0 for proxy arp
14 Nov 8 07:45:07 shadrach pppd[10089]: local IP address 192.168.1.1
15 Nov 8 07:45:07 shadrach pppd[10089]: remote IP address 192.168.1.100
16 Nov 8 07:45:10 shadrach pppd[10089]: CCP terminated by peer
17 Nov 8 07:45:10 shadrach pppd[10089]: Compression disabled by peer.
18 Nov 8 07:51:19 shadrach pppd[10089]: LCP terminated by peer
19 Nov 8 07:51:22 shadrach pppd[10089]: Hangup (SIGHUP)
20 Nov 8 07:51:22 shadrach pppd[10089]: Modem hangup
21 Nov 8 07:51:22 shadrach PAM_pwdb[10089]: (ppp) session closed for
➥ user shadrach.smallorg.org
22 Nov 8 07:51:22 shadrach pppd[10089]: Connection terminated.
23 Nov 8 07:51:23 shadrach pppd[10089]: Exit.
24 Nov 8 07:53:03 shadrach kernel: PPP: ppp line discipline successfully
➥ unregistered

In Listing 16.7, line 1 shows the mgetty log entry indicating that a PPP session was detected.
Lines 3 through 7 indicate that the Linux kernel loaded the PPP kernel support software
dynamically when the PPP connection was detected. Lines 8 through 17 show the pppd pro-
gram starting and attempting to run through the configured command line parameters. Line 12
shows that the remote userid was detected and that the authentication method was successful.
Line 13 indicates that the proxy arp command line parameter was used and that now the

Supporting Dial-In Clients

CHAPTER 16
433

16

S
U

PPO
R

TIN
G

D
IA

L-IN
C

LIEN
TS

20 0672318342 CH16 2/14/00 2:35 PM Page 433

remote client has access to the local network via the eth0 network device on the Linux
mailserver. In lines 14 and 15, the pppd program assigns an IP address of 192.168.1.100 to
the remote client. After the PPP session has ended, line 18 indicates that the remote client has
initiated a disconnect signal on the PPP Link Control Protocol, and lines 19 through 23 show
the pppd program terminating the PPP session. In line 24, the Linux kernel unregisters the PPP
kernel support.

Configuring Windows 95 and 98 Dial-Up
Networking
The first step to using PPP dial-up support on a Windows 95 or 98 workstation is to ensure that
you have a modem installed. You can select Start, Settings, Control Panel, Modems to view the
installed modems, or to add a new modem. Figure 16.1 shows this window.

Advanced Topics

PART III
434

FIGURE 16.1
The Windows 95 and 98 Modems Properties window.

After selecting the modem type installed and loading the drivers, use the Windows Wizard to
configure a new Dial-Up Networking (DUN) session. Run the Windows Explorer program and
select the Dial-Up Networking icon to start the wizard. Follow the instructions in the wizard to
create a new connection using a configured modem. Figure 16.2 shows a sample wizard win-
dow.

After creating the new DUN session, you must enter the phone number required to connect to
the remote server. When the wizard finishes, the new DUN session will appear as an icon in
Windows Explorer under the Dial-Up Networking section. The Entry name will match the
name you gave it in the wizard configuration. Figure 16.3 shows the connection window that
appears when you double-click the DUN session icon.

20 0672318342 CH16 2/14/00 2:35 PM Page 434

FIGURE 16.2
The Windows 95 and 98 New Connection wizard window.

Supporting Dial-In Clients

CHAPTER 16
435

16

S
U

PPO
R

TIN
G

D
IA

L-IN
C

LIEN
TS

FIGURE 16.3
The Windows 95 and 98 Dial-Up Networking Connection window.

After typing in your assigned username and password, click the Connect button. If all goes
well, the Windows workstation will dial the Linux mailserver and establish a PPP session. If
the Windows workstation dials the Linux mailserver but fails to establish a PPP session, you
can check the Linux log files as described in the previous section to determine where the prob-
lem might be. Most often it is a problem with the /etc/ppp/pap-secrets file.

After the PPP session is established, an icon of two terminals appears in the Windows system
tray. Each terminal will flash when data is transmitted in its respective direction. The email
client software package can then be started to connect to the Linux mailserver.

To stop the PPP session, you must right-click the DUN icon in the system tray and select the
Disconnect menu item. The workstation modem will hang up the phone connection. The Linux
mailserver will also reset the modem and respawn the mgetty process to wait for another
incoming call.

20 0672318342 CH16 2/14/00 2:35 PM Page 435

Configuring Windows NT 4.0 Dial-Up Networking
Configuring the Windows NT 4.0 Dial-Up Networking software is similar, but different from,
the configuration of Windows 95 and 98 software. Again, the first step is to ensure that you
have a modem installed on the workstation. By selecting the Modem icon in the Control Panel
area, you will see the Modems Properties window shown in Figure 16.4.

Advanced Topics

PART III
436

FIGURE 16.4
The Windows NT 4.0 workstation Modems Properties window.

As with the Windows 95 and 98 software, you can view the current modem configuration, or
add a new modem using the Add button. After the modem is configured, you can begin to con-
figure the Dial-Up Networking information. To select the Dial-Up Networking feature, double-
click the Dial-Up Networking icon in Windows Explorer. If Dial-Up Networking has not been
installed, the main installation window, shown in Figure 16.5, is displayed.

FIGURE 16.5
The Windows NT 4.0 workstation Dial-Up Networking installation.

20 0672318342 CH16 2/14/00 2:36 PM Page 436

To start the installation wizard, click the Install button. To properly communicate with the
remote PPP server, the Dial-Up Networking software must recognize the modem. The first dia-
log box shown, Add RAS Device, enables you to select the modem that will be used to dial
into the remote server. Figure 16.6 shows the Remote Access Setup window that enables you to
select which modem will be used to connect to the remote PPP server.

Supporting Dial-In Clients

CHAPTER 16
437

16

S
U

PPO
R

TIN
G

D
IA

L-IN
C

LIEN
TS

FIGURE 16.6
The Windows NT 4.0 workstation Remote Access Setup.

After the modem is selected, the Dial-Up Networking software is installed on the workstation.
You will need to use the media with the Windows NT 4.0 workstation software to install the
necessary files to support Dial-Up Networking services. When the installation is complete, the
wizard will reboot your workstation.

After the workstation is rebooted, you can select the Dial-Up Networking icon from Windows
Explorer. Unlike Windows 95 and 98, which have a separate icon for each DUN session,
Windows NT 4.0 workstation just uses one icon to access the DUN software. The first time
you select the DUN software, it starts a wizard to help you add a new session to the phone-
book. The New Phonebook Entry Wizard main window is shown in Figure 16.7.

FIGURE 16.7
The Windows NT 4.0 workstation New Phonebook Entry Wizard.

20 0672318342 CH16 2/14/00 2:36 PM Page 437

After following the wizard and entering the phone number information for the new PPP ses-
sion, the main Dial-Up Networking software window is displayed (see Figure 16.8).

Advanced Topics

PART III
438

FIGURE 16.8
The Windows NT 4.0 workstation Dial-Up Networking main window.

The main window shows the drop-down choice box that enables you to select configured ses-
sions in the phonebook. You will need to select the Edit Entry or Modem Properties menu item
to configure the new phonebook entry. The Edit Phonebook Entry window appears, as shown
in Figure 16.9. You must select the Server tab to modify the connection entries.

FIGURE 16.9
The Windows NT 4.0 workstation Edit Phonebook Entry window.

The last entry that needs to be modified in this section is under the Security tab. For the PPP
authentication to work correctly, you must select the Accept Any Authentication Including
Clear Text method of authentication.

20 0672318342 CH16 2/14/00 2:36 PM Page 438

For the Dial-Up Networking software to connect to the Linux mailserver, you must select the
PPP Dial-Up server type. Ensure that the TCP/IP protocol check box is checked. You can also
enable compression and the PPP LCP extensions. The Linux pppd program supports both of
these functions. Figure 16.10 shows the PPP TCP/IP Settings window.

Supporting Dial-In Clients

CHAPTER 16
439

16

S
U

PPO
R

TIN
G

D
IA

L-IN
C

LIEN
TS

FIGURE 16.10
The Windows NT 4.0 workstation PPP TCP/IP Settings window.

Depending on the configuration of the Linux mailserver pppd program, either you will have to
assign static IP and DNS server addresses to the Windows NT workstation, or you can enable
the pppd program to assign the address. Also, you can check the check boxes to enable IP
compression and to use the default gateway on the Linux mailserver.

After the configuration parameters are finished, you can go back to the Dial-Up Networking
main window shown in Figure 16.8, select the phonebook entry for the Linux mailserver, and
click the Dial button. This produces the Dial-Up Networking Connect window, as shown in
Figure 16.11. After entering the appropriate username and password, click the OK button to
enable DUN to attempt to connect to the Linux mailserver.

FIGURE 16.11
The Windows NT 4.0 workstation Dial-Up Networking Connect window.

20 0672318342 CH16 2/14/00 2:36 PM Page 439

As with the Windows 95 and 98 DUN, when the connection is established, an icon appears in
the system tray indicating that the connection has been made. The two bars indicate sending
and receiving packets across the PPP link.

After the PPP connection has been established, you can start the email client software package
and connect to the Linux mailserver using the POP3 or IMAP protocols to retrieve your mail
messages. When you are finished, you can right-click the DUN icon in the system tray and
select Close from the menu items. This stops the PPP session and disconnects the modem con-
nection.

One nice extra feature on the Windows NT 4.0 workstation is the addition of the Dial-Up
Networking Monitor. By right-clicking on the DUN icon in the system tray, you can select the
Open system monitor menu item. This produces the Dial-Up Networking Monitor window
shown in Figure 16.12.

Advanced Topics

PART III
440

FIGURE 16.12
The Windows NT 4.0 workstation Dial-Up Networking Monitor.

The Dial-Up Networking Monitor helps determine how your PPP client is behaving by show-
ing you statistics on the amount of traffic that has gone across the PPP connection, as well as
the number of errors that it has encountered. You can also keep tabs on the compression rates
being used on the PPP session if you enabled compression on both the Windows NT 4.0 work-
station and the Linux mailserver pppd program.

Sharing a Modem
Depending on the method you use to connect to the Internet, supporting dial-in clients can be
a tricky thing to do. If you use one modem for a dial-on-demand PPP connection, it is possible
to share the same modem to support dial-in clients as well as the normal dial-on-demand PPP

20 0672318342 CH16 2/14/00 2:36 PM Page 440

connection. But, be careful. Having lots of dial-in clients connect might severely impede the
diald program from being able to use the modem to dial out.

If you are sharing a modem, you might want to limit the amount of time that each dial-in client
is connected to the modem. The protocol that your dial-in clients use to retrieve mail will make
a big difference. From a connection-time point of view, it will be better for remote users to use
the POP3 protocol to quickly download messages and disconnect from the server, rather than
using the IMAP protocol and having to linger on the modem while they read their mail. Of
course this defeats one of the reasons for using the IMAP protocol—that remote users won’t
download messages at home and then not have them at work.

This creates a dilemma for the mail administrator. Often it is easier to add a second modem
and a second dial-in phone line to support dial-in clients, rather than try and deal with the
issues of a shared modem.

One trick commonly used by mail administrators is connecting to an ISP with a two channel
ISDN line. Chapter 3 describes the use of an ISDN line with an ISDN modem. Under normal
traffic, the ISDN modem can use the two B data channels to provide 128kbps throughput to the
ISP. However, the mail administrator can configure a second phone line on one of the channels
to accept incoming phone calls and send them to an analog modem connected to the Linux
mailserver.

When a remote dial-in client connects to the second line, the ISDN service automatically drops
the ISP connection to just one channel at 64 kbps, and enables the dial-in connection. Although
this might affect performance of outbound connections, it won’t totally stop the ISP connection
when a remote client dials in.

Summary
This chapter dealt with the topic of supporting remote dial-in clients. There are several meth-
ods to use to enable clients to be able to read and send mail messages from a workstation that
is not connected to the network. This chapter described how to support dial-in clients using a
modem connected to the Linux mailserver. Besides the standard modem configuration, Linux
needs a program to monitor the modem for new inbound connections. This can be accom-
plished with either the uugetty program or the mgetty program. Both enable users to log in
with a chat script and execute the pppd program to start a PPP session with the Linux
mailserver. The mgetty program has the added benefit of detecting a PPP session from a client
and using the PAP authentication method to log the user in to the system and to start the pppd
program automatically. This chapter also covered how to configure Microsoft Windows 95, 98,
and NT 4.0 workstations to use the Dial-Up Networking feature to establish a PPP session with
the Linux mailserver. This enables a remote dial-in client to run standard email client software
just as if she were directly connected to the local network.

Supporting Dial-In Clients

CHAPTER 16
441

16

S
U

PPO
R

TIN
G

D
IA

L-IN
C

LIEN
TS

20 0672318342 CH16 2/14/00 2:36 PM Page 441

442

20 0672318342 CH16 2/14/00 2:36 PM Page 442

CHAPTER

17
Mail Aliases and
Masquerading

IN THIS CHAPTER
• The .forward File 444

• Aliases 446

• Masquerading 449

21 0672318342 CH17 2/14/00 2:45 PM Page 443

Now that the Linux mailserver is up and running smoothly and all your network and dial-in
clients are reading and sending messages flawlessly, it is time to experiment with some fancier
email services. This chapter discusses two special features of an office email server. The first
feature is the use of email aliases that can be used for special events or purposes. The second
feature is the use of masquerading, which allows you to support multiple email servers from
the main office Linux mailserver.

The .forward File
One method of creating email aliases is the .forward file. The .forward file is a simple way
of redirecting mail to alternative addresses. This function is illustrated in Figure 17.1.

Advanced Topics

PART III
444

rich

barbara

riley

root

Linux Mailserver

.forward file

rich

message
for root

Any messages sent to root are
automatically forwarded to rich

FIGURE 17.1
The .forward file.

Each user can have a file named .forward in his or her home directory on the server. When
the mail program receives a message for a user, it first checks for the presence of the .forward
file. If the .forward file is present, the message is sent to any addresses in the .forward file,
rather than to the actual user mailbox. Notice that there can be multiple email addresses listed

21 0672318342 CH17 2/14/00 2:45 PM Page 444

in the .forward file, each one listed on a separate line. The mail program will forward the sin-
gle message to each email address listed.

This feature can come in handy in a couple of different situations. If a user has to change email
addresses for some reason (such as getting married), you can leave the old email address active
for awhile and use the .forward file to point to the new address. That way the user can receive
mail for both email addresses, but only has to log in as the new email addressee to retrieve the
messages.

Also, if an employee leaves the organization, you can keep his or her email address active for
awhile and create a .forward file. That .forward file can be used to forward any mail that
comes to the old email address to the new email address at the other organization (provided
that the employee’s new organization has Internet email).

Another great use of .forward files is as a simple mail list. Mail lists allow multiple email
recipients to receive the same message with the sender having to send to only one location.
Mail lists are explained in greater detail in Chapter 18, “Mail Lists.” Although there are more
sophisticated methods to use to create mail lists, the .forward file will do the trick in a pinch.
By creating a special account for the mail list, you can create a .forward file that contains the
email addresses of all the participants in the mail list. Participants do not necessarily have to be
local email users. Fetchmail also forwards messages to remote users, if possible.

As an example, assume you want to create a mail list called officenews. You want any mes-
sage sent to the officenews email address to be forwarded to everyone in the local office, plus
a few special customers who have email addresses on remote systems. First, you must create
the Linux account, complete with the home directory /home/officenews. In the home direc-
tory for the new username, you can create a .forward file as shown in Listing 17.1.

LISTING 17.1 Sample .forward File

1 rich
2 barbara
3 katie
4 jessica
5 riley
6 haley
7 matthew@othercompany.com
8 christopher@othercompany.com
9 frank@secondcompany.com
10 melanie@secondcompany.com

With this configuration, sending a message to officenews@smallorg.org will result in all the
email addresses shown in Listing 17.1 receiving a copy of the message. In Listing 17.1, lines 1

Mail Aliases and Masquerading

CHAPTER 17
445

17

M
A

IL
A

LIA
SES

A
N

D
M

A
SQ

U
ER

A
D

IN
G

21 0672318342 CH17 2/14/00 2:45 PM Page 445

through 6 show users on the local Linux mailserver. Lines 7 through 10 show users on remote
mail hosts who will also receive the message.

Aliases
A great feature of the sendmail program is the ability to create email aliases for usernames. It
is often desirable to use special email addresses for special events. An example is to have a
special email address called register@smallorg.org to which customers send messages to
register in a special event. Without sendmail aliases, you have to create a new Linux userid for
the register username, and either have someone in the office log in and check that mailbox
on a regular basis or use the .forward file to redirect messages to a different userid.

With aliases, you don’t have to create a separate mailbox for the new username. You can assign
an alias name of register and point it to an existing email user. Any messages sent to the
email address register are automatically redirected by sendmail to the user to whom the alias
points.

sendmail aliases File
All sendmail aliases used on the Linux mailserver are listed in a common file. The aliases file
is normally located at /etc/aliases, but can be changed in the sendmail.cf file. The aliases
file points alias email names to real addresses, programs, or files. Each alias is listed on a sepa-
rate line in the configuration file. Each of these four functions uses a different line format:

• Format 1:

name: name_1, name_2, name_3,

• Format 2:

name: |program

• Format 3:

name: file

• Format 4:

name: :include:filelist

The first format of the alias allows an email alias to point to one or more actual email
addresses. The format of this aliases line is shown as Format 1, where name is the alias name
and name_1, name_2, and so on, are the addresses to which the message will be sent instead of
the original name. One or more different addresses can be used for the alias. Each email
address listed receives a copy of the message.

Advanced Topics

PART III
446

21 0672318342 CH17 2/14/00 2:45 PM Page 446

The second format of the alias allows an alias email address to point to a program that can be
executed. The format of this alias line is shown as Format 2 above, where program is the full
pathname of a program that can process the message. This feature is described in more detail
in Chapter 18. The Majordomo mail list program uses this feature to pass email messages to
the Majordomo program for processing.

The third format of the alias allows for messages to be stored in a designated file. In this alias
line file is a full pathname pointing to a text file. Any messages sent to the email address
name are spooled to the given text file. For this feature to work properly, the proper read/write
Linux system permissions must be set on both the text file and the directory where the text file
is located.

The last format of the alias line (shown as Format 4) allows messages to be forwarded to a list
of email address contained in a file. In this alias line filelist is the full pathname of a file
that can contain a list of email addresses. This has the same effect as listing each email address
on the aliases line separated by commas, as in the first format. This format might be easier to
manipulate if you have a large mail list that changes frequently.

Listing 17.2 shows a sample aliases file from a Mandrake Linux 6.0 system.

LISTING 17.2 Sample /etc/aliases File

1 #
2 # @(#)aliases 8.2 (Berkeley) 3/5/94
3 #
4 # Aliases in this file will NOT be expanded in the header from
5 # Mail, but WILL be visible over networks or from /bin/mail.
6 #
7 # >>>>>>>>>> The program “newaliases” must be run after
8 # >> NOTE >> this file is updated for any changes to
9 # >>>>>>>>>> show through to sendmail.
10 #
11
12 # Basic system aliases -- these MUST be present.

Mail Aliases and Masquerading

CHAPTER 17
447

17

M
A

IL
A

LIA
SES

A
N

D
M

A
SQ

U
ER

A
D

IN
G

Mail Alias Conventions
The email alias address for each of the different formats created in the aliases file
must always be a local address on the Linux mailserver. You cannot create an alias
with a remote mail address (that is, alias@otherhost.com). The address to which the
alias points can be a remote address if needed.

continues

21 0672318342 CH17 2/14/00 2:45 PM Page 447

13 MAILER-DAEMON: postmaster
14 postmaster: root
15
16 # General redirections for pseudo accounts.
17 bin: root
18 daemon: root
19 games: root
20 ingres: root
21 nobody: root
22 system: root
23 toor: root
24 uucp: root
25
26 # Well-known aliases.
27 manager: root
28 dumper: root
29 operator: root
30
31 # trap decode to catch security attacks
32 decode: root
33
34 # Person who should get root’s mail
35 root: rich
36
37 # Program used to auto-reply to messages
38 auto-test: |/home/rich/auto-test
39
40 # Send all messages to a text file
41 saveme: /home/rich/test.txt
42
43 # Send all messages to remote site
44 rich: rich@othercompany.com
45
46 #Create a simple multi-user mail list
47 officenews: :include:/home/rich/office.txt

In Listing 17.2, lines 13 through 32 redirect any mail for various standard Linux system user-
names to the root user. This is usually a good idea to ensure no one is trying to hack into the
system using one of the default system usernames. If these userids are not aliased to root, any
mail messages generated to them are lost. Line 35 is also a good idea. It redirects any mail for
the root user to a common username that should log in to the system on a regular basis.
Remember: If you are a good system administrator, you should not be logging in as the root
user very frequently.

Advanced Topics

PART III
448

LISTING 17.2 continued

21 0672318342 CH17 2/14/00 2:45 PM Page 448

Line 38 demonstrates redirecting messages to a program. The program must be shown with its
full pathname so that the shell can find it. Line 41 demonstrates using a text file to store any
messages sent to an address. Remember to be careful about read/write permissions for the file.

Line 44 demonstrates that although the alias name must be local to the Linux mailserver, the
names it aliases do not have to be. As with the .forward file, you can redirect a mail message
for a user to another email account on a completely different system. This is a handy feature to
use when users move to different email machines within the organization or if they leave the
organization for another company.

Line 47 demonstrates the use of a mail list text file in the aliases file. The file
/home/rich/office.txt is a plain text file that lists email addresses similar to the .forward
file shown in Listing 17.1. When a message is received for the officenews alias, the
office.txt file is checked and the message is sent to all email addresses present in that file.

newaliases Program
The /etc/aliases text file is where the mail administrator must enter new alias names, but it
is not the file that the sendmail program actually uses when it processes mail. The real aliases
file (as far as sendmail is concerned) is located in /etc/aliases.db. The aliases.db file uses
a hashed database feature similar to other sendmail files such as the mailertable file
described in Chapter 10, “The sendmail Program.”

To create the aliases.db file, sendmail uses a special command-line option. The option used
is -bi. When sendmail is run with the -bi option, it reads the /etc/aliases text file and cre-
ates the /etc/aliases.db database file. When the sendmail program is installed, it creates a
special executable—newaliases—that performs the sendmail executable with the -bi function.
Any time changes are made to the /etc/aliases text file, the newaliases program must be run.

Masquerading
Just as at a masquerade party, mail masquerading is pretending to be someone you are not.
This section describes techniques that can be used by sendmail to accept mail destined for a
different location, and also how to send mail pretending to be someone else.

Single-Host Masquerading
Chapter 13, “Connecting the Mailserver to an ISP,” demonstrated one use of single-host mas-
querading. Often it is desirable to allow the Linux mailserver to accept mail addressed to the
actual domain name. Under normal circumstances, the Linux mailserver sends and receives
mail only for its particular host name. If the mailserver’s host name is mail1, it sends and

Mail Aliases and Masquerading

CHAPTER 17
449

17

M
A

IL
A

LIA
SES

A
N

D
M

A
SQ

U
ER

A
D

IN
G

21 0672318342 CH17 2/14/00 2:45 PM Page 449

receives all mail messages with the fully qualified domain name of mail1.smallorg.org. To
address mail to users on that system, you have to use the full host name in the mail address:

username@mail1.smallorg.org.

For the Linux mailserver to accept messages addressed directly to the domain, two things must
be present. First, the DNS MX record for the domain must point to a specific mailserver—
either the ISP mailserver or the local Linux mailserver, depending on the Internet connectivity.
This informs remote hosts that a mailserver will accept mail addressed to the domain name; in
this case, smallorg.org. The DNS server database for the domain is discussed in Chapter 4,
“DNS and Domain Names.” A DNS record for using the Linux mailserver as the domain
mailserver would look something like this:

smallorg.org IN MX 10 mail1.smallorg.org

This DNS record points remote hosts wanting to send mail to the smallorg.org domain
directly to the mail1.smallorg.org host (the Linux mailserver). That solves the problem for
inbound mail.

The other piece of this puzzle is the outbound mail from the Linux mailserver. Even though it
receives messages from the Internet for the smallorg.org domain, the Linux mailserver still
sends outbound messages with its full host name in the return address header field. This could
be confusing. This is where sendmail masquerading saves the day.

sendmail masquerading allows outbound messages to change their return address header fields
to match the desired return location (such as the domain name). Even though the message is
sent from the mailserver, the return addresses will have the domain name instead of the host
name. To enable masquerading in sendmail, you must add it to the configuration file.

As discussed in Chapter 11, “Installing and Configuring sendmail,” the method used to change
the sendmail configuration file components is to create an m4 macro file and use the GNU m4
macro processor program to create a new sendmail configuration file. The macro directive used
to allow sendmail to masquerade as a different site is

MASQUERADE_AS(domain)

where domain is the domain name you want sendmail to use for the return address in the mes-
sage header fields. Note that this feature changes only the return addresses in the message
header fields. If you want the complete message envelope to have the masqueraded domain
name as well, you must use another special sendmail feature:

FEATURE(`masquerade_envelope’)

Other sendmail features can also be used to fine-tune masquerading on the mailserver. Table
17.1 lists the sendmail masquerading features.

Advanced Topics

PART III
450

21 0672318342 CH17 2/14/00 2:45 PM Page 450

TABLE 17.1 sendmail Masquerading Features

Feature Description

masquerade_envelope Masquerades the envelope sender and recipient

allmasquerade Causes recipient addresses to be masqueraded also

limited_masquerade Selectively uses the masquerade feature

masquerade_entire_domain Uses masquerading on multiple domain names defined by
MASQUERADE_DOMAIN

Multi-Host Masquerading
In larger offices, it is sometimes beneficial to split the mailserver function into several small
servers rather than having one large server. The idea behind the multi-server network is that
there is one server that acts as the central email hub, while other servers can support clients
connecting in to read and send mail messages. This takes some load off the main mailserver,
but unless you are dealing with hundreds of users, it is usually more hassle than benefit. Of
course, there are times when multiple email servers are the result of political reasons rather
than technical reasons. Figure 17.2 shows an example of a multi-server email network.

Mail Aliases and Masquerading

CHAPTER 17
451

17

M
A

IL
A

LIA
SES

A
N

D
M

A
SQ

U
ER

A
D

IN
G

ISP

mail spoke1 mail spoke2 mail spoke3 mail spoke4

mail hub

LAN

FIGURE 17.2
A multi-server email network.

21 0672318342 CH17 2/14/00 2:45 PM Page 451

The main Linux mailserver still uses one of the standard configurations discussed in Chapter
13 to connect to the ISP to transfer mail destined for the Internet. Each individual spoke Linux
mailserver should be configured to use the main hub mailserver as its smart host. Each spoke
server should use the normal sendmail masquerading features to change the return address of
users to match the domain name.

Using this configuration simplifies outbound messages because no matter what spoke server
the user is located on, the return email address is always the same (assuming that no two spoke
servers have the same username). However, in this scenario inbound messages become a prob-
lem. For example, suppose that a spoke mailserver called spoke1.smallorg.org has a user
called frank. All outbound messages from spoke1.smallorg.org are sent through the hub
mailserver—called hub.smallorg.org—to the ISP for delivery. By using masquerading, the
return address for frank will be frank@smallorg.org. Figure 17.3 demonstrates this example.

Advanced Topics

PART III
452

ISP

mail spoke1 mail spoke2 mail spoke3 mail spoke4

mail hub

fred

LAN

FIGURE 17.3
An example of an outbound message from a spoke mailserver.

So far, so good. The outbound message passes from the spoke server to the main hub server, to
the ISP, out to the Internet. Now, what about the return inbound message? Assume for this sce-
nario that the DNS mail record for the domain points to the ISP, which then spools mail for the
main hub mailserver to collect at predetermined intervals. After the main hub mailserver col-
lects the messages, it must determine which spoke mailserver the messages should be for-
warded to. Figure 17.4 demonstrates this scenario.

21 0672318342 CH17 2/14/00 2:45 PM Page 452

FIGURE 17.4
A failed inbound message for a spoke mailserver user.

If the return message were addressed to frank@spoke1.smallorg.org, the main hub’s job
would be easy. However, in this example (and in real life), the return message is addressed to
frank@smallorg.org. The main hub (hub.smallorg.org) is set to masquerade as
smallorg.org. Because the main hub thinks that it is the smallorg.org domain, it assumes
that frank must be a local user on hub.smallorg.org. Of course this is not the case, so the
message will be returned as being undeliverable. Ouch.

One method that can be used to solve this problem is to use the aliases file on hub.
smallorg.org. By entering an alias for frank and pointing it to frank@spoke1.smallorg.org,
the return message will get to the proper mailserver for frank to be able to read it. Although
this method works, it tends to be a little clunky. By utilizing another feature of sendmail called
virtual hosting, frank’s mail can be forwarded to the proper spoke mailserver and then, hope-
fully, to frank’s mailbox.

Virtual Hosting
Virtual hosting allows sendmail to read a user table that tells it how to redirect inbound mail
messages. This table is similar to the aliases file, but is more robust in its options. Figure
17.5 demonstrates how the virtual user table operates.

Mail Aliases and Masquerading

CHAPTER 17
453

17

M
A

IL
A

LIA
SES

A
N

D
M

A
SQ

U
ER

A
D

IN
G

ISP

mail spoke1 mail spoke2 mail spoke3 mail spoke4

mail hub

fred

LAN

fred?

21 0672318342 CH17 2/14/00 2:45 PM Page 453

FIGURE 17.5
Mail forwarding using the virtual user table.

First, you must create a new sendmail configuration file for the main hub mailserver. To use
virtual hosting, you must add the virtusertable feature to the macro file. It should look like
this:

FEATURE(`virtusertable’, `hash /etc/virtusertable’)

After regenerating the sendmail configuration file with the m4 macro processor, restart the
sendmail process on the server.

The next step is to create the virtual user table that directs sendmail how to forward messages.
Again, much like the aliases file, the virtual user table is a text file that must be converted
into a hash database file.

The text version of the file can be created at

/etc/virtusertable

Each mail user should be on a separate line. The format of the virtual user table lines is

virtaddress†realaddress

Advanced Topics

PART III
454

ISP

mail spoke1 mail spoke2 mail spoke3 mail spoke4

mail hub

fred

virtual user table

fredfred@spoke1.smallorg.org

LAN

21 0672318342 CH17 2/14/00 2:45 PM Page 454

where virtaddress is the virtual user address for which sendmail will receive messages and
realaddress is the actual address to which sendmail will forward the messages. There must be
a Tab character separating the two values. Listing 17.3 shows an example of a virtual user
table.

LISTING 17.3 Sample /etc/virtusertable File

1 frank@smallorg.org†frank@spoke1.smallorg.org
2 melanie@smallorg.org†melanie@spoke1.smallorg.org
3 haley@smallorg.org†haley@spoke2.smallorg.org
4 riley@smallorg.org†riley@spoke2.smallorg.org
5 katie@smallorg.org†katie@spoke3.smallorg.org
6 jessica@smallorg.org†jessica@spoke3.smallorg.org
7 rich@smallorg.org†rich
8 barbara@smallorg.org†barbara

In Listing 17.3, lines 1 and 2 demonstrate users who are on the spoke1.smallorg.org
mailserver. When the main hub.smallorg.org mailserver receives a message destined for
frank@smallorg.org, that message is automatically forwarded to frank@spoke1.smallorg.
org. Similarly, in lines 3 and 4, users on the spoke2.smallorg.org server also receive their
Internet mail via the hub.smallorg.org mailserver. This continues for all the spoke servers in
the local network. Each time a new user is added to a spoke server, a new user entry must be
added to the virtual user table. Also remember that no two spokes can use the same username.

Lines 7 and 8 are a little different. They demonstrate a deliberate definition of local users on
the hub.smallorg.org mailserver. By default, if a username does not appear in the virtual user
table, sendmail assumes that the username is a local user. Lines 7 and 8 are therefore unneces-
sary, but sometimes it helps to include obvious things for documentation purposes.

After the /etc/virtusertable file is created, it must be converted into the hash database for-
mat that sendmail uses. The makemap program is used for this. The format of the makemap
command is

makemap hash /etc/virtusertable < /etc/virtusertable

This might seem like an odd format, but the makemap program creates a separate file—
/etc/virtusertable.db—from the text file. Each time the virtual user table is changed, the
makemap program must be rerun.

Besides forwarding individual users’ addresses to the proper mailservers, the virtual user table
can be used for other purposes. Listing 17.4 shows some alternative entries that can be in the
/etc/virtusertable file.

Mail Aliases and Masquerading

CHAPTER 17
455

17

M
A

IL
A

LIA
SES

A
N

D
M

A
SQ

U
ER

A
D

IN
G

21 0672318342 CH17 2/14/00 2:45 PM Page 455

LISTING 17.4 Alternative /etc/virtusertable Entries

1 rich@smallorg.org†rich@othermail.com
2 @acct.smallorg.org†acct
3 baduser@smallorg.org†error:nouser No such user
4 register@smallorg.org†rich
5 officenews@smallorg.org†officenews
6 @smallorg.org†%1@neworg.org

In Listing 17.4, each line represents a different feature that the virtual user table can support.
Line 1 demonstrates a feature similar to the aliases file by forwarding messages for the email
address rich to an email account on a remote Internet mailserver.

Line 2 demonstrates a feature with which your ISP is probably very familiar. This feature
allows all mail for a particular domain to be sent to a single mailbox on the server. This is a
handy method to use to support remote subordinate offices that can dial into the main Linux
mailserver to retrieve mail messages for the subdomain acct.smallorg.org. Chapter 13
details how to break the messages out of the single mailbox to deliver them to individual users
on the remote mailservers.

Line 3 demonstrates a nice feature of the virtual user table. If you want to deliberately generate
an error message for a specific email address, you can add it to the table. Line 4 shows the
redirection of an alias email account to a valid local user account on the mailserver.

Line 5 shows how the virtual user table can work hand-in-hand with the aliases file. By creat-
ing an alias of officenews as described previously, the virtual user table can redirect messages
sent to the alias address at the domain address to the local alias. If the alias is a list file as pre-
viously described, all email addresses in the list receive a copy of the message.

The last example in line 6 shows a unique way of redirecting mail messages. If for some rea-
son you need to redirect messages for an entire domain, the format shown in line 6 will come
in handy. This format redirects any address in the smallorg.org domain to the neworg.org
domain. The usernames remain intact; only the domain names are changed.

Summary
This chapter covered some advanced methods of using office email systems. Often it is desir-
able to create temporary email accounts for special events or activities that describe the func-
tion. The sendmail program allows the use of email aliases to redirect messages sent to a
nonexistent user to a regular email account. The /etc/aliases file contains the text version of
the aliases used by the sendmail program. To convert the text file to the hash database file used
by sendmail, run the newaliases program. Each time the /etc/aliases file is changed, the
newaliases program must be run to activate the changes. Another advanced feature of sendmail

Advanced Topics

PART III
456

21 0672318342 CH17 2/14/00 2:45 PM Page 456

is the use of masquerading. By using masquerading, multiple hosts can use the same domain
name as the return address from email messages. For this to work properly, a central mail hub
should be created that uses the sendmail virtual user table feature. By using the virtual user
table, the main mail hub can map generic usernames from the domain to specific usernames on
the specific spoke mailservers.

Mail Aliases and Masquerading

CHAPTER 17
457

17

M
A

IL
A

LIA
SES

A
N

D
M

A
SQ

U
ER

A
D

IN
G

21 0672318342 CH17 2/14/00 2:45 PM Page 457

458

21 0672318342 CH17 2/14/00 2:45 PM Page 458

CHAPTER

18
Mail Lists

IN THIS CHAPTER
• Features of a Full Service Mail List 460

• Introducing Majordomo 462

• Using Majordomo 475

22 0672318342 CH18 2/14/00 2:47 PM Page 459

In the previous chapter, the different uses of email aliases were discussed. One use for aliases
is to generate a simple mail list—a single email address that can replicate the received message
to multiple email accounts. Although this is a nice feature of the aliases file, it is far from the
full-blown mail list features that many people are accustomed to on the Internet. This chapter
discusses how to implement a full mail list system on the Linux mailserver that can support
advanced user and administrator features for both local and remote mail users on multiple mail
lists.

Features of a Full Service Mail List
As a subscriber, you might already be familiar with mail list servers. If you have ever had to
send a message to a mail list with the word subscribe in the body of the message, you probably
have interacted with a large mail list system. The ability of remote users to request a subscrip-
tion is just one feature of real mail list servers. This section describes some of the common fea-
tures found in various mail list servers.

Open and Closed Mail Lists
When you want to become a member of a mail list, you must first send a message asking to
subscribe. The mail list server can use several different options to handle new subscription
requests.

In an open mail list, anyone is allowed to subscribe. No checks are made to authenticate the
email address requesting the subscription. This is the simplest type of mail list to administer, as
there are almost no functions that need administering. There is one drawback to this feature.
You are assuming that the email address requesting the subscription is the actual person that is
subscribing. Sometimes this can be dangerous. Just like pranksters who send in magazine sub-
scription cards with other peoples’ names on them, pranksters can subscribe other peoples’
email addresses to a mail list without the latter knowing.

To combat this situation, most mail list server programs allow open mail lists, but confirm the
actual subscription. When a request to subscribe to the mail list is received, the server sends a
message back to the email address requesting the subscription, asking that the address reply
with a confirmation message. Often a special ID code is used, making it difficult to fake the
return confirmation message. When a proper return confirmation message is received, the
email address is added to the subscription list.

In a closed mail list, all subscription requests go to a special email address called the list
owner. New email addresses are not added to the mail list unless the mail list owner sends a
message okaying the addition. The mail list owner then has complete control over who is
allowed access to the mail list.

Advanced Topics

PART III
460

22 0672318342 CH18 2/14/00 2:47 PM Page 460

Moderated and Unmoderated Mail Lists
Users can send messages to the mail list to be forwarded to all other members of the list. In an
unmoderated mail list, messages are not checked for content or other issues. Any member of
the list can send any message to the list and it is automatically forwarded to every member of
the list.

Some mail list owners get a little scared with this feature. You might want or need to control
the content of messages sent to list members. A moderated mail list lets the list owner screen
all messages before they are sent to list members. If the list owner does not want the message
forwarded, he can stop the message. If the message is okay, it will be sent to the list as normal.
This feature creates a large amount of work for the list owner. Depending on the scope of the
mail list, it might be a necessary job.

Remote Administration of Mail Lists
Sophisticated mail list server software packages frequently offer an extremely nice feature: the
capability to remotely administer the mail list. Most packages enable the list owner to create a
special password to access administration functions on the mail list. When the owner has
access, she can then change the configuration of the mail list server via email messages sent to
the mail list. Because the configuration is accomplished via email, the list owner can be any-
where in the world, as long as she can still send email messages to the server. This is a nice
feature to have if the mail list server is located remotely from the mail list owner.

Each mail list has a separate configuration file that can be maintained by the mail list owner.
Features—such as whether the list is open or closed, and moderated or unmoderated—can be
configured and changed remotely without any work having to be done on the mail list server.

Digests of Mail Lists
Full-service mail list servers can also compact received messages into digests. You can config-
ure the mail list server to create digests of messages sent to the list daily, weekly, or monthly.
A user can request to receive the digests rather than the individual messages. If the mail list
generates lots of messages each day, this can be a nice feature to add. Sometimes it is better to
receive just one large message at the end of the day rather than lots of small messages scattered
throughout the day. Mail lists that are time sensitive (where responses are generated often)
might not be good candidates for digests.

Archives of Mail Lists
Archives are files that contain previous messages sent to the mail list. The list owner can select
an archive period to use—daily, weekly, monthly, or yearly. All messages sent to the list in the

Mail Lists

CHAPTER 18
461

18

M
A

IL
L

ISTS

22 0672318342 CH18 2/14/00 2:47 PM Page 461

set time period are also saved to an archive file. New members of the list can request to receive
archives of past messages. The mail list server can produce lists of available archive files, and
members can select which files to receive via email.

Introducing Majordomo
Majordomo is a popular mail list server package, written by Brent Chapman. Majordomo sup-
ports all the mail list features mentioned in the previous section. It consists of a set of Perl pro-
grams(which use the sendmail aliases file to manipulate messages) and a system of
configuration files and directories for the mail lists, digests, and archives.

The Majordomo program can be implemented on Linux mailservers with minimal effort. You
will need to do some configuration work to enable the sendmail program to work with
Majordomo, and to ensure that the mail list is properly secure from hackers. This section
describes the steps necessary to get a Majordomo mail list server up and running.

Downloading Majordomo
Some Linux distributions include a binary distribution package for Majordomo. Caldera’s
OpenLinux Linux distribution includes a Majordomo RPM file.

Advanced Topics

PART III
462

CAUTION

Users of OpenLinux 2.2 are warned that a bug has been discovered in the
Majordomo distribution of that release. If you are using OpenLinux 2.2, don’t use
the Majordomo RPM distribution on the CD. A fixed version can be downloaded
from Caldera’s Web site at http://www.calderasystems.com.

If your Linux does not include a binary distribution of Majordomo, or you want to get the lat-
est version, you can download it from the Internet. Many different UNIX and Linux sites have
Majordomo distributions available for download. At the time of this writing, Great Circle
Associates hosts the official Majordomo Web and FTP sites. The Web site is located at

http://www.greatcircle.com/majordomo/

Software can be downloaded at its FTP site

ftp.greatcircle.com

in the /pub/majordomo directory. The file majordomo.tar.gz always points to the most cur-
rent version of Majordomo (at this writing, version 1.94.4). Remember to change to BINARY
FTP mode before downloading the file to your Linux server.

22 0672318342 CH18 2/14/00 2:47 PM Page 462

Installing Majordomo
After the distribution package has been downloaded, you can begin the installation of
Majordomo. Because the Majordomo program is distributed as source code, you will need the
GNU C compiler installed on your Linux system. There are several steps that are required to
install Majordomo.

Creating a Majordomo Userid
For security purposes, Majordomo must be installed from a separate userid. Otherwise, the Perl
programs will run as the root user and create possible vulnerabilities. The new userid must
belong to a Linux group that is considered trusted by the sendmail mail program, because it
must interact with the sendmail program. To determine which groups are trusted by sendmail,
view the sendmail configuration file /etc/sendmail.cf and look for the ‘T’ configuration
lines. Listing 18.1 shows the pertinent lines from a Mandrake Linux 6.0 system.

LISTING 18.1 Sample /etc/sendmail.cf File

1 #####################
2 # Trusted users #
3 #####################
4
5 # this is equivalent to setting class “t”
6 #Ft/etc/sendmail.ct
7 Troot
8 Tdaemon
9 Tuucp

Listing 18.1 shows the trusted users for sendmail on the Linux mailserver. As shown in line 6,
sendmail can also be configured to read the trusted users from a file named
/etc/sendmail.ct. Currently the root, daemon, and uucp groups are trusted by sendmail on
this server.

For this example, the userid majordomo and group daemon were chosen as the Majordomo
installation account. The Majordomo distribution file was copied to the Majordomo home
directory. To extract the software from the file, type

tar -zxvf majordomo.tar.gz

This creates the subdirectory majordomo-1.94.4 and installs the Majordomo source code files.
Next, you must modify the Makefile to reflect your particular installation of Majordomo.

Edit the Majordomo Makefile
The Makefile directs what features the Majordomo program will have when it is compiled.
Listing 18.2 is a partial listing of the Makefile.

Mail Lists

CHAPTER 18
463

18

M
A

IL
L

ISTS

22 0672318342 CH18 2/14/00 2:47 PM Page 463

LISTING 18.2 Partial Listing of Majordomo Makefile

1 #$Modified: Wed Aug 27 17:52:25 1997 by cwilson $
2 #
3 # $Source: /sources/cvsrepos/majordomo/Makefile,v $
4 # $Revision: 1.63 $
5 # $Date: 1997/08/27 15:56:21 $
6 # $Header: /sources/cvsrepos/majordomo/Makefile,v 1.63 1997/08/27 15:56:21
7 cwilson Exp $
8 #
9
10 # This is the Makefile for Majordomo.
11 #
12 #------------- Configure these items ----------------#
13 #
14
15 # Put the location of your Perl binary here:
16 PERL = /usr/bin/perl
17
18 # What do you call your C compiler?
19 CC = gcc
20
21 # Where do you want Majordomo to be installed? This CANNOT be the
22 # current directory (where you unpacked the distribution)
23 W_HOME = /usr/local/majordomo
24
25 # Where do you want man pages to be installed?
26 MAN = $(W_HOME)/man
27
28 # You need to have or create a user and group which majordomo will run as.
29 # Enter the numeric UID and GID (not their names!) here:
30 W_USER = 507
31 W_GROUP = 2
32
33 # These set the permissions for all installed files and executables (except
34 # the wrapper), respectively. Some sites may wish to make these more
35 # lenient, or more restrictive.
36 FILE_MODE = 644
37 EXEC_MODE = 755
38 HOME_MODE = 751
39 # If your system is POSIX (e.g. Sun Solaris, SGI Irix 5 and 6, Dec Ultrix
40 # MIPS, BSDI or other 4.4-based BSD, Linux) use the following four lines.
41 # Do not change these values!
42 WRAPPER_OWNER = root
43 WRAPPER_GROUP = $(W_GROUP)
44 WRAPPER_MODE = 4755
45 POSIX = -DPOSIX_UID=$(W_USER) -DPOSIX_GID=$(W_GROUP)

Advanced Topics

PART III
464

22 0672318342 CH18 2/14/00 2:47 PM Page 464

46 # Otherwise, if your system is NOT POSIX (e.g. SunOS 4.x, SGI Irix 4,
47 # HP DomainOS) then comment out the above four lines and uncomment
48 # the following four lines.
49 # WRAPPER_OWNER = $(W_USER)
50 # WRAPPER_GROUP = $(W_GROUP)
51 # WRAPPER_MODE = 6755
52 # POSIX =
53
54 # Define this if the majordomo programs should *also* be run in the same
55 # group as your MTA, usually sendmail. This is rarely needed, but some
56 # MTAs require certain group memberships before allowing the message sender
57 # to be set arbitrarily.
58 # MAIL_GID = numeric_gid_of_MTA
59
60 # This is the environment that (along with LOGNAME and USER inherited from
61 # the parent process, and without the leading “W_” in the variable names)
62 # gets passed to processes run by “wrapper”
63 W_SHELL = /bin/sh
64 W_PATH = /bin:/usr/bin:/usr/ucb
65 W_MAJORDOMO_CF = $(W_HOME)/majordomo.cf
66
67 # A directory for temp files..
68 TMPDIR = /usr/tmp

Several lines in the Makefile shown in Listing 18.2 need to be modified to suit your particular
Linux environment. Line 16 defines where Majordomo can find the Perl program. As the
Majordomo scripts are written in Perl, you must have Perl installed on your Linux system, and
Majordomo must know how to find it. A popular scripting program language developed by
Larry Walls, Perl is included with almost all Linux distributions. Line 19 defines the C com-
piler used on the Linux system. For most Linux distributions, the GNU C compiler, gcc, is
included.

Besides the compilers, you must specify the location where Majordomo will be installed. Line
23 defines the home directory for the Majordomo program. Don’t get this confused with the
home directory for the majordomo userid. They are not the same. They can be the same, but it
is easier if you select another location that can be used for the scripts and configuration files.
I’ve selected the /usr/local/majordomo location. You will have to create this directory as the
root user, and can change the owner to the majordomo user with the command

chown majordomo.daemon /usr/local/majordomo

You will have to replace majordomo.daemon with the userid and the groupid under which you
chose to install Majordomo. Speaking of that, the majordomo userid and groupid in the
Makefile also need to be. Lines 30 and 31 specify these values to the Majordomo program. You

Mail Lists

CHAPTER 18
465

18

M
A

IL
L

ISTS

22 0672318342 CH18 2/14/00 2:47 PM Page 465

can log in as the majordomo userid and type the command id to determine the userid and
groupid. In the samples, the majordomo userid was 507, and the daemon groupid was 2.
Remember, the Makefile is looking for the numerical values, not the text names.

Creating and Editing the majordomo.cf File
The main configuration file, majordomo.cf, controls the behavior of the Majordomo installa-
tion. To create a new configuration file, you can copy the template file sample.cf located in
the majordomo-1.94.4 directory to majordomo.cf in the same directory. Listing 18.3 shows a
sample majordomo.cf file.

LISTING 18.3 Sample majordomo.cf File

1 #
2 # A sample configuration file for majordomo. You must read through this
3 # and edit it accordingly!
4 #
5
6 # $whereami -- What machine am I running on?
7 #
8 $whereami = “smallorg.org”;
9
10 # $whoami -- Who do users send requests to me as?
11 #
12 $whoami = “Majordomo\@$whereami”;
13
14 # $whoami_owner -- Who is the owner of the above, in case of problems?
15 #
16 $whoami_owner = “Majordomo-Owner\@$whereami”;
17
18 # $homedir -- Where can I find my extra .pl files, like majordomo.pl?
19 # the environment variable HOME is set by the wrapper
20 #
21 if (defined $ENV{“HOME”}) {
22 $homedir = $ENV{“HOME”};
23 } else {
24 $homedir = “/usr/local/majordomo”;
25 }
26
27 # $listdir -- Where are the mailing lists?
28 #
29 $listdir = “$homedir/lists”;
30
31 # $digest_work_dir -- the parent directory for digest’s queue area
32 # Each list must have a subdirectory under this directory in order for

Advanced Topics

PART III
466

22 0672318342 CH18 2/14/00 2:47 PM Page 466

33 # digest to work. E.G. The bblisa list would use:
34 # /usr/local/mail/digest/bblisa
35 # as its directory.
36 #
37 $digest_work_dir = “/usr/local/mail/digest”;
38
39 # $log -- Where do I write my log?
40 #
41 $log = “$homedir/Log”;

There are several variables that must be set in the majordomo.cf file. Line 8 defines the
$whereami variable, which is the address used for return messages. If sendmail on the Linux
mailserver is using masquerading, the return address will be the domain name as shown in line
8. If not, the return address will be the fully qualified hostname. Lines 12 and 16 define the
$whoami and $whoami_owner variables based on the $whereami variable. You should not need
to change these values.

The $homedir variable shown on line 24 is important. It must point to the Majordomo program
home directory that you configured in the Makefile. This is where Majordomo will look for the
Perl scripts as it processes list messages. Line 29 defines the $listdir variable. This indicates
where Majordomo will store the information for the mail lists. The default location is a subdi-
rectory called lists that is located in the Majordomo home directory.

In line 37, $digest_work_dir defines where the mail list digest files will be kept. If you are
planning on using the digest feature of Majordomo, you might need to change this value and
create the new subdirectory. Remember that digest files contain the full text of all messages
sent during a particular time period. You might need to use an area that has a fairly large
amount of disk space, depending on the number of mail list messages you generate. The last
variable described is the $log variable in line 41. Majordomo logs all transactions with the
mail list server in a log file. You can change the location of this file to match your Linux distri-
bution’s current log file directory, such as /var/log/majordomo.log.

Using the GNU make Utility for Majordomo
After the Makefile and majordomo.cf files are configured, you can use the GNU make utility
to build the Majordomo executable files. This requires three steps:

1. Run make wrapper to verify that the wrapper program will compile cleanly.

2. Run make install as the majordomo userid to install the Majordomo scripts and exe-
cutables in the Majordomo home directory.

3. Run make install-wrapper as the root userid to install the wrapper program setuid
root.

Mail Lists

CHAPTER 18
467

18

M
A

IL
L

ISTS

22 0672318342 CH18 2/14/00 2:47 PM Page 467

At this point you can run the wrapper program and test the Majordomo installation. Log in as a
user without any special rights, and change to the Majordomo program’s home directory
(/usr/local/majordomo, for this example). From there, type

./wrapper config-test

This runs the wrapper program and tests the configuration. Listing 18.4 shows the partial out-
put generated by the wrapper program.

LISTING 18.4 Output from Wrapper Configuration Test

1 ----------------------- end of tests -----------------------
2
3
4 Nothing bad found! Majordomo _should_ work correctly.
5
6 If it doesn’t, check your configuration file
7 (/usr/local/majordomo/majordomo.cf)
8 closely, and if it still looks okay, consider asking the majordomo-users
9 mailing list at “majordomo-users@greatcircle.com” for assistance. Be sure
10 and fully specify what your problems are, and what type of machine (and
11 operating system) you are using.
12
13 Enjoy!

Listing 18.4 shows the final few lines of the long output that the config-test generates. As
you can tell, this Majordomo configuration passed the tests.

Creating sendmail Aliases for Majordomo
After successfully installing the Majordomo software, you must configure sendmail to recog-
nize the mail lists. Majordomo processes mail lists using the sendmail aliases file (see
Chapter 17, “Mail Aliases and Masquerading”). For the default Majordomo configuration, add
the lines shown in Listing 18.5 to the /etc/aliases file.

LISTING 18.5 Majordomo Alias Lines

1 # Majordomo aliases
2 majordomo: “|/usr/local/majordomo/wrapper majordomo”
3 owner-majordomo: rich,
4 majordomo-owner: rich

After new entries are made to the aliases file, you must run the newaliases program for send-
mail to recognize them. In Listing 18.5, line 2 shows the alias majordomo being redirected to
the wrapper program with the command line parameter of majordomo. This tells sendmail to
run the wrapper program when it receives a message.

Advanced Topics

PART III
468

22 0672318342 CH18 2/14/00 2:47 PM Page 468

There is one trick to using aliases to run the wrapper program. Some sendmail installations use
the smrsh feature, as described in Chapter 11. This restricted shell refuses to execute programs
unless they appear in a special directory owned by the root user. If your sendmail configuration
is using the smrsh feature, it will refer to the directory where you can place the executable files
that sendmail is allowed to run. On Mandrake Linux 6.0, it is the /etc/smrsh directory. By
copying the wrapper program from the normal location (/usr/local/majordomo/wrapper, in
this example) to the /etc/smrsh directory, sendmail will be able to run the wrapper program.

Lines 3 and 4 are support aliases. If a list member has difficulties with the mail list, he can
send mail to the mail list owner asking for help, advice, and so on. These addresses will point
to the real email address of the mail list owner.

Testing the Majordomo Installation
You can easily create a test mail list to see whether the installation is correct. First, you must
create a dummy list file in the Majordomo lists directory, as specified in the majordomo.cf file.
In this example, the location is /usr/local/majordomo/lists. You can create the test file
using the command

touch /usr/local/majordomo/lists/test

After the file is created, you can send the Majordomo ‘lists’ command to the majordomo alias
to receive a listing of the available mail lists. Listing 18.6 shows an example of this.

LISTING 18.6 Sample Test of Majordomo Installation

1 [rich@shadrach rich]$ echo ‘lists’ | mail -v majordomo
2 majordomo... aliased to “|/usr/local/majordomo/wrapper majordomo”
3 “|/usr/local/majordomo/wrapper majordomo”... Connecting to prog...
4 “|/usr/local/majordomo/wrapper majordomo”... Sent
5 [rich@shadrach rich]$ mail
6 Mail version 8.1 6/6/93. Type ? for help.
7 “/var/spool/mail/rich”: 1 message 1 new
8 >N 1 Majordomo@smallorg.org Thu Nov 18 18:51 23/736 “Majordomo results”
9 &
10 Message 1:
11 From Majordomo-Owner@smallorg.org Thu Nov 18 18:51:35 1999
12 Date: Thu, 18 Nov 1999 18:51:34 -0500
13 X-Authentication-Warning: shadrach.smallorg.org: majordomo set sender to
14 Majordomo-Owner@smallorg.org using -f
15 To: rich@smallorg.org
16 From: Majordomo@smallorg.org
17 Subject: Majordomo results
18 Reply-To: Majordomo@smallorg.org
19

Mail Lists

CHAPTER 18
469

18

M
A

IL
L

ISTS

continues

22 0672318342 CH18 2/14/00 2:47 PM Page 469

LISTING 18.6 continued

20 --
21
22 >>>> lists
23 Majordomo@smallorg.org serves the following lists:
24
25 test
26
27 Use the ‘info <list>’ command to get more information
28 about a specific list.
29
30 &

In Listing 18.6, line 1 shows an example of sending the ‘lists’ command to Majordomo. The
-v command line option puts the Linux mail program in verbose mode so you can see what is
happening. Lines 2 through 4 show the results of the mail message. Line 2 indicates that send-
mail recognized the alias. Line 3 shows sendmail attempting to contact the wrapper program.
Line 4 shows that sendmail was successful in passing the message off to the wrapper program.
After the message is sent, you can check the mailbox for the user that sent the message for
Majordomo’s reply. Lines 5 through 30 show the resulting mail message returned from
Majordomo, indicating that there is one mail list available on the Majordomo server. Of course,
this is not totally true because you have not configured the mail list properly.

As a final check of the Majordomo system, the command that you sent to Majordomo will
have been logged in the Majordomo log file. Check the log to see whether it made it. The fol-
lowing line appeared in the /usr/local/majordomo/log file of the sample server:

Nov 18 18:51:34 smallorg.org majordomo[28128] {Rich
➥<rich@shacrach.smallorg.org>} lists

The log file indicates the time, email address, and the command entered. Frequent checking of
the Majordomo log file helps in spotting any unauthorized activity with the mail list server.

Configuring a Majordomo Mail List
With the Majordomo program installed, you will next configure actual mail lists. First, you
must create an empty file that will be used to hold the email addresses in the list. The name of
the file must match the name of the mail list. This example will use the mail list name office-
news. After the file is created, you must ensure that it has the proper access modes set. send-
mail will complain if it tries to use an alias list that is group writable, or is in a directory that is
group writable. The commands to create the file and change the permissions are

touch /usr/local/majordomo/lists/officenews
chmod 755 /usr/local/majordomo/lists
chmod 644 /usr/local/majordomo/lists/officenews

Advanced Topics

PART III
470

22 0672318342 CH18 2/14/00 2:47 PM Page 470

Next, create an information file for the mail list. Majordomo will use the mail list information
file when someone requests information on the mail list, or subscribes to the mail list. The
information file will be in the form list.info, where list is the mail list name. For this
example, the information file is /usr/local/majordomo/lists/officenews.info, and con-
tains a simple text description of the mail list.

Each mail list requires several entries in the sendmail aliases file, depending on which fea-
tures you want the mail list to support. Table 18.1 shows the aliases that can be used for a mail
list named list.

TABLE 18.1 sendmail Aliases Used for a Majordomo Mail List

Alias Description

list The mail list alias

list-outgoing Actual list of subscribers

owner-list Administrator of the mail list

list-request Address for Majordomo requests

list-approval Person who approves postings in moderated lists

list-digest Address for digest lists

list-digest-request Address for digest requests

Listing 18.7 shows a sample entry for the officenews mail list. This list will be a simple, no-
frills mail list. The mail list will be open to the public, and no digests or archives will be cre-
ated.

LISTING 18.7 Sample Mail List Alias Entries

1 #officenews mail list entries
2 officenews: “|/usr/local/majordomo/wrapper resend -l officenews
➥ officenews-list”
3 officenews-list: :include:/usr/local/majordomo/lists/officenews
4 owner-officenews: rich,
5 officenews-owner: rich
6 officenews-approval: officenews-owner
7 officenews-request: “|/usr/local/majordomo/wrapper majordomo –l
➥ officenews”

As usual, remember to run the newaliases program as root after adding the new aliases. At this
point the mail list will be operational, but not configured. You can create a configuration file by
emailing the mail list from an email address that is either local or remote to the mail list server.
Majordomo will automatically create a default configuration file and mail it back to you.
Listing 18.8 shows an example of this operation, plus a partial listing of the return message.

Mail Lists

CHAPTER 18
471

18

M
A

IL
L

ISTS

22 0672318342 CH18 2/14/00 2:47 PM Page 471

LISTING 18.8 Partial Sample Mail List Configuration Request

1 [rich@shadrach rich]$ mail officenews-request
2 Subject:
3 config officenews officenews.admin
4 .
5 Cc:
6 [rich@shadrach rich]$ mail
7 Mail version 8.1 6/6/93. Type ? for help.
8 “/var/spool/mail/rich”: 1 message 1 new
9 >N 1 Majordomo@shadrach.s Thu Nov 18 16:25 400/16764 “Majordomo results”
10 &1
11 From Majordomo-Owner@shadrach.smallorg.org Thu Nov 18 16:06:05 1999
12 Return-Path: <Majordomo-Owner@shadrach.smallorg.org>
13 Received: (from majordomo@localhost)
14 by shadrach.smallorg.org (8.9.3/8.9.3) id QAA28433;
15 Thu, 18 Nov 1999 19:06:05 -0500
16 Date: Thu, 18 Nov 1999 19:06:05 -0500
17 Message-Id: <199911182106.QAA28433@shadrach.smallorg.org>
18 X-Authentication-Warning: shadrach.smallorg.org: majordomo set sender to
➥ Majordomo-Owner@smallorg.org using -19 f
20 To: rich@smallorg.org
21 From: Majordomo@smallorg.org
22 Subject: Majordomo results
23 Reply-To: Majordomo@smallorg.org
24 Status: R
25
26 --
27
28 >>>> config officenews officenews.admin
29 admin_passwd = officenews.admin
30 administrivia = yes
31 advertise << END
32 announcements = yes
33 approve_passwd = officenews.pass
34 archive_dir =
35 comments << END
36 date_info = yes
37 date_intro = yes
38 debug = no
39 description =
40 digest_archive =
41 digest_issue = 1
42 digest_maxdays =
43 digest_maxlines =
44 digest_name = officenews

Advanced Topics

PART III
472

22 0672318342 CH18 2/14/00 2:47 PM Page 472

45 digest_rm_footer =
46 digest_rm_fronter =
47 digest_volume = 1
48 digest_work_dir =
49 get_access = list
50 index_access = open
51 info_access = open
52 intro_access = list
53 maxlength = 40000
54 message_footer << END
55 message_fronter << END
56 message_headers << END
57 moderate = no
58 moderator =
59 mungedomain = no
60 noadvertise << END
61 precedence = bulk
62 purge_received = no
64 reply_to =
64 resend_host =
65 restrict_post =
66 sender = owner-officenews
67 strip = yes
68 subject_prefix =
69 subscribe_policy = open+confirm
70 taboo_body << END
71 taboo_headers << END
72 unsubscribe_policy = open
73 welcome = yes
74 which_access = open
75 who_access = open

In Listing 18.8, line 1 shows the mail list owner sending an email message to the officenews-
request address. All mail list commands will be sent to the -request version of the list name.
Normally any message sent to the list name will be automatically forwarded to everyone on the
list. Majordomo contains a program called resend that can be used to screen incoming mes-
sages and bounce any messages that appear to be Majordomo commands sent to the list name
by mistake. This greatly reduces the annoyance of seeing new members’ subscribe commands
forwarded to everyone on the list.

Line 3 shows the format that is used to request a configuration file for the mail list. The third
parameter on the line is the mail list administrative password. The default password for any
mail list is list.admin, where list is the mail list name. After receiving the message,
Majordomo sends a return message. The return address includes the complete configuration

Mail Lists

CHAPTER 18
473

18

M
A

IL
L

ISTS

22 0672318342 CH18 2/14/00 2:47 PM Page 473

file created by Majordomo. The configuration file is stored in the lists directory as
list.config, where list is the mail list name.

Lines 29 through 75 show the configuration variables that can be changed in the configuration
file. The explanatory comments have been removed from the original message. You can read
the actual return message to get an idea of what each of the configuration parameters control.
To change the configuration, you can save the message, change the configuration parameters,
and mail the new configuration file back to the mail list using the newconfig command. The
first line of the return message will have the format

newconfig list adminpasswd

where list is the list name and adminpasswd is the administrative password for the mail list.
After the newconfig line, the normal configuration file with your changes will start.

Listing 18.9 shows some common variables that will be changed from the default configuration
file.

LISTING 18.9 Configuration File Changes for Mail List

1 admin_passwd = newpassword
2 approve_passwd = newpasswd
3 description = A mail list used to distribute general office news
4 subscribe_policy = open
5 who_access = list

Most of the default values will work fine in a general mail list as this example shows. Please
remember to change the administrator password for the new mail list. In Listing 18.9, line 4
changes the default subscription policy. The default policy is open+confirm, which is for an
open mail list, but members must confirm their subscription requests by responding to a mes-
sage sent by Majordomo. This example uses a simple open policy, which allows anyone to sub-
scribe to the list, and doesn’t verify email addresses. If this was a mail list that contained
sensitive company information, you might want to use a closed subscription policy wherein the
mail list owner must confirm each subscription to the mail list. Line 5 restricts who can issue
the ‘who’ command to receive a listing of mail list members; only current list members can
issue the command. Listing 18.10 shows the results of using this parameter for a non-member.

LISTING 18.10 Sample ‘who’ Command

1 [melanie@shadrach melanie]$ echo ‘who’ | mail officenews-request
2 [melanie@shadrach melanie]$ mail
3 Mail version 8.1 6/6/93. Type ? for help.
4 “/var/spool/mail/melanie”: 1 message 1 new

Advanced Topics

PART III
474

22 0672318342 CH18 2/14/00 2:47 PM Page 474

5 >N 1 Majordomo@smallorg.o Thu Nov 20 16:40 20/744 “Majordomo results”
6 &
7 Message 1:
8 From Majordomo-Owner@smallorg.org Thu Nov 18 20:40:54 1999
9 Date: Thu, 18 Nov 1999 20:40:53 -0500
10 X-Authentication-Warning: shadrach.smallorg.org: majordomo set sender
➥ to Majordomo-Owner@smallorg.org using -f
11 To: melanie@smallorg.org
12 From: Majordomo@smallorg.org
13 Subject: Majordomo results
14 Reply-To: Majordomo@smallorg.org
15
16 --
17
18 >>>> who
19 **** List ‘officenews’ is a private list.
20 **** Only members of the list can do a ‘who’.
21 **** You [Melanie <melanie@smallorg.org>] aren’t a member of list
➥ ‘officenews’.
22
23 &

In Listing 18.10, line 1 shows the user melanie sending a ‘who’ command to the mail list
server to retrieve a list of members. Lines 18 through 21 show the results that were mailed
back to melanie. Because the ‘who’ mail list command was configured as private—for list
members only—melanie is restricted from viewing the mail list.

That completes the installation and configuration of the Majordomo mail list server. The next
section describes how email clients can use the new mail list server.

Using Majordomo
Majordomo makes tasks simple for general users. Subscribing, posting new messages, and
unsubscribing are very straightforward. However, there are more complicated commands for
advanced features, such as retrieving digests and archive files, as well as managing the mail list
remotely.

The first step in becoming a mail list member is to request a subscription. Subscription
requests are sent to the –request form of the mail list name. Majordomo ignores the subject
line, so it can be left blank. The body of the message will contain a single line with the word
subscribe in it. Depending on the list mode, you will receive either a confirmation of the sub-
scription, or a message, which you must return to join the list. Listing 18.11 shows a sample
subscription session.

Mail Lists

CHAPTER 18
475

18

M
A

IL
L

ISTS

22 0672318342 CH18 2/14/00 2:47 PM Page 475

LISTING 18.11 Sample Mail List Subscription Session

1 [rich@shadrach rich]$ mail officenews-request
2 Subject:
3 subscribe
4 .
5 Cc:
6 [rich@shadrach rich]$ mail
7 Mail version 8.1 6/6/93. Type ? for help.
8 “/var/spool/mail/rich”: 3 messages 3 new
9 >N 1 Majordomo@smallorg.o Fri Nov 19 04:42 44/1625 “Welcome to
➥ officenews”
10 N 2 Majordomo@smallorg.o Fri Nov 19 04:42 18/696 “SUBSCRIBE
➥ officenews “
11 N 3 Majordomo@smallorg.o Fri Nov 19 04:42 18/613 “Majordomo results”
12 &
13 Message 1:
14 From owner-officenews@smallorg.org Fri Nov 19 04:42:56 1999
15 Date: Fri, 19 Nov 1999 04:42:56 -0500
16 X-Authentication-Warning: shadrach.smallorg.org: majordomo set sender to
➥ owner-officenews@smallorg.org using -f
17 To: rich@smallorg.org
18 From: Majordomo@smallorg.org
19 Subject: Welcome to officenews
20 Reply-To: Majordomo@smallorg.org
21
22 --
23
24 Welcome to the officenews mailing list!
25
26 Please save this message for future reference. Thank you.
27
28 If you ever want to remove yourself from this mailing list,
29 you can send mail to <Majordomo@smallorg.org> with the following
30 command in the body of your email message:
31
32 unsubscribe officenews
33
34 or from another account, besides rich@smallorg.org:
35
36 unsubscribe officenews rich@smallorg.org
37
38 If you ever need to get in contact with the owner of the list,
39 (if you have trouble unsubscribing, or have questions about the
40 list itself) send email to <owner-officenews@smallorg.org> .

Advanced Topics

PART III
476

22 0672318342 CH18 2/14/00 2:47 PM Page 476

41 This is the general rule for most mailing lists when you need
42 to contact a human.
43
44 Here’s the general information for the list you’ve subscribed to,
45 in case you don’t already have it:
46
47 Welcome to the smallorg.org officenews mail list.
48
49 This mail list is used to help keep you informed about general information
50 that is happening in the organization. Please post any announcements to
51 this mail list. Unauthorized use of this mail list is prohibited.
52
53 &

In Listing 18.11, lines 1 through 5 show the user rich sending a message to the officenews-
request mail alias to subscribe to the mail list. Users can also send requests to the majordomo
alias, but the desired list name must follow the command so that Majordomo knows which
mail list you are requesting. Lines 6 through 11 show the mail messages that are returned in
response to the command. Line 11 shows the message that is returned confirming that
Majordomo received the subscription message. Line 10 is a message that is sent to the mail list
owner (which also happens to be rich) that a new member has subscribed to the mail list. Line
9 is the message returned by Majordomo confirming that the user is now a member of the mail
list. Lines 13 through 53 show the text of this message. Notice that Majordomo gives full
instructions on how to unsubscribe from the mail list in lines 28 through 36. Lines 47 through
51 reproduce the officenews.info file that was created for the mail list.

Mail List User Commands
Several commands can be sent to the –request mail alias requesting actions from the mail list
server. The following commands are available to users.

subscribe Command
As shown in Listing 18.11, the subscribe command lets new members request subscriptions
to the mail list. The format of the command is

subsscribe <list> [<address>]

where list is the list name and address is the email address that you want to add to the mail
list. If you are sending the message to the list-request version of the alias, you can omit the
list parameter. Also, if you want to subscribe the email address that you are sending the mes-
sage from, you can omit the address parameter. You are allowed to subscribe a different email
address. The results depend on the subscription policy configuration of the mail list.

Mail Lists

CHAPTER 18
477

18

M
A

IL
L

ISTS

22 0672318342 CH18 2/14/00 2:47 PM Page 477

unsubscribe Command
The opposite of the subscribe command is unsubscribe, which removes an email address
from a mail list. The format of this command is

unsubscribe <list> [<address>]

where, again, the list and address parameters are optional.

get Command
The get command is used to retrieve a file from the mail list. The format of this command is

get <list> filename

where filename refers to a file that is in the mail list. This command is used when a mail list is
archived. The mail list member can retrieve an archive file by issuing the get command with
the desired archive name.

index Command
The index command is used to return a list of files that are available in the mail list. The for-
mat of this command is

index <list>

The index command is used in conjunction with the get command when using mail list
archives. The index command will return a list of the archive files available for retrieval.

which Command
The which command is used to determine which mail lists on the Majordomo server an email
address is a member of. The format of the which command is

which [<address>]

If you want information regarding the email address from which you are sending the request,
you can omit the address parameter. Majordomo will return a message listing all the mail lists
to which you belong.

who Command
The who command can be used to retrieve a listing of the members currently subscribed to the
mail list. The format of the who command is

who <list>

As seen in Listing 18.10, the who command can be restricted to only members of the list.

Advanced Topics

PART III
478

22 0672318342 CH18 2/14/00 2:47 PM Page 478

info Command
The info command is used to retrieve the information file for the mail list. The format of the
command is

info <list>

The information retrieved is the text from the file list.info located in the Majordomo lists
directory.

intro Command
The intro command is used to retrieve the introduction text message that is sent to new users.
The format for this command is

intro < list>

lists Command
The lists command is used to retrieve a listing of all the mail lists on the Majordomo server.
The format of this command is

lists

help Command
The help command returns a message that lists all the user commands available in
Majordomo. No list-specific information is returned in the help command.

end Command
The end command is used to tell Majordomo to stop processing commands in the message.
This command is used mainly when extra text appears at the end of an email message, such as
when users have an email client package that includes an automatic signature block at the bot-
tom of the message. The end command will appear on a line by itself at the end of the com-
mand section of the message.

Mail List Owner Commands
The designated owner of the mail list has more commands available that can be used to control
the operation of the mail list. All of the commands are sent as normal email messages to the
–request form of the mail list. This feature greatly simplifies the list’s administration. Anyone
from anywhere can become the owner of a mail list. Owners are not restricted to having physi-
cal contact with the mail list server. Also, the mail list owner does not need a log-in userid for
the system on which the mail list is running. This section describes these owner commands in
more detail.

Mail Lists

CHAPTER 18
479

18

M
A

IL
L

ISTS

22 0672318342 CH18 2/14/00 2:47 PM Page 479

approve Command
The approve command is used in closed mail lists to approve subscriptions of new members.
The command format is

approve password subscribe/unsubscribesubscribe/unsubscribe< list> < address>

where password is the administrative password for the list, subscribe/unsubscribesub-
scribe/unsubscribe is the action to approve, list is the mail list name, and address is the
email address to approve.

config Command
The config command is used to retrieve a copy of the mail list configuration file,
list.config. The format of this command is

config <list> password

mkdigest Command
The mkdigest command is used in mail lists that use the digest feature to create a new digest.
Digests can be created as frequently as needed. The command format is

mkdigest <list> password

If there is a lot of traffic in the mail list, sometimes it is desirable to create digests more fre-
quently than is configured in the mail list settings. The mkdigest will force Majordomo to cre-
ate a new digest.

newconfig Command
The newconfig command is used to create a new configuration file with the parameters sent.
The command format is

newconfig <list> password

Following the command will be the text of the new configuration file. Majordomo will replace
the existing configuration file with the new one, and automatically follow the new configura-
tion guidelines. This feature allows the mail list owner to completely change the configuration
of the mail list with a single email message. This is extremely handy when administering a
mail list from a remote location.

newinfo Command
The newinfo command is used to change the text in the list.info file via email. The format
for this command is

newinfo <list> password

Advanced Topics

PART III
480

22 0672318342 CH18 2/14/00 2:47 PM Page 480

The text immediately following the newinfo command will be the desired text of the new
information file. Majordomo will replace the list.info file with the text sent. This is another
handy remote administration feature.

passwd Command
The passwd command is used to change the mail list password. The format of the passwd com-
mand is

passwd < list> old-passwd new-passwd

This command can cause some confusion. Normally, the mail list password is stored in the
list.config file, which can be modified using the newconfig command. Alternatively, if you
do not want to mess with sending a new configuration file, you can use the passwd command
to change just the password. However, this command does not replace the password present in
the configuration file. It creates a new file, list.passwd, that indicates the new password. If
the password in the configuration file does not match the password in the password file, both
passwords become active.

writeconfig Command
The writeconfig command is used to reformat the existing configuration file to the original
format. The command format is

writeconfig < list> password

This command can be used when the configuration file is hopelessly scrambled, possibly
because of errors when using the newconfig command. As you can only retrieve the existing
configuration file, you might not be able to fix them using newconfig. The writeconfig com-
mand attempts to reformat the existing configuration file back to the original format.

Summary
One nice feature of mailservers is the capability to create a mail list that users can subscribe to.
Mail lists can handle large numbers of members and seamlessly deliver messages. One mail
list package available for the Linux platform is the Majordomo program. Majordomo can man-
age multiple mail lists on a single server. Mail lists range from publicly open, unmoderated
mail lists to closed, restricted mail lists. Mail list digests and archives can be created to help
simplify message retrieval. Majordomo also enables remote administration of mail lists, so the
mail list owner does not require physical access to the mail list server. User commands are kept
simple to make subscribing, posting, and unsubscribing to mail lists easy for non-technical list
members.

Mail Lists

CHAPTER 18
481

18

M
A

IL
L

ISTS

22 0672318342 CH18 2/14/00 2:47 PM Page 481

482

22 0672318342 CH18 2/14/00 2:47 PM Page 482

CHAPTER

19
IP Routing with Linux

IN THIS CHAPTER
• Methods of Network Connectivity

Using Linux 484

• Using ipfwadm 490

• Using ipchains 494

• Configuring Network Clients
for Routing 500

23 0672318342 CH19 2/14/00 2:43 PM Page 483

This book is intended to help network mail administrators install and configure a fully working
Internet email server using the Linux operating system. You may be wondering why then is the
last chapter about IP Routing. When deciding the platform to implement an office email server
on, there are many decisions to consider. Many other valid operating systems can be used to
implement third-party software to provide email services (although none of them includes
email software like Linux). A feature that is often implemented when configuring an office net-
work is the capability for locally connected office workstations to have full access to the
Internet. Some operating systems (such as Microsoft Windows NT 4.0 server) allow this func-
tionality from within the operating system. Others (such as Windows 95) require third-party
software packages to support this functionality.

If you have made the decision to use the Linux operating system to provide your Internet email
services, you may also be wondering whether Linux can also provide connectivity to the
Internet for your office workstations. It can. This chapter describes how you can use the Linux
mailserver to connect the office workstations to the Internet and at the same time provide
Internet email services for your office.

Methods of Network Connectivity Using Linux
Two different methods can be used to connect network workstations to the Internet using the
Linux server:

• Obtain a range of valid Internet IP addresses and use the Linux server as an IP routing
device.

• Use a public IP address range and use the Linux server as an IP masquerading device.

The first method requires that each device on the network have a valid Internet IP address in a
network that is routable from the Internet. The Linux server acts as a normal IP router to trans-
fer IP packets from the local office network through the ISP network to the Internet.

You can obtain valid Internet IP addresses for the office network in two ways. One way is to
register for a block of IP addresses from the Network Information Center (NIC). The other way
is by the ISP allowing the office network to use a subset of its assigned IP addresses.
Registering a block of IP addresses from the NIC is an expensive method. There has been a lot
of talk about the NIC running out of IP network addresses due to organizations taking large
blocks of addresses but not using them. Often an ISP will subnet its IP network address block
and allow each client to use some IP addresses from its own block of assigned addresses.
Unfortunately, this will not work if you intend on connecting more than five or six worksta-
tions to the office network because most ISPs do not give out large quantities of IP addresses.

Advanced Topics

PART III
484

23 0672318342 CH19 2/14/00 2:43 PM Page 484

The second method is the more common approach. The local network is assigned IP addresses
from the public IP network address space—192.168.0.0. Using this IP address range, network
connectivity can be established between the network workstations and the Linux mailserver on
the local network. However, devices in the public IP network are not routable from the
Internet. The idea of the public network addresses is that they can be used by anyone not on
the Internet without worrying about routing problems because they cannot be reached from the
Internet.

The Linux server can solve this problem by using IP masquerading. When the Linux server
connects to the ISP, it is assigned a valid Internet IP address either dynamically or statically.
The Linux server can then masquerade the IP addresses from the local office workstation with
its own valid Internet IP address before sending the packets out into the Internet. The receiving
Internet host can reply to the packet, which can be routed back to the Linux server. The Linux
server must then be able to put the original office network IP address on the packet and for-
ward it to the proper workstation.

The Linux mailserver can support either method of Internet connectivity for workstations con-
nected to the office network. The following sections describe how this can be accomplished.

Local Network Has a Valid Internet IP Address Range
When the office network has been assigned valid Internet IP addresses, IP masquerading is not
needed. The Linux mailserver can act as a normal IP router forwarding packets between the
office network and the Internet. Figure 19.1 shows an example of a local office workstation
connecting with a remote host on the Internet using the Linux server as a router.

A remote Internet host can send IP packets directly to the local workstation because the work-
station’s IP network is routable from the remote network. The Linux server must have IP for-
warding enabled in the kernel to work as a router. In Figure 19.1, a network client with address
5.6.8.2 wants to talk to a remote host with address 1.2.3.4. Using routing in the local
mailserver, the process involves the following:

1. Client sends packet to remote host 1.2.3.4.

2. Local mailserver forwards packet to the ISP server with address 5.6.7.8 on the client
network side.

3. ISP server routes the packet through the Internet to the remote host at address 1.2.3.4
and indicates a response to 5.6.8.2.

4. The remote host receives the message and replies through the Internet to address
5.6.8.2.

IP Routing with Linux

CHAPTER 19
485

19

IP R
O

U
TIN

G
W

ITH
L

IN
U

X

23 0672318342 CH19 2/14/00 2:43 PM Page 485

FIGURE 19.1
Local workstations using Internet IP addresses.

5. The ISP server recognizes the packet as one to be directed to local address 5.6.8.2 and
forwards it.

6. The local mailserver recognizes the packet as one for a local client and forwards it to
5.6.8.2.

If the kernel does not have IP forwarding enabled, you must recompile the kernel to enable it.

To determine whether your Linux kernel has IP forwarding enabled, you can check for the file
/proc/sys/net/ipv4/ip_forward. By setting the ip_forward file to the value of ‘1’, IP for-
warding is enabled. To accomplish this, as the root user type the following:

echo ‘1’ > /proc/sys/net/ipv4/ip_forward

Advanced Topics

PART III
486

Linux
Mailserver

Network
Client

ISP
Server

Remote
Host

L
A
N

Internet

1.2.3.4 5.6.1.1

5.6.7.8

5.6.7.9
5.6.8.15.6.8.2

23 0672318342 CH19 2/14/00 2:43 PM Page 486

Using the Linux server as a router is a nice feature, but risks are involved. After the Linux
server is configured to route IP network traffic from your office network to the Internet, traffic
from the Internet can also get to your office network. I repeat—traffic from the Internet can
also get to your office network. This leaves your office network open and vulnerable to various
attacks by hackers on the Internet. Depending on what types of devices are on your network,
this may or may not be a large concern for you.

Another nice feature of Linux is that since version 1.3, kernel firewall support code has been
built into the kernel. You can use this feature to help reduce the chances of unauthorized hack-
ers gaining access to devices on your network by implementing the firewall code.

Firewalls help filter certain types of packets from entering or leaving the office network. Using
a firewall, you can prevent remote hosts from establishing connections to internal office
devices. Also, you can prevent internal office devices from accessing certain remote hosts. This
is accomplished by using a Network Address Translation (NAT) table that is maintained in the
kernel. IP address pairs are entered into the table by programs that use rules. Each rule is con-
structed to create an entry in the NAT. As each packet is received, Linux examines the NAT
table to determine whether the packet should be forwarded or dropped.

Two software packages for Linux are used to assist in configuring the kernel NAT table. The
ipfwadm package is a popular package that can be used with the 1.3 to 2.0 kernels. In kernel
version 2.1, new features were added to the NAT table. If your Linux distribution is using
either the 2.1 or newer kernels, you can use the ipchains software package to utilize new

IP Routing with Linux

CHAPTER 19
487

19

IP R
O

U
TIN

G
W

ITH
L

IN
U

X

NOTE

With the popularity of IP forwarding and masquerading, most modern Linux distribu-
tions include support for IP forwarding by default. If your Linux kernel does not have
IP forwarding installed, you must recompile the kernel to include it. Several good
Sams Publishing books are available that describe the details on how to reconfigure
the Linux kernel.

CAUTION

Use caution when changing the Linux kernel. Any mistakes could leave your Linux
server unbootable.

23 0672318342 CH19 2/14/00 2:43 PM Page 487

features such as faster masquerading and packet rejecting (sending an ICMP reject packet back
to the original host). Both packages are explained in detail later in the “Using ipfwadm” and
“Using ipchains” sections.

By setting up a firewall, you can configure the software to block attempts by hackers to initiate
connections to devices on your network. This is not intended to be a substitute for proper sys-
tem administration. You must always monitor the Linux system log files to watch for intruders.
Firewalls can be compromised.

Local Network Is Using a Public IP Address Range
As described earlier, using a public IP address range in the local office network requires a little
more work from the network administrator. Figure 19.2 shows an example of how this scenario
works.

Advanced Topics

PART III
488

Linux
Mailserver

Network
Client

ISP
Server

Remote
Host

L
A
N

Internet

1.2.3.4 5.6.1.1

5.6.7.8

5.6.7.9192.168.1.1192.168.1.15

FIGURE 19.2
Local workstations using public IP addresses.

23 0672318342 CH19 2/14/00 2:43 PM Page 488

Because the local workstations do not have valid Internet IP addresses, the Linux server must
be configured to masquerade the addresses used on the local office network devices when they
request connections to remote Internet hosts. IP masquerading support has been built into the
Linux kernel since version 1.3, and upgraded in version 2.1. In Figure 19.2, a network client
with address 192.168.1.15 wants to talk to a remote host with address 1.2.3.4. Using mas-
querading, the dialog would involve the following:

1. Client sends packet to remote host 1.2.3.4.

2. Local mailserver forwards packet to the ISP server with address 5.6.7.8 on the client
network side. The message masquerades the sending address as itself—address
5.6.7.9— not the workstation address.

3. ISP server routes the packet through the Internet to the remote host at address 1.2.3.4
and indicates a response to 5.6.7.9.

4. The remote host receives the message and replies through the Internet to address
5.6.7.9.

5. The ISP server recognizes the packet as one to be directed to local address 5.6.7.9 and
forwards it.

6. The local mailserver identifies the packet as one for a local client and forwards it to
192.168.1.15.

Like the firewall feature, masquerading must be compiled into the Linux kernel. Also like the
firewall, the kernel maintains an internal table of connections where it can map the original
local network device addresses with an assigned port number from its Internet IP address. This
feature is added to the Network Address Translation (NAT) table. IP packets coming from the
local network device are added to the NAT and assigned a port number on the existing IP
address of the Linux server.

To determine whether IP masquerading is installed in your Linux kernel, check for the file
/proc/net/ip_masquerade. If it is present, IP masquerading is compiled in the kernel. Also,
for IP masquerading to work, IP forwarding must be enabled as described in the previous sec-
tion. If not, you must recompile the Linux kernel and add it. As before, use caution when
recompiling the Linux kernel. Mistakes can result in an unusable Linux server.

To set up masquerading, you can use the same software packages as setting up the firewall.
The ipfwadm and ipchains software packages mentioned earlier are both capable of inserting
and deleting IP addresses into the kernel NAT table for masquerading. The following sections
describe these two software packages in detail.

IP Routing with Linux

CHAPTER 19
489

19

IP R
O

U
TIN

G
W

ITH
L

IN
U

X

23 0672318342 CH19 2/14/00 2:43 PM Page 489

Using ipfwadm
The ipfwadm package helps manipulate the internal Linux kernel NAT table. The ipfwadm
program is maintained by the X/OS company. Some basic information is available at its Web
site:

http://www.xos.nl/linux/ipfwadm/

Advanced Topics

PART III
490

NOTE

Most Linux distributions before the version 2.1 kernel include a binary distribution
package for ipfwadm. The most current version of ipfwadm at the time of this writ-
ing is version 2.3.0. It can be downloaded from the X/OS FTP site:

ftp://ftp.xos.nl/pub/linux/ipfwadm/ipfwadm-2.3.0.tar.gz

When downloaded, it can be unpacked and compiled to create the binary executable
file ipfwadm.

ipfwadm uses rules to manipulate the NAT table addresses. You must run ipfwadm each time
you want to add or delete an address from the NAT. ipfwadm uses rules to manipulate the NAT
addresses. The rules are divided into four categories:

• IP packet accounting rules

• IP input firewall rules

• IP output firewall rules

• IP forwarding firewall rules

Each category has its own list of rules. Rules are implemented in the order in which they are
entered, so be careful with rules that may override other rules. The format of the ipfwadm com-
mand is as follows:

ipfwadm category command parameters [options]

The category indicates the type of rules being entered. Table 19.1 shows the current category
types.

23 0672318342 CH19 2/14/00 2:43 PM Page 490

TABLE 19.1 ipfwadm Category Types

Category Description

-A IP accounting rules

-I IP input firewall rules

-O IP output firewall rules

-F IP forwarding firewall rules

-M IP masquerading administration

Only one category can be specified per line. Each category relates to the ipfwadm category rule list.
The -M category is used to list rules relating to the IP masquerading rules. This helps simplify admin-
istration of masquerading features.

Commands are used to add, delete, or modify the rules listed on the command line. Table 19.2 lists the
commands available for each of the categories (except the -M category).

TABLE 19.2 ipfwadm Command Types

Command Description

-a [policy] Append one or more rules

-i [policy] Insert one or more rules to the beginning of the rule list

-d [policy] Delete one or more rules from the selected rule list

-l List all the rules in the list

-z Reset the counters

-f Flush the selected rule list

-p policy Change the default rule policy

-s tcp tcpfin udp Change the timeout values used for masquerading

-c Check whether an IP packet would be accepted

-h Display the list of commands

The policy parameter relates to one of three policy types: accept, deny, or reject. The
accept policy allows the specified packets to be forwarded. The deny policy prevents the spec-
ified packets from being forwarded. The reject policy also prevents the specified packets
from being forwarded, but also returns an ICMP error packet to the sending address.

The parameters are used to further define actions taken in the commands. Table 19.3 shows the
valid parameters that are used.

IP Routing with Linux

CHAPTER 19
491

19

IP R
O

U
TIN

G
W

ITH
L

IN
U

X

23 0672318342 CH19 2/14/00 2:43 PM Page 491

TABLE 19.3 ipfwadm Parameter Types

Parameter Description

-P protocol The protocol to check

-S address[/mask] Source address(es) to check

-D address[/mask] Destination address(es) to check

-V address Optional address of an interface via which a packet is received

-W address Optional name of an interface via which a packet is received

The addresses specified can be either a single IP address, or a subnet of IP addresses using a
subnet mask that is specified. The mask is specified as a number of bits turned on. Thus a
mask of 24 relates to a subnet mask of 255.255.255.0.

The options are additional features that can be specified for the rules. Table 19.4 shows the
available options that can be used.

TABLE 19.4 ipfwadm Option Types

Option Description

-b Bi-directional mode

-e Extended output

-k Match TCP packets with ACK bit set

-m Masquerade packets for forwarding

-n Numeric output

-o Turn on logging of packets

-r [port] Redirect packets to a local socket

-t andmask ormask Masks used to modify the IP type-of-service

-v Verbose output

-x Expand numbers

-y Match start-of-session packets

The most common options used are the -m option, which turns on masquerading, the -o option,
which creates an entry in the kernel log file for each packet that matches the rule, and the -y
option, which can be used to prevent connections from being established. Be careful when
using the -o option because it could easily generate huge log files. Often it is used with the -y
option to log when remote hosts attempt to connect to internal office workstations.

Advanced Topics

PART III
492

23 0672318342 CH19 2/14/00 2:43 PM Page 492

The ipfwadm commands are entered into the NAT table as they are entered at the command
line. Unfortunately, they disappear when the Linux server is rebooted. Thus, when you find a
configuration that you like, you should create a script file that can be run at boot time to re-cre-
ate the rules. Listing 19.1 shows a sample script to start IP masquerading on the Linux server.

LISTING 19.1 Sample ipfwadm Script for Masquerading

1 /sbin/ipfwadm -F -p deny
2 /sbin/ipfwadm -F -a -m -S 192.168.1.0/24 -D 0.0.0.0/0

In Listing 19.1, line 1 shows the ipfwadm command to change the default policy to deny. The
default policy is used when no matching rules are found. It is best to make the rules default to
deny forwarding. Line 2 implements the masquerading feature. The -a command indicates that
the rule will be appended to the IP forward firewall rule list. The -m option indicates that pack-
ets that pass the rule will be masqueraded when forwarded. The -S parameter indicates the
source network address and mask that will be used in the rule. The mask of 24 indicates the
top 24 bits will be used as a subnet mask. This creates a subnet mask of 255.255.255.0,
matching the network subnet mask for the office network. The -D parameter indicates the desti-
nation address and mask that will be used. This rule modifies the NAT to accept any packet
from the 192.168.1.0 network that is destined for any other network and forwards it to the
external PPP link using masquerading. Thus, all the office network workstations’ packets
should be masqueraded and forwarded to the Internet.

Using IP masquerading as shown in Figure 19.2, all outbound IP packets from the office net-
work would use the Linux mailserver’s IP address. To help differentiate the sessions, the Linux
mailserver dynamically assigns a new TCP port number to each session.

This rule does not perform any firewall functions. To enable a basic firewall, you can add
another ipfwadm line similar to this:

/sbin/ipfwadm -F -a deny -P tcp -W ppp0 -y -o

This command creates a NAT entry that blocks any TCP connection requests coming from the
ppp0 line, which should be the connection to the ISP. As an extra feature, it also will log any
connection attempts made by remote clients. With this rule, no one from the Internet should be
able to establish a connection with any device on the office network. If you have a device such
as a Web server on the office network, you can be more specific and create a rule to allow Web
traffic to the server but block all other connections. Remember that entering the rule to allow
the Web traffic should precede the rule that blocks all traffic, or else it will be nullified.
Addresses are placed in the NAT in the order that the rules are entered, and are also processed
that way.

IP Routing with Linux

CHAPTER 19
493

19

IP R
O

U
TIN

G
W

ITH
L

IN
U

X

23 0672318342 CH19 2/14/00 2:43 PM Page 493

After a script is configured to meet your masquerading and firewall filtering needs, you can
add it to the init scripts in the directory appropriate for your run level.

Using ipchains
In the Linux 2.1 kernel, the NAT table was expanded to provide for increased functionality.
Because it was made backward-compatible, the ipfwadm program can still be used to modify
the NAT, but to take advantage of the new functionality, a newer program was created. For
Linux kernels version 2.1 or higher, the ipchains program is used to add and delete NAT table
addresses. The ipchains program was written and is maintained by Rusty Russell. The main
ipchains Web site is located at

http://www.rustcorp.com/linux/ipchains

Advanced Topics

PART III
494

NOTE

Most Linux distributions that use version 2.2 or higher kernel include a binary distrib-
ution of ipchains. The most current version of ipchains at the time of this writing is
version 1.3.9. It can be downloaded from the following FTP site:

ftp://ftp.rustcorp.com/ipchains/ipchains-1.3.9.tar.bz2

When downloaded, it can be unpacked and compiled to create the binary executable
file ipchains.

Besides the ipchains program, three scripts can be used to simplify ipchains administration—
ipchains-save, ipchains-restore, and ipchains-wrapper. The ipchains-wrapper script
can be used if you are currently using an ipfwadm script and want to convert to ipchains after
upgrading your Linux kernel. If you are installing firewall and masquerade features for the first
time, you will not need this script.

NOTE

The scripts can also be downloaded from the following FTP site:

ftp://ftp.rustcorp.com/ipchains/ipchains-scripts-1.1.2.tar.gz

23 0672318342 CH19 2/14/00 2:43 PM Page 494

The ipchains-save and ipchains-restore scripts will be discussed in the “Saving the NAT
Configuration” section.

The ipchains program works similar to the ipfwadm program in that it manipulates rules in
four different categories in the NAT table. The four categories that ipchains uses are as follows:

• IP input chain

• IP output chain

• IP forwarding chain

• User-defined chains

The ipchains program uses the concept of chaining rules together to filter packets as they pass
through the Linux server. Remember, rules are created to give system administrators a concrete
method to use to manipulate the NAT. Figure 19.3 shows a graphical picture of how the rule
chains are configured. The rules are stored in the NAT as IP address pairs, not as rules per se.

IP Routing with Linux

CHAPTER 19
495

19

IP R
O

U
TIN

G
W

ITH
L

IN
U

X

IP PACKET

checksum

sanity 1

input chain

demasquerade

routing

sanity 2

forward chain

sanity 3

output chain

DENY/REJECT

DENY/REJECT

DENY/REJECT

DENY/REJECT

DENY

DENY

DENY/REJECT

ACCEPT PACKET

FIGURE 19.3
ipchains rule processing.

23 0672318342 CH19 2/14/00 2:43 PM Page 495

The processes shown in Figure 19.3 control how packets are processed in the Linux server.
Table 19.5 describes these processes.

TABLE 19.5 ipchains Packet Filtering Processes

Process Description

checksum Checks for corrupted packets

sanity1 Checks for malformed packets

input chain Firewall input chain check

demasquerade If reply to a masqueraded packet, must be converted back to original
packet address

routing Destination checked to see whether it is local or needs to be forwarded

sanity2 Checks for malformed packets

forward chain Firewall forward chain check

sanity3 Checks for malformed packets

output chain Firewall output chain check

The packet must successfully pass each of the appropriate processes listed in Table 19.5 before
it is accepted to be processed either on the local host or forwarded to a remote host.

The input, forward, and output chains use rules set in the NAT table by the ipchains program.
The format of the ipchains command varies depending on the category used. The formats that
ipchains can use are as follows:

ipchains -[ADC] chain rule-specification [options]
ipchains -[RI] chain rulenum rule-specification [options]
ipchains -D chain rulenum [options]
ipchains -[LFZNX] [chain] [options]
ipchains -P chain target [options]
ipchains -M [-L | -S] [options]

The first parameter is the command that controls the function that ipchains performs. Table
19.6 lists the commands available to use.

TABLE 19.6 ipchains Command Types

Command Description

-A Append one or more rules

-D Delete one or more rules

-C Checks the packet against selected chain

-R Replace a rule in the selected chain

Advanced Topics

PART III
496

23 0672318342 CH19 2/14/00 2:43 PM Page 496

-I Insert one or more rules as the given rule number

-L List all rules in selected chain

-F Flush the selected chain

-Z Zero the counters for all chains

-N Create a new user-defined chain

-X Delete selected user-defined chain

-P Set the policy for the chain

-M View the current masqueraded connections

The next parameter is the chain name. This can be either one of the system chains—input, out-
put, or forward—or a user-defined chain name created using the -N command. User-defined
chains are often used to help simplify complex rules.

ipchains Rules
The rule specification consists of parameters that specify the actions taken in the rule. Table
19.7 lists the available specifications.

TABLE 19.7 ipchains Parameter Types

Parameter Description

-p protocol The protocol to check

-s address[/mask] Source address to check

--source-port port Source port to check

-d address[/mask] Destination address to check

--destination-port port Destination port to check

--icmp-type ICMP type to check

-j target Target to jump to if packet matches

-i name Interface name

-f Rule refers to fragment packets

There are six special targets that the -j option can jump to when a packet matches the rule.
Targets themselves are not actual entities. They are used to help create a concrete description
for the mail administrator to use when creating rules. The NAT still tracks packets by IP
address pairs and will still either pass or block packets based on the IP address pairs.

IP Routing with Linux

CHAPTER 19
497

19

IP R
O

U
TIN

G
W

ITH
L

IN
U

X

Command Description

23 0672318342 CH19 2/14/00 2:43 PM Page 497

The additional features included in the newer Linux kernel help support features such as mas-
querading and redirection. Table 19.8 lists the available targets.

TABLE 19.8 ipchains Target Types

Target Description

ACCEPT Allows packet to pass

DENY Prevents packet from passing

REJECT Prevents packet from passing and returns ICMP error to sender

MASQ Masquerades forward packets

REDIRECT Sends packet to local port instead of destination

RETURN Drops out of chain immediately

Besides parameters, additional options are used to further define the rule. Table 19.9 lists the
available options.

TABLE 19.9 ipchains Option Types

Option Description

-b Bi-directional mode

-v Verbose output

-n Numeric output

-l Turn on logging

-o [maxsize] Copy matching packets to user space device

-m markvalue Mark matching packets

-t andmask xormask Masks used to modify the IP packet type-of-service field

-x Expand numbers

-y Only match start-of-session packets

As each ipchains command is entered, the NAT table is modified accordingly. When the
server is rebooted, the NAT table resets and any changes made previously are lost. To solve
this problem, ipchains uses two script files to save the NAT table in a file that can be read
back into the NAT table at boot time.

Advanced Topics

PART III
498

23 0672318342 CH19 2/14/00 2:43 PM Page 498

Saving a NAT Configuration
The ipchains-save script is used to save the existing NAT table configuration into a file speci-
fied. The format of the ipchains-save command is

ipchains-save > filename

where filename is the name of the file where you want to save the NAT table configuration.
You must be logged in as the root user to execute this command. To restore the NAT table, you
can create an initialization script that uses the ipchains-restore script. The format of the
ipchains-restore command is

ipchains-restore < filename

where filename is the full pathname of the location where the original NAT table configura-
tion was stored. Again, this command should be run as the root user, preferably during the
server initialization scripts.

Enabling Masquerading
Listing 19.2 shows an example of ipchains commands that can be used to enable masquerad-
ing on a Linux server.

LISTING 19.2 Sample ipchains Commands for Masquerading

1 /sbin/ipchains -P forward DENY
2 /sbin/ipchains -A forward -i ppp0 -j MASQ

In Listing 19.2, line 1 sets the default policy for the forward chain to deny. Line 2 appends a
rule to the forward chain. Any packets forwarded to the ppp0 interface will be passed to the
masquerading target first. This assumes that the ppp0 line is the connection to the ISP. To add
firewall features, you can add another command:

/sbin/ipchains -A input -i ppp0 -l -y -j DENY

This command denies any TCP start-of-session packet coming into the input chain on the
ppp0 interface. Assuming that the ppp0 interface is the Linux server’s connection to the ISP,
this prevents Internet hosts from establishing connections with hosts on the office network. The
use of the -l option allows any connection attempt to be logged in the kernel log file. By care-
fully monitoring the log files, the system administrator can detect unauthorized attempts by
hackers to connect to internal workstations and hosts.

IP Routing with Linux

CHAPTER 19
499

19

IP R
O

U
TIN

G
W

ITH
L

IN
U

X

23 0672318342 CH19 2/14/00 2:43 PM Page 499

Configuring Network Clients for Routing
After the Linux server has been properly configured to allow routing and/or masquerading to
the Internet, the local network workstations must be configured to use the router. The network
workstations must know the IP address of the Linux server to be able to forward packets
through the Linux server to the Internet.

For the workstation to properly forward packets to the Linux server, the network must operate
with a single network address and subnet mask. The subnet mask defines how many bits of the
IP address are used to define the network portion of the address. Workstations use this informa-
tion to determine when they need to forward packets to the router, and when they can send
them directly to the destination host.

If you obtained the office network from the ISP or the NIC, you will not have any choice in
these values. They should be given to you by the ISP. If you selected the public IP address
scheme for your office network, you have a choice of how much of the address space you want
to use as the network portion. Table 19.10 shows different ways the 192.168.0.0 public IP
address range can be separated into network addresses and host addresses.

TABLE 19.10 Subnetting the 192.168.0.0 Network

Mask Number of Workstations

255.255.240.0 4094

255.255.248.0 2046

255.255.252.0 1022

255.255.254.0 510

255.255.255.0 254

255.255.255.128 126

255.255.255.192 62

255.255.255.224 30

255.255.255.240 14

255.255.255.248 6

255.255.255.252 2

The most common (and easiest) method is to use the 255.255.255.0 subnet mask. This pro-
vides that the first three octets in the IP address define the network. Each workstation on the
network must have the same first three octet values. Thus you can use 192.168.1 as the net-
work address and assign IP addresses from 1 to 254 to workstations on the office network
(remember that the 255 address is for broadcasts and can’t be used on a workstation).

Advanced Topics

PART III
500

23 0672318342 CH19 2/14/00 2:43 PM Page 500

Chapter 15, “Configuring LAN Clients,” discusses the details required to configure network
cards and IP addresses on Microsoft Windows 95, 98, and NT 4.0 workstations. Figure 19.4
shows the TCP/IP Properties window for a Windows 95 client.

IP Routing with Linux

CHAPTER 19
501

19

IP R
O

U
TIN

G
W

ITH
L

IN
U

X

FIGURE 19.4
The Microsoft Windows 95 and 98 TCP/IP Properties window.

The workstation IP address and subnet mask are configured in the IP Address tab. The default
gateway address must be configured from the Gateway tab. The default gateway address will
be the IP address of the Linux server.

Windows NT 4.0 workstations require a similar configuration. Figure 19.5 shows the Microsoft
TCP/IP Properties window from a Windows NT 4.0 workstation.

All three necessary parameters can be entered into the IP Address tab area. Again, the default
gateway address will be the IP address of the Linux server.

After these values are entered into the network configuration of the workstation, the worksta-
tion should be able to contact remote Internet hosts via the Linux server.

23 0672318342 CH19 2/14/00 2:43 PM Page 501

FIGURE 19.5
The Microsoft Windows NT 4.0 workstation TCP/IP Properties window.

Summary
Although not an email function, IP routing is often a requirement for local office networks
connecting to the Internet via an ISP. The Linux mailserver can also be configured to route net-
work traffic from the office network to the Internet. If the office network uses valid Internet IP
addresses, the Linux server can be configured to forward packets “as-is” to the ISP. If the
office network uses public IP addresses, the Linux server must be capable of performing mas-
querading. Masquerading allows the Linux server to use its own valid Internet IP address in
place of the public IP addresses that the network workstations use. This way, remote Internet
hosts can properly return IP packets to the Linux server, which in turn can convert them back
to the public IP addresses for the workstations. In both scenarios, the Linux server can also
perform firewall functions to help protect the office network from outside hackers. The Linux
ipfwadm and ipchains commands can be used to implement both firewall and masquerading
functions. Both commands modify rules set up in the Linux kernel to instruct it how to handle
packets. After the Linux server is configured to route packets from the office network to the
Internet, workstations on the office network must be configured to use it as the default gate-
way. All the Microsoft workstation operating systems allow for IP subnet masks and default
gateways to be configured into the TCP/IP software configuration. By using the Linux
mailserver’s IP address as the default gateway, local office workstations can connect to the
Internet.

Advanced Topics

PART III
502

23 0672318342 CH19 2/14/00 2:43 PM Page 502

At this point, you should be comfortable with the aspects of Linux mailserver administration
and maintenance. But the job of the mail administrator never ends. There are many new tech-
nologies appearing on the horizon that will enhance the use of email in the office. One such
technology that is getting more press is the Lightweight Directory Access Protocol (LDAP).
This allows a single point of authentication for all network services, including email. Many
companies are experimenting with this feature, and some work has been started in the Linux
world to support LDAP. This and many other new technologies should keep you busy as the
office mail administrator.

IP Routing with Linux

CHAPTER 19
503

19

IP R
O

U
TIN

G
W

ITH
L

IN
U

X

23 0672318342 CH19 2/14/00 2:43 PM Page 503

504

23 0672318342 CH19 2/14/00 2:43 PM Page 504

INDEX
A

accept unqualified senders feature, 308
accept unresolved domains feature, 309
accepting mail, 450
access db feature, 309
action response codes (SMTP), 128
activating debugging (sendmail

program), 274
adding users (useradd utility), 380
Address and Control Field Compression

option (LCP), 214
address families (ifconfig command), 60
addresses

mail lists
SMTP, 124

administrating
mailservers, 374

aliases, 446
/etc/aliases file example, 268
conventions, 447
creating for Majordomo, 468-469
databases, creating (sendmail program), 268
email, 444-445

forward file, 444-445
example file, 447
Majordomo mail lists, 471
newaliases program, 449
sendmail, 446-447
text files, 268

allmasquerade feature, 310
alternate mail hosts names, specifying,

317
always add domain feature, 310

24 0672318342 index 2/14/00 2:50 PM Page 505

APOP, authentication support (POP3)
506

APOP, authentication
support (POP3),
340-341

APOP command (POP3),
151-152

APPEND command
(IMAP), 188

approve command (mail
list owners), 480

archives, mail lists, 462
AUTH command (POP3),

152-153
AUTHENTICATE

command (IMAP), 176
authenticating

IMAP, 175
POP3, methods, 149
PPP, 215

CHAP, 215
PAP, 217

authentication, POP3,
340-341

APOP support, 340-341
Authentication Protocol

option (LCP), 214
automating mail

retrieval
dial-on-demand PPP

connection with ISP
domain mail spooling
example, 367

dial-on-demand PPP con-
nection with one ISP
mailbox example, 364

dial-up UUCP connec-
tion with ISP domain
mail spooling
mailserver example,
371

B
BCC (Blind Carbon

Copies), 277
bestmx is local feature,

311
binary data, 134

uuencode, 134
BIND, compiling, 108
BIND (Berkeley Internet

Name Domain), 100
bitdomain feature, 310
blacklist recipients fea-

ture, 311
Blind Carbon Copies

(BCC), 277
block files, 37
block-sorting file com-

pression utility, 303
boot process, 57
bulletins, qpopper

program, 341-342
example text, 342

C
C classes (sendmail

program), 282
C programming

language, 43-46
libraries, 46
make file, 50-51

CAPABILITY command
(IMAP), 197

category types, ipfwadm
program, 491

Challenge-Handshake
Authentication
Protocol. See CHAP

changing configuration
file, sendmail, 278

CHAP
code field values,

215-216
packets, 215
PPP authentication, 215

character files, 37
chat program (pppd

program), 221
CHECK command (IMAP),

189
clear host status (send-

mail program), 270
client protocols (email)

IMAP, 331-332
POP3, 331

clients
dial-in, 420
IMAP, 199
LAN

configuring, 394-408
requirements, 394-402

Linux, 97
Netscape Messenger,

402-403
POP3, 162
protocols, IMAP, 177
Qualcomm Eudora Light,

412
SMTP, 118

CLOSE command (IMAP),
190

closed mail lists, 460
closing

handshakes, UUCP, 242
sessions, master comput-

ers, 242
CNAME (Canonical

Name), 90
Code-Reject LCP packet,

212

24 0672318342 index 2/14/00 2:50 PM Page 506

communication devices
507

codes
SMTP action response,

128
SMTP error response,

126
SMTP informational

response, 127
SMTP service response,

127
coding methods,

uuencode, 134
command-line options,

mqetty program, 428
command-line parame-

ters
popper program, 335-336
sendmail, 273-274

commands
APOP (POP3), 151-152
APPEND (IMAP), 188
AUTH (POP3), 152-153
AUTHENTICATE

(IMAP), 176
CAPABILITY (IMAP),

197
CHECK (IMAP), 189
CLOSE (IMAP), 190
COPY (IMAP), 197
CREATE (IMAP), 180
DELE (POP3), 156-157
DELETE (IMAP), 181
E (Execute), 241
EXAMINE (IMAP), 180
EXPUNGE (IMAP), 190
FETCH (IMAP), 194-195
fetchmail, 167-168
H (Halt), 242
host utility parameters,

100-101
ifconfig, 56-62
ipchains program, 496
ipfwadm program, 491

LIST (POP3), 154
LIST (IMAP), 183
LOGOUT (IMAP), 198
LSUB (IMAP), 185
mail list owners, 480

config, 480
mkdigest, 480
newconfig, 480
newinfo, 481
passwd, 481
writeconfig, 481

mail list users, 477
end, 479
get, 478
help, 479
index, 478
info, 479
intro, 479
subscribe, 477
unsubscribe, 478
which, 478
who, 478

netcfg, 63-64
NOOP (IMAP), 198
NOOP (POP3), 157
ps options, 34, 36
QUIT (POP3), 158
R (Receive), 239
RENAME (IMAP), 182
RETR (POP3), 155
RSET (POP3), 158
S (Send), 237-238
SEARCH (IMAP), 191
SELECT (IMAP), 178
sendmail, 273

parameters, 273-274
setserial, 67-68

command-line
parameters, 69-70

Init scripts, 70-72
shells, 47
SMTP, 117-118

DATA, 120
EXPN, 124
extended, 139-140
HELO, 118
HELP, 124
MAIL, 118
NOOP, 125
QUIT, 125
RCPT, 119-120
RSET, 123
SAML, 122
SEND, 122
SOML, 122
TURN, 126

STAT (POP3), 153
STATUS (IMAP), 186
STORE (IMAP), 196
SUBSCRIBE (IMAP),

183
TOP (POP3), 158-159
UID (IMAP), 197
UIDL (POP3), 160-161
UNSUBSCRIBE (IMAP),

183
USER/PASS (POP3),

149-150
UUCP

uucico, 256-257
uucp, 258
uustat, 258
uux, 259
uuxqt, 257

X, 241
communicating, UUCP,

235-236
communication devices,

54
ifconfig command, 58-62
installing, 54
IP addresses, 56
network cards, 56-58
NIC, 62

24 0672318342 index 2/14/00 2:50 PM Page 507

communications devices, modems
508

communications
devices, modems,
64-67

compiling BIND, 108
compression (files), 303
computers, name

history, 82
config command (mail

list owners), 480
config file (Taylor

UUCP), 260
configuration files

macros, 306
sendmail, 357-359

m4 directives,
305-319

sendmail program, 267,
279-284

C classes, 282
changing, 278
contents, 280-282
D macros, 281
F lines, 282
file lines, 279
H lines, 284
K lines, 283-284
M lines, 285-286
O lines, 288-290
P lines, 288
R lines, 291
rule sets, 292
rules sets, 290

syslogd program,
388-390

example, 389
uuqetty program,

423-424
configure mode (ifcon-

fig command), 60-62
Configure-Ack LCP

Packet, 211
Configure-Nak LCP

packet, 211

Configure-Reject LCP
packet, 211

Configure-Request LCP
packet, 211

configuring
DNS client files, 98-99
Eudora Light, 413
fetchmail, 163-164

for IMAP, 199
Novice Configuration,

164
IP addresses, LAN

clients, 399-402
LAN clients, 394-408
mail lists, Majordomo,

470-475
Messenger, 404-406
modems, dial-in, 420-427
mqetty program for PPP

support, 429-431
network cards, 56-58
network clients, for

routing, 500-501
Outlook Express, 409
POP3, 330
qpopper, 335

passwords, 337-338
sendmail, 300-304

example, 319-328
UW IMAP, 346-347
UW POP3, 344-346
Windows 95/98, dial-up

networking, 434-435
Windows NT, dial-up

networking, 436-440
connecting

mailservers, 351-353
connectivity options,

353-354
to ISPs, 350

networks, 395, 484-485

connectivity options, 353
Dedicated PPP

Connection, 354
Dial-on-Demand PPP

connection, 354
Dial-Up UUCP

Connection, 354
controlling modems, 78
COPY command (IMAP),

197
CREATE command

(IMAP), 180
creating

alias database, sendmail
program, 268

aliases, for Majordomo,
468-469

majordomo.cf file,
466-467

userid, Majordomo, 463
users, useradd utility, 380

D
data transferring

(UUCP), 237
DATA command (SMTP),

120
databases

alias, creating (sendmail
program), 268

DNS, 87-89
CNAME, 90
HINFO, 90
Internet Address

Record, 90
MX (Mail Server), 91
NS (Name Server

Record), 90
PTR, 91
record types, 88
sample, 92

24 0672318342 index 2/14/00 2:50 PM Page 508

DNS
509

debugging sendmail,
274

dedicated connection
with direct domain
mail example
mailserver, 355

PPP link configuration,
355-359

defining message trans-
port systems, 318-319

DELE command (POP3),
156-157

DELETE command
(IMAP), 181

delivering email (DNS),
97

device drivers
managing, 37-38

block files, 37
character files, 37
network files, 37

modules, 40-41
devices

communication, 54-56
installing, 54
network cards, 56-58

ifconfig command, 58-62
sample listing, 38

DHCP, 87
diagram (DNS), 83-86
dial file (Taylor UUCP),

261
dial-in clients, 420
dial-in modems

configuring, 420
PPP scripts, 426
uuqetty program,

422-424
inittab files, 420-422
mqetty program, 427
sharing, 441

dial-on-demand PPP con-
nection with ISP
domain mail spooling
mailserver example,
365

automated mail retrieval,
367

fetchmail, 367
PPP link configuration,

366
sendmail configuration,

367
dial-on-demand PPP con-

nection with one ISP
mailbox mailserver
example, 360

automating mail retrieval,
364

fetchmail configuration,
363-364

PPP link configuration,
360-362

sendmail configuration,
362

dial-up networking
Windows 98, 434-435
Windows NT, 436-440

dial-up UUCP connection
with ISP domain mail
spooling mailserver
example, 367

automating mail retrieval,
371

sendmail configuration,
370

UUCP configuration,
368-369

diald program, PPP, 223

dialog boxes
Microsoft Outlook

Express connection, 410
Microsoft Outlook

Express Internet
Accounts, 409

Microsoft Outlook
Express New Message,
412

dig utility, 104-105
options, 105-107
sample output, 107

digests, mail lists, 461
directories, sendmail,

267
Discard-Request LCP

packet, 212
disks (hard), devices, 31
DNS, 82

/var/named/root.cache
file, 109-110

database records, 87-89
CNAME, 90
HINFO, 90
Internet Address

Record, 90
MX, 91
NS, 90
PTR, 91
SOA, 89

diagram, 83
email, 97
etc/named.conf files

(sample), 108
finding IP addresses, 85
hosting ISPs, 351
Hostname Resolver files,

98
Hosts files, 99
Internet, 84

24 0672318342 index 2/14/00 2:50 PM Page 509

DNS
510

Linux, 97
configuring client

files, 98-99
Linux servers, 107-108
local hosting, 351
methods, 82
protocol, 93

packet header section,
94-96

question section, 95
resolution methods, 86
roots, 83
servers

named, 108-113
top level domain names,

83-84
utilities, 100

dig, 104-107
host, 100
nslookup, 102

DNS Resolution file, 99
domain name service.

See DNS
domains, 350

accepting mail, 450
Internet, 85
local hosting, 351
naming, 82-84

domaintable feature,
311

downloading
Eudora Light, 412
gpopper program, 334
Majordomo, 462
Outlook Express, 408
sendmail program, 303
UW IMAP, 343-344

drivers, modules,
40-41, 54

Dynamic Host
Configuration Protocol.
See DHCP

E
E command (Execute),

UUCP, 241
Echo-Reply LCP packet,

212
Echo-Request LCP

packet, 212
editing

majordomo.cf file,
466-467

Makefile (Majordomo),
463-465

email
aliases, 444-445

conventions, 447
client protocols

IMAP, 331-332
POP3, 331

DNS, 97
Eudora Light, 412
IMAP mail flags, 178
mail lists, SMTP, 124
mailboxes, 12
masquerading, 444-456

multi-host servers, 452
multi-server networks,

452
Netscape Messenger,

402-403
Outlook Express, 408
protocols, 22
server, philosophy, 170
SMTP, 117, 135

message formats,
129-132

RCTP command, 119
systems, 12

LAN, 20-21
mainframes, 13
multi-mainframe, 12
UNIX, 13-20

virtual hosting, 454-456

enabling masquerading
(ipchains program), 499

end command (mail list
users), 479

end of message indica-
tor, setting, 276

envelope ID (sendmail
program), setting, 278

error response codes
(SMTP), 126

etc/group file, example,
378

etc/named.conf files
example, 108

Eudora Light, 412-414
configuring, 413
downloading, 412
installing, 413
main client window, 414

Eudora Light New
Message window, 415

event types, syslogd
programs, 386

EXAMINE command
(IMAP), 180

examples
aliases file, 447
APPEND sessions

(IMAP), 188
AUTHENTICATE

sessions (IMAP), 176
CAPABILITY session

(IMAP), 197
CREATE session

(IMAP), 180
creating users with

useradd utility, 380
device listing, 38
dial-on-demand PPP

connection with ISP
domain mail spooling
mailserver, 365-367

24 0672318342 index 2/14/00 2:50 PM Page 510

fetchmail
511

dial-on-demand PPP con-
nection with one ISP
mailbox (mailserver),
362-364

dial-up UUCP connection
with ISP domain mail
spooling, 367-371

dig utility, 107
DNS database, 92
/etc/aliases file, 268
/etc/group file, 378
/etc/named.conf file, 108
EXPUNGE session

(IMAP), 190
FETCH sessions (IMAP),

195-196
forward file, 445
full-time Internet connec-

tion mailserver, 321
help command (sendmail

program), 272
host utility output, 102
ifconfig command output,

59
IMAP session, 174-175,

347
inittab file, 420
ipchains commands for

masquerading, 499
ipfwadm script for

masquerading, 493
ldconfig partial output,

44
LIST sessions (IMAP),

184
LSUB session (IMAP),

185-186
mail list configuration

request, 472-473
mail list subscription

session, 476-477
mailserver scenarios, 355,

362-371

majordomo.cf file,
466-467

Majordomo install test,
469-470

nslookup utility session,
103-104

part-time Internet connec-
tion mailserver, 324

POP3 client sessions, 148
POP3 login session, 339
POP3 session, 336, 345
qpopper program bulletin

text, 342
RENAME session

(IMAP), 182
rule sets (sendmail), 295
SEARCH session

(IMAP), 193
SELECT session (IMAP),

178
sendmail (SMTP)

definition file, 142
sendmail configuration,

319-328
shadow password

/etc/passwd file, 337
shadow password file,

376-377
smail software configura-

tion file, 144
SMTP FRC 822 Message

Transaction, 132-134
SMTP multipart MIME

message session,
137-138

SMTP sessions, 121
SMTP telneting, 116
STATUS command

(IMAP), 187
syslogd configuration file,

389

Taylor UUCP
dial file, 255
port file, 254

useradd utility, 381
UUCP, 242

connection mailserver,
326-328

Taylor dial file, 261
Taylor master sys file,

260
Taylor port file, 261
uustat command, 258

virtual hosting table, 455
executing files (UUCP E

command), 241
exim program (MTA), 20
exim software (SMTP),

144
EXPN command (SMTP),

124
EXPUNGE command

(IMAP), 190
extended SMTP, 139

commands, 139-140
external modems, 73

F
features

mail lists, 460
sendmail, identifying,

308-316
FETCH command (IMAP),

194-195
fetchmail, 167

commands, 167-168
configuring, 163-164

for IMAP, 199
Novice Configuration

option, 164

24 0672318342 index 2/14/00 2:50 PM Page 511

fetchmail
512

dial-on-demand PPP
connection with ISP
domain mail spooling
example, 367

dial-on-demand PPP
connection with one
ISP mailbox mailserver
example, 363-364

installing, 163
field values

CHAP, 215-216
LCP, 210

files
/etc/group, 378
/etc/passwd, 337
aliases, 446-447

example, 447
sendmail program,

268
compression, 303
config (Taylor UUCP),

249-250
configuration, sendmail

program, 279-291
device

block, 37
character, 37
network, 37

dial (Taylor UUCP),
254-255

DNS client, 98-99
DNS Resolution, 99
executing UUCP E com-

mand, 241
forward, 445
forward (sendmail

program), 270
group, 377-379
help (sendmail program),

271
host status (sendmail

program), 270

Hostname Resolver
(DNS), 98

Hosts (DNS), 99
inittab, 420-422
mail list archives, 462
majordomo.cf, 466-467
make, 50-51
Makefile (Majordomo),

463-465
port (Taylor UUCP),

253-254
purqestat (sendmail

program), 270
receiving UUCP, 240
script, 47
sending UUCP S

command, 237-238
sendmail, 267
sendmail.st, 270
sys (Taylor UUCP),
250-252
Userid, 374

utilities, 379-382
var/named/root.cache,

109-110
filesystems, managing,

39-40
filtering packets

(ipchains), 496
finding IP address, 85
folders (IMAP), 180
forward file, 444-445

example, 445
forwarding email (vir-

tual hosting), 454-456
frame compression, 206
frames

compressing, 206
PPP field values, 208
protocol

HDLC, 206-207
PPP, 205

protocols (PPP), 208

G
g protocol (UUCP), 244
gcc (GNU Project), 49
genericstable feature,

311
get command (mail list

users), 478
GNU make utility

(Majordomo), 467-468
GNU gzip utility, file

compression, 303
GNU m4 macro proces-

sor, 304-305
GNU Project, 47-49

gcc, 49
make files, 50-51

gpopper program,
334-338

downloading, 334
IMAP, 335-338
POP3, 335-338

gpopper software
(POP3), 169

graphical Userid mainte-
nance utility, 382

kuser, 384
group file, 377-379

H
H command (Halt), UUCP,

242
hackers, 390
handling programs, 34

ps command options,
34-36

handling methods,
messages, 308

handshakes, closing
UUCP, 242

24 0672318342 index 2/14/00 2:50 PM Page 512

IMAP
513

hard disks, devices, 31
hardware

communication devices,
54-58

network cards, 56-58
HDLC frames, compres-

sion, 206
HDLC protocol, 204

frames, 206-207
header fields, MIME,

135-137
header section, DNS

protocol, 94-96
HELO command (SMTP),

118
help command (mail list

users), 479
HELP command (SMTP),

124
output, 124

help file (sendmail
program), 271

High-Level Data Link
Control protocol. See
HDLC

history, computer
names, 82

hop count, setting, 275
Host clients, SMTP, 118
Host Information Record

(HINFO), 90
host names, masquerad-

ing, 450
host status file (send-

mail program), 270
host utility, 100

command parameters,
100-101

sample output, 102
hosting

DNS (ISPs), 351
local, 351

Hostname Resolver files
(DNS), 98

hostnames, 84
local host, 99

Hosts files (DNS), 99
hoststat file (sendmail

program), 269

I
i protocol (UUCP), 247
ICANN (Internet

Corporation for
Assigned Names and
Numbers), 84

identifying
configuration files, 306
message source, 277
sendmail features,

308-316
ifconfig command, 58-62

address families, 60
configure mode, 60

IP addresses, 62
NIC, 62

example output, 59
network cards, 56-58
options, 61-62
report mode, 58

IMAP, 25, 174-175,
331-332

APPEND command, 188
ATHENTICATE

command, 176
authentication methods,

175
CAPABILITY command,

197
CHECK command, 189
client protocol, 177

clients, 199
networks, 199

CLOSE command, 190
configuring, 330
COPY command, 197
CREATE command, 180
DELETE command, 181
EXAMINE command,

180
EXPUNGE command,

190
FETCH command,

194-195
fetchmail, 199
folders, 180
gpopper program,

334-338
imapd software, 198
implementing, 198
INBOX, 177
installing, 330
LIST command, 183
LOGOUT command, 198
LSUB command, 185
mail message flags, 178
mailboxes, 180
Netscape MAIL server,

201
NOOP command, 198
RENAME command, 182
SEARCH command, 191

defined search keys,
191-193

SELECT command, 178
servers, 198
sessions, example, 347
STATUS command, 186

data items, 186
STORE command, 196
SUBSCRIBE command,

183

24 0672318342 index 2/14/00 2:50 PM Page 513

IMAP
514

UID command, 197
UNSUBSCRIBE

command, 183
UW

configuring, 346-347
installing, 343-344

imapd software, 198
implementing

IMAP, 198
POP3, 162
PPP, 219
UUCP, 259

INBOX, mailboxes, 177
index command (mail

list users), 478
info command (mail list

users), 479
informational response

codes, SMTP, 127
Init scripts (setserial

command), 70-72
initial handshake

(UUCP), 235-236
inittab file, 420-422
insmode, command-line

options, 40
installing

communication devices,
54

dial-up networking,
Windows NT, 437-440

Eudora Light, 413
fetchmail, 163
IMAP, 330
Majordomo, 463

testing, 469-470
modems, 64-67

setserial command,
67-72

mqetty program, 427-428
Netscape Communicator,

403

network cards, 56-58
Outlook Express, 408
POP3, 330
qpopper, testing, 336
sendmail program,

300-302
binary distributions,

300-302
Internet, 303

UW IMAP, 343-344
Interactive Mail Access

Protocol. See IMAP
internal modems, 73-74
Internet

connecting mailserver,
351-354

DNS, 84
domains, 85

naming, 84
downloading sendmail

program, 303
full-time connection

mailserver, 321
Internet Address Record,

90
Internet Connection

Wizard, window, 409
Internet Corporation for

Assigned Names and
Numbers. See ICANN

Internet Explorer,
Outlook Express, 408

Internet Message Access
Protocol. See IMAP

Internet Service
Providers. See ISP

intro command (mail list
users), 479

IP addresses, 56
assigning (ifconfig

command), 62
finding, 85

LAN clients, 398-402
local networks, public

ranges, 488-489
networks, local, 485-487
routing, 484

ipchains program,
494-495

ipfwadm program,
490-491

network clients,
500-501

ipchains program,
494-495

commands, 496
masquerading, 499
NAT table, saving, 499
options, 498
packet filtering processes,

496
parameter types, 497
rules, 497
target types, 498

IPCP, 217
options, 217-218

ipfwadm program,
490-491

category types, 491
command types, 491
masquerading, example

script, 493
NAT table addresses, 490
options, 492
parameter types, 492
rules, 490

ipopd software (POP3),
168

ISA Plug-and-Play
modems, 74-76

ISDN modems, 76
ISDN4Linux toolkit

utilities, 77

24 0672318342 index 2/14/00 2:50 PM Page 514

macros
515

ISP (Internet Service
Provider)

connecting, 350
DNS, hosting, 351

K-L
kernels

modules, 40-41
versions, 42-43
virtual memory, 31-33

kppp program, 224-227
kuser, 384

mail window, 383

LAN
clients

configuring, 394-408
Outlook Express, 410
Qualcomm Eudora

Light, 412
requirements, 394-402

LAN email systems,
20-21

languages, C program-
ming, 43-46

libraries, 46
LCP, 209

Code-Reject packet, 212
Configure-Ack packet,

211
Configure-Nak packet,

211
Configure-Reject packet,

211
Configure-Request

packet, 211
Discard-Request packet,

212
Echo-Reply packet, 212
Echo-Request packet,

212

field values, 210
options, 212

Address and Control
Field Compression,
214

Authentication
Protocol, 214

Configure-Request
fields, 213

Magic-Number, 214
MRU (Maximum

Receive Unit), 213
Protocol Field

Compression, 214
Quality Control, 214

PPP, negotiation phases,
209

Protocol-Reject packet,
212

Terminate-Ack packet,
212

Terminate-Request
packet, 211

ldconfig partial output
sample, 44

libraries, 43-46
C language, 46

limited masquerade fea-
ture, 311

Link Control Protocol.
See LCP

Linux, 31, 33
as DNS client, 97
DNS servers, 107-108
filesystem list, 39-40
hard disk devices, 31
libraries, 43-46
prepacked operating sys-

tems, 51-52
SMTP, 141

Linux distribution, 51-52

LIST command (IMAP),
183

LIST command (POP3),
154

list owners, 460
lists

filesystems, 39-40
ISDN4Linux Toolkit

utilities, 77
Linux C libraries, 46
mail, 461

lists command (mail list
users), 479

local hosting, domain
names, 351

local lmtp feature, 312
local networks

IP addresses, 485-489
masquerading, 489

local procmail, 312
localhost (hostname), 99
log files, mqetty

program, 432-433
logging option, setting,

278
LOGOUT command

(IMAP), 198
loose relay check

feature, 312
LSUB command (IMAP),

185

M
m4 directives, sendmail,

305-319
macros

configuration files, 306
GNU m4 processor,

304-305

24 0672318342 index 2/14/00 2:50 PM Page 515

Magic Number option (LCP)
516

Magic Number option
(LCP), 214

MAIL command (SMTP),
118

mail drop options, 351
All Domain Mail to One

ISP Mailbox, 352
direct mail connection,

352
ISP Spools Domain Mail

for Delivery, 353
mail hosts, specifying

alternate name, 317
mail lists, 460

archives, 462
closed, 460
digests, 461
features, 460
help command, 479
list owners, 460
Majordomo, 462-475

aliases, 471
configuring, 470-475
downloading, 462

moderated, 461
open, 460
owners commands

config, 480
mkdigest, 480
newconfig, 480
newinfo, 481

remote administration,
461

SMTP, 124
subscriptions, 460
unmoderated, 461
user commands, 477-479

end, 479
get command, 478
index, 478
info, 479

intro, 479
subscribe, 477
unsubscribe, 478
which, 478
who, 478

Mail Transfer Agent. See
MTA

mail transport protocol,
setting, 276

Mail User Agents. See
MUA

mail users, passwords,
377

mailboxes, 12
IMAP, 180
INBOX, 177

mailertable feature, 312
mailq file (sendmail

program), 267
mailserver, hackers, 390
mailservers, 30

administration, 374
connecting

connectivity options,
353-354

mail drop options,
351-353

to ISP, 350
Eudora Light, 412
example scenarios,

355-371
masquerading, 450

multi-host, 452
monitoring, 386

syslogd program,
386-387

Netscape Messenger,
405-407

Outlook Express, 408-410
spammers, 390
syslogd program, 390

mainframe email
systems, 13

multiple, 12
maintaining

email servers, 170
Userid files, 374

Majordomo, 462-475
aliases, 471

creating, 468-469
downloading, 462
GNU make utility,

467-468
installing, 463

testing, 469-470
mail lists, configuring,

470-475
majordomo.cr file,

creating, 466-467
Makefile, editing,

463-465
userid, creating, 463

majordomo.cf file,
creating, 466-467

make files, 50-51
make utility (GNU),

Majordomo, 467-468
Makefile, Majordomo,

463-465
managing

device drivers, 37-38
block files, 37
character files, 37
network files, 37

filesystems, 39-40
memory, kernel, 31-33
processes, 34

ps command options,
34-36

masquerade entire
domain feature, 312

masquerade envelope
feature, 313

24 0672318342 index 2/14/00 2:50 PM Page 516

multi-mainframe email systems
517

masquerading, 444-489
features, 451
ipchains program, 499
ipfwadm program,

example script, 493
multi-host, 452-453
single-host, 450
spoke servers, 452
virtual hosting, 454-456

masters (UUCP), 235, 260
receiving files, 240
sending files, 237-238

memory (virtual), kernel,
31-33

message priorities (sys-
logd program), 387

message queue files
(sendmail program),
267

messages
email, 122
flags, IMAP, 178
handling methods, 308
masquerading, 452
SMTP, 122, 126-132

RFC 822 header
fields, 129-132

sources, identifying, 277
spoke servers, 452
transport systems, defin-

ing, 318-319
Messenger (Netscape),

407
configuring, 404, 406
downloading, 403
installing, 403

metasymbols
LHS macros (sendmail

program), 291
RHS macros (sendmail

program), 291

Microsoft NT, network
card setup, 397

Microsoft Outlook
Express connection
dialog box, 410

Microsoft Outlook
Express Internet
Accounts dialog box,
409

Microsoft Outlook
Express New Message
dialog box, 412

Microsoft Outlook
Express. See Outlook
Express

Microsoft Windows. See
Windows 98; Windows
95

MIME, 134
message header fields,

135-137
SMTP, sample message

session, 137-138
mkdigest command

(mail list owners), 480
modems, 54

controlling, 78
dial-in

configuring, 420- 426
inittab file, 420-422

external, 73
installing, 64-67

setserial command,
67-72

internal, 73-74
ISA Plug-and-Play, 74-76
ISDN, 76
modemtool utility, 67
serial ports, 64-67
sharing, 441

supporting, 72-76
external, 73
internal, 73-74
ISA Plug-and-Play, 76
Plug-and-Play, 74

modemtool utility, 67
moderated mail lists, 461
modules, 40-41, 54
monitoring mailservers,

386
syslogd program, 386-387

mqetty program, 427
command-line options,

428
configuring PPP support,

429-431
dial-in modems, 427
installing, 427-428
log files, 432-433

mqetty+sendfax
program, 228-230

mqueue file (sendmail
program), 267

MRU option (LCP), 213
MTA (Mail Transfer

Agent), 17, 266
exim program, 20
protocols, 22
qmail program, 19
sendmail program, 18
smail program, 19
UUCP, 22

MUA (Mail User Agents),
14-17

protocols, 24
IMAP, 25
POP3, 25

multi-host masquerad-
ing, 452-453

multi-mainframe email
systems, 12

24 0672318342 index 2/14/00 2:50 PM Page 517

multi-server email network
518

multi-server email
network, 452

Multipurpose Internet
Mail Extensions. See
MIME

MX (Mail Server
Record), 91

N
name compression, 96
named program (DNS

server), 108-113
as zone DNS server, 111
queries, 113

naming
computers, history, 82
domains, 82-84

NAT table (ipchains pro-
grams), 494-499

NAT table addresses
(ipfwadm program),
490

negotiation phases, PPP,
209

netcfg command, 63-64
netcfg command

window, 63
Netscape, 407

Messenger, 402-403
configuring, 404-406
downloading, 403
installing, 403

Netscape Mail IMAP
server configuration
screen, 201

Netscape Messenger
window, 404

network card setup,
Microsoft NT, 397

network card setup
(Windows 98), 395

network cards
boot process, 57
configuring, 56-58
ifconfig command, 56-58
installing, 56-58

network files, 37
Network Information

Center. See NIC
network window,

Windows 98, 396
networking (dial-up),

Windows 98, 434-435
networks

clients
configuring for rout-

ing, 500-501
IMAP, 199

connecting, 395, 484-485
email, multi-server, 452
ifconfig command, 58-62
IP addresses, 398

configuring, 399-402
local, IP addresses,

485-489
masquerading, 452-453
workstations, 484-485

newaliases program, 449
newconfig command

(mail list owners), 480
newinfo command (mail

list owners), 481
NIC (Network

Information Center),
350

nocanonify feature, 313
nodns feature, 313
NOOP command (IMAP),

198

NOOP command (POP3),
157

NOOP command (SMTP),
125

notification options,
setting, 276

nouucp feature, 313
NS (Name Server

Record), 90
nslookup utility, 102

options, 102
sample session, 103-104

O
open mail lists, 460
operating systems

GNU Project, 47-49
kernel, 31-33
parameters, 307
prepackaged Linux, 51
processes, managing,

34-36
options

ifconfig command, 61-62
ipchains program, 498
ipfwadm program, 492
nslookup, 102
ps command, 34-36
sendmail, specifying, 317
UW IMAP, 343

Outlook Express,
408-410

configuring, 409
downloading, 408
installing, 408
main window, 412

24 0672318342 index 2/14/00 2:50 PM Page 518

PPP
519

P
packets

CHAP, 215
DNS, 96

resource records, 96
filtering ipchains, 496

PAP, 217
parameter types

(ipchains program), 497
parameters

syslogd program, 387
uuqetty programs, 423

part-time Internet con-
nection mailserver
example, 324

passwd command (mail
list owners), 481

Password
Authentication
Protocol. See PAP

passwords
mail users, 377
PAP, 217
qpopper program,

337-338
shadow, 337-338

example, 376-377
Userid, 376-377

people clients, SMTP,
118

personal mail forward-
ing file (sendmail
program), 270

phases, PPP negotiation,
209

pine program (UNIX), 16
Point-to-Point Protocol.

See PPP
Pointer Record (PTR), 91

POP3, 25, 331
APOP command,

151-152
AUTH command,

152-153
authentication, 340-341

APOP support,
340-341

authentication methods,
149

client commands, 153
clients, 162
configuring, 330
DELE command,

156-157
gpopper program,

334-338
gpopper software, 169
implementing, 162
installing, 330
ipopd software, 168
LIST command, 154
login session example,

339
NOOP command, 157
qpopper program,

bulletins, 341-342
QUIT command, 158
RETR command, 155
RSET command, 158
sample session, 336
security, 340-341
server responses, 162
servers, 168
sessions, example, 345
STAT command, 153
TOP command, 158-159
UIDL command, 160-161
USER/PASS commands,

149-150
UW, configuring,

344-346

POP3 protocol, 148
popper program. See

qpopper program
port file (Taylor UUCP),

261
Post Office Protocol. See

POP3
PPP, 204

authentication phase, 215
CHAP, 215-216
diald program, 223
field values, 208
frames, 208
HDLC, 204
implementing, 219
kppp program, 224, 227
LCP, 204-209

options, 212-214
link configuration

dedicated connection
with direct domain
mail example,
355-359

dial-on-demand PPP
connection with ISP
domain mail spool-
ing example, 366

dial-on-demand PPP
connection with one
ISP mailbox exam-
ple, 360-362

link termination phase,
218

mqetty program, support-
ing, 429-431

mqetty+sendfax program,
228-230

negotiation phases, 209
LCP (Link Control

Protocol), 209
networks, establishment

protocol, 217

24 0672318342 index 2/14/00 2:50 PM Page 519

PPP
520

PAP, 217
passwords, 217

pppd program, 220
server parameters,

227
protocol frames, 205
scripts, 426
sessions

authentication, 204
link establishment,

204
link termination, 204
protocol negotiation,

204
pppd program, 426

chat program, 221
PPP client, 220
server parameters, 227

prepackaged Linux
operating systems, 51

primary DNS service,
351

processes
managing, 34

ps command, 34-36
viewing active, 34-36

processors, GNU m4
macro, 304-305

programs
gpopper, 334
ipchains, 494-495
ipfwadm, 490-493
Majordomo, 462
mqetty, 427

installing, 427-428
newaliases, 449
pine (UNIX), 16
qpopper, 335-342
sendmail, 266-267

command-line para-
meters, 273-274

syslogd, 386-387
uuqetty, 422, 424

parameters, 423
promiscuous relay

feature, 314
protecting

from hackers, 390
from spammers, 390

protocol
DNS, 93

packet header section,
94-96

HDLC, 204
LCP, 204
POP3, 148
PPP:frames, 205

Protocol Field
Compression option
(LCP), 214

Protocol-Reject LCP
packet, 212

protocols
CHAP, 215
email, 22
HDLC, frames, 206-207
IMAP, 174, 177
IPCP, 217
MTA, 22
MUA, 24
PAP, 217
POP3, 25, 331
PPP, 204
SMTP, 22, 25
UUCP, 22, 234

types, 244-248
UUSP, 234

ps command, options,
34-36

purqestat file (sendmail
program), 270

Q
qmail program (MTA), 19
qmail software (SMTP),

143
qpopper program

bulletins, 341-342
example text, 342

command-line parame-
ters, 335-336

configuring, 335-338
installing test, 336
POP3

authentication,
340-341

security, 340-341
Qualcomm Eudora Light.

See Eudora Light
Quality Control option

(LCP), 214
question section (DNS),

95
queue, processing

options, 276-277
QUIT command (POP3),

158
QUIT command (SMTP),

125

R
R command (Receive),

UUCP, 239
command options, 240

rbl feature, 314
RCPT command (SMTP),

119-120
receiving files (UUCP),

240
redirect feature, 314

24 0672318342 index 2/14/00 2:50 PM Page 520

sendmail
521

relay based on MX
feature, 314

relay entire domain
feature, 315

relay hosts only feature,
315

relay local from feature,
315

remote administration,
mail lists, 461

RENAME command
(IMAP), 182

report host status (send-
mail program), 269

report mode (ifconfig
command), 58

requirements, LAN
clients, 394-402

resource records, DNS
packets, 96

responding to SMTP
commands, 126

response codes
SMTP action, 128
SMTP error, 126
SMTP informational, 127
SMTP service, 127

response messages,
SMTP servers, 126

RETR command (POP3),
155

return codes
UUCP

R command, 240
S command, 239

UUCP slaves, 236
RFC 822 header fields

sample, 132-134
SMTP, 129-132

roots (DNS), 83

routing
IP addresses, 484

ipchain program,
494-495

ipfwadm program,
490-491

network clients,
500-501

network clients,
configuring, 500-501

RSET command (POP3),
158

RSET command (SMTP),
123

rule sets, sendmail, 267
configuration file,

290-292
sendmail program, 293

example, 295
rules (ipchains program),

497

S
S command (Send)

UUCP, 237-238
options, 238
return codes, 239

SAML command (SMTP),
122

saving NAT configura-
tions (ipchains
program), 499

script files, 47
scripts, PPP, 426
SEARCH command

(IMAP), 191
defined search keys,

191-193

security
POP3, 340-341
sendmail, 266

SELECT command
(IMAP), 178

SEND command (SMTP),
122

sender name, setting,
275

sending
email (DNS), 97
files (UUCP S com-

mand), 237-238
messages (SMTP), 122

sendmail, 267
alias database, creating,

268
alias text file, 268
aliases, 446-447

Majordomo, 468-471
BCC (Blind Carbon

Copies), 277
clear host status, 270
commands, parameters,

273-274
configuration file, 267,

279, 357-359
C classes, 282
changing, 278
contents, 280, 282
D macros, 281
dial-on-demand PPP

connection with ISP
domain mail spool-
ing example, 367

dial-on-demand PPP
connection with one
ISP mailbox exam-
ple, 362

24 0672318342 index 2/14/00 2:50 PM Page 521

sendmail
522

dial-up UUCP con-
nection with ISP
domain mail
spooling mailserver
example, 370

F lines, 282
file lines, 279
H lines, 284
K lines, 283-284
M lines, 285-286
O lines, 288, 290
P lines, 288
R lines, 291
rule sets, 290-292

configuring, 300-304
example, 319-328

debugging, 274
directories, 267
downloading from

Internet, 303
end of message indicator,

276
envelope ID, setting, 278
features, 308-316
files, 267
GNU m4 macro

processor, 304-305
help file, 271

example, 272
hop count, setting, 275
host status file, 270
installing, 300-302

binary distributions,
300-302

logging option, setting,
278

m4 directives, 305-319
mail transport protocol,

276
mailq file, 267

masquerading, 449,
454-456

features, 451
message queue file, 267
MTA (Mail Transfer

Agent), 18, 266
notification options,

setting, 276
operational mode, 273
options, 317
personal mail forwarding

file, 270
queue processing option,

276-277
report host status, 269
rule sets, 267

example, 295
rules sets, 293
security, 266
sender name, setting, 275
sources, identifying, 277
statistics collection switch

file, 270
undeliverable message

response option, 277
verbose option, 278
virtual hosting, 454-456

sendmail (SMTP), sample
definition file, 142

sendmail command, 273
sendmail software

(SMTP), 141
sendmail.st file, 270
serial ports, modems,

64-67
servers

DNS
dig utility, 104-105
Linux, 107-108
named, 108-113
protocol, 93

email
maintaining, 170
multi-server networks,

452
IMAP, 198
POP3, 168
responses, POP3, 162
SMTP, 126

service response codes
(SMTP), 127

sessions
closing UUCP H com-

mand, 242
IMAP, 174-175

example, 347
mail list subscription,

476-477
POP3 example, 336, 345
POP3 login example, 339
PPP

authentication, 204
link establishment, 204
link termination, 204
protocol negotiation,

204
sample MIME message,

137-138
SMTP, sample, 121
UUCP, 235

example, 242
setserial command,

67-68
command-line parame-

ters, 69-70
Init scripts, 70-72

setting
end of message indicator,

276
envelope ID (sendmail

program), 278
hop count (sendmail

program), 275

24 0672318342 index 2/14/00 2:50 PM Page 522

spoke servers, outbound messages
523

logging option (sendmail
program), 278

mail transport protocol,
276

NIC parameters, 62
notification options, 276
queue processing option

(sendmail program),
276-277

sender name (sendmail
program), 275

shadow passwords
example file, 337,

376-377
qpopper program,

337-338
Userid files, 376-377

sharing modems, 441
shell commands, 47. See

also script files
shells, 47
Simple Mail Transfer

Protocol. See SMTP
single-host masquerad-

ing, 450
single-user mode, 34

ps command, 34-36
slaves

UUCP, 235, 262
halting sessions, 242
receiving files, 240
return codes, 236
sending files, 237-238

smail program (MTA), 19
smail software (SMTP),

144
sample configuration file,

144
smrsh feature, 315
SMTP, 22-25, 134

Simple Mail Transfer
Protocol, 116

binary data, 134
commands, 117-118

DATA, 120
EXPN, 124
extended, 139-140
HELO, 118
HELP, 124
MAIL, 118
NOOP, 125
QUIT, 125
RCPT, 119-120
RSET, 123
SAML, 122
SEND, 122
SOML, 122
TURN, 126
VRFY, 123

email, 135
sending, 122

extended, 139
Host clients, 118
Linux, 141
mail lists, 124
messages, 129-132
MIME, 134

header fields, 136-137
sample message

session, 137-138
people clients, 118
response codes

action, 128
error, 126
informational, 127
service, 127

RFC 822 header fields,
129-132

sample transaction,
132-134

sample session, 121
servers, 126
Simple Mail Transfer

Protocol, 116

software
exim, 144
qmail, 143
sendmail, 141-142
smail, 144

telnet, sample session,
116

two-way mail transfers,
126

SOA (Start of Authority
Record), 89

software
diald program, 223
Eudora Light, 412
gpopper (POP3), 169
imapd, 198
ipopd (POP3), 168
kppp program, 224, 227
mqetty+sendfax program,

228-230
Outlook Express, 408
pppd, 220
SMTP

exim, 144
qmail, 143
sendmail, 141
smails, 144

TCP/IP, 55
SOML command (SMTP),

122
spammers, 390
special codes, uuqetty

programs, 425
specifying

alternate mail host name,
317

message handling
messages, 308

sendmail options, 317
spoke servers, outbound

messages, 452

24 0672318342 index 2/14/00 2:50 PM Page 523

Start of Authority Record
524

Start of Authority
Record. See SOA

starting debugging
mode (sendmail
program), 274

STAT command (POP3),
153

statistics collection
switch file (sendmail
program), 270

STATUS command
(IMAP), 186

data items, 186
stickyhost feature, 315
STORE command

(IMAP), 196
structures (DNS), 84

root, 83
subdomains, 85
SUBSCRIBE command

(IMAP), 183
subscribe command

(mail list users), 477
subscriptions, mail lists,

460
supporting

clients, dial-in, 420
modems, 72

external, 73
internal, 73-74
ISA Plug-and-Play,

74-76
ISDN, 76

mqetty program, PPP,
429-431

PPP, 219
sys file (Taylor UUCP),

260
syslogd program,

386-387
configuration file,

388-390
example, 389

event types, 386
message priorities, 387
options, 388
parameters, 387

systems
email, 12

LAN, 20-21
mainframes, 13
multi-mainframe, 12
UNIX, 13-20

kernel, 31-33

T
t protocol (UUCP), 248
target types, ipchains,

498
Taylor UUCP, 248

config file, 249-250
example, 260

dial file, 254-255, 261
port file, 253-254, 261
sys file, 250, 252, 260

TCP/IP, software, 55
telnet (SMTP), sample

session, 116
Terminate-Ack LCP

packet, 212
Terminate-Request LCP

packet, 211
testing

gpopper installation, 336
Majordomo install,

469-470
toolkits, utilities, 77
tools, nslookup (DNS),

102
TOP command (POP3),

158-159
top level domain names

(DNS), 83-84

transferring data
(UUCP), 237

transport systems
(messages), defining,
318-319

troubleshooting
DNS, nslookup, 102
email problems, 97

TURN command (SMTP),
126

two-way mail transfers
(SMTP), 126

U
UID command (IMAP),

197
UIDL command (POP3),

160-161
undeliverable message

response option, 277
University of

Washington IMAP. See
UW IMAP

UNIX
email systems, 13
MTA, 17-20
MTA (Mail Transfer

Agent), 17-20
MUA, 14-17
MUA (Mail User Agents),

14-17
X window programs, 17

file compression, 303
pine program, 16
shells, 47

UUCP protocol, 234
unmoderated mail lists,

461
UNSUBSCRIBE command

(IMAP), 183

24 0672318342 index 2/14/00 2:50 PM Page 524

VRFY command (SMTP)
525

unsubscribe command
(mail list users), 478

use ct file feature, 315
use cw file feature, 315
USER/PASS commands

(POP3), 149-150
useradd utility, 379

example output, 381
parameters, 379-380

userid, creating
Majordomo, 463
Userid files, 374

kuser, 384
maintenance, 374
shadow passwords,

376-377
utilities, 379-382

graphical maintenance,
382-384

users, adding
useradd utility, 380
utilities

DNS, 100
dig, 104-107
host, 100-102
nslookup, 102-104
GNU make
Majordomo, 467-468

useradd, 379
parameters, 379-380

uucico command
(UUCP), 256-257

UUCP, 22, 234
data transfer, 237
dial-up UUCP connection

with ISP domain mail
spooling mailserver
example, 368-369

E command, 241
executing files, 241
files, receiving, 240

H command, 242
handshakes, closing, 242
implementing, 259
initial handshake,

235-236
masters, 235, 260
halting sessions, 242
protocol types, 244-248
R command, 239

options, 240
S command, 237-238

options, 238
return codes, 239
sessions, 235

example, 242
slaves, 235, 262
return codes, 236
sending files, 237-238
Taylor, 248

config file, 249-250,
260

dial file, 254-255, 261
port file, 253-254, 261
sys file, 250-252, 260

UNIX computers, 234
uucico command,

256-257
uucp command, 258
uustat command, 258
uux command, 259
uuxqt command, 257
X command, 241

uucp command (UUCP),
258

UUCP connection
mailserver example,
326-328

uucpdomain feature, 316
uuencode

coding method, 134
email packages, 135

uuqetty program,
422-424

configuration files,
423-424

special codes, 425
uuqetty programs,

parameters, 423
uustat command (UUCP),

258
example, 258

uux command (UUCP),
259

uuxqt command (UUCP),
257

UW IMAP, 342
configuring, 346-347
downloading, 343-344
installing, 343-344
options, 343

UW POP3, configuring,
344-346

V
var/named/root.cache

files, sample, 109-110
verbose option, 278
viewing active

processes, 34
ps command, 34-36

virtual hosting, 454-456
example, 455

virtual memory, 31-33
virtusertable feature,

316
VRFY command (SMTP),

123

24 0672318342 index 2/14/00 2:50 PM Page 525

which command (mail lists users)
526

W
which command (mail

lists users), 478
who command (mail list

users), 478
windows

Eudora Light New
Message, 415

kuser, 383
netcfg, 63
Netscape Messenger, 404
Outlook Express, 412
Windows 98 TCP/IP

properties, 501
Windows NT 4.0 work-

station network, 397
Windows NT 4.0

workstation network
adapters, 398

Windows 95
dial-up networking,

434-435
IP addresses, configuring,

399-400
network card setup, 395

Windows 98
dial-up networking,

434-435
IP configuration, 399-400
network card setup, 395
network window, 396
TCP/IP properties

window, 501
Windows NT

dial-up networking,
436-440

IP addresses, configuring,
400-402

remote access setup, 437

Windows NT 4.0 work-
station network
adapters window, 398

Windows NT 4.0 work-
station network
window, 397

wizards, Internet
Connection Wizard, 409

workstations
connecting, 484-485
IP addresses, 398

configuring, 399-402
sendmail configuration

example, 319-321
writeconfig command

(mail list owners), 481

X-Z
X command (UUCP), 241
X window programs

(UNIX), 17

24 0672318342 index 2/14/00 2:50 PM Page 526

	sendmail® for Linux®
	Copyright © 2000 by Sams Publishing
	Overview
	Contents
	About the Author
	Tell Us What You Think!

	Introduction
	Conventions Used in This Book

	PART I: Introduction to Email Services and Linux
	CHAPTER 1: Email Principles and Services
	Mainframe Email Systems
	Multi-Mainframe Email Systems
	Early UNIX Email Systems
	LAN-Based Email Systems
	Summary

	CHAPTER 2: Using Linux As a Mailserver
	The Linux Kernel
	Linux Libraries
	The GNU Project
	Linux Distributions
	Summary

	CHAPTER 3: Installing Communication Devices in Linux
	Communication Devices and Linux
	Installing and Configuring Network Cards
	Installing Modems
	Linux Modem Support
	Controlling Modems in Linux
	Summary

	CHAPTER 4: DNS and Domain Names
	History of Computer Names
	Domain Names
	Linux as a DNS Client
	Linux as a DNS Server
	Summary

	CHAPTER 5: SMTP Protocol
	SMTP Protocol Description
	Message Formats
	MIME and Binary Data
	Extended SMTP
	SMTP on Linux
	Summary

	CHAPTER 6: POP3 Protocol
	Description of the Post Office Protocol
	(.) on a line by itself. Linux POP3 Implementations
	Summary

	CHAPTER 7: IMAP Protocol
	Description of the Internet Mail Access Protocol
	Linux IMAP Implementation
	Using IMAP on Network Clients
	Summary

	CHAPTER 8: PPP Protocol
	PPP Protocol Overview
	PPP Protocol Frames
	PPP Negotiation Phases
	Linux PPP Implementations
	Summary

	CHAPTER 9: UUCP Protocol
	UUCP Protocol Description
	UUCP Protocol Types
	Taylor UUCP
	UUCP Commands
	Linux UUCP Implementation
	Summary

	CHAPTER 10: The sendmail Program
	sendmail Files and Directories
	The sendmail Command Syntax
	sendmail Configuration File
	Summary

	PART II: Installing Email Services in Linux
	CHAPTER 11: Installing and Configuring sendmail
	Installing sendmail
	Configuring sendmail
	Sample sendmail Configurations
	Summary

	CHAPTER 12: Installing and Configuring POP3 and IMAP
	Email Client Protocols
	qpopper
	University of Washington IMAP
	Summary

	CHAPTER 13: Connecting the Mailserver to an ISP
	Preliminary Issues
	Sample Mailserver Scenarios
	Summary

	CHAPTER 14: Mailserver Administration
	Userid Maintenance
	Monitoring the Mailserver
	Watching for Hackers and Spammers
	Summary

	CHAPTER 15: Configuring LAN Clients
	Requirements for a LAN Client
	Watching for Hackers and Spammers
	Summary

	CHAPTER 15: Configuring LAN Clients
	Requirements for a LAN Client
	Netscape Messenger
	Microsoft Outlook Express
	Qualcomm Eudora Light
	Summary

	PART III: Advanced Topics
	CHAPTER 16: Supporting Dial-In Clients
	Configuring Dial-In Modems
	Revisiting the mgetty Program
	Configuring Windows 95 and 98 Dial-Up Networking
	Configuring Windows NT 4.0 Dial-Up Networking
	Sharing a Modem

	CHAPTER 17: Mail Aliases and Masquerading
	The .forward File
	Aliases
	Masquerading
	Summary

	CHAPTER 18: Mail Lists
	Features of a Full Service Mail List
	Introducing Majordomo
	Using Majordomo
	Summary

	CHAPTER 19: IP Routing with Linux
	Methods of Network Connectivity Using Linux
	Using ipfwadm
	Using ipchains
	Configuring Network Clients for Routing
	Summary

	INDEX

